
ptg999

ptg999

Programming in
Objective-C

Fourth Edition

ptg999

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0321-77640-2

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

ptg999

Programming in
Objective-C

Fourth Edition

Stephen G. Kochan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg999

Programming in Objective-C, Fourth Edition
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-81190-5

ISBN-10: 0-321-81190-9

Library of Congress Cataloging-in-Publication Data

Kochan, Stephen G.

Programming in objective-c / Stephen G. Kochan. -- 4th ed.

p. cm.

ISBN 978-0-321-81190-5 (pbk.)

1. Objective-C (Computer program language) 2. Object-oriented

programming (Computer science) 3. Macintosh (Computer)--Programming.

I. Title.

QA76.64.K655 2012

005.1'17--dc23

2011046245

Printed in the United States of America

Second Printing: March 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions
Editor
Mark Taber

Development
Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Indexer
Heather McNeill

Proofreader
Sheri Cain

Technical Editors
Wendy Mui
Michael Trent

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

ptg999

❖

To Roy and Ve, two people whom I dearly miss.

To Ken Brown,“It’s just a jump to the left.”

❖

ptg999

Contents at a Glance
1 Introduction 1

2 Programming in Objective-C 7

3 Classes, Objects, and Methods 27

4 Data Types and Expressions 51

5 Program Looping 71

6 Making Decisions 93

7 More on Classes 127

8 Inheritance 151

9 Polymorphism, Dynamic Typing, and
Dynamic Binding 177

10 More on Variables and Data Types 195

11 Categories and Protocols 219

12 The Preprocessor 233

13 Underlying C Language Features 247

14 Introduction to the Foundation Framework 303

15 Numbers, Strings, and Collections 307

16 Working with Files 369

17 Memory Management and Automatic
Reference Counting 399

18 Copying Objects 413

19 Archiving 425

20 Introduction to Cocoa and Cocoa Touch 443

21 Writing iOS Applications 447

A Glossary 479

B Address Book Example Source Code 487

Index 493

ptg999

Contents

1 Introduction 1
What You Will Learn from This Book 2

How This Book Is Organized 3

Support 5

Acknowledgments 5

Preface to the Fourth Edition 6

2 Programming in Objective-C 7
Compiling and Running Programs 7

Using Xcode 8

Using Terminal 17

Explanation of Your First Program 19

Displaying the Values of Variables 23

Summary 25

Exercises 25

3 Classes, Objects, and Methods 27
What Is an Object, Anyway? 27

Instances and Methods 28

An Objective-C Class for Working with Fractions 30

The @interface Section 33

Choosing Names 34

Class and Instance Methods 35

The @implementation Section 37

The program Section 39

Accessing Instance Variables and Data Encapsulation 45

Summary 49

Exercises 49

4 Data Types and Expressions 51
Data Types and Constants 51

Type int 51

Type float 52

Type char 52

ptg999

viii Contents

Qualifiers: long, long long, short, unsigned,
and signed 53

Type id 54

Arithmetic Expressions 55

Operator Precedence 55

Integer Arithmetic and the Unary Minus Operator 58

The Modulus Operator 60

Integer and Floating-Point Conversions 61

The Type Cast Operator 63

Assignment Operators 64

A Calculator Class 65

Exercises 67

5 Program Looping 71
The for Statement 72

Keyboard Input 79

Nested for Loops 81

for Loop Variants 83

The while Statement 84

The do Statement 88

The break Statement 90

The continue Statement 90

Summary 91

Exercises 91

6 Making Decisions 93
The if Statement 93

The if-else Construct 98

Compound Relational Tests 100

Nested if Statements 103

The else if Construct 105

The switch Statement 114

Boolean Variables 117

The Conditional Operator 122

Exercises 124

ptg999

ixContents

7 More on Classes 127
Separate Interface and Implementation Files 127

Synthesized Accessor Methods 132

Accessing Properties Using the Dot Operator 134

Multiple Arguments to Methods 135

Methods Without Argument Names 137

Operations on Fractions 137

Local Variables 140

Method Arguments 141

The static Keyword 141

The self Keyword 145

Allocating and Returning Objects from Methods 146

Extending Class Definitions and the Interface File 148

Exercises 148

8 Inheritance 151
It All Begins at the Root 151

Finding the Right Method 155

Extension Through Inheritance: Adding New Methods 156

A Point Class and Object Allocation 160

The @class Directive 161

Classes Owning Their Objects 165

Overriding Methods 169

Which Method Is Selected? 171

Abstract Classes 173

Exercises 174

9 Polymorphism, Dynamic Typing,
and Dynamic Binding 177
Polymorphism: Same Name, Different Class 177

Dynamic Binding and the id Type 180

Compile Time Versus Runtime Checking 182

The id Data Type and Static Typing 183

Argument and Return Types with Dynamic Typing 184

Asking Questions About Classes 185

Exception Handling Using @try 189

Exercises 192

ptg999

x Contents

10 More on Variables and Data Types 195
Initializing Objects 195
Scope Revisited 198

Directives for Controlling Instance Variable Scope 198
More on Properties, Synthesized Accessors, and
Instance Variables 200
Global Variables 200
Static Variables 202

Enumerated Data Types 205
The typedef Statement 208
Data Type Conversions 209

Conversion Rules 210
Bit Operators 211

The Bitwise AND Operator 212
The Bitwise Inclusive-OR Operator 213
The Bitwise Exclusive-OR Operator 214
The Ones Complement Operator 214
The Left Shift Operator 216
The Right Shift Operator 216

Exercises 217

11 Categories and Protocols 219
Categories 219

Class Extensions 224

Some Notes About Categories 225

Protocols and Delegation 226

Delegation 229

Informal Protocols 229

Composite Objects 230

Exercises 231

12 The Preprocessor 233
The #define Statement 233

More Advanced Types of Definitions 235

The #import Statement 240

Conditional Compilation 241

The #ifdef, #endif, #else 241

The #if and #elif Preprocessor Statements 243

The #undef Statement 244

Exercises 245

ptg999

xiContents

13 Underlying C Language Features 247
Arrays 248

Initializing Array Elements 250

Character Arrays 251

Multidimensional Arrays 252

Functions 254

Arguments and Local Variables 255

Returning Function Results 257

Functions, Methods, and Arrays 261

Blocks 262

Structures 266

Initializing Structures 269

Structures Within Structures 270

Additional Details About Structures 272

Don’t Forget About Object-Oriented Programming! 273

Pointers 273

Pointers and Structures 277

Pointers, Methods, and Functions 279

Pointers and Arrays 280

Constant Character Strings and Pointers 286

Operations on Pointers 290

Pointers and Memory Addresses 292

They’re Not Objects! 293

Miscellaneous Language Features 293

Compound Literals 293

The goto Statement 294

The null Statement 294

The Comma Operator 294

The sizeof Operator 295

Command-Line Arguments 296

How Things Work 298

Fact #1: Instance Variables Are Stored
in Structures 298

Fact #2: An Object Variable Is Really a Pointer 299

Fact #3: Methods Are Functions, and Message
Expressions Are Function Calls 299

Fact #4: The id Type Is a Generic Pointer Type 299

Exercises 300

ptg999

xii Contents

14 Introduction to the Foundation Framework 303
Foundation Documentation 303

15 Numbers, Strings, and Collections 307
Number Objects 307

String Objects 312

More on the NSLog Function 312

The description Method 313

Mutable Versus Immutable Objects 314

Mutable Strings 320

Array Objects 327

Making an Address Book 330

Sorting Arrays 347

Dictionary Objects 354

Enumerating a Dictionary 355

Set Objects 358

NSIndexSet 362

Exercises 365

16 Working with Files 369
Managing Files and Directories: NSFileManager 370

Working with the NSData Class 375

Working with Directories 376

Enumerating the Contents of a Directory 379

Working with Paths: NSPathUtilities.h 381

Common Methods for Working with Paths 383

Copying Files and Using the NSProcessInfo Class 386

Basic File Operations: NSFileHandle 390

The NSURL Class 395

The NSBundle Class 396

Exercises 397

17 Memory Management and Automatic Reference
Counting 399
Automatic Garbage Collection 401

Manual Reference Counting 402

Object References and the Autorelease Pool 403

ptg999

xiiiContents

The Event Loop and Memory Allocation 405

Summary of Manual Memory Management Rules 407

Automatic Reference Counting (ARC) 408

Strong Variables 408

Weak Variables 409

@autoreleasepool Blocks 410

Method Names and Non-ARC Compiled Code 411

18 Copying Objects 413
The copy and mutableCopy Methods 413

Shallow Versus Deep Copying 416

Implementing the <NSCopying> Protocol 418

Copying Objects in Setter and Getter Methods 421

Exercises 423

19 Archiving 425
Archiving with XML Property Lists 425

Archiving with NSKeyedArchiver 427

Writing Encoding and Decoding Methods 429

Using NSData to Create Custom Archives 436

Using the Archiver to Copy Objects 439

Exercises 441

20 Introduction to Cocoa and Cocoa Touch 443
Framework Layers 443

Cocoa Touch 444

21 Writing iOS Applications 447
The iOS SDK 447

Your First iPhone Application 447

Creating a New iPhone Application Project 449

Entering Your Code 452

Designing the Interface 455

An iPhone Fraction Calculator 461

Starting the New Fraction_Calculator Project 462

Defining the View Controller 464

ptg999

xiv Contents

The Fraction Class 469

A Calculator Class That Deals with Fractions 473

Designing the UI 474

Summary 475

Exercises 476

A Glossary 479

B Address Book Example Source Code 487

Index 493

ptg999

About the Author
Stephen Kochan is the author and coauthor of several bestselling titles on the C
language, including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994),
and Topics in C Programming (Wiley, 1991), and several Unix titles, including Exploring
the Unix System (Sams, 1992) and Unix Shell Programming (Sams, 2003). He has been
programming on Macintosh computers since the introduction of the first Mac in 1984,
and he wrote Programming C for the Mac as part of the Apple Press Library. In 2003
Kochan wrote Programming in Objective-C (Sams, 2003), and followed that with another
Mac-related title, Beginning AppleScript (Wiley, 2004).

About the Technical Reviewers
Wendy Mui is a programmer and software development manager in the San Francisco
Bay Area.After learning Objective-C from the second edition of Steve Kochan’s book,
she landed a job at Bump Technologies, where she put her programming skills to good
use working on the client app and the API/SDK for Bump’s third-party developers.

Prior to her iOS experience,Wendy spent her formative years at Sun and various other
tech companies in Silicon Valley and San Francisco. She got hooked on programming
while earning a B.A. in Mathematics from University of California Berkeley.When not
working,Wendy is pursuing her 4th Dan Tae Kwon Do black belt.

Michael Trent has been programming in Objective-C since 1997—and programming
Macs since well before that. He is a regular contributor to Steven Frank’s cocoadev.com
website, a technical reviewer for numerous books and magazine articles, and an occasional
dabbler in Mac OS X open-source projects. Currently, he is using Objective-C and
Apple Computer’s Cocoa frameworks to build professional video applications for Mac
OS X. Michael holds a Bachelor of Science degree in computer science and a Bachelor
of Arts degree in music from Beloit College of Beloit,Wisconsin. He lives in Santa
Clara, California, with his lovely wife,Angela.

ptg999

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

www.informit.com/register

ptg999

1
Introduction

Dennis Ritchie at AT&T Bell Laboratories pioneered the C programming language in
the early 1970s. However, this programming language did not begin to gain widespread
popularity and support until the late 1970s.This was because, until that time, C compilers
were not readily available for commercial use outside of Bell Laboratories. Initially, this
growth in popularity was also partly spurred by the equal, if not faster, growth in popular-
ity of the UNIX operating system, which was written almost entirely in C.

Brad J. Cox designed the Objective-C language in the early 1980s.The language was
based on a language called SmallTalk-80. Objective-C was layered on top of the C lan-
guage, meaning that extensions were added to C to create a new programming language
that enabled objects to be created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its libraries
and a development environment called NEXTSTEP. In 1992, Objective-C support was
added to the Free Software Foundation’s GNU development environment.The copy-
rights for all Free Software Foundation (FSF) products are owned by the FSF. It is released
under the GNU General Public License.

In 1994, NeXT Computer and Sun Microsystems released a standardized specification
of the NEXTSTEP system, called OPENSTEP.The Free Software Foundation’s imple-
mentation of OPENSTEP is called GNUStep.A Linux version, which also includes the
Linux kernel and the GNUStep development environment, is called, appropriately
enough, LinuxSTEP.

On December 20, 1996,Apple Computer announced that it was acquiring NeXT
Software, and the NEXTSTEP/OPENSTEP environment became the basis for the next
major release of Apple’s operating system, OS X.Apple’s version of this development
environment was called Cocoa.With built-in support for the Objective-C language, cou-
pled with development tools such as Project Builder (or its successor Xcode) and Inter-
face Builder,Apple created a powerful development environment for application
development on Mac OS X.

In 2007,Apple released an update to the Objective-C language and labeled it Objective-
C 2.0.That version of the language formed the basis for the second edition of the book.

ptg999

2 Chapter 1 Introduction

When the iPhone was released in 2007, developers clamored for the opportunity to
develop applications for this revolutionary device.At first,Apple did not welcome third-
party application development.The company’s way of placating wannabe iPhone devel-
opers was to allow them to develop web-based applications.A web-based application
runs under the iPhone’s built-in Safari web browser and requires the user to connect to
the website that hosts the application in order to run it. Developers were not satisfied
with the many inherent limitations of web-based applications, and Apple shortly there-
after announced that developers would be able to develop so-called native applications for
the iPhone.

A native application is one that resides on the iPhone and runs under the iPhone’s
operating system, in the same way that the iPhone’s built-in applications (such as Con-
tacts, Stocks, and Weather) run on the device.The iPhone’s OS is actually a version of
Mac OS X, which meant that applications could be developed and debugged on a Mac-
Book Pro, for example. In fact,Apple soon provided a powerful Software Development
Kit (SDK) that allowed for rapid iPhone application development and debugging.The
availability of an iPhone simulator made it possible for developers to debug their applica-
tions directly on their development system, obviating the need to download and test the
program on an actual iPhone or iPod Touch device.

With the introduction of the iPad in 2010,Apple started to genericize the terminol-
ogy used for the operating system and the SDK that now support different devices with
different physical sizes and screen resolutions.The iOS SDK allows you to develop appli-
cations for any iOS device and as of this writing, iOS 5 is the current release of the oper-
ating system.

What You Will Learn from This Book
When I contemplated writing a tutorial on Objective-C, I had to make a fundamental
decision.As with other texts on Objective-C, I could write mine to assume that the
reader already knew how to write C programs. I could also teach the language from the
perspective of using the rich library of routines, such as the Foundation and UIKit
frameworks. Some texts also take the approach of teaching how to use the development
tools, such as the Mac’s Xcode and the tool formerly known as Interface Builder to
design the UI.

I had several problems adopting this approach. First, learning the entire C language
before learning Objective-C is wrong. C is a procedural language containing many features
that are not necessary for programming in Objective-C, especially at the novice level. In
fact, resorting to some of these features goes against the grain of adhering to a good
object-oriented programming methodology. It’s also not a good idea to learn all the
details of a procedural language before learning an object-oriented one.This starts the
programmer in the wrong direction, and gives the wrong orientation and mindset for fos-
tering a good object-oriented programming style. Just because Objective-C is an exten-
sion to the C language doesn’t mean you have to learn C first.

tim

ptg999

3How This Book Is Organized

So I decided neither to teach C first nor to assume prior knowledge of the language.
Instead, I decided to take the unconventional approach of teaching Objective-C and the
underlying C language as a single integrated language, from an object-oriented program-
ming perspective.The purpose of this book is as its name implies: to teach you how to
program in Objective-C. It does not profess to teach you in detail how to use the devel-
opment tools that are available for entering and debugging programs, or to provide in-
depth instructions on how to develop interactive graphical applications.You can learn all
that material in greater detail elsewhere, after you’ve learned how to write programs in
Objective-C. In fact, mastering that material will be much easier when you have a solid
foundation of how to program in Objective-C.This book does not assume much, if any,
previous programming experience. In fact, if you’re a novice programmer, with some
dedication and hard work you should be able to learn Objective-C as your first program-
ming language. Other readers have been successful at this, based on the feedback I’ve
received from the previous editions of this book.

This book teaches Objective-C by example.As I present each new feature of the lan-
guage, I usually provide a small complete program example to illustrate the feature. Just as
a picture is worth a thousand words, so is a properly chosen program example.You are
strongly encouraged to run each program (all of which are available online) and compare
the results obtained on your system to those shown in the text. By doing so, you will
learn the language and its syntax, but you will also become familiar with the process of
compiling and running Objective-C programs.

How This Book Is Organized
This book is divided into three logical parts. Part I,“The Objective-C Language,” teaches
the essentials of the language. Part II,“The Foundation Framework,” teaches how to use
the rich assortment of predefined classes that form the Foundation framework. Part III,
“Cocoa, Cocoa Touch, and the iOS SDK,” gives you an overview of the Cocoa and
Cocoa Touch frameworks and then walks you through the process of developing a simple
iOS application using the iOS SDK.

A framework is a set of classes and routines that have been logically grouped together to
make developing programs easier. Much of the power of programming in Objective-C
rests on the extensive frameworks that are available.

Chapter 2,“Programming in Objective-C,” begins by teaching you how to write your
first program in Objective-C.

Because this is not a book on Cocoa or iOS programming, graphical user interfaces
(GUIs) are not extensively taught and are hardly even mentioned until Part III. So an
approach was needed to get input into a program and produce output. Most of the exam-
ples in this text take input from the keyboard and produce their output in a window
pane: a Terminal window if you’re using the command line, or a debug output pane if
you’re using Xcode.

Chapter 3,“Classes, Objects, and Methods,” covers the fundamentals of object-oriented
programming.This chapter introduces some terminology, but it’s kept to a minimum. I

tim

tim

tim

ptg999

4 Chapter 1 Introduction

also introduce the mechanism for defining a class and the means for sending messages to
instances or objects. Instructors and seasoned Objective-C programmers will notice that I
use static typing for declaring objects. I think this is the best way for the student to get
started because the compiler can catch more errors, making the programs more self-
documenting and encouraging the new programmer to explicitly declare the data types
when they are known.As a result, the notion of the id type and its power is not fully
explored until Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Binding.”

Chapter 4,“Data Types and Expressions,” describes the basic Objective-C data types
and how to use them in your programs.

Chapter 5,“Program Looping,” introduces the three looping statements you can use in
your programs: for, while, and do.

Making decisions is fundamental to any computer programming language. Chapter 6,
“Making Decisions,” covers the Objective-C language’s if and switch statements in detail.

Chapter 7,“More on Classes,” delves more deeply into working with classes and
objects. Details about methods, multiple arguments to methods, and local variables are
discussed here.

Chapter 8,“Inheritance,” introduces the key concept of inheritance.This feature makes
the development of programs easier because you can take advantage of what comes from
above. Inheritance and the notion of subclasses make modifying and extending existing
class definitions easy.

Chapter 9 discusses three fundamental characteristics of the Objective-C language.
Polymorphism, dynamic typing, and dynamic binding are the key concepts covered here.

Chapters 10–13 round out the discussion of the Objective-C language, covering issues
such as initialization of objects, blocks, protocols, categories, the preprocessor, and some of
the underlying C features, including functions, arrays, structures, and pointers.These
underlying features are often unnecessary (and often best avoided) when first developing
object-oriented applications. It’s recommended that you skim Chapter 13,“Underlying C
Language Features,” the first time through the text and return to it only as necessary to
learn more about a particular feature of the language. Chapter 13 also introduces a recent
addition to the C language known as blocks.This should be learned after you learn about
how to write functions, since the syntax of the former is derived from the latter.

Part II begins with Chapter 14,“Introduction to the Foundation Framework,” which
gives an introduction to the Foundation framework and how to use its voluminous
documentation.

Chapters 15–19 cover important features of the Foundation framework.These include
number and string objects, collections, the file system, memory management, and the
process of copying and archiving objects.

By the time you’re done with Part II, you will be able to develop fairly sophisticated
programs in Objective-C that work with the Foundation framework.

Part III starts with Chapter 20,“Introduction to Cocoa and Cocoa Touch” Here you’ll
get a quick overview of the frameworks that provide the classes you need to develop
sophisticated graphical applications on the Mac and on your iOS devices.

tim

ptg999

5Acknowledgments

Chapter 21,“Writing iOS Applications,” introduces the iOS SDK and the UIKit
framework.This chapter illustrates a step-by-step approach to writing a simple iOS appli-
cation, followed by a more sophisticated calculator application that enables you to use
your iPhone to perform simple arithmetic calculations with fractions.

Because object-oriented parlance involves a fair amount of terminology,Appendix A,
“Glossary,” provides definitions of some common terms.

Appendix B,“Address Book Example Source Code,” gives the source code listing for
two classes that are developed and used extensively in Part II of this text.These classes
define address card and address book classes. Methods enable you to perform simple
operations such as adding and removing address cards from the address book, looking up
someone, listing the contents of the address book, and so on.

After you’ve learned how to write Objective-C programs, you can go in several direc-
tions.You might want to learn more about the underlying C programming language—or
you might want to start writing Cocoa programs to run on Mac OS X, or develop more
sophisticated iOS applications.

Support
If you go to classroomM.com/objective-c, you’ll find a forum rich with content.There
you can get source code (note that you won’t find the “official” source code for all the
examples there, as I am a firm believer that a big part the learning process occurs when
you type in the program examples yourself and learn how to identify and correct any
errors.), answers to exercises, errata, quizzes, and pose questions to me and fellow forum
members.The forum has turned into a rich community of active members who are
happy to help other members solve their problems and answer their questions. Please go,
join, and participate!

Acknowledgments
I would like to acknowledge several people for their help in the preparation of the first
edition of this text. First, I want to thank Tony Iannino and Steven Levy for reviewing the
manuscript. I am also grateful to Mike Gaines for providing his input.

I’d also like to thank my technical editors, Jack Purdum (first edition) and Mike Trent.
I was lucky enough to have Mike review the first two editions of this text. He provided
the most thorough review of any book I’ve ever written. Not only did he point out
weaknesses, but he was also generous enough to offer his suggestions. Because of Mike’s
comments in the first edition, I changed my approach to teaching memory management
and tried to make sure that every program example in this book was “leak free.”This was
prior to the fourth edition, where the strong emphasis on memory management became
obsolete with the introduction of ARC. Mike also provided invaluable input for my
chapter on iPhone programming.

ptg999

6 Chapter 1 Introduction

From the first edition, Catherine Babin supplied the cover photograph and provided
me with many wonderful pictures to choose from. Having the cover art from a friend
made the book even more special.

I am so grateful to Mark Taber (for all editions) from Pearson for putting up with all
delays and for being kind enough to work around my schedule and to tolerate my consis-
tent missing of deadlines. I am extremely grateful to Michael de Haan and Wendy Mui
for doing an incredible, unsolicited job proofreading the second edition (and thanks
Wendy for your work on the third edition as well).Their meticulous attention to detail
has resulted in a list of both typographical and substantive errors that have been addressed
in the second printing. Publishers take note:These two pairs of eyes are priceless!

As noted at the start of this Introduction, Dennis Ritchie invented the C language. He
was also a co-inventor of the Unix operating system, which is the basis for Mac OS X
and iOS. Sadly, the world lost both Dennis Ritchie and Steve Jobs within the span of a
week.These two people had a profound effect on my career. Needless to say, this book
would not exist if not for them.

Finally, I’d like to thank the members of the forum at classroomM.com/objective-c for
all their feedback, support, and kind words.

Preface to the Fourth Edition
When I attended Apple’s World Wide Developer’s Conference (WWDC) in June 2011, I
was in for quite a surprise.The third edition of this book had been written and was
scheduled for release in just a few short weeks.What Apple announced there with respect
to Objective-C was a game-changer for new, would-be Objective-C programmers. Prior
to Xcode 4.2 (and the Apple LLVM 3.0 compiler it contained), iOS developers had to
struggle with the perils of memory management, which involved judiciously tracking
objects and telling the system when to hold onto and when to release them. Making the
smallest mistake in this could and did easily cause applications to crash.Well, at WWDC
2011 Apple introduced a new version of the Objective-C compiler that contained a fea-
ture called ARC, which is short for Automatic Reference Counting.With ARC, pro-
grammers no longer needed to worry about their object’s life cycle; the compiler handles
it all automatically for them!

I must apologize for such a short period of time between editions, but this fundamen-
tal change in how to approach teaching the language made this fourth edition necessary.
So this edition assumes you’re using Xcode 4.2 or later and that you’re using ARC. If
you’re not, you need to still learn about manual memory management, which is briefly
covered in Chapter 17,“Memory Management and Automatic Reference Counting.”

Stephen G. Kochan
October 2011

ptg999

2
Programming in Objective-C

In this chapter, we dive right in and show you how to write your first Objective-C pro-
gram.You won’t work with objects just yet; that’s the topic of the next chapter.We want
you to understand the steps involved in keying in a program and compiling and running it.

To begin, let’s pick a rather simple example: a program that displays the phrase “Pro-
gramming is fun!” on your screen.Without further ado, Program 2.1 shows an Objective-
C program to accomplish this task.

Program 2.1

// First program example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {
NSLog (@"Programming is fun!");

}
return 0;

}

Compiling and Running Programs
Before we go into a detailed explanation of this program, we need to cover the steps
involved in compiling and running it.You can both compile and run your program using
Xcode, or you can use the Clang Objective-C compiler in a Terminal window. Let’s go
through the sequence of steps using both methods.Then you can decide how you want
to work with your programs throughout the rest of this book.

tim

ptg999

Note
Xcode is available from the Mac App Store. However, you can also get pre-release versions
of Xcode by becoming a registered Apple developer (there's no charge for that). Go to
developer.apple.com to get the latest version of the Xcode development tools. There you
can download Xcode and the iOS SDK for no charge.

8 Chapter 2 Programming in Objective-C

Using Xcode
Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac,
learning how to use this powerful tool is worthwhile.We just get you started here. Later
we return to Xcode and take you through the steps involved in developing a graphical
application with it.

Once installed, Xcode is in your Applications folder. Figure 2.1 shows its icon.

Start Xcode.You can then select “Create a New Xcode Project” from the startup
screen (see Figure 2.2).Alternatively, under the File menu, select New, New Project....

Figure 2.1 Xcode icon

Note
As mentioned, Xcode is a sophisticated tool, and the introduction of Xcode 4 added even
more features. It’s easy to get lost using this tool. If that happens to you, back up a little
and try reading the Xcode User Guide, which can be accessed from Xcode help menu, to get
your bearings.

ptg999

9Compiling and Running Programs

Figure 2.2 Starting a new project

Figure 2.3 Starting a new project: selecting the application type

A window appears, as shown in Figure 2.3.

ptg999

10 Chapter 2 Programming in Objective-C

Figure 2.4 Starting a new project: specifying the product name and type

In the left pane, you’ll see a section labeled Mac OS X. Select Application. In the
upper-right pane, select Command Line Tool, as depicted in the previous figure. On the
next pane that appears, you pick your application’s name. Enter prog1 for the Product
Name and make sure Foundation is selected for the Type.Also, be sure that the Use Auto-
matic Reference Counting box is checked.Your screen should look like Figure 2.4.

ptg999

11Compiling and Running Programs

Figure 2.5 Selecting the location and name of the project folder

Click Next.The dropdown that appears allows you to specify the name of the project
folder that will contain the files related to your project. Here, you can also specify where
you want that project folder stored.According to Figure 2.5 we’re going to store our
project on the Desktop in a folder called prog1.

ptg999

12 Chapter 2 Programming in Objective-C

Click the Create button to create your new project. Xcode will open a project win-
dow such as the one shown in Figure 2.6. Note that your window might look different if
you’ve used Xcode before or have changed any of its options.

Figure 2.6 Xcode prog1 project window

ptg999

13Compiling and Running Programs

Now it’s time to type in your first program. Select the file main.m in the left pane (you
may have to reveal the files under the project name by clicking the disclosure triangle).
Your Xcode window should now appear as shown in Figure 2.7.

Figure 2.7 File main.m and edit window

ptg999

14 Chapter 2 Programming in Objective-C

Table 2.1 Common Filename Extensions

Extension Meaning

.c C language source file

.cc, .cpp C++ language source file

.h Header file

.m Objective-C source file

.mm Objective-C++ source file

.pl Perl source file

.o Object (compiled) file

Objective-C source files use .m as the last two characters of the filename (known as its
extension).Table 2.1 lists other commonly used filename extensions.

Returning to your Xcode project window, the right pane shows the contents of the
file called main.m, which was automatically created for you as a template file by Xcode,
and which contains the following lines:
//
// main.m
// prog1
//
// Created by Steve Kochan on 7/7/11.
// Copyright 2011 ClassroomM, Inc.. All rights reserved.
//
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
@autoreleasepool {

// insert code here...
NSLog (@"Hello World!");

}
return 0;

}

You can edit your file inside this window. Make changes to the program shown in the
Edit window to match Program 2.1.The lines that start with two slash characters (//) are
called comments; we talk more about comments shortly.

Your program in the edit window should now look like this (don’t worry if your
comments don’t match).

Program 2.1

// First program example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

ptg999

15Compiling and Running Programs

@autoreleasepool {
NSLog (@"Programming is fun!");

}
return 0;

}

Note
Don’t worry about all the colors shown for your text onscreen. Xcode indicates values,
reserved words, and so on with different colors. This will prove very valuable as you start
programming more, as it can indicate the source of a potential error.

Now it’s time to compile and run your first program—in Xcode terminology, it’s called
building and running. Before doing that, we need to reveal a window pane that will display
the results (output) from our program.You can do this most easily by selecting the middle
icon under View in the toolbar.When you hover over this icon, it says “Hide or show the
Debug area.”Your window should now appear as shown in Figure 2.8. Note that XCode
will normally reveal the Debug area automatically whenever any data is written to it.

Now, if you press the Run button located at the top left of the toolbar or select Run
from the Product menu, Xcode will go through the two-step process of first building and
then running your program.The latter occurs only if no errors are discovered in your
program.

If you do make mistakes in your program, along the way you’ll see errors denoted as
red stop signs containing exclamation points—these are known as fatal errors and you can’t

Figure 2.8 Xcode Debug area revealed

tim

ptg999

16 Chapter 2 Programming in Objective-C

run your program without correcting these. Warnings are depicted by yellow triangles
containing exclamation points—you can still run your program with them, but in general
you should examine and correct them.After running the program with all the errors
removed, the lower right pane will display the output from your program and should look
similar to Figure 2.9. Don’t worry about the verbose messages that appear.The output line
we’re interested in is the one you see in bold.

You’re now done with the procedural part of compiling and running your first pro-
gram with Xcode (whew!).The following summarizes the steps involved in creating a
new program with Xcode:

1. Start the Xcode application.

2. If this is a new project, select File, New, New Project... or choose Create a New
Xcode Project from the startup screen.

3. For the type of application, select Application, Command Line Tool, and click Next.

4. Select a name for your application and set its Type to Foundation. Make sure Use
Automatic Reference Counting is checked. Click Next.

5. Select a name for your project folder, and a directory to store your project files in.
Click Create.

6. In the left pane, you will see the file main.m (you might need to reveal it from
inside the folder that has the product’s name). Highlight that file.Type your program
into the edit window that appears in the rightmost pane.

7. In the toolbar, select the middle icon under View.This will reveal the Debug area.
That’s where you’ll see your output.

8. Build and run your application by clicking the Run button in the toolbar or select-
ing Run from the Product menu.

Note
Xcode contains a powerful built-in tool known as the static analyzer. It does an analysis of
your code and can find program logic errors. You can use it by selecting Analyze from the
Product menu or from the Run button in the toolbar.

Figure 2.9 Xcode Debug output

tim

ptg999

17Compiling and Running Programs

9. If you get any compiler errors or the output is not what you expected, make your
changes to the program and rerun it.

Using Terminal
Some people might want to avoid having to learn Xcode to get started programming
with Objective-C. If you’re used to using the UNIX shell and command-line tools, you
might want to edit, compile, and run your programs using the Terminal application. Here,
we examine how to go about doing that.

The first step is to start the Terminal application on your Mac.The Terminal applica-
tion is located in the Applications folder, stored under Utilities. Figure 2.10 shows its icon.

Start the Terminal application.You’ll see a window that looks like Figure 2.11.

You type commands after the $ (or %, depending on how yourTerminal application is
configured) on each line. If you’re familiar with using UNIX, you’ll find this straightforward.

Figure 2.10 Terminal program icon

Figure 2.11 Terminal window

ptg999

18 Chapter 2 Programming in Objective-C

First, you need to enter the lines from Program 2.1 into a file.You can begin by creat-
ing a directory in which to store your program examples.Then, you must run a text edi-
tor, such as vi or emacs, to enter your program:

sh-2.05a$ mkdir Progs Create a directory to store programs in
sh-2.05a$ cd Progs Change to the new directory
sh-2.05a$ vi main.m Start up a text editor to enter program
--

Note
In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

For Objective-C files, you can choose any name you want; just make sure the last two
characters are .m.This indicates to the compiler that you have an Objective-C program.

After you’ve entered your program into a file (and we’re not showing the edit com-
mands to enter and save your text here), you can use the LLVM Clang Objective-C com-
piler, which is called clang, to compile and link your program.This is the general format
of the clang command:

clang -fobjc-arc –framework Foundation files -o program

This option says to use information about the Foundation framework:

-framework Foundation

Note that your version of clang may not recognize this command line option, so if you
get an error, try issuing the clang command without this option. files is the list of files to
be compiled. In our example, we have only one such file, and we’re calling it main.m.
progname is the name of the file that will contain the executable if the program compiles
without any errors.

We’ll call the program prog1; here, then, is the command line to compile your first
Objective-C program:

$ clang -fobjc-arc –framework Foundation main.m -o prog1 Compile main.m & call it prog1
$

The return of the command prompt without any messages means that no errors were
found in the program. Now you can subsequently execute the program by typing the
name prog1 at the command prompt:

$ prog1 Execute prog1
sh: prog1: command not found
$

This is the result you’ll probably get unless you’ve used Terminal before.The UNIX
shell (which is the application running your program) doesn’t know where prog1 is
located (we don’t go into all the details of this here), so you have two options: One is to
precede the name of the program with the characters ./ so that the shell knows to look in
the current directory for the program to execute.The other is to add the directory in

ptg999

19Explanation of Your First Program

which your programs are stored (or just simply the current directory) to the shell’s PATH
variable. Let’s take the first approach here:

$./prog1 Execute prog1
2008-06-08 18:48:44.210 prog1[7985:10b] Programming is fun!
$

You should note that writing and debugging Objective-C programs from the terminal
is a valid approach. However, it’s not a good long-term strategy. If you want to build Mac
OS X or iOS applications, there’s more to just the executable file that needs to be “pack-
aged” into an application bundle. It’s not easy to do that from the Terminal application,
and it’s one of Xcode’s specialties.Therefore, I suggest you start learning to use Xcode to
develop your programs.There is a learning curve to do this, but the effort will be well
worth it in the end.

Explanation of Your First Program
Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

//
// main.m
// prog1
//
// Created by Steve Kochan on 7/7/11.
// Copyright 2011 ClassroomM, Inc.. All rights reserved.
//

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {

NSLog (@"Programming is fun!");

}
return 0;

}

In Objective-C, lowercase and uppercase letters are distinct.Also, Objective-C doesn’t
care where on the line you begin typing—you can begin typing your statement at any
position on the line.You can use this to your advantage in developing programs that are
easier to read.

The first seven lines of the program introduce the concept of the comment.A comment
statement is used in a program to document a program and enhance its readability. Com-
ments tell the reader of the program—whether it’s the programmer or someone else

ptg999

20 Chapter 2 Programming in Objective-C

whose responsibility it is to maintain the program—just what the programmer had in
mind when writing a particular program or a particular sequence of statements.

You can insert comments into an Objective-C program in two ways. One is by using
two consecutive slash characters (//).The compiler ignores any characters that follow
these slashes, up to the end of the line.

You can also initiate a comment with the two characters / and *.This marks the
beginning of the comment.These types of comments have to be terminated.To end the
comment, you use the characters * and /, again without any embedded spaces.All charac-
ters included between the opening /* and the closing */ are treated as part of the com-
ment statement and are ignored by the Objective-C compiler.This form of comment is
often used when comments span many lines of code, as in the following:

/*
This file implements a class called Fraction, which
represents fractional numbers. Methods allow manipulation of
fractions, such as addition, subtraction, etc.

For more information, consult the document:
/usr/docs/classes/fractions.pdf

*/

Which style of comment you use is entirely up to you. Just note that you can’t nest the
/* style comments.

Get into the habit of inserting comment statements in the program as you write it or type
it into the computer, for three good reasons. First, documenting the program while the partic-
ular program logic is still fresh in your mind is far easier than going back and rethinking the
logic after the program has been completed. Second, by inserting comments into the program
at such an early stage of the game, you can reap the benefits of the comments during the
debug phase, when program logic errors are isolated and debugged. Not only can a comment
help you (and others) read through the program, but it also can help point the way to the
source of the logic mistake. Finally, I haven’t yet discovered a programmer who actually enjoys
documenting a program. In fact, after you’ve finished debugging your program, you will prob-
ably not relish the idea of going back to the program to insert comments. Inserting comments
while developing the program makes this sometimes-tedious task a bit easier to handle.

This next line of Program 2.1 tells the compiler to locate and process a file named
Foundation.h:

#import <Foundation/Foundation.h>

This is a system file—that is, not a file that you created. #import says to import or
include the information from that file into the program, exactly as if the contents of the file
were typed into the program at that point.You imported the file Foundation.h because it
has information about other classes and functions that are used later in the program.

In Program 2.1, this line specifies that the name of the program is main:

int main (int argc, const char * argv[])

main is a special name that indicates precisely where the program is to begin execu-
tion.The reserved word int that precedes main specifies the type of value main returns,

tim

ptg999

21Explanation of Your First Program

which is an integer (more about that soon).We ignore what appears between the open
and closed parentheses for now; these have to do with command-line arguments, a topic we
address in Chapter 13,“Underlying C Language Features.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all the program statements of the
routine within a pair of curly braces. In the simplest case, a statement is just an expression
that is terminated with a semicolon.The system treats all the program statements included
between the braces as part of the main routine.

The next line in main reads

@autoreleasepool {

Any program statements between the { and the matching closing } are executed
within a context known an autorelease pool.The autorelease pool is a mechanism that
allows the system to efficiently manage the memory your application uses as it creates
new objects. I mention it in more detail in Chapter 17,“Memory Management and Auto-
matic Reference Counting.” Here, we have one statement inside our @autoreleasepool
context.

That statement specifies that a routine named NSLog is to be invoked, or called.The
parameter, or argument, to be passed or handed to the NSLog routine is the following string
of characters:

@"Programming is fun!"

Here, the @ sign immediately precedes a string of characters enclosed in a pair of dou-
ble quotes. Collectively, this is known as a constant NSString object.

Note
If you have C programming experience, you might be puzzled by the leading @ character. With-
out that leading @ character, you are writing a constant C-style string; with it, you are writing
an NSString string object. More on this topic in Chapter 15.

The NSLog routine is a function in the Objective-C library that simply displays or logs
its argument (or arguments, as you will see shortly). Before doing so, however, it displays
the date and time the routine is executed, the program name, and some other numbers
we don’t describe here.Throughout the rest of this book, we don’t bother to show this
text that NSLog inserts before your output.

You must terminate all program statements in Objective-C with a semicolon (;).This
is why a semicolon appears immediately after the closed parenthesis of the NSLog call.

The final program statement in main looks like this:

return 0;

It says to terminate execution of main and to send back, or return, a status value of 0.
By convention, 0 means that the program ended normally.Any nonzero value typically
means some problem occurred—for example, perhaps the program couldn’t locate a file
that it needed.

ptg999

22 Chapter 2 Programming in Objective-C

If you’re using Xcode and you glance back to your output window (refer to Figure
2.9), you’ll recall that the following displayed after the line of output from NSLog:

Program ended with exit code: 0.

You should understand what that message means now.
Now that we have finished discussing your first program, let’s modify it to also display

the phrase “And programming in Objective-C is even more fun!” You can do this by
simply adding another call to the NSLog routine, as shown in Program 2.2. Remember
that every Objective-C program statement must be terminated by a semicolon. Note that
we’ve removed the leading comment lines in all the following program examples.

Program 2.2
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {
NSLog (@"Programming is fun!");
NSLog (@"Programming in Objective-C is even more fun!");

}
return 0;

}

If you type in Program 2.2 and then compile and execute it, you can expect the fol-
lowing output (again, without showing the text that NSLog normally prepends to the
output):

Program 2.2 Output

Programming is fun!
Programming in Objective-C is even more fun!

As you will see from the next program example, you don’t need to make a separate call
to the NSLog routine for each line of output.

First, let’s talk about a special two-character sequence.The backslash (\) and the letter
n are known collectively as the newline character.A newline character tells the system to
do precisely what its name implies: go to a new line.Any characters to be printed after
the newline character then appear on the next line of the display. In fact, the newline
character is very similar in concept to the carriage return key on a typewriter (remember
those?).

Study the program listed in Program 2.3 and try to predict the results before you
examine the output (no cheating, now!).

tim

ptg999

23Displaying the Values of Variables

Program 2.3
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {

NSLog (@"Testing...\n..1\n...2\n....3");
}
return 0;

}

Program 2.3 Output

Testing...
..1
...2
....3

Displaying the Values of Variables
Not only can simple phrases be displayed with NSLog, but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to
display the results of adding two numbers, 50 and 25.

Program 2.4
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {

int sum;

sum = 50 + 25;
NSLog (@"The sum of 50 and 25 is %i", sum);

}

return 0;
}

Program 2.4 Output

The sum of 50 and 25 is 75

The first program statement inside main after the autorelease pool is set up defines the
variable sum to be of type integer.You must define all program variables before you can

ptg999

24 Chapter 2 Programming in Objective-C

use them in a program.The definition of a variable specifies to the Objective-C compiler
how the program should use it.The compiler needs this information to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable
defined as type int can be used to hold only integral values—that is, values without deci-
mal places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal places,
such as 2.14, 2.455, and 27.0, are known as floating-point numbers and are real numbers.

The integer variable sum stores the result of the addition of the two integers 50 and
25.We have intentionally left a blank line following the definition of this variable to visu-
ally separate the variable declarations of the routine from the program statements; this is
strictly a matter of style. Sometimes adding a single blank line in a program can make the
program more readable.

The program statement reads as it would in most other programming languages:

sum = 50 + 25;

The number 50 is added (as indicated by the plus sign) to the number 25, and the result
is stored (as indicated by the assignment operator, the equals sign) in the variable sum.

The NSLog routine call in Program 2.4 now has two arguments enclosed within the
parentheses.These arguments are separated by a comma.The first argument to the NSLog
routine is always the character string to be displayed. However, along with the display of
the character string, you often want to have the value of certain program variables dis-
played as well. In this case, you want to have the value of the variable sum displayed after
these characters are displayed:

The sum of 50 and 25 is

The percent character inside the first argument is a special character recognized by the
NSLog function.The character that immediately follows the percent sign specifies what
type of value is to be displayed at that point. In the previous program, the NSLog routine
recognizes the letter i as signifying that an integer value is to be displayed.

Whenever the NSLog routine finds the %i characters inside a character string, it auto-
matically displays the value of the next argument to the routine. Because sum is the next
argument to NSLog, its value is automatically displayed after “The sum of 50 and 25 is”.

Now try to predict the output from Program 2.5.

Program 2.5
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {
int value1, value2, sum;

value1 = 50;
value2 = 25;
sum = value1 + value2;

NSLog (@"The sum of %i and %i is %i", value1, value2, sum);

ptg999

25Displaying the Values of Variables

}
return 0;

}

Program 2.5 Output

The sum of 50 and 25 is 75

The second program statement inside main defines three variables called value1,
value2, and sum, all of type int.This statement could have equivalently been expressed
using three separate statements, as follows:

int value1;
int value2;
int sum;

After the three variables have been defined, the program assigns the value 50 to the
variable value1 and then the value 25 to value2.The sum of these two variables is then
computed and the result assigned to the variable sum.

The call to the NSLog routine now contains four arguments. Once again, the first
argument, commonly called the format string, describes to the system how the
remaining arguments are to be displayed.The value of value1 is to be displayed immedi-
ately following the phrase “The sum of.” Similarly, the values of value2 and sum are to be
printed at the points indicated by the next two occurrences of the %i characters in the
format string.

Summary
After reading this introductory chapter on developing programs in Objective-C, you
should have a good feel of what is involved in writing a program in Objective-C—and
you should be able to develop a small program on your own. In the next chapter, you
begin to examine some of the intricacies of this powerful and flexible programming lan-
guage. But first, try your hand at the exercises that follow, to make sure you understand
the concepts presented in this chapter.

Exercises
1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program.

2. Write a program that displays the following text:
In Objective-C, lowercase letters are significant.
main is where program execution begins.
Open and closed braces enclose program statements in a routine.
All program statements must be terminated by a semicolon.

ptg999

26 Chapter 2 Programming in Objective-C

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>
int main (int argc, const char * argv[])
{

@autoreleasepool {
int i;
i = 1;
NSLog (@"Testing...");
NSLog (@"....%i", i);
NSLog (@"...%i", i + 1);
NSLog (@"..%i", i + 2);

}
return 0;

}

4. Write a program that subtracts the value 15 from 87 and displays the result, together
with an appropriate message.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to make sure you have identified all the mistakes:
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]);
(

@autoreleasepool {
INT sum;
/* COMPUTE RESULT //
sum = 25 + 37 - 19
/ DISPLAY RESULTS /
NSLog (@'The answer is %i' sum);

}
return 0;

}

6. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {
int answer, result;

answer = 100;
result = answer - 10;

NSLog (@"The result is %i\n", result + 5);
}
return 0;

}

ptg999

3
Classes, Objects, and Methods

In this chapter, you’ll learn about some key concepts in object-oriented programming
and start working with classes in Objective-C.You’ll need to learn a little bit of terminol-
ogy, but we keep it fairly informal.We also cover only some of the basic terms here
because you can easily get overwhelmed. Refer to Appendix A,“Glossary,” at the end of
this book, for more precise definitions of these terms.

What Is an Object, Anyway?
An object is a thing.Think about object-oriented programming as a thing and some-
thing you want to do to that thing.This is in contrast to a programming language such as
C, known as a procedural programming language. In C, you typically think about what
you want to do first and then you worry about the objects, almost the opposite of object
orientation.

Consider an example from everyday life. Let’s assume that you own a car, which is
obviously an object, and one that you own.You don’t have just any car; you have a partic-
ular car that was manufactured in a factory, maybe in Detroit, maybe in Japan, or maybe
someplace else.Your car has a vehicle identification number (VIN) that uniquely identifies
that car here in the United States.

In object-oriented parlance, your particular car is an instance of a car. Continuing with
the terminology, car is the name of the class from which this instance was created. So
each time a new car is manufactured, a new instance from the class of cars is created, and
each instance of the car is referred to as an object.

Your car might be silver, have a black interior, be a convertible or hardtop, and so on.
Additionally, you perform certain actions with your car. For example, you drive your car,
fill it with gas, (hopefully) wash it, take it in for service, and so on.Table 3.1 depicts this.

tim

ptg999

28 Chapter 3 Classes, Objects, and Methods

The actions listed in Table 3.1 can be done with your car, and they can be done
with other cars as well. For example, your sister drives her car, washes it, fills it with gas,
and so on.

Instances and Methods
A unique occurrence of a class is an instance, and the actions that are performed on the
instance are called methods. In some cases, a method can be applied to an instance of the
class or to the class itself. For example, washing your car applies to an instance (in fact,
all the methods listed in Table 3.1 can be considered instance methods). Finding out
how many types of cars a manufacturer makes would apply to the class, so it would be a
class method.

Suppose you have two cars that came off the assembly line and are seemingly identical:
They both have the same interior, same paint color, and so on.They might start out the
same, but as each car is used by its respective owner, its unique characteristics or properties
change. For example, one car might end up with a scratch on it and the other might have
more miles on it. Each instance or object contains not only information about its initial
characteristics acquired from the factory, but also its current characteristics.Those charac-
teristics can change dynamically.As you drive your car, the gas tank becomes depleted, the
car gets dirtier, and the tires get a little more worn.

Applying a method to an object can affect the state of that object. If your method is to
“fill up my car with gas,” after that method is performed, your car’s gas tank will be full.
The method then will have affected the state of the car’s gas tank.

The key concepts here are that objects are unique representations from a class, and
each object contains some information (data) that is typically private to that object.The
methods provide the means of accessing and changing that data.

The Objective-C programming language has the following particular syntax for apply-
ing methods to classes and instances:

[ClassOrInstance method];

In this syntax, a left bracket is followed by the name of a class or instance of that class,
which is followed by one or more spaces, which is followed by the method you want to
perform. Finally, it is closed off with a right bracket and a terminating semicolon.When
you ask a class or an instance to perform some action, you say that you are sending it a

Table 3.1 Actions on Objects

Object What You Do with It

Your car Drive it

Fill it with gas

Wash it

Service it

ptg999

29Instances and Methods

message; the recipient of that message is called the receiver. So another way to look at the
general format described previously is as follows:

[receiver message];

Let’s go back to the previous list and write everything in this new syntax. Before you
do that, though, you need to get your new car. Go to the factory for that, like so:

yourCar = [Car new]; get a new car

You send a new message to the Car class (the receiver of the message) asking it to give
you a new car.The resulting object (which represents your unique car) is then stored in
the variable yourCar. From now on, yourCar can be used to refer to your instance of the
car, which you got from the factory.

Because you went to the factory to get the car, the method new is called a factory or
class method.The rest of the actions on your new car will be instance methods because
they apply to your car. Here are some sample message expressions you might write for
your car:

[yourCar prep]; get it ready for first-time use
[yourCar drive]; drive your car
[yourCar wash]; wash your car
[yourCar getGas]; put gas in your car if you need it
[yourCar service]; service your car

[yourCar topDown]; if it’s a convertible
[yourCar topUp];
currentMileage = [yourCar odometer];

This last example shows an instance method that returns information—presumably, the
current mileage, as indicated on the odometer. Here, we store that information inside a
variable in our program called currentMileage.

Here’s an example of where a method takes an argument that specifies a particular value
that may differ from one method call to the next:

[yourCar setSpeed: 55]; set the speed to 55 mph

Your sister, Sue, can use the same methods for her own instance of a car:

[suesCar drive];
[suesCar wash];
[suesCar getGas];

Applying the same methods to different objects is one of the key concepts of object-
oriented programming, and you’ll learn more about it later.

You probably won’t need to work with cars in your programs.Your objects will likely
be computer-oriented things, such as windows, rectangles, pieces of text, or maybe even a
calculator or a playlist of songs.And just like the methods used for your cars, your meth-
ods might look similar, as in the following:

ptg999

30 Chapter 3 Classes, Objects, and Methods

[myWindow erase]; Clear the window

theArea = [myRect area]; Calculate the area of the rectangle

[userText spellCheck]; Spell-check some text

[deskCalculator clearEntry]; Clear the last entry

[favoritePlaylist showSongs]; Show the songs in a playlist of favorites

[phoneNumber dial]; Dial a phone number

[myTable reloadData]; Show the updated table’s data

n = [aTouch tapCount]; Store the number of times the display was tapped

An Objective-C Class for Working with Fractions
Now it’s time to define an actual class in Objective-C and learn how to work with
instances of the class.

Once again, you’ll learn procedure first.As a result, the actual program examples might
not seem very practical.We get into more practical stuff later.

Suppose you need to write a program to work with fractions. Maybe you need to deal
with adding, subtracting, multiplying, and so on. If you didn’t know about classes, you
might start with a simple program that looked like this.

Program 3.1

// Simple program to work with fractions

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int numerator = 1;
int denominator = 3;
NSLog (@"The fraction is %i/%i", numerator, denominator);

}
return 0;

}

Program 3.1 Output

The fraction is 1/3

In Program 3.1, the fraction is represented in terms of its numerator and denominator.
After the @autoreleasepool directive, the two lines in main both declare the variables

ptg999

31An Objective-C Class for Working with Fractions

numerator and denominator as integers and assign them initial values of 1 and 3, respec-
tively.This is equivalent to the following lines:

int numerator, denominator;

numerator = 1;
denominator = 3;

We represented the fraction 1/3 by storing 1 in the variable numerator and 3 in the
variable denominator. If you needed to store a lot of fractions in your program, this could
be cumbersome. Each time you wanted to refer to the fraction, you’d have to refer to the
corresponding numerator and denominator.And performing operations on these fractions
would be just as awkward.

It would be better if you could define a fraction as a single entity and collectively refer
to its numerator and denominator with a single name, such as myFraction.You can do
that in Objective-C, and it starts by defining a new class.

Program 3.2 duplicates the functionality of Program 3.1 using a new class called
Fraction. Here, then, is the program, followed by a detailed explanation of how it works.

Program 3.2

// Program to work with fractions – class version

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
{

int numerator;
int denominator;

}
-(void) print
{

NSLog (@"%i/%i", numerator, denominator);

ptg999

32 Chapter 3 Classes, Objects, and Methods

}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

@end

//---- program section ----

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *myFraction;

// Create an instance of a Fraction

myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];

}
return 0;

}

Program 3.2 Output

The value of myFraction is:
1/3

ptg999

33The @interface Section

As you can see from the comments in Program 3.2, the program is logically divided
into three sections:

n @interface section
n @implementation section
n program section

The @interface section describes the class and its methods, whereas the
@implementation section describes the data (the instance variables that objects from the
class will store) and contains the actual code that implements the methods declared in the
interface section. Finally, the program section contains the program code to carry out the
intended purpose of the program.

Note
You can also declare the instance variables for a class in the interface section. The ability to
do it in the implementation section was added as of Xcode 4.2 and is considered a better
way to define a class. You learn more about why in a later chapter.

Each of these sections is a part of every Objective-C program, even though you might
not need to write each section yourself.As you’ll see, each section is typically put in its
own file. For now, however, we keep it all together in a single file.

The @interface Section
When you define a new class, you have to tell the Objective-C compiler where the class
came from.That is, you have to name its parent class. Next, you need to define the type of
operations, or methods, that can be used when working with objects from this class.And,
as you learn in a later chapter, you also list items known as properties in this special section
of the program called the @interface section.The general format of this section looks
like this:

@interface NewClassName: ParentClassName
propertyAndMethodDeclarations;

@end

By convention, class names begin with an uppercase letter, even though it’s not
required.This enables someone reading your program to distinguish class names from
other types of variables by simply looking at the first character of the name. Let’s take a
short diversion to talk a little about forming names in Objective-C.

ptg999

34 Chapter 3 Classes, Objects, and Methods

Choosing Names
In Chapter 2,“Programming in Objective-C,” you used several variables to store integer
values. For example, you used the variable sum in Program 2.4 to store the result of the
addition of the two integers 50 and 25.

The Objective-C language allows you to store data types other than just integers in
variables as well, as long as the proper declaration for the variable is made before it is used
in the program.Variables can be used to store floating-point numbers, characters, and even
objects (or, more precisely, references to objects).

The rules for forming names are quite simple:They must begin with a letter or under-
score (_), and they can be followed by any combination of letters (upper- or lowercase),
underscores, or the digits 0–9.The following is a list of valid names:

n sum

n pieceFlag

n i

n myLocation

n numberOfMoves

n sysFlag

n ChessBoard

On the other hand, the following names are not valid for the stated reasons:

n sum$value $—is not a valid character.
n piece flag—Embedded spaces are not permitted.
n 3Spencer—Names can’t start with a number.
n int—This is a reserved word.

int cannot be used as a variable name because its use has a special meaning to the
Objective-C compiler.This use is known as a reserved name or reserved word. In general, any
name that has special significance to the Objective-C compiler cannot be used as a vari-
able name.

Always remember that upper- and lowercase letters are distinct in Objective-C.There-
fore, the variable names sum, Sum, and SUM each refer to a different variable.As noted, when
naming a class, start it with a capital letter. Instance variables, objects, and method names,
on the other hand, typically begin with lowercase letters.To aid readability, capital letters
are used inside names to indicate the start of a new word, as in the following examples:

n AddressBook— This could be a class name.
n currentEntry— This could be an object.
n current_entry— Some programmers use underscores as word separators.
n addNewEntry— This could be a method name.

tim

ptg999

35The @interface Section

When deciding on a name, keep one recommendation in mind: Don’t be lazy. Pick
names that reflect the intended use of the variable or object.The reasons are obvious. Just
as with the comment statement, meaningful names can dramatically increase the readabil-
ity of a program and will pay off in the debug and documentation phases. In fact, the doc-
umentation task will probably be much easier because the program will be more
self-explanatory.

Here, again, is the @interface section from Program 3.2:

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

The name of the new class is Fraction, and its parent class is NSObject. (We talk in
greater detail about parent classes in Chapter 8,“Inheritance.”) The NSObject class is
defined in the file NSObject.h, which is automatically included in your program when-
ever you import Foundation.h.

Class and Instance Methods
You have to define methods to work with your Fractions.You need to be able to set the
value of a fraction to a particular value. Because you won’t have direct access to the inter-
nal representation of a fraction (in other words, direct access to its instance variables), you
must write methods to set the numerator and denominator.You’ll also write a method
called print that will display the value of a fraction. Here’s what the declaration for the
print method looks like in the interface file:

-(void) print;

The leading minus sign (-) tells the Objective-C compiler that the method is an
instance method.The only other option is a plus sign (+), which indicates a class method.
A class method is one that performs some operation on the class itself, such as creating a
new instance of the class.

An instance method performs some operation on a particular instance of a class, such
as setting its value, retrieving its value, displaying its value, and so on. Referring to the car
example, after you have manufactured the car, you might need to fill it with gas.The
operation of filling it with gas is performed on a particular car, so it is analogous to an
instance method.

ptg999

36 Chapter 3 Classes, Objects, and Methods

Return Values
When you declare a new method, you have to tell the Objective-C compiler whether the
method returns a value and, if it does, what type of value it returns.You do this by enclos-
ing the return type in parentheses after the leading minus or plus sign. So this declaration
specifies that the instance method called currentAge returns an integer value:

–(int) currentAge;

Similarly, this line declares a method that returns a double precision value. (You’ll learn
more about this data type in Chapter 4,“Data Types and Expressions.”)

–(double) retrieveDoubleValue;

A value is returned from a method using the Objective-C return statement, similar to
the way in which we returned a value from main in previous program examples.

If the method returns no value, you indicate that using the type void, as in the following:

–(void) print;

This declares an instance method called print that returns no value. In such a case, you
do not need to execute a return statement at the end of your method.Alternatively, you
can execute a return without any specified value, as in the following:

return;

Method Arguments
Two other methods are declared in the @interface section from Program 3.2:

–(void) setNumerator: (int) n;
–(void) setDenominator: (int) d;

These are both instance methods that return no value. Each method takes an integer
argument, which is indicated by the (int) in front of the argument name. In the case of
setNumerator, the name of the argument is n.This name is arbitrary and is the name the
method uses to refer to the argument.Therefore, the declaration of setNumerator specifies
that one integer argument, called n, will be passed to the method and that no value will be
returned.This is similar for setDenominator, except that the name of its argument is d.

Notice the syntax of the declaration for these methods. Each method name ends with a
colon, which tells the Objective-C compiler that the method expects to see an argument.
Next, the type of the argument is specified, enclosed in a set of parentheses, in much the
same way the return type is specified for the method itself. Finally, the symbolic name to
be used to identify that argument in the method is specified.The entire declaration is ter-
minated with a semicolon. Figure 3.1 depicts this syntax.

When a method takes an argument, you also append a colon to the method name
when referring to the method.Therefore, setNumerator: and setDenominator: is the
correct way to identify these two methods, each of which takes a single argument.Also,
identifying the print method without a trailing colon indicates that this method does not

tim

ptg999

37The @implementation Section

method
type

return
type

method
name

method
takes

argument

argument
type

argument
name

Figure 3.1 Declaring a method

The @implementation Section
As noted, the @implementation section contains the actual code for the methods you
declared in the @interface section.You have to specify what type of data is to be stored
in the objects of this class.That is, you have to describe the data that members of the class
will contain.These members are called the instance variables. Just as a point of terminology,
you say that you declare the methods in the @interface section and that you define them
(that is, give the actual code) in the @implementation section.The general format for the
@implementation section is as follows:

@implementation NewClassName
{

memberDeclarations;
}
methodDefinitions;

@end

NewClassName is the same name that was used for the class in the @interface section.
You can use the trailing colon followed by the parent class name, as we did in the
@interface section:

@implementation Fraction: NSObject

However, this is optional and typically not done.
The memberDeclarations section specifies what types of data are stored in a

Fraction, along with the names of those data types.As you can see, this section is
enclosed inside its own set of curly braces. For your Fraction class, these declarations say
that a Fraction object has two integer members, called numerator and denominator:

int numerator;
int denominator;

The members declared in this section are known as the instance variables. Each time
you create a new object, a new and unique set of instance variables also is created.There-
fore, if you have two Fractions, one called fracA and another called fracB, each will
have its own set of instance variables—that is, fracA and fracB each will have its own
separate numerator and denominator.The Objective-C system automatically keeps track
of this for you, which is one of the nicer things about working with objects.The

take any arguments. In Chapter 7,“More on Classes,” you’ll see how methods that take
more than one argument are identified.

ptg999

38 Chapter 3 Classes, Objects, and Methods

methodDefinitions part of the @implementation section contains the code for each
method specified in the @interface section. Similar to the @interface section, each
method’s definition starts by identifying the type of method (class or instance), its return
type, and its arguments and their types. However, instead of the line ending with a semi-
colon, the code for the method follows, enclosed inside a set of curly braces. It’s noted
here that you can have the compiler automatically generate methods for you by using a
special @synthesize directive.This is covered in detail in Chapter 7.

Consider the @implementation section from Program 3.2:

//---- @implementation section ----
@implementation Fraction
{

int numerator;
int denominator;

}

–(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

–(void) setNumerator: (int) n
{

numerator = n;
}

–(void) setDenominator: (int) d
{

denominator = d;
}

@end

The print method uses NSLog to display the values of the instance variables
numerator and denominator. But to which numerator and denominator does this
method refer? It refers to the instance variables contained in the object that is the receiver
of the message.That’s an important concept, and we return to it shortly.

The setNumerator: method stores the integer argument you called n in the instance
variable numerator. Similarly, setDenominator: stores the value of its argument d in the
instance variable denominator.

ptg999

39The program Section

The program Section
The program section contains the code to solve your particular problem, which can be
spread out across many files, if necessary. Somewhere you must have a routine called main,
as we’ve previously noted.That’s where your program always begins execution. Here’s the
program section from Program 3.2:

//---- program section ----

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *myFraction;

// Create an instance of a Fraction and initialize it

myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];

}

return 0;
}

Inside main, you define a variable called myFraction with the following line:

Fraction *myFraction;

This line says that myFraction is an object of type Fraction; that is, myFraction is
used to store values from your new Fraction class.The asterisk that precedes the variable
name is described in more detail below.

Now that you have an object to store a Fraction, you need to create one, just as you
ask the factory to build you a new car.This is done with the following line:

myFraction = [Fraction alloc];

alloc is short for allocate.You want to allocate memory storage space for a new frac-
tion.This expression sends a message to your newly created Fraction class:

[Fraction alloc]

ptg999

40 Chapter 3 Classes, Objects, and Methods

You are asking the Fraction class to apply the alloc method, but you never defined
an alloc method, so where did it come from? The method was inherited from a parent
class. Chapter 8,“Inheritance,” deals with this topic in detail.

When you send the alloc message to a class, you get back a new instance of that class.
In Program 3.2, the returned value is stored inside your variable myFraction.The alloc
method is guaranteed to zero out all of an object’s instance variables. However, that does-
n’t mean that the object has been properly initialized for use.You need to initialize an
object after you allocate it.

This is done with the next statement in Program 3.2, which reads as follows:

myFraction = [myFraction init];

Again, you are using a method here that you didn’t write yourself.The init method
initializes the instance of a class. Note that you are sending the init message to
myFraction.That is, you want to initialize a specific Fraction object here, so you don’t
send it to the class—you send it to an instance of the class. Make sure you understand this
point before continuing.

The init method also returns a value—namely, the initialized object.You store the
return value in your Fraction variable myFraction.

The two-line sequence of allocating a new instance of class and then initializing it is
done so often in Objective-C that the two messages are typically combined, as follows:

myFraction = [[Fraction alloc] init];

This inner message expression is evaluated first:

[Fraction alloc]

As you know, the result of this message expression is the actual Fraction that is allo-
cated. Instead of storing the result of the allocation in a variable, as you did before, you
directly apply the init method to it. So, again, first you allocate a new Fraction and then
you initialize it.The result of the initialization is then assigned to the myFraction variable.

As a final shorthand technique, the allocation and initialization is often incorporated
directly into the declaration line, as in the following:

Fraction *myFraction = [[Fraction alloc] init];

Returning to Program 3.2, you are now ready to set the value of your fraction.These
program lines do just that:

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

The first message statement sends the setNumerator: message to myFraction.The
argument that is supplied is the value 1. Control is then sent to the setNumerator:
method you defined for your Fraction class.The Objective-C system knows that it is the

ptg999

41The program Section

method from this class to use because it knows that myFraction is an object from the
Fraction class.

Inside the setNumerator: method, the passed value of 1 is stored inside the variable n.
The single program line in that method stores that value in the instance variable
numerator. So you have effectively set the numerator of myFraction to 1.

The message that invokes the setDenominator: method on myFraction follows next.
The argument of 3 is assigned to the variable d inside the setDenominator: method.This
value is then stored inside the denominator instance variable, thus completing the assign-
ment of the value 1/3 to myFraction. Now you’re ready to display the value of your frac-
tion, which you do with the following lines of code from Program 3.2:

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");
[myFraction print];

The NSLog call simply displays the following text:

The value of myFraction is:

The following message expression invokes the print method:

[myFraction print];

Inside the print method, the values of the instance variables numerator and
denominator are displayed, separated by a slash character.

Note
In the past, iOS programmers were responsible for telling the system when they were done
using an object that they allocated by sending the object a release message. That was
done in accordance with a memory management system known as manual reference count-
ing. As of Xcode 4.2, programmers no longer have to worry about this and can rely on the
system to take care of releasing memory as necessary. This is done through a mechanism
known as Automatic Reference Counting, or ARC for short. ARC is enabled by default when
you compile new applications using Xcode 4.2 or later.

It seems as if you had to write a lot more code to duplicate in Program 3.2 what you
did in Program 3.1.That’s true for this simple example here; however, the ultimate goal in
working with objects is to make your programs easier to write, maintain, and extend.
You’ll realize that later.

Let’s go back for a second to the declaration of myFraction

Fraction *myFraction;

and the subsequent setting of its values.
The asterisk (*) in front of myFraction in its declaration says that myFraction is actu-

ally a reference (or pointer) to a Fraction object.The variable myFraction doesn’t actually
store the fraction’s data (that is, its numerator and denominator values). Instead, it stores a
reference—which is a actually a memory address—indicating where the object’s data is

ptg999

42 Chapter 3 Classes, Objects, and Methods

located in memory.When you first declare myFraction as shown, its value is undefined as
it has not been set to any value and does not have a default value.We can conceptualize
myFraction as a box that holds a value. Initially the box contains some undefined value, as
it hasn’t been assigned any value.This is depicted in Figure 3.2.

When you allocate a new object (using alloc, for example) enough space is reserved
in memory to store the object’s data, which includes space for its instance variables, plus a
little more.The location of where that data is stored (the reference to the data) is returned
by the alloc routine, and assigned to the variable myFraction.This all takes place when
this statement in executed in Program 3.2:

myFraction = [Fraction alloc];

The allocation of the object and the storage of the reference to that object in
myFraction is depicted in Figure 3.3.

Note
There’s some more data stored with the object than that indicated, but you don’t need to
worry about that here. You’ll note that the instance variables are shown as being set to 0.
That’s currently being handled by the alloc method. However, the object still has not been
properly initialized. You still need to use the init method on the newly allocated object.

Notice the directed line in Figure 3.3.This indicates the connection that has been
made between the variable myFraction and the allocated object. (The value stored inside
myFraction is actually a memory address. It’s at that memory address that the object’s
data is stored.)

Subsequently in Program 3.2, the fraction’s numerator and denominator are set. Figure
3.4 depicts the fully initialized Fraction object with its numerator set to 1 and its
denominator set to 3.

The next example shows how you can work with more than one fraction in your
program. In Program 3.3, you set one fraction to 2/3, set another to 3/7, and display
them both.

myFraction

Object’s data

0 numerator
0 denominator

Figure 3.3 Relationship between myFraction and its data

myFraction

Figure 3.2 Declaring Fraction *myFraction;

ptg999

43The program Section

myFraction

Object’s data

1 numerator
3 denominator

Figure 3.4 Setting the fraction’s numerator and denominator

Program 3.3

// Program to work with fractions – cont’d

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
{

int numerator;
int denominator;

}

-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

@end

ptg999

44 Chapter 3 Classes, Objects, and Methods

//---- program section ----

int main (int argc, char * argv[])
{

@autoreleasepool {

Fraction *frac1 = [[Fraction alloc] init];
Fraction *frac2 = [[Fraction alloc] init];

// Set 1st fraction to 2/3

[frac1 setNumerator: 2];
[frac1 setDenominator: 3];

// Set 2nd fraction to 3/7

[frac2 setNumerator: 3];
[frac2 setDenominator: 7];

// Display the fractions

NSLog (@"First fraction is:");

[frac1 print];

NSLog (@"Second fraction is:");
[frac2 print];

}
return 0;

}

Program 3.3 Output

First fraction is:
2/3
Second fraction is:
3/7

The @interface and @implementation sections remain unchanged from Program
3.2.The program creates two Fraction objects, called frac1 and frac2, and then assigns
the value 2/3 to the first fraction and 3/7 to the second. Realize that when the
setNumerator: method is applied to frac1 to set its numerator to 2, the instance vari-
able frac1 gets its instance variable numerator set to 2.Also, when frac2 uses the same

ptg999

45Accessing Instance Variables and Data Encapsulation

method to set its numerator to 3, its distinct instance variable numerator is set to the
value 3. Each time you create a new object, it gets its own distinct set of instance vari-
ables. Figure 3.5 depicts this.

Based on which object is getting sent the message, the correct instance variables are
referenced.Therefore, here frac1’s numerator is referenced whenever setNumerator:
uses the name numerator inside the method:

[frac1 setNumerator: 2];

That’s because frac1 is the receiver of the message.

Accessing Instance Variables and Data
Encapsulation
You’ve seen how the methods that deal with fractions can access the two instance vari-
ables numerator and denominator directly by name. In fact, an instance method can
always directly access its instance variables.A class method can’t, however, because it’s
dealing only with the class itself, not with any instances of the class (think about that for a
second). But what if you wanted to access your instance variables from someplace else—
for example, from inside your main routine? You can’t do that directly because they are
hidden.The fact that they are hidden from you is a key concept called data encapsulation. It
enables someone writing class definitions to extend and modify the class definitions,
without worrying about whether programmers (that is, users of the class) are tinkering
with the internal details of the class. Data encapsulation provides a nice layer of insulation
between the programmer and the class developer.

You can access your instance variables in a clean way by writing special methods to set
and retrieve their values.We wrote setNumerator: and setDenominator: methods to set
the values of the two instance variables in our Fraction class.To retrieve the values of
those instance variables, you’ll need to write two new methods. For example, you’ll create
two new methods called, appropriately enough, numerator and denominator to access
the corresponding instance variables of the Fraction that is the receiver of the message.
The result is the corresponding integer value, which you return. Here are the declarations
for your two new methods:

–(int) numerator;
–(int) denominator;

Object

Instance
Variables

frac1

numerator 2
denominator 3

frac2

numerator 3
denominator 7

Figure 3.5 Unique instance variables

ptg999

46 Chapter 3 Classes, Objects, and Methods

And here are the definitions:

–(int) numerator
{

return numerator;
}

–(int) denominator
{

return denominator;
}

Note that the names of the methods and the instance variables they access are the
same.There’s no problem doing this (although it might seem a little odd at first); in fact, it
is common practice. Program 3.4 tests your two new methods.

Program 3.4

// Program to access instance variables – cont’d

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;

@end

//---- @implementation section ----

@implementation Fraction
{

int numerator;
int denominator;

}

-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{

ptg999

47Accessing Instance Variables and Data Encapsulation

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

-(int) numerator
{

return numerator;
}

-(int) denominator
{

return denominator;
}

@end

//---- program section ----

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *myFraction = [[Fraction alloc] init];

// Set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// Display the fraction using our two new methods

NSLog (@"The value of myFraction is: %i/%i",
[myFraction numerator], [myFraction denominator]);

}

return 0;
}

Program 3.4 Output

The value of myFraction is 1/3

ptg999

48 Chapter 3 Classes, Objects, and Methods

This NSLog statement displays the results of sending two messages to myFraction: the
first to retrieve the value of its numerator, and the second the value of its denominator:

NSLog (@"The value of myFraction is: %i/%i",
[myFraction numerator], [myFraction denominator]);

So, in the first message call, the numerator message will be sent to the Fraction
object myFraction. In that method, the code will return the value of the numerator
instance variable for that fraction. Remember, the context of a method while it is execut-
ing is the object that is the receiver of the message. So when the numerator method
accesses and returns the value of the numerator instance variable, it’s myFraction’s
numerator that will be accessed and returned.That returned integer value is then passed
along to NSLog to be displayed.

For the second message call, the denominator method will be called to access and return
the value of myFraction’s denominator, which is then passed to NSLog to be displayed.

Incidentally, methods that set the values of instance variables are often collectively
referred to as setters, and methods used to retrieve the values of instance variables are
called getters. For the Fraction class, setNumerator: and setDenominator: are the set-
ters, and numerator and denominator are the getters. Collectively, setters and getters are
also referred to as accessor methods.

Make sure you understand the difference between setters and the getters.The setters
don’t return a value because their purpose is to take an argument and to set the corre-
sponding instance variable to the value of that argument. No value needs to be returned
in that case.That’s the purpose of a setter: to set the value of an instance variable, so setters
typically do not return values. On the other hand, the purpose of the getter is to “get” the
value of an instance variable stored in an object and to send it back to the program. In
order to do that, the getter must return the value of the instance variable using the
return statement.

Again, the idea that you can’t directly set or get the value of an instance variable from
outside of the methods written for the class, but instead have to write setter and getter
methods to do so is the principle of data encapsulation. So you have to use methods to
access this data that is normally hidden to the “outside world.”This provides a centralized
path to the instance variables and prevents some other code from indirectly changing
these values, which would make your programs harder to follow, debug, and modify.

We should also point out that there’s also a method called new that combines the
actions of an alloc and init. So this line could be used to allocate and initialize a new
Fraction:

Fraction *myFraction = [Fraction new];

It’s generally better to use the two-step allocation and initialization approach so you
conceptually understand that two distinct events are occurring:You’re first creating a new
object and then you’re initializing it.

tim

ptg999

49Exercises

Summary
Now you know how to define your own class, create objects or instances of that class, and
send messages to those objects.We return to the Fraction class in later chapters.You’ll
learn how to pass multiple arguments to your methods, how to divide your class defini-
tions into separate files, and also how to use key concepts such as inheritance and
dynamic binding. However, now it’s time to learn more about data types and writing
expressions in Objective-C. First, try the exercises that follow to test your understanding
of the important points covered in this chapter.

Exercises
1. Which of the following are invalid names? Why?

Int playNextSong 6_05
_calloc Xx alphaBetaRoutine
clearScreen _1312 z
ReInitialize _ A$

2. Based on the example of the car in this chapter, think of an object you use every
day. Identify a class for that object and write five actions you do with that object.

3. Given the list in exercise 2, use the following syntax to rewrite your list in this format:
[instance method];

4. Imagine that you owned a boat and a motorcycle in addition to a car. List the
actions you would perform with each of these. Do you have any overlap between
these actions?

5. Based on question 4, imagine that you had a class called Vehicle and an object
called myVehicle that could be either Car, Motorcycle, or Boat. Imagine that you
wrote the following:
[myVehicle prep];
[myVehicle getGas];
[myVehicle service];

Do you see any advantages of being able to apply an action to an object that could
be from one of several classes?

ptg999

50 Chapter 3 Classes, Objects, and Methods

6. In a procedural language such as C, you think about actions and then write code to
perform the action on various objects. Referring to the car example, you might
write a procedure in C to wash a vehicle and then inside that procedure write code
to handle washing a car, washing a boat, washing a motorcycle, and so on. If you
took that approach and then wanted to add a new vehicle type (see the previous
exercise), do you see advantages or disadvantages to using this procedural approach
over an object-oriented approach?

7. Define a class called XYPoint that will hold a Cartesian coordinate (x, y), where x
and y are integers. Define methods to individually set the x and y coordinates of a
point and retrieve their values.Write an Objective-C program to implement your
new class and test it.

ptg999

4
Data Types and Expressions

In this chapter, we take a look at the basic data types and describe some fundamental
rules for forming arithmetic expressions in Objective-C.

Data Types and Constants
You have already encountered the Objective-C basic data type int.As you will recall, a
variable declared to be of type int can be used to contain integral values only—that is,
values that do not contain decimal digits.

The Objective-C programming language provides three other basic data types: float,
double, and char.A variable declared to be of type float can be used for storing floating-
point numbers (values containing decimal digits).The double type is the same as type
float, typically with roughly twice the range. Finally, the char data type can be used to
store a single character, such as the letter a, the digit character 6, or a semicolon (more on
this later).

In Objective-C, any literal number, single character, or character string is known as a
constant. For example, the number 58 represents a constant integer value.The string
@"Programming in Objective-C is fun." is an example of a constant character string
object. Expressions consisting entirely of constant values are called constant expressions. So
this expression is a constant expression because each of the terms of the expression is a
constant value:

128 + 7 - 17

But if i were declared to be an integer variable, this expression would not represent a
constant expression:

128 + 7 – i

Type int
An integer constant consists of a sequence of one or more digits.A minus sign preceding
the sequence indicates that the value is negative.The values 158, –10, and 0 are all valid
examples of integer constants. No embedded spaces are permitted between the digits, and

ptg999

52 Chapter 4 Data Types and Expressions

commas can’t be used. (So the value 12,000 is not a valid integer constant and must be
written as 12000.)

Every value, whether it’s a character, an integer, or a floating-point number, has a range
of values associated with it.This range has to do with the amount of storage allocated to
store a particular type of data. In general, that amount is not defined in the language; it
typically depends on the computer you’re running on and is therefore called
implementation or machine dependent. For example, an integer variable might take 32 bits on
your computer, or perhaps it might be stored in 64. If 64 bits were used, then much larger
numbers can be stored inside integer variables than if 32 bits were used instead.

Note
Under Mac OS X, you are given the option of compiling an application as either a 32-bit or
64-bit application. In the former case, an int takes up 32 bits; in the latter case, 64 bits
are used.

Type float
You can use a variable declared to be of type float to store values containing decimal
digits.A floating-point constant is distinguished by the presence of a decimal point.The
values 3., 125.8, and -.0001 are all valid examples of floating-point constants.To display a
floating-point value, the NSLog conversion characters %f or %g can be used.

Floating-point constants can also be expressed in so-called scientific notation.The value
1.7e4 is a floating-point value expressed in this notation that represents the value 1.7 x 104.

As noted, the double type is the same as type float, only with roughly twice the range.

Type char
You can use a char variable to store a single character.A character constant is formed by
enclosing the character within a pair of single quotation marks. So 'a', ';', and '0' are
all valid examples of character constants.The first constant represents the letter a, the sec-
ond is a semicolon, and the third is the character zero—which is not the same as the
number zero. Do not confuse a character constant, which is a single character enclosed in
single quotes, with a C-style character string, which is any number of characters enclosed
in double quotes.As mentioned in the last chapter, a string of characters enclosed in a pair
of double quotes that is preceded by an @ character is an NSString character string object.

The character constant '\n', the newline character, is a valid character constant even
though it seems to contradict the rule cited previously.The reason for this is that the
backslash character is recognized as a special character. In other words, the Objective-C
compiler treats the character '\n' as a single character, even though it is actually formed
by two characters. Other special characters are initiated with the backslash character.The
format characters %c can be used in an NSLog call to display the value of a char variable.

Program 4.1 uses the basic Objective-C data types.

ptg999

53Data Types and Constants

Program 4.1

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int integerVar = 100;
float floatingVar = 331.79;
double doubleVar = 8.44e+11;
char charVar = 'W';

NSLog (@"integerVar = %i", integerVar);
NSLog (@"floatingVar = %f", floatingVar);
NSLog (@"doubleVar = %e", doubleVar);
NSLog (@"doubleVar = %g", doubleVar);
NSLog (@"charVar = %c", charVar);

}
return 0;

}

Program 4.1 Output

integerVar = 100
floatingVar = 331.790009
doubleVar = 8.440000e+11
doubleVar = 8.44e+11
charVar = W

In the second line of the program’s output, notice that the value of 331.79, which is
assigned to floatingVar, is actually displayed as 331.790009.The reason for this inaccu-
racy is the particular way in which numbers are internally represented inside the com-
puter.You have probably come across the same type of inaccuracy when dealing with
numbers on your calculator. If you divide 1 by 3 on your calculator, you get the result
.33333333, with perhaps some additional 3s tacked on at the end.The string of 3s is the
calculator’s approximation to one third.Theoretically, there should be an infinite number
of 3s. But the calculator can hold only so many digits, thus the inherent inaccuracy of the
machine.The same type of inaccuracy applies here: Certain floating-point values cannot
be exactly represented inside the computer’s memory.

Qualifiers: long,long long,short,unsigned, and signed
If the qualifier long is placed directly before the int declaration, the declared integer vari-
able is of extended range on some computer systems.An example of a long int declara-
tion might be this:

long int factorial;

ptg999

54 Chapter 4 Data Types and Expressions

This declares the variable factorial to be a long integer variable.As with floats and
doubles, the particular range of a long variable depends on your particular computer system.

To display the value of a long int using NSLog, the letter l is used as a modifier before
the integer format characters.This means that the format characters %li can be used to
display the value of a long int in decimal format.

You can also have a long long int variable, or even a long double variable to hold a
floating point number with greater range.

The qualifier short, when placed in front of the int declaration, tells the Objective-C
compiler that the particular variable being declared is used to store fairly small integer val-
ues.The motivation for using short variables is primarily one of conserving memory
space, which can be an issue when the program needs a lot of memory and the amount of
available memory is limited.

The final qualifier that can be placed in front of an int variable is used when an inte-
ger variable will be used to store only positive numbers.The following declares to the
compiler that the variable counter is used to contain only positive values:

unsigned int counter;

Restricting the use of an integer variable to the exclusive storage of positive integers
extends the range of the integer variable.

Type id
The id data type is used to store an object of any type. In a sense, it is a generic object
type. For example, this line declares graphicObject to be a variable of type id:

id graphicObject;

Methods can be declared to return values of type id, like so:

-(id) newObject: (int) type;

This declares an instance method called newObject that takes a single integer argument
called type and returns a value of type id.

The id data type is an important data type used often in this book.We mention it in
passing here for the sake of completeness.The id type is the basis for very important fea-
tures in Objective-C know as polymorphism and dynamic binding, which Chapter 9,“Poly-
morphism, Dynamic Typing, and Dynamic Binding,” discusses extensively.

Table 4.1 summarizes the basic data types and qualifiers.

Table 4.1 Basic Data Types

Type Constant Examples NSLog chars

char 'a', '\n' %c

short int — %hi, %hx, %ho

unsigned short int — %hu, %hx, %ho

tim

ptg999

55Arithmetic Expressions

Note
In the table, a leading zero in front of an integer constant indicates the constant is in octal
(base 8) notation, whereas a leading 0x (or 0X) indicates it is in hexadecimal (base 16)
notation. A number written as 0x.1p3 represents a hexadecimal floating constant. Don’t
worry about these formats, they’re just summarized in the table here for completeness. Fur-
ther, suffixes such as f, l (L), u (U), and ll (LL) can also be used to explicitly express con-
stants as float’s, long’s, unsigned, and long long, respectively.

Arithmetic Expressions
In Objective-C, just as in virtually all programming languages, the plus sign (+) is used to
add two values, the minus sign (-) is used to subtract two values, the asterisk (*) is used to
multiply two values, and the slash (/) is used to divide two values.These operators are
known as binary arithmetic operators because they operate on two values or terms.

Operator Precedence
You have seen how a simple operation such as addition can be performed in Objective-
C.The following program further illustrates the operations of subtraction, multiplication,
and division.The last two operations performed in the program introduce the notion that
one operator can have a higher priority, or precedence, over another operator. In fact,
each operator in Objective-C has a precedence associated with it.

This precedence is used to determine how an expression that has more than one oper-
ator is evaluated:The operator with the higher precedence is evaluated first. Expressions
containing operators of the same precedence are evaluated either from left to right or

Table 4.1 Basic Data Types

Type Constant Examples NSLog chars

int 12, -97, 0xFFE0, 0177 %i, %x, %o

unsigned int 12u, 100U, 0XFFu %u, %x, %o

long int 12L, -2001, 0xffffL %li, %lx, %lo

unsigned long int 12UL, 100ul, 0xffeeUL %lu, %lx, %lo

long long int 0xe5e5e5e5LL, 500ll %lli, %llx, &llo

unsigned long long int 12ull, 0xffeeULL %llu, %llx, %llo

float 12.34f, 3.1e-5f, 0x1.5p10, 0x1P-1 %f, %e, %g, %a

double 12.34, 3.1e-5, 0x.1p3 %f, %e, %g, %a

long double 12.34L, 3.1e-5l %Lf, $Le, %Lg

id nil %p

tim

ptg999

56 Chapter 4 Data Types and Expressions

from right to left, depending on the operator.This is known as the associative property of
an operator.

Program 4.2

// Illustrate the use of various arithmetic operators

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int a = 100;
int b = 2;
int c = 25;
int d = 4;
int result;

result = a - b; // subtraction
NSLog (@"a - b = %i", result);

result = b * c; // multiplication
NSLog (@"b * c = %i", result);

result = a / c; // division
NSLog (@"a / c = %i", result);

result = a + b * c; // precedence
NSLog (@"a + b * c = %i", result);

NSLog (@"a * b + c * d = %i", a * b + c * d);
}
return 0;

}

Program 4.2 Output

a - b = 98
b * c = 50
a / c = 4
a + b * c = 150
a * b + c * d = 300

After declaring the integer variables a, b, c, d, and result, the program assigns the
result of subtracting b from a to result and then displays its value with an appropriate
NSLog call.

ptg999

57Arithmetic Expressions

The next statement has the effect of multiplying the value of b by the value of c and
storing the product in result:

result = b * c;

The result of the multiplication is then displayed using a NSLog call that should be
familiar to you by now.

The next program statement introduces the division operator, the slash.The NSLog
statement displays the result of 4, obtained by dividing 100 by 25, immediately following
the division of a by c.

Attempting to divide an integer by zero results in abnormal termination or an excep-
tion when the division is attempted. Even if the program does not terminate abnormally,
the results obtained by such a division will be meaningless. In Chapter 6,“Making Deci-
sions,” you will see how you can check for division by zero before the division operation
is performed. If the divisor is determined to be zero, an appropriate action can be taken
and the division operation can be averted.

This expression does not produce the result of 2550 (102 × 25); instead, the result dis-
played by the corresponding NSLog statement is shown as 150:

a + b * c

This is because Objective-C, like most other programming languages, has rules for the
order of evaluating multiple operations or terms in an expression. Evaluation of an
expression generally proceeds from left to right. However, the operations of multiplication
and division are given precedence over the operations of addition and subtraction.There-
fore, the system evaluates the expression

a + b * c

as follows:

a + (b * c)

(This is the same way this expression would be evaluated if you applied the basic rules
of algebra.)

If you want to alter the order of evaluation of terms inside an expression, you can use
parentheses. In fact, the expression listed previously is a perfectly valid Objective-C
expression.Thus, the following statement could have been substituted in Program 4.2 to
achieve identical results:

result = a + (b * c);

However, if this expression were used instead, the value assigned to result would
be 2550:

result = (a + b) * c;

This is because the value of a (100) would be added to the value of b (2) before multi-
plication by the value of c (25) would take place. Parentheses can also be nested, in which

tim

ptg999

58 Chapter 4 Data Types and Expressions

case evaluation of the expression proceeds outward from the innermost set of parentheses.
Just be sure to have as many closed parentheses as you have open ones.

Notice from the last statement in Program 4.2 that it is perfectly valid to give an
expression as an argument to NSLog without having to first assign the result of the expres-
sion evaluation to a variable.The expression

a * b + c * d

is evaluated according to the rules stated previously as

(a * b) + (c * d)

or

(100 * 2) + (25 * 4)

The result of 300 is handed to the NSLog routine.

Integer Arithmetic and the Unary Minus Operator
Program 4.3 reinforces what we have just discussed and introduces the concept of integer
arithmetic.

Program 4.3

// More arithmetic expressions

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int a = 25;
int b = 2;
float c = 25.0;
float d = 2.0;

NSLog (@"6 + a / 5 * b = %i", 6 + a / 5 * b);
NSLog (@"a / b * b = %i", a / b * b);
NSLog (@"c / d * d = %f", c / d * d);
NSLog (@"-a = %i", -a);

}
return 0;

}

Program 4.3 Output

6 + a / 5 * b = 16
a / b * b = 24
c / d * d = 25.000000
-a = -25

ptg999

59Arithmetic Expressions

We inserted extra blank spaces between int and the declaration of a, b, and result

in the first three statements to align the declaration of each variable.This helps make the
program more readable.You also might have noticed in each program presented thus far
that a blank space was placed around each operator.This, too, is not required and is done
solely for aesthetic reasons. In general, you can add extra blank spaces just about anywhere
that a single blank space is allowed.A few extra presses of the spacebar will prove worth-
while if the resulting program is easier to read.

The expression in the first NSLog call of Program 4.3 reinforces the notion of operator
precedence. Evaluation of this expression proceeds as follows:

1. Because division has higher precedence than addition, the value of a (25) is divided
by 5 first.This gives the intermediate result of 5.

2. Because multiplication also has higher precedence than addition, the intermedi-
ate result of 5 is next multiplied by 2, the value of b, giving a new intermediate
result of 10.

3. Finally, the addition of 6 and 10 is performed, giving a final result of 16.

The second NSLog statement introduces a new twist.You would expect that dividing a
by b and then multiplying by b would return the value of a, which has been set to 25.
But this does not seem to be the case, as shown by the output display of 24. Did the com-
puter lose a bit somewhere along the way? Very unlikely.The fact of the matter is that this
expression was evaluated using integer arithmetic.

If you glance back at the declarations for the variables a and b, you will recall that both
were declared to be of type int.Whenever a term to be evaluated in an expression con-
sists of two integers, the Objective-C system performs the operation using integer arith-
metic. In such a case, all decimal portions of numbers are lost.Therefore, when the value
of a is divided by the value of b, or 25 is divided by 2, you get an intermediate result of
12, and not 12.5, as you might expect. Multiplying this intermediate result by 2 gives the
final result of 24, thus explaining the “lost” digit.

As you can see from the next-to-last NSLog statement in Program 4.3, if you perform
the same operation using floating-point values instead of integers, you obtain the
expected result.

The decision of whether to use a float variable or an int variable should be made
based on the variable’s intended use. If you don’t need any decimal places, use an integer
variable.The resulting program will be more efficient—that is, it will execute more
quickly on many computers. On the other hand, if you need the decimal place accuracy,
the choice is clear.The only question you then must answer is whether to use a float or
a double.The answer to this question depends on the desired accuracy of the numbers
you are dealing with, as well as their magnitude.

In the last NSLog statement, the value of the variable a is negated by use of the unary
minus operator.A unary operator is one that operates on a single value, as opposed to a

tim

tim

ptg999

60 Chapter 4 Data Types and Expressions

binary operator, which operates on two values.The minus sign actually has a dual role:As
a binary operator, it is used for subtracting two values; as a unary operator, it is used to
negate a value.

The unary minus operator has higher precedence than all other arithmetic operators,
except for the unary plus operator (+), which has the same precedence. So the following
expression results in the multiplication of -a by b:

c = -a * b;

The Modulus Operator
The last arithmetic operator to be presented in this chapter is the modulus operator,
which is symbolized by the percent sign (%).Try to determine how this operator works by
analyzing the output from Program 4.4.

Program 4.4

// The modulus operator

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int a = 25, b = 5, c = 10, d = 7;

NSLog (@"a %% b = %i", a % b);
NSLog (@"a %% c = %i", a % c);
NSLog (@"a %% d = %i", a % d);
NSLog (@"a / d * d + a %% d = %i", a / d * d + a % d);

}
return 0;

}

Program 4.4 Output

a % b = 0
a % c = 5
a % d = 4
a / d * d + a % d = 25

Note the statement inside main that defines and initializes the variables a,b,c, and d in
a single statement.

As you know, NSLog uses the character that immediately follows the percent sign to
determine how to print its next argument. However, if it is another percent sign that

tim

ptg999

61Arithmetic Expressions

follows, the NSLog routine takes this as an indication that you really intend to display a
percent sign and inserts one at the appropriate place in the program’s output.

You are correct if you concluded that the function of the modulus operator % is to
give the remainder of the first value divided by the second value. In the first example, the
remainder, of 25 divided by 5 is 0. If you divide 25 by 10, you would have a remainder of
5, as verified by the second line of output. Dividing 25 by 7 gives a remainder of 4, as
shown in the third output line.

Let’s now turn our attention to the last arithmetic expression evaluated in the last
statement.You will recall that any operations between two integer values in Objective-C
are performed with integer arithmetic.Therefore, any remainder resulting from the divi-
sion of two integer values is simply discarded. Dividing 25 by 7, as indicated by the
expression a / d, gives an intermediate result of 3. Multiplying this value by the value of
d, which is 7, produces the intermediate result of 21. Finally, adding the remainder of
dividing a by d, as indicated by the expression a % d, leads to the final result of 25. It is
no coincidence that this value is the same as the value of the variable a. In general, this
expression will always equal the value of a, assuming, of course, that a and b are both
integer values:

a / b * b + a % b

In fact, the modulus operator % is defined to work only with integer values.
As far as precedence is concerned, the modulus operator has equal precedence to the

multiplication and division operators.This implies, of course, that an expression such as

table + value % TABLE_SIZE

will be evaluated as

table + (value % TABLE_SIZE)

Integer and Floating-Point Conversions
To effectively develop Objective-C programs, you must understand the rules used for the
implicit conversion of floating-point and integer values in Objective-C. Program 4.5
demonstrates some of the simple conversions between numeric data types.

Program 4.5

// Basic conversions in Objective-C

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
float f1 = 123.125, f2;
int i1, i2 = -150;

ptg999

62 Chapter 4 Data Types and Expressions

i1 = f1; // floating to integer conversion
NSLog (@"%f assigned to an int produces %i", f1, i1);

f1 = i2; // integer to floating conversion
NSLog (@"%i assigned to a float produces %f", i2, f1);

f1 = i2 / 100; // integer divided by integer
NSLog (@"%i divided by 100 produces %f", i2, f1);

f2 = i2 / 100.0; // integer divided by a float
NSLog (@"%i divided by 100.0 produces %f", i2, f2);

f2 = (float) i2 / 100; // type cast operator
NSLog (@"(float) %i divided by 100 produces %f", i2, f2);

}
return 0;

}

Program 4.5 Output

123.125000 assigned to an int produces 123
-150 assigned to a float produces -150.000000
-150 divided by 100 produces -1.000000
-150 divided by 100.0 produces -1.500000
(float) -150 divided by 100 produces -1.500000

Whenever a floating-point value is assigned to an integer variable in Objective-C, the
decimal portion of the number gets truncated. So when the value of f1 is assigned to i1
in the previous program, the number 123.125 is truncated, which means that only its inte-
ger portion, or 123, is stored in i1.The first line of the program’s output verifies that this
is the case.

Assigning an integer variable to a floating variable does not cause any change in the
value of the number; the system simply converts the value and stores it in the floating
variable.The second line of the program’s output verifies that the value of i2 (–150) was
correctly converted and stored in the float variable f1.

The next two lines of the program’s output illustrate two points to remember when
forming arithmetic expressions.The first has to do with integer arithmetic, which we
have already discussed in this chapter.Whenever two operands in an expression are inte-
gers (and this applies to short, unsigned, and long integers as well), the operation is car-
ried out under the rules of integer arithmetic.Therefore, any decimal portion resulting
from a division operation is discarded, even if the result is assigned to a floating variable
(as we did in the program).When the integer variable i2 is divided by the integer con-
stant 100, the system performs the division as an integer division.The result of dividing
–150 by 100, which is –1, is, therefore, the value that is stored in the float variable f1.

tim

ptg999

63Arithmetic Expressions

The next division performed in the previous program involves an integer variable and
a floating-point constant.Any operation between two values in Objective-C is performed
as a floating-point operation if either value is a floating-point variable or constant.There-
fore, when the value of i2 is divided by 100.0, the system treats the division as a floating-
point division and produces the result of –1.5, which is assigned to the float variable f1.

The Type Cast Operator
You’ve already seen how enclosing a type inside a set of parentheses is used to declare the
return and argument types when declaring and defining methods. It serves a different
purpose when used inside expressions.

The last division operation from Program 4.5 that reads as follows introduces the type
cast operator:

f2 = (float) i2 / 100; // type cast operator

The type cast operator has the effect of converting the value of the variable i2 to type
float for purposes of evaluating the expression. In no way does this operator permanently
affect the value of the variable i2; it is a unary operator that behaves like other unary
operators. Just as the expression -a has no permanent effect on the value of a, neither
does the expression (float) a.

The type cast operator has a higher precedence than all the arithmetic operators
except the unary minus and unary plus. Of course, if necessary, you can always use paren-
theses in an expression to force the terms to be evaluated in any desired order.

As another example of the use of the type cast operator, the expression

(int) 29.55 + (int) 21.99

is evaluated in Objective-C as

29 + 21

because the effect of casting a floating value to an integer is one of truncating the float-
ing-point value.The expression

(float) 6 / (float) 4

produces a result of 1.5, as does the following expression:

(float) 6 / 4

The type cast operator is often used to coerce an object that is a generic id type into
an object of a particular class. For example, the following lines typecasts the value of the
id variable myNumber to a Fraction object:

id myNumber;
Fraction *myFraction;
...

myFraction = (Fraction *) myNumber;

ptg999

64 Chapter 4 Data Types and Expressions

The result of the casting is assigned to the Fraction variable myFraction.

Assignment Operators
The Objective-C language permits you to combine the arithmetic operators with the
assignment operator using the following general format:

op=

In this format, op is any of the arithmetic operators, including +, -, *, /, or %. In
addition, op can be any of the bit operators for shifting and masking, discussed later.

Consider this statement:

count += 10;

The effect of the so-called “plus equals” operator += is to add the expression on the
right side of the operator to the expression on the left side of the operator, and to store
the result back into the variable on the left side of the operator. So the previous statement
is equivalent to this statement:

count = count + 10;

The following expression uses the “minus equals” assignment operator to subtract 5
from the value of counter:

counter -= 5

It is equivalent to this expression:

counter = counter - 5

This is a slightly more involved expression:

a /= b + c

It divides a by whatever appears to the right of the equals sign—or by the sum of b
and c—and stores the result in a.The addition is performed first because the addition
operator has higher precedence than the assignment operator. In fact, all operators but the
comma operator have higher precedence than the assignment operators, which all have
the same precedence.

In this case, this expression is identical to the following:

a = a / (b + c)

The motivation for using assignment operators is threefold. First, the program state-
ment becomes easier to write because what appears on the left side of the operator does
not have to be repeated on the right side. Second, the resulting expression is usually easier
to read.Third, the use of these operators can result in programs that execute more quickly
because the compiler can sometimes generate less code to evaluate an expression.

ptg999

65A Calculator Class

A Calculator Class
It’s time now to define a new class.We’re going to make a Calculator class, which will
be a simple four-function calculator you can use to add, multiply, subtract, and divide
numbers. Similar to a regular calculator, this one must keep track of the running total, or
what’s usually called the accumulator. So methods must let you set the accumulator to a
specific value, clear it (or set it to zero), and retrieve its value when you’re done. Program
4.6 includes the new class definition and a test program to try your calculator.

Program 4.6

// Implement a Calculator class

#import <Foundation/Foundation.h>

@interface Calculator: NSObject

// accumulator methods
-(void) setAccumulator: (double) value;
-(void) clear;
-(double) accumulator;

// arithmetic methods
-(void) add: (double) value;
-(void) subtract: (double) value;
-(void) multiply: (double) value;
-(void) divide: (double) value;
@end

@implementation Calculator
{

double accumulator;
}

-(void) setAccumulator: (double) value
{

accumulator = value;
}

-(void) clear
{

accumulator = 0;
}

-(double) accumulator
{

return accumulator;
}

ptg999

66 Chapter 4 Data Types and Expressions

-(void) add: (double) value
{

accumulator += value;
}

-(void) subtract: (double) value
{

accumulator -= value;
}

-(void) multiply: (double) value
{

accumulator *= value;
}

-(void) divide: (double) value
{

accumulator /= value;
}
@end

int main (int argc, char * argv[])
{

@autoreleasepool {
Calculator *deskCalc = [[Calculator alloc] init];

[deskCalc setAccumulator: 100.0];
[deskCalc add: 200.];
[deskCalc divide: 15.0];
[deskCalc subtract: 10.0];
[deskCalc multiply: 5];
NSLog (@"The result is %g", [deskCalc accumulator]);

}
return 0;

}

Program 4.6 Output

The result is 50

The method definitions themselves are quite straightforward.The Calculator class has
only one instance variable, a double value that holds the value of the accumulator.

Notice the message that invokes the multiply method:

[deskCalc multiply: 5];

ptg999

67Exercises

The argument to the method is an integer, yet the method expects a double. No
problem arises here because numeric arguments to methods are automatically converted
to match the type expected.A double is expected by multiply:, so the integer value 5
automatically is converted to a double precision floating value when the function is
called. Even though this automatic conversion takes place, it’s better programming prac-
tice to supply the correct argument types when invoking methods.

Realize that, unlike the Fraction class, in which you might work with many different
fractions, you might want to work with only a single Calculator object in your pro-
gram.Yet it still makes sense to define a new class to make working with this object easy.
At some point, you might want to add a graphical front end to your calculator so the user
can actually click buttons on the screen, such as the calculator application you probably
have installed on your system or phone.

We’ll discuss more about data type conversions and bit operations in Chapter 10,
“More on Variables and Data Types.”

In several of the exercises that follow, you’ll see that one additional benefit of defining
a Calculator class has to do with the ease of extending it.

Exercises
1. Which of the following are invalid constants? Why?

123.456 0x10.5 0X0G1
0001 0xFFFF 123L
0Xab05 0L -597.25
123.5e2 .0001 +12
98.6F 98.7U 17777s
0996 -12E-12 07777
1234uL 1.2Fe-7 15,000
1.234L 197u 100U
0XABCDEFL 0xabcu +123

2. Write a program that converts 27° from degrees Fahrenheit (F) to degrees Celsius
(C) using the following formula:
C = (F - 32) / 1.8

Note that you don’t need to define a class to perform this calculation. Simply eval-
uating the expression will suffice.

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
char c, d;

ptg999

68 Chapter 4 Data Types and Expressions

c = 'd';
d = c;
NSLog (@"d = %c", d);

}
return 0;

}

4. Write a program to evaluate the polynomial shown here (to calculate the expo-
nents, just do straight multiplication—there is no exponentiation operator in
Objective-C):
3x3 - 5x2 + 6
for x = 2.55

5. Write a program that evaluates the following expression and displays the results
(remember to use exponential format to display the result):
(3.31 x 10-8 + 2.01 x 10-7) / (7.16 x 10-6 + 2.01 x 10-8)

6. Complex numbers are numbers that contain two components: a real part and an
imaginary part. If a is the real component and b is the imaginary component, this
notation is used to represent the number:
a + b i

Write an Objective-C program that defines a new class called Complex. Following
the paradigm established for the Fraction class, define the following methods for
your new class:
-(void) setReal: (double) a;
-(void) setImaginary: (double) b;
-(void) print; // display as a + bi
-(double) real;
-(double) imaginary;

Write a test program to test your new class and methods.

ptg999

69Exercises

7. Suppose you are developing a library of routines to manipulate graphical objects.
Start by defining a new class called Rectangle. For now, just keep track of the rec-
tangle’s width and height. Develop methods to set the rectangle’s width and
height, retrieve these values, and calculate the rectangle’s area and perimeter.
Assume that these rectangle objects describe rectangles on an integral grid, such as
a computer screen. In that case, assume that the width and height of the rectangle
are integer values.

Here is the @interface section for the Rectangle class:

@interface Rectangle: NSObject
-(void) setWidth: (int) w;
-(void) setHeight: (int) h;
-(int) width;
-(int) height;
-(int) area;
-(int) perimeter;
@end

Write the implementation section and a test program to test your new class and
methods.

8. The add:, subtract:, multiply:, and divide: methods from Program 4.6 do not
return a value. Modify these methods to return the value of the accumulator after
the computation is performed.Test the new methods.

9. After completing exercise 8, add the following methods to the Calculator class and
test them:
-(double) changeSign; // change sign of accumulator
-(double) reciprocal; // 1/accumulator
-(double) xSquared; // accumulator squared

10. Add a memory capability to the Calculator class from Program 4.6. Implement the
following method declarations and test them:
-(double) memoryClear; // clear memory
-(double) memoryStore; // set memory to accumulator
-(double) memoryRecall; // set accumulator to memory
-(double) memoryAdd: (double) value; // add value into memory
-(double) memorySubtract: (double) value; // subtract value from memory

The last two methods set the accumulator as well as perform the indicated opera-
tion on memory. Have all the methods return the value of the accumulator.

ptg999

This page intentionally left blank

ptg999

5
Program Looping

In Objective-C, you can repeatedly execute a sequence of code in several ways.These
looping capabilities are the subject of this chapter, and they consist of the following:

n The for statement

n The while statement

n The do statement

We start with a simple example: counting numbers.
If you were to arrange 15 marbles into the shape of a triangle, you would end up with

an arrangement that might look something like Figure 5.1.

The first row of the triangle contains one marble, the second row contains two mar-
bles, and so on. In general, the number of marbles required to form a triangle containing
n rows would be the sum of the integers from 1 through n.This sum is known as a
triangular number.

If you started at 1, the fourth triangular number would be the sum of the consecutive
integers 1–4 (1 + 2 + 3 + 4), or 10.

Suppose you wanted to write a program that calculated and displayed the value of the
eighth triangular number. Obviously, you could easily calculate this number in your head,
but for the sake of argument, let’s assume you wanted to write a program in Objective-C
to perform this task. Program 5.1 illustrates such a program.

Figure 5.1 Triangle arrangement example

ptg999

72 Chapter 5 Program Looping

Program 5.1
#import <Foundation/Foundation.h>

// Program to calculate the eighth triangular number

int main (int argc, char * argv[])
{

@autoreleasepool {
int triangularNumber;

triangularNumber = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8;

NSLog (@"The eighth triangular number is %i", triangularNumber);
}

return 0;
}

Program 5.1 Output

The eighth triangular number is 36

The technique of Program 5.1 works fine for calculating relatively small triangular
numbers, but what would happen if you needed to find the value of the 200th triangular
number, for example? It certainly would be tedious to have to modify Program 5.1 to
explicitly add up all the integers from 1 to 200. Luckily, there is an easier way.

One of the fundamental properties of a computer is its capability to repetitively exe-
cute a set of statements.These looping capabilities enable programmers to develop concise
programs containing repetitive processes that could otherwise require thousands or even
millions of program statements to perform.The Objective-C language contains three pro-
gram statements for program looping.

The for Statement
Let’s take a look at a program that uses the for statement.The purpose of Program 5.2 is
to calculate the 200th triangular number. See whether you can determine how the for
statement works.

Program 5.2
// Program to calculate the 200th triangular number
// Introduction of the for statement

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int n, triangularNumber;

tim

ptg999

73The for Statement

triangularNumber = 0;

for (n = 1; n <= 200; n = n + 1)
triangularNumber += n;

NSLog (@"The 200th triangular number is %i", triangularNumber);
}

return 0;
}

Program 5.2 Output

The 200th triangular number is 20100

Some explanation is needed for Program 5.2.The method employed to calculate the
200th triangular number is really the same as that used to calculate the 8th triangular
number in the previous program:The integers from 1 to 200 are summed.

The variable triangularNumber is set equal to 0 before the for statement is reached.
In general, you need to initialize all variables to some value (just like your objects) before
you use them in your program.As you’ll learn later, certain types of variables are given
default initial values, but it’s safer not to rely on that and you should set them anyway.

The for statement enables you to avoid having to explicitly write each integer from 1
to 200. In a sense, this statement generates these numbers for you.

The general format of the for statement is as follows:

for (init_expression; loop_condition; loop_expression)
program statement

The three expressions enclosed within the parentheses—init_expression,
loop_condition, and loop_expression—set up the environment for the program loop.
The program statement that immediately follows (which is, of course, terminated by a
semicolon) can be any valid Objective-C program statement and constitutes the body of
the loop.This statement is executed as many times as specified by the parameters set up in
the for statement.

The first component of the for statement, labeled init_expression, is used to set the
initial values before the loop begins. In Program 5.2, this portion of the for statement is
used to set the initial value of n to 1.As you can see, an assignment is a valid form of an
expression.

The second component of the for statement specifies the condition(s) necessary for
the loop to continue. In other words, looping continues as long as this condition is

ptg999

74 Chapter 5 Program Looping

satisfied.Again referring to Program 5.2, the loop_condition of the for statement is
specified by the following relational expression:

n <= 200

This expression can be read as “n less than or equal to 200.” The “less than or equal to”
operator (which is the less than character [<] followed immediately by the equals sign [=])
is only one of several relational operators provided in the Objective-C programming lan-
guage.These operators are used to test specific conditions.The answer to the test is yes (or
"true") if the condition is satisfied and no (or "false") if the condition is not satisfied.

Table 5.1 lists all the relational operators available in Objective-C.

The relational operators have lower precedence than all arithmetic operators.This
means, for example, that an expression such as

a < b + c

is evaluated as

a < (b + c)

This is as you would expect. It would be true if the value of a were less than the value
of b + c, and false otherwise.

Pay particular attention to the “is equal to” operator (==) and do not confuse its use
with the assignment operator (=).The expression

a == 2

tests whether the value of a is equal to 2, whereas the expression

a = 2

assigns the number 2 to the variable a.
The choice of which relational operator to use depends on the particular test being

made and, in some instances, on your particular preferences. For example, the relational
expression

n <= 200

Table 5.1 Relational Operators

Operator Meaning Example

== Equal to count == 10

!= Not equal to flag != DONE

< Less than a < b

<= Less than or equal to low <= high

> Greater than points > POINT_MAX

>= Greater than or equal to j >= 0

ptg999

75The for Statement

can be equivalently expressed as

n < 201

Returning to the previous example, the program statement that forms the body of the
for loop—triangularNumber += n;—is repetitively executed as long as the result of the
relational test is true, or, in this case, as long as the value of n is less than or equal to 200.
This program statement has the effect of adding the value of n to the value of
triangularNumber.

When the loop_condition is no longer satisfied, execution of the program continues
with the program statement immediately following the for loop. In this program, execu-
tion continues with the NSLog statement after the loop has terminated.

The final component of the for statement contains an expression that is evaluated
each time after the body of the loop is executed. In Program 5.2, this loop_expression
adds 1 to the value of n.Therefore, the value of n is incremented by 1 each time after its
value has been added into the value of triangularNumber, and it ranges in value from 1
through 201.

It is worth noting that the last value that n attains, 201, is not added into the value of
triangularNumber because the loop is terminated as soon as the looping condition is no
longer satisfied, or as soon as n equals 201.

In summary, execution of the for statement proceeds as follows:

1. The initial expression is evaluated first.This expression usually sets a variable that is
used inside the loop, generally referred to as an index variable, to some initial value
(such as 0 or 1).

2. The looping condition is evaluated. If the condition is not satisfied (the expression
is false), the loop immediately terminates. Execution continues with the program
statement that immediately follows the loop.

3. The program statement that constitutes the body of the loop is executed.

4. The looping expression is evaluated.This expression is generally used to change the
value of the index variable, frequently by adding 1 to it or subtracting 1 from it.

5. Return to step 2.

Remember that the looping condition is evaluated immediately on entry into the
loop, before the body of the loop has executed one time.Also remember not to put a
semicolon after the closed parenthesis at the end of the loop because this immediately
ends the loop.

Program 5.2 actually generates all the first 200 triangular numbers on its way to its
final goal, so it might be nice to generate a table of these numbers.To save space, however,
let’s assume that you want to print a table of just the first 10 triangular numbers. Program
5.3 performs this task.

ptg999

76 Chapter 5 Program Looping

Program 5.3

// Program to generate a table of triangular numbers

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int n, triangularNumber;

NSLog (@"TABLE OF TRIANGULAR NUMBERS");
NSLog (@" n Sum from 1 to n");
NSLog (@"-- ---------------");

triangularNumber = 0;

for (n = 1; n <= 10; ++n) {
triangularNumber += n;
NSLog (@" %i %i", n, triangularNumber);

}
}

return 0;
}

Program 5.3 Output

TABLE OF TRIANGULAR NUMBERS
n Sum from 1 to n
-- ---------------
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55

In Program 5.3, the purpose of the first three NSLog statements is simply to provide a
general heading and to label the columns of the output.

After the appropriate headings have been displayed, the program calculates the first 10
triangular numbers.The variable n is used to count the current number whose sum from

ptg999

77The for Statement

1 to n you are computing, and the variable triangularNumber is used to store the value
of triangular number n.

Execution of the for statement commences by setting the value of the variable n to 1.
As mentioned earlier, the program statement immediately following the for statement
constitutes the body of the program loop. But what happens if you want to repetitively
execute not just a single program statement, but a group of program statements? This can
be accomplished by enclosing all such program statements within a pair of braces.The
system then treats this group, or block, of statements as a single entity. In general, any place
in a Objective-C program that a single statement is permitted, a block of statements can
be used, provided that you remember to enclose the block within a pair of braces.

Therefore, in Program 5.3, both the expression that adds n into the value of
triangularNumber and the NSLog statement that immediately follows constitute the
body of the program loop. Pay particular attention to the way the program statements are
indented.At a quick glance, you can easily determine which statements form part of the
for loop.You should also note that programmers use different coding styles; some prefer
to type the loop this way:

for (n = 1; n <= 10; ++n)
{

triangularNumber += n;
NSLog (@" %i %i", n, triangularNumber);

}

Here, the opening brace is placed on the line following the for.This is strictly a mat-
ter of taste and has no effect on the program.

The next triangular number is calculated by simply adding the value of n to the previ-
ous triangular number.The first time through the for loop, the previous triangular num-
ber is 0, so the new value of triangularNumber when n is equal to 1 is simply the value
of n, or 1.The values of n and triangularNumber are then displayed, with an appropriate
number of blank spaces inserted into the format string to ensure that the values of the
two variables line up under the appropriate column headings.

Because the body of the loop has now been executed, the looping expression is evalu-
ated next.The expression in this for statement appears a bit strange, however. Surely, you
must have made a typographical mistake and meant to insert n = n + 1 instead of this
funny-looking expression:

++n

But ++n is actually a perfectly valid Objective-C expression. It introduces a new (and
rather unique) operator in the Objective-C programming language: the increment operator.
The function of the double plus sign, or the increment operator, is to add 1 to its
operand.Addition by 1 is such a common operation in programs that a special operator
was created solely for this purpose.Therefore, the expression ++n is equivalent to the
expression n = n + 1.At first glance, it might appear that n = n + 1 is more readable,
but you will soon get used to the function of this operator and even learn to appreciate
its succinctness.

tim

ptg999

78 Chapter 5 Program Looping

Of course, no programming language that offers an increment operator to add 1
would be complete without a corresponding operator to subtract 1.As you would guess,
the name of this operator is the decrement operator, and it is symbolized by the double
minus sign. So an expression in Objective-C that reads

bean_counter = bean_counter – 1

can be equivalently expressed using the decrement operator, like so:

--bean_counter

Some programmers prefer to put the ++ or -- after the variable name, as in n++ or
bean_counter--.This is a matter of personal preference in the example shown for the
for statement. However, as you’ll learn in Chapter 13,“Underlying C Language Fea-
tures,” the pre- or post-nature of the operator does come into play when used in more
complex expressions.

You might have noticed that the last line of output from Program 5.3 doesn’t line up.
You can correct this minor annoyance by substituting the following NSLog statement in
place of the corresponding statement from Program 5.3:

NSLog ("%2i %i", n, triangularNumber);

To verify that this change solves the problem, here’s the output from the modified pro-
gram (called Program 5.3A).

Program 5.3A Output

TABLE OF TRIANGULAR NUMBERS

n Sum from 1 to n
--- ---------------
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55

The primary change made to the NSLog statement is the inclusion of a field width
specification.The characters %2i tell the NSLog routine not only that you want to display
the value of an integer at that particular point, but also that the size of the integer to be
displayed should take up at least two columns in the display.Any integer that would nor-
mally take up less than two columns (that is, the integers 0–9) will be displayed with a
leading space.This is known as right justification.

ptg999

79The for Statement

Thus, by using a field width specification of %2i, you guarantee that at least two
columns will be used for displaying the value of n; you also ensure that the values of
triangularNumber will be aligned.

Keyboard Input
Program 5.2 calculates the 200th triangular number, and nothing more.What if you
wanted to calculate the 50th or the 100th triangular number instead? Well, if that were
the case, you would have to change the program so that the for loop would be executed
the correct number of times.You would also have to change the NSLog statement to dis-
play the correct message.

An easier solution might be to somehow have the program ask you which triangular
number you want to calculate.Then, after you had given your answer, the program could
calculate the desired triangular number.You can effect such a solution by using a routine
called scanf.The scanf routine is similar in concept to the NSLog routine.Whereas the
NSLog routine is used to display values, the purpose of the scanf routine is to enable the
programmer to type values into the program. Of course, if you’re writing an Objective-C
program that uses a graphical User Interface (UI), such as a Cocoa or iOS application,
you likely won’t be using NSLog or scanf at all in your program.

Program 5.4 asks the user which triangular number should be calculated, calculates
that number, and then displays the results.

Program 5.4

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int n, number, triangularNumber;

NSLog (@"What triangular number do you want?");
scanf ("%i", &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

NSLog (@"Triangular number %i is %i\n", number, triangularNumber);
}

return 0;
}

ptg999

80 Chapter 5 Program Looping

In the program output that follows, the number typed in by the user (100) is set in
bold type, to distinguish it from the output displayed by the program.

Program 5.4 Output

What triangular number do you want?
100
Triangular number 100 is 5050

According to the output, the user typed the number 100.The program then calculated
the 100th triangular number and displayed the result of 5050 at the terminal.The user
could have just as easily typed in the number 10 or 30, for example, if he or she wanted to
calculate those particular triangular numbers.

The first NSLog statement in Program 5.4 is used to prompt the user to type in a num-
ber. Of course, it is always nice to remind the user of what you want entered.After the
message is printed, the scanf routine is called.The first argument to scanf is the format
string, which does not begin with the @ character. Unlike NSLog, whose first argument is
always an NSString object, the first argument to scanf is a C-style string.As noted
earlier, C-style character strings are not preceded by the @ character.

The format string tells scanf what types of values are to be read in from the console
(or terminal window, if you’re compiling your programs using the Terminal application).
As with NSLog, the %i characters are used to specify an integer value.

The second argument to the scanf routine specifies where the value that the user
types in is to be stored.The & character before the variable number is necessary in this
case. Rather than supplying the value of the variable number, we instead specify where we
want the value that is entered to be stored. Don’t worry about this right now.We discuss
this character, which is actually an operator, in great detail when we talk about pointers in
Chapter 13.

Given the preceding discussion, you can now see that the scanf call from Program 5.4
specifies that an integer value is to be read and stored into the variable number.This value
represents the particular triangular number the user wants to have calculated.

After the user has typed in this number (and pressed the Enter key on the keyboard to
signal that typing of the number is completed), the program calculates the requested tri-
angular number.This is done in the same way as in Program 5.2; the only difference is
that, instead of using 200 as the limit, number is used as the limit.

Note
Pressing the Enter key on a keyboard with a numeric keypad may not cause the number you
enter to be sent to the program. Use the Return key on your keyboard instead.

ptg999

81The for Statement

After the desired triangular number has been calculated, the results are displayed. Exe-
cution of the program is then complete.

Nested for Loops
Program 5.4 gives the user the flexibility to have the program calculate any triangular
number that is desired. But suppose the user had a list of five triangular numbers to be cal-
culated? In such a case, the user could simply execute the program five times, each time
typing in the next triangular number from the list to be calculated.

Another way to accomplish the same goal, and a far more interesting method, as far as
learning about Objective-C is concerned, is to have the program handle the situation.This
can best be accomplished by inserting a loop into the program to repeat the entire series
of calculations five times.You can use the for statement to set up such a loop. Program
5.5 and its associated output illustrate this technique.

Program 5.5

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])

{
@autoreleasepool {

int n, number, triangularNumber, counter;

for (counter = 1; counter <= 5; ++counter) {
NSLog (@"What triangular number do you want?");
scanf ("%i", &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

NSLog (@"Triangular number %i is %i", number, triangularNumber);
}

}

return 0;
}

Program 5.5 Output

What triangular number do you want?
12
Triangular number 12 is 78

ptg999

82 Chapter 5 Program Looping

What triangular number do you want?
25
Triangular number 25 is 325

What triangular number do you want?
50
Triangular number 50 is 1275

What triangular number do you want?
75
Triangular number 75 is 2850

What triangular number do you want?
83
Triangular number 83 is 3486

The program consists of two levels of for statements.The outermost for statement is
as follows:

for (counter = 1; counter <= 5; ++counter)

This specifies that the program loop is to be executed precisely five times.The value of
counter is initially set to 1 and is incremented by 1 until it is no longer less than or equal
to 5 (in other words, until it reaches 6).

Unlike the previous program examples, the variable counter is not used anywhere else
within the program. Its function is solely as a loop counter in the for statement. Never-
theless, because it is a variable, you must declare it in the program.

The program loop actually consists of all the remaining program statements, as indi-
cated by the braces.You might be able to more easily comprehend the way this program
operates if you conceptualize it as follows:

For 5 times
{

Get the number from the user.
Calculate the requested triangular number.
Display the results.

}

The portion of the loop referred to in the preceding as Calculate the requested triangular
number actually consists of setting the value of the variable triangularNumber to 0 plus the
for loop that calculates the triangular number.Thus, a for statement is actually contained
within another for statement.This is perfectly valid in Objective-C, and nesting can con-
tinue even further to any desired level.

The proper use of indentation becomes even more critical when dealing with more
sophisticated program constructs, such as nested for statements.At a quick glance, you can
easily determine which statements are contained within each for statement.

tim

ptg999

83The for Statement

for Loop Variants
Before leaving this discussion of the for loop, we should mention some of the syntactic
variations that are permitted in forming this loop.When writing a for loop, you might
discover that you want to initialize more than one variable before the loop begins, or per-
haps you want to evaluate more than one expression each time through the loop.You can
include multiple expressions in any of the fields of the for loop, as long as you separate
such expressions by commas. For example, in the for statement that begins

for (i = 0, j = 0; i < 10; ++i)
...

the value of i is set to 0 and the value of j is set to 0 before the loop begins.The two
expressions i = 0 and j = 0 are separated from each other by a comma, and both expres-
sions are considered part of the init_expression field of the loop.As another example,
the for loop that starts

for (i = 0, j = 100; i < 10; ++i, j -= 10)
...

sets up two index variables: i and j, which are initialized to 0 and 100, respectively, before
the loop begins. Each time after the body of the loop is executed, the value of i is incre-
mented by 1 and the value of j is decremented by 10.

Just as you might need to include more than one expression in a particular field of the
for statement, you also might need to omit one or more fields from the statement.You
can do this simply by omitting the desired field and marking its place with a semicolon.
The most common application for the omission of a field in the for statement occurs
when no initial expression needs to be evaluated.You can simply leave the
init_expression field blank in such a case, as long as you still include the semicolon:

for (; j != 100; ++j)
...

This statement might be used if j were already set to some initial value before the loop
was entered.

A for loop that has its looping_condition field omitted effectively sets up an infinite
loop—that is, a loop that theoretically will be executed forever. Such a loop can be used as
long as some other means is used to exit from the loop (such as executing a return,
break, or goto statement, as discussed later in this book).

You can also define variables as part of your initial expression inside a for loop.This is
done using the typical ways we’ve defined variables in the past. For example, the following
can be used to set up a for loop with an integer variable counter both defined and initial-
ized to the value 1, like so:

for (int counter = 1; counter <= 5; ++counter)

The variable counter is known only throughout the execution of the for loop (it’s
called a local variable) and cannot be accessed outside the loop.

ptg999

84 Chapter 5 Program Looping

A final for loop variant, for performing what’s known as fast enumerations on collec-
tions of objects is described in detail in Chapter 15,“Numbers, Strings, and Collections.”

The while Statement
The while statement further extends the Objective-C language’s repertoire of looping
capabilities.The syntax of this frequently used construct is as follows:

while (expression)
program statement

The expression specified inside the parentheses is evaluated. If the result of the
expression evaluation is true, the program statement that immediately follows is exe-
cuted.After execution of this statement (or statements, if enclosed in braces), expression
is again evaluated. If the result of the evaluation is true, the program statement is again
executed.This process continues until expression finally evaluates false, at which point
the loop is terminated. Execution of the program then continues with the statement that
follows program statement.

As an example of its use, the following program sets up a while loop, which merely
counts from 1 to 5.

Program 5.6
// This program introduces the while statement

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int count = 1;

while (count <= 5) {
NSLog (@"%i", count);
++count;

}
}

return 0;
}

Program 5.6 Output

1
2
3
4
5

ptg999

85The while Statement

The program initially sets the value of count to 1; execution of the while loop then
begins. Because the value of count is less than or equal to 5, the statement that immedi-
ately follows is executed.The braces define both the NSLog statement and the statement
that increments count as the body of the while loop. From the output of the program,
you can see that this loop is executed five times or until the value of count reaches 5.

You might have realized from this program that you could have readily accomplished
the same task by using a for statement. In fact, a for statement can always be translated
into an equivalent while statement, and vice versa. For example, the general for statement

for (init_expression; loop_condition; loop_expression)
program statement

can be equivalently expressed in the form of a while statement, like so:

init_expression;
while (loop_condition)
{

program statement
loop_expression;

}

When you become familiar with the use of the while statement, you will gain a better
feel for when it seems more logical to use a while statement and when you should use a
for statement. In general, a loop executed a predetermined number of times is a prime
candidate for implementation as a for statement.Also, if the initial expression, looping
expression, and looping condition all involve the same variable, the for statement is prob-
ably the right choice.

The next program provides another example of the use of the while statement.The
program computes the greatest common divisor of two integer values.The greatest com-
mon divisor (we abbreviate it hereafter as gcd) of two integers is the largest integer value
that evenly divides the two integers. For example, the gcd of 10 and 15 is 5 because 5 is
the largest integer that evenly divides both 10 and 15.

A procedure, or algorithm, that can be followed to arrive at the gcd of two arbitrary
integers is based on a procedure originally developed by Euclid around 300 B.C. It can be
stated as follows:

Problem: Find the greatest common divisor of two nonnegative integers u and v.

Step 1: If v equals 0, then we are done and the gcd is equal to u.

Step 2: Calculate temp = u % v, u = v, v = temp and go back to step 1.

Don’t concern yourself with the details of how the previous algorithm works—simply
take it on faith.We are more concerned here with developing a program to find the
greatest common divisor than in performing an analysis of how the algorithm works.

ptg999

86 Chapter 5 Program Looping

After expressing the solution to the problem of finding the greatest common divisor in
terms of an algorithm, developing the computer program becomes a much simpler task.
An analysis of the steps of the algorithm reveals that step 2 is repetitively executed as long
as the value of v is not equal to 0.This realization leads to the natural implementation of
this algorithm in Objective-C with the use of a while statement.

Program 5.7 finds the gcd of two nonnegative integer values typed in by the user.

Program 5.7

// Find the greatest common divisor of two nonnegative integers

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
unsigned int u, v, temp;

NSLog (@"Please type in two nonnegative integers.");
scanf ("%u%u", &u, &v);

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

NSLog (@"Their greatest common divisor is %u", u);
}

return 0;
}

Program 5.7 Output

Please type in two nonnegative integers.
150 35
Their greatest common divisor is 5

Program 5.7A Output (Rerun)

Please type in two nonnegative integers.
1026 540
Their greatest common divisor is 54

ptg999

87The while Statement

After the two integer values have been entered and stored in the variables u and v

(using the %u format characters to read in an unsigned integer value), the program enters a
while loop to calculate their greatest common divisor.After the while loop is exited, the
value of u, which represents the gcd of v and of the original value of u, is displayed with
an appropriate message.

You will use the algorithm for finding the greatest common divisor again in Chapter 7,
when you return to working with fractions.There you will use the algorithm to reduce a
fraction to its simplest terms.

For the next program that illustrates the use of the while statement, let’s consider the
task of reversing the digits of an integer that is entered from the terminal. For example, if
the user types in the number 1234, the program should reverse the digits of this number
and display the result of 4321.

Note
Using NSLog calls will cause each digit to appear on a separate line of the output. C pro-
grammers who are familiar with the printf function can use that routine instead to get the
digits to appear consecutively.

To write such a program, you first must come up with an algorithm that accomplishes
the stated task. Frequently, analyzing your own method for solving the problem leads to
an algorithm. For the task of reversing the digits of a number, the solution can be simply
stated as “successively read the digits of the number from right to left.” You can have a
computer program successively read the digits of the number by developing a procedure
to successively isolate or extract each digit of the number, beginning with the rightmost
digit.The extracted digit can be subsequently displayed at the terminal as the next digit of
the reversed number.

You can extract the rightmost digit from an integer number by taking the remainder
of the integer after it is divided by 10. For example, 1234 % 10 gives the value 4, which is
the rightmost digit of 1234 and is also the first digit of the reversed number. (Remember
that the modulus operator gives the remainder of one integer divided by another.) You
can get the next digit of the number by using the same process if you first divide the
number by 10, bearing in mind the way integer division works.Thus, 1234 / 10 gives a
result of 123, and 123 % 10 gives you 3, which is the next digit of the reversed number.

You can continue this procedure until you’ve extracted the last digit. In the general
case, you know that the last digit of the number has been extracted when the result of the
last integer division by 10 is 0.

Program 5.8 prompts the user to enter a number and then proceeds to display the dig-
its from that number from the rightmost to leftmost digit.

Program 5.8

// Program to reverse the digits of a number

#import <Foundation/Foundation.h>

ptg999

88 Chapter 5 Program Looping

int main (int argc, char * argv[])
{

@autoreleasepool {
int number, right_digit;

NSLog (@"Enter your number.");
scanf ("%i", &number);

while (number != 0) {
right_digit = number % 10;
NSLog (@"%i", right_digit);
number /= 10;

}
}

return 0;
}

Program 5.8 Output

Enter your number.
13579
9
7
5
3
1

The do Statement
The two looping constructs discussed thus far in this chapter both test the conditions
before the loop is executed.Therefore, the body of the loop might never be executed if
the conditions are not satisfied.When developing programs, you sometimes want to have
the test made at the end of the loop instead of at the beginning. Naturally, the Objective-
C language provides a special language construct to handle such a situation, known as the
do statement.The syntax of this statement is as follows:

do
program statement

while (expression);

Execution of the do statement proceeds as follows: program statement is executed
first. Next, the expression inside the parentheses is evaluated. If the result of evaluating
expression is true, the loop continues and program statement is again executed.As
long as the evaluation of expression continues to be true, program statement is

ptg999

89The do Statement

repeatedly executed.When the evaluation of the expression proves false, the loop is termi-
nated and the next statement in the program is executed in the normal sequential manner.

The do statement is simply a transposition of the while statement, with the looping
conditions placed at the end of the loop instead of at the beginning.

Program 5.8 used a while statement to reverse the digits of a number. Go back to that
program and try to determine what would happen if the user had typed in the number 0
instead of 13579.The loop of the while statement would never have been executed, and
nothing would have been displayed for output. If you were to use a do statement instead
of a while statement, you would be assured that the program loop would be executed at
least once, thus guaranteeing the display of at least one digit in all cases. Program 5.9 illus-
trates the use of the do statement.

Program 5.9

// Program to reverse the digits of a number

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int number, right_digit;

NSLog (@"Enter your number.");
scanf ("%i", &number);

do {
right_digit = number % 10;
NSLog (@"%i", right_digit);
number /= 10;

}
while (number != 0);

}

return 0;
}

Program 5.9 Output

Enter your number.
135
5
3
1

ptg999

90 Chapter 5 Program Looping

Program 5.9A Output (Rerun)

Enter your number.
0
0

As you can see from the program’s output, when 0 is keyed into the program, the pro-
gram correctly displays the digit 0.

The break Statement
Sometimes when executing a loop, you’ll want to leave the loop as soon as a certain con-
dition occurs—for instance, maybe you detect an error condition or find the data you’re
looking for in a list of data.You can use the break statement for this purpose. Execution
of the break statement causes the program to immediately exit from the loop it is execut-
ing, whether it’s a for, while, or do loop. Subsequent statements in the loop are skipped
and execution of the loop is terminated. Execution continues with whatever statement
follows the loop.

If a break is executed from within a set of nested loops, only the innermost loop in
which the break is executed is terminated.

The format of the break statement is simply the keyword break followed by a semi-
colon, like so:

break;

The continue Statement
The continue statement is similar to the break statement, except that it doesn’t cause the
loop to terminate.At the point that the continue statement is executed, any statements
that appear after the continue statement up to the end of the loop are skipped. Execu-
tion of the loop otherwise continues as normal.

The continue statement is most often used to bypass a group of statements inside a
loop based on some condition, but then to otherwise continue executing the loop.The
format of the continue statement is as follows:

continue;

Don’t use the break or continue statements until you become very familiar with
writing program loops and gracefully exiting from them.These statements are too easy to
abuse and can result in programs that are hard to follow.

ptg999

91Exercises

Summary
Now that you are familiar with all the basic looping constructs the Objective-C language
provides, you’re ready to learn about another class of language statements that enables you
to make decisions during the execution of a program.The next chapter describes these
decision-making capabilities in detail.

Exercises
1. Write a program to generate and display a table of n and n2, for integer values of n

ranging from 1 through 10. Be sure to print the appropriate column headings.

2. A triangular number can also be generated for any integer value of n by this formula:
triangularNumber = n (n + 1) / 2

For example, the 10th triangular number, 55, can be calculated by substituting 10 as
the value for n into the previous formula.Write a program that generates a table of
triangular numbers using the previous formula. Have the program generate every
fifth triangular number between 5 and 50 (that is, 5, 10, 15, ..., 50).

3. The factorial of an integer n, written n!, is the product of the consecutive integers 1
through n. For example, 5 factorial is calculated as follows:
5! = 5 x 4 x 3 x 2 x 1 = 120

Write a program to generate and print a table of the first 10 factorials.

4. A minus sign placed in front of a field width specification causes the field to be dis-
played left-justified. Substitute the following NSLog statement for the correspon-
ding statement in Program 5.3, run the program, and compare the outputs
produced by both programs:
NSLog (@"%-2i %i", n, triangularNumber);

5. Program 5.5 allows the user to type in only five different numbers. Modify that pro-
gram so that the user can type in the number of triangular numbers to be calculated.

6. Programs 5.2 through 5.5, replacing all uses of the for statement with equivalent
while statements. Run each program to verify that both versions are identical.

7. What would happen if you typed a negative number into Program 5.8?Try it and see.

8. Write a program that calculates the sum of the digits of an integer. For example, the
sum of the digits of the number 2155 is 2 + 1 + 5 + 5, or 13.The program should
accept any arbitrary integer the user types.

ptg999

This page intentionally left blank

ptg999

6
Making Decisions

A fundamental feature of any programming language is its capability to make decisions.
Decisions were made when executing the looping statements to determine when to
terminate a loop.The Objective-C programming language also provides several other
decision-making constructs, which are covered in this chapter:

n The if statement
n The switch statement
n The conditional operator

The if Statement
The Objective-C programming language provides a general decision-making capability in
the form of a language construct known as the if statement.The general format of this
statement is shown here:

if (expression)
program statement

Imagine that you could translate a statement such as “If it is not raining, then I will go
swimming” into the Objective-C language. Using the previous format for the if state-
ment, this might be “written” in Objective-C as follows:

if (it is not raining)
I will go swimming

The if statement is used to stipulate execution of a program statement (or statements,
if enclosed in braces) based on specified conditions. I will go swimming if it is not rain-
ing. Similarly, in the program statement

if (count > MAXIMUM_SONGS)
[playlist maxExceeded];

the maxExceeded message is sent to playlist only if the value of count is greater than
the value of MAXIMUM_SONGS; otherwise, it is ignored.

ptg999

94 Chapter 6 Making Decisions

An actual program example will help drive the point home. Suppose you want to
write a program that accepts an integer entered from the keyboard and then displays the
absolute value of that integer.A straightforward way to calculate the absolute value of an
integer is to simply negate the number if it is less than zero.The phrase “if it is less than
zero” in the previous sentence signals that the program must make a decision.This deci-
sion can be affected by the use of an if statement, as shown in the program that follows.

Program 6.1

// Calculate the absolute value of an integer

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int number;

NSLog (@"Type in your number: ");
scanf ("%i", &number);

if (number < 0)
number = -number;

NSLog (@"The absolute value is %i", number);
}
return 0;

}

Program 6.1 Output

Type in your number:
-100
The absolute value is 100

Program 6.1 Output (Rerun)

Type in your number:
2000
The absolute value is 2000

The program was run twice to verify that it is functioning properly. Of course, it
might be desirable to run the program several more times to get a higher level of confi-
dence so that you know it is indeed working correctly, but at least you know that you
have checked both possible outcomes of the program’s decision.

ptg999

95The if Statement

After a message is displayed to the user and the integer value that is entered is stored in
number, the program tests the value of number to see whether it is less than zero. If it is,
the following program statement, which negates the value of number, is executed. If the
value of number is not less than zero, this program statement is automatically skipped. (If it
is already positive, you don’t want to negate it.) The absolute value of number is then dis-
played by the program, and program execution ends.

Let’s look at another program that uses the if statement.We’ll add one more method
to the Fraction class, called convertToNum.This method will provide the value of a frac-
tion expressed as a real number. In other words, it will divide the numerator by the
denominator and return the result as a double precision value. So if you have the fraction
1/2, you want the method to return the value 0.5.

The declaration for such a method might look like this:

-(double) convertToNum;

This is how you could write its definition:

-(double) convertToNum
{

return numerator / denominator;
}

Well, not quite.As it’s defined, this method actually has two serious problems. Can you
spot them? The first has to do with arithmetic conversions. Recall that numerator and
denominator are both integer instance variables. So what happens when you divide two
integers? Correct, it is done as an integer division! If you wanted to convert the fraction
1/2, the previous code would give you zero! This is easily corrected by using the type cast
operator to convert one or both of the operands to a floating-point value before the divi-
sion takes place:

(double) numerator / denominator

Recalling the relatively high precedence of this operator, the value of numerator is
first converted to double before the division occurs. Furthermore, you don’t need to con-
vert the denominator because the rules of arithmetic conversion take care of that for you.

The second problem with this method is that you should check for division by zero
(you should always check for that!).The invoker of this method could inadvertently have
forgotten to set the denominator of the fraction or might have set the denominator of the
fraction to zero, and you don’t want your program to terminate abnormally.

The modified version of the convertToNum method appears here:

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return NAN;

}

ptg999

96 Chapter 6 Making Decisions

We decided to return the special value NAN (which stands for Not A Number) if the
denominator of the fraction is zero.This symbol is defined in a system header file called
math.h, which gets automatically imported into your program.

Let’s put this new method to use in Program 6.2.

Program 6.2

#import <Foundation/Foundation.h>

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;
-(double) convertToNum;
@end

@implementation Fraction
{
int numerator;
int denominator;

}

-(void) print
{

NSLog (@" %i/%i ", numerator, denominator);
}

-(void) setNumerator: (int) n
{

numerator = n;
}

-(void) setDenominator: (int) d
{

denominator = d;
}

-(int) numerator
{

return numerator;
}

-(int) denominator
{

return denominator;
}

ptg999

97The if Statement

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return NAN;

}
@end

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

[aFraction setNumerator: 1]; // 1st fraction is 1/4
[aFraction setDenominator: 4];

[aFraction print];
NSLog (@" =");
NSLog (@"%g", [aFraction convertToNum]);

[bFraction print]; // never assigned a value
NSLog (@" =");
NSLog (@"%g", [bFraction convertToNum]);

}
return 0;

}

Program 6.2 Output

1/4
=
0.25
0/0
=
nan

After setting aFraction to 1/4, the program uses the convertToNum method to con-
vert the fraction to a decimal value.This value is then displayed as 0.25.

In the second case, the value of bFraction is not explicitly set, so its numerator and
denominator are initialized to zero, which is the default for instance variables.This
explains the result from the print method. It also causes the if statement inside the

ptg999

98 Chapter 6 Making Decisions

convertToNum method to return the value NAN, which you will note is actually displayed
by NSLog as nan.

The if-else Construct
If someone asks you whether a particular number is even or odd, you will most likely
make the determination by examining the last digit of the number. If this digit is 0, 2, 4,
6, or 8, you will readily state that the number is even. Otherwise, you will claim that the
number is odd.

An easier way for a computer to determine whether a particular number is even or
odd is affected not by examining the last digit of the number to see whether it is 0, 2, 4,
6, or 8, but by simply determining whether the number is evenly divisible by 2. If it is, the
number is even; otherwise, it is odd.

You have already seen how the modulus operator % is used to compute the remainder
of one integer divided by another.This makes it the perfect operator to use in determin-
ing whether an integer is evenly divisible by 2. If the remainder after division by 2 is 0, it
is even; otherwise, it is odd.

Now let’s write a program that determines whether an integer value that the user
types in is even or odd and then displays an appropriate message at the terminal—see
Program 6.3.

Program 6.3

// Program to determine if a number is even or odd

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int number_to_test, remainder;

NSLog (@"Enter your number to be tested: ");
scanf ("%i", &number_to_test);

remainder = number_to_test % 2;

if (remainder == 0)
NSLog (@"The number is even.");

if (remainder != 0)
NSLog (@"The number is odd.");

}

return 0;
}

ptg999

99The if Statement

Program 6.3 Output

Enter your number to be tested:
2455
The number is odd.

Program 6.3 Output (Rerun)

Enter your number to be tested:
1210
The number is even.

After the number is typed in, the remainder after division by 2 is calculated.The first if
statement tests the value of this remainder to see whether it is equal to zero. If it is, the
message “The number is even.” displays.

The second if statement tests the remainder to see if it’s not equal to zero and, if that’s
the case, displays a message stating that the number is odd.

Whenever the first if statement succeeds the second one must fail, and vice versa. If
you recall from our discussions of even/odd numbers at the beginning of this section, we
said that if the number is evenly divisible by 2, it is even; otherwise, it is odd.

When writing programs, this “else” concept is so frequently required that a special
construct is provided to handle this situation. In Objective-C, this is known as the if-
else, and the general format is as follows:

if (expression)
program statement 1

else
program statement 2

The if-else is actually just an extension of the general format of the if statement. If
the result of the expression’s evaluation is true, then program statement 1, which imme-
diately follows, is executed; otherwise, program statement 2 is executed. In either case,
either program statement 1 or program statement 2 will be executed, but not both.

You can incorporate the if-else statement into the previous program, replacing the
two if statements by a single if-else statement.You will see how this new program
construct actually helps reduce the program’s complexity somewhat and also improves its
readability.

Program 6.4

// Determine if a number is even or odd (Ver. 2)

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int number_to_test, remainder;

ptg999

100 Chapter 6 Making Decisions

NSLog (@"Enter your number to be tested:");
scanf ("%i", &number_to_test);

remainder = number_to_test % 2;

if (remainder == 0)
NSLog (@"The number is even.");

else
NSLog (@"The number is odd.");

}

return 0;
}

Program 6.4 Output

Enter your number to be tested:
1234
The number is even.

Program 6.4 Output (Rerun)

Enter your number to be tested:
6551
The number is odd.

Don’t forget that the double equals sign (==) is the equality test, and the single equals
sign is the assignment operator. Forgetting this and inadvertently using the assignment
operator inside the if statement can lead to a lot of headaches.

Compound Relational Tests
The if statements you’ve used so far in this chapter set up simple relational tests between
two numbers. Program 6.1 compared the value of number against zero, whereas Program
6.2 compared the denominator of the fraction to zero. Sometimes it becomes desirable, if
not necessary, to set up more sophisticated tests. Suppose, for example, that you want to
count the number of grades from an exam that were between 70 and 79, inclusive. In
such a case, you would want to compare the value of a grade not merely against one
limit, but against the two limits 70 and 79 to ensure that it fell within the specified range.

The Objective-C language provides the mechanisms necessary to perform these types
of compound relational tests.A compound relational test is simply one or more simple rela-
tional tests joined by either the logical AND or the logical OR operator.These operators are

ptg999

101The if Statement

represented by the character pairs && and || (two vertical bar characters), respectively.As
an example, the following Objective-C statement increments the value of
grades_70_to_79 only if the value of grade is greater than or equal to 70 and less than
or equal to 79:

if (grade >= 70 && grade <= 79)
++grades_70_to_79;

In a similar manner, the following statement causes execution of the NSLog statement
if index is less than 0 or greater than 99:

if (index < 0 || index > 99)
NSLog (@"Error - index out of range");

The compound operators can be used to form extremely complex expressions in
Objective-C.The Objective-C language grants the programmer the ultimate flexibility in
forming expressions, but this flexibility is a capability that programmers often abuse. Sim-
pler expressions are almost always easier to read and debug.

When forming compound relational expressions, liberally use parentheses to aid read-
ability of the expression and avoid getting into trouble because of a mistaken assumption
about the precedence of the operators in the or expression. (The && operator has lower
precedence than any arithmetic or relational operator but higher precedence than the ||
operator.) Blank spaces also can aid in the expression’s readability.An extra blank space
around the && and || operators visually sets these operators apart from the expressions
they are joining.

To illustrate the use of a compound relational test in an actual program example, let’s
write a program that tests whether a year is a leap year.We all know that a year is a leap
year if it is evenly divisible by 4.What you might not realize, however, is that a year that is
divisible by 100 is not a leap year unless it is also divisible by 400.

Try to think how you would go about setting up a test for such a condition. First, you
could compute the remainders of the year after division by 4, 100, and 400, and assign
these values to appropriately named variables, such as rem_4, rem_100, and rem_400,
respectively.Then you could test these remainders to determine whether the desired cri-
teria for a leap year were met.

If we rephrase our previous definition of a leap year, we can say that a year is a leap
year if it is evenly divisible by 4 and not by 100 or if it is evenly divisible by 400. Stop for
a moment to reflect on this last sentence and to verify to yourself that it is equivalent to
the previously stated definition. Now that we have reformulated our definition in these
terms, it becomes a relatively straightforward task to translate it into a program statement,
as follows:

if ((rem_4 == 0 && rem_100 != 0) || rem_400 == 0)
NSLog (@"It's a leap year.");

The parentheses around the following subexpression are not required:

rem_4 == 0 && rem_100 != 0

ptg999

102 Chapter 6 Making Decisions

This is because the expression will be evaluated that way anyway: Remember that &&
has higher precedence than ||.

In fact, in this particular example, the following test would work just as well:

if (rem_4 == 0 && (rem_100 != 0 || rem_400 == 0))

If you add a few statements in front of the test to declare the variables and to enable
the user to key in the year from the terminal, you end up with a program that determines
whether a year is a leap year, as shown in Program 6.5.

Program 6.5

// This program determines if a year is a leap year

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int year, rem_4, rem_100, rem_400;

NSLog (@"Enter the year to be tested: ");
scanf ("%i", &year);

rem_4 = year % 4;
rem_100 = year % 100;
rem_400 = year % 400;

if ((rem_4 == 0 && rem_100 != 0) || rem_400 == 0)
NSLog (@"It's a leap year.");

else
NSLog (@"Nope, it's not a leap year.");

}

return 0;
}

Program 6.5 Output

Enter the year to be tested:
1955
Nope, it's not a leap year.

Program 6.5 Output (Rerun)

Enter the year to be tested:
2000
It's a leap year.

ptg999

103The if Statement

Program 6.5 Output (Rerun)

Enter the year to be tested:
1800
Nope, it's not a leap year.

The previous examples use a year that is not a leap year because it isn’t evenly divisible
by 4 (1955), a year that is a leap year because it is evenly divisible by 400 (2000), and a
year that isn’t a leap year because it is evenly divisible by 100 but not by 400 (1800).To
complete the run of test cases, you should also try a year that is evenly divisible by 4 and
not by 100.This is left as an exercise for you.

We mentioned that Objective-C gives the programmer a tremendous amount of flexi-
bility in forming expressions. For instance, in the previous program, you did not have to
calculate the intermediate results rem_4, rem_100, and rem_400—you could have per-
formed the calculation directly inside the if statement, as follows:

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

Using blank spaces to set off the various operators still makes the previous expression
readable. If you decided to ignore this and removed the unnecessary set of parentheses,
you could end up with an expression that looked like this:

if(year%4==0&&year%100!=0||year%400==0)

This expression is perfectly valid and, believe it or not, executes identically to the
expression shown immediately before it. Obviously, those extra blanks go a long way
toward aiding our understanding of complex expressions.

Nested if Statements
In discussions of the general format of the if statement, we indicated that if the result of
evaluating the expression inside the parentheses is true, the statement that immediately
follows is executed. It is perfectly valid for this program statement to be another if state-
ment, as in the following statement:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];

If the value returned by sending the isOver message to chessGame is NO, the following
statement is executed; this statement, in turn, is another if statement.This if statement
compares the value returned from the whoseTurn method against YOU. If the two values
are equal, the yourMove message is sent to the chessGame object.Therefore, the yourMove
message is sent only if both the game is not done and it’s your turn. In fact, this statement
could have been equivalently formulated using compound relationals, like so:

if ([chessGame isOver] == NO && [chessGame whoseTurn] == YOU)
[chessGame yourMove];

ptg999

104 Chapter 6 Making Decisions

A more practical example of nested if statements might involve adding an else clause
to the previous example, as shown here:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];
else

[chessGame myMove];

Executing this statement proceeds as described previously. However, if the game is not
over and it’s not your move, the else clause is executed.This sends the message myMove to
chessGame. If the game is over, the entire if statement that follows, including its associ-
ated else clause, is skipped.

Notice how the else clause is associated with the if statement that tests the value
returned from the whoseTurn method, not with the if statement that tests whether the
game is over.The general rule is that an else clause is always associated with the last if
statement that doesn’t contain an else.

You can go one step further and add an else clause to the outermost if statement in
the preceding example.This else clause is executed if the game is over:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];
else

[chessGame myMove];
else

[chessGame finish];

Of course, even if you use indentation to indicate the way you think a statement will
be interpreted in the Objective-C language, it might not always coincide with the way
the system actually interprets the statement. For instance, removing the first else clause
from the previous example will not result in the statement being interpreted as its format
indicates:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];
else

[chessGame finish];

Instead, this statement will be interpreted as follows:

if ([chessGame isOver] == NO)
if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];
else

[chessGame finish];

ptg999

105The if Statement

This is because the else clause is associated with the last un-elsed if.You can use
braces to force a different association when an innermost if does not contain an else but
an outer if does.The braces have the effect of closing off the if statement.Thus, the fol-
lowing statement achieves the desired effect:

if ([chessGame isOver] == NO) {
if ([chessGame whoseTurn] == YOU)

[chessGame yourMove];
}
else

[chessGame finish];

The else if Construct
You have seen how the else statement comes into play when you have a test against two
possible conditions—either the number is even or it is odd; either the year is a leap year
or it is not. However, programming decisions you have to make are not always so black
and white. Consider the task of writing a program that displays –1 if a number the user
types is less than zero, 0 if the number is equal to zero, and 1 if the number is greater than
zero. (This is actually an implementation of what is commonly called the sign function.)
Obviously, you must make three tests in this case to determine whether the number that
is keyed in is negative, zero, or positive.The simple if-else construct will not work. Of
course, in this case, you can always resort to three separate if statements, but this solution
does not always work—especially if the tests are not mutually exclusive.

You can handle the situation just described by adding an if statement to your else
clause.We mentioned that the statement that follows an else could be any valid Objective-C
program statement, so why not another if? Thus, in the general case, you could write the
following:

if (expression 1)
program statement 1

else
if (expression 2)

program statement 2
else

program statement 3

This effectively extends the if statement from a two-valued logic decision to a three-
valued logic decision.You can continue to add if statements to the else clauses, in the
manner just shown, to effectively extend the decision to an n-valued logic decision.

The preceding construct is so frequently used that it is generally referred to as an else
if construct and is usually formatted differently from that shown previously:

if (expression 1)
program statement 1

ptg999

106 Chapter 6 Making Decisions

else if (expression 2)
program statement 2

else
program statement 3

This latter method of formatting improves the readability of the statement and makes
it clearer that a three-way decision is being made.

The next program illustrates the use of the else if construct by implementing the
sign function discussed earlier.

Program 6.6

// Program to implement the sign function

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int number, sign;

NSLog (@"Please type in a number: ");
scanf ("%i", &number);

if (number < 0)
sign = -1;

else if (number == 0)
sign = 0;

else // Must be positive
sign = 1;

NSLog (@"Sign = %i", sign);
}

return 0;
}

Program 6.6 Output

Please type in a number:
1121
Sign = 1

ptg999

107The if Statement

Program 6.6 Output (Rerun)

Please type in a number:
-158
Sign = -1

Program 6.6 Output (Rerun)

Please type in a number:
0
Sign = 0

If the number that is entered is less than zero, sign is assigned the value -1; if the num-
ber is equal to zero, sign is assigned the value 0; otherwise, the number must be greater
than zero, so sign is assigned the value 1.

The next program analyzes a character that is typed in from the terminal and classifies
it as either an alphabetic character (a–z or A–Z), a digit (0–9), or a special character (any-
thing else).To read a single character from the terminal, the format characters %c are used
in the scanf call.

Program 6.7

// This program categorizes a single character
// that is entered from the keyboard

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
char c;

NSLog (@"Enter a single character:");
scanf (" %c", &c);

if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))
NSLog (@"It's an alphabetic character.");

else if (c >= '0' && c <= '9')
NSLog (@"It's a digit.");

else
NSLog (@"It's a special character.");

}

return 0;
}

ptg999

108 Chapter 6 Making Decisions

Program 6.7 Output

Enter a single character:
&
It's a special character.

Program 6.7 Output (Rerun)

Enter a single character:
8
It's a digit.

Program 6.7 Output (Rerun)

Enter a single character:
B
It's an alphabetic character.

Note
As shown in the program example, it’s best to put a space before the %c in the scanf for-
mat string (as in " %c"). This will cause scanf to “skip” over any so-called whitespace char-
acters (e.g., newlines, returns, tabs, line feeds) in the input. Omitting that space can cause
scanf to read in a character that you don’t expect. While that might not be a problem in this
example, it’s good to keep this in mind when working on other examples in this chapter
(including the exercises) whenever you want to read a single character.

The first test that is made after the character is read in determines whether the char

variable c is an alphabetic character.This is done by testing whether the character is a low-
ercase letter or an uppercase letter.The former test is made by the following expression:

(c >= 'a' && c <= 'z')

This expression is true if c is within the range of characters 'a' through 'z'; that is, if
c is a lowercase letter.The latter test is made by this expression:

(c >= 'A' && c <= 'Z')

This expression is true if c is within the range of characters 'A' through 'Z'; that is, if
c is an uppercase letter.These tests work on computer systems that store characters inside
the machine in a format known as ASCII.

If the variable c is an alphabetic character, the first if test succeeds and the message
“It’s an alphabetic character.” is displayed. If the test fails, the else if clause is executed.
This clause determines whether the character is a digit. Note that this test compares the
character c against the characters '0' and '9' and not the integers 0 and 9.This is because a
character was read in from the terminal, and the characters '0' to '9' are not the same as

ptg999

109The if Statement

the numbers 0–9. In fact, in ASCII, the character '0' is actually represented internally as
the number 48, the character '1' as the number 49, and so on.

If c is a digit character, the phrase “It’s a digit.” is displayed. Otherwise, if c is not alpha-
betic and is not a digit, the final else clause is executed and displays the phrase “It’s a spe-
cial character” at the terminal. Execution of the program is then complete.

Note that even though scanf is used here to read just a single character, you still must
press the Return key after the character is typed to send the input to the program. In gen-
eral, whenever you’re reading data from the terminal, the program doesn’t see any of the
data typed on the line until the Return key is pressed.

Let’s suppose for the next example that you want to write a program that allows the
user to type in simple expressions of the following form:

number operator number

The program will evaluate the expression and display the results at the terminal.The
operators you want to have recognized are the normal operators for addition, subtraction,
multiplication, and division. Let’s use the Calculator class from Program 4.6 in Chapter 4,
“Data Types and Expressions,” here. Each expression will be given to the calculator for
computation.

The following program uses a large if statement with many else if clauses to deter-
mine which operation is to be performed.

Note
It’s better to use routines in the standard library called islower and isupper, and avoid
the internal representation issue entirely. To do that, include the line #import <ctype.h>
in your program. However, we’ve put this here for illustrative purposes only.

Program 6.8

// Program to evaluate simple expressions of the form
// number operator number

// Implement a Calculator class

#import <Foundation/Foundation.h>

@interface Calculator: NSObject

// accumulator methods
-(void) setAccumulator: (double) value;
-(void) clear;
-(double) accumulator;

// arithmetic methods
-(void) add: (double) value;
-(void) subtract: (double) value;
-(void) multiply: (double) value;
-(void) divide: (double) value;
@end

ptg999

110 Chapter 6 Making Decisions

@implementation Calculator
{

double accumulator;
}

-(void) setAccumulator: (double) value
{

accumulator = value;
}

-(void) clear
{

accumulator = 0;
}

-(double) accumulator
{

return accumulator;
}

-(void) add: (double) value
{

accumulator += value;
}

-(void) subtract: (double) value
{

accumulator -= value;
}

-(void) multiply: (double) value
{

accumulator *= value;
}

-(void) divide: (double) value
{

accumulator /= value;
}
@end

int main (int argc, char * argv[])
{

@autoreleasepool {
double value1, value2;

ptg999

111The if Statement

char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@"Type in your expression.");
scanf ("%lf %c %lf", &value1, &operator, &value2);

[deskCalc setAccumulator: value1];
if (operator == '+')

[deskCalc add: value2];
else if (operator == '-')

[deskCalc subtract: value2];
else if (operator == '*')

[deskCalc multiply: value2];
else if (operator == '/')

[deskCalc divide: value2];

NSLog (@"%.2f", [deskCalc accumulator]);
}

return 0;
}

Program 6.8 Output

Type in your expression.
123.5 + 59.3
182.80

Program 6.8 Output (Rerun)

Type in your expression.
198.7 / 26
7.64

Program 6.8 Output (Rerun)

Type in your expression.
89.3 * 2.5
223.25

The scanf call specifies that three values are to be read into the variables value1,
operator, and value2.A double value can be read in with the %lf format characters.This
is the format used to read in the value of the variable value1, which is the first operand of
the expression.

ptg999

112 Chapter 6 Making Decisions

Next, you read in the operator. Because the operator is a character ('+', '-', '*', or
'/') and not a number, you read it into the character variable operator.The %c format
characters tell the system to read in the next character from the terminal.The blank spaces
inside the format string indicate that an arbitrary number of blank spaces are to be per-
mitted on the input.This enables you to separate the operands from the operator with
blank spaces when you type in these values.

After the two values and the operator have been read in, the program stores the first
value in the calculator’s accumulator. Next, you test the value of operator against the four
permissible operators.When a correct match is made, the corresponding message is sent to
the calculator to perform the operation. In the last NSLog, the value of the accumulator is
retrieved for display. Execution of the program is then complete.

A few words about program thoroughness are in order at this point.Although the pre-
ceding program does accomplish the task that we set out to perform, the program is not
really complete because it does not account for user mistakes. For example, what would
happen if the user typed in a ? for the operator by mistake? The program would simply
fall through the if statement and no messages would ever appear at the terminal to alert
the user that he had incorrectly typed in his expression.

Another overlooked case is when the user types in a division operation with zero as
the divisor.You know by now that you should never attempt to divide a number by zero
in Objective-C.The program should check for this case.

Trying to predict the ways in which a program can fail or produce unwanted results
and then taking preventive measures to account for such situations are necessary parts of
producing good, reliable programs. Running a sufficient number of test cases against a
program can often point a finger to portions of the program that do not account for cer-
tain cases. But it goes further than that. It must become a matter of self-discipline while
coding a program to always ask,“What would happen if...?” and to insert the necessary
program statements to handle the situation properly.

Program 6.8A, a modified version of Program 6.8, accounts for division by zero and
the keying in of an unknown operator.

Program 6.8A

// Program to evaluate simple expressions of the form
// value operator value

#import <Foundation/Foundation.h>

// Insert interface and implementation sections for
// Calculator class here

int main (int argc, char * argv[])
{

@autoreleasepool {
double value1, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

ptg999

113The if Statement

NSLog (@"Type in your expression.");
scanf ("%lf %c %lf", &value1, &operator, &value2);

[deskCalc setAccumulator: value1];

if (operator == '+')
[deskCalc add: value2];

else if (operator == '-')
[deskCalc subtract: value2];

else if (operator == '*')
[deskCalc multiply: value2];

else if (operator == '/')
if (value2 == 0)

NSLog (@"Division by zero.");
else

[deskCalc divide: value2];
else

NSLog (@"Unknown operator.");

NSLog (@"%.2f", [deskCalc accumulator]);
}

return 0;
}

Program 6.8A Output

Type in your expression.
123.5 + 59.3
182.80

Program 6.8A Output (Rerun)

Type in your expression.
198.7 / 0
Division by zero.
198.7

Program 6.8A Output (Rerun)

Type in your expression.
125 $ 28
Unknown operator.
125

ptg999

114 Chapter 6 Making Decisions

When the operator that is typed in is the slash, for division, another test is made to
determine whether value2 is 0. If it is, an appropriate message is displayed at the terminal;
otherwise, the division operation is carried out and the results are displayed. Pay careful
attention to the nesting of the if statements and the associated else clauses in this case.

The else clause at the end of the program catches any fall-throughs.Therefore, any
value of operator that does not match any of the four characters tested causes this else
clause to be executed, resulting in the display of “Unknown operator.” at the terminal.

A better way to handle the division-by-zero problem is to perform the test inside the
method that handles division.You can modify your divide: method as shown here:

-(void) divide: (double) value
{

if (value != 0.0)
accumulator /= value;

else {
NSLog (@"Division by zero.");
accumulator = NAN;

}
}

If value is nonzero, you perform the division; otherwise, you display the message and
set the accumulator to the value NAN. In general, it’s better to have the method handle spe-
cial cases than rely on the resourcefulness of the programmer using the method.

The switch Statement
The type of if-else statement chain you encountered in the last program example—
with the value of a variable successively compared against different values—is so com-
monly used when developing programs that a special program statement exists in the
Objective-C language for performing precisely this function.The name of the statement is
the switch statement, and its general format is as follows:

switch (expression)
{

case value1:
program statement
program statement
...

break;
case value2:

program statement
program statement
...

break;
...
case valuen:

program statement

ptg999

115The switch Statement

program statement
...

break;
default:

program statement
program statement
...

break;
}

The expression enclosed within parentheses is successively compared against the val-
ues value1, value2, ..., valuen, which must be simple constants or constant expressions. If
a case is found whose value is equal to the value of expression, the program statements
that follow the case are executed. Note that when more than one such program statement
is included, they do not have to be enclosed within braces.

The break statement signals the end of a particular case and causes execution of the
switch statement to be terminated. Remember to include the break statement at the end
of every case. Forgetting to do so for a particular case causes program execution to con-
tinue into the next case whenever that case is executed. Sometimes this is done intention-
ally; if you elect to do so, be sure to insert comments to alert others of your purpose.

The special optional case called default is executed if the value of expression does
not match any of the case values.This is conceptually equivalent to the catchall else used
in the previous example. In fact, the general form of the switch statement can be equiva-
lently expressed as an if statement, as follows:

if (expression == value1)
{

program statement
program statement

...
}
else if (expression == value2)
{

program statement
program statement

...
}

...
else if (expression == valuen)
{

program statement
program statement

...
}
else
{

program statement

ptg999

116 Chapter 6 Making Decisions

program statement
...

}

Bearing in mind the previous code, you can translate the big if statement from
Program 6.8A into an equivalent switch statement.This is shown in Program 6.9.

Program 6.9

// Program to evaluate simple expressions of the form
// value operator value

#import <Foundation/Foundation.h>

// Insert interface and implementation sections for
// Calculator class here

int main (int argc, char * argv[])
{

@autoreleasepool {
double value1, value2;
char operator;
Calculator *deskCalc = [[Calculator alloc] init];

NSLog (@"Type in your expression.");
scanf ("%lf %c %lf", &value1, &operator, &value2);

[deskCalc setAccumulator: value1];

switch (operator) {
case '+':

[deskCalc add: value2];
break;

case '-':
[deskCalc subtract: value2];
break;

case '*':
[deskCalc multiply: value2];
break;

case '/':
[deskCalc divide: value2];
break;

default:
NSLog (@"Unknown operator.");
break;

}

NSLog (@"%.2f", [deskCalc accumulator]);
}

ptg999

117Boolean Variables

return 0;
}

Program 6.9 Output

Type in your expression.
178.99 - 326.8
-147.81

After the expression has been read in, the value of operator is successively compared
against the values specified by each case.When a match is found, the statements contained
inside the case are executed.The break statement then sends execution out of the switch
statement, where execution of the program is completed. If none of the cases matches the
value of operator, the default case, which displays “Unknown operator.”, is executed.

The break statement in the default case is actually unnecessary in the preceding pro-
gram because no statements follow this case inside the switch. Nevertheless, it is a good
programming habit to remember to include the break at the end of every case.

When writing a switch statement, bear in mind that no two case values can be the
same. However, you can associate more than one case value with a particular set of pro-
gram statements.This is done simply by listing the multiple case values (with the key-
word case before the value and a colon after the value in each case) before the common
statements that are to be executed.As an example, in the switch statement that follows,
the multiply: method is executed if operator is equal to an asterisk or to the lowercase
letter x:

switch (operator)
{

...
case '*':
case 'x':

[deskCalc multiply: value2];
break;

...
}

Boolean Variables
Just about anyone learning to program soon faces the task of having to write a program to
generate a table of prime numbers.To refresh your memory, a positive integer, p, is a
prime number if it is not evenly divisible by any other integers other than 1 and itself.The
first prime integer is defined to be 2.The next prime is 3 because it is not evenly divisible
by any integers other than 1 and 3; and 4 is not prime because it is evenly divisible by 2.

ptg999

118 Chapter 6 Making Decisions

You can take several approaches to generate a table of prime numbers. If you had the
task of generating all prime numbers up to 50, for example, the most straightforward (and
simplest) algorithm to generate such a table would simply test each integer, p, for divisibil-
ity by all integers from 2 through p-1. If any such integer evenly divided p, then p would
not be prime; otherwise, it would be a prime number.

Program 6.10 generates a list of prime numbers from 2 to 50.

Program 6.10

// Program to generate a table of prime numbers

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int p, d, isPrime;

for (p = 2; p <= 50; ++p) {
isPrime = 1;

for (d = 2; d < p; ++d)
if (p % d == 0)

isPrime = 0;

if (isPrime != 0)
NSLog (@"%i ", p);

}
}

return 0;
}

Program 6.10 Output

2
3
5
7
11
13
17
19
23
29
31
37

ptg999

119Boolean Variables

41
43
47

Several points are worth noting about Program 6.10.The outermost for statement sets
up a loop to cycle through the integers 2–50.The loop variable p represents the value
you are currently testing to see whether it is prime.The first statement in the loop assigns
the value 1 to the variable isPrime.The use of this variable will become apparent shortly.

A second loop is set up to divide p by the integers 2 through p-1. Inside the loop, a test
is performed to see whether the remainder of p divided by d is 0. If it is, you know that p
cannot be prime because an integer other than 1 and itself evenly divides it.To signal that
p is no longer a candidate as a prime number, the value of the variable isPrime is set
equal to 0.

When the innermost loop finishes execution, the value of isPrime is tested. If its value
is not equal to zero, no integer was found that evenly divided p; therefore, p must be a
prime number, and its value is displayed.

You might have noticed that the variable isPrime takes on either 0 or 1, and no other
values. Its value is 1 as long as p still qualifies as a prime number. But as soon as a single
even divisor is found, its value is set to 0 to indicate that p no longer satisfies the criteria
for being prime.Variables used in such a manner are generally referred to as Boolean vari-
ables.A flag typically assumes only one of two different values. Furthermore, the value of a
flag usually is tested at least once in the program to see whether it is on (true or YES) or
off (false or NO), and some particular action is taken based on the results of the test.

In Objective-C, the notion of a flag being true or false is most naturally translated into
the values 1 and 0, respectively. So in Program 6.10, when you set the value of isPrime to
1 inside the loop, you are effectively setting it as true to indicate that p “is prime.” During
the course of execution of the inner for loop, if an even divisor is found, the value of
isPrime is set false to indicate that p no longer “is prime.”

It is no coincidence that the value 1 is typically used to represent the true or on state
and 0 is used to represent the false or off state.This representation corresponds to the
notion of a single bit inside a computer.When the bit is on, its value is 1; when it is off, its
value is 0. But in Objective-C, there is an even more convincing argument in favor of
these logic values. It has to do with the way the Objective-C language treats the concept
of true and false.

When we began our discussions in this chapter, we noted that if the conditions speci-
fied inside the if statement are satisfied, the program statement that immediately followed
is executed. But what exactly does satisfied mean? In the Objective-C language, satisfied
means nonzero, and nothing more.Thus, the statement

if (100)
NSLog (@"This will always be printed.");

ptg999

120 Chapter 6 Making Decisions

results in the execution of the NSLog statement because the condition in the if state-
ment (in this case, simply the value 100) is nonzero and, therefore, is satisfied.

In each of the programs in this chapter, we used the notions of “nonzero means satis-
fied” and “zero means not satisfied.”This is because, whenever a relational expression is
evaluated in Objective-C, it is given the value 1 if the expression is satisfied and 0 if the
expression is not satisfied. So, evaluation of the statement

if (number < 0)
number = -number;

actually proceeds as follows:The relational expression number < 0 is evaluated. If the
condition is satisfied—that is, if number is less than 0—the value of the expression is 1;
otherwise, its value is 0.

The if statement tests the result of the expression evaluation. If the result is nonzero,
the statement that immediately follows is executed; otherwise, the statement is skipped.

The preceding discussion also applies to the evaluation of conditions inside the for,
while, and do statements. Evaluation of compound relational expressions such as in the
following statement also proceeds as outlined previously:

while (char != 'e' && count != 80)

If both specified conditions are valid, the result is 1, but if either condition is not valid,
the result of the evaluation is 0.The results of the evaluation are then checked. If the result
is 0, the while loop terminates; otherwise, it continues.

Returning to Program 6.10 and the notion of flags, it is perfectly valid in Objective-C
to test whether the value of a flag is true using an expression such as this one:

if (isPrime)

This expression is equivalent to the following:

if (isPrime != 0)

To easily test whether the value of a flag is false, you use the logical negation operator,
!. In the expression that follows, the logical negation operator is used to test whether the
value of isPrime is false (read this statement as “if not isPrime”):

if (! isPrime)

In general, an expression such as this one negates the logical value of expression:

! expression

So if expression is 0, the logical negation operator produces a 1.And if the result of
the evaluation of expression is nonzero, the negation operator yields a 0.

The logical negation operator can be used to easily flip the value of a flag, as in the fol-
lowing expression:

my_move = ! my_move;

As you might expect, this operator has the same precedence as the unary minus opera-
tor, which means that it has higher precedence than all binary arithmetic operators and all

ptg999

121Boolean Variables

relational operators.To test whether the value of a variable x is not less than the value of a
variable y, such as in

! (x < y)

the parentheses are required to ensure proper evaluation of the expression. Of course,
you could have equivalently expressed the previous statement as follows:

x >= y

A couple of built-in features in Objective-C make working with Boolean variables a
little easier. One is the special type BOOL, which can be used to declare variables that will
contain either a true or a false value.The other is the built-in values YES and NO. Using
these predefined values in your programs can make them easier to write and read.Take a
look at Program 6.10, rewritten to take advantage of these features.

Note
The type BOOL is really added by a mechanism known as the preprocessor.

Program 6.10A

// Program to generate a table of prime numbers
// second version using BOOL type and predefined values

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int p, d;
BOOL isPrime;

for (p = 2; p <= 50; ++p) {
isPrime = YES;

for (d = 2; d < p; ++d)
if (p % d == 0)

isPrime = NO;

if (isPrime == YES)
NSLog (@"%i ", p);

}
}
return 0;

}

ptg999

122 Chapter 6 Making Decisions

Program 6.10A Output

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

There are many methods in the system libraries that either return a value of type BOOL
or take one of more arguments of this type.You’ll see examples of these later in the text.

The Conditional Operator
Perhaps the most unusual operator in the Objective-C language is one called the condi-
tional operator. Unlike all other operators in Objective-C—which are either unary or
binary operators—the conditional operator is a ternary operator; that is, it takes three
operands.The two symbols used to denote this operator are the question mark (?) and
the colon (:).The first operand is placed before the ?, the second between the ? and the
:, and the third after the :.

The general format of the conditional expression is shown here:

condition ? expression1 : expression2

In this syntax, condition is an expression, usually a relational expression, that the
Objective-C system evaluates first whenever it encounters the conditional operator. If the
result of the evaluation of condition is true (that is, nonzero), expression1 is evaluated
and the result of the evaluation becomes the result of the operation. If condition evalu-
ates false (that is, zero), expression2 is evaluated and its result becomes the result of the
operation.

A conditional expression is often used to assign one of two values to a variable,
depending on some condition. For example, suppose you have an integer variable x and
another integer variable s. If you wanted to assign -1 to s if x were less than 0, and the
value of x2 to s otherwise, you could write the following statement:

s = (x < 0) ? -1 : x * x;

ptg999

123The Conditional Operator

The condition x < 0 is first tested when the previous statement is executed. Parenthe-
ses are generally placed around the condition expression to aid in the statement’s readabil-
ity.This is usually not required, though, because the precedence of the conditional
operator is very low—lower, in fact, than all other operators but the assignment operators
and the comma operator.

If the value of x is less than zero, the expression immediately following the ? is evalu-
ated.This expression is simply the constant integer value -1, which is assigned to the vari-
able s if x is less than zero.

If the value of x is not less than zero, the expression immediately following the : is
evaluated and assigned to s. So if x is greater than or equal to zero, the value of x * x, or
x2, is assigned to s.

As another example of the conditional operator, the following statement assigns to the
variable max_value the maximum of a and b:

max_value = (a > b) ? a : b;

If the expression after the : (the “else” part) consists of another conditional operator,
you can achieve the effects of an else if clause. For example, the sign function imple-
mented in Program 6.6 can be written in one program line using two conditional opera-
tors, as follows:

sign = (number < 0) ? -1 : ((number == 0) ? 0 : 1);

If number is less than zero, sign is assigned the value -1; if number is equal to zero, sign
is assigned the value 0; otherwise, it is assigned the value 1.The parentheses around the
“else” part of the previous expression are actually unnecessary.This is because the condi-
tional operator associates from right to left, meaning that multiple uses of this operator in
a single expression, such as in

e1 ? e2 : e3 ? e4 : e5

group from right to left and therefore are evaluated as follows:

e1 ? e2 : (e3 ? e4 : e5)

Conditional expressions don’t have to be used on the right side of an assignment—
they can be used in any situation in which expressions can be used.This means you can
display the sign of the variable number without first assigning it to a variable using a
NSLog statement, as shown here:

NSLog (@"Sign = %i", (number < 0) ? -1
: (number == 0) ? 0 : 1);

The conditional operator is very handy when writing preprocessor macros in
Objective-C.You can see this in detail in Chapter 12,“The Preprocessor.”

ptg999

124 Chapter 6 Making Decisions

Exercises
1. Write a program that asks the user to type in two integer values.Test these two

numbers to determine whether the first is evenly divisible by the second and then
display an appropriate message at the terminal.

2. Program 6.8A displays the value in the accumulator even if an invalid operator is
entered or division by zero is attempted. Fix that problem.

3. Modify the print method from the Fraction class so that whole numbers are dis-
played as such (so the fraction 5/1 should display as simply 5).Also modify the
method to display fractions with a numerator of 0 as simply zero.

4. Write a program that acts as a simple printing calculator.The program should allow
the user to type in expressions of the following form:
number operator

The program should recognize the following operators:
+ - * / S E

The S operator tells the program to set the accumulator to the typed-in number,
and the E operator tells the program that execution is to end.The arithmetic opera-
tions are performed on the contents of the accumulator, with the number that was
keyed in acting as the second operand.The following is a sample run showing how
the program should operate:
Begin Calculations
10 S Set Accumulator to 10
= 10.000000 Contents of Accumulator
2 / Divide by 2
= 5.000000 Contents of Accumulator
55 - Subtract 55
= -50.000000
100.25 S Set Accumulator to 100.25
= 100.250000
4 * Multiply by 4
= 401.000000
0 E End of program
= 401.000000
End of Calculations.

Make sure that the program detects division by 0 and also checks for unknown
operators. Use the Calculator class developed in Program 6.8 for performing your
calculations. Note: Remember to use a space character in your scanf format string
(e.g., "%f %c") to skip whitespace characters in the input.

ptg999

125Exercises

5. We developed Program 5.9 to reverse the digits of an integer typed in from the ter-
minal. However, this program does not function well if you type in a negative num-
ber. Find out what happens in such a case, and then modify the program so that
negative numbers are correctly handled. By this, we mean that if the number -8645
were typed in, for example, the output of the program should be 5468-.

6. Write a program that takes an integer keyed in from the terminal and extracts and
displays each digit of the integer in English. So if the user types in 932, the program
should display the following:
nine
three
two

(Remember to display zero if the user types in just 0.) Note:This exercise is a
hard one!

7. Program 6.10 has several inefficiencies. One inefficiency results from checking even
numbers. Because any even number greater than 2 obviously cannot be prime, the
program could simply skip all even numbers as possible primes and as possible divi-
sors.The inner for loop is also inefficient because the value of p is always divided
by all values of d from 2 through p–1.You can avoid this inefficiency if you add a
test for the value of isPrime in the conditions of the for loop. In this manner, you
can set up the for loop to continue as long as no divisor is found and the value of
d is less than p. Modify Program 6.10 to incorporate these two changes; then run
the program to verify its operation.

ptg999

This page intentionally left blank

ptg999

7
More on Classes

In this chapter, you’ll continue learning how to work with classes and write methods.
You’ll also apply some of the concepts you learned in the previous chapter, such as
completing program looping, making decisions, and working with expressions. First we
talk about splitting your program into multiple files to make working with larger pro-
grams easier.

Separate Interface and Implementation Files
It’s time to get used to putting your class declarations and definitions in separate files.

If you’re using Xcode, start a new project called FractionTest.Type the following
program into the file main.m.

Program 7.1 Main Test Program: main.m
#import "Fraction.h"

int main (int argc, char * argv[])
{
@autoreleasepool {
Fraction *myFraction = [[Fraction alloc] init];

// set fraction to 1/3

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

// display the fraction

NSLog (@"The value of myFraction is:");
[myFraction print];

}

return 0;
}

ptg999

128 Chapter 7 More on Classes

Figure 7.1 Xcode New File menu

Note that this file does not include the definition of the Fraction class. However, it
does import a file called Fraction.h.

Typically, a class declaration (that is, the @interface section) is placed in its own file,
called class.h.The definition (that is, the @implementation section that contains the
code) is normally placed in a file of the same name, using the extension .m instead. So
let’s put the declaration of the Fraction class in the file Fraction.h and the definition in
Fraction.m.

To do this in Xcode, select New File from the File menu. In the left pane, select
Cocoa Touch. In the top-right pane, select Objective-C class.Your window should appear
as shown in Figure 7.1.

Click Next. Make sure Subclass of NSObject is selected. Click Next again.Type in
Fraction.m for the Save As: file name.You can leave the default values for the other
fields.Your window should look like Figure 7.2.

Now click Save. Xcode has added two files to your project: Fraction.h and
Fraction.m. Figure 7.3 shows this.

ptg999

129Separate Interface and Implementation Files

Figure 7.2 Adding a new class to your project

Figure 7.3 Xcode creates files for the new class

In the file Fraction.h, you will now enter your interface section for the Fraction
class, as shown in Program 7.1.

Program 7.1 Interface File Fraction.h
//
// Fraction.h
// FractionTest
//

ptg999

130 Chapter 7 More on Classes

// Created by Steve Kochan on 9/29/11.
// Copyright (c) ClassroomM, Inc. All rights reserved.
//

#import <Foundation/Foundation.h>

// The Fraction class

@interface Fraction : NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;
-(double) convertToNum;

@end

The interface file tells the compiler (and other programmers, as you’ll learn later) what
a Fraction looks like: It has six instance methods: print, setNumerator:,
setDenominator:, numerator, denominator, and convertToNum.The first three methods
don’t return a value, the next two return an int, and the last one returns a double.The
setNumerator: and setDenominator: methods each take an integer argument.

The details of the implementation for the Fraction class should be typed into the file
Fraction.m.

Program 7.1 Implementation File: Fraction.m
//
// Fraction.m
// FractionTest
//
// Created by Steve Kochan on 9/29/11.
// Copyright (c) ClassroomM, Inc. All rights reserved.
//
#import "Fraction.h"

@implementation Fraction
{
int numerator;
int denominator;

}

-(void) print
{
NSLog (@"%i/%i", numerator, denominator);

}

ptg999

131Separate Interface and Implementation Files

-(void) setNumerator: (int) n
{
numerator = n;

}

-(void) setDenominator: (int) d
{
denominator = d;

}

-(int) numerator
{
return numerator;

}

-(int) denominator
{
return denominator;

}

-(double) convertToNum
{
if (denominator != 0)
return (double) numerator / denominator;

else
return NAN;

}
@end

Note that the interface file is imported into the implementation file with the follow-
ing statement:

#import "Fraction.h"

This is done because we separated the interface and implementation sections into two
separate files.The compiler will compile each file independently.When the compiler is pro-
cessing the file containing the implementation section (that is, the file Fraction.m), it will
need to know information from the class’ interface section (such as the names and argument
types of its methods). By importing the .h file, the compiler knows about the class and meth-
ods you declared for your Fraction class, and can ensure consistency between the two files.

Another thing you should note is that the file that is imported is enclosed in
a set of double quotes, not < and > characters, as was the case with
<Foundation/Foundation.h>.The double quotes are used for local files (files that you
create) instead of system files, and they tell the compiler where to look for the specified
file.When you use double quotes, the compiler typically looks for the specified file first
inside your project directory and then in a list of other places. If necessary, you can specify
different places for the compiler to search.

ptg999

132 Chapter 7 More on Classes

Note again that the test program, main.m (that was shown at the start of this chapter),
includes the interface file Fraction.h, and not the implementation file Fraction.m.The
interface section provides all the information the compiler needs to know about a class
when you need to use that class in another file.The implementation section contains the
actual code for the methods, and Xcode takes care of including that code along with any
other code you write when you build your application.Think of the interface file as con-
taining the public information about a class—the information you share with the users of
the class. On the other hand, the implementation section contains the private informa-
tion—the instance variables and the code.

Note
In fact, the code may actually be stored someplace else, such as a Framework library, and
Xcode will automatically extract it from the library when you build your application.

Now you have your program split into three separate files.This might seem like a lot of
work for a small program example, but the usefulness will become apparent when you
start dealing with larger programs and sharing class declarations with other programmers.

You can now compile and run your program the same way you did before: Select Run
from the Product menu, or simply click the Run button in the toolbar.

If you’re compiling your programs from the command line, give the Objective-C com-
piler both ".m" filenames. Using Clang, the command line looks like this:

clang -fobjc-arc –framework Foundation Fraction.m main.m –o FractionTest

This builds an executable file called FractionTest. Here’s the output after running the
program:

Program 7.1 FractionTest Output

The value of myFraction is:
1/3

Synthesized Accessor Methods
As of Objective-C 2.0, you can have your setter and getter methods (collectively known
as accessor methods) automatically generated for you.We haven’t shown you how to do this
up to this point because it was important for you to learn how to write these methods on
your own. However, it’s a nice convenience provided in the language, so it’s time for you
to learn how to take advantage of this feature.

The first step is to use the @property directive in your interface section to identify
your properties.These properties are often named the same as your instance variables,
although they don’t have to be. In the case of our Fraction class, the two instance vari-
ables numerator and denominator fall into this category. Following is the new interface
section with the new @property directive added.

tim

tim

tim

ptg999

133Synthesized Accessor Methods

@interface Fraction : NSObject

@property int numerator, denominator;

-(void) print;
-(double) convertToNum;
@end

Note that we no longer include the definitions for our getter and setter methods:
numerator, denominator, setNumerator:, and setDenominator:.We’re going to have the
Objective-C compiler automatically generate or synthesize these for us. How is that done?
Simply by using the @synthesize directive in the implementation section, as shown.

#import "Fraction.h"

@implementation Fraction

@synthesize numerator, denominator;

-(void) print
{
NSLog (@"%i/%i", numerator, denominator);

}

-(double) convertToNum
{
if (denominator != 0)
return (double) numerator / denominator;

else
return NAN;

}
@end

Note that when you use the @property directive you no longer need to declare the
corresponding instance variable in your implementation section.You can if you want to,
but it’s no longer necessary, as the compiler takes care of that for you.

The following line tells the Objective-C compiler to generate a pair of getter and set-
ter methods for each of the two properties, numerator and denominator:

@synthesize numerator, denominator;

In general, if you have a property called x, including the following line in your imple-
mentation section causes the compiler to automatically synthesize a getter method called
x and a setter method called setX:.

@synthesize x;

Even though this might not seem like a big deal here, having the compiler do this for
you is worthwhile because the accessor methods that are generated will be efficient and
will run safely with multiple threads, on multiple machines, with multiple cores.

ptg999

134 Chapter 7 More on Classes

Now go back to Program 7.1 and make the changes to the interface and implementa-
tion sections as indicated so that the accessor methods are synthesized for you.Verify that
you still get the same output from the program without making any changes to main.m.

Accessing Properties Using the Dot Operator
The Objective-C language allows you to access properties using a more convenient syn-
tax.To get the value of the numerator stored in myFraction, you could write this:

[myFraction numerator]

This sends the numerator message to the myFraction object, resulting in the return of
the desired value. In Objective-C, you can also write the following equivalent expression
using the dot operator:

myFraction.numerator

The general format here is:

instance.property

You can use a similar syntax to assign values as well:

instance.property = value

This is equivalent to writing the following expression: [instance setProperty: value]
In Program 7.1, you set the numerator and denominator of your fraction to 1/3 using

the following two lines of code:

[myFraction setNumerator: 1];
[myFraction setDenominator: 3];

Here’s an equivalent way to write the same two lines:

myFraction.numerator = 1;
myFraction.denominator = 3;

We use these new features for synthesizing methods and accessing properties through-
out the remainder of this text.

It’s worth pointing out that you can use the dot operator with methods that you man-
ually write, not just those that are synthesized. Further, if you have a getter method called
numerator you can still write an expression such as myFraction.numerator in your pro-
gram, even if numerator has not been defined as a property.

Note
Based on the preceding discussion, realize that although it’s syntactically correct to write a
statement such as myFraction.print, it’s not considered good programming style. The
dot operator was really intended to be used with properties; typically to set/get the value of
an instance variable. Methods that do work (such as calculating the sum of two fractions are
labeled as “Tasks” in Apple’s documentation. Tasks are typically not executed using the dot
operator; the traditional bracketed message expression is the preferred syntax.

tim

tim

ptg999

135Multiple Arguments to Methods

Note
If you synthesize your accessor methods, don’t start the names of the properties with the
words new, alloc, copy, or init. This has to do with assumptions the compiler makes
about the corresponding methods that will be synthesized and is described in greater detail
in Chapter 17, “Memory Management and Automatic Reference Counting.”

Multiple Arguments to Methods
Let’s continue to work with the Fraction class and make some additions.You have
defined six methods. It would be nice to have a method to set both the numerator and
the denominator with a single message.You define methods that take multiple arguments
simply by listing each successive argument followed by a colon.This becomes part of the
method name. For example, the method named addEntryWithName:andEmail:
takes two arguments, presumably a name and an email address.The method
addEntryWithName:andEmail:andPhone: takes three arguments: a name, an email
address, and a phone number.

A method to set both the numerator and the denominator could be named
setNumerator:andDenominator:, and you might use it like this:

[myFraction setNumerator: 1 andDenominator: 3];

That’s not bad.And that was actually the first choice for the method name. But we can
come up with a more readable method name. For example, how about setTo:over:?
That might not look too appealing at first glance, but compare this message to set
myFraction to 1/3 with the previous one:

[myFraction setTo: 1 over: 3];

I think that reads a little better, but the choice is up to you (some might actually prefer
the first name because it explicitly references the instance variable names contained in the
class).Again, choosing good method names is important for program readability.Writing
out the actual message expression can help you pick a good one.

Let’s put this new method to work. First, add the declaration of setTo:over: to the
interface file, as shown in Program 7.2.

Program 7.2 Interface File: Fraction.h
#import <Foundation/Foundation.h>

// Define the Fraction class

@interface Fraction : NSObject

@property int numerator, denominator;

-(void) print;
-(void) setTo: (int) n over: (int) d;
-(double) convertToNum;
@end

ptg999

136 Chapter 7 More on Classes

Next, add the definition for the new method to the implementation file.

Program 7.2 Implementation File: Fraction.m
#import "Fraction.h"

@implementation Fraction

@synthesize numerator, denominator;

-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(double) convertToNum
{
if (denominator != 0)

return (double) numerator / denominator;
else

return NAN;
}

-(void) setTo: (int) n over: (int) d
{

numerator = n;
denominator = d;

}
@end

The new setTo:over: method simply assigns its two integer arguments, n and d, to
the corresponding instance variables for the fraction, numerator, and denominator.

Here’s a test program to try your new method:

Program 7.2 Test File: main.m
#import "Fraction.h"

int main (int argc, char * argv[])
{
@autoreleasepool {
Fraction *aFraction = [[Fraction alloc] init];

[aFraction setTo: 100 over: 200];
[aFraction print];

ptg999

137Multiple Arguments to Methods

[aFraction setTo: 1 over: 3];
[aFraction print];

}

return 0;
}

Program 7.2 Output

100/200
1/3

Methods Without Argument Names
When creating the name for a method, the argument names are actually optional. For
example, you can declare a method like this:

-(int) set: (int) n: (int) d;

Note that, unlike in previous examples, no name is given for the second argument to
the method here.This method is named set::, and the two colons mean the method
takes two arguments, even though they’re not all named.

To invoke the set:: method, you use the colons as argument delimiters, as shown here:

[aFraction set: 1 : 3];

It’s not good programming style to omit argument names when writing new methods
because it makes the program harder to follow and makes the purpose of the method’s
actual parameters less intuitive.

Operations on Fractions
Let’s continue to work with the Fraction class. First, you’ll write a method that will
enable you to add one fraction to another.You’ll name the method add:, and you’ll have
it take a fraction as an argument. Here’s the declaration for the new method:

-(void) add: (Fraction *) f;

Note the declaration for the argument f:

(Fraction *) f

This says that the argument to the add: method is a reference to an object from the
Fraction class.The asterisk is necessary, so the following declaration is not correct:

(Fraction) f

ptg999

a
b

c
d

ad + bc
bd+ =

138 Chapter 7 More on Classes

You will be passing one fraction as an argument to your add: method, and you’ll have
the method add it to the receiver of the message; the following message expression adds
the Fraction bFraction to the Fraction aFraction:

[aFraction add: bFraction];

Just as a quick math refresher, to add the fractions a/b and c/d, you perform the calcu-
lation as follows:

You put this code for the new method into the @implementation section:

// add a Fraction to the receiver
- (void) add: (Fraction *) f
{
// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = numerator * f.denominator + denominator * f.numerator;
denominator = denominator * f.denominator;

}

Don’t forget that you can refer to the Fraction that is the receiver of the message by
its fields: numerator and denominator. Stated another way, inside the add: method, you
refer to the instance variables of the object you sent the message to directly by name.

On the other hand, you can’t directly refer to the instance variables of the argument f
that way. Instead, you have to identify that object by its name, f.Then you can obtain the
corresponding instance variables by applying the dot operator to f (or by sending an
appropriate message to f).

So the first statement in the add: method that reads

nuumerator = numerator * f.denominator + denominator * f.numerator;

says to take the numerator of the first fraction (the receiver of the message), multiply
that by the denominator of the argument (numerator * f.denominator) and add that to
the product of the receiver’s denominator and the argument’s numerator (denominator
* f.numerator).The final result of the addition is then stored in the receiver’s numerator.

Reread the previous paragraph to make sure you fully grasp the operations being per-
formed. Critical here is that you understand when the receiver is being referenced and
when the argument is being referenced.

Let’s assume that you added the previous declarations and definitions for your new
add: method to your interface and implementation files. Program 7.3 is a sample test
program and output.

Program 7.3 Test File: FractionTest.m

#import "Fraction.h"

int main (int argc, char * argv[])
{

ptg999

139Multiple Arguments to Methods

@autoreleasepool {
Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

// Set two fractions to 1/4 and 1/2 and add them together

[aFraction setTo: 1 over: 4];
[bFraction setTo: 1 over: 2];

// Print the results

[aFraction print];
NSLog (@"+");
[bFraction print];
NSLog (@"=");

[aFraction add: bFraction];
[aFraction print];

}

return 0;
}

Program 7.3 Output

1/4
+
1/2
=
6/8

The test program is straightforward enough.Two Fractions, called aFraction and
bFraction, are allocated and initialized.Then they are set to the values 1/4 and 1/2,
respectively. Next, the Fraction bFraction is added to the Fraction aFraction; the
result of the addition is then displayed. Note again that the add: method adds the argu-
ment to the object of the message, so the object gets modified.This is verified when you
print the value of aFraction at the end of main.You had to print the value of aFraction
before invoking the add: method to get its value displayed before the method changed it.
Later in this chapter, you’ll redefine the add: method so that add: does not affect the
value of its receiver.

ptg999

140 Chapter 7 More on Classes

Local Variables
You might have noticed that the result of adding 1/4 to 1/2 was displayed as 6/8, not as
3/4, which you might have preferred (or even expected!).That’s because your addition
routine just does the math and no more—it doesn’t worry about reducing the result. So
to continue our exercise of adding new methods to work with fractions, let’s make a new
reduce method to reduce a fraction to its simplest terms.

Reaching back to your high school math again, you can reduce a fraction by finding
the largest number that evenly divides both the numerator and the denominator of your
fraction and then dividing them by that number.Technically, you want to find the greatest
common divisor (gcd) of the numerator and denominator.You already know how to do
that from Program 5.7.You might want to refer to that program example just to refresh
your memory.

With the algorithm in hand, you can now write your new reduce method:

- (void) reduce
{
int u = numerator;
int v = denominator;
int temp;

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

numerator /= u;
denominator /= u;

}

Notice something new about this reduce method: It declares three integer variables
called u, v, and temp.These variables are local variables, meaning that their values exist
only during execution of the reduce method and that they can be accessed only from within
the method in which they are defined. In that sense, they are similar to the variables you have
been declaring inside your main routine; those variables were also local to main and could
be accessed directly only from within the main routine. None of the methods you devel-
oped could directly access those variables defined in main.

Local variables that are basic C data types have no default initial value, so you must set
them to some value before using them.The three local variables in the reduce method
are set to values before they are used, so that’s not a problem here. Local object variables
are initialized to nil by default. Unlike your instance variables (which retain their values
through method calls), these local variables have no memory.Therefore, after the method
returns, the values of these variables disappear. Every time a method is called, each local

ptg999

141Local Variables

variable defined in that method is reinitialized to the value specified (if any) with the
variable’s declaration.

Method Arguments
The names you use to refer to a method’s arguments are also local variables.When the
method is executed, whatever arguments are passed to the method are copied into these
variables. Because the method is dealing with a copy of the arguments, it cannot change the
original values passed to the method. This is an important concept. Suppose you had a
method called calculate:, defined as follows:

-(void) calculate: (double) x
{
x *= 2;
...

}

Also suppose that you used the following message expression to invoke it:

[myData calculate: ptVal];

Whatever value was contained in the variable ptVal would be copied into the local
variable x when the calculate method was executed. So changing the value of x inside
calculate: would have no effect on the value of ptVal—only on the copy of its value
stored inside x.

Incidentally, in the case of arguments that are objects, you can change the instance
variables stored in that object.That’s because when you pass an object as an argument,
you actually pass a reference to where to the data is stored. Because of that, you can mod-
ify that data.You’ll learn more about that in the next chapter.

The static Keyword
You can have a local variable retain its value through multiple invocations of a method by
placing the keyword static in front of the variable’s declaration. For example, the fol-
lowing declares the integer hitCount to be a static variable:

static int hitCount = 0;

Unlike other local variables, which are basic data types, a static variable does have an
initial value of 0, so the initialization shown previously is redundant. Furthermore, they
are initialized only once when program execution begins and retain their values through
successive method calls.

The following code sequence might appear inside a showPage method that wanted to
keep track of the number of times it was invoked (or, in this case, perhaps the number of
pages that have been printed, for example):

-(int) showPage
{

static int pageCount = 0;
...

ptg999

142 Chapter 7 More on Classes

++pageCount;
...
return pageCount;

}

The local static variable would be set to 0 only once when the program started and
would retain its value through successive invocations of the showPage method.

Note the difference between making pageCount a local static variable and making it
an instance variable. In the former case, pageCount could count the number of pages
printed by all objects that invoked the showPage method. In the latter case, the variable
would count the number of pages printed by each individual object because each object
would have its own copy of pageCount.

Remember that static or local variables can be accessed only from within the method
in which they’re defined. So even the static pageCount variable can be accessed only from
within showPage.You can move the declaration of the variable outside any method decla-
ration (typically near the beginning of your implementation file) to make it accessible to
any methods, like so:

#import "Printer.h"
static int pageCount;

@implementation Printer
...

@end

Now any instance or class method contained in the file can access the pageCount vari-
able. Chapter 10,“More on Variables and Data Types,” covers this topic of variable scope
in greater detail.

Returning to fractions, you can incorporate the code for the reduce method into
your Fraction.m implementation file. Don’t forget to declare the reduce method in your
Fraction.h interface file as well.With that done, you can test your new method in
Program 7.4. Here, we show all three files: the interface file, the implementation file, and
the test program file.

Program 7.4 Interface File: Fraction.h

#import <Foundation/Foundation.h>

// Define the Fraction class

@interface Fraction : NSObject

@property int numerator, denominator;

-(void) print;
-(void) setTo: (int) n over: (int) d;
-(double) convertToNum;

tim

ptg999

143Local Variables

-(void) add: (Fraction *) f;
-(void) reduce;
@end

Program 7.4 Implementation File: Fraction.m

#import "Fraction.h"

@implementation Fraction

@synthesize numerator, denominator;

-(void) print
{
NSLog (@"%i/%i", numerator, denominator);

}

-(double) convertToNum
{
if (denominator != 0)

return (double) numerator / denominator;
else

return NAN;
}

-(void) setTo: (int) n over: (int) d
{

numerator = n;
denominator = d;

}

// add a Fraction to the receiver

-(void) add: (Fraction *) f
{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = numerator * f.denominator + denominator * f.numerator;
denominator = denominator * f.denominator;

}

-(void) reduce
{

int u = numerator;
int v = denominator;
int temp;

ptg999

144 Chapter 7 More on Classes

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

numerator /= u;
denominator /= u;

}

@end

Program 7.4 Test File main.m

#import "Fraction.h"

int main (int argc, char * argv[])
{
@autoreleasepool {
Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

[aFraction setTo: 1 over: 4]; // set 1st fraction to 1/4
[bFraction setTo: 1 over: 2]; // set 2nd fraction to 1/2

[aFraction print];
NSLog (@"+");
[bFraction print];
NSLog (@"=");

[aFraction add: bFraction];

// reduce the result of the addition and print the result

[aFraction reduce];
[aFraction print];

}

return 0;
}

ptg999

145The self Keyword

Program 7.4 Output

1/4
+
1/2
=
3/4

That’s better!

The self Keyword
In Program 7.4, we decided to reduce the fraction outside of the add: method.We could
have done it inside add: as well; the decision was completely arbitrary. However, how
would we go about identifying the fraction to be reduced? What fraction do we want to
reduce anyway? We want to reduce the same fraction that we sent the add: message to.

We know how to identify instance variables inside a method directly by name, but we
don’t know how to directly identify the receiver of the message. Luckily, there is a way to
do that.

You can use the keyword self to refer to the object that is the receiver of the current
message. If inside your add: method you wrote

[self reduce];

the reduce method would be applied to the Fraction object that was the receiver of
the add: message, which is what you want.You will see throughout this book how useful
the self keyword can be, and it’s used all the time in iOS programming. For now, you’ll
use it in your add: method. Here’s what the modified method looks like:

- (void) add: (Fraction *) f
{
// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

numerator = numerator * f.denominator + denominator * f.numerator;
denominator = denominator * f.denominator;

[self reduce];
}

After the addition is performed, the fraction is reduced.The reduce message gets sent
to the receiver of the add: message. So if your test program contains this line of code

[aFraction add: bFraction];

then self will refer to aFraction when the add: method executes, and so that is the
fraction that will be reduced.

ptg999

146 Chapter 7 More on Classes

Allocating and Returning Objects from Methods
We noted that the add: method changes the value of the object that is receiving the mes-
sage. Let’s create a new version of add: that will instead make a new fraction to store the
result of the addition. In this case, we need to return the new Fraction to the message
sender. Here is the definition for the new add: method:

-(Fraction *) add: (Fraction *) f
{
// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

// result will store the result of the addition
Fraction *result = [[Fraction alloc] init];

result.numerator = numerator * f.denominator +
denominator * f.numerator;

result.denominator = denominator * f.denominator;

[result reduce];

return result;
}

The first line of your method definition is this:

-(Fraction *) add: (Fraction *) f

It says that your add: method will return a Fraction object and that it will take one
as its argument as well.The argument will be added to the receiver of the message, which
is also a Fraction. Note that you need to change your interface section to reflect the fact
that the add: method now returns a Fraction object.

The method allocates and initializes a new Fraction object called result to store the
result of the addition.

The method performs the addition as before, assigning the resulting numerator and
denominator to your newly allocated Fraction object result.After reducing the result,
you return its value to the sender of the message with the return statement. Note that this
time we don’t want to reduce the receiver, since we’re not changing it. Instead we want
to reduce result, which is why the message is sent to that object this time around.

Program 7.5 tests your new add: method.

Program 7.5 Test File main.m

#import "Fraction.h"

int main (int argc, char * argv[])
{
@autoreleasepool {

ptg999

147Allocating and Returning Objects from Methods

Fraction *aFraction = [[Fraction alloc] init];
Fraction *bFraction = [[Fraction alloc] init];

Fraction *resultFraction;

[aFraction setTo: 1 over: 4]; // set 1st fraction to 1/4
[bFraction setTo: 1 over: 2]; // set 2nd fraction to 1/2

[aFraction print];
NSLog (@"+");
[bFraction print];
NSLog (@"=");

resultFraction = [aFraction add: bFraction];
[resultFraction print];

}

return 0;
}

Program 7.5 Output

1/4
+
1/2
=
3/4
3/4

Some explanation is in order here. First, you define two Fractions—aFraction and
bFraction—and set their values to 1/4 and 1/2, respectively.You also define a Fraction
called resultFraction.This variable will store the result of your addition operation that
follows.

The following line of code sends the add: message to aFraction, passing along the
Fraction bFraction as its argument:

resultFraction = [aFraction add: bFraction];

Inside the method, a new Fraction object is allocated and the resulting addition is
performed.The result that is stored in the Fraction object result is then returned by
the method, where it is then stored in the variable resultFraction.You may have
noticed that we never allocated (or initialized) a Fraction object inside main for
resultFraction; that’s because the add: method allocated the object for us and then
returned the reference to that object.That reference was then stored in resultFraction.

ptg999

148 Chapter 7 More on Classes

So resultFraction ends up storing the reference to the Fraction object that we allo-
cated in the add: method.

Extending Class Definitions and the Interface File
You’ve now developed a small library of methods for working with fractions. In fact,
here is the interface file, listed in its entirety, so you can see all you’ve accomplished with
this class:

#import <Foundation/Foundation.h>

// Define the Fraction class

@interface Fraction : NSObject

@property int numerator, denominator;

-(void) print;
-(void) setTo: (int) n over: (int) d;
-(double) convertToNum;
-(Fraction *) add: (Fraction *) f;
-(void) reduce;
@end

You might not need to work with fractions, but these examples have shown how you
can continually refine and extend a class by adding new methods.You could hand this
interface file to someone else working with fractions, and it would be sufficient for that
person to be able to write programs to deal with fractions. If that person needed to add a
new method, he could do so either directly, by extending the class definition, or indi-
rectly, by defining his own subclass and adding his own new methods.You’ll learn how to
do that in the next chapter.

Exercises
1. Add the following methods to the Fraction class to round out the arithmetic

operations on fractions. Reduce the result within the method in each case:
// Subtract argument from receiver
–(Fraction *) subtract: (Fraction *) f;
// Multiply receiver by argument
–(Fraction *) multiply: (Fraction *) f;
// Divide receiver by argument
–(Fraction *) divide: (Fraction *) f;

ptg999

149Exercises

2. Modify the print method from your Fraction class so that it takes an additional
BOOL argument that indicates whether the fraction should be reduced for display. If
it is to be reduced (that is if the argument is YES), be sure not to make any perma-
nent changes to the fraction itself.

3. Will your Fraction class work with negative fractions? For example, can you add
–1/4 and –1/2 and get the correct result? When you think you have the answer,
write a test program to try it.

4. Modify the Fraction’s print method to display fractions greater than 1 as mixed
numbers. For example, the fraction 5/3 should be displayed as 1 2/3.

5. Exercise 6 in Chapter 4,“Data Types and Expressions,” defined a new class called
Complex for working with complex imaginary numbers.Add a new method called
add: that can be used to add two complex numbers.To add two complex numbers,
you simply add the real parts and the imaginary parts, as shown here:
(5.3 + 7i) + (2.7 + 4i) = 8 + 11i

Have the add: method store and return the result as a new Complex number, based
on the following method declaration:
-(Complex *) add: (Complex *) complexNum;

6. Given the Complex class developed in exercise 6 of Chapter 4 and the extension
made in exercise 6 of this chapter, create separate Complex.h and Complex.m inter-
face and implementation files. Create a separate test program file to test everything.

ptg999

This page intentionally left blank

ptg999

8
Inheritance

In this chapter, you’ll learn about one of the key principles that makes object-oriented
programming so powerful.Through the concept of inheritance, you will build on existing
class definitions and customize them for your own applications.

It All Begins at the Root
You learned about the idea of a parent class in Chapter 3,“Classes, Objects, and Meth-
ods.”A parent class can itself have a parent.The class that has no parent is at the top of the
hierarchy and is known as a root class. In Objective-C, you have the capability to define
your own root class, but it’s something you normally won’t want to do. Instead, you’ll
want to take advantage of existing classes.All the classes we’ve defined up to this point are
descendants of the root class called NSObject, which you specified in your interface file
like this:

@interface Fraction: NSObject
...
@end

The Fraction class is derived from the NSObject class. Because NSObject is at the top
of the hierarchy (that is, there are no classes above it), it’s called a root class, as shown in
Figure 8.1.The Fraction class is known as a child or subclass.

root class

subclass

NSObject

Fraction

Figure 8.1 Root and subclass

tim

tim

ptg999

152 Chapter 8 Inheritance

From a terminology point of view, we can speak of classes, child classes, and parent
classes.Analogously, we can talk about classes, subclasses, and superclasses.You should
become familiar with both types of terminology.

Whenever a new class (other than a new root class) is defined, the class inherits cer-
tain things. For example, the (non-private) instance variables and the methods from the
parent implicitly become part of the new class definition.That means the subclass can
access these methods and instance variables, as if they were defined directly within the
class definition.

Note that the instance variables that are to be accessed directly by a subclass must be
declared in the interface section, and not in the implementation section as we have been
doing throughout this book. Instance variables declared or synthesized in the implemen-
tation section are private instance variables and are not directly accessible by subclasses.
Instead, you’ll want to use their explicitly defined or synthesized getter and setter meth-
ods to access their values.

A simple example, albeit contrived, helps to illustrate this key concept of inheritance.
Here’s a declaration for an object called ClassA with one method called initVar (and
note that here we are declaring the instance variable x in the interface section to make it
accessible by subclasses.):

@interface ClassA: NSObject
{

int x;
}

-(void) initVar;
@end

The initVar method simply sets the value of ClassA’s instance variable to 100:

@implementation ClassA
-(void) initVar
{

x = 100;
}
@end

Now let’s also define a class called ClassB:

@interface ClassB: ClassA
-(void) printVar;
@end

The first line of the declaration

@interface ClassB: ClassA

tim

ptg999

153It All Begins at the Root

says that instead of ClassB being a subclass of NSObject, ClassB is a subclass of ClassA.
So although ClassA’s parent (or superclass) is NSObject, ClassB’s parent is ClassA. Figure
8.2 illustrates this.

As you can see from Figure 8.2, the root class has no superclass and ClassB, which is at
the bottom of the hierarchy, has no subclass.Therefore, ClassA is a subclass of NSObject,
and ClassB is a subclass of ClassA and also of NSObject (technically, it’s a sub-subclass, or
grandchild).Also, NSObject is a superclass of ClassA, which is a superclass of ClassB.
NSObject is also a superclass of ClassB because it exists farther down its hierarchy.

Here’s the full declaration for ClassB, which defines one method called printVar:

@interface ClassB: ClassA
-(void) printVar;
@end

@implementation ClassB
-(void) printVar
{

NSLog (@"x = %i", x);
}
@end

The printVar method prints the value of the instance variable x, yet you haven’t
defined any instance variables in ClassB.That’s because ClassB is a subclass of ClassA—
therefore, it inherits ClassA’s public instance variables (in this case, there’s just one).
Figure 8.3 depicts this.

superclass

superclass

subclass

subclass

NSObject

ClassA

ClassB

Figure 8.2 Subclasses and superclasses

Class Instance Variables Methods

NSObject

ClassA

ClassB

x

x

initVar

initVar printVar

Figure 8.3 Inheriting instance variables and methods.

tim

tim

ptg999

154 Chapter 8 Inheritance

(Of course, Figure 8.3 doesn’t show any of the methods or instance variables that are
inherited from the NSObject class—there are several.)

Let’s see how this works by putting it all together in a complete program example. For
the sake of brevity, we’ll put all the class declarations and definitions into a single file (see
Program 8.1).

Program 8.1

// Simple example to illustrate inheritance

#import <Foundation/Foundation.h>

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x;
}

-(void) initVar;
@end

@implementation ClassA
-(void) initVar
{
x = 100;

}
@end

// Class B declaration and definition

@interface ClassB : ClassA
-(void) printVar;
@end

@implementation ClassB
-(void) printVar
{
NSLog (@"x = %i", x);

}
@end

int main (int argc, char * argv[])
{

@autoreleasepool {
ClassB *b = [[ClassB alloc] init];

tim

ptg999

155It All Begins at the Root

[b initVar]; // will use inherited method
[b printVar]; // reveal value of x;

}
return 0;

}

Program 8.1 Output

x = 100

You begin by defining b to be a ClassB object.After allocating and initializing b, you
send a message to apply the initVar method to it. But looking back at the definition of
ClassB, you’ll notice that you never defined such a method. initVar was defined in
ClassA, and because ClassA is the parent of ClassB, ClassB gets to use all of ClassA’s
methods. So with respect to ClassB, initVar is an inherited method.

Note
We briefly mentioned it up to this point, but alloc and init are methods you have used all
along that are never defined in your classes. That’s because you took advantage of the fact
that they were inherited methods from the NSObject class.

After sending the initVar message to b, you invoke the printVar method to display
the value of the instance variable x.The output of x = 100 confirms that printVar was
capable of accessing this instance variable.That’s because, as with the initVar method, it
was inherited.

Remember that the concept of inheritance works all the way down the chain. So if
you defined a new class called ClassC, whose parent class was ClassB, like so

@interface ClassC: ClassB
...

@end

then ClassC would inherit all of ClassB’s methods and instance variables, which in turn
inherited all of ClassA’s methods and instance variables, which in turn inherited all of
NSObject’s methods and instance variables.

Be sure you understand that each instance of a class gets its own instance variables, even
if they’re inherited.A ClassC object and a ClassB object would therefore each have their
own distinct instance variables.

Finding the Right Method
When you send a message to an object, you might wonder how the correct method is
chosen to apply to that object.The rules are actually quite simple. First, the class to which
the object belongs is checked to see whether a method is explicitly defined in that class
with the specific name. If it is, that’s the method that is used. If it’s not defined there, the

ptg999

156 Chapter 8 Inheritance

parent class is checked. If the method is defined there, that’s what is used. If not, the search
continues.

Parent classes are checked until one of two things happens: Either you find a class that
contains the specified method or you don’t find the method after going all the way back
to the root class. If the first occurs, you’re all set; if the second occurs, you have a problem,
and a warning message is generated that looks like this:

warning: 'ClassB' may not respond to '-inity'

In this case, you inadvertently are trying to send a message called inity to a variable of
type class ClassB.The compiler told you that objects from that class do not know how to
respond to such a method.Again, this was determined after checking ClassB’s methods
and its parents’ methods back to the root class (which, in this case, is NSObject).

You’ll learn more about how the system checks for the right method to execute in
Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Binding.”

Extension Through Inheritance: Adding New
Methods
Inheritance often is used to extend a class.As an example, let’s assume that you’ve just
been assigned the task of developing some classes to work with 2D graphical objects such
as rectangles, circles, and triangles. For now, we’ll worry about just rectangles. Let’s go back
to exercise 7 from Chapter 4,“Data Types and Expressions,” and start with the
@interface section from that example:

@interface Rectangle: NSObject
@property int width, height;
-(int) area;
-(int) perimeter;
@end

You’ll have synthesized methods to set the rectangle’s width and height and to return
those values, and your own methods to calculate its area and perimeter. Let’s add a method
that will allow you to set both the width and the height of the rectangle with the same
message call, which is as follows:

-(void) setWidth: (int) w andHeight: (int) h;

Assume that you typed this new class declaration into a file called Rectangle.h. Here’s
what the implementation file Rectangle.m might look like:

#import "Rectangle.h"
@implementation Rectangle

@synthesize width, height;

tim

ptg999

157Extension Through Inheritance: Adding New Methods

-(void) setWidth: (int) w andHeight: (int) h
{

width = w;
height = h;

}

-(int) area
{

return width * height;
}

-(int) perimeter
{

return (width + height) * 2;
}
@end

Each method definition is straightforward enough. Program 8.2 shows a main routine
to test it.

Program 8.2

#import “Rectangle.h”

int main (int argc, char * argv[])
{

@autoreleasepool {
Rectangle *myRect = [[Rectangle alloc] init];

[myRect setWidth: 5 andHeight: 8];

NSLog (@"Rectangle: w = %i, h = %i", myRect.width, myRect.height);
NSLog (@"Area = %i, Perimeter = %i", [myRect area],

[myRect perimeter]);
}
return 0;

}

Program 8.2 Output

Rectangle: w = 5, h = 8
Area = 40, Perimeter = 26

myRect is allocated and initialized; then its width is set to 5 and its height to 8.The first
line of output verifies this. Next, the area and the perimeter of the rectangle are calculated

ptg999

158 Chapter 8 Inheritance

with the appropriate message calls, and the returned values are handed off to NSLog to be
displayed.

Suppose that you now need to work with squares.You could define a new class called
Square and define similar methods in it as in your Rectangle class.Alternately, you could
recognize the fact that a square is just a special case of a rectangle whose width and height
just happen to be the same.

Thus, an easy way to handle this is to make a new class called Square and have it be a
subclass of Rectangle. For now, the only methods you might want to add would be to set
the side of the square to a particular value and retrieve that value. Program 8.3 shows the
interface and implementation files for your new Square class.

Program 8.3 Square.h Interface File

#import "Rectangle.h"

@interface Square: Rectangle

-(void) setSide: (int) s;
-(int) side;
@end

Program 8.3 Square.m Implementation File

#import "Square.h"

@implementation Square: Rectangle

-(void) setSide: (int) s
{

[self setWidth: s andHeight: s];
}

-(int) side

{
return self.width;

}
@end

Notice what you did here.You defined your Square class to be a subclass of
Rectangle, which is declared in the header file Rectangle.h.You didn’t need to add any
instance variables here, but you did add new methods called setSide: and side. Note
that the side method does not have direct access to the Rectangle’s width instance vari-
able; it’s private and therefore not accessible by the Square class. However, the getter

ptg999

159Extension Through Inheritance: Adding New Methods

method is inherited from the parent class and can be used to access the value of the width.
You’ll recall that writing the expression

self.width

is equivalent to writing

[self width]

This sends the width message to the receiver of the side message. In other words, you
execute the getter method width as opposed to trying to directly access the instance vari-
able width (which, as discussed, you can’t do).This is an important concept that you need
to understand.

A square has only one side, but you’re internally representing it as two numbers—that’s
okay.All that is hidden from the user of the Square class.You can always redefine your
Square class later, if necessary; any users of the class don’t have to be concerned with the
internal details because of the notion of data encapsulation discussed earlier.

The setSide: method takes advantage of the fact that you already have a method
inherited from your Rectangle class to set the values of the width and height of a rectan-
gle. So setSide: calls the setWidth:andHeight: method from the Rectangle class, pass-
ing the parameter s as the value for both the width and the height.You don’t really have
to do anything else. Someone working with a Square object can now set the dimensions
of the square by using setSide: and can take advantage of the methods from the
Rectangle class to calculate the square’s area, perimeter, and so on. Program 8.3 shows the
test program and output for your new Square class.

Program 8.3 Test Program

#import “Square.h”
#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
Square *mySquare = [[Square alloc] init];

[mySquare setSide: 5];

NSLog (@"Square s = %i", [mySquare side]);
NSLog (@"Area = %i, Perimeter = %i",

[mySquare area], [mySquare perimeter]);
}
return 0;

}

ptg999

160 Chapter 8 Inheritance

Program 8.3 Output

Square s = 5
Area = 25, Perimeter = 20

The way you defined the Square class is a fundamental technique of working with
classes in Objective-C: extending what you or someone else has already done to suit your
needs. In addition, a mechanism known as categories enables you to add new methods to an
existing class definition in a modular fashion—that is, without having to constantly add
new definitions to the same interface and implementation files.This is particularly handy
when you want to do this to a class for which you don’t have access to the source code.
You’ll learn about categories in Chapter 11,“Categories and Protocols.”

A Point Class and Object Allocation
The Rectangle class stores only the rectangle’s dimensions. In a real-world graphical
application, you might need to keep track of all sorts of additional information, such as
the rectangle’s fill color, line color, location (origin) inside a window, and so on.You can
easily extend your class to do this. For now, let’s deal with the idea of the rectangle’s ori-
gin.Assume that the “origin” means the location of the rectangle’s lower-left corner
within some Cartesian coordinate system (x, y). If you were writing a drawing application,
this point might represent the location of the rectangle inside a window, as depicted in
Figure 8.4.

In Figure 8.4, the rectangle’s origin is shown at (x1, y1).
You could extend your Rectangle class to store the x, y coordinate of the rectangle’s

origin as two separate values. Or you might realize that, in the development of your
graphics application, you’ll have to deal with a lot of coordinates and, therefore, decide to
define a class called XYPoint (you might recall this problem from exercise 7 in Chapter 3):

#import <Foundation/Foundation.h>

@interface XYPoint: NSObject
@property int x, y;

myRect
(x1, y1)

(x,y)

(0,0)

Figure 8.4 A rectangle drawn in a window

ptg999

161Extension Through Inheritance: Adding New Methods

-(void) setX: (int) xVal andY: (int) yVal;
@end

Now let’s get back to your Rectangle class.You want to be able to store the rectangle’s
origin, so you’ll add an instance variable, called origin, to the definition of your
Rectangle class:

@implementation Rectangle
{

XYPoint *origin;
}

...

It seems reasonable to add a method to set the rectangle’s origin and to retrieve it.To
illustrate an important point, we won’t synthesize the accessor methods for the origin
now. Instead, we’ll write them ourselves.

The @class Directive
Now you can work with rectangles (and squares as well!) with the ability to set their
widths, heights, and origins. First, let’s take a complete look at your Rectangle.h inter-
face file:

#import <Foundation/Foundation.h>

@class XYPoint;

@interface Rectangle: NSObject

@property int width, height;

-(XYPoint *) origin;
-(void) setOrigin: (XYPoint *) pt;
-(void) setWidth: (int) w andHeight: (int) h;
-(int) area;
-(int) perimeter;
@end

You used a new directive in the Rectangle.h header file:

@class XYPoint;

You needed this because the compiler needs to know what an XYPoint is when it
encounters it as one of the instance variables defined for a Rectangle.The class name is
also used in the argument and return type declarations for your setOrigin: and origin
methods, respectively.You do have another choice.You could have imported the header
file instead, like so:

#import "XYPoint.h"

ptg999

162 Chapter 8 Inheritance

Using the @class directive is more efficient because the compiler doesn’t need to
import and therefore process the entire XYPoint.h file (even though it is quite small); it
just needs to know that XYPoint is the name of a class. If you needed to reference one of
the XYPoint class’ methods (say in the implementation section), the @class directive
would not suffice because the compiler would need more information; it would need to
know how many arguments the method takes, what their types are, and what the method’s
return type is.

So make sure you understand the use of the @class directive here. It is simply telling
the compiler that XYPoint is the name of a class. In that way, when it sees this line:

XYPoint *origin;

it knows that origin is an object from a class called XYPoint.That’s all the compiler needs
to know at that point.

Let’s fill in the blanks for your new XYPoint class and Rectangle methods so you can
test everything in a program.

First, Program 8.4 shows the new methods for the Rectangle class.

Program 8.4 Rectangle.m Added Methods

#import "XYPoint.h"

-(void) setOrigin: (XYPoint *) pt
{

origin = pt;
}

-(XYPoint *) origin
{

return origin;
}
@end

Following are the complete XYPoint and Rectangle class definitions, followed by a test
program to try them out.

Program 8.4 XYPoint.h Interface File

#import <Foundation/Foundation.h>

@interface XYPoint: NSObject

@property int x, y;

-(void) setX: (int) xVal andY: (int) yVal;
@end

tim

ptg999

163Extension Through Inheritance: Adding New Methods

Program 8.4 XYPoint.m Implementation File

#import "XYPoint.h"

@implementation XYPoint

@synthesize x, y;

-(void) setX: (int) xVal andY: (int) yVal
{

x = xVal;
y = yVal;

}
@end

Program 8.4 Rectangle.h Interface File

#import <Foundation/Foundation.h>

@class XYPoint;
@interface Rectangle: NSObject

@property int width, height;

-(XYPoint *) origin;
-(void) setOrigin: (XYPoint *) pt;
-(void) setWidth: (int) w andHeight: (int) h;
-(int) area;
-(int) perimeter;
@end

Program 8.4 Rectangle.m Implementation File

#import "Rectangle.h"

@implementation Rectangle
{

XYPoint *origin;
}

@synthesize width, height;

-(void) setWidth: (int) w andHeight: (int) h
{

width = w;
height = h;

}

ptg999

164 Chapter 8 Inheritance

–(void) setOrigin: (XYPoint *) pt
{

origin = pt;
}

–(int) area
{

return width * height;
}

–(int) perimeter
{

return (width + height) * 2;
}

–(XYPoint *) origin
{

return origin;
}
@end

Program 8.4 Test Program

#import "Rectangle.h"
#import "XYPoint.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
Rectangle *myRect = [[Rectangle alloc] init];
XYPoint *myPoint = [[XYPoint alloc] init];

[myPoint setX: 100 andY: 200];

[myRect setWidth: 5 andHeight: 8];
myRect.origin = myPoint;

NSLog (@"Rectangle w = %i, h = %i", myRect.width, myRect.height);

NSLog (@"Origin at (%i, %i)", myRect.origin.x, myRect.origin.y);

NSLog (@"Area = %i, Perimeter = %i",
[myRect area], [myRect perimeter]);

}
return 0;

}

ptg999

165Extension Through Inheritance: Adding New Methods

Program 8.4 Output

Rectangle w = 5, h = 8
Origin at (100, 200)
Area = 40, Perimeter = 26

Inside the main routine, you allocated and initialized a rectangle identified as myRect
and a point called myPoint. Using the setX:andY: method, you set myPoint to (100,
200).After setting the width and the height of the rectangle to 5 and 8, respectively, you
invoked the setOrigin method to set the rectangle’s origin to the point indicated by
myPoint.The three NSLog calls then retrieve and print the values.The expression

myRect.origin.x

takes the XYPoint object returned by the accessor method origin and applies the dot
operator to get the x-coordinate of the rectangle’s origin. In a similar manner, the follow-
ing expression retrieves the y-coordinate of the rectangle’s origin:

myRect.origin.y

Remember that this expression is equivalent to this expression

[[myRect origin] y]

based upon what you know about the dot operator and how it gets interpreted by the
compiler.

Classes Owning Their Objects
Can you explain the output from Program 8.5?

Program 8.5
#import “Rectangle.h”
#import "XYPoint.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
Rectangle *myRect = [[Rectangle alloc] init];
XYPoint *myPoint = [[XYPoint alloc] init];

[myPoint setX: 100 andY: 200];

[myRect setWidth: 5 andHeight: 8];
myRect.origin = myPoint;

NSLog (@"Origin at (%i, %i)", myRect.origin.x, myRect.origin.y);

[myPoint setX: 50 andY: 50];
NSLog (@"Origin at (%i, %i)", myRect.origin.x, myRect.origin.y);

}
return 0;

}

ptg999

166 Chapter 8 Inheritance

Program 8.5 Output

Origin at (100, 200)
Origin at (50, 50)

You changed myPoint from (100, 200) in the program to (50, 50), and apparently it
also changed the rectangle’s origin! But why did that happen? You didn’t explicitly reset
the rectangle’s origin, so why did the rectangle’s origin change? If you go back to the defi-
nition of your setOrigin: method, perhaps you’ll see why:

-(void) setOrigin: (XYPoint *) pt
{

origin = pt;
}

When the setOrigin: method is invoked with the expression

myRect.origin = myPoint;

the value of myPoint is passed as the argument to the method.This value points to where
this XYPoint object is stored in memory, as depicted in Figure 8.5.

That value stored inside myPoint, which is a pointer into memory, is copied into the
local variable pt as defined inside the method. Now both pt and myPoint reference the
same data stored in memory. Figure 8.6 illustrates this.

100
200

x
ymyPoint

Figure 8.5 The myPoint object reference in memory

myPoint

pt

100
200

x
y

Figure 8.6 Passing the rectangle’s origin to the method

When the origin variable is set to pt inside the method, the pointer stored inside pt is
copied into the instance variable origin, as depicted in Figure 8.7.

ptg999

167Extension Through Inheritance: Adding New Methods

100
200

x
y

5width

8height

origin

myPoint

pt

myRect

Figure 8.7 Setting the rectangle’s origin

Because myPoint and the origin variable stored in myRect reference the same area in
memory (as does the local variable pt), when you subsequently change the value of
myPoint to (50, 50), the rectangle’s origin is changed as well.

You can avoid this problem by modifying the setOrigin: method so that it allocates
its own point and sets the origin to that point.This is shown here:

-(void) setOrigin: (XYPoint *) pt
{

if (! origin)
origin = [[XYPoint alloc] init];

origin.x = pt.x;
origin.y = pt.y;

}

The method first tests to see if the instance variable origin is nonzero (make sure you
understand that test and the use of the logical negation operator ! that’s used). Recall that
all instance variables are initially set to zero. So when a new Rectangle object is allocated,
its instance variables, which includes origin, will be set to zero.

If the origin is zero, the setOrigin: method will allocate and initialize a new
XYPoint object and store the reference to it in the origin.

The method then sets the newly allocated XYPoint object to the x, y coordinates of
the argument to the method. Study this method until you fully understand how it works.

The change to the setOrigin: method means that each Rectangle instance now owns
its XYPoint instance. Even though it is now responsible for allocating the memory for that
XYPoint, it should also now become responsible for releasing that memory. In general, when
a class contains other objects, at times you will want to have it own some or all of those
objects. In the case of a rectangle, it makes sense for the Rectangle class to own its origin
because that is a basic attribute of a rectangle. Only the class’ accessor methods should be
able to set or retrieve that origin.That’s consistent with the notion of data encapsulation.

With your modified method, recompiling and rerunning Program 8.5 produces the
error messages shown as Figure 8.8.

ptg999

168 Chapter 8 Inheritance

Oops! The problem here is that you’ve referenced some instance variables from the
XYPoint class in your modified method, so now the compiler needs more information
about it than the @class directive provides. In this case, you must go back to your
Rectangle.h header file and replace that directive with an import instead, like so:

#import "XYPoint.h"

Program 8.5B Output

Origin at (100, 200)
Origin at (100, 200)

That’s better.This time, changing the value of myPoint to (50, 50) inside main had
no effect on the rectangle’s origin because a copy of the point was created inside the
Rectangle’s setOrigin: method.

Incidentally, we didn’t synthesize the origin methods here because the synthesized set-
ter setOrigin: method would have behaved just like the one you originally wrote.That
is, by default, the action of a synthesized setter is to simply copy the object pointer, not
the object itself.

You can synthesize a different type of setter method that instead does make a copy of
the object. However, to do that, you need to learn how to write a special copying
method.We revisit this topic in Chapter 17,“Memory Management and Automatic Ref-
erence Counting.”

Before leaving this section, let’s think about the getter side of the Rectangle class. Sup-
pose in your test program from Program 8.4 you inserted the following lines after you had
set your Rectangle’s values:

XYPoint *theOrigin = myRect.origin;
theOrigin.x = 200;
theOrigin.y = 300;

What do you think would happen to the myRect’s origin after this code was executed?
Right, its origin would be changed to (200, 300).The origin object that the getter returns
is “vulnerable.”Anyone changing its x or y value changes the rectangle’s x or y value
accordingly. For this reason, the safest way to write a getter that returns an object is to

Figure 8.8 Compiler error messages

ptg999

169Overriding Methods

actually make a copy of the object and to return that copy. In that way, you are protecting
the instance variable from inadvertently getting changed.We won’t make that change
here, but leave that as an exercise for you. Note that you face a performance penalty if you
copy your objects before returning them.You’ll have to judge if that tradeoff is worth it
when designing your class.

Overriding Methods
We noted earlier in this chapter that you can’t remove or subtract methods through inher-
itance. However, you can change the definition of an inherited method by overriding it.

Returning to your two classes, ClassA and ClassB, assume that you want to write
your own initVar method for ClassB.You already know that ClassB will inherit the
initVar method defined in ClassA, but can you make a new method with the same
name to replace the inherited method? The answer is yes, and you do so simply by defin-
ing a new method with the same name.A method defined with the same name as that of
a parent class replaces, or overrides, the inherited definition.Your new method must have
the same return type and take the same number and type of arguments as the method you
are overriding.

Program 8.6 shows a simple example to illustrate this concept.

Program 8.6

// Overriding Methods

#import <Foundation/Foundation.h>

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x; // Will be inherited by subclasses
}

-(void) initVar;
@end
////////////////////////////
@implementation ClassA
-(void) initVar
{

x = 100;
}
@end

// ClassB declaration and definition

@interface ClassB: ClassA
-(void) initVar;

ptg999

170 Chapter 8 Inheritance

-(void) printVar;
@end
////////////////////////////
@implementation ClassB
-(void) initVar // added method
{

x = 200;
}

-(void) printVar
{

NSLog (@"x = %i", x);
}
@end
////////////////////////////
int main (int argc, char * argv[])
{

@autoreleasepool {
ClassB *b = [[ClassB alloc] init];

[b initVar]; // uses overriding method in B

[b printVar]; // reveal value of x;
}
return 0;

}

Program 8.6 Output

x = 200

Clearly, the message [b initVar]; causes the initVar method defined in ClassB to
be used, and not the one defined in ClassA, as was the case with the previous example.
Figure 8.9 illustrates this.

Class Instance Variables Methods

Object

ClassA

ClassB

x

x

initVar

initVar printVar

Figure 8.9 Overriding the initVar method

ptg999

171Overriding Methods

Which Method Is Selected?
We covered how the system searches up the hierarchy for a method to apply to an object.
If you have methods in different classes with the same name, the correct method is chosen
based on the class of the receiver of the message. Program 8.7 uses the same class defini-
tion for ClassA and ClassB as before.

Program 8.7

#import <Foundation/Foundation.h>

// insert definitions for ClassA and ClassB here

int main (int argc, char * argv[])
{

@autoreleasepool {
ClassA *a = [[ClassA alloc] init];
ClassB *b = [[ClassB alloc] init];

[a initVar]; // uses ClassA method
[a printVar]; // reveal value of x;

[b initVar]; // use overriding ClassB method
[b printVar]; // reveal value of x;

}
return 0;

}

You’ll get this warning message when you build this program:

warning: 'ClassA' may not respond to '-printVar'

What happened here? We talked about this in an earlier section.Take a look at the dec-
laration for ClassA:

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x;
}

-(void) initVar;
@end

ptg999

172 Chapter 8 Inheritance

Notice that no printVar method is declared.That method is declared and defined in
ClassB.Therefore, even though ClassB objects and their descendants can use this method
through inheritance, ClassA objects cannot because the method is defined farther down
in the hierarchy.

Note
You can coerce the use of this method in some ways, but we don’t go into that here—
besides, it’s not good programming practice.

Returning to our example, let’s add a printVar method to ClassA so you can display
the value of its instance variable:

// ClassA declaration and definition

@interface ClassA: NSObject
{

int x; // Will be inherited by subclasses
}

-(void) initVar;
-(void) printVar;
@end

@implementation ClassA
-(void) initVar
{

x = 100;
}

-(void) printVar
{

NSLog (@"x = %i", x);
}

@end

ClassB’s declaration and definition remain unchanged. Let’s try compiling and running
this program again.

Program 8.7 Output

x = 100
x = 200

ptg999

173Abstract Classes

Now we can talk about the actual example. First, a and b are defined to be ClassA and
ClassB objects, respectively.After allocation and initialization, a message is sent to a asking
it to apply the initVar method.This method is defined in the definition of ClassA, so
this method is selected.The method simply sets the value of the instance variable x to 100
and returns.The printVar method, which you just added to ClassA, is invoked next to
display the value of x.

As with the ClassA object, the ClassB object b is allocated and initialized, its instance
variable x is set to 200, and finally its value displayed.

Be sure that you understand how the proper method is chosen for a and b based on
which class they belong to.This is a fundamental concept of object-oriented program-
ming in Objective-C.

As an exercise, consider removing the printVar method from ClassB.Would this
work? Why or why not?

When defining a subclass, not only can you add new methods to effectively extend the
definition of a class, but you can also add new instance variables. In both cases, the effect is
cumulative.You can never subtract methods or instance variables through inheritance; you
can only add—or, in the case of methods, add or override.

So, in review, why would you want to create a subclass? Here are three reasons:

1. You want to extend the functionality of a class, perhaps by adding some new meth-
ods and/or instance variables.

2. You want to make a specialized version of a class (e.g., a particular type of graphic
object).

3. You need to change the default behavior of a class by overriding one or more of its
methods.

Abstract Classes
What better way to conclude this chapter than with a bit of terminology? We introduce it
here because it’s directly related to the notion of inheritance.

Sometimes, classes are created just to make it easier for someone to create a subclass.
For that reason, these classes are called abstract classes or, equivalently, abstract superclasses.
Methods and instance variables are defined in the class, but no one is expected to actually
create an instance from that class. For example, consider the root object NSObject. Can
you think of any use for defining an object from that class?

The Foundation framework, covered in Part II,“The Foundation Framework,” has sev-
eral of these so-called abstract classes.As an example, the Foundation’s NSNumber class is an
abstract class that was created for working with numbers as objects. Integers and floating-
point numbers typically have different storage requirements. Separate subclasses of
NSNumber exist for each numeric type. Because these subclasses, unlike their abstract
superclasses, actually exist, they are known as concrete subclasses. Each concrete subclass falls

tim

ptg999

174 Chapter 8 Inheritance

under the NSNumber class umbrella and is collectively referred to as a cluster.When you
send a message to the NSNumber class to create a new integer object, the appropriate sub-
class is used to allocate the necessary storage for an integer object and to set its value
appropriately.These subclasses are actually private.You don’t access them directly yourself;
they are accessed indirectly through the abstract superclass.The abstract superclass gives a
common interface for working with all types of number objects and relieves you of the
burden of having to know which type of number you have stored in your number object
and how to set and retrieve its value.

Admittedly, this discussion might seem a little “abstract” (sorry!); don’t worry—just a
basic grasp of the concept is sufficient here.

Exercises
1. Add a new class called ClassC, which is a subclass of ClassB, to Program 8.1. Make

an initVar method that sets the value of its instance variable x to 300.Write a test
routine that declares ClassA, ClassB, and ClassC objects and invokes their corre-
sponding initVar methods.

2. When dealing with higher-resolution devices, you might need to use a coordinate
system that enables you to specify points as floating-point values instead of as simple
integers (iOS uses a structure called CGRect for working with rectangles.All coordi-
nates and sizes are expressed as floating point numbers when working with such
rectangles). Modify the XYPoint and Rectangle classes from this chapter to deal
with floating-point numbers.The rectangle’s width, height, area, and perimeter
should all work with floating-point numbers as well.

3. Program 8.1 to add a new class called ClassB2 that, like ClassB, is a subclass of ClassA.

What can you say about the relationship between ClassB and ClassB2?

Identify the hierarchical relationship between the NSObject class, ClassA, ClassB,
and ClassB2.

What is the superclass of ClassB?

What is the superclass of ClassB2?

How many subclasses can a class have, and how many superclasses can it have?

4. Write a Rectangle method called translate: that takes an XYPoint object as its
argument. Have it translate the rectangle’s origin by the specified vector. Note:
Translation simply means moving the point from one place to another.

tim

ptg999

175Exercises

5. Define a new class called GraphicObject, and make it a subclass of NSObject.
Define instance variables in your new class as follows:
int fillColor; // 32-bit color
BOOL filled; // Is the object filled?
int lineColor; // 32-bit line color

Write methods to set and retrieve the variables defined previously.

Make the Rectangle class a subclass of GraphicObject.

Define new classes, Circle and Triangle, which are also subclasses of
GraphicObject.Write methods to set and retrieve the various parameters for these
objects and also to calculate the circle’s circumference and area, and the triangle’s
perimeter and area.

6. Write a Rectangle method called containsPoint: that takes an XYPoint object as its
argument:
-(BOOL) containsPoint: (XYPoint *) aPoint;

Have the method return the BOOL value YES if the rectangle encloses the specified
point and NO if it does not.

7. Write a Rectangle method called intersect: that takes a rectangle as an argument
and returns a rectangle representing the overlapping area between the two rectan-
gles. For example, given the two rectangles shown in Figure 8.10, the method
should return a rectangle whose origin is at (400, 420), whose width is 50, and
whose height is 60.

If the rectangles do not intersect, return one whose width and height are zero and
whose origin is at (0,0).

w = 250

w = 100

h = 75
h = 180(200, 420)

(400, 300)

Figure 8.10 Intersecting rectangles

ptg999

176 Chapter 8 Inheritance

8. Write a method for the Rectangle class called draw that draws a rectangle using
dashes and vertical bar characters.The following code sequence
Rectangle *myRect = [[Rectangle alloc] init];
[myRect setWidth: 10 andHeight: 3];
[myRect draw];

would produce the following output:

| |
| |

Note
You should use printf to draw your characters, since NSLog will display a new line each
time it’s called.

ptg999

9
Polymorphism, Dynamic

Typing, and Dynamic Binding

In this chapter, you’ll learn about the features of the Objective-C language that make it
such a powerful programming language and that distinguish it from some other object-
oriented programming languages such as C++.This chapter describes three key concepts:
polymorphism, dynamic typing, and dynamic binding. Polymorphism enables programs to
be developed so that objects from different classes can define methods that share the same
name. Dynamic typing defers the determination of the class that an object belongs to until
the program is executing. Dynamic binding defers the determination of the actual method
to invoke on an object until program execution time.

Polymorphism: Same Name, Different Class
Program 9.1 shows the interface file for a class called Complex, which is used to represent
complex numbers in a program.

Program 9.1 Interface File Complex.h
// Interface file for Complex class

#import <Foundation/Foundation.h>

@interface Complex: NSObject

@property double real, imaginary;
-(void) print;
-(void) setReal: (double) a andImaginary: (double) b;
-(Complex *) add: (Complex *) f;
@end

ptg999

178 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

You should have completed the implementation section for this class in exercises 5 and
6 from Chapter 7,“More on Classes.” We added an additional setReal:andImaginary:
method to enable you to set both the real and imaginary parts of your number with a sin-
gle message and also synthesized accessor methods.This is shown in the following.

Program 9.1 Implementation File Complex.m
// Implementation file for Complex class

#import "Complex.h"

@implementation Complex

@synthesize real, imaginary;

-(void) print
{

NSLog (@" %g + %gi ", real, imaginary);
}

-(void) setReal: (double) a andImaginary: (double) b
{

real = a;
imaginary = b;

}

-(Complex *) add: (Complex *) f
{

Complex *result = [[Complex alloc] init];

result.real = real + f.real;
result.imaginary = imaginary + f.imaginary;

return result;
}
@end

Program 9.1 Test Program main.m
// Shared Method Names: Polymorphism

#import "Fraction.h"
#import "Complex.h"

int main (int argc, char * argv[])
{

ptg999

179Polymorphism: Same Name, Different Class

@autoreleasepool {
Fraction *f1 = [[Fraction alloc] init];
Fraction *f2 = [[Fraction alloc] init];
Fraction *fracResult;
Complex *c1 = [[Complex alloc] init];
Complex *c2 = [[Complex alloc] init];
Complex *compResult;

[f1 setTo: 1 over: 10];
[f2 setTo: 2 over: 15];

[c1 setReal: 18.0 andImaginary: 2.5];
[c2 setReal: -5.0 andImaginary: 3.2];

// add and print 2 complex numbers

[c1 print]; NSLog (@" +"); [c2 print];
NSLog (@"---------");
compResult = [c1 add: c2];
[compResult print];
NSLog (@"\n");

// add and print 2 fractions
[f1 print]; NSLog (@" +"); [f2 print];
NSLog (@"----");
fracResult = [f1 add: f2];
[fracResult print];

}
return 0;

}

Program 9.1 Output

18 + 2.5i
+

-5 + 3.2i

13 + 5.7i

1/10
+

2/15

7/30

ptg999

180 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Note that both the Fraction and Complex classes contain add: and print methods.
So when executing the message expressions

compResult = [c1 add: c2];
[compResult print];

how does the system know which methods to execute? It’s simple:The Objective-C run-
time knows that c1, the receiver of the first message, is a Complex object.Therefore, it
selects the add: method defined for the Complex class.

The Objective-C runtime system also determines that compResult is a Complex
object, so it selects the print method defined in the Complex class to display the result of
the addition.The same discussion applies to the following message expressions:

fracResult = [f1 add: f2];
[fracResult print];

Note
As described more completely in Chapter 13, “Underlying C Language Features,” the system
always carries information about the class to which an object belongs. This enables it to
make these key decisions at runtime instead of at compile time.

The corresponding methods from the Fraction class are chosen to evaluate the mes-
sage expression based on the class of f1 and fracResult.

As mentioned, the capability to share the same method name across different classes is
known as polymorphism. Polymorphism enables you to develop a set of classes that each
can respond to the same method name. Each class definition encapsulates the code needed
to respond to that particular method, and this makes it independent of the other class defi-
nitions.This also enables you to later add new classes that can respond to methods with
the same name.

Dynamic Binding and the id Type
Chapter 4 briefly touched on the id data type and noted that it is a generic object type.
That is, id can be used for storing objects that belong to any class.The real power of this
data type is exploited when it’s used this way to store different types of objects in a vari-
able during the execution of a program. Study Program 9.2 and its associated output.

Program 9.2 Test Program main.m
// Illustrate Dynamic Typing and Binding

#import "Fraction.h"
#import "Complex.h"

int main (int argc, char * argv[])
{

ptg999

181Dynamic Binding and the id Type

@autoreleasepool {
id dataValue;
Fraction *f1 = [[Fraction alloc] init];
Complex *c1 = [[Complex alloc] init];

[f1 setTo: 2 over: 5];
[c1 setReal: 10.0 andImaginary: 2.5];

// first dataValue gets a fraction

dataValue = f1;
[dataValue print];

// now dataValue gets a complex number

dataValue = c1;
[dataValue print];

}
return 0;

}

Program 9.2 Output

2/5
10 + 2.5i

The variable dataValue is declared as an id object type.Therefore, dataValue can be
used to hold any type of object in the program. Note that no asterisk is used in the decla-
ration line:

id dataValue;

The Fraction f1 is set to 2/5, and the Complex number c1 is set to (10 + 2.5i).The
assignment

dataValue = f1;

stores the Fraction f1 in dataValue. Now, what can you do with dataValue? Well, you
can invoke any of the methods that you can use on a Fraction object with dataValue,
even though the type of dataValue is an id and not a Fraction. But if dataValue can
store any type of object, how does the system know which method to invoke? That is,
when it encounters the message expression

[dataValue print];

how does it know which print method to invoke? You have print methods defined for
both the Fraction and Complex classes.

As noted previously, the answer lies in the fact that the Objective-C system always
keeps track of the class to which an object belongs. It also lies in the concepts of dynamic

ptg999

182 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

typing and dynamic binding—that is, the system makes the decision about the class of the
object, and, therefore, which method to invoke dynamically, at runtime instead of at com-
pile time.

So during execution of the program, before the system sends the print message to
dataValue, it first checks the class of the object stored inside dataValue. In the first case
of Program 9.2, this variable contains a Fraction object, so the print method defined in
the Fraction class is used.This is verified by the output from the program.

In the second case, the same thing happens. First, the Complex number c1 is assigned to
dataValue. Next, the following message expression is executed:

[dataValue print];

This time, because dataValue contains an object belonging to the Complex class, the
corresponding print method from that class is selected for execution.

This is a simple example, but you can extrapolate this concept to more sophisticated
applications.When combined with polymorphism, dynamic binding and dynamic typing
enable you to easily write code that can send the same message to objects from different
classes.

For example, consider a draw method that can be used to paint graphical objects on
the screen.You might have different draw methods defined for each of your graphical
objects, such as text, circles, rectangles, windows, and so on. If the particular object to be
drawn is stored inside an id variable called currentObject, for example, you could paint
it on the screen simply by sending it the draw message:

[currentObject draw];

You could even test it first to ensure that the object stored in currentObject actually
responds to a draw method.You’ll see how to do that later in this chapter, in the section
called “Asking Questions About Classes.”

Compile Time Versus Runtime Checking
Because the type of object stored inside an id variable can be indeterminate at compile
time, some tests are deferred until runtime—that is, while the program is executing.

Consider the following sequence of code:

Fraction *f1 = [[Fraction alloc] init];
[f1 setReal: 10.0 andImaginary: 2.5];

Recalling that the setReal:andImaginary: method applies to complex numbers and
not fractions, the following message is issued when you compile the program containing
this line:

'Fraction' may not respond to 'setReal:andImaginary:'

The Objective-C compiler knows that f1 is a Fraction object because it has been
declared that way. It also knows that when it sees the message expression

[f1 setReal: 10.0 andImaginary: 2.5];

tim

ptg999

183The id Data Type and Static Typing

the Fraction class does not have a setReal:andImaginary: method (and did not inherit
one, either).Therefore, it issues the warning message shown previously.

Now consider the following code sequence:

id dataValue = [[Fraction alloc] init];
...

[dataValue setReal: 10.0 andImaginary: 2.5];

These lines do not produce a warning message from the compiler because the com-
piler doesn’t know what type of object is stored inside dataValue when processing your
source file (No, the compiler doesn’t see that earlier a Fraction object was stored inside
that variable!).

No error message is reported until you run the program containing these lines.The
program crashes, and the error contains a bunch of lines, one of which looks like this:

-[Fraction setReal:andImaginary:]: unrecognized selector sent to instance 0x103f00

When the program is executing, the system first checks the type of object stored
inside dataValue. Because dataValue has a Fraction stored in it, the runtime system
looks for a method setReal:andImaginary: defined for the Fraction class. Because it
can’t find such a method, the error message shown previously is issued and the program is
terminated.

The id Data Type and Static Typing
If an id data type can be used to store any object, why don’t you just declare all your
objects as type id? For several reasons, you don’t want to get into the habit of overusing
this generic class data type.

First, when you define a variable to be an object from a particular class, you are using
what’s known as static typing.The word static refers to the fact that the type of object that
will be stored in the variable is being explicitly declared. So the class of the object stored
in that type is predeterminate, or static.When you use static typing, the compiler ensures,
to the best of its ability, that the variable is used consistently throughout the program.The
compiler can check to ensure that a method applied to an object is defined or inherited
by that class; if not, it issues a warning message.Thus, when you declare a Rectangle vari-
able called myRect in your program, the compiler checks that any methods you invoke on
myRect are defined in the Rectangle class or are inherited from its superclass.

Note
Certain techniques make it possible to invoke methods that are specified by a variable, in
which case the compiler can’t check that for you.

However, if this check is performed for you at runtime anyway, why do you care about
static typing?You care because it’s better to get your errors out during the compilation phase
of your program than during the execution phase. If you leave it until runtime, you might
not even be the one running the program when the error occurs. If your program is put into
production, some poor unsuspecting user might discover when running the program that a
particular object does not recognize a method by having the program crash on her.

tim

ptg999

184 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Another reason for using static typing is that it makes your programs more readable.
Consider the following declaration:

id f1;

versus

Fraction *f1;

Which do you think is more understandable—that is, which makes the intended use of
the variable f1 clearer? The combination of static typing and meaningful variable names
(which we intentionally did not choose in the previous example) can go a long way
toward making your program more self-documenting.

Note
You cannot use the dot operator with id varibles; the compiler will give you an error if you
attempt to do so.

Argument and Return Types with Dynamic Typing
If you use dynamic typing to invoke a method, note the following rule: If a method with
the same name is implemented in more than one of your classes, each method must agree
on the type of each argument and the type of value it returns so that the compiler can gen-
erate the correct code for your message expressions.

The compiler performs a consistency check among each class declaration it has seen. If
one or more methods conflict in either argument or return type, the compiler issues a warn-
ing message. For example, both the Fraction and Complex classes contain add: methods.
However, the Fraction class takes as its argument and returns a Fraction object, whereas
the Complex class takes and returns a Complex object. If frac1 and myFract are Fraction
objects, and comp1 and myComplex are Complex objects, statements such as

result = [myFract add: frac1];

and

result = [myComplex add: comp1];

do not cause any problems.This is because, in both cases, the receiver of the message is stat-
ically typed and the compiler can check for consistent use of the method as it is defined in
the receiver’s class.

If dataValue1 and dataValue2 are id variables, the statement

result = [dataValue1 add: dataValue2];

causes the compiler to generate code to pass the argument to an add: method and handle
its returned value by making assumptions.

At runtime, the Objective-C runtime system will check the actual class of the object
stored inside dataValue1 and select the appropriate method from the correct class to exe-
cute. However, in a more general case, the compiler might generate the incorrect code to
pass arguments to a method or handle its return value.This would happen if one method
took an object as its argument and the other took a floating-point value, for example. Or

ptg999

185Asking Questions About Classes

if one method returned an object and the other returned an integer, for example. If the
inconsistency between two methods is just a different type of object (for example, the
Fraction’s add: method takes a Fraction object as its argument and returns one, and the
Complex’s add: method takes and returns a Complex object), the compiler will still gener-
ate the correct code because memory addresses (that is, pointers) are passed as references
to objects anyway.

Asking Questions About Classes
As you start working with variables that can contain objects from different classes, you
might need to ask questions such as the following:

n Is this object a rectangle?
n Does this object support a print method?
n Is this object a member of the Graphics class or one of its descendants?

You can then use the answers to these questions to execute different sequences of code,
avoid an error, or check the integrity of your program while it’s executing.

Table 9.1 summarizes some of the basic methods that the NSObject class supports for
asking these types of questions. In this table, class-object is a class object (typically gen-
erated with the class method), and selector is a value of type SEL (typically created
with the @selector directive).

Table 9.1 Methods for Working with Dynamic Types

Method Question or Action

-(BOOL) isKindOfClass: class-object Is the object a member of class-object
or a descendant?

-(BOOL) isMemberOfClass: class-object Is the object a member of class-object?

-(BOOL) respondsToSelector: selector Can the object respond to the method
specified by selector?

+(BOOL) instancesRespondToSelector:
selector

Can instances of the specified class respond
to selector?

+(BOOL)isSubclassOfClass:
class-object

Is the object a subclass of the specified
class?

-(id) performSelector: selector Apply the method specified by selector.

-(id) performSelector: selector
withObject: object

Apply the method specified by selector
passing the argument object.

-(id) performSelector: selector
withObject: object1 withObject:
object2

Apply the method specified by selector
with the arguments object1 and object2.

ptg999

186 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Other methods are not covered here. One enables you to ask whether an object con-
forms to a protocol (see Chapter 11,“Categories and Protocols”). Others enable you to
ask about dynamically resolving methods (not covered in this text).

To generate a class object from a class name or another object, you send it the class
message. So to get a class object from a class named Square, you write the following:

[Square class]

If mySquare is an instance of Square object, you get its class by writing this:

[mySquare class]

To see whether the objects stored in the variables obj1 and obj2 are instances from the
same class, you write this:

if ([obj1 class] == [obj2 class])
...

To see if the variable myFract is a Fraction class object, you test the result from the
expression, like this:

[myFract isMemberOfClass: [Fraction class]]

To generate one of the so-called selectors listed inTable 9.1, you apply the @selector

directive to a method name. For example, the following produces a value of type SEL for
the method named alloc, which you know is a method inherited from the NSObject class:

@selector (alloc)

The following expression produces a selector for the setTo:over: method that you
implemented in your Fraction class (remember those colon characters in the method
names):

@selector (setTo:over:)

To see whether an instance of the Fraction class responds to the setTo:over:
method, you can test the return value from the expression, like this:

[Fraction instancesRespondToSelector: @selector (setTo:over:)]

Remember, the test covers inherited methods, not just one that is directly defined in
the class definition.

The performSelector: method and its variants (not shown in Table 9.1) enable you
to send a message to an object, where the message can be a selector stored inside a vari-
able. For example, consider this code sequence:

SEL action;
id graphicObject;
...
action = @selector (draw);
...
[graphicObject performSelector: action];

ptg999

187Asking Questions About Classes

In this example, the method indicated by the SEL variable action is sent to whatever
graphical object is stored in graphicObject. Presumably, the action might vary during
program execution—perhaps based on the user’s input—even though we’ve shown the
action as draw. To first ensure that the object can respond to the action, you might want
to use something like this:

if ([graphicObject respondsToSelector: action] == YES)
[graphicObject performSelector: action]

else
// error handling code here

Note
The respondsToSelector: method is used extensively in iOS for implementing the con-
cept of delegation. As you’ll learn in Chapter 10, “More on Variables and Data Types,” the
system will often give you the option to implement one or more methods in your class to
handle certain events or provide certain information (such as the number of sections in a
table). In order for the system to determine whether you have in fact implemented a particu-
lar method, it will use respondsToSelector: to see if it can delegate the handling of the
event to your method. If you didn’t implement the method, it will take care of the event
itself, doing whatever is defined as the default behavior.

You can employ other strategies as well:You can forward the message to another object
to handle using the forwardInvocation: method, but covering how to do this is beyond
the scope of this text.

Program 9.3 asks some questions about the Square and Rectangle classes defined in
Chapter 8,“Inheritance.”Try to predict the results from this program before looking at the
actual output (no peeking!).

Program 9.3

#import "Square.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
Square *mySquare = [[Square alloc] init];

// isMemberOf:

if ([mySquare isMemberOfClass: [Square class]] == YES)
NSLog (@"mySquare is a member of Square class");

if ([mySquare isMemberOfClass: [Rectangle class]] == YES)
NSLog (@"mySquare is a member of Rectangle class");

if ([mySquare isMemberOfClass: [NSObject class]] == YES)
NSLog (@"mySquare is a member of NSObject class");

ptg999

188 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

// isKindOf:

if ([mySquare isKindOfClass: [Square class]] == YES)
NSLog (@"mySquare is a kind of Square");

if ([mySquare isKindOfClass: [Rectangle class]] == YES)
NSLog (@"mySquare is a kind of Rectangle");

if ([mySquare isKindOfClass: [NSObject class]] == YES)
NSLog (@"mySquare is a kind of NSObject");

// respondsTo:

if ([mySquare respondsToSelector: @selector (setSide:)] == YES)
NSLog (@"mySquare responds to setSide: method");

if ([mySquare respondsToSelector: @selector (setWidth:andHeight:)] == YES)
NSLog (@"mySquare responds to setWidth:andHeight: method");

if ([Square respondsToSelector: @selector (alloc)] == YES)
NSLog (@"Square class responds to alloc method");

// instancesRespondTo:

if ([Rectangle instancesRespondToSelector: @selector (setSide:)] == YES)
NSLog (@"Instances of Rectangle respond to setSide: method");

if ([Square instancesRespondToSelector: @selector (setSide:)] == YES)
NSLog (@"Instances of Square respond to setSide: method");

if ([Square isSubclassOfClass: [Rectangle class]] == YES)
NSLog (@"Square is a subclass of a rectangle");

}
return 0;

}

Make sure you build this program with the implementation files for the Square,
Rectangle, and XYPoint classes, which were all presented in Chapter 8.

Program 9.3 Output

mySquare is a member of Square class
mySquare is a kind of Square
mySquare is a kind of Rectangle
mySquare is a kind of NSObject
mySquare responds to setSide: method

ptg999

189Exception Handling Using @try

mySquare responds to setWidth:andHeight: method
Square class responds to alloc method
Instances of Square respond to setSide: method
Square is a subclass of a rectangle

The output from Program 9.3 should be clear. Remember that isMemberOfClass:
tests for direct membership in a class, whereas isKindOfClass: checks for membership in
the inheritance hierarchy.Thus, mySquare is a member of the Square class—but it’s also
“kind of” a Square, Rectangle, and NSObject because it exists in that class hierarchy
(obviously, all objects should return YES for the isKindOf: test on the NSObject class,
unless you’ve defined a new root object).

The test

if ([Square respondsToSelector: @selector (alloc)] == YES)

tests whether the class Square responds to the class method alloc, which it does because
it’s inherited from the root object NSObject. Realize that you can always use the class
name directly as the receiver in a message expression, and you don’t have to write this in
the previous expression (although you could if you wanted):

[Square class]

That’s the only place you can get away with that. In other places, you need to apply the
class method to obtain the class object.

Exception Handling Using @try
Good programming practice dictates that you try to anticipate problems that can occur in
your program.You can do this by testing for conditions that could cause a program to ter-
minate abnormally and handling these situations, perhaps by logging a message and grace-
fully terminating the program or taking some other corrective action. For example, you
saw earlier in this chapter how you can test to see if an object responds to a particular
message. In the case of error avoidance, performing this test while the program is execut-
ing can enable you to avoid sending an unrecognized message to an object.When an
attempt is made to send such an unrecognized message, your program will typically termi-
nate immediately by throwing what’s known as an exception.

Take a look at Program 9.4.We have no method called noSuchMethod defined in the
Fraction class.When you compile the program, you will get warning messages to that effect.

Program 9.4

#import "Fraction.h"

int main (int argc, char * argv [])
{

@autoreleasepool {
Fraction *f = [[Fraction alloc] init];
[f noSuchMethod];
NSLog (@"Execution continues!");

tim

ptg999

190 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

}
return 0;

}

You can go ahead and run the program despite the warning messages you receive. If you
do, you can expect to see your program terminate abnormally with errors similar to what's
shown in Program 9.4.

Program 9.4 Output

*** Terminating app due to uncaught exception ‘NSInvalidArgumentException’, reason:
‘-[Fraction noSuchMethod]: unrecognized selector sent to instance 0x103f00’
*** Call stack at first throw:’’)

To avoid abnormal program termination in a case such as this, you can put one or
more statements inside a special statement block, which takes the following format:

@try {
statement
statement
...

}
@catch (NSException *exception) {

statement
statement
...

}

Execution proceeds as normal with each statement in the @try block. However, if
one of the statements in the block throws an exception, execution is not terminated but
instead goes immediately to the @catch block, where it continues. Inside that block, you
can handle the exception. One plausible sequence of actions here would be to log an
error message, clean up, and terminate execution.

Program 9.5 illustrates exception handling. It is followed by the program’s output.

Program 9.5 Exception Handling

#import "Fraction.h"

int main (int argc, char * argv [])

{
@autoreleasepool {

NSArray *myArray = [NSArray array];

@try {
[myArray objectAtIndex: 2];

}

ptg999

191Exception Handling Using @try

@catch (NSException *exception) {
NSLog (@"Caught %@%@", exception.name, exception.reason);

}
NSLog (@"Execution continues");

}
return 0;

}

Program 9.5 Output

Caught NSRangeException*** -[__NSArrayI objectAtIndex:]: index 2 beyond bounds for
empty array
Execution continues

Program 9.5 sets up an array, which you’ll learn how to do in Chapter 15. It then
tries to reference a nonexistent element from the array using the NSArray class’
objectAtIndex: method.This causes an exception to occur.When the exception occurs,
the @catch block gets executed.An NSException object that contains information about
the exception gets passed as the argument into this block.As you can see, the name

method retrieves the name of the exception, and the reason method gives the reason
(which the runtime system also previously printed automatically).

After the last statement in the @catch block is executed (we have only one here), the
program continues execution with the statement immediately following the block. In this
case, we execute an NSLog call to verify that execution has continued and has not been
terminated.

This is a very simple example to illustrate how to catch exceptions in a program.An
@finally block can be used to include code to execute whether or not a statement in a
@try block throws an exception.

An @throw directive enables you to throw your own exception.You can use it to throw
a specific exception, or inside a @catch block to throw the same exception that took you
into the block like this:

@throw;

You might want to do this after handling an exception yourself (perhaps after perform-
ing cleanup work, for example).You can then let the system handle the rest of the work
for you.

You can have multiple @catch blocks that are sequenced to catch and handle different
type of exceptions.

In general, you don’t want exceptions to occur while your program is running. So it’s
considered better programming practice to test for errors before they occur rather than to
catch them after they occur. It’s also better to test for an error in a method and return
some value as an error indicator than to throw an exception. It is strongly recommended
that if you catch an exception you only do so with the intention of cleaning up and ter-
minating your application.Why? Because Apple does not guarantee that your application
will be in a well-defined state for continuing program execution once an exception is
thrown.

ptg999

192 Chapter 9 Polymorphism, Dynamic Typing, and Dynamic Binding

Exercises
1. What will happen if you insert the message expression

[compResult reduce];

into Program 9.1 after the addition is performed? Try it and see.

2. Can the id variable dataValue, as defined in Program 9.2, be assigned a Rectangle
object as you defined it in Chapter 8? That is, is the statement
dataValue = [[Rectangle alloc] init];

valid? Why or why not?

3. Add a print method to your XYPoint class defined in Chapter 8. Have it display
the point in the format (x, y).Then modify Program 9.2 to incorporate an XYPoint
object. Have the modified program create an XYPoint object, set its value, assign it
to the id variable dataValue, and then display its value.

4. Based on the discussions about argument and return types in this chapter, modify
both add: methods in the Fraction and Complex classes to take and return id
objects.Then write a program that incorporates the following code sequence:
result = [dataValue1 add: dataValue2];
[result print];

Here, result, dataValue1, and dataValue2 are id objects. Make sure you set
dataValue1 and dataValue2 appropriately in your program.

Note
You’ll have to change the name of the methods to something other than add:. That’s
because the system’s NSObjectController class also has an add: method. As noted in
the “Arguments and Return Types with Dynamic Typing” section, if multiple methods of the
same name exist in different classes and the type of the receiver isn’t known at compile
time, the compiler will perform a consistency check to make sure the arguments and return
types are consistent among the similarly named methods.

ptg999

193Exercises

5. Given the Fraction and Complex class definitions you have been using in this text
and the following definitions
Fraction *fraction = [[Fraction alloc] init];
Complex *complex = [[Complex alloc] init];
id number = [[Complex alloc] init];

Given determine the return value from the following message expressions.Then
type them into a program to verify the results.
[fraction isMemberOfClass: [Complex class]];
[complex isMemberOfClass: [NSObject class]];
[complex isKindOfClass: [NSObject class]];
[fraction isKindOfClass: [Fraction class]];
[fraction respondsToSelector: @selector (print)];
[complex respondsToSelector: @selector (print)];
[Fraction instancesRespondToSelector: @selector (print)];
[number respondsToSelector: @selector (print)];
[number isKindOfClass: [Complex class]];
[[number class] respondsToSelector: @selector (alloc)];

ptg999

This page intentionally left blank

ptg999

10
More on Variables and Data

Types

In this chapter, we go into more detail about variable scope, initialization methods for
objects, and data types.

The initialization of an object deserves some special attention, which we give it here.
We talked briefly about the scope of instance variables as well as static and local vari-

ables in Chapter 7,“More on Classes.”We talk more about static variables here and intro-
duce the concept of global and external ones. In addition, you can give certain directives
to the Objective-C compiler, to more precisely control the scope of your instance vari-
ables.We cover these directives in this chapter as well.

An enumerated data type enables you to define the name for a data type to be used only
to store a specified list of values.The Objective-C language’s typedef statement lets you
assign your own name to a built-in or derived data type. Finally, we describe in more
detail the precise steps the Objective-C compiler follows when converting data types in
the evaluation of expressions.

Initializing Objects
You’ve seen the pattern before:You allocate a new instance of an object and then initialize
it, using a familiar sequence like this:

Fraction *myFract = [[Fraction alloc] init];

We didn’t write our own init method here; we use the one we inherited from the
parent class, which is NSObject.

After these two methods are invoked, you typically assign some values to the new
object, like this:

[myFract setTo: 1 over: 3];

The process of initializing an object followed by setting it to some initial values is
often combined into a single method. For example, you can define an initWith:over:

ptg999

196 Chapter 10 More on Variables and Data Types

method that initializes a fraction and sets its numerator and denominator to the two sup-
plied arguments.

A class that contains many methods and instance variables in it commonly has several
initialization methods as well. For example, the Foundation framework’s NSArray class
contains the following six initialization methods:

initWithArray:
initWithArray:copyItems:
initWithContentsOfFile:
initWithContentsOfURL:
initWithObjects:
initWithObjects:count:

An array might be allocated and then initialized with a sequence like this:

myArray = [[NSArray alloc] initWithArray: myOtherArray];

It’s common practice for all the initializers in a class to begin with init....As you
can see, the NSArray’s initializers follow that convention.You should adhere to the follow-
ing two strategies when writing initializers.

It might be the case that you want to do something special whenever one of the
objects in your class gets initialized. For example, that’s the perfect place to create the
objects that your class uses and references through one or more instance variables.A per-
fect example of that would be our Rectangle class; it would be reasonable to allocate the
rectangle’s XYPoint origin in the init method.To do so, we just have to override the
inherited init method.

There’s a standard “template” that’s used for overriding init, and it looks like this:

- (id)init
{

self = [super init];
if (self) {

// Initialization code here.
}

return self;
}

This method invokes the parent initializer first. Executing the parent’s initializer
ensures that any inherited instance variables are properly initialized.

You must assign the result of executing the parent’s init method back to self
because an initializer has the right to change the location of the object in memory
(meaning its reference will change).

If the parent’s initialization succeeds, the value returned will be non-nil, as tested by
the if statement.As the comment indicates, inside the block that follows is where you
can put your own custom initialization code for your object.This will often involve allo-
cating and initializing instance variables that are in your class.

ptg999

197Initializing Objects

If your class contains more than one initializer, one of them should be your designated
initializer and all the other initialization methods should use it.Typically, that is your most
complex initialization method (usually, the one that takes the most arguments). Creating a
designated initializer centralizes your main initialization code in a single method.Anyone
subclassing your class can then override your designated initializer, to ensure that new
instances are properly initialized.

Based on that discussion, your initialization method initWith:over: for your
Fraction class might look like this:

-(Fraction *) initWith: (int) n over: (int) d
{

self = [super init];

if (self)
[self setTo: n over: d];

return self;
}

Following the initialization of super (and its success, as indicated by the return of a
nonzero value) you use the setTo:over: method to set the numerator and denominator
of your Fraction.As with other initialization methods, you are expected to return the
initialized object, which you do here.

Program 10.1 tests your new initWith:over: initialization method.

Program 10.1

#import “Fraction.h”

int main (int argc, char * argv[])
{

@autoreleasepool {

Fraction *a, *b;

a = [[Fraction alloc] initWith: 1 over: 3];
b = [[Fraction alloc] initWith: 3 over: 7];

[a print];
[b print];

}
return 0;

}

ptg999

198 Chapter 10 More on Variables and Data Types

Program 10.1 Output

1/3
3/7

To adhere to the rule stated earlier about a designated initializer, you should also
modify init in your Fraction class.That’s particularly important if your class might be
subclassed.

Here’s what the init method could look like:

-(id) init
{

return [self initWith: 0 over: 0];
}

Note that init is defined to return an id type.That’s the general rule for writing init
methods for a class that might be subclassed.You don’t want to hardcode a class name in
such cases, as the subclass will not be an object from the same class as the parent.To be
consistent here you should go back to the initWith:over: method and change its return
type to id.

When your program begins execution, it sends the initialize call method to all your
classes. If you have a class and associated subclasses, the parent class gets the message first.
This message is sent only once to each class, and it is guaranteed to be sent before any
other messages are sent to the class.The purpose is for you to perform any class initializa-
tion at that point. For example, you might want to initialize some static variables associ-
ated with that class at that time.

Scope Revisited
You can influence the scope of the variables in your program in several ways.You can do
this with instance variables as well as with normal variables defined either outside or
inside functions. In the following discussion, we use the term module to refer to any num-
ber of method or function definitions contained within a single source file.

Directives for Controlling Instance Variable Scope
You know by now that instance variables have scope that is limited to the instance meth-
ods defined for the class. So any instance method can access its instance variables directly
by name, without having to do anything special.

You also know that instance variables declared in the interface section are inherited by
a subclass. Inherited instance variables can also be accessed directly by name from within
any method defined in that subclass.Again, this is without having to do anything special.

ptg999

199Scope Revisited

You can put four directives in front of your instance variables when they are declared
in the interface section, to more precisely control their scope:

n @protected— Methods defined in the class and any subclasses can directly access
the instance variables that follow.This is the default for instance variables defined in
the interface section.

n @private— Methods defined in the class can directly access the instance variables
that follow, but subclasses cannot.This is the default for instance variables defined in
the implementation section.

n @public— Methods defined in the class and any other classes or modules can
directly access the instance variables that follow.

n @package— For 64-bit images, the instance variable can be accessed anywhere
within the image that implements the class.

If you wanted to define a class called Printer that kept two instance variables, called
pageCount and tonerLevel private, and was accessible only by methods in the Printer
class, you might use an interface section that looks like this:

@interface Printer
{
@private

int pageCount;
int tonerLevel;

@protected
// other instance variables

}
...
@end

Anyone subclassing Printer would be incapable of accessing these two instance vari-
ables because they were made private.

These special directives act like “switches”; all variables that appear after one of these
directives (until the right curly brace that marks the end of the variable declarations) have
the specified scope unless another directive is used. In the previous example, the
@protected directive ensures that instance variables that follow, up to the }, will be acces-
sible by subclasses and by the Printer class methods.

The @public directive makes instance variables accessible by other methods or func-
tions through the use of the pointer operator (->), which is covered in Chapter 13,
“Underlying C Language Features.” Making an instance variable public is not considered
good programming practice because it defeats the concept of data encapsulation (that is, a
class hiding its instance variables).

ptg999

200 Chapter 10 More on Variables and Data Types

More on Properties, Synthesized Accessors, and Instance
Variables
The current trend in coding conventions (which Xcode 4 has adopted) is to use an
underscore (_) as the leading character for an instance variable name. So any references
you see in the template code generated by Xcode to variables starting with a _ are refer-
encing the instance variables directly by name.

When you see an @synthesize directive that looks like this

@synthesize window=_window;

it says to synthesize the getter and setter for the property named window and to associate
that property with an instance variable called _window (which does not have to be explic-
itly declared).This helps to distinguish the use of the instance variable from the property
and to encourage you to set and retrieve the value of the instance variable through the
setter and getter methods.That is, writing something like this

[window makeKeyAndVisible]; // This won't work

will fail, as there is no instance variable named window. Instead, you have to either name
the instance variable directly by its name, such as

[_window makeKeyAndVisible];

or, preferably, use the accessor method:

[self.window makeKeyAndVisible];

As you know, instance variables declared either explicitly in the implementation sec-
tion (or implicitly by using the @synthesize directive) are made private, meaning they’re
not accessible to subclasses directly by name. So subclasses have no choice but to use the
inherited accessor methods in order to access their values.

Remember, the synthesized methods might be doing additional work based on their
attributes (for example, managing memory, copying values, and so on) that won’t occur
when assigning or retrieving values directly to/from the instance variable. So there’s an
extra level of abstraction between the property and the instance variable.This level of
abstraction gives the system an opportunity to do extra work (that you don’t necessarily
need to be aware of) when accessing instance variables.

Global Variables
If you write the statement

int gMoveNumber = 0;

at the beginning of your program—outside any method, class definition, or function—its
value can be referenced from anywhere in that module. In such a case, we say that
gMoveNumber is defined as a global variable. By convention, a lowercase g is commonly
used as the first letter of a global variable, to indicate its scope to the program’s reader.

tim

ptg999

201Scope Revisited

Actually, this same definition of the variable gMoveNumber also makes its value
accessible from other files. Specifically, the preceding statement defines the variable
gMoveNumber not just as a global variable, but as an external global variable.

An external variable is one whose value can be accessed and changed by any other
methods or functions. Inside the module that wants to access the external variable, the
variable is declared in the normal fashion and the keyword extern is placed before the
declaration.This signals to the system that a globally defined variable from another file is
to be accessed.The following is an example of how to declare the variable gMoveNumber
as an external variable:

extern int gMoveNumber;

The module in which the preceding declaration appeared can now access and modify
the value of gMoveNumber. Other modules can also access the value of gMoveNumber by
using a similar extern declaration in the file.

Consider this important rule to follow when working with external variables:The
variable must be defined someplace among your source files.This is done by declaring
the variable outside any method or function and is not preceded by the keyword extern,
like this:

int gMoveNumber;

Here, an initial value can be optionally assigned to the variable, as shown previously.
The second way to define an external variable is to declare the variable outside any

function, placing the keyword extern in front of the declaration and explicitly assigning
an initial value to it, like this:

extern int gMoveNumber = 0;

However, this is not the preferred way to do this, and the compiler warns you that
you’ve declared the variable extern and assigned it a value at the same time.That’s
because using the word extern makes it a declaration for the variable, not a definition.
Remember, a declaration doesn’t cause storage for a variable to be allocated, but a defini-
tion does.The previous example violates this rule by forcing a declaration to be treated as
a definition (by assigning it an initial value).

When dealing with external variables, you can declare a variable as extern in many
places, but you can define it only once.

Consider a small program example to illustrate the use of external variables. Suppose we
have defined a class called Foo, and we type the following code into a file called main.m:

#import "Foo.h"

int gGlobalVar = 5;

int main (int argc, char *argc[])
{

@autoreleasepool {

ptg999

202 Chapter 10 More on Variables and Data Types

Foo *myFoo = [[Foo alloc] init];
NSLog (@"%i ", gGlobalVar);

[myFoo setgGlobalVar: 100];
NSLog (@"%i", gGlobalVar);

}
return 0;

}

The definition of the global variable gGlobalVar in the previous program makes its
value accessible by any method (or function) that uses an appropriate extern declaration.
Suppose your Foo method setgGlobalVar: looks like this:

-(void) setgGlobalVar: (int) val
{

extern int gGlobalVar;
gGlobalVar = val;

}

This program would produce the following output:

5
100

This would verify that the method setgGlobalVar: is capable of accessing and chang-
ing the value of the external variable gGlobalVar.

If many methods needed to access the value of gGlobalVar, making the extern decla-
ration just once at the front of the file would be easier. However, if only one method or a
small number of methods needed to access this variable, there would be something to be
said for making separate extern declarations in each such method; it would make the
program more organized and would isolate the use of the particular variable to those
functions that actually used it. Note that if the variable is defined inside the file contain-
ing the code that accesses the variable, the individual extern declarations are not
required.

Static Variables
The example just shown goes against the notion of data encapsulation and good object-
oriented programming techniques. However, you might need to work with variables
whose values are shared across different method invocations. Even though it might not
make sense to make gGlobalVar an instance variable in the Foo class, a better approach
might be to “hide” it within the Foo class by restricting its access to setter and getter
methods defined for that class.

You now know that any variable defined outside a method is not only a global vari-
able, but an external one as well. Many situations arise in which you want to define a
variable to be global but not external. In other words, you want to define a global variable
to be local to a particular module (file). It would make sense to want to define a variable

ptg999

203Scope Revisited

this way if no methods other than those contained inside a particular class definition
needed access to the particular variable.You can accomplish this by defining the variable
to be static inside the file that contains the implementation for the particular class.

If made outside any method (or function), the following statement makes the value of
gGlobalVar accessible from any subsequent point in the file in which the definition
appears, but not from methods or functions contained in other files:

static int gGlobalVar = 0;

Recall that class methods do not have access to instance variables (you might want to
think about why that’s the case again). However, you might want a class method to be
capable of setting and accessing variables.A simple example is a class allocator method
that you want to keep track of the number of objects it has allocated.You would accom-
plish this task by setting up a static variable inside the implementation file for the class.
The allocation method could then access this variable directly because it would not be an
instance variable.The users of the class would not need to know about this variable.
Because it’s defined as a static variable in the implementation file, its scope would be
restricted to that file. Users thus wouldn’t have direct access to it, and the concept of data
encapsulation would not be violated.You could write a method to retrieve the value of
this variable if access was needed from outside the class.

Program 10.2 extends the Fraction class definition with the addition of two new
methods.The allocF class method allocates a new Fraction and keeps track of how
many Fractions it has allocated, whereas the count method returns that count. Note that
this latter method is also a class method. It could have been implemented as an instance
method as well, but it makes more sense to ask the class how many instances it has allo-
cated instead of sending the message to a particular instance of the class.

These are the declarations for the two new class methods to be added to the
Fraction.h header file:

+(Fraction *) allocF;
+(int) count;

Notice that the inherited alloc method wasn’t overridden here; instead, you defined
your own allocator method.Your method will take advantage of the inherited alloc
method. Place this code in your Fraction.m implementation file:

static int gCounter;

@implementation Fraction

+(Fraction *) allocF
{

extern int gCounter;
++gCounter;

return [Fraction alloc];
}

ptg999

204 Chapter 10 More on Variables and Data Types

+(int) count
{

extern int gCounter;

return gCounter;
}
// other methods from Fraction class go here
...

@end

Note
It’s not considered good programming practice to override alloc, as this method deals with
the physical allocation of the memory. You shouldn’t have to get involved at that level.

The static declaration of gCounter makes it accessible to any method defined in the
implementation section, yet it does not make it accessible from outside the file.The
allocF method simply increments the gCounter variable and then uses the alloc
method to create a new Fraction, returning the result.The count method simply returns
the value of the counter, thus isolating its direct access from the user.

Recall that the extern declarations are not required in the two methods because the
gCounter variable is defined within the file. It simply helps the reader of the method
understand that a variable defined outside the method is being accessed.The g prefix for
the variable name also serves the same purpose for the reader; for that reason, most pro-
grammers typically do not include the extern declarations.

Program 10.2 tests the new methods.

Program 10.2

#import "Fraction.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *a, *b, *c;

NSLog (@"Fractions allocated: %i", [Fraction count]);

a = [[Fraction allocF] init];
b = [[Fraction allocF] init];
c = [[Fraction allocF] init];

NSLog (@"Fractions allocated: %i", [Fraction count]);
}
return 0;

}

ptg999

205Enumerated Data Types

Program 10.2 Output

Fractions allocated: 0
Fractions allocated: 3

When the program begins execution, the value of gCounter is automatically set to 0
(recall that you can override the inherited class initialize method if you want to per-
form any special initialization of the class as a whole, such as set the value of other static
variables to some nonzero values).After allocating (and then initializing) three Fractions
using the allocF method, the count method retrieves the counter variable, which is cor-
rectly set to 3.You could also add a setter method to the class if you wanted to reset the
counter or set it to a particular value.You don’t need that for this application, though.

Enumerated Data Types
The Objective-C language enables you to specify a range of values that can be assigned to
a variable.An enumerated data type definition is initiated by the keyword enum. Immedi-
ately following this keyword is the name of the enumerated data type, followed by a list of
identifiers (enclosed in a set of curly braces) that define the permissible values that can be
assigned to the type. For example, the following statement defines a data type flag:

enum flag { false, true };

In theory, this data type can be assigned the values true and false inside the program,
and no other values. Unfortunately, the Objective-C compiler does not generate warning
messages if this rule is violated.

To declare a variable to be of type enum flag, you again use the keyword enum, fol-
lowed by the enumerated type name, followed by the variable list. So the following state-
ment defines the two variables endOfData and matchFound to be of type flag:

enum flag endOfData, matchFound;

The only values (in theory, that is) that can be assigned to these variables are the names
true and false.Thus, statements such as

endOfData = true;

and

if (matchFound == false)
...

are valid.
If you want to have a specific integer value associated with an enumeration identifier,

the integer can be assigned to the identifier when the data type is defined. Enumeration
identifiers that subsequently appear in the list are assigned sequential integer values begin-
ning with the specified integer value plus one.

ptg999

206 Chapter 10 More on Variables and Data Types

In the following definition, an enumerated data type, direction, is defined with the
values up, down, left, and right:

enum direction { up, down, left = 10, right };

The compiler assigns the value 0 to up because it appears first in the list, assigns 1 to
down because it appears next, assigns 10 to left because it is explicitly assigned this
value, and assigns 11 to right because it is the incremented value of the preceding enum

in the list.
Enumeration identifiers can share the same value. For example, in

enum boolean { no = 0, false = 0, yes = 1, true = 1 };

assigning either the value no or false to an enum boolean variable assigns it the value 0;
assigning either yes or true assigns it the value 1.

As another example of an enumerated data type definition, the following defines the
type enum month, with permissible values that can be assigned to a variable of this type
being the names of the months of the year:

enum month { january = 1, february, march, april, may, june, july,
august, september, october, november, december };

The Objective-C compiler actually treats enumeration identifiers as integer constants.
If your program contains these two lines, the value 2 would be assigned to thisMonth
(and not the name february):

enum month thisMonth;
...

thisMonth = february;

Program 10.3 shows a simple program using enumerated data types.The program reads
a month number and then enters a switch statement to see which month was entered.
Recall that the compiler treats enumeration values as integer constants, so they’re valid
case values.The variable days is assigned the number of days in the specified month, and
its value is displayed after the switch is exited.A special test is included to see whether the
month is February.

Program 10.3

#import <Foundation/Foundation.h>
// print the number of days in a month
int main (int argc, char * argv[])
{

@autoreleasepool {
enum month { january = 1, february, march, april, may, june,

july, august, september, october, november,
december };

enum month amonth;
int days;

ptg999

207Enumerated Data Types

NSLog (@"Enter month number: ");
scanf ("%i", &amonth);

switch (amonth) {
case january:
case march:
case may:
case july:
case august:
case october:
case december:

days = 31;
break;

case april:
case june:
case september:
case november:

days = 30;
break;

case february:
days = 28;
break;

default:
NSLog (@"bad month number");
days = 0;
break;

}

if (days != 0)
NSLog (@"Number of days is %i", days);

if (amonth == february)
NSLog (@"...or 29 if it's a leap year");

}
return 0;

}

Program 10.3 Output

Enter month number:
5
Number of days is 31

ptg999

208 Chapter 10 More on Variables and Data Types

Program 10.3 Output (Rerun)

Enter month number:
2
Number of days is 28
...or 29 if it's a leap year

You can explicitly assign an integer value to an enumerated data type variable; you
should do this using the type cast operator.Therefore, if monthValue were an integer vari-
able that had the value 6, for example, this expression would be permissible:

lastMonth = (enum month) (monthValue - 1);

If you don’t use the type cast operator, the compiler (unfortunately) won’t complain
about it.

When using programs with enumerated data types, try not to rely on the fact that the
enumerated values are treated as integers. Instead, treat them as distinct data types.The
enumerated data type gives you a way to associate a symbolic name with an integer num-
ber. If you subsequently need to change the value of that number, you must change it only
in the place where the enumeration is defined. If you make assumptions based on the
actual value of the enumerated data type, you defeat this benefit of using an enumeration.

Some variations are permitted when defining an enumerated data type:The name of
the data type can be omitted, and variables can be declared to be of the particular enu-
merated data type when the type is defined.As an example showing both of these options,
the statement

enum { east, west, south, north } direction;

defines an (unnamed) enumerated data type with values east, west, south, or north and
declares a variable (direction) to be of that type.

Defining an enumerated data type within a block limits the scope of that definition to
the block. On the other hand, defining an enumerated data type at the beginning of the
program, outside any block, makes the definition global to the file.

When defining an enumerated data type, you must make certain that the enumeration
identifiers are unique with respect to other variable names and enumeration identifiers
defined within the same scope.

The typedef Statement
Objective-C provides a capability that enables the programmer to assign an alternative
name to a data type.This is done with a statement known as typedef.The following
statement defines the name Counter to be equivalent to the Objective-C data type int:

typedef int Counter;

You can subsequently declare variables to be of type Counter, as in the following
statement:

Counter j, n;

ptg999

209Data Type Conversions

The Objective-C compiler treats the declaration of the variables j and n, shown previ-
ously, as normal integer variables.The main advantage of the use of the typedef in this
case is in the added readability it lends to the definition of the variables.The definition of
j and n makes clear the intended purpose of these variables in the program. Declaring
them to be of type int in the traditional fashion would not have made the intended use
of these variables clear.

The following typedef defines a type named NumberObject to be a Number object:

typedef NSNumber *NumberObject;

Variables subsequently declared to be of type NumberObject, as in

NumberObject myValue1, myValue2, myResult;

are treated as if they were declared in the normal way in your program:

NSNumber *myValue1, *myValue2, *myResult;

To define a new type name with typedef, follow this procedure:

1. Write the statement as if a variable of the desired type were being declared.

2. Where the name of the declared variable would normally appear, substitute the new
type name.

3. In front of everything, place the keyword typedef.

As an example of this procedure, to define a type called Direction to be an enumer-
ated data type that consists of the directions east, west, north, and south, write out the
enumerated type definition and substitute the name Direction where the variable name
would normally appear. Before everything, place the keyword typedef:

typedef enum { east, west, south, north } Direction;

With this typedef in place, you can subsequently declare variables to be of type
Direction, as in the following:

Direction step1, step2;

Data Type Conversions
Chapter 4,“Data Types and Expressions,” briefly addressed the fact that sometimes the sys-
tem implicitly makes conversions when expressions are evaluated.You examined a case
with the data types float and int.You saw how an operation that involves a float and
an int was carried out as a floating-point operation, with the integer data item automati-
cally converted to a floating point.

You also saw how the type cast operator can be used to explicitly dictate a conversion.
So given that total and n are both integer variables

average = (float) total / n;

ptg999

210 Chapter 10 More on Variables and Data Types

the value of the variable total is converted to type float before the operation is per-
formed, thereby guaranteeing that the division will be carried out as a floating-point
operation.

Conversion Rules
The Objective-C compiler adheres to very strict rules when it comes to evaluating
expressions that consist of different basic data types.

The following summarizes the order in which conversions take place in the evaluation
of two operands in an expression:

1. If either operand is of type long double, the other is converted to long double,
and that is the type of the result.

2. If either operand is of type double, the other is converted to double, and that is the
type of the result.

3. If either operand is of type float, the other is converted to float, and that is the
type of the result.

4. If either operand is of type _Bool, char, short int, or bit field,1 or of an enu-
merated data type, it is converted to int.

5. If either operand is of type long long int, the other is converted to long long
int, and that is the type of the result.

6. If either operand is of type long int, the other is converted to long int, and that
is the type of the result.

7. If this step is reached, both operands are of type int, and that is the type of the result.

This is actually a simplified version of the steps involved in converting operands in an
expression.The rules get more complicated when unsigned operands are involved, but
this is detailed enough for this text.

Realize from this series of steps that whenever you reach a step that says “that is the
type of the result,” you’re done with the conversion process.

As an example of how to follow these steps, let’s see how the following expression
would be evaluated, where f is defined to be a float, i an int, l a long int, and s a
short int variable:

f * i + l / s

Consider first the multiplication of f by i, which is the multiplication of a float by an
int. From step 3, you know that, because f is of type float, the other operand (i) will also
be converted to type float, and that will be the type of the result of the multiplication.

ptg999

211Bit Operators

Next, l is divided by s, which is the division of a long int by a short int. Step 4
tells you that the short int will be promoted to an int. Continuing, step 6 shows that
because one of the operands (l) is a long int, the other operand will be converted to a
long int, which will also be the type of the result.This division will therefore produce a
value of type long int, with any fractional part resulting from the division truncated.

Finally, step 3 indicates that, if one of the operands in an expression is of type float (as
is the result of multiplying f * i), the other operand will be converted to type float,
which will be the type of the result.Therefore, after the division of l by s, the result of the
operation will be converted to type float and then added into the product of f and i.
The final result of the preceding expression will therefore be a value of type float.

Remember, the type cast operator can always be used to explicitly force conversions
and thereby control the way in which a particular expression is evaluated.

Thus, if you didn’t want the result of dividing l by s to be truncated in the preceding
expression evaluation, you could have type-cast one of the operands to type float,
thereby forcing the evaluation to be performed as a floating-point division:

f * i + (float) l / s

In this expression, l would be converted to float before the division operation was
performed because the type cast operator has higher precedence than the division opera-
tor. Because one of the operands of the division would then be of type float, the other (s)
would be automatically converted to type float, and that would be the type of the result.

Bit Operators
Various operators in the Objective-C language work with the particular bits used to rep-
resent an integer value.Table 10.1 presents these operators.

Note
You won’t use bitwise operators much, if at all, in your Objective-C programs, although you
will come across them in framework header files. As this material may be a little dense for
new programmers, you can just skim this section and refer back to it later, if necessary.

Table 10.1 Bit Operators

Symbol Operation

& Bitwise AND

| Bitwise inclusive-OR

^ Bitwise OR

~ Ones complement

<< Left shift

>> Right shift

tim

ptg999

212 Chapter 10 More on Variables and Data Types

All the operators listed in Table 10.1, with the exception of the ones complement
operator (~), are binary operators and, as such, take two operands. Bit operations can be
performed on any type of integer value but cannot be performed on floating-point values.

In the examples that follow, you’ll want to learn how to convert between binary nota-
tion and hexadecimal notation.A hexadecimal (base 16) digit is composed of 4 bits.Table
10.2 shows how to convert between these two bases.

The Bitwise AND Operator
When two values are ANDed, the binary representations of the values are compared bit by
bit. Each corresponding bit that is a 1 in the first value and a 1 in the second value pro-
duce a 1 in the corresponding bit position of the result; anything else produces a 0. If b1
and b2 represent corresponding bits of the two operands, the following table, called a truth
table, shows the result of b1 ANDed with b2 for all possible values of b1 and b2.

b1 b2 b1 & b2

0 0 0
0 1 0
1 0 0
1 1 1

Table 10.2 Binary, Decimal, and Hexadecimal Equivalents

Binary Value Decimal Value Hexadecimal Value

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 a
1011 11 b
1100 12 c
1101 13 d
1110 14 e
1111 15 f

ptg999

213Bit Operators

For example, if w1 and w2 are defined as short ints, and w1 is set equal to hexadecimal
15 and w2 is set equal to hexadecimal 0c, then the following C statement assigns the value
0x04 to w3:

w3 = w1 & w2;

You can see this more easily by treating the values of w1, w2, and w3 as binary numbers.
Assume that you are dealing with a short int size of 16 bits:

w1 0000 0000 0001 0101 0x15
w2 0000 0000 0000 1100 & 0x0c

w3 0000 0000 0000 0100 0x04

Bitwise ANDing is frequently used for masking operations.That is, this operator can be
used to easily set specific bits of a data item to 0. For example, the following statement
assigns to w3 the value of w1 bitwise ANDed with the constant 3.

w3 = w1 & 3;

This has the effect of setting all the bits in w3, other than the rightmost 2 bits, to 0, and
of preserving the rightmost 2 bits from w1.

As with all binary arithmetic operators in Objective-C, the binary bit operators can
also be used as assignment operators by tacking on an equals sign. So the statement

word &= 15;

will perform the same function as

word = word & 15;

and will have the effect of setting all but the rightmost 4 bits of word to 0.

The Bitwise Inclusive-OR Operator
When two values are bitwise Inclusive-ORed in Objective-C, the binary representation
of the two values is once again compared bit by bit.This time, each bit that is a 1 in the
first value or a 1 in the second value will produce a 1 in the corresponding bit of the
result.The truth table for the Inclusive-OR operator is shown next.

b1 b2 b1 | b2

0 0 0
0 1 1
1 0 1
1 1 1

So if w1 is a short int equal to hexadecimal 19 and w2 is a short int equal to hexadecimal
6a, then a bitwise Inclusive-OR of w1 and w2 will produce a result of hexadecimal 7b, as shown:

w1 0000 0000 0001 1001 0x19
w2 0000 0000 0110 1010 | 0x6a

0000 0000 0111 1011 0x7b

ptg999

214 Chapter 10 More on Variables and Data Types

Bitwise Inclusive-ORing, frequently called just bitwise ORing, is used to set some
specified bits of a word to 1. For example, the following statement sets the three rightmost
bits of w1 to 1, regardless of the state of these bits before the operation was performed.

w1 = w1 | 07;

Of course, you could have used a special assignment operator in the statement, as in
this statement:

w1 |= 07;

We defer a program example that illustrates the use of the Inclusive-OR operator
until later.

The Bitwise Exclusive-OR Operator
The bitwise Exclusive-OR operator, which is often called the XOR operator, works as
follows: For corresponding bits of the two operands, if either bit is a 1—but not both
bits—the corresponding bit of the result is a 1; otherwise, it is a 0.The truth table for this
operator is as shown.

b1 b2 b1 ^ b2

0 0 0
0 1 1
1 0 1
1 1 0

If w1 and w2, were set equal to hexadecimal 5e and d6, respectively, the result of w1
Exclusive-ORed with w2 would be hexadecimal e8, as illustrated:

w1 0000 0000 0101 1110 0x5e
w2 0000 0000 1011 0110 ^ 0xd6

0000 0000 1110 1000 0xe8

The Ones Complement Operator
The ones complement operator is a unary operator, and its effect is to simply “flip” the
bits of its operand. Each bit of the operand that is a 1 is changed to a 0, and each bit that is
a 0 is changed to a 1.The truth table is provided here simply for the sake of completeness.

b1 ~b1

0 1
1 0

ptg999

215Bit Operators

If w1 is a short int that is 16 bits long and is set equal to hexadecimal a52f, then taking
the ones complement of this value produces a result of hexadecimal 5ad0:

w1 1010 0101 0010 1111 0xa52f
~w1 0101 1010 1101 0000 0x5ad0

The ones complement operator is useful when you don’t know the precise bit size of
the quantity that you are dealing with in an operation, and its use can help make a pro-
gram less dependent on the particular size of an integer data type. For example, to set the
low-order bit of an int called w1 to 0, you can AND w1 with an int consisting of all 1s
except for a single 0 in the rightmost bit. So a statement in C such as this one works fine
on machines on which an integer is represented by 32 bits:

w1 &= 0xFFFFFFFE;

If you replace the preceding statement with this one, w1 will be ANDed with the cor-
rect value on any machine:

w1 &= ~1;

This is because the ones complement of 1 will be calculated and will consist of as
many leftmost 1 bits as necessary to fill the size of an int (63 leftmost bits on a 64-bit
integer system).

Now it is time to show an actual program example that illustrates the use of the vari-
ous bit operators (see Program 10.4).

Program 10.4

// Bitwise operators illustrated

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
unsigned int w1 = 0xA0A0A0A0, w2 = 0xFFFF0000,

w3 = 0x00007777;

NSLog (@"%x %x %x", w1 & w2, w1 | w2, w1 ^ w2);
NSLog (@"%x %x %x", ~w1, ~w2, ~w3);
NSLog (@"%x %x %x", w1 ^ w1, w1 & ~w2, w1 | w2 | w3);
NSLog (@"%x %x", w1 | w2 & w3, w1 | w2 & ~w3);
NSLog (@"%x %x", ~(~w1 & ~w2), ~(~w1 | ~w2));

}
return 0;

}

ptg999

216 Chapter 10 More on Variables and Data Types

Program 10.4 Output

a0a00000 ffffa0a0 5f5fa0a0
5f5f5f5f ffff ffff8888
0 a0a0 fffff7f7
a0a0a0a0 ffffa0a0
ffffa0a0 a0a00000

Work out each of the operations from Program 10.4 to verify that you understand how
the results were obtained.

In the fourth NSLog call, it is important to note that the bitwise AND operator has
higher precedence than the bitwise OR because this fact influences the resulting value of
the expression.

The fifth NSLog call illustrates DeMorgan’s rule: ~(~a & ~b) is equal to a | b, and
~(~a | ~b) is equal to a & b.

The Left Shift Operator
When a left shift operation is performed on a value, the bits contained in the value are lit-
erally shifted to the left.Associated with this operation is the number of places (bits) that
the value is to be shifted. Bits that are shifted out through the high-order bit of the data
item are lost, and 0s are always shifted in through the low-order bit of the value. So if w1 is
equal to 3, then the expression

w1 = w1 << 1;

which can also be expressed as

w1 <<= 1;

will result in 3 being shifted one place to the left, which will result in 6 being assigned to
w1:

w1 ... 0000 0011 0x03
w1 << 1 ... 0000 0110 0x06

The operand on the left of the << operator is the value to be shifted, while the operand
on the right is the number of bit positions the value is to be shifted by. If we were to shift
w1 one more place to the left, we would end up with hexadecimal 0c:

w1 ... 0000 0110 0x06
w1 << 1 ... 0000 1100 0x0c

The Right Shift Operator
As implied from its name, the right shift operator >> shifts the bits of a value to the right.
Bits shifted out of the low-order bit of the value are lost. Right-shifting an unsigned value
always results in 0s being shifted in on the left—that is, through the high-order bits.What

ptg999

217Bit Operators

is shifted in on the left for signed values depends on the sign of the value that is being
shifted and also on how this operation is implemented. If the sign bit is 0 (meaning the
value is positive), 0s will be shifted in no matter what machine is used. However, if the
sign bit is 1, on some machines 1s will be shifted in, and on others 0s will be shifted in.
This former type of operation is known as an arithmetic right shift, while the latter is
known as a logical right shift.

Caution
Never make any assumptions about whether a system implements an arithmetic or a logical
right shift. A program that shifts signed values right might work correctly on one system and
then fail on another due to this type of assumption.

If w1 is an unsigned int, which is represented in 32 bits, and w1 is set equal to hexa-
decimal F777EE22, then shifting w1 one place to the right with the statement

w1 >>= 1;

will set w1 equal to hexadecimal 7BBBF711, as shown:

w1 1111 0111 0111 0111 1110 1110 0010 0010 0xF777EE22
w1 >> 1 0111 1011 1011 1011 1111 0111 0001 0001 0x7BBBF711

If w1 were declared to be a (signed) short int, the same result would be produced on
some computers; on others, the result would be FBBBF711 if the operation were per-
formed as an arithmetic right shift.

Note that the Objective-C language does not produce a defined result if an attempt is
made to shift a value to the left or right by an amount that is greater than or equal to the
number of bits in the size of the data item. So on a machine that represents integers in 64
bits, for example, shifting an integer to the left or right by 64 or more bits is not guaran-
teed to produce a defined result in your program.Also note that if you shift a value by a
negative amount, the result is similarly undefined.

Exercises
1. Using the Rectangle class from Chapter 8, add an initializer method according to

the following declaration:

(Note: Be sure to override init to use this initializer.)
-(id) initWithWidth: (int) w andHeight: (int) h;

2. Given that you label the method developed in exercise 1 the designated initializer
for the Rectangle class, and based on the Square and Rectangle class defini-
tions from Chapter 8, add an initializer method to the Square class according to the
following declaration:
-(id) initWithSide: (int) side;

ptg999

218 Chapter 10 More on Variables and Data Types

3. Add a counter to the Fraction class’s add: method to count the number of times
it is invoked. How can you retrieve the value of the counter?

4. Using typedef and enumerated data types, define a type called Day with the possi-
ble values Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday.

5. Using typedef, define a type called FractionObj that enables you to write state-
ments such as the following:
FractionObj f1 = [[Fraction alloc] init],

f2 = [[Fraction alloc] init];

6. Based on the following definitions
float f = 1.00;
short int i = 100;
long int l = 500L;
double d = 15.00;

and the seven steps outlined in this chapter for the conversion of operands in
expressions, determine the type and value of the following expressions:
f + i
l / d
i / l + f
l * i
f / 2
i / (d + f)
l / (i * 2.0)
l + i / (double) l

ptg999

11
Categories and Protocols

In this chapter, you’ll learn about how to add methods to a class in a modular fashion
through the use of categories and how to create a standardized list of methods for others
to implement.

Categories
Sometimes you might be working with a class definition and want to add some new
methods to it. For example, you might decide for your Fraction class that, in addition to
the add: method for adding two fractions, you want to have methods to subtract, multi-
ply, and divide two fractions.

As another example, say you are working on a large programming project and, as part
of that project, your group is defining a new class that contains many different methods.
You have been assigned the task of writing methods for the class that work with the file
system. Other project members have been assigned methods responsible for creating and
initializing instances of the class, performing operations on objects in the class, and draw-
ing representations of objects from the class on the screen.

As a final example, suppose you’ve learned how to use a class from the library (for
example, the Foundation framework’s array class called NSArray) and realize that you
wish the class had implemented one or more methods. Of course, you could write a
new subclass of the NSArray class and implement the new methods, but perhaps an eas-
ier way exists.

A practical solution for all these situations is categories.A category provides an easy way
for you to modularize the definition of a class into groups or categories of related meth-
ods. It also gives you an easy way to extend an existing class definition without even hav-
ing access to the original source code for the class and without having to create a
subclass.This is a powerful yet easy concept for you to learn.

ptg999

220 Chapter 11 Categories and Protocols

Let’s get back to the first case and show how to add a new category to the Fraction
class to handle the four basic math operations.We first show you the original Fraction
interface section:

#import <Foundation/Foundation.h>
// Define the Fraction class

@interface Fraction : NSObject

@property int numerator, denominator;

-(void) setTo: (int) n over: (int) d;
-(Fraction *) add: (Fraction *) f;
-(void) reduce;
-(double) convertToNum;
-(void) print;
@end

Next, let’s remove the add: method from this interface section and add it to a new
category, along with the other three math operations you want to implement. Here’s what
the interface section would look like for your new MathOps category:

#import "Fraction.h"

@interface Fraction (MathOps)
-(Fraction *) add: (Fraction *) f;
-(Fraction *) mul: (Fraction *) f;
-(Fraction *) sub: (Fraction *) f;
-(Fraction *) div: (Fraction *) f;
@end

Realize that even though this is an interface section definition, it is an extension to an
existing one.Therefore, you must import the original interface section so that the com-
piler knows about the Fraction class (unless you incorporate the new category directly
into the original Fraction.h header file, which is an option).

After the #import, you see the following line:

@interface Fraction (MathOps)

This tells the compiler that you are defining a new category for the Fraction class
and that its name is MathOps.The category name is enclosed in parentheses after the class
name. Notice that you don’t list the Fraction’s parent class here; the compiler already
knows it from Fraction.h.Also, you don’t tell it about the instance variables, as you’ve
done in all the previous interface sections you’ve defined. In fact, if you try to list the par-
ent class or the instance variables, you’ll get a syntax error from the compiler.

This interface section tells the compiler you are adding an extension to the class called
Fraction under the category named MathOps.The MathOps category contains four
instance methods: add:, mul:, sub:, and div:. Each method takes a fraction as its argu-
ment and returns one as well.

ptg999

221Categories

You can put the definitions for all your methods into a single implementation section.
That is, you could define all the methods from the interface section in Fraction.h plus
all the methods from the MathOps category in one implementations section.Alternatively,
you could define your category’s methods in a separate implementation section. In such a
case, the implementation section for these methods must also identify the category to
which the methods belong.As with the interface section, you do this by enclosing the
category name inside parentheses after the class name, like this:

@implementation Fraction (MathOps)
// code for category methods
...

@end

In Program 11.1, the interface and implementation sections for the new MathOps cate-
gory are grouped together, along with a test routine, into a single file.

Program 11.1 MathOps Category and Test Program

#import "Fraction.h"

@interface Fraction (MathOps)
-(Fraction *) add: (Fraction *) f;
-(Fraction *) mul: (Fraction *) f;
-(Fraction *) sub: (Fraction *) f;
-(Fraction *) div: (Fraction *) f;
@end

@implementation Fraction (MathOps)
-(Fraction *) add: (Fraction *) f
{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];

result.numerator = (self.numerator * f.denominator) +
(self.denominator * f.numerator);

result.denominator = self.denominator * f.denominator;
[result reduce];

return result;
}

-(Fraction *) sub: (Fraction *) f
{

// To sub two fractions:
// a/b - c/d = ((a*d) - (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];

ptg999

222 Chapter 11 Categories and Protocols

result.numerator = (self.numerator * f.denominator) -
(self.denominator * f.numerator);

result.denominator = self.denominator * f.denominator;
[result reduce];

return result;
}

-(Fraction *) mul: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

result.numerator = self.numerator * f.numerator;
result.denominator = self.denominator * f.denominator;
[result reduce];

return result;
}

-(Fraction *) div: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

result.numerator = self.numerator * f.denominator
result.denominator = self.denominator * f.numerator;
[result reduce];

return result;
}
@end

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *a = [[Fraction alloc] init];
Fraction *b = [[Fraction alloc] init];
Fraction *result;

[a setTo: 1 over: 3];
[b setTo: 2 over: 5];

[a print]; NSLog (@" +"); [b print]; NSLog (@"-----");
result = [a add: b];
[result print];
NSLog (@"\n");

[a print]; NSLog (@" -"); [b print]; NSLog (@"-----");
result = [a sub: b];

ptg999

223Categories

[result print];
NSLog (@"\n");

[a print]; NSLog (@" *"); [b print]; NSLog (@"-----");
result = [a mul: b];
[result print];
NSLog (@"\n");

[a print]; NSLog (@" /"); [b print]; NSLog (@"-----");
result = [a div: b];
[result print];
NSLog (@"\n");

}
return 0;

}

Program 11.1 Output

1/3
+

2/5

11/15

1/3
-

2/5

-1/15

1/3
*

2/5

2/15

1/3
/

2/5

5/6

Program 11.1 puts the interface and implementation sections for the new category
into the same file with the test program.As mentioned previously, the interface section

ptg999

224 Chapter 11 Categories and Protocols

for this category could go either in the original Fraction.h header file so that all meth-
ods would be declared in one place or in its own header file.

Note
By convention, the base name of the .h and .m files for a category is the class name fol-
lowed by the category name. In our example, we would put the interface section for the cate-
gory in a file named FractionMathOps.h and the implementation section in a file called
FractionMathOps.m. Some programmers use a ‘+’ sign to separate the name of the cate-
gory from the class, as in Fraction+MathOps.h.

If you put your category into a master class definition file, all users of the class have
access to the methods in the category. If you don’t have the capability to modify the
original header file directly (consider adding a category to an existing class from a library,
as shown in Part II,“The Foundation Framework”), you have no choice but to keep it
separate.

Class Extensions
There is a special case of creating a category without a name, that is no name is specified
between the (and).This special syntax defines what is known as a class extension.When
you define an unnamed category like this, you can extend the class by defining additional
instance variables.This is not allowed for named categories. Methods declared in an
unnamed category are implemented in the main implementation section for the class and
not in a separate implementation section.The compiler warns you if you don’t implement
all the methods you listed in the interface section of your unnamed category.

Let’s assume you have a class called GraphicObject. Further assume you type the fol-
lowing lines into your implementation file GraphicObject.m:

#import "GraphicObject.h"

// Class extension

@interface GraphicObject ()
@property int uniqueID;

-(void) doStuffWithUniqueID: (int) theID;
@end

//--------------------------------------

@implementation GraphicObject
@synthesize uniqueID;

ptg999

225Class Extensions

-(void) doStuffWithUniqueID: (int) myID
{

self.uniqueID = myID;
...

}
...
// Other GraphicObject methods
...
@end

You extend the GraphicObject class here by adding a new instance variable called
uniqueID and by synthesizing a setter and getter method for it.You also add a method
called doStuffWithUniqueID:.

Unnamed categories are useful because their methods are private. So if you need to
write a class that has data and methods that can only be used within the class itself, an
unnamed category might just fit the bill.

Some Notes About Categories
A category can override another method in the class, but this is considered poor program-
ming practice. For one thing, after you override a method, you can no longer access the
original method.Therefore, you must be careful to duplicate all the functionality of the
overridden method in your replacement. If you do need to override a method, subclassing
might be the right choice. If you override a method in a subclass, you can still reference
the parent’s method by sending a message to super. So you don’t have to understand all
the intricacies of the method you are overriding; you can simply invoke the parent’s
method and add your own functionality to the subclass’s method.

You can have as many categories as you like, following the rules we’ve outlined here. If
a method is defined in more than one category, the language does not specify which one
will be used.

Remember that extending a class by adding new methods with a category affects not
just that class, but all its subclasses as well.This can be potentially dangerous if you add
new methods to the root object NSObject, for example, because everyone will inherit
those new methods, whether or not that was your intention.

The new methods you add to an existing class through a category can serve your pur-
poses just fine, but they might be inconsistent with the original design or intentions of the
class.Turning a Square into a Circle (admittedly, an exaggeration), for example, by
adding a new category and some methods muddies the definition of the class and is not
good programming practice.

Also, object/category named pairs must be unique. Only one NSString Name Utili-
ties category can exist in a given Objective-C namespace.This can be tricky because the
Objective-C namespace is shared between the program code and all the libraries, frame-
works, and plug-ins.This is especially important for Objective-C programmers writing
screensavers, preference panes, and other plug-ins because their code will be injected into
application or framework code that they do not control.

ptg999

226 Chapter 11 Categories and Protocols

Protocols and Delegation
A protocol is a list of methods that is shared among classes.The methods listed in the proto-
col do not have corresponding implementations; they’re meant to be implemented by
someone else (like you!).A protocol provides a way to define a set of methods that are
somehow related with a specified name.The methods are typically documented so that
you know how they are to perform and so that you can implement them in your own
class definitions, if desired.

A protocol list a set of methods, some of which you can optionally implement, and
others that you are required to implement. If you decide to implement all of the required
methods for a particular protocol, you are said to conform to or adopt that protocol.You are
allowed to define a protocol where all methods are optional, or one where all are
required.

Defining a protocol is easy:You simply use the @protocol directive followed by the
name of the protocol, which is up to you.After that, you declare methods just as you did
with your interface section.All the method declarations, up to the @end directive, become
part of the protocol.

When you work with the Foundation framework, you’ll find that several protocols are
defined. One of them, called NSCopying, declares a method that you need to implement if
your class is to support copying of objects through the copy (or copyWithZone:) method.
(Chapter 18,“Copying Objects,” covers the topic of copying objects in detail.)

Here’s how the NSCopying protocol is defined in the standard Foundation header file
NSObject.h:

@protocol NSCopying
- (id)copyWithZone: (NSZone *)zone;
@end

If you adopt the NSCopying protocol in your class, you must implement a method
called copyWithZone:.You tell the compiler that you are adopting a protocol by listing
the protocol name inside a pair of angular brackets (<...>) on the @interface line.The
protocol name comes after the name of the class and its parent class, as in the following:

@interface AddressBook: NSObject <NSCopying>

This says that AddressBook is an object whose parent is NSObject and states that it
conforms to the NSCopying protocol. Because the system already knows about the
method(s) previously defined for the protocol (in this example, it knows from the header
file NSObject.h), you don’t need to declare the methods in the interface section. How-
ever, you need to define them in your implementation section.

In this example, in the implementation section for AddressBook, the compiler expects
to see the copyWithZone: method defined.

If your class adopts more than one protocol, just list them inside the angular brackets,
separated by commas:

@interface AddressBook: NSObject <NSCopying, NSCoding>

tim

ptg999

227Protocols and Delegation

This tells the compiler that the AddressBook class adopts the NSCopying and NSCoding
protocols.Again, the compiler expects to see all the required methods listed for those pro-
tocols implemented in the AddressBook implementation section.

If you define your own protocol, you don’t have to actually implement it yourself.
However, you’re alerting other programmers that if they want to adopt the protocol, they
do have to implement the required methods.Those methods can be inherited from a
superclass.Thus, if one class conforms to the NSCopying protocol, its subclasses do as well
(although that doesn’t mean the methods are correctly implemented for that subclass).

You can use a protocol to define methods that you want other people who subclass
your class to implement. Perhaps you could define a Drawing protocol for your
GraphicObject class; in it, you could define paint, erase, and outline methods:

@protocol Drawing
-(void) paint;
-(void) erase;
@optional
-(void) outline;
@end

As the creator of the GraphicObject class, you don’t necessarily want to implement
these painting methods. However, you want to specify the methods that someone who
subclasses the GraphicObject class needs to implement to conform to a standard for
drawing objects he’s trying to create.

Note the use of the @optional directive here.Any methods that are listed following
that directive are optional.That is, an adopter of the Drawing protocol does not have to
implement the outline method to conform to the protocol. (And you can subsequently
switch back to listing required methods by using the @required directive inside the pro-
tocol definition.)

Note
Well that’s the intent, anyway. The compiler lets you say that you conform to a protocol and
only issues warning messages if you don’t implement the methods.

So if you create a subclass of GraphicObject called Rectangle and advertise (that is,
document) that your Rectangle class conforms to the Drawing protocol, users of the class
will know that they can send paint, erase, and (possibly) outline messages to instances
from that class.

Notice that the protocol doesn’t reference any classes; it’s classless.Any class can con-
form to the Drawing protocol, not just subclasses of GraphicObject.

You can check to see whether an object conforms to a protocol by using the
conformsToProtocol: method. For example, if you had an object called currentObject
and wanted to see whether it conformed to the Drawing protocol so you could send it
drawing messages, you could write this:

id currentObject;
...

tim

ptg999

228 Chapter 11 Categories and Protocols

if ([currentObject conformsToProtocol: @protocol (Drawing)] == YES)
{
// Send currentObject paint, erase and/or outline msgs
...

}

The special @protocol directive as used here takes a protocol name and produces a
protocol object, which is what the conformsToProtocol: method expects as its argument.

To test to see if currentObject has implemented the optional outline method, you
could write this:

if ([currentObject respondsToSelector: @selector (outline)] == YES)
[currentObject outline];

You can enlist the aid of the compiler to check for conformance with your variables by
including the protocol name inside angular brackets after the type name, like this:

id <Drawing> currentObject;

This tells the compiler that currentObject will reference objects that conform to the
Drawing protocol. If you assign a statically-typed object to currentObject that does not
conform to the Drawing protocol (say that you have a Square class that does not con-
form), the compiler issues a warning message that looks like this:

warning: class 'Square' does not implement the 'Drawing' protocol

This is a compiler check here, so assigning an id variable to currentObject would not
generate this message because the compiler has no way of knowing whether the object
stored inside an id variable conforms to the Drawing protocol.

You can list more than one protocol if the variable will hold an object conforming to
more than one protocol, as in this line:

id <NSCopying, NSCoding> myDocument;

When you define a protocol, you can extend the definition of an existing one.This
protocol declaration says that the Drawing3D protocol also adopts the Drawing protocol:

@protocol Drawing3D <Drawing>

Thus, whichever class adopts the Drawing3D protocol must implement the methods
listed for that protocol, as well as the methods from the Drawing protocol.

Finally, a category also can adopt a protocol, like this:

@interface Fraction (Stuff) <NSCopying, NSCoding>

Here Fraction has a category, Stuff (okay, not the best choice of names!), that adopts
the NSCopying and NSCoding protocols.

As with class names, protocol names must be unique.

ptg999

229Protocols and Delegation

Delegation
You can also think of a protocol as an interface definition between two classes.The class
that defines the protocol can be thought of as delegating the work defined by the methods
in the protocol to the class that implements them. In that way, the class can be defined to
be more general, with specific actions taken by the delegate class in response to certain
events or to define specific parameters. Cocoa and iOS rely heavily on this concept of del-
egation. For example, when you set up a table on the iPhone’s display, you’ll use the
UITableView class. But that class doesn’t know the title of the table, how many sections or
rows it contains, or what to put in each row (cell) of the table. So it delegates that respon-
sibility to you by defining a protocol called UITableViewDataSource.When it needs
information, for example, how many rows are in each section of the table, it calls the
appropriate method that you’ve defined in your class in accordance with the protocol.The
UITableView class also defines another protocol called UITableViewDelegate.The meth-
ods in this protocol define, among other things, what to do when a particular row from a
table is selected.This class doesn’t know what action to take, so it delegates that responsi-
bility to you.

Informal Protocols
You might come across the notion of an informal protocol in your readings.This is really a
category that lists a group of methods but does not implement them. Everyone (or just
about everyone) inherits from the same root object, so informal categories are often
defined for the root class. Sometimes informal protocols are also referred to as abstract
protocols.

If you look at the header file <NSScriptWhoseTests.h>, you might find some method
declarations that look like this:

@interface NSObject (NSComparisonMethods)
- (BOOL)isEqualTo:(id)object;
- (BOOL)isLessThanOrEqualTo:(id)object;
- (BOOL)isLessThan:(id)object;
- (BOOL)isGreaterThanOrEqualTo:(id)object;
- (BOOL)isGreaterThan:(id)object;
- (BOOL)isNotEqualTo:(id)object;
- (BOOL)doesContain:(id)object;
- (BOOL)isLike:(NSString *)object;
- (BOOL)isCaseInsensitiveLike:(NSString *)object;
@end

This defines a category called NSComparisonMethods for the NSObject class.This
informal protocol lists a group of methods (here, nine are listed) that can be implemented
as part of this protocol.An informal protocol is really no more than a grouping of meth-
ods under a name.This can help somewhat from the point of documentation and modu-
larization of methods.

ptg999

230 Chapter 11 Categories and Protocols

The class that declares the informal protocol doesn’t implement the methods in the
class itself, and a subclass that chooses to implement the methods needs to redeclare them
in its interface section, as well as implement one or more of them. Unlike formal proto-
cols, the compiler gives no help with informal protocols; there’s no concept of confor-
mance or testing by the compiler.

If an object adopts a formal protocol, the object must conform to all the required mes-
sages in the protocol.This can be enforced at runtime as well as compile time. If an object
adopts an informal protocol, the object might not need to adopt all methods in the proto-
col, depending on the protocol. Conformance to an informal protocol can be enforced at
runtime (via respondsToSelector:) but not at compile time.

Note
The previously-described @optional directive that was added to the Objective-C 2.0 lan-
guage is meant to replace the use of informal protocols. You can see this used for several
of the UIKit classes (UIKit is part of the Cocoa Touch framework).

Composite Objects
You’ve learned several ways to extend the definition of a class through techniques such as
subclassing and using categories.Another technique involves defining a class that consists
of one or more objects from other classes.An object from this new class is known as a
composite object because it is composed of other objects.

As an example, consider the Square class you defined in Chapter 8,“Inheritance.” You
defined this as a subclass of a Rectangle because you recognized that a square was just a
rectangle with equal sides.When you define a subclass, it inherits all the instance variables
and methods of the parent class. In some cases, this is undesirable—for example, some of
the methods defined in the parent class might not be appropriate for use by the subclass.
The Rectangle’s setWidth:andHeight: method is inherited by the Square class but
really does not apply to a square (even though it will work properly). Furthermore, when
you create a subclass, you must ensure that all the inherited methods work properly
because users of the class will have access to them. Finally, a subclass is dependent on the
parent class. Changes to the parent class might unintentionally make methods in the sub-
class cease to work.

As an alternative to subclassing, you can define a new class that contains as one of its
instance variables an object from the class you want to extend.Then you have to define
only those methods in the new class that are appropriate for that class. Getting back to the
Square example, here’s an alternative way to define a Square:

@interface Square: NSObject
{

Rectangle *rect;
}
-(int) setSide: (int) s;
-(int) side;
-(int) area;

tim

ptg999

231Exercises

-(int) perimeter;
@end

The Square class is defined here with four methods. Unlike the subclass version,
which gives you direct access to the Rectangle’s methods (setWidth:, setHeight:,
setWidth:andHeight:, width, and height), those methods are not in this definition for a
Square.That makes sense here because those methods really don’t fit in when you deal
with squares.

If you define your Square this way, it becomes responsible for allocating the memory
for the rectangle it contains. For example, without overriding methods, the statement

Square *mySquare = [[Square alloc] init];

allocates a new Square object but does not allocate a Rectangle object stored in its
instance variable, rect.

A solution is to override init or add a new method such as initWithSide: to do the
allocation.That method can allocate the Rectangle rect and set its side appropriately.

When defining your methods in your Square class, you can still take advantage of the
Rectangle’s methods. For example, here’s how you could implement the area method:

-(int) area
{
return [rect area];

}

Implementing the remaining methods is left as an exercise for you (see Exercise 5,
which follows).

Exercises
1. Extend the MathOps category from Program 11.1 to also include an invert

method, which returns a Fraction that is an inversion of the receiver.

2. Add a category to the Fraction class called Comparison. In this category, add two
methods according to these declarations:
-(BOOL) isEqualTo: (Fraction *) f;
-(int) compare: (Fraction *) f;

The first method should return YES if the two fractions are identical and should
return NO otherwise. Be careful about comparing fractions (for example, compar-
ing 3/4 to 6/8 should return YES).

The second method should return –1 if the receiver compares less than the fraction
represented by the argument, return 0 if the two are equal, and return 1 if the
receiver is greater than the argument.

3. Extend the Fraction class by adding methods that conform to the informal proto-
col NSComparisonMethods, as listed earlier in this chapter. Implement the first six

ptg999

232 Chapter 11 Categories and Protocols

methods from that protocol (isEqualTo:,isLessThanOrEqualTo:,isLessThan:,

isGreaterThanOrEqualTo:,isGreaterThan:,isNotEqualTo:) and test them.

4. The functions sin(), cos(), and tan() are part of the Standard C Library (as
scanf () is).These functions are declared in the system header file math.h, which
is automatically imported into your program when you import Foundation.h.

You can use these functions to calculate the sine, cosine, or tangent, respectively, of
their double argument, which is expressed in radians.The result is also returned as a
double precision floating-point value. So you can use this line to calculate the sine
of d, with the angle d expressed in radians:
result = sin (d);

Add a category called Trig to the Calculator class defined in Chapter 6,“Making
Decisions.”Add methods to this category to calculate the sine, cosine, and tangent
based on these declarations:
-(double) sin;
-(double) cos;
-(double) tan;

5. Given the discussion on composite objects from this chapter and the following
interface and implementation sections:
@interface Square: NSObject
-(Square *) initWithSide: (int) s;
-(void) setSide: (int) s;
-(int) side;
-(int) area;
-(int) perimeter;
@end

#import "Rectangle.h"
@implementation Square
{

Rectangle *rect;
}
// Insert Square methods here
...
@end

Complete the implementation section for a Square and a test program to check its
methods. Note: make sure you remember to override init as well, because
initWithSide: will be your designated initializer.

ptg999

12
The Preprocessor

The preprocessor provides the tools that enable you to develop programs that are easier
to develop, read, modify, and port to different systems.You can also use the preprocessor to
literally customize the Objective-C language to suit a particular programming application
or your own programming style.

The preprocessor is a part of the Objective-C compilation process that recognizes spe-
cial statements that can be interspersed throughout a program.As its name implies, the
preprocessor actually processes these statements before analysis of the Objective-C pro-
gram itself takes place. Preprocessor statements are identified by the presence of a pound
sign (#), which must be the first nonspace character on the line.As you will see, pre-
processor statements have a syntax that is slightly different from that of normal Objective-
C statements.We begin by examining the #define statement.

The #define Statement
One of the primary uses of the #define statement is to assign symbolic names to pro-
gram constants.The preprocessor statement

#define TRUE 1

defines the name TRUE and makes it equivalent to the value 1.The name TRUE can subse-
quently be used anywhere in the program where the constant 1 could be used.Whenever
this name appears, the preprocessor automatically substitutes its defined value of 1 into
the program. For example, you might have the following Objective-C statement that uses
the defined name TRUE:

gameOver = TRUE;

This statement assigns the value of TRUE to gameOver.You don’t need to concern
yourself with the actual value you defined for TRUE, but because you do know that you
defined it to be 1, the preceding statement would have the effect of assigning 1 to
gameOver.The preprocessor statement

#define FALSE 0

tim

ptg999

234 Chapter 12 The Preprocessor

defines the name FALSE and makes its subsequent use in the program equivalent to speci-
fying the value 0.Therefore, the statement

gameOver = FALSE;

assigns the value of FALSE to gameOver, and the statement

if (gameOver == FALSE)
...

compares the value of gameOver against the defined value of FALSE.
A defined name is not a variable.Therefore, you cannot assign a value to it unless the

result of substituting the defined value is a variable.Whenever a defined name is used in a
program, the preprocessor automatically substitutes into the program whatever appears to
the right of the defined name in the #define statement. It’s analogous to doing a search
and replace with a text editor; in this case, the preprocessor replaces all occurrences of the
defined name with its associated text.

Notice that the #define statement has a special syntax: No equals sign is used to assign
the value 1 to TRUE. Furthermore, a semicolon does not appear at the end of the state-
ment. Soon you will understand why this special syntax exists.

#define statements are often placed toward the beginning of the program, after
#import or #include statements.This is not required; they can appear anywhere in the
program. However, a name must be defined before it is referenced by the program.
Defined names do not behave like variables:There is no such thing as a local define.After
a name has been defined, it can subsequently be used anywhere in the program. Most pro-
grammers place their defines inside header files so they can be used by more than one
source file.

As another example of the use of a defined name, suppose you wanted to write two
methods to find the area and circumference of a Circle object. Because both of these
methods need to use the constant π, which is not a particularly easy constant to remem-
ber, it might make sense to define the value of this constant once at the start of the pro-
gram and then use this value where necessary in each method.

So you could include the following in your program:

#define PI 3.141592654

Then you could use it in your two Circle methods (this assumes that the Circle class
has an instance variable called radius) like this:

-(double) area
{

return PI * radius * radius;
}

-(double) circumference
{

return 2.0 * PI * radius;
}

ptg999

235The #define Statement

(Note: we acknowledge that there is already a predefined symbol called M_PI that you
can use whenever you need the value of π.) Assigning a constant to a symbolic name frees
you from having to remember the particular constant value every time you want to use it
in a program. Furthermore, if you ever need to change the value of the constant (if per-
haps you found out that you were using the wrong value, for example), you would have
to change the value in only one place in the program: in the #define statement.Without
this approach, you would have to search throughout the program and explicitly change
the value of the constant whenever it was used.

You might have realized that all the defines shown so far (TRUE, FALSE, and PI) have
been written in capital letters.This is done to visually distinguish a defined value from a
variable. Some programmers adopt the convention that all defined names be capitalized, so
that determining when a name represents a variable or an object, a class name, or a defined
name is easy.Another common convention is to prefix the define with the letter k. In that
case, the following characters of the name are not capitalized. kMaximumValues and
kSignificantDigits are examples of two defined names that adhere to this convention.

Using a defined name for a constant value helps make programs more readily extend-
able. For example, when you learn how to work with arrays, instead of hard-coding in the
size of the array you want to allocate, you can define a value as follows:

#define MAXIMUM_DATA_VALUES 1000

Then you can base all references on the array’s size (such as allocation of the array in
memory) and valid indexes into this array on this defined value.

Also, if the program were written to use MAXIMUM_DATA_VALUES in all cases where the
size of the array was used, the preceding definition could be the only statement in the
program that would have to be changed if you later needed to change the array size.

More Advanced Types of Definitions
A definition for a name can include more than a simple constant value. It can include an
expression and, as you will see shortly, just about anything else!

The following defines the name TWO_PI as the product of 2.0 and 3.141592654:

#define TWO_PI 2.0 * 3.141592654

You can subsequently use this defined name anywhere in a program where the expres-
sion 2.0 * 3.141592654 would be valid. So you could replace the return statement of
the circumference method from the previous example with the following statement:

return TWO_PI * radius;

Whenever a defined name is encountered in an Objective-C program, everything that
appears to the right of the defined name in the #define statement is literally substituted
for the name at that point in the program.Thus, when the preprocessor encounters the
name TWO_PI in the return statement shown previously, it substitutes for this name
whatever appeared in the #define statement for this name.Therefore, the preprocessor

ptg999

236 Chapter 12 The Preprocessor

literally substitutes 2.0 * 3.141592654 whenever the defined name TWO_PI occurs in the
program.

The fact that the preprocessor performs a literal text substitution whenever the defined
name occurs explains why you don’t usually want to end your #define statement with a
semicolon. If you did, the semicolon would also be substituted into the program wherever
the defined name appeared. If you had defined PI as

#define PI 3.141592654;

and then written

return 2.0 * PI * r;

the preprocessor would replace the occurrence of the defined name PI by 3.141592654;.
The compiler would therefore see this statement as

return 2.0 * 3.141592654; * r;

after the preprocessor had made its substitution, which would result in a syntax error.
Remember not to put a semicolon at the end of your define statements unless you’re
really sure you want one there.

A preprocessor definition does not have to be a valid Objective-C expression in its
own right, as long as the resulting expression is valid wherever it is used. For instance, you
could set up these definitions:

#define AND &&
#define OR ||

Then you could write expressions such as

if (x > 0 AND x < 10)
...

and

if (y == 0 OR y == value)
...

You could even include a #define for the equality test:

#define EQUALS ==

Then, you could write the following statement:

if (y EQUALS 0 OR y EQUALS value)
...

This removes the very real possibility of mistakenly using a single equals sign for the
equality test.

Although these examples illustrate the power of the #define, you should note that it
is commonly considered bad programming practice to redefine the syntax of the underly-
ing language in such a manner. Plus, it makes it harder for someone else to understand
your code.

ptg999

237The #define Statement

To make things even more interesting, a defined value can itself reference another
defined value. So these two #define lines are perfectly valid:

#define PI 3.141592654
#define TWO_PI 2.0 * PI

The name TWO_PI is defined in terms of the previously defined name PI, thus obviat-
ing the need to spell out the value 3.141592654 again.

Reversing the order of the defines, as in this example, is also valid:

#define TWO_PI 2.0 * PI
#define PI 3.141592654

The rule is that you can reference other defined values in your definitions as long as
everything is defined at the time the defined name is used in the program.

Good use of #defines often reduces the need for comments within the program.
Consider the following statement:

if (year % 4 == 0 && year % 100 != 0 || year % 400 == 0)
...

This expression tests whether the variable year is a leap year. Now consider the follow-
ing #define statement and the subsequent if statement:

#define IS_LEAP_YEAR year % 4 == 0 && year % 100 != 0 \
|| year % 400 == 0

...
if (IS_LEAP_YEAR)
...

Normally, the preprocessor assumes that a definition is contained on a single line of
the program. If a second line is needed, the last character on the line must be a backslash
character.This character signals a continuation to the preprocessor and is otherwise
ignored.The same holds true for more than one continuation line; each line to be contin-
ued must end with a backslash character.

The preceding if statement is far easier to understand than the one shown directly
before it. No comment is needed because the statement is self-explanatory. Of course, the
definition restricts you to testing the variable year to see whether it’s a leap year. It would
be nice if you could write a definition to see whether any year were a leap year, not just
the variable year.Actually, you can write a definition to take one or more arguments,
which leads us to our next point of discussion.

IS_LEAP_YEAR can be defined to take an argument called y, as follows:

#define IS_LEAP_YEAR(y) y % 4 == 0 && y % 100 != 0 \
|| y % 400 == 0

Unlike in a method definition, you do not define the type of the argument y here
because you are merely performing a literal text substitution—you are not calling a

ptg999

238 Chapter 12 The Preprocessor

function. Note that when defining a name with arguments, no spaces are permitted
between the defined name and the left parenthesis of the argument list.

With the previous definition, you can write a statement such as the following:

if (IS_LEAP_YEAR (year))
...

This tests whether the value of year is a leap year. Or you could write this to test
whether the value of nextYear is a leap year:

if (IS_LEAP_YEAR (nextYear))
...

In the preceding statement, the definition for IS_LEAP_YEAR is directly substituted
inside the if statement, with the argument nextYear replacing y wherever it appears in
the definition. So the compiler would actually see the if statement as follows:

if (nextYear % 4 == 0 && nextYear % 100 != 0 || nextYear % 400 == 0)
...

Definitions are frequently called macros.This terminology is more often applied to def-
initions that take one or more arguments.

This macro, called SQUARE, simply squares its argument:

#define SQUARE(x) x * x

Although the macro definition for SQUARE is straightforward, you must avoid an inter-
esting pitfall when defining macros.As we have described, the statement

y = SQUARE (v);

assigns the value of v2 to y.Think about what would happen in the case of the following
statement:

y = SQUARE (v + 1);

This statement does not assign the value of (v + 1)2 to y, as you would expect.
Because the preprocessor performs a literal text substitution of the argument into the
macro definition, the preceding expression is actually evaluated as follows:

y = v + 1 * v + 1;

This obviously does not produce the expected results.To handle this situation properly,
parentheses are needed in the definition of the SQUARE macro:

#define SQUARE(x) ((x) * (x))

Even though the previous definition might look strange, remember that the entire
expression as given to the SQUARE macro is literally substituted wherever x appears in the
definition.With your new macro definition for SQUARE, the statement

y = SQUARE (v + 1);

ptg999

239The #define Statement

is then correctly evaluated as

y = ((v + 1) * (v + 1));

The following macro lets you easily create new fractions from your Fraction class on
the fly:

#define MakeFract(x,y) ([[Fraction alloc] initWith: x over: y])

Then you can write expressions such as

myFract = MakeFract (1, 3); // Make the fraction 1/3

The conditional expression operator can be particularly handy when defining macros.
The following defines a macro called MAX that gives the maximum of two values:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

This macro enables you to subsequently write statements such as this:

limit = MAX (x + y, minValue);

This assigns to limit the maximum of x + y and minValue. Parentheses are placed
around the entire MAX definition to ensure that an expression such as this is evaluated
properly:

MAX (x, y) * 100

Parentheses are individually placed around each argument to ensure that expressions
such as the following are correctly evaluated:

MAX (x & y, z)

The & operator is the bitwise AND operator, and it has lower precedence than the >
operator used in the macro.Without the parentheses in the macro definition, the > opera-
tor would be evaluated before the bitwise AND, producing the incorrect result.

The following macro tests whether a character is a lowercase letter:

#define IS_LOWER_CASE(x) (((x) >= 'a') && ((x) <= 'z'))

It thereby permits you to write expressions such as this:

if (IS_LOWER_CASE (c))
...

You can even use this macro in another macro definition to convert a character from
lower case to upper case, leaving any nonlowercase character unchanged:

#define TO_UPPER(x) (IS_LOWER_CASE (x) ? (x) - 'a' + 'A' : (x))

Again, you are dealing with a standard ASCII character set here.When you learn about
Foundation string objects in Part II, you’ll see how to perform case conversion that will
work for international (Unicode) character sets as well.

ptg999

240 Chapter 12 The Preprocessor

The #import Statement
When you have programmed in Objective-C for a while, you will find yourself develop-
ing your own set of macros, which you will want to use in each of your programs. But
instead of having to type these macros into each new program you write, the preprocessor
enables you to collect all your definitions into a separate file and then include them in
your program, using the #import statement.These files—similar to the ones you’ve previ-
ously encountered but haven’t written yourself—normally end with the characters .h and
are referred to as header or include files.

Suppose you were writing a series of programs for performing various metric conver-
sions.You might want to set up some #define statements for the various constants you
would need for performing your conversions:

#define INCHES_PER_CENTIMETER 0.394
#define CENTIMETERS_PER_INCH (1 / INCHES_PER_CENTIMETER)

#define QUARTS_PER_LITER 1.057
#define LITERS_PER_QUART (1 / QUARTS_PER_LITER)

#define OUNCES_PER_GRAM 0.035
#define GRAMS_PER_OUNCE (1 / OUNCES_PER_GRAM)
...

Suppose you entered the previous definitions into a separate file on the system called
metric.h.Any program that subsequently needed to use any of the definitions contained
in the metric.h file could do so by simply issuing this preprocessor directive:

#import "metric.h"

This statement must appear before any of the #define statements contained in
metric.h are referenced and is typically placed at the beginning of the source file.The
preprocessor looks for the specified file on the system and effectively copies the contents
of the file into the program at the precise point at which the #import statement appears.
So any statements inside the file are treated just as if they had been directly typed into the
program at that point.

The double quotation marks around the header filename instruct the preprocessor to
look for the specified file in one or more file directories (typically, first in the directory
that contains the source file, but the actual places the preprocessor searches can be speci-
fied in Xcode).

Enclosing the filename within the characters < and > instead, as in

#import <Foundation/Foundation.h>

causes the preprocessor to look for the include file only in the special “system” header
file directory or directories; the current directory will not be searched.Again, with
Xcode, you can specify the directories to be searched.

ptg999

241Conditional Compilation

One of the nicest things about the import file capability is that it enables you to cen-
tralize your definitions, thus ensuring that all programs reference the same value. Further-
more, errors discovered in one of the values contained in the include file need be
corrected in only that one spot, thus eliminating the need to correct every program that
uses the value.Any program that referenced the incorrect value would simply have to be
recompiled and would not have to be edited.

Conditional Compilation
The Objective-C preprocessor offers a feature known as conditional compilation. Condi-
tional compilation is often used to create one program that can be compiled to run on
different computer systems. It is also often used to switch on or off various statements in
the program, such as debugging statements that print the values of variables or trace the
flow of program execution.

The #ifdef, #endif, #else, and #ifndef Statements
Unfortunately, a program sometimes must rely on system-dependent parameters that
need to be specified differently on different devices (for example, an iPhone versus an
iPad) or on a particular version of the operating system (for example, Leopard versus
Snow Leopard).

If you had a large program that had many such dependencies on the particular hard-
ware and/or software of the computer system (you should minimize this as much as pos-
sible), you might end up with many values that would have to be changed to run in the
other environment.

You can help reduce the problem of having to change these values and can incorpo-
rate into the program the values of these defines for each different machine by using the
conditional compilation capabilities of the preprocessor.As a simple example, the follow-
ing statements have the effect of defining kImageFile to @"barnHD.png" if the symbol
IPAD has been previously defined, and to

#ifdef IPAD
define kImageFile @"barnHD.png"
#else
define kImageFile @"barn.png"
#endif

As you can see here, you are allowed to put one or more spaces after the # that begins
a preprocessor statement.

The #ifdef, #else, and #endif statements behave as you would expect. If the symbol
specified on the #ifdef line has been already defined—through a #define statement or
through the command line when the program is compiled—the compiler processes lines
that follow up to a #else, #elif, or #endif; otherwise, they are ignored.

To define the symbol IPAD to the preprocessor, the statement

#define IPAD 1

ptg999

242 Chapter 12 The Preprocessor

or even just

#define IPAD

will suffice.As you can see, no text at all has to appear after the defined name to satisfy
the #ifdef test.The compiler also permits you to define a name to the preprocessor
when the program is compiled by using a special option to the compiler command.The
command line

gcc –framework Foundation -D IPAD program.m –

defines the name IPAD to the preprocessor, causing all #ifdef IPAD statements inside
program.m to evaluate as TRUE (note that you must type the -D IPAD before the program
name on the command line).This technique enables you to define names without having
to edit the source program.

In Xcode, you add new defined names and specify their values by selecting Build Set-
tings,All,Apple LLVM compiler 3.0 – Preprocessing, Preprocessor Macros.You can see a
screen shot of the symbols IPAD and DEBUG (defined as 1) set in Xcode 4 in Figure 12.1.

The #ifndef statement follows along the same lines as the #ifdef.This statement is
used in a similar way, except that it causes the subsequent lines to be processed if the indi-
cated symbol is not defined.

As already mentioned, conditional compilation is useful when debugging programs.
You might have many NSLog calls embedded in your program that are used to display

Figure 12.1 Defining the preprocessor identifier IPAD

ptg999

243Conditional Compilation

intermediate results and trace the flow of execution.You can turn on these statements by
conditionally compiling them into the program if a particular name, such as DEBUG, is
defined. For example, you could use a sequence of statements such as the following to
display the value of some variables only if the program had been compiled with the name
DEBUG defined:

#ifdef DEBUG
NSLog (@"User name = %s, id = %i", userName, userId);

#endif

You might have many such debugging statements throughout the program.Whenever
the program is being debugged, it can be compiled with DEBUG defined to have all the
debugging statements compiled.When the program is working correctly, it can be recom-
piled without DEBUG defined.This has the added benefit of reducing the size of the pro-
gram because all your debugging statements are not compiled in.

The #if and #elif Preprocessor Statements
The #if preprocessor statement offers a more general way of controlling conditional
compilation.The #if statement can be used to test whether a constant expression evalu-
ates to nonzero. If the result of the expression is nonzero, subsequent lines up to a #else,
#elif, or #endif are processed; otherwise, they are skipped.

As an example of how this can be used, the following lines appear in the Foundation
header file NSString.h:
#if MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_5
#define NSMaximumStringLength (INT_MAX-1)
#endif

This tests the value of the defined variable MAC_OS_X_VERSION_MIN_REQUIRED against
the defined variable MAC_OS_X_VERSION_10_5. If the former is less than the latter, the
#define that follows is processed; otherwise, it is skipped. Presumably, this sets the maxi-
mum length of a string to the maximum size of an integer minus 1 if the program is
being compiled on Mac OS X 10.5 or later versions.

The special operator

defined (name)

can also be used in #if statements.This set of preprocessor statements does the same
thing:

#if defined (DEBUG)
...

#endif

and

#ifdef DEBUG
...

#endif

ptg999

244 Chapter 12 The Preprocessor

The following statements appear in the NSObjcRuntime.h header file for the purpose
of defining NS_INLINE (if it’s not previously defined) based on the particular compiler
that is being used:

#if !defined(NS_INLINE)
#if defined(__GNUC__)

#define NS_INLINE static __inline_attribute_((always_inline))
#elif defined(__MWERKS__) || defined(__cplusplus)

#define NS_INLINE static inline
#elif defined(_MSC_VER)

#define NS_INLINE static __inline
#elif defined(__WIN32__)

#define NS_INLINE static __inline__
#endif

#endif

Another common use of #if is in code sequences that look like this:

#if defined (DEBUG) && DEBUG
...
#endif

This causes the statements after the #if and up to the #endif to be processed only if
DEBUG is defined and has a nonzero value.

Because expressions can be used and because 0 is always false, programmers (myself
included) will often comment out a block of code by enveloping it inside a #if 0 ...
#endif pair of preprocessor statements.

The #undef Statement
Sometimes you need to cause a defined name to become undefined.You do this with the
#undef statement.To remove the definition of a particular name, you write the following:

#undef name

Thus, this statement removes the definition of IPAD:

#undef IPAD

Subsequent #ifdef IPAD or #if defined (IPAD) statements evaluate to FALSE.
This concludes our discussion on the preprocessor.

ptg999

245Exercises

Exercises
1. Locate the system header files limits.h and float.h on your machine. Examine

the files to see what’s in them. If these files include other header files, be sure to
track them down as well, to examine their contents.

2. Define a macro called MIN that gives the minimum of two values.Then write a pro-
gram to test the macro definition.

3. Define a macro called MAX3 that gives the maximum of three values.Write a pro-
gram to test the definition.

4. Write a macro called IS_UPPER_CASE that gives a nonzero value if a character is an
uppercase letter.

5. Write a macro called IS_ALPHABETIC that gives a nonzero value if a character is an
alphabetic character. Have the macro use the IS_LOWER_CASE macro defined in the
chapter text and the IS_UPPER_CASE macro defined in Exercise 4.

6. Write a macro called IS_DIGIT that gives a nonzero value if a character is a digit 0
through 9. Use this macro in the definition of another macro called IS_SPECIAL,
which gives a nonzero result if a character is a special character (that is, not alpha-
betic and not a digit). Be sure to use the IS_ALPHABETIC macro developed in
Exercise 5.

7. Write a macro called ABSOLUTE_VALUE that computes the absolute value of its argu-
ment. Make sure that the macro properly evaluates an expression such as this:
ABSOLUTE_VALUE (x + delta)

ptg999

This page intentionally left blank

ptg999

13
Underlying C Language

Features

This chapter describes features of the Objective-C language that you don’t necessarily
need to know to write Objective-C programs. In fact, most of these come from the
underlying C programming language. Features such as functions, structures, pointers,
unions, and arrays are best learned on a need-to-know basis. Because C is a procedural
language, some of these features go against the grain of object-oriented programming.
They can also interfere with some of the strategies implemented by the Foundation
framework, such as the memory allocation methodology or work with character strings
containing multibyte characters.

Note
There are ways to work with multibyte characters at the C level, but Foundation provides a
much more elegant solution with its NSString class.

On the other hand, some applications can require you to use a lower-level approach,
perhaps for the sake of optimization. If you’re working with large arrays of data, for
example, you might want to use the built-in data structures of C instead of the array
objects of Foundation (which are described in Chapter 15,“Numbers, Strings, and Col-
lections”). Functions also come in handy if used properly to group repetitive operations
and modularize a program.

Skim this chapter to get an overview of the material, and come back after you’ve fin-
ished reading Part II,“The Foundation Framework.” Or you can skip it altogether and go
on to Part II, which covers the Foundation framework. If you end up supporting some-
one else’s code or start digging through some of the Foundation framework header files,
you will encounter some of the constructs covered in this chapter. Several of the Founda-
tion data types, such as NSRange, NSPoint, and NSRect, require a rudimentary understand-
ing of structures, which are described here. In such cases, you can return to this chapter
and read the appropriate section to gain an understanding of the concepts.

ptg999

248 Chapter 13 Underlying C Language Features

Arrays
The Objective-C language enables the user to define a set of ordered data items known as
an array.This section describes how to define and manipulate arrays. Later sections illus-
trate how arrays work together with functions, structures, character strings, and pointers.

Suppose you wanted to read a set of grades into the computer and then perform some
operations on these grades, such as rank them in ascending order, compute their average,
or find their median. In the process of ranking a set of grades, you cannot perform such
an operation until you enter every grade.

In Objective-C, you can define a variable called grades that represents not a single
value of a grade, but an entire set of grades.You can then reference each element of the
set using a number called an index number, or subscript.Whereas in mathematics a sub-
scripted variable, xi, refers to the ith element x in a set, in Objective-C the equivalent
notation is this:

x[i]

So the expression

grades[5]

(read as “grades sub 5”) refers to element number 5 in the array called grades. In Objec-
tive-C, array elements begin with the number 0, so

grades[0]

actually refers to the first element of the array.
You can use an individual array element anywhere that you can use a normal vari-

able. For example, you can assign an array value to another variable with a statement
such as this:

g = grades[50];

This statement assigns the value contained in grades[50] to g. More generally, if i is
declared to be an integer variable, the statement

g = grades[i];

assigns the value contained in element number i of the grades array to g.
A value can be stored in an element of an array simply by specifying the array element

on the left side of an equals sign. In the statement

grades[99] = 95;

the value 95 is stored in element number 99 of the grades array.
You can easily sequence through the elements in the array by varying the value of a

variable that is used as a subscript into the array.Therefore, the for loop

for (i = 0; i < 100; ++i)
sum += grades[i];

ptg999

249Arrays

sequences through the first 100 elements of the array grades (elements 0–99) and adds
the value of each grade into sum.When the for loop is finished, the variable sum contains
the total of the first 100 values of the grades array (assuming that sum was set to 0 before
the loop was entered).

As with other types of variables, you must declare arrays before you can use them.
Declaring an array involves declaring the type of element that will be contained in the
array, such as int, float, or an object, as well as the maximum number of elements that
will be stored inside the array.

The definition

Fraction *fracts [100];

defines fracts to be an array containing 100 fractions.You can make valid references to
this array by using subscripts 0–99.

The expression

fracts[2] = [fracts[0] add: fracts[1]];

invokes the Fraction’s add: method to add the first two fractions from the fracts array
and stores the result in the third location of the array.

Program 13.1 generates a table of the first 15 Fibonacci numbers.Try to predict its
output.What relationship exists between each number in the table?

Program 13.1

// Program to generate the first 15 Fibonacci numbers
#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int Fibonacci[15], i;

Fibonacci[0] = 0; /* by definition */
Fibonacci[1] = 1; /* ditto */

for (i = 2; i < 15; ++i)
Fibonacci[i] = Fibonacci[i-2] + Fibonacci[i-1];

for (i = 0; i < 15; ++i)
NSLog (@"%i", Fibonacci[i]);

}
return 0;

}

ptg999

250 Chapter 13 Underlying C Language Features

Program 13.1 Output

0
1
1
2
3
5
8
13
21
34
55
89
144
233
377

The first two Fibonacci numbers, which we call F0 and F1, are defined to be 0 and 1,
respectively.Thereafter, each successive Fibonacci number Fi is defined to be the sum of
the two preceding Fibonacci numbers Fi-2 and Fi-1. So F2 is calculated by adding the
values of F0 and F1. In the preceding program, this corresponds directly to calculating
Fibonacci[2] by adding the values Fibonacci[0] and Fibonacci[1].This calculation is
performed inside the for loop, which calculates the values of F2–F14 (or, equivalently,
Fibonacci[2] through Fibonacci[14]).

Initializing Array Elements
Just as you can assign initial values to variables when they are declared, you can assign ini-
tial values to the elements of an array.This is done by simply listing the initial values of
the array, starting from the first element.Values in the list are separated by commas, and
the entire list is enclosed in a pair of braces.

The statement

int integers[5] = { 0, 1, 2, 3, 4 } ;

sets the value of integers[0] to 0, integers[1] to 1, integers[2] to 2, and so on.
Arrays of characters are initialized in a similar manner; thus, the statement

char letters[5] = { 'a', 'b', 'c', 'd', 'e' } ;

defines the character array letters and initializes the five elements to the characters 'a',
'b', 'c', 'd', and 'e', respectively.

You don’t have to completely initialize an entire array. If fewer initial values are speci-
fied, only an equal number of elements are initialized; the remaining values in the array
are set to zero.Thus, the declaration

float sample_data[500] = { 100.0, 300.0, 500.5 } ;

initializes the first three values of sample_data to 100.0, 300.0, and 500.5 and sets the
remaining 497 elements to 0.

ptg999

251Arrays

By enclosing an element number in a pair of brackets, you can initialize specific array
elements in any order. For example,

int x = 1233;
int a[] = { [9] = x + 1, [2] = 3, [1] = 2, [0] = 1 } ;

defines a 10-element array called a (based on the highest index in the array) and initial-
izes the last element to the value of x + 1 (1234). In addition, it initializes the first three
elements to 1, 2, and 3, respectively.

Character Arrays
Program 13.2 illustrates how you can use a character array. However, one point is worthy
of discussion. Can you spot it?

Program 13.2

#import <Foundation/Foundation.h>

int main (int argc, char *argv[])
{

@autoreleasepool {
char word[] = { 'H', 'e', 'l', 'l', 'o', '!' } ;
int i;

for (i = 0; i < 6; ++i)
NSLog (@"%c", word[i]);

}
return 0;

}

Program 13.2 Output

H
e
l
l
o
!

In this case, the size of the array is determined automatically based on the number of
initialization elements. Because Program 13.2 has six initial values listed for the array
word, the Objective-C language implicitly dimensions the array to six elements.

This approach works fine as long as you initialize every element in the array at the
point that the array is defined. If this is not to be the case, you must explicitly dimension
the array.

ptg999

252 Chapter 13 Underlying C Language Features

If you put a terminating null character ('\0') at the end of a character array, you create
what is often called a character string. If you substituted the initialization of word in
Program 13.2 with this line

char word[] = { 'H', 'e', 'l', 'l', 'o', '!', '\0' } ;

you could have subsequently displayed the string with a single NSLog call, like this:

NSLog (@"%s", word);

This works because the %s format characters tell NSLog to keep displaying characters
until a terminating null character is reached.That’s the character you put at the end of
your word array.

Multidimensional Arrays
The types of arrays you’ve seen thus far are all linear arrays—that is, they all deal with a
single dimension.The language enables you to define arrays of any dimension.This sec-
tion takes a look at two-dimensional arrays.

One of the most natural applications for a two-dimensional array arises in the case of a
matrix. Consider the 4 × 5 matrix shown here:

10 5 –3 17 82

9 0 0 8 –7

32 20 1 0 14

0 0 8 7 6

Row (i) Column (j)

0 1 2 3 4

0 10 5 –3 17 82

1 9 0 0 8 –7

2 32 20 1 0 14

3 0 0 8 7 6

In mathematics, an element of a matrix commonly is referred to by using a double
subscript. If the preceding matrix were called M, the notation Mi,j would refer to the ele-
ment in the ith row, jth column, where i ranges from 1 through 4 and j ranges from 1
through 5.The notation M3,2 would refer to the value 20, which is found in the third
row, second column of the matrix. In a similar fashion, M4,5 would refer to the element
contained in the fourth row, fifth column (the value 6).

In Objective-C, an analogous notation is used when referring to elements of a two-
dimensional array. However, because Objective-C likes to start numbering things at 0, the
first row of the matrix is actually row 0 and the first column of the matrix is column 0.
The preceding matrix would then have row and column designations as shown in the fol-
lowing diagram:

ptg999

253Arrays

Whereas in mathematics the notation Mi,j is used, in Objective-C the equivalent nota-
tion is as follows:

M[i][j]

Remember, the first index number refers to the row number, whereas the second
index number references the column.Therefore, the statement

sum = M[0][2] + M[2][4];

adds the value contained in row 0, column 2 (which is -3) to the value contained in row
2, column 4 (which is 14) and assigns the result of 11 to the variable sum.

Two-dimensional arrays are declared the same way that one-dimensional arrays are; thus,

int M[4][5];

declares the array M to be a two-dimensional array consisting of 4 rows and 5 columns,
for a total of 20 elements. Each position in the array is defined to contain an integer
value.

Two-dimensional arrays can be initialized in a manner analogous to their one-
dimensional counterparts.When listing elements for initialization, the values are listed by
row. Brace pairs are used to separate the list of initializers for one row from the next.
Thus, to define and initialize the array M to the elements listed in the preceding table,
you can use a statement such as the following:

int M[4][5] = {
{ 10, 5, -3, 17, 82 } ,
{ 9, 0, 0, 8, -7 } ,
{ 32, 20, 1, 0, 14 } ,
{ 0, 0, 8, 7, 6 }

} ;

Pay particular attention to the syntax of the previous statement. Note that commas are
required after each brace that closes off a row, except in the case of the last row.The use of
the inner pairs of braces is actually optional. If these aren’t supplied, initialization proceeds
by row.Therefore, the previous statement could also have been written as follows:

int M[4][5] = { 10, 5, -3, 17, 82, 9, 0, 0, 8, -7, 32,
20, 1, 0, 14, 0, 0, 8, 7, 6 } ;

ptg999

254 Chapter 13 Underlying C Language Features

As with one-dimensional arrays, the entire array need not be initialized.A statement
such as the following initializes only the first three elements of each row of the matrix to
the indicated values:

int M[4][5] = {
{ 10, 5, -3 } ,
{ 9, 0, 0 } ,
{ 32, 20, 1 } ,
{ 0, 0, 8 }

} ;

The remaining values are set to 0. Note that, in this case, the inner pairs of braces are
required to force the correct initialization.Without them, the first two rows and the first
two elements of the third row would have been initialized instead. (Verify for yourself
that this would be the case.)

Functions
The NSLog routine is an example of a function that you have used in every program so
far. Indeed, every program also has used a function called main. Let’s go back to the first
program you wrote (Program 2.1), which displayed the phrase “Programming is fun.” at
the terminal:

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSLog (@"Programming is fun.");

}
return 0;

}

This function, called printMessage, produces the same output:

void printMessage (void)
{

NSLog (@"Programming is fun.");
}

The first line of a function definition tells the compiler four things about the function:

n Who can call it
n The type of value it returns
n Its name
n The number and type of arguments it takes

ptg999

255Functions

The first line of the printMessage function definition tells the compiler that
printMessage is the name of the function and that it returns no value (the first use of the
keyword void). Unlike methods, you don’t put the function’s return type inside a set of
parentheses. In fact, you get a compiler error message if you do.

After telling the compiler that printMessage doesn’t return a value, the second use of
the keyword void says that it takes no arguments.

Recall that main is a specially recognized name in the Objective-C system that always
indicates where the program is to begin execution.There always must be a main. So you
can add a main function to the preceding code to end up with a complete program, as
shown in Program 13.3.

Program 13.3

#import <Foundation/Foundation.h>

void printMessage (void)
{

NSLog (@"Programming is fun.");
}

int main (int argc, char * argv[])
{

@autoreleasepool {
printMessage ();

}
return 0;

}

Program 13.3 Output

Programming is fun.

Program 13.3 consists of two functions: printMessage and main.As mentioned earlier,
the idea of calling a function is not new. Because printMessage takes no arguments, you
call it simply by listing its name followed by a pair of open and close parentheses.

Arguments and Local Variables
In Chapter 5,“Program Looping,” you developed programs for calculating triangular
numbers. Here you define a function to generate a triangular number and call it, appro-
priately enough, calculateTriangularNumber.As an argument to the function, you
specify which triangular number to calculate.The function then calculates the desired
number and displays the results. Program 13.4 shows the function to accomplish the task
and a main routine to try it.

ptg999

256 Chapter 13 Underlying C Language Features

Program 13.4

#import <Foundation/Foundation.h>

// Function to calculate the nth triangular number

void calculateTriangularNumber (int n)
{

int i, triangularNumber = 0;

for (i = 1; i <= n; ++i)
triangularNumber += i;

NSLog (@"Triangular number %i is %i", n, triangularNumber);
}

int main (int argc, char * argv[])
{

@autoreleasepool {
calculateTriangularNumber (10);
calculateTriangularNumber (20);
calculateTriangularNumber (50);

}
return 0;

}

Program 13.4 Output

Triangular number 10 is 55
Triangular number 20 is 210
Triangular number 50 is 1275

The first line of the calculateTriangularNumber function is this:

void calculateTriangularNumber (int n)

It tells the compiler that calculateTriangularNumber is a function that returns no
value (the keyword void) and that it takes a single argument, called n, which is an int.
Note again that you can’t put the argument type inside parentheses, as you are accus-
tomed to doing when you write methods.

The opening curly brace indicates the beginning of the function’s definition. Because
you want to calculate the nth triangular number, you must set up a variable to store the
value of the triangular number as it is being calculated.You also need a variable to act as
your loop index.The variables TriangularNumber and i are defined for these purposes
and are declared to be of type int.You define and initialize these variables in the same

ptg999

257Functions

manner that you defined and initialized your variables inside the main routine in previous
programs.

Local variables in functions behave the same way they do in methods: If an initial
value is given to a variable inside a function, that initial value is assigned to the variable
each time the function is called. And if using Automatic Reference Counting (ARC),
note that local object variables are also by default initialized to zero each time a function
(or method) is called.

Variables defined inside a function (as in methods) are known as automatic local vari-
ables because they are automatically “created” each time the function is called and their
values are local to the function.

Static local variables are declared with the keyword static, retain their values through
function calls, and have default initial values of 0.

The value of a local variable can be accessed only by the function in which the vari-
able is defined. Its value cannot be directly accessed from outside the function.

Returning to our program example, after the local variables have been defined, the
function calculates the triangular number and displays the results at the terminal.The
closed brace then defines the end of the function.

Inside the main routine, the value 10 is passed as the argument in the first call to
calculateTriangularNumber. Execution then transfers directly to the function where
the value 10 becomes the value of the formal parameter n inside the function.The func-
tion then calculates the value of the 10th triangular number and displays the result.

The next time calculateTriangularNumber is called, the argument 20 is passed. In
a similar process, as described earlier, this value becomes the value of n inside the func-
tion.The function then calculates the value of the 20th triangular number and displays
the answer.

Returning Function Results
As with methods, a function can return a value.The type of value returned with the
return statement must be consistent with the return type declared for the function.A
function declaration that starts like this

float kmh_to_mph (float km_speed)

begins the definition of a function kmh_to_mph, which takes one float argument called
km_speed and returns a floating-point value. Similarly,

int gcd (int u, int v)

defines a function called gcd with integer arguments u and v and returns an integer value.
Let’s rewrite the greatest common divisor algorithm used in Program 5.7 in function

form.The two arguments to the function are the two numbers whose greatest common
divisor (gcd) you want to calculate (see Program 13.5).

ptg999

258 Chapter 13 Underlying C Language Features

Program 13.5
#import <Foundation/Foundation.h>

// This function finds the greatest common divisor of two
// nonnegative integer values and returns the result

int gcd (int u, int v)
{

int temp;

while (v != 0)
{

temp = u % v;
u = v;
v = temp;

}

return u;
}

main ()
{

@autoreleasepool {
int result;

result = gcd (150, 35);
NSLog (@"The gcd of 150 and 35 is %i", result);

result = gcd (1026, 405);
NSLog (@"The gcd of 1026 and 405 is %i", result);

NSLog (@"The gcd of 83 and 240 is %i", gcd (83, 240));
}
return 0;

}

Program 13.5 Output

The gcd of 150 and 35 is 5
The gcd of 1026 and 405 is 27
The gcd of 83 and 240 is 1

The function gcd is defined to take two integer arguments.The function refers to
these arguments through their formal parameter names: u and v.After declaring the vari-
able temp to be of type int, the program displays the values of the arguments u and v,
together with an appropriate message at the terminal.The function then calculates and
returns the greatest common divisor of the two integers.

ptg999

259Functions

The statement

result = gcd (150, 35);

says to call the function gcd with the arguments 150 and 35, and to store the value that
this function returns in the variable result.

If the return type declaration for a function is omitted, the compiler assumes that the
function will return an integer—if it returns a value at all. Many programmers take
advantage of this fact and omit the return type declaration for functions that return inte-
gers. However, this is a bad programming habit that you should avoid.The compiler will
warn you that the return type defaults to int, which is an indication that you’re doing
something wrong!

The default return type for functions differs from that for methods. Recall that, if no
return type is specified for a method, the compiler assumes that it returns a value of type
id.Again, you should always declare the return type for a method instead of relying on
this fact.

Declaring Return Types and Argument Types
We mentioned earlier that the Objective-C compiler assumes that a function returns a
value of type int as the default case. More specifically, whenever a call is made to a func-
tion, the compiler assumes that the function returns a value of type int unless either of
the following has occurred:

n The function has been defined in the program before the function call is
encountered.

n The value returned by the function has been declared before the function call is
encountered. Declaring the return and argument types for a function is known as a
prototype declaration.

The function declaration not only is used to declare the function’s return type, but it
also is used to tell the compiler how many arguments the function takes and what their
types are.This is analogous to declaring methods inside the @interface section when
defining a new class.

To declare absoluteValue as a function that returns a value of type float and that takes
a single argument, also of type float, you could use the following prototype declaration:

float absoluteValue (float);

As you can see, you have to specify just the argument type inside the parentheses, not
its name.You can optionally specify a “dummy” name after the type, if you like:

float absoluteValue (float x);

ptg999

260 Chapter 13 Underlying C Language Features

This name doesn’t have to be the same as the one used in the function definition—the
compiler ignores it anyway.

A foolproof way to write a prototype declaration is to simply make a copy of the first
line from the actual definition of the function. Remember to place a semicolon at the end.

If the function takes a variable number of arguments (such as is the case with NSLog
and scanf), the compiler must be informed.The declaration

void NSLog (NSString *format, ...);

tells the compiler that NSLog takes an NSString object as its first argument and is fol-
lowed by any number of additional arguments (the use of the ...). NSLog is declared in the
special file Foundation/Foundation.h1, which is one reason why you have been placing
the following line at the start of each of your programs:

#import <Foundation/Foundation.h>

Without this line, the compiler can assume that NSLog takes a fixed number of argu-
ments, which can result in incorrect code being generated.

The compiler automatically converts your numeric arguments to the appropriate types
when a function is called only if you have placed the function’s definition or have
declared the function and its argument types before the call.

Consider some reminders and suggestions about functions:

n By default, the compiler assumes that a function returns an int.
n When defining a function that returns an int, define it as such.
n When defining a function that doesn’t return a value, define it as void.
n The compiler converts your arguments to agree with the ones the function expects

only if you have previously defined or declared the function.

To be safe, declare all functions in your program, even if they are defined before they
are called. (You might decide later to move them someplace else in your file or even to
another file.) A good strategy is to put your function declarations inside a header file and
then just import that file into your modules.

Functions are external by default.That is, the default scope for a function is that it can
be called by any functions or methods contained in any files that are linked with the
function.You can limit the scope of a function by making it static.You do this by placing
the keyword static in front of the function declaration, as shown here:

static int gcd (int u, int v)
{
...

}

1 Technically speaking, its defined in the file NSObjCRuntime.h, which is imported from inside the file
Foundation.h.

ptg999

261Functions

A static function can be called only by other functions or methods that appear in the
same file that contains the function’s definition.

Functions, Methods, and Arrays
To pass a single array element to a function or method, you specify the array element as
an argument in the normal fashion. So if you had a squareRoot function to calculate
square roots and wanted to take the square root of averages[i] and assign the result to a
variable called sq_root_result, a statement such as this one would work:

sq_root_result = squareRoot (averages[i]);

Passing an entire array to a function or method is an entirely new ballgame.To pass an
array, you need to list only the name of the array, without any subscripts, inside the call to
the function or method invocation.As an example, if you assume that grade_scores has
been declared as an array containing 100 elements, the expression

minimum (grade_scores)

passes the entire 100 elements contained in the array grade_scores to the function
called minimum. Naturally, the minimum function must be expecting an entire array to be
passed as an argument and must make the appropriate formal parameter declaration.

This function finds the minimum integer value in an array containing a specified
number of elements:

// Function to find the minimum in an array

int minimum (int values[], int numElements)
{

int minValue, i;

minValue = values[0];

for (i = 1; i < numElements; ++i)
if (values[i] < minValue)

minValue = values[i];

return (minValue);
}

The function minimum is defined to take two arguments: first, the array whose mini-
mum you want to find and, second, the number of elements in the array.The open and
close brackets that immediately follow values in the function header inform the
Objective-C compiler that values is an array of integers.The compiler doesn’t care
how large it is.

The formal parameter numElements serves as the upper limit inside the for statement.
Thus, the for statement sequences through the array from values[1] through the last
element of the array, which is values[numElements - 1].

ptg999

262 Chapter 13 Underlying C Language Features

If a function or method changes the value of an array element, that change is made to
the original array that was passed to the function or method.This change remains in
effect even after the function or method has completed execution.

The reason an array behaves differently from a simple variable or an array element—
whose value a function or method cannot change—is worthy of a bit of explanation.We
stated that when a function or method is called, the values passed as arguments are copied
into the corresponding formal parameters.This statement is still valid. However, when
dealing with arrays, the entire contents of the array are not copied into the formal param-
eter array. Instead, a pointer is passed indicating where in the computer’s memory the
array is located. So any changes made to the formal parameter array are actually made to
the original array, not to a copy of the array.Therefore, when the function or method
returns, these changes remain in effect.

Blocks
Blocks are a recent extension to the C language.They are not part of the standard ANSI
C definition and were added to the language by Apple, Inc. Blocks look and act a lot like
functions.The syntax takes some getting used to.You can pass arguments to blocks, just
like you can to functions.You can also return a value from a block. Unlike a function, a
block can be defined inside a function or method, and gets to access any variables defined
outside the block that are within its scope. In general, such variables can be accessed, but
their values cannot be changed.There is a special __block modifier (that’s two underscore
characters that precede the word block) that enables you to modify the value of a variable
from inside the block, and you’ll see shortly how that’s used.

Blocks can be passed as arguments to functions and methods, and in Part II,“The
Foundation Framework,” you’ll learn about some of the methods that expect to see a
block passed as an argument. One of the advantages of blocks is that they can be dis-
patched by the system for execution by other processors or by other threads within your
application.

Let’s get started with a simple example. Recall the first function we wrote in this chap-
ter called printMessage:

void printMessage (void)
{

NSLog (@"Programming is fun.");
}

Here’s a block that accomplishes the same task:

^(void)
{

NSLog (@"Programming is fun.");
}

ptg999

263Blocks

A block is identified by a leading caret ^ character. It’s followed by the parenthesized
argument list that the block takes. In our case, our block takes no arguments, so we write
void just as we did in the function definition.

You can assign this block to a variable called printMessage, as long as the variable is
properly declared (and here’s where the syntax gets tough):

void (^printMessage)(void) =
^(void){

NSLog (@"Programming is fun.");
} ;

To the left of the equal sign we specify that printMessage is a pointer to a block that
takes no arguments and returns no value. Note that the assignment statement is termi-
nated by a semicolon.

Executing a block referenced by a variable is done the same way a function is called:

printMessage ();

Program 13.6 puts this all together into an example.

Program 13.6

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
void (^print_message)(void) =

^(void) {
NSLog (@"Programming is fun.");

} ;

printMessage ();
}
return 0;

}

Program 13.6 Output

Programming is fun.

Program 13.7 is Program 13.4 rewritten to use a block instead of a function.A block
can be defined globally or locally. In this case, we’ll define our block outside of main,
making it external and global in scope.

ptg999

264 Chapter 13 Underlying C Language Features

Program 13.7

#import <Foundation/Foundation.h>

// Block to calculate the nth triangular number

void (^calculateTriangularNumber) (int) =
^(int n) {

int i, triangularNumber = 0;

for (i = 1; i <= n; ++i)
triangularNumber += i;

NSLog (@"Triangular number %i is %i", n, triangularNumber);
} ;

int main (int argc, char * argv[])
{

@autoreleasepool {
calculateTriangularNumber (10);
calculateTriangularNumber (20);
calculateTriangularNumber (50);

}
return 0;

}

Program 13.7 Output

Triangular number 10 is 55
Triangular number 20 is 210
Triangular number 50 is 1275

Compare the syntax of the function in Program 13.4 to the block defined in Program
13.7.The block pointer variable calculateTriangularNumber is defined to take an int
argument and returns no value.

As noted at the start of this section, a block can return a value. Here’s the gcd function
of Program 13.5 rewritten in block form:

int (^gcd) (int, int) =
^(int u, int v){

int temp;

while (v != 0)
{

temp = u % v;
u = v;
v = temp;

ptg999

265Blocks

}

return u;
} ;

A block can access variables within the scope in which it’s defined.The value of that
variable is the value it has at the time the block is defined.This is illustrated in Program 13.8.

Program 13.8

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int foo = 10;

void (^printFoo)(void) =
^(void) {

NSLog (@"foo = %i", foo);
} ;

foo = 15;

printFoo ();
}
return 0;

}

Program 13.8 Output

foo = 10

The printFoo block can access the value of the local variable foo. Note that the
value displayed is 10, and not 15.That’s because is the value it had at the time the block
was defined, and not at the time it was executed.

You can’t by default modify the value of a variable defined outside a block. So, if you
try to change the value of foo inside the block (see Program 13.9) you’ll get this error
message from the compiler: Assignment of read-only variable ‘foo.’

Program 13.9

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

ptg999

266 Chapter 13 Underlying C Language Features

@autoreleasepool {
int foo = 10;

void (^printFoo)(void) =
^(void) {

NSLog (@"foo = %i", foo);
foo = 20; // ** THIS LINE GENERATES A COMPILER ERROR

} ;

foo = 15;

printFoo ();
NSLog (@"foo = %i", foo);

}
return 0;

}

If you insert the _ _ block modifier before the definition of the local variable foo in
Program 13.9 so that it reads like this:

_ _ block int foo = 10;

and run the program, you’ll get these two lines of output:

foo = 15
foo = 20

The first line shows that the value of foo is now its value at the time the block is
called.The second line verifies that the block was able to change the value of foo to 20.

This concludes our introduction on blocks. In Chapter 15, you’ll find more examples
of how they’re used.

Structures
The Objective-C language provides another tool besides arrays for grouping elements.
You also can use structures, which form the basis for the discussions in this section.

Suppose you wanted to store a date—say, 7/18/11—inside a program, perhaps to be
used for the heading of some program output or even for computational purposes.A nat-
ural method for storing the date is to simply assign the month to an integer variable
called month, the day to an integer variable day, and the year to an integer variable year.
So the statements

int month = 7, day = 18, year = 2011;

would work just fine.This is a totally acceptable approach. But what if your program also
needed to store several dates? It would be much better to somehow group these sets of
three variables.

ptg999

267Structures

You can define a structure called date in the Objective-C language that consists of
three components that represent the month, day, and year.The syntax for such a definition
is rather straightforward:

struct date
{

int month;
int day;
int year;

} ;

The date structure just defined contains three integer members, called month, day,
and year. Essentially, the definition of date defines a new type in the language, in that
variables can subsequently be declared to be of type struct date, as in the following
definition:

struct date today;

You can also define a variable called purchaseDate to be of the same type with a sep-
arate definition:

struct date purchaseDate;

Or you can simply include the two definitions on the same line:

struct date today, purchaseDate;

Unlike variables of type int, float, or char, a special syntax is needed when dealing
with structure variables.A member of a structure is accessed by specifying the variable
name, followed by a period and then the member name. For example, to set the value of
day in the variable today to 21, you would write this:

today.day = 21;

Note that no spaces are permitted between the variable name, the period, and the
member name.

Now, wait a second! Wasn’t this the same operator we used to access a property on an
object? Recall that we could write the statement

myRect.width = 12;

to invoke the Rectangle object’s setter method (called setWidth:), passing it the argu-
ment value of 12. No confusion arises here:The compiler determines whether it’s a struc-
ture or an object to the left of the dot operator and handles the situation properly.

Returning to the struct date example, to set year in today to 2011, you can use
this expression:

today.year = 2011;

ptg999

268 Chapter 13 Underlying C Language Features

Finally, to test the value of month to see whether it is equal to 12, you can use a state-
ment such as this:

if (today.month == 12)
next_month = 1;

Program 13.10 incorporates the preceding discussions into an actual program.

Program 13.10

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {

struct date
{

int month;
int day;
int year;

} ;

struct date today;

today.month = 9;
today.day = 25;
today.year = 2011;

NSLog (@"Today's date is %i/%i/%.2i.", today.month,
today.day, today.year % 100);

}
return 0;

}

Program 13.10 Output

Today's date is 9/25/11.

The first statement inside main defines the structure called date to consist of three
integer members, called month, day, and year. In the second statement, the variable today
is declared to be of type struct date. So the first statement simply defines what a date
structure looks like to the Objective-C compiler and causes no storage to be reserved
inside the computer.The second statement declares a variable to be of type struct date

ptg999

269Structures

and, therefore, does reserve memory for storing the three integer members of the struc-
ture variable today.

After the assignments, an appropriate NSLog call displays the values contained inside
the structure.The remainder of today.year divided by 100 is calculated before being
passed to the NSLog function so that just 11 displays for the year.The %.2i format charac-
ters in the NSLog call specify a minimum of two characters to be displayed, thus forcing
the display of the leading zero for the year.

When it comes to the evaluation of expressions, structure members follow the same
rules as ordinary variables in the Objective-C language. Division of an integer structure
member by another integer is performed as an integer division, as shown here:

century = today.year / 100 + 1;

Suppose you wanted to write a simple program that accepted today’s date as input and
displayed tomorrow’s date to the user.At first glance, this seems a perfectly simple task to
perform.You can ask the user to enter today’s date and then calculate tomorrow’s date by
a series of statements, like so:

tomorrow.month = today.month;
tomorrow.day = today.day + 1;
tomorrow.year = today.year;

Of course, the previous statements would work fine for most dates, but the following
two cases would not be properly handled:

n If today’s date fell at the end of a month
n If today’s date fell at the end of a year (that is, if today’s date were December 31)

One way to easily determine whether today’s date falls at the end of a month is to set
up an array of integers that corresponds to the number of days in each month.A lookup
inside the array for a particular month would then give the number of days in that month.

Initializing Structures
Initializing structures is similar to initializing arrays—the elements are simply listed inside
a pair of braces, with a comma separating each element.

To initialize the date structure variable today to July 2, 2011, you can use this statement:

struct date today = { 7, 2, 2011 } ;

As with the initialization of an array, fewer values can be listed than the structure con-
tains. So the statement

struct date today = { 7 } ;

sets today.month to 7 but gives no initial value to today.day or today.year. In such a
case, their default initial values are undefined.

Specific members can be designated for initialization in any order with the notation

.member = value

ptg999

270 Chapter 13 Underlying C Language Features

in the initialization list, as in

struct date today = { .month = 7, .day = 2, .year = 2011 } ;

and

struct date today = { .year = 2011 } ;

The last statement just sets the year in the structure to 2011.As you know, the other
two members are undefined.

Structures Within Structures
Objective-C provides an enormous amount of flexibility in defining structures. For
instance, you can define a structure that itself contains other structures as one or more of
its members, or you can define structures that contain arrays.

You learned about the typedef statement in Chapter 10,“More on Variables and Data
Types.” In your iOS programs, you will frequently need to work with rectangles. Rectan-
gles define the size and location of a window on an iPhone’s or iPad’s screen, for example.
They also define the location and size of subwindows (or what are called subviews).There
are three basic data types that are used and are defined using typedef:

1. CGPoint, which describes an (x,y) point

2. CGSize, which describes a width and height

3. CGRect, which is a rectangle that contains an origin (a CGPoint) and a size (a CGSize)

Here are the typedef definitions from Apple’s CGGeometry.h header file:

/* Points. */

struct CGPoint {
CGFloat x;
CGFloat y;

} ;
typedef struct CGPoint CGPoint;

/* Sizes. */

struct CGSize {
CGFloat width;
CGFloat height;

} ;
typedef struct CGSize CGSize;

/* Rectangles. */

ptg999

271Structures

struct CGRect {
CGPoint origin;
CGSize size;

} ;
typedef struct CGRect CGRect;

The typedefs provide a convenient way to declare variables without having to use the
keyword struct. CGFloat is just a typedef for a basic float data type. So if you want to
declare a CGPoint variable and set its x member to 100 and y member to 200, respec-
tively, you could write this code sequence:

CGPoint startPt;
startPt.x = 100;
startPt.y = 200;

Remember that startPt is a structure and not an object. (A good indication of that is
often the lack of an asterisk in front of the variable name.) Apple also provides conven-
ience functions for creating CGRect, CGSize, and CGRect structures. For example,

CGPoint startPt = CGPointMake (100.0, 200.0);

There’s also CGSizeMake and CGRectMake functions that perform tasks as their
names imply.

So let’s say you want to define a new rectangle and set its size to 200 x 100.You could
specify its size this way:

CGSize rectSize;
rectSize.width = 200;
rectSize.height = 100;

or you could use the CGSizeMake function like so:

CGSize rectSize = CGSizeMake (200.0, 100.0);

Now let’s go ahead and create a rectangle with the indicated size and origin:

CGRect theFrame;
theFrame.origin = startPt;
theFrame.size = rectSize;

(We won’t show the use of the CGRectMake function here.)
Suppose later you want to get the rectangle’s width (maybe it changed?).You could do

so by writing this expression:

theFrame.size.width

And to change its width to 175, you could write this:

theFrame.size.width = 175;

ptg999

272 Chapter 13 Underlying C Language Features

Finally, to set the rectangle’s origin to (0,0), these statements would do the trick:

theFrame.origin.x = 0.0;
theFrame.origin.y = 0.0;

These are just a few examples of working with these structures.As noted, you’ll likely
be using them often in your applications.

Additional Details About Structures
We should mention that you have some flexibility in defining a structure. First, you can
declare a variable to be of a particular structure type at the same time that the structure is
defined.You do this simply by including the variable name(s) before the terminating
semicolon of the structure definition. For example, the following statement defines the
structure date and also declares the variables todaysDate and purchaseDate to be of
this type:

struct date
{

int month;
int day;
int year;

} todaysDate, purchaseDate;

You can also assign initial values to the variables in the normal fashion.Thus, the fol-
lowing defines the structure date and the variable todaysDate with initial values as
indicated:

struct date
{

int month;
int day;
int year;

} todaysDate = { 9, 25, 2011 } ;

If all the variables of a particular structure type are defined when the structure is
defined, you can omit the structure name. So the following statement defines an array
called dates to consist of 100 elements:

struct
{

int month;
int day;
int year;

} dates[100];

ptg999

273Pointers

Each element is a structure containing three integer members: month, day, and year.
Because you did not supply a name to the structure, the only way to subsequently declare
variables of the same type is to explicitly define the structure again.

Don’t Forget About Object-Oriented Programming!
Now you know how to define a structure to store a date, and you’ve written various rou-
tines to manipulate that date structure. But what about object-oriented programming?
Shouldn’t you have made a class called Date instead and then developed methods to work
with a Date object? Wouldn’t that be a better approach? Well, yes. Hopefully, that entered
your mind when we discussed storing dates in your program.

Certainly, if you have to work with a lot of dates in your programs, defining a class and
methods to work with dates is a better approach. In fact, the Foundation framework has a
couple of classes, called NSDate and NSCalendarDate, defined for such purposes.We leave
it as an exercise for you to implement a Date class to deal with dates as objects instead of
as structures.

Pointers
Pointers enable you to effectively represent complex data structures, change values passed
as arguments to functions and methods, and more concisely and efficiently deal with
arrays.At the end of this chapter, we also clue you in about how important they are to the
implementation of objects in the Objective-C language.

We introduced the concept of a pointer in Chapter 8,“Inheritance,” when we talked
about the Point and Rectangle classes and stated that you can have multiple references
to the same object.

To understand the way pointers operate, you first must understand the concept of
indirection.We witness this concept in our everyday life. For example, suppose that I
needed to buy a new toner cartridge for my printer. In the company that I work for, the
purchasing department handles all purchases. So I would call Jim in purchasing and ask
him to order the new cartridge for me. Jim then would call the local supply store to order
the cartridge.To obtain my new cartridge, I would take an indirect approach because I
would not be ordering the cartridge directly from the supply store.

This same notion of indirection applies to the way pointers work in Objective-C.A
pointer provides an indirect means of accessing the value of a particular data item.And
just as there are reasons it makes sense to go through the purchasing department to order
new cartridges (I don’t have to know which particular store the cartridges are being
ordered from, for example), good reasons exist for why sometimes it makes sense to use
pointers in Objective-C.

ptg999

274 Chapter 13 Underlying C Language Features

But enough talk; it’s time to see how pointers actually work. Suppose you’ve defined a
variable called count as follows:

int count = 10;

You can define another variable, called intPtr, that enables you to indirectly access
the value of count with the following declaration:

int *intPtr;

The asterisk defines to the Objective-C system that the variable intPtr is of type
pointer to int.This means that the program will use intPtr to indirectly access the value
of one or more integer variables.

You have seen how we used the & operator in the scanf calls of previous programs.
This unary operator, known as the address operator, makes a pointer to a variable in
Objective-C. So if x is a variable of a particular type, the expression &x is a pointer to that
variable. If you want, you can assign the expression &x to any pointer variable that has
been declared to be a pointer of the same type as x.

Therefore, with the definitions of count and intPtr as given, you can write a state-
ment such as

intPtr = &count;

to set up the indirect reference between intPtr and count.The address operator assigns
to the variable intPtr not the value of count, but a pointer to the variable count. Figure
13.1 illustrates the link made between intPtr and count.The directed line illustrates the
idea that intPtr does not directly contain the value of count, but contains a pointer to
the variable count.

To reference the contents of count through the pointer variable intPtr, you use the
indirection operator, which is the asterisk (*). If x were defined to be of type int, the
statement

x = *intPtr;

would assign the value that is indirectly referenced through intPtr to the variable x.
Because intPtr was previously set pointing to count, this statement would have the effect
of assigning the value contained in the variable count—which is 10—to the variable x.

10
intPtr count

Figure 13.1 Pointer to an integer

ptg999

275Pointers

Program 13.11 incorporates the previous statements and illustrates the two fundamen-
tal pointer operators: the address operator (&) and the indirection operator (*).

Program 13.11

// Program to illustrate pointers

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
int count = 10, x;
int *intPtr;

intPtr = &count;
x = *intPtr;

NSLog (@"count = %i, x = %i", count, x);
}
return 0;

}

Program 13.11 Output

count = 10, x = 10

The variables count and x are declared to be integer variables in the normal fashion.
On the next line, the variable intPtr is declared to be of type “pointer to int.” Note that
the two lines of declarations could have been combined into a single line:

int count = 10, x, *intPtr;

Next, the address operator is applied to the variable count, which has the effect of cre-
ating a pointer to this variable, which the program then assigns to the variable intPtr.

Execution of the next statement in the program

x = *intPtr;

proceeds as follows:The indirection operator tells the Objective-C system to treat the
variable intPtr as containing a pointer to another data item.This pointer is then used to
access the desired data item, whose type is specified by the declaration of the pointer vari-
able. Because you told the compiler when you declared the variable that intPtr points to
integers, the compiler knows that the value referenced by the expression *intPtr is an
integer.Also, because you set intPtr to point to the integer variable count in the previ-
ous program statement, this expression indirectly accesses the value of count.

Program 13.12 illustrates some interesting properties of pointer variables.This program
uses a pointer to a character.

ptg999

276 Chapter 13 Underlying C Language Features

Program 13.12

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
char c = 'Q';
char *charPtr = &c;

NSLog (@"%c %c", c, *charPtr);

c = '/';
NSLog (@"%c %c", c, *charPtr);

*charPtr = '(';
NSLog (@"%c %c", c, *charPtr);

}
return 0;

}

Program 13.12 Output

Q Q
/ /
((

The character variable c is defined and initialized to the character 'Q'. In the next line
of the program, the variable charPtr is defined to be of type “pointer to char,” meaning
that whatever value is stored inside this variable should be treated as an indirect reference
(pointer) to a character. Notice that you can assign an initial value to this variable in the
normal fashion.The value you assign to charPtr in the program is a pointer to the vari-
able c, which is obtained by applying the address operator to the variable c. (Note that
this initialization would have generated a compiler error had c been defined after this
statement because a variable must always be declared before its value can be referenced in
an expression.)

The declaration of the variable charPtr and the assignment of its initial value could
have been equivalently expressed in two separate statements, as follows

char *charPtr;
charPtr = &c;

(and not by the statements

char *charPtr;
*charPtr = &c;

ptg999

277Pointers

as might be implied from the single line declaration).
Remember that the value of a pointer in Objective-C is meaningless until it is set to

point to something.
The first NSLog call simply displays the contents of the variable c and the contents of

the variable referenced by charPtr. Because you set charPtr to point to the variable c,
the value displayed is the contents of c, as verified by the first line of the program’s output.

In the next line of the program, the character '/' is assigned to the character variable
c. Because charPtr still points to the variable c, displaying the value of *charPtr in the
subsequent NSLog call correctly displays this new value of c at the terminal.This is an
important concept. Unless the value of charPtr changes, the expression *charPtr always
accesses the value of c.Thus, as the value of c changes, so does the value of *charPtr.

The previous discussion can help you understand how the program statement that
appears next in the program works.We mentioned that unless charPtr were changed, the
expression *charPtr would always reference the value of c.Therefore, in the expression

*charPtr = '(';

the left parenthesis character is being assigned to c. More formally, the character '(' is
assigned to the variable that charPtr points to.You know that this variable is c because
you placed a pointer to c in charPtr at the beginning of the program.

The previous concepts are the key to your understanding of pointer operation.
Review them at this point if they still seem a bit unclear.

Pointers and Structures
You have seen how to define a pointer to point to a basic data type such as an int or a
char. But you can also define a pointer to point to a structure. Earlier in this chapter, you
defined your date structure as follows:

struct date
{

int month;
int day;
int year;

} ;

Just as you defined variables to be of type struct date, as in

struct date todaysDate;

you can define a variable to be a pointer to a struct date variable:

struct date *datePtr;

You can then use the variable datePtr, as just defined, in the expected fashion. For
example, you can set it to point to todaysDate with the following assignment statement:

datePtr = &todaysDate;

ptg999

278 Chapter 13 Underlying C Language Features

After such an assignment, you can indirectly access any of the members of the date
structure that datePtr points to in the following way:

(*datePtr).day = 21;

This statement sets the day of the date structure pointed to by datePtr to 21.The
parentheses are required because the structure member operator period (.) has higher
precedence than the indirection operator asterisk (*).

To test the value of month stored in the date structure that datePtr points to, you can
use a statement such as this:

if ((*datePtr).month == 12)
...

Pointers to structures are so often used that the language has a special operator.The
structure pointer operator ->, which is a hyphen followed by the greater-than sign, per-
mits expressions that would otherwise be written as

(*x).y

to be more clearly expressed as

x–>y

So you can conveniently write the previous if statement as follows:

if (datePtr–>month == 12)
...

We rewrote Program 13.10, the first program to illustrate structures, using the concept
of structure pointers. Program 13.13 presents this program.

Program 13.13

// Program to illustrate structure pointers
#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {

struct date
{

int month;
int day;
int year;

} ;

struct date today, *datePtr;

datePtr = &today;
datePtr->month = 9;

ptg999

279Pointers

datePtr->day = 25;
datePtr->year = 2011;

NSLog (@"Today's date is %i/%i/%.2i.",
datePtr->month, datePtr->day, datePtr->year % 100);

}
return 0;

}

Program 13.13 Output

Today's date is 9/25/11.

Pointers, Methods, and Functions
You can pass a pointer as an argument to a method or function in the normal fashion,
and you can have a function or method return a pointer as its result.When you think
about it, that’s what your alloc and init methods have been doing all along—returning
pointers.We cover that in more detail at the end of this chapter.

Now consider Program 13.14.

Program 13.14

// Pointers as arguments to functions
#import <Foundation/Foundation.h>

void exchange (int *pint1, int *pint2)
{

int temp;

temp = *pint1;
*pint1 = *pint2;
*pint2 = temp;

}

int main (int argc, char * argv[])
{

@autoreleasepool {
void exchange (int *pint1, int *pint2);
int i1 = -5, i2 = 66, *p1 = &i1, *p2 = &i2;

NSLog (@"i1 = %i, i2 = %i", i1, i2);
exchange (p1, p2);
NSLog (@"i1 = %i, i2 = %i", i1, i2);

ptg999

280 Chapter 13 Underlying C Language Features

exchange (&i1, &i2);
NSLog (@"i1 = %i, i2 = %i", i1, i2);

}
return 0;

}

Program 13.14 Output

i1 = -5, i2 = 66
i1 = 66, i2 = -5
i1 = -5, i2 = 66

The purpose of the exchange function is to interchange the two integer values that its
two arguments point to.The local integer variable temp is used to hold one of the integer
values while the exchange is made. Its value is set equal to the integer that pint1 points
to.The integer that pint2 points to is then copied into the integer that pint1 points to,
and the value of temp is then stored in the integer that pint2 points to, thus making the
exchange complete.

The main routine defines integers i1 and i2 with values of -5 and 66, respectively.
Two integer pointers, p1 and p2, are then defined and set to point to i1 and i2, respec-
tively.The program next displays the values of i1 and i2 and calls the exchange function,
passing the two pointers (p1 and p2) as arguments.The exchange function exchanges the
value contained in the integer that p1 points to with the value contained in the integer
that p2 points to. Because p1 points to i1, and p2 to i2, the function exchanges the values
of i1 and i2.The output from the second NSLog call verifies that the exchange worked
properly.

The second call to exchange is a bit more interesting.This time, the arguments passed
to the function are pointers to i1 and i2 that are manufactured on the spot by applying
the address operator to these two variables. Because the expression &i1 produces a pointer
to the integer variable i1, this is in line with the type of argument your function expects
for the first argument (a pointer to an integer).The same applies for the second argument.
As you can see from the program’s output, the exchange function did its job and switched
the values of i1 and i2 to their original values.

Study Program 13.14 in detail. It illustrates with a small example the key concepts
when dealing with pointers in Objective-C.

Pointers and Arrays
If you have an array of 100 integers called values, you can define a pointer called
valuesPtr, which you can use to access the integers contained in this array with the fol-
lowing statement:

int *valuesPtr;

ptg999

281Pointers

When you define a pointer that will be used to point to the elements of an array, you
don’t designate the pointer as type “pointer to array”; instead, you designate the pointer as
pointing to the type of element contained in the array.

If you had an array of Fraction objects called fracts, you could similarly define a
pointer to be used to point to elements in fracts with the following statement:

Fraction **fractsPtr;

To set valuesPtr to point to the first element in the values array, you simply write this:

valuesPtr = values;

The address operator is not used in this case because the Objective-C compiler treats
the occurrence of an array name without a subscript as a pointer to the first element of
the array.Therefore, simply specifying values without a subscript produces a pointer to
the first element of values.

An equivalent way of producing a pointer to the start of values is to apply the address
operator to the first element of the array.Thus, the statement

valuesPtr = &values[0];

serves the same purpose of placing a pointer to the first element of values in the pointer
variable valuesPtr.

To display the Fraction object in the array fracts that fractsPtr points to, you
would write this statement:

[*fractsPtr print];

The real power of using pointers to arrays comes into play when you want to
sequence through the elements of an array. If valuesPtr is defined as mentioned previ-
ously and is set pointing to the first element of values, you can use the expression

*valuesPtr

to access the first integer of the values array—that is, values[0].To reference
values[3] through the valuesPtr variable, you can add 3 to valuesPtr and then apply
the indirection operator:

*(valuesPtr + 3)

In general, you can use the expression

*(valuesPtr + i)

to access the value contained in values[i].
So to set values[10] to 27, you would write the following expression:

values[10] = 27;

Or, using valuesPtr, you would write this:

*(valuesPtr + 10) = 27;

ptg999

282 Chapter 13 Underlying C Language Features

To set valuesPtr to point to the second element of the values array, you apply the
address operator to values[1] and assign the result to valuesPtr:

valuesPtr = &values[1];

If valuesPtr points to values[0], you can set it to point to values[1] by simply
adding 1 to the value of valuesPtr:

valuesPtr += 1;

This is a perfectly valid expression in Objective-C and can be used for pointers to any
data type.

In general, if a is an array of elements of type x, px is of type “pointer to x,” and i and
n are integer constants of variables, the statement

px = a;

sets px to point to the first element of a, and the expression

*(px + i)

subsequently references the value contained in a[i]. Furthermore, the statement

px += n;

sets px to point to n elements further in the array, no matter what type of element the
array contains.

Suppose that fractsPtr points to a fraction stored inside an array of fractions. Further
suppose that you want to add it to the fraction contained in the next element of the array
and assign the result to the Fraction object result.You could do this by writing the
following:

result = [*fractsPtr add: *(fractsPtr + 1)];

The increment and decrement operators (++ and —) are particularly handy when deal-
ing with pointers.Applying the increment operator to a pointer has the same effect as
adding 1 to the pointer, whereas applying the decrement operator has the same effect as
subtracting 1 from the pointer (here “1” means one unit, or the size of the data item the
pointer is declared to point to). So if textPtr were defined as a char pointer and were
set to point to the beginning of an array of chars called text, the statement

++textPtr;

would set textPtr to point to the next character in text, which is text[1]. In a similar
fashion, the statement

--textPtr;

would set textPtr to point to the previous character in text (assuming, of course, that
textPtr was not pointing to the beginning of text before this statement executed).

Comparing two pointer variables in Objective-C is perfectly valid.This is particularly
useful when comparing two pointers in the same array. For example, you could test the

ptg999

283Pointers

pointer valuesPtr to see whether it points past the end of an array containing 100 ele-
ments by comparing it to a pointer to the last element in the array. So the expression

valuesPtr > &values[99]

would be TRUE (nonzero) if valuesPtr was pointing past the last element in the values
array, and it would be FALSE (zero) otherwise. From our earlier discussions, you can
replace the previous expression with its equivalent:

valuesPtr > values + 99

This is possible because values used without a subscript is a pointer to the beginning
of the values array. (Remember that it’s the same as writing &values[0].)

Program 13.15 illustrates pointers to arrays.The arraySum function calculates the sum
of the elements contained in an array of integers.

Program 13.15

// Function to sum the elements of an integer array

#import <Foundation/Foundation.h>

int arraySum (int array[], int n)
{

int sum = 0, *ptr;
int *arrayEnd = array + n;

for (ptr = array; ptr < arrayEnd; ++ptr)
sum += *ptr;

return (sum);
}

int main (int argc, char * argv[])
{

@autoreleasepool {
int arraySum (int array[], int n);
int values[10] = { 3, 7, -9, 3, 6, -1, 7, 9, 1, -5 } ;

NSLog (@"The sum is %i", arraySum (values, 10));
}
return 0;

}

Program 13.15 Output

The sum is 21

ptg999

284 Chapter 13 Underlying C Language Features

Inside the arraySum function, the integer pointer arrayEnd is defined and set pointing
immediately after the last element of array.A for loop is then set up to sequence
through the elements of array; then the value of ptr is set to point to the beginning of
array when the loop is entered. Each time through the loop, the element of array that
ptr points to is added into sum.The for loop then increments the value of ptr to set it
to point to the next element in array.When ptr points past the end of array, the for
loop is exited and the value of sum is returned to the caller.

Is It an Array, or Is It a Pointer?
To pass an array to a function, you simply specify the name of the array, as you did previ-
ously with the call to the arraySum function. But we also mentioned in this section that
to produce a pointer to an array, you need only specify the name of the array.This implies
that in the call to the arraySum function, a pointer to the array values was passed to the
function.This is precisely the case and explains why you can change the elements of an
array from within a function.

But if a pointer to the array is passed to the function, why isn’t the formal parameter
inside the function declared to be a pointer? In other words, in the declaration of array
in the arraySum function, why isn’t this declaration used?

int *array;

Shouldn’t all references to an array from within a function be made using pointer
variables?

To answer these questions, we must first reiterate what we have already said about
pointers and arrays.We mentioned that if valuesPtr points to the same type of element
as contained in an array called values, the expression *(valuesPtr + i) is an equivalent
to the expression values[i], assuming that valuesPtr has been set to point to the
beginning of values.What follows from this is that you can also use the expression
*(values + i) to reference the ith element of the array values—and, in general, if x
is an array of any type, the expression x[i] can always be equivalently expressed in
Objective-C as *(x + i).

As you can see, pointers and arrays are intimately related in Objective-C, which is why
you can declare array to be of type “array of ints” inside the arraySum function or to
be of type “pointer to int.” Either declaration works fine in the preceding program—try
it and see.

If you will be using index numbers to reference the elements of an array, declare the
corresponding formal parameter to be an array.This more correctly reflects the function’s
use of the array. Similarly, if you will be using the argument as a pointer to the array,
declare it to be of type pointer.

Pointers to Character Strings
One of the most common applications of using a pointer to an array is as a pointer to a
character string.The reasons are ones of notational convenience and efficiency.To show

ptg999

285Pointers

how easily you can use pointers to character strings, let’s write a function called
copyString to copy one string into another. If you were writing this function using your
normal array-indexing methods, you might code the function as follows:

void copyString (char to[], char from[])
{

int i;

for (i = 0; from[i] != '\ 0'; ++i)
to[i] = from[i];

to[i] = '\ 0';
}

The for loop is exited before the null character is copied into the to array, thus
explaining the need for the last statement in the function.

If you write copyString using pointers, you no longer need the index variable i.
Program 13.16 shows a pointer version.

Program 13.16

#import <Foundation/Foundation.h>
void copyString (char *to, char *from)
{

for (; *from != '\ 0'; ++from, ++to)
*to = *from;

*to = '\ 0';
}

int main (int argc, char * argv[])
{

@autoreleasepool {
void copyString (char *to, char *from);
char string1[] = "A string to be copied.";
char string2[50];

copyString (string2, string1);
NSLog (@"%s", string2);

copyString (string2, "So is this.");
NSLog (@"%s", string2);

}
return 0;

}

ptg999

286 Chapter 13 Underlying C Language Features

Program 13.16 Output

A string to be copied.
So is this.

The copyString function defines the two formal parameters, to and from, as charac-
ter pointers and not as character arrays, as was done in the previous version of
copyString.This reflects how the function will use these two variables.

A for loop is then entered (with no initial conditions) to copy the string that from
points to into the string that to points to. Each time through the loop, the from and to

pointers are each incremented by 1.This sets the from pointer pointing to the next char-
acter that is to be copied from the source string and sets the to pointer pointing to the
location in the destination string where the next character is to be stored.

When the from pointer points to the null character, the for loop is exited.The func-
tion then places the null character at the end of the destination string.

In the main routine, the copyString function is called twice—the first time to copy
the contents of string1 into string2, and the second time to copy the contents of the
constant character string "So is this." into string2.2

Constant Character Strings and Pointers
The fact that the call

copyString (string2, "So is this.");

works in the previous program implies that when a constant character string is passed as
an argument to a function, that character string is actually passed to a pointer. Not only is
this true in this case, but it can also be generalized by saying that whenever a constant
character string is used in Objective-C, a pointer to that character string is produced.

This point might sound a bit confusing now, but, as we briefly noted in Chapter 4,
constant character strings that we mention here are called C-style strings.These are not
objects.As you know, a constant character string object is created by putting an @ sign in
front of the string, as in @"This is okay.".You can’t substitute one for the other.

So if textPtr is declared to be a character pointer, as in

char *textPtr;

then the statement

textPtr = "A character string.";

2 Note the use of the strings "A string to be copied." and "So is this." in the program.
These are not string objects, but C-style character strings, as distinguished by the fact that an @ char-
acter does not precede the string. The two types are not interchangeable. If a function expects an
array of char as an argument, you may pass it either an array of type char or a literal C-style charac-
ter string, but not a character string object.

ptg999

287Pointers

assigns to textPtr a pointer to the constant character string "A character string." Be
careful to make the distinction here between character pointers and character arrays
because the type of assignment shown previously is not valid with a character array. For
example, if text were defined instead to be an array of chars, with a statement such as

char text[80];

you could not write a statement such as this:

text = "This is not valid.";

The only time Objective-C lets you get away with performing this type of assignment
to a character array is when initializing it:

char text[80] = "This is okay.";

Initializing the text array in this manner does not have the effect of storing a pointer
to the character string "This is okay.” inside text. Instead, the actual characters them-
selves are followed by a terminating null character, inside corresponding elements of the
text array.

If text were a character pointer, initializing text with the statement

char *text = "This is okay.";

would assign to it a pointer to the character string “This is okay.”

The Increment and Decrement Operators Revisited
Up to this point, whenever you used the increment or decrement operator, that was the
only operator that appeared in the expression.When you write the expression ++x, you
know that this adds 1 to the value of the variable x.And as you have just seen, if x is a
pointer to an array, this sets x to point to the next element of the array.

You can use the increment and decrement operators in expressions where other oper-
ators also appear. In such cases, it becomes important to know more precisely how these
operators work.

Whenever you used the increment and decrement operators, you always placed them
before the variables that were being incremented or decremented. So to increment a vari-
able i, you simply wrote the following:

++i;

You can also place the increment operator after the variable, like so:

i++;

Both expressions are valid, and both achieve the same result—incrementing the value
of i. In the first case, where the ++ is placed before its operand, the increment operation is
more precisely identified as a pre-increment. In the second case, where the ++ is placed after
its operand, the operation is identified as a post-increment.

The same discussion applies to the decrement operator. So the statement

--i;

ptg999

288 Chapter 13 Underlying C Language Features

technically performs a pre-decrement of i, whereas the statement

i--;

performs a post-decrement of i. Both have the same net result of subtracting 1 from the
value of i.

When the increment and decrement operators are used in more complex expressions,
the distinction between the pre- and post- nature of these operators is realized.

Suppose that you have two integers, called i and j. If you set the value of i to 0 and
then write the statement

j = ++i;

the value assigned to j is 1—not 0, as you might expect. In the case of the pre-increment
operator, the variable is incremented before its value is used in an expression.Therefore, in
the previous expression, the value of i is first incremented from 0 to 1 and then its value
is assigned to j, as if the following two statements had been written instead:

++i;
j = i;

If you use the post-increment operator in the statement

j = i++;

i is incremented after its value has been assigned to j. So if i were 0 before the previous
statement were executed, 0 would be assigned to j and then i would be incremented by
1, as if these statements were used instead:

j = i;
++i;

As another example, if i is equal to 1, the statement

x = a[--i];

has the effect of assigning the value of a[0] to x because the variable i is decremented
before its value is used to index into a.The statement

x = a[i--];

used instead assigns the value of a[1] to x because i would be decremented after its value
was used to index into a.

As a third example of the distinction between the pre- and post- increment and decre-
ment operators, the function call

NSLog (@"%i", ++i);

increments i and then sends its value to the NSLog function, whereas the call

NSLog (@"%i", i++);

ptg999

289Pointers

increments i after its value has been sent to the function. So if i were equal to 100, the
first NSLog call would display 101 at the terminal, whereas the second NSLog call would
display 100. In either case, the value of i would be equal to 101 after the statement had
been executed.

As a final example on this topic before we present a program, if textPtr is a character
pointer, the expression

*(++textPtr)

first increments textPtr and then fetches the character it points to, whereas the expres-
sion

*(textPtr++)

fetches the character that textPtr points to before its value is incremented. In either case,
the parentheses are not required because the * and ++ operators have equal precedence
but associate from right to left.

Let’s go back to the copyString function from Program 13.16 and rewrite it to incor-
porate the increment operations directly into the assignment statement.

Because the to and from pointers are incremented each time after the assignment
statement inside the for loop is executed, they should be incorporated into the assign-
ment statement as post-increment operations.The revised for loop of Program 13.16
then becomes this:

for (; *from != '\ 0';)
*to++ = *from++;

Execution of the assignment statement inside the loop would proceed as follows.The
character that from points to would be retrieved, and then from would be incremented to
point to the next character in the source string.The referenced character would be stored
inside the location that to points to; then to would be incremented to point to the next
location in the destination string.

The previous for statement hardly seems worthwhile because it has no initial expres-
sion and no looping expression. In fact, the logic would be better served when expressed
in the form of a while loop.This has been done in Program 13.17, which presents the
new version of the copyString function.The while loop uses the fact that the null char-
acter is equal to the value 0, as experienced Objective-C programmers commonly do.

Program 13.17

// Function to copy one string to another
// pointer version 2

#import <Foundation/Foundation.h>
void copyString (char *to, char *from)
{

while (*from)
*to++ = *from++;

ptg999

290 Chapter 13 Underlying C Language Features

*to = '\ 0';
}

int main (int argc, char * argv[])
{

@autoreleasepool {
void copyString (char *to, char *from);
char string1[] = "A string to be copied.";
char string2[50];

copyString (string2, string1);
NSLog (@"%s", string2);

copyString (string2, "So is this.");
NSLog (@"%s", string2);

}
return 0;

}

Program 13.17 Output

A string to be copied.
So is this.

Operations on Pointers
As you have seen in this chapter, you can add or subtract integer values from pointers.
Furthermore, you can compare two pointers to see whether they are equal or whether
one pointer is less than or greater than another pointer.The only other operation permit-
ted on pointers is the subtraction of two pointers of the same type.The result of subtract-
ing two pointers in Objective-C is the number of elements contained between the two
pointers.Thus, if a points to an array of elements of any type and b points to another ele-
ment somewhere further along in the same array, the expression b - a represents the
number of elements between these two pointers. For example, if p points to some ele-
ment in an array x, the statement

n = p - x;

assigns to the variable n (assumed here to be an integer variable) the index number of the
element inside x that p points to.Therefore, if p had been set pointing to the 100th ele-
ment in x by a statement such as

p = &x[99];

the value of n after the previous subtraction was performed would be 99.

ptg999

291Pointers

Pointers to Functions
Of a slightly more advanced nature, but presented here for the sake of completeness, is the
notion of a pointer to a function.When working with pointers to functions, the Objective-C
compiler needs to know not only that the pointer variable points to a function, but also
the type of value returned by that function, as well as the number and types of its arguments.
To declare a variable, fnPtr, to be of type “pointer to function that returns an int and
that takes no arguments,” you would write this declaration:

int (*fnPtr) (void);

The parentheses around *fnPtr are required; otherwise, the Objective-C compiler
treats the preceding statement as the declaration of a function called fnPtr that returns a
pointer to an int (because the function call operator () has higher precedence than the
pointer indirection operator *).

To set your function pointer to point to a specific function, you simply assign the
name of the function to it.Therefore, if lookup were a function that returned an int and
that took no arguments, the statement

fnPtr = lookup;

would store a pointer to this function inside the function pointer variable fnPtr.Writing
a function name without a subsequent set of parentheses is treated in an analogous way to
writing an array name without a subscript.The Objective-C compiler automatically pro-
duces a pointer to the specified function.An ampersand is permitted in front of the func-
tion name, but it’s not required.

If the lookup function has not been previously defined in the program, you must
declare the function before the previous assignment can be made.A statement such as

int lookup (void);

would be needed before a pointer to this function could be assigned to the variable
fnPtr.

You can call the function indirectly referenced through a pointer variable by applying
the function call operator to the pointer, listing any arguments to the function inside the
parentheses. For example

entry = fnPtr ();

calls the function that fnPtr points to, storing the returned value inside the variable
entry.

One common application for pointers to functions is passing them as arguments to
other functions.The Standard Library uses this in the function qsort, which performs a
quick sort on an array of data elements.This function takes as one of its arguments a
pointer to a function that is called whenever qsort needs to compare two elements in
the array being sorted. In this manner, qsort can be used to sort arrays of any type
because the actual comparison of any two elements in the array is made by a user-sup-
plied function, not by the qsort function itself.

ptg999

292 Chapter 13 Underlying C Language Features

In the Foundation framework, some methods take a function pointer as an argument.
For example, the method sortUsingFunction:context: is defined in the
NSMutableArray class and calls the specified function whenever two elements in an array
to be sorted need to be compared.

Another common application for function pointers is to create dispatch tables.You can’t
store functions themselves inside the elements of an array. However, you can store func-
tion pointers inside an array. Given this, you can create tables that contain pointers to
functions to be called. For example, you might create a table for processing different com-
mands that a user will enter. Each entry in the table could contain both the command
name and a pointer to a function to call to process that particular command. Now, when-
ever the user entered a command, you could look up the command inside the table and
invoke the corresponding function to handle it.

Pointers and Memory Addresses
Before we end this discussion of pointers in Objective-C, we should point out the details
of how they are actually implemented.A computer’s memory can be conceptualized as a
sequential collection of storage cells. Each cell of the computer’s memory has a number,
called an address, associated with it.Typically, the first address of a computer’s memory is
numbered 0. On most computer systems, a cell is 1 byte.

The computer uses memory to store the instructions of your computer program and
to store the values of the variables associated with a program. So if you declare a variable
called count to be of type int, the system would assign location(s) in memory to hold
the value of count while the program is executing. For example, this location might be at
address 1000FF16 inside the computer’s memory.

Luckily, you don’t need to concern yourself with the particular memory addresses
assigned to variables—the system automatically handles them. However, the knowledge
that each variable is associated with a unique memory address will help you understand
the way pointers operate.

Whenever you apply the address operator to a variable in Objective-C, the value gen-
erated is the actual address of that variable inside the computer’s memory. (Obviously, this
is where the address operator gets its name.) So the statement

intPtr = &count;

assigns to intPtr the address in the computer’s memory that has been assigned to the
variable count.Thus, if count were located at address 1000FF16, this statement would
assign the value 0x1000FF to intPtr.

Applying the indirection operator to a pointer variable, as in the expression

*intPtr

has the effect of treating the value contained in the pointer variable as a memory address.
The value stored at that memory address is then fetched and interpreted in accordance
with the type declared for the pointer variable. So if intPtr were of type pointer to int,

ptg999

293Miscellaneous Language Features

the system would interpret the value stored in the memory address given by *intPtr as
an integer.

They’re Not Objects!
Now you know how to define arrays, structures, character strings, and unions, and how to
manipulate them in your program. Remember one fundamental thing: They’re not objects.
Thus, you can’t send messages to them.You also can’t use them to take maximum advan-
tage of nice things such as the memory-allocation strategy that the Foundation frame-
work provides.That’s one of the reasons I encouraged you to skip this chapter and return
to it later. In general, you’re better served learning how to use the Foundation’s classes
that define arrays and strings as objects than using the ones built into the language.
Resort to using the types defined in this chapter only if you really need to—and hope-
fully you won’t!

Miscellaneous Language Features
Some language features didn’t fit well into any of the other chapters, so we’ve included
them here.

Compound Literals
A compound literal is a type name enclosed in parentheses followed by an initialization list.
It creates an unnamed value of the specified type, which has scope limited to the block in
which it is created or global scope if defined outside any block. In the latter case, the ini-
tializers must all be constant expressions.

Consider an example:

(struct date) { .month = 7, .day = 2, .year = 2011}

This expression produces a structure of type struct date with the specified initial
values.You can assign this to another struct date structure, like so:

theDate = (struct date) { .month = 7, .day = 2, .year = 2011} ;

Or you can pass it to a function or method that expects an argument of struct date,
like so:

setStartDate ((struct date) { .month = 7, .day = 2, .year = 2011});

In addition, you can define types other than structures. For example, if intPtr is of
type int *, the statement

intPtr = (int [100]) { [0] = 1, [50] = 50, [99] = 99 } ;

(which can appear anywhere in the program) sets intptr pointing to an array of 100
integers, whose 3 elements are initialized as specified.

If the size of the array is not specified, the initializer list determines it.

ptg999

294 Chapter 13 Underlying C Language Features

The goto Statement
Executing a goto statement causes a direct branch to be made to a specified point in the
program.To identify where in the program the branch is to be made, a label is needed.A
label is a name formed with the same rules as variable names; it must be immediately fol-
lowed by a colon.The label is placed directly before the statement to which the branch is
to be made and must appear in the same function or method as the goto.

For example, the statement

goto out_of_data;

causes the program to branch immediately to the statement that is preceded by the label
out_of_data;.This label can be located anywhere in the function or method, before or
after the goto, and might be used as shown here:

out_of_data: NSLog (@"Unexpected end of data.");
...

Lazy programmers frequently abuse the goto statement to branch to other portions of
their code.The goto statement interrupts the normal sequential flow of a program.As a
result, programs are harder to follow. Using many gotos in a program can make it impos-
sible to decipher. For this reason, goto statements are not considered part of good pro-
gramming style.

The null Statement
Objective-C permits you to place a solitary semicolon wherever a normal program state-
ment can appear.The effect of such a statement, known as the null statement, is that noth-
ing is done.This might seem quite useless, but programmers often do this in while, for,
and do statements. For example, the purpose of the following statement is to store all the
characters read in from standard input (your terminal, by default) in the character array that
text points to until a newline character is encountered.This statement uses the library
routine getchar, which reads and returns a single character at a time from standard input:

while ((*text++ = getchar ()) != '')
;

All the operations are performed inside the looping conditions part of the while state-
ment.The null statement is needed because the compiler takes the statement that follows
the looping expression as the body of the loop.Without the null statement, the compiler
would treat whatever statement follows in the program as the body of the program loop.

The Comma Operator
At the bottom of the precedence totem pole, so to speak, is the comma operator. In
Chapter 5,“Program Looping,” we pointed out that inside a for statement, you can
include more than one expression in any of the fields by separating each expression with
a comma. For example, the for statement that begins

ptg999

295Miscellaneous Language Features

for (i = 0, j = 100; i != 10; ++i, j -= 10)
...

initializes the value of i to 0 and j to 100 before the loop begins, and it increments
the value of i and subtracts 10 from the value of j after the body of the loop is executed.

Because all operators in Objective-C produce a value, the value of the comma opera-
tor is that of the rightmost expression.

The sizeof Operator
Although you should never make assumptions about the size of a data type in your pro-
gram, sometimes you need to know this information.This might be when performing
dynamic memory allocation using library routines such as malloc, or when writing or
archiving data to a file. Objective-C provides an operator called sizeof that you can use
to determine the size of a data type or object.The sizeof operator returns the size of the
specified item in bytes.The argument to the sizeof operator can be a variable, an array
name, the name of a basic data type, an object, the name of a derived data type, or an
expression. For example, writing

sizeof (int)

gives the number of bytes needed to store an integer. On my MacBook Air, this produces
a result of 4 (or 32 bits). If x is declared as an array of 100 ints, the expression

sizeof (x)

would give the amount of storage required to store the 100 integers of x.
Given that myFract is a Fraction object that contains two int instance variables

(numerator and denominator), the expression

sizeof (myFract)

produces the value 4 on any system that represents pointers using 4 bytes. In fact, this is
the value that sizeof yields for any object because here you are asking for the size of the
pointer to the object’s data.To get the size of the actual data structure to store an instance
of a Fraction object, you would instead write the following:

sizeof (*myFract)

On my MacBook Air, this gives me a value of 12.That’s 4 bytes each for the
numerator and denominator, plus another 4 bytes for the inherited isa member men-
tioned in the section “How Things Work,” at the end of this chapter.

The expression

sizeof (struct data_entry)

has as its value the amount of storage required to store one data_entry structure. If data
is defined as an array of struct data_entry elements, the expression

sizeof (data) / sizeof (struct data_entry)

ptg999

296 Chapter 13 Underlying C Language Features

gives the number of elements contained in data (data must be a previously defined array,
not a formal parameter or externally referenced array).The expression

sizeof (data) / sizeof (data[0])

produces the same result.
Use the sizeof operator wherever possible, to avoid having to calculate and hard-code

sizes into your programs.

Command-Line Arguments
Often a program is developed that requires the user to enter a small amount of informa-
tion at the terminal.This information might consist of a number indicating the triangu-
lar number you want to have calculated or a word you want to have looked up in a
dictionary.

Instead of having the program request this type of information from the user, you can
supply the information to the program at the time the program is executed. Command-line
arguments provide this capability.

We have pointed out that the only distinguishing quality of the function main is that
its name is special; it specifies where program execution is to begin. In fact, the runtime
system actually calls upon the function main at the start of program execution, just as
you would call a function from within your own program.When main completes execu-
tion, control returns to the runtime system, which then knows that your program has
completed.

When the runtime system calls main, two arguments are passed to the function.The
first argument, called argc by convention (for argument count), is an integer value that
specifies the number of arguments typed on the command line.The second argument to
main is an array of character pointers, called argv by convention (for argument vector). In
addition, argc + 1 character pointers are contained in this array.The first entry in this
array is either a pointer to the name of the program that is executing or a pointer to a
null string if the program name is not available on your system. Subsequent entries in the
array point to the values specified in the same line as the command that initiated execu-
tion of the program.The last pointer in the argv array, argv[argc], is defined to be null.

To access the command-line arguments, the main function must be appropriately
declared as taking two arguments.The conventional declaration we have used in all the
programs in this book suffices:

int main (int argc, char * argv[])
{
...

}

Remember, the declaration of argv defines an array that contains elements of type
“pointer to char.”As a practical use of command-line arguments, suppose that you had
developed a program that looks up a word inside a dictionary and prints its meaning.You

ptg999

297Miscellaneous Language Features

can use command-line arguments so that the word whose meaning you want to find can
be specified at the same time that the program is executed, as in the following command:

lookup aerie

This eliminates the need for the program to prompt the user to enter a word because
it is typed on the command line.

If the previous command were executed, the system would automatically pass to the
main function a pointer to the character string "aerie" in argv[1]. Recall that argv[0]
would contain a pointer to the name of the program, which, in this case, would be
"lookup".

The main routine might appear as shown:

#include <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

struct entry dictionary[100] =
{ { "aardvark", "a burrowing African mammal" } ,
{ "abyss", "a bottomless pit" } ,
{ "acumen", "mentally sharp; keen" } ,
{ "addle", "to become confused" } ,
{ "aerie", "a high nest" } ,
{ "affix", "to append; attach" } ,
{ "agar", "a jelly made from seaweed" } ,
{ "ahoy", "a nautical call of greeting" } ,
{ "aigrette", "an ornamental cluster of feathers" } ,
{ "ajar", "partially opened" } } ;

int entries = 10;
int entryNumber;
int lookup (struct entry dictionary [], char search[],

int entries);

if (argc != 2)
{

NSLog (@"No word typed on the command line.");
return (1);

}

entryNumber = lookup (dictionary, argv[1], entries);

if (entryNumber != -1)
NSLog (@"%s", dictionary[entryNumber].definition);

else

ptg999

298 Chapter 13 Underlying C Language Features

NSLog (@"Sorry, %s is not in my dictionary.", argv[1]);

return (0);
}

The main routine tests to ensure that a word was typed after the program name when
the program was executed. If it wasn’t, or if more than one word was typed, the value of
argc is not equal to 2. In that case, the program writes an error message to standard error
and terminates, returning an exit status of 1.

If argc is equal to 2, the lookup function is called to find the word that argv[1]
points to in the dictionary. If the word is found, its definition is displayed.

Remember that command-line arguments are always stored as character strings. So
execution of the program power with the command-line arguments 2 and 16, as in

power 2 16

stores a pointer to the character string "2" inside argv[1] and a pointer to the string "16"
inside argv[2]. If the program is to interpret arguments as numbers (as we suspect is the
case in the power program), the program itself must convert them. Several routines are
available in the program library for doing such conversions: sscanf, atof, atoi, strtod,
and strtol. In Part II, you’ll learn how to use a class called NSProcessInfo to access the
command-line arguments as string objects instead of as C strings.

How Things Work
We would be remiss if we finished this chapter without first tying a couple things
together. Because the Objective-C language has the C language underneath, it’s worth
mentioning some of the connections between the two.You can ignore these implementa-
tion details or use them to better understand how things work, in the same way that
learning about pointers as memory addresses can help you better understand pointers.
We don’t get too detailed here; we just state four facts about the relationship between
Objective-C and C.

Fact #1: Instance Variables Are Stored in Structures
When you define a new class and its instance variables, those instance variables are actu-
ally stored inside a structure.That’s how you can manipulate objects; they’re really struc-
tures whose members are your instance variables. So the inherited instance variables plus
the ones you added in your class comprise a single structure.When you allocate a new
object using alloc, enough space is reserved to hold one of these structures.

One of the inherited members (it comes from the root object) of the structure is a
protected member called isa that identifies the class to which the object belongs.
Because it’s part of the structure (and, therefore, part of the object), it is carried around
with the object. In that way, the runtime system can always identify the class of an object
(even if you assign it to a generic id object variable) by just looking at its isa member.

ptg999

299How Things Work

You can gain direct access to the members of an object’s structure by making them
@public (see the discussion in Chapter 10). If you did that with the numerator and
denominator members of your Fraction class, for example, you could write expres-
sions such as

myFract->numerator

in your program to directly access the numerator member of the Fraction object
myFract. But we strongly advise against doing that.As we mentioned in Chapter 10, it
goes against the grain of data encapsulation.

Fact #2: An Object Variable Is Really a Pointer
When you define an object variable such as a Fraction, as in

Fraction *myFract;

you’re really defining a pointer variable called myFract.This variable is defined to point
to something of type Fraction, which is the name of your class.When you allocate a
new instance of a Fraction, with

myFract = [Fraction alloc];

you’re allocating space to store a new Fraction object in memory (that is, space for a
structure) and then storing the pointer to that structure that is returned inside the pointer
variable myFract.

When you assign one object variable to another, as in

myFract2 = myFract1;

you’re simply copying pointers. Both variables end up pointing to the same structure
stored somewhere in memory. Making a change to one of the members referenced (that
is, pointed to) by myFract2 therefore changes the same instance variable (that is, structure
member) that myFract1 references.

Fact #3: Methods Are Functions, and Message Expressions Are
Function Calls
Methods are really functions.When you invoke a method, you call a function associated
with the class of the receiver.The arguments passed to the function are the receiver
(self) and the method’s arguments. So all the rules about passing arguments to functions,
return values, and automatic and static variables are the same whether you’re talking
about a function or a method.The Objective-C compiler creates a unique name for each
function using a combination of the class name and the method name.

Fact #4: The id Type Is a Generic Pointer Type
Because objects are referenced through pointers, which are just memory addresses,
you can freely assign them between id variables.A method that returns an id type

ptg999

300 Chapter 13 Underlying C Language Features

consequently just returns a pointer to some object in memory.You can then assign that
value to any object variable. Because the object carries its isa member wherever it goes,
its class can always be identified, even if you store it in a generic object variable of type id.

Exercises
1. Write a function that calculates the average of an array of 10 floating-point values

and returns the result.

2. The reduce method from your Fraction class finds the greatest common divisor of
the numerator and denominator to reduce the fraction. Modify that method so that
it uses the gcd function from Program 13.5 instead.Where do you think you
should place the function definition? Are there any benefits to making the function
static? Which approach do you think is better, using a gcd function or incorporat-
ing the code directly into the method as you did previously? Why?

3. An algorithm known as the Sieve of Erastosthenes can generate prime numbers.The
algorithm for this procedure is presented here.Write a program that implements
this algorithm. Have the program find all prime numbers up to n = 150.What can
you say about this algorithm as compared to the ones used in the text for calculat-
ing prime numbers?

Step 1: Define an array of integers P. Set all elements Pi to 0, 2 <= i <= n.

Step 2: Set i to 2.

Step 3: If i > n, the algorithm terminates.

Step 4: If Pi is 0, i is prime.

Step 5: For all positive integer values of j, such that i×j<=n, set Pixj to 1.

Step 6:Add 1 to i and go to step 3.

4. Write a function to add all the Fractions passed to it in an array and to return the
result as a Fraction.

5. Write a typedef definition for a struct date called Date that enables you to
make declarations such as
Date todaysDate;

in your program.

6. As noted in the text, defining a Date class instead of a date structure is more con-
sistent with the notion of object-oriented programming. Define such a class with
appropriate setter and getter methods.Also add a method called dateUpdate to
return the day after its argument.

ptg999

301Exercises

Do you see any advantages of defining a Date as a class instead of as a structure? Do
you see any disadvantages?

7. Given the following definitions
char *message = "Programming in Objective-C is fun";
char message2[] = "You said it";
int x = 100;

determine whether each NSLog call from the following sets is valid and produces
the same output as other calls from the set.
/*** set 1 ***/
NSLog (@"Programming in Objective-C is fun");
NSLog (@"%s", "Programming in Objective-C is fun");
NSLog (@"%s", message);

/*** set 2 ***/
NSLog (@"You said it");
NSLog (@"%s", message2);
NSLog (@"%s", &message2[0]);

/*** set 3 ***/
NSLog (@"said it");
NSLog (@"%s", message2 + 4);
NSLog (@"%s", &message2[4]);

8. Write a program that prints all its command-line arguments, one per line at the ter-
minal. Notice the effect of enclosing arguments that contain space characters inside
quotation marks.

9. Which of the following statements produce the output This is a test? Explain.
NSLog (@"This is a test");
NSLog ("This is a test");

NSLog (@"%s", "This is a test");
NSLog (@"%s", @"This is a test");

NSLog ("%s", "This is a test");
NSLog ("%s", @"This is a test");

NSLog (@"%@", @"This is a test");
NSLog (@"%@", "This is a test");

10. Rewrite the exchange function from Program 13.14 as a block and test it out.

ptg999

This page intentionally left blank

ptg999

14
Introduction to the Foundation

Framework

A framework is a collection of classes, methods, functions, and documentation logically
grouped together to make developing programs easier. On Mac OS X, more than 90
frameworks are available for developing applications so that you can easily work with the
Mac’s Address Book structure, burn CDs, play back DVDs, play movies with QuickTime,
play songs, and so on.

The framework that provides the base or foundation for all your program development
is called the Foundation framework.This framework, the subject of the second part of this
book, enables you to work with basic objects, such as numbers and strings, and with col-
lections of objects, such as arrays, dictionaries, and sets. Other capabilities provide for
working with dates and times, using automated memory management, working with the
underlying file system, storing (or archiving) objects, and working with geometric data
structures such as points and rectangles.

The Application Kit framework contains an extensive collection of classes and meth-
ods to develop interactive graphical applications.These provide the capability to easily
work with text, menus, toolbars, tables, documents, the pasteboard, and windows. In Mac
OS X, the term Cocoa collectively refers to the Foundation framework, the Application
Kit framework, and a third framework known as Core Data.The term Cocoa Touch collec-
tively refers to the Foundation, Core Data, and UIKit frameworks. Part III,“Cocoa,
Cocoa Touch, and the iOS SDK,” provides some more detail on this subject.

Foundation Documentation
You should take advantage of the Foundation framework documentation that is stored on
your system (if you elected to download local copies) and that is also available online at
Apple’s website. Most documentation exists in the form of HTML files for viewing by a
browser or as Acrobat PDF files. Contained in this documentation is a description of all
the Foundation classes and all the implemented methods and functions. I keep the URL

ptg999

304 Chapter 14 Introduction to the Foundation Framework

to the Foundation documentation as a bookmark in my browser so I can easily look up
information about a Foundation class.

If you’re using Xcode to develop your programs, you have easy access to documenta-
tion in several different ways.You can get to the main Documentation window Xcode
Help from the Help menu.This window enables you to easily search and access docu-
mentation that is stored locally on your computer or is available online. Figure 14.1 shows
the results of searching for the string “NSString” in the Xcode Help window.

If you’re editing a file in Xcode and you want to get immediate access to the docu-
mentation for a particular header file, method, or class, you can simply place your cursor
in the class, method, or variable you want to search for, hold down the Option key, and
Click.You’ll get a quick summary of whatever you selected. Figure 14.2 shows the pane
that appears when the mouse cursor is located in the text NSString and the Option key
is pressed and the mouse is clicked.

In the top-right corner of the pane that appears, you’ll notice two icons: the first is of
a book, and the second is of a page with the letter h in it. If you click on the former,
Xcode will search the documentation for the selected class, protocol, definition, or
method. If you click on the latter, you’ll get the header file displayed that contains the
definition for the selected item.This Quick Help pane also gives you quick access
through hyperlinks, where available, to other references, related documents, and sample
code that uses the specified class or method. It’s really a great and convenient tool that
you should get used to using!

Figure 14.1 Using Xcode for reference documentation

ptg999

305Foundation Documentation

Figure 14.2 Quick reference for NSString

You can also turn on the Quick Help pane so that it always appears and is automati-
cally updated as you type or select items in your program by selecting View, Utilities,
Quick Help.This will give you a window layout like that shown in Figure 14.3, with the
Quick Help menu appearing in the rightmost pane by default.

You can access the Mac OS X reference library online at http://developer.apple.com/
library/mac/navigation/index.html and navigate your way to the appropriate reference.

Figure 14.3 Quick Help displayed in the View pane.

http://developer.apple.com/library/mac/navigation/index.html
http://developer.apple.com/library/mac/navigation/index.html

ptg999

306 Chapter 14 Introduction to the Foundation Framework

At this address, you’ll also find a wide assortment of documents covering specific pro-
gramming issues, such as memory management, strings, and file management.

Unless you subscribe to a particular document set with Xcode, the online documenta-
tion might be more current than that stored on your disk.

This concludes our brief introduction to the Foundation framework. Now it’s time to
learn about some if its classes and how you can put them to work in your applications.

ptg999

15
Numbers, Strings, and

Collections

This chapter describes how to work with some of the basic objects provided in the
Foundation framework.These include numbers, strings, and collections, which refer to
the capability to work with groups of objects in the form of arrays, dictionaries, and sets.

The Foundation framework contains a plethora of classes, methods, and functions for
you to use.Approximately 125 header files are available under Mac OS X.As a conven-
ience, you can simply use the following import:

#import <Foundation/Foundation.h>

Because the Foundation.h file imports virtually all the other Foundation header files,
you don’t have to worry about whether you are importing the correct header file. Xcode
automatically inserts this header file into your program, as you’ve seen in each example
throughout this book.

Using this statement can add significant time to your compiles. However, you can
avoid this extra time by using precompiled headers.These are files that the compiler has
preprocessed. By default, all Xcode projects benefit from precompiled headers.

Number Objects
All the numeric data types we’ve dealt with up to now, such as integers, floats, and longs,
are basic data types in the Objective-C language—that is, they are not objects. For exam-
ple, you can’t send messages to them. Sometimes, though, you need to work with these
values as objects. For example, the Foundation object NSArray enables you to set up an
array in which you can store values.These values have to be objects, so you can’t directly
store any of your basic data types in these arrays. Instead, to store any of the basic numeric
data types (including the char data type), you can use the NSNumber class to create objects
from these data types. (See Program 15.1.)

ptg999

308 Chapter 15 Numbers, Strings, and Collections

Program 15.1

// Working with Numbers

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSNumber *myNumber, *floatNumber, *intNumber;
NSInteger myInt;

// integer value

intNumber = [NSNumber numberWithInteger: 100];
myInt = [intNumber integerValue];
NSLog (@"%li", (long) myInt);

// long value

myNumber = [NSNumber numberWithLong: 0xabcdef];
NSLog (@"%lx", [myNumber longValue]);

// char value

myNumber = [NSNumber numberWithChar: 'X'];
NSLog (@"%c", [myNumber charValue]);

// float value

floatNumber = [NSNumber numberWithFloat: 100.00];
NSLog (@"%g", [floatNumber floatValue]);

// double

myNumber = [NSNumber numberWithDouble: 12345e+15];
NSLog (@"%lg", [myNumber doubleValue]);

// Wrong access here

NSLog (@"%li", (long) [myNumber integerValue]);

// Test two Numbers for equality

if ([intNumber isEqualToNumber: floatNumber] == YES)
NSLog (@"Numbers are equal");

else
NSLog (@"Numbers are not equal");

ptg999

309Number Objects

// Test if one Number is <, ==, or > second Number

if ([intNumber compare: myNumber] == NSOrderedAscending)
NSLog (@"First number is less than second");

}
return 0;

}

Program 15.1 Output

100
abcdef
X
100
1.2345e+19
0
Numbers are equal
First number is less than second

The NSNumber class contains many methods that allow you to create NSNumber objects
with initial values. For example, the line

intNumber = [NSNumber numberWithInteger: 100];

creates an object from an integer whose value is 100.
The value retrieved from an NSNumber object must be consistent with the type of

value that was stored in it. So in the statement that follows in the program,

myInt = [intNumber integerValue]

retrieves the integer value stored inside intNumber and stores it inside the NSInteger
variable myInt. Note that NSInteger is not an object, but a typedef for a basic data type.
It is typedef’ed either to a long for 64-bit builds or to an int for 32-bit builds.A similar
typedef for NSUInteger exists for working with unsigned integers in your program.

In the NSLog call, we cast the NSInteger myInt to a long and use the format charac-
ters %li to ensure that the value will be passed and displayed correctly even if the pro-
gram is compiled for a 32-bit architecture.

For each basic data type, a class method exists that allocates an NSNumber object and
sets it to a specified value.These methods begin with numberWith followed by the type, as
in numberWithLong:, numberWithFloat:, and so on. In addition, instance methods can
be used to set a previously alloc’ed NSNumber object to a specified value.These all begin
with initWith, as in initWithLong: and initWithFloat:.

Table 15.1 lists the class and instance methods for setting values for NSNumber objects
and the corresponding instance methods for retrieving their values.

ptg999

310 Chapter 15 Numbers, Strings, and Collections

Note
In versions of Xcode prior to 4.2, it mattered more which version of the method you used.
The class method would create an object that was autoreleased, whereas the alloc’ed ver-
sions created objects whose memory you were responsible for releasing when you were
done using them. The introduction of Automatic Reference Counting (ARC) to Objective-C
means that there’s no longer a strong motivation to use one form of a method over the other
as memory management is now handled automatically.

Returning to Program 15.1, the program next uses the class methods to create long,
char, float, and double NSNumber objects. Notice what happens after you create a dou-
ble object with the line

myNumber = [NSNumber numberWithDouble: 12345e+15];

and then try to (incorrectly) retrieve and display its value with the following line:

NSLog (@"%li", (long) [myNumber integerValue]);

Also, you get no error message from the system. In general, it’s up to you to ensure that
if you store a value in an NSNumber object, you retrieve it in a consistent manner.

Table 15.1 NSNumber Creation and Retrieval Methods

Creation and Initialization
Class Method

Initialization Instance
Method

Retrieval Instance
Method

numberWithChar: initWithChar: charValue

numberWithUnsignedChar: initWithUnsignedChar: unsignedCharValue

numberWithShort: initWithShort: shortValue

numberWithUnsignedShort: initWithUnsignedShort: unsignedShortValue

numberWithInteger: initWithInteger: integerValue

numberWithUnsignedInteger: initWithUnsignedInteger: unsignedIntegerValue

numberWithInt: initWithInt: intValue

numberWithUnsignedInt: initWithUnsignedInt: unsignedIntValue

numberWithLong: initWithLong: longValue

numberWithUnsignedLong: initWithUnsignedLong: unsignedLongValue

numberWithLongLong: initWithLongLong: longlongValue

numberWithUnsignedLongLong: initWithUnsignedLongLong: unsignedLongLongValue

numberWithFloat: initWithFloat: floatValue

numberWithDouble: initWithDouble: doubleValue

numberWithBool: initWithBool: boolValue

We show the output as 0, but you may get a different result, since the access is not valid.

ptg999

311Number Objects

Inside the if statement, the message expression

[intNumber isEqualToNumber: floatNumber]

uses the isEqualToNumber: method to numerically compare two NSNumber objects.The
program tests the returned BOOL value to see whether the two numbers are equal.

You can use the compare: method to test whether one numeric value is numerically
less than, equal to, or greater than another.The message expression

[intNumber compare: myNumber]

returns the value NSOrderedAscending if the numeric value stored in intNumber is less
than the numeric value contained in myNumber, returns the value NSOrderedSame if the
two numbers are equal, and returns the value NSOrderedDescending if the first number is
greater than the second.These values are defined in the header file NSObject.h, which is
included when you import Foundation.h.

Note that you cannot change the value of a previously created NSNumber object. For exam-
ple, this doesn’t work:

NSNumber *myNumber = [[NSNumber alloc] initWithInt: 50];
...
[myNumber initWithInt: 1000];

This last statement will cause your program to crash when it is run.All number objects
must be newly created, meaning that you must invoke either one of the methods listed in
the first column of Table 15.1 on the NSNumber class or one of the methods listed in col-
umn 2 using the result from the alloc method, as shown in the first line of the previous
example.

Just to make sure you understand the distinction in using numberWithInt: versus
numberWithInteger:, just follow these rules:

1. If you create an integer using numberWithInt: you should retrieve its value using
intValue, and you can display its value using %i as the format characters.

2. If you create an integer using numberWithInteger: you should retrieve its value
using integerValue, and you should cast it to a long if it’s displayed or used to for-
mat a string with a method like stringWithFormat:.The format characters to use
would be %li in such cases.

A similar discussion applies to using numberWithUnsignedInt: versus
numberWithUnsignedInteger:.

You’ll encounter NSNumber objects again in programs throughout the remainder of this
chapter.You may want to look at the documentation for the NSDecimalNumber class
before moving on to the next section.That class is a subclass of NSNumber and provides
methods for doing arithmetic with numbers at the object level.

ptg999

312 Chapter 15 Numbers, Strings, and Collections

String Objects
You’ve encountered string objects in your programs before.Whenever you enclosed a
sequence of character strings inside a pair of double quotes, as in

@"Programming is fun"

you created a character string object in Objective-C.The Foundation framework supports
a class called NSString for working with character string objects.Whereas C-style strings
consist of char characters, NSString objects consist of unichar characters.A unichar
character is a multibyte character according to the Unicode standard.This enables you to
work with character sets that can contain literally millions of characters. Luckily, you don’t
have to worry about the internal representation of the characters in your strings because
the NSString class automatically handles this for you.1 By using the methods from this
class, you can more easily develop applications that can be localized—that is, made to work
in different languages around the world.

As you know, you create a constant character string object in Objective-C by putting
the @ character in front of the string of double-quoted characters. So the expression

@"Programming is fun"

creates a constant character string object. In particular, it is a constant character string that
belongs to the class NSConstantString. NSConstantString is a subclass of the string
object class NSString.

More on the NSLog Function
Program 15.2, which follows, shows how to define an NSString object and assign an initial
value to it. It also shows how to use the format characters %@ to display an NSString object.

Program 15.2

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *str = @"Programming is fun";

NSLog (@"%@", str);
}
return 0;

}

1 Currently, unichar characters occupy 16 bits, but the Unicode standard provides for characters
larger than that size. So in the future, unichar characters might be larger than 16 bits. The bottom
line is to never make an assumption about the size of a Unicode character.

ptg999

313String Objects

Program 15.2 Output

Programming is fun

In the line

NSString *str = @"Programming is fun";

the constant string object Programming is fun is assigned to the NSString variable str.
Its value is then displayed using NSLog.

The NSLog format characters %@ can be used to display not just NSString objects, but
other objects as well. For example, given the following

NSNumber *intNumber = [NSNumber numberWithInteger: 100];

the NSLog call

NSLog (@"%@", intNumber);

produces the following output:

100

The description Method
You can also use the %@ format characters to display the entire contents of arrays, diction-
aries, and sets. In fact, they can be used to display objects from your own classes as well, as
long as you override the description method inherited by your class. If you don’t over-
ride the method, NSLog simply displays the name of the class the object belongs to and the
address of the object in memory.That’s the default implementation for the description
method that is inherited from the NSObject class.

Following is an example of a description method that you could add to your
Fraction class’ implementation section to have it format a Fraction object.This uses
NSString’s stringWithFormat: method; a method that resembles NSLog but, unlike the
function, the purpose of this method is to return the formatted string as the result, rather
than writing it to the console:

-(NSString *) description
{

return [NSString stringWithFormat: @"%i/%i", numerator, denominator];
}

Note
Methods such as stringWithFormat: allow a variable number of arguments to be pro-
vided (in this case, the format string and the data to be formatted). Such arguments are pro-
vided to the method as a comma-separated list of values.

With this method defined in your Fraction class (statements and with two Fraction
objects f1 and f2 set appropriately), you could then write statements like the following in
your program:

sum = [f1 add: f2];
NSLog (@"The sum of %@ and %@ is %@", f1, f2, sum);

ptg999

314 Chapter 15 Numbers, Strings, and Collections

to get a single line of output like this:

The sum of 1/2 and 1/4 is 3/4

Adding your own description method to your classes is a good debugging tool—it
allows you to display your objects in a meaningful way.

Mutable Versus Immutable Objects
When you create a string object by writing an expression such as

@"Programming is fun"

you create an object whose contents cannot be changed.This is referred to as an immutable
object.The NSString class deals with immutable strings. Frequently, you’ll want to deal
with strings whose characters you can change. For example, you might want to delete
some characters from a string or perform a search-and-replace operation on a string.
These types of strings are handled through the NSMutableString class.

Program 15.3 shows basic ways to work with immutable character strings in your
programs.

Program 15.3

// Basic String Operations

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *str1 = @"This is string A";
NSString *str2 = @"This is string B";
NSString *res;
NSComparisonResult compareResult;

// Count the number of characters

NSLog (@"Length of str1: %lu", [str1 length]);

// Copy one string to another

res = [NSString stringWithString: str1];
NSLog (@"copy: %@", res);

// Copy one string to the end of another

str2 = [str1 stringByAppendingString: str2];
NSLog (@"Concatentation: %@", str2);

// Test if 2 strings are equal

ptg999

315String Objects

if ([str1 isEqualToString: res] == YES)
NSLog (@"str1 == res");

else
NSLog (@"str1 != res");

// Test if one string is <, == or > than another

compareResult = [str1 compare: str2];

if (compareResult == NSOrderedAscending)
NSLog (@"str1 < str2");

else if (compareResult == NSOrderedSame)
NSLog (@"str1 == str2");

else // must be NSOrderedDescending
NSLog (@"str1 > str2");

// Convert a string to uppercase

res = [str1 uppercaseString];
NSLog (@"Uppercase conversion: %s", [res UTF8String]);

// Convert a string to lowercase

res = [str1 lowercaseString];
NSLog (@"Lowercase conversion: %@", res);

NSLog (@"Original string: %@", str1);
}
return 0;

}

Program 15.3 Output

Length of str1: 16
Copy: This is string A
Concatentation: This is string AThis is string B
str1 == res
str1 < str2
Uppercase conversion: THIS IS STRING A
Lowercase conversion: this is string a
Original string: This is string A

Program 15.3 first declares three immutable NSString objects: str1, str2, and res.
The first two are initialized to constant character string objects.The declaration

NSComparisonResult compareResult;

ptg999

316 Chapter 15 Numbers, Strings, and Collections

declares compareResult to hold the result of the string comparison that will be per-
formed later in the program.

You can use the length method to count the number of characters in a string. It
returns an unsigned integer value of type NSUInteger.The output verifies that the string

@"This is string A"

contains 16 characters.The statement

res = [NSString stringWithString: str1];

shows how to create a new character string with the contents of another.The resulting
NSString object is assigned to res and is then displayed to verify the results.An actual
copy of the string contents is made here, not just another reference to the same string in
memory.That means that str1 and res refer to two different string objects, which is dif-
ferent than simply performing a simple assignment like this:

res = str1;

As we have previously discussed, this statement would simply create another reference
to the same object in memory.

The stringByAppendingString: method can join two character strings. So the
expression

[str1 stringByAppendingString: str2]

creates a new string object that consists of the characters str1 followed by str2, returning
the result.The original string objects, str1 and str2, are not affected by this operation
(they can’t be because they’re both immutable string objects).

The isEqualToString: method is used next in the program to test to see whether
two character strings are equal—that is, whether they contain the same characters.You can
use the compare: method instead if you need to determine the ordering of two character
strings—for example, if you wanted to sort an array of them. Similar to the compare:
method you used earlier for comparing two NSNumber objects, the result of the compari-
son is NSOrderedAscending if the first string is lexically less than the second string,
NSOrderedSame if the two strings are equal, and NSOrderedDescending if the first string is
lexically greater than the second. If you don’t want to perform a case-sensitive compari-
son, use the caseInsensitiveCompare: method instead of compare: to compare two
strings. In such a case, the two string objects @"Gregory" and @"gregory" would compare
as equal with caseInsensitiveCompare.

The uppercaseString and lowercaseString are the last two NSString methods used
in Program 15.3 to convert strings to upper case and lower case, respectively.Again, the
conversion does not affect the original strings, as the last line of output verifies.

Make sure you understand that str1 and str2 are declared as immutable string objects,
which means the characters in the string objects they reference cannot be changed. How-
ever, the references, str1 and str2, can be changed.That is, these two variables can be reas-
signed to reference different immutable string objects.This is a very important point. Let’s
look at this again with some figures. Figure 15.1 shows the variables res and str1 just

ptg999

317String Objects

after they’ve just been declared and initialized.The variable res is not set to any initial
value, so its contents appear empty. On the other hand, str1 is set to point to the constant
character string object @"This is string A" that is stored somewhere in memory.

When we send the uppercaseString message to str1 in Program 15.3, we get a new
string created from the character str1, with any lowercase characters in that string object
replaced by uppercase characters.This is depicted in Figure 15.2.

Note that str1 still points to the original string object, and that a new string object has
been created.

Sending the lowercaseString message to str1 works the same way: a new string
object is created that consists of all the uppercase characters from str1 converted to low-
ercase.The reference to that newly created string object is then stored in the variable res.
This is depicted in Figure 15.3 Note that there is no longer a reference to the uppercase
string that was created in the previous step.You don’t have to worry about that; the sys-
tem’s memory management will clean that up for you.

NSString *res;
strl

@“This is string A”;
NSString *strl = @“This is string A”;

res

Figure 15.1 Immutable string object declaration and initialization

res = [strl uppercaseString];

strl
@“This is string A”;

NSString *strl = @“This is string A”;

res THIS IS STRING A

Figure 15.2 Sending the uppercaseString message to a string object

res = [strl lowercaseString];

strl
@“This is string A”;

THIS IS STRING A

NSString *strl = @“This is string A”;

res this is string a

Figure 15.3 Sending the lowercaseString message to a string object

ptg999

318 Chapter 15 Numbers, Strings, and Collections

Program 15.4 illustrates additional methods for dealing with strings.These methods
enable you to extract substrings from a string, as well as search one string for the occur-
rence of another.

Some methods require that you identify a substring by specifying a range.A range con-
sists of a starting index number plus a character count. Index numbers begin with zero, so
the first three characters in a string would be specified by the pair of numbers { 0, 3}.
Some methods of the NSString class (and other Foundation classes as well) use the special
data type NSRange to create a range specification. It is actually a typedef definition for a
structure that has two members, location and length, each of which is defined as type
NSUinteger. Program 15.4 uses this data type.

Note
You can read about structures in Chapter 13, “Underlying C Language Features.” However,
you can probably gain enough information to work with them from the discussion that fol-
lows in this chapter.

Program 15.4

// Basic String Operations – Continued

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *str1 = @"This is string A";
NSString *res;
NSRange subRange;

// Extract first 3 chars from string

res = [str1 substringToIndex: 3];
NSLog (@"First 3 chars of str1: %@", res);

// Extract chars to end of string starting at index 5

res = [str1 substringFromIndex: 5];
NSLog (@"Chars from index 5 of str1: %@", res);

// Extract chars from index 8 through 13 (6 chars)

res = [[str1 substringFromIndex: 8] substringToIndex: 6];
NSLog (@"Chars from index 8 through 13: %@", res);

// An easier way to do the same thing

res = [str1 substringWithRange: NSMakeRange (8, 6)];
NSLog (@"Chars from index 8 through 13: %@", res);

ptg999

319String Objects

// Locate one string inside another

subRange = [str1 rangeOfString: @"string A"];
NSLog (@"String is at index %lu, length is %lu",

subRange.location, subRange.length);

subRange = [str1 rangeOfString: @"string B"];

if (subRange.location == NSNotFound)
NSLog (@"String not found");

else
NSLog (@"String is at index %lu, length is %lu",

subRange.location, subRange.length);

}
return 0;

}

Program 15.4 Output

First 3 chars of str1: Thi
Chars from index 5 of str1: is string A
Chars from index 8 through 13: string
Chars from index 8 through 13: string
String is at index 8, length is 8
String not found

The substringToIndex: method creates a substring from the leading characters in a
string up to but not including the specified index number. Because indexing begins at 0,
the argument of 3 extracts characters 0, 1, and 2 from the string and returns the resulting
string object. For any of the string methods that take an index number as one of their
arguments, you get a “Range or index out of bounds” error message if you provide an
invalid index number in the string.

The substringFromIndex: method returns a substring from the receiver beginning
with the character at the specified index and up through the end of the string.

The expression

res = [[str1 substringFromIndex: 8] substringToIndex: 6];

shows how the two methods can be combined to extract a substring of characters from
inside a string.The substringFromIndex: method is first used to extract characters from
index number 8 through the end of the string; then substringToIndex: is applied to the

ptg999

320 Chapter 15 Numbers, Strings, and Collections

result to get the first six characters.The net result is a substring representing the range of
characters { 8, 6} from the original string.

The substringWithRange: method does in one step what we just did in two: It takes
a range and returns a character in the specified range.The special function

NSMakeRange (8, 6)

creates a range from its argument and returns the result.This is given as the argument to
the substringWithRange: method.

To locate one string inside another, you can use the rangeOfString: method. If the
specified string is found inside the receiver, the returned range specifies precisely where in
the string it was found. However, if the string is not found, the range that is returned has
its location member set to NSNotFound.

So the statement

subRange = [str1 rangeOfString: @"string A"];

assigns the NSRange structure returned by the method to the NSRange variable subRange.
Be sure to remember that subRange is not an object variable, but a structure variable (the
declaration for subRange in the program also does not contain an asterisk—that’s often a
good clue that you’re not dealing with an object—a notable exception is the id type). Its
members can be retrieved by using the structure member operator dot (.). So the expres-
sion subRange. location gives the value of the location member of the structure, and
subRange. length gives the length member.These values are passed to the NSLog func-
tion to be displayed.

Mutable Strings
The NSMutableString class can be used to create string objects whose characters can be
changed. Because this class is a subclass of NSString, all NSString’s methods can be used
as well.

When we speak of mutable versus immutable string objects, we talk about changing
the actual characters within the string. Either a mutable or an immutable string object can
always be set to a completely different string object during execution of the program.This
was stressed in the discussion of Program 15.3. So, for example, consider the following:

str1 = @"This is a string";
...

str1 = [str1 substringFromIndex: 5];

In this case, str1 is first set to a constant character string object. Later in the program,
it is set to a substring. In such a case, str1 could be declared as either a mutable or an
immutable string object. Be sure you understand this point.

Program 15.5 shows some ways to work with mutable strings in your programs.

ptg999

321String Objects

Program 15.5

// Basic String Operations - Mutable Strings

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *str1 = @"This is string A";
NSString *search, *replace;
NSMutableString *mstr;
NSRange substr;

// Create mutable string from nonmutable

mstr = [NSMutableString stringWithString: str1];
NSLog (@"%@", mstr);

// Insert characters

[mstr insertString: @" mutable" atIndex: 7];
NSLog (@"%@", mstr);

// Effective concatentation if insert at end

[mstr insertString: @" and string B" atIndex: [mstr length]];
NSLog (@"%@", mstr);

// Or can use appendString directly

[mstr appendString: @" and string C"];
NSLog (@"%@", mstr);

// Delete substring based on range

[mstr deleteCharactersInRange: NSMakeRange (16, 13)];
NSLog (@"%@", mstr);

// Find range first and then use it for deletion

substr = [mstr rangeOfString: @"string B and “];

if (substr.location != NSNotFound) {
[mstr deleteCharactersInRange: substr];
NSLog (@"%@", mstr);

}

// Set the mutable string directly

ptg999

322 Chapter 15 Numbers, Strings, and Collections

[mstr setString: @"This is string A"];
NSLog (@"%@", mstr);

// Now let’s replace a range of chars with another

[mstr replaceCharactersInRange: NSMakeRange(8, 8)
withString: @"a mutable string"];

NSLog (@"%@", mstr);

// Search and replace

search = @"This is";
replace = @"An example of";

substr = [mstr rangeOfString: search];

if (substr.location != NSNotFound) {
[mstr replaceCharactersInRange: substr

withString: replace];
NSLog (@"%@", mstr);

}

// Search and replace all occurrences

search = @"a";
replace = @"X";

substr = [mstr rangeOfString: search];

while (substr.location != NSNotFound) {
[mstr replaceCharactersInRange: substr

withString: replace];
substr = [mstr rangeOfString: search];

}

NSLog (@"%@", mstr);

}
return 0;

}

Program 15.5 Output

This is string A
This is mutable string A
This is mutable string A and string B
This is mutable string A and string B and string C

ptg999

323String Objects

This is mutable string B and string C
This is mutable string C
This is string A
This is a mutable string
An example of a mutable string
An exXmple of X mutXble string

The declaration

NSMutableString *mstr;

declares mstr to be a variable that holds a character string object whose contents might
change during execution of the program.The line

mstr = [NSMutableString stringWithString: str1];

sets mstr to the string object whose contents are a copy of the characters in str1, or "This
is string A".When the stringWithString: method is sent to the NSMutableString
class, a mutable string object is returned.When it’s sent to the NSString class, as in
Program 15.5, you get an immutable string object instead.

The insertString:atIndex: method inserts the specified character string into the
receiver beginning at the specified index number. In this case, you insert the string @"
mutable" into the string beginning at index number 7, or in front of the eighth character
in the string. Unlike the immutable string object methods, no value is returned here
because the receiver is modified—you can do that because it’s a mutable string object.

The second insertString:atIndex: invocation uses the length method to insert
one character string at the end of another.The appendString: method makes this task a
little simpler.

By using the deleteCharactersInRange: method, you can remove a specified num-
ber of characters from a string.The range { 16, 13}, when applied to the string

This is mutable string A and string B and string C

deletes the 13 characters "string A and “ beginning with index number 16 (or the 17th
character in the string).This is depicted in Figure 15.4.

The rangeOfString: method is used in the lines that follow in Program 15.5 to show
how a string can first be located and then deleted.After first verifying that the string
@"string B and" does exist in mstr, the deleteCharactersInRange: method is used to

0Index # 16

13 chars

28

This is mutable string A and string B and string C

Figure 15.4 Indexing into a string

ptg999

324 Chapter 15 Numbers, Strings, and Collections

delete the characters, using the range returned from the rangeOfString: method as its
argument.

You can use the setString: method to directly set the contents of a mutable string
object.After using this method to set mstr to the string @"This is string A", the
replaceCharactersInRange:withString: method replaces some of the characters in the
string with another string.The sizes of the strings do not have to be the same; you can
replace one string with another of equal or unequal sizes. So in the statement

[mstr replaceCharactersInRange: NSMakeRange(8, 8)
withString: @"a mutable string"];

the 8 characters "string A" are replaced with the 16 characters "a mutable string".
The remaining lines in the program example show how to perform search and replace

operations. In the first case, you locate the string @"This is" inside the string mstr,
which has been set to @"This is a mutable string".This string is found inside the
search string and gets replaced by the string @"An example of".The net result is that mstr
gets changed to the string @"An example of a mutable string".

The program next sets up a loop to illustrate how to implement a search-and-replace-
all operation.The search string is set to @"a" and the replacement string is set to @"a" and
the replacement string is set to @"X".

Note that if the replacement string also contains the search string (for example, con-
sider replacing the string "a" with the string "aX"), you end up with an infinite loop.

Second, if the replacement string is empty (that is, if it contains no characters), you
effectively delete all occurrences of the search string.An empty constant character string
object is specified by an adjacent pair of quotation marks, with no intervening spaces:

replace = @"";

Of course, if you just wanted to delete an occurrence of a string, you could use the
deleteCharactersInRange: method instead, as you’ve already seen.

Finally, the NSMutableString class also contains a method called
replaceOccurrencesOfString:withString:options:range: that you can use to do a
search-and-replace-all on a string. In fact, you could have replaced the while loop from
Program 15.5 with this single statement:

[mstr replaceOccurrencesOfString: search
withString: replace

options: nil
range: NSMakeRange (0, [mstr length])];

This achieves the same result and averts the potential of an infinite loop because the
method prevents such a thing from happening.

The NSString class contains more than 100 methods that can work with string
objects.Table 15.2 summarizes some of the more commonly used ones, and Table 15.3
lists some of the additional methods that the NSMutableString class provides. Some other
NSString methods (such as working with pathnames and reading the contents of a file
into a string) are introduced to you throughout the remainder of this book.You should
look at the documentation for the NSString class to just get a better idea of the wide
variety of methods that are at your disposal.

ptg999

Table 15.2 Common NSString Methods

Method Description

+(id) stringWithString: nsstring Creates a new string, setting it to nsstring

+(NSString *) stringWithFormat:
format, arg1, arg2, arg3 ...

Creates a new string according to the specified
format and arguments arg1, arg2, arg3 ...

-(id) initWithString: nsstring Sets a newly allocated string to nsstring

-(id) initWithContentsOfFile: path
encoding: enc error: err

Sets a string to the contents of a file specified by
path

-(id) initWithContentsOfURL: url
encoding: enc error: err

Sets a string to the contents of url (NSURL *)
url using character encoding enc, returning error
in err if non-nil

-(NSUInteger) length Returns the number of characters in the string

-(unichar) characterAtIndex: i Returns the Unicode character at index i

-(NSString *) substringFromIndex: i Returns a substring from the character at i to the
end

-(NSString *) substringWithRange: range Returns a substring based on a specified range

-(NSString *) substringToIndex: i Returns a substring from the start of the string up
to the character at index i

-(NSComparator *)
caseInsensitiveCompare: nsstring

Compares two strings, ignoring case

-(NSComparator *) compare: nsstring Compares two strings

-(BOOL) hasPrefix: nsstring Tests whether a string begins with nsstring

-(BOOL) hasSuffix: nsstring Tests whether a string ends with nsstring

-(BOOL) isEqualToString: nsstring Tests whether two strings are equal

325String Objects

Table 15.2 Common NSString Methods

Method Description

+(id) stringWithContentsOfFile: path
encoding: enc error: err

Creates a new string and sets it to the path con-
tents of a file specified by path using character
encoding enc, returning error in err if non-nil

+(id) stringWithContentsOfURL: url
encoding: enc error: err

Creates a new string and sets it to the contents of
url using character encoding enc, returning error
in err if non-nil

+(id) string Creates a new empty string

ptg999

326 Chapter 15 Numbers, Strings, and Collections

Table 15.2 Common NSString Methods

Method Description

-(NSString *) capitalizedString Returns a string with the first letter of every word
capitalized (and the remaining letters in each word
converted to lower case)

-(NSString *) lowercaseString Returns a string converted to lower case

-(NSString *) uppercaseString Returns a string converted to upper case

-(const char *) UTF8String Returns a string converted to a UTF-8 C-style char-
acter string

-(double) doubleValue Returns a double precision floating point represen-
tation of the string

-(float) floatValue Returns a floating point representation of the
string

-(NSInteger) integerValue Returns an NSInteger representation of the
string

-(int) intValue Returns the integer representation of the string

Table 15.3 Common NSMutableString Methods

Method Description

+(id) stringWithCapacity: size Creates a string initially containing size
characters.

-(id) initWithCapacity: size Initializes a string with an initial capacity of size
characters.

-(void) setString: nsstring Sets a string to nsstring.

-(void) appendString: nsstring Appends nsstring to the end of the receiver.

-(void) deleteCharactersInRange: range Deletes characters in a specified range.

-(void) insertString: nsstring atIndex: i Inserts nsstring into the receiver starting at
index i.

-(void) replaceCharactersInRange: range
withString: nsstring

Replaces characters in a specified range with
nsstring.

In Tables 15.2 and 15.3, url is an NSURL object, path is an NSString object specifying
the path to a file, nsstring is an NSString object, i is an NSUInteger value representing
a valid character number in a string, enc is an NSStringEncoding object that specifies the
character encoding, err is an NSError object that describes an error if one occurs, size
and opts are NSUIntegers, and range is an NSRange structure indicating a valid range of
characters within a string.

The methods in Table 15.3 either create or modify NSMutableString objects.
NSString objects are used extensively throughout the remainder of this text. If you

need to parse strings into tokens, you can take a look at Foundation’s NSScanner class.

ptg999

327Array Objects

Array Objects
A Foundation array is an ordered collection of objects. Most often, elements in an array
are of one particular type, but that’s not required. Just as there are mutable and immutable
strings, there are mutable and immutable arrays. Immutable arrays are handled by the
NSArray class, whereas mutable ones are handled by NSMutableArray.The latter is a sub-
class of the former, which means it inherits its methods.

Program 15.6 sets up an array to store the names of the months of the year and then
prints them.

Program 15.6
#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

int i;
@autoreleasepool {

// Create an array to contain the month names

NSArray *monthNames = [NSArray arrayWithObjects:
@"January", @"February", @"March", @"April",
@"May", @"June", @"July", @"August", @"September",
@"October", @"November", @"December", nil];

// Now list all the elements in the array

NSLog (@"Month Name");
NSLog (@"===== ====");

for (i = 0; i < 12; ++i)
NSLog (@" %2i %@", i + 1, [monthNames objectAtIndex: i]);

}
return 0;

}

Table 15.3 Common NSMutableString Methods

Method Description

-(void) replaceOccurrencesOfString:
nsstring withString: nsstring2 options:
opts range: range

Replaces all occurrences of nsstring with
nsstring2 within a specified range and accord-
ing to options opts. Options can include a bit-
wise-ORed combination of NSBackwardsSearch
(the search starts from the end of range),
NSAnchoredSearch (nsstring must match
from the beginning of the range only),
NSLiteralSearch (performs a character-by-
character comparison), and
NSCaseInsensitiveSearch.

ptg999

328 Chapter 15 Numbers, Strings, and Collections

Program 15.6 Output

Month Name
===== ====
1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September
10 October
11 November
12 December

You can use the class method arrayWithObjects: to create an array with a list of
objects as its elements. In such a case, the objects are listed in order and are separated by
commas.This is a special syntax used by methods that can take a variable number of argu-
ments.To mark the end of the list, nil must be specified as the last value in the list—it
isn’t actually stored inside the array.

In Program 15.6 monthNames is set to the 12 string values specified by the arguments
to arrayWithObjects:.

Elements are identified in an array by their index numbers. Similar to NSString
objects, indexing begins with zero. So an array containing 12 elements has valid index
numbers 0–11.To retrieve an element of an array using its index number, you use the
objectAtIndex: method.

The program simply executes a for loop to extract each element from the array using
the objectAtIndex: method. Each retrieved element is displayed with NSLog.

Program 15.7 simply creates an array of 10 number objects, whose values range from 0
through 9.The values are retrieved for display using a simple for loop and then the entire
array is displayed again using just the %@ format characters in the NSLog format string.
Later in this chapter, you’ll learn another technique known as fast enumeration that you can
also use to sequence through the elements of your array.

Program 15.7

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSMutableArray *numbers = [NSMutableArray array];
NSNumber *myNumber;
int i;

ptg999

329Array Objects

// Create an array with the number 0-9

for (i = 0; i < 10; ++i) {
myNumber = [NSNumber numberWithInteger: i];
[numbers addObject: myNumber];

}

// Sequence through the array and display the values

for (i = 0; i < 10; ++i) {
myNumber = [numbers objectAtIndex: i];
NSLog (@"%@", myNumber);

}

// Look how NSLog can display it with a single %@ format

NSLog (@"====== Using a single NSLog");
NSLog (@"%@", numbers);

}
return 0;

}

Program 15.7 Output

2010-11-12 15:25:42.701 prog15.7[6379:903] 0
2010-11-12 15:25:42.704 prog15.7[6379:903] 1
2010-11-12 15:25:42.704 prog15.7[6379:903] 2
2010-11-12 15:25:42.704 prog15.7[6379:903] 3
2010-11-12 15:25:42.705 prog15.7[6379:903] 4
2010-11-12 15:25:42.705 prog15.7[6379:903] 5
2010-11-12 15:25:42.705 prog15.7[6379:903] 6
2010-11-12 15:25:42.706 prog15.7[6379:903] 7
2010-11-12 15:25:42.706 prog15.7[6379:903] 8
2010-11-12 15:25:42.706 prog15.7[6379:903] 9
2010-11-12 15:25:42.707 prog15.7[6379:903] ====== Using a single NSLog
2010-11-12 15:25:42.707 prog15.7[6379:903] (

0,
1,
2,
3,
4,
5,
6,
7,
8,
9

)

ptg999

330 Chapter 15 Numbers, Strings, and Collections

(Here we left in all NSLog output just to distinguish the difference in appearance
between the first and second sets of output.)

The NSMutableArray method array simply creates an empty mutable array object for
you.The number of elements in the array isn’t specified and the array can grow as large as
you like.

Recall that you can’t store a basic data type like an integer into a collection such as an
array. So we make an NSNumber object out of each values of i, which ranged from 0
through 9.

The addObject: method adds an object to the end of an array. Here you add each
NSNumber object created from the integer value of i.

The program then enters a for loop to display each of the number objects stored in
the array.

Finally, in Program 15.7, you see how a single %@ can be used in NSLog’s format string
to display the entire numbers array at once.

Note
How does NSLog know how to display the objects stored in the array? For each element in
the array, NSLog will use the description method from the class the element belongs to.
If it’s the default method inherited from NSObject, you’ll just get the object’s class and
address, as previously noted. In this case, however, you get a meaningful display—indicat-
ing there is a customized description method that has been implemented in the
NSNumber class.

The Foundation classes for working with arrays provide many conveniences. However,
in the case of manipulating large arrays of numbers with complex algorithms, learning
how to perform such a task using the lower-level array constructs provided by the under-
lying C language might be more efficient, in terms of both memory usage and execution
speed. Refer to the section “Arrays” in Chapter 13 for more information.

Making an Address Book
Let’s take a look at an example that starts to combine a lot of what you’ve learned to this
point by creating an address book.2Your address book will contain address cards. For the
sake of simplicity, your address cards will contain only a person’s name and email address.
Extending this concept to other information, such as address and phone number, is
straightforward, but we leave that as an exercise for you at the end of this chapter.

2 Mac OS X and iOS provide an entire Address Book framework that offers extremely powerful capabil-
ities for working with address books.

ptg999

331Array Objects

The two classes we’ll create, an AddressBook an AddressCard class, and the relation-
ship between the two is depicted in Figure 15.5.

Creating an Address Card
We start by defining the AddressCard class.You’ll want the capability to create a new
address card, set its name and email fields, retrieve those fields, and print the card. In a
graphics environment, you could use some handy methods to draw your card on your
computer’s screen or iOS device’s window. But here you stick to a simple Console inter-
face to display your address cards.

Program 15.8 shows the interface file for your new AddressCard class.We’re not going
to synthesize the accessor methods yet; writing them yourself offers valuable lessons.

Program 15.8 Interface File AddressCard.h

#import <Foundation/Foundation.h>

@interface AddressCard: NSObject

-(void) setName: (NSString *) theName;
-(void) setEmail: (NSString *) theEmail;
-(NSString *) name;
-(NSString *) email;

-(void) print;

@end

This is straightforward, as is the implementation file in Program 15.8.

AddressCards

name
email

bookName

AddressBook

book

Figure 15.5 An AddressBook that contains AddressCards

ptg999

332 Chapter 15 Numbers, Strings, and Collections

Program 15.8 Implementation File AddressCard.m
#import "AddressCard.h"

@implementation AddressCard
{

NSString *name;
NSString *email;

}

-(void) setName: (NSString *) theName
{

name = [NSString stringWithString: theName];
}

-(void) setEmail: (NSString *) theEmail
{

email = [NSString stringWithString: theEmail];
}

-(NSString *) name
{

return name;
}

-(NSString *) email
{

return email;
}

-(void) print
{

NSLog (@"====================================");
NSLog (@"| |");
NSLog (@"| %-31s |", [name UTF8String]);
NSLog (@"| %-31s |", [email UTF8String]);
NSLog (@"| |");
NSLog (@"| |");
NSLog (@"| |");
NSLog (@"| O O |");
NSLog (@"====================================");

}
@end

You could have the setName: and setEmail: methods store the objects directly in
their respective instance variables with method definitions like these:

-(void) setName: (NSString *) theName
{

name = theName;
}

ptg999

333Array Objects

-(void) setEmail: (NSString *) theEmail
{

email = theEmail;
}

But the AddressCard object would not own its member objects (it would only contain
references to the arguments passed into the methods).We talked about the motivation for
an object to take ownership with respect to the Rectangle class owning its origin object
in Chapter 8,“Inheritance.”

The print method tries to present the user with a nice display of an address card in a
format resembling a Rolodex card (anyone remember those?).The %-31s characters to NSLog
indicate to display a UTF8 C-string within a field width of 31 characters, left-justified.This
ensures that the right edges of your address card line up in the output. It’s used in this
example strictly for cosmetic reasons.

With your AddressCard class in hand, you can write a test program to create an
address card, set its values, and display it (see Program 15.8).

Program 15.8 Test Program

#import "AddressCard.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
AddressCard *card1 = [[AddressCard alloc] init];

[card1 setName: aName];
[card1 setEmail: aEmail];
[card1 print];

}
return 0;

}

Program 15.8 Output

=====================================
| |
| Julia Kochan |
| jewls337@axlc.com |
| |
| |
| |
| O O |
=====================================

ptg999

334 Chapter 15 Numbers, Strings, and Collections

Here are new setName: and setEmail: methods that can save a little work:

-(void) setName: (NSString *) theName
{

if (name != theName)
name = [NSString stringWithString: theName];

}

-(void) setEmail: (NSString *) theEmail
{

if (email != theEmail)
email = [NSString stringWithString: theEmail];

}

The if test is there in case someone sends into the setter the same object that’s already
stored in the instance variable. If the object being passed in is the same as what’s stored, we
don’t have to do any work at all.

Synthesized AddressCard Methods
Now that we’ve discussed the correct way to write the accessor methods setName: and
setEmail:, and you understand the important principles, we can go back and let the sys-
tem generate the accessor methods for you. Consider the second version of the
AddressCard interface file:

#import <Foundation/Foundation.h>

@interface AddressCard: NSObject

@property (copy, nonatomic) NSString *name, *email;
-(void) print;
@end

The line

@property (copy, nonatomic) NSString *name, *email;

lists the attributes copy and nonatomic for the properties.The copy attribute says to
make a copy of the instance variable in its setter method, as you did in the version you
wrote.The default action is to not make a copy, but to instead perform a simple assign-
ment (that’s the default attribute assign), an incorrect approach in this case, as we recently
discussed.

The nonatomic attribute says that you don’t need to worry about race conditions that
could occur from multiple threads trying to access the instance variable at the same time.
Chapter 18,“Copying Objects,” discusses this topic in greater detail.

ptg999

335Array Objects

Program 15.9 is the new AddressCard implementation file that specifies that the acces-
sor methods be synthesized. (Note that we removed the explicit declaration of our
instance variables here because we now have properties listed for them.)

Program 15.9 Implementation File AddressCard.m with Synthesized Methods

#import "AddressCard.h"

@implementation AddressCard

@synthesize name, email;

-(void) print
{

NSLog (@"====================================");
NSLog (@"| |");
NSLog (@"| %-31s |", [name UTF8String]);
NSLog (@"| %-31s |", [email UTF8String]);
NSLog (@"| |");
NSLog (@"| |");
NSLog (@"| |");
NSLog (@"| O O |");
NSLog (@"====================================");

}
@end

Now let’s add another method to your AddressCard class.You might want to set both
the name and email fields of your card with one call.To do so, add a new method,
setName:andEmail:.3 The new method looks like this:

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail
{

self.name = theName;
self.email = theEmail;

}

Recall that writing

self.name = theName;

is the same as writing

[self setName: theName];

3 You also might want an initWithName:andEmail: initialization method, but we don’t show that
here.

ptg999

336 Chapter 15 Numbers, Strings, and Collections

and therefore uses the setter method for the instance variable. Contrast that to writing

name = theName;

which instead bypasses the setter and assigns the argument’s value directly to the
instance variable.

By relying on the synthesized setter methods to set the appropriate instance variables
(instead of setting them directly inside the method yourself), you add a level of abstraction
and, therefore, make the program slightly more independent of its internal data structures.
You also take advantage of the synthesized property’s attributes, which in this case, copy
instead of assign the value to the instance variable.

Program 15.9 tests your new method.

Program 15.9 Test Program

#import "AddressCard.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
NSString *bName = @"Tony Iannino";
NSString *bEmail = @"tony.iannino@techfitness.com";

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];

[card1 print];
[card2 print];

}
return 0;

}

Program 15.9 Output

====================================
| |
| Julia Kochan |
| jewls337@axlc.com |
| |
| |
| |
| O O |
====================================

ptg999

337Array Objects

====================================
| |
| Tony Iannino |
| tony.iannino@techfitness.com |
| |
| |
| |
| O O |
====================================

The AddressBook Class
Your AddressCard class seems to be working okay.What if you wanted to work with a lot
of AddressCards? It would make sense to collect them together, which is exactly what
you’ll do by defining a new class called AddressBook.The AddressBook class will store
the name of an address book and a collection of AddressCards, which you’ll store in an
array object.To start, you’ll want the ability to create a new address book, add new address
cards to it, find out how many entries are in it, and list its contents. Later, you’ll want to be
able to search the address book, remove entries, possibly edit existing entries, sort it, or
even make a copy of its contents.

Let’s get started with a simple interface file (see Program 15.10).

Program 15.10 AddressBook.h Interface File

#import <Foundation/Foundation.h>
#import "AddressCard.h"

@interface AddressBook: NSObject

@property (nonatomic, copy) NSString *bookName;
@property (nonatomic, strong) NSMutableArray *book;

-(id) initWithName: (NSString *) name;
-(void) addCard: (AddressCard *) theCard;
-(NSUInteger) entries;
-(void) list;

@end

The strong attribute for a property It is described in more detail in Chapter 17,
“Memory Management and Automatic Reference Counting.”

ptg999

338 Chapter 15 Numbers, Strings, and Collections

The initWithName: method sets up the initial array to hold the address cards and store
the name of the book, whereas the addCard: method adds an AddressCard to the book.
The entries method reports the number of address cards in your book, and the list
method gives a concise listing of its entire contents. Program 15.10 shows the implemen-
tation file for your AddressBook class.

Program 15.10 AddressBook.m Implementation File

#import "AddressBook.h"

@synthesize bookName, book;

// set up the AddressBook’s name and an empty book

-(id) initWithName: (NSString *) name
{

self = [super init];

if (self) {
bookName = [NSString stringWithString: name];
book = [NSMutableArray array];

}

return self;
}

-(id) init
{

return [self initWithName: @"NoName"];
}

-(void) addCard: (AddressCard *) theCard
{

[book addObject: theCard];
}

-(NSUInteger) entries
{

return [book count];
}

-(void) list
{

NSLog (@"======== Contents of: %@ =========", bookName);

for (AddressCard *theCard in book)
NSLog (@"%-20s %-32s", [theCard.name UTF8String],

[theCard.email UTF8String]);

ptg999

339Array Objects

NSLog (@"==");
}
@end

The initWithName: method first calls the init method for the superclass to perform
its initialization. Next, it makes a copy of the string passed in as the argument to the
method and stores it in the bookName instance variable.This is followed by the creation of
an empty NSMutableArray object that we assign to book.

You defined initWithName: to return an id object, instead of an AddressBook one. If
AddressBook is subclassed, the receiver to the initWithName: message (and therefore the
return value) isn’t an AddressBook object; its type is that of the subclass. For that reason,
you define the return type as a generic object type.

We override the init method here to make sure that if someone does an alloc fol-
lowed by an init, that they still get their address book set up okay, albeit with a default
name of “NoName.” So here, the initWithName: method is our designated initializer and
we want to make sure that init uses it.

The addCard: method takes the AddressCard object given as its argument and adds it
to the address book.

The count method gives the number of elements in an array.The entries method
uses this to return the number of address cards stored in the address book.

Fast Enumeration
The list method’s for loop shows a construct you haven’t seen before:

for (AddressCard *theCard in book)
NSLog (@"%-20s %-32s", [theCard.name UTF8String],

[theCard.email UTF8String]);

This uses a technique known as fast enumeration to sequence through each element of
the book array.The syntax is simple enough:You define a variable that will hold each ele-
ment in the array in turn (AddressCard *theCard).You follow that with the keyword in,
and then you list the name of the array.When the for loop executes, it assigns the first
element in the array to the specified variable and then executes the body of the loop.
Then it assigns the second element in the array to the variable and again executes the
body of the loop.This continues in sequence until all elements of the array have been
assigned to the variable and the body of the loop executed for each such element.

Note that if theCard had been previously defined as an AddressCard object, the for
loop would more simply become this:

for (theCard in book)
...

Program 15.10 is a test program for your new AddressBook class.

ptg999

340 Chapter 15 Numbers, Strings, and Collections

Program 15.10 Test Program

#import "AddressBook.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
NSString *bName = @"Tony Iannino";
NSString *bEmail = @"tony.iannino@techfitness.com";
NSString *cName = @"Stephen Kochan";
NSString *cEmail = @"steve@classroomM.com";
NSString *dName = @"Jamie Baker";
NSString *dEmail = @"jbaker@classroomM.com";

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

// Set up a new address book

AddressBook *myBook = [[AddressBook alloc]
initWithName: @"Linda’s Address Book"];

NSLog (@"Entries in address book after creation: %i",
[myBook entries]);

// Now set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

// Add the cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

NSLog (@"Entries in address book after adding cards: %i",
[myBook entries]);

// List all the entries in the book now

ptg999

341Array Objects

[myBook list];
}
return 0;

}

Program 15.10 Output

Entries in address book after creation: 0
Entries in address book after adding cards: 4

======== Contents of: Linda’s Address Book =========
Julia Kochan jewls337@axlc.com
Tony Iannino tony.iannino@techfitness.com
Stephen Kochan steve@classroomM.com
Jamie Baker jbaker@classroomM.com
==

The program creates a new address book called Linda’s Address Book and then sets up
four address cards.The four cards are then added to the address book using the addCard:
method, and the list method is used to list and verify the contents of the address book.

Looking Up Someone in the Address Book
When you have a large address book, you don’t want to list its complete contents each
time you want to look up someone.Therefore, adding a method to do that for you makes
sense. Let’s call the method lookup: and have it take as its argument the name to locate.
The method will search the address book for a match (ignoring case) and return the
matching entry, if found. If the name does not appear in the phone book, you’ll have it
return nil.

Here’s our new lookup: method:

// lookup address card by name — assumes an exact match

-(AddressCard *) lookup: (NSString *) theName
{

for (AddressCard *nextCard in book)
if ([nextCard.name caseInsensitiveCompare: theName] == NSOrderedSame)
return nextCard;

return nil;
}

ptg999

342 Chapter 15 Numbers, Strings, and Collections

If you put the declaration for this method in your interface file and the definition in
the implementation file, you can write a test program to try your new method. Program
15.11 shows such a program, followed immediately by its output.

Program 15.11 Test Program

#import "AddressBook.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
NSString *bName = @"Tony Iannino";
NSString *bEmail = @"tony.iannino@techfitness.com";
NSString *cName = @"Stephen Kochan";
NSString *cEmail = @"steve@classroomM.com";
NSString *dName = @"Jamie Baker";
NSString *dEmail = @"jbaker@classroomM.com";
AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc]
initWithName: @"Linda’s Address Book"];

AddressCard *myCard;

// Now set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

// Look up a person by name

NSLog (@"Stephen Kochan");
myCard = [myBook lookup: @"stephen kochan"];

ptg999

343Array Objects

if (myCard != nil)
[myCard print];

else
NSLog (@"Not found!");

// Try another lookup

NSLog (@"Haibo Zhang");
myCard = [myBook lookup: @"Haibo Zhang"];

if (myCard != nil)
[myCard print];

else
NSLog (@"Not found!");

}
return 0;

}

Program 15.11 Output

Lookup: Stephen Kochan
====================================
| |
| Stephen Kochan |
| steve@classroomM.com |
| |
| |
| |
| O O |
====================================

Lookup: Haibo Zhang
Not found!

When the lookup: method located Stephen Kochan in the address book (taking
advantage of the fact that a non-case-sensitive match was made), the method returned the
matching card immediately by executing the return statement, which terminates the loop
and sends back the value of nextCard.That matching card was then given to the
AddressCard’s print method for display. In the case of the second lookup, the name
Haibo Zhang was not found.

This lookup: method is very primitive because it needs to find an exact match of the
entire name.A better method would perform partial matches and be able to handle multi-
ple matches. For example, the message expression

[myBook lookup: @"steve"]

ptg999

344 Chapter 15 Numbers, Strings, and Collections

could match entries for “Steve Kochan”,“Fred Stevens”, and “steven levy”. Because multi-
ple matches might exist, a good approach might be to create an array containing all the
matches and return the array to the method caller (see exercise 2 at the end of this chap-
ter), like so:

matches = [myBook lookup: @"steve"];

Removing Someone from the Address Book
No address book manager that enables you to add an entry would be complete without
the capability to also remove an entry.You can make a removeCard: method to remove a
particular AddressCard from the address book.Another possibility would be to create a
remove: method that removes someone based on name (see exercise 6 at the end of this
chapter).

Because you’ve made a couple of changes to your interface file, Program 15.12 shows it
again with the new removeCard: method. It’s followed by the implementation of your
new method.

Program 15.12 Addressbook.h Interface File

#import "AddressCard.h"

@interface AddressBook: NSObject

@property (nonatomic, copy) NSString *bookName;
@property (nonatomic, strong) NSMutableArray *book;

-(id) initWithName: (NSString *) name;

-(void) addCard: (AddressCard *) theCard;
-(void) removeCard: (AddressCard *) theCard;

-(AddressCard *) lookup: (NSString *) theName;
-(int) entries;
-(void) list;

@end

Here’s the new removeCard: method:

-(void) removeCard: (AddressCard *) theCard
{

[book removeObjectIdenticalTo: theCard];
}

ptg999

345Array Objects

For purposes of what’s considered an identical object, we are using the idea of the same
exact object, that is, it’s an object with the same location in memory. So the
removeObjectIdenticalTo: method does not consider two address cards that contain the
same information but are located in different places in memory (which might happen if
you made a copy of an AddressCard, for example) to be identical.

Incidentally, the removeObjectIdenticalTo: method removes all objects identical to
its argument. However, that’s an issue only if you have multiple occurrences of the same
object in your arrays.

You can get more sophisticated with your approach to equal objects by using the
removeObject: method and then writing your own isEqual: method for testing
whether two objects are equal. If you use removeObject:, the system automatically
invokes the isEqual: method for each element in the array, giving it the two elements to
compare. In this case, because your address book contains AddressCard objects as its ele-
ments, you would have to add an isEqual: method to that class (you would be overriding
the method that the class inherits from NSObject).The method could then decide for
itself how to determine equality. It would make sense to compare the two corresponding
names and emails. If both were equal, you could return YES from the method; otherwise,
you could return NO.Your method might look like this:

-(BOOL) isEqual: (AddressCard *) theCard
{
if ([name isEqualToString: theCard.name] == YES &&

[email isEqualToString: theCard.email] == YES)
return YES;

else
return NO;

}

Note that other NSArray methods, such as containsObject: and indexOfObject:, also
rely on this isEqual: strategy for determining whether two objects are considered equal.

Program 15.12 tests the new removeCard: method.

Program 15.12 Test Program

#import "AddressBook.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
NSString *bName = @"Tony Iannino";
NSString *bEmail = @"tony.iannino@techfitness.com";
NSString *cName = @"Stephen Kochan";
NSString *cEmail = @"steve@classroomM.com";
NSString *dName = @"Jamie Baker";
NSString *dEmail = @"jbaker@classroomM.com";

ptg999

346 Chapter 15 Numbers, Strings, and Collections

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [[AddressBook alloc]
initWithName: @"Linda's Address Book"];

AddressCard *myCard;

// Now set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

// Look up a person by name

NSLog (@"Lookup: Stephen Kochan");
myCard = [myBook lookup: @"Stephen Kochan"];

if (myCard != nil)
[myCard print];

else
NSLog (@"Not found!");

// Now remove the entry from the phone book

[myBook removeCard: myCard];
[myBook list]; // verify it’s gone

}

return 0;
}

ptg999

347Array Objects

Program 15.12 Output

Lookup: Stephen Kochan
====================================
| |
| Stephen Kochan |
| steve@classroomM.com |
| |
| |
| |
| O O |
====================================

======== Contents of: Linda's Address Book =========
Julia Kochan jewls337@axlc.com
Tony Iannino tony.iannino@techfitness.com
Jamie Baker jbaker@classroomM.com
===

After looking up Stephen Kochan in the address book and verifying that he’s there, you
pass the resulting AddressCard to your new removeCard: method to be removed.The
resulting listing of the address book verifies the removal.

Sorting Arrays
If your address book contains a lot of entries, alphabetizing it might be convenient.You
can easily do this by adding a sort method to your AddressBook class and by taking
advantage of an NSMutableArray method called sortUsingSelector:.This method takes
as its argument a selector that the sortUsingSelector: method uses to compare two ele-
ments.Arrays can contain any type of objects in them, so the only way to implement a
generic sorting method is to have you decide whether elements in the array are in order.
To do this, you must add a method to compare two elements in the array.4 The result
returned from that method is to be of type NSComparisonResult. It should return
NSOrderedAscending if you want the sorting method to place the first element before the
second in the array, return NSOrderedSame if the two elements are considered equal, or
return NSOrderedDescending if the first element should come after the second element
in the sorted array.

First, here’s the new sort method from your AddressBook class:

-(void) sort
{

[book sortUsingSelector: @selector(compareNames:)];
}

4 A method called sortUsingFunction:context: lets you use a function instead of a method to
perform the comparison.

ptg999

348 Chapter 15 Numbers, Strings, and Collections

As you learned in Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Bind-
ing,” the expression

@selector (compareNames:)

creates a selector, which is of type SEL, from a specified method name; this is the
method sortUsingSelector: uses to compare two elements in the array.When it needs
to make such a comparison, it invokes the specified method, sending the message to the
first element in the array (the receiver) to be compared against its argument.The returned
value should be of type NSComparisonResult, as previously described.

Because the elements of your address book are AddressCard objects, the comparison
method must be added to the AddressCard class (make sure you fully understand that).
You must go back to your AddressCard class and add a compareNames: method to it.This
is shown here:

// Compare the two names from the specified address cards

-(NSComparisonResult) compareNames: (id) element
{

return [name compare: [element name]];
}

Because you are doing a string comparison of the two names from the address book,
you can use the NSString compare: method to do the work for you.

If you add the sort method to the AddressBook class and the compareNames: method
to the AddressCard class, you can write a test program to test it (see Program 15.13).

Program 15.13 Test Program

#import "AddressBook.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
NSString *bName = @"Tony Iannino";
NSString *bEmail = @"tony.iannino@techfitness.com";
NSString *cName = @"Stephen Kochan";
NSString *cEmail = @"steve@classroomM.com";
NSString *dName = @"Jamie Baker";
NSString *dEmail = @"jbaker@classroomM.com";

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

ptg999

349Array Objects

AddressBook *myBook = [AddressBook alloc];

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

myBook = [myBook initWithName: @"Linda’s Address Book"];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

// List the unsorted book

[myBook list];

// Sort it and list it again

[myBook sort];
[myBook list];

}
return 0;

}

Program 15.13 Output

======== Contents of: Linda's Address Book =========
Julia Kochan jewls337@axlc.com
Tony Iannino tony.iannino@techfitness.com
Stephen Kochan steve@classroomM.com
Jamie Baker jbaker@classroomM.com
===

======== Contents of: Linda's Address Book =========
Jamie Baker jbaker@classroomM.com
Julia Kochan jewls337@axlc.com
Stephen Kochan steve@classroomM.com
Tony Iannino tony.iannino@techfitness.com
===

ptg999

350 Chapter 15 Numbers, Strings, and Collections

Note that the sort is an ascending one. However, you can easily perform a descending
sort by modifying the compareNames: method in the AddressCard class to reverse the
sense of the values that are returned.

Sorting Using Blocks
There are sorting methods in the NSArray and NSMutableArray classes that take blocks as
arguments for comparing elements in a array in lieu of selectors.

The general format of the NSArray method is this:

-(NSArray *) sortedArrayUsingComparator: (NSComparator) block

while that of the NSMutableArray method, which does the sort in place, looks like this:

-(void) sortUsingComparator:(NSComparator) block

NSComparator is defined this way as a typedef in one of the system header files:

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

Translating this into English, it says that NSComparator is a block that takes two objects
as its arguments and that returns a value of type NSComparisonResult.This method, since
it uses blocks, will probably run faster for sorting large arrays. So consider using it in your
applications for that reason.

So the block takes the two objects to compare as its arguments and is expected to
return an indicator of whether the first object should be considered, less than, equal to, or
greater than the second object.This is consistent with the method that gets called by the
non-block versions of the array sort methods.

The block we supply as the argument to the sortUsingComparator: method can just
call our compareNames: method to compare the address cards like so:

-(void) sort
{

[book sortUsingComparator:
^(id obj1, id obj2) {

return [obj1 compareNames: obj2];
}];

}

This works okay but, when you think about, it won’t offer any performance improve-
ment at all, since the block we specified calls the same compareNames: method as the
sortUsingSelector: method does. So a better approach would be to do more of the
work inside the block; that could help to speed things up:

-(void) sort
{

[book sortUsingComparator:
^(id obj1, id obj2) {

ptg999

351Array Objects

return [[obj1 name] compare: [obj2 name]];
}];

}

Go back to Program 15.13 and replace the AddressBook’s sort method with the one
we just developed.Verify that the program still runs and correctly sorts your address book.

One of the nice aspects of the block version of the sort method is that you don’t have
to add a comparison method to the class whose objects are being compared.That would
be the AddressCard class, which is where as you’ll recall we placed the compareNames:
method used by the previous version of the sort method.

Another nice advantage is that if you decide to change the way your address cards are
compared, you can do it directly in your sort method, meaning you won’t have to make
the change to the AddressCard class.

More than 50 methods are available for working with array objects.Tables 15.4 and
15.5 list some commonly used methods for working with immutable and mutable arrays,
respectively. Because NSMutableArray is a subclass of NSArray, the former inherits the
methods of the latter.

Table 15.4 Common NSArray Methods

Method Description

+(id) arrayWithObjects: obj1, obj2, ... nil Creates a new array with obj1,
obj2, ... as its elements

-(BOOL) containsObject: obj Determines whether the array
contains obj (uses the isEqual:
method)

-(NSUInteger) count Indicates the number of ele-
ments in the array

-(NSUInteger) indexOfObject: obj Specifies the index number of
the first element that contains
obj (uses the isEqual: method)

-(NSUInteger) indexOfObjectPassingTest:
(BOOL(^)(id obj, NSUInteger idx, BOOL
*stop)) block

Passes each object obj (with
index number idx) into the
block block, which should
return YES if obj passes the test,
NO if it doesn’t. Set variable
pointed to by stop to YES to end
processing.

-(id) lastObject Returns the last object in the
array

-(id) objectAtIndex: i Indicates the object stored in
element i

-(void) makeObjectsPerform Selector: (SEL)
selector

Sends the message indicated by
selector to every element of
the array

ptg999

352 Chapter 15 Numbers, Strings, and Collections

In Tables 15.4 and 15.5, obj, obj1, and obj2 are any objects; i is an NSUInteger inte-
ger representing a valid index number into the array; selector is a selector object of type
SEL; and size is an NSUInteger integer.

Table 15.4 Common NSArray Methods

Method Description

-(void) enumerateObjectsUsingBlock: (void
(^)(id obj, NSUInteger idx, BOOL *stop)) block

Execute block for each element
in the array, passing in the array
object obj, and its index num-
ber idx. Processing continues
until all elements have been enu-
merated or the variable pointed
to by stop is set to YES.

-(NSArray *) sortedArrayUsing Selector: (SEL)
selector

Sorts the array according to the
comparison method specified by
selector

-(NSArray *) sortedArrayUsingComparator:
(NSComparator) block

Sorts the array according to the
comparison performed by the
block block

-(BOOL) writeToFile: path atomically: (BOOL)
flag

Writes the array to the specified
file, creating a temporary file first
if flag is YES

Table 15.5 Common NSMutableArray Methods

Method Description

+(id) array Creates an empty array

+(id) arrayWithCapacity: size Creates an array with a specified initial
size

-(id) initWithCapacity: size Initializes a newly allocated array with a
specified initial size

-(void) addObject: obj Adds obj to the end of the array

-(void) insertObject: obj atIndex: i Inserts obj into element i of the array

-(void) replaceObjectAtIndex: i
withObject: obj

Replaces element i of the array with obj

-(void) removeObject: obj Removes all occurrences of obj from the
array

-(void) removeObjectAtIndex: i Removes element i from the array, moving
down elements i+1 through the end of
the array

-(void) sortUsingSelector: (SEL)
selector

Sorts the array based on the comparison
method indicated by selector

-(void) sortUsingComparator:
(NSComparator) block

Sorts the array according to the compari-
son performed by the block block

ptg999

353Array Objects

The NSValue Class
As we’ve seen, a Foundation collection like an array can only store objects.That means
you can’t store a basic data type like an int inside them.To get around this problem, you
make arrays of NSNumber objects instead of arrays of ints.

There are other types that you’ll want to store inside collections as you start to develop
iOS applications.These types are structures, which are derived data types from the C lan-
guage, and not objects. For example, you’ll be using a CGPoint (a typedef'ed name) to
define an (x, y) coordinate in your application.That would be how you would specify the
origin of a rectangle, for example. In fact, a rectangle is a CGRect type, and itself is a struc-
ture containing two other structures: a CGPoint structure that defines the rectangle’s ori-
gin, and a CGSize structure that defines its width and height.

The point of this discussion is for you to note that these are structures that you may
want to store in a collection.You can’t do that directly.The NSValue class comes to the
rescue by allowing to convert one of these structures into an object, which then allows
you to store it inside a collection.The process of taking a data type like a structure and
then converting it into an object, is sometimes referred to as wrapping.As you might
expect, the inverse process of taking an object and extracting its underlying data type is
often referred to as unwrapping.

Table 15.6 shows some of the wrapper methods for converting C data types into
objects and the corresponding inverse methods to unwrap the object. For more informa-
tion, look at the documentation for the NSValue class.

Here’s a code fragment that takes a CGPoint structure and adds it into a mutable array
called touchPoints:

CGPoint myPoint;
NSValue *pointObj;
NSMutableArray *touchPoints = [NSMutableArray array];

...
myPoint.x = 100; // set the point to (100, 200)

Table 15.6 Some NSValue Wrapper and Unwrapper Methods

Typedef’ed data
type

Description Wrapper Method Unwrapper
Method

CGPoint A point consisting of an x and y
value

valueWithPoint: pointValue

CGSize A size consisting of a width and
height

valueWithSize: sizeValue

CGRect A rectangle consisting of an origin
and size

valuewithRect: rectValue

NSRange A range describing location and size valueWithRange: rangeValue

ptg999

354 Chapter 15 Numbers, Strings, and Collections

myPoint.y = 200;
...

pointObj = [NSValue valueWithPoint: myPoint]; // make it an object
[touchPoints addObject: pointObj];

Make sure you realize the need for doing this. Since myPoint is a structure, you can’t
store it directly inside the touchPoints array. So you have to convert it to an object first.
We use the valueWithPoint: method to do that.

If you subsequently wanted to get the last point from your touchPoints array and
convert it back to a CGPoint structure, this line would do the trick:

myPoint = [[touchPoints lastObject] pointValue];

Dictionary Objects
A dictionary is a collection of data consisting of key-object pairs. Just as you would look up
the definition of a word in a dictionary, you obtain the value (object) from an Objective-
C dictionary by its key.The keys in a dictionary must be unique, and they can be of any
object type, although they are typically strings.The value associated with the key can also
be of any object type, but it cannot be nil.

Dictionaries can be mutable or immutable; mutable ones can have entries dynamically
added and removed. Dictionaries can be searched based on a particular key, and their con-
tents can be enumerated. Program 15.14 sets up a mutable dictionary to be used as a glos-
sary of Objective-C terms and fills in the first three entries.

Program 15.14

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSMutableDictionary *glossary = [NSMutableDictionary dictionary];

// Store three entries in the glossary

[glossary setObject: @"A class defined so other classes can inherit from it"
forKey: @"abstract class"];

[glossary setObject: @"To implement all the methods defined in a protocol"
forKey: @"adopt"];

[glossary setObject: @"Storing an object for later use"
forKey: @"archiving"];

// Retrieve and display them

NSLog (@"abstract class: %@", [glossary objectForKey: @"abstract class"]);
NSLog (@"adopt: %@", [glossary objectForKey: @"adopt"]);
NSLog (@"archiving: %@", [glossary objectForKey: @"archiving"]);

ptg999

355Dictionary Objects

}
return 0;

}

Program 15.14 Output

abstract class: A class defined so other classes can inherit from it
adopt: To implement all the methods defined in a protocol
archiving: Storing an object for later use

The expression

[NSMutableDictionary dictionary]

creates an empty mutable dictionary.You can add key-value pairs to the dictionary
using the setObject:forKey: method.After the dictionary has been constructed, you can
retrieve the value for a given key using the objectForKey: method. Program 15.14 shows
how the three entries in the glossary were retrieved and displayed. In a more practical
application, the user would type in the word to define and the program would search the
glossary for its definition.

Enumerating a Dictionary
Program 15.15 illustrates how a dictionary can be defined with initial key-value pairs
using the dictionaryWithObjectsAndKeys: method.An immutable dictionary is created,
and the program also shows how a fast enumeration loop can be used to retrieve each ele-
ment from a dictionary one key at a time. Unlike array objects, dictionary objects are not
ordered, so the first key-object pair placed in a dictionary might not be the first key
extracted when the dictionary is enumerated.

Program 15.15

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSDictionary *glossary =
[NSDictionary dictionaryWithObjectsAndKeys:
@"A class defined so other classes can inherit from it",
@"abstract class",
@"To implement all the methods defined in a protocol",
@"adopt",
@"Storing an object for later use",
@"archiving",
nil

];

ptg999

356 Chapter 15 Numbers, Strings, and Collections

// Print all key-value pairs from the dictionary

for (NSString *key in glossary)
NSLog (@"%@: %@", key, [glossary objectForKey: key]);

}
return 0;

}

Program 15.15 Output

abstract class: A class defined so other classes can inherit from it
adopt: To implement all the methods defined in a protocol
archiving: Storing an object for later use

The argument to dictionaryWithObjectsAndKeys: is a list of object-key pairs (yes,
in that order!), each separated by a comma.The list must be terminated with the special
nil object.

After the program creates the dictionary, it sets up a loop to enumerate its contents.As
noted, the keys are retrieved from the dictionary in turn, in no special order.

If you wanted to display the contents of a dictionary in alphabetical order, you could
retrieve all the keys from the dictionary, sort them, and then retrieve all the values from
the dictionary for each of those sorted keys in order.You can first use NSDIctionary’s
allKeys method to extract all the keys from the dictionary into an array and then sort
that array. Next, you could enumerate the array of sorted keys and retrieve the correspon-
ding values from the dictionary.As an example, assume you had a dictionary called states
that contained the names of U.S. states as the keys and their corresponding capitals as the
objects. Here’s a code fragment that would display each state name in alphabetical order
along with its corresponding capital:

NSArray *keys = [states allKeys];

keys = [keys sortedArrayUsingComparator:
^(id obj1, id obj2) {

return [obj1 compare: obj2];
}];

for (NSString *aState in keys)
NSLog (@"State: %@ Capital: %@", aState, [states objectForKey: aState]);

We have just shown some basic operations with dictionaries here.Tables 15.7 and 15.8
summarize some of the more commonly used methods for working with immutable and
mutable dictionaries, respectively. Because NSMutableDictionary is a subset of
NSDictionary, it inherits its methods.

ptg999

357Dictionary Objects

In Tables 15.7 and 15.8, key, key1, key2, obj, obj1, and obj2 are any objects, and size
is an NSUInteger unsigned integer.

Table 15.7 Common NSDictionary Methods

Method Description

+(id) dictionaryWithObjectsAndKeys:obj1,
key1, obj2, key2, ..., nil

Creates a dictionary with key-object pairs
{key1, obj1} , {key2, obj2} , ...

-(id) initWithObjectsAndKeys: obj1, key1,
obj2, key2,..., nil

Initializes a newly allocated dictionary
with key-object pairs {key1, obj1} ,
{key2, obj2} , ...

-(NSArray *) allKeys Returns an array containing all the keys
from the dictionary

-(NSUInteger) count Returns the number of entries in the
dictionary

-(NSEnumerator *) keyEnumerator Returns an NSEnumerator object for all
the keys in the dictionary

-(NSArray *) keysSortedByValueUsingSelector:
(SEL) selector

Returns an array of keys in the dictionary
whose corresponding values are sorted
according to the comparison method
selector

-(NSEnumerator *) objectEnumerator Returns an NSEnumerator object for all
the values in the dictionary

-(id) objectForKey: key Returns the object for the specified key

Table 15.8 Common NSMutableDictionary Methods

Method Description

+(id) dictionaryWithCapacity: size Creates a mutable dictionary with an initial
specified size

-(id) initWithCapacity: size Initializes a newly allocated dictionary to be
of an initial specified size

-(void) removeAllObjects Removes all entries from the dictionary

-(void) removeObjectForKey:key Removes the entry for the specified key
from the dictionary

-(void) setObject: obj forKey: key Adds obj to the dictionary for the key key
and replaces the value if key already exists

ptg999

358 Chapter 15 Numbers, Strings, and Collections

Set Objects
A set is a collection of unique objects, and it can be mutable or immutable. Operations
include searching, adding, and removing members (mutable sets); comparing two sets; and
finding the intersection and union of two sets.

In this section, we’ll take a quick look at three set classes: NSSet, NSMutableSet, and
NSIndexSet.We’ll also mention the class NSCountedSet in passing so you’ll know when
you might need or want to use that set.

Program 15.16 shows some basic operations on sets. Say you wanted to display the
contents of your sets several times during execution of the program.You therefore have
decided to create a new method called print.You add the print method to the NSSet
class by creating a new category called Printing. NSMutableSet is a subclass of NSSet, so
mutable sets can use the new print method as well.

Program 15.16

#import <Foundation/Foundation.h>

// Create an integer object
#define INTOBJ(v) [NSNumber numberWithInteger: v]

// Add a print method to NSSet with the Printing category

@interface NSSet (Printing)
-(void) print;
@end

@implementation NSSet (Printing)
-(void) print {

printf ("{ ");

for (NSNumber *element in self)
printf (" %li ", (long) [element integerValue]);

printf ("} \n");
}
@end

int main (int argc, char * argv[])
{

@autoreleasepool {

NSMutableSet *set1 = [NSMutableSet setWithObjects:
INTOBJ(1), INTOBJ(3), INTOBJ(5), INTOBJ(10), nil];

NSSet *set2 = [NSSet setWithObjects:
INTOBJ(-5), INTOBJ(100), INTOBJ(3), INTOBJ(5), nil];

tim

ptg999

359Set Objects

NSSet *set3 = [NSSet setWithObjects:
INTOBJ(12), INTOBJ(200), INTOBJ(3), nil];

NSLog (@"set1: ");
[set1 print];
NSLog (@"set2: ");
[set2 print];

// Equality test
if ([set1 isEqualToSet: set2] == YES)

NSLog (@"set1 equals set2");
else

NSLog (@"set1 is not equal to set2");

// Membership test

if ([set1 containsObject: INTOBJ(10)] == YES)
NSLog (@"set1 contains 10");

else
NSLog (@"set1 does not contain 10");

if ([set2 containsObject: INTOBJ(10)] == YES)
NSLog (@"set2 contains 10");

else
NSLog (@"set2 does not contain 10");

// add and remove objects from mutable set set1

[set1 addObject: INTOBJ(4)];
[set1 removeObject: INTOBJ(10)];
NSLog (@"set1 after adding 4 and removing 10: ");
[set1 print];

// get intersection of two sets

[set1 intersectSet: set2];
NSLog (@"set1 intersect set2: ");
[set1 print];

// union of two sets

[set1 unionSet:set3];
NSLog (@"set1 union set3: ");
[set1 print];

}
return 0;

}

ptg999

360 Chapter 15 Numbers, Strings, and Collections

Program 15.16 Output

set1:
{ 3 10 1 5 }
set2:
{ 100 3 -5 5 }
set1 is not equal to set2
set1 contains 10
set2 does not contain 10
set1 after adding 4 and removing 10:
{ 3 1 5 4 }
set1 intersect set2:
{ 3 5 }
set1 union set3:
{ 12 3 5 200 }

The print method uses the fast enumeration technique previously described to
retrieve each element from the set.You also defined a macro called INTOBJ to create an
object from an integer value.This enables you to make your program more concise and
saves some unnecessary typing. Of course, your print method is not that general because
it works only with sets that have integer members in them. But it’s a good reminder here
of how to add methods to a class through a category.5 (Note that the C library’s printf
routine is used in the print method to display the elements of each set on a single line.)

setWithObjects: creates a new set from a nil-terminated list of objects.After creating
three sets, the program displays the first two using your new print method.The
isEqualToSet: method then tests whether set1 is equal to set2—it isn’t.

The containsObject: method sees first whether the integer 10 is in set1 and then
whether it is in set2.The Boolean values the method returns verify that it is in the first
set, not in the second.

The program next uses the addObject: and removeObject: methods to add and
remove 4 and 10 from set1, respectively. Displaying the contents of the set verifies that
the operations were successful.

You can use the intersect: and union: methods to calculate the intersection and
union of two sets. In both cases, the result of the operation replaces the receiver of the
message.

5 A more general method could invoke each object’s description method for displaying each mem-
ber of the set. That would allow sets containing any types of objects to be displayed in a readable for-
mat. Also note that you can display the contents of any collection with a single call to NSLog, using
the “print object” format characters "%@".

ptg999

361Set Objects

The Foundation framework also provides a class called NSCountedSet.These sets can
represent more than one occurrence of the same object; however, instead of the object
appearing multiple times in the set, a count of the number of times is maintained. So the
first time an object is added to the set, its count is 1. Subsequently adding the object to
the set increments the count, whereas removing the object from the set decrements the
count. If it reaches zero, the actual object itself is removed from the set.The
countForObject: retrieves the count for a specified object in a set.

One application for a counted set might be a word counter application. Each time a
word is found in some text, it can be added to the counted set.When the scan of the text
is complete, each word can be retrieved from the set along with its count, which indicates
the number of times the word appeared in the text.

We have just shown some basic operations with sets.Tables 15.9 and 15.10 summarize
commonly used methods for working with immutable and mutable sets, respectively.
Because NSMutableSet is a subclass of NSSet, it inherits its methods.

In Tables 15.9 and 15.10, obj, obj1, and obj2 are any objects; nsset is an NSSet or
NSMutableSet object; and size is an NSUInteger integer.

Table 15.9 Common NSSet Methods

Method Description

+(id) setWithObjects: obj1, obj2, ..., nil Creates a new set from the list of objects

-(id) anyObject Returns any object from the set

-(id) initWithObjects: obj1, obj2, ..., nil Initializes a newly allocated set with a list
of objects

-(NSUInteger) count Returns the number of members in the set

-(BOOL) containsObject: obj Determines whether the set contains obj

-(BOOL) member: obj Determines whether the set contains obj
(using the isEqual: method)

-(NSEnumerator *) objectEnumerator Returns an NSEnumerator object for all
the objects in the set

-(BOOL) isSubsetOfSet: nsset Determines whether every member of
the receiver is present in nsset

-(BOOL) intersectsSet: nsset Determines whether at least one member
of the receiver appears in nsset

-(BOOL) isEqualToSet: nsset Determines whether the two sets are
equal

Table 15.10 Common NSMutableSet Methods

Method Description

+(id) setWithCapacity: size Creates a new set with an initial capacity to store

-(id) initWithCapacity: size Sets the initial capacity of a newly allocated set to size
members

ptg999

362 Chapter 15 Numbers, Strings, and Collections

Method Description

-(void) addObject: obj Adds obj to the set

-(void) removeObject: obj Removes obj from the set

-(void) removeAllObjects Removes all members of the receiver

-(void) unionSet: nsset Adds each member of nsset to the receiver

-(void) minusSet: nsset Removes all members of nsset from the receiver

-(void) intersectSet: nsset Removes all members from the receiver that are not

NSIndexSet
Let’s take a look at another type of set: the NSIndexSet.This class is used to store ordered
indexes into some other data structure, typically an array.You can use this class, for exam-
ple, to efficiently generate a list of index numbers from an array of objects, where each
object satisfies some criteria that you specify.You’ll want to note that there is no mutable
version of the NSIndexSet class.

As an example, the NSArray method indexOfObjectPassingTest: takes a block as its
argument.The blocks gets executed for each element in the array, passing in the array ele-
ment, the index number, and a pointer to a BOOL variable.The code in the block will pre-
sumably test the element against some criteria and return YES if the array element satisfies
the criteria, and NO if it does not.You can stop processing at any time by setting the value
the BOOL pointer reference to YES. (Refer back to Chapter 13, for a discussion on point-
ers.)

If the indexOfObjectPassingTest: finds a match (meaning you returned YES from
your block on one occasion), it will return the lowest matching index from the set. Oth-
erwise, if no match is found, it will return NSNotFound.

Here’s a modified version of the lookup: method from our AddressBook class:

-(AddressCard *) lookup: (NSString *) theName
{

NSUInteger result = [book indexOfObjectPassingTest:
^ (id obj, NSUInteger idx, BOOL *stop)
{

if ([[obj name] caseInsensitiveCompare: theName] == NSOrderedSame) {
return YES;

}

ptg999

363Set Objects

else
return NO; // keep looking

}];

// See if we found a match

if (result != NSNotFound) // there should only be one element
return [book objectAtIndex: result];

else
return nil;

}

If you’re looking for more than one match from an array, you can use the
indexesOfObjectsPassingTest: method.This method returns an NSIndexSet contain-
ing the indexes of all the elements from the array that matched the criteria.The following
uses this new method to find and return the index numbers of all matching address cards:

-(NSIndexSet *) lookupAll: (NSString *) theName
{

NSIndexSet *result = [book indexesOfObjectsPassingTest:
^(id obj, NSUInteger idx, BOOL *stop)
{

if ([[obj name] caseInsensitiveCompare: theName] == NSOrderedSame)
return YES; // found a match, keep going

else
return NO; // keep looking

}];

// Return the result

return result;
}

ptg999

364 Chapter 15 Numbers, Strings, and Collections

It’s left as an exercise for you to change the lookupAll: method to return an array of
the matching address cards. (Hint:After the indexesOfObjectsPassingTest: method is
done, enumerate each index for the index set and add the corresponding element to an
array that you’ll return. Better yet, look at the NSArray method objectsAtIndexes:.)

In Table 15.11, some representative NSIndexSet methods are listed. In the table, idx is
an NSUInteger integer.You are encouraged to look up this class in your documentation
and learn more about it.

Table 15.11 Some NSIndexSet Methods

Method Description

+(NSIndexSet) indexSet Creates an empty index set

-(BOOL) containIndex: idx Returns YES if the index set contains the
index idx, NO otherwise

-(NSUinteger) count Returns the numbers of indexes in the
indexed set

-(NSUinteger) firstIndex Returns the first index in the set or
NSNotFound if the set is empty

-(NSUinteger) indexLessThanIndex: idx Returns the closest index in the set less
than idx or NSNotFound if none is less
than idx. See also
indexLessThanOrEqualToIndex:,
indexGreaterThanIndex:, and
indexGreaterThanOrEqualIndex:

-(NSUinteger) lastIndex Gives the last index in the set or
NSNotFound if the set is empty

-(NSIndexSet *) indexesPassingTest:
(BOOL)
(^) (NSUinteger idx, BOOL *stop) block

Block is applied to each element in the set.
Return YES to have idx added to the result-
ant NSIndexSet, NO otherwise; set the
variable pointed to by stop to YES to end
processing

ptg999

365Exercises

Exercises
1. Look up the NSDate class in your documentation.Then add a new category to

NSDate called ElapsedDays. In that new category, add a method based on the fol-
lowing method declaration:
-(unsigned long) elapsedDays: (NSDate *) theDate;

Have the new method return the number of elapsed days between the receiver and
the argument to the method.Write a test program to test your new method.

2. Modify the lookup: method developed in this chapter for the AddressBook class so
that partial matches of a name can be made.The message expression [myBook
lookup: @"steve"] should match an entry that contains the string steve any-
where within the name.

3. Using the result from exercise 2, modify the lookup: method to search the address
book for all matches. Have the method return an array of all such matching address
cards, or nil if no match is made. (Note that the example presented at the end of
this chapter returns an NSIndexSet result, but we want an array of AddressCards
here.)

4. Add new fields of your choice to the AddressCard class. Some suggestions are sepa-
rating the name field into first and last name fields, and adding address (perhaps with
separate state, city, zip, and country fields) and phone number fields.Write appropri-
ate setter and getter methods, and ensure that the print and list methods properly
display the fields.

5. After completing exercise 4, modify the lookup: method from exercise 3 to per-
form a search on all the fields of an address card. Can you think of a way to design
your AddressCard and AddressBook classes so that the latter does not have to know
all the fields stored in the former?

6. Add the method removeName: to the AddressBook class to remove someone from
the address book given this declaration for the method:
-(BOOL) removeName: (NSString *) theName;

Use the lookup: method developed in exercise 3. If the name is not found or if
multiple entries exist, have the method return NO. If the person is successfully
removed, have it return YES.

7. Using the Fraction class defined in Part I, set up an array of fractions with some
arbitrary values.Add a description method for your Fraction class as described in

ptg999

366 Chapter 15 Numbers, Strings, and Collections

the text.Then use three different techniques to display the values of your fractions:
1) a regular for loop, 2) fast enumeration, and finally, 3) just using %@.

8. Using the Fraction class defined in Part I, set up a mutable array of fractions with
arbitrary values.Then sort the array using the sortUsingSelector: method from
the NSMutableArray class.Add a Comparison category to the Fraction class and
implement your comparison method in that category.

9. Define three new classes, called Song, Playlist, and MusicCollection.A Song
object will contain information about a particular song, such as its title, artist, album,
and playing time.A Playlist object will contain the name of the playlist and a col-
lection of songs.A MusicCollection object will contain a collection of playlists,
including a special master playlist called library that contains every song in the
collection. Define these three classes and write methods to do the following:

Create a Song object and set its information.

Create a Playlist object, and add songs to and remove songs from a playlist.A new
song should be added to the master playlist if it’s not already there. Make sure that if
a song is removed from the master playlist, it is removed from all playlists in the
music collection as well.

Create a MusicCollection object, and add playlists to and remove playlists from the
collection.

Search and display the information about any song, any playlist, or the entire music
collection.

Make sure all your classes do not leak memory!

Note
This might be the most instructive exercise in the entire text, but it’s not easy! Figure 15.6
shows what a sample MusicCollection called myMusic might look like. It has three
playlists, which includes the main playlist library. The library contains five songs.
playlist1 has two songs and playlist2 has one. Here are some hints: Make good use
of the NSMutableArray class and just store references (and not copies) of your songs in
each new playlist (use the addObject: method to do that).

ptg999

367Exercises

10. Write a program that takes an NSArray of NSNumber objects (where each NSNumber
represents an integer) and produces a frequency chart that lists each integer and
how many times it occurs in the array. Use an NSCountedSet object to construct
your frequency counts.

11. When the addCard: method is used to add an address card to the address book,
who owns that address card? Can any of the information on that card be later
changed that would affect the card stored in the address book? Can you think of a
safer way to implement the addCard: method?

Figure 15.6 Example music collection data
structures

ptg999

This page intentionally left blank

ptg999

16
Working with Files

The Foundation framework enables you to get access to the file system to perform basic
operations on files and directories.This is provided by NSFileManager, whose methods
include the capability to

n Create a new file
n Read from an existing file
n Write data to a file
n Rename a file
n Remove (delete) a file
n Test for the existence of a file
n Determine the size of a file as well as other attributes
n Make a copy of a file
n Test two files to see whether their contents are equal

Many of these operations can also be performed on directories. For example, you can
create a directory, read its contents, or delete it.Another feature is the ability to link files.
That is, the ability to have the same file exist under two different names, perhaps even in
different directories.

To open a file and perform multiple read-and-write operations on the file, you use the
methods provided by NSFileHandle.The methods in this class enable you to

n Open a file for reading, writing, or updating (reading and writing)
n Seek to a specified position within a file
n Read or write a specified number of bytes from and to a file

The methods provided by NSFileHandle can also be applied to devices or sockets.
However, we will focus only on dealing with ordinary files in this chapter.

The NSURL class allows you to work with URLs in your applications.We’ll take a look
at this class with a simple example that shows how you can read data from the Internet.

ptg999

370 Chapter 16 Working with Files

The NSBundle class provides methods that allow you to work with your application’s
bundle.This includes the ability to search the bundle for specific resources, for example all
JPEG images.We’ll touch on this class lightly towards the end of the chapter.

Managing Files and Directories:
NSFileManager
A file or directory is uniquely identified to NSFileManager using a pathname to the file.A
pathname is an NSString object that can either be a relative or full pathname.A relative
pathname is one that is relative to the current directory. So, the filename copy1.m would
mean the file copy1.m in the current directory. Slash characters separate a list of directo-
ries in a path.The filename ch16/copy1.m is also a relative pathname, identifying the file
copy1.m stored in the directory ch16, which is contained in the current directory.

Full pathnames, also known as absolute pathnames, begin with a leading /. Slash is actu-
ally a directory, called the root directory. On my Mac, the full pathname to my home
directory is /Users/stevekochan.This pathname specifies three directories: / (the root
directory), Users, and stevekochan.

The special tilde character (~) is used as an abbreviation for a user’s home directory.
~linda would, therefore, be an abbreviation for the user linda’s home directory, which
might be the path /Users/linda.A solitary tilde character indicates the current user’s
home directory, meaning the pathname ~/copy1.m would reference the file copy1.m
stored in the current user’s home directory. Other special UNIX-style pathname charac-
ters, such as . for the current directory and .. for the parent directory, should be
removed from pathnames before they’re used by any of the Foundation file-handling
methods.An assortment of path utilities are available that you can use for this, and they’re
discussed later in this chapter.

You should try to avoid hard-coding pathnames into your programs.As you’ll see in
this chapter, methods and functions are available that enable you to obtain the pathname
for the current directory, a user’s home directory, and a directory that can be used for cre-
ating temporary files.You should avail yourself of these as much as possible.You’ll see later
in this chapter that Foundation has a function for obtaining a list of special directories,
such as a user’s Documents directory.This function is useful for developing both Mac OS
X and iOS applications.

Table 16.1 summarizes some basic NSFileManager methods for working with files. In
that table, path, path1, path2, from, and to are all NSString objects; attr is an
NSDictionary object; and err is a pointer to an NSError object that you can provide to
get more information about a particular error. If you specify NULL for err, the default
action will be taken, which for methods that return a BOOL is to return YES if the opera-
tion succeeds and NO if it fails.We won’t be getting into using this object in this chapter.

tim

ptg999

371Managing Files and Directories: NSFileManager

Each of the file methods is invoked on an NSFileManager object that is created by
sending a defaultManager message to the class, like so:

NSFileManager *fm;
...

fm = [NSFileManager defaultManager];

For example, to delete a file called todolist from the current directory, you would
first create the NSFileManager object as shown previously and then invoke the
removeItemAtPath: method, like so:

[fm removeItemAtPath: @"todolist" error: NULL];

You can test the result that is returned to ensure that the file removal succeeds:

if ([fm removeItemAtPath: @"todolist" error: NULL] == NO) {
NSLog (@"Couldn't remove file todolist");
return 1;

}

The attributes dictionary enables you to specify, among other things, the permissions
for a file you are creating or to obtain or change information for an existing file. For file

Table 16.1 Common NSFileManager File Methods

Method Description

-(NSData *) contentsAtPath: path Reads data from a file

-(BOOL) createFileAtPath: path contents: (NSData *) data
attributes: attr

Writes data to a file

-(BOOL) removeItemAtPath: path error: err Removes a file

-(BOOL) moveItemAtPath: from toPath: to error: err Renames or moves a
file (to cannot already
exist)

-(BOOL) copyItemAtPath: from toPath: to error: err Copies a file (to cannot
already exist)

-(BOOL) contentsEqualAtPath: path1 andPath: path2 Compares contents of
two files

-(BOOL) fileExistsAtPath: path Tests for file existence

-(BOOL) isReadableFileAtPath: path Tests whether file exists
and can be read

-(BOOL) isWritableFileAtPath: path Tests whether file exists
and can be written

-(NSDictionary *) attributesOfItemAtPath: path error: err Gets attributes for file

-(BOOL) setAttributesOfItemAtPath: attr error: err Changes file attributes

ptg999

372 Chapter 16 Working with Files

creation, if you specify nil for this parameter, the default permissions are set for the file.
The attributesOfItemAtPath:traverseLink: method returns a dictionary containing
the specified file’s attributes.The traverseLink: parameter is YES or NO for symbolic
links. If the file is a symbolic link and YES is specified, the attributes of the linked-to file
are returned; if NO is specified, the attributes of the link itself are returned.

For preexisting files, the attributes dictionary includes information such as the file’s
owner, its size, its creation date, and so on. Each attribute in the dictionary can be
extracted based on its key, all of which are defined in <Foundation/NSFileManager.h>.
For example, NSFileSize is the key for a file’s size.

Program 16.1 shows some basic operations with files.This example assumes you have a
file called testfile in your current directory with the following three lines of text:

This is a test file with some data in it.
Here's another line of data.
And a third.

Program 16.1

// Basic File operations
// Assumes the existence of a file called "testfile"
// in the current directory

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
@autoreleasepool {

NSString *fName = @"testfile";
NSFileManager *fm;
NSDictionary *attr;

// Need to create an instance of the file manager

fm = [NSFileManager defaultManager];

// Let's make sure our test file exists first

if ([fm fileExistsAtPath: fName] == NO) {
NSLog(@"File doesn't exist!");
return 1;

}

//now lets make a copy

if ([fm copyItemAtPath: fName toPath: @"newfile" error: NULL] == NO) {
NSLog(@"File Copy failed!");
return 2;

}

ptg999

373Managing Files and Directories: NSFileManager

// Now let's test to see if the two files are equal

if ([fm contentsEqualAtPath: fName andPath: @"newfile"] == NO) {
NSLog(@"Files are Not Equal!");
return 3;

}

// Now lets rename the copy

if ([fm moveItemAtPath: @"newfile" toPath: @"newfile2"
error: NULL] == NO){

NSLog(@"File rename Failed");
return 4;

}

// get the size of the newfile2

if ((attr = [fm attributesOfItemAtPath: @"newfile2" error: NULL])
== nil) {
NSLog(@"Couldn't get file attributes!");
return 5;

}

NSLog(@"File size is %llu bytes",
[[attr objectForKey: NSFileSize] unsignedLongLongValue]);

// And finally, let's delete the original file

if ([fm removeItemAtPath: fName error: NULL] == NO) {
NSLog(@"file removal failed");
return 6;

}

NSLog(@"All operations were successful");

// Display the contents of the newly-created file

NSLog(@"%@", [NSString stringWithContentsOfFile:
@"newfile2" encoding:NSUTF8StringEncoding error:NULL]);

}
return 0;

}

ptg999

374 Chapter 16 Working with Files

Program 16.1 Output

File size is 84 bytes
All operations were successful!

This is a test file with some data in it.
Here's another line of data.
And a third.

The program first tests whether testfile exists. If it does, it makes a copy of it and
then tests the two files for equality. Experienced UNIX users should note that you can’t
move or copy a file into a directory simply by specifying the destination directory for the
copyItemAtPath:toPath:error: and moveItemAtPath:toPath:error: methods; the
filename within that directory must be explicitly specified.

Note
You can create testfile with Xcode by selecting File, New, New File.... In the left pane that
appears, highlight Other, and then select Empty in the right pane. Enter testfile as the name
of the file and be sure to create it in the same directory as your executable file. If you have
trouble locating the directory, use the currentDirectoryPath: method as described later
in this section. Or, you can use a full pathname to the file, as in /Users/steve/testfile (here
you would substitute your username for “steve”).

The moveItemAtPath:toPath: method can be used to move a file from one directory
to another. (It can also be used to move entire directories.) If the two paths reference files
in the same directory (as in our example), the effect is to simply rename the file. So, in
Program 16.1, you use this method to rename the file newfile to newfile2.

As noted in Table 16.1, when performing copying, renaming, or moving operations, the
destination file cannot already exist. If it does, the operation will fail.

The size of newfile2 is determined by using the attributesOfItemAtPath:error:
method.You test to make sure a non-nil dictionary is returned and then use the
NSDictionary method objectForKey: to get the file’s size from the dictionary using the
key NSFileSize.The integer value from the dictionary is then displayed.

The program uses the removeItemAtPath:error: method to remove your original file
testfile.

Finally, NSString’s stringWithContentsOfFile:encoding:error: method is used to
read the contents of the file newfile2 into a string object, which is then passed as an argu-
ment to NSLog to be displayed.The encoding argument specifies how the character data in
the file is represented.The choices to use for this argument are defined in the header file
NSString.h. NSUTF8StringEncoding can be used to specify a file containing normal
UTF8 ASCII characters.

Each of the file operations is tested for success in Program 16.1. If any fails, an error is
logged using NSLog, and the program exits by returning a nonzero exit status. Each
nonzero value, which by convention indicates program failure, is unique based on the type
of error. If you write command-line tools, this is a useful technique because another pro-
gram can test the return value, such as from within a shell script.

ptg999

375Managing Files and Directories: NSFileManager

Working with the NSData Class
When working with files, you frequently need to read data into a temporary storage area,
often called a buffer.When collecting data for subsequent output to a file, a storage area is
also often used. Foundation’s NSData class provides an easy way to set up a buffer, read the
contents of the file into it, or write the contents of a buffer out to a file.And just in case
you’re wondering, for a 32-bit application, an NSDATA buffer can store up to 2GB. For a
64-bit application, it can hold up to 8EB (that’s exabytes) or 8 billion gigabytes of data!

As you would expect, you can define either immutable (NSData) or mutable
(NSMutableData) storage areas.We introduce methods from this class in this chapter and
in succeeding chapters as well.

Program 16.2 shows how easily you can read the contents of a file into a buffer in
memory.

The program reads the contents of your file newfile2 and writes it to a new file called
newfile3. In a sense, it implements a file copy operation, although not in as straightfor-
ward a fashion as the copyItemAtPath:toPath:error: method.

Program 16.2

// Make a copy of a file
#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSFileManager *fm;
NSData *fileData;

fm = [NSFileManager defaultManager];

// Read the file newfile2

fileData = [fm contentsAtPath: @"newfile2"];

if (fileData == nil) {
NSLog (@"File read failed!");
return 1;

}

// Write the data to newfile3

if ([fm createFileAtPath: @"newfile3" contents: fileData
attributes: nil] == NO) {

NSLog (@"Couldn't create the copy!");
return 2;

}

tim

ptg999

376 Chapter 16 Working with Files

NSLog (@"File copy was successful!");
}
return 0;

}

Program 16.2 Output

File copy was successful!

The contentsAtPath: method simply takes a pathname and reads the contents of the
specified file into a storage area that it creates, returning the storage area object as the
result or nil if the read fails (for example, if the file doesn’t exist or can’t be read by you).

The createFileAtPath:contents:attributes: method creates a file with the speci-
fied attributes (or uses the default if nil is supplied for the attributes argument).The
contents of the specified NSData object are then written to the file. In our example, this
data area contains the contents of the previously read file.

Working with Directories
Table 16.2 summarizes some of the methods provided by NSFileManager for working
with directories. Many of these methods are the same as those for ordinary files, as listed
in Table 16.1.

Table 16.2 Common NSFileManager Directory Methods

Method Description

-(NSString *) currentDirectoryPath Gets the current
directory

-(BOOL) changeCurrentDirectoryPath: path Changes the current
directory

-(BOOL) copyItemAtPath: from toPath: to error: err Copies a directory
structure (to cannot
previously exist)

-(BOOL) createDirectoryAtPath: -path
withIntermediateDirectories: (BOOL) flag attributes: attr

Creates a new
directory

-(BOOL) fileExistsAtPath: path isDirectory: (BOOL *) flag Tests whether the file
exists and is a direc-
tory (YES/NO result is
stored in flag)

-(NSArray *) contentsOfDirectoryAtPath: path error: err Lists the contents of
the directory

-(NSDirectoryEnumerator *) enumeratorAtPath: path Enumerates the con-
tents of the directory

ptg999

377Managing Files and Directories: NSFileManager

Program 16.3 shows basic operations with directories.

Program 16.3
// Some basic directory operations

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{
@autoreleasepool {

NSString *dirName = @"testdir";
NSString *path;
NSFileManager *fm;

// Need to create an instance of the file manager

fm = [NSFileManager defaultManager];

// Get current directory

path = [fm currentDirectoryPath];
NSLog (@"Current directory path is %@", path);

// Create a new directory

if ([fm createDirectoryAtPath: dirName withIntermediateDirectories: YES
attributes: nil error: NULL] == NO) {

NSLog (@"Couldn't create directory!");
return 1;

}

// Rename the new directory

if ([fm moveItemAtPath: dirName toPath: @"newdir" error: NULL] == NO) {
NSLog (@"Directory rename failed!");
return 2;

}

// Change directory into the new directory

Table 16.2 Common NSFileManager Directory Methods

Method Description

-(BOOL) removeItemAtPath: path error: err Deletes an empty
directory

-(BOOL) moveItemAtPath: from toPath: to error: err Renames or moves a
directory (to cannot
previously exist)

ptg999

378 Chapter 16 Working with Files

if ([fm changeCurrentDirectoryPath: @"newdir"] == NO) {
NSLog (@"Change directory failed!");
return 3;

}

// Now get and display current working directory

path = [fm currentDirectoryPath];
NSLog (@"Current directory path is %@", path);

NSLog (@"All operations were successful!");
}
return 0;

}

Program 16.3 Output

Current directory path is /Users/stevekochan/progs/ch16
Current directory path is /Users/stevekochan/progs/ch16/newdir
All operations were successful!

Program 16.3 is relatively self-explanatory.The current directory path is first obtained
for informative purposes.

Note
The output shows what I got for my current directory when I ran the program using Terminal.
If I run this program with Xcode, I get this as my current directory:
/Users/steve_kochan/Library/Developer/Xcode/DerivedData/prog2-
cnoljvycenoopiddzwoyraybqlza/Build/Products/Debug. Your current directory path
will be different than mine and that shown in the output. On an iOS device, your program
runs in what’s known as a sandbox, where it has restricted access to files. If you run this
program on such a device, you’ll see that the current directory is listed as /. That’s the root
folder for the application running in its sandbox and not the root of the entire iOS device’s
file system.

Next, a new directory called testdir is created in the current directory.The program
then uses the moveItemAtPath:toPath:error: method to rename the new directory
from testdir to newdir. Remember that this method can also be used to move an entire
directory structure (that means including its contents) from one place in the file system to
another.

After renaming the new directory, the program makes that new directory the current
directory using the changeCurrentDirectoryPath: method.The current directory path
is then displayed to verify that the change was successful.

ptg999

379Managing Files and Directories: NSFileManager

Enumerating the Contents of a Directory
Sometimes you need to get a list of the contents of a directory.This enumeration process
can be accomplished using either the enumeratorAtPath: or the
contentsOfDirectoryAtPath:error method. In the former case, each file in the speci-
fied directory is enumerated one at a time and, by default, if one of those files is a direc-
tory, its contents are also recursively enumerated. During this process you can dynamically
prevent this recursion by sending a skipDescendants message to an enumeration object
so that its contents will not be enumerated.

In the case of contentsOfDirectoryAtPath:error:, the contents of the specified
directory are enumerated, and the file list is returned in an array by the method. If any of
the files contained in a directory is itself a directory, its contents are not recursively enu-
merated by this method.

Program 16.4 shows how you can use either method in your programs.

Program 16.4

// Enumerate the contents of a directory

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *path;
NSFileManager *fm;
NSDirectoryEnumerator *dirEnum;
NSArray *dirArray;

// Need to create an instance of the file manager

fm = [NSFileManager defaultManager];

// Get current working directory path

path = [fm currentDirectoryPath];

// Enumerate the directory

dirEnum = [fm enumeratorAtPath: path];

NSLog (@"Contents of %@", path);

while ((path = [dirEnum nextObject]) != nil)
NSLog (@"%@", path);

ptg999

380 Chapter 16 Working with Files

// Another way to enumerate a directory
dirArray = [fm contentsOfDirectoryAtPath:

[fm currentDirectoryPath] error: NULL];
NSLog (@"Contents using contentsOfDirectoryAtPath:error:");

for (path in dirArray)
NSLog (@"%@", path);

}
return 0;

}

Program 16.4 Output

Contents of /Users/stevekochan/mysrc/ch16:
a.out
dir1.m
dir2.m
file1.m
newdir
newdir/file1.m
newdir/output
path1.m
testfile

Contents using contentsOfDirectoryAtPath:error:
a.out
dir1.m
dir2.m
file1.m
newdir
path1.m
testfile

Note
On your system, your output will differ from that shown.

Let’s take a closer look at the following code sequence:

dirEnum = [fm enumeratorAtPath: path];
NSLog (@"Contents of %", path);
while ((path = [dirEnum nextObject]) != nil)

NSLog (@"%@", path);

You begin enumeration of a directory by sending an enumeratorAtPath: message to a
file manager object, in this case fm.An NSDirectortyEnumerator object gets returned by
the enumeratorAtPath: method, which is stored inside dirEnum. Now, each time you
send a nextObject message to this object, you get returned a path to the next file in the

ptg999

381Working with Paths: NSPathUtilities.h

directory you are enumerating.When no more files are left to enumerate, you get nil
returned.

You can see the difference between the two enumeration techniques from the output
of Program 16.4.The enumeratorAtPath: method lists the contents of the newdir direc-
tory, whereas contentsOfDirectoryAtPath:error: does not. If newdir had contained
subdirectories, they too would have been enumerated by enumeratorAtPath:.

As noted, during execution of the while loop in Program 16.4, you could have pre-
vented enumeration of any subdirectories by making the following change to the code:
while ((path = [dirEnum nextObject]) != nil) {

NSLog (@"%@", path);

[fm fileExistsAtPath: path isDirectory: &flag];

if (flag == YES)
[dirEnum skipDescendents];

}

Here, flag is a BOOL variable.The fileExistsAtPath: stores YES in flag if the speci-
fied path is a directory; otherwise, it stores NO.

Incidentally, as a reminder, you can display the entire dirArray contents with this sin-
gle NSLog call

NSLog (@"%@", dirArray);

instead of using fast enumeration as was done in the program.

Working with Paths: NSPathUtilities.h
NSPathUtilities.h includes functions and category extensions to NSString to enable
you to manipulate pathnames.You should use these whenever possible to make your pro-
gram more independent of the structure of the file system and locations of particular files
and directories. Program 16.5 shows how to use several of the functions and methods pro-
vided by NSPathUtilities.h.

Program 16.5

// Some basic path operations

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *fName = @"path.m";
NSFileManager *fm;
NSString *path, *tempdir, *extension, *homedir, *fullpath;

NSArray *components;

fm = [NSFileManager defaultManager];

tim

ptg999

382 Chapter 16 Working with Files

// Get the temporary working directory

tempdir = NSTemporaryDirectory ();

NSLog (@"Temporary Directory is %@", tempdir);

// Extract the base directory from current directory

path = [fm currentDirectoryPath];
NSLog (@"Base dir is %@", [path lastPathComponent]);

// Create a full path to the file fName in current directory

fullpath = [path stringByAppendingPathComponent: fName];
NSLog (@"fullpath to %@ is %@", fName, fullpath);

// Get the file name extension

extension = [fullpath pathExtension];
NSLog (@"extension for %@ is %@", fullpath, extension);

// Get user's home directory

homedir = NSHomeDirectory ();
NSLog (@"Your home directory is %@", homedir);

// Divide a path into its components

components = [homedir pathComponents];

for (path in components)
NSLog (@"%@", path);

}
return 0;

}

Program 16.5 Output

Temporary Directory is /var/folders/HT/HTyGLvSNHTuNb6NrMuo7QE+++TI/-Tmp-/
Base dir is examples
fullpath to path.m is /Users/stevekochan/progs/examples/path.m
extension for /Users/stevekochan/progs/examples/path.m is m
Your home directory is /Users/stevekochan
/
Users
stevekochan

ptg999

383Working with Paths: NSPathUtilities.h

Note
On your system, your output will differ from that shown.

The function NSTemporaryDirectory returns the pathname of a directory on the sys-
tem you can use for the creation of temporary files. If you create temporary files in this
directory, be sure to remove them when you’re done.Also, make sure that your filenames
are unique, particularly if more than one instance of your application might be running at
the same time. (See Exercise 5 at the end of this chapter.) This can easily happen if more
than one user logged on to your system is running the same application. Note that tem-
porary files are just that. If you don’t remove them when you’re with them, the system
will remove them for you at some point.You shouldn’t rely on that, however, and should
remove them yourself.

The lastPathComponent method extracts the last file in a path.This is useful when
you have an absolute pathname and just want to get the base filename from it.

The stringByAppendingPathComponent: is useful for tacking on a filename to the
end of a path. If the pathname specified as the receiver doesn’t end in a slash, the method
inserts one in the pathname to separate it from the appended filename. By combining the
currentDirectoryPath method with the method stringByAppendingPathComponent:,
you can create a full pathname to a file in the current directory.That technique is shown
in Program 16.5.

The pathExtension method gives the file extension for the provided pathname. In the
example, the extension for the file path.m is m, which is returned by the method. If the
file does not have an extension, the method simply returns an empty string.

The NSHomeDirectory function returns the home directory for the current user.You
can get the home directory for any particular user by using the NSHomeDirectoryForUser
function instead, supplying the user’s name as the argument to the function.

The pathComponents method returns an array containing each of the components of
the specified path. Program 16.5 sequences through each element of the returned array
and displays each path component on a separate line of output.

Common Methods for Working with Paths
Table 16.3 summarizes many of the commonly used methods for working with paths. In
this table, components is an NSArray object containing string objects for each component
in a path; path is a string object specifying a path to a file; and ext is a string object indi-
cating a path extension (for example, @"mp4").

ptg999

384 Chapter 16 Working with Files

Table 16.4 presents functions available to obtain information about a user, her home
directory, and a directory for storing temporary files.

Table 16.3 Common Path Utility Methods

Method Description

+(NSString *) pathWithComponents: components Constructs a valid path from ele-
ments in components

-(NSArray *) pathComponents Deconstructs a path into its
constituent components

-(NSString *) lastPathComponent Extracts the last component in a
path

-(NSString *) pathExtension Extracts the extension from the
last component in a path

-(NSString *) stringByAppendingPathComponent: path Adds path to the end of an
existing path

-(NSString *) stringByAppendingPathExtension: ext Adds the specified extension to
the last component in the path

-(NSString *) stringByDeletingLastPathComponent Removes the last path component

-(NSString *) stringByDeletingPathExtension Removes the extension from the
last path component

-(NSString *) stringByExpandingTildeInPath Expands any tildes in the path to
the user’s home directory (~) or a
specified user’s home directory
(~user)

-(NSString *) stringByResolvingSymlinksInPath Attempts to resolve symbolic links
in the path

-(NSString *) stringByStandardizingPath Standardizes a path by attempting
to resolve ~, .. (parent direc-
tory), . (current directory), and
symbolic links

Table 16.4 Common Path Utility Functions

NSString *NSUserName (void) Returns the current user’s login
name

NSString *NSFullUserName (void) Returns the current user’s full
username

NSString *NSHomeDirectory (void) Returns the path to the current
user’s home
directory

NSString *NSHomeDirectoryForUser (NSString *user) Returns the home directory for
user

NSString *NSTemporaryDirectory (void) Returns the path to a directory
that can be used for creating a
temporary file

ptg999

385Working with Paths: NSPathUtilities.h

You might want to also look at the Foundation function
NSSearchPathForDirectoriesInDomains, which you can use to locate special directories
on the system or on your device, such as the Application and Documents directories. For
example, the following defines a method called saveFilePath that returns a path to a file
called saveFile in the Documents directory.You could use a method like this if you
wanted to save some data from your application into a file.

-(NSString *) saveFilePath
{

NSArray *dirList = NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES);

NSString *docDir = [dirList objectAtIndex: 0];

return [docDir stringByAppendingPathComponent: @"saveFile"];
}

Note
You can use the Documents directory for storing data that will last from one run of your
application to the next. Each iOS application gets its own Documents directory that it can
write data into. The first argument to the NSSearchPathForDirectoriesInDomains func-
tion specifies the directory whose path you want to locate. Another directory you might want
to use in your application is Caches. You can also use that directory for storing data. As of
iOS 5, Apple is encouraging developers to store persistent data in the cloud. See Table 16.5
for a list of commonly used iOS directories.

Table 16.5 Common iOS DIrectories

Directory Purpose

Documents (NSDocumentDirectory) Directory for writing application-specific data
files. Files written here under iOS can be
shared and accessed from iTunes. Files
stored here are automatically backed up to
the cloud.

Library/Caches (NSCachesDirectory) Directory for writing application-specific sup-
port files to persist between launches of the
application. Files created in this directory are
not backed up by iTunes.

tmp (use NSTemporaryDirecory()) Directory to write temporary files that can be
removed after your application terminates.
You should remove files from this directory
when no longer needed.

Library/Preferences This directory contains application-specific
preference files. Preference files are created,
read, and modified using the
NSUserDefaults class.

ptg999

386 Chapter 16 Working with Files

The second argument to the function can be one of several values that specifies the
directories to list, such as the user’s (as shown in the example), the system’s, or all directo-
ries.The last argument specifies whether to expand ~ characters in the path.

The NSSearchPathForDirectoriesInDomains returns an array of paths.The array will
contain a single element if you’re just looking for the user’s directory and can contain
more than one element based on the value specified by the second argument.

Note
When writing iOS applications, the second argument to the
NSSearchPathForDirectoriesInDomains function should be NSUserDomainMask, and
you should expect to get an array containing a single path back in return.

Copying Files and Using the NSProcessInfo Class
Program 16.6 illustrates a command-line tool to implement a simple file copy operation.
Usage of this command is as follows:

copy from-file to-file

Unlike NSFileManager's copyPath:toPath:handler: method, your command-line
tool enables to-file to be a directory name. In that case, the file is copied into the to-file
directory under the name from-file.Also unlike the method, if to-file already exists, you
allow its contents to be overwritten.This is more in line with the standard UNIX copy
command cp.

You can get the filenames from the command line by using the argc and argv argu-
ments to main.These two arguments are populated, respectively, with the number of argu-
ments types on the command line (including the command name), and a pointer to an
array of C-style character strings.

Instead of having to deal with C strings, which is what you have to do when you work
with argv, use instead a Foundation class called NSProcessInfo. NSProcessInfo contains
methods that allow you to set and retrieve various types of information about your run-
ning application (that is, your process).These methods are summarized in Table 16.6.

Table 16.6 NSProcessInfo Methods

Method Description

+(NSProcessInfo *) processInfo Returns information about the current
process.

–(NSArray *) arguments Returns the arguments to the current
process as an array of NSString objects.

–(NSDictionary *) environment Returns a dictionary of variable/value pairs
representing the current environment vari-
ables (such as PATH and HOME) and their
values.

–(int) processIdentifier Returns the process identifier, which is a
unique number assigned by the operating
system to identify each running process.

ptg999

387Working with Paths: NSPathUtilities.h

Program 16.6

// Implement a basic copy utility

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSFileManager *fm;
NSString *source, *dest;
BOOL isDir;
NSProcessInfo *proc = [NSProcessInfo processInfo];
NSArray *args = [proc arguments];

Table 16.6 NSProcessInfo Methods

Method Description

–(NSString *) processName Returns the name of the current executing
process.

–(NSString *) globallyUniqueString Returns a different unique string each time it
is invoked. This could be used for generating
unique temporary filenames (see Exercise 5).

–(NSString *) hostName Returns the name of the host system
(returns Steve-Kochans-Computer.local
on my Mac OS X system).

–(NSUInteger) operatingSystem Returns a number indicating the operating
system (returns the value 5 on my Mac).

–(NSString *) operatingSystemName Returns the name of the operating system
(returns the constant
NSMACHOperatingSystem on my Mac,
where the possible return values are defined
in NSProcessInfo.h).

–(NSString *) operatingSystemVersionString Returns the current version of the operating
system (returns Version 10.6.7 (Build
10J869) on my Mac OS X system).

–(void) setProcessName: (NSString *) name Sets the name of the current process to
name. Should be used with caution because
some assumptions can be made about the
name of your process (for example, by the
user default settings).

ptg999

388 Chapter 16 Working with Files

fm = [NSFileManager defaultManager];

// Check for two arguments on the command line

if ([args count] != 3) {
NSLog (@"Usage: %@ src dest", [proc processName]);
return 1;

}

source = [args objectAtIndex: 1];
dest = [args objectAtIndex: 2];

// Make sure the source file can be read

if ([fm isReadableFileAtPath: source] == NO) {
NSLog (@"Can't read %@", source);
return 2;

}

// See if the destination file is a directory
// if it is, add the source to the end of the destination

[fm fileExistsAtPath: dest isDirectory: &isDir];

if (isDir == YES)
dest = [dest stringByAppendingPathComponent:

[source lastPathComponent]];

// Remove the destination file if it already exists

[fm removeItemAtPath: dest error: NULL];

// Okay, time to perform the copy

if ([fm copyItemPath: source toPath: dest error: NULL] == NO) {
NSLog (@"Copy failed!");
return 3;

}

NSLog (@"Copy of %@ to %@ succeeded!", source, dest);
}
return 0;

}

ptg999

389Working with Paths: NSPathUtilities.h

Program 16.6 Output

$ ls –l see what files we have
total 96
-rwxr-xr-x 1 stevekoc staff 19956 Jul 24 14:33 copy
-rw-r--r-- 1 stevekoc staff 1484 Jul 24 14:32 copy.m
-rw-r--r--1 stevekoc staff 1403 Jul 24 13:00 file1.m
drwxr-xr-x 2 stevekoc staff 68 Jul 24 14:40 newdir
-rw-r--r--1 stevekoc staff 1567 Jul 24 14:12 path1.m
-rw-r--r--1 stevekoc staff 84 Jul 24 13:22 testfile
$ copy try with no args
Usage: copy src dest
$ copy foo copy2
Can't read foo
$ copy copy.m backup.m
Copy of copy.m to backup.m succeeded!
$ diff copy.m backup.m compare the files
$ copy copy.m newdir try copy into directory
Copy of copy.m to newdir/copy.m succeeeded!
$ ls –l newdir
total 8
-rw-r—r— 1 stevekoc staff 1484 Jul 24 14:44 copy.m
$

Note
The output shown will differ on your system based on the files you have stored in your cur-
rent directory when you run this program.

NSProcessInfo’s arguments method returns an array of string objects.The first ele-
ment of the array is the name of the process, and the remaining elements contain the
arguments typed on the command line.

You first check to ensure that two arguments were typed on the command line.This is
done by testing the size of the array args that is returned from the arguments method. If
this test succeeds, the program then extracts the source and destination filenames from the
args array, assigning their values to source and dest, respectively.

The program next checks to ensure that the source file can be read, issuing an error
message and exiting if it can’t.

The statement

[fm fileExistsAtPath: dest isDirectory: &isDir];

checks the file specified by dest to see whether it is a directory.As you’ve seen previ-
ously, the answer—YES or NO—is stored in the variable isDir.

If dest is a directory, you want to append the last path component of the source file-
name to the end of the directory’s name.You use the path utility method
stringByAppendingPathComponent: to do this. So, if the value of source is the string

ptg999

390 Chapter 16 Working with Files

ch16/copy1.m and the value of dest is /Users/stevekochan/progs and the latter is a
directory, you change the value of dest to /Users/stevekochan/progs/copy1.m.

The copyPath:ToPath:handler: method doesn’t allow files to be overwritten.Thus,
to avoid an error, the program tries to remove the destination file first by using the
removeFileAtPath:handler: method. It doesn’t really matter whether this method suc-
ceeds because it will fail anyway if the destination file doesn’t exist.

Upon reaching the end of the program, you can assume all went well and issue a mes-
sage to that effect.

Basic File Operations: NSFileHandle
The methods provided by NSFileHandle enable you to work more closely with files.At
the beginning of this chapter, we listed some of the things you can do with these methods.

In general follow these three steps when working with a file:

1. Open the file and obtain an NSFileHandle object to reference the file in subse-
quent I/O operations.

2. Perform your I/O operations on the open file.

3. Close the file.

Table 16.7 summarizes some commonly used NSFileHandle methods. In this table fh
is an NSFileHandle object, data is an NSData object, path is an NSString object, and
offset is an unsigned long long.

Table 16.7 Common NSFileHandle Methods

Method Description

+(NSFileHandle *) fileHandleForReadingAtPath: path Opens a file for reading

+(NSFileHandle *) fileHandleForWritingAtPath: path Opens a file for writing

+(NSFileHandle *) fileHandleForUpdatingAtPath: path Opens a file for updating (read-
ing and writing)

-(NSData *) availableData Returns data available for read-
ing from a device or channel

-(NSData *) readDataToEndOfFile Reads the remaining data up to
the end of the file (UINT_MAX)
bytes max

-(NSData *) readDataOfLength: (NSUInteger) bytes Reads a specified number of
bytes from the file

-(void) writeData: data Writes data to the file

-(unsigned long long) offsetInFile Obtains the current file offset

ptg999

391Basic File Operations: NSFileHandle

Not shown here are methods for obtaining NSFileHandles for standard input, stan-
dard output, standard error, and the null device.These are of the form
fileHandleWithDevice, where Device can be StandardInput, StandardOutput,
StandardError, or NullDevice.

Also not shown here are methods for reading and writing data in the background, that
is, asynchronously.

Note that the NSFileHandle class does not provide for the creation of files.That has to
be done with NSFileManager methods, as we’ve already described. So, both
fileHandleForWritingAtPath: and fileHandleForUpdatingAtPath: assume the file
exists and return nil if it doesn’t. In both cases, the file offset is set to the beginning of
the file, so writing (or reading for update mode) begins at the start of the file.Also, if
you’re used to programming under UNIX, you should note that opening a file for writ-
ing does not truncate the file.You have to do that yourself if that’s your intention.

Program 16.7 opens the original testfile file you created at the start of this chapter,
reads in its contents, and copies it to a file called testout.

Program 16.7

// Some basic file handle operations
// Assumes the existence of a file called "testfile"
// in the current working directory

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSFileHandle *inFile, *outFile;
NSData *buffer;

// Open the file testfile for reading

inFile = [NSFileHandle fileHandleForReadingAtPath: @"testfile"];

if (inFile == nil) {
NSLog (@"Open of testfile for reading failed");

Table 16.7 Common NSFileHandle Methods

Method Description

-(void) seekToFileOffset: offset Sets the current file offset

-(unsigned long long) seekToEndOfFile Positions the current file offset
at the end of the file

-(void) truncateFileAtOffset: offset Sets the file size to offset
bytes (pad if needed)

-(void) closeFile Closes the file

ptg999

392 Chapter 16 Working with Files

return 1;
}

// Create the output file first if necessary

[[NSFileManager defaultManager] createFileAtPath: @"testout"
contents: nil attributes: nil];

// Now open outfile for writing

outFile = [NSFileHandle fileHandleForWritingAtPath: @"testout"];

if (outFile == nil) {
NSLog (@"Open of testout for writing failed");
return 2;

}

// Truncate the output file since it may contain data

[outFile truncateFileAtOffset: 0];

// Read the data from inFile and write it to outFile

buffer = [inFile readDataToEndOfFile];

[outFile writeData: buffer];

// Close the two files

[inFile closeFile];
[outFile closeFile];

// Verify the file's contents

NSLog(@"%@", [NSString stringWithContentsOfFile: @"testout" encoding:
NSUTF8StringEncoding error: NULL]);

}
return 0;

}

Program 16.7 Output

This is a test file with some data in it.
Here's another line of data.
And a third.

ptg999

393Basic File Operations: NSFileHandle

The method readDataToEndOfFile: reads up to UINT_MAX bytes of data at a time,
which is defined in <limits.h> and equal to FFFFFFFF16.This will be large enough for
any application you’ll have to write.You can also break up the operation to perform
smaller-sized reads and writes.You can even set up a loop to transfer a buffer full of bytes
between the files at a time, using the readDataOfLength: method.Your buffer size might
be 8,192 (8kb) or 131,072 (128kb) bytes, for example.A power of 2 is normally used
because the underlying operating system typically performs its I/O operations in chunks
of data of such sizes.You might want to experiment with different values on your system
to see what works best.

If a read method reaches the end of the file without reading any data, it returns an
empty NSData object (that is, a buffer with no bytes in it).You can apply the length
method to the buffer and test for equality with zero to see whether any data remains to
be read from the file.

If you open a file for updating, the file offset is set to the beginning of the file.You can
change that offset by seeking within a file and then perform your read or write opera-
tions on the file. So, to seek to the 10th byte in a file whose handle is databaseHandle,
you can write the following message expression:

[databaseHandle seekToFileOffset: 10];

Relative file positioning is done by obtaining the current file offset and then adding to
or subtracting from it. So, to skip over the next 128 bytes in the file, write the following:

[databaseHandle seekToFileOffet:
[databaseHandle offsetInFile] + 128];

And to move back the equivalent of five integers in the file, write this:

[databaseHandle seekToFileOffet:
[databaseHandle offsetInFile] – 5 * sizeof (int)];

Program 16.8 appends the contents of one file to another. It does this by opening the
second file for writing, seeking to the end of the file, and then writing the contents of the
first file to the second.

Program 16.8

// Append the file “fileA” to the end of “fileB”

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSFileHandle *inFile, *outFile;
NSData *buffer;

// Open the file fileA for reading

ptg999

394 Chapter 16 Working with Files

inFile = [NSFileHandle fileHandleForReadingAtPath: @"fileA"];

if (inFile == nil) {
NSLog (@"Open of fileA for reading failed");
return 1;

}

// Open the file fileB for updating

outFile = [NSFileHandle fileHandleForWritingAtPath: @"fileB"];

if (outFile == nil) {
NSLog (@"Open of fileB for writing failed");
return 2;

}

// Seek to the end of outFile

[outFile seekToEndOfFile];

// Read inFile and write its contents to outFile

buffer = [inFile readDataToEndOfFile];
[outFile writeData: buffer];

// Close the two files

[inFile closeFile];
[outFile closeFile];

// verify its contents

NSLog(@"%@", [NSString stringWithContentsOfFile: @"fileB"
encoding: NSUTF8StringEncoding error: NULL]);

}
return 0;

}

Contents of fileA before running Program 16.8:

This is line 1 in the first file.
This is line 2 in the first file.

Contents of fileB before running Program 16.8:

This is line 1 in the second file.
This is line 2 in the second file.

ptg999

395The NSURL Class

Program 16.8 Output

Contents of fileB
This is line 1 in the second file.
This is line 2 in the second file.
This is line 1 in the first file.
This is line 2 in the first file.

You can see from the output that the contents of the first file were successfully
appended to the end of the second file. Incidentally, seekToEndOfFile returns the cur-
rent file offset after the seek is performed.We chose to ignore that value; you can use that
information to obtain the size of a file in your program if you need it.

The NSURL Class
The NSURL class provides an easy way for you to work with URL addresses in your pro-
gram. For example, given an HTTP address that is a path to a file on the Internet, you
can easily read the contents of that file with a few method calls.You’ll find many methods
in Foundation that take NSURL objects as arguments. Just remember that an NSURL object
is not a string object such as @"http:/www.apple.com", but it’s easy to create one from
a string object using the URLWithString: method.

Program 16.9 shows how the HTML contents from a web address can be read into a
program.

Program 16.9

// Read the contents of a file stored at a URL

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
@autoreleasepool {

NSURL *myURL = [NSURL URLWithString: @"http://classroomM.com"];

NSString *myHomePage = [NSString stringWithContentsOfURL: myURL
encoding: NSASCIIStringEncoding error: NULL];

NSLog(@"%@", myHomePage);

}
return 0;

}

http:/www.apple.com

ptg999

396 Chapter 16 Working with Files

Program 16.9 Partial Output

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN"
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="google-site-verification"
content="J75b1yb6mDQItzHDxWDph1bNC8rVuc0OzLj8gzlj9y8" />
<title>iPhone Online Course and iPhone Programming Training - Home</title>
...

You can see how easy it is to get data from the Internet.And if you have a dictionary
stored as a property list at a web address, you can read that in as well, using the
dictionaryWithContentsOfURL: method. Or if it’s an array stored as a property list, you
use the arrayWithContentsOfURL: method instead.You may also want to look into the
dataWithContentsOfURL: method for reading any type of data from a web address.

The NSBundle Class
When you create an application, the system stores all the data associated with that appli-
cation—which includes resources such as images, localized strings, icons, and so on—into
a package known as an application bundle. In order to access those resources from within
your application, you want to become familiar with the NSBundle class.

It’s easy to add a resource like an image or a text file to your application: you simply
drag the file into the left pane in Xcode.When prompted, you’ll usually want to copy the
resource into your project folder, so that your project is all self-contained.

Here’s a statement that will return the path to a file called instructions.txt that’s stored
in your application bundle:

NSString *txtFilePath = [[NSBundle mainBundle]
pathForResource: @"instructions" ofType: @"txt"];

The mainBundle method gives the directory where the application bundle is located.
You can use this method for Mac OS X or iOS applications.The
pathForResource:ofType: method will locate the specified file within that directory
and return a path to that file.You can subsequently read the contents of that file into your
application with a statement like this:

NSString *instructions = [NSString stringWithContentsOfFile: txtFilePath
encoding: NSUTF8StringEncoding error: NULL];

If you want to locate all the JPEG images with the file extension jpg in the
images directory of your application bundle, you can use the
pathsForResourcesOfType:inDirectory: method like so:

NSArray *birds = [[NSBundle mainBundle] pathsForResourcesOfType:@"jpg"
inDirectory: @"birdImages"];

ptg999

397Exercises

The method returns an array of path names. If your JPEG’s are not stored in a subdi-
rectory in your application, you can specify @"" as the value of the inDirectory:

parameter.
There are more methods in the NSBundle class that you’ll want to learn about. Check

your documentation for details.

Exercises
1. Modify the copy program developed in Program 16.6 so that it can accept more

than one source file to be copied into a directory, like the standard UNIX cp com-
mand. So, the command
$ copy copy1.m file1.m file2.m progs

should copy the three files copy1.m, file1.m, and file2.m into the directory
progs. Be sure that when more than one source file is specified, the last argument is,
in fact, an existing directory.

2. Write a command-line tool called myfind that takes two arguments.The first is a
starting directory to begin the search, and the second is a filename to locate. So, the
command line
$ myfind /Users proposal.doc
/Users/stevekochan/MyDocuments/proposals/proposal.doc
$

begins searching the file system from /Users to locate the file proposal.doc.
Print either a full path to the file if it’s found (as shown) or an appropriate message
if it’s not.

3. Write your own version of the standard UNIX tools basename and dirname.

4. Using NSProcessInfo, write a program to display all the information returned by
each of its getter methods.

5. Given the NSPathUtilities.h function NSTemporaryDirectory and the
NSProcessInfo method globallyUniqueString described in this chapter, add a
category called TempFiles to NSString, and in it define a method called
temporaryFileName that returns a different, unique filename every time it is
invoked.

6. Modify Program 16.7 so that the file is read and written kBufSize bytes at a time,
where kBufSize is defined at the beginning of your program. Be sure to test the
program on large files (that is, files larger than kBufSize bytes).

ptg999

398 Chapter 16 Working with Files

7. Open a file, read its contents 128 bytes at a time, and write it to the terminal. Use
NSFileHandle’s fileHandleWithStandardOutput method to obtain a handle for
the terminal’s output.

8. A dictionary is stored as a property list at this URL: http://bit.ly/aycNwd.Write a
program to read the contents of this dictionary and display its contents.What data
does the dictionary contain?

http://bit.ly/aycNwd

ptg999

17
Memory Management and

Automatic Reference Counting

Recall the NSMutableArray class that enables you to create an array that you can add
objects to and remove objects from. Suppose at the start of execution of your program
you needed to read the contents of a file into an array.Assume you want to call new array
myData and you want to initialize its contents from a file that is stored in the form of a
property list (covered in more detail in Chapter 19,“Archiving”).You can do this with a
single method call using NSArray’s arrayWithContentsOfFile: method like so:

NSSArray *myData = [NSArray arrayWithContentsOfFile: @"database1"];

This reads and parses the file and stores the resulting elements into a newly created
array, returning the reference to the array back to you.That reference is then stored into
the variable myData.

Suppose that after processing the data in myData you want to read the data from a dif-
ferent file and process its contents in a similar manner; you would execute the following
statement:

myData = [NSArray arrayWithContentsOfFile: @"database2"];

Here the variable myData is changed so that it now references a different array whose
contents were set from the second file. But what happened to the first array? You no
longer have a reference to it (you lost the reference when you overwrote myData).And
what about all the elements in that first array? What happened to them? And assume you
need to repeat this process of reading data from different files hundreds or perhaps thou-
sands of times.What happens to all those array objects and their elements that are no
longer referenced and therefore no longer needed by the application? Those objects
might still be sitting in memory somewhere, even though you’re no longer using them.
Well, without some sort of “cleaning up” process, memory continues to fill with unrefer-
enced objects, potentially taking your application to the breaking point, where it literally
had no available memory left to do any more work.

ptg999

400 Chapter 17 Memory Management and Automatic Reference Counting

This chapter covers the idea of memory management, albeit at a fairly high level.
Memory management is all about cleaning up (recycling) unused memory so that it can
be used again. If an object is no longer being used, let’s reuse its memory.That sounds
simple enough. However, it’s not quite that simple. Somebody has to figure out that sim-
ple fact.That is, somebody—and that somebody can be you, the computer, or both—has
to be able to somehow determine when an object is no longer being used and that the
memory it occupies can therefore be reclaimed.

Several different memory management strategies have been developed to assist in these
efforts.Two of them are automated methods; that is, the computer keeps track of the
objects and frees their memory as necessary.The third method is a hybrid approach; the
system does some of the work for you, but also requires that you, the programmer, be
diligent and take care of telling the system when an object is no longer being used.

Up until the release of Xcode 4.2 memory management was the subject of great con-
sternation, one that required a great deal of understanding and forethought on the part of
the programmer. Programmers had to carefully navigate the world of reference counts,
retains, releases, and autoreleases in order to produce applications that judiciously used
memory and weren’t subject to crashing at the most inopportune times, often as the result
of trying to reference an object that had inadvertently been destroyed before its time had
really passed.

With the release of a feature known as Automatic Reference Counting, or ARC, in Xcode
4.2, programmers no longer have to think about memory management issues—it’s all
taken care of for you! There are a couple of special cases you have to learn about (and
we’ll respectfully refer you to Apple’s documentation for details on those). But overall,
ARC is truly a godsend to iOS developers.The proof of that is that I haven’t really had to
mention memory management at all up until this chapter. In the previous edition of this
book, I took great pains throughout the entire text to make sure that readers fully under-
stood and judiciously applied proper memory management techniques.

In this chapter, you get an overview of the different memory management schemes
that exist for Cocoa and iOS developers.We’ll also briefly describe how manual memory
management works.That’s in case you have to support older code or for some reason
decide not to avail yourself of the automatic memory management features that are cur-
rently available.

Although you no longer have to worry about the life span of your objects (and things
like releasing their memory when you’re done using them), depending on the type of
application you’re writing judicious use of memory is still important. For example, if
you’re writing an interactive drawing application that creates many objects during the
execution of the program, you must take care that your program doesn’t continue to con-
sume more memory resources as it runs. In such cases, it becomes your responsibility to
intelligently manage those resources and make sure you’re not unnecessarily allocating
objects.

tim

ptg999

401Automatic Garbage Collection

There are three basic memory management models that are supported for Objective-
C developers:

1. Automatic garbage collection

2. Manual reference counting and the autorelease pool

3. Automatic Reference Counting (ARC)

Automatic Garbage Collection
As of Objective C 2.0, a form of memory management known as garbage collection became
available.With garbage collection, the system automatically determines which objects
own which other objects, automatically freeing up (or garbage-collecting) objects that are
no longer referenced as space is needed during the program’s execution.

The iOS runtime environment doesn’t support garbage collection, so you don’t have
the option to use it when developing programs for that platform.That is, you can only
use it when developing Mac OS X applications.

If you decide to use garbage collection, you must turn it on when building programs
with Xcode.You can do this through your project’s Build Settings menu. Under the
Apple LLVM compiler 3.0 - Language settings, there is a setting called Objective-C
Garbage Collection. Changing that from its default value of Unsupported to Required
specifies that your program will be built with automatic garbage collection enabled (see
Figure 17.1).

Figure 17.1 Enabling garbage collection

ptg999

402 Chapter 17 Memory Management and Automatic Reference Counting

Garbage collection occurs while your program is running, when the system has deter-
mined it’s reached some low-water mark and it’s time to clean up.To do so is a fairly
compute-intensive process; the system has to trace through all your objects and references
and determine which objects are currently being used (that is, referenced) and which
aren’t.This can potentially cause a noticeable pause in your application because, as men-
tioned, garbage collection is very compute-intensive. It is for this reason that you might
decide not to use this feature.

Manual Reference Counting
If you are going to create applications without the use of either ARC or garbage collec-
tion, or if you have to support code that you can’t migrate to run with ARC, then you
need to know how to manage memory.That is, you need to learn about how to work
with reference counts.

The general concept is as follows:When an object is created, its initial reference count
is set to 1. Each time you need to ensure that the object be kept around, you effectively
create a reference to it by incrementing its reference count by 1.This is done by sending
the object a retain message, like so:

[myFraction retain];

When you no longer need an object, you decrement its reference count by 1 by send-
ing it a release message, like this:

[myFraction release];

When the reference count of an object reaches 0, the system knows that the object is
no longer being used (because, in theory, it is no longer being referenced anywhere in the
application), so it frees up (deallocates) its memory.This process gets initiated by sending
the object a dealloc message. In many cases, you use the dealloc method inherited
from NSObject. However, you might need to override dealloc to release any instance
variables or other objects that your object may have allocated or retained. For example, if
your class had an NSArray object as one of its instance variables and you alloc’ed the
array, you would be responsible for releasing that array when your object was to be
destroyed.You would do that in dealloc.

Successful operation of this manual reference counting strategy requires diligence by
you, the programmer, to ensure that reference counts are appropriately incremented and
decremented during program execution.The system handles some, but not all, of this
for you.

When using manual reference counting, you should note that some of the methods in
the Foundation framework might increment the reference count of an object, such as
when an object is added to an array using NSMutableArray’s addObject: method or
when a view is added as a subview using UIView’s addSubview: method. Likewise, meth-
ods might decrement the reference count of an object. removeObjectAtIndex: and
removeFromSuperview are two such methods.

ptg999

403Manual Reference Counting

After an object has been destroyed (that is, its reference count has been decremented
to zero and dealloc called), further references to that object become invalid. If you have
such a reference, that is often referred to as a dangling pointer reference. Sending that dan-
gling pointer a message often causes unexpected behavior, including your application
crashing. Sometimes programmers send an object that’s already been deallocated a
release message because they haven’t accurately tracked the object’s retains and releases.
This is known as over-releasing an object, and it often results in a crash.

Object References and the Autorelease Pool
You might need to write a method that first creates an object (say with alloc) and then
returns that object as the result of the method call. Here’s the dilemma: Even though the
method is done using the object, it can’t release it, as it needs to return its value.The
NSAutoreleasePool class was created in order to help solve problems like these by keep-
ing track of objects to be released at a later time in an object known as an autorelease
pool.That later time is when the pool gets drained, which is done by sending the autore-
lease pool object a drain message.

In order to add an object to the list of objects maintained by the autorelease pool, you
send that object an autorelease message, like so:

[result autorelease];

When dealing with programs that use classes from the Foundation, UIKit, or AppKit
frameworks, you must create an autorelease pool because classes from these frameworks
can create and return autoreleased objects.You do that in your application with a state-
ment like this:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Xcode generates a template file with this statement at the start of main if you create a
new project without ARC enabled.

As noted, after the pool is set up, framework methods automatically add new objects
such as arrays, strings, dictionaries, views, buttons, and other objects to the list maintained
by the autorelease pool.

When you’re done using the pool, you send it a drain message:

[pool drain];

This has the effect of sending a release message to every object that was sent an
autorelease message and therefore added to the pool.And as you know, if any of those
objects ends up getting their reference counts decremented to zero, those objects will be
sent a dealloc message and their memory released.

Note that the autorelease pool doesn’t contain the actual objects themselves, only a
reference to the objects that are to be released when the pool is drained.

Not all newly created objects are added to the autorelease pool. In fact, any object cre-
ated by a method whose name starts with the word alloc, copy, mutableCopy, or new is
one that is not autoreleased. In such a case, you are said to own that object.When you

ptg999

404 Chapter 17 Memory Management and Automatic Reference Counting

own an object, you become responsible for releasing the memory taken up by that object
when you’re done using it.This is done by sending the object a release message. Or you
can add it to the autorelease pool yourself by sending it an autorelease message.

This is what the main routine from Program 3.3 would look like if we used manual
reference counting:

int main (int argc, char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Fraction *frac1 = [[Fraction alloc] init];
Fraction *frac2 = [[Fraction alloc] init];

// Set 1st fraction to 2/3
[frac1 setNumerator: 2];
[frac1 setDenominator: 3];

// Set 2nd fraction to 3/7
[frac2 setNumerator: 3];
[frac2 setDenominator: 7];

// Display the fractions

NSLog (@"First fraction is:");
[frac1 print];

NSLog (@"Second fraction is:");
[frac2 print];

[frac1 release];
[frac2 release];
[pool drain];

return 0;
}

Note the we release the two alloc’ed fraction objects at the end of main. Even
though all your memory gets freed up when your application terminates anyway, the
example illustrates the idea of releasing objects you own when you’re done using them.

The example also shows an autorelease pool created at the start of main and then
drained at the end of main, right before the application returns.

Let’s take another look at the Fraction class’s add: method used in Program 7.5:

-(Fraction *) add: (Fraction *) f
{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)
// result will store the result of the addition

ptg999

405The Event Loop and Memory Allocation

Fraction *result = [[Fraction alloc] init];

result.numerator = numerator * f.denominator + denominator *
f.numerator;

result.denominator = denominator * f.denominator;

[result reduce];
return result;

}

When using manual memory management, this method presents a problem.The result
object is alloc’ed and returned from the method after the calculations have been per-
formed. Because the method has to return that object, it can’t release it—that would
cause it be destroyed right then and there. Probably the best way to resolve this issue is to
autorelease the object so that its value can be returned, with its release delayed until the
autorelease pool is drained.You can take advantage of the fact that the autorelease method
returns its receiver and embeds it in expressions like this:

Fraction *result = [[[Fraction alloc] init] autorelease];

or like this:

return [result autorelease];

The Event Loop and Memory Allocation
Cocoa and iOS applications run inside what’s called a run or event loop.Think of an event
as something that typically occurs by your performing some action (for example, you
press a button on the iPhone) or by an implicit action (for example, something arrives
over the network). In order to process the new event, the system creates a new autorelease
pool and might call some method in your application to process it.When you’re done
handling the event, you return from your method and the system waits for the next event
to occur. Before doing so, however, the system drains the autorelease pool.That means
that any autoreleased objects you have created in processing that event will be destroyed,
unless you have retained those objects so they will survive the draining of the pool.When
using manual reference counting, you need to think about the autorelease pool and your
objects surviving the draining of the pool at the end of the event loop.

Take a look at the following interface section that comes from an iOS application.
Here, we define a class called MyView containing one property named data:

#import <UIKit/UIKit.h>

@interface myView : UIView
@property (nonatomic, retain) NSMutableArray *data;
@end

ptg999

406 Chapter 17 Memory Management and Automatic Reference Counting

The retain attribute for the data property (only recognized for non-ARC compiled
code) says that the setter method should retain any objects that are assigned to the prop-
erty, releasing the old value first.Assume we synthesize the accessor methods for our data
property in the implementation section. Further assume we have a method called
viewDidLoad that gets called by the system whenever our view gets loaded into memory.
(You’ll learn more about this when you study iOS application programming. For now,
such details are not important.)

Let’s say that inside your viewDidLoad method you want to allocate your data array.
You insert the following line inside that method:

data = [NSMutableArray array];

As we’ve described how Foundation methods created autoreleased objects by default,
the array method creates an autoreleased array, which you directly assign to your
instance variable data.The problem is that the array will be destroyed as soon as the pro-
cessing of the current event is completed.That’s because it’s created in an autorelease pool
that will be drained at the end of the event loop. In order to ensure the array’s survival
through event loops, you have a few alternatives. Here are three different lines of code
you could use instead that would work:

data = [[NSMutableArray array] retain]; // survives draining of pool

or

data = [[NSMutableArray alloc] init]; // not autoreleased

or

self.data = [NSMutableArray array]; // uses the setter method

In the last case, because the data property has the retain attribute, the autoreleased
array will be retained (recall that assigning to self.data causeW the setter method to be
used). Note that in all three cases you must override dealloc to release your array when
your myView object is to be destroyed:

-(void) dealloc {
[data release];
[super dealloc];

}

(The call to super allows for any inherited objects to be released. One other annoy-
ance of using manual memory management has been having to remember to do the
[super dealloc] last after releasing your own objects). In many cases when creating a
new object using a framework method, you can choose between either creating an
autoreleased object or creating an alloc’ed one. If your application will create many
objects before the event loop ends and the pool will get drained, you might want to use
the alloc approach. In that way, you can release your objects as soon as you’re done using
them, without having to wait for the end of event processing.

ptg999

407Summary of Manual Memory Management Rules

When dealing in a manual reference counting environment, in addition to properties
being given attributes of atomic (default) or nonatomic, they can also be given attributes
of assign (default), retain, or copy.

Here’s how to think about how the last three mentioned attributes are implemented
when using a setter method to set the value of a property, for example,

self.property = newValue;

The assign attribute works like this:

property = newValue;

The retain attribute works like this:

if (property != newValue) {
[property release];
property = [newValue retain];

}

And the copy attribute works like this:

if (property != newValue) {
[property release];
property = [newValue copy];

}

Summary of Manual Memory Management Rules
Here are some rules to remember when working with a project compiled without ARC
or garbage collection:

n If you need to hold onto an object to make sure it doesn’t get destroyed by some-
one else, you should retain it. Make sure to release the object when you’re done
with it.

n Sending a release message does not necessarily destroy an object.When an object’s
reference count is decremented to 0, the object is destroyed.The system does this
by sending the dealloc message to the object to free its memory.

n Release any objects that you have retained or have created using a copy,
mutableCopy, alloc, or new method.This includes properties that have the retain
or copy attribute.You can override dealloc to release your instance variables at the
time your object is to be destroyed.

n The autorelease pool provides for the automatic release of objects when the pool
itself is drained.The system does this by sending a release message to each object in
the pool for each time it was autoreleased. Each object in the autorelease pool whose
reference count goes down to 0 is sent a dealloc message to destroy the object.

ptg999

408 Chapter 17 Memory Management and Automatic Reference Counting

n If you no longer need an object from within a method but need to return it, send it
an autorelease message to mark it for later release.The autorelease message
does not affect the reference count of the object.

n When your application terminates, all the memory your objects take up is released,
regardless of whether they were in the autorelease pool.

n When you develop Cocoa or iOS applications, autorelease pools will be created
and drained throughout execution of the program (this will happen each time an
event occurs). In such cases, if you want to ensure that an autoreleased object sur-
vives automatic deallocation when the autorelease pool is drained, you need to
retain it.All objects that have a reference count greater than the number of autore-
lease messages they have been sent will survive the release of the pool.

Automatic Reference Counting (ARC)
Automatic reference counting (ARC) eliminates all the potential pitfalls associated with
manual reference counting. Under the hood, reference counts are still being maintained
and tracked. However, the system determines when to retain an object and when to
autorelease or release it.You don’t have to worry about it at all.

And you don’t have to worry about returning allocated objects from methods.The
compiler figures out how that object’s memory needs to be managed by generating the
correct code to autorelease or retain the returned object as necessary.

Strong Variables
By default, all object pointer variables are strong variables.That means that assigning an
object reference to such a variable causes that object to be automatically retained. Further,
the old object reference will be released before the assignment is made. Finally, strong
variables are initialized to zero by default.And that’s true whether it’s an instance variable
or a local or global variable.

Look at this code, which creates and sets two Fraction objects.

Fraction *f1 = [[Fraction alloc] init];
Fraction *f2 = [[Fraction alloc] init];

[f1 setTo: 1 over: 2];
[f2 setTo: 2 over: 3];

Now when you write the following using manual memory management

f2 = f1;

the effect is to just copy the reference to the Fraction object f1 into f2.The
Fraction object referenced by f2 would be lost as a result, as its value is overwritten.This
would create what’s known as a memory leak; a variable that is no longer referenced and
therefore can’t be released.

ptg999

409Weak Variables

If you’re using ARC, then f1 and f2 are both strong variables. So the previous assign-
ment actually works like this:

[f1 retain]; // retain new value
[f2 release]; // release the old value
f2 = f1; // copy the reference

Of course, you don’t see this happening because the compiler does all the work for
you.You just the write the assignment statement and forget about it.

Because all object variables are strong variables by default, you don’t need to declare
them as such. However, you can explicitly do so by using the _ _strong keyword for a
variable:

_ _strong Fraction *f1;

It’s important to note that properties are not strong be default.Their default attribute is
unsafe_unretained (or, equivalently assign).You’ve seen how to declare the strong
attribute for a property:

@property (strong, nonatomic) NSMutableArray *birdNames;

The compiler makes sure that strong properties survive the event loop by retaining
them on assignment. No such action is taken for properties that are unsafe_unretained
(aka assign) or weak.

Weak Variables
Sometimes you set up a relationship between two objects where each object needs to ref-
erence the other (this could be as simple as two objects or as complex as a chain of
objects that create a cycle). For example, iOS applications present graphics on the screen
through objects known as views.Views are maintained in a hierarchy. So one view might
present an image, and inside that image view you might want to display a title for that
image.You can set this up where the image view is the main view, and the title is a
subview.When the main view is shown, the subview is automatically shown as well.You
can think of the main image view as the parent view and the title view as the child view.
The main image view owns the subview.

When working with this view hierarchy, the parent view certainly will want to hold a
reference to its subview. But it’s also useful when working with a subview for it to know
whom its parent view is as well. So the parent view will hold a reference to the subview,
and the subview will in turn hold a reference to the parent view.This circular reference
could create problems. For example, what happens when we destroy the parent view? The
reference from the subview to the parent would no longer be valid. In fact, trying to ref-
erence that non-existent parent view could cause the application to crash.

When two objects have strong references to each other, you create what’s known as a
retain cycle.The system will not destroy an object if there’s still a reference to it. So if two
objects have strong references to each other, neither can ever be destroyed.

ptg999

410 Chapter 17 Memory Management and Automatic Reference Counting

The way this problem can be resolved is by creating another type of object variable
that allows a different type of reference, known as a weak reference, to be made between
two objects. In this case, the weak reference would be made from the child to the parent.
Why? Because we consider an object that owns another object (in this case the parent
view) to be the strong reference, and the other object to be the weak reference.

By making the parent view hold a strong reference to its subview, and the subview a
weak reference to its parent view, no retain cycle is created.A weak variable does not pre-
vent deallocation of the object it references.

When you declare a weak variable a few things happen; the system tracks the reference
that is made on assignment to that variable.And when that referenced object gets deallo-
cated, the weak variable gets automatically set to nil.That prevents any crashes that might
occur by inadvertently sending a message to that variable. Because the variable will be set
nil, sending a message to a nil object does nothing, thus preventing a crash.

To declare a weak variable you use the _ _weak keyword:

_ _weak UIView *parentView;

or you use the weak attribute for a property:

@property (weak, nonatomic) UIView *parentView;

Weak variables are also useful when working with delegates. By making the variable
that holds the reference to the delegate a weak variable, you’re assured that the variable will
be zeroed if the delegate object gets deallocated.Again, this can prevent the kind of system
crashes that have caused headaches for many a programmer prior to the invention of ARC.

Note that weak variables are not supported in iOS 4 or Mac OS v10.6. In such cases,
you can still use the unsafe_unretained (or assign) property attribute or declare your
variable to be __unsafe_unretained. However, realize that these variables are not
zeroed automatically when the referenced object is deallocated.

@autoreleasepool Blocks
You’ve seen in every example in this book so far how the compiler generates an
@autoreleasepool directive inside your main routine.This directive encloses a block of
statements that define an autoreleasepool context.Any objects created in that context that
are autoreleased (and this is done automatically using ARC) will be destroyed by default
at the end of that autoreleasepool block (unless the compiler has taken care to guarantee
their survival past the end of the block).

If your program generates a lot of temporary objects (which can easily happen when
executing code inside a loop), you might want to create multiple autoreleasepool blocks
in your program. For example, the following code fragment illustrates how you can set up
autoreleasepool blocks to manage the temporary objects created by each iteration of the
for loop:

for (i = 0; i < n; ++i) {
@autoreleasepool {

ptg999

411Method Names and Non-ARC Compiled Code

... // lots of work with temporary objects here
}

}

As noted earlier, Cocoa and iOS applications run inside an event loop. In preparation
for processing a new event, the system creates a new autoreleasepool context and might
call some method in your application to handle the event.When you’re done handling
the event, you return from your method and the system waits for the next event to occur.
Before doing so, however, the autoreleasepool context ends, which means that autore-
leased objects may then be destroyed.Again, with ARC, this all happens “under the
hood,” so you don’t need to worry about it.

Method Names and Non-ARC Compiled Code
ARC works with code that has not been compiled with ARC.This can happen if you’re
linking with an older framework, for example.As long as the non-ARC code has con-
formed to the standard Cocoa naming conventions, all will be okay.That is, when ARC
sees a method call, it checks the method’s name. If the name begins with the words
alloc, new, copy, mutableCopy, or init, it assumes that the method returns ownership of
the object back to the method caller.

When we talk about “words” here, we refer to the words being written in what’s
known as camelCase.That’s where the first letter of each new word in the name begins
with a capital letter. So the compiler assumes methods named allocFraction,
newAddressCard, and initWithWidth:andHeight: returns ownership of the objects,
whereas newlyWeds, copycat, and initials, do not.Again, this happens automatically
with ARC, so you don’t need to worry about this, unless you’re using methods that don’t
follow these standard naming conventions. In those cases, there are ways to explicitly tell
the compiler whether a method returns ownership of an object despite its name.

Note that the compiler gives you an error if you try to synthesize properties whose
names begin with any of the special words mentioned in the first paragraph of this sec-
tion.

ptg999

This page intentionally left blank

ptg999

18
Copying Objects

This chapter discusses some of the subtleties involved in copying objects.We introduce
the concept of shallow versus deep copying and discuss how to make copies under the
Foundation framework.

Chapter 8,“Inheritance,” discussed what happens when you assign one object to
another with a simple assignment statement, such as here:

origin = pt;

In this example, origin and pt are both XYPoint objects with two integer instance
variables called x and y.

Recall that the effect of the assignment is to simply copy the address of the object pt
into origin.At the end of the assignment operation, both variables point to the same
location in memory. Making changes to the instance variables with a message such as

[origin setX: 100 andY: 200];

changes the x, y coordinate of the XYPoint object referenced by both the origin and pt
variables because they both reference the same object in memory.

The same applies to Foundation objects:Assigning one variable to another simply cre-
ates another reference to the object. So if dataArray and dataArray2 are both
NSMutableArray objects, the following statements remove the first element from the
same array that both variables reference:

dataArray2 = dataArray;
[dataArray2 removeObjectAtIndex: 0];

The copy and mutableCopy Methods
The Foundation classes implement methods known as copy and mutableCopy that you
can use to create a copy of an object.This is done by implementing a method in confor-
mance with the <NSCopying> protocol for making copies. If your class needs to distin-
guish between making mutable and immutable copies of an object, you must implement a

ptg999

414 Chapter 18 Copying Objects

method according to the <NSMutableCopying> protocol as well.You learn how to do that
later in this section.

Getting back to the copy methods for the Foundation classes, given the two
NSMutableArray objects dataArray2 and dataArray, as described in the previous sec-
tion, the statement

dataArray2 = [dataArray mutableCopy];

creates a new copy of dataArray in memory, duplicating all its elements. Subsequently,
executing the statement

[dataArray2 removeObjectAtIndex: 0];

removes the first element from dataArray2 but not from dataArray. Program 18.1 illus-
trates this.

Program 18.1

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSMutableArray *dataArray = [NSMutableArray arrayWithObjects:

@"one", @"two", @"three", @"four", nil];
NSMutableArray *dataArray2;

// simple assignment

dataArray2 = dataArray;
[dataArray2 removeObjectAtIndex: 0];

NSLog (@"dataArray: ");
for (NSString *elem in dataArray)

NSLog (@" %@", elem);

NSLog (@"dataArray2: ");

for (NSString *elem in dataArray2)
NSLog (@"dataArray: ");

// try a copy, then remove the first element from the copy

dataArray2 = [dataArray mutableCopy];
[dataArray2 removeObjectAtIndex: 0];

NSLog (@"dataArray: ");

for (NSString *elem in dataArray)
NSLog (@" %@", elem);

ptg999

415The copy and mutableCopy Methods

NSLog (@"dataArray2: ");

for (NSString *elem in dataArray2)
NSLog (@" %@", elem);

}
return 0;

}

Program 18.1 Output

dataArray:
two
three
four

dataArray2:
two
three
four

dataArray:
two
three
four

dataArray2:
three
four

The program defines the mutable array object dataArray and sets its elements to the
string objects @"one", @"two", @"three", and @"four".As we’ve discussed, the assignment

dataArray2 = dataArray;

simply creates another reference to the same array object in memory.When you remove
the first object from dataArray2 and subsequently print the elements from both array
objects, it’s no surprise that the first element (the string @"one") is gone from both array
object references.

Next, you create a mutable copy of dataArray and assign the resulting copy to
dataArray2.This creates two distinct mutable arrays in memory, both containing three
elements. Now when you remove the first element from dataArray2, it has no effect on
the contents of dataArray, as verified by the last output for dataArray.

Note that making a mutable copy of an object does not require that the object being
copied be mutable.The same applies to immutable copies:You can make an immutable
copy of a mutable object.

ptg999

416 Chapter 18 Copying Objects

Shallow Versus Deep Copying
Program 18.1 fills the elements of dataArray with immutable strings (recall that constant
string objects are immutable). In Program 18.2, you’ll fill it with mutable strings instead
so that you can change one of the strings in the array.Take a look at Program 18.2 and
see whether you understand its output.

Program 18.2

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSMutableArray *dataArray = [NSMutableArray arrayWithObjects:

[NSMutableString stringWithString: @"one"],
[NSMutableString stringWithString: @"two"],
[NSMutableString stringWithString: @"three"],
nil

];
NSMutableArray *dataArray2;
NSMutableString *mStr;

NSLog (@"dataArray: ");
for (NSString *elem in dataArray)

NSLog (@" %@", elem);

// make a copy, then change one of the strings

dataArray2 = [dataArray mutableCopy];

mStr = [dataArray objectAtIndex: 0];
[mStr appendString: @"ONE"];

NSLog (@"dataArray: ");
for (NSString *elem in dataArray)

NSLog (@" %@", elem);

NSLog (@"dataArray2: ");
for (NSString *elem in dataArray2)

NSLog (@" %@", elem);
}
return 0;

}

ptg999

417Shallow Versus Deep Copying

Program 18.2 Output

dataArray:
one
two
three

dataArray:
oneONE
two
three

dataArray2:
oneONE
two
three

You retrieved the first element of dataArray with the following statement:

mStr = [dataArray objectAtIndex: 0];

Then you appended the string @"ONE" to it with this statement:

[mStr appendString: @"ONE"];

Notice the value of the first element of both the original array and its copy: Both
were modified. Perhaps you can understand why the first element of dataArray was
changed but not why its copy was as well.When you get an element from a collection,
you get a new reference to that element, but not a new copy. So when the
objectAtIndex: method is invoked on dataArray, the returned object points to the
same object in memory as the first element in dataArray. Subsequently modifying the
string object mStr has the side effect of also changing the first element of dataArray, as
you can see from the output.

But what about the copy you made? Why is its first element changed as well? This has
to do with the fact that copies, by default, are shallow copies.Thus, when the array was
copied with the mutableCopy method, space was allocated for a new array object in
memory and the individual elements were copied into the new array. But copying each
element in the array from the original to a new location meant just copying the reference
from one element of the array to another.The net result was that the elements of both
arrays referenced the same strings in memory.This is no different from assigning one
object to another, which we covered at the beginning of this chapter.

To make distinct copies of each element of the array, you must perform a deep copy.This
means making copies of the contents of each object in the array, not just copies of the refer-
ences to the objects (and think about what that implies if an element of an array is itself an
array object). But deep copies are not performed by default when you use the copy or
mutableCopy methods with the Foundation classes. In Chapter 19,“Archiving,” we show
you how to use the Foundation’s archiving capabilities to create a deep copy of an object.

When you copy an array, a dictionary, or a set, for example, you get a new copy of
those collections. However, you might need to make your own copies of individual ele-

ptg999

418 Chapter 18 Copying Objects

ments if you want to make changes to one collection but not to its copy. For example, if
you wanted to change the first element of dataArray2 but not dataArray in Program
18.2, you could make a new string (using a method such as stringWithString:) and
store it into the first location of dataArray2, as follows:

mStr = [NSMutableString stringWithString: [dataArray2 objectAtIndex: 0]];

Then you could make the changes to mStr and add it to the array using the
replaceObject:atIndex:withObject: method, as follows:

[mStr appendString @"ONE"];
[dataArray2 replaceObjectAtIndex: 0 withObject: mStr];

Hopefully, you realize that even after replacing the object in the array, mStr and the
first element of dataArray2 refer to the same object in memory.Therefore, subsequent
changes to mStr in your program will also change the first element of the array.

Implementing the <NSCopying> Protocol
If you try to use the copy method on one of your own classes—for example, on your
address book, as follows

NewBook = [myBook mutableCopy];

you’ll get an error message that looks something like this:

*** -[AddressBook copyWithZone:]: selector not recognized
*** Uncaught exception:
*** -[AddressBook copyWithZone:]: selector not recognized

As noted, to implement copying with your own classes, you have to implement one or
two methods according to the <NSCopying> protocol.

We now show how you can add a copy method to your Fraction class, which you
used extensively in Part I,“The Objective-C Language.” Note that the techniques we
describe here for copying strategies will work fine for your own classes. If those classes are
subclasses of any of the Foundation classes, you might need to implement a more sophis-
ticated copying strategy.You’ll have to account for the fact that the superclass might have
already implemented its own copying strategy.

Recall that your Fraction class contains two integer instance variables, called
numerator and denominator.To make a copy of one of these objects, you must allocate
space for a new fraction and then simply copy the values of the two integers into the new
fraction.

When you implement the <NSCopying> protocol, your class must implement the
copyWithZone: method to respond to a copy message. (The copy message just sends a
copyWithZone: message to your class with an argument of nil.) If you want to make a
distinction between mutable and immutable copies, as we noted, you’ll also need to
implement the mutableCopyWithZone: method according to the <NSMutableCopying>
protocol. If you implement both methods, copyWithZone: should return an immutable

ptg999

419Implementing the <NSCopying> Protocol

copy and mutableCopyWithZone: should return a mutable one. Making a mutable copy
of an object does not require that the object being copied also be mutable (and vice
versa); it’s perfectly reasonable to want to make a mutable copy of an immutable object
(consider a string object, for example).

Here’s what the @interface directive should look like:

@interface Fraction: NSObject <NSCopying>

Fraction is a subclass of NSObject and conforms to the NSCopying protocol.
In the implementation file Fraction.m, add the following definition for your new

method:

-(id) copyWithZone: (NSZone *) zone
{

Fraction *newFract = [[Fraction allocWithZone: zone] init];

[newFract setTo: numerator over: denominator];
return newFract;

}

The zone argument has to do with different memory zones that you can allocate and
work with in your program.You need to deal with these only if you’re writing applica-
tions that allocate a lot of memory and you want to optimize the allocation by grouping
them into these zones.You can take the value passed to copyWithZone: and hand it off to
a memory allocation method called allocWithZone:.This method allocates memory in a
specified zone.

After allocating a new Fraction object, you copy the receiver’s numerator and
denominator variables into it.The copyWithZone: method is supposed to return the new
copy of the object, which you do in your method.

Program 18.3 tests your new method.

Program 18.3

// Copying fractions

#import "Fraction.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
Fraction *f1 = [[Fraction alloc] init];
Fraction *f2;

[f1 setTo: 2 over: 5];
f2 = [f1 copy];

[f2 setTo: 1 over: 3];

ptg999

420 Chapter 18 Copying Objects

[f1 print];
[f2 print];

}
return 0;

}

Program 18.3 Output

2/5
1/3

The program creates a Fraction object called f1 and sets it to 2/5. It then invokes the
copy method to make a copy, which sends the copyWithZone: message to your object.
That method makes a new Fraction, copies the values from f1 into it, and returns the
result. Back in main, you assign that result to f2. Subsequently setting the value in f2 to
the fraction 1/3 verifies that it had no effect on the original fraction f1. Change the line
in the program that reads

f2 = [f1 copy];

to simply

f2 = f1;

to see the different results you will obtain.
If your class might be subclassed, your copyWithZone: method will be inherited. In

that case, you should change the line in the method that reads

Fraction *newFract = [[Fraction allocWithZone: zone] init];

to read

id newFract = [[[self class] allocWithZone: zone] init];

That way, you allocate a new object from the class that is the receiver of the copy. (For
example, if it has been subclassed to a class named NewFraction, be sure to allocate a new
NewFraction object in the inherited method instead of a Fraction object.)

If you are writing a copyWithZone: method for a class whose superclass also imple-
ments the <NSCopying> protocol, you should first call the copy method on the superclass
to copy the inherited instance variables and then include your own code to copy what-
ever additional instance variables (if any) you might have added to the class.

ptg999

421Copying Objects in Setter and Getter Methods

You must decide whether you want to implement a shallow or a deep copy in your
class. Just document it for other users of your class so they know.

Copying Objects in Setter and Getter Methods
Whenever you implement a setter or getter method, you should think about what you’re
storing in the instance variables, what you’re retrieving, and whether you need to protect
these values. For example, consider this when you set the name of one of your
AddressCard objects using the corresponding setter method:

newCard.name = newName;

Assume that newName is a string object containing the name for your new card.
Assume that inside the setter routine you simply assigned the parameter to the correspon-
ding instance variable:

-(void) setName: (NSString *) theName
{

name = theName;
}

Now, what do you think would happen if the program later changed some of the
characters contained in newName in the program (this could happen if newName were a
mutable string object; such an object can be used in places where an NSString object is
specified, as the former is a subclass of the latter)? It would also unintentionally change
the corresponding field in your address card because both would reference the same
string object.

As you have already seen, a safer approach is to make a copy of the object in the setter
routine, to prevent this inadvertent effect.

If you weren’t synthesizing the setter, you could also write a version of the setName:
method to use copy, like this:

-(void) setName: (NSString *) theName
{

name = [theName copy];
}

As you saw in Chapter 15,“Numbers, Strings, and Collections,” if you specify the copy
attribute in a property declaration, the synthesized method will use the class’s copy method
(the one you wrote or the one you inherited). So the following property declaration

@property (nonatomic, copy) NSString *name;

when combined with the appropriate @synthesize directive, will generate a method
that behaves like this:

-(void) setName: (NSString *) theName

ptg999

422 Chapter 18 Copying Objects

{
if (theName != name)

name = [theName copy];
}

Use of nonatomic here tells the system not to protect the property accessors with a
mutex (mutually exclusive) lock. People writing threadsafe code use mutex locks to pre-
vent two threads from executing in the same code at the same time, a situation that can
often lead to dire problems. But these locks can slow programs down, and you can avoid
using them if you know this code will only ever be running in a single thread.

If nonatomic is not specified or atomic is specified instead (which is the default), then your
instance variable will be protected with a mutex lock.This will ensure exclusive access to an
instance variable and prevent potential race conditions that could occur if more than one thread
in a multithreaded application is trying to simultaneously access the same instance variable.

Note
There is no mutableCopy attribute for a property. So using the copy attribute, even with a
mutable instance variable, will result in the copyWithZone: method being executed which,
as mentioned, produces an immutable copy of the object by convention.

The same discussion about protecting the value of your instance variables applies to
the getter routines. If you return a mutable object, you should ensure that changes to the
returned value will not affect the value of your instance variables. In such a case, you can
make a copy of the instance variable and return that instead of the original value.

Getting back to the implementation of a copy method, if you are copying instance
variables that contain immutable objects (for example, immutable string objects), you
might not need to make a new copy of the object’s contents. It might suffice to simply
make a new reference to the object by assigning it. For example, if you are implementing
a copy method for the AddressCard class, which contains name and email members, the
following implementation for copyWithZone: would suffice:
-(AddresssCard *) copyWithZone: (NSZone *) zone
{

AddressCard *newCard = [[AddressCard allocWithZone: zone] init];

[newCard assignName: name andEmail: email];
return newCard;

}

-(void) assignName: (NSString *) theName andEmail: (NSString *) theEmail
{

name = theName;
email = theEmail;

}

The setName:andEmail: method isn’t used here to set the instance variables because
that method makes new copies of its arguments, which would defeat the whole purpose
of this exercise. Instead, you just assigned the two variables using a new method called
assignName:andEmail:.

ptg999

423Exercises

Realize that you can get away with assigning the instance variables here (instead of
making complete copies of them) because the owner of the copied card can’t affect the
name and email members of the original card (those contain immutable string objects).
Because our two instance variables are “strong” variables by default, doing a simple assign-
ment to them creates another reference to the object, as explained in more detail in
Chapter 17.

Exercises
1. Implement a copy method for the AddressBook class according to the NSCopying

protocol.Would it make sense to also implement a mutableCopy method? Why or
why not? Also, think about what happens if someone uses the setter method for the
book property in the AddressBook class.Who should own the address book that
gets passed as the argument to the setter? How can you fix this?

2. Modify the Rectangle and XYPoint classes defined in Chapter 8 to conform to the
<NSCopying> protocol.Add a copyWithZone: method to both classes. Make sure
that the Rectangle copies its XYPoint member origin using the XYPoint’s copy
method. Does it make sense to implement both mutable and immutable copies for
these classes? Explain.

3. Create an NSDictionary object and fill it with some key/object pairs.Then make
both mutable and immutable copies.Are these deep copies or shallow copies that
are made? Verify your answer.

ptg999

This page intentionally left blank

ptg999

19
Archiving

In Objective-C terms, archiving is the process of saving one or more objects in a format
so that they can later be restored. Often this involves writing the object(s) to a file so it
can subsequently be read back in.We discuss two methods for archiving data in this chap-
ter: property lists and key-valued coding.

Archiving with XML Property Lists
Mac OS X applications use XML propertylists (or plists) for storing things such as your
default preferences, application settings, and configuration information, so it’s useful to
know how to create them and read them back in.Their use for archiving purposes, how-
ever, is limited because when creating a property list for a data structure, specific object
classes are not retained, multiple references to the same object are not stored, and the
mutability of an object is not preserved.

Note
So-called “old-style” property lists store the data in a different format than XML property
lists. Stick to using XML property lists in your program, if possible.

If your objects are of type NSString, NSDictionary, NSArray, NSDate, NSData, or
NSNumber, you can use the writeToFile:atomically: method implemented in these
classes to write your data to a file. In the case of writing out a dictionary or an array, this
method writes the data to the file in the format of an XML property list. Program 19.1
shows how the dictionary you created as a simple glossary in Chapter 15,“Numbers,
Strings, and Collections,” can be written to a file as a property list.

Program 19.1

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {

ptg999

426 Chapter 19 Archiving

NSDictionary *glossary =
[NSDictionary dictionaryWithObjectsAndKeys:

@"A class defined so other classes can inherit from it.",
@"abstract class",
@"To implement all the methods defined in a protocol",
@"adopt",
@"Storing an object for later use. ",
@"archiving",
nil

];

if ([glossary writeToFile: @"glossary" atomically: YES] == NO)
NSLog (@"Save to file failed!");

}
return 0;

}

The writeToFile:atomically: message is sent to your dictionary object glossary,
causing the dictionary to be written to the file glossary in the form of a property list.
The atomically parameter is set to YES, meaning that you want the write operation to
be done to a temporary backup file first; once successful, the final data is to be moved to
the specified file named glossary.This is a safeguard that protects the file from becoming
corrupt if, for example, the system crashes in the middle of the write operation. In that
case, the original glossary file (if it previously existed) isn’t harmed.

If you examine the contents of the glossary file created by Program 19.1, it looks
like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>abstract class</key>
<string>A class defined so other classes can inherit from it.</string>
<key>adopt</key>
<string>To implement all the methods defined in a protocol</string>
<key>archiving</key>
<string>Storing an object for later use. </string>

</dict>
</plist>

You can see from the XML file that was created that the dictionary is written to the
file as a set of key (<key>...</key>) value (<string>...</string>) pairs.

ptg999

427Archiving with NSKeyedArchiver

When you create a property list from a dictionary, the keys in the dictionary must all
be NSString objects.The elements of an array or the values in a dictionary can be
NSString, NSArray, NSDictionary, NSData, NSDate, or NSNumber objects.

To read an XML property list from a file into your program, you use the
dictionaryWithContentsOfFile: or arrayWithContentsOfFile: methods.To read
back data, use the dataWithContentsOfFile: method; to read back string objects, use
the stringWithContentsOfFile: method. Program 19.2 reads back the glossary written
in Program 19.1 and then displays its contents.

Program 19.2

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSDictionary *glossary;

glossary = [NSDictionary dictionaryWithContentsOfFile: @"glossary"];

for (NSString *key in glossary)
NSLog (@"%@:, key, [glossary objectForKey: key]);

}
return 0;

}

Program 19.2 Output

archiving: Storing an object for later use.
abstract class: A class defined so other classes can inherit from it.
adopt: To implement all the methods defined in a protocol

Your property lists don’t need to be created from an Objective-C program; the prop-
erty list can come from any source.You can make your own property lists using a simple
text editor, or you can use the Property List Editor program located in the
/Developer/Applications/Utilities directory on Mac OS X systems. If you plan to work
with property lists in your applications, you may want to take a look at the
NSPropertyListSerialization class, which allows property lists to be written to and
read from files in a machine-portable manner.

Archiving with NSKeyedArchiver
A more flexible approach enables you to save any type of objects to a file, not just strings,
arrays, and dictionaries.This is done by creating a keyed archive using the
NSKeyedArchiver class.

ptg999

428 Chapter 19 Archiving

Mac OX X has supported keyed archives since version 10.2. Before that, sequential
archives were created with the NSArchiver class. Sequential archives require that the data
in the archive be read back in precisely the same order in which it was written.

A keyed archive is one in which each field of the archive has a name.When you
archive an object, you give it a name, or key.When you retrieve it from the archive, you
retrieve it by the same key. In that manner, objects can be written to the archive and
retrieved in any order. Furthermore, if new instance variables are added or removed to a
class, your program can account for it.

Program 19.3 shows that the glossary can be saved to a file on disk using the method
archiveRootObject:toFile: from the NSKeyedArchiver class.

Program 19.3

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSDictionary *glossary =
[NSDictionary dictionaryWithObjectsAndKeys:
@"A class defined so other classes can inherit from it",
@"abstract class",
@"To implement all the methods defined in a protocol",
@"adopt",
@"Storing an object for later use",
@"archiving",
nil

];

[NSKeyedArchiver archiveRootObject: glossary toFile: @"glossary.archive"];
}
return 0;

}

Program 19.3 does not produce any output at the terminal. However, the statement

[NSKeyedArchiver archiveRootObject: glossary toFile: @"glossary.archive"];

writes the dictionary glossary to the file glossary.archive.Any pathname can be
specified for the file. In this case, the file is written to the current directory.

The archive file created can later be read into your program by using
NSKeyedUnarchiver’s unarchiveObjectWithFile: method, as is done in Program 19.4.

Program 19.4

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

ptg999

429Writing Encoding and Decoding Methods

@autoreleasepool {
NSDictionary *glossary;

glossary = [NSKeyedUnarchiver unarchiveObjectWithFile:
@"glossary.archive"];

for (NSString *key in glossary)
NSLog (@"%@: %@", key, [glossary objectForKey: key]);

}
return 0;

}

Program 19.4 Output

abstract class: A class defined so other classes can inherit from it.
adopt: To implement all the methods defined in a protocol
archiving: Storing an object for later use.

The statement

glossary = [NSKeyedUnarchiver unarchiveObjectWithFile:
@"glossary.archive"];

causes the specified file to be opened and its contents to be read.This file must be the
result of a previous archive operation.You can specify a full pathname for the file or a rel-
ative pathname, as in the example.

After the glossary has been restored, the program simply enumerates its contents to
verify that the restore was successful.

Writing Encoding and Decoding Methods
Basic Objective-C class objects such as NSString, NSArray, NSDictionary, NSSet,
NSDate, NSNumber, and NSData can be archived and restored in the manner just described.
That includes nested objects as well, such as an array containing a string or even other
array objects.

This implies that you can’t directly archive your AddressBook using this technique
because the Objective-C system doesn’t know how to archive an AddressBook object. If
you tried to archive it by inserting a line such as

[NSKeyedArchiver archiveRootObject: myAddressBook toFile: @"addrbook.arch"];

into your program, you’d get the following message displayed if you ran the program:

*** -[AddressBook encodeWithCoder:]: selector not recognized
*** Uncaught exception: <NSInvalidArgumentException>
*** -[AddressBook encodeWithCoder:]: selector not recognized
archiveTest: received signal: Trace/BPT trap

ptg999

430 Chapter 19 Archiving

From the error messages, you can see that the system was looking for a method called
encodeWithCoder: in the AddressBook class, but you never defined such a method.

To archive objects other than those listed, you must tell the system how to archive, or
encode, your objects, and also how to unarchive, or decode, them.This is done by adding
encodeWithCoder: and initWithCoder: methods to your class definitions, according to
the <NSCoding> protocol. For our address book example, you’d have to add these meth-
ods to both the AddressBook and AddressCard classes.

The encodeWithCoder: method is invoked each time the archiver wants to encode an
object from the specified class, and the method tells it how to do so. In a similar manner,
the initWithCoder: method is invoked each time an object from the specified class is to
be decoded.

In general, the encoder method should specify how to archive each instance variable
in the object you want to save. Luckily, you have help doing this. For the basic Objective-
C classes described previously, you can use the encodeObject:forKey: method. For basic
underlying C data types (such as integers and floats), you use one of the methods listed in
Table 19.1.The decoder method, initWithCoder:, works in reverse:You use
decodeObject:forKey: to decode basic Objective-C classes and the appropriate decoder
method shown in Table 19.1 for the basic data types.

Program 19.5 adds the two encoding and decoding methods to both the AddressCard
and AddressBook classes.

Program 19.5 Addresscard.h Interface File

#import <Foundation/Foundation.h>

@interface AddressCard: NSObject <NSCoding, NSCopying>

@property (copy, nonatomic) NSString *name, *email;

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail;
-(NSComparisonResult) compareNames: (id) element;
-(void) print;

Table 19.1 Encoding and Decoding Basic Data Types in Keyed Archives

Encoder Decoder

encodeBool:forKey: decodeBool:forKey:

encodeInt:forKey: decodeInt:forKey:

encodeInt32:forKey: decodeInt32:forKey:

encodeInt64: forKey: decodeInt64:forKey:

encodeFloat:forKey: decodeFloat:forKey:

encodeDouble:forKey: decodeDouble:forKey:

ptg999

431Writing Encoding and Decoding Methods

// Additional method for NSCopying protocol
-(void) assignName: (NSString *) theName andEmail: (NSString *) theEmail;

@end

These are the two new methods used for your AddressCard class to be added to the
implementation file:

-(void) encodeWithCoder: (NSCoder *) encoder
{

[encoder encodeObject: name forKey: @"AddressCardName"];
[encoder encodeObject: email forKey: @"AddressCardEmail"];

}

-(id) initWithCoder: (NSCoder *) decoder
{

name = [decoder decodeObjectforKey: @"AddressCardName"];
email = [decoder decodeObjectforKey: @"AddressCardEmail"];

return self;
}

The encoding method encodeWithCoder: is passed an NSCoder object as its argu-
ment. Since your AddressCard class inherits directly from NSObject, you don’t need to
worry about encoding inherited instance variables. If you did, and if you knew the super-
class of your class conformed to the NSCoding protocol, you should start your encoding
method with a statement like the following to make sure your inherited instance variables
are encoded:

[super encodeWithCoder: encoder];

Your address book has two instance variables, called name and email. Because these are
both NSString objects, you can use the encodeObject:forKey: method to encode each
of them in turn.These two instance variables are then added to the archive.

The encodeObject:forKey: method encodes an object and stores it under the speci-
fied key for later retrieval using that key.The key names are arbitrary, so as long you use
the same name to retrieve (decode) the data as you did when you archived (encoded) it,
you can specify any key you like.The only time a conflict might arise is if the same key is
used for a subclass of an object being encoded.To prevent this from happening, you can
insert the class name in front of the instance variable name when composing the key for
the archive, as was done in Program 19.5.

Note that encodeObject:forKey: can be used for any object that has implemented a
corresponding encodeWithCoder: method in its class.

The decoding process works in reverse.The argument passed to initWithCoder: is
again an NSCoder object.You don’t need to worry about this argument; just remember

ptg999

432 Chapter 19 Archiving

that it’s the one that gets sent the messages for each object you want to extract from the
archive.

Again, since our AddressCard class inherits directly from NSObject, you don’t have to
worry about decoding inherited instance variables. If you did, you would insert a line like
this at the start of your decoder method (assuming the superclass of your class conformed
to the NSCoding protocol):

self = [super initWithCoder: decoder];

Each instance variable is then decoded by invoking the decodeObject:ForKey:
method and passing the same key that was used to encode the variable.

Similarly to your AddressCard class, you add encoding and decoding methods to your
AddressBook class.The only line you need to change in your interface file is the
@interface directive to declare that the AddressBook class now conforms to the
NSCoding protocol.The change looks like this:

@interface AddressBook: NSObject <NSCoding, NSCopying>

Here are the method definitions for inclusion in the implementation file:

-(void) encodeWithCoder: (NSCoder *) encoder
{

[encoder encodeObject: bookName forKey: @"AddressBookBookName"];
[encoder encodeObject: book forKey: @"AddressBookBook"];

}

-(id) initWithCoder: (NSCoder *) decoder
{

bookName = [decoder decodeObjectForKey: @"AddressBookBookName"];
book = [decoder decodeObjectForKey: @"AddressBookBook"];

return self;
}

The test program is shown next as Program 19.6.

Program 19.6 Test Program

#import "AddressBook.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSString *aName = @"Julia Kochan";
NSString *aEmail = @"jewls337@axlc.com";
NSString *bName = @"Tony Iannino";
NSString *bEmail = @"tony.iannino@techfitness.com";
NSString *cName = @"Stephen Kochan";
NSString *cEmail = @"steve@steve_kochan.com";

ptg999

433Writing Encoding and Decoding Methods

NSString *dName = @"Jamie Baker";
NSString *dEmail = @"jbaker@hitmail.com";

AddressCard *card1 = [[AddressCard alloc] init];
AddressCard *card2 = [[AddressCard alloc] init];
AddressCard *card3 = [[AddressCard alloc] init];
AddressCard *card4 = [[AddressCard alloc] init];

AddressBook *myBook = [AddressBook alloc];

// First set up four address cards

[card1 setName: aName andEmail: aEmail];
[card2 setName: bName andEmail: bEmail];
[card3 setName: cName andEmail: cEmail];
[card4 setName: dName andEmail: dEmail];

myBook = [myBook initWithName: @"Steve’s Address Book"];

// Add some cards to the address book

[myBook addCard: card1];
[myBook addCard: card2];
[myBook addCard: card3];
[myBook addCard: card4];

[myBook sort];

if ([NSKeyedArchiver archiveRootObject: myBook toFile:
@"addrbook.arch"] == NO)

NSLog (@"archiving failed");
}
return 0;

}

This program creates the address book and then archives it to the file addrbook.arch.
In the process of creating the archive file, realize that the encoding methods from both the
AddressBook and AddressCard classes were invoked.You can add some NSLog calls to
these methods if you want proof.

Program 19.7 shows how you can read the archive into memory to set up the address
book from a file.

Program 19.7

#import “AddressBook.h”

int main (int argc, char * argv[])

ptg999

434 Chapter 19 Archiving

{
AddressBook *myBook;
@autoreleasepool {

myBook = [NSKeyedUnarchiver unarchiveObjectWithFile: @"addrbook.arch"];

[myBook list];
}
return 0;

}

Program 19.7 Output

======== Contents of: Steve’s Address Book =========
Jamie Baker jbaker@hitmail.com
Julia Kochan jewls337@axlc.com
Stephen Kochan steve@steve_kochan.com
Tony Iannino tony.iannino@techfitness.com
==

In the process of unarchiving the address book, the decoding methods added to your
two classes were automatically invoked. Notice how easily you can read the address book
back into the program.

As noted, the encodeObject:forKey: method works for built-in classes and classes for
which you write your encoding and decoding methods according to the NSCoding pro-
tocol. If your instance contains some basic data types, such as integers or floats, you need
to know how to encode and decode them (see Table 19.1).

Here’s a simple definition for a class called Foo that contains three instance variables—
one is an NSString, another is an int, and the third is a float.The class has one setter
method, three getter methods, and two encoding/decoding methods to be used for
archiving:

@interface Foo: NSObject <NSCoding>

@property (copy, nonatomic) NSString *strVal;
@property int intVal;
@property float floatVal;
@end

The implementation file follows:

@implementation Foo

@synthesize strVal, intVal, floatVal;

-(void) encodeWithCoder: (NSCoder *) encoder
{

ptg999

435Writing Encoding and Decoding Methods

[encoder encodeObject: strVal forKey: @"FoostrVal"];
[encoder encodeInt: intVal forKey: @"FoointVal"];
[encoder encodeFloat: floatVal forKey: @"FoofloatVal"];

}

-(id) initWithCoder: (NSCoder *) decoder
{

strVal = [decoder decodeObjectForKey: @"FoostrVal"];
intVal = [decoder decodeIntForKey: @"FoointVal"];
floatVal = [decoder decodeFloatForKey: @"FoofloatVal"];

return self;
}
@end

The encoding routine first encodes the string value strVal using the
encodeObject:forKey: method, as was shown previously.

In Program 19.8, a Foo object is created, archived to a file, unarchived, and then displayed.

Program 19.8 Test Program

#import <Foundation/Foundation.h>
#import "Foo.h" // Definition for our Foo class

int main (int argc, char * argv[])
{

@autoreleasepool {
Foo *myFoo1 = [[Foo alloc] init];
Foo *myFoo2;

[myFoo1 setStrVal: @"This is the string"];
[myFoo1 setIntVal: 12345];
[myFoo1 setFloatVal: 98.6];

[NSKeyedArchiver archiveRootObject: myFoo1 toFile: @"foo.arch"];

myFoo2 = [NSKeyedUnarchiver unarchiveObjectWithFile: @"foo.arch"];
NSLog (@"%@\n%i\n%g", [myFoo2 strVal], [myFoo2 intVal],

[myFoo2 floatVal]);
}
return 0;

}

ptg999

436 Chapter 19 Archiving

Program 19.8 Output

This is the string
12345
98.6

The following messages archive the three instance variables from the object:

[encoder encodeObject: strVal forKey: @"FoostrVal"];
[encoder encodeInt: intVal forKey: @"FoointVal"];
[encoder encodeFloat: floatVal forKey: @"FoofloatVal"];

Some of the basic data types, such as char, short, long, and long long, are not listed
in Table 19.1; you must determine the size of your data object and use the appropriate
routine. For example, a short int is normally 16 bits, an int and long can be 32 or 64
bits, and a long long is 64 bits. (You can use the sizeof operator, described in Chapter
13,“Underlying C Language Features,” to determine the size of any data type.) So to
archive a short int, store it in an int first and then archive it with encodeIntForKey:.
Reverse the process to get it back: Use decodeIntForKey: and then assign it to your
short int variable.

Using NSData to Create Custom Archives
You might not want to write your object directly to a file using the
archiveRootObject:ToFile: method, as was done in the previous program examples.
For example, perhaps you want to collect some or all of your objects and store them in a
single archive file.You can do this in Objective-C using the data object class called
NSData, which we briefly visited in Chapter 16,“Working with Files.”

As mentioned in Chapter 16, an NSData object can be used to reserve an area of
memory into which you can store data.Typical uses of this data area might be to provide
temporary storage for data that will subsequently be written to a file or perhaps to hold
the contents of a file read from the disk.The simplest way to create a mutable data area is
with the data method:

dataArea = [NSMutableData data];

This creates an empty buffer space whose size expands as needed as the program
executes.

As a simple example, let’s assume that you want to archive your address book and one
of your Foo objects in the same file.Assume for this example that you’ve added keyed
archiving methods to the AddressBook and AddressCard classes (see Program 19.9).

Program 19.9

#import “AddressBook.h”
#import "Foo.h"

int main (int argc, char * argv[])
{

ptg999

437Using NSData to Create Custom Archives

@autoreleasepool {
Foo *myFoo1 = [[Foo alloc] init];
NSMutableData *dataArea;
NSKeyedArchiver *archiver;
AddressBook *myBook;

// Insert code from Program 19.7 to create an Address Book
// in myBook containing four address cards

[myFoo1 setStrVal: @"This is the string"];
[myFoo1 setIntVal: 12345];
[myFoo1 setFloatVal: 98.6];

// Set up a data area and connect it to an NSKeyedArchiver object
dataArea = [NSMutableData data];

archiver = [[NSKeyedArchiver alloc]
initForWritingWithMutableData: dataArea];

// Now we can begin to archive objects
[archiver encodeObject: myBook forKey: @"myaddrbook"];
[archiver encodeObject: myFoo1 forKey: @"myfoo1"];
[archiver finishEncoding];

// Write the archived data area to a file
if ([dataArea writeToFile: @"myArchive" atomically: YES] == NO)

NSLog (@"Archiving failed!");
}
return 0;

}

After allocating an NSKeyedArchiver object, the initForWritingWithMutableData:
message is sent to specify the area in which to write the archived data; this is the
NSMutabledata area dataArea that you previously created.The NSKeyedArchiver object
stored in archiver can now be sent encoding messages to archive objects in your pro-
gram. In fact, until it receives a finishEncoding message, it archives and stores all encod-
ing messages in the specified data area.

You have two objects to encode here—the first is your address book and the second is
your Foo object.You can use encodeObject:forKey: for these objects because you previ-
ously implemented encoder and decoder methods for the AddressBook, AddressCard,
and Foo classes. (It’s important to understand that concept.)

When you are finished archiving your two objects, you send the archiver object the
finishEncoding message. No more objects can be encoded after that point, and you
need to send this message to complete the archiving process.

ptg999

438 Chapter 19 Archiving

The area you set aside and named dataArea now contains your archived objects in a
form that you can write to a file.The message expression

[dataArea writeToFile: @"myArchive" atomically: YES]

sends the writeToFile:atomically: message to your data stream to ask it to write its
data to the specified file, which you named myArchive.

As you can see from the if statement, the writeToFile:atomically: method returns
a BOOL value: YES if the write operation succeeds and NO if it fails (perhaps an invalid
pathname for the file was specified or the file system is full).

Restoring the data from your archive file is simple:You just do things in reverse. First,
you need to allocate a data area like before. Next, you need to read your archive file into
the data area; then you have to create an NSKeyedUnarchiver object and tell it to decode
data from the specified area.You must invoke decode methods to extract and decode your
archived objects.When you’re finished, you send a finishDecoding message to the
NSKeyedUnarchiver object.

This is all done in Program 19.10.

Program 19.10

#import “AddressBook.h”
#import "Foo.h"

int main (int argc, char * argv[])
{

@autoreleasepool {
NSData *dataArea;
NSKeyedUnarchiver *unarchiver;
Foo *myFoo1;
AddressBook *myBook;
// Read in the archive and connect an
// NSKeyedUnarchiver object to it

dataArea = [NSData dataWithContentsOfFile: @"myArchive"];

if (! dataArea) {
NSLog (@"Can’t read back archive file!");
return 1;

}

unarchiver = [[NSKeyedUnarchiver alloc]
initForReadingWithData: dataArea];

// Decode the objects we previously stored in the archive
myBook = [unarchiver decodeObjectForKey: @"myaddrbook"];
myFoo1 = [unarchiver decodeObjectForKey: @"myfoo1"];

[unarchiver finishDecoding];

ptg999

439Using the Archiver to Copy Objects

// Verify that the restore was successful
[myBook list];
NSLog (@"%@\n%i\n%g", [myFoo1 strVal],

[myFoo1 intVal], [myFoo1 floatVal]);
}
return 0;

}

Program 19.10 Output

======== Contents of: Steve’s Address Book =========
Jamie Baker jbaker@hitmail.com
Julia Kochan jewls337@axlc.com
Stephen Kochan steve@steve_kochan.com
Tony Iannino tony.iannino@techfitness.com
===
This is the string
12345
98.6

The output verifies that the address book and your Foo object were successfully
restored from the archive file.

Using the Archiver to Copy Objects
In Program 18.2, you tried to make a copy of an array containing mutable string elements
and you saw how a shallow copy of the array was made.That is, the actual strings them-
selves were not copied—only the references to them were.

You can use the Foundation’s archiving capabilities to create a deep copy of an
object. For example, Program 19.11 copies dataArray to dataArray2 by archiving
dataArray into a buffer and then unarchiving it, assigning the result to dataArray2.You
don’t need to use a file for this process; the archiving and unarchiving process can all
take place in memory.

Program 19.11

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{

@autoreleasepool {
NSData *data;
NSMutableArray *dataArray = [NSMutableArray arrayWithObjects:

[NSMutableString stringWithString: @"one"],
[NSMutableString stringWithString: @"two"],

ptg999

440 Chapter 19 Archiving

[NSMutableString stringWithString: @"three"],
nil

];

NSMutableArray *dataArray2;
NSMutableString *mStr;

// Make a deep copy using the archiver

data = [NSKeyedArchiver archivedDataWithRootObject: dataArray];
dataArray2 = [NSKeyedUnarchiver unarchiveObjectWithData: data];

mStr = [dataArray2 objectAtIndex: 0];
[mStr appendString: @"ONE"];

NSLog (@"dataArray: ");
for (NSString *elem in dataArray)
NSLog (@"%@", elem);

NSLog (@"\ndataArray2: ");
for (NSString *elem in dataArray2)

NSLog (@"%@", elem);

}
return 0;

}

Program 19.11 Output

dataArray:
one
two
three

dataArray2:
oneONE
two
three

The output verifies that changing the first element of dataArray2 had no effect on
the first element of dataArray.That’s because a new copy of the string was made through
the archiving/unarchiving process.

ptg999

441Exercises

The copy operation in Program 19.11 is performed with the following two lines:

data = [NSKeyedArchiver archivedDataWithRootObject: dataArray];
dataArray2 = [NSKeyedUnarchiver unarchiveObjectWithData: data];

You can even avoid the intermediate assignment and perform the copy with a single
statement, like this:

dataArray2 = [NSKeyedUnarchiver unarchiveObjectWithData:
[NSKeyedArchiver archivedDataWithRootObject: dataArray]];

This is a technique you might want to keep in mind next time you need to make a
deep copy of an object or of an object that doesn’t support the NSCopying protocol.

Exercises
1. In Chapter 6, Program 6.10A generated a table of prime numbers. Modify that pro-

gram to store the numbers inside an NSMutableArray object.Then write the result-
ing array as an XML property list to the file primes.pl. Examine the contents of the
file.

2. Write a program to read in the XML property list created in exercise 1 and store
the values in an array object. Display all the elements of the array to verify that the
restore operation was successful.

3. Modify Program 19.2 to display the contents of one of the XML property lists
(.plist files) stored in the /Library/Preferences folder.

4. Write a program to read in an archived AddressBook and look up an entry based
on a name supplied on the command line, like so:
$ lookup gregory

ptg999

This page intentionally left blank

ptg999

20
Introduction to Cocoa and

Cocoa Touch

Throughout this book, you developed programs that had a simple user interface.You
relied on the NSLog routine to display your output in the form of simple lines of text.
However, as useful as this routine is, it is very limited in its capabilities. Certainly, other
programs you use on the Mac or iPhone aren’t as unfriendly. In fact, the Mac’s reputation
is based on its user-friendly dialogs and ease of use. Lucky for you, this is where Xcode
and its built-in user interface design tool come to the rescue. Not only does this combi-
nation offer a powerful environment for program development, consisting of editing and
debugging tools, and convenient access to online documentation, but it also provides an
environment for easily developing sophisticated graphical user interfaces (GUIs).

The frameworks that provide the support for your Mac OS X applications to provide
a rich user experience are called Cocoa, which actually consists of three frameworks: the
Foundation framework, with which you are already familiar, the Core Data framework,
for easily storing and managing data that is database-driven, and the Application Kit
(AppKit) framework.This last framework provides the classes associated with windows,
buttons, lists, and so on.

Framework Layers
A diagram is often used to illustrate the different layers that separate the application at the
topmost level from the underlying hardware. One such representation is depicted in
Figure 20.1.

The kernel provides the low-level communication to the hardware in the form of device
drivers. It manages the system’s resources, which includes scheduling programs for execu-
tion, managing memory and power, and performing basic I/O operations.

As its name implies, Core Services provides support at a lower or “core” level than that
provided in the layers above it. For example, here you find support for collections, network-
ing, debugging, file management, folders, memory management, threads, time, and power.

tim

ptg999

444 Chapter 20 Introduction to Cocoa and Cocoa Touch

Cocoa (Foundation)

Application

Application Services

Core Services

Mac OS X kernel

User

Computer Resources (memory, disk, display, etc.)

Figure 20.1 The application hierarchy

The Application Services layer includes support for printing and graphics rendering,
including Quartz, OpenGL, and Quicktime.

Directly below your application sits the Cocoa layer.As noted, Cocoa includes the
Foundation, Core Data, and AppKit frameworks. Foundation offers classes for working
with collections, strings, memory management, the file system, archiving, and so on.App-
Kit provides classes for managing views, windows, documents, and the rich user interface
for which Mac OS X is well known.

From this description, there seems to be duplication of functionality between some of
the layers. Collections exist in both the Cocoa and Core Services layers. However, the
former builds on support of the latter.Also, in some cases, a layer can be bypassed or
“bridged.” For example, some Foundation classes, such as those that deal with the file sys-
tem, rely directly on functionality in the Core Services layer and so bypass the Application
Services layer. In many cases, the Foundation framework defines an object-oriented map-
ping of data structures defined in the lower-level Core Services layer (which is written
primarily in the procedural C language).

Cocoa Touch
iOS devices like the iPhone, the iPod Touch, and the iPad contain a computer that runs a
scaled-down version of Mac OS X. Some features in the iPhone’s hardware, such as its
accelerometer, are unique to the phone and are not found in other Mac OS X comput-
ers, such as MacBook Pros or iMacs.

ptg999

445Cocoa Touch

Note
Actually, Mac notebooks contain an accelerometer so that the hard drive can be parked if
the computer gets dropped; however, you can’t access this accelerometer directly from your
programs.

Whereas the Cocoa frameworks are designed for application development for Mac OS
X desktop and notebook computers, the Cocoa Touch frameworks are for applications
targeted for iOS devices.

Both Cocoa and Cocoa Touch have the Foundation and Core Data frameworks in
common. However, the UIKit replaces the AppKit framework under Cocoa Touch, pro-
viding support for many of the same types of objects, such as windows, views, buttons,
text fields, and so on. In addition, Cocoa Touch provides classes for working with the
accelerometer, gyroscope, triangulating your location with GPS and Wi-Fi signals, and the
touch-driven interface, and also eliminates classes that aren’t needed.

That concludes this brief overview of Cocoa and Cocoa Touch. In the next chapter,
you learn how to write an application for the iPhone, using the simulator that is part of
the iOS SDK.

ptg999

This page intentionally left blank

ptg999

21
Writing iOS Applications

In this chapter, you’ll develop two simple iPhone applications.The first illustrates some
fundamental concepts to familiarize you with using Interface Builder, making connec-
tions, and understanding delegates, outlets, and actions. For the second iPhone application,
you’ll build a fraction calculator. It combines what you learned while developing the first
application with what you learned throughout the rest of the book.The same principles
you learn here can be used to develop applications for other iOS devices as well.

The iOS SDK
To write an iPhone application, you have to install Xcode and the iOS SDK.This SDK is
available free of charge from Apple’s Web site.To download the SDK, you’ll need to first
register to be an Apple Developer.That process is also free.To get the appropriate links,
you can start at developer.apple.com and navigate to the appropriate point. It’s a great
idea to become familiar with that site.

The discussions in this chapter are based on Xcode 4.2 and the iOS SDK for iOS 5.
Later versions of either should be compatible with what’s described here. If you notice
your screens look different than those shown, it may be because you’re using a different
version of Xcode. In that case, check the forum at classroomM.com/objective-c for cur-
rent information.

Your First iPhone Application
The first application shows how you can put a black-colored window on the iPhone’s
screen, allow for the user to press a button, and then display some text in response to the
pressing of that button.

Note
The second application is more fun! You use the knowledge gained from your first applica-
tion to build a simple calculator that does operations with fractions. You can use your Frac-
tion class that you worked with earlier in the book, as well as a modified Calculator class.
This time, your calculator needs to know how to work with fractions.

tim

ptg999

448 Chapter 21 Writing iOS Applications

Let’s dive right into the first program.The pedagogy used in this chapter is not to cover
all the details; as noted, there’s simply not enough space to do that here. Instead, we walk
you through the steps to give you the necessary foundation for you to explore and learn
more concepts on your own with a separate Cocoa or iOS programming text.

Figure 21.1 shows the first application you develop for the iPhone, running on the
iPhone simulator (more about that shortly).

This application is designed so that when you press the button labeled “1” the corre-
sponding digit appears in the display (see Figure 21.2).That’s all it does! This simple appli-
cation lays the groundwork for the second fraction calculator application.

By this point in this book, you should be comfortable using Xcode if you’ve been
using it to enter and test your programs.This time, we’ll also be using a feature of Xcode
that lets you design your user interface by placing UI elements such as tables, labels, and
buttons in a window that resembles the iPhone’s screen. Like any powerful development
tool, this feature takes some getting used to.

Note
Prior to the release of Xcode 4, the UI was designed using a separate application called
Interface Builder.

Figure 21.1 First iPhone application

tim

ptg999

449Your First iPhone Application

Figure 21.2 iPhone application results

Apple distributes an iPhone simulator as part of the iOS SDK.The simulator replicates
much of your iPhone environment, including its home screen, Safari web browser, Con-
tacts application, and so on.The simulator makes it much easier to debug your applica-
tions; you don’t have to download each iteration of your application to an actual iPhone
device and then debug it there.This can save you a lot of time and effort.

To run applications on an iOS device, you need to register for the iOS developer pro-
gram and pay a $99 fee (as of the time of this writing) to Apple. In turn, you will receive
an activation code that will allow you to get an iOS Development Certificate to enable
you to test and install applications on an iOS device. Unfortunately, you cannot develop
applications even for your own iOS device without going through this process. Note that
the application we develop in this chapter will be loaded and tested on the iPhone simula-
tor and not on an iPhone device.

Creating a New iPhone Application Project
Let’s return to developing your first application.After you install the iOS SDK, start up
the Xcode application. Select File, New, then New Project... . Under iOS (and if you
don’t see this in the left pane, you haven’t installed the iOS SDK), click on Application.
You should see a window, as shown in Figure 21.3.

Here, you see templates that provide starting points for different types of applications,
as summarized in the Table 21.1.

tim

ptg999

450 Chapter 21 Writing iOS Applications

Figure 21.3 Starting a new iOS project

Returning to your New Project window, select Single View Application in the top
rightmost pane and then click on the Next button.Type in iPhone_1 for the Product
Name, whatever you choose as the Company Identifier, set the Device Family to iPhone,
check User Automatic Reference Counting, and uncheck Use Story Board and Include
Unit Tests.Your screen should resemble Figure 21.4.

Table 21.1 iOS Application Templates

Application Type Description

Master-Detail For an application that uses a navigation controller. Contacts is a sample
application of this type. Generates a split view-based application for a
large-screen device such as an iPad

OpenGL Game For OpenGL ES graphics-based applications such as games.

Page-based
Application

For an application that uses a page view controller to manage the display
of pages.

Single View
Application

For an application starting with a single view. You draw into the view and
then display that view in the window.

Tabbed
Application

For applications that use a tab bar. An example would be the Music appli-
cation.

Utility Application For an application that has a flipside view. The Stock Quote application is
an example of this type.

Empty Application For an application that starts with just the main iPhone window. You can
use this as the starting point for any application.

ptg999

451Your First iPhone Application

Figure 21.4 Selecting project options

Click on Next.You can specify where to create your new project folder, and don’t
worry about whether the Source Control box is checked.Your screen should now look
like Figure 21.5.

Now, click Create.As you know from previous projects you created with Xcode, a new
project will now be created for you that contains templates for files you’ll want to use.
This is shown in Figure 21.6, where the iPhone_1 folder reveals five files:
iPhone_1AppDelegate.h, iPhone_1AppDelegate.m, iPhone_1ViewController.h,

Figure 21.5 Specifying where to store the project
folde.

ptg999

452 Chapter 21 Writing iOS Applications

iPhone_1ViewController.m, and MainWindow.xib.The rightmost pane contains, among
other things, orientations supported by your application and the application’s icon.We’ll
ignore this pane here.

Depending on your settings and previous uses of Xcode, your window might not
appear precisely as depicted in Figure 21.6.You can choose to follow along with whatever
your current layout resembles or else try to make it match the figure more closely.

In the top-left corner of your Xcode window, you see a drop-down labeled Scheme.
Because we’re not developing this application to run directly on the iPhone, you want the
SDK set up to run with the iPhone simulator. Select the iPhone simulator from the
Scheme dropdown as shown in Figure 21.7.

Entering Your Code
Now we’re ready to modify some of your project files. Notice that a class called project-
nameAppDelegate was created for you, where in this example project-name is iPhone_1.An
application delegate subclass is created for every new iOS application you create. In gen-
eral, in this class are methods that control the application’s execution.This includes such
things as what to do when the application starts, when it enters and leaves the back-
ground, when the system tells it it’s using too much memory, and when it terminates.We
won’t make any changes to this class in either of the two examples in this chapter.

Figure 21.6 New iOS project iPhone_1 is created

ptg999

453Your First iPhone Application

Figure 21.7 Selecting the iPhone simulator

A second class was also created for you called iPhone_1ViewController.As you can
see, Xcode creates interface and implementation sections for you in the corresponding .h
and .m files.A view controller is responsible for managing the display of one or more
“views” on your iPhone’s display.We have only one view in this application, as depicted in
Figure 21.1. It’s not uncommon for applications to present many different views and to
therefore have multiple view controllers to manage them.

So our view controller class will be responsible for handling the event of pressing the
button labeled “1.”There we’ll define a method to respond to that action when it occurs
in the iPhone’s window, in our example, the pressing of a button.You’ll see shortly how
you make the connection between that event to the execution of a specific method.

Your objects can also have instance variables whose values correspond to some control
in your iPhone’s window, such as the name on a label or the text displayed in an editable
text box.These variables are known as outlets, and you’ll see how you connect an instance
variable to an actual control in the iPhone’s window.

For our first application, we need a method that responds to the action of the pressing of
the button labeled 1.We also need an outlet variable that contains (among other informa-
tion) the text to be displayed in the label that we create at the top of the iPhone’s window.

Edit the file iPhone_1ViewController.h to add a new UILabel property called
display and declare an action method called click1 to respond to the pressing of the
button.Your interface file should appear as shown in Program 21.1. (The comment lines
automatically inserted at the head of the file are not shown here.)

Program 21.1 iPhone_1ViewController.h
#import <UIKit/UIKit.h>

@interface iPhone_1ViewController : UIViewController

@property (strong, nonatomic) IBOutlet UILabel *display;

ptg999

454 Chapter 21 Writing iOS Applications

-(IBAction) click1;

@end

Notice that iPhone applications import the header file <UIKit/UIKit.h>.This header
file, in turn, imports other UIKit header files, in a similar way that the Foundation.h
header file imported other header files you needed, such as NSString.h and NSObject.h.

Note
As noted previously in this text, using an instance variable name that’s different from the
property name encourages you to access the instance variable through the property and not
directly by the variable’s name. Apple has been encouraging this style of coding.

You added a property belonging to the UILabel class called display.This will be an
outlet property that will be connected to a label.When you set this property’s text field, it
updates the corresponding text for the label in the window. Other methods defined for
the UILabel class allow you to set and retrieve other attributes of a label, such as its color,
the number of lines, and the size of the font.

You’ll want to use other classes in your interface as you learn more about iOS pro-
gramming that we won’t describe here.The names of some of these give you a clue as to
their purpose: UITextField, UIFont, UIView, UITableView, UIImageView, UIImage,
UISlider, and UIButton.

The display property is an outlet, and in the property declaration, note the use of the
IBOutlet identifier. IBOutlet is really defined as nothing in the UIKit header file
UINibDeclarations.h. (That is, it is literally replaced by nothing in the source file by the
preprocessor.) However, it’s needed because Xcode looks for IBOutlets when it reads
your header file to determine which of your variables can be used as outlets and can be
connected to the appropriate UI elements in the interface.

The click1 method is defined to return a value of type IBAction. (This is defined as
void in the UINibDeclarations.h header file.) Like IBOutlet, Xcode uses this identifier
when it examines your header file to identify methods that can be used as actions.

Now it’s time to modify the corresponding iPhone_1ViewController.m implemen-
tation file for your class. Here you synthesize the accessor methods for your display
property.

Now edit your implementation file and add the lines as shown in Program 21.1 (note
that we’re not showing methods that Xcode placed in your implementation file that we
won’t be modifying).

Program 21.1 iPhone_1ViewController.m
#import "iPhone_1ViewController.h"

@implementation iPhone_1ViewController

@synthesize display;

ptg999

455Your First iPhone Application

-(IBAction) click1
{

display.text = @"1";
}

// Other methods inserted by Xcode not shown here
// ...

@end

The click1 method sets the outlet variable display to the string 1 by setting
UILabel’s text property.After you connect the pressing of the button to the invocation of
this method, it can perform the desired action of putting a 1 into the display in the
iPhone’s window.To make the connection, you must now learn how to use the interface
design tool built into Xcode.

Designing the Interface
In Figure 21.4, and in your Xcode main window, notice a file called
iPhone_1ViewController.xib.An xib file (historically referred to as a “nib” file because
the extension used to be nib) contains information about the user interface for your pro-
gram, including information about its windows, buttons, labels, tab bars, text fields, and so
on. Of course, you don’t have a user interface yet! That’s the next step.

Select the iPhone_1ViewController.xib file from the left pane.This causes the inter-
face design tool to appear, as shown in Figure 21.8.The right pane shows the iPhone’s
main window, which starts out empty and with a gray background by default.

From the View menu, select Utilities, show Attributes Inspector, Object Library.Your
window should appear as depicted in Figure 21.9 in one of its display formats.

(Look at the various options selected in the Editor and Tool bars if you want to try to
match your screen to the figure.This figure shows the Attributes Inspector in the top
rightmost pane and the Object Library in the bottom rightmost pane in icon view mode.)

The first thing we’ll do is set the iPhone’s window to black.To do this, first click inside
the iPhone’s window in the middle pane.

If you glance down to the View section of the Inspector pane, you’ll see an attribute
labeled Background. If you click inside the gray-filled rectangle next to Background, it
brings up a choice of colors for you. Choose Black Color, which changes the rectangle
next to the Background attribute in the Inspector from gray to black.

If you take a look at the middle pane, which represents the iPhone’s window, you see
that it has changed to black, as shown in Figure 21.10.

You can create new objects in your iPhone interface window by dragging an object
from the Object Library pane into the iPhone window. Drag a Label now. Release the
mouse when the label is near the left of the window, close to the top, as shown in
Figure 21.11.

ptg999

456 Chapter 21 Writing iOS Applications

Figure 21.8 User Interface design pane

Figure 21.9 Interface Builder iPhone_1ViewController.xib

ptg999

457Your First iPhone Application

Figure 21.10 iPhone’s window changes to black

Figure 21.11 Adding a label

ptg999

458 Chapter 21 Writing iOS Applications

Blue guide lines appear as you move the label around inside your window. Sometimes
they will appear to help you align objects with other objects previously placed in the win-
dow.At other times, they appear to make sure your objects are spaced far enough apart
from other objects and from the edges of the window, to be consistent with Apple’s inter-
face guidelines.

You can always reposition the label in the window at any time in the future by select-
ing it and dragging it to another spot inside the window.

Let’s now set some attributes for this label. In your iPhone window, if it’s not currently
selected, click the label you just created to select it. Notice that the Inspector pane gives
you information about the currently selected object in your window.We don’t want any
text to appear by default for this label, so change the Text value to an empty string. (That
is, delete the string Label from the text field shown in the Inspector’s pane.)

For the Alignment attribute, select the right-justified icon. Finally, change the back-
ground color for the label to blue (or any other color you choose), like you changed the
window’s background color to black.

Now let’s change the size of the label. Go back to Window and simply resize the label
by pulling out along its corners and sides. Resize and reposition the label so that it looks
like the one shown in Figure 21.12.

Now we’ll add a button to the interface. From the Object Library pane, drag a
Rounded Rect Button object into your interface window, placing it toward the lower-left

Figure 21.12 Changing the label’s attributes and size

ptg999

459Your First iPhone Application

corner of the window, as shown in Figure 21.13 (note this figure shows the Object
Library window changed from icon to list view).You can change the label on the button
in one of two ways: by double-clicking on the button and then typing your text, or by
setting the Title field in the Inspector pane. Either way you choose, make your window
match the one shown in Figure 21.13.

Now we have a label that we want to connect to our display instance variable in our
program so that when we set the variable in our program the label’s text will be changed.

We also have a button labeled 1 that we want to set to invoke our click1 method
whenever it gets pressed.That method sets the value of display’s text field to 1.And
because that variable will be connected to the label, the label will then be updated.As a
recap, here’s the sequence we want to set up:

1. The user presses the button labeled 1.

2. This event causes the click1 method to be executed.

3. The click1 method changes the text property of the instance variable display to
the string 1.

4. Because the UILabel object display connects to the label in the iPhone’s window,
this label updates to the corresponding text value, or to the value 1.

Figure 21.13 Adding a button to the interface

ptg999

460 Chapter 21 Writing iOS Applications

For this sequence to work, we just need to make the two connections.There are several
ways to do this, here we’ll just describe one method.

First, let’s get the source code displayed in the third pane.To do this, first select View,
Utilities, Hide Utilities. Next, select View,Assistant Editor, Show Assistant Editor. Hope-
fully, your Xcode window will be close to that shown in Figure 21.14.

Let’s connect the button to the IBAction method click1.You do this by holding
down the Control key while you click on the button and drag the blue line that appears
on the screen to the click1 method displayed in the rightmost pane (and you can drag it
to either the method where it’s declared in the interface section or where it’s defined in
the implementation section).This is shown in Figure 21.15.

Now, let’s connect the display variable to the label. Select the label in the iPhone’s
window, hold down the Control key and click-drag the blue line that appears to the
display property declaration in the interface file.This is shown in Figure 21.16.

When you release the mouse, the connection is made.
That’s it; you’re done! Select Run from the Product menu or the toolbar. If all goes

well, the program will successfully build and begin execution.When execution begins,
your program will be loaded into the iPhone simulator, which will appear on your com-
puter’s display.The simulator window should appear as shown in Figure 21.1 at the start of
this chapter.You simulate pressing a button with the simulator by simply clicking it.When
you do that, the sequence of steps we outlined and the connections you made should
result in the display of a 1 at the top of the display, as shown in Figure 21.2.

Figure 21.14 Displaying source code alongside the interface

ptg999

461An iPhone Fraction Calculator

Figure 21.15 Adding an action for a button

Figure 21.16 Connecting an outlet variable

An iPhone Fraction Calculator
The next example is a bit more involved, but the concepts from the previous example
equally apply.We’re not going to show all the steps to create this example, but rather give
a summary of the steps and an overview of the design methodology. Of course, we’ll also
show all the code.

First, let’s see how the application works. Figure 21.17 shows what the application
looks like in the simulator just after launching.

ptg999

462 Chapter 21 Writing iOS Applications

Figure 21.17 Fraction calculator after launch

The calculator application allows you to enter fractions by first keying in the numerator,
pressing the key labeled Over, and then keying in the denominator. So to enter the fraction
2/5, you would press 2, followed by Over, followed by 5.You’ll note that, unlike other cal-
culators, this one actually shows the fraction in the display, so 2/5 is displayed as 2/5.

After keying in one fraction, you then choose an operation—addition, subtraction, mul-
tiplication, or division—by pressing the appropriately labeled key +, –, 3, or ÷, respectively.

After keying-in the second fraction, you then complete the operation by pressing the =
key, just as you would with a standard calculator.

Note
This calculator is designed to perform just a single operation between two fractions. It’s left
as an exercise at the end of this chapter for you to remove this limitation.

The display is continuously updated as keys are pressed. Figure 21.18 shows the display
after the fraction 4/6 has been entered and the multiplication key has been pressed.

Figure 21.19 shows the result of multiplying the fractions 4/6 and 2/8 together.You’ll
note that the result of 1/6 indicates that the result has been reduced.

Starting the New Fraction_Calculator Project
For this second program example, you’ll start by creating a new project.As before, select
Single View Application from the New Project window. Call your new project
Fraction_Calculator.

ptg999

463An iPhone Fraction Calculator

Figure 21.18 Keying in an
operation

Figure 21.19 The result
of multiplying two fractions

ptg999

464 Chapter 21 Writing iOS Applications

When your project is created, this time, you’ll notice you get two class templates
defined for you. Fraction_CalculatorAppDelegate.h and
Fraction_CalculatorAppDelegate.m define the application’s delegate class for your
project, while Fraction_CalculatorViewController.h and
Fraction_CalculatorViewController.m define the view controller class for your proj-
ect.As with the first example in this chapter,, it’s in this latter class where you’ll perform
all your work.

Defining the View Controller
Now, let’s write the code for the view controller class
Fraction_CalculatorViewController.We’ll start with the interface file.This is shown
in Program 21.2.

Program 21.2 Fraction_CalculatorViewController.h Interface File

#import <UIKit/UIKit.h>
#import "Calculator.h"

@interface Fraction_CalculatorViewController : UIViewController

@property (strong, nonatomic) IBOutlet UILabel *display;

-(void) processDigit: (int) digit;
-(void) processOp: (char) theOp;
-(void) storeFracPart;

// Numeric keys

-(IBAction) clickDigit: (UIButton *) sender;

// Arithmetic Operation keys

-(IBAction) clickPlus;
-(IBAction) clickMinus;
-(IBAction) clickMultiply;
-(IBAction) clickDivide;

// Misc. Keys

-(IBAction) clickOver;
-(IBAction) clickEquals;
-(IBAction) clickClear;

@end

ptg999

465An iPhone Fraction Calculator

There are housekeeping variables for building the fractions (currentNumber,
firstOperand, and isNumerator), and for building the string for the display
(displayString).There is also a Calculator object (myCalculator) that can perform
the actual calculation between the two fractions.We will associate a single method called
clickDigit: to handle the pressing of any of the digit keys 0-9.This method will take an
argument that will indicate the actual digit key that was pressed, as you’ll shortly see.
Finally, we define methods to handle storing the operation to be performed (clickPlus,
clickMinus, clickMultiply, clickDivide), carrying out the actual calculation when the
= key is pressed (clickEquals), clearing the current operation (clickClear), and sepa-
rating the numerator from the denominator when the Over key is pressed (clickOver).
Several methods (processDigit:, processOp:, and storeFracPart) are defined to assist
in the aforementioned chores.

Program 21.2 shows the implementation file for this controller class. Note that we
declare the instance variables in the implementation section.We could have declared
properties and synthesized them instead. Either approach works fine.The approach we use
here keeps the instance variables private and makes it clear they’re used within the class.

Program 21.2 Fraction_CalculatorViewController.m Implementation File

#import "Fraction_CalculatorViewController.h"

@implementation Fraction_CalculatorViewController
{

char op;
int currentNumber;
BOOL firstOperand, isNumerator;
Calculator *myCalculator;
NSMutableString *displayString;

}

@synthesize display;

-(void) viewDidLoad {

// Override point for customization after application launch

firstOperand = YES;
isNumerator = YES;
displayString = [NSMutableString stringWithCapacity: 40];
myCalculator = [[Calculator alloc] init];

}

-(void) processDigit: (int) digit
{

ptg999

466 Chapter 21 Writing iOS Applications

currentNumber = currentNumber * 10 + digit;

[displayString appendString:
[NSString stringWithFormat: @"%i", digit]];

display.text = displayString;
}

- (IBAction) clickDigit: (UIButton *) sender
{

int digit = sender.tag;

[self processDigit: digit];
}

-(void) processOp: (char) theOp
{

NSString *opStr;

op = theOp;

switch (theOp) {
case '+':

opStr = @" + ";
break;

case '-':
opStr = @" – ";
break;

case '*':
opStr = @" ∞ ";
break;

case '/':
opStr = @" ÷ ";
break;

}

[self storeFracPart];
firstOperand = NO;
isNumerator = YES;

[displayString appendString: opStr];
display.text = displayString;

}

-(void) storeFracPart
{

if (firstOperand) {

ptg999

467An iPhone Fraction Calculator

if (isNumerator) {
myCalculator.operand1.numerator = currentNumber;
myCalculator.operand1.denominator = 1; // e.g. 3 * 4/5 =

}
else

myCalculator.operand1.denominator = currentNumber;
}
else if (isNumerator) {

myCalculator.operand2.numerator = currentNumber;
myCalculator.operand2.denominator = 1; // e.g. 3/2 * 4 =

}
else {

myCalculator.operand2.denominator = currentNumber;
firstOperand = YES;

}

currentNumber = 0;
}

-(IBAction) clickOver
{

[self storeFracPart];
isNumerator = NO;
[displayString appendString: @"/"];
display.text = displayString;

}

// Arithmetic Operation keys

-(IBAction) clickPlus
{

[self processOp: '+'];
}

-(IBAction) clickMinus
{

[self processOp: '-'];
}

-(IBAction) clickMultiply
{

[self processOp: '*'];
}

-(IBAction) clickDivide
{

ptg999

468 Chapter 21 Writing iOS Applications

[self processOp: '/'];
}

// Misc. Keys

-(IBAction) clickEquals
{

if (firstOperand == NO) {
[self storeFracPart];
[myCalculator performOperation: op];

[displayString appendString: @" = "];
[displayString appendString: [myCalculator.accumulator
convertToString]];

display.text = displayString;

currentNumber = 0;
isNumerator = YES;
firstOperand = YES;
[displayString setString: @""];

}
}

-(IBAction) clickClear
{

isNumerator = YES;
firstOperand = YES;
currentNumber = 0;
[myCalculator clear];

[displayString setString: @""];
display.text = displayString;

}

@end

The calculator’s window still contains just one label as in the previous application, and
we still call it display.As the user enters a number digit-by-digit, we need to build the
number along the way.The variable currentNumber holds the number-in-progress, while
the BOOL variables firstOperand and isNumerator keep track of whether this is the first
or second operand entered and whether the user is currently keying in the numerator or
the denominator of that operand.

When a digit button is pressed on the calculator, we set it up so that some identifying
information will be passed to the clickDigit: method to identify which digit button
was pressed.This is done by setting the button’s Tag attribute in the Attributes Inspector

ptg999

469An iPhone Fraction Calculator

pane to a unique value for each digit button. In this case, we want to set the tag to the
corresponding digit number. So the tag for the button labeled 0 will be set to 0, the tag
for the button labeled 1 to 1, and so on.The sender argument sent to the clickDigit:
method is the actual UIButton object that was pressed in the iPhone’s window. By access-
ing the tag property of this object, you can retrieve the value of the button’s tag.This is
done in the clickDigit: method as shown:

- (IBAction) clickDigit: (UIButton *) sender
{

int digit = sender.tag;

[self processDigit: digit];
}

There are a lot more buttons in Program 21.2 than in the first application. Most of the
complexity in the view controller’s implementation file revolves around building the frac-
tions and displaying them.As noted, as a digit button 0–9 gets pressed, the action method
clickDigit: gets executed.That method calls the processDigit: method to tack the
digit onto the end of the number that’s being built in the variable currentNumber.That
method also adds the digit to the current display string that’s kept in the variable
displayString, and updates the display:

-(void) processDigit: (int) digit
{

currentNumber = currentNumber * 10 + digit;

[displayString appendString:
[NSString stringWithFormat: @"%i", digit]];

display.text = displayString;
}

When the = key is pressed, the clickEquals method gets invoked to perform the
operation.The calculator performs the operation between the two fractions, storing the
result in its accumulator.This accumulator is fetched inside the clickEquals method, and
the result is added to the display.

The Fraction Class
The Fraction class remains largely unchanged from earlier examples in this text.There is
a new convertToString method that was added to convert a fraction to its equivalent
string representation. Program 21.2 shows the Fraction interface file followed immedi-
ately by the corresponding implementation file.

Program 21.2 Fraction.h Interface File

#import <UIKit/UIKit.h>

@interface Fraction : NSObject

ptg999

470 Chapter 21 Writing iOS Applications

@property int numerator, denominator;

-(void) print;
-(void) setTo: (int) n over: (int) d;
-(Fraction *) add: (Fraction *) f;
-(Fraction *) subtract: (Fraction *) f;
-(Fraction *) multiply: (Fraction *) f;
-(Fraction *) divide: (Fraction *) f;
-(void) reduce;
-(double) convertToNum;
-(NSString *) convertToString;

@end

Program 21.2 Fraction.m Implementation File

#import "Fraction.h"

@implementation Fraction

@synthesize numerator, denominator;

-(void) setTo: (int) n over: (int) d
{

numerator = n;
denominator = d;

}

-(void) print
{

NSLog (@"%i/%i", numerator, denominator);
}

-(double) convertToNum
{

if (denominator != 0)
return (double) numerator / denominator;

else
return NAN;

}

-(NSString *) convertToString
{

if (numerator == denominator)
if (numerator == 0)

ptg999

471An iPhone Fraction Calculator

return @"0";
else

return @"1";
else if (denominator == 1)

return [NSString stringWithFormat: @"%i", numerator];
else

return [NSString stringWithFormat: @"%i/%i",
numerator, denominator];

}

// add a Fraction to the receiver

-(Fraction *) add: (Fraction *) f
{

// To add two fractions:
// a/b + c/d = ((a*d) + (b*c)) / (b * d)

// result will store the result of the addition
Fraction *result = [[Fraction alloc] init];

result.numerator = numerator * f.denominator +
denominator * f.numerator;

result.denominator = denominator * f.denominator;

[result reduce];
return result;

}

-(Fraction *) subtract: (Fraction *) f
{

// To sub two fractions:
// a/b - c/d = ((a*d) - (b*c)) / (b * d)

Fraction *result = [[Fraction alloc] init];

result.numerator = numerator * f.denominator –
denominator * f.numerator;

result.denominator = denominator * f.denominator;

[result reduce];
return result;

}

-(Fraction *) multiply: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

ptg999

472 Chapter 21 Writing iOS Applications

result.numerator = numerator * f.numerator
result.denominator = denominator * f.denominator;
[result reduce];

return result;
}

-(Fraction *) divide: (Fraction *) f
{

Fraction *result = [[Fraction alloc] init];

result.numerator = numerator * f.denominator
result.denominator = denominator * f.numerator];
[result reduce];

return result;
}

- (void) reduce
{

int u = numerator;
int v = denominator;
int temp;

if (u == 0)
return;

else if (u <0)
u = -u;

while (v != 0) {
temp = u % v;
u = v;
v = temp;

}

numerator /= u;
denominator /= u;

}
@end

The convertToString: method checks the numerator and denominator of the frac-
tion to produce a more eye-pleasing result. If the numerator and denominator are equal
(but not zero), we return @"1". If the numerator is zero, the string there’s no need to
show the denominator.

ptg999

473An iPhone Fraction Calculator

Recall the stringWithFormat: method that’s used inside convertToString: returns
a string given a format string (akin to NSLog) and a comma-separated list of arguments.
You pass arguments to a method that takes a variable number of arguments by separating
them with commas, just like you did when passing the arguments to the NSLog function.

A Calculator Class That Deals with Fractions
Next, it’s time to take a look at the Calculator class.The concept is similar to the class of
the same name we developed earlier in this book. However, in this case, our calculator
must know how to deal with fractions. Here are our new Calculator class interface and
implementation files.

Program 21.2 Calculator.h Interface File

#import <UIKit/UIKit.h>
#import "Fraction.h"

@interface Calculator : NSObject

@property (strong, nonatomic) Fraction *operand1, *operand2, *accumulator;

-(Fraction *) performOperation: (char) op;
-(void) clear;

@end

Program 21.2 Calculator.m Implementation File

#import "Calculator.h"

@implementation Calculator

@synthesize operand1, operand2, accumulator;

-(id) init
{

self = [super init];

if (self) {
operand1 = [[Fraction alloc] init];
operand2 = [[Fraction alloc] init];
accumulator = [[Fraction alloc] init];

}

return self;
}

ptg999

474 Chapter 21 Writing iOS Applications

-(void) clear
{

accumulator.numerator = 0;
accumulator.denominator = 0;

}

-(Fraction *) performOperation: (char) op
{

Fraction *result;

switch (op) {
case '+':

result = [operand1 add: operand2];
break;

case '-':
result = [operand1 subtract: operand2];
break;

case '*':
result = [operand1 multiply: operand2];
break;

case '/':
result = [operand1 divide: operand2];
break;

}

accumulator.numerator = result.numerator;
accumulator.denominator = result.denominator;

return accumulator;
}

@end

Designing the UI
For this project, your nib file is called Fraction_CalculatorViewController.xib.You’ll
design your interface by selecting this file and laying out the buttons and label as depicted
in Figure 21.17 (of course, feel free to design the interface to your liking).

Make the connection from each digit button you lay out in your view to the
clickDigit: method. Do this by Control-click-dragging each button in turn to the
clickDigit: method either in the interface or implementation file for your view con-
troller.Also, for each digit button, in the Inspector pane set the Tag value to the number

ptg999

475Summary

that corresponds to the button’s title. So for the digit button labeled 0 set the Tag value to
0, for the digit button labeled 1, set the Tag value to 1, and so on.

Draw the remaining buttons in the View window and make the corresponding con-
nections.That’s it! Your interface design is done and your fraction calculator application is
ready to be put into action.

Summary
Figure 21.20 shows the Xcode project window so that you can see all the files related to
the Fraction calculator project.

The following summarizes the steps you followed to create you iPhone fraction calcu-
lator application:

1. Created a new Single View Application.

2. Entered your UI code into the Fraction_CalculatorViewController .h and
.m files.

Figure 21.20 Fraction calculator project files.

ptg999

476 Chapter 21 Writing iOS Applications

3. Added the Fraction and Calculator classes to the project.

4. Opened Fraction_CalculatorViewController.xib to create the UI.

5. Made the View window’s background black.

6. Created a label and buttons and positioned them inside the View window.

7. Control-click-dragged from the label you created in the View window to the
UILabel IBOutlet property display.

8. Control-click-dragged from each button in the View window to the appropriate
IBAction method. For each digit button, you selected the clickDigit: method.
Also, for each digit button, you set the tag property to the corresponding digit 0-9
so that the clickDigit: method could identify which button was pressed.

It was a worthwhile exercise learning how to use a view controller, even though it was
more work than simply doing everything in the application delegate object. Hopefully
this brief introduction to developing iOS applications gives you a good start for writing
your own iPhone applications.As noted earlier, there are many features offered in UIKit
and lots for you to explore!

There are several limitations with our fraction calculator application. Many of these are
addressed in the exercises that follow.

Exercises
1. Add a Convert button to the fraction calculator application.When the button is

pressed, use the Fraction class’s convertToNum method to produce the numeric
representation of the fractional result. Convert that result to a string and show it in
the calculator’s display.

2. Modify the fraction calculator application so that a negative fraction can be entered
if the – key gets pressed before a numerator is entered.

3. If the value of zero is keyed in for a denominator for either the first or second
operand, display the string Error in the fraction calculator’s display.

4. Modify the fraction calculator application so that calculations can be chained. For
example, allow for the following operation to be keyed:
1/5 + 2/7 – 3/8 =

5. You can add an icon to your application that will appear on the iPhone’s home
screen.This can be done by dragging it to the App Icons section as shown in 21.6.
For a normal-sized icon (iPhone 3GS and earlier), the icon size should be 57x57
pixels large. For a Retina display iPhone (iPhone 4 and later), the icon image file
should be 114x114 pixels.

Find a suitable calculator image on the Internet that you can use and set up the
fraction calculator to use this image as its application icon.

ptg999

477Exercises

6. Give your calculator’s buttons a custom look by using your own image for a but-
ton.You first add the image to your project (drag it into the left pane). Next, set the
button’s type to Custom in the Inspector window and set the Image to the file you
just copied into your project. Figure 21.21 shows a Fraction Calculator that uses
such a custom image.This calculator is available at no charge from Apple’s App
Store, and the source code is posted on the forum for this book (classroomM.com/
objective-c).

Figure 21.21 Fraction Calculator with custom buttons

ptg999

This page intentionally left blank

ptg999

Appendix A
Glossary

This appendix contains informal
definitions for many of the terms you will
encounter. Some of these terms have to do
directly with the Objective-C language
itself, whereas others gain their etymology
from the discipline of object-oriented pro-
gramming. In the latter case, I provide the
meaning of the term as it specifically applies
to the Objective-C language.

abstract class A class defined to make
creating subclasses easier. Instances are cre-
ated from the subclass, not of the abstract
class. See also concrete subclass.

accessor method A method that gets or
sets the value of an instance variable. Using
accessor methods to set and retrieve the val-
ues of instance variables is consistent with
the methodology of data encapsulation.

Application Kit A framework for develop-
ing an application’s user interface, which
includes objects such as menus, toolbars, and
windows. Part of Cocoa and more com-
monly called AppKit.

ARC See Automatic Reference Counting

archiving Translating the representation of
an object’s data into a format that can later
be restored (unarchived).

ptg999

array An ordered collection of values.
Arrays can be defined as a basic
Objective-C type and are implemented as
objects under Foundation through the
NSArray and NSMutableArray classes.

Automatic Reference Counting (ARC) A
feature added as of Xcode 4.2 whereby
the compiler manages the memory asso-
ciated with an object. Before Xcode 4.2,
iOS programmers were required to use
manual techniques to manage memory.
This required the use of retain,
release, autorelease, and dealloc
methods.

automatic variable A variable that is
automatically allocated and released when
a statement block is entered and exited.
Automatic variables have scope that is
limited to the block in which they are
defined and have no default initial value.
They are optionally preceded by the key-
word auto.

autorelease pool An object that before
ARC was managed by the
NSAutoreleasePool class. Now it’s
implemented through the
@autoreleasepool directive.The autore-
lease pool keeps track of objects that are
targeted for delayed release by the system.
For iOS and Cocoa applications, that’s
typically at the end of the run loop.

bitfield A structure containing one or
more integer fields of a specified bit
width. Bitfields can be accessed and
manipulated the same way other structure
members can.

block An extension to the C language
added by Apple, Inc.A block has a function-
like syntax, captures the values of variables
within its scope when defined, and can be

480 array

assigned to a variable or passed as an
argument to a method or function.A
block can be efficiently dispatched to
another thread or processor for execution.

category A set of methods grouped
together under a specified name.
Categories can modularize the method
definitions for a class and can be used to
add new methods to an existing class.

character string A null-terminated
sequence of characters.

class A set of instance variables and
methods that have access to those vari-
ables.After a class is defined, instances of
the class (that is, objects) can be created.

class method A method (defined with a
leading + sign) that is invoked on class
objects. See also instance method.

class object An object that identifies a
particular class.The class name can be
used as the receiver of a message to
invoke a class method. In other places, the
class method can be invoked on the
class to create a class object.

cluster An abstract class that groups a
set of private concrete subclasses, provid-
ing a simplified interface to the user
through the abstract class.

Cocoa A development environment that
consists of the Foundation, Core Data,
and Application Kit frameworks.

Cocoa Touch A development environ-
ment that consists of the Foundation,
Core Data, and UIKit frameworks.

collection A Foundation framework
object that is an array, a dictionary, or a set
used for grouping and manipulating
related objects.

ptg999

481Foundation framework

compile time The time during which
the source code is analyzed and converted
into a lower-level format known as object
code.

composite class A class that is com-
posed of objects from other classes; often
it’s used as an alternative to subclassing.

concrete subclass A subclass of an
abstract class. Instances can be created
from a concrete subclass.

conform A class conforms to a protocol
if it adopts all the required methods in the
protocol, either directly through imple-
mentation or indirectly through inheri-
tance.

constant character string A sequence of
characters enclosed inside a pair of double
quotation marks. If preceded by an @
character, it defines a constant character
string object of type NSConstantString.

data encapsulation The notion that the
data for an object is stored in its instance
variables and is accessed only by the
object’s methods.This maintains the
integrity of the data.

delegate An object directed to carry
out an action by another object.

designated initializer The method that
all other initialization methods in the
class, or in subclasses (through messages to
super), will invoke.

dictionary A collection of key/value
pairs implemented under Foundation
with the NSDictionary and
NSMutableDictionary classes.

directive In Objective-C, a special con-
struct that begins with an at sign (@).
@interface, @implementation, @end,
and @class are examples of directives.

Distributed Objects The capability of
Foundation objects in one application to
communicate with Foundation objects in
another application, possibly running on
another machine.

dynamic binding Determining the
method to invoke with an object at run-
time instead of at compile time.

dynamic typing Determining the class to
which an object belongs at runtime
instead of at compile time. See also static
typing.

encapsulation See data encapsulation.

extern variable See global variable.

factory method See class method.

factory object See class object.

formal protocol A set of related methods
grouped together under a name declared
with the @protocol directive. Different
classes (not necessarily related) can adopt
a formal protocol by implementing (or
inheriting) all its required methods. See
also informal protocol.

forwarding The process of sending a
message and its associated argument(s) to
another method for execution.

Foundation framework A collection of
classes, functions, and protocols that form
the foundation for application develop-
ment, providing basic facilities such as
memory management, file and URL
access, the tasks of archiving and working
with collections, strings, and number and
date objects.

ptg999

framework A collection of classes, func-
tions, protocols, documentation, and
header files and other resources that are
all related. For example, the Cocoa frame-
work is used in developing interactive
graphical applications under Mac OS X.

function A block of statements identi-
fied by a name that can accept one or
more arguments passed to it by value and
can optionally return a value. Functions
can be either local (static) to the file in
which they’re defined or global, in which
case they can be called from functions or
methods defined in other files.

garbage collection A runtime memory-
management system that automatically
releases the memory used by unrefer-
enced objects. Garbage collection is not
supported in the iOS runtime environ-
ment.

gcc The name of the compiler devel-
oped by the Free Software Foundation
(FSF). gcc supports many programming
languages, including C, Objective-C, and
C++. gcc is the standard compiler used in
Mac OS X for compiling Objective-C
programs.

gdb The standard debugging tool for
programs compiled with gcc.

getter method An accessor method that
retrieves the value of an instance variable.
See also setter method.

global variable A variable defined out-
side any method or function that can be
accessed by any method or function in
the same source file or from other source
files that declare the variable as extern.

482 framework

header file A file that contains common
definitions, macros, and variable declara-
tions that is included in a program using
either an #import or an #include state-
ment.

id The generic object type that can
hold a pointer to any type of object.

immutable object An object whose
value cannot be modified. Examples from
the Foundation framework include
NSString, NSDictionary, and NSArray
objects. See also mutable object.

implementation section The section of a
class definition that contains the actual
code (that is, implementation) for the
methods declared in the corresponding
interface section (or as specified by a pro-
tocol definition).

informal protocol A logically related set
of methods declared as a category, often as
a category of the root class. Unlike formal
protocols, all the methods in an informal
protocol do not have to be implemented.
See also formal protocol.

inheritance The process of passing
methods and instance variables from a
class, starting with the root object, down
to subclasses.

instance A concrete representation of a
class. Instances are objects that are typi-
cally created by sending an alloc or new
message to a class object.

instance method A method that can be
invoked by an instance of a class. See also
class method.

instance variable A variable declared in
the interface section (or inherited from a
parent) that is contained in every instance
of the object. Instance methods have
direct access to their instance variables.

ptg999

483parent class

Interface Builder A tool under Mac OS
X for building a graphical user interface
for an application.

interface section The section for declar-
ing a class, its superclass, instance variables,
and methods. For each method, the argu-
ment types and return type are also
declared. See also implementation section.

internationalization See localization.

isa A special instance variable defined
in the root object that all objects inherit.
The isa variable is used to identify the
class to which an object belongs at run-
time.

linking The process of converting one
or more object files into a program that
can be executed.

local variable A variable whose scope is
limited to the block in which it is
defined.Variables can be local to a
method, function, or statement block.

localization The process of making a
program suitable for execution within a
particular geographic region, typically by
translating messages to the local language
and handling things such as local time
zones, currency symbols, date formats,
and so on. Sometimes localization is used
just to refer to the language translation,
and the term internationalization is used to
refer to the rest of the process.

message The method and its associated
arguments that are sent to an object (the
receiver).

message expression An expression
enclosed in square brackets that specifies
an object (the receiver) and the message
to send to the object.

method A procedure that belongs to a
class and can be executed by sending a
message to a class object or to instances
from the class. See also class method and
instance method.

mutable object An object whose value
can be changed.The Foundation frame-
work supports mutable and immutable
arrays, sets, strings, and dictionaries. See
also immutable object.

nil An object of type id, which is used
to represent an invalid object. Its value is
defined as 0. nil can be sent messages.

notification The process of sending a
message to objects that have registered to
be alerted (notified) when a specific event
occurs.

NSObject The root object under the
Foundation framework.

null character A character whose value
is 0.A null character constant is denoted
by '\0'.

null pointer An invalid pointer value,
normally defined as 0.

object A set of variables and associated
methods.An object can be sent messages
to cause one of its methods to be exe-
cuted.

object-oriented programming A method
of programming based on classes and
objects, and performing actions on those
objects.

parent class A class from which another
class inherits.Also referred to as the super
class.

ptg999

pointer A value that references another
object or data type.A pointer is imple-
mented as the address of a particular
object or value in memory.An instance of
a class is a pointer to the location of the
object’s data in memory.

polymorphism The capability of objects
from different classes to accept the same
message.

preprocessor A program that makes a
first pass through the source code process-
ing lines that begin with a #, which pre-
sumably contain special preprocessor
statements. Common uses are for defining
macros with #define, including other
source files with #import and #include,
and conditionally including source lines
with #if, #ifdef, and #ifndef.

procedural programming language A lan-
guage in which programs are defined by
procedures and functions that operate on
a set of data.

property declaration A way to specify
attributes for instance variables that
enables the compiler to generate leak-free
and thread-safe accessor methods for
instance variables. Property declarations
can also be used to declare attributes for
accessor methods that will be dynamically
loaded at runtime.

property list A representation of differ-
ent types of objects in a standardized for-
mat. Property lists are typically stored in
XML format.

protocol A list of methods that a class
must implement to conform to or adopt
the protocol. Protocols provide a way to
standardize an interface across classes. See
also formal protocol and informal
protocol.

484 pointer

receiver The object to which a message
is sent.The receiver can be referred to as
self from inside the method that is
invoked.

reference count See retain count.

retain count A count of the number of
times an object is referenced. It’s incre-
mented by sending a retain message to
the object, and it’s decremented by send-
ing a release message to it.

root object The topmost object in the
inheritance hierarchy that has no parent.

runtime The time when a program is
executing; also the mechanism responsible
for executing a program’s instructions.

selector The name used to select the
method to execute for an object.
Compiled selectors are of type SEL and
can be generated using the @selector
directive.

self A variable used inside a method to
refer to the receiver of the message.

set An unordered collection of unique
objects implemented under Foundation
with the NSSet, NSMutableSet, and
NSCountedSet classes.

setter method An accessor method that
sets the value of an instance variable. See
also getter method.

statement One or more expressions
terminated by a semicolon.

statement block One or more state-
ments enclosed in a set of curly braces.
Local variables can be declared within a
statement block, and their scope is limited
to that block.

ptg999

485zone

static function A function declared with
the static keyword that can be called
only by other functions or methods
defined in the same source file.

static typing Explicitly identifying the
class to which an object belongs at compile
time. See also dynamic typing.

static variable A variable whose scope is
limited to the block or module in which
it is defined. Static variables have default
initial values of 0 and retain their values
through method or function invocations.

structure An aggregate data type that
can contain members of varying types.
Structures can be assigned to other struc-
tures, passed as arguments to functions and
methods, and returned by them as well.

subclass Also known as a child class, a
subclass inherits the methods and instance
variables from its parent or superclass.

super A keyword used in a method to
refer to the parent class of the receiver.

super class The parent class of a partic-
ular class. See also super.

synthesized method A setter or getter
method that the compiler automatically
creates for you. It was added to the
Objective C 2.0 language.

UIKit A framework for developing
applications for iOS devices. In addition
to providing classes for working with
usual UI elements such as windows, but-
tons, and labels, it defines classes for deal-
ing with device-specific features such as
the accelerometer and the touch inter-
face. UIKit is part of Cocoa Touch.

Unicode character A standard for repre-
senting characters from sets containing up
to millions of characters.The NSString
and NSMutableString classes work with
strings containing Unicode characters.

union An aggregate data type, such as a
structure containing members that share
the same storage area. Only one of those
members can occupy the storage area at
any point in time.

Xcode A compiling and debugging tool
for program development with Mac OS
X and iOS.

XML Extensible Markup Language.The
default format for property lists generated
on Mac OS X.

zone A designated area of memory for
allocating data and objects.A program can
work with multiple zones to more effi-
ciently manage memory.

ptg999

This page intentionally left blank

ptg999

Appendix B
Address Book

Example Source Code

For your reference purposes, here are the complete interface and implementation
files for the address book example you worked with throughout Part II,“The Foundation
Framework.”This includes the definitions for the AddressCard, and AddressBook classes.
You should implement these classes on your system; then extend the class definitions to
make them more practical and powerful.This is an excellent way for you to learn the lan-
guage and become familiar with building programs, working with classes and objects, and
working with the Foundation framework.

AddressCard Interface File

#import <Foundation/Foundation.h>

@interface AddressCard : NSObject <NSCopying, NSCoding>

@property (nonatomic, copy) NSString *name, *email;

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail;
-(void) assignName: (NSString *) theName andEmail: (NSString *) theEmail;
-(NSComparisonResult) compareNames: (id) element;

-(void) print;

@end

ptg999

AddressBook Interface File

#import <Foundation/Foundation.h>
#import "AddressCard.h"

@interface AddressBook: NSObject <NSCopying, NSCoding>

@property (nonatomic, copy) NSString *bookName;
@property (nonatomic, strong) NSMutableArray *book;

-(id) initWithName: (NSString *) name;
-(void) sort;
-(void) addCard: (AddressCard *) theCard;
-(void) sort2;
-(void) removeCard: (AddressCard *) theCard;
-(NSUInteger) entries;
-(void) list;
-(AddressCard *) lookup: (NSString *) theName;

@end

AddressCard Implementation File

#import "AddressCard.h"

@implementation AddressCard

@synthesize name, email;

-(void) setName: (NSString *) theName andEmail: (NSString *) theEmail
{

self.name = theName;
self.email = theEmail;

}

// Compare the two names from the specified address cards
-(NSComparisonResult) compareNames: (id) element
{

return [name compare: [element name]];
}

-(void) print
{

NSLog (@"====================================");
NSLog (@"| |");
NSLog (@"| %-31s |", [name UTF8String]);

488 Appendix B Address Book Example Source Code

ptg999

NSLog (@"| %-31s |", [email UTF8String]);
NSLog (@"| |");
NSLog (@"| |");
NSLog (@"| |");
NSLog (@"| O O |");
NSLog (@"====================================");

}

-(id) copyWithZone: (NSZone *) zone
id newCard = [[[self class] allocWithZone: zone] init];

[newCard assignName: name andEmail: email];
return newCard;

}

-(void) assignName: (NSString *) theName andEmail: (NSString *) theEmail
{

name = theName;
email = theEmail;

}

-(void) encodeWithCoder: (NSCoder *) encoder
{

[encoder encodeObject: name forKey: @"AddressCardName"];
[encoder encodeObject: email forKey: @"AddressCardEmail"];

}

-(id) initWithCoder: (NSCoder *) decoder
{

name = [decoder decodeObjectForKey: @"AddressCardName"];
email = [decoder decodeObjectForKey: @"AddressCardEmail"];

return self;
}
@end

AddressBook Implementation File

#import "AddressBook.h"

@implementation AddressBook

@synthesize book, bookName;

// set up the AddressBook’s name and an empty book

489Appendix B Address Book Example Source Code

ptg999

-(id) initWithName: (NSString *) name
{

self = [super init];

if (self) {
bookName = [NSString stringWithString: name];
book = [NSMutableArray array];

}

return self;
}

-(id) init
{

return [self initWithName: @“Unnamed Book”];
}

// Write our own book setter to create a mutable copy

-(void) setBook: (NSArray *) theBook
{

book = [theBook mutableCopy];
}

-(void) sort
{

[book sortUsingSelector: @selector(compareNames:)];
}

// Alternate sort using blocks

-(void) sort2
{

[book sortUsingComparator:
^(id obj1, id obj2) {

return [[obj1 name] compare: [obj2 name]];
}];

}
-(void) addCard: (AddressCard *) theCard
{

[book addObject: theCard];
}

-(void) removeCard: (AddressCard *) theCard
{

490 Appendix B Address Book Example Source Code

ptg999

[book removeObjectIdenticalTo: theCard];
}

-(NSUInteger) entries
{

return [book count];
}

-(void) list
{

NSLog (@"======== Contents of: %@ =========", bookName);

for (AddressCard *theCard in book)
NSLog (@"%-20s %-32s", [theCard.name UTF8String],

[theCard.email UTF8String]);

NSLog (@"==");
}

// lookup address card by name — assumes an exact match

-(AddressCard *) lookup: (NSString *) theName
{

for (AddressCard *nextCard in book)
if ([[nextCard name] caseInsensitiveCompare: theName]

== NSOrderedSame)
return nextCard;

return nil;
}

-(void) encodeWithCoder: (NSCoder *) encoder
{

[encoder encodeObject:bookName forKey: @"AddressBookBookName"];
[encoder encodeObject:book forKey: @"AddressBookBook"];

}

-(id) initWithCoder: (NSCoder *) decoder
{

bookName = [[decoder decodeObjectForKey: @"AddressBookBookName"];
book = [decoder decodeObjectForKey: @"AddressBookBook"];

return self;
}

// Method for NSCopying protocol

491Appendix B Address Book Example Source Code

ptg999

492 Appendix B Address Book Example Source Code

-(id) copyWithZone: (NSZone *) zone
{

id newBook = [[self class] allocWithZone: zone] init];

[newBook setBookName: bookName];

// The following will do a shallow copy of the address book

[newBook setBook: book];

return newBook;
}
@end

ptg999

Index

Symbols
& (ampersand)

address operator, 274-275
bitwise AND operator, 211-213

&& (AND operator), 101

= (assignment operator), 64

* (asterisks)

arithmetic expressions, 55
indirection operator, 274-275
object references, 41-42

@ (at signs), 21

^ (carets)

blocks, 263
Exclusive-OR operator, 211, 214

% characters, 24

: (colons)

conditional operator, 122
methods, 37

, (comma operators), 294-295

// (comments), 20

/* */ (comments), 20

{ } (curly braces), 21

— (decrement operators), 78

pointers to arrays, 282-284
pre/post, 287-289

/ (division operators), 55

. (dot operators), 134-135

== (equal to operator), 74

> (greater than operator), 74

>= (greater than or equal to operator), 74

ptg999

++ (increment operator), 77-137

pointers to arrays, 282-284
pre/post, 287-289

<< (left shift operator), 211, 216

< (less than operator), 74

<= (less than or equal to operator), 74

-= (minus equals operator), 64

- (minus signs)

arithmetic expressions, 55
methods, 35

% (modulus operator), 60-61

\n (newline characters), 22

!= (not equal to) operator, 74

~ (ones complement operator),
211, 214-215

|| (OR operator), 101

| (pipe)

bitwise Inclusive-OR operator,
213-214

Inclusive-OR operator, 211
+ (plus signs)

arithmetic expressions, 55
methods, 35

+= (plus equals operator), 64

(pound signs), 233

? (question marks), conditional operator,
122

>> (right shift operator), 211, 216-217

; (semicolons), 21

-> (structure pointer operator), 278

~ (tildes), home directories, 370

_ (underscores), 200

4 x 5 matrix, 252

10 number objects program, 328-329

50 + 25 program, 23

A
absolute value program, 94-98

abstract classes, 173-174

abstract protocols, 229-230

accessing

Foundation framework
documentation, 304

instance variables, 45-48
inherited, 198
methods, creating, 45-48
setters/getters, 48

properties, 134-135
var from blocks, 263-265

accessor methods

setters/getters, 48
synthesizing, 200

AddressCard class, 334-337
display property, 454-455
synthesize directive, 132-133

add: method

adding arguments to message receiver,
138

adding fractions test program, 138-139
Fraction class object reference,

137-138
references, 138
result object, 146-148
self keyword, 145

addCard: method, 339

addition operator, 55

addition program, 23

addObject: method, 330, 352, 360, 362

address book, creating

address cards
adding, 339
counting, 339
creating, 331-332

494 ++ (increment operator)

ptg999

deleting, 344-347
email, setting, 332
holding, 337-338
names, setting, 332
names and email, setting at once,

335-337
number of, reporting, 337-339
printing, 333
sorting with blocks, 350-351
sorting with selectors, 347-350
synthesizing, 334-337
test program, 333-334

AddressCard class, 331
contents, listing, 337-338
custom archives

creating, 436-437
restoring, 438-439

decoding, 430-434
encoding, 430-433
name of book, storing, 337-338
names

deleting, 344-347
looking up, 341-344

overview, 330-331
program, 339-341
sequencing through, 339

address operator (&), 274, 275

AddressBook class

implementation file, 338-339
methods

addCard:, 339
count, 339
entries, 339
initWithName:, 339
lookup:, 341-344
sortUsingSelector:, 347-350

interface file, 337-338
program, 339-341

AddressCard class

defining, 331
implementation file, 331-332
interface file, 331
methods

accessor methods, synthesizing,
334-337

compareNames:, 348-350
encodeWithCoder:, 431
print, 333
removeCard:, 344-347
setEmail:, 332
setName:, 332
setName:andEmail:, 335-337

test program, 333-334
allKeys method, 357

alloc methods, 40, 155, 309

allocating objects, 39-40, 146

analogous notation, 252-253

AND operator (&&), 101

And programming in Objective-C is even
more fun! phrase program, 22

anyObject method, 361

appendString: method, 323, 326

Apple

acquisition of Objective-C, 1
developer website, 447
iOS. See iOS
iPhone. See iPhone applications

Application Kit framework, 303

Application Services, 444

applications

bundles, 396-397
hierarchy, 444

Application Services, 444
Core Services, 443
kernel, 443

iPhone. See iPhone applications

495applications

ptg999

ARC (Automatic Reference Counting),
41, 310, 408

non-ARC compiled code, 411
strong variables, 409

archiveRootObject:toFile: method, 428

archiving objects

custom archives
address book program, 436-437
completing archiving process, 437
encoding messages, storing, 437
mutable data areas, creating, 436
objects, encoding, 437
restoring data, 438-439
writing data to files, 438

decoding
address book example program,

430-431
data types, 430, 434-436
method, 430
process, 432
test program, 433-434

deep copies, creating, 439-441
encoding, 430

address book example program,
430-431

data types, 430, 434-436
method, 430
process, 431
test program, 432-433

keyed archives, 427
creating, 428
defined, 428
reading, 428-429
support, 428

sequential archives, 428
XML propertylists, 425

creating, 425-427
reading, 427
writing, 427

argc argument, 386

arguments

argc, 386
argv, 386
colons in method names, 37
command-line, 296-298
declaring, 36-37
define statement, 238
format string, 25
methods, 29
multiple, 135-139

adding fractions test program,
138-139

adding to message receiver, 138
dot operator, 138
names, 135
no names, 137
references, 138
referencing class objects, 137
setTo:over: method, 135-137
syntax, 135

names, 137, 141
numeric conversions, 260
pointers, 279-280
syntax, 256
types, declaring, 259
variable number of, 260
zone, 419

arguments method, 386

argv arguments, 386

arithmetic expressions

* (asterisks), 55
Calculator class, 65-67
counting numbers loop example,

71-72
Fraction class. See Fraction class
integer, 58-60
numeric data type conversions, 61-63

496 ARC (Automatic Reference Counting)

ptg999

operators
— (decrement), 78
++ (increment), 77-162
-= (minus equals), 64
+= (plus equals), 64
assignment, 64
defined, 55
modulus, 60-61
precedence, 55-58
relational, 74-75
type cast, 63-64

array method, 352

arrays

assigning to other variables, 248
character, 251-252
declaring, 249
defined, 248
elements, beginning, 248
fast enumeration, 339
Fibonacci numbers program, 249-250
Foundation

10 number objects program,
328-329

address book, creating. See address
book, creating

creating, 328
data type conversions to objects,

353-354
displaying, 327-330
month names program, 327-328
mutable, creating, 330
objects, adding at end, 330
overview, 327
retrieving elements with index

numbers, 328
sorting methods, 352
sorting with blocks, 350-351
sorting with selectors, 347-350

initializing, 196, 250-251
multidimensional, 252-254

4 x 5 matrix, 252
declaring, 253
initializing, 253-254
notation, 252-253

passing to functions/methods,
261-262

pointers, 280-284
character strings, 285-286
comparing pointers, 283
copying character strings version 2,

289-290
defining, 281
first element, setting, 281
function references with pointers,

284
function to sum elements of

integer array program, 283-284
increment /decrement operators,

282
sequencing through arrays, 281-284

sequencing through, 248-249
subscripts, 248
values, storing, 248

arraySum function, 283-284

arrayWithCapacity: method, 352

arrayWithObjects: method, 328, 351

assignment operators (=), 64

asterisks (*)

arithmetic expressions, 55
object references, 41-42

at sign (@), 21

attributes

dictionary, 372
labels, 458

attributesOfItemAtPath: method,
371-372, 374

497attributesOfItemAtPath: method

ptg999

automatic local variables, 257

Automatic Reference Counting. See ARC

autorelease pools, 403-405

blocks, 410-411
defined, 21
draining, 403
main routine example, 404
objects

adding, 403
autoreleasing, 404-405
owned, releasing, 404
survival after draining, 405-407

availableData method, 390

B
binary notation, 212

bit operators

AND, 212-213
binary/hexadecimal notation

conversions, 212
Exclusive-OR, 214
Inclusive-OR, 213-214
left shift, 216
listing of, 211
ones complement, 214-215
program example, 215-216
right shift, 216-217

bitwise AND operator (&), 211-213

blank spaces (expressions), 103

blocks

advantages, 262
arrays, sorting, 350-351
autorelease pools, 410-411
globally defining, 263
overview, 262
syntax, 262-263

variables
accessing, 263-265
assigning, 263
values, editing, 265-266

Boolean variables, 121-122

BOOL data type, 121-122
defined, 119
prime numbers tables, creating,

118-119
true/false values, 119-121

break statements

loops, 90
switch statements, 115

buffers, 375-376

bundles, 396-397

buttons (interfaces)

actions, adding, 460
adding, 459

C
c file extension, 14

C programming language

creation, 1
Objective-C comparison, 2

Caches directory, 385

calculate: method, 141

calculateTriangularNumber function,
255-257

Calculator class

defining, 65-67
fraction calculator application,

473-474
number operator number expressions

program, 109-112
camelCase, 411

capitalizedString method, 326

498 automatic local variables

ptg999

carets (^), 263

blocks, 263
Exclusive-OR operator, 211, 214

case sensitivity, 19

class names, 33
conversion macro, 239
define statements, 235
names, 34

caseInsensitiveCompare: nsstring method,
325

catch directive, 191

categories

amounts, 225
defined, 218
implementation file, 221
interface file, 220
inheritance, 225
MathOps example, 221-224
NSComparisonMethods, 229
object/category named pairs, 225
overriding methods, 225
protocols, adopting, 228
unnamed. See classes, extensions

cc file extension, 14

CGPoint method, 353

CGPoint structures, 270

CGRect method, 353

CGRect structures, 270

CGSize method, 353

CGSize structures, 270

changeCurrentDirectoryPath: method, 376

character arrays, 251-252

characterAtIndex: i method, 325

characters

analysis program, 107-109
defined, 51
overview, 52

pointers, 275-277, 285-286
string objects, deleting, 323
Unicode, 312

charPtr pointer, 275-277

choosing

methods
names, 135
objects, 155-156

names, 34-35
circle area/circumference example, 234-235

class directive, 161-162

classes

abstract, 173-174
accessor methods, synthesizing,

132-133
AddressBook

count method, 339
implementation file, 338-339
initWithName: method, 339
interface file, 337-338
lookup: method, 341-344
program, 339-341
sortUsingSelector: method,

347-350
AddressCard

accessor methods, synthesizing,
334-337

compareNames: method, 348-350
defining, 331
encodeWithCoder:, 431
implementation file, 331-332
interface file, 331
print method, 333
removeCard: method, 344-347
setEmail: method, 332
setName: method, 332
setName:andEmail: method,

335-337
test program, 333-334

499classes

ptg999

Calculator
defining, 65-67
fraction calculator application,

473-474
number operator number expres-

sions program, 109-112
Complex, 177-180
declaring, 33
defining, 130-131
extending, 148

methods, adding, 156-158
storing information, 161
subclasses, creating, 158-160

extensions, 224-225
Foo, 434-436
Fraction, 31-33

add: method, 137-138
adding fractions test program,

138-139
calculate: method, 141
convertToNum method, 95
copying fractions, 419-420
declaring, 129-130
defining, 130-131
exception handling, 189-190
extending, 148
fraction calculator iPhone

application, 469-473
initialization, 197-198
macros, 239
MathOps category, adding,

220-224
reduce method, 140, 142-145
reducing fractions inside the add:

method, 145
reducing fractions outside the add:

method, 144-145
result object, 146-148
setTo:over: method, 135-137

Fraction_CalculatorViewController,
464-469

clickDigit: method, 469
clickEquals method, 469
implementation file, 465-468
interface file, 464-465
processDigit: method, 469

GraphicObject
categories example, 224-225
Drawing protocol, 227

IBAction, 454
IBOutlet, 454
inheritance

benefits of subclasses, 173
class directive, 161-162
copying objects, 420
instance variables/methods,

152, 153-154
methods, adding, 156-158
methods, overriding, 169-173
object methods, choosing, 155-156
objects, owning, 165-169
parent class methods, adding, 162
program example, 154-155
root classes, 151
storing information, 160-161
subclasses. See subclasses

instance variables, declaring, 33
instances, 28
iPhone_1ViewController.h class,

453-454
iPhone_1ViewController.m class,

454-455
methods. See methods
names

case sensitivity, 33
choosing, 34

500 classes

ptg999

NSArray
initialization methods, 196
sortedArrayUsingComparator:

method, 350
sorting methods, 352

NSAutoreleasePool, 403
NSBundle, 396-397
NSCountedSet, 361
NSData

buffers, 375-376
custom archives, 436

NSDictionary, 357
NSFileHandle, 390-391
NSFileManager

directory methods, 376-378
file methods, 370-371
objects, creating, 371

NSIndexSet
methods, 364
overview, 362

NSKeyedArchiver, 428
NSKeyedUnarchiver, 428-429
NSMutableArray, 330

sorting methods, 352
sortUsingComparator: method,

350-351
NSMutableDictionary

empty mutable dictionary, creating,
354-355

methods, 357
NSMutableSet, 362
NSMutableString, 320
NSNumber, 174

allocation methods, 309
methods, listing of, 310

NSObject, 151
methods, 185

NSPathUtilities.h, 381-382
functions, 384
methods, 384

NSProcessInfo, 386-390
methods, 386-387
program, 388-389

NSPropertyListSerialization, 427
NSSet

methods, 361
print method, 360

NSString
methods, listing of, 324-326
overview, 312
unichar characters, 312

NSValue, 353-354
objects

creating, 186
membership, 186
questioning, 185
responding to methods, 186-187
testing program, 187-189

overview, 27
polymorphism

Complex class example, 177-180
defined, 180

Printer, 199
properties, accessing, 134-135
Rectangle

declaring, 156-158
defining, 163-164
getter methods, 168
origin/setOrigin: methods, 162
setter method, 168
Square subclass, 158-160
storing information, 161
XYPoint subclass, 160-161

501classes

ptg999

separate interface/implementation
files, 127-132

implementation file, 130-131
interface file, 129-130

Square, 158-160
declaring, 158
defining, 158
program, 159-160
setSide: method, 159
side method, 159

UILabel, 454
UITableView, 229
XYPoint

class directive, 161-162
declaring/defining,

160-161, 162-163
program, 164-165

clickDigit: method, 469

clickEquals method, 469

closeFile method, 391

closing files, 391

Cocoa

frameworks, 444
overview, 274, 443

Cocoa Touch, 444-445

colons (:)

conditional operators, 122
methods, 37

comma operator (,), 294-295

command-line arguments, 296-298

comments

// (slash characters), 20
/**/, 20
benefits, 20
define statements, 237
defined, 20

compare: nsstring method, 325

compareNames: method, 348-350

compile time

runtime checking, compared, 182-183
compiling programs

Terminal, 18-19
Xcode, 15-16

Complex class, 176-180

composite objects, 230-231

compound literals, 293

compound relational tests, 100-103

leap year program, 101-103
operators, 101

conditional compilation

if statements, 243-244
names, defining, 242
overview, 241
programs, debugging, 243
system dependencies, 241-243
undef statements, 244

conditional operator

macros, 239
syntax, 122
variable values, assigning, 122-123

conditions

for loops, 74
relational operators, 74-75

conformsToProtocol: method, 227

constants

character strings
pointers, 286-287

defined, 51
expressions, 51
symbolic names. See define statement

containIndex: idx method, 364

containsObject: method, 351, 360-361

contentsAtPath: method, 371, 376

contentsEqualAtPath: method, 371

502 classes

ptg999

contentsOfDirectoryAtPath: method, 376

continue statements, 90

conversions (data type), 209-211

ending, 211
example, 210-211
rules, 210-211
type cast operator, 211

convertToNum method, 95

copy method, 414-415

copying

files, 371, 386
fractions, 419-420
objects

copy method, 414-415
deep copies, 417-418, 439-441
getter methods, 422-423
immutable strings, 414-415
mutable strings, 416-417
mutableCopy method, 413-415
NSCopying protocol, 418-421
setter methods, 421-423
shallow copies, 417

copyItemAtPath: method, 371, 376

copyString function, 286

copyWithZone: method, 226, 418

class inheritance, 420
zone argument, 419

Core Services, 443

count method

AddressBook class, 339
NSArray class, 351
NSDictionary class, 357
NSIndexSet class, 364
NSSet class, 361

counting 1 to 5 program example, 84-85

counting numbers loop example, 71-72

Cox, Brad J.

cpp file extension, 14

createDirectoryAtPath: method, 376

createFileAtPath: method, 371, 376

creating programs

Terminal, 17-19
compiling and running, 18-19
disadvantages, 19
entering programs, 17-18
icon, 17
window, 17

Xcode, 8-17
application types, selecting, 9
building and running, 15-16
editing, 14-15
filename extensions, 14
icon, 8
new projects, starting, 8
process overview, 16-17
product names/types, 10
project folders, selecting, 11
project windows, 12

curly braces ({ }), 21

currentDirectoryPath method, 376

custom archives

address book program, 436-437
completing archiving process, 437
encoding messages, storing, 437
mutable data areas, creating, 436
objects, encoding, 437
restoring data, 438-439
writing data to files, 438

503custom archives

ptg999

D
dangling pointer references, 403

data encapsulation

instance variables, 45-48
methods, creating, 45-48
setters/getters, 48

data method, 436

data types

BOOL, 121-122
char

analysis program, 107-109
defined, 51
overview, 52
pointers, 275-277, 285-286
string objects, deleting, 323
Unicode, 312

conversions, 209-210
ending, 211
example, 210-211
rules, 210-211
type cast operator, 211

converting to objects, 353-354
double, 51
encoding/decoding, 430, 434-436
enumerated

defined, 205
defining, 208
identifiers, 206
integers, 205
month program, 206-208
variables as, declaring, 205

float, 24, 61-63
defined, 51
overview, 52

id, 54
compile time versus runtime

checking, 182-183

dynamic binding, 180-182
pointers, 300
static typing, 183-184

int data type. See int data type
listing of, 54-55
numeric conversions, 61-63
program example, 52-53
qualifiers

counter, 54
long, 53-54
long long, 54
short, 54

typedef statements, 208-209, 270
dataArray objects, filling

immutable strings, 414-415
mutable strings, 416-417

date program, 268-269

date structure

defining, 266-267
initializing, 269-270
month value, testing, 267-268
pointer, 277-279
program, 268-269
todaysDate/purchaseDate variables,

declaring, 272
datePtr pointer, 277-279

dealloc method, 402

debugging conditional compilation, 243

decision-making constructs

Boolean variables, 121-122
BOOL data type, 121-122
defined, 119
prime numbers tables, creating,

118-119
true/false values, 119-121

conditional operator
syntax, 122
variable values, assigning, 122-123

504 dangling pointer references

ptg999

else if statements
character analysis program, 107-109
number operator number

expressions program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
if statements

absolute value program, 94-98
compound relational tests, 100-103
else if constructs. See else if

statements
nesting, 103-105
syntax, 93

if-else statements, 98-100
prime numbers tables, creating,

118-119
switch statements

break statements, 115
case values, 117
syntax, 114-116
value operator value expressions

program, 116-117
declaring

arrays, 249
classes, 129-130

interface file, 33
separating from class definitions,

127-132
display property, 454
external variables, 201-202
functions, 260

argument types, 259
return values, 259

immutable string objects, 317
instance variables, 33, 37-38

methods
arguments, 36-37
class versus instance, 35
return values, 36

multidimensional arrays, 253
pointers, 275
prototype declarations, 259-260
string objects

immutable, 315-316
mutable, 323

variables, 271
weak variables, 410

decodeObject:forKey: method, 430, 432

decoding objects

address book example program,
430-431

data types, 430, 434-436
method, 430
process, 432
test program, 433-434

decrement operator (—), 78

pointers to arrays, 282-284
pre/post, 287-289

deep copies, 417-418, 439-441

define statement, 233-239

argument spaces, 238
capitalization, 235
circle area/circumference example,

234-235
comments, reducing, 237
defined value references, 237
equality tests, 236
expressions

including, 235
validity, 236

literal text substitutions, 236

505define statement

ptg999

macros, 238-239
case conversion, 239
conditional operator, 239
Fraction class, 239
lowercase letters, testing, 239
SQUARE, 238-239

multiple code lines, 237
placement, 234
syntax, 234
TRUE/FALSE values, 233-234

defined names. See also define statement

adding (Xcode), 242
arguments, 238
circle area/circumference example,

234-235
equality tests, 236
expressions

including, 235
validity, 236

literal text substitutions, 236
macros, 238-239

case conversion, 239
conditional operator, 239
Fraction class, 239
lowercase letters, testing, 239
SQUARE, 238-239

undefining, 244
values, 234

defined values, referencing, 237

defining

AddressCard class, 331
blocks, 263
classes, 127-132
enumerated data types, 208
object variables, 299
pointers to arrays, 281
protocols, 226-227

delegates

methods, 187
subclasses, 452

delegation, 229

deleteCharactersInRange: method, 323, 326

deleting

address cards, 344-347
characters from string objects, 323
files, 371
files from directories, 371
mutable string objects, 324

denominator method, 45

dependencies (system), 241-243

description method, 313-314

designing interfaces, 455-460

Attributes Inspector, 455
black window, creating, 455
buttons

actions, adding, 460
adding, 459

fraction calculator iPhone application,
474-475

guide lines, 458
labels

adding, 455
attributes, 458
positioning, 458
sizing, 458

user interface design pane, 455
desired triangular number calculation

program example, 79-81

developer program (iOS), 449

dictionaries

adding keys, 355
alphabetizing, 356
attributes, 372
enumerating, 355-356

506 define statement

ptg999

glossary program, 354-355
mutable/immutable, 354
overview, 354
property lists

creating, 425-427
reading, 427

retrieving key values, 355
dictionaryWithCapacity: size method, 357

dictionaryWithObjectsAndKeys: method,
355-357

directives

catch, 191
class, 161-162
instance variable scope, 199
optional, 230
package, 199
private, 199
protected, 199
protocol, 226
public, 199
selector, 186
synthesize, 133
try, 190

directories, 376-378

attributes dictionary, 372
Caches, 385
current path, displaying, 378
Documents, 385
enumerating, 379-381
files, deleting, 371
home, 370, 383
iOS, 385
locating, 385
moving files between, 374
NSFileManager class methods,
376-378
operations program, 377-378

pathnames, 370
adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions, adding, 384
extensions, extracting, 384
extensions, removing, 384
file extensions, 383
full, 370
hard-coding, 370
home directories, 383
last component, extracting, 384
last component, removing, 384
last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
relative, 370
standardizing, 384
symbolic links, 384
temporary directories, 384
user information, returning, 384

temporary files, 383
display property

accessor methods, synthesizing,
454-455

declaring, 454
displaying

arrays, 309-330
directory current path, 378
phrases

And programming in Objective-C
is even more fun! program, 22

Programming is fun! program, 7
program results, 41
string objects, 313
variable values, 23-25

507displaying

ptg999

division operator, 55

do loops

executing, 89
reversing integer digits program,

89-90
syntax, 88
while loops, compared, 89

Documents directory, 385

dot operator

multiple arguments, 138
properties, accessing, 134-135

double data type, 51

doubleValue method, 326

Drawing protocol, 227

dynamic binding, 180-182

dynamic typing

invoking methods, 184-185
methods, listing of, 185

E
editing

programs, 14-15
variable values outside blocks,

265-266
else if statements

character analysis program, 107-109
number operator number expressions

program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
else statements, 241

Empty Application template, 450

encapsulation

instance variables, 45-48
methods, creating, 45-48
setters/getters, 48

encodeObject:forKey: method, 430, 431

encodeWithCoder: method, 430, 431

encoding objects, 430

address book example program,
430-431

custom archives, 437
data types, 430, 434-436
method, 430
process, 431
test program, 432-433

endif statements, 241

ending

data type conversions, 210
functions, 257
loops, 75, 90

entries method, 339

enumerated data types

defined, 205
defining, 208
identifiers, 206
integers, 205
month program, 206-208
variables as, declaring, 205

enumerateObjectsUsingBlock: method, 352

enumerating

dictionaries, 355-356
directories, 379-381

enumeratorAtPath: method, 376, 381

environment method, 386

equal to (==) operator, 74

equality tests

expressions, 236
sets, 360
string objects, 316-317

event loops, 405-407

exception handling, 189

abnormal program termination,
avoiding, 190

508 division operator

ptg999

catching expressions program,
190-191

Fraction class example, 189-190
multiple catch blocks, 191
throwing exceptions, 191

exchange function, 280

Exclusive-OR operator, 211, 214

expressions

arithmetic
assignment operators, 64
Calculator class, 65-67
counting numbers loop example,

71-72
Fraction class. See Fraction class
integer arithmetic, 58-60
modulus operator, 60-61
numeric data type conversions,

61-63
operator precedence, 55-58
operators, 55
type cast operator, 63-64

blank spaces, 103
compound relational, 101

leap year program, 101-103
operators, 101

constant, 51
data type conversions

ending, 211
example, 210-211
rules, 210-211
type cast operator, 211

define statements
including, 235
validity, 236

number operator number evaluation
program, 109-112

extending classes, 148, 224-225

methods, adding, 156-158
storing information, 161
subclasses, creating, 158-160

extensions

class, 224-225
files, 14

extern keyword, 201

external variables, 201-202

F
false values, 119-121

fast enumeration, 339

Fibonacci numbers program, 249-250

fileExistsAtPath: method, 371, 376

fileHandleForReadingAtPath: method, 390

fileHandleForUpdatingAtPath: method, 390

fileHandleForWritingAtPath: method, 390

files

appending contents between, 393-395
attributes dictionary, 372
buffers, 375-376
closing, 391
copying, 371, 386
custom archives. See custom archives
data, returning, 390
deleting, 371
directory, deleting, 371
existence, testing, 371
extensions, 14
handling operations program, 391-392
header, importing, 307, 454
implementation

AddressBook class, 338-339
categories, 221
classes, defining, 130-131

509files

ptg999

Fraction class, 470-473
Fraction_CalculatorViewController

class, 465-468
instance variables, declaring, 37-38
overview, 33
syntax, 37

importing, 20, 131
interface. See interface file
moving between directories, 374
NSFileManager methods, 370-371
offsets, 390-391, 393
opening, 390
operations program, 372-374
pathnames

adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions, adding, 384
extensions, extracting, 384
extensions, removing, 384
file extensions, 383
full, 370
hard-coding, 370
home directories, 383
last component, extracting, 384
last component, removing, 384
last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
relative, 370
standardizing, 384
symbolic links, 384
temporary directories, 384
user information, returning, 384

program
allocating objects, 39-40
initializing objects, 40
main routines, 39
multiple objects, 42-45
object references, 41-42
object values, setting, 40-41
overview, 33
results, displaying, 41
variables, defining, 39

reading, 371, 390
relative file positioning, 393
renaming, 371
separate interface/implementation

files, 127-132
implementation file, 130-132
interface file, 129-130, 132

size, 374
test, creating, 374
writing data to, 371, 390
xib, 455

firstIndex method, 364

float data type, 24, 61-63

defined, 51
overview, 52

floatValue method, 326

fnPtr pointer, 291-292

Foo class, 434-436

for loops

200th triangular number example,
72-75

conditions, 74
initial values, 73
keyboard input, 79-81
nesting, 81-82
overview, 75
syntax, 83

510 files

ptg999

table of triangular numbers example,
75-79

while loops, compared, 85
format string arguments, 25

Foundation framework

archiving objects. See archiving
objects

arrays
10 number objects program,

328-329
address books. See address book,

creating
creating, 328
data type conversions to objects,

353-354
displaying, 327-330
month names program, 327-328
mutable, creating, 330
objects, adding at end, 330
overview, 327
retrieving elements with index

numbers, 328
sorting methods, 352
sorting with blocks, 350-351
sorting with selectors, 347-350

bundles, 396-397
copying objects

copy method, 414-415
deep copies, 417-418
getter methods, 422-423
immutable strings, 413-415
mutable strings, 416-417
mutableCopy method, 414-415
NSCopying protocol, 418-421
setter methods, 421-422
shallow copies, 417

dictionaries
adding keys, 355

alphabetizing, 356
enumerating, 355-356
glossary program, 354-355
mutable/immutable, 354
overview, 354
retrieving key values, 355

directories, 376-378
attributes dictionary, 372
Caches, 385
current path, displaying, 378
Documents, 385
enumerating, 379-381
hard-coding pathnames, 370
home directories, 370
iOS, 385
locating, 385
NSFileManager methods, 370-371,

376-378
operations program, 377-378
pathnames, 370

documentation, 304-306
Mac OS X reference library, 306
Quick Help, 304-305
Xcode access, 304

files
appending contents between,

393-395
attributes dictionary, 372
buffers, 375-376
closing, 391
copying, 371, 386
data, returning, 390
deleting, 371
deleting from directories, 371
existence, testing, 371
handling operations program,

391-392

511Foundation framework

ptg999

hard-coding pathnames, 370
home directories, 370
moving between directories, 374
NSFileManager file methods, 370-

371
offsets, 390-391, 393
opening, 390
operations program, 372-374
pathnames, 370
reading, 371, 390
relative file positioning, 393
renaming, 371
size, 374
test, creating, 374
writing data to, 371, 390

header files, importing, 307
number objects, 307-311

allocation methods, 309
comparing, 311
creating, 309
double objects, creating, 310
NSNumber methods, listing of,

310
numberWithInt: versus

numberWithInteger: methods,
311

program, 307-309
stored values, retrieving, 310
values, editing, 311
values, retrieving, 309

overview, 274
pathnames

adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions, adding, 384
extensions, extracting, 384

extensions, removing, 384
file extensions, 383
home directories, 383
last component, extracting, 384
last component, removing, 384
last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
standardizing, 384
symbolic links, 384
temporary directories, 384
temporary file directories, 383
user information, returning, 384

sets
adding/removing objects, 360
counted, 361
equality tests, 360
intersections, 360
operations program, 358-360
ordered indexes, 362-364
overview, 358
unions, 360

string objects
creating, 312
description method, 313-314
displaying, 313
immutable. See immutable string

objects
mutable. See mutable string objects
NSString class, 312, 324-326
program, 312-313
unichar characters, 312

fraction calculator iPhone application

Calculator class, 473-474
completing operations, 462
digit buttons, pressing, 469
Fraction class, 469-473

512 Foundation framework

ptg999

implementation file, 470-473
interface file, 469-470

Fraction_Calculator, starting, 462
Fraction_CalculatorViewController

class, 464-469
implementation file, 465-468
interface file, 464-465

interface design, 474-475
keying in fractions, 462
multiplying fractions example, 462
overview, 448
project files, 475
sequence overview, 475-476
templates, 464
viewing in simulator after launching,

461
Fraction class, 31-33

add: method, 137-138
adding arguments to message

receiver, 138
adding fractions test program,

138-139
references, 138
result object, 146-148
self keyword, 145

calculate: method, 141
convertToNum method, 95
copying fractions, 419-420
declaring, 129-130
defining, 130-131
exception handling, 189-190
extending, 148
fraction calculator iPhone application,

469-473
implementation file, 470-473
interface file, 469-470

initialization
testing, 197-198
initialization method, 197

macros, 239
MathOps category, adding, 220-224
reducing fractions, 140-145

creating, 140
declaring, 142-143
defining, 143-144
inside the add: method, 145
outside the add: method, 144-145

setTo:over: method, 135-137
Fraction_CalculatorViewController class,

464-469

clickDigit: method, 469
clickEquals method, 469
implementation file, 465-468
interface file, 464-465
processDigit: method, 469

fractions programs

copying fractions, 419-420
Fraction class. See Fraction class
iPhone fraction calculator application.

See iPhone fraction calculator
application

multiple fractions, 42-45
reducing fractions, 140-145
creating, 140
declaring, 142-143
defining, 143-144
inside the add: method, 145
outside the add: method, 144-145

without classes, 30-31
frameworks

Application Kit, 274
Cocoa, 443
defined, 3, 274
Foundation. See Foundation

framework
layers, 443-444

513frameworks

ptg999

Application Services, 444
bypassing, 444
Cocoa, 444
Core Services, 443
kernel, 443

FSF (Free Software Foundation),

full pathnames, 370

functions

arguments
command-line, 296-298
numeric conversions, 260
pointers, 279-280
types, declaring, 259
variable number of, 260

arrays
references with pointers, 284
passing, 261-262

arraySum, 283-284
calculateTriangularNumber, 255-257
copyString, 286
declaring, 260
ending, 257
exchange, 280
greatest common divisor program,

257-259
local variables, 257
main

adding, 255
autorelease pools, 404
program sections, 39

NSPathUtilities.h class, 384
pointers, 291-292
printMessage, 254
prototype declarations, 259-260
relationship with methods, 299
return types

declaring, 259
omitting, 259

scope, 260
sign

defined, 105
else if program, 106-107

static, 261
syntax, 254, 256
values, returning

greatest common divisor program,
257-259

overview, 257
return type declaration, omitting,

259

G
garbage collection

disadvantages, 402
iOS support, 401
overview, 401
turning on, 401

gcd function, 257-259

getter methods, 48

copying objects, 422-423
Rectangle class, 168

global variables, 200-202

defined, 200
external, 201
lowercase g, 200

globallyUniqueString method, 387

glossary program

archiving, 428
creating, 354-355
reading, 428-429

GNUStep, 1

goto statements, 294

GraphicObject class

categories example, 224-225
Drawing protocol, 227

greater than (>) operator, 74

514 frameworks

ptg999

greater than or equal to (>=) operator, 74

greatest common divisor programs, 85-87,
257-259

grouping elements. See arrays; structures

H
h file extension, 14

handling exceptions, 189

abnormal program termination,
avoiding, 190

catching expressions program,
190-191

Fraction class example, 189-190
multiple catch blocks, 191
throwing exceptions, 191

hard-coding pathnames, 370

hasPrefix: nsstring method, 325

hasSuffix: nsstring method, 325

header files, importing, 307, 454

help

forum support website, 5
Foundation framework

documentation, 304-306
Quick Help, 304-305

hexadecimal notation, 212

history

acquisition by Apple, 1
creation, 1
licensing, 1
standardized specification, 1
version 2.0, 1

home directories, 370, 383

hostName method, 387

I
IBAction class, 454

IBOutlet class, 454

id data type, 54

compile time versus runtime
checking, 182-183

dynamic binding, 180-182
pointers, 300
static typing, 183-184

if statements

absolute value program, 94-98
compound relational tests, 100-103

leap year program, 101-103
operators, 101

conditional compilation, 243-244
else if constructs

character analysis program, 107-109
number operator number

expressions program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
if-else construct, 98-100
nesting, 103-105
syntax, 93

ifdef statements, 241

if-else statements, 98-100

immutable dictionaries, 354

immutable string objects

case, converting, 316
character length, counting, 316
character strings, joining, 316
copying objects, 416-417
creating based on another, 316
declaring, 315-317
defined, 314
equality, testing, 316-317
initialization, 317

515immutable string objects

ptg999

messages, sending, 317
mutable, compared, 320
program, 314-315
references, 317
substrings, creating, 318-320

from inside strings, 320
leading characters, 319
locating strings inside another, 320
ranges, 320
specified index characters, 319

implementation file

AddressBook class, 338-339
categories, 221
classes, defining, 130-131
Fraction class, 470-473
Fraction_CalculatorViewController

class, 465-468
instance variables, declaring, 37-38
overview, 33
syntax, 37

import statement, 240-241

importing

files, 20, 131
header files, 307, 454
macros, 240-241

Inclusive-OR operator (|), 211, 213-214

increment operator (++), 77

pointers to arrays, 282-284
pre/post, 287-289

index numbers, 248

indexesPassingTest: method, 364

indexLessThanIndex: method, 364

indexOfObject: obj method, 351

indexOfObjectPassingTest: method, 351, 362

indexSet method, 364

indirection, 273

indirection operator (*), 274, 275

informal protocols, 229-230

inheritance

categories, 225
class directive, 161-162
copying objects, 420
instance variables, 152-154, 198
methods

adding, 156-158
methods, 152-154
overriding, 169-173

object methods, choosing, 155-156
objects, owning, 165-169

instance variables, testing, 167
memory reference, 166
passing values to methods, 166
values, setting, 166

parent classes, 162
program example, 154-155
root classes, 151
storing information, 161
subclasses, 152-153, 230

benefits, 173
creating, 158-160
defining, 173

super classes, 152-153
init methods, 40, 155

creating, 197
overriding, 196-197
testing, 197-198

initial values, assigning, 272

initializing

arrays, 250-251
immutable string objects, 317
multidimensional arrays, 253-254
objects, 40, 195-197

arrays, 196

516 immutable string objects

ptg999

init prefix for methods, 196
methods, creating, 197
overriding init methods, 196-197
syntax, 195-196
testing, 197-198

structures, 269-270
initVar method, 169-170

initWith: method, 197

initWithCapacity: method,
326, 352, 357, 361

initWithCoder: method, 430, 432

initWithContentsOfFile: method, 325

initWithContentsOfURL: method, 325

initWithName: method, 339

initWithObjects: method, 361

initWithObjectsAndKeys: method, 357

initWithString: nsstring method, 325

insertObject: obj AtIndex: i method, 352

insertString: nsstring atIndex: i method, 326

insertString:atIndex: method, 323

instance methods, 35

class versus instance, 29
syntax, 28-29

instance variables

_ (underscores), 200
accessing, 45-48

methods, creating, 45-48
setters/getters, 48

accessor methods, synthesizing, 200
declaring, 33, 37-38
inheritance, 152-154
names

_ (underscores), 200
choosing, 34
versus property names, 454

origin, 161

outlets
connecting, 460
defined, 453

properties, 200
scope, 198

directives, 199
inheritance, 198
Printer class example, 199

storing, 298-299
testing, 167

instancesRespondToSelector: method, 185

int data type, 24

bit operators
AND, 212-213
binary/hexadecimal notation

conversions, 212
Exclusive-OR, 214
Inclusive-OR, 213-214
left shift, 216
listing of, 211
ones complement, 214-215
program example, 215-216
right shift, 216-217

conversions, 61-63
enumerated data types, 205
overview, 52
pointers, 274
qualifiers

long, 53-54
long long, 54
short, 54
unsigned, 54

integer arithmetic, 58-60

integers. See int data type

integerValue method, 326

interface design, 455-460

Attributes Inspector, 455
black window, creating, 455

517interface design

ptg999

buttons
actions, adding, 460
adding, 459

fraction calculator iPhone application,
474-475

guide lines, 458
labels

adding, 455
attributes, 458
positioning, 458
sizing, 458

user interface design pane, 455
interface file

AddressBook class, 337-338
AddressCard class, 331, 337-338
arguments, 36-37
classes

declaring, 33, 129-130
definitions, extending, 148
instance methods, compared, 35

Fraction class, 469-470
Fraction_CalculatorViewController

class, 464-465
methods

arguments, 36-37
categories, 220
class versus instance, 35
return values, 36

names, choosing, 34-35
overview, 33
syntax, 33

intersect: method, 360

intersectSet: method, 361, 362

intPtr pointer, 274

intValue method, 326

iOS

applications
declaring display property, 454
delegate subclasses, 452

header files, importing, 454
IBAction identifiers, 454
IBOutlet identifiers, 454
instance variable names versus

property names, 454
interface design, 455-460
iPhone simulator, 449, 452, 460
new projects, starting, 449
outlets, 453, 460
project folder locations, 451
project options, choosing, 450
synthesizing display property

accessor methods, 454-455
templates, 449-450
view controllers, 453
views, 409

developer program, 449
directories, 385
displaying text in response to button

presses
black window, creating, 455
button actions, adding, 460
display variable and label

connection,460
iPhone_1ViewController.h class,

453-454
iPhone_1ViewController.m class,

454-455
overview, 448
running, 460
sequence overview, 459
source code, displaying, 460

fraction calculator application
Calculator class, 473-474
completing operations, 462
digit buttons, pressing, 469
Fraction class, 469-473
Fraction_Calculator, starting, 462

518 interface design

ptg999

Fraction_CalculatorViewController
class, 464-469

interface design, 474-475
keying in fractions, 462
multiplying fractions example, 462
overview, 448
project files, 475
sequence overview, 475-476
templates, 464
viewing in simulator after

launching, 461
garbage collection support, 401
SDK, 447

iPhone applications

delegate subclasses, 452
display property

accessor methods, synthesizing,
454-455

declaring, 454
displaying text in response to button

presses
black window, creating, 455
button actions, adding, 460
display variable and label

connection,460
iPhone_1ViewController.h class,

453-454
iPhone_1ViewController.m class,

454-455
overview, 448
running, 460
sequence overview, 459
source code, displaying, 460

fraction calculator
Calculator class, 473-474
completing operations, 462
digit buttons, pressing, 469
Fraction class, 469-473

Fraction_Calculator, starting, 462
Fraction_CalculatorViewController

class, 464-469
interface design, 474-475
keying in fractions, 462
multiplying fractions example, 462
overview, 448
project files, 475
sequence overview, 475-476
templates, 464
viewing in simulator after

launching, 461
header files, importing, 454
IBAction identifiers, 454
IBOutlet identifiers, 454
instance variable names versus

property names, 454
interface design, 455

Attributes Inspector, 455
black window, creating, 455
button actions, adding, 460
buttons, adding, 459
guide lines, 458
labels, 455-459
user interface design pane, 455

iOS
developer program, 449
SDK, 447

iPhone simulator, choosing, 452
native, 2
new projects, starting, 449
outlets

connecting, 460
defined, 453

project folder locations, 451
project options, choosing, 450
simulator, 449

519iPhone applications

ptg999

button presses, 460
choosing, 452
fraction calculator, displaying, 461

templates, 449-450
view controllers, 453

iPhone_1ViewController.h class, 453-454

iPhone_1ViewController.m class, 454-455

isEqualToSet: method, 360, 361

isEqualToString: nsstring method, 325

isKindOfClass: method, 185

isMemberOfClass: method, 185

isReadableFileAtPath: method, 371

isSubClassOfClass: method, 185

isSubsetOfSet: method, 361

isWritableFileAtPath: method, 371

K
kernel, 443

keyboard input, for loops, 79-81

keyed archives, 427

creating, 428
defined, 428
reading, 428-429
support, 428

keyEnumerator method, 357

keysSortedByValueUsingSelector: method,
357

keywords

extern, 201
self, 145
static, 141-142

L
labels (interfaces)

adding, 455
attributes, 458
positioning, 458
sizing, 458

lastIndex method, 364

lastObject method, 351

lastPathComponent method, 383-384

layers (frameworks), 443-444

Application Services, 444
bypassing, 444
Cocoa, 444
Core Services, 443
kernel, 443

leap year program, 101-103

left shift operator (<<), 211, 216

length method, 325

less than (<) operator, 74

less than or equal to (<=) operator, 74

line position, 19

LinuxSTEP,

local variables

argument names, 141
automatic, 257
defined, 140
functions, 257
static, 141-142, 257
values, 141, 257

long long qualifier, 54

long qualifiers, 53-54

lookup: method, 341-344

loops

continue statements, 90
counting numbers example, 71-72
do

executing, 89
reversing integer digits program,

89-90
syntax, 88
while loops, compared, 89

ending, 75, 90

520 iPhone applications

ptg999

event, 405-407
for

200th triangular number example,
72-75

conditions, 74
initial values, 73
keyboard input, 79-81
nesting, 81-82
overview, 75
syntax, 83
table of triangular numbers

example, 75-79
while loops, compared, 85

while
counting 1 to 5 program example,

84-85
do loops, compared, 89
greatest common divisor program,

85-87
for loops, compared, 85
reversing integer digits program,

87-88
syntax, 84

lowercase versus uppercase, 19

lowercaseString method, 326

M
m file extension, 14

Mac OS X

Cocoa, 274, 443
Cocoa Touch, 444-445
reference library, 305-306

macros

case conversion, 239
conditional operator, 239
define statement, 238-239
Fraction class, 239
importing, 240-241

521memory management

lowercase letters, testing, 239
SQUARE, 238-239

main function

adding, 255
autorelease pools example, 404
program sections, 39

makeObjectsPerform Selector: method, 351

manual reference counting, 402-403

autorelease pools, 403-405
adding objects, 403
autoreleasing objects, 404-405
blocks, 410-411
draining, 403
main routine example, 404
object survival after draining,

405-407
owned objects, releasing, 404

dangling pointer reference, 403
deallocating, 402
decrementing, 402
incrementing, 402
methods, 402
strong variables, 408

Master-Detail template, 450

MathOps category, adding, 220-224

matrix

4 x 5, 252
notation, 252-253

member: method, 361

memory management

ARC, 408
non-ARC compiled code, 411
strong variables, 409

autorelease pools
blocks, 410-411
defined, 21
object survival after draining.

See autorelease pools

ptg999

event loops, 405-407
garbage collection

disadvantages, 402
iOS support, 401
overview, 401
turning on, 401

manual reference counting, 402-403
autorelease pools, 403-405
dangling pointer reference, 403
deallocating, 402
decrementing, 402
incrementing, 402
methods, 402
strong variables, 408

object references, 166
pointers, 292-293
releasing, 41
rules, 407-408
strong variables, 408-409
weak variables, 409-410

declaring, 410
delegates, 410
objects with strong references, 409
support, 410

methods

+/- signs, 35
accessor

setters/getters, 48
synthesizing. See synthesizing

accessor methods
add:

arguments to message receiver, 138
Fraction class object reference, 137
fractions test program, 138-139
references, 138
result object, 146-148
self keyword, 145

addCard:, 339
addObject:, 330, 352, 360, 362
allKeys, 357
alloc, 40, 155, 309
anyObject, 361
appendString:, 323, 326
ARC, 310
archiveRootObject:toFile:, 428
arguments, 29, 141, 386
arrays, 261-262, 352
arrayWithCapacity: size, 352
arrayWithObjects:, 328, 351
attributesOfItemAtPath:, 371, 372, 374
availableData, 390
calculate:, 141
camelCase, 411
capitalizedString, 326
caseIndensitiveCompare: nsstring, 325
categories

amounts, 225
defined, 219
defining (interface file), 220
implementation file, 221
inheritance, 225
MathOps example, 221-224
NSComparisonMethods, 229
object/category named pairs, 225
overriding methods, 225
protocols, adopting, 228
unnamed, 224-225

changeCurrentDirectoryPath:, 376
characterAtIndex: i, 325
class object responses, 186-187
class versus instance, 29
clickDigit:, 469
clickEquals, 469

522 memory management

ptg999

closeFile, 391
colons, 37
compare: nsstring, 325
compareNames:, 348-350
conformsToProtocol:, 227
containIndex: idx, 364
containsObject:, 351, 360, 361
contentsAtPath:, 371, 376
contentsEqualAtPath:, 371
convertToNum, 95
copy, 414-415
copyItemAtPath:, 371, 376
copyWithZone:, 226, 418

class inheritance, 420
zone argument, 419

count
AddressBook class, 339
NSArray class, 351
NSDictionary class, 357
NSIndexSet class, 364
NSSet class, 361

createDirectoryAtPath:, 376
createFileAtPath:, 371, 376
currentDirectoryPath, 376
data, 436
dealloc, 402
declaring

arguments, 36-37
class versus instance, 35
return values, 36

decodeObject:forKey:, 430, 432
delegation, 187
deleteCharactersInRange:, 323, 326
denominator, 45
description, 313-314
dictionaryWithCapacity: size, 357

dictionaryWithObjectsAndKeys:,
355-357

doubleValue, 326
dynamic binding, 180-182
dynamic typing

invoking methods, 184-185
listing of, 185

encodeObject:forKey:, 430-431
encodeWithCoder:, 430-431
entries, 339
enumerateObjectsUsingBlock:, 352
enumeratorAtPath:, 376, 381
environment, 386
examples, 29-30
fileExistsAtPath:, 371, 376
fileHandleForReadingAtPath:, 390
fileHandleForUpdatingAtPath:, 390
fileHandleForWritingAtPath:, 390
firstIndex, 364
floatValue, 326
getter, 48

copying objects, 422-423
Rectangle class, 168

globallyUniqueString, 387
hasPrefix: nsstring, 325
hasSuffix: nsstring, 325
hostName, 387
indexesPassingTest:, 364
indexLessThanIndex:, 364
indexOfObject: obj, 351
indexOfObjectPassingTest:, 351, 362
indexSet, 364
inheritance, 152-154

classes, extending, 156-158
objects, choosing, 155-156
overriding, 169-173
parent class, methods, 162

523methods

ptg999

init, 40, 155
creating, 197
overriding, 196-197
testing, 197-198

init prefix, 196
initVar, 169-170
initWith:, 197
initWithCapacity: size, 352, 357, 361
initWithCoder:, 430, 432
initWithContentsOfFile: path

encoding: enc error: err, 325
initWithContentsOfURL: url

encoding: enc error: err, 325
initWithName:, 339
initWithObjects:, 361
initWithObjectsAndKeys:, 357
initWithString: nsstring, 325
insertObject: obj AtIndex: i, 352
insertString: nsstring atIndex: i, 326
insertString:atIndex:, 323
instance, 35
integerValue, 326
intersect:, 360
intersectSet:, 361, 362
intValue, 326
isEqualToSet:, 360, 361
isEqualToString: nsstring, 325
isReadableFileAtPath:, 371
isSubsetOfSet:, 361
isWritableFileAtPath:, 371
keyEnumerator, 357
keysSortedByValueUsingSelector:, 357
lastIndex, 364
lastObject, 351
lastPathComponent, 383-384
length, 325

local variables
argument names, 141
defined, 140
static, 141-142
values, 141

lookup:, 341-344
lowercaseString, 326
makeObjectsPerform Selector:, 351
member:, 361
minusSet:, 362
moveItemAtPath:, 371, 374, 377
multiple arguments, 135-139

adding fractions test program,
138-139

adding to message receiver, 138
dot operator, 138
names, 135
no names, 137
references, 137, 138
setTo:over: method example,

135-137
syntax, 135

mutableCopy, 413-415
mutableCopyWithZone:, 419
names, choosing, 34, 135
new, 48
NSArray class, 352
NSDictionary class, 357
NSFileHandle class, 390-391
NSFileManager class,

370-371, 376-378
NSIndexSet class, 364
NSMutableArray class, 352
NSMutableDictionary class, 357
NSNumber class, 309, 310
NSObject class, 185
NSPathUtilities.h class, 384
NSProcessInfo, 386-387

524 methods

ptg999

NSSet class, 361
NSString class, listing of, 324-326
NSValue class, 353-354
numerator, 45
objectAtIndex:, 328, 351
objectEnumerator, 357, 361
objectForKey:, 355, 357
objects, 28

allocating, 146
choosing, 155-156
returning, 146

offsetInFile, 390
operatingSystem, 387
operatingSystemName method, 387
operatingSystemVersionString, 387
origin, 162
pathComponents, 383-384
pathExtension, 383-384
pathWithComponents:, 384
performSelector:, 186
polymorphism

Complex class example, 177-180
defined, 180

print
address cards, 333
NSSet class, 360
program results, displaying, 41

printVar:, 153
processDigit:, 469
processIdentifier, 386
processInfo, 386
processName, 387
protocols

adopting, 226
category adoptions, 228
defined, 226

defining, 226-227
delegation, 229
existing definitions, extending, 228
informal, 229-230
multiple, 226
names, 228
NSCopying, 226-227
object conformance, 227-228
subclasses, 227

rangeOfString:, 324
readDataOfLength:, 390
readDataToEndOfFile, 390
receivers, identifying, 145
reduce

creating, 140
declaring, 142-143
defining, 143-144
program, 144-145

relationship with functions, 299
removeAllObjects, 357, 362
removeCard:, 344-347
removeItemAtPath:, 371, 377
removeObject:, 352, 360, 362
removeObjectAtIndex: i, 352
removeObjectIdenticalTo:, 345
replaceCharactersInRange: range

withString: nsstring, 326
replaceObjectAtIndex: i withObject:

obj, 352
replaceOccurrencesOfString:, 324, 327
respondsToSelector:, 187
seekToEndOfFile, 391
seekToFileOffset:, 391
selector directive, 186
setAttributesOfItemAtPath:, 371
setDenominator, 36
setEmail:, 332

525methods

ptg999

setName:, 332, 421
setName:andEmail:, 335-337
setNumerator, 36
setObject:, 355, 357
setOrigin:, 162
setProcessName:, 387
setSide:, 159
setString:, 324, 326
setter, 48

copying objects, 421-423
Rectangle class, 168

setTo:over:, 135-137
setWithCapacity:, 361
setWithObjects:, 361
side, 159
sortedArrayUsingComparator:,

350, 352
sortedArrayUsingSelector:, 352
sortUsingComparator:, 350, 352
sortUsingSelector:, 347-350, 352
string, 325
stringByAppendingPathComponent:,

383-384
stringByAppendingPathExtension:,

384
stringByDeletingLastPathComponent,

384
stringByDeletingPathExtension, 384
stringByExpandingTildeInPath, 384
stringByResolvingSymlinksInPath,

384
stringByStandardizingPath method,

384
stringWithCapacity: size, 326
stringWithContentsOfFile:, 325, 374
stringWithContentsOfURL: url

encoding: enc error: err, 325
stringWithFormat: format, arg1, arg2,

arg3 . . ., 325

stringWithString: nsstring, 325
substringFromIndex:, 319, 325
substringToIndex:, 319, 325
substringWithRange:, 320, 325
syntax, 28-29
truncateFileAtOffset:, 391
unarchiveObjectWithFile:, 428-429
union:, 360
unionSet:, 362
uppercaseString, 326
UTF8String, 326
writeData:, 390
writeToFile:, 352

minus equals (-=) operators, 64

minus signs (-)

arithmetic expressions, 55
methods, 35

minusSet: method, 362

mm file extension, 14

modulus operator (%), 60-61

month enumerated data type program,
206-208

month names program, 327-328

moveItemAtPath: method, 371, 374, 377

multidimensional arrays, 252-254

4 x 5 matrix, 252
declaring, 253
initializing, 253-254
notation, 252-253

multiple arguments, 135-139

adding to message receiver, 138
dot operator, 138
Fraction class, 138-139
names, 135
no names, 137
references, 137-138
setTo:over: method, 135-137
syntax, 135

526 methods

ptg999

multiple objects, 42-45

multiple protocols, 226

multiplication operator, 55

mutable arrays, creating, 330

mutable data areas, creating, 436

mutable dictionaries, 354

mutable string objects

characters, deleting, 323
contents, setting, 324
copying objects, 416-417
declaring, 323
defined, 314
deleting, 324
immutable, compared, 320
inserting at end of another, 323
inserting into receiver beginning, 323
locating then deleting, 324
NSMutableString class, 320
program, search and replace, 323-324

mutableCopy method, 413-415

mutableCopyWithZone: method, 419

mutex locks, 422

N
names

arguments, 137, 141
case sensitivity, 34
choosing, 34-35
classes, 33
compound literals, 293
defined. See also define statement

adding (Xcode), 242
argument spaces, 238
circle area/circumference example,

234-235
equality tests, 236
expression validity, 236

expressions, 235
literal text substitutions, 236
macros, 238-239
undefining, 244
values, 234

instance variables, 200, 454
methods, 135
preprocessor definitions, 242
programs, 20-21
properties, 454
protocols, 228
reserved, 34
structures, omitting, 272
variables, 34

native applications (iPhone), 2

nesting

if statements, 103-105
for loops, 81-82

new iOS projects, starting, 449

new method, 48

newline characters, 22

NEXTSTEP, 1

nib files, 455

non-ARC compiled code, 411

not equal to (!=) operator, 74

NSArray class

initialization methods, 196
sortedArrayUsingComparator:

method, 350
sorting methods, 352

NSAutoreleasePool class, 403

NSBundle class, 396-397

NSCoding protocol, 430

NSComparisonMethods category, 229

NSCopying protocol, 226-227, 418-421

class inheritance, 420
copying fractions, 419-420
copyWithZone: method, 418

527NSCopying protocol

ptg999

NSCountedSet class, 361

NSData class

buffers, 375-376
custom archives, 436

NSDictionary class, 357

NSFileHandle class, 390-391

NSFileManager class

directory methods, 376-378
file methods, 370-371
objects, creating, 371

NSFullUserName function, 384

NSHomeDirectory function, 384

NSHomeDirectoryForUser function, 384

NSIndexSet class

methods, 364
overview, 362

NSKeyedArchiver class, 428

NSKeyedUnarchiver class, 428-429

NSLog routine

% characters, 24
arrays, 309-330
phrases, displaying, 21
string objects, 313
variable values, displaying, 23-25

NSMutableArray class, 330

sorting methods, 352
sortUsingComparator: method,

350-351
NSMutableCopying protocol, 419

NSMutableDictionary class

empty mutable dictionary, creating,
354-355

methods, 357
NSMutableSet class, 362

NSMutableString class, 320

NSNumber class, 174

allocation, 309
methods, listing of, 310

NSObject class, 151

methods, 185
NSPathUtilities.h class, 381-382

functions, 384
methods, 384

NSProcessInfo class, 386-390

methods, 386-387
program, 388-389

NSPropertyListSerialization class, 427

NSRange method, 353

NSSearchPathForDirectoriesInDomains
function, 385

NSSet class

methods, 361
print method, 360

NSString class

methods, listing of, 324-326
overview, 312
unichar characters, 312

NSTemporaryDirectory function, 384

NSUserName function, 384

NSValue class, 353-354

null statement, 294

number objects, 307-311

comparing, 311
creating, 309
double objects, creating, 310
methods, 309
NSNumber class methods,

listing of, 310
numberWithInt: versus

numberWithInteger: methods, 311
program, 307-309
stored values, retrieving, 310
values

editing, 311
retrieving, 309

528 NSCountedSet class

ptg999

number operator number expressions
program, 109-112

numerator method, 45

numeric conversions

arguments, 260
data types, 61-63

O
o file extension, 14

objectAtIndex: method, 328, 351

objectEnumerator, 357, 361

objectForKey: method, 355, 357

Objective-C

acquisition by Apple, 1
C programming language compared, 2
creation, 1
licensing, 1
standardized specification, 1
version 2.0, 1

objects

adding at end of arrays, 330
allocating, 39-40
ARC, 408
archiving. See archiving objects
car comparison, 27-28
class ownership, 165-169

instance variables, testing, 167
memory reference, 166
passing values to methods, 166
values, setting, 166

classes
creating, 186
membership, 186
responding to methods, 186-187
testing, 185, 187-189

compile time versus runtime
checking, 182-183

composite, 230-231
constants, 21
copying

copy method, 414-415
deep copies, 417-418, 439-441
getter methods, 422-423
immutable strings, 414-415
mutable strings, 416-417
mutableCopy method, 413-415
NSCopying protocol, 418-421
setter methods, 421-423
shallow copies, 417

data types, converting, 353-354
decoding

address book example program,
430-431

data types, 430, 434-436
method, 430
process, 432
test program, 433-434

deep copies, creating, 439-441
defined, 27
dictionary

adding keys, 355
alphabetizing, 356
enumerating, 355-356
glossary program, 354-355
mutable/immutable, 354
overview, 354
retrieving key values, 355

dynamic binding, 180-182
encoding, 430

address book example program,
430-431

custom archives, 437

529objects

ptg999

data types, 430, 434-436
method, 430
process, 431
test program, 432-433

initializing, 40, 193-197
arrays, 196
init prefix for methods, 196
methods, creating, 197
overriding init methods, 196-197
syntax, 195-196
testing, 197-198

manual reference counting, 402-403
autorelease pools, 403-405
dangling pointer reference, 403
deallocating, 402
decrementing, 402
incrementing, 402
methods, 402

methods, 28
allocating, 146
choosing, 155-156
returning, 146

multiple, 42-45
names, choosing, 34
number, 307-311

allocation methods, 309
comparing, 311
creating, 309
double objects, creating, 310
NSNumber class methods, listing

of, 310
numberWithInt: versus

numberWithInteger: methods, 311
program, 307-309
stored values, retrieving, 310
values, editing, 311
values, retrieving, 309

protocol conformance, 227-228

references, 41-42
sets

adding/removing objects, 360
counted, 361
equality tests, 360
intersections, 360
operations program, 358-360
ordered indexes, 362-364
overview, 358
unions, 360

static typing, 183-184
string

creating, 312
description method, 313-314
displaying, 313
immutable. See immutable string

objects
mutable. See mutable string objects
NSString class, 312, 324-326
program, 312-313
unichar characters, 312

temporary, 410-411
values, setting, 40-41
variables, defining, 299

odd/even integers program, 98-100

offsetInFile method, 390

ones complement operator (~),
211, 214-215

OpenGL Game template, 450

opening files, 390

OPENSTEP, 1

operatingSystem method, 387

operatingSystemName method, 387

operatingSystemVersionString method, 387

operators

& (address), 274, 275
— (decrement), 78

pointers to arrays, 282-284

530 objects

ptg999

pre/post, 287-289
++ (increment), 77-137

pointers to arrays, 282-284
pre/post, 287-289

* (indirection), 274, 275
-= (minus equals), 64
+= (plus equals), 64
-> (structure pointer), 278
, (comma), 294-295
assignment and arithmetic

combination, 64
bit

AND, 212-213
binary/hexadecimal notation

conversions, 212
Exclusive-OR, 214
Inclusive-OR, 213-214
left shift, 216
listing of, 211
ones complement, 214-215
program example, 215-216
right shift, 216-217

compound, 101
conditional

macros, 239
syntax, 122
variable values, assigning, 122-123

defined, 55
dot

multiple arguments, 138
properties, accessing, 134-135

modulus, 60-61
precedence, 55-58
relational, 74-75
sizeof, 295-296
type cast, 63-64, 211

optional directive, 230

OR operator (||), 101

origin instance variable, 161

origin method, 162

outlet variables

connecting, 460
defined, 453

overriding methods, 169-173

categories, 225
init methods, 196-197

P
package directive, 199

Page-based Application template, 450

pathComponents method, 383, 384

pathExtension method, 383, 384

pathnames, 370

adding filenames to end, 383
arrays, returning, 383
creating, 384
deconstructing, 384
directories, locating, 385
extensions

adding, 384
extracting, 384
removing, 384

file extensions, 383
full, 370
hard-coding, 370
home directories, 383
last components

extracting, 384
removing, 384

last file, extracting, 383
NSPathUtilities.h class, 381
paths, adding to end, 384
relative, 370

531pathnames

ptg999

standardizing, 384
symbolic links, 384
temporary directories, 384
user information, returning, 384

pathWithComponents: method, 384

percent sign (%), 24

performSelector: method, 185-186

phrases, displaying

And programming in Objective-C is
even more fun! program, 22

Programming is fun! program, 7
pl file extension, 14

plus equals (+=) operators, 64

plus signs (+)

arithmetic expressions, 55
methods, 35

pointers, 273

& (address operator), 274-275
* (indirection operator), 274-275
arguments, 279-280
arrays, 280-284

character strings, 285-286
comparing pointers, 283
copying character strings version 2,

289-290
defining, 281
first element, setting, 281
function references with pointers,

284
function to sum elements of

integer array program, 283-284
increment/decrement operators,

282
sequencing through arrays, 281-275

characters, 275-277
constant character strings, 286-287
dangling references, 403

declaring, 275
functions, 291-292
id data types, 300
indirection, 273
integers, 274
memory addresses, 292-293
program example, 275
structures, 277-279
subtracting, 290

polymorphism

Complex class example, 177-180
defined, 180

pound sign (#), 233

preprocessor, 233

conditional compilation
if statements, 243-244
names, defining, 242
overview, 241
programs, debugging, 243
system dependencies, 241-243
undef statements, 244

multiple code lines, 237
statements, 233

define. See define statement
else, 241
endif, 241
if, 243-244
ifdef, 241
import, 240-241

prime numbers

defined, 117
table of, creating, 118-119

print method

address cards, 333
NSSet class, 360
program results, displaying, 41

532 pathnames

ptg999

Printer class, 199

printMessage function, 254

printVar: method, 153

private directive, 199

processDigit: method, 469

processIdentifier method, 386

processInfo method, 386

processName method, 387

program section

main routines, 39
objects

allocating, 39-40
initializing, 40
multiple, 42-45
references, 41-42
values, setting, 40-41

overview, 33
results, displaying, 41
variables, defining, 39

Programming is fun! program, 7

programs

10 number objects, 328-329
200th triangular number example,

72-75
absolute value, 94-98
adding 50 and 25, 23
address book. See address book, creat-

ing
address cards

encoding/decoding, 430-431
testing, 333-334

arrays
character arrays, 251-252
Fibonacci numbers, 249-250

bit operators, 215-216
BOOL data type, 121-122
buffers, 375-376

characters
analysis, 107-109
string pointers, 285-286

circle area/circumference example,
234-235

class objects, testing, 187-189
compile time versus runtime

checking, 182-183
copying objects

immutable strings, 414-415
mutable strings, 416-417

counting 1 to 5 while loop example,
84-85

creating with Terminal, 17-19
compiling and running, 18-19
disadvantages, 19
entering programs, 17-18
icon, 17
window, 17

creating with Xcode, 8-17
application types, selecting, 9
building and running, 15-16
editing, 14-15
filename extensions, 14
new projects, starting, 8
process overview, 16-17
product names/types, 10
project folders, selecting, 11
project windows, 12
Xcode icon, 8

data types example, 52-53
date, 268-269
deep copies, 439-440
desired triangular number calculation

example, 79-81
dictionary property lists

creating, 425-427
reading, 427

533programs

ptg999

directories
enumerating, 379-381
operations, 377-378

files
importing, 20
operations, 372-374, 391-392

fractions
Fraction class, 31-33
multiple, 42-45
without classes, 30-31

function to sum elements of integer
array program, 283-284

glossary
archiving, 428
creating, 354-355
reading, 428-429

greatest common divisor, 85-87
greatest common divisor in function

form, 257-259
implementation file

classes, defining, 130-131
instance variables, declaring, 37-38
overview, 33
syntax, 37

inheritance example, 154-155
interface file

arguments, 36-37
class definitions, extending, 148
class versus instance methods, 35
classes, declaring, 33, 129-130
method return values, 36
names, choosing, 34-35
overview, 33
syntax, 33

leap year, 101-103
months

enumerated data type, 206-208
names, 327-328

names, 20-21
nesting loops, 81-82
NSProcessInfo class, 388-389
number operator number expressions,

109-112
odd/even integers, 98-100
overriding methods, 169-170
pointers, integer variables, 275
prime numbers tables, creating,

118-119
program section

allocating objects, 39-40
initializing objects, 40
main routines, 39
multiple objects, 42-45
object references, 41-42
object values, setting, 40-41
overview, 33
results, displaying, 41
variables, defining, 39

And programming in Objective-C is
even more fun! phrase, 22

Programming is fun!, 7
reducing fractions

inside the add: method, 145
outside the add: method, 144-145

returning/allocating objects, 146-148
reversing integer digits

do loops, 89-90
while loops, 87-88

sections, 33
sets, 358-360
Square class, 159-160
string objects, 312-313

immutable, 314-315
mutable, 314-315

substrings, creating, 318-320

534 programs

ptg999

table of triangular numbers example,
75-79

terminating, 21
triangular numbers, calculating

blocks, 263-265
calculateTriangularNumber

function, 255-257
value operator value expressions

else if statements, 112-114
switch statements, 116-117

what would happen if prevention, 112
XYPoint class, 164-165

properties

accessing, 134-135
display

accessor methods, synthesizing,
454-455

declaring, 454
instance variables, 200
names, 454

property lists. See XML propertylists

protected directive, 199

protocol directive, 226

protocols

adopting, 226
category adoptions, 228
defined, 226
defining, 226-227
delegation, 229
Drawing, 227
existing definitions, extending, 228
informal, 229-230
multiple, 226
names, 228
NSCopying, 226-227
object conformance, 227-228

subclasses, 227
UITableViewDataSource, 229
UITableViewDelegate, 229

prototype declarations, 259-260

public directive, 199

purchaseDate variable, 272

Q
qualifiers

long, 53-54
long long, 54
short, 54
unsigned, 54

question marks (?), conditional operators, 122

questioning class objects, 185

creating objects, 186
membership, 186
responses to methods, 186-187
testing program, 187-189

Quick Help, 304-305

R
rangeOfString: method, 324

readDataOfLength: method, 390

readDataToEndOfFile method, 390

reading

files, 390
keyed archives, 428-429
XML propertylists, 427

receivers, identifying, 145

Rectangle class

declaring, 156-158
defining, 163-164
getter methods, 168
origin: method, 162
setOrigin: method, 162

535Rectangle class

ptg999

setter method, 168
Square subclass, 158-160
storing information, 161
XYPoint subclass

class directive, 161-162
declaring/defining,

160-163
program, 164-165

rectangles, creating, 271-272

reduce method

creating, 140
declaring, 142-143
defining, 143-144
program, 144-145

reducing fractions program

inside the add: method, 145
outside the add: method, 144-145

reference counting

automatic. See ARC
manual. See manual reference

counting
non-ARC compiled code, 411
strong variables, 408
weak variables, 409-410

declaring, 410
delegates, 410
objects with strong references, 409
support, 410

relational operators, 74-75

relative file positioning, 393

relative pathnames, 370

releasing memory, 41

removeAllObjects method, 357, 362

removeCard: method, 344-347

removeItemAtPath: method, 371, 377

removeObject: method, 352, 360, 362

removeObjectAtIndex: i method, 352

removeObjectIdenticalTo: method, 345

renaming files, 371

replaceCharactersInRange: range withString:
nsstring method, 326

replaceObjectAtIndex: i withObject: obj
method, 352

replaceOccurrencesOfString: method,
324, 327

reserved names, 34

respondsToSelector: method, 185, 187

restoring archive data, 438-439

return statement, 257

return values

declaring, 36
functions

declaring, 259
greatest common divisor program,

257-259
omitting, 259
overview, 257

returning objects from methods, 146

reversing integer digits program

do loops, 89-90
while loops, 87-88

right shift operator (>>), 211, 216-217

Ritchie, Dennis, 1

root classes, 151

routines

NSLog, 21
% characters, 24
arrays, 309-330
phrases, displaying, 21
string objects, 313
variable values, displaying, 23-25

scanf, 79, 108
running programs

Terminal, 18-19
Xcode, 15-16

runtime compared to compile time
checking, 182-183

536 Rectangle class

ptg999

S
scanf routine, 79, 108

scope

functions, 260
instance variables, 198

directives, 199
inheritance, 198

variables, 198
SDK (iOS), 447

sections (programs), 33

seekToEndOfFile method, 391

seekToFileOffset: method, 391

selecting. See choosing

selector directive, 186

self keyword, 145

semicolons (;), 21

separate interface/implementation files,
127-132

implementation file, 130-132
interface file, 129-132

sequencing through arrays, 248-249

sequential archives, 428

setAttributesOfItemAtPath: method, 371

setDenominator method, 36

setEmail: method, 332

setName: method, 332, 421

setName:andEmail: method, 335-337

setNumerator method, 36

setObject: method, 355, 357

setOrigin: method, 162

setProcessName: method, 387

sets

adding/removing objects, 360
counted, 361
equality tests, 360
intersections, 360

operations program, 358-360
ordered indexes, 362-364
overview, 358
unions, 360

setSide: method, 159

setString: method, 324, 326

setter methods, 48

copying objects, 421-423
Rectangle class, 168

setTo:over: method, 135-137

setWithCapacity: method, 361

setWithObjects: method, 361

shallow copies, 417

short qualifier, 54

side method, 159

sign function

defined, 105
else if program, 106-107

simulator (iPhone), 449

button presses, 460
choosing, 452
fraction calculator, displaying, 461

Single View Application template, 450

size

files, 374
labels, 458

sizeof operator, 295-296

slashes (/), division, 55

sortedArrayUsingComparator: method,
350, 352

sortedArrayUsingSelector: method, 352

sorting arrays

blocks, 350-351
methods

NSArray class, 352
NSMutableArray class, 352

selectors, 347-350

537sorting arrays

ptg999

sortUsingComparator: method, 350, 352

sortUsingSelector: method, 347-350, 352

Square class, 158-160

declaring, 158
defining, 158
program, 159-160
setSide: method, 159
side method, 159

SQUARE macro, 238-239

starting

Terminal, 17
Xcode, 8

statements

{ } (curly braces), 21
break

loops, 90
switch statements, 115

continue, 90
defined, 21
do

executing, 89
reversing integer digits program,

89-90
syntax, 88
while loops, compared, 89

else if
character analysis program, 107-109
number operator number

expressions program, 109-112
overview, 105
sign function program, 106-107
syntax, 105-106
value operator value expressions

program, 112-114
for

200th triangular number example,
72-75

conditions, 74
initial values, 73

keyboard input, 79-81
nesting, 81-82
overview, 75
syntax, 83
table of triangular numbers

example, 75-79
while loops, compared, 85

goto, 294
if

absolute value program, 94-98
compound relational tests, 100-103
conditional compilation, 243-244
else if constructs. See else if

constructs
if-else construct, 98-100
nesting, 103-105
syntax, 93

if-else, 98-100
null, 294
preprocessor, 233

define. See define statement
else, 241
endif, 241
if, 243-244
ifdef, 241
import, 240-241

return, 257
switch

break statements, 115
case values, 117
syntax, 114-116
value operator value expressions

program, 116-117
typedef, 208-209

data types, 270
definitions, 270-271
variables, declaring, 271

538 sortUsingComparator: method

ptg999

undef, 244
while

counting 1 to 5 program example,
84-85

do loops, compared, 89
greatest common divisor program,

85-87
for loops, compared, 85
reversing integer digits program,

87-88
syntax, 84

static functions, 261

static keyword, 141-142

static local variables, 257

static typing, 183-184

static variables, 202-205

storing

array values, 248
instance variables, 298-299

string method, 325

string objects

characters, 323
creating, 312
description method, 313-314
displaying, 313
immutable

case, converting, 316
character length, counting, 316
character strings, joining, 316
copying objects, 414-415
creating based on another, 316
declaring, 315-317
defined, 314
equality, testing, 316-317
initialization, 317
messages, sending, 317
mutable, compared, 320

program, 314-315
references, 317
substrings, creating, 318-320

mutable
characters, deleting, 323
contents, setting, 324
copying objects, 416-417
declaring, 323
defined, 314
deleting, 324
immutable, compared, 320
inserting at end of another, 323
inserting into receiver beginning,

323
locating then deleting, 324
NSMutableString class, 320
program, search and replace,

323-324
NSString class

methods, listing of, 324-326
overview, 312
unichar characters, 312

program, 312-313
unichar characters, 312

stringByAppendingPathComponent: method,
383-384

stringByAppendingPathExtension: method,
384

stringByDeletingLastPathComponent
method, 384

stringByDeletingPathExtension method, 384

stringByExpandingTildeInPath method, 384

stringByResolvingSymlinksInPath method, 384

stringByStandardizingPath method, 384

stringWithCapacity: size method, 326

stringWithContentsOfFile: method, 325, 374

stringWithContentsOfURL: url encoding: enc
error: err method, 325

539stringWithContentsOfURL: url encoding: enc error: err method

ptg999

stringWithFormat: format, arg1, arg2,
arg3 . . . method, 325

stringWithString: nsstring method, 325

strong variables, 408-409

structure pointer operator (->), 278

structures

date
defining, 266-267
initializing, 269-270
month value, testing, 267-269
pointer, 277-279
program, 268-269
todaysDate/purchaseDate variables,

declaring, 272
expressions, evaluating, 269
initializing, 269-270
instance variables, storing, 298-299
names, omitting, 272
pointers, 277-279
within structures, creating, 270-272
syntax, 267
variables

declaring in structure definition,
272

initial values, assigning, 272
subclasses, 152-153

benefits, 173
creating, 158-160
defining, 173
delegate, 452
inheritance, 230
protocols, 227

subscripts, 248

substringFromIndex: method, 319, 325

substrings, creating, 318-320

from inside strings, 320
leading characters, 319

locating strings inside another, 320
ranges, 320
specified index characters, 319

substringToIndex: method, 319, 325

substringWithRange: method, 320, 325

subtracting pointers, 290

subtraction operator, 55

sum variable, 24

superclasses, 152-153

support, forum website, 5

switch statements

break statements, 115
case values, 117
syntax, 114-116
value operator value expressions

program, 116-117
syntax

@ (at sign), 21
{ } (curly braces), 21
_ (underscores), 200
arguments, 256
blank spaces, 103
blocks, 262-263
case sensitivity, 19
class extensions, 224-225
comments

// (slash characters), 20
/* */, 20
benefits, 20
defined, 20

conditional operator, 122
constants, 21
define statement, 234
do loops, 88
else if statements, 105-106
functions, 254
if statements, 93

540 stringWithFormat: format, arg1, arg2, arg3 . . . method

ptg999

implementation file, 37
interface file, 33
line position, 19
for loops, 83
methods, 28-29
multidimensional arrays, 252-253
multiple arguments, 135
newline characters, 22
object initialization, 195-196
properties, 134-135
statements, 21
structures, 267
switch statements, 114-116
terminating programs, 21
while loops, 84

synthesize directive, 133

synthesizing accessor methods, 200

AddressCard class, 334-337
display property, 454-455
synthesize directive, 132-133

system dependencies, 241-243

T
Tabbed Application template, 450

table of triangular numbers example, 75-79

templates (iOS applications), 449-450

temporary files directory, 383

temporary objects, 410-411

Terminal

disadvantages, 19
icon, 17
programs, creating, 17-19

compiling and running, 18-19
entering programs, 17-18
icon, 17
window, 17

starting, 17

terminating programs, 21

test files, creating, 374

threadsafe code, mutex locks, 422

throwing exceptions, 191

tildes (~), home directories, 370

todaysDate variable, 272

triangular numbers, calculating

blocks, 263-265
calculateTriangularNumber function,

255-257
true values, 119-121

truncateFileAtOffset: method, 391

try directive, 190

two-dimensional arrays, 252

type cast operator, 63-64, 211

typedef statements, 208-209, 270

definitions, 270-271
variables, 271

U
UILabel class, 454

UITableView class, 229

UITableViewDataSource protocol, 229

UITableViewDelegate protocol, 229

unarchiveObjectWithFile: method, 428-429

undef statements, 244

underscores (_), 200

Unicode characters, 312

union: method, 360

unionSet: method, 362

unsigned qualifier, 54

unwrapping, 353-354

uppercaseString method, 326

UTF8String method, 326

Utility Application template, 450

541Utility Application template

ptg999

V
value operator value expressions program

else if statements, 112-114
switch statements, 116-117

values

arrays
assigning, 250-251
storing, 248

define statements, 233-234
defined, referencing, 237
functions, returning

declaring, 259
greatest common divisor program,

257-259
omitting, 259
overview, 257
return type declaration, omitting,

259
initial, assigning, 272
integer pointers, 274
local variables, 141, 257
objects in memory, 166
true/false, 119-121
variables

assigning, 122-123
displaying, 23-25
outside blocks, editing, 265-266

variables

arrays, assigning, 248
blocks

accessing, 263-265
assigning, 263
values, editing, 265-266

Boolean
BOOL data type, 121-122
defined, 119
prime numbers tables, creating,

118-119
true/false values, 119-121

declaring, 271
defining, 24, 39
enumerated data types, 205
external, 201-202
global, 200-202

defined, 200
external, 201
lowercase g, 200

instance
_ (underscores), 200
accessing, 45-48
accessor methods, synthesizing, 200
choosing, 34
declaring, 33, 37-38
directives, 199
inheritance, 152-154, 198
names, 454
origin, 161
Printer class example, 199
properties, 200
scope, 198
storing, 298-299
testing, 167

integer. See int data type
integer pointers, 274
local

argument names, 141
automatic, 257
defined, 140
functions, 257
static, 141-142, 257
values, 141, 257

memory addresses, 292
names, choosing, 34
objects, defining, 299
outlets

connecting, 460
defined, 453

542 value operator value expressions program

ptg999

purchaseDate, 272
references to objects, 41-42
scope, 198
static, 202-205
static typing, 183-184
strong, 408-409
structures

declaring in structure definition, 272
initial values, assigning, 272

sum, 24
todaysDate, 272
typedef statements, 208-209
values

assigning, 122-123
displaying, 23-25

weak, 409-410
declaring, 410
delegates, 410
objects with strong references, 409
support, 410

view controllers, 453

views, 409

W
weak variables, 409-410

declaring, 410
delegates, 410
objects with strong references, 409
support, 410

websites

Apple developer, 447
forum support, 5
Mac OS X reference library, 305-306
Xcode development tools, 8

what would happen if prevention, 112

while loops

counting 1 to 5 program example,
84-85

do loops, compared, 89
greatest common divisor program,

85-87
for loops, compared, 85
reversing integer digits program, 87-88
syntax, 84

wrapping, 353-354

writeData: method, 390

writeToFile: method, 352

X
Xcode

defined names, adding, 242
development tools website, 8
Foundation framework

documentation, 304
garbage collection, turning on, 401
icon, 8
iPhone applications

declaring display property, 454
delegate subclasses, 452
fraction calculator. See fraction

calculator application
header files, importing, 454
IBAction identifiers, 454
IBOutlet identifiers, 454
instance variable names versus

property names, 454
interface design, 455-460
iPhone simulator, 452, 460
iPhone_1ViewController.h class,

453-454
new projects, starting, 449
outlets, 453

543Xcode

ptg999

project folder locations, 451
project options, choosing, 451
synthesizing display property

accessor methods, 454-455
templates, 449-450
view controllers, 453

programs, creating, 8-17
application types, selecting, 9
building and running, 15-16
editing, 14-15
filename extensions, 14
new projects, starting, 8
process overview, 16-17
product names/types, 10
project folders, selecting, 11
project windows, 12

separate class interface/
implementation files, 127-132

starting, 8
test files, creating, 374

xib files, 455

XML propertylists, 425

creating, 425-427
reading, 427
writing, 427

XYPoint subclass

class directive, 161-162
declaring/defining, 160-162
defining, 163
programs, 164-165

Z
zone argument, 419

544 Xcode

	Contents
	1 Introduction
	What You Will Learn from This Book
	How This Book Is Organized
	Support
	Acknowledgments
	Preface to the Fourth Edition

	2 Programming in Objective-C
	Compiling and Running Programs
	Using Xcode
	Using Terminal

	Explanation of Your First Program
	Displaying the Values of Variables
	Summary
	Exercises

	3 Classes, Objects, and Methods
	What Is an Object, Anyway?
	Instances and Methods
	An Objective-C Class for Working with Fractions
	The @interface Section
	Choosing Names
	Class and Instance Methods

	The @implementation Section
	The program Section
	Accessing Instance Variables and Data Encapsulation
	Summary
	Exercises

	4 Data Types and Expressions
	Data Types and Constants
	Type int
	Type float
	Type char
	Qualifiers: long, long long, short, unsigned, and signed
	Type id

	Arithmetic Expressions
	Operator Precedence
	Integer Arithmetic and the Unary Minus Operator
	The Modulus Operator
	Integer and Floating-Point Conversions
	The Type Cast Operator

	Assignment Operators
	A Calculator Class
	Exercises

	5 Program Looping
	The for Statement
	Keyboard Input
	Nested for Loops
	For Loop Variants

	The while Statement
	The do Statement
	The break Statement
	The continue Statement
	Summary
	Exercises

	6 Making Decisions
	The if Statement
	The if-else Construct
	Compound Relational Tests
	Nested if Statements
	The else if Construct

	The switch Statement
	Boolean Variables
	The Conditional Operator
	Exercises

	7 More on Classes
	Separate Interface and Implementation Files
	Synthesized Accessor Methods
	Accessing Properties Using the Dot Operator
	Multiple Arguments to Methods
	Methods Without Argument Names
	Operations on Fractions

	Local Variables
	Method Arguments
	The static Keyword

	The self Keyword
	Allocating and Returning Objects from Methods
	Extending Class Definitions and the Interface File

	Exercises

	8 Inheritance
	It All Begins at the Root
	Finding the Right Method

	Extension Through Inheritance: Adding New Methods
	A Point Class and Object Allocation
	The @class Directive
	Classes Owning Their Objects

	Overriding Methods
	Which Method Is Selected?

	Abstract Classes
	Exercises

	9 Polymorphism, Dynamic Typing, and Dynamic Binding
	Polymorphism: Same Name, Different Class
	Dynamic Binding and the id Type
	Compile Time Versus Runtime Checking
	The id Data Type and Static Typing
	Argument and Return Types with Dynamic Typing

	Asking Questions About Classes
	Exception Handling Using @try
	Exercises

	10 More on Variables and Data Types
	Initializing Objects
	Scope Revisited
	Directives for Controlling Instance Variable Scope
	More on Properties, Synthesized Accessors, and Instance Variables
	Global Variables
	Static Variables

	Enumerated Data Types
	The typedef Statement
	Data Type Conversions
	Conversion Rules

	Bit Operators
	The Bitwise AND Operator
	The Bitwise Inclusive-OR Operator
	The Bitwise Exclusive-OR Operator
	The Ones Complement Operator
	The Left Shift Operator
	The Right Shift Operator

	Exercises

	11 Categories and Protocols
	Categories
	Class Extensions
	Some Notes About Categories

	Protocols and Delegation
	Delegation
	Informal Protocols

	Composite Objects
	Exercises

	12 The Preprocessor
	The #define Statement
	More Advanced Types of Definitions

	The #import Statement
	Conditional Compilation
	The #ifdef, #endif, #else
	The #if and #elif Preprocessor Statements
	The #undef Statement

	Exercises

	13 Underlying C Language Features
	Arrays
	Initializing Array Elements
	Character Arrays
	Multidimensional Arrays

	Functions
	Arguments and Local Variables
	Returning Function Results
	Functions, Methods, and Arrays

	Blocks
	Structures
	Initializing Structures
	Structures Within Structures
	Additional Details About Structures
	Don’t Forget About Object-Oriented Programming!

	Pointers
	Pointers and Structures
	Pointers, Methods, and Functions
	Pointers and Arrays
	Constant Character Strings and Pointers
	Operations on Pointers
	Pointers and Memory Addresses

	They’re Not Objects!
	Miscellaneous Language Features
	Compound Literals
	The goto Statement
	The null Statement
	The Comma Operator
	The sizeof Operator
	Command-Line Arguments

	How Things Work
	Fact #1: Instance Variables Are Stored in Structures
	Fact #2: An Object Variable Is Really a Pointer
	Fact #3: Methods Are Functions, and Message Expressions Are Function Calls
	Fact #4: The id Type Is a Generic Pointer Type

	Exercises

	14 Introduction to the Foundation Framework
	Foundation Documentation

	15 Numbers, Strings, and Collections
	Number Objects
	String Objects
	More on the NSLog Function
	The description Method
	Mutable Versus Immutable Objects
	Mutable Strings

	Array Objects
	Making an Address Book
	Sorting Arrays

	Dictionary Objects
	Enumerating a Dictionary

	Set Objects
	NSIndexSet

	Exercises

	16 Working with Files
	Managing Files and Directories: NSFileManager
	Working with the NSData Class
	Working with Directories
	Enumerating the Contents of a Directory

	Working with Paths: NSPathUtilities.h
	Common Methods for Working with Paths
	Copying Files and Using the NSProcessInfo Class

	Basic File Operations: NSFileHandle
	The NSURL Class
	The NSBundle Class
	Exercises

	17 Memory Management and Automatic Reference Counting
	Automatic Garbage Collection
	Manual Reference Counting
	Object References and the Autorelease Pool

	The Event Loop and Memory Allocation
	Summary of Manual Memory Management Rules
	Automatic Reference Counting (ARC)
	Strong Variables
	Weak Variables
	@autoreleasepool Blocks
	Method Names and Non-ARC Compiled Code

	18 Copying Objects
	The copy and mutableCopy Methods
	Shallow Versus Deep Copying
	Implementing the <NSCopying> Protocol
	Copying Objects in Setter and Getter Methods
	Exercises

	19 Archiving
	Archiving with XML Property Lists
	Archiving with NSKeyedArchiver
	Writing Encoding and Decoding Methods
	Using NSData to Create Custom Archives
	Using the Archiver to Copy Objects
	Exercises

	20 Introduction to Cocoa and Cocoa Touch
	Framework Layers
	Cocoa Touch

	21 Writing iOS Applications
	The iOS SDK
	Your First iPhone Application
	Creating a New iPhone Application Project
	Entering Your Code
	Designing the Interface

	An iPhone Fraction Calculator
	Starting the New Fraction_Calculator Project
	Defining the View Controller
	The Fraction Class
	A Calculator Class That Deals with Fractions
	Designing the UI

	Summary
	Exercises

	A: Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	U
	X
	Z

	B: Address Book Example Source Code
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

