
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Matt Neuburg

FOURTH EDITION

Programming iOS 7

www.it-ebooks.info

http://www.it-ebooks.info/

Programming iOS 7, Fourth Edition
by Matt Neuburg

Copyright © 2014 Matt Neuburg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Kristen Brown
Proofreader: O’Reilly Production Services
Indexer: Matt Neuburg

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Matt Neuburg

May 2011: First Edition

March 2012: Second Edition

March 2013: Third Edition

December 2013: Fourth Edition

Revision History for the Fourth Edition:

2013-12-09: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449372347 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Programming iOS 7, the image of a kingbird, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37234-7

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449372347
http://www.it-ebooks.info/

Table of Contents

Preface. xv

Part I. Views

1. Views. 3
The Window 4
Experimenting With Views 7
Subview and Superview 8
Visibility and Opacity 11
Frame 12
Bounds and Center 13
Transform 16
Layout 22

Autoresizing 23
Autolayout 27
Constraints in the Nib 38
Order of Layout Events 45
Autolayout and View Transforms 46

2. Drawing. 49
UIImage and UIImageView 49

Resizable Images 53
Image Rendering Mode 56

Graphics Contexts 58
UIImage Drawing 61
CGImage Drawing 63
Snapshots 66
CIFilter and CIImage 68
Drawing a UIView 72

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics Context Settings 74
Paths and Shapes 75
Clipping 79
Gradients 80
Colors and Patterns 82
Graphics Context Transforms 84
Shadows 86
Erasing 87
Points and Pixels 88
Content Mode 89

3. Layers. 91
View and Layer 92
Layers and Sublayers 94

Manipulating the Layer Hierarchy 97
Positioning a Sublayer 98
CAScrollLayer 99
Layout of Sublayers 99

Drawing in a Layer 100
Content Resizing and Positioning 104
Layers that Draw Themselves 106

Transforms 108
Depth 111

Shadows, Borders, and Masks 115
Layer Efficiency 116
Layers and Key–Value Coding 118

4. Animation. 121
Drawing, Animation, and Threading 122
UIImageView and UIImage Animation 125
View Animation 126

Block-Based View Animation 127
View Animation Options 129
Springing View Animation 134
Keyframe View Animation 134
Transitions 136

Implicit Layer Animation 138
Animation Transactions 140
Media Timing Functions 141

Core Animation 143
CABasicAnimation and Its Inheritance 143
Using a CABasicAnimation 145

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Keyframe Animation 149
Making a Property Animatable 150
Grouped Animations 151
Transitions 155
Animations List 157

Actions 159
What an Action Is 160
Action Search 160
Hooking Into the Action Search 162
Nonproperty Actions 164

Emitter Layers 166
CIFilter Transitions 171
UIKit Dynamics 174
Motion Effects 180
Animation and Autolayout 181

5. Touches. 185
Touch Events and Views 186
Receiving Touches 187
Restricting Touches 189
Interpreting Touches 190
Gesture Recognizers 195

Gesture Recognizer Classes 195
Gesture Recognizer Conflicts 200
Subclassing Gesture Recognizers 203
Gesture Recognizer Delegate 205
Gesture Recognizers in the Nib 207

Touch Delivery 208
Hit-Testing 208
Initial Touch Event Delivery 214
Gesture Recognizer and View 214
Touch Exclusion Logic 216
Gesture Recognition Logic 216
Touches and the Responder Chain 218

Part II. Interface

6. View Controllers. 223
View Controller Responsibilities 224
View Controller Hierarchy 225
View Controller Creation 231

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

How a View Controller Gets Its View 234
Manual View 235
Generic Automatic View 237
View in a Separate Nib 238
Nib-Instantiated View Controller 241
Storyboard-Instantiated View Controller 243

View Resizing and the Status Bar 245
Rotation 251

Rotation and Layout Events 254
Initial Orientation 258

Presented View Controller 261
Presenting a View 262
Communication With a Presented View Controller 264
Presented View Animation 267
Presentation Styles 268
Rotation of a Presented View 271
Presenting a View in Response to Rotation 273

Tab Bar Controllers 274
Tab Bar Items 276
Configuring a Tab Bar Controller 277

Navigation Controllers 279
Bar Button Items 282
Navigation Items and Toolbar Items 284
Configuring a Navigation Controller 287

Custom Transition Animations 290
Noninteractive Custom Transition Animation 291
Interactive Custom Transition Animation 294
Custom Presented View Controller Transition 301
Transition Coordinator 308

Page View Controller 310
Container View Controllers 315
Storyboards 320

Segues 322
Container Views 324
Unwind Segues 325

View Controller Lifetime Events 329
Incoherencies in View Controller Events 332
Appear and Disappear Events 332
Manual Event Forwarding to a Child View Controller 333

View Controller Memory Management 335
State Restoration 337

How to Test State Restoration 338

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Participating in State Restoration 339
Restoration ID, Identifier Path, and Restoration Class 341
Restoring View Controller State 348
Restoration Order of Operations 353
Restoration of Other Objects 355
Snapshot Suppression 357

7. Scroll Views. 359
Creating a Scroll View in Code 360
Using a Content View 363
Scroll View in a Nib 365
Scrolling 367

Paging 371
Tiling 373

Zooming 375
Zooming Programmatically 376
Zooming with Detail 377

Scroll View Delegate 380
Scroll View Touches 382
Floating Scroll View Subviews 386
Scroll View Performance 387

8. Table Views and Collection Views. 389
Table View Cells 392

Built-In Cell Styles 393
Registering a Cell Class 399
Custom Cells 401

Table View Data 408
The Three Big Questions 409
Reusing Cells 411
Table View Sections 413
Section Index 418
Refreshing Table View Data 419
Variable Row Heights 423

Table View Cell Selection 426
Managing Cell Selection 426
Responding to Cell Selection 427
Navigation From a Table View 429
Cell Choice and Static Tables 430

Table View Scrolling and Layout 432
Table View State Restoration 432
Table View Searching 433

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Table View Editing 442
Deleting Table Items 445
Editable Content in Table Items 446
Inserting Table Items 448
Rearranging Table Items 450
Dynamic Table Items 451

Table View Menus 453
Collection Views 455

Collection View Classes 459
Using a Collection View 462
Custom Collection View Layouts 465
Switching Layouts 469
Collection Views and UIKit Dynamics 470

9. Popovers and Split Views. 473
Preparing a Popover 475

Popover Size 476
Popover Appearance Customization 477

Summoning and Dismissing a Popover 480
Popover Segues 480
Managing a Popover Controller 481
Dismissing a Popover 482
Popovers During Rotation or Backgrounding 485

Popovers and Presented Views 486
Automatic Popovers 487
Split Views 489

Using a Split View 489
Split Views in a Storyboard 491
Other Split View Configurations 492

10. Text. 493
Fonts 494

Fonts and Dynamic Type 494
Font Descriptors 497

Attributed Strings 499
Attributed String Attributes 500
Making an Attributed String 503
Modifying and Querying an Attributed String 508
Measuring and Drawing an Attributed String 509

Labels 511
Number of Lines 511
Wrapping and Truncation 512

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Label Resizing 513
Customized Label Drawing 514

Text Fields 515
Summoning and Dismissing the Keyboard 517
Keyboard Covers Text Field 519
Configuring the Keyboard 524
Text Field Delegate and Control Event Messages 525
Text Field Menu 528

Text Views 530
Text View as Scroll View 531
Text View and Keyboard 532

Text Kit 534
Text Container 535
Alternative Text Kit Stack Architectures 538
Layout Manager 540
Text Kit Without a Text View 543

11. Web Views. 549
Web View Content 550

Loading Web View Content 554
Designing Web View Content 556

Paginated Web Views 558
Web View State Restoration 558
Communicating with a Web View 559

12. Controls and Other Views. 563
UIActivityIndicatorView 563
UIProgressView 565
UIPickerView 567
UISearchBar 569
UIControl 574

UISwitch 578
UIStepper 579
UIPageControl 581
UIDatePicker 581
UISlider 584
UISegmentedControl 587
UIButton 590
Custom Controls 595

Bars 598
Bar Position and Bar Metrics 599
Bar Appearance 601

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

UIBarButtonItem 602
UINavigationBar 604
UIToolbar 607
UITabBar 607

Tint Color 612
Appearance Proxy 614

13. Modal Dialogs. 619
Alert View 620
Action Sheet 622
Dialog Alternatives 627
Local Notifications 628
Activity View 632

Part III. Some Frameworks

14. Audio. 639
System Sounds 639
Audio Session 640

Interruptions 643
Routing Changes 645

Audio Player 646
Remote Control of Your Sound 648
Playing Sound in the Background 651
Further Topics in Sound 654

15. Video. 657
MPMoviePlayerController 658
MPMoviePlayerViewController 664
UIVideoEditorController 665
Introduction to AV Foundation 668

Some AV Foundation Building Blocks 668
Displaying a Movie 669
Synchronizing Video With Animation 671
Building Media 672
Further Exploration of AV Foundation 673

16. Music Library. 675
Exploring the Music Library 675

Querying the Music Library 676
Persistence and Change in the Music Library 680

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Music Player 681
MPVolumeView 684
Playing Songs With AV Foundation 686
Music Picker 688

17. Photo Library and Image Capture. 693
Choosing From the Photo Library 693
Assets Library Framework 697
Using the Camera 701
Customizing the Image Capture Interface 703
Image Capture With AV Foundation 705

18. Address Book. 709
Address Book Database 709
Address Book Interface 714

ABPeoplePickerNavigationController 715
ABPersonViewController 717
ABNewPersonViewController 718
ABUnknownPersonViewController 719

19. Calendar. 721
Calendar Database 721

Creating Calendars and Events 725
Recurrence 727
Fetching Events 729
Reminders 731
Proximity Alarms 732

Calendar Interface 732
EKEventViewController 733
EKEventEditViewController 735
EKCalendarChooser 736

20. Mail and Messages. 739
Mail Message 739
Text Message 741
Twitter Post 742

21. Maps. 743
Displaying a Map 743
Annotations 746

Custom Annotation View 747
Custom Annotation Class 751

Table of Contents | xi

www.it-ebooks.info

http://www.it-ebooks.info/

Other Annotation Features 752
Overlays 754

Custom Overlay Class 755
Custom Overlay Renderer 758
Other Overlay Features 760

Map Kit and Current Location 761
Communicating With the Maps App 762
Geocoding, Searching, and Directions 764

Geocoding 764
Searching 766
Directions 766

22. Sensors. 769
Core Location 770

Basic Location Determination 771
Heading 775
Background Location 776

Acceleration and Attitude 779
Shake Events 780
Raw Acceleration 781
Gyroscope 785

Part IV. Final Topics

23. Persistent Storage. 793
The Sandbox 793
Basic File Operations 794
Saving and Reading Files 796
User Defaults 798
File Sharing 799
Document Types 800
Handing Off a Document 803
Document Architecture 806
iCloud 811
XML 814
SQLite 821
Core Data 821
Image File Formats 827

24. Basic Networking. 831
HTTP Requests 831

xii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Simple HTTP Request 833
Formal HTTP Request 834
Multiple Tasks 839
Background Downloads 845

Background App Refresh 847
In-App Purchases 848
Bonjour 852

25. Threads. 855
Main Thread 855
Why Threading Is Hard 858
Three Ways of Threading 860

Manual Threads 861
NSOperation 863
Grand Central Dispatch 867

Threads and App Backgrounding 872

26. Undo. 875
Undo Manager 875

Target–Action Undo 876
Undo Grouping 878
Invocation Undo 879

Undo Interface 880
Shake-To-Edit 880
Undo Menu 881

A. Application Lifetime Events. 883

Index. 889

Table of Contents | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Aut lego vel scribo; doceo scrutorve sophian.
—Sedulius Scottus

Preface

This book, now in its fourth edition, has grown in size to encompass the growth in its
subject, until it can grow no more. The previous editions — Programming iOS 4 (May
2011), Programming iOS 5 (March 2012), and Programming iOS 6 (March 2013) — were
approximately 800 pp., 950 pp., and 1150 pp. in length, respectively, not because I had
more to say each time, but because Apple, as it added features to iOS 4 to make iOS 5,
and to iOS 5 to make iOS 6, had given me more to describe.

Now iOS 7 has come along with even more new features, and drastic action was needed.
Accordingly, the book has been ripped violently but neatly in two — neatly, because
there was already a perfectly natural place to do the ripping, namely right after the end
of what used to be Part III (Chapter 13). There are now two books:

• A new book, iOS 7 Programming Fundamentals, comprising chapters 1–13 of the
earlier books.

• This book, Programming iOS 7, comprising chapters 14–40 of the earlier books.

The truth is that this is a division I had wanted to make even before Programming iOS
4 was published — indeed, before it was even conceived of. My original proposal to
O’Reilly Media, back in early 2010, had been for a book to be called Fundamentals of
Cocoa Programming, intended to cover very much the same material as iOS 7 Program‐
ming Fundamentals covers now. But the proposal was accepted only on condition that
it be extended to cover much more of Cocoa Touch (iOS) programming; so I complied
and set to work on this longer project, and later, despite my impassioned pleas in the
autumn of 2010, I was unable to persuade the publisher to break up the lengthy manu‐
script into two: by that time, all the king’s horses and all the king’s men could no longer
crack Humpty Dumpty apart.

The new situation, therefore, is just what I always wanted in the first place — but not
quite, because what I most desired was a single book in two volumes. My idea was that

xv

www.it-ebooks.info

http://shop.oreilly.com/product/0636920032465.do
http://shop.oreilly.com/product/0636920031017.do
http://www.it-ebooks.info/

the books would have the same title, distinguished as Volume I and Volume II, with
successive numbering of pages and chapters: if Volume I ended, say, with Chapter 13
and page 400, then Volume II would start with Chapter 14 and page 401. To this de‐
lightfully Victorian extreme, I’m sorry to say, O’Reilly Media were implacably opposed.

Thus, Programming iOS 7, though it starts with its own Chapter 1 and page 1, never‐
theless still picks up exactly where iOS 7 Programming Fundamentals leaves off. They
complement and supplement one another. Those who desire a complete grounding in
the knowledge needed to begin writing iOS apps with a solid and rigorous understand‐
ing of what they are doing and where they are heading will, I hope, obtain both books.
At the same time, the two-book architecture should, I believe, render the size and scope
of each book individually more acceptable and attractive to more readers.

Those who feel that they know already all there is to know about C, Objective-C, Xcode,
and the linguistic and architectural basis of the Cocoa framework, or who are content
to pick up such underpinnings as they go along, need no longer (as some in the past
have done) complain that the book is occupied with 13 preliminary chapters before the
reader starts really writing any significant iOS code, because those 13 chapters have now
been abstracted into a separate volume, iOS 7 Programming Fundamentals, and this
book, Programming iOS 7, now begins, like Homer’s Iliad, in the middle of the story,
with the reader jumping with all four feet into views and view controllers, and with a
knowledge of the language and the Xcode IDE already presupposed. And if such a reader
subsequently changes his or her mind and decides that a thorough grounding in those
underpinnings might in fact be desirable, iOS 7 Programming Fundamentals will still
be available and awaiting study.

Moreover, the existence of iOS 7 Programming Fundamentals means that I, as author
and teacher, can make the same assumption in this edition about you, as reader and
student, that I made in previous editions — namely, that you have a command of the
material in that book. If you find yourself mystified by terminology or concepts used in
this book, then it might be wise to stop reading it and take up iOS 7 Programming
Fundamentals first! In it, I explain such things as:

• The Objective-C language, starting with C and building up to the object-oriented
concepts and mechanics of classes and instances in Objective-C itself.

• Xcode, the world in which all iOS programming ultimately takes place, including
what an Xcode project is and how it is transformed into an app, and how to work
comfortably and nimbly with Xcode to consult the documentation and to write,
navigate, and debug code, as well as how to bring your app through the subsequent
stages of running on a device and submission to the App Store. There is also a very
important chapter on nibs and the nib editor (Interface Builder), including outlets
and actions as well as the mechanics of nib loading. (However, some additional
important nib-related topics, such as autolayout constraints and storyboard segues,
are discussed in this book.)

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

• The Cocoa Touch framework, which provides important foundational classes and
adds linguistic and architectural devices such as categories, protocols, delegation,
and notifications, as well as the pervasive responsibilities of memory management,
plus key–value coding and key–value observing.

With those basics having been laid down in iOS 7 Programming Fundamentals, this
book, Programming iOS 7, assumes that you already know Objective-C and how to work
with Xcode to edit code and nibs, make properties and outlets and actions, and so forth,
and proceeds to explain the constituents of practical iOS app construction:

• Part I describes views, the fundamental units of an iOS app’s interface. Views are
what the user can see and touch in an iOS app. To make something appear before
the user’s eyes, you need a view. To let the user interact with your app, you need a
view. This part of the book explains how views are created, arranged, drawn, layered,
animated, and touched.

• Part II starts by discussing view controllers. Perhaps the most remarkable and im‐
portant feature of iOS programming, view controllers enable views to come and go
coherently within the interface, thus allowing a single-windowed app running on
what may be a tiny screen to contain multiple screens of material. This part of the
book talks about all the ways in which view controllers can be manipulated in order
to make their views appear. It also describes every kind of view provided by the
Cocoa framework — the built-in “widgets” with which you’ll construct an app’s
interface.

• Part III surveys many of the secondary frameworks provided by iOS. These are
clumps of code, sometimes with built-in interface, that are not part of your app by
default, but are there for the asking if you need them, allowing you to work with
such things as sound, video, user libraries, mail, maps, and the device’s sensors.

• Part IV wraps up the book with some miscellaneous but important topics: files,
networking, threading, and how to implement Undo and Redo.

• Appendix A summarizes the most important lifetime event messages sent to your
app delegate.

Someone who has read this book (and who, it goes without saying, is conversant with
the material in iOS 7 Programming Fundamentals) will, I believe, be capable of writing
a real-life iOS app, and to do so with a clear understanding of what he or she is doing
and where the app is going as it grows and develops. The book itself doesn’t show how
to write any particularly interesting iOS apps (though it is backed by dozens of example
projects that you can download from my GitHub site, http://github.com/mattneub/
Programming-iOS-Book-Examples), but it does constantly use my own real apps and
real programming situations to illustrate and motivate its explanations.

Just as important, this book is intended to prepare you for your own further explorations.
In the case of some topics, especially in Part III and Part IV, I guide you past the initial

Preface | xvii

www.it-ebooks.info

http://github.com/mattneub/Programming-iOS-Book-Examples
http://github.com/mattneub/Programming-iOS-Book-Examples
http://www.it-ebooks.info/

barrier of no knowledge into an understanding of the topic, its concepts, its capabilities,
and its documentation, along with some code examples; but the topic itself may be so
huge that there is room only to introduce it here. Your feet, nevertheless, will now be
set firmly on the path, and you will know enough that you can now proceed further
down that path on your own whenever the need or interest arises.

Indeed, there is always more to learn about iOS. iOS is vast! It is all too easy to find areas
of iOS that have had to be ruled outside the scope of this book. In Part IV, for example,
I peek at Core Data, and demonstrate its use in code, but a true study of Core Data would
require an entire book of its own (and such books exist); so, having opened the door, I
quickly close it again, lest this book suddenly double in size. By the same token, many
areas of iOS are not treated at all in this book:
OpenGL

An open source C library for drawing, including 3D drawing, that takes full ad‐
vantage of graphics hardware. This is often the most efficient way to draw, especially
when animation is involved. iOS incorporates a simplified version of OpenGL called
OpenGL ES. See Apple’s OpenGL Programming Guide for iOS. Open GL interface
configuration, texture loading, shading, and calculation are simplified by the GLKit
framework; see the GLKit Framework Reference.

Sprite Kit
New in iOS 7, Sprite Kit provides a built-in framework for designing 2D animated
games.

Accelerate
Certain computation-intensive processes will benefit from the vector-based Accel‐
erate framework. See the vDSP Programming Guide.

Game Kit
The Game Kit framework covers three areas that can enhance your user’s game
experience: Wireless or Bluetooth communication directly between devices (peer-
to-peer); voice communication across an existing network connection; and Game
Center, which facilitates these and many other aspects of interplayer communica‐
tion, such as posting and viewing high scores and setting up combinations of players
who wish to compete. See the Game Kit Programming Guide.

Advertising
The iAD framework lets your free app attempt to make money by displaying ad‐
vertisements provided by Apple. See the iAD Programming Guide.

Newsstand
Your app may represent a subscription to something like a newspaper or magazine.
See the Newsstand Kit Framework Reference.

Printing
See the “Printing” chapter of the Drawing and Printing Guide for iOS.

xviii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Security
This book does not discuss security topics such as keychains, certificates, and en‐
cryption. See the Security Overview and the Security framework.

Accessibility
VoiceOver assists visually impaired users by describing the interface aloud. To par‐
ticipate, views must be configured to describe themselves usefully. Built-in views
already do this to a large extent, and you can extend this functionality. See the
Accessibility Programming Guide for iOS.

Telephone
The Core Telephony framework lets your app get information about a particular
cellular carrier and call.

Pass Kit
The Pass Kit framework allows creation of downloadable passes to go into the user’s
Passbook app. See the Passbook Programming Guide.

External accessories
The user can attach an external accessory to the device, either directly via USB or
wirelessly via Bluetooth. Your app can communicate with such an accessory. See
External Accessory Programming Topics.

Versions
This book is geared to iOS 7 and Xcode 5. In general, only very minimal attention is
given to earlier versions of iOS and Xcode. It is not my intention to embrace in this book
any detailed knowledge about earlier versions of the software, which is, after all, readily
and compendiously available in my earlier books. There are, nevertheless, a few words
of advice about backward compatibility, and now and then I will call out a particularly
noteworthy change from earlier versions.

(For example, it has been hard to refrain from pointing out the confusion caused by the
changes in how the status bar works, or in the meaning of tintColor, or the nightmarish
way in which your perfectly viable iOS 6 project, when recompiled against iOS 7, will
try to resize and reposition its views incorrectly, underlapping the navigation bar.)

Xcode 5 no longer offers the user, creating a new app project from one of the project
templates, an option as to whether or not to use Automatic Reference Counting (ARC),
the compiler-based manual memory management technology that has made life so
much easier for iOS programmers in recent years. ARC is simply turned on by default.
Therefore, this book assumes from the outset that you are using ARC.

Xcode also no longer provides a template-based option as to whether or not to use a
storyboard. All projects (except the Empty Application template) come with a main
storyboard, and there is no option to use a main .xib file instead. Taking my cue from

Preface | xix

www.it-ebooks.info

http://www.it-ebooks.info/

this, I have adapted my teaching style to assume that storyboards are primary and that
you’ll usually be using one. (I do also assume that you know how to make and work
with a .xib file when you need one, as this is explained in iOS 7 Programming Funda‐
mentals.)

I have also embraced, often without much fanfare, the various other iOS 7 and Xcode
5 innovations. Apple has clearly set out, with this generation of their software, to make
iOS programming easier and more pleasant than ever; and by and large they have suc‐
ceeded. For example, modules and autolinking have made it much simpler than in the
past to work with additional frameworks, and I simply assume as a matter of course that
you will be using them; thus, when telling you what to do in order to employ a certain
framework, I give simply the relevant @import command. Similarly, in discussing draw‐
ing and images in Chapter 2, I naturally steer you toward the use of asset catalogs.

Acknowledgments
My thanks go first and foremost to the people at O’Reilly Media who have made writing
a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown, and
Adam Witwer come particularly to mind. And let’s not forget my first and long-standing
editor, Brian Jepson, who had nothing whatever to do with this edition, but whose
influence is present throughout.

As in the past, I have been greatly aided by some fantastic software, whose excellences
I have appreciated at every moment of the process of writing this book. I should like to
mention, in particular:

• git (http://git-scm.com)
• SourceTree (http://www.sourcetreeapp.com)
• TextMate (http://macromates.com)
• AsciiDoc (http://www.methods.co.nz/asciidoc)
• BBEdit (http://barebones.com/products/bbedit/)
• Snapz Pro X (http://www.ambrosiasw.com)
• GraphicConverter (http://www.lemkesoft.com)
• OmniGraffle (http://www.omnigroup.com)

The book was typed and edited entirely on my faithful Unicomp Model M keyboard
(http://pckeyboard.com), without which I could never have done so much writing over
so long a period so painlessly. For more about my physical work environment, see http://
matt.neuburg.usesthis.com.

xx | Preface

www.it-ebooks.info

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://barebones.com/products/bbedit/
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://pckeyboard.com
http://matt.neuburg.usesthis.com
http://matt.neuburg.usesthis.com
http://www.it-ebooks.info/

From the Programming iOS 4 Preface
A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
are really clever!” On the one hand, the number of built-in interface widgets was severely
and deliberately limited; on the other hand, the power and flexibility of some of those
widgets, especially such things as UITableView, was greatly enhanced over their OS X
counterparts. Even more important, Apple created a particularly brilliant way (UIView‐
Controller) to help the programmer make entire blocks of interface come and go and
supplant one another in a controlled, hierarchical manner, thus allowing that tiny
iPhone display to unfold virtually into multiple interface worlds within a single app
without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the fold
many new programmers who see programming for these devices as worthwhile and
doable, even though they may not have felt the same way about OS X. Apple’s own annual
WWDC developer conventions have reflected this trend, with their emphasis shifted
from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one hand,
has also fostered a certain tendency to try to run without first learning to walk. iOS gives
the programmer mighty powers that can seem as limitless as imagination itself, but it
also has fundamentals. I often see questions online from programmers who are evidently
deep into the creation of some interesting app, but who are stymied in a way that reveals
quite clearly that they are unfamiliar with the basics of the very world in which they are
so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogically
helpful and instructive yet ruthlessly Euclidean and logical order, the principles and
elements on which sound iOS programming rests. My hope, as with my previous books,
is that you will both read this book cover to cover (learning something new often enough
to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find that
they don’t fulfill the same function as a reasoned, ordered presentation of the facts. The
online documentation must make assumptions as to how much you already know; it
can’t guarantee that you’ll approach it in a given order. And online documentation is

Preface | xxi

www.it-ebooks.info

http://www.it-ebooks.info/

more suitable to reference than to instruction. A fully written example, no matter how
well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know views before you know view controllers for the simple reason that Part I
precedes Part II. And along with facts, I also bring to the table a degree of experience,
which I try to communicate to you. Throughout this book you’ll find me referring to
“common beginner mistakes”; in most cases, these are mistakes that I have made myself,
in addition to seeing others make them. I try to tell you what the pitfalls are because I
assume that, in the course of things, you will otherwise fall into them just as naturally
as I did as I was learning. You’ll also see me construct many examples piece by piece or
extract and explain just one tiny portion of a larger app. It is not a massive finished
program that teaches programming, but an exposition of the thought process that de‐
veloped that program. It is this thought process, more than anything else, that I hope
you will gain from reading this book.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xxii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming iOS 7 by Matt Neuburg
(O’Reilly). Copyright 2014 Matt Neuburg, 978-1-449-37234-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xxiii

www.it-ebooks.info

https://github.com/mattneub/Programming-iOS-Book-Examples
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/programmingiOS7_4e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxiv | Preface

www.it-ebooks.info

http://oreil.ly/programmingiOS7_4e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

PART I

Views

The things that appear in your app’s interface are, ultimately, views. A view is a unit of
your app that knows how to draw itself. A view also knows how to sense that the user
has touched it. Views are what your user sees on the screen, and what your user interacts
with by touching the screen. Thus, views are the primary constituent of an app’s visible,
touchable manifestation. They are your app’s interface. So it’s going to be crucial to know
how views work.

• Chapter 1 discusses views in their most general aspect — their hierarchy, visibility,
and position, including an explanation of autolayout.

• Chapter 2 is about drawing. A view knows how to draw itself; this chapter explains
how to tell a view what you want it to draw, from displaying an existing image to
constructing a drawing in code.

• Chapter 3 explains about layers. The drawing power of a view comes ultimately
from its layer. To put it another way, a layer is effectively the aspect of a view that
knows how to draw — with even more power.

• Chapter 4 tells about animation. An iOS app’s interface isn’t generally static; it’s
lively. Much of that liveliness comes from animation. iOS gives you great power to
animate your interface with remarkable ease; that power, it turns out, resides ulti‐
mately in layers.

• Chapter 5 is about touches. A view knows how to sense that the user is touching it.
This chapter explains the iOS view-based mechanisms for sensing and responding
to touches, with details on how touches are routed to the appropriate view and how
you can customize that routing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Views

A view (an object whose class is UIView or a subclass of UIView) knows how to draw
itself into a rectangular area of the interface. Your app has a visible interface thanks to
views. Creating and configuring a view can be extremely simple: “Set it and forget it.”
For example, you can drag an interface widget, such as a UIButton, into a view in the
nib editor; when the app runs, the button appears, and works properly. But you can also
manipulate views in powerful ways, in real time. Your code can do some or all of the
view’s drawing of itself (Chapter 2); it can make the view appear and disappear, move,
resize itself, and display many other physical changes, possibly with animation (Chap‐
ter 4).

A view is also a responder (UIView is a subclass of UIResponder). This means that a
view is subject to user interactions, such as taps and swipes. Thus, views are the basis
not only of the interface that the user sees, but also of the interface that the user touches
(Chapter 5). Organizing your views so that the correct view reacts to a given touch allows
you to allocate your code neatly and efficiently.

The view hierarchy is the chief mode of view organization. A view can have subviews;
a subview has exactly one immediate superview. Thus there is a tree of views. This
hierarchy allows views to come and go together. If a view is removed from the interface,
its subviews are removed; if a view is hidden (made invisible), its subviews are hidden;
if a view is moved, its subviews move with it; and other changes in a view are likewise
shared with its subviews. The view hierarchy is also the basis of, though it is not identical
to, the responder chain.

A view may come from a nib, or you can create it in code. On balance, neither approach
is to be preferred over the other; it depends on your needs and inclinations and on the
overall architecture of your app.

3

www.it-ebooks.info

http://www.it-ebooks.info/

The Window
The top of the view hierarchy is the app’s window. It is an instance of UIWindow (or
your own subclass thereof), which is a UIView subclass. Your app should have exactly
one main window. It is created at launch time and is never destroyed or replaced. It
occupies the entire screen and forms the background to, and is the ultimate superview
of, all your other visible views. Other views are visible by virtue of being subviews, at
some depth, of your app’s window.

If your app can display views on an external screen, you’ll create an
additional UIWindow to contain those views; but in this chapter I’ll
behave as if there were just one screen, the device’s own screen, and
just one window. I repeat: if there is just one screen, your app should
create just one UIWindow. You may encounter online tutorials that
advise explicit creation of a second UIWindow as a way of making
content appear in front of the app’s main interface; such statements are
wrong and should be disregarded. To make content appear in front of
the interface, add a view, not another entire window.

The window must fill the device’s screen. Therefore, its size and position must be iden‐
tical to the size and position of the screen. This is done by setting the window’s frame
to the screen’s bounds as the window is instantiated (and I’ll explain later in this chapter
what “frame” and “bounds” are):

UIWindow* w = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

The window must persist for the lifetime of the app. To make this happen, the app
delegate class has been given a window property with a strong retain policy. As the app
launches, UIApplicationMain (called in the main function in main.m) instantiates the
app delegate class and retains the resulting instance. This is the app delegate instance;
it is never released, so it persists for the lifetime of the app. The window instance is
assigned to the app delegate instance’s window property; therefore it, too, persists for the
lifetime of the app.

You will typically not put any view content manually and directly inside your main
window. Instead, you’ll obtain a view controller and assign it to the main window’s root-
ViewController property. This causes the view controller’s main view (its view) to be
made the one and only immediate subview of your main window — the main window’s
root view. All other views in your main window will be subviews of the root view. Thus,
the root view is the highest object in the view hierarchy that the user will usually see.
There might be just a chance, under certain circumstances, that the user will catch a
glimpse of the window, behind the root view; for this reason, you may want to assign

4 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

the main window a reasonable backgroundColor. But this seems unlikely, and in general
you’ll have no reason to change anything about the window itself.

Your app’s interface is not visible until the window, which contains it, is made the app’s
key window. This is done by calling the UIWindow instance method makeKeyAnd-
Visible.

All of the configuration that I’ve just described is trivial to perform, because the Xcode
app templates implement all of it for you:
App with a main storyboard

If your app has a main storyboard, as specified by its Info.plist key “Main storyboard
file base name” (UIMainStoryboardFile) — the default for most Xcode 5 app
templates, except the Empty Application template — then UIApplicationMain
instantiates UIWindow with the correct frame and assigns that instance to the app
delegate’s window property. It also instantiates the storyboard’s initial view controller
and assigns that instance to the window’s rootViewController property. All of that
happens before the app delegate’s application:didFinishLaunchingWith-

Options: is called (Appendix A).

Finally, UIApplicationMain calls makeKeyAndVisible to display your app’s inter‐
face. This in turn automatically causes the root view controller to obtain its main
view (typically by loading it from a nib), which the window adds as its own root
view. That happens after application:didFinishLaunchingWithOptions: is
called.

App without a main storyboard
If your app has no main storyboard, then creation and configuration of the window
must be done in some other way. Typically, it is done in code. You can see this in a
project generated from the Empty Application template, where all the configuration
I’ve just described is performed explicitly, in code, in application:didFinish-
LaunchingWithOptions:, like this:

self.window =
 [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
self.window.backgroundColor = [UIColor whiteColor];
[self.window makeKeyAndVisible];

It is extremely improbable that you would ever need to subclass UIWindow. If, however,
you wanted to create a UIWindow subclass and make an instance of that subclass your
app’s main window, then how you proceed depends on how the window is instantiated
in the first place:
App with a main storyboard

As the app launches, after UIApplicationMain has instantiated the app delegate, it
asks the app delegate instance for the value of its window property. If that value is

The Window | 5

www.it-ebooks.info

http://www.it-ebooks.info/

nil, UIApplicationMain instantiates UIWindow and assigns that instance to the
app delegate’s window property. If that value is not nil, UIApplicationMain leaves
it alone and uses it as the app’s main window. Therefore, the way to instantiate a
UIWindow subclass and use that instance as your app’s main window is to imple‐
ment the getter for the app delegate’s window property in such a way as to generate
the UIWindow subclass instance exactly once (that is, instantiate the UIWindow
subclass only if you haven’t already done so), like this:

- (UIWindow*) window {
 UIWindow* w = self->_window;
 if (!w) {
 w = [[MyWindow alloc] initWithFrame:
 [[UIScreen mainScreen] bounds]];
 self->_window = w;
 }
 return w;
}

App without a main storyboard
You’re already instantiating UIWindow and assigning that instance to the app del‐
egate’s self.window, in code. So instantiate your UIWindow subclass instead.

Once the app is running, there are various ways to refer to the window:

• If a UIView is in the interface, it automatically has a reference to the window through
its own window property.
You can also use a UIView’s window property as a way of asking whether it is ulti‐
mately embedded in the window; if it isn’t, its window property is nil. A UIView
whose window property is nil cannot be visible to the user.

• The app delegate instance maintains a reference to the window through its window
property. You can get a reference to the app delegate from elsewhere through the
shared application’s delegate property, and through it you can refer to the window:

UIWindow* w = [[[UIApplication sharedApplication] delegate] window];

• The shared application maintains a reference to the window through its key-
Window property:

UIWindow* w = [[UIApplication sharedApplication] keyWindow];

That reference, however, is slightly volatile, because the system can create temporary
windows and interpose them as the application’s key window. For example, while a
UIAlertView is showing (Chapter 13), it is the application’s keyWindow.

6 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Experimenting With Views
In the course of this and subsequent chapters, you may want to experiment with views
in a project of your own. Since view controllers aren’t formally explained until Chap‐
ter 6, I’ll just outline two simple approaches.

One way is to start your project with the Single View Application template. It gives you
a main storyboard containing one scene with one view controller instance which itself
contains its own main view; when the app runs, that view controller will become the
app’s main window’s rootViewController, and its main view will become the window’s
root view. You can drag a view from the Object library into the main view as a subview,
and it will be instantiated in the interface when the app runs. Alternatively, you can
create views and add them to the interface in code; the simplest place to do this, for now,
is the view controller’s viewDidLoad method, which has a reference to the view con‐
troller’s main view as self.view. For example:

- (void)viewDidLoad {
 [super viewDidLoad];
 UIView* mainview = self.view;
 UIView* v = [[UIView alloc] initWithFrame:CGRectMake(100,100,50,50)];
 v.backgroundColor = [UIColor redColor]; // small red square
 [mainview addSubview: v]; // add it to main view
}

Alternatively, you can start your project with the Empty Application template. It has
no .xib or .storyboard file, so your views will have to be created entirely in code. The
Empty Application template does not supply any view controllers, and does not assign
any view controller to the window’s rootViewController property. This situation caus‐
es the runtime to complain when the application is launched: “Application windows are
expected to have a root view controller at the end of application launch.” A simple
solution is to put your code in the app delegate’s application:didFinishLaunching-
WithOptions:, creating a minimal root view controller and accessing its main view
through its view property. For example:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // (template code:)
 self.window =
 [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 // (your code:)
 self.window.rootViewController = [UIViewController new];
 UIView* mainview = self.window.rootViewController.view;
 UIView* v = [[UIView alloc] initWithFrame:CGRectMake(100,100,50,50)];
 v.backgroundColor = [UIColor redColor]; // small red square
 [mainview addSubview: v]; // add it to the main view
 // (template code:)

Experimenting With Views | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. Overlapping views

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its rectangular area.
No part of any view that was not a subview of this view could appear inside it, because
when this view redrew its rectangle, it would erase the overlapping portion of the other
view. No part of any subview of this view could appear outside it, because the view took
responsibility for its own rectangle and no more.

Those rules, however, were gradually relaxed, and starting in OS X 10.5, Apple intro‐
duced an entirely new architecture for view drawing that lifted those restrictions com‐
pletely. iOS view drawing is based on this revised architecture. In iOS, some or all of a
subview can appear outside its superview, and a view can overlap another view and can
be drawn partially or totally in front of it without being its subview.

For example, Figure 1-1 shows three overlapping views. All three views have a back‐
ground color, so each is completely represented by a colored rectangle. You have no way
of knowing, from this visual representation, exactly how the views are related within
the view hierarchy. In actual fact, the view in the middle (horizontally) is a sibling view
of the view on the left (they are both direct subviews of the root view), and the view on
the right is a subview of the middle view.

When views are created in the nib, you can examine the view hierarchy in the nib editor’s
document outline to learn their actual relationship (Figure 1-2). When views are created

8 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-2. A view hierarchy as displayed in the nib editor

in code, you know their hierarchical relationship because you created that hierarchy.
But the visible interface doesn’t tell you, because view overlapping is so flexible.

To see an outline of a view’s subview hierarchy at runtime while
paused in the debugger, use the debugger console to send the
recursiveDescription command to that view; for example, po
[someView recursiveDescription].

Nevertheless, a view’s position within the view hierarchy is extremely significant. For
one thing, the view hierarchy dictates the order in which views are drawn. Sibling sub‐
views of the same superview have a definite order: one is drawn before the other, so if
they overlap, it will appear to be behind its sibling. Similarly, a superview is drawn before
its subviews, so if they overlap it, it will appear to be behind them.

You can see this illustrated in Figure 1-1. The view on the right is a subview of the view
in the middle and is drawn on top of it. The view on the left is a sibling of the view in
the middle, but it is a later sibling, so it is drawn on top of the view in the middle and
on top of the view on the right. The view on the left cannot appear behind the view on
the right but in front of the view in the middle, because those two views are subview
and superview and are drawn together — both are drawn either before or after the view
on the left, depending on the ordering of the siblings.

This layering order can be governed in the nib editor by arranging the views in the
document outline. (If you click in the canvas, you may be able to use the menu items of
the Editor → Arrange menu instead — Send to Front, Send to Back, Send Forward, Send
Backward.) In code, there are methods for arranging the sibling order of views, which
we’ll come to in a moment.

Here are some other effects of the view hierarchy:

• If a view is removed from or moved within its superview, its subviews go with it.
• A view’s degree of transparency is inherited by its subviews.
• A view can optionally limit the drawing of its subviews so that any parts of them

outside the view are not shown. This is called clipping and is set with the view’s
clipsToBounds property.

Subview and Superview | 9

www.it-ebooks.info

http://www.it-ebooks.info/

• A superview owns its subviews, in the memory-management sense, much as an
NSArray owns its elements; it retains them and is responsible for releasing a subview
when that subview ceases to be its subview (it is removed from the collection of this
view’s subviews) or when it itself goes out of existence.

• If a view’s size is changed, its subviews can be resized automatically (and I’ll have
much more to say about that later in this chapter).

A UIView has a superview property (a UIView) and a subviews property (an NSArray
of UIViews, in back-to-front order), allowing you to trace the view hierarchy in code.
There is also a method isDescendantOfView: letting you check whether one view is a
subview of another at any depth. If you need a reference to a particular view, you will
probably arrange this beforehand as an instance variable, perhaps through an outlet.
Alternatively, a view can have a numeric tag (its tag property), and can then be referred
to by sending any view higher up the view hierarchy the viewWithTag: message. Seeing
that all tags of interest are unique within their region of the hierarchy is up to you.

Manipulating the view hierarchy in code is easy. This is part of what gives iOS apps their
dynamic quality, and it compensates for the fact that there is basically just a single
window. It is perfectly reasonable for your code to rip an entire hierarchy of views out
of the superview and substitute another! You can do this directly; you can combine it
with animation (Chapter 4); you can govern it through view controllers (Chapter 6).

The method addSubview: makes one view a subview of another; removeFrom-
Superview takes a subview out of its superview’s view hierarchy. In both cases, if the
superview is part of the visible interface, the subview will appear or disappear; and of
course this view may itself have subviews that accompany it. Just remember that re‐
moving a subview from its superview releases it; if you intend to reuse that subview later
on, you will wish to retain it first. This is often taken care of through a property with a
retain policy.

Events inform a view of these dynamic changes. To respond to these events requires
subclassing. Then you’ll be able to override any of these methods:

• didAddSubview: and willRemoveSubview:
• didMoveToSuperview and willMoveToSuperview:
• didMoveToWindow and willMoveToWindow:

When addSubview: is called, the view is placed last among its superview’s subviews;
thus it is drawn last, meaning that it appears frontmost. A view’s subviews are indexed,
starting at 0, which is rearmost. There are additional methods for inserting a subview
at a given index, or below (behind) or above (in front of) a specific view; for swapping
two sibling views by index; and for moving a subview all the way to the front or back
among its siblings:

10 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

• insertSubview:atIndex:

• insertSubview:belowSubview:, insertSubview:aboveSubview:
• exchangeSubviewAtIndex:withSubviewAtIndex:

• bringSubviewToFront:, sendSubviewToBack:

Oddly, there is no command for removing all of a view’s subviews at once. However, a
view’s subviews array is an immutable copy of the internal list of subviews, so it is legal
to cycle through it and remove each subview one at a time:

for (UIView* v in view.subviews)
 [v removeFromSuperview];

Here’s an alternative way to do that:

[view.subviews makeObjectsPerformSelector:@selector(removeFromSuperview)];

Visibility and Opacity
A view can be made invisible by setting its hidden property to YES, and visible again
by setting it to NO. This takes it (and its subviews, of course) out of the visible interface
without the overhead of actually removing it from the view hierarchy. A hidden view
does not (normally) receive touch events, so to the user it really is as if the view weren’t
there. But it is there, so it can still be manipulated in code.

A view can be assigned a background color through its backgroundColor property. A
color is a UIColor; this is not a difficult class to use, and I’m not going to go into details.
A view whose background color is nil (the default) has a transparent background. It is
perfectly reasonable for a view to have a transparent background and to do no additional
drawing of its own, just so that it can act as a convenient superview to other views,
making them behave together.

A view can be made partially or completely transparent through its alpha property: 1.0
means opaque, 0.0 means transparent, and a value may be anywhere between them,
inclusive. This affects subviews: if a superview has an alpha of 0.5, none of its subviews
can have an apparent opacity of more than 0.5, because whatever alpha value they have
will be drawn relative to 0.5. (Just to make matters more complicated, colors have an
alpha value as well. So, for example, a view can have an alpha of 1.0 but still have a
transparent background because its backgroundColor has an alpha less than 1.0.) A
view that is completely transparent (or very close to it) is like a view whose hidden is
YES: it is invisible, along with its subviews, and cannot (normally) be touched.

A view’s alpha property value affects both the apparent transparency of its background
color and the apparent transparency of its contents. For example, if a view displays an

Visibility and Opacity | 11

www.it-ebooks.info

http://www.it-ebooks.info/

image and has a background color and its alpha is less than 1, the background color
will seep through the image (and whatever is behind the view will seep through both).

A view’s opaque property, on the other hand, is a horse of a different color; changing it
has no effect on the view’s appearance. Rather, this property is a hint to the drawing
system. If a view completely fills its bounds with ultimately opaque material and its
alpha is 1.0, so that the view has no effective transparency, then it can be drawn more
efficiently (with less drag on performance) if you inform the drawing system of this fact
by setting its opaque to YES. Otherwise, you should set its opaque to NO. The opaque
value is not changed for you when you set a view’s backgroundColor or alpha! Setting
it correctly is entirely up to you; the default, perhaps surprisingly, is YES.

Frame
A view’s frame property, a CGRect, is the position of its rectangle within its superview,
in the superview’s coordinate system. By default, the superview’s coordinate system will
have the origin at its top left, with the x-coordinate growing positively rightward and
the y-coordinate growing positively downward.

Setting a view’s frame to a different CGRect value repositions the view, or resizes it, or
both. If the view is visible, this change will be visibly reflected in the interface. On the
other hand, you can also set a view’s frame when the view is not visible — for example,
when you create the view in code. In that case, the frame describes where the view will
be positioned within its superview when it is given a superview. UIView’s designated
initializer is initWithFrame:, and you’ll often assign a frame this way, especially because
the default frame might otherwise be {{0,0},{0,0}}, which is rarely what you want.

Forgetting to assign a view a frame when creating it in code, and then
wondering why it isn’t appearing when added to a superview, is a
common beginner mistake. A view with a zero-size frame is effective‐
ly invisible. If a view has a standard size that you want it to adopt,
especially in relation to its contents (like a UIButton in relation to its
title), an alternative is to send it the sizeToFit message.

We are now in a position to generate programmatically the interface displayed in
Figure 1-1:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectMake(41, 56, 132, 194)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [[UIView alloc] initWithFrame:CGRectMake(43, 197, 160, 230)];

12 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-3. A subview inset from its superview

v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];
[mainview addSubview: v3];

In that code, we determined the layering order of v1 and v3 (the middle and left views,
which are siblings) by the order in which we inserted them into the view hierarchy with
addSubview:.

Bounds and Center
Suppose we have a superview and a subview, and the subview is to appear inset by 10
points, as in Figure 1-3. The utility function CGRectInset makes it easy to derive one
rectangle as an inset from another, so we’ll use it to determine the subview’s frame. But
what rectangle should this be inset from? Not the superview’s frame; the frame repre‐
sents a view’s position within its superview, and in that superview’s coordinates. What
we’re after is a CGRect describing our superview’s rectangle in its own coordinates,
because those are the coordinates in which the subview’s frame is to be expressed. The
CGRect that describes a view’s rectangle in its own coordinates is the view’s bounds
property.

So, the code to generate Figure 1-3 looks like this:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];

You’ll very often use a view’s bounds in this way. When you need coordinates for drawing
inside a view, whether drawing manually or placing a subview, you’ll often refer to the
view’s bounds.

Bounds and Center | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-4. A subview exactly covering its superview

Interesting things happen when you set a view’s bounds. If you change a view’s bounds
size, you change its frame. The change in the view’s frame takes place around its cen‐
ter, which remains unchanged. So, for example:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];
CGRect r = v2.bounds;
r.size.height += 20;
r.size.width += 20;
v2.bounds = r;

What appears is a single rectangle; the subview completely and exactly covers its su‐
perview, its frame being the same as the superview’s bounds. The call to CGRectInset
started with the superview’s bounds and shaved 10 points off the left, right, top, and
bottom to set the subview’s frame (Figure 1-3). But then we added 20 points to the
subview’s bounds height and width, and thus added 20 points to the subview’s frame
height and width as well (Figure 1-4). The center didn’t move, so we effectively put the
10 points back onto the left, right, top, and bottom of the subview’s frame.

When you create a UIView, its bounds coordinate system’s {0,0} point is at its top left.
If you change a view’s bounds origin, you move the origin of its internal coordinate
system. Because a subview is positioned in its superview with respect to its superview’s
coordinate system, a change in the bounds origin of the superview will change the
apparent position of a subview. To illustrate, we start once again with our subview inset
evenly within its superview, and then change the bounds origin of the superview:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[mainview addSubview: v1];

14 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-5. The superview’s bounds origin has been shifted

[v1 addSubview: v2];
CGRect r = v1.bounds;
r.origin.x += 10;
r.origin.y += 10;
v1.bounds = r;

Nothing happens to the superview’s size or position. But the subview has moved up and
to the left so that it is flush with its superview’s top-left corner (Figure 1-5). Basically,
what we’ve done is to say to the superview, “Instead of calling the point at your upper
left {0,0}, call that point {10,10}.” Because the subview’s frame origin is itself at
{10,10}, the subview now touches the superview’s top-left corner. The effect of chang‐
ing a view’s bounds origin may seem directionally backward — we increased the su‐
perview’s origin in the positive direction, but the subview moved in the negative direc‐
tion — but think of it this way: a view’s bounds origin point coincides with its frame’s
top left.

We have seen that changing a view’s bounds size affects its frame size. The converse is
also true: changing a view’s frame size affects its bounds size. What is not affected by
changing a view’s bounds size is the view’s center. This property, like the frame property,
represents the view’s position within its superview, in the superview’s coordinates, but
it is the position of the bounds center, the point derived from the bounds like this:

CGPoint c = CGPointMake(CGRectGetMidX(theView.bounds),
 CGRectGetMidY(theView.bounds));

A view’s center is thus a single point establishing the positional relationship between a
view’s bounds and its superview’s bounds. Changing a view’s bounds does not change
its center; changing a view’s center does not change its bounds.

Thus, a view’s bounds and center are orthogonal (independent), and describe (among
other things) both the view’s size and its position within its superview. The view’s frame
is therefore superfluous! In fact, the frame property is merely a convenient expression
of the center and bounds values. In most cases, this won’t matter to you; you’ll use the

Bounds and Center | 15

www.it-ebooks.info

http://www.it-ebooks.info/

frame property anyway. When you first create a view from scratch, the designated ini‐
tializer is initWithFrame:. You can change the frame, and the bounds size and center
will change to match. You can change the bounds size or the center, and the frame will
change to match. Nevertheless, the proper and most reliable way to position and size a
view within its superview is to use its bounds and center, not its frame; there are some
situations in which the frame is meaningless (or will at least behave very oddly), but the
bounds and center will always work.

We have seen that every view has its own coordinate system, expressed by its bounds,
and that a view’s coordinate system has a clear relationship to its superview’s coordinate
system, expressed by its center. This is true of every view in a window, so it is possible
to convert between the coordinates of any two views in the same window. Convenience
methods are supplied to perform this conversion both for a CGPoint and for a CGRect:

• convertPoint:fromView:, convertPoint:toView:
• convertRect:fromView:, convertRect:toView:

If the second parameter is nil, it is taken to be the window.

For example, if v2 is a subview of v1, then to center v2 within v1 you could say:

v2.center = [v1 convertPoint:v1.center fromView:v1.superview];

When setting a view’s position by setting its center, if the height or
width of the view is not an integer (or, on a single-resolution screen,
not an even integer), the view can end up misaligned: its point values
in one or both dimensions are located between the screen pixels. This
can cause the view to be displayed incorrectly; for example, if the view
contains text, the text may be blurry. You can detect this situation in
the Simulator by checking Debug → Color Misaligned Images. A sim‐
ple solution is to set the view’s frame, after positioning it, to the CGRect-
Integral of its frame.

Transform
A view’s transform property alters how the view is drawn — it may, for example, change
the view’s perceived size and orientation — without affecting its bounds and center. A
transformed view continues to behave correctly: a rotated button, for example, is still a
button, and can be tapped in its apparent location and orientation.

A transform value is a CGAffineTransform, which is a struct representing six of the nine
values of a 3×3 transformation matrix (the other three values are constants, so there’s
no point representing them in the struct). You may have forgotten your high-school
linear algebra, so you may not recall what a transformation matrix is. For the details,

16 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Window Coordinates and Screen Coordinates
The device screen has no frame, but it has bounds. The main window has no superview,
but its frame is set with respect to the screen’s bounds, as in the template code I cited
earlier:

self.window =
 [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

The window’s frame coordinates are invariant, regardless of the rotation of the device:
the window’s {0,0} point thus might be in any corner (from the user’s perspective).
Thus, window coordinates are screen coordinates.

Once the window is created, you will rarely need to access its coordinates, except to use
its bounds as the ultimate coordinate reference system. The root view controller’s view
will be much more important to you, and in particular its bounds, which provide the
coordinate system in which the the rest of your interface is ultimately embedded. The
root view controller’s view’s frame is automatically adjusted to fill the window correctly,
and if the device is rotated and the interface rotates to compensate, its bounds are ad‐
justed accordingly. This is one of the main benefits of having a root view controller.

which are quite simple really, see the “Transforms” chapter of Apple’s Quartz 2D Pro‐
gramming Guide, especially the section called “The Math Behind the Matrices.” But you
don’t really need to know those details, because convenience functions, whose names
start with CGAffineTransformMake..., are provided for creating three of the basic types
of transform: rotation, scaling, and translation (i.e., changing the view’s apparent posi‐
tion). A fourth basic transform type, skewing or shearing, has no convenience function.

By default, a view’s transformation matrix is CGAffineTransformIdentity, the identity
transform. It has no visible effect, so you’re unaware of it. Any transform that you do
apply takes place around the view’s center, which is held constant.

Here’s some code to illustrate use of a transform:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];
v1.transform = CGAffineTransformMakeRotation(45 * M_PI/180.0);

The transform property of the view v1 is set to a rotation transform. The result
(Figure 1-6) is that the view appears to be rocked 45 degrees clockwise. (I think in
degrees, but Core Graphics thinks in radians, so my code has to convert.) Observe that
the view’s center property is unaffected, so that the rotation seems to have occurred

Transform | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-6. A rotation transform

around the view’s center. Moreover, the view’s bounds property is unaffected; the internal
coordinate system is unchanged, so the subview is drawn in the same place relative to
its superview. The view’s frame, however, is now useless, as no mere rectangle can de‐
scribe the region of the superview apparently occupied by the view; the frame’s actual
value, roughly {{63.7416, 92.7416}, {230.517, 230.517}}, describes the minimal
bounding rectangle surrounding the view’s apparent position. The rule is that if a view’s
transform is not the identity transform, you should not set its frame; also, automatic
resizing of a subview, discussed later in this chapter, requires that the superview’s trans‐
form be the identity transform.

Suppose, instead of CGAffineTransformMakeRotation, we call CGAffineTransform-
MakeScale, like this:

v1.transform = CGAffineTransformMakeScale(1.8, 1);

The bounds property of the view v1 is still unaffected, so the subview is still drawn in
the same place relative to its superview; this means that the two views seem to have
stretched horizontally together (Figure 1-7). No bounds or centers were harmed by the
application of this transform!

Transformation matrices can be chained. There are convenience functions for applying
one transform to another. Their names do not contain “Make.” These functions are not
commutative; that is, order matters. If you start with a transform that translates a view
to the right and then apply a rotation of 45 degrees, the rotated view appears to the right
of its original position; on the other hand, if you start with a transform that rotates a
view 45 degrees and then apply a translation to the right, the meaning of “right” has
changed, so the rotated view appears 45 degrees down from its original position. To
demonstrate the difference, I’ll start with a subview that exactly overlaps its superview:

18 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-7. A scale transform

Figure 1-8. Translation, then rotation

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(20, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:v1.bounds];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];

Then I’ll apply two successive transforms to the subview, leaving the superview to show
where the subview was originally. In this example, I translate and then rotate
(Figure 1-8):

v2.transform = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformRotate(v2.transform, 45 * M_PI/180.0);

In this example, I rotate and then translate (Figure 1-9):

v2.transform = CGAffineTransformMakeRotation(45 * M_PI/180.0);
v2.transform = CGAffineTransformTranslate(v2.transform, 100, 0);

Transform | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-9. Rotation, then translation

The function CGAffineTransformConcat concatenates two transform matrices using
matrix multiplication. Again, this operation is not commutative. The order is the op‐
posite of the order when using convenience functions for applying one transform to
another. For example, this gives the same result as Figure 1-9:

CGAffineTransform r = CGAffineTransformMakeRotation(45 * M_PI/180.0);
CGAffineTransform t = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformConcat(t,r); // not r,t

To remove a transform from a combination of transforms, apply its inverse. A conve‐
nience function lets you obtain the inverse of a given affine transform. Again, order
matters. In this example, I rotate the subview and shift it to its “right,” and then remove
the rotation (Figure 1-10):

CGAffineTransform r = CGAffineTransformMakeRotation(45 * M_PI/180.0);
CGAffineTransform t = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformConcat(t,r);
v2.transform =
 CGAffineTransformConcat(CGAffineTransformInvert(r), v2.transform);

Finally, as there are no convenience methods for creating a skew (shear) transform, I’ll
illustrate by creating one manually, without further explanation (Figure 1-11):

v1.transform = CGAffineTransformMake(1, 0, -0.2, 1, 0, 0);

Transforms are useful particularly as temporary visual indicators. For example, you
might call attention to a view by applying a transform that scales it up slightly, and then
applying the identity transform to restore it to its original size, and animating those
changes (Chapter 4).

The transform property lies at the heart of an iOS app’s ability to rotate its interface.
The window’s frame and bounds, as I’ve already said, are invariant, locked to the screen;

20 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-10. Rotation, then translation, then inversion of the rotation

Figure 1-11. Skew (shear)

but the root view’s frame and bounds are not. Suppose the user rotates the device 90
degrees and the app interface is to rotate to compensate. How is this done? A 90-degree
rotation transform is applied to the root view, so that its {0,0} point moves to what the
user now sees as the top left of the view. The root view’s subviews have their frame in
the root view’s bounds coordinate system, so they are effectively rotated.

In addition, the root view’s bounds height and width are effectively swapped, so that its
dimensions still fit the window in spite of the rotation transform: the long dimension
becomes the short dimension, and vice versa. This raises concerns about the position of
the root view’s subviews. Consider, for example, a subview of the root view, located at
the bottom right of the screen when the device is in portrait orientation. If the root view’s
bounds width and bounds height are effectively swapped, then that poor old subview
will now be outside the bounds height, and therefore off the screen — unless something
further is done. That’s the subject of the next section.

Transform | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Layout
We have seen that a subview moves when its superview’s bounds origin is changed. But
what happens to a subview when its superview’s bounds size is changed? (And remem‐
ber, this includes changing the superview’s frame size.)

Of its own accord, nothing happens. The subview’s bounds and center haven’t changed,
and the superview’s bounds origin hasn’t moved, so the subview stays in the same po‐
sition relative to the top left of its superview. In real life, however, that often won’t be
what you want. You’ll want subviews to be resized and repositioned when their super‐
view’s bounds size is changed. This is called layout.

The need for layout is obvious in a context such as OS X, where the user can freely resize
a window, potentially disturbing your interface. For example, you’d want an OK button
near the lower-right corner to stay in the lower-right corner as the window grows, while
a text field at the top of the window should stay at the top of the window, but perhaps
should widen as the window widens.

There are no user-resizable windows on an iOS device, but still, a superview might be
resized dynamically. For example, your app might respond to the user rotating the device
90 degrees by applying a rotation transform to a view and swapping its bounds width
and height values, to match the new orientation of the screen. An iPhone app might
launch on two different sizes of screen: the screen of the iPhone 5 and later is taller than
that of the iPhone 4S and before. A view instantiated from a nib, such as a view con‐
troller’s main view or a table view cell, might be resized to fit into the interface into
which it is placed.

New in Xcode 5, you can test your nib-based interface’s basic layout
behavior under different conditions without running the app. While
in the nib editor, open an assistant pane and switch its Tracking menu
(the first component in its jump bar, Control-4) to Preview. Buttons at
the lower right let you toggle between “iOS 7.0 and Later” vs. “iOS 6.1
and Earlier”, between portrait and landscape orientation, and be‐
tween the taller and shorter iPhone screen. See also Chapter 6.

Layout is performed in three primary ways:
Manual layout

The superview is sent the layoutSubviews message whenever it is resized; so, to
lay out subviews manually, provide your own subclass and override layout-
Subviews. Clearly this could turn out to be a lot of work, but it means you can do
anything you like.

22 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Autoresizing
Autoresizing is the pre-iOS 6 way of performing layout automatically. A subview
will respond to its superview’s being resized, in accordance with the rules prescribed
by the subview’s autoresizingMask property value.

Autolayout
Autolayout, introduced in iOS 6 (and incompatible with earlier systems), depends
on the constraints of views. A constraint (an instance of NSLayoutConstraint) is a
full-fledged object with numeric values; it is much more sophisticated, descriptive,
and powerful than the autoresizingMask. Many constraints can apply to a view,
and they can describe a relationship between any two views (not just a subview and
its superview). Autolayout is implemented behind the scenes in layoutSubviews;
in effect, constraints allow you to write sophisticated layoutSubviews functionality
without code.

Your layout strategy can involve any combination of these. The need for manual layout
is rare, but it’s there if you need it. Autoresizing is used automatically unless you delib‐
erately turn it off by setting a superview’s autoresizesSubviews property to NO, or
unless a view uses autolayout instead. Autolayout is an opt-in technology, and can be
used for whatever areas of your interface you find appropriate; a view that uses auto‐
layout can live side by side with a view that uses autoresizing.

One of the chief places where you opt in to autolayout is the nib file, and in Xcode 5 all
new .storyboard and .xib files do opt in — they have autolayout turned on, by default.
To see this, select the file in the Project navigator, show the File inspector, and examine
the “Use Auto Layout” checkbox. On the other hand, a view that your code creates and
adds to the interface, by default, uses autoresizing, not autolayout.

If a nib’s “Use Auto Layout” is checked, do not load it on any system
earlier than iOS 6. If you do, your app will crash, because you’re us‐
ing a class, NSLayoutConstraint, that doesn’t exist before iOS 6.

Autoresizing
Autoresizing is a matter of conceptually assigning a subview “springs and struts.” A
spring can stretch; a strut can’t. Springs and struts can be assigned internally or exter‐
nally, horizontally or vertically. Thus you can specify (using internal springs and struts)
whether and how the view can be resized, and (using external springs and struts)
whether and how the view can be repositioned. For example:

• Imagine a subview that is centered in its superview and is to stay centered, but is to
resize itself as the superview is resized. It would have struts externally and springs
internally.

Layout | 23

www.it-ebooks.info

http://www.it-ebooks.info/

• Imagine a subview that is centered in its superview and is to stay centered, and is
not to resize itself as the superview is resized. It would have springs externally and
struts internally.

• Imagine an OK button that is to stay in the lower right of its superview. It would
have struts internally, struts externally to its right and bottom, and springs externally
to its top and left.

• Imagine a text field that is to stay at the top of its superview. It is to widen as the
superview widens. It would have struts externally; internally it would have a vertical
strut and a horizontal spring.

To experiment with autoresizing in the nib editor, you’ll need to ensure that autolayout
is turned off for the .storyboard or .xib file you’re editing. To do so, select that file in the
Project navigator and show the File inspector: uncheck “Use Auto Layout.”

When editing a nib file with autolayout turned off, you can assign a view springs and
struts in the Size inspector (Autosizing). A solid line externally represents a strut; a solid
line internally represents a spring. A helpful animation shows you the effect on your
view’s position as its superview is resized.

In code, a combination of springs and struts is set through a view’s autoresizing-
Mask property. It’s a bitmask, so you use bitwise-or to combine options. The options,
with names that start with UIViewAutoresizingFlexible..., represent springs; what‐
ever isn’t specified is a strut. The default is UIViewAutoresizingNone, apparently mean‐
ing all struts — but of course it can’t really be all struts, because if the superview is
resized, something needs to change; in reality, UIViewAutoresizingNone is the same
as UIViewAutoresizingFlexibleRightMargin together with UIViewAutoresizing-
FlexibleBottomMargin.

In debugging, when you log a UIView to the console, its autoresizing-
Mask is reported using the word “autoresize” and a list of the springs.
The margins are LM, RM, TM, and BM; the internal dimensions are W and
H. For example, autoresize = W+BM means that what’s flexible is the
width and the bottom margin.

To demonstrate autoresizing, I’ll start with a view and two subviews, one stretched across
the top, the other confined to the lower right (Figure 1-12):

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(100, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 132, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [[UIView alloc] initWithFrame:CGRectMake(v1.bounds.size.width-20,
 v1.bounds.size.height-20,

24 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-12. Before autoresizing

Figure 1-13. After autoresizing

 20, 20)];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];
[v1 addSubview: v3];

To that example, I’ll add code applying springs and struts to the two subviews to make
them behave like the text field and the OK button I was hypothesizing earlier:

v2.autoresizingMask = UIViewAutoresizingFlexibleWidth;
v3.autoresizingMask = UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin;

Now I’ll resize the superview, thus bringing autoresizing into play; as you can see
(Figure 1-13), the subviews remain pinned in their correct relative positions:

CGRect r = v1.bounds;
r.size.width += 40;
r.size.height -= 50;
v1.bounds = r;

That example shows exactly what autoresizing is about, but it’s a little artificial; in real
life, the superview is more likely to be resized, not because you resize it in code, but
because of automatic behavior, such as compensatory rotation of the interface when the
device is rotated. To see this, you might modify the previous example to pin the size of

Layout | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Size Inspector Deltas
In Xcode 5, when you’re editing a .storyboard or .xib file that doesn’t have autolayout
turned on, the nib editor’s Size inspector for a view has a set of numeric fields called iOS
6/7 Deltas. Their purpose is to help you compensate for the fact that a view designed
for iOS 7 will look different on iOS 6. There are various reasons for this, but one of the
most obvious is that the top of the root view on iOS 6 is usually the bottom of the status
bar, whereas the top of the root view on iOS 7 is always the top of the screen, with the
status bar overlapping it. Thus, the position of a subview will need to be different in the
two systems in order to end up in the same place. That difference is expressed, in the
nib editor, by the delta.

For example, consider a UILabel that is to be at the top of the screen. When you’re
designing in the nib editor for iOS 7, a label that is literally at the top of the root view
will be overlapped by the status bar; you obviously don’t want that, so you place the label
with its top at, let’s say, a Y value of 20, so that the top of the label meets the bottom of
the status bar. Now you run the same app on iOS 6, and the top of the label no longer
meets the bottom of the status bar: instead, there’s a 20 pixel gap between them. That’s
because the top of the superview is lower by 20 pixels on iOS 6 than it is on iOS 7. To
compensate, you set the label’s ΔY to -20. Now its position looks right on both systems.

v1 to the size of the root view, and then run the app and rotate the device. Thus you
might initially configure v1 like this:

v1.frame = mainview.bounds;
v1.autoresizingMask = UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleWidth;

Now run the app and rotate the device (in the Simulator, repeatedly choose Hardware
→ Rotate Left). The view v1 now fills the screen as the interface rotates, and its subviews
stay pinned in their correct relative position.

Autoresizing is effective but simple — sometimes too simple. The only relationship it
describes is between a subview and its superview; it can’t help you do such things as
space a row of views evenly across the screen relative to one another. Before autolayout,
the way to achieve more sophisticated goals of that sort was to combine autoresizing
with manual layout in layoutSubviews. Autoresizing happens before layout-
Subviews is called, so your layoutSubviews code is free to come marching in and tidy
up whatever autoresizing didn’t get quite right.

Autoresizing for subviews can be turned off at the superview level: to do so, set the
superview’s autoresizesSubviews property to NO.

26 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Autolayout
Autolayout is an opt-in technology, at the level of each individual view. If no views in
the interface opt in to autolayout, layout for the entire interface behaves as in iOS 5 and
before. A view may opt in to autolayout in any of three ways:

• Your code adds an autolayout constraint to a view. The views involved in this con‐
straint use autolayout.

• Your app loads a nib for which “Use Auto Layout” is checked. Every view instantiated
from that nib uses autolayout.

• A view in the interface, which would be an instance of a custom UIView subclass
of yours, returns YES from the class method requiresConstraintBasedLayout.
That view uses autolayout.
The reason for this third approach to opting in to autolayout is that you might need
autolayout to be switched on in order to add autolayout constraints in code. A
common place to create constraints in code is in a view’s updateConstraints im‐
plementation (discussed later in this chapter). However, if autolayout isn’t switched
on, updateConstraints won’t be called. So requiresConstraintBasedLayout
provides a way of switching it on.

One sibling view can use autolayout while another sibling view does not, and a superview
can use autolayout while one or indeed all of its subviews do not. However, autolayout
is implemented through the superview chain, so if a view uses autolayout, then auto‐
matically so do all its superviews; and if (as will almost certainly be the case) one of
those views is the main view of a view controller, that view controller also uses auto‐
layout, and receives autolayout-related events that it would not have received otherwise.

You can’t turn off autolayout for just part of a nib. Either all views
instantiated from a nib use autolayout or they all use autoresizing. To
generate different parts of your interface from nibs, one part with
autoresizing, another part with autolayout, separate those parts into
different nibs (different .storyboard or .xib files) and then load and
combine them at runtime.

Constraints
An autolayout constraint, or simply constraint, is an NSLayoutConstraint instance, and
describes either the absolute width or height of a view or a relationship between an
attribute of one view and an attribute of another view. In the latter case, the attributes
don’t have to be the same attribute, and the two views don’t have to be siblings (subviews
of the same superview) or parent and child (superview and subview) — the only re‐

Layout | 27

www.it-ebooks.info

http://www.it-ebooks.info/

quirement is that they share a common ancestor (a superview at some height up the
view hierarchy).

Here are the chief properties of an NSLayoutConstraint:
firstItem, firstAttribute, secondItem, secondAttribute

The two views and their respective attributes involved in this constraint. If the
constraint is describing a view’s absolute height or width, the second view will be
nil and the second attribute will be NSLayoutAttributeNotAnAttribute (which
you’ll probably write as 0). Additional attribute types are:

• NSLayoutAttributeLeft, NSLayoutAttributeRight
• NSLayoutAttributeTop, NSLayoutAttributeBottom
• NSLayoutAttributeLeading, NSLayoutAttributeTrailing
• NSLayoutAttributeWidth, NSLayoutAttributeHeight
• NSLayoutAttributeCenterX, NSLayoutAttributeCenterY
• NSLayoutAttributeBaseline

The meanings of the attributes are intuitively obvious, except that you might won‐
der what “leading” and “trailing” mean: they are the international equivalent of
“left” and “right”, automatically reversing their meaning on systems whose language
is written right-to-left (making it easy, say, to align the beginnings of several labels
of different lengths, irrespective of localization).

multiplier, constant
These numbers will be applied to the second attribute’s value to determine the first
attribute’s value. The multiplier is multiplied by the second attribute’s value; the
constant is added to that product. The first attribute is set to the result. (The name
constant is a very poor choice, as this value isn’t constant; have the Apple folks never
heard the term addend?) Basically, you’re writing an equation of the form a1 =
ma2 + c, where a1 and a2 are the two attributes, and m and c are the multiplier and
the constant. Thus, in the degenerate case where the first attribute’s value is to equal
the second attribute’s value, the multiplier will be 1 and the constant will be 0. If the
second attribute is 0 because you’re describing a view’s width or height absolutely,
the multiplier will be 1 and the constant will be the width or height value.

relation

How the two attribute values are to be related to one another, as modified by the
multiplier and the constant. This is the operator that goes in the spot where I put
the equal sign in the equation in the preceding paragraph. It might be an equal sign
(NSLayoutRelationEqual, which you’ll probably write as 0), but inequalities are
also permitted (NSLayoutRelationLessThanOrEqual, NSLayoutRelationGreater-
ThanOrEqual).

28 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

priority

Priority values range from 1000 (required) down to 1, and certain standard behav‐
iors have standard priorities. Constraints can have different priorities, determining
the order in which they are applied. Constraints are permitted to conflict with one
another provided they have different priorities.

A constraint belongs to a view. A view can have many constraints: a UIView has a
constraints property, along with these instance methods:

• addConstraint:, addConstraints:
• removeConstraint:, removeConstraints:

The question then is which view a given constraint should belong to. The answer is: the
closest superview of both views involved in a constraint. Thus, for example, if the con‐
straint dictates a view’s absolute width, it belongs to that view; if it aligns the tops of two
sibling views, it belongs to their superview; if it sets the top of a view in relation to the
top of its superview, it belongs to the superview. (The runtime may permit you to cheat
and add a constraint at too high a level.) Adding a constraint that refers to a view outside
the subview hierarchy of the view to which you add it will cause a crash (with a helpful
error message).

Both views involved in a constraint must be present in the view hierarchy before the
constraint can be added.

NSLayoutConstraint properties are read-only, except for priority and constant. In
Chapter 4, it will turn out that changing a constraint’s constant in real time is a good
way to animate a view. If you want to change anything else about an existing constraint,
you must remove the constraint and add a new one.

Autoresizing constraints
The mechanism whereby individual views can opt in to autolayout can suddenly involve
other views in autolayout, even though those other views were not using autolayout
previously. Therefore, there needs to be a way, when such a view becomes involved in
autolayout, to determine that view’s position and layout through constraints in the same
way they were previously being determined through its frame and its autoresizing-
Mask. The runtime takes care of this for you: it translates the view’s frame and
autoresizingMask settings into constraints. The result is a set of implicit constraints,
of class NSAutoresizingMaskLayoutConstraint, affecting this view (though they may
be attached to its superview). Thanks to these implicit constraints, the layout dictated
by the view’s autoresizingMask continues to work, even though the view is no longer
obeying its autoresizingMask but rather is using autolayout and constraints.

Layout | 29

www.it-ebooks.info

http://www.it-ebooks.info/

For example, suppose I have a UILabel whose frame is {{20,20},{42,22}}, and whose
autoresizingMask is UIViewAutoresizingNone. If this label were suddenly to come
under autolayout, then its superview would acquire four implicit constraints setting its
width and height at 42 and 22 and its center X and center Y at 41 and 31.

This conversion is performed only if the view in question has its translates-
AutoresizingMaskIntoConstraints property set to YES. That is, in fact, the default if
the view came into existence either in code or by instantiation from a nib where “Use
Auto Layout” is not checked. The assumption is that if a view came into existence in
either of those ways, you want its frame and autoresizingMask to act as its constraints
if it becomes involved in autolayout.

That’s a sensible rule, but it means that if you intend to apply any explicit constraints of
your own to such a view, you’ll probably want to remember to turn off this automatic
behavior by setting the view’s translatesAutoresizingMaskIntoConstraints prop‐
erty to NO. If you don’t, you’re going to end up with both implicit constraints and explicit
constraints affecting this view, and it’s unlikely that you would want that. Typically, that
sort of situation will result in a conflict between constraints, as I’ll explain a little later;
indeed, what usually happens to me is that I don’t remember to set the view’s translates-
AutoresizingMaskIntoConstraints property to NO, and am reminded to do so only
when I do get a conflict between constraints.

Creating constraints in code
We are now ready to write some code involving constraints! I’ll generate the same views
and subviews and layout behavior as in Figure 1-12 and Figure 1-13, but using con‐
straints. Observe that I don’t bother to assign the subviews explicit frames, because
constraints will take care of positioning them, and that I remember (for once) to set
their translatesAutoresizingMaskIntoConstraints properties to NO:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(100, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [UIView new];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [UIView new];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];
[v1 addSubview: v3];
v2.translatesAutoresizingMaskIntoConstraints = NO;
v3.translatesAutoresizingMaskIntoConstraints = NO;
[v1 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v2 attribute:NSLayoutAttributeLeft
 relatedBy:0
 toItem:v1 attribute:NSLayoutAttributeLeft
 multiplier:1 constant:0]];

30 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

[v1 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v2 attribute:NSLayoutAttributeRight
 relatedBy:0
 toItem:v1 attribute:NSLayoutAttributeRight
 multiplier:1 constant:0]];
[v1 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v2 attribute:NSLayoutAttributeTop
 relatedBy:0
 toItem:v1 attribute:NSLayoutAttributeTop
 multiplier:1 constant:0]];
[v2 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v2 attribute:NSLayoutAttributeHeight
 relatedBy:0
 toItem:nil attribute:0
 multiplier:1 constant:10]];
[v3 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v3 attribute:NSLayoutAttributeWidth
 relatedBy:0
 toItem:nil attribute:0
 multiplier:1 constant:20]];
[v3 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v3 attribute:NSLayoutAttributeHeight
 relatedBy:0
 toItem:nil attribute:0
 multiplier:1 constant:20]];
[v1 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v3 attribute:NSLayoutAttributeRight
 relatedBy:0
 toItem:v1 attribute:NSLayoutAttributeRight
 multiplier:1 constant:0]];
[v1 addConstraint:
 [NSLayoutConstraint
 constraintWithItem:v3 attribute:NSLayoutAttributeBottom
 relatedBy:0
 toItem:v1 attribute:NSLayoutAttributeBottom
 multiplier:1 constant:0]];

Now, I know what you’re thinking. You’re thinking: “What are you, nuts? That is a
boatload of code!” (Except that you probably used another four-letter word instead of
“boat”.) But that’s something of an illusion. I’d argue that what we’re doing here is actually
simpler than the code with which we created Figure 1-12 using explicit frames and
autoresizing.

After all, we merely create eight constraints in eight simple commands. (I’ve broken
each command into multiple lines, but that’s just a matter of formatting.) They’re

Layout | 31

www.it-ebooks.info

http://www.it-ebooks.info/

verbose, but they are the same command repeated with different parameters, so creating
them is just a matter of copy-and-paste. Moreover, our eight constraints determine the
position, size, and layout behavior of our two subviews, so we’re getting a lot of bang for
our buck.

Even more telling, constraints are a far clearer expression of what’s supposed to happen
than setting a frame and autoresizingMask. The position of our subviews is described
once and for all, both as they will initially appear and as they will appear if their super‐
view is resized. And it is described meaningfully; we don’t have to use arbitrary math.
Recall what we had to say before:

v3 = [[UIView alloc] initWithFrame:CGRectMake(v1.bounds.size.width-20,
 v1.bounds.size.height-20,
 20, 20)];

That business of subtracting the view’s height and width from its superview’s bounds
height and width in order to position the view is confusing and error-prone. With
constraints, we can speak the truth directly; our constraints say, plainly and simply,
“v3 is 20 points wide and 20 points high and flush with the bottom-right corner of v1”.

In addition, of course, constraints can express things that autoresizing can’t. For exam‐
ple, instead of applying an absolute height to v2, we could require that its height be
exactly one-tenth of v1’s height, regardless of how v1 is resized. To do that without
constraints, you’d have to implement layoutSubviews and enforce it manually, in code.

Once you are using explicit constraints to position and size a view, do
not set its frame (or bounds and center) subsequently; use con‐
straints alone. Otherwise, when layoutSubviews is called, the view will
jump back to where its constraints position it. (The exception is that
you may set a view’s frame if you are in layoutSubviews, as I’ll ex‐
plain later.)

Visual format
If you find constraint-creation code too verbose, it may be possible to condense it
somewhat. Instead of creating each constraint individually, it is sometimes possible to
describe multiple constraints simultaneously through a sort of text-based shorthand,
called a visual format. The shorthand is best understood by example:

@"V:|[v2(10)]"

In that expression, V: means that the vertical dimension is under discussion; the alter‐
native is H:, which is also the default (so it is permitted to specify no dimension). A
view’s name appears in square brackets, and a pipe (|) signifies the superview, so here
we’re portraying v2’s top edge as butting up against its superview’s top edge. Numeric

32 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

dimensions appear in parentheses, and a numeric dimension accompanying a view’s
name sets that dimension of that view, so here we’re also setting v2’s height to 10.

To use a visual format, you have to provide a dictionary mapping the string name of
each view mentioned to the actual view. For example, the dictionary accompanying the
preceding expression might be @{@"v2":v2}. We can form this dictionary automatically
with a macro, NSDictionaryOfVariableBindings, which takes a list of variable names.
So here’s another way of expressing of the preceding code example, using the visual
format shorthand throughout:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(100, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [UIView new];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [UIView new];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[mainview addSubview: v1];
[v1 addSubview: v2];
[v1 addSubview: v3];
v2.translatesAutoresizingMaskIntoConstraints = NO;
v3.translatesAutoresizingMaskIntoConstraints = NO;
NSDictionary *vs = NSDictionaryOfVariableBindings(v2,v3);
[v1 addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:|[v2]|"
 options:0 metrics:nil views:vs]];
[v1 addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[v2(10)]"
 options:0 metrics:nil views:vs]];
[v1 addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:[v3(20)]|"
 options:0 metrics:nil views:vs]];
[v1 addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[v3(20)]|"
 options:0 metrics:nil views:vs]];

That example creates the same constraints as the previous example, but in four com‐
mands instead of eight.

The visual format syntax shows itself to best advantage when multiple views are laid out
in relation to one another along the same dimension; in that situation, you get a lot of
bang for your buck (many constraints generated by one visual format string). The syn‐
tax, however, is somewhat limited in what constraints it can express (you can’t even use
it to center things); it conceals the number and exact nature of the constraints that it
produces; and personally I find it easier to make a mistake with the visual format syntax
than with the complete expression of each constraint. Still, you’ll want to become

Layout | 33

www.it-ebooks.info

http://www.it-ebooks.info/

familiar with the visual format syntax, not least because console messages describing a
constraint sometimes use it.

Here are some further things to know when generating constraints with the visual for‐
mat syntax:

• The metrics: parameter is a dictionary of NSNumber values. This lets you use a
name in the visual format string where a numeric value needs to go.

• The options: parameter is a bitmask letting you do things like add alignments.
The alignments you specify are applied to all the views mentioned in the visual
format string.

• To specify the distance between two successive views, use hyphens surrounding the
numeric value, like this: @"[v1]-20-[v2]". The numeric value may optionally be
surrounded by parentheses. A single hyphen means that a default distance should
be used.

• A numeric value in parentheses may be preceded by an equality or inequality op‐
erator, and may be followed by an at sign with a priority. Multiple numeric values,
separated by comma, may appear in parentheses together. For example:
@"[v1(>=20@400,<=30)]".

For formal details of the visual format syntax, see the “Visual Format Syntax” chapter
of Apple’s Auto Layout Guide.

Mistakes with constraints
You can (and will) make two major kinds of mistake with constraints:
Conflict

You can apply constraints that can’t be satisfied simultaneously. This will be reported
in the console (at great length). Only required constraints (priority 1000) can con‐
tribute to a conflict, as the runtime is free to ignore lower-priority constraints that
it can’t satisfy. For example, to the previous code, append this line:

[v1 addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[v3(10)]|"
 options:0 metrics:nil views:vs]];

The height of v3 can’t be both 10 (as here) and 20 (as in the preceding line). The
runtime reports the conflict, and tells you which constraints are causing it.

Underdetermination (ambiguity)
A view uses autolayout, but you haven’t supplied sufficient information to deter‐
mine its size and position. This is a far more insidious problem, because nothing
bad may seem to happen, so you might not discover it until much later. If you’re
lucky, the view will at least fail to appear, or will appear in an undesirable place,

34 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

alerting you to the problem. For example, in the last line of the previous code, we
set the height of v3 to 20; suppose we remove that specification:

[v1 addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[v3]|"
 options:0 metrics:nil views:vs]];

Fortunately, v3 fails to appear in the interface, so we know we’ve made a mistake.

To help you analyze ambiguity, log a view’s hasAmbiguousLayout property (a BOOL);
be sure to remove that call before submitting your app to the App Store. I find it useful
to set up a category on NSLayoutConstraint with a method that lets me check a view
and all its subviews at any depth for ambiguity:

@implementation NSLayoutConstraint (Ambiguity)
+ (void) reportAmbiguity:(UIView*) v {
 if (nil == v)
 v = [[UIApplication sharedApplication] keyWindow];
 for (UIView* vv in v.subviews) {
 NSLog(@"%@ %d", vv, vv.hasAmbiguousLayout);
 if (vv.subviews.count)
 [self reportAmbiguity:vv];
 }
}
@end

Alternatively, pause the running app and ask the debugger for the key window’s
_autolayoutTrace; ambiguously laid out views are clearly marked:

(lldb) po [[UIWindow keyWindow] _autolayoutTrace]
(id) $1 = 0x074a41a0
*<UIWindow:0x749b890>
| *<UIView:0x749ccb0>
| | *<UIView:0x749c280>
| | | *<UIView:0x749c790>
| | | *<UIView:0x749c930> - AMBIGUOUS LAYOUT

To get a full list of the constraints responsible for positioning a particular view within
its superview, log the results of calling the UIView instance methods constraints-
AffectingLayoutForAxis:; again, be sure to remove that call before finalizing your
app. These constraints do not necessarily belong to this view (and the output doesn’t
tell you what view they do belong to). Your choices of axis are UILayoutConstraint-
AxisHorizontal and UILayoutConstraintAxisVertical, but you are more likely to
write these as 0 and 1, and if you are paused in the debugger and talking to it through
the console, you’ll have to. If a view doesn’t participate in autolayout, the result will be
an empty array. Again, a category method can come in handy:

Layout | 35

www.it-ebooks.info

http://www.it-ebooks.info/

@implementation NSLayoutConstraint (Listing)
+ (void) listConstraints:(UIView*) v {
 if (nil == v)
 v = [[UIApplication sharedApplication] keyWindow];
 for (UIView* vv in v.subviews) {
 NSArray* arr1 = [vv constraintsAffectingLayoutForAxis:0];
 NSArray* arr2 = [vv constraintsAffectingLayoutForAxis:1];
 NSLog(@"%@\nH: %@\nV:%@", vv, arr1, arr2);
 if (vv.subviews.count)
 [self listConstraints:vv];
 }
}
@end

Given the notions of conflict and ambiguity, we can understand what priorities are for.
Imagine that all constraints have been placed in boxes, where each box is a priority value,
in descending order. The first box (1000) contains all the required constraints, so all
required constraints are obeyed first. (If they conflict, that’s bad, and a report appears
in the log; meanwhile, the system implicitly lowers the priority of one of the conflicting
constraints, so that it doesn’t have to obey it and can continue with layout by satisfying
the remaining required constraints.) If there still isn’t enough information to perform
unambiguous layout given the required priorities alone, we pull the constraints out of
the next box and try to obey them. If we can, consistently with what we’ve already done,
fine; if we can’t, or if ambiguity remains, we look in the next box — and so on. For a box
after the first, we don’t care about obeying exactly the constraints it contains; if an
ambiguity remains, we can use a lower-priority constraint value to give us something
to aim at, resolving the ambiguity, without fully obeying the lower-priority constraint’s
desires. For example, an inequality is an ambiguity, because an infinite number of values
will satisfy it; a lower-priority equality can tell us what value to prefer, resolving the
ambiguity, but there’s no conflict even if we can’t fully achieve that preferred value.

Intrinsic content size
Some built-in interface objects, when using autolayout, have an inherent size in one or
both dimensions, so they are not ambiguously laid out even if no explicit NSLayout‐
Constraint dictates their size. Rather, the inherent size is used to generate constraints
implicitly, of class NSContentSizeLayoutConstraint. For example, a button has a stan‐
dard height, and its width is determined by its title. This inherent size is the object’s
intrinsic content size.

In iOS 7, a user can be permitted to change the size of text through‐
out the interface (see Chapter 10). If your views, such as buttons and
labels, can respond to such a change, their intrinsic size can change as
well. You will want to configure your autolayout constraints so that
your interface responds to such changes gracefully.

36 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

The tendency of an interface object to size itself to its intrinsic content size must not be
allowed to conflict with its tendency to obey explicit constraints. Assigning a UILabel
an explicit, absolute width constraint should not cause a conflict with its intrinsic con‐
tent size; and we wouldn’t want a UILabel with a lot of text to be compelled by its intrinsic
content size to extend outside of its superview. Therefore these tendencies have a low‐
ered priority, and come into force only if no constraint of a higher priority prevents
them. Methods allow you to access these priorities:
contentHuggingPriorityForAxis:

A view’s resistance to growing larger than its intrinsic size in this dimension. In
effect, there is an inequality constraint saying that the view’s size in this dimension
should be less than or equal to its intrinsic size. The default priority is 250 (also
known as UILayoutPriorityDefaultLow).

contentCompressionResistancePriorityForAxis:

A view’s resistance to shrinking smaller than its intrinsic size in this dimension. In
effect, there is an inequality constraint saying that the view’s size in this dimension
should be greater than or equal to its intrinsic size. The default priority is 750 (also
known as UILayoutPriorityDefaultHigh).

(The dimensions are UILayoutConstraintAxisHorizontal and UILayoutConstraint-
AxisVertical.)

Those methods are getters; there are corresponding setters. Situations where you would
need to change the priorities of these tendencies are few, but they do exist. For example,
here are the visual formats configuring two adjacent labels pinned to the superview and
to one another:

@"V:|-[_lab1]"
@"V:|-[_lab2]"
@"H:|-20-[_lab1]"
@"H:[_lab2]-20-|"
@"H:[_lab1]-(>=20)-[_lab2]"

There may be no ambiguity initially, but as the superview becomes narrower or the text
of the labels becomes longer, an ambiguity arises: which label should be truncated? To
dictate the answer, it suffices to raise the compression resistance priority of one of the
labels by a single point:

[self.lab1 setContentCompressionResistancePriority:751
 forAxis:UILayoutConstraintAxisHorizontal];

Alternatively, you may want to lower the priority of some other constraint, to allow
intrinsic content size to predominate. An example that Apple gives is a label to the left
of a centered button and not permitted to overlap with it. As the text of the label becomes
longer, at first, the label grows leftward. But the label should not stretch leftward past
the left side of its superview, so it has an inequality constraint pinning its left at a guar‐
anteed minimum distance from the superview’s left. When it hits that limit, the label’s

Layout | 37

www.it-ebooks.info

http://www.it-ebooks.info/

text should not then be truncated if it doesn’t have to be, so the priority with which the
button is horizontally centered is set lower than the label’s compression resistance pri‐
ority; in effect, the label is able to force the button to move to the right:

self.button.translatesAutoresizingMaskIntoConstraints = NO;
self.label.translatesAutoresizingMaskIntoConstraints = NO;
NSDictionary* d = NSDictionaryOfVariableBindings(_button,_label);
[self.view addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[_button]-(112)-|"
 options:0 metrics:nil views:d]];
[self.view addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:|-(>=10)-[_label]-[_button]-(>=10)-|"
 options:NSLayoutFormatAlignAllBaseline metrics:nil views:d]];
NSLayoutConstraint* con =
[NSLayoutConstraint
 constraintWithItem:_button attribute:NSLayoutAttributeCenterX
 relatedBy:0
 toItem:self.view attribute:NSLayoutAttributeCenterX
 multiplier:1 constant:0];
con.priority = 700; // try commenting this out to see the difference
[self.view addConstraint:con];

You can supply an intrinsic size in your own custom UIView subclass by implementing
intrinsicContentSize. Obviously you should do this only if your view’s size depends
on its contents. If you need the runtime to call intrinsicContentSize again, because
that size has changed and the view needs to be laid out afresh, send your view the
invalidateIntrinsicContentSize message.

By the same token, you may want to be able to align your custom UIView with another
view by their baselines. If your view’s baseline is its own bottom, there’s nothing to do;
but it may be that your view has content that gives a different meaning to the notion of
a baseline. To dictate where your custom view’s baseline should be, you do not provide
a numeric value. Rather, your custom view must contain a subview whose bottom will
function as the baseline, and you return that subview in your UIView subclass’s view-
ForBaselineLayout.

The intrinsic size of a UILabel has some additional complications
connected with its text wrapping behavior. I’ll discuss the matter in
detail in Chapter 10.

Constraints in the Nib
In a .xib or .storyboard file where “Use Auto Layout” is checked, a vast array of tools
springs to life in the nib editor to help you create constraints that will be instantiated
from the nib along with the views.

38 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

The nib editor would like to help prevent you from ending up with conflicting or am‐
biguous constraints. In Xcode 4.5, the nib editor did this by making it impossible for
conflicting or ambiguous constraints to exist in the nib, even for a moment. This,
however, turned out to be too much help. Developers were surprised and confused when
their app turned out to be full of constraints they hadn’t asked for, and editing the nib
so as to dictate the constraints you wanted, instead of the constraints the nib editor
wanted, was often difficult or impossible. In Xcode 5, therefore, the nib editor is much
more relaxed about conflicting and ambiguous constraints, and gives you full power to
edit constraints as you please, but of course the cost of such increased power is increased
complexity.

The Xcode 5 nib editor doesn’t generate any constraints unless you ask it to. However,
it doesn’t want the app to run with ambiguous layout, because then you might not see
any views at all; you wouldn’t be able to test your app until you’d fully worked out all
the constraints throughout the interface. Therefore, if your views lack needed con‐
straints, the nib supplies them implicitly behind the scenes so that they are present at
runtime:
No constraints

If a view is affected by no constraints at all, it is given constraints tagged in the
debugger as “IB auto generated at build time for view with fixed frame.”

Ambiguous constraints
If a view is affected by some constraints but not enough to disambiguate fully, it is
given additional constraints tagged in the debugger as “IB auto generated at build
time for view with ambiguity.”

The Xcode 5 nib editor also doesn’t change any constraints unless you ask it to. If you
create constraints and then move or resize a view affected by those constraints, the
constraints are not automatically changed. This means that the constraints no longer
match the way the view is portrayed; if the constraints were to position the view, they
wouldn’t put it where you’ve put it. The nib editor will alert you to this situation (a
Misplaced Views issue), and can readily resolve it for you, but it won’t do so unless you
explicitly ask it to.

Creating a constraint
The Xcode 5 nib editor provides two primary ways to create a constraint:

• Control-drag from one view to another. A HUD appears, listing constraints that
you can create (Figure 1-14). Either view can be in the canvas or in the document
outline. To create an internal width or height constraint, control-drag from a view
to itself! When you control-drag within the canvas, the direction of the drag is used
to winnow the options presented in the HUD; for example, if you control-drag
horizontally within a view in the canvas, the HUD lists Width but not Height.

Layout | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-14. Creating a constraint by control-dragging

Figure 1-15. Creating constraints from the layout bar

• Choose from the Editor → Align or Editor → Pin hierarchical menus, or click the
first or second buttons in the four-button cartouche (the layout bar) at the lower
right of the canvas.

The buttons in the layout bar are very powerful! They present little popover dialogs
where you can choose multiple constraints to create (possibly for multiple views, if that’s
what you’ve selected beforehand) and provide them with numeric values (Figure 1-15).
Constraints are not actually added until you click Add Constraints at the bottom. Before
clicking Add Constraints, think about the Update Frames pop-up menu; if you don’t
update frames, the views may end up being drawn in the canvas differently from how
the constraints describe them (a Misplaced Views issue).

40 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-16. A view’s constraints displayed in the nib

Viewing and editing constraints
Constraints in the nib are full-fledged objects. They can be selected, edited, and deleted.
Moreover, you can create an outlet to a constraint (and there are reasons why you might
want to do so).

Constraints in the nib are visible in three places (Figure 1-16):
In the document outline

Constraints are listed in a special category, “Constraints”, under the view to which
they belong. (You’ll have a much easier time distinguishing these constraints if you
give your views meaningful labels!)

In the canvas
Constraints appear graphically as dimension lines when you select a view that they
affect.

In the Size inspector
When a view affected by constraints is selected, the Size inspector displays those
constraints.

When you select a constraint in the document outline or the canvas, you can view and
edit its values in the Attributes inspector. Alternatively, for simple editing of a con‐
straint’s constant, relation, and priority, double-click the constraint in the canvas to
summon a little popover dialog.

When you’re viewing a view’s constraints in the Size inspector, you can’t edit those
constraints in the Attributes inspector — you’re in the Size inspector instead! However,
the gear menu at the right of a constraint lets you choose Select and Edit, which switches
to the Attributes inspector for that constraint.

The Size inspector also provides access to a view’s content hugging and content com‐
pression resistance priority settings. Beneath these, there’s an Intrinsic Size pop-up

Layout | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Top and Bottom Layout Guides
In iOS, the top and bottom of the interface are often occupied by a bar (status bar,
navigation bar, toolbar, tab bar — see Chapter 12). Your layout will typically occupy the
region between these bars. On iOS 6 and before, this was trivial, because a view controller
would automatically resize its view to fit into that region. But in iOS 7, a root view can
extend vertically to the edges of the screen behind those bars. Therefore, you need
something else to anchor your constraints to — something that will move vertically to
reflect the location of the bars.

Therefore, UIViewController in iOS supplies and maintains two invisible views, the top
layout guide and the bottom layout guide, which it injects as subviews into the view
hierarchy of its root view. Your vertical constraints will usually not be between a subview
and the top or bottom of the root view, but between a subview and the bottom of the
top layout guide, or a subview and the top of the bottom layout guide.

You can access these guides programmatically through the UIViewController properties
topLayoutGuide and bottomLayoutGuide. For example:

UIView* tlg = (id)self.topLayoutGuide;
NSDictionary* d = NSDictionaryOfVariableBindings(v, tlg);
[self.view addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:[tlg][v(10)]"
 options:0 metrics:nil views:d]];

In the nib editor, the guides are listed in the document outline and elsewhere, and an
attempt to create a vertical constraint to the root view by Control-dragging will auto‐
matically use a guide rather than the top or bottom of the root view.

menu. The idea here is that your custom view might have an intrinsic size, but the nib
editor doesn’t know this, so it will report an ambiguity when you fail to provide (say) a
width constraint that you know isn’t actually needed; choose Placeholder to supply an
intrinsic size and relieve the nib editor’s worries (and to prevent the missing constraints
from being generated automatically at runtime).

There is also a Placeholder checkbox in the Attributes inspector when you’ve selected
a constraint. If you check this checkbox, the constraint you’re editing won’t be instan‐
tiated when the nib is loaded: in effect, it will be removed at runtime. It will not be
replaced by an automatically generated constraint; you are deliberately generating am‐
biguous layout when the views and constraints are instantiated from the nib.

A typical reason for doing this is that your code will be adding another constraint that
will make up for the loss of this one. You don’t want to omit the constraint from the nib,
because then the nib editor will complain of ambiguity and will automatically generate
a constraint to make up for it. The reason for the Placeholder checkbox is that, without
it, not only would you have to add the new constraint in code, but also you’d have to

42 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

remove the existing constraint in code after it is instantiated from the nib. That is rather
elaborate to configure; you have to make an outlet in order to access the existing con‐
straint after the nib loads, which seems wasteful considering that you’re immediately
going to delete that outlet’s destination object. (In Xcode 4.5 and 4.6, where there was
no Placeholder checkbox, that was exactly what you had to do.)

Problems with constraints
If a view is affected by any constraints, the Xcode 5 nib editor will happily permit them
to be ambiguous or conflicting, but it will also call the situation to your attention:
Issue navigator

At build time, the Issue navigator will display Ambiguous Layout and Unsupported
Configuration entries, as appropriate.

Canvas
Constraints drawn in the canvas when you select a view that they affect use color
coding to express their status:
Conflicting constraints

Drawn in red.

Insufficient constraints
Drawn in orange. These are ambiguous constraints: they don’t conflict, but they
aren’t sufficient to describe a view completely.

Satisfactory constraints
Drawn in blue.

Document outline
If there are layout issues, the document outline displays a right arrow in a red or
orange circle. Click it to see a detailed list of the issues (Figure 1-17). Hover the
mouse over a title to see an Info button which you can click to learn more about
the nature of this issue. The icons at the right are buttons: click one for a list of
things the nib editor is offering to do to fix the issue for you. The chief issues are:
Conflicting Constraints

A conflict between constraints.

Missing Constraints
Ambiguous layout.

Misplaced Views
If you manually change the frame of a view that is affected by constraints (in‐
cluding its intrinsic size), then the nib editor canvas may be displaying that
view differently from how it would really appear if the current constraints were
obeyed. A Misplaced Views situation is also reflected in the canvas:

Layout | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-17. Layout issues in the document outline

• The constraints in the canvas display the numeric difference between their
values and the view’s frame. They are drawn in orange even if they are not
insufficient.

• A dotted outline in the canvas may show where the view would be drawn
if the existing constraints were obeyed.

A hierarchical menu, Editor → Resolve Auto Layout Issues (also available from the third
button in the layout bar at the bottom right of the canvas), proposes five large-scale
moves involving all the constraints affecting selected views or all views:
Update Frames

Changes the way the view is drawn in the canvas, to show how it would really appear
in the running app under the constraints as they stand. Be careful: if constraints are
ambiguous, this can cause a view to disappear.

Alternatively, if you have resized a view with intrinsic size constraints, such as a
button or a label, and you want it to resume the size it would have according to
those intrinsic size constraints, select the view and choose Editor → Size to Fit
Content.

Update Constraints
Choose this menu item to change numerically all the existing constraints affecting
a view to match the way the canvas is currently drawing the view’s frame.

Add Missing Constraints
Create new constraints so that the view has sufficient constraints to describe its
frame unambiguously. The added constraints correspond to the way the canvas is
currently drawing the view’s frame.

44 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

Not everything that this command does may be what you ultimately want; you
should regard it as a starting point. For example, the nib editor doesn’t know
whether you think a certain view’s width should be determined by an internal width
constraint or by pinning it to the left and right of its superview; and it may generate
alignment constraints with other views that you never intended.

Reset to Suggested Constraints
This is as if you chose Clear Constraints followed by Add Missing Constraints: it
removes all constraints affecting the view, and replaces them with a complete set of
automatically generated constraints describing the way the canvas is currently
drawing the view’s frame.

Clear Constraints
Removes all constraints affecting the view.

Order of Layout Events
When the moment comes to lay out a view, the following events take place:

1. The view and its subviews are sent updateConstraints, starting at the bottom of
the hierarchy (the deepest subview) and working up to the top (the view itself,
possibly the root view). This event may be omitted for a view if its constraints have
not changed, but it will certainly be called for the view at the top of the hierarchy.
You can override updateConstraints in a UIView subclass. You might do this, for
example, if your subclass is capable of altering its own constraints and you need a
signal that now is the time to do so. You must call super or the app will crash (with
a helpful error message).
You should never call updateConstraints directly. To trigger an immediate call to
updateConstraints, send a view the updateConstraintsIfNeeded message. But
updateConstraints may still not be sent unless constraints have changed or the
view is at the top of the hierarchy. To force updateConstraints to be sent to a view,
send it the setNeedsUpdateConstraints message.

2. The view and its subviews are sent layoutSubviews, starting at the top of the hier‐
archy (the view itself, possibly the root view) and working down to the bottom (the
deepest subview).
You can override layoutSubviews in a subclass in order to take a hand in the layout
process. If you’re not using autolayout, layoutSubviews does nothing by default;
layoutSubviews is your opportunity to perform manual layout after autoresizing
has taken place. If you are using autolayout, you must call super or the app will
crash (with a helpful error message).

Layout | 45

www.it-ebooks.info

http://www.it-ebooks.info/

You should never call layoutSubviews directly; to trigger an immediate call to
layoutSubviews, send a view the layoutIfNeeded message (which may cause lay‐
out of the entire view tree, not only below but also above this view), or send set-
NeedsLayout to trigger a call to layoutSubviews later on, after your code finishes
running, when layout would normally take place.

When you’re using autolayout, what happens in layoutSubviews? The runtime exam‐
ines all the constraints affecting this view’s subviews, works out values for their frames,
and assigns those views those frames. In other words, layoutSubviews performs manual
layout! The constraints are merely instructions attached to the views; layout-
Subviews reads them and responds accordingly, setting frames in the good old-
fashioned way. (Thus, layoutSubviews is a place where it is legal — and indeed neces‐
sary — to set the frame of a view governed by explicit constraints.)

Knowing this, you might override layoutSubviews when you’re using autolayout, in
order to tweak the outcome. First you call super, causing all the subviews to adopt their
new frames. Then you examine those frames. If you don’t like the outcome, you can
change the situation, removing subviews, adding or removing constraints, and so on —
and then you call super again, to get a new layout outcome.

Unless you explicitly demand immediate layout, layout isn’t performed until your code
finishes running (and then only if needed). Moreover, ambiguous layout isn’t ambiguous
until layout actually takes place. Thus, for example, it’s perfectly reasonable to cause an
ambiguous layout temporarily, provided you resolve the ambiguity before layout-
Subviews is called. On the other hand, a conflicting constraint conflicts the instant it is
added.

It is also possible to simulate layout of a view in accordance with its constraints and
those of its subviews. This is useful for discovering ahead of time what a view’s size
would be if layout were performed at this moment. Send the view the systemLayout-
SizeFittingSize: message. The system will attempt to reach or at least approach the
size you specify, at a very low priority; mostly likely you’ll specify either UILayout-
FittingCompressedSize or UILayoutFittingExpandedSize, depending on whether
what you’re after is the smallest or largest size the view can legally attain. I’ll show an
example in Chapter 8.

Autolayout and View Transforms
Suppose I apply to a view a transform that grows it slightly:

v.transform = CGAffineTransformMakeScale(1.2,1.2);

I expect the view to expand in both dimensions, with all four sides moving away from
the center. Under autolayout, that might not be what I see at all. The view might grow

46 | Chapter 1: Views

www.it-ebooks.info

http://www.it-ebooks.info/

down and right, while its left and top hold steady. The view might not grow at all in one
or both dimensions. It all depends on the view’s constraints.

The fact is that autolayout does not play well with view transforms. There are two reasons
for this:

• Applying a transform to a view triggers layout immediately.
• When layout is triggered, layoutSubviews applies constraints to a view by setting

its frame.

Thus, when you apply a transform to a view that uses autolayout, autolayout can come
along and change the view’s frame in such a way as to thwart the transform. This seems
like a bug. There is no reason why a transform should cause layout to be triggered, and
setting a view’s frame is exactly what you’re not supposed to do when a view has a
nonidentity transform.

This problem is not easy to solve. I have three suggestions, none of them entirely
satisfactory:

• Plan your constraints in advance. If you’re going to be applying a transform to a
view, set up that view’s constraints so that they affect its center, not its frame.

• Set up a host view and a subview. The host view is positioned by constraints, in
whatever way you like: it is also invisible. Now take the subview out of the influence
of autolayout altogether: remove any constraints that affect it, and set its
translatesAutoresizingMaskIntoConstraints to YES.

• Use a layer transform (Chapter 3) instead of a view transform, since applying a layer
transform doesn’t trigger layout.

Layout | 47

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Drawing

Many UIView subclasses, such as a UIButton or a UILabel, know how to draw them‐
selves; sooner or later, though, you’re going to want to do some drawing of your own.
You can draw an image in code, and then display it in your interface in a class that knows
how to show an image, such as a UIImageView or a UIButton. A pure UIView is all
about drawing, and it leaves that drawing largely up to you; your code determines what
the view draws, and hence what it looks like in your interface.

This chapter discusses the mechanics of drawing. Don’t be afraid to write drawing code
of your own! It isn’t difficult, and it’s often the best way to make your app look the way
you want it to.

(For how to draw text, see Chapter 12.)

UIImage and UIImageView
The basic general UIKit image class is UIImage. UIImage can read a file from disk, so
if an image does not need to be created dynamically, but has already been created before
your app runs, then drawing may be as simple as providing an image file as a resource
in your app’s bundle. The system knows how to work with many standard image file
types, such as TIFF, JPEG, GIF, and PNG; when an image file is to be included in your
app bundle, iOS has a special affinity for PNG files, and you should prefer them when‐
ever possible. You can also obtain image data in some other way, such as by downloading
it, and transform this into a UIImage. Conversely, you can draw your own image for
display in your interface or for saving to disk (image file output is discussed in Chap‐
ter 23).

In the very simplest case, an image file in your app’s bundle can be obtained through
the UIImage class method imageNamed:. Now that there are asset catalogs, this method
looks in two places for the image:

49

www.it-ebooks.info

http://www.it-ebooks.info/

Top level of app bundle
We look at the top level the app’s bundle for an image file with the supplied name.
The name is case-sensitive and should include the file extension; if the supplied
name doesn’t include a file extension, .png is assumed, but I never take advantage
of this feature.

Asset catalog
We look in the asset catalog for an image set with the supplied name. If the supplied
name has a file extension, it is stripped off; this allows old code to keep working
after an image is moved into an asset catalog. This search takes priority: if a matching
image set is found in an asset catalog, it is used, and the top level of the app bundle
is not searched.

A nice thing about imageNamed: is that memory management is handled for you: the
image data may be cached in memory, and if you ask for the same image by calling
imageNamed: again later, the cached data may be supplied immediately. Alternatively,
you can read an image file from anywhere in your app’s bundle directly and without
caching, using the class method imageWithContentsOfFile: or the instance method
initWithContentsOfFile:, both of which expect a pathname string; you can get a ref‐
erence to your app’s bundle with [NSBundle mainBundle], and NSBundle then provides
instance methods for getting the pathname of a file within the bundle, such as pathFor-
Resource:ofType:.

Methods that specify a resource in the app bundle, such as imageNamed: and pathFor-
Resource:ofType:, respond to suffixes in the name of an actual resource file. On a
device with a double-resolution screen, when an image is obtained by name from the
app bundle, a file with the same name extended by @2x, if there is one, will be used
automatically, with the resulting UIImage marked as double-resolution by assigning it
a scale property value of 2. In this way, your app can contain both a single-resolution
and a double-resolution version of an image file; on the double-resolution display de‐
vice, the double-resolution version of the image is used, and is drawn at the same size
as the single-resolution image. Thus, on the double-resolution screen, your code con‐
tinues to work without change, but your images look sharper.

Similarly, a file with the same name extended by ~ipad will automatically be used if the
app is running on an iPad. You can use this in a universal app to supply different images
automatically depending on whether the app runs on an iPhone or iPod touch, on the
one hand, or on an iPad, on the other. (This is true not just for images but for any
resource obtained by name from the bundle. See Apple’s Resource Programming Guide.)

One of the great benefits of an asset catalog, though, is that you can forget all about
those name suffix conventions. An asset catalog knows when to use an alternate image
within an image set, not from its name, but from its place in the catalog. Put the single-
and double-resolution alternatives into the slots marked “1x” and “2x” respectively. For

50 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

a distinct iPad version of an image, switch the Devices pop-up menu in the image set’s
Attributes inspector from Universal to Device Specific and check the boxes for the cases
you want to distinguish; separate slots for those device types will appear in the asset
catalog.

iOS 7 doesn’t run on any single-resolution iPhone-sized devices, so an
iPhone-only app doesn’t need any single-resolution image variants. But
iOS 7 does run on both single-resolution and double-resolution iPads.

Many built-in Cocoa interface objects will accept a UIImage as part of how they draw
themselves; for example, a UIButton can display an image, and a UINavigationBar or a
UITabBar can have a background image. I’ll discuss those in Chapter 12. But when you
simply want an image to appear in your interface, you’ll probably hand it to a UIImage‐
View, which has the most knowledge and flexibility with regard to displaying images
and is intended for this purpose.

When you configure an interface object’s image in the nib editor, you’re instructing that
interface object to call imageNamed: to fetch its image, and everything about how image-
Named: conducts the search for the image will be true of how the interface object finds
its image at runtime. The nib editor supplies some shortcuts in this regard: the Attributes
inspector of an interface object that can have an image will have a pop-up menu listing
known images in your project, and such images are also listed in the Media library
(Command-Option-Control-4). Media library images can often be dragged onto an
interface object in the canvas to assign them, and if you drag a Media library image into
a plain view, it is transformed into a UIImageView displaying that image.

A UIImageView can actually have two images, one assigned to its image property and
the other assigned to its highlightedImage property; the value of the UIImageView’s
highlighted property dictates which of the two is displayed at any given moment. A
UIImageView does not automatically highlight itself merely because the user taps it, the
way a button does. However, there are certain situations where a UIImageView will
respond to the highlighting of its surroundings; for example, within a table view cell, a
UIImageView will show its highlighted image when the cell is highlighted. You can, of
course, also use the notion of UIImageView highlighting yourself however you like.

A UIImageView is a UIView, so it can have a background color in addition to its image,
it can have an alpha (transparency) value, and so forth (see Chapter 1). A UIImageView
without a background color is invisible except for its image, so the image simply appears
in the interface, without the user being aware that it resides in a rectangular host. An
image may have areas that are transparent, and a UIImageView will respect this; thus
an image of any shape can appear. A UIImageView without an image and without a
background color is invisible, so you could start with an empty UIImageView in the

UIImage and UIImageView | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-1. Mars appears in my interface

place where you will later need an image and subsequently assign the image in code.
You can assign a new image to substitute one image for another.

How a UIImageView draws its image depends upon the setting of its contentMode
property. (The contentMode property is inherited from UIView; I’ll discuss its more
general purpose later in this chapter.) For example, UIViewContentModeScaleToFill
means the image’s width and height are set to the width and height of the view, thus
filling the view completely even if this alters the image’s aspect ratio; UIViewContent-
ModeCenter means the image is drawn centered in the view without altering its size.
The best way to get a feel for the meanings of the various contentMode settings is to
assign a UIImageView a small image in a nib and then, in the Attributes inspector,
change the Mode pop-up menu, and see where and how the image draws itself.

You should also pay attention to a UIImageView’s clipsToBounds property; if it is NO,
its image, even if it is larger than the image view and even if it is not scaled down by the
contentMode, may be displayed in its entirety, extending beyond the image view itself.

When creating a UIImageView in code, you can take advantage of a convenience ini‐
tializer, initWithImage: (or initWithImage:highlightedImage:). The default
contentMode is UIViewContentModeScaleToFill, but the image is not initially scaled;
rather, the view itself is sized to match the image. You will still probably need to position
the UIImageView correctly in its superview. In this example, I’ll put a picture of the
planet Mars in the center of the app’s interface (Figure 2-1):

UIImageView* iv =
 [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"Mars"]];
[mainview addSubview: iv];
iv.center = CGPointMake(CGRectGetMidX(iv.superview.bounds),
 CGRectGetMidY(iv.superview.bounds));
iv.frame = CGRectIntegral(iv.frame);

What happens to the size of an existing UIImageView when you assign an image to it
depends on whether the image view is using autolayout. If it isn’t, or if its size is con‐
strained absolutely, the image view’s size doesn’t change. But under autolayout, the size
of the new image becomes the image view’s new intrinsicContentSize, so the image
view will adopt the image’s size unless other constraints prevent. (If a UIImageView is

52 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

assigned both an image and a highlightedImage, and if they are of different sizes, the
view’s intrinsicContentSize adopts the size of the image.)

Resizable Images
A UIImage can be transformed into a resizable image, by sending it the resizableImage-
WithCapInsets:resizingMode: message. The capInsets: argument is a UIEdgeInsets,
a struct consisting of four floats representing inset values starting at the top and pro‐
ceeding counterclockwise — top, left, bottom, right. They represent distances inward
from the edges of the image. In a context larger than the image, a resizable image can
behave in one of two ways, depending on the resizingMode: value:
UIImageResizingModeTile

The interior rectangle of the inset area is tiled (repeated) in the interior; each edge
is formed by tiling the corresponding edge rectangle outside the inset area. The four
corner rectangles outside the inset area are drawn unchanged.

UIImageResizingModeStretch

The interior rectangle of the inset area is stretched once to fill the interior; each edge
is formed by stretching the corresponding edge rectangle outside the inset area
once. The four corner rectangles outside the inset area are drawn unchanged.

Certain places in the interface require a resizable image; for example, a custom image
that serves as the track of a slider or progress view (Chapter 12) must be resizable, so
that it can fill a space of any length. And there can frequently be other situations where
you want to fill a background by tiling or stretching an existing image.

In these examples, assume that self.iv is a UIImageView with absolute height and
width (so that it won’t adopt the size of its image) and with a contentMode of UIView-
ContentModeScaleToFill (so that the image will exhibit resizing behavior). First, I’ll
illustrate tiling an entire image (Figure 2-2); note that the capInsets: is UIEdgeInsets-
Zero:

UIImage* mars = [UIImage imageNamed:@"Mars"];
UIImage* marsTiled =
 [mars resizableImageWithCapInsets: UIEdgeInsetsZero
 resizingMode: UIImageResizingModeTile];
self.iv.image = marsTiled;

Now we’ll tile the interior of the image, changing the capInsets: argument from the
previous code (Figure 2-3):

UIImage* marsTiled = [mars resizableImageWithCapInsets:
 UIEdgeInsetsMake(mars.size.height/4.0,
 mars.size.width/4.0,
 mars.size.height/4.0,
 mars.size.width/4.0)
 resizingMode: UIImageResizingModeTile];

UIImage and UIImageView | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-2. Tiling the entire image of Mars

Figure 2-3. Tiling the interior of Mars

Figure 2-4. Stretching the interior of Mars

Next, I’ll illustrate stretching. We’ll start by changing just the resizingMode: from the
previous code (Figure 2-4):

UIImage* marsTiled = [mars resizableImageWithCapInsets:
 UIEdgeInsetsMake(mars.size.height/4.0,
 mars.size.width/4.0,
 mars.size.height/4.0,
 mars.size.width/4.0)
 resizingMode: UIImageResizingModeStretch];

A common stretching strategy is to make almost half the original image serve as a cap
inset, leaving just a pixel or two in the center to fill the entire interior of the resulting
image (Figure 2-5):

UIImage* marsTiled = [mars resizableImageWithCapInsets:
 UIEdgeInsetsMake(mars.size.height/2.0 - 1,
 mars.size.width/2.0 - 1,
 mars.size.height/2.0 - 1,
 mars.size.width/2.0 - 1)
 resizingMode: UIImageResizingModeStretch];

54 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-5. Stretching a few pixels at the interior of Mars

Figure 2-6. Mars, stretched and clipped

You should also experiment with different scaling contentMode settings. In the preced‐
ing example, if the image view’s contentMode is UIViewContentModeScaleAspect-
Fill, and if the image view’s clipsToBounds is YES, we get a sort of gradient effect,
because the top and bottom of the stretched image are outside the image view and aren’t
drawn (Figure 2-6).

New in Xcode 5, you can configure a resizable image without code, in the project itself.
This is a feature of asset catalogs, and another great reason to use them. It is often the
case that a particular image will be used in your app chiefly as a resizable image, and
always with the same capInsets: and resizingMode:, so it makes sense to configure
this image once rather than having to repeat the same code. And even if an image is
configured in the asset catalog to be resizable, it can appear in your interface as a normal
image as well — for example, if you use it to initialize an image view, or assign it to an
image view under autolayout, or if the image view doesn’t scale its image (it has a content-
Mode of UIViewContentModeCenter or larger).

To configure an image in an asset catalog as a resizable image, select the image and, in
the Slicing section of the Attributes inspector, change the Slices pop-up menu to Hor‐
izontal, Vertical, or Horizontal and Vertical. You can specify the resizingMode with
another pop-up menu. You can work numerically, or click Show Slicing at the lower
right of the canvas and work graphically. The graphical editor is zoomable, so zoom in
to work comfortably.

The reason this feature is called Slicing and not Resizing is that it can do more than
resizableImageWithCapInsets:resizingMode: can do: it lets you specify the end caps
separately from the tiled or stretched region, with the rest of the image being sliced out.
The meaning of your settings is intuitively clear from the graphical slicing editor. In

UIImage and UIImageView | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-7. Mars, sliced in the asset catalog

Figure 2-8. Mars, sliced and stretched

Figure 2-7, for example, the dark areas at the top left, top right, bottom left, and bottom
right will be drawn as is. The narrow bands will be stretched, and the small rectangle at
the top center will be stretched to fill most of the interior. But the rest of the image, the
large central area covered by a sort of gauze curtain, will be omitted entirely. The result
is shown in Figure 2-8.

Don’t use image slicing in an asset catalog if your deployment
target isn’t 7.0 or higher.

Image Rendering Mode
Several places in an iOS app’s interface automatically treat an image as a transparency
mask, also known as a template. This means that the image color values are ignored,
and only the transparency (alpha) values of each pixel matter. The image shown on the
screen is formed by combining the image’s transparency values with a single tint color.
Such, for example, is the behavior of a tab bar item’s image.

New in iOS 7, the way an image will be treated is a property of the image, its rendering-
Mode. This property is read-only; to change it, make from an existing image a new image
with a different rendering mode, by calling imageWithRenderingMode:. The rendering
mode values are:

56 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-9. Transparency mask icons in the Settings app

Figure 2-10. One image in two rendering modes

• UIImageRenderingModeAutomatic

• UIImageRenderingModeAlwaysOriginal

• UIImageRenderingModeAlwaysTemplate

The default is UIImageRenderingModeAutomatic, which results in the old behavior:
such an image is drawn normally everywhere except in certain limited contexts, where
it is used as a transparency mask.

With the renderingMode property, you can force an image to be drawn normally, even
in a context that would usually treat it as a transparency mask. You can also do the
opposite: you can force an image to be treated as a transparency mask, even in a context
that would otherwise treat it normally. Apple wants iOS 7 apps to adopt more of a
transparency mask look throughout the interface; some of the icons in the Settings app,
for example, appear to be transparency masks (Figure 2-9).

To accompany this feature, iOS 7 gives every UIView a tintColor, which will be used
to tint any template images it contains. Moreover, this tintColor by default is inherited
down the view hierarchy, and indeed throughout the entire app, starting with the UI‐
Window (Chapter 1). Thus, assigning your app’s main window a tint color is probably
one of the few changes you’ll make to the window; otherwise, your app adopts the
system’s blue tint color. (Alternatively, if you’re using a main storyboard, set the tint
color in its File inspector.) Individual views can be assigned their own tint color, which
is inherited by their subviews. Figure 2-10 shows two buttons displaying the same
background image, one in normal rendering mode, the other in template rendering
mode, in an app whose window tint color is red. (I’ll say more about template images
and the tintColor in Chapter 12.)

UIImage and UIImageView | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics Contexts
UIImageView draws an image for you and takes care of all the details; in many cases, it
will be all you’ll need. Eventually, though, you may want to create some drawing yourself,
directly, in code. To do so, you will always need a graphics context.

A graphics context is basically a place you can draw. Conversely, you can’t draw in code
unless you’ve got a graphics context. There are several ways in which you might obtain
a graphics context; in this chapter I will concentrate on two, which have proven in my
experience to be far and away the most common:
You create an image context

The function UIGraphicsBeginImageContextWithOptions creates a graphics con‐
text suitable for use as an image. You then draw into this context to generate the
image. When you’ve done that, you call UIGraphicsGetImageFromCurrentImage-
Context to turn the context into a UIImage, and then UIGraphicsEndImage-
Context to dismiss the context. Now you have a UIImage that you can display in
your interface or draw into some other graphics context or save as a file.

Cocoa hands you a graphics context
You subclass UIView and implement drawRect:. At the time your drawRect: im‐
plementation is called, Cocoa has already created a graphics context and is asking
you to draw into it, right now; whatever you draw is what the UIView will display.
(A slight variant of this situation is that you subclass a CALayer and implement
drawInContext:, or make some object the delegate of a layer and implement draw-
Layer:inContext:; layers are discussed in Chapter 3.)

Moreover, at any given moment there either is or is not a current graphics context:

• UIGraphicsBeginImageContextWithOptions not only creates an image context, it
also makes that context the current graphics context.

• When drawRect: is called, the UIView’s drawing context is already the current
graphics context.

• Callbacks with a context: argument have not made any context the current graph‐
ics context; rather, that argument is a reference to a graphics context.

What beginners find most confusing about drawing is that there are two separate sets
of tools with which you can draw, and they take different attitudes toward the context
in which they will draw:
UIKit

Various Objective-C classes know how to draw themselves; these include UIImage,
NSString (for drawing text), UIBezierPath (for drawing shapes), and UIColor. Some

58 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

of these classes provide convenience methods with limited abilities; others are ex‐
tremely powerful. In many cases, UIKit will be all you’ll need.

With UIKit, you can draw only into the current context. So if you’re in a UIGraphics-
BeginImageContextWithOptions or drawRect: situation, you can use the UIKit
convenience methods directly; there is a current context and it’s the one you want
to draw into. If you’ve been handed a context: argument, on the other hand, then
if you want to use the UIKit convenience methods, you’ll have to make that context
the current context; you do this by calling UIGraphicsPushContext (and be sure to
restore things with UIGraphicsPopContext later).

Core Graphics
This is the full drawing API. Core Graphics, often referred to as Quartz, or Quartz
2D, is the drawing system that underlies all iOS drawing — UIKit drawing is built
on top of it — so it is low-level and consists of C functions. There are a lot of them!
This chapter will familiarize you with the fundamentals; for complete information,
you’ll want to study Apple’s Quartz 2D Programming Guide.

With Core Graphics, you must specify a graphics context (a CGContextRef) to draw
into, explicitly, in every function call. If you’ve been handed a context: argument,
then that’s probably the graphics context you want to draw into. But in a UIGraphics-
BeginImageContextWithOptions or drawRect: situation, you have no reference to
a context; to use Core Graphics, you need to get such a reference. Since the context
you want to draw into is the current graphics context, you call UIGraphicsGet-
CurrentContext to get the needed reference.

So we have two sets of tools and three ways in which a context might be supplied; that
makes six ways of drawing. To clarify, I’ll now demonstrate all six of them! Without
worrying just yet about the actual drawing commands, focus your attention on how the
context is specified and on whether we’re using UIKit or Core Graphics. First, I’ll draw
a blue circle by implementing a UIView subclass’s drawRect:, using UIKit to draw into
the current context, which Cocoa has already prepared for me:

- (void) drawRect: (CGRect) rect {
 UIBezierPath* p =
 [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0,0,100,100)];
 [[UIColor blueColor] setFill];
 [p fill];
}

Now I’ll do the same thing with Core Graphics; this will require that I first get a reference
to the current context:

Graphics Contexts | 59

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) drawRect: (CGRect) rect {
 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100));
 CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
 CGContextFillPath(con);
}

Next, I’ll implement a UIView subclass’s drawLayer:inContext:. In this case, we’re
handed a reference to a context, but it isn’t the current context. So I have to make it the
current context in order to use UIKit:

- (void)drawLayer:(CALayer*)lay inContext:(CGContextRef)con {
 UIGraphicsPushContext(con);
 UIBezierPath* p =
 [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0,0,100,100)];
 [[UIColor blueColor] setFill];
 [p fill];
 UIGraphicsPopContext();
}

To use Core Graphics in drawLayer:inContext:, I simply keep referring to the context
I was handed:

- (void)drawLayer:(CALayer*)lay inContext:(CGContextRef)con {
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100));
 CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
 CGContextFillPath(con);
}

Finally, for the sake of completeness, let’s make a UIImage of a blue circle. We can do
this at any time (we don’t need to wait for some particular method to be called) and in
any class (we don’t need to be in a UIView subclass). The resulting UIImage (here called
im) is suitable anywhere you would use a UIImage. For instance, you could hand it over
to a visible UIImageView as its image, thus causing the image to appear onscreen. Or
you could save it as a file. Or, as I’ll explain in the next section, you could use it in another
drawing.

First, I’ll draw my image using UIKit:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100,100), NO, 0);
UIBezierPath* p =
 [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0,0,100,100)];
[[UIColor blueColor] setFill];
[p fill];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
// im is the blue circle image, do something with it here ...

Here’s the same thing using Core Graphics:

60 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-11. Two images of Mars combined side by side

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100,100), NO, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100));
CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
CGContextFillPath(con);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
// im is the blue circle image, do something with it here ...

You may be wondering about the arguments to UIGraphicsBeginImageContextWith-
Options. The first argument is obviously the size of the image to be created. The second
argument declares whether the image should be opaque; if I had passed YES instead of
NO here, my image would have a black background, which I don’t want. The third
argument specifies the image scale, corresponding to the UIImage scale property I
discussed earlier; by passing 0, I’m telling the system to set the scale for me in accordance
with the main screen resolution, so my image will look good on both single-resolution
and double-resolution devices.

You don’t have to use UIKit or Core Graphics exclusively; on the contrary, you can
intermingle UIKit calls and Core Graphics calls to operate on the same graphics context.
They merely represent two different ways of telling a graphics context what to do.

UIImage Drawing
A UIImage provides methods for drawing itself into the current context. We know how
to obtain a UIImage, and we know how to obtain an image context and make it the
current context, so we can experiment with these methods. Here, I’ll make a UIImage
consisting of two pictures of Mars side by side (Figure 2-11):

UIImage* mars = [UIImage imageNamed:@"Mars"];
CGSize sz = mars.size;
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*2, sz.height), NO, 0);
[mars drawAtPoint:CGPointMake(0,0)];
[mars drawAtPoint:CGPointMake(sz.width,0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

UIImage Drawing | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-12. Two images of Mars in different sizes, composited

Observe that image scaling works perfectly in that example. If we have a single/double-
resolution pair for our original Mars image, the correct one for the current device is
used, and is assigned the correct scale value. Our call to UIGraphicsBeginImage-
ContextWithOptions has a third argument of 0, so the image context that we are drawing
into also has the correct scale. And the image that results from calling UIGraphicsGet-
ImageFromCurrentImageContext has the correct scale as well. Thus, this same code
produces an image that looks correct on the current device, whatever its screen reso‐
lution may be.

Additional UIImage methods let you scale an image into a desired rectangle as you draw,
and specify the compositing (blend) mode whereby the image should combine with
whatever is already present. To illustrate, I’ll create an image showing Mars centered in
another image of Mars that’s twice as large, using the Multiply blend mode (Figure 2-12):

UIImage* mars = [UIImage imageNamed:@"Mars"];
CGSize sz = mars.size;
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*2, sz.height*2), NO, 0);
[mars drawInRect:CGRectMake(0,0,sz.width*2,sz.height*2)];
[mars drawInRect:CGRectMake(sz.width/2.0, sz.height/2.0, sz.width, sz.height)
 blendMode:kCGBlendModeMultiply alpha:1.0];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

There is no UIImage drawing method for specifying the source rectangle — that is, for
specifying that you want to extract a smaller region of the original image. You can work
around this by specifying a smaller graphics context and positioning the image drawing
so that the desired region falls into it. For example, to obtain an image of the right half
of Mars, you’d make a graphics context half the width of the mars image, and then draw
mars shifted left, so that only its right half intersects the graphics context. There is no
harm in doing this, and it’s a perfectly standard strategy; the left half of mars simply isn’t
drawn (Figure 2-13):

62 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-13. Half the original image of Mars

UIImage* mars = [UIImage imageNamed:@"Mars"];
CGSize sz = mars.size;
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width/2.0, sz.height), NO, 0);
[mars drawAtPoint:CGPointMake(-sz.width/2.0, 0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

CGImage Drawing
The Core Graphics version of UIImage is CGImage (actually a CGImageRef). They are
easily converted to one another: a UIImage has a CGImage property that accesses its
Quartz image data, and you can make a UIImage from a CGImage using imageWith-
CGImage: or initWithCGImage: (in real life, you are likely to use their more configurable
siblings, imageWithCGImage:scale:orientation: and initWithCGImage:scale:

orientation:).

A CGImage lets you create a new image directly from a rectangular region of the original
image, which you can’t do with UIImage. (A CGImage has other powers a UIImage
doesn’t have; for example, you can apply an image mask to a CGImage.) I’ll demonstrate
by splitting the image of Mars in half and drawing the two halves separately
(Figure 2-14). Observe that we are now operating in the CFTypeRef world and must
take care to manage memory manually:

UIImage* mars = [UIImage imageNamed:@"Mars"];
// extract each half as a CGImage
CGSize sz = mars.size;
CGImageRef marsLeft = CGImageCreateWithImageInRect([mars CGImage],
 CGRectMake(0,0,sz.width/2.0,sz.height));
CGImageRef marsRight = CGImageCreateWithImageInRect([mars CGImage],
 CGRectMake(sz.width/2.0,0,sz.width/2.0,sz.height));
// draw each CGImage into an image context
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*1.5, sz.height), NO, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height), marsLeft);
CGContextDrawImage(con,

CGImage Drawing | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-14. Image of Mars split in half (and flipped)

 CGRectMake(sz.width,0,sz.width/2.0,sz.height), marsRight);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

But there’s a problem with that example: the drawing is upside-down! It isn’t rotated;
it’s mirrored top to bottom, or, to use the technical term, flipped. This phenomenon can
arise when you create a CGImage and then draw it with CGContextDrawImage, and is
due to a mismatch in the native coordinate systems of the source and target contexts.

There are various ways of compensating for this mismatch between the coordinate sys‐
tems. One is to draw the CGImage into an intermediate UIImage and extract another
CGImage from that. Example 2-1 presents a utility function for doing this.

Example 2-1. Utility for flipping an image drawing
CGImageRef flip (CGImageRef im) {
 CGSize sz = CGSizeMake(CGImageGetWidth(im), CGImageGetHeight(im));
 UIGraphicsBeginImageContextWithOptions(sz, NO, 0);
 CGContextDrawImage(UIGraphicsGetCurrentContext(),
 CGRectMake(0, 0, sz.width, sz.height), im);
 CGImageRef result = [UIGraphicsGetImageFromCurrentImageContext() CGImage];
 UIGraphicsEndImageContext();
 return result;
}

Armed with the utility function from Example 2-1, we can fix our calls to CGContext-
DrawImage in the previous example so that they draw the halves of Mars the right way
up:

CGContextDrawImage(con, CGRectMake(0,0,sz.width/2.0,sz.height),
 flip(marsLeft));
CGContextDrawImage(con, CGRectMake(sz.width,0,sz.width/2.0,sz.height),
 flip(marsRight));

However, we’ve still got a problem: on a double-resolution device, if there is a double-
resolution variant of our image file, the drawing comes out all wrong. The reason is that
we are obtaining our initial Mars image using imageNamed:, which returns a UIImage
that compensates for the doubled size of a double-resolution image by setting its own
scale property to match. But a CGImage doesn’t have a scale property, and knows

64 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

nothing of the fact that the image dimensions are doubled! Therefore, on a double-
resolution device, the CGImage that we extract from our Mars UIImage by calling [mars
CGImage] is twice as large (in each dimension) as mars.size, and all our calculations
after that are wrong.

So, in extracting a desired piece of the CGImage, we must either multiply all appropriate
values by the scale or express ourselves in terms of the CGImage’s dimensions. Here’s a
version of our original code that draws correctly on either a single-resolution or a
double-resolution device, and compensates for flipping:

UIImage* mars = [UIImage imageNamed:@"Mars"];
CGSize sz = mars.size;
// Derive CGImage and use its dimensions to extract its halves
CGImageRef marsCG = [mars CGImage];
CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
CGImageRef marsLeft =
 CGImageCreateWithImageInRect(
 marsCG, CGRectMake(0,0,szCG.width/2.0,szCG.height));
CGImageRef marsRight =
 CGImageCreateWithImageInRect(
 marsCG, CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*1.5, sz.height), NO, 0);
// The rest is as before, calling flip() to compensate for flipping
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextDrawImage(con, CGRectMake(0,0,sz.width/2.0,sz.height),
 flip(marsLeft));
CGContextDrawImage(con, CGRectMake(sz.width,0,sz.width/2.0,sz.height),
 flip(marsRight));
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

Another solution is wrap a CGImage in a UIImage and draw the UIImage instead of
the CGImage. The UIImage can be formed in such a way as to compensate for scale:
call imageWithCGImage:scale:orientation: as you form the UIImage from the
CGImage. Moreover, by drawing a UIImage instead of a CGImage, we avoid the flipping
problem! So here’s an approach that deals with both flipping and scale (without calling
the flip utility):

UIImage* mars = [UIImage imageNamed:@"Mars"];
CGSize sz = mars.size;
// Derive CGImage and use its dimensions to extract its halves
CGImageRef marsCG = [mars CGImage];
CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
CGImageRef marsLeft =
 CGImageCreateWithImageInRect(
 marsCG, CGRectMake(0,0,szCG.width/2.0,szCG.height));
CGImageRef marsRight =
 CGImageCreateWithImageInRect(

CGImage Drawing | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Why Flipping Happens
The ultimate source of accidental flipping is that Core Graphics comes from the OS X
world, where the coordinate system’s origin is located by default at the bottom left and
the positive y-direction is upward, whereas on iOS the origin is located by default at the
top left and the positive y-direction is downward. In most drawing situations, no prob‐
lem arises, because the coordinate system of the graphics context is adjusted to com‐
pensate. Thus, the default coordinate system for drawing in a Core Graphics context on
iOS has the origin at the top left, just as you expect. But creating and drawing a CGImage
exposes the “impedance mismatch” between the two worlds.

 marsCG, CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*1.5, sz.height), NO, 0);
[[UIImage imageWithCGImage:marsLeft
 scale:mars.scale
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(0,0)];
[[UIImage imageWithCGImage:marsRight
 scale:mars.scale
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(sz.width,0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

Yet another solution to flipping is to apply a transform to the graphics context before
drawing the CGImage, effectively flipping the context’s internal coordinate system. This
is elegant, but can be confusing if there are other transforms in play. I’ll talk more about
graphics context transforms later in this chapter.

Snapshots
An entire view — anything from a single button to your whole interface, complete with
its contained hierarchy of views — can be drawn into the current graphics context by
calling the UIView instance method drawViewHierarchyInRect:afterScreen-

Updates:. This method is new in iOS 7 (and is much faster than the CALayer method
renderInContext:, which it effectively replaces). The result is a snapshot of the original
view: it looks like the original view, but it’s basically just a bitmap image of it, a lightweight
visual duplicate. Snapshots are useful because of the dynamic nature of the iOS interface.
For example, you might place a snapshot of a view in your interface in front of the real
view to hide what’s happening, or use it during an animation to present the illusion of
a view moving when in fact it’s just a snapshot.

66 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-15. A view seems blurred by an occluding view

Figure 2-15 shows how a snapshot is used in one of my apps. The user can tap any of
three color swatches to edit that color. When the color-editing interface appears, I want
the user to have the impression that it is just temporary, with the original interface still
lurking behind it. So the color-editing interface shows the original interface behind it.
But the original interface mustn’t be too distracting, so it’s blurred. In reality, what’s
blurred is a snapshot of the original interface.

Here’s how the snapshot in Figure 2-15 is created:

UIGraphicsBeginImageContextWithOptions(vc1.view.frame.size, YES, 0);
[vc1.view drawViewHierarchyInRect: vc1.view.frame afterScreenUpdates:NO];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

The image im is then blurred, and the blurred image is made the image of a UIImageView
inserted behind the color-editing interface. How to achieve a blur effect is another
question. I might have used a CIFilter (the subject of the next section), but it’s too slow;
instead, I used a UIImage category distributed by Apple as part of the Blurring and
Tinting an Image sample code.

An even faster way to obtain a snapshot of a view is to use the UIView (or UIScreen)
instance method snapshotViewAfterScreenUpdates:. The result is a UIView, not a
UIImage; it’s rather like a UIImageView that knows how to draw only one image, namely
the snapshot. Such a snapshot view will typically be used as is, but you can enlarge its
bounds and the snapshot image will stretch. If you want the stretched snapshot to
behave like a resizable image, call resizableSnapshotViewFromRect:afterScreen-

Snapshots | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Updates:withCapInsets: instead. It is perfectly reasonable to make a snapshot view
from a snapshot view.

CIFilter and CIImage
The “CI” in CIFilter and CIImage stands for Core Image, a technology for transforming
images through mathematical filters. Core Image started life on the desktop (OS X);
some of the filters available on the desktop aren’t available in iOS (perhaps are they are
too intensive mathematically for a mobile device).

A filter is a CIFilter. The available filters (there are about 120 of them, with nearly two
dozen being new in iOS 7) fall naturally into several categories:
Patterns and gradients

These filters create CIImages that can then be combined with other CIImages, such
as a single color, a checkerboard, stripes, or a gradient.

Compositing
These filters combine one image with another, using compositing blend modes
familiar from image processing programs such as Photoshop.

Color
These filters adjust or otherwise modify the colors of an image. Thus you can alter
an image’s saturation, hue, brightness, contrast, gamma and white point, exposure,
shadows and highlights, and so on.

Geometric
These filters perform basic geometric transformations on an image, such as scaling,
rotation, and cropping.

Transformation
These filters distort, blur, or stylize an image. Relatively few of them are available
on iOS.

Transition
These filters provide a frame of a transition between one image and another; by
asking for frames in sequence, you can animate the transition (I’ll demonstrate in
Chapter 4).

Special purpose
These filters perform highly specialized operations such as face detection and gen‐
eration of QR codes.

The basic use of a CIFilter is quite simple; it essentially works as if a filter were a kind
of dictionary consisting of keys and values. You create the filter with filterWith-
Name:, supplying the string name of a filter; to learn what these names are, consult
Apple’s Core Image Filter Reference, or call the CIFilter class method filterNamesIn-

68 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Categories: with a nil argument. Each filter has a small number of keys and values that
determine its behavior. You can learn about these keys entirely in code, but typically
you’ll consult the documentation. For each key that you’re interested in, you supply a
key–value pair, either by calling setValue:forKey: or by supplying the keys and values
as you specify the filter name by calling filterWithName:keysAndValues:. In supplying
values, a number must be wrapped up as an NSNumber, and there are a few supporting
classes such as CIVector (like CGPoint and CGRect combined) and CIColor, whose use
is easy to grasp.

A CIFilter’s keys include any image or images on which the filter is to operate; such an
image must be a CIImage. You can obtain a CIImage as the output of a filter; thus filters
can be chained together. But what about the first filter in the chain? Where will its
CIImage come from? You can obtain a CIImage from a CGImage with initWith-
CGImage:, and you can obtain a CGImage from a UIImage as its CGImage property.

Do not attempt, as a shortcut, to obtain a CIImage directly from a
UIImage by calling the UIImage instance method CIImage. This meth‐
od does not transform a UIImage into a CIImage! It merely points to
the CIImage that already backs the UIImage, and your images are not
backed by a CIImage, but rather by a CGImage. I’ll explain where a
CIImage-backed UIImage comes from in just a moment.

As you build a chain of filters, nothing actually happens. The only calculation-intensive
move comes at the very end, when you transform the final CIImage in the chain into a
bitmap drawing. There are two ways to do this:

• Create a CIContext (by calling contextWithOptions:) and then call create-
CGImage:fromRect:, handing it the final CIImage as the first argument. The only
mildly tricky thing here is that a CIImage doesn’t have a frame or bounds; it has an
extent. You will often use this as the second argument to createCGImage:from-
Rect:. The final output CGImage is ready for any purpose, such as for display in
your app, for transformation into a UIImage, or for use in further drawing.

• Create a UIImage directly from the final CIImage by calling one of these methods:
— imageWithCIImage:

— initWithCIImage:

— imageWithCIImage:scale:orientation:

— initWithCIImage:scale:orientation:

You must then draw the UIImage into some graphics context. That last step is es‐
sential; the CIImage is not transformed into a bitmap until you do it. Thus, a UI‐
Image generated from imageWithCIImage: is not suitable for display directly in a

CIFilter and CIImage | 69

www.it-ebooks.info

http://www.it-ebooks.info/

UIImageView; it contains no drawing of its own. It is useful for drawing, not for
display.

To illustrate, I’ll start with an ordinary photo of myself (it’s true I’m wearing a motorcycle
helmet, but it’s still ordinary) and create a circular vignette effect (Figure 2-16). We
derive from the image of me (moi) a CGImage and from there a CIImage (moi2). We
use a CIFilter to form a radial gradient between the default colors of white and black.
Then we use a second CIFilter that treats the radial gradient as a mask for blending
between the photo of me and a default clear background: where the radial gradient is
white (everything inside the gradient’s inner radius) we see just me, and where the radial
gradient is black (everything outside the gradient’s outer radius) we see just the clear
color, with a gradation in between, so that the image fades away in the circular band
between the gradient’s radii. From the last CIImage output by this CIFilter chain, we
form a CGImage (moi3), which we transform into a UIImage (moi4):

UIImage* moi = [UIImage imageNamed:@"Moi"];
CIImage* moi2 = [[CIImage alloc] initWithCGImage:moi.CGImage];
CGRect moiextent = moi2.extent;
// first filter
CIFilter* grad = [CIFilter filterWithName:@"CIRadialGradient"];
CIVector* center = [CIVector vectorWithX:moiextent.size.width/2.0
 Y:moiextent.size.height/2.0];
[grad setValue:center forKey:@"inputCenter"];
[grad setValue:@85 forKey:@"inputRadius0"];
[grad setValue:@100 forKey:@"inputRadius1"];
CIImage *gradimage = [grad valueForKey: @"outputImage"];
// second filter
CIFilter* blend = [CIFilter filterWithName:@"CIBlendWithMask"];
[blend setValue:moi2 forKey:@"inputImage"];
[blend setValue:gradimage forKey:@"inputMaskImage"];
// extract a bitmap
CGImageRef moi3 =
 [[CIContext contextWithOptions:nil]
 createCGImage:blend.outputImage
 fromRect:moiextent];
UIImage* moi4 = [UIImage imageWithCGImage:moi3];
CGImageRelease(moi3);

Instead of generating a CGImage from the last CIImage in the chain and transforming
that into a UIImage, we could capture that CIImage as a UIImage directly — but then
we must draw with it in order to generate the bitmap output of the filter chain. For
example, we could draw it into an image context:

UIGraphicsBeginImageContextWithOptions(moiextent.size, NO, 0);
[[UIImage imageWithCIImage:blend.outputImage] drawInRect:moiextent];
UIImage* moi4 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

70 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-16. A photo of me, vignetted

A filter chain can be encapsulated into a single custom filter by subclassing CIFilter.
Your subclass just needs to implement outputImage (and possibly other methods such
as setDefaults), with private properties to make it key–value coding compliant for any
input keys. Here’s our vignette filter as a simple CIFilter subclass, where the only input
key is the input image:

@interface MyVignetteFilter ()
@property (nonatomic, strong) CIImage* inputImage;
@end
@implementation MyVignetteFilter
-(CIImage *)outputImage {
 CGRect inextent = self.inputImage.extent;
 CIFilter* grad = [CIFilter filterWithName:@"CIRadialGradient"];
 CIVector* center = [CIVector vectorWithX:inextent.size.width/2.0
 Y:inextent.size.height/2.0];
 [grad setValue:center forKey:@"inputCenter"];
 [grad setValue:@85 forKey:@"inputRadius0"];
 [grad setValue:@100 forKey:@"inputRadius1"];
 CIImage *gradimage = [grad valueForKey: @"outputImage"];

 CIFilter* blend = [CIFilter filterWithName:@"CIBlendWithMask"];
 [blend setValue:self.inputImage forKey:@"inputImage"];
 [blend setValue:gradimage forKey:@"inputMaskImage"];
 return blend.outputImage;
}
@end

And here’s how to use our CIFilter subclass and display its output:

CIFilter* vig = [MyVignetteFilter new];
CIImage* im =
 [CIImage imageWithCGImage:[UIImage imageNamed:@"Moi"].CGImage];
[vig setValue:im forKey:@"inputImage"];
CIImage* outim = vig.outputImage;
UIGraphicsBeginImageContextWithOptions(outim.extent.size, NO, 0);

CIFilter and CIImage | 71

www.it-ebooks.info

http://www.it-ebooks.info/

[[UIImage imageWithCIImage:outim] drawInRect:outim.extent];
UIImage* result = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
self.iv.image = result;

Drawing a UIView
The examples of drawing so far in this chapter have mostly produced UIImage objects,
chiefly by calling UIGraphicsBeginImageContextWithOptions to obtain a graphics
context, suitable for display by a UIImageView or any other interface object that knows
how to display an image. But, as I’ve already explained, a UIView provides a graphics
context; whatever you draw into that graphics context will appear in that view. The
technique here is to subclass UIView and implement the subclass’s drawRect: method.
At the time that drawRect: is called, the current graphics context has already been set
to the view’s own graphics context. You can use Core Graphics functions or UIKit con‐
venience methods to draw into that context.

So, for example, let’s say we have a UIView subclass called MyView. You would then
instantiate this class and get the instance into the view hierarchy. One way to do this
would be to drag a UIView into a view in the nib editor and set its class to MyView in
the Identity inspector; another would be to create the MyView instance and put it into
the interface in code. The result is that, from time to time, MyView’s drawRect: will be
called. This is your subclass, so you get to write the code that runs at that moment.
Whatever you draw will appear inside the MyView instance. There will usually be no
need to call super, since UIView’s own implementation of drawRect: does nothing.

You should never call drawRect: yourself! If a view needs updating
and you want its drawRect: called, send the view the setNeeds-
Display message. This will cause drawRect: to be called at the next
proper moment. Also, don’t override drawRect: unless you are assur‐
ed that this is legal. For example, it is not legal to override drawRect:
in a subclass of UIImageView; you cannot combine your drawing with
that of the UIImageView.

The need to draw in real time, on demand, surprises some beginners, who worry that
drawing may be a time-consuming operation. This can indeed be a reasonable consid‐
eration, and where the same drawing will be used in many places in your interface, it
may well make sense to draw a UIImage instead, once, and then reuse that UIImage. In
general, however, you should not optimize prematurely. The code for a drawing oper‐
ation may appear verbose and yet be extremely fast. Moreover, the iOS drawing system
is efficient; it doesn’t call drawRect: unless it has to (or is told to, through a call to set-
NeedsDisplay), and once a view has drawn itself, the result is cached so that the cached
drawing can be reused instead of repeating the drawing operation from scratch. (Apple

72 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

refers to this cached drawing as the view’s bitmap backing store.) You can readily satisfy
yourself of this fact with some caveman debugging, logging in your drawRect: imple‐
mentation; you may be amazed to discover that your code is called only once in the
entire lifetime of the app! In fact, moving code to drawRect: is commonly a way to
increase efficiency. This is because it is more efficient for the drawing engine to render
directly onto the screen than for it to render offscreen and then copy those pixels onto
the screen.

Where drawing is extensive and can be compartmentalized into sections, you may be
able to gain some additional efficiency by paying attention to the rect parameter passed
into drawRect:. It designates the region of the view’s bounds that needs refreshing.
Normally, this is the view’s entire bounds; but if you call setNeedsDisplayInRect:, it
will be the CGRect that you passed in as argument. You could respond by drawing only
what goes into those bounds; but even if you don’t, your drawing will be clipped to those
bounds, so, while you may not spend less time drawing, the system will draw more
efficiently.

When creating a custom UIView subclass instance in code, you may be surprised and
annoyed to find that the view has a black background:

MyView* mv = [[MyView alloc] initWithFrame:CGRectMake(20,20,150,100)];
[self.view addSubview: mv]; // appears as a black rectangle

This can be frustrating if what you expected and wanted was a transparent background,
and it’s a source of considerable confusion among beginners. The black background
arises when two things are true:

• The view’s backgroundColor is nil.
• The view’s opaque is YES.

Unfortunately, when creating a UIView in code, both those things are true by default!
So if you don’t want the black background, you must do something about one or the
other of them (or both). If a view isn’t going to be opaque, its opaque should be set to
NO anyway, so that’s probably the cleanest solution:

MyView* mv = [[MyView alloc] initWithFrame:CGRectMake(20,20,150,100)];
[self.view addSubview: mv];
mv.opaque = NO;

Alternatively, this being your own UIView subclass, you could implement its initWith-
Frame: (the designated initializer) to have the view set its own opaque to NO:

Drawing a UIView | 73

www.it-ebooks.info

http://www.it-ebooks.info/

- (id)initWithFrame:(CGRect)frame {
 self = [super initWithFrame:frame];
 if (self) {
 self.opaque = NO;
 }
 return self;
}

With a UIView created in the nib, on the other hand, the black background problem
doesn’t arise. This is because such a UIView’s backgroundColor is not nil. The nib assigns
it some actual background color, even if that color is [UIColor clearColor].

Of course, if a view fills its rectangle with opaque drawing or has an opaque background
color, you can leave opaque set to YES and gain some drawing efficiency (see Chapter 1).

Graphics Context Settings
As you draw in a graphics context, the drawing obeys the context’s current settings.
Thus, the procedure is always to configure the context’s settings first, and then draw.
For example, to draw a red line followed by a blue line, you would first set the context’s
line color to red, and then draw the first line; then you’d set the context’s line color to
blue, and then draw the second line. To the eye, it appears that the redness and blueness
are properties of the individual lines, but in fact, at the time you draw each line, line
color is a feature of the entire graphics context. This is true regardless of whether you
use UIKit methods or Core Graphics functions.

A graphics context thus has, at every moment, a state, which is the sum total of all its
settings; the way a piece of drawing looks is the result of what the graphics context’s state
was at the moment that piece of drawing was performed. To help you manipulate entire
states, the graphics context provides a stack for holding states. Every time you call
CGContextSaveGState, the context pushes the entire current state onto the stack; every
time you call CGContextRestoreGState, the context retrieves the state from the top of
the stack (the state that was most recently pushed) and sets itself to that state.

Thus, a common pattern is: call CGContextSaveGState; manipulate the context’s set‐
tings, thus changing its state; draw; call CGContextRestoreGState to restore the state
and the settings to what they were before you manipulated them. You do not have to do
this before every manipulation of a context’s settings, however, because settings don’t
necessarily conflict with one another or with past settings. You can set the context’s line
color to red and then later to blue without any difficulty. But in certain situations you
do want your manipulation of settings to be undoable, and I’ll point out several such
situations later in this chapter.

Many of the settings that constitute a graphics context’s state, and that determine the
behavior and appearance of drawing performed at that moment, are similar to those of
any drawing application. Here are some of them, along with some of the commands

74 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

that determine them. I list Core Graphics functions, followed by some UIKit conve‐
nience methods that call them:
Line thickness and dash style

CGContextSetLineWidth, CGContextSetLineDash (and UIBezierPath lineWidth,
setLineDash:count:phase:)

Line end-cap style and join style
CGContextSetLineCap, CGContextSetLineJoin, CGContextSetMiterLimit (and
UIBezierPath lineCapStyle, lineJoinStyle, miterLimit)

Line color or pattern
CGContextSetRGBStrokeColor, CGContextSetGrayStrokeColor, CGContextSet-
StrokeColorWithColor, CGContextSetStrokePattern (and UIColor setStroke)

Fill color or pattern
CGContextSetRGBFillColor, CGContextSetGrayFillColor, CGContextSetFill-
ColorWithColor, CGContextSetFillPattern (and UIColor setFill)

Shadow
CGContextSetShadow, CGContextSetShadowWithColor

Overall transparency and compositing
CGContextSetAlpha, CGContextSetBlendMode

Anti-aliasing
CGContextSetShouldAntialias

Additional settings include:
Clipping area

Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands are mapped
onto the physical space of the canvas.

Many of these settings will be illustrated by examples later in this chapter.

Paths and Shapes
By issuing a series of instructions for moving an imaginary pen, you trace out a path.
Such a path does not constitute drawing! First you provide a path; then you draw.
Drawing can mean stroking the path or filling the path, or both. Again, this should be
a familiar notion from certain drawing applications.

A path is constructed by tracing it out from point to point. Think of the drawing system
as holding a pen. Then you must first tell that pen where to position itself, setting the

Paths and Shapes | 75

www.it-ebooks.info

http://www.it-ebooks.info/

current point; after that, you issue a series of commands telling it how to trace out each
subsequent piece of the path. Each additional piece of the path starts at the current point;
its end becomes the new current point.

Here are some path-drawing commands you’re likely to give:
Position the current point

CGContextMoveToPoint

Trace a line
CGContextAddLineToPoint, CGContextAddLines

Trace a rectangle
CGContextAddRect, CGContextAddRects

Trace an ellipse or circle
CGContextAddEllipseInRect

Trace an arc
CGContextAddArcToPoint, CGContextAddArc

Trace a Bezier curve with one or two control points
CGContextAddQuadCurveToPoint, CGContextAddCurveToPoint

Close the current path
CGContextClosePath. This appends a line from the last point of the path to the first
point. There’s no need to do this if you’re about to fill the path, since it’s done for
you.

Stroke or fill the current path
CGContextStrokePath, CGContextFillPath, CGContextEOFillPath, CGContext-
DrawPath. Stroking or filling the current path clears the path. Use CGContextDraw-
Path if you want both to fill and to stroke the path in a single command, because if
you merely stroke it first with CGContextStrokePath, the path is cleared and you
can no longer fill it. There are also a lot of convenience functions that create a path
and stroke or fill it all in a single move:

• CGContextStrokeLineSegments

• CGContextStrokeRect

• CGContextStrokeRectWithWidth

• CGContextFillRect

• CGContextFillRects

• CGContextStrokeEllipseInRect

• CGContextFillEllipseInRect

76 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-17. A simple path drawing

A path can be compound, meaning that it consists of multiple independent pieces. For
example, a single path might consist of two separate closed shapes: a rectangle and a
circle. When you call CGContextMoveToPoint in the middle of constructing a path (that
is, after tracing out a path and without clearing it by filling, stroking, or calling
CGContextBeginPath), you pick up the imaginary pen and move it to a new location
without tracing a segment, thus preparing to start an independent piece of the same
path. If you’re worried, as you begin to trace out a path, that there might be an existing
path and that your new path might be seen as a compound part of that existing path,
you can call CGContextBeginPath to specify that this is a different path; many of Apple’s
examples do this, but in practice I usually do not find it necessary.

To illustrate the typical use of path-drawing commands, I’ll generate the up-pointing
arrow shown in Figure 2-17. This might not be the best way to create the arrow, and I’m
deliberately avoiding use of the convenience functions, but it’s clear and shows a nice
basic variety of typical commands:

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();
// draw a black (by default) vertical line, the shaft of the arrow
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextStrokePath(con);
// draw a red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);
// snip a triangle out of the shaft by drawing in Clear blend mode
CGContextMoveToPoint(con, 90, 101);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 101);
CGContextSetBlendMode(con, kCGBlendModeClear);
CGContextFillPath(con);

Paths and Shapes | 77

www.it-ebooks.info

http://www.it-ebooks.info/

If a path needs to be reused or shared, you can encapsulate it as a CGPath, which is
actually a CGPathRef. You can either create a new CGMutablePathRef and construct
the path using various CGPath functions that parallel the CGContext path-construction
functions, or you can copy the graphics context’s current path using CGContextCopy-
Path. There are also a number of CGPath functions for creating a path based on simple
geometry or based on an existing path:

• CGPathCreateWithRect

• CGPathCreateWithEllipseInRect

• CGPathCreateCopyByStrokingPath

• CGPathCreateCopyByDashingPath

• CGPathCreateCopyByTransformingPath

The UIKit class UIBezierPath wraps CGPath; it, too, provides methods parallel to the
CGContext path-construction functions, such as:

• moveToPoint:

• addLineToPoint:

• bezierPathWithRect:

• bezierPathWithOvalInRect:

• addArcWithCenter:radius:startAngle:endAngle:clockwise:

• addQuadCurveToPoint:controlPoint:

• addCurveToPoint:controlPoint1:controlPoint2:

• closePath

Also, UIBezierPath offers one extremely useful convenience method, bezierPathWith-
RoundedRect:cornerRadius: — drawing a rectangle with rounded corners using only
Core Graphics functions is rather tedious.

When you call the UIBezierPath instance method fill or stroke (or fillWithBlend-
Mode:alpha: or strokeWithBlendMode:alpha:), the current graphics context is saved,
the wrapped CGPath path is made the current graphics context’s path and stroked or
filled, and the current graphics context is restored.

Thus, using UIBezierPath together with UIColor, we could rewrite our arrow-drawing
routine entirely with UIKit methods:

// shaft of the arrow
UIBezierPath* p = [UIBezierPath bezierPath];
[p moveToPoint:CGPointMake(100,100)];
[p addLineToPoint:CGPointMake(100, 19)];

78 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

[p setLineWidth:20];
[p stroke];
// point of the arrow
[[UIColor redColor] set];
[p removeAllPoints];
[p moveToPoint:CGPointMake(80,25)];
[p addLineToPoint:CGPointMake(100, 0)];
[p addLineToPoint:CGPointMake(120, 25)];
[p fill];
// snip out triangle in the tail
[p removeAllPoints];
[p moveToPoint:CGPointMake(90,101)];
[p addLineToPoint:CGPointMake(100, 90)];
[p addLineToPoint:CGPointMake(110, 101)];
[p fillWithBlendMode:kCGBlendModeClear alpha:1.0];

There’s no savings of code here over calling Core Graphics functions. UIBezierPath is
particularly useful when you want to capture a CGPath and pass it around as an object;
an example appears in Chapter 21.

Clipping
Another use of a path is to mask out areas, protecting them from future drawing. This
is called clipping. By default, a graphics context’s clipping region is the entire graphics
context: you can draw anywhere within the context.

The clipping area is a feature of the context as a whole, and any new clipping area is
applied by intersecting it with the existing clipping area; so if you apply your own clip‐
ping region, the way to remove it from the graphics context later is to plan ahead and
wrap things with calls to CGContextSaveGState and CGContextRestoreGState.

To illustrate, I’ll rewrite the code that generated our original arrow (Figure 2-17) to use
clipping instead of a blend mode to “punch out” the triangular notch in the tail of the
arrow. This is a little tricky, because what we want to clip to is not the region inside the
triangle but the region outside it. To express this, we’ll use a compound path consisting
of more than one closed area — the triangle, and the drawing area as a whole (which
we can obtain with CGContextGetClipBoundingBox).

Both when filling a compound path and when using it to express a clipping region, the
system follows one of two rules:
Winding rule

The fill or clipping area is denoted by an alternation in the direction (clockwise or
counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths demarcating each
region.

Clipping | 79

www.it-ebooks.info

http://www.it-ebooks.info/

How Big Is My Context?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typically,
this doesn’t matter, because either you created the graphics context or it’s the graphics
context of some object whose size you know, such as a UIView. But in fact, because the
default clipping region of a graphics context is the entire context, you can use CGContext-
GetClipBoundingBox to learn the context’s “bounds” (before changing the clipping re‐
gion, of course).

Our situation is extremely simple, so it’s easier to use the even-odd rule. So we set up
the clipping area using CGContextEOClip and then draw the arrow:

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();
// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 100);
CGContextClosePath(con);
CGContextAddRect(con, CGContextGetClipBoundingBox(con));
CGContextEOClip(con);
// draw the vertical line
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextStrokePath(con);
// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

The UIBezierPath clipping commands are usesEvenOddFillRule and addClip.

Gradients
Gradients can range from the simple to the complex. A simple gradient (which is all I’ll
describe here) is determined by a color at one endpoint along with a color at the other
endpoint, plus (optionally) colors at intermediate points; the gradient is then painted
either linearly between two points in the context or radially between two circles in the
context.

You can’t use a gradient as a path’s fill color, but you can restrict a gradient to a path’s
shape by clipping, which amounts to the same thing.

80 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-18. Drawing with a gradient

To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of the arrow
(Figure 2-18):

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSaveGState(con);
// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 100);
CGContextClosePath(con);
CGContextAddRect(con, CGContextGetClipBoundingBox(con));
CGContextEOClip(con);
// draw the vertical line, add its shape to the clipping region
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextReplacePathWithStrokedPath(con);
CGContextClip(con);
// draw the gradient
CGFloat locs[3] = { 0.0, 0.5, 1.0 };
CGFloat colors[12] = {
 0.3,0.3,0.3,0.8, // starting color, transparent gray
 0.0,0.0,0.0,1.0, // intermediate color, black
 0.3,0.3,0.3,0.8 // ending color, transparent gray
};
CGColorSpaceRef sp = CGColorSpaceCreateDeviceGray();
CGGradientRef grad =
 CGGradientCreateWithColorComponents (sp, colors, locs, 3);
CGContextDrawLinearGradient (
 con, grad, CGPointMake(89,0), CGPointMake(111,0), 0);
CGColorSpaceRelease(sp);
CGGradientRelease(grad);
CGContextRestoreGState(con); // done clipping
// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

Gradients | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-19. A patterned fill

The call to CGContextReplacePathWithStrokedPath pretends to stroke the current
path, using the current line width and other line-related context state settings, but then
creates a new path representing the outside of that stroked path. Thus, instead of a thick
line we have a rectangular region that we can use as the clip region.

We then create the gradient and paint it. The procedure is verbose but simple; everything
is boilerplate. We describe the gradient as a set of locations on the continuum between
one endpoint (0.0) and the other endpoint (1.0), along with the colors corresponding
to each location; in this case, I want the gradient to be lighter at the edges and darker in
the middle, so I use three locations, with the dark one at 0.5. We must also supply a
color space in order to create the gradient. Finally, we create the gradient, paint it into
place, and release the color space and the gradient.

Colors and Patterns
A color is a CGColor (actually a CGColorRef). CGColor is not difficult to work with,
and can be converted to and from a UIColor through UIColor’s colorWithCGColor:
and CGColor methods.

A pattern, on the other hand, is a CGPattern (actually a CGPatternRef). You can create
a pattern and stroke or fill with it. The process is rather elaborate. As an extremely simple
example, I’ll replace the red triangular arrowhead with a red-and-blue striped triangle
(Figure 2-19). To do so, remove this line:

CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);

In its place, put the following:

CGColorSpaceRef sp2 = CGColorSpaceCreatePattern(nil);
CGContextSetFillColorSpace (con, sp2);
CGColorSpaceRelease (sp2);
CGPatternCallbacks callback = {
 0, drawStripes, nil
};
CGAffineTransform tr = CGAffineTransformIdentity;
CGPatternRef patt = CGPatternCreate(nil,
 CGRectMake(0,0,4,4),
 tr,

82 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

 4, 4,
 kCGPatternTilingConstantSpacingMinimalDistortion,
 true,
 &callback);
CGFloat alph = 1.0;
CGContextSetFillPattern(con, patt, &alph);
CGPatternRelease(patt);

That code is verbose, but it is almost entirely boilerplate. To understand it, it almost
helps to read it backward. What we’re leading up to is the call to CGContextSetFill-
Pattern; instead of setting a fill color, we’re setting a fill pattern, to be used the next
time we fill a path (in this case, the triangular arrowhead). The third parameter to
CGContextSetFillPattern is a pointer to a CGFloat, so we have to set up the CGFloat
itself beforehand. The second parameter to CGContextSetFillPattern is a CGPattern‐
Ref, so we have to create that CGPatternRef beforehand (and release it afterward).

So now let’s talk about the call to CGPatternCreate. A pattern is a drawing in a rectan‐
gular “cell”; we have to state both the size of the cell (the second argument) and the
spacing between origin points of cells (the fourth and fifth arguments). In this case, the
cell is 4×4, and every cell exactly touches its neighbors both horizontally and vertically.
We have to supply a transform to be applied to the cell (the third argument); in this case,
we’re not doing anything with this transform, so we supply the identity transform. We
supply a tiling rule (the sixth argument). We have to state whether this is a color pattern
or a stencil pattern; it’s a color pattern, so the seventh argument is true. And we have
to supply a pointer to a callback function that actually draws the pattern into its cell (the
eighth argument).

Except that that’s not what we have to supply as the eighth argument. To make matters
more complicated, what we actually have to supply here is a pointer to a CGPattern‐
Callbacks struct. This struct consists of the number 0 and pointers to two functions, one
called to draw the pattern into its cell, the other called when the pattern is released. We’re
not specifying the second function, however; it is for memory management, and we
don’t need it in this simple example.

We have almost worked our way backward to the start of the code. It turns out that
before you can call CGContextSetFillPattern with a colored pattern, you have to set
the context’s fill color space to a pattern color space. If you neglect to do this, you’ll get
an error when you call CGContextSetFillPattern. So we create the color space, set it
as the context’s fill color space, and release it.

But we are still not finished, because I haven’t shown you the function that actually draws
the pattern cell! This is the function whose address is taken as drawStripes in our code.
Here it is:

Colors and Patterns | 83

www.it-ebooks.info

http://www.it-ebooks.info/

void drawStripes (void *info, CGContextRef con) {
 // assume 4 x 4 cell
 CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,4));
 CGContextSetFillColorWithColor(con, [[UIColor blueColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,2));
}

As you can see, the actual pattern-drawing code is very simple. The only tricky issue is
that the call to CGPatternCreate must be in agreement with the pattern-drawing func‐
tion as to the size of a cell, or the pattern won’t come out the way you expect. We know
in this case that the cell is 4×4. So we fill it with red, and then fill its lower half with blue.
When these cells are tiled touching each other horizontally and vertically, we get the
stripes that you see in Figure 2-19.

Note, finally, that the code as presented has left the graphics context in an undesirable
state, with its fill color space set to a pattern color space. This would cause trouble if we
were later to try to set the fill color to a normal color. The solution, as usual, is to wrap
the code in calls to CGContextSaveGState and CGContextRestoreGState.

You may have observed in Figure 2-19 that the stripes do not fit neatly inside the triangle
of the arrowhead: the bottommost stripe is something like half a blue stripe. This is
because a pattern is positioned not with respect to the shape you are filling (or stroking),
but with respect to the graphics context as a whole. We could shift the pattern position
by calling CGContextSetPatternPhase before drawing.

For such a simple pattern, it would have been easier to take advantage of UIColor’s
colorWithPatternImage:, which takes a UIImage:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(4,4), NO, 0);
drawStripes(nil, UIGraphicsGetCurrentContext());
UIImage* stripes = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
UIColor* stripesPattern = [UIColor colorWithPatternImage:stripes];
[stripesPattern setFill];
UIBezierPath* p = [UIBezierPath bezierPath];
[p moveToPoint:CGPointMake(80,25)];
[p addLineToPoint:CGPointMake(100,0)];
[p addLineToPoint:CGPointMake(120,25)];
[p fill];

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. However, applying a
transform to a graphics context has no effect on the drawing that’s already in it; it affects
only the drawing that takes place after it is applied, altering the way the coordinates you
provide are mapped onto the graphics context’s area. A graphics context’s transform is
called its CTM, for “current transform matrix.”

84 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

It is quite usual to take full advantage of a graphics context’s CTM to save yourself from
performing even simple calculations. You can multiply the current transform by any
CGAffineTransform using CGContextConcatCTM; there are also convenience functions
for applying a translate, scale, or rotate transform to the current transform.

The base transform for a graphics context is already set for you when you obtain the
context; this is how the system is able to map context drawing coordinates onto screen
coordinates. Whatever transforms you apply are applied to the current transform, so
the base transform remains in effect and drawing continues to work. You can return to
the base transform after applying your own transforms by wrapping your code in calls
to CGContextSaveGState and CGContextRestoreGState.

For example, we have hitherto been drawing our upward-pointing arrow with code that
knows how to place that arrow at only one location: the top left of its rectangle is hard-
coded at {80,0}. This is silly. It makes the code hard to understand, as well as inflexible
and difficult to reuse. Surely the sensible thing would be to draw the arrow at {0,0}, by
subtracting 80 from all the x-values in our existing code. Now it is easy to draw the
arrow at any position, simply by applying a translate transform beforehand, mapping
{0,0} to the desired top-left corner of the arrow. So, to draw it at {80,0}, we would say:

CGContextTranslateCTM(con, 80, 0);
// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated orientation
without any nasty trigonometry. However, it’s a bit tricky because the point around
which the rotation takes place is the origin. This is rarely what you want, so you have
to apply a translate transform first, to map the origin to the point around which you
really want to rotate. But then, after rotating, in order to figure out where to draw you
will probably have to reverse your translate transform.

To illustrate, here’s code to draw our arrow repeatedly at several angles, pivoting around
the end of its tail (Figure 2-20). Since the arrow will be drawn multiple times, I’ll start
by encapsulating the drawing of the arrow as a UIImage. This is not merely to reduce
repetition and make drawing more efficient; it’s also because we want the entire arrow
to pivot, including the pattern stripes, and this is the simplest way to achieve that:

- (UIImage*) arrowImage {
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(40,100), NO, 0.0);
 // obtain the current graphics context
 CGContextRef con = UIGraphicsGetCurrentContext();
 // draw the arrow into the image context
 // draw it at (0,0)! adjust all x-values by subtracting 80
 // ... actual code omitted ...
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return im;
}

Graphics Context Transforms | 85

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-20. Drawing rotated with a CTM

We produce the arrow image once and store it somewhere — I’ll use an instance variable
accessed as self.arrow. In our drawRect: implementation, we draw the arrow image
multiple times:

- (void)drawRect:(CGRect)rect {
 CGContextRef con = UIGraphicsGetCurrentContext();
 [self.arrow drawAtPoint:CGPointMake(0,0)];
 for (int i=0; i<3; i++) {
 CGContextTranslateCTM(con, 20, 100);
 CGContextRotateCTM(con, 30 * M_PI/180.0);
 CGContextTranslateCTM(con, -20, -100);
 [self.arrow drawAtPoint:CGPointMake(0,0)];
 }
}

A transform is also one more solution for the “flip” problem we encountered earlier
with CGContextDrawImage. Instead of reversing the drawing, we can reverse the context
into which we draw it. Essentially, we apply a “flip” transform to the context’s coordinate
system. You move the context’s top downward, and then reverse the direction of the y-
coordinate by applying a scale transform whose y-multiplier is -1:

CGContextTranslateCTM(con, 0, theHeight);
CGContextScaleCTM(con, 1.0, -1.0);

How far down you move the context’s top (theHeight) depends on how you intend to
draw the image.

Shadows
To add a shadow to a drawing, give the context a shadow value before drawing. The
shadow position is expressed as a CGSize, where the positive direction for both values
indicates down and to the right. The blur value is an open-ended positive number; Apple
doesn’t explain how the scale works, but experimentation shows that 12 is nice and
blurry, 99 is so blurry as to be shapeless, and higher values become problematic.

Figure 2-21 shows the result of the same code that generated Figure 2-20, except that
before we start drawing the arrow repeatedly, we give the context a shadow:

86 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-21. Drawing with a shadow

con = UIGraphicsGetCurrentContext();
CGContextSetShadow(con, CGSizeMake(7, 7), 12);
[self.arrow drawAtPoint:CGPointMake(0,0)]; // ... and so on

However, there’s a subtle cosmetic problem with this approach. It may not be evident
from Figure 2-21, but we are adding a shadow each time we draw. Thus the arrows are
able to cast shadows on one another. What we want, however, is for all the arrows to
cast a single shadow collectively. The way to achieve this is with a transparency layer;
this is basically a subcontext that accumulates all drawing and then adds the shadow.
Our code for drawing the shadowed arrows now looks like this:

CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSetShadow(con, CGSizeMake(7, 7), 12);
CGContextBeginTransparencyLayer(con, nil);
[self.arrow drawAtPoint:CGPointMake(0,0)];
for (int i=0; i<3; i++) {
 CGContextTranslateCTM(con, 20, 100);
 CGContextRotateCTM(con, 30 * M_PI/180.0);
 CGContextTranslateCTM(con, -20, -100);
 [self.arrow drawAtPoint:CGPointMake(0,0)];
}
CGContextEndTransparencyLayer(con);

Erasing
The function CGContextClearRect erases all existing drawing in a rectangle; combined
with clipping, it can erase an area of any shape. The result can “punch a hole” through
all existing drawing.

The behavior of CGContextClearRect depends on whether the context is transparent
or opaque. This is particularly obvious and intuitive when drawing into an image con‐
text. If the image context is transparent — the second argument to UIGraphicsBegin-
ImageContextWithOptions is NO — CGContextClearRect erases to transparent; other‐
wise it erases to black.

When drawing directly into a view (as with drawRect: or drawLayer:inContext:), if
the view’s background color is nil or a color with even a tiny bit of transparency, the

Erasing | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-22. The very strange behavior of CGContextClearRect

result of CGContextClearRect will appear to be transparent, punching a hole right
through the view including its background color; if the background color is completely
opaque, the result of CGContextClearRect will be black. This is because the view’s
background color determines whether the view’s graphics context is transparent or
opaque; thus, this is essentially the same behavior that I described in the preceding
paragraph.

Figure 2-22 illustrates; the blue square on the left has been partly cut away to black,
while the blue square on the right has been partly cut away to transparency. Yet these
are instances of the same UIView subclass, drawn with exactly the same code! The
difference between the views is that the backgroundColor of the first view is solid red
with an alpha of 1, while the backgroundColor of the second view is solid red with an
alpha of 0.99. This difference is utterly imperceptible to the eye (not to mention that
the red color never appears, as it is covered with a blue fill), but it completely changes
the effect of CGContextClearRect. The UIView subclass’s drawRect: looks like this:

CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
CGContextFillRect(con, rect);
CGContextClearRect(con, CGRectMake(0,0,30,30));

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-coordinate.
When you draw in a graphics context, you specify the points at which to draw, and this
works regardless of the device’s resolution, because Core Graphics maps your drawing
nicely onto the physical output using the base CTM and anti-aliasing. Therefore,
throughout this chapter I’ve concerned myself with graphics context points, disregard‐
ing their relationship to screen pixels.

However, pixels do exist. A pixel is a physical, integral, dimensioned unit of display in
the real world. Whole-numbered points effectively lie between pixels, and this can mat‐
ter if you’re fussy, especially on a single-resolution device. For example, if a vertical path
with whole-number coordinates is stroked with a line width of 1, half the line falls on
each side of the path, and the drawn line on the screen of a single-resolution device will
seem to be 2 pixels wide (because the device can’t illuminate half a pixel).

88 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

You will sometimes encounter advice suggesting that if this effect is objectionable, you
should try shifting the line’s position by 0.5, to center it in its pixels. This advice may
appear to work, but it makes some simpleminded assumptions. A more sophisticated
approach is to obtain the UIView’s contentScaleFactor property. This value will be
either 1.0 or 2.0, so you can divide by it to convert from pixels to points. Consider also
that the most accurate way to draw a vertical or horizontal line is not to stroke a path
but to fill a rectangle. So this UIView subclass code will draw a perfect 1-pixel-wide
vertical line on any device:

CGContextFillRect(con, CGRectMake(100,0,1.0/self.contentScaleFactor,100));

Content Mode
A view that draws something within itself, as opposed to merely having a background
color and subviews (as in the previous chapter), has content. This means that its content-
Mode property becomes important whenever the view is resized. As I mentioned earlier,
the drawing system will avoid asking a view to redraw itself from scratch if possible;
instead, it will use the cached result of the previous drawing operation (the bitmap
backing store). So, if the view is resized, the system may simply stretch or shrink or
reposition the cached drawing, if your contentMode setting instructs it to do so.

It’s a little tricky to illustrate this point when the view’s content is coming from draw-
Rect:, because I have to arrange for the view to obtain its content (from drawRect:)
and then cause it to be resized without also causing it to be redrawn (that is, without
drawRect: being called again). Here’s how I’ll do that. As the app starts up, I’ll create
an instance of a UIView subclass that knows how to draw our arrow. Then I’ll use delayed
performance to resize the instance after the window has shown and the interface has
been initially displayed:

void (^resize) (void) = ^{
 CGRect f = mv.bounds; // mv is the MyView instance
 f.size.height *= 2;
 mv.bounds = f;
};
dispatch_time_t popTime = dispatch_time(DISPATCH_TIME_NOW, NSEC_PER_SEC);
dispatch_after(popTime, dispatch_get_main_queue(), resize);

We double the height of the view without causing drawRect: to be called. The result is
that the view’s drawing appears at double its correct height. For example, if our view’s
drawRect: code is the same as the code that generated Figure 2-18, we get Figure 2-23.

Sooner or later, however, drawRect: will be called, and the drawing will be refreshed in
accordance with our code. Our code doesn’t say to draw the arrow at a height that is
relative to the height of the view’s bounds; it draws the arrow at a fixed height. Thus, the
arrow will snap back to its original size.

Content Mode | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-23. Automatic stretching of content

A view’s contentMode property should therefore usually be in agreement with how the
view draws itself. Our drawRect: code dictates the size and position of the arrow relative
to the view’s bounds origin, its top left; so we could set its contentMode to UIViewContent-
ModeTopLeft. Alternatively, we could set it to UIViewContentModeRedraw; this will cause
automatic scaling of the cached content to be turned off — instead, when the view is
resized, its setNeedsDisplay method will be called, ultimately triggering drawRect: to
redraw the content.

90 | Chapter 2: Drawing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Layers

The tale told in Chapter 1 and Chapter 2 of how a UIView works and how it draws itself
is only half the story. A UIView has a partner called its layer, a CALayer. A UIView does
not actually draw itself onto the screen; it draws itself into its layer, and it is the layer
that is portrayed on the screen. As I’ve already mentioned, a view is not redrawn fre‐
quently; instead, its drawing is cached, and the cached version of the drawing (the
bitmap backing store) is used where possible. The cached version is, in fact, the layer.
What I spoke of in Chapter 2 as the view’s graphics context is actually the layer’s graphics
context.

This might seem like a mere implementation detail, but layers are important and in‐
teresting. To understand layers is to understand views more deeply; layers extend the
power of views. In particular:
Layers have properties that affect drawing.

Layers have drawing-related properties beyond those of a UIView. Because a layer
is the recipient and presenter of a view’s drawing, you can modify how a view is
drawn on the screen by accessing the layer’s properties. In other words, by reaching
down to the level of its layer, you can make a view do things you can’t do through
UIView methods alone.

Layers can be combined within a single view.
A UIView’s partner layer can contain additional layers. Since the purpose of layers
is to draw, portraying visible material on the screen, this allows a UIView’s drawing
to be composited of multiple distinct pieces. This can make drawing easier, with
the constituents of a drawing being treated as objects.

Layers are the basis of animation.
Animation allows you to add clarity, emphasis, and just plain coolness to your
interface. Layers are made to be animated; the “CA” in “CALayer” stands for “Core
Animation”. Animation is the subject of Chapter 4.

91

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-1. A compass, composed of layers

For example, suppose we want to add a compass indicator to our app’s interface.
Figure 3-1 portrays a simple version of such a compass. It takes advantage of the arrow
that we figured out how to draw in Chapter 2; the arrow is drawn into a layer of its own.
The other parts of the compass are layers too: the circle is a layer, and each of the cardinal
point letters is a layer. The drawing is thus easy to composite in code (and later in this
chapter, that’s exactly what we’ll do); even more intriguing, the pieces can be reposi‐
tioned and animated separately, so it’s easy to rotate the arrow without moving the circle
(and in Chapter 4, that’s exactly what we’ll do).

The documentation discusses layers chiefly in connection with animation (in particular,
in the Core Animation Programming Guide). This categorization gives the impression
that layers are of interest only if you intend to animate. That’s misleading. Layers are
the basis of animation, but they are also the basis of view drawing, and are useful and
important even if you don’t use them for animation.

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as the view’s
layer property. This layer has a special status: it is partnered with this view to embody
all of the view’s drawing. The layer has no corresponding view property, but the view is
the layer’s delegate. The documentation sometimes speaks of this layer as the view’s
“underlying layer.”

By default, when a UIView is instantiated, its layer is an instance of CALayer. But if you
subclass UIView and you want your subclass’s underlying layer to be an instance of a
CALayer subclass (built-in or your own), implement the UIView subclass’s layer-
Class class method to return that CALayer subclass.

92 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

That, for example, is how the compass in Figure 3-1 is created. We have a UIView
subclass, CompassView, and a CALayer subclass, CompassLayer. CompassView con‐
tains these lines:

+ (Class) layerClass {
 return [CompassLayer class];
}

Thus, when CompassView is instantiated, its underlying layer is a CompassLayer. In
this example, there is no drawing in CompassView; its job is to give CompassLayer a
place in the visible interface, because a layer cannot appear without a view.

Because every view has an underlying layer, there is a tight integration between the two.
The layer portrays all the view’s drawing; if the view draws, it does so by contributing
to the layer’s drawing. The view is the layer’s delegate. And the view’s properties are often
merely a convenience for accessing the layer’s properties. For example, when you set
the view’s backgroundColor, you are really setting the layer’s backgroundColor, and if
you set the layer’s backgroundColor directly, the view’s backgroundColor is set to match.
Similarly, the view’s frame is really the layer’s frame and vice versa.

A CALayer’s delegate property is settable, but you must never set the
delegate property of a UIView’s underlying layer. To do so would be
to break the integration between them, thereby causing drawing to stop
working correctly. A UIView must be the delegate of its underlying
layer; moreover, it must not be the delegate of any other layer. Don’t
do anything to mess this up.

The view draws into its layer, and the layer caches that drawing; the layer can then be
manipulated, changing the view’s appearance, without necessarily asking the view to
redraw itself. This is a source of great efficiency in the drawing system. It also explains
such phenomena as the content stretching that we encountered in the last section of
Chapter 2: when the view’s bounds size changes, the drawing system, by default, simply
stretches or repositions the cached layer image, until such time as the view is told to
draw freshly (drawRect:), replacing the layer’s content.

OS X Programmer Alert
On OS X, NSView existed long before CALayer was introduced, so
today a view might have no layer, or, if it does have a layer, it might
relate to it in various ways. You may be accustomed to terms like layer-
backed view or layer-hosting view. On iOS, layers were incorporated
from the outset: every UIView has an underlying layer and relates to
it in the same way (layer-backed).

View and Layer | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-2. A hierarchy of views and the hierarchy of layers underlying it

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. Thus there is a tree
of layers. This is similar and parallel to the tree of views (Chapter 1). In fact, so tight is
the integration between a view and its underlying layer that these hierarchies are effec‐
tively the same hierarchy. Given a view and its underlying layer, that layer’s superlayer
is the view’s superview’s underlying layer, and that layer has as sublayers all the under‐
lying layers of all the view’s subviews. Indeed, because the layers are how the views
actually get drawn, one might say that the view hierarchy really is a layer hierarchy
(Figure 3-2).

At the same time, the layer hierarchy can go beyond the view hierarchy. A view has
exactly one underlying layer, but a layer can have sublayers that are not the underlying
layers of any view. So the hierarchy of layers that underlie views exactly matches the
hierarchy of views (Figure 3-2), but the total layer tree may be a superset of that hierarchy.
In Figure 3-3, we see the same view-and-layer hierarchy as in Figure 3-2, but two of the
layers have additional sublayers that are theirs alone (that is, sublayers that are not any
view’s underlying layers).

From a visual standpoint, there may be nothing to distinguish a hierarchy of views from
a hierarchy of layers. For example, in Chapter 1 we drew three overlapping rectangles
using a hierarchy of views (Figure 1-1). This code gives exactly the same visible display
by manipulating layers (Figure 3-4):

CALayer* lay1 = [CALayer new];
lay1.frame = CGRectMake(113, 111, 132, 194);
lay1.backgroundColor =
 [[UIColor colorWithRed:1 green:.4 blue:1 alpha:1] CGColor];
[mainview.layer addSublayer:lay1];
CALayer* lay2 = [CALayer new];
lay2.backgroundColor =

94 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-3. Layers that have sublayers of their own

Figure 3-4. Overlapping layers

 [[UIColor colorWithRed:.5 green:1 blue:0 alpha:1] CGColor];
lay2.frame = CGRectMake(41, 56, 132, 194);
[lay1 addSublayer:lay2];
CALayer* lay3 = [CALayer new];
lay3.backgroundColor =
 [[UIColor colorWithRed:1 green:0 blue:0 alpha:1] CGColor];
lay3.frame = CGRectMake(43, 197, 160, 230);
[mainview.layer addSublayer:lay3];

A view’s subview’s underlying layer is a sublayer of that view’s underlaying layer, just
like any other sublayers of that view’s underlying layer. Therefore, it can positioned
anywhere among them in the drawing order. The fact that a view can be interspersed
among the sublayers of its superview’s underlying layer is surprising to beginners. For

Layers and Sublayers | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-5. Overlapping layers and a view

example, let’s construct Figure 3-4 again, but between adding lay2 and lay3 to the
interface, we’ll add a subview:

// ...
[lay1 addSublayer:lay2];
UIImageView* iv =
 [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"smiley"]];
CGRect r = iv.frame;
r.origin = CGPointMake(180,180);
iv.frame = r;
[mainview addSubview:iv];
CALayer* lay3 = [CALayer new];
// ...

The result is Figure 3-5. The smiley face was added to the interface before the red (left)
rectangle, so it appears behind that rectangle. The smiley face is a view, whereas the
rectangle is just a layer; so they are not siblings as views, since the rectangle is not a view.
But the smiley face is both a view and its layer, and as layers the smiley face and the
rectangle are siblings, since they have the same superlayer; thus, either one can be made
to appear in front of the other.

Whether a layer displays regions of its sublayers that lie outside that layer’s own bounds
depends upon the value of its masksToBounds property. This is parallel to a view’s clips-
ToBounds property, and indeed, for a layer that is its view’s underlying layer, they are
the same thing. In Figure 3-4 and Figure 3-5, the layers all have clipsToBounds set to
NO (the default); that’s why the right layer is visible beyond the bounds of the middle
layer, which is its superlayer.

Like a UIView, a CALayer has a hidden property that can be set to take it and its sublayers
out of the visible interface without actually removing it from its superlayer.

96 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the layer hierarchy,
parallel to the methods for reading and manipulating the view hierarchy. A layer has a
superlayer property and a sublayers property, and these methods:

• addSublayer:

• insertSublayer:atIndex:

• insertSublayer:below:, insertSublayer:above:
• replaceSublayer:with:

• removeFromSuperlayer

Unlike a view’s subviews property, a layer’s sublayers property is writable; thus, you
can give a layer multiple sublayers in a single move, by assigning to its sublayers
property. To remove all of a layer’s sublayers, set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers order and regu‐
lated with the methods I’ve just mentioned, this is not necessarily the same as their back-
to-front drawing order. By default, it is, but a layer also has a zPosition property, a
CGFloat, and this also determines drawing order. The rule is that all sublayers with the
same zPosition are drawn in the order they are listed among their sublayers siblings,
but lower zPosition siblings are drawn before higher zPosition siblings. (The default
zPosition is 0.)

Sometimes, the zPosition property is a more convenient way of dictating drawing order
than sibling order is. For example, if layers represent playing cards laid out in a solitaire
game, it will likely be a lot easier and more flexible to determine how the cards overlap
by setting their zPosition than by rearranging their sibling order. Moreover, a subview’s
layer is itself just a layer, so you can rearrange the drawing order of subviews by setting
the zPosition of their underlying layers. In our code constructing Figure 3-5, if we
assign the image view’s underlying layer a zPosition of 1, it is drawn in front of the red
(left) rectangle:

[mainview addSubview:iv];
iv.layer.zPosition = 1;

Methods are also provided for converting between the coordinate systems of layers
within the same layer hierarchy:

• convertPoint:fromLayer:, convertPoint:toLayer:
• convertRect:fromLayer:, convertRect:toLayer:

Layers and Sublayers | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A layer’s own
internal coordinate system is expressed by its bounds, just like a view; its size is its bounds
size, and its bounds origin is the internal coordinate at its top left.

However, a sublayer’s position within its superlayer is not described by its center, like
a view; a layer does not have a center. Instead, a sublayer’s position within its superlayer
is defined by a combination of two properties, its position and its anchorPoint. Think
of the sublayer as pinned to its superlayer; then you have to say both where the pin
passes through the sublayer and where it passes through the superlayer. (I didn’t make
up that analogy, but it’s pretty apt.)
position

A point expressed in the superlayer’s coordinate system.

anchorPoint

Where the position point is located, with respect to the layer’s own bounds. It is a
pair of floating-point numbers (a CGPoint) describing a fraction (or multiple) of
the layer’s own bounds width and bounds height. Thus, for example, {0,0} is the
top left of the layer’s bounds, and {1,1} is the bottom right of the layer’s bounds.

If the anchorPoint is {0.5,0.5} (the default), the position property works like a view’s
center property. A view’s center is thus a special case of a layer’s position. This is quite
typical of the relationship between view properties and layer properties; the view prop‐
erties are often a simpler, more convenient, and less powerful version of the layer prop‐
erties.

A layer’s position and anchorPoint are orthogonal (independent); changing one does
not change the other. Therefore, changing either of them without changing the other
changes where the layer is drawn within its superlayer.

For example, in Figure 3-1, the most important point in the circle is its center; all the
other objects need to be positioned with respect to it. Therefore they all have the same
position: the center of the circle. But they differ in their anchorPoint. For example,
the arrow’s anchorPoint is {0.5,0.8}, the middle of the shaft, near the end. On the
other hand, the anchorPoint of a cardinal point letter is more like {0.5,3}, well outside
the letter’s bounds, so as to place the letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is calculated
from the bounds size along with the position and anchorPoint. When you set the
frame, you set the bounds size and position. In general, you should regard the frame
as a convenient façade and no more. Nevertheless, it is convenient! For example, to
position a sublayer so that it exactly overlaps its superlayer, you can just set the sublayer’s
frame to the superlayer’s bounds.

98 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

A layer created in code (as opposed to a view’s underlying layer) has a
frame and bounds of {{0,0},{0,0}} and will not be visible on the
screen even when you add it to a superlayer that is on the screen. Be
sure to give your layer a nonzero width and height if you want to be
able to see it. Creating a layer and adding it to a superlayer and then
wondering why it isn’t appearing in the interface is a common begin‐
ner error.

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of repositioning its sublayers
en masse, you might like to make the layer a CAScrollLayer, a CALayer subclass that
provides convenience methods for this sort of thing. (Despite the name, a CAScrollLayer
provides no scrolling interface; the user can’t scroll it by dragging, for example.) By
default, a CAScrollLayer’s masksToBounds property is YES; thus, the CAScrollLayer acts
like a window through which you see can only what is within its bounds. (You can set
its masksToBounds to NO, but this would be an odd thing to do, as it somewhat defeats
the purpose.)

To move the CAScrollLayer’s bounds, you can talk either to it or to a sublayer (at any
depth):
Talking to the CAScrollLayer

scrollToPoint:

Changes the CAScrollLayer’s bounds origin to that point.

scrollToRect:

Changes the CAScrollLayer’s bounds origin minimally so that the given portion
of the bounds rect is visible.

Talking to a sublayer
scrollPoint:

Changes the CAScrollLayer’s bounds origin so that the given point of the sub‐
layer is at the top left of the CAScrollLayer.

scrollRectToVisible:

Changes the CAScrollLayer’s bounds origin so that the given rect of the sub‐
layer’s bounds is within the CAScrollLayer’s bounds area. You can also ask the
sublayer for its visibleRect, the part of this sublayer now within the CAScroll‐
Layer’s bounds.

Layout of Sublayers
The view hierarchy is actually a layer hierarchy (Figure 3-2). The positioning of a view
within its superview is actually the positioning of its layer within its superlayer (the

Layers and Sublayers | 99

www.it-ebooks.info

http://www.it-ebooks.info/

superview’s layer). A view can be repositioned and resized automatically in accordance
with its autoresizingMask or through autolayout based on its constraints. Thus, there
is automatic layout for layers if they are the underlying layers of views. Otherwise, there
is no automatic layout for layers. The only option for layout of sublayers that are not
the underlying layers of views is manual layout that you perform in code.

OS X Programmer Alert
On OS X, layers have extensive automatic layout support, including
both constraints and custom layout managers. But iOS lacks all of this.

When a layer needs layout, either because its bounds have changed or because you called
setNeedsLayout, you can respond in either of two ways:

• The layer’s layoutSublayers method is called; to respond, override layout-
Sublayers in your CALayer subclass.

• Alternatively, implement layoutSublayersOfLayer: in the layer’s delegate. (Re‐
member, if the layer is a view’s underlying layer, the view is its delegate.)

To do effective manual layout of sublayers, you’ll probably need a way to identify or
refer to the sublayers. There is no layer equivalent of viewWithTag:, so such identifi‐
cation and reference is entirely up to you. Key–value coding can be helpful here; layers
implement key–value coding in a special way, discussed at the end of this chapter.

For a view’s underlying layer, layoutSublayers or layoutSublayersOfLayer: is called
after the view’s layoutSubviews. Under autolayout, you must call super or else auto‐
layout will break. Moreover, these methods may be called more than once during the
course of autolayout; if you’re looking for an automatically generated signal that it’s time
to do manual layout of sublayers (because the device has been rotated, for example), the
view’s layoutSubviews might be a better choice.

Drawing in a Layer
A view draws into its underlying layer if its drawRect: is implemented (Chapter 2). Now
let’s talk about how draw into other layers.

The simplest way to make something appear in a layer is through its contents proper‐
ty. This is parallel to the image in a UIImageView (Chapter 2). It is expected to be a
CGImageRef (or nil, signifying no image). A CGImageRef is not an object type, but the
contents property is typed as an id; in order to quiet the compiler, you’ll have to typecast
your CGImageRef to an id as you assign it.

100 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

So, for example, here’s how we might modify the code that generated Figure 3-5 in such
a way as to generate the smiley face as a layer rather than a view:

CALayer* lay4 = [CALayer new];
UIImage* im = [UIImage imageNamed:@"smiley"];
CGRect r = lay4.frame;
r.origin = CGPointMake(180,180);
r.size = im.size;
lay4.frame = r;
lay4.contents = (id)im.CGImage;
[mainview.layer addSublayer:lay4];

Setting a layer’s contents to a UIImage, rather than a CGImage, will
fail silently — the image doesn’t appear, but there is no error either.
This is absolutely maddening, and I wish I had a nickel for every time
I’ve done it and then wasted hours figuring out why my layer isn’t
appearing.

There are also four methods that can be implemented to provide or draw a layer’s content
on demand, similar to a UIView’s drawRect:. A layer is very conservative about calling
these methods (and you must not call any of them directly). When a layer does call these
methods, I will say that the layer redisplays itself. Here is how a layer can be caused to
redisplay itself:

• If the layer’s needsDisplayOnBoundsChange property is NO (the default), then the
only way to cause the layer to redisplay itself is by calling setNeedsDisplay (or set-
NeedsDisplayInRect:). Even this might not cause the layer to redisplay itself right
away; if that’s crucial, then you will also call displayIfNeeded.

• If the layer’s needsDisplayOnBoundsChange property is YES, then the layer will also
redisplay itself when the layer’s bounds change (rather like a UIView’s UIView-
ContentModeRedraw).

Here are the four methods that can be called when a layer redisplays itself; pick one to
implement (don’t try to combine them, you’ll just confuse things):
display in a subclass

Your CALayer subclass can override display. There’s no graphics context at this
point, so display is pretty much limited to setting the contents image.

displayLayer: in the delegate
You can set the CALayer’s delegate property and implement displayLayer: in the
delegate. As with display, there’s no graphics context, so you’ll just be setting the
contents image.

Drawing in a Layer | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-6. A view and a layer delegate that draws into it

drawInContext: in a subclass
Your CALayer subclass can override drawInContext:. The parameter is a graphics
context into which you can draw directly; it is not automatically made the current
context.

drawLayer:inContext: in the delegate
You can set the CALayer’s delegate property and implement drawLayer:in-
Context:. The second parameter is a graphics context into which you can draw
directly; it is not automatically made the current context.

Remember, you must not set the delegate property of a view’s underlying layer! The
view is its delegate and must remain its delegate. A useful architecture for drawing into
a layer through a delegate of your choosing is to treat a view as a layer-hosting view: the
view and its underlying layer do nothing except to serve as a host to a sublayer of the
view’s underlying layer, which is where the drawing occurs (Figure 3-6).

Assigning a layer a contents image and drawing directly into the layer are, in effect,
mutually exclusive. So:

• If a layer’s contents is assigned an image, this image is shown immediately and
replaces whatever drawing may have been displayed in the layer.

• If a layer redisplays itself and drawInContext: or drawLayer:inContext: draws
into the layer, the drawing replaces whatever image may have been displayed in the
layer.

• If a layer redisplays itself and none of the four methods provides any content, the
layer will be empty.

A layer has a scale, its contentsScale, which maps point distances in the layer’s graphics
context to pixel distances on the device. A layer that’s managed by Cocoa, if it has
contents, will adjust its contentsScale automatically as needed; for example, if a UI‐
View implements drawRect:, then on a device with a double-resolution screen its

102 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

underlying layer is assigned a contentsScale of 2. A layer that you are creating and
managing yourself, however, has no such automatic behavior; it’s up to you, if you plan
to draw into the layer, to set its contentsScale appropriately. Content drawn into a layer
with a contentsScale of 1 may appear pixellated or fuzzy on a double-resolution
screen. And when you’re starting with a UIImage and assigning its CGImage as a layer’s
contents, if there’s a mismatch between the UIImage’s scale and the layer’s contents-
Scale, then the image may be displayed at the wrong size.

Three layer properties strongly affect what the layer displays, in ways that can be baffling
to beginners: its backgroundColor property, its opaque property, and its opacity prop‐
erty. Here’s what you need to know:

• Think of the backgroundColor as separate from the layer’s own drawing, and as
painted behind the layer’s own drawing. It is equivalent to a view’s background-
Color (and if this layer is a view’s underlying layer, it is the view’s background-
Color). Changing the backgroundColor takes effect immediately.

• The opaque property determines whether the layer’s graphics context is opaque. An
opaque graphics context is black; you can draw on top of that blackness, but the
blackness is still there. A non-opaque graphics context is clear; where no drawing
is, it is completely transparent. Changing the opaque property has no effect until
the layer redisplays itself. A view’s underlying layer’s opaque property is independ‐
ent of the view’s opaque property; they are unrelated and do entirely different things.

• The opacity property affects the overall apparent transparency of the layer. It is
equivalent to a view’s alpha (and if this layer is a view’s underlying layer, it is the
view’s alpha). It affects the apparent transparency of the layer’s sublayers as well. It
affects the apparent transparency of the background color and the apparent trans‐
parency of the layer’s content separately (just as with a view’s alpha). Changing the
opacity property takes effect immediately.

If a layer is the underlying layer of a view that implements draw-
Rect:, then setting the view’s backgroundColor changes the layer’s
opaque — setting it to YES if the new background color is opaque
(alpha component of 1), to NO otherwise. This is the reason behind
the strange behavior of CGContextClearRect described in Chapter 2.
Also, when drawing directly into a layer, the behavior of GCContext-
ClearRect differs from what was described in Chapter 2 for drawing
into a view: instead of punching a hole through the background col‐
or, it effectively paints with the layer’s background color. (This can have
curious side effects.)
I regard all this as deeply weird.

Drawing in a Layer | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Automatically Redisplaying a View’s Underlying Layer
A layer is not told automatically to redisplay itself (unless its bounds are resized when
needsDisplayOnBoundsChange is YES), but a view is. For example, a view is told to
redraw itself when it first appears; basically, it is sent setNeedsDisplay, much as if you
had sent it explicitly. When a view is sent setNeedsDisplay, the view’s underlying layer
is also sent setNeedsDisplay — unless the view has no drawRect: implementation
(because in that case, it is assumed that the view never needs redrawing). So, if you’re
drawing a view entirely by drawing to its underlying layer directly, and if you want the
underlying layer to be redisplayed automatically when the view is told to redraw itself,
you should implement drawRect:, even if it does nothing. (This technique has no effect
on sublayers of the underlying layer.)

Content Resizing and Positioning
A layer’s content is stored (cached) as a bitmap which is then treated like an image and
drawn in relation to the layer’s bounds in accordance with various layer properties:

• If the content came from setting the layer’s contents property to an image, the
cached content is that image; its size is the point size of the CGImage we started
with.

• If the content came from drawing directly into the layer’s graphics context (drawIn-
Context:, drawLayer:inContext:), the cached content is the layer’s entire graphics
context; its size is the point size of the layer itself at the time the drawing was
performed.

The layer properties in question cause the cached content to be resized, repositioned,
cropped, and so on, as it is displayed. The properties are:
contentsGravity

This property, a string, is parallel to a UIView’s contentMode property, and describes
how the content should be positioned or stretched in relation to the bounds. For
example, kCAGravityCenter means the content is centered in the bounds without
resizing; kCAGravityResize (the default) means the content is sized to fit the
bounds, even if this means distorting its aspect; and so forth.

For historical reasons, the terms “bottom” and “top” in the
names of the contentsGravity settings have the opposite of their
expected meanings.

104 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

contentsRect

A CGRect expressing the proportion of the content that is to be displayed. The
default is {{0,0},{1,1}}, meaning the entire content is displayed. The specified
part of the content is sized and positioned in relation to the bounds in accordance
with the contentsGravity. Thus, for example, by setting the contentsRect, you
can scale up part of the content to fill the bounds, or slide part of a larger image
into view without redrawing or changing the contents image.

You can also use the contentsRect to scale down the content, by specifying a larger
contentsRect such as {{-.5, -.5}, {1.5, 1.5}}; but any content pixels that
touch the edge of the contentsRect will then be extended outward to the edge of
the layer (to prevent this, make sure that the outermost pixels of the content are all
empty).

contentsCenter

A CGRect, structured like contentsRect, expressing the central region of nine rec‐
tangular regions of the contentsRect that are variously allowed to stretch if the
contentsGravity calls for stretching. The central region (the actual value of the
contentsCenter) stretches in both directions. Of the other eight regions (inferred
from the value you provide), the four corner regions don’t stretch, and the four side
regions stretch in one direction. (This should remind you of how a resizable image
stretches! See Chapter 2.)

If a layer’s content comes from drawing directly into its graphics context, then the layer’s
contentsGravity, of itself, has no effect, because the size of the graphics context, by
definition, fits the size of the layer exactly; there is nothing to stretch or reposition. But
the contentsGravity will have an effect on such a layer if its contentsRect is not
{{0,0},{1,1}}, because now we’re specifying a rectangle of some other size; the
contentsGravity describes how to fit that rectangle into the layer.

Again, if a layer’s content comes from drawing directly into its graphics context, then
when the layer is resized, if the layer is asked to display itself again, the drawing is
performed again, and once more the layer’s content fits the size of the layer exactly. But
if the layer’s bounds are resized when needsDisplayOnBoundsChange is NO, then the
layer does not redisplay itself, so its cached content no longer fits the layer, and the
contentsGravity matters.

By a judicious combination of settings, you can get the layer to perform some clever
drawing for you that might be difficult to perform directly. For example, Figure 3-7
shows the result of the following settings:

arrow.needsDisplayOnBoundsChange = NO;
arrow.contentsCenter = CGRectMake(0.0, 0.4, 1.0, 0.6);
arrow.contentsGravity = kCAGravityResizeAspect;
arrow.bounds = CGRectInset(arrow.bounds, -20, -20);

Drawing in a Layer | 105

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-7. One way of resizing the compass arrow

Because needsDisplayOnBoundsChange is NO, the content is not redisplayed when the
arrow’s bounds are increased; instead, the cached content is used. The contents-
Gravity setting tells us to resize proportionally; therefore, the arrow is both longer and
wider than in Figure 3-1, but not in such a way as to distort its proportions. However,
notice that although the triangular arrowhead is wider, it is not longer; the increase in
length is due entirely to the stretching of the arrow’s shaft. That’s because the contents-
Center region is within the shaft.

A layer’s masksToBounds property has the same effect on its content that it has on its
sublayers. If it is NO, the whole content is displayed, even if that content (after taking
account of the contentsGravity and contentsRect) is larger then the layer. If it is YES,
only the part of the content within the layer’s bounds will be displayed.

The value of a layer’s bounds origin does not affect where its
content is drawn. It affects only where its sublayers are drawn.

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but extremely helpful
self-drawing ability:
CATextLayer

A CATextLayer has a string property, which can be an NSString or NSAttributed‐
String, along with other text formatting properties; it draws its string. The default
text color, the foregroundColor property, is white, which is unlikely to be what you
want. The text is different from the contents and is mutually exclusive with it:
either the contents image or the text will be drawn, but not both, so in general you

106 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-8. A gradient drawn behind the compass

should not give a CATextLayer any contents image. In Figure 3-1 and Figure 3-7,
the cardinal point letters are CATextLayer instances.

CAShapeLayer
A CAShapeLayer has a path property, which is a CGPath. It fills or strokes this path,
or both, depending on its fillColor and strokeColor values, and displays the
result; the default is a fillColor of black and no strokeColor. A CAShapeLayer
may also have contents; the shape is displayed on top of the contents image, but
there is no property permitting you to specify a compositing mode. In Figure 3-1
and Figure 3-7, the background circle is a CAShapeLayer instance, stroked with
gray and filled with a lighter, slightly transparent gray.

CAGradientLayer
A CAGradientLayer covers its background with a simple linear gradient; thus, it’s
an easy way to draw a gradient in your interface (and if you need something more
elaborate you can always draw with Core Graphics instead). The gradient is defined
much as in the Core Graphics gradient example in Chapter 2, an array of locations
and an array of corresponding colors (except that these are NSArrays, not C arrays),
along with a start and end point. To clip the gradient’s shape, you can add a mask
to the CAGradientLayer (masks are discussed later in this chapter). A CAGradient‐
Layer’s contents are not displayed.

The colors array requires CGColors, not UIColors. But CGColorRef is not an
object type, whereas NSArray expects objects, so to quiet the compiler you’ll need
to typecast each color to id.

Figure 3-8 shows our compass drawn with an extra CAGradientLayer behind it.

Drawing in a Layer | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Transforms
The way a layer is drawn on the screen can be modified though a transform. This is not
surprising, because a view can have a transform (see Chapter 1), and a view is drawn
on the screen by its layer. But a layer’s transform is more powerful than a view’s trans‐
form; you can use it to accomplish things that you can’t accomplish with a view’s
transform alone.

In the simplest case, when a transform is two-dimensional, you can use a layer’s affine-
Transform. The value is a CGAffineTransform, familiar from Chapter 1 and Chap‐
ter 2. The transform is applied around the anchorPoint. (Thus, the anchorPoint has a
second purpose that I didn’t tell you about when discussing it earlier.)

You now know everything needed to understand the code that generated Figure 3-8, so
here it is. In this code, self is the CompassLayer; it does no drawing of its own, but
merely assembles and configures its sublayers. The four cardinal point letters are each
drawn by a CATextLayer and placed using a transform. They are drawn at the same
coordinates, but they have different rotation transforms; even though the CATextLayers
are small (just 40 by 40) and appear near the perimeter of the circle, they are anchored,
and so their rotation is centered, at the center of the circle. To generate the arrow, we
make ourselves the arrow layer’s delegate and call setNeedsDisplay; this causes draw-
Layer:inContext: to be called in CompassLayer (that code is just the same code we
developed for drawing the arrow in Chapter 2, and is not repeated here). The arrow
layer is positioned by an anchorPoint pinning its tail to the center of the circle, and
rotated around that pin by a transform:

// the gradient
CAGradientLayer* g = [CAGradientLayer new];
g.contentsScale = [UIScreen mainScreen].scale;
g.frame = self.bounds;
g.colors = @[(id)[UIColor blackColor].CGColor,
 (id)[UIColor redColor].CGColor];
g.locations = @[@0.0f,
 @1.0f];
[self addSublayer:g];
// the circle
CAShapeLayer* circle = [CAShapeLayer new];
circle.contentsScale = [UIScreen mainScreen].scale;
circle.lineWidth = 2.0;
circle.fillColor =
 [UIColor colorWithRed:0.9 green:0.95 blue:0.93 alpha:0.9].CGColor;
circle.strokeColor = [UIColor grayColor].CGColor;
CGMutablePathRef p = CGPathCreateMutable();
CGPathAddEllipseInRect(p, nil, CGRectInset(self.bounds, 3, 3));
circle.path = p;
[self addSublayer:circle];
circle.bounds = self.bounds;
circle.position = CGPointMake(CGRectGetMidX(self.bounds),

108 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

 CGRectGetMidY(self.bounds));
// the four cardinal points
NSArray* pts = @[@"N", @"E", @"S", @"W"];
for (int i = 0; i < 4; i++) {
 CATextLayer* t = [CATextLayer new];
 t.contentsScale = [UIScreen mainScreen].scale;
 t.string = pts[i];
 t.bounds = CGRectMake(0,0,40,40);
 t.position = CGPointMake(CGRectGetMidX(circle.bounds),
 CGRectGetMidY(circle.bounds));
 CGFloat vert = CGRectGetMidY(circle.bounds) / CGRectGetHeight(t.bounds);
 t.anchorPoint = CGPointMake(0.5, vert);
 t.alignmentMode = kCAAlignmentCenter;
 t.foregroundColor = [UIColor blackColor].CGColor;
 t.affineTransform = CGAffineTransformMakeRotation(i*M_PI/2.0);
 [circle addSublayer:t];
}
// the arrow
CALayer* arrow = [CALayer new];
arrow.contentsScale = [UIScreen mainScreen].scale;
arrow.bounds = CGRectMake(0, 0, 40, 100);
arrow.position = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));
arrow.anchorPoint = CGPointMake(0.5, 0.8);
arrow.delegate = self;
arrow.affineTransform = CGAffineTransformMakeRotation(M_PI/5.0);
[self addSublayer:arrow];
[arrow setNeedsDisplay];

A full-fledged layer transform, the value of the transform property, takes place in three-
dimensional space; its description includes a z-axis, perpendicular to both the x-axis
and y-axis. (By default, the positive z-axis points out of the screen, toward the viewer’s
face.) Layers do not magically give you realistic three-dimensional rendering — for that
you would use OpenGL, which is beyond the scope of this discussion. Layers are two-
dimensional objects, and they are designed for speed and simplicity. Nevertheless, they
do operate in three dimensions, quite sufficiently to give a cartoonish but effective sense
of reality, especially when performing an animation. We’ve all seen the screen image flip
like turning over a piece of paper to reveal what’s on the back; that’s a rotation in three
dimensions.

A three-dimensional transform takes place around a three-dimensional extension of
the anchorPoint, whose z-component is supplied by the anchorPointZ property. Thus,
in the reduced default case where anchorPointZ is 0, the anchorPoint is sufficient, as
we’ve already seen in using CGAffineTransform.

The transform itself is described mathematically by a struct called a CATransform3D.
The Core Animation Function Reference lists the functions for working with these
transforms. They are a lot like the CGAffineTransform functions, except they’ve got a

Transforms | 109

www.it-ebooks.info

http://www.it-ebooks.info/

third dimension. For example, here’s the declaration of the function for making a 2D
scale transform:

CGAffineTransform CGAffineTransformMakeScale (
 CGFloat sx,
 CGFloat sy
);

And here’s the declaration of the function for making a 3D scale transform:

CATransform3D CATransform3DMakeScale (
 CGFloat sx,
 CGFloat sy,
 CGFloat sz
);

The rotation 3D transform is a little more complicated. In addition to the angle, you
also have to supply three coordinates describing the vector around which the rotation
takes place. Perhaps you’ve forgotten from your high-school math what a vector is, or
perhaps trying to visualize three dimensions boggles your mind, so think of it this way.

Pretend for purposes of discussion that the anchor point is the origin, {0,0,0}. Now
imagine an arrow emanating from the anchor point; its other end, the pointy end, is
described by the three coordinates you provide. Now imagine a plane that intersects the
anchor point, perpendicular to the arrow. That is the plane in which the rotation will
take place; a positive angle is a clockwise rotation, as seen from the side of the plane
with the arrow (Figure 3-9). In effect, the three coordinates you supply describe, relative
to the anchor point, where your eye would have to be to see this rotation as an old-
fashioned two-dimensional rotation.

A vector, however, specifies a direction, not a point. Thus it makes no difference on
what scale you give the coordinates: {1,1,1} means the same thing as {10,10,10}. If
the three values are {0,0,1}, with all other things being equal, the case is collapsed to
a simple CGAffineTransform, because the rotational plane is the screen. On the other
hand, if the three values are {0,0,-1}, it’s a backward CGAffineTransform, so that a
positive angle looks counterclockwise (because we are looking at the “back side” of the
rotational plane).

A layer can itself be rotated in such a way that its “back” is showing. For example, the
following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(M_PI, 0, 1, 0);

By default, the layer is considered double-sided, so when it is flipped to show its “back,”
what’s drawn is an appropriately reversed version of the content of the layer (along with
its sublayers, which by default are still drawn in front of the layer, but reversed and
positioned in accordance with the layer’s transformed coordinate system). But if the
layer’s doubleSided property is NO, then when it is flipped to show its “back,” the layer
disappears (along with its sublayers); its “back” is transparent and empty.

110 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-9. An anchor point plus a vector defines a rotation plane

Depth
There are two ways to place layers at different nominal depths with respect to their
siblings. One is through the z-component of their position, which is the zPosition
property. (Thus the zPosition, too, has a second purpose that I didn’t tell you about
earlier.) The other is to apply a transform that translates the layer’s position in the z-
direction. These two values, the z-component of a layer’s position and the z-component
of its translation transform, are related; in some sense, the zPosition is a shorthand for
a translation transform in the z-direction. (If you provide both a zPosition and a z-
direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear larger or smaller,
as it is positioned closer or further away; but this, by default, is not the case in the world
of layer drawing. There is no attempt to portray perspective; the layer planes are drawn
at their actual size and flattened onto one another, with no illusion of distance. (This is
called orthographic projection, and is the way blueprints are often drawn to display an
object from one side.)

However, there’s a widely used trick for introducing a quality of perspective into the way
layers are drawn: make them sublayers of a layer whose sublayerTransform property
maps all points onto a “distant” plane. (This is probably just about the only thing the
sublayerTransform property is ever used for.) Combined with orthographic projection,
the effect is to apply one-point perspective to the drawing, so that things do get per‐
ceptibly smaller in the negative z-direction.

For example, let’s try applying a sort of “page-turn” rotation to our compass: we’ll anchor
it at its right side and then rotate it around the y-axis. Here, the sublayer we’re rotating

Transforms | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-10. A disappointing page-turn rotation

Figure 3-11. A dramatic page-turn rotation

(accessed through a property, rotationLayer) is the gradient layer, and the circle and
arrow are its sublayers so that they rotate with it:

self.rotationLayer.anchorPoint = CGPointMake(1,0.5);
self.rotationLayer.position =
 CGPointMake(CGRectGetMaxX(self.bounds), CGRectGetMidY(self.bounds));
self.rotationLayer.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);

The results are disappointing (Figure 3-10); the compass looks more squashed than
rotated. Now, however, we’ll also apply the distance-mapping transform. The superlayer
here is self:

CATransform3D transform = CATransform3DIdentity;
transform.m34 = -1.0/1000.0;
self.sublayerTransform = transform;

112 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

The results (shown in Figure 3-11) are better, and you can experiment with values to
replace 1000.0; for example, 500.0 gives an even more exaggerated effect. Also, the
zPosition of the rotationLayer will now affect how large it is.

Another way to draw layers with depth is to use CATransformLayer. This CALayer
subclass doesn’t do any drawing of its own; it is intended solely as a host for other layers.
It has the remarkable feature that you can apply a transform to it and it will maintain
the depth relationships among its own sublayers. For example:

// lay1 is a layer, f is a CGRect
CALayer* lay2 = [CALayer layer];
lay2.frame = f;
lay2.backgroundColor = [UIColor blueColor].CGColor;
[lay1 addSublayer:lay2];
CALayer* lay3 = [CALayer layer];
lay3.frame = CGRectOffset(f, 20, 30);
lay3.backgroundColor = [UIColor greenColor].CGColor;
lay3.zPosition = 10;
[lay1 addSublayer:lay3];
lay1.transform = CATransform3DMakeRotation(M_PI, 0, 1, 0);

In that code, the superlayer lay1 has two sublayers, lay2 and lay3. The sublayers are
added in that order, so lay3 is drawn in front of lay2. Then lay1 is flipped like a page
being turned by setting its transform. If lay1 is a normal CALayer, the sublayer drawing
order doesn’t change; lay3 is still drawn in front of lay2, even after the transform is
applied. But if lay1 is a CATransformLayer, lay3 is drawn behind lay2 after the trans‐
form; they are both sublayers of lay1, so their depth relationship is maintained.

Figure 3-12 shows our page-turn rotation yet again, still with the sublayerTransform
applied to self, but this time the only sublayer of self is a CATransformLayer:

CATransform3D transform = CATransform3DIdentity;
transform.m34 = -1.0/1000.0;
self.sublayerTransform = transform;
CATransformLayer* master = [CATransformLayer layer];
master.frame = self.bounds;
[self addSublayer: master];
self.rotationLayer = master;

The CATransformLayer, to which the page-turn transform is applied, holds the gradient
layer, the circle layer, and the arrow layer. Those three layers are at different depths
(using different zPosition settings), and I’ve tried to emphasize the arrow’s separation
from the circle by adding a shadow (discussed in the next section):

circle.zPosition = 10;
arrow.shadowOpacity = 1.0;
arrow.shadowRadius = 10;
arrow.zPosition = 20;

Transforms | 113

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-12. Page-turn rotation applied to a CATransformLayer

You can see from its apparent offset that the circle layer floats in front of the gradient
layer, but I wish you could see this page-turn as an animation, which makes the circle
jump right out from the gradient as the rotation proceeds.

Even more remarkable, I’ve added a little white peg sticking through the arrow and
running into the circle! It is a CAShapeLayer, rotated to be perpendicular to the
CATransformLayer (I’ll explain the rotation code later in this chapter):

CAShapeLayer* peg = [CAShapeLayer new];
peg.contentsScale = [UIScreen mainScreen].scale;
peg.bounds = CGRectMake(0,0,3.5,50);
CGMutablePathRef p2 = CGPathCreateMutable();
CGPathAddRect(p2, nil, peg.bounds);
peg.path = p2;
CGPathRelease(p2);
peg.fillColor =
 [UIColor colorWithRed:1.0 green:0.95 blue:1.0 alpha:0.95].CGColor;
peg.anchorPoint = CGPointMake(0.5,0.5);
peg.position =
 CGPointMake(CGRectGetMidX(master.bounds), CGRectGetMidY(master.bounds));
[master addSublayer: peg];
[peg setValue:@(M_PI/2) forKeyPath:@"transform.rotation.x"];
[peg setValue:@(M_PI/2) forKeyPath:@"transform.rotation.z"];
peg.zPosition = 15;

In that code, the peg runs straight out of the circle toward the viewer, so it is seen end-
on, and because a layer has no thickness, it is invisible. But as the CATransformLayer
pivots forward in our page-turn rotation, the peg maintains its orientation relative to
the circle, and comes into view. In effect, the drawing portrays a 3D model constructed
entirely out of layers.

114 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

There is, I think, a slight additional gain in realism if the same sublayerTransform is
applied also to the CATransformLayer, but I have not done so here.

Shadows, Borders, and Masks
A CALayer has many additional properties that affect details of how it is drawn. Since
these drawing details can be applied to a UIView’s underlying layer, they are effectively
view features as well.

A CALayer can have a shadow, defined by its shadowColor, shadowOpacity, shadow-
Radius, and shadowOffset properties. To make the layer draw a shadow, set the
shadowOpacity to a nonzero value. The shadow is normally based on the shape of the
layer’s nontransparent region, but deriving this shape can be calculation-intensive (so
much so that in early versions of iOS, layer shadows weren’t implemented). You can
vastly improve performance by defining the shape yourself and assigning this shape as
a CGPath to the shadowPath property.

A CALayer can have a border (borderWidth, borderColor); the borderWidth is drawn
inward from the bounds, potentially covering some of the content unless you compen‐
sate.

A CALayer can be bounded by a rounded rectangle, by giving it a cornerRadius greater
than zero. If the layer has a border, the border has rounded corners too. If the layer has
a backgroundColor, that background is clipped to the shape of the rounded rectangle.
If the layer’s masksToBounds is YES, the layer’s content and its sublayers are clipped by
the rounded corners.

A CALayer can have a mask. This is itself a layer, whose content must be provided
somehow. The transparency of the mask’s content in a particular spot becomes (all other
things being equal) the transparency of the layer at that spot. The hues in the mask’s
colors are irrelevant; only transparency matters. To position the mask, pretend it’s a
sublayer.

For example, Figure 3-13 shows our arrow layer, with the gray circle layer behind it, and
a mask applied to the arrow layer. The mask is silly, but it illustrates very well how masks
work: it’s an ellipse, with an opaque fill and a thick, semitransparent stroke. Here’s the
code that generates and applies the mask:

CAShapeLayer* mask = [CAShapeLayer new];
mask.frame = arrow.bounds;
CGMutablePathRef p2 = CGPathCreateMutable();
CGPathAddEllipseInRect(p2, nil, CGRectInset(mask.bounds, 10, 10));
mask.strokeColor = [UIColor colorWithWhite:0.0 alpha:0.5].CGColor;
mask.lineWidth = 20;
mask.path = p2;
arrow.mask = mask;
CGPathRelease(p2);

Shadows, Borders, and Masks | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-13. A layer with a mask

Using a mask, we can do manually and in a more general way what the cornerRadius
and masksToBounds properties do. For example, here’s a utility method that generates
a CALayer suitable for use as a rounded rectangle mask:

- (CALayer*) maskOfSize:(CGSize)sz roundingCorners:(CGFloat)rad {
 CGRect r = (CGRect){CGPointZero, sz};
 UIGraphicsBeginImageContextWithOptions(r.size, NO, 0);
 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextSetFillColorWithColor(
 con,[UIColor colorWithWhite:0 alpha:0].CGColor);
 CGContextFillRect(con, r);
 CGContextSetFillColorWithColor(
 con,[UIColor colorWithWhite:0 alpha:1].CGColor);
 UIBezierPath* p =
 [UIBezierPath bezierPathWithRoundedRect:r cornerRadius:rad];
 [p fill];
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 CALayer* mask = [CALayer layer];
 mask.frame = r;
 mask.contents = (id)im.CGImage;
 return mask;
}

The CALayer returned from that method can be placed as a mask anywhere in a layer
by adjusting its frame origin and assigning it as the layer’s mask. The result is that all of
that layer’s content drawing and its sublayers (and, if this layer is a view’s underlying
layer, the view’s subviews) are clipped to the rounded rectangle shape; everything outside
that shape is not drawn. That’s just one example of the sort of thing you can do with a
mask. A mask can have values between opaque and transparent, and it can be any shape.
And the transparent region doesn’t have to be on the outside of the mask; you can use
a mask that’s opaque on the outside and transparent on the inside to punch a hole in a
layer (or a view).

Layer Efficiency
By now, you’re probably envisioning all sorts of compositing fun, with layers masking
sublayers and laid semitransparently over other layers. There’s nothing wrong with that,
but when an iOS device is asked to shift its drawing from place to place, the movement

116 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

may stutter because the device lacks the necessary computing power to composite re‐
peatedly and rapidly. This sort of issue is likely to emerge particularly when your code
performs an animation (Chapter 4) or when the user is able to animate drawing through
touch, as when scrolling a table view (Chapter 8). You may be able to detect these prob‐
lems by eye, and you can quantify them on a device by using the Core Animation
template in Instruments, which shows the frame rate achieved during animation. Also,
both the Core Animation template and the Simulator’s Debug menu let you summon
colored overlays that provide clues as to possible sources of inefficient drawing which
can lead to such problems.

In general, opaque drawing is most efficient. (Nonopaque drawing is what Instruments
marks in red as “blended layers.”) If a layer will always be shown over a background
consisting of a single color, you can give the layer its own background of that same color;
when additional layer content is supplied, the visual effect will be the same as if that
additional layer content were composited over a transparent background. For example,
instead of an image masked to a rounded rectangle (with a layer’s cornerRadius or mask
property), you could use Core Graphics to clip the drawing of that image into the
graphics context of a layer whose background color is the same as that of the destination
in front of which the drawing will be shown. Here’s an example from a view’s draw-
Rect: in one of my own apps:

// clip to rounded rect
CGRect r = CGRectInset(rect, 1, 1);
[[UIBezierPath bezierPathWithRoundedRect:r cornerRadius:6] addClip];
// draw image
UIImage* im = [UIImage imageNamed: @"linen.jpg"];
// simulate UIViewContentModeScaleAspectFill
// make widths the same, image height will be too tall
CGFloat scale = im.size.width/rect.size.width;
CGFloat y = (im.size.height/scale - rect.size.height) / 2.0;
CGRect r2 = CGRectMake(0,-y,im.size.width/scale, im.size.height/scale);
r2 = CGRectIntegral(r2); // looks a whole lot better if we do this
[im drawInRect:r2];

Another way to gain some efficiency is by “freezing” the entirety of the layer’s drawing
as a bitmap. In effect, you’re drawing everything in the layer to a secondary cache and
using the cache to draw to the screen. Copying from a cache is less efficient than drawing
directly to the screen, but this inefficiency may be more than compensated for, if there’s
a deep or complex layer tree, by not having to composite that tree every time we render.
To do this, set the layer’s shouldRasterize to YES and its rasterizationScale to some
sensible value (probably [UIScreen mainScreen].scale). You can always turn raster‐
ization off again by setting shouldRasterize to NO, so it’s easy to rasterize just before
some massive or sluggish rearrangement of the screen and then unrasterize afterward.
(In addition, you can get some cool “out of focus” effects by setting the rasterization-
Scale to around 0.3.)

Layer Efficiency | 117

www.it-ebooks.info

http://www.it-ebooks.info/

In addition, there’s a layer property drawsAsynchronously. The default is NO. If set to
YES, the layer’s graphics context accumulates drawing commands and obeys them later
on a background thread. Thus, your drawing commands run very quickly, because they
are not in fact being obeyed at the time you issue them. I haven’t had occasion to use
this, but presumably there could be situations where it keeps your app responsive when
drawing would otherwise be time-consuming.

Layers and Key–Value Coding
All of a layer’s properties are accessible through key–value coding by way of keys with
the same name as the property. Thus, to apply a mask to a layer, instead of saying this:

layer.mask = mask;

we could have said:

[layer setValue: mask forKey: @"mask"];

In addition, CATransform3D and CGAffineTransform values can be expressed through
key–value coding and key paths. For example, instead of writing this:

self.rotationLayer.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);

we can write this:

[self.rotationLayer setValue:[NSNumber numberWithFloat:M_PI/4.0]
 forKeyPath:@"transform.rotation.y"];

This notation is possible because CATransform3D is key–value coding compliant for a
repertoire of keys and key paths. These are not properties, however; a CATransform3D
doesn’t have a rotation property. It doesn’t have any properties, because it isn’t even an
object. You cannot say:

self.rotationLayer.transform.rotation.y = //... No, sorry

The transform key paths you’ll use most often are:

• rotation.x, rotation.y, rotation.z
• rotation (same as rotation.z)
• scale.x, scale.y, scale.z
• translation.x, translation.y, translation.z
• translation (two-dimensional, a CGSize)

The Quartz Core framework also injects KVC compliance into CGPoint, CGSize, and
CGRect, allowing you to use keys and key paths matching their struct component names.
For a complete list of KVC compliant classes related to CALayer, along with the keys
and key paths they implement, plus rules for how to wrap nonobject values as objects,

118 | Chapter 3: Layers

www.it-ebooks.info

http://www.it-ebooks.info/

see “Core Animation Extensions to Key-Value Coding” in Apple’s Core Animation Pro‐
gramming Guide.

Moreover, you can treat a CALayer as a kind of NSDictionary, and get and set the value
for any key. This means you can attach arbitrary information to an individual layer
instance and retrieve it later. For example, earlier I mentioned that to apply manual
layout to a layer’s sublayers, you will need a way of identifying those sublayers. This
feature could provide a way of doing that. For example:

[myLayer1 setValue:@"Manny" forKey:@"name"];
[myLayer2 setValue:@"Moe" forKey:@"name"];

A layer doesn’t have a name property; the @"name" key is something I’m attaching to
these layers arbitrarily. Now I can identify these layers later by getting the value of their
respective @"name" keys.

Also, CALayer has a defaultValueForKey: class method; to implement it, you’ll need
to subclass and override. In the case of keys whose value you want to provide a default
for, return that value; otherwise, return the value that comes from calling super. Thus,
even if a value for a particular key has never been explicitly provided, it can have a non-
nil value.

The truth is that this feature, though delightful (and I often wish that all classes behaved
like this), is not put there for your convenience and enjoyment. It’s there to serve as the
basis for animation, which is the subject of the next chapter.

Layers and Key–Value Coding | 119

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Animation

Animation is the visible change of an attribute over time. The changing attribute might
be positional: something moves or changes size. But other kinds of attribute can animate
as well. For example, a view’s background color might change from red to green, not
instantly, but perceptibly fading from one to the other. Or a view might change from
opaque to transparent, not instantly, but perceptibly fading away.

Without help, most of us would find animation beyond our reach. There are just too
many complications — complications of calculation, of timing, of screen refresh, of
threading, and many more. Fortunately, help is provided. You don’t perform an ani‐
mation yourself; you describe it, you order it, and it is performed for you. You get
animation on demand.

Asking for an animation can be as simple as setting a property value; under some cir‐
cumstances, a single line of code will result in animation:

myLayer.backgroundColor = [UIColor redColor].CGColor; // animate to red

And this is no coincidence. Apple wants to facilitate your use of animation. Animation
is crucial to the character of the iOS interface. It isn’t just cool and fun; it clarifies that
something is changing or responding. For example, one of my first apps was based on
an OS X game in which the user clicks cards to select them. In the OS X version, a card
was highlighted to show it was selected, and the computer would beep to indicate a click
on an ineligible card. On iOS, these indications were insufficient: the highlighting felt
weak, and you can’t use a sound warning in an environment where the user might have
the volume turned off or be listening to music. So in the iOS version, animation is the
indicator for card selection (a selected card waggles eagerly) and for tapping on an
ineligible card (the whole interface shudders, as if to shrug off the tap).

(If you’re looking to create a complete constantly running animated world, as for certain
types of game, look into Sprite Kit, which is new in iOS 7. This book doesn’t discuss

121

www.it-ebooks.info

http://www.it-ebooks.info/

Sprite Kit, but an understanding of the concepts in this chapter will prepare you very
well for Sprite Kit.)

The Simulator’s Debug → Toggle Slow Animations menu item helps
you inspect animations by making them run more slowly.

Drawing, Animation, and Threading
When you change a visible view property, even without animation, that change does
not visibly take place there and then. Rather, the system records that this is a change
you would like to make, and marks the view as needing to be redrawn. You can change
many visible view properties, but these changes merely constitute an accumulated set
of instructions. Later, when all your code has run to completion and the system has, as
it were, a free moment, then it redraws all views that need redrawing, applying their
new visible property features. Let’s call this the redraw moment. (I’ll explain what the
redraw moment really is later in this chapter.)

You can see that this is true simply by changing some visible aspect of a view and
changing it back again, in the same code: on the screen, nothing happens. For example,
suppose a view’s background color is green. Suppose your code changes it to red, and
then later changes it back to green:

// view starts out green
view.backgroundColor = [UIColor redColor];
// ... time-consuming code goes here ...
view.backgroundColor = [UIColor greenColor];
// code ends, redraw moment arrives

The system accumulates all the desired changes until the redraw moment happens, and
the redraw moment doesn’t happen until after your code has finished, so when the
redraw moment does happen, the last accumulated change in the view’s color is to green
— which is its color already. Thus, no matter how much time-consuming code lies
between the change from green to red and the change from red to green, the user won’t
see any color change at all.

That’s why you don’t order a view to be redrawn; rather, you tell it that it needs redrawing
— setNeedsDisplay — at the next redraw moment. It’s also why I used delayed per‐
formance in the contentMode example in Chapter 2: by calling dispatch_after, I al‐
lowed the redraw moment a chance to happen, thus giving the view some content, before
resizing the view. This use of delayed performance to let a redraw moment happen is
quite common; later in this chapter I’ll suggest another way of accomplishing the same
goal.

122 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, when you ask for an animation to be performed, the animation doesn’t start
happening on the screen until the next redraw moment. (You can force an animation
to be performed immediately, but this is unusual.)

Now let’s talk about the mechanism by which animation is performed. It’s all a kind of
ingenious illusion. Think of the animation as a kind of movie, a cartoon, interposed
between the user and the “real” screen. While the animation lasts, this movie is super‐
imposed onto the screen. When the animation is finished, the movie is removed, re‐
vealing the state of the “real” screen behind it. The user is unaware of all this, because
(if you’ve done things correctly) at the time that it starts, the movie’s first frame looks
just like the state of the “real” screen at that moment, and at the time that it ends, the
movie’s last frame looks just like the state of the “real” screen at that moment.

So, when you reposition a view from position 1 to position 2 with animation, you can
envision a typical sequence of events like this:

1. The view is set to position 2, but there has been no redraw moment, so it is still
portrayed at position 1.

2. The rest of your code runs to completion.
3. The redraw moment arrives. If there were no animation, the view would now sud‐

denly be portrayed at position 2. But there is an animation, and it (the “animation
movie”) starts with the view portrayed at position 1, so that is still what the user
sees.

4. The animation proceeds, portraying the view at intermediate positions between
position 1 and position 2. The documentation describes the animation as now in-
flight.

5. The animation ends, portraying the view ending up at position 2.
6. The “animation movie” is removed, revealing the view indeed at position 2.

Realizing that the “animation movie” is different from what happens to the real view is
key to configuring an animation correctly. A frequent complaint of beginners is that a
position animation is performed as expected, but then, at the end, the view “jumps” to
some other position. This happens because you set up the animation but failed to move
the view to match its final position in the “animation movie”; the “jump” happens be‐
cause, when the “movie” is whipped away at the end of the animation, the real situation
that’s revealed doesn’t match the last frame of the “movie”.

Animation takes place on an independent thread. You don’t have to worry about the
details (thank heavens, because multithreading is generally rather tricky and compli‐
cated), but you can’t ignore it either. Your code runs independently of and possibly
simultaneously with the animation — that’s what multithreading means — so commu‐
nication between the animation and your code can require some planning.

Drawing, Animation, and Threading | 123

www.it-ebooks.info

http://www.it-ebooks.info/

Presentation Layer
There isn’t really an “animation movie” in front of the screen — though the effect is
much the same. In reality, it is not a layer itself that is portrayed on the screen; it’s a
derived layer called the presentation layer. Thus, when you animate the change of a view’s
position or a layer’s position from position 1 to position 2, its nominal position changes
immediately; meanwhile, the presentation layer’s position remains unchanged until the
redraw moment, and then changes over time, and because that’s what’s actually drawn
on the screen, that’s what the user sees.

A layer’s presentation layer can be accessed through its presentationLayer property
(and the layer itself is the presentation layer’s modelLayer). It is typed as an id, so in
order to work with it as a layer, you will probably want to typecast it to a CALayer*.
Accessing the presentationLayer is not a common thing to do, but it might come in
handy if your code needs to learn the current state of an in-flight animation.

Arranging for your code to be notified when an animation ends is a common need.
Most of the animation APIs provide a way to set up such a notification. One use of an
“animation ended” notification might be to chain animations together: one animation
ends and then another begins, in sequence. Another use is to perform some sort of
cleanup. A very frequent kind of cleanup has to do with handling of touches: while an
animation is in-flight, if your code is not running, the interface by default is responsive
to the user’s touches, which might cause all kinds of havoc as your views try to respond
while the animation is still happening and the screen presentation doesn’t match reality.
To take care of this, it’s common practice to turn off your app’s responsiveness to touches
as you set up an animation and then turn it back on when you’re notified that the
animation is over; locking down all the relevant situations so that this toggling of the
app’s responsiveness is performed coherently can be challenging.

Since your code can run even after you’ve set up an animation, or might start running
while an animation is in-flight, you need to be careful about setting up conflicting ani‐
mations. Multiple animations can be set up (and performed) simultaneously, but trying
to animate or change a property that’s already in the middle of being animated is an
incoherency that can kill the animation there and then. You may sometimes do this
intentionally as a way of interrupting an animation, but just as often you’ll want to take
care not to let your animations step on each other’s feet.

Outside forces can interrupt your animations as well. The user might click the Home
button to send your app to the background, or a phone call might come in while an
animation is in-flight. The system deals coherently with this situation by simply can‐
celing all in-flight animations when an app is backgrounded; you’ve already arranged
before the animation for your views to assume the final states they will have after the
animation, so no harm is done — when your app resumes, everything is in that final

124 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

state you arranged beforehand. But if you wanted your app to appear to pick up an
animation in the middle, where it left off, that would require some canny coding on
your part.

UIImageView and UIImage Animation
UIImageView provides a form of animation so simple as to be scarcely deserving of the
name; still, sometimes it might be all you need. You supply the UIImageView with an
array of UIImages, as the value of its animationImages or highlightedAnimation-
Images property. This array represents the “frames” of a simple cartoon; when you send
the startAnimating message, the images are displayed in turn, at a frame rate deter‐
mined by the animationDuration property, repeating as many times as specified by the
animationRepeatCount property (the default is 0, meaning to repeat forever, or until
the stopAnimating message is received). Before and after the animation, the image view
continues displaying its image (or highlightedImage).

For example, suppose we want an image of Mars to appear out of nowhere and flash
three times on the screen. This might seem to require some sort of NSTimer-based
solution, but it’s far simpler to use an animating UIImageView:

UIImage* mars = [UIImage imageNamed: @"Mars"];
UIGraphicsBeginImageContextWithOptions(mars.size, NO, 0);
UIImage* empty = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
NSArray* arr = @[mars, empty, mars, empty, mars];
UIImageView* iv = [[UIImageView alloc] initWithImage:empty];
CGRect r = iv.frame;
r.origin = CGPointMake(100,100);
iv.frame = r;
[self.view addSubview: iv];
iv.animationImages = arr;
iv.animationDuration = 2;
iv.animationRepeatCount = 1;
[iv startAnimating];

You can combine UIImageView animation with other kinds of animation. For example,
you could flash the image of Mars while at the same time sliding the UIImageView
rightward, using view animation as described in the next section.

In addition, UIImage supplies a parallel form of animation: an image can itself be an
animated image. Just as with UIImageView, this really means that you’ve multiple im‐
ages that form a sequence serving as the “frames” of a simple cartoon. You can designate
an image as an animated image with one of these UIImage class methods:
animatedImageWithImages:duration:

As with UIImageView’s animationImages, you supply an array of UIImages. You
also supply the duration for the whole animation.

UIImageView and UIImage Animation | 125

www.it-ebooks.info

http://www.it-ebooks.info/

animatedImageNamed:duration:

You supply the name of a single image file, as with imageNamed:, with no file ex‐
tension. The runtime appends @"0" (or, if that fails, @"1") to the name you supply
and makes that image file the first image in the animation sequence. Then it in‐
crements the appended number, gathering images and adding them to the sequence
(until there are no more, or we reach @"1024").

animatedResizableImageNamed:capInsets:resizingMode:duration:

Combines an animated image with a resizable image (Chapter 2).

You do not tell an animated image to start animating, nor are you able to tell it how long
you want the animation to repeat. Rather, an animated image is always animating, re‐
peating its sequence once every duration seconds, so long as it appears in your interface;
to control the animation, add the image to your interface or remove it from the interface,
possibly exchanging it for a similar image that isn’t animated. Moreover, an animated
image can appear in the interface anywhere a UIImage can appear as a property of some
interface object.

In this example, I construct a sequence of red circles of different sizes, in code, and build
an animated image which I then display in a UIButton:

NSMutableArray* arr = [NSMutableArray array];
float w = 18;
for (int i = 0; i < 6; i++) {
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(w,w), NO, 0);
 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextSetFillColorWithColor(con, [UIColor redColor].CGColor);
 CGContextAddEllipseInRect(con, CGRectMake(0+i,0+i,w-i*2,w-i*2));
 CGContextFillPath(con);
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 [arr addObject:im];
}
UIImage* im = [UIImage animatedImageWithImages:arr duration:0.5];
// assume self.b is a button in the interface
[self.b setImage:im forState:UIControlStateNormal];

View Animation
Animation is ultimately layer animation. However, for a limited range of properties,
you can animate a UIView directly: these are its alpha, backgroundColor, bounds,
center, frame, and transform. You can also animate a UIView’s change of contents.
This list of animatable features, despite its brevity, will often prove quite sufficient. (If
it doesn’t, you can drop down to a lower level and animate a layer, as described later in
this chapter.)

126 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Block-Based View Animation
The syntax for animating a UIView involves calling a UIView class method and ex‐
pressing the desired animation in an Objective-C block. For example, suppose we have
a UIView self.v in the interface, with a yellow background color, and we want to
animate that view’s change of background color to red. This will do it:

[UIView animateWithDuration:0.4 animations:^{
 self.v.backgroundColor = [UIColor redColor];
}];

Due to considerations of space, the older view animation methods
beginAnimations:context: and commitAnimations, along with the
other methods and constants to be used in conjunction with them, are
not discussed in this edition of the book. In any case their use is “dis‐
couraged”, according to Apple.

Any animatable change made within an animations: block will be animated, so we can
animate a change both to the view’s color and to its position simultaneously:

[UIView animateWithDuration:0.4 animations:^{
 self.v.backgroundColor = [UIColor redColor];
 CGPoint p = self.v.center;
 p.y -= 100;
 self.v.center = p;
}];

We can also animate changes to multiple views within the same animations: block. For
example, suppose we want to make one view dissolve into another. We start with the
second view present in the view hierarchy, but with an alpha of 0, so that it is invisible.
Then we animate the change of the first view’s alpha to 0 and the second view’s alpha
to 1.

In that case, we might like to place the second view in the view hierarchy just before the
animation starts (invisibly, because its alpha starts at 0) and remove the first view just
after the animation ends (invisibly, because its alpha ends at 0). An additional param‐
eter, completion:, lets us specify what should happen after the animation ends:

UIView* v2 = // ... create and configure new view
v2.alpha = 0;
[self.v.superview addSubview:v2];
[UIView animateWithDuration:0.4 animations:^{
 self.v.alpha = 0;
 v2.alpha = 1;
} completion:^(BOOL finished) {
 [self.v removeFromSuperview];
}];

View Animation | 127

www.it-ebooks.info

http://www.it-ebooks.info/

Code that isn’t about animatable view properties can appear in an animations: block
with no problem, but we must be careful to keep any changes to animatable properties
that we do not want animated out of the animations: block. In that example, in setting
v2.alpha to 0, I just want to set it right now, instantly; I don’t want that change to be
animated. So I’ve put that line before animations: block.

Sometimes, though, that’s not so easy; perhaps, within the animations: block, we must
call a method that might perform animatable changes. New in iOS 7, the perform-
WithoutAnimation: method solves the problem; it goes inside an animations: block,
but whatever happens in its block is not animated. In this rather artificial example, the
view jumps to its new position and then slowly turns red:

[UIView animateWithDuration:0.4 animations:^{
 self.v.backgroundColor = [UIColor redColor];
 [UIView performWithoutAnimation:^{
 CGPoint p = self.v.center;
 p.y -= 100;
 self.v.center = p;
 }];
}];

The material inside an animations: block (but not inside a performWithout-
Animation: block) orders the animation — that is, it gives instructions for what the
animation will be when the redraw moment comes. If you change an animatable view
property as part of the animation, you should not change that property again afterward;
the results can be confusing. For example, try to guess what this code does:

[UIView animateWithDuration:2 animations:^{
 CGPoint p = self.v.center;
 p.y = 100;
 self.v.center = p;
 CGPoint p2 = self.v.center;
 p2.y = 300;
 self.v.center = p2;
}];

The result is not two successive animations. What we have here is just one animation
containing conflicting orders: animate so that the view’s center y value becomes 100,
and animate so that the view’s center y value becomes 300. The second order causes the
animation described by the first order to be cancelled; the change described by the first
animation is performed without animation. Therefore, when the animation runs, the
view jumps so that its center y value is 100, and then animates down 200 points.

Even a change after the animation block can have confusing effects. Try to guess what
this code does:

128 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

[UIView animateWithDuration:2 animations:^{
 CGPoint p = self.v.center;
 p.y = 100;
 self.v.center = p;
}];
CGPoint p2 = self.v.center;
p2.y = 300;
self.v.center = p2;

The view animates from where it already is to where its center y value becomes 300! The
code inside the animations: block might as well never have happened. The code that
follows the animations: block behaves as if it were inside the animations: block; it has
become part of the animation — in fact, it has become the animation! It’s exactly the
same as if that code had said this:

[UIView animateWithDuration:2 animations:^{
 CGPoint p2 = self.v.center;
 p2.y = 300;
 self.v.center = p2;
}];

These are edge cases, and you should avoid them. The moral is, after you’ve ordered an
animatable view property to be animated inside an animations: block, don’t change
that view property’s value again until after the animation is over.

View Animation Options
For the maximum in flexibility and power, call the UIView class method animateWith-
Duration:delay:options:animations:completion:. (The two methods I’ve already
described are merely reduced versions of this method.) The parameters are:
duration

The duration of the animation: how long it takes (in seconds) to run from start to
finish. You can also think of this as the animation’s speed. Obviously, if two views
are told to move different distances in the same time, the one that must move further
must move faster.

delay

The delay before the animation starts. The default is no delay.

options

A bitmask combining additional options (using the bitwise-or operator).

animations

The block containing view property changes to be animated.

completion

The block to run when the animation ends (or nil). It takes one BOOL parameter
indicating whether the animation ran to completion. The block is called, with a

View Animation | 129

www.it-ebooks.info

http://www.it-ebooks.info/

parameter indicating YES, even if nothing in the animations: block triggers any
animations. It’s fine for this block to order a further animation, thus chaining
animations.

Here are some of the chief options: values you might wish to use:
Animation curve

An animation curve describes how the animation changes speed during its course.
The term “ease” means that there is a gradual acceleration or deceleration between
the animation’s central speed and the zero speed at its start or end. Specify one at
most; UIViewAnimationOptionCurveEaseInOut is the default. Your choices are:

• UIViewAnimationOptionCurveEaseInOut

• UIViewAnimationOptionCurveEaseIn

• UIViewAnimationOptionCurveEaseOut

• UIViewAnimationOptionCurveLinear (constant speed throughout)

UIViewAnimationOptionRepeat

If included, the animation will repeat indefinitely. There is no way to specify a
certain number of repetitions; you either repeat forever or not at all. This feels like
an oversight (a serious oversight); I’ll suggest a workaround in a moment.

UIViewAnimationOptionAutoreverse

If included, the animation will run from start to finish (in the given duration time),
and will then run from finish to start (also in the given duration time). The docu‐
mentation’s claim that you can autoreverse only if you also repeat is incorrect; you
can use either or both (or neither).

When using UIViewAnimationOptionAutoreverse, you will want to clean up at the end
so that the view is back in its original position when the animation is over. To see what
I mean, consider this code:

NSUInteger opts = UIViewAnimationOptionAutoreverse;
[UIView animateWithDuration:1 delay:0 options:opts animations:^{
 CGPoint p = self.v.center;
 p.x += 100;
 self.v.center = p;
} completion:nil];

The view animates 100 points to the right and then animates 100 points back to its
original position — and then jumps 100 points to the right again. The reason is that the
last actual value we assigned to the view’s center x is 100 points to the right, so when the
animation is over and the “animation movie” is whipped away, the view is revealed still
sitting 100 points to the right. The solution is to move the view back to its original
position in the completion: handler:

130 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

CGPoint pOrig = self.v.center;
NSUInteger opts = UIViewAnimationOptionAutoreverse;
[UIView animateWithDuration:1 delay:0 options:opts animations:^{
 CGPoint p = self.v.center;
 p.x += 100;
 self.v.center = p;
} completion:^(BOOL finished) {
 self.v.center = pOrig;
}];

Working around the inability to specify a finite number of repetitions is not easy. Here’s
one approach using recursion to chain animations:

- (void) animate: (int) count {
 CGPoint pOrig = self.v.center;
 NSUInteger opts = UIViewAnimationOptionAutoreverse;
 [UIView animateWithDuration:1 delay:0 options:opts animations:^{
 CGPoint p = self.v.center;
 p.x += 100;
 self.v.center = p;
 } completion:^(BOOL finished) {
 self.v.center = pOrig;
 if (count)
 [self animate:count-1];
 }];
}

If we call the animate: method with an argument of 2, our animation takes place three
times and stops. There is always a danger, with recursion, of filling up the stack and
running out of memory, but I think we’re safe if we start with a small count value.

There are also some options saying what should happen if another animation is already
ordered or in-flight:
UIViewAnimationOptionBeginFromCurrentState

If this animation animates a property already being animated by an animation that
is previously ordered or in-flight, then instead of canceling the previous animation
(completing the requested change instantly), this animation will use the presenta‐
tion layer to decide where to start, and, if possible, will “blend” its animation with
the previous animation.

UIViewAnimationOptionOverrideInheritedDuration

Prevents inheriting the duration from a surrounding or in-flight animation (the
default is to inherit it).

UIViewAnimationOptionOverrideInheritedCurve

Prevents inheriting the animation curve from a surrounding or in-flight animation
(the default is to inherit it).

To illustrate UIViewAnimationOptionBeginFromCurrentState, consider the following:

View Animation | 131

www.it-ebooks.info

http://www.it-ebooks.info/

[UIView animateWithDuration:1 animations:^{
 CGPoint p = self.v.center;
 p.x += 100;
 self.v.center = p;
}];
NSUInteger opts = 0;
[UIView animateWithDuration:1 delay:0 options:opts animations:^{
 CGPoint p = self.v.center;
 p.x = 0;
 self.v.center = p;
} completion:nil];

The result is that the view jumps 100 points rightward, and then animates leftward.
That’s because the second animation caused the first animation to be thrown away; the
move 100 points rightward was performed instantly, instead of being animated. But if
we set opts to UIViewAnimationOptionBeginFromCurrentState, the result is that the
view animates leftward from its current position, with no jump.

Even more interesting is what happens when we change x to y in the second animation.
If opts is 0, the view jumps to the right and then animates upward. If opts is UIView-
AnimationOptionBeginFromCurrentState, then the two animations are combined: the
view animates diagonally (right by 100 points, and up to where its center y is 0).

An option such as UIViewAnimationOptionOverrideInheritedDuration comes into
play when animations: blocks are nested, like this:

[UIView animateWithDuration:2 animations:^{
 CGPoint p = self.v.center;
 p.x += 100;
 self.v.center = p;
 NSUInteger opts = 0;
 [UIView animateWithDuration:0.5 delay:0 options:opts animations:^{
 self.v.backgroundColor = [UIColor blackColor];
 } completion:nil];
}];

If opts is 0, the color animation takes the same time as the center animation; it inherits
the duration value of the surrounding animations: block. But if opts is UIView-
AnimationOptionOverrideInheritedDuration, each animation has its own duration.

Canceling an in-flight animation at the UIView level is a tricky problem (as opposed to
doing it at the CALayer level, where it’s pretty easy). The technique I use is to order
another animation that brings the animated view immediately to its final state. But the
second animation must not assign the animated property exactly the same value that
the first animation assigned it, or nothing will happen; we need to generate a conflict
between the two animations.

In this example, presume that cancel is executed while the animation started in animate
is in-flight. Our goal in cancel is to bring the animate animation to its completion

132 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

immediately. So in cancel we order a very slightly different, conflicting animation and
then use the completion: handler to assign the view property its true final value:

-(void) animate {
 CGPoint p = self.v.center;
 p.x += 100;
 self.pFinal = p;
 [UIView animateWithDuration:4 animations:^{
 self.v.center = p;
 }];
}
-(void) cancel {
 [UIView animateWithDuration:0 animations:^{
 CGPoint p = self.pFinal;
 p.x += 1;
 self.v.center = p;
 } completion:^(BOOL finished) {
 CGPoint p = self.pFinal;
 self.v.center = p;
 }];
}

We can use the same trick to stop a repeating animation. In this example, animate
launches a repeating, autoreversing animation of our view’s center. To stop the anima‐
tion, cancel sets the view back to its original position:

-(void) animate {
 CGPoint p = self.v.center;
 self.pOrig = p;
 p.x += 100;
 NSUInteger opts = UIViewAnimationOptionAutoreverse |
 UIViewAnimationOptionRepeat;
 [UIView animateWithDuration:1 delay:0 options:opts animations:^{
 self.v.center = p;
 } completion: nil];
}
-(void) cancel {
 [UIView animateWithDuration:0 animations:^{
 self.v.center = self.pOrig;
 }];
}

If you prefer cancel to behave a bit less abruptly, gliding quickly into position rather
than jumping, give the animation a longer duration and specify UIViewAnimation-
OptionBeginFromCurrentState:

-(void) cancel {
 NSUInteger opts = UIViewAnimationOptionBeginFromCurrentState;
 [UIView animateWithDuration:0.1 delay:0 options:opts animations:^{
 self.v.center = self.pOrig;
 } completion:nil];
}

View Animation | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Springing View Animation
New in iOS 7, there’s a built-in animation curve that causes a positional animation to
behave as if it were being snapped into place by a spring. To use it, call animateWith-
Duration:delay:usingSpring.... For example:

[UIView animateWithDuration:0.8 delay:0
 usingSpringWithDamping:0.7 initialSpringVelocity:0
 options:0 animations:^{
 CGPoint p = self.v.center;
 p.y += 100;
 self.v.center = p;
} completion:nil];

The damping: and initialSpringVelocity: parameters modify the behavior of the
animation curve. If the damping is less than 1, there’s a waggle as the animated view
assumes its final position; this waggle becomes quite pronounced at values less than
about 0.7, and at values like 0.3 there are several waggles before the view settles into
place.

The initial spring velocity seems to govern the tendency of the view to overshoot its
final position on its first approach. Depending on the duration and damping amount,
it may need to be quite large to make an appreciable difference; try setting it to 20 in
the preceding example. You can have a lot of fun with smaller damping values and larger
spring velocity values.

The options: values are the same as in the previous section. You might like to experi‐
ment with different animation curves; I think UIViewAnimationOptionCurveEaseIn
looks nice, starting slowly from a stationary position and using the imaginary spring
alone to snap into the final position.

Keyframe View Animation
New in iOS 7, a view animation can be ordered as a set of keyframes. (Previously, this
was possible only at the CALayer level, as I’ll describe later in this chapter.) This means
that you specify stages in the animation and those stages are joined together for you.
You call animateKeyframesWithDuration:...; it has an animations: block, and inside
that block you call addKeyframe... multiple times to specify each stage. Each keyframe’s
start time and duration is between 0 and 1, relative to the animation as a whole.

For example, here I’ll waggle a view back and forth horizontally while moving it down
the screen vertically:

__block CGPoint p = self.v.center;
[UIView animateKeyframesWithDuration:4 delay:0 options:0 animations:^{
 [UIView addKeyframeWithRelativeStartTime:0 relativeDuration:.25
 animations:^{
 p.x += 100;

134 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

 p.y += 50;
 self.v.center = p;
 }];
 [UIView addKeyframeWithRelativeStartTime:.25 relativeDuration:.25
 animations:^{
 p.x -= 100;
 p.y += 50;
 self.v.center = p;
 }];
 [UIView addKeyframeWithRelativeStartTime:.5 relativeDuration:.25
 animations:^{
 p.x += 100;
 p.y += 50;
 self.v.center = p;
 }];
 [UIView addKeyframeWithRelativeStartTime:.75 relativeDuration:.25
 animations:^{
 p.x -= 100;
 p.y += 50;
 self.v.center = p;
 }];
}];

In that code, there are four keyframes, evenly spaced: each is .25 in duration (one-fourth
of the whole animation) and each starts .25 later than the previous one. In each key‐
frame, the view’s center x value increases and decreases by 100, alternately, while its
center y value keeps increasing by 50.

The path and timing depends upon options whose names begin with UIViewKeyframe-
AnimationOptionCalculationMode. The default, if the options: argument is 0, is
Linear. In our example, this means that the path followed by the view is a sharp zig-
zag, the view seeming to bounce off invisible walls at the right and left. But if the cal‐
culation mode is Cubic, our view describes a smooth S-curve, starting at the view’s initial
position and ending at the last keyframe point, and passing through the three other
keyframe points like the maxima and minima of a sine wave.

In that example, because my keyframes are perfectly even, I could achieve the same
effects by using the calculation modes Paced (same effect as Linear) and CubicPaced
(same effect as Cubic). These two Paced options simply ignore the relative start time
and relative duration values of the keyframes; you might as well pass 0 for all of them.
Instead, they divide up the times and durations evenly, exactly as my code has done.

Finally, Discrete calculation mode means that the changed animatable properties don’t
animate: the animation jumps to each keyframe.

The outer animations: block can contain other changes to animatable view properties,
as long as they don’t conflict with the keyframe animations:; these are animated over
the total duration. For example:

View Animation | 135

www.it-ebooks.info

http://www.it-ebooks.info/

[UIView animateKeyframesWithDuration:4 delay:0 options:0 animations:^{
 self.v.alpha = 0;
 // ... and the rest as before ...

The result is that as the view zigzags back and forth down the screen, it also gradually
fades away.

It is also legal to supply an animation curve as part of the options: argument. (The
documentation fails to make this clear.) For example:

NSUInteger opts =
 UIViewKeyframeAnimationOptionCalculationModeLinear |
 UIViewAnimationOptionCurveLinear;
[UIView animateKeyframesWithDuration:4 delay:0 options:opts animations:^{

That’s two different senses of “Linear”. The first means that the path described by the
moving view is a sequence of straight lines. The second means that the moving view’s
speed along that path is steady.

Transitions
A transition is an animation that emphasizes a view’s change of content. Transitions are
ordered using one of two methods:

• transitionWithView:duration:options:animations:completion:

• transitionFromView:toView:duration:options:completion:

The transition animation types are expressed as part of the options: bitmask:

• UIViewAnimationOptionTransitionFlipFromLeft

• UIViewAnimationOptionTransitionFlipFromRight

• UIViewAnimationOptionTransitionCurlUp

• UIViewAnimationOptionTransitionCurlDown

• UIViewAnimationOptionTransitionCrossDissolve

• UIViewAnimationOptionTransitionFlipFromBottom

• UIViewAnimationOptionTransitionFlipFromTop

Be careful not to confuse these with the older transition options UIView-
AnimationTransitionFlipFromLeft and so forth.

136 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, a UIImageView containing an image of Mars flips over as its image
changes to a smiley face; it looks as if the image view were two-sided, with Mars on one
side and the smiley face on the other:

[UIView transitionWithView:self.iv duration:0.8
 options:UIViewAnimationOptionTransitionFlipFromLeft animations:^{
 self.iv.image = [UIImage imageNamed:@"Smiley"];
} completion:nil];

In that example, I’ve put the content change inside the animations: block. That’s con‐
ventional but misleading; the truth is that if all that’s changing is the content, nothing
needs to go into the animations: block. The change of content can be anywhere, before
or even after this entire line of code. It’s the flip that’s being animated. You might use
the animations: block here to order additional animations, such a change in a view’s
center.

You can do the same sort of thing with a custom view that does its own drawing. Imagine
that I have a UIView subclass, MyView, that draws either a rectangle or an ellipse de‐
pending on the value of its BOOL reverse property:

- (void)drawRect:(CGRect)rect {
 CGRect f = CGRectInset(self.bounds, 10, 10);
 CGContextRef con = UIGraphicsGetCurrentContext();
 if (self.reverse)
 CGContextStrokeEllipseInRect(con, f);
 else
 CGContextStrokeRect(con, f);
}

This code flips a MyView instance while changing its drawing from a rectangle to an
ellipse or vice versa:

self.v.reverse = !self.v.reverse;
[UIView transitionWithView:self.v duration:1
 options:UIViewAnimationOptionTransitionFlipFromLeft animations:^{
 [self.v setNeedsDisplay];
} completion:nil];

During a transition, by default, the view’s appearance changes directly to its final ap‐
pearance; in effect, a snapshot of the view’s final appearance has been taken beforehand.
If that isn’t what you want, use UIViewAnimationOptionAllowAnimatedContent in the
options bitmask.

In this example, outer is the view to be animated using a transition, and inner is a
subview of outer that currently occupies part of its width. In the course of the transition,
we increase the width of inner to occupy the entire width of outer:

View Animation | 137

www.it-ebooks.info

http://www.it-ebooks.info/

[UIView transitionWithView:self.outer duration:1
 options:opts animations:^{
 CGRect f = self.inner.frame;
 f.size.width = self.outer.frame.size.width;
 f.origin.x = 0;
 self.inner.frame = f;
} completion:nil];

If opts is UIViewAnimationOptionTransitionFlipFromLeft, we see outer flip over to
the same appearance it had before, and then the change in inner happens in a jump.
But if opts also includes UIViewAnimationOptionAllowAnimatedContent, then inner
is seen expanding gradually as the flip animation is completing.

transitionFromView:toView:duration:options:completion: names two views; the
first is replaced by the second, while their superview undergoes the transition animation.
There are two possible configurations, depending on the options you provide:
Remove one subview, add the other

If UIViewAnimationOptionShowHideTransitionViews is not one of the options,
then the second subview is not in the view hierarchy when we start; the transition
removes the first subview from its superview and adds the second subview to that
same superview.

Hide one subview, show the other
If UIViewAnimationOptionShowHideTransitionViews is one of the options, then
both subviews are in the view hierarchy when we start; the hidden of the first is NO,
the hidden of the second is YES, and the transition reverses these values.

In this example, a label lab is already in the interface. The animation causes the super‐
view of lab to flip over, while at the same time a different label, lab2, is substituted for
it:

UILabel* lab2 = [[UILabel alloc] initWithFrame:self.lab.frame];
lab2.text = @"Howdy";
[lab2 sizeToFit];
[UIView transitionFromView:self.lab toView:lab2 duration:0.8
 options:UIViewAnimationOptionTransitionFlipFromLeft
 completion:nil];

It’s up to you to make sure beforehand that the second view (toView:) has the desired
position, so that it will appear in the right place in its superview.

Implicit Layer Animation
If a layer is already present in the interface and is not a view’s underlying layer, animating
it can be as simple as setting a property. A change in what the documentation calls an
animatable property is automatically interpreted as a request to animate that change. In
other words, animation of layer property changes is the default! Multiple property

138 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

changes are considered part of the same animation. This mechanism is called implicit
animation.

You cannot use implicit animation on a UIView’s underlying layer. You
can animate a UIView’s underlying layer directly, but you must use
explicit layer animation (discussed later in this chapter).

For example, in Chapter 3 we constructed a compass out of layers. The compass itself
is a CompassView that does no drawing of its own; its underlying layer is a Compass‐
Layer that also does no drawing, serving only as a superlayer for the layers that constitute
the drawing. None of the layers that constitute the actual drawing is the underlying layer
of a view, so a property change to any of them, once they are established in the interface,
is animated automatically.

So, presume that we have a reference to the arrow layer (arrow). If we rotate the arrow
by changing its transform property, that rotation is animated:

// the next line is an implicit animation
arrow.transform = CATransform3DRotate(arrow.transform, M_PI/4.0, 0, 0, 1);

CALayer properties listed in the documentation as animatable in this way are anchor-
Point and anchorPointZ, backgroundColor, borderColor, borderWidth, bounds,
contents, contentsCenter, contentsRect, cornerRadius, doubleSided, hidden,
masksToBounds, opacity, position and zPosition, rasterizationScale and should-
Rasterize, shadowColor, shadowOffset, shadowOpacity, shadowRadius, and
sublayerTransform and transform (but not affineTransform!). In addition, a
CAShapeLayer’s path, fillColor, strokeColor, lineWidth, lineDashPhase, and miter-
Limit are animatable; so are a CATextLayer’s fontSize and foregroundColor, and a
CAGradientLayer’s colors, locations, and endPoint. (See Chapter 3 for discussion of
those properties.)

Basically, a property is animatable because there’s some sensible way to interpolate the
intermediate values between one value and another. The nature of the animation at‐
tached to each property is therefore just what you would intuitively expect. When you
change a layer’s hidden property, it fades out of view (or into view). When you change
a layer’s contents, the old contents are dissolved into the new contents. And so forth.

A layer’s frame is not an animatable property! To animate the chang‐
ing of a layer’s frame, you’ll change other properties such as its bounds
and position. Trying to animate a layer’s frame is a common begin‐
ner error.

Implicit Layer Animation | 139

www.it-ebooks.info

http://www.it-ebooks.info/

Implicit layer animation doesn’t affect a layer as it is being created, configured, and
added to the interface. Implicit animation comes into play when you change an ani‐
matable property of a layer that is already present in the interface.

Animation Transactions
Implicit animation operates with respect to a transaction (a CATransaction), which
groups animation requests into a single animation. Every animation request takes place
in the context of a transaction. You can make this explicit by wrapping your animation
requests in calls to the CATransaction class methods begin and commit; the result is a
transaction block. Additionally, there is an implicit transaction surrounding all your
code, and you can operate on this implicit transaction without any begin and commit.

To modify the characteristics of an implicit animation, you modify the transaction that
surrounds it. Typically, you’ll use these CATransaction class methods:
setAnimationDuration:

The duration of the animation.

setAnimationTimingFunction:

A CAMediaTimingFunction; timing functions are discussed in the next section.

setCompletionBlock:

A block to be called when the animation ends. The block takes no parameters. The
block is called even if no animation is triggered during this transaction.

By nesting transaction blocks, you can apply different animation characteristics to dif‐
ferent elements of an animation. But you can also use transaction commands outside
of any transaction block to modify the implicit transaction. So, in our previous example,
we could slow down the animation of the arrow like this:

[CATransaction setAnimationDuration:0.8];
arrow.transform = CATransform3DRotate(arrow.transform, M_PI/4.0, 0, 0, 1);

Another useful feature of animation transactions is to turn implicit animation off. It’s
important to be able to do this, because implicit animation is the default, and can be
unwanted (and a performance drag). To do so, call the CATransaction class method set-
DisableActions: with argument YES. There are other ways to turn off implicit ani‐
mation (discussed later in this chapter), but this is the simplest.

setCompletionBlock: is an extraordinarily useful and probably underutilized tool. The
transaction’s completion block signals the end, not only of the implicit layer property
animations you yourself have ordered as part of this transaction, but of all animations
ordered during this transaction, including Cocoa’s own animations. For example, con‐
sider what happens when you explicitly dismiss a popover with animation:

[myPopoverController dismissPopoverAnimated: YES];

140 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Transactions and the Redraw Moment
The “redraw moment” that I’ve spoken of in connection with drawing, layout, layer
property settings, and animation is actually the end of the current transaction (usually
the implicit transaction). You set a view’s background color; the displayed color of the
background is changed when the transaction ends. You call setNeedsDisplay; draw-
Rect: is called when the transaction ends. You call setNeedsLayout; layout happens
when the transaction ends. You order an animation; the animation starts when the
transaction ends.

Your code runs within an implicit transaction. Your code comes to an end, and the
transaction commits itself. It is then, as part of the transaction commit procedure, that
the screen is updated: first layout, then drawing, then obedience to layer property
changes, then the start of any animations. The transaction then continues on a back‐
ground thread while any animations are performed, and finally calls its completion
block, if any, when the animations are over.

There’s no completion block, and this isn’t your animation, so how can you learn when
the animation is over and the popover is well and truly gone? A transaction completion
block solves the problem.

CATransaction implements KVC to allow you to set and retrieve a value for an arbitrary
key, similar to CALayer. An example appears later in this chapter.

An explicit transaction block that orders an animation to a layer, if
the block is not preceded by any other changes to the layer, can cause
animation to begin immediately when the CATransaction class meth‐
od commit is called, without waiting for the redraw moment, while
your code continues running. In my experience, this can cause trou‐
ble (animation delegate messages cannot arrive, and the presenta‐
tion layer can’t be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction: takes as its param‐
eter a media timing function (CAMediaTimingFunction). This class is the general ex‐
pression of the animation curves we have already met (ease-in-out, ease-in, ease-out,
and linear), and you can use it with those very same predefined curves, by calling
the CAMediaTimingFunction class method functionWithName: with one of these
parameters:

Implicit Layer Animation | 141

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-1. An ease-in-out Bézier curve

• kCAMediaTimingFunctionLinear

• kCAMediaTimingFunctionEaseIn

• kCAMediaTimingFunctionEaseOut

• kCAMediaTimingFunctionEaseInEaseOut

• kCAMediaTimingFunctionDefault

A media timing function is a Bézier curve defined by two points. The curve graphs the
fraction of the animation’s time that has elapsed (the x-axis) against the fraction of the
animation’s change that has occurred (the y-axis); its endpoints are therefore at {0,0}
and {1,1}, because at the beginning of the animation there has been no elapsed time
and no change, and at the end of the animation all the time has elapsed and all the change
has occurred.

The curve’s defining points are its endpoints, and each endpoint needs only one Bézier
control point to define the tangent to the curve. And because the curve’s endpoints are
known, defining the two control points is sufficient to describe the entire curve. And
because a point is a pair of floating-point values, a media timing function can be ex‐
pressed as four floating-point values. That is, in fact, how it is expressed.

So, for example, the ease-in-out timing function is expressed as the four values 0.42,
0.0, 0.58, 1.0. That defines a Bézier curve with one endpoint at {0,0}, whose control
point is {0.42,0}, and the other endpoint at {1,1}, whose control point is {0.58,1}
(Figure 4-1).

To define your own media timing function, supply the coordinates of the two control
points by calling functionWithControlPoints:::: or initWithControlPoints::::;

142 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

this is one of those rare cases where the parameters of an Objective-C method have no
name. (It helps to design the curve in a standard drawing program first so that you can
visualize how the placement of the control points shapes the curve.) For example, here’s
a media timing function that starts out quite slowly and then whips quickly into place
after about two-thirds of the time has elapsed. I call this the “clunk” timing function,
and it looks great with the compass arrow:

CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
[CATransaction setAnimationTimingFunction: clunk];
arrow.transform = CATransform3DRotate(arrow.transform, M_PI/4.0, 0, 0, 1);

Core Animation
Core Animation is the fundamental underlying iOS animation technology. View ani‐
mation and implicit layer animation are merely convenient façades for Core Animation.
Core Animation is explicit layer animation, and revolves primarily around the CAAni‐
mation class and its subclasses, which allow you to create far more elaborate specifica‐
tions of an animation than anything we’ve encountered so far.

You may never program at the level of Core Animation, but you should read this section
anyway, if only to learn how animation really works and to get a sense of its mighty
powers. In particular, Core Animation:

• Works even on a view’s underlying layer. Thus, Core Animation is the only way to
apply full-on layer property animation to a view.

• Provides fine control over the intermediate values and timing of an animation.
• Allows animations to be grouped into complex combinations.
• Adds transition animation effects that aren’t available otherwise, such as new con‐

tent “pushing” the previous content out of a layer.

Animating a view’s underlying layer with Core Animation is layer
animation, not view animation — so you don’t get any automatic lay‐
out of that view’s subviews. This can be a reason for preferring view
animation.

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a CABasic‐
Animation object. CABasicAnimation derives much of its power through its inheri‐
tance, so I’ll describe that inheritance along with CABasicAnimation itself. You will
readily see that all the property animation features we have met so far are embodied in
a CABasicAnimation instance.

Core Animation | 143

www.it-ebooks.info

http://www.it-ebooks.info/

CAAnimation
CAAnimation is an abstract class, meaning that you’ll only ever use a subclass of
it. Some of CAAnimation’s powers come from its implementation of the CAMedia‐
Timing protocol.
animation

A class method, a convenient way of creating an animation object.

delegate

The delegate messages are animationDidStart: and animationDidStop:
finished:.

A CAAnimation instance retains its delegate; this is very unusual behavior and
can cause trouble if you’re not conscious of it (I’m speaking from experi‐
ence). Alternatively, don’t set a delegate; to make your code run after the
animation ends, call the CATransaction class method setCompletionBlock:
before configuring the animation.

duration, timingFunction
The length of the animation, and its timing function (a CAMediaTiming‐
Function). A duration of 0 (the default) means .25 seconds unless overridden
by the transaction.

autoreverses, repeatCount, repeatDuration, cumulative
The first two are familiar from UIView animation. The repeatDuration prop‐
erty is a different way to govern repetition, specifying how long the repetition
should continue rather than how many repetitions should occur; don’t specify
both a repeatCount and a repeatDuration. If cumulative is YES, a repeating
animation starts each repetition where the previous repetition ended (rather
than jumping back to the start value).

beginTime

The delay before the animation starts. To delay an animation with respect to
now, call CACurrentMediaTime and add the desired delay in seconds. The delay
does not eat into the animation’s duration.

timeOffset

A shift in the animation’s overall timing; looked at another way, specifies the
starting frame of the “animation movie,” which is treated as a loop. For example,
an animation with a duration of 8 and a time offset of 4 plays its second half
followed by its first half.

CAAnimation, along with all its subclasses, implements KVC to allow you to set
and retrieve a value for an arbitrary key, similar to CALayer (Chapter 3) and CA‐
Transaction.

144 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract, and adds
the following:
keyPath

The all-important string specifying the CALayer key that is to be animated.
Recall from Chapter 3 that CALayer properties are accessible through KVC
keys; now we are using those keys! A CAPropertyAnimation convenience class
method animationWithKeyPath: creates the instance and assigns it a keyPath.

additive

If YES, the values supplied by the animation are added to the current presen‐
tation layer value.

valueFunction

Converts a simple scalar value that you supply into a transform.

There is no animatable CALayer key called @"frame" — because frame
is not an animatable layer property. (And the same for affine-
Transform.)

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of CAPropertyAnimation. It adds
the following:
fromValue, toValue

The starting and ending values for the animation. These values must be objects,
so numbers and structs will have to be wrapped accordingly, using NSNumber
and NSValue. If neither fromValue nor toValue is provided, the former and
current values of the property are used. If just one of fromValue or toValue is
provided, the other uses the current value of the property.

byValue

Expresses one of the endpoint values as a difference from the other rather than
in absolute terms. So you would supply a byValue instead of a fromValue or
instead of a toValue, and the actual fromValue or toValue would be calculated
for you by subtraction or addition with respect to the other value. If you supply
only a byValue, the fromValue is the property’s current value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you order it to be
performed is to add it to a layer. This is done with the CALayer instance method add-

Core Animation | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Animation:forKey:. (I’ll discuss the purpose of the forKey: parameter later; it’s fine to
ignore it and use nil, as I do in the examples that follow.)

However, there’s a slight twist. A CAAnimation is merely an animation; all it does is
describe the hoops that the presentation layer is to jump through, the “animation movie”
that is to be presented. It has no effect on the layer itself. Thus, if you naively create a
CABasicAnimation and add it to a layer with addAnimation:forKey:, the animation
happens and then the “animation movie” is whipped away to reveal the layer sitting
there in exactly the same state as before. It is up to you to change the layer to match what
the animation will ultimately portray.

This requirement may seem odd, but keep in mind that we are now in a much more
fundamental, flexible world than the automatic, convenient worlds of view animation
and implicit layer animation. Using explicit animation is more work, but you get more
power. The converse, as we shall see, is that you don’t have to change the layer if it doesn’t
change as a result of the animation.

To assure good results, start by taking a plodding, formulaic approach to the use of
CABasicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to change,
because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisableActions: if
necessary to prevent implicit animation.

3. Construct the explicit animation, using the start and end values you captured earlier,
and with its keyPath corresponding to the layer property you just changed.

4. Add the explicit animation to the layer.

Here’s how you’d use this approach to animate our compass arrow rotation:

// capture the start and end values
CATransform3D startValue = arrow.transform;
CATransform3D endValue =
 CATransform3DRotate(startValue, M_PI/4.0, 0, 0, 1);
// change the layer, without implicit animation
[CATransaction setDisableActions:YES];
arrow.transform = endValue;
// construct the explicit animation
CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim.timingFunction = clunk;

146 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

anim.fromValue = [NSValue valueWithCATransform3D:startValue];
anim.toValue = [NSValue valueWithCATransform3D:endValue];
// ask for the explicit animation
[arrow addAnimation:anim forKey:nil];

Once you know the full form, you will find that in many cases it can be condensed. For
example, when fromValue and toValue are not set, the former and current values of
the property are used automatically. (This magic is possible because the presentation
layer still has the former value of the property, while the layer itself has the new value.)
Thus, in this case there was no need to set them, and so there was no need to capture
the start and end values beforehand either. Here’s the condensed version:

[CATransaction setDisableActions:YES];
arrow.transform =
 CATransform3DRotate(arrow.transform, M_PI/4.0, 0, 0, 1);
CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim.timingFunction = clunk;
[arrow addAnimation:anim forKey:nil];

As I mentioned earlier, you will omit changing the layer if it doesn’t change as a result
of the animation. For example, let’s make the compass arrow appear to vibrate rapidly,
without ultimately changing its current orientation. To do this, we’ll waggle it back and
forth, using a repeated animation, between slightly clockwise from its current position
and slightly counterclockwise from its current position. The “animation movie” neither
starts nor stops at the current position of the arrow, but for this animation it doesn’t
matter, because it all happens so quickly as to appear perfectly natural:

// capture the start and end values
CATransform3D nowValue = arrow.transform;
CATransform3D startValue =
 CATransform3DRotate(nowValue, M_PI/40.0, 0, 0, 1);
CATransform3D endValue =
 CATransform3DRotate(nowValue, -M_PI/40.0, 0, 0, 1);
// construct the explicit animation
CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.05;
anim.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionLinear];
anim.repeatCount = 3;
anim.autoreverses = YES;
anim.fromValue = [NSValue valueWithCATransform3D:startValue];
anim.toValue = [NSValue valueWithCATransform3D:endValue];
// ask for the explicit animation
[arrow addAnimation:anim forKey:nil];

Core Animation | 147

www.it-ebooks.info

http://www.it-ebooks.info/

That code, too, can be shortened considerably from its full form. We can eliminate the
need to calculate the new rotation values based on the arrow’s current transform by
setting our animation’s additive property to YES; this means that the animation’s
property values are added to the existing property value for us, so that they are relative,
not absolute. For a transform, “added” means “matrix-multiplied,” so we can describe
the waggle without any dependence on the arrow’s current rotation. Moreover, because
our rotation is so simple (around a cardinal axis), we can take advantage of CAProperty‐
Animation’s valueFunction; the animation’s property values can then be simple scalars
(in this case, angles), because the valueFunction tells the animation to interpret these
as rotations around the z-axis:

CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.05;
anim.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionLinear];
anim.repeatCount = 3;
anim.autoreverses = YES;
anim.additive = YES;
anim.valueFunction =
 [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
anim.fromValue = @(M_PI/40);
anim.toValue = @(-M_PI/40);
[arrow addAnimation:anim forKey:nil];

Instead of using a valueFunction, we could have set the animation’s
key path to @"transform.rotation.z" to achieve the same effect.
However, Apple advises against this, as it can result in mathematical
trouble when there is more than one rotation.

Remember that there is no @"frame" key. To animate a layer’s frame, if both its position
and bounds are to change, you must animate both. Recall this earlier example from a
view animation’s animations: block, where outer is the superview of inner, and inner
expands to fill the width of outer:

CGRect f = self.inner.frame;
f.size.width = self.outer.frame.size.width;
f.origin.x = 0;
self.inner.frame = f;

Here’s how to do that with Core Animation:

CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"bounds"];
CGRect f = self.inner.layer.bounds;
f.size.width = self.outer.layer.bounds.size.width;
self.inner.layer.bounds = f;
[self.inner.layer addAnimation: anim1 forKey: nil];

148 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

CABasicAnimation* anim2 =
 [CABasicAnimation animationWithKeyPath:@"position"];
CGPoint p = self.inner.layer.position;
p.x = CGRectGetMidX(self.outer.layer.bounds);
self.inner.layer.position = p;
[self.inner.layer addAnimation:anim2 forKey: nil];

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic animation
(CABasicAnimation); they are both subclasses of CAPropertyAnimation and they are
used in identical ways. The difference is that a keyframe animation, in addition to spec‐
ifying a starting and ending value, also specifies multiple values through which the
animation should pass on the way, the stages (frames) of the animation. This can be as
simple as setting the animation’s values property (an NSArray).

Here’s a more sophisticated version of our animation for waggling the compass arrow:
the animation includes both the start and end states, and the degree of waggle gets
progressively smaller:

NSMutableArray* values = [NSMutableArray array];
[values addObject: @0.0f];
int direction = 1;
for (int i = 20; i < 60; i += 5, direction *= -1) { // alternate directions
 [values addObject: @(direction*M_PI/(float)i)];
}
[values addObject: @0.0f];
CAKeyframeAnimation* anim =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim.values = values;
anim.additive = YES;
anim.valueFunction =
 [CAValueFunction functionWithName: kCAValueFunctionRotateZ];
[arrow addAnimation:anim forKey:nil];

Here are some CAKeyframeAnimation properties:
values

The array of values the animation is to adopt, including the starting and ending
value.

timingFunctions

An array of timing functions, one for each stage of the animation (so that this array
will be one element shorter than the values array).

keyTimes

An array of times to accompany the array of values, defining when each value should
be reached. The times start at 0 and are expressed as increasing fractions of 1, ending
at 1.

Core Animation | 149

www.it-ebooks.info

http://www.it-ebooks.info/

calculationMode

Describes how the values are treated to create all the values through which the
animation must pass.

• The default is kCAAnimationLinear, a simple straight-line interpolation from
value to value.

• kCAAnimationCubic constructs a single smooth curve passing through all the
values (and additional advanced properties, tensionValues, continuity-
Values, and biasValues, allow you to refine the curve).

• kCAAnimationPaced and kCAAnimationCubicPaced means the timing func‐
tions and key times are ignored, and the velocity is made constant through the
whole animation.

• kCAAnimationDiscrete means no interpolation: we jump directly to each value
at the corresponding key time.

path

When you’re animating a property whose values are pairs of floats (CGPoints), this
is an alternative way of describing the values; instead of a values array, which must
be interpolated to arrive at the intermediate values along the way, you supply the
entire interpolation as a single CGPathRef. The points used to draw the path are
the keyframe values, so you can still apply timing functions and key times. If you’re
animating a position, the rotationMode property lets you ask the animated object
to rotate so as to remain perpendicular to the path.

In this example, the values array is a sequence of five images to be presented successively
and repeatedly in a layer’s contents, like the frames in a movie; the effect is similar to
UIImageView and UIImage animation, discussed earlier in this chapter:

CAKeyframeAnimation* anim =
 [CAKeyframeAnimation animationWithKeyPath:@"contents"];
anim.values = self.images;
anim.keyTimes = @[@0,@0.25,@0.5,@0.75,@1];
anim.calculationMode = kCAAnimationDiscrete;
anim.duration = 1.5;
anim.repeatCount = HUGE_VALF;
[self.sprite addAnimation:anim forKey:nil];

Making a Property Animatable
So far, we’ve been animating built-in animatable properties. If you define your own
property on a CALayer subclass, you can make that property animatable through a
CAPropertyAnimation (a CABasicAnimation or a CAKeyframeAnimation). For ex‐
ample, here we animate the increase and decrease in a CALayer subclass property called
thickness:

150 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

CALayer* lay = self.v.layer;
CABasicAnimation* ba =
 [CABasicAnimation animationWithKeyPath:@"thickness"];
ba.toValue = [NSNumber numberWithFloat: 10.0];
ba.autoreverses = YES;
[lay addAnimation:ba forKey:nil];

To make our layer responsive to such a command, it needs a thickness property de‐
clared @dynamic (so that Core Animation can create its accessors), and it must return
YES from the class method needsDisplayForKey:, where the key is the string name of
the property:

@interface MyLayer ()
@property CGFloat thickness;
@end
@implementation MyLayer
@dynamic thickness;
+ (BOOL) needsDisplayForKey:(NSString *)key {
 if ([key isEqualToString: @"thickness"])
 return YES;
 return [super needsDisplayForKey:key];
}
// ...
@end

Returning YES from needsDisplayForKey: causes this layer to be redisplayed repeat‐
edly as the thickness property changes. So if we want to see the animation, this layer
also needs to draw itself in some way that depends on the thickness property. Here, I’ll
implement the layer’s drawInContext: to make thickness the thickness of the black
border around a red rectangle:

- (void) drawInContext:(CGContextRef)con {
 CGRect r = CGRectInset(self.bounds, 20, 20);
 CGContextSetFillColorWithColor(con, [UIColor redColor].CGColor);
 CGContextFillRect(con, r);
 CGContextSetLineWidth(con, self.thickness);
 CGContextStrokeRect(con, r);
}

At every step of the animation, drawInContext: is called, and because the thickness
value differs at each step, it appears animated.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations into one,
by means of its animations property (an NSArray of animations). By delaying and
timing the various component animations, complex effects can be achieved.

A CAAnimationGroup is itself an animation; it is a CAAnimation subclass, so it has a
duration and other animation features. Think of the CAAnimationGroup as the parent

Core Animation | 151

www.it-ebooks.info

http://www.it-ebooks.info/

and its animations as its children. Then the children inherit default values from their
parent. Thus, for example, if you don’t set a child’s duration explicitly, it will inherit the
parent’s duration. Also, make sure the parent’s duration is sufficient to include all parts
of the child animations that you want displayed.

Let’s use a grouped animation to construct a sequence where the compass arrow rotates
and then waggles. This requires very little modification of code we’ve already written.
We express the first animation in its full form, with explicit fromValue and toValue.
We postpone the second animation using its beginTime property; notice that we express
this in relative terms, as a number of seconds into the parent’s duration, not with respect
to CACurrentMediaTime. Finally, we set the overall parent duration to the sum of the
child durations, so that it can embrace both of them:

// capture current value, set final value
CGFloat rot = M_PI/4.0;
[CATransaction setDisableActions:YES];
CGFloat current =
 [[arrow valueForKeyPath:@"transform.rotation.z"] floatValue];
[arrow setValue: @(current + rot)
 forKeyPath:@"transform.rotation.z"];
// first animation (rotate and clunk)
CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"transform"];
anim1.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim1.timingFunction = clunk;
anim1.fromValue = @(current);
anim1.toValue = @(current + rot);
anim1.valueFunction =
 [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
// second animation (waggle)
NSMutableArray* values = [NSMutableArray array];
[values addObject: @0.0f];
int direction = 1;
for (int i = 20; i < 60; i += 5, direction *= -1) { // alternate directions
 [values addObject: @(direction*M_PI/(float)i)];
}
[values addObject: @0.0f];
CAKeyframeAnimation* anim2 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim2.values = values;
anim2.duration = 0.25;
anim2.beginTime = anim1.duration;
anim2.additive = YES;
anim2.valueFunction =
 [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
// group

152 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-2. A boat and the course she’ll sail

CAAnimationGroup* group = [CAAnimationGroup animation];
group.animations = @[anim1, anim2];
group.duration = anim1.duration + anim2.duration;
[arrow addAnimation:group forKey:nil];

In that example, I grouped two animations that animated the same property sequentially.
Now let’s go to the other extreme and group some animations that animate different
properties simultaneously. I have a small view (self.v), located near the top-right cor‐
ner of the screen, whose layer contents are a picture of a sailboat facing to the left. I’ll
“sail” the boat in a curving path, both down the screen and left and right across the
screen, like an extended letter “S” (Figure 4-2). Each time the boat comes to a vertex of
the curve, changing direction across the screen, I’ll turn the boat picture so that it faces
the way it’s about to move. At the same time, I’ll constantly rock the boat, so that it
always appears to be pitching a little on the waves.

Here’s the first animation, the movement of the boat along its curving path. It illustrates
the use of a CAKeyframeAnimation with a CGPath; the calculationMode of
kCAAnimationPaced ensures an even speed over the whole path. We don’t set an explicit
duration because we want to adopt the duration of the group:

CGFloat h = 200;
CGFloat v = 75;
CGMutablePathRef path = CGPathCreateMutable();
int leftright = 1;
CGPoint next = self.v.layer.position;
CGPoint pos;
CGPathMoveToPoint(path, nil, next.x, next.y);
for (int i = 0; i < 4; i++) {
 pos = next;

Core Animation | 153

www.it-ebooks.info

http://www.it-ebooks.info/

 leftright *= -1;
 next = CGPointMake(pos.x+h*leftright, pos.y+v);
 CGPathAddCurveToPoint(path, nil, pos.x, pos.y+30, next.x, next.y-30,
 next.x, next.y);
}
CAKeyframeAnimation* anim1 =
 [CAKeyframeAnimation animationWithKeyPath:@"position"];
anim1.path = path;
anim1.calculationMode = kCAAnimationPaced;

Here’s the second animation, the reversal of the direction the boat is facing. This is
simply a rotation around the y-axis. It’s another CAKeyframeAnimation, but we make
no attempt at visually animating this reversal: the calculationMode is kCAAnimation-
Discrete, so that the boat image reversal is a sudden change, as in our earlier “sprite”
example. There is one less value than the number of points in our first animation’s path,
and the first animation has an even speed, so the reversals take place at each curve apex
with no further effort on our part. (If the pacing were more complicated, we could give
both the first and the second animation identical keyTimes arrays, to coordinate them.)
Once again, we don’t set an explicit duration:

NSArray* revs = @[@0.0f,
 @M_PI,
 @0.0f,
 @M_PI];
CAKeyframeAnimation* anim2 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim2.values = revs;
anim2.valueFunction =
 [CAValueFunction functionWithName:kCAValueFunctionRotateY];
anim2.calculationMode = kCAAnimationDiscrete;

Here’s the third animation, the rocking of the boat. It has a short duration, and repeats
indefinitely (by giving its repeatCount an immense value):

NSArray* pitches = @[@0.0f,
 @(M_PI/60.0),
 @0.0f,
 @(-M_PI/60.0),
 @0.0f];
CAKeyframeAnimation* anim3 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim3.values = pitches;
anim3.repeatCount = HUGE_VALF;
anim3.duration = 0.5;
anim3.additive = YES;
anim3.valueFunction =
 [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

Finally, we combine the three animations, assigning the group an explicit duration that
will be adopted by the first two animations. As we hand the animation over to the layer

154 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

displaying the boat, we also change the layer’s position to match the final position from
the first animation, so that the boat won’t jump back to its original position afterward:

CAAnimationGroup* group = [CAAnimationGroup animation];
group.animations = @[anim1, anim2, anim3];
group.duration = 8;
[self.v.layer addAnimation:group forKey:nil];
[CATransaction setDisableActions:YES];
self.v.layer.position = next;

Here are some further CAAnimation properties (from the CAMediaTiming protocol)
that come into play especially when animations are grouped:
speed

The ratio between a child’s timescale and the parent’s timescale. For example, if a
parent and child have the same duration, but the child’s speed is 1.5, its animation
runs one-and-a-half times as fast as the parent.

fillMode

Suppose the child animation begins after the parent animation, or ends before the
parent animation, or both. What should happen to the appearance of the property
being animated, outside the child animation’s boundaries? The answer depends on
the child’s fillMode:

• kCAFillModeRemoved means the child animation is removed, revealing the
layer property at its actual current value whenever the child is not running.

• kCAFillModeForwards means the final presentation layer value of the child
animation remains afterward.

• kCAFillModeBackwards means the initial presentation layer value of the child
animation appears right from the start.

• kCAFillModeBoth combines the previous two.

CALayer adopts the CAMediaTiming protocol. Thus, a layer can have
a speed. This will affect any animation attached to it. A CALayer with
a speed of 2 will play a 10-second animation in 5 seconds. A layer can
also have a timeOffset; changing a layer’s timeOffset effectively
changes what “frame” of its animation is displayed.

Transitions
A layer transition is an animation involving two “copies” of a single layer, in which the
second “copy” appears to replace the first. It is described by an instance of CATransition
(a CAAnimation subclass), which has these chief properties describing the animation:

Core Animation | 155

www.it-ebooks.info

http://www.it-ebooks.info/

type

Your choices are:

• kCATransitionFade

• kCATransitionMoveIn

• kCATransitionPush

• kCATransitionReveal

subtype

If the type is not kCATransitionFade, your choices are:

• kCATransitionFromRight

• kCATransitionFromLeft

• kCATransitionFromTop

• kCATransitionFromBottom

For historical reasons, the terms “bottom” and “top” in the names of
the subtype settings have the opposite of their expected meanings.

To understand a layer transition, first implement one without changing anything else
about the layer:

CATransition* t = [CATransition animation];
t.type = kCATransitionPush;
t.subtype = kCATransitionFromBottom;
[layer addAnimation: t forKey: nil];

The entire layer exits moving down from its original place, and another copy of the very
same layer enters moving down from above. If, at the same time, we change something
about the layer’s contents, then the old contents will appear to exit downward while the
new contents appear to enter from above.

A common device is to have the layer that is to be transitioned live inside a superlayer
that is exactly the same size and whose masksToBounds is YES. This confines the visible
transition to the bounds of the layer itself. Otherwise, the entering and exiting versions
of the layer are visible outside the layer.

In this example, we change the sublayer’s contents image, while transitioning it with a
push transition from the bottom (meaning from the top), from an image of Mars to a
smiley face; with the sublayer masked by its superlayer, it looks as if the smiley face

156 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-3. A push transition

pushes Mars down out of the frame (which I’ve emphasized in Figure 4-3 by giving the
superlayer a border as well):

CATransition* t = [CATransition animation];
t.type = kCATransitionPush;
t.subtype = kCATransitionFromBottom;
t.duration = 2;
[CATransaction setDisableActions:YES];
lay.contents = (id)[UIImage imageNamed: @"Smiley"].CGImage;
[lay addAnimation: t forKey: nil];

A transition on a superlayer can happen simultaneously with animation of a sublayer.
The animation will be seen to occur on the second “copy” of the layer as it moves into
position. This is analogous to what we achieved earlier with the UIViewAnimation-
OptionAllowAnimatedContent option using block-based view animation.

Animations List
The method that asks for an explicit animation to happen is CALayer’s add-
Animation:forKey:. To understand how this method actually works (and what the
“key” is), you need to know about a layer’s animations list.

An animation is an object (a CAAnimation) that modifies how a layer is drawn. It does
this merely by being attached to the layer; the layer’s drawing mechanism does the rest.
A layer maintains a list of animations that are currently in force. To add an animation
to this list, you call addAnimation:forKey:. When the time comes to draw itself, the
layer looks through its animations list and draws itself in accordance with any anima‐
tions it finds there. (The list of things the layer must do in order to draw itself is some‐
times referred to by the documentation as the render tree.)

The animations list is maintained in a curious way. The list is not exactly a dictionary,
but it behaves somewhat like a dictionary. An animation has a key — the forKey:
parameter in addAnimation:forKey:. If an animation with a certain key is added to the
list, and an animation with that key is already in the list, the one that is already in the
list is removed. Thus a rule is maintained that only one animation with a given key can
be in the list at a time (the exclusivity rule). This explains why sometimes ordering an
animation can cancel an animation already ordered or in-flight: the two animations had

Core Animation | 157

www.it-ebooks.info

http://www.it-ebooks.info/

the same key, so the first one was removed. It is also possible to add an animation with
no key (the key is nil); it is then not subject to the exclusivity rule (that is, there can be
more than one animation in the list with no key). The order in which animations were
added to the list is the order in which they are applied.

The forKey: parameter in addAnimation:forKey: is thus not a property name. It could
be a property name, but it can be any arbitrary value. Its purpose is to enforce the
exclusivity rule. It does not have any meaning with regard to what property a
CAPropertyAnimation animates; that is the job of the animation’s keyPath. (Apple’s use
of the term “key” in addAnimation:forKey: is thus unfortunate and misleading; I wish
they had named this method addAnimation:withIdentifier: or something like that.)

Actually, there is a relationship between the “key” in add-

Animation:forKey: and a CAPropertyAnimation’s keyPath — if a
CAPropertyAnimation’s keyPath is nil at the time that it is added to a
layer with addAnimation:forKey:, that keyPath is set to the forKey:
value. Thus, you can misuse the forKey: parameter in add-

Animation:forKey: as a way of specifying what keyPath an anima‐
tion animates. (This fact is not documented, so far as I know, but it’s
easily verified experimentally, and it should remain reliably true, as
implicit animation crucially depends on it.) I have seen many promi‐
nent but misleading examples that use this technique, apparently in
the mistaken belief that the “key” in addAnimation:forKey: is the way
you are supposed to specify what property to animate. This is wrong.
Set the CAPropertyAnimation’s keyPath explicitly (as do all my ex‐
amples); that’s what it’s for.

You can use the exclusivity rule to your own advantage, to keep your code from stepping
on its own feet. Some code of yours might add an animation to the list using a certain
key; then later, some other code might come along and correct this, removing that
animation and replacing it with another. By using the same key, the second code is easily
able to override the first: “You may have been given some other animation with this key,
but throw it away; play this one instead.”

In some cases, the key you supply is ignored and a different key is substituted. In par‐
ticular, the key with which a CATransition is added to the list is always kCATransition
(which happens to be @"transition"); thus there can be only one transition animation
in the list.

You can think of an animation in a layer’s animations list as being the “animation movie”
I spoke of at the start of this chapter. As long as an animation is in the list, the movie is
present, either waiting to be played or actually playing. An animation that has finished
playing is, in general, pointless; the animation should now be removed from the list.

158 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Therefore, an animation has a removedOnCompletion property, which defaults to YES:
when the “movie” is over, the animation removes itself from the list.

You can, if desired, set removedOnCompletion to NO. However, even the presence in the
list of an animation that has already played might make no difference to the layer’s
appearance, because an animation’s fillMode is kCAFillModeRemoved, which removes
the animation from the layer’s drawing when the movie is over. Thus, it can usually do
no harm to leave an animation in the list after it has played, but it’s not a great idea either,
because this is just one more thing for the drawing system to worry about. Typically,
you’ll leave removedOnCompletion set at YES.

You may encounter examples that set removedOnCompletion to NO
and set the animation’s fillMode to kCAFillModeForwards or kCAFill-
ModeBoth, as a way of causing the layer to keep the appearance of the
last frame of the “animation movie” even after the animation is over,
and preventing a property from apparently jumping back to its ini‐
tial value when the animation ends. This is wrong. The correct ap‐
proach, as I have explained, is to change the property value to match
the final frame of the animation. The proper use of kCAFillMode-
Forwards is in connection with a child animation within a grouped
animation.

You can’t access the entire animations list directly. You can access the key names of the
animations in the list, with animationKeys; and you can obtain or remove an animation
with a certain key, with animationForKey: and removeAnimationForKey:; but anima‐
tions with a nil key are inaccessible. You can, however, remove all animations, including
animations with a nil key, using removeAllAnimations. When your app is suspended,
removeAllAnimations is called on all layers for you; that is why it is possible to suspend
an app coherently in the middle of an animation.

If an animation is in-flight when you remove it from the animations list manually, by
calling removeAllAnimations or removeAnimationForKey:, it will stop; however, that
doesn’t happen until the next redraw moment. You might be able to work around this,
if you need an animation to be removed immediately, by wrapping the remove... call
in an explicit transaction block.

Actions
For the sake of completeness, I will now explain how implicit animation really works
— that is, how implicit animation is turned into explicit animation behind the scenes.
The basis of implicit animation is the action mechanism.

Actions | 159

www.it-ebooks.info

http://www.it-ebooks.info/

What an Action Is
An action is an object that adopts the CAAction protocol. This means simply that it
implements runActionForKey:object:arguments:. The action object could do any‐
thing in response to this message. The notion of an action is completely general. How‐
ever, in real life, the only class that adopts the CAAction protocol is CAAnimation.

You would never send runActionForKey:object:arguments: to an animation directly.
Rather, this message is sent to an animation for you, as the basis of implicit animation.
The key is the property that you set, and the object is the layer whose property you set.

What an animation does when it receives runActionForKey:object:arguments: is to
assume that the second parameter, the object:, is a layer, and to add itself to that
layer’s animations list. Thus, for an animation, receiving the runActionFor-

Key:object:arguments: message is like being told: “Play yourself!”

This is where the rule comes into play, which I mentioned earlier, that if an animation’s
keyPath is nil, the key by which the animation is assigned to a layer’s animations
list is used as the keyPath. When an animation is sent runActionForKey:

object:arguments:, it responds by calling [object addAnimation:self for-

Key:key], where the key is the name of the property that was set. The animation’s key-
Path for an implicit layer animation is in fact usually nil, so this call also sets the ani‐
mations keyPath to the same key! That is how the property that you set ends up being
the property that is animated.

Action Search
When you set a property of a layer and trigger an implicit animation, you are actually
triggering the action search. This basically means that the layer searches for an action
object to which it can send the runActionForKey:object:arguments: message; because
that action object will be an animation, and because it will respond to this message by
adding itself to the layer’s animations list, this is the same as saying that the layer searches
for an animation to play itself with respect to the layer. The procedure by which the
layer searches for this animation is quite elaborate.

The search for an action object begins because you do something that causes the layer
to be sent the actionForKey: message. Let us presume that what you do is to change
the value of an animatable property. (Other things can cause the actionForKey: mes‐
sage to be sent, as I’ll show later.) The action mechanism then treats the name of the
property as a key, and the layer receives actionForKey: with that key — and the action
search begins.

At each stage of the action search, the following rules are obeyed regarding what is
returned from that stage of the search:

160 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

An action object
If an action object (an animation) is produced, that is the end of the search. The
action mechanism sends that animation the runActionForKey:object:

arguments: message; the animation responds by adding itself to the layer’s anima‐
tions list.

[NSNull null]

If [NSNull null] is produced, that is the end of the search. There will be no implicit
animation; [NSNull null] means, “Do nothing and stop searching.”

nil
If nil is produced, the search continues to the next stage.

The action search proceeds by stages, as follows:

1. The layer’s actionForKey: might terminate the search before it even starts. For
example, the layer will do this if it is the underlying layer of a view, or if a property
is set to the same value it already has. In such a case, there should be no implicit
animation, so the whole mechanism is nipped in the bud. (This stage is special in
that a returned value of nil ends the search and no animation takes place.)

2. If the layer has a delegate that implements actionForLayer:forKey:, that message
is sent to the delegate, with this layer as the layer and the property name as the key.
If an animation or [NSNull null] is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If there is an entry
in this dictionary with the given key, that value is used, and the search ends.

4. The layer has a property called style, which is a dictionary. If there is an entry in
this dictionary with the key actions, it is assumed to be a dictionary; if this actions
dictionary has an entry with the given key, that value is used, and the search ends.
Otherwise, if there is an entry in the style dictionary called style, the same search
is performed within it, and so on recursively until either an actions entry with the
given key is found (the search ends) or there are no more style entries (the search
continues).
(If the style dictionary sounds profoundly weird, that’s because it is profoundly
weird. It is actually a special case of a larger, separate mechanism, which is also
profoundly weird, having to do not with actions, but with a CALayer’s implemen‐
tation of KVC. When you call valueForKey: on a layer, if the key is undefined by
the layer itself, the style dictionary is consulted. I have never written or seen code
that uses this mechanism for anything, and I’ll say no more about it.)

5. The layer’s class is sent defaultActionForKey:, with the property name as the key.
If an animation or [NSNull null] is returned, the search ends.

Actions | 161

www.it-ebooks.info

http://www.it-ebooks.info/

6. If the search reaches this last stage, a default animation is supplied, as appropriate.
For a property animation, this is a plain vanilla CABasicAnimation.

Both the delegate’s actionForLayer:forKey: and the subclass’s defaultActionFor-
Key: are declared as returning an id<CAAction>. To return [NSNull null], therefore,
you’ll need to typecast it to id<CAAction> to quiet the compiler; you’re lying (NSNull
does not adopt the CAAction protocol), but it doesn’t matter.

Hooking Into the Action Search
You can affect the action search at various stages to modify what happens when the
search is triggered. Perhaps the most common real-life case is to turn off implicit ani‐
mation for some particular property. This is done by returning nil from actionFor-
Key: itself, in a CALayer subclass; this suppresses the action search altogether. Here’s
the code from a CALayer subclass that doesn’t animate its position property (but does
animate its other properties normally):

-(id<CAAction>)actionForKey:(NSString *)event {
 if ([event isEqualToString:@"position"])
 return nil;
 return [super actionForKey:event];
}

For more flexibility, we can take advantage of the fact that a CALayer acts like a dictio‐
nary (allowing us to set an arbitrary key’s value) — we’ll embed a switch in our CALayer
subclass that we can use to turn implicit position animation on and off at will:

-(id<CAAction>)actionForKey:(NSString *)event {
 if ([event isEqualToString:@"position"] &&
 [self valueForKey:@"suppressPositionAnimation"])
 return nil;
 return [super actionForKey:event];
}

To turn off implicit position animation for an instance of this layer, we set its
@"suppressPositionAnimation" key to a non-nil value:

[layer setValue:@YES forKey:@"suppressPositionAnimation"];

Assuming now that the action search is permitted, you could cause some stage of the
search to produce an animation of your own; that animation will then be used. Assuming
that the search is triggered by setting an animatable layer property, you would then be
affecting how implicit animation behaves.

You will probably want your animation to be fairly minimal. You may have no way of
knowing the former and current values of the property that is being changed, so it would
then be pointless (and very strange) to set a CABasicAnimation’s fromValue or
toValue. Moreover, although animation properties that you don’t set can be set through

162 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

CATransaction, in the usual manner for implicit property animation, animation prop‐
erties that you do set can not be overridden through CATransaction. For example, if you
set the duration of the animation that you produce at some stage of the action search,
a call to CATransaction’s setAnimationDuration: cannot change it.

Let’s say we want a certain layer’s duration for an implicit position animation to be 5
seconds. We can achieve this with a minimally configured animation, like this:

CABasicAnimation* ba = [CABasicAnimation animation];
ba.duration = 5;

The idea now is to situate this animation, ba, where it will be produced by the action
search when implicit animation is triggered on the position property of our layer. We
could, for instance, put it into the layer’s actions dictionary:

layer.actions = @{@"position": ba};

The result is that when we set that layer’s position, if an implicit animation results, its
duration is 5 seconds, even if we try to change it through CATransaction:

[CATransaction setAnimationDuration:1];
layer.position = CGPointMake(100,100); // animation takes 5 seconds

Using the layer’s actions dictionary to set default animations is a somewhat inflexible
way to hook into the action search, however. It has the disadvantage in general that you
must write your animation beforehand. By contrast, if you set the layer’s delegate to an
instance that responds to actionForLayer:forKey:, your code runs at the time the
animation is needed, and you have access to the layer that is to be animated. So you can
create the animation on the fly, possibly modifying it in response to current circum‐
stances.

Moreover, CATransaction (like CALayer) implements KVC to allow you to set and
retrieve the value of arbitrary keys. We can take advantage of this fact to pass additional
information from the code that sets the property value, and triggers the action search,
to the code that supplies the action (because they both run within the same transaction).

In this example, we use the layer delegate to change the default position animation so
that the path, instead of being a straight line, has a slight waggle. To do this, the delegate
constructs a keyframe animation. The animation depends on the old position value
and the new position value; the delegate can get the former direct from the layer, but
the latter must be handed to the delegate somehow. Here, a CATransaction key @"newP"
is used to communicate this information. When we set the layer’s position, we put its
future value where the delegate can retrieve it, like this:

CGPoint newP = CGPointMake(300,300);
[CATransaction setValue: [NSValue valueWithCGPoint: newP] forKey: @"newP"];
layer.position = newP;

The delegate is called by the action search and constructs the animation:

Actions | 163

www.it-ebooks.info

http://www.it-ebooks.info/

- (id < CAAction >)actionForLayer:(CALayer *)layer forKey:(NSString *)key {
 if ([key isEqualToString: @"position"]) {
 CGPoint oldP = layer.position;
 CGPoint newP = [[CATransaction valueForKey: @"newP"] CGPointValue];
 CGFloat d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2));
 CGFloat r = d/3.0;
 CGFloat theta = atan2(newP.y - oldP.y, newP.x - oldP.x);
 CGFloat wag = 10*M_PI/180.0;
 CGPoint p1 = CGPointMake(oldP.x + r*cos(theta+wag),
 oldP.y + r*sin(theta+wag));
 CGPoint p2 = CGPointMake(oldP.x + r*2*cos(theta-wag),
 oldP.y + r*2*sin(theta-wag));
 CAKeyframeAnimation* anim = [CAKeyframeAnimation animation];
 anim.values = @[
 [NSValue valueWithCGPoint:oldP],
 [NSValue valueWithCGPoint:p1],
 [NSValue valueWithCGPoint:p2],
 [NSValue valueWithCGPoint:newP]
];
 anim.calculationMode = kCAAnimationCubic;
 return anim;
 }
 return nil;
}

Finally, I’ll demonstrate overriding defaultActionForKey:. This code would go into a
CALayer subclass; setting this layer’s contents will now automatically trigger a push
transition from the left:

+ (id < CAAction >)defaultActionForKey:(NSString *)aKey {
 if ([aKey isEqualToString:@"contents"]) {
 CATransition* tr = [CATransition animation];
 tr.type = kCATransitionPush;
 tr.subtype = kCATransitionFromLeft;
 return tr;
 }
 return [super defaultActionForKey: aKey];
}

Nonproperty Actions
Changing a property is not the only way to trigger a search for an action; an action
search is also triggered when a layer is added to a superlayer (key kCAOnOrderIn) and
when a layer’s sublayers are changed by adding or removing a sublayer (key
@"sublayers").

These triggers and their keys are incorrectly described in Apple’s doc‐
umentation (and headers).

164 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, we use our layer’s delegate so that when our layer is added to a superlayer,
it will “pop” into view. We implement this by fading the layer quickly in from an opacity
of 0 and at the same time scaling the layer’s transform to make it momentarily appear
a little larger:

- (id < CAAction >)actionForLayer:(CALayer *)lay forKey:(NSString *)key {
 if ([key isEqualToString:kCAOnOrderIn]) {
 CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"opacity"];
 anim1.fromValue = @0.0f;
 anim1.toValue = @(lay.opacity);
 CABasicAnimation* anim2 =
 [CABasicAnimation animationWithKeyPath:@"transform"];
 anim2.toValue =
 [NSValue valueWithCATransform3D:
 CATransform3DScale(lay.transform, 1.1, 1.1, 1.0)];
 anim2.autoreverses = YES;
 anim2.duration = 0.1;
 CAAnimationGroup* group = [CAAnimationGroup animation];
 group.animations = @[anim1, anim2];
 group.duration = 0.2;
 return group;
 }
}

The documentation says that when a layer is removed from a superlayer, an action is
sought under the key kCAOnOrderOut. This is true but useless, because by the time the
action is sought, the layer has already been removed from the superlayer, so returning
an animation has no visible effect. Similarly, an animation returned as an action when
a layer’s hidden is set to YES is never played. A possible workaround is to trigger the
animation via the opacity property, perhaps in conjunction with a CATransaction key
functioning as a switch, and remove the layer afterward:

[CATransaction setCompletionBlock: ^{
 [layer removeFromSuperlayer];
}];
[CATransaction setValue:@YES forKey:@"byebye"];
layer.opacity = 0;

Now the delegate’s actionForLayer:forKey: can test for the incoming key @"opacity"
and the CATransaction key @"byebye", and return the animation appropriate to re‐
moval from the superlayer. Here’s a possible implementation:

if ([key isEqualToString:@"opacity"]) {
 if ([CATransaction valueForKey:@"byebye"]) {
 CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"opacity"];
 anim1.fromValue = @(layer.opacity);
 anim1.toValue = @0.0f;
 CABasicAnimation* anim2 =
 [CABasicAnimation animationWithKeyPath:@"transform"];

Actions | 165

www.it-ebooks.info

http://www.it-ebooks.info/

 anim2.toValue =
 [NSValue valueWithCATransform3D:
 CATransform3DScale(layer.transform, 0.1, 0.1, 1.0)];
 CAAnimationGroup* group = [CAAnimationGroup animation];
 group.animations = @[anim1, anim2];
 group.duration = 0.2;
 return group;
 }
}

Emitter Layers
Emitter layers (CAEmitterLayer) are, to some extent, on a par with animated images:
once you’ve set up an emitter layer, it just sits there animating all by itself. The nature
of this animation is rather narrow: an emitter layer emits particles, which are
CAEmitterCell instances. However, by clever setting of the properties of an emitter layer
and its emitter cells, you can achieve some astonishing effects. Moreover, the animation
is itself animatable using Core Animation.

Here are some useful basic properties of a CAEmitterCell:
contents, contentsRect

These are modeled after the eponymous CALayer properties, although CAEmitter‐
Layer is not a CALayer subclass; so, respectively, an image (a CGImageRef) and a
CGRect specifying a region of that image. They define the image that a cell will
portray.

birthrate, lifetime
How many cells per second should be emitted, and how many seconds each cell
should live before vanishing, respectively.

velocity

The speed at which a cell moves. The unit of measurement is not documented;
perhaps it’s points per second.

emissionLatitude, emissionLongitude
The angle at which the cell is emitted from the emitter, as a variation from the
perpendicular. Longitude is an angle within the plane; latitude is an angle out of
the plane.

So, here’s code to create a very elementary emitter cell:

// make a gray circle image
UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,10), NO, 1);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextAddEllipseInRect(con, CGRectMake(0,0,10,10));
CGContextSetFillColorWithColor(con, [UIColor grayColor].CGColor);
CGContextFillPath(con);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();

166 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

UIGraphicsEndImageContext();
// make a cell with that image
CAEmitterCell* cell = [CAEmitterCell emitterCell];
cell.birthRate = 5;
cell.lifetime = 1;
cell.velocity = 100;
cell.contents = (id)im.CGImage;

(In the first line, we deliberately don’t double the scale on a double-resolution screen,
because a CAEmitterLayer has no contentsScale, like a CALayer; we’re going to derive
a CGImage from this image, and we don’t want its size doubled.)

The result is that little gray circles should be emitted slowly and steadily, five per second,
each one vanishing in one second. Now we need an emitter layer from which these
circles are to be emitted. Here are some basic CAEmitterLayer properties (beyond those
it inherits from CALayer); these define an imaginary object, an emitter, that will be
producing the emitter cells:
emitterPosition

The point at which the emitter should located, in superlayer coordinates. You can
optionally add a third dimension to this point, emitterZPosition.

emitterSize

The size of the emitter.

emitterShape

The shape of the emitter. The dimensions of the shape depend on the emitter’s size;
the cuboid shape depends also on a third size dimension, emitterDepth. Your
choices are:

• kCAEmitterLayerPoint

• kCAEmitterLayerLine

• kCAEmitterLayerRectangle

• kCAEmitterLayerCuboid

• kCAEmitterLayerCircle

• kCAEmitterLayerSphere

emitterMode

The region of the shape from which cells should be emitted. Your choices are:

• kCAEmitterLayerPoints

• kCAEmitterLayerOutline

• kCAEmitterLayerSurface

• kCAEmitterLayerVolume

Emitter Layers | 167

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-4. A really boring emitter layer

Let’s start with the simplest possible case, a single point emitter:

CAEmitterLayer* emit = [CAEmitterLayer new];
emit.emitterPosition = CGPointMake(30,100);
emit.emitterShape = kCAEmitterLayerPoint;
emit.emitterMode = kCAEmitterLayerPoints;

We tell the emitter what types of cell to emit by assigning those cells to its emitter-
Cells property (an array of CAEmitterCell). We then add the emitter to our interface,
and presto, it starts emitting:

emit.emitterCells = @[cell];
[self.view.layer addSublayer:emit];

The result is a constant stream of gray circles emitted from the point {30,100}, each
circle marching steadily to the right and vanishing after one second (Figure 4-4).

Now that we’ve succeeded in creating a boring emitter layer, we can start to vary some
parameters. The emissionRange defines a cone in which cells will be emitted; if we
increase the birthRate and widen the emissionRange, we get something that looks like
a stream shooting from a water hose:

cell.birthRate = 100;
cell.lifetime = 1.5;
cell.velocity = 100;
cell.emissionRange = M_PI/5.0;

In addition, as the cell moves, it can be made to accelerate (or decelerate) in each di‐
mension, using its xAcceleration, yAcceleration, and zAcceleration properties.
Here, we turn the stream into a falling cascade, like a waterfall coming from the left:

cell.xAcceleration = -40;
cell.yAcceleration = 200;

All aspects of cell behavior can be made to vary randomly, using the following
CAEmitterCell properties:
lifetimeRange, velocityRange

How much the lifetime and velocity values are allowed to vary randomly for dif‐
ferent cells.

168 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

scale
scaleRange, scaleSpeed

The scale alters the size of the cell; the range and speed determine how far and how
rapidly this size alteration is allowed to change over the lifetime of each cell.

color
redRange, greenRange, blueRange, alphaRange
redSpeed, greenSpeed, blueSpeed, alphaSpeed

The color is painted in accordance with the opacity of the cell’s contents image; it
combines with the image’s color, so if we want the color stated here to appear in full
purity, our contents image should use only white. The range and speed determine
how far and how rapidly each color component is to change.

spin, spinRange
The spin is a rotational speed (in radians per second); its range determines how far
this speed is allowed to change over the lifetime of each cell.

Here we add some variation so that the circles behave a little more independently of one
another. Some live longer than others, some come out of the emitter faster than others.
And they all start out a shade of blue, but change to a shade of green about half-way
through the stream (Figure 4-5):

cell.lifetimeRange = .4;
cell.velocityRange = 20;
cell.scaleRange = .2;
cell.scaleSpeed = .2;
cell.color = [UIColor blueColor].CGColor;
cell.greenRange = .5;
cell.greenSpeed = .75;

Once the emitter layer is in place and animating, you can change its parameters and the
parameters of its emitter cells through key–value coding on the emitter layer. You can
access the emitter cells through the emitter layer’s @"emitterCells" key path; to specify
a cell type, use its name property (which you’ll have to have assigned earlier) as the next
piece of the key path. For example, suppose we’ve set cell.name to @"circle"; now
we’ll change the cell’s greenSpeed so that each cell changes from blue to green much
earlier in its lifetime:

[emit setValue:@3.0f
 forKeyPath:@"emitterCells.circle.greenSpeed"];

The significance of this is that such changes can themselves be animated! Here, we’ll
attach to the emitter layer a repeating animation that causes our cell’s greenSpeed to
move back and forth between two values. The result is that the stream varies, over time,
between being mostly blue and mostly green:

Emitter Layers | 169

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-5. An emitter layer that makes a sort of waterfall

NSString* key = @"emitterCells.circle.greenSpeed";
CABasicAnimation* ba = [CABasicAnimation animationWithKeyPath:key];
ba.fromValue = @-1.0f;
ba.toValue = @3.0f;
ba.duration = 4;
ba.autoreverses = YES;
ba.repeatCount = HUGE_VALF;
[emit addAnimation:ba forKey:nil];

A CAEmitterCell can itself function as an emitter — that is, it can have cells of its own.
Both CAEmitterLayer and CAEmitterCell conform to the CAMediaTiming protocol,
and their beginTime and duration properties can be used to govern their times of
operation, much as in a grouped animation. For example, this code causes our existing
waterfall to spray tiny droplets in the region of the “nozzle” (the emitter):

CAEmitterCell* cell2 = [CAEmitterCell emitterCell];
cell.emitterCells = @[cell2];
cell2.contents = (id)im.CGImage;
cell2.emissionRange = M_PI;
cell2.birthRate = 200;
cell2.lifetime = 0.4;
cell2.velocity = 200;
cell2.scale = 0.2;
cell2.beginTime = .04;
cell2.duration = .2;

But if we change the beginTime to be larger (hence later), the tiny droplets happen near
the bottom of the cascade. We must also increase the duration, or stop setting it

170 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-6. The waterfall makes a kind of splash

altogether, since if the duration is less than the beginTime, no emission takes place at
all (Figure 4-6):

cell2.beginTime = .7;
cell2.duration = .8;

We can also alter the picture by changing the behavior of the emitter itself. This change
turns the emitter into a line, so that our cascade becomes broader:

emit.emitterPosition = CGPointMake(100,25);
emit.emitterSize = CGSizeMake(100,100);
emit.emitterShape = kCAEmitterLayerLine;
emit.emitterMode = kCAEmitterLayerOutline;
cell.emissionLongitude = 3*M_PI/4;

There’s more to know about emitter layers and emitter cells, but at this point you know
enough to understand Apple’s sample code simulating such things as fire and smoke
and pyrotechnics, and you can explore further on your own.

CIFilter Transitions
Core Image filters (Chapter 2) include transitions. You supply two images and a frame
time between 0 and 1; the filter supplies the corresponding frame of a one-second ani‐
mation transitioning from the first image to the second. For example, Figure 4-7 shows
the frame at frame time .75 for a starburst transition from a solid red image to a photo
of me. (You don’t see the photo of me, because this transition, by default, “explodes” the
first image to white first, and then quickly fades to the second image.)

CIFilter Transitions | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-7. Midway through a starburst transition

Animating a Core Image transition filter is up to you. Thus we need a way of rapidly
calling the same method repeatedly; in that method, we’ll request and draw each frame
of the transition. This could be a job for an NSTimer, but an even better way is to use a
display link (CADisplayLink), a form of timer that’s highly efficient, especially when
repeated drawing is involved, because it is linked directly to the refreshing of the display
(hence the name). The display refresh rate is typically about one-sixtieth of a second;
the actual value is given as the display link’s duration, and will undergo slight fluctua‐
tions. Like a timer, the display link calls a designated method of ours every time it fires.
We can slow the rate of calls by an integral amount by setting the display link’s frame-
Interval; for example, a display link with a frameInterval of 2 will call us about every
one-thirtieth of a second. We can learn the exact time when the display link last fired
by querying its timestamp.

In this example, I’ll display the animation in a view’s layer. We start by initializing and
storing ahead of time, in instance variables, everything we’ll need later to obtain an
output image for a given frame of the transition: the CIFilter, the image’s extent, and
the CIContext used for rendering. We also have instance variables _frame and
_timestamp, which we initialize as well:

UIImage* moi = [UIImage imageNamed:@"moi"];
CIImage* moi2 = [[CIImage alloc] initWithCGImage:moi.CGImage];
self->_moiextent = moi2.extent;
CIFilter* col = [CIFilter filterWithName:@"CIConstantColorGenerator"];
CIColor* cicol = [[CIColor alloc] initWithColor:[UIColor redColor]];
[col setValue:cicol forKey:@"inputColor"];
CIImage* colorimage = [col valueForKey: @"outputImage"];
CIFilter* tran = [CIFilter filterWithName:@"CIFlashTransition"];
[tran setValue:colorimage forKey:@"inputImage"];
[tran setValue:moi2 forKey:@"inputTargetImage"];
CIVector* center =
 [CIVector vectorWithX:self->_moiextent.size.width/2.0
 Y:self->_moiextent.size.height/2.0];

172 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

[tran setValue:center forKey:@"inputCenter"];
self->_con = [CIContext contextWithOptions:nil];
self->_tran = tran;
self->_timestamp = 0.0;

We create the display link, setting it to call into our nextFrame: method, and set it going
by adding it to the run loop, which retains it:

CADisplayLink* link =
 [CADisplayLink displayLinkWithTarget:self
 selector:@selector(nextFrame:)];
[link addToRunLoop:[NSRunLoop mainRunLoop] forMode:NSDefaultRunLoopMode];

Our nextFrame: method is called with the display link as parameter (sender). We store
the initial timestamp in an instance variable, and use the difference between that and
each successive timestamp value to calculate our desired frame. We ask the filter for the
corresponding image and display it. When the frame value exceeds 1, the animation is
over and we invalidate the display link (just like a repeating timer), which releases it
from the run loop:

if (self->_timestamp < 0.01) { // pick up and store first timestamp
 self->_timestamp = sender.timestamp;
 self->_frame = 0.0;
} else { // calculate frame
 self->_frame = sender.timestamp - self->_timestamp;
}
sender.paused = YES; // defend against frame loss
// get frame image and show it
[_tran setValue:@(self->_frame) forKey:@"inputTime"];
CGImageRef moi = [self->_con createCGImage:_tran.outputImage
 fromRect:_moiextent];
[CATransaction setDisableActions:YES];
self.v.layer.contents = (__bridge id)moi;
CGImageRelease(moi);
// check for done, clean up
if (_frame > 1.0) {
 [sender invalidate];
}
sender.paused = NO;

I have surrounded the time-consuming calculation and drawing of the image with calls
to the display link’s paused property, in case the calculation time exceeds the time be‐
tween screen refreshes; perhaps this isn’t necessary, but it can’t hurt. Our animation
occupies one second; changing that value is merely a matter of multiplying by a scale
value when we set our _frame instance variable. If you experiment with this code, run
on the device, as display links do not work well in the Simulator.

CIFilter Transitions | 173

www.it-ebooks.info

http://www.it-ebooks.info/

UIKit Dynamics
A suite of classes, UIKit dynamics, supplies a convenient API for animating views in a
manner reminiscent of real-world physical behavior. For example, views can be sub‐
jected to gravity, collisions, and momentary forces, with effects that would otherwise
be difficult to achieve.

UIKit dynamics should not be treated as a game engine. It is deliberately quite cartoony
and simple, treating views as rectangular blocks and animating only their position
(center) and rotation transform within a flat two-dimensional space. Nor is it intended
for extended use. Like other ways of achieving animation, it is a way of momentarily
emphasizing or clarifying functional transformations of your interface.

Implementing UIKit dynamics involves configuring a “stack” of three things:
A dynamic animator

A dynamic animator, a UIDynamicAnimator instance, is the ruler of the physics
world you are creating. It has a reference view, which is the superview of the views
to be animated, and which defines the coordinate system of its world. Retaining the
animator is up to you; a strong property will do. It’s fine for an animator to sit empty
until you need it; an animator whose world is empty (or at rest) is not running, and
occupies no processor time.

A behavior
A UIDynamicBehavior is a rule describing how a view should behave. You’ll typi‐
cally use a built-in subclass, such as UIGravityBehavior or UICollisionBehavior.
You configure the behavior and add it to the animator; an animator has methods
and properties for managing its behaviors, such as addBehavior:, behaviors,
removeBehavior:, and removeAllBehaviors. A behavior’s configuration can be
changed, and behaviors can be added to and removed from an animator, even while
an animation is in progress.

An item
An item is any object that implements the UIDynamicItem protocol. A UIView is
such an object! You add a UIView (one that’s a subview of your animator’s reference
view) to a behavior (one that belongs to that animator) — and at that moment, the
view comes under the influence of that behavior. If this behavior is one that causes
motion, and if no other behaviors prevent, the view will now move (the animator
is running).

Some behaviors can accept multiple items, and have methods and properties such
as addItem:, items, and removeItem:. Others can have just one or two items and
must be initialized with these from the outset.

That’s sufficient to get started, so let’s try it! I’ll start by creating my animator and storing
it in a property:

174 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

self.anim = [[UIDynamicAnimator alloc] initWithReferenceView:self.view];

Now I’ll cause an existing subview of self.view (a UIImageView, self.iv) to drop off
the screen, under the influence of gravity. I create a UIGravityBehavior, add it to the
animator, and add self.iv to it:

UIGravityBehavior* grav = [UIGravityBehavior new];
[self.anim addBehavior:grav];
[grav addItem:self.iv];

As a result, self.iv comes under the influence of gravity and is now animated down‐
ward off the screen. (A UIGravityBehavior object has properties configuring the
strength and direction of gravity, but I’ve left them here at their defaults.)

An immediate concern is that our view falls forever. This is a waste of memory and
processing power. If we no longer need the view after it has left the screen, we should
take it out of the influence of UIKit dynamics by removing it from any behaviors to
which it belongs (and we can also remove it from its superview). One way to do this is
by removing from the animator any behaviors that are no longer needed. In our simple
example, where the animator’s entire world contains just this one item, it will be suffi‐
cient to call removeAllBehaviors.

But how will we know when the view is off the screen? A UIDynamicBehavior can have
an action block, which is called repeatedly as the animator drives the animation. I’ll
use this block to check whether self.iv is still within the bounds of the reference view,
by calling the animator’s itemsInRect: method:

grav.action = ^{
 NSArray* items = [self.anim itemsInRect:self.view.bounds];
 if (NSNotFound == [items indexOfObject:self.iv]) {
 [self.anim removeAllBehaviors];
 [self.iv removeFromSuperview];
 }
};

If a dynamic behavior’s action block refers to the dynamic behavior
itself, there’s a danger of a retain cycle, because the behavior retains
the block which refers to the behavior. Express yourself in some oth‐
er way (perhaps attaching the block to some other behavior), or use
the weak–strong dance to break the retain cycle in the block.

Let’s add some further behaviors. If falling straight down is too boring, we can add a
UIPushBehavior to create a slight rightward impulse to be applied to the view as it begins
to fall:

UIKit Dynamics | 175

www.it-ebooks.info

http://www.it-ebooks.info/

UIPushBehavior* push =
 [[UIPushBehavior alloc] initWithItems:@[self.iv]
 mode:UIPushBehaviorModeInstantaneous];
push.pushDirection = CGVectorMake(2, 0);
[self.anim addBehavior:push];

The view now falls in a parabola to the right.

Next, let’s add a UICollisionBehavior to make our view strike the “floor” of the screen:

UICollisionBehavior* coll = [UICollisionBehavior new];
coll.collisionMode = UICollisionBehaviorModeBoundaries;
[coll addBoundaryWithIdentifier:@"floor"
 fromPoint:CGPointMake(0,self.view.bounds.size.height)
 toPoint:CGPointMake(self.view.bounds.size.width,
 self.view.bounds.size.height)];
[self.anim addBehavior:coll];
[coll addItem:self.iv];

The view now falls in a parabola onto the floor of the screen, bounces a tiny bit, and
comes to rest. It would be nice if the view bounced a bit more. Characteristics internal
to a dynamic item’s physics, such as bounciness (elasticity), are configured by as‐
signing it to a UIDynamicItemBehavior:

UIDynamicItemBehavior* bounce = [UIDynamicItemBehavior new];
bounce.elasticity = 0.4;
[self.anim addBehavior:bounce];
[bounce addItem:self.iv];

Our view now bounces higher; nevertheless, when it hits the floor, it stops moving to
the right, so it ends up at rest on the floor. I’d prefer that, after it bounces, it should start
spinning to the right, so that it eventually leaves the screen. A UICollisionBehavior has
a delegate to which it sends messages when a collision occurs. I’ll make self the collision
behavior’s delegate, and when the delegate message arrives, I’ll add rotational velocity
to the existing dynamic item behavior bounce, so that our view starts spinning clockwise:

-(void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {
 for (UIDynamicBehavior* b in self.anim.behaviors) {
 if ([b isKindOfClass: [UIDynamicItemBehavior class]]) {
 UIDynamicItemBehavior* bounce = (UIDynamicItemBehavior*) b;
 CGFloat v = [bounce angularVelocityForItem:self.iv];
 if (v <= 0.1) // do this just once
 [bounce addAngularVelocity:30 forItem:self.iv];
 break;
 }
 }
}

176 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

The view now falls in a parabola to the right, strikes the floor, spins clockwise, and
bounces off the floor and out the right side of the screen!

We have now developed a complex behavior by a combination of several built-in UI‐
DynamicBehavior subclass instances. For neatness, clarity, maintainability, and
reusability, it might make sense to express that combination as a single custom UIDy‐
namicBehavior subclass. Let’s call it MyDropBounceAndRollBehavior. Now we can ap‐
ply this behavior to our view, self.iv, very simply:

[self.anim addBehavior:
 [[MyDropBounceAndRollBehavior alloc] initWithView:self.iv]];

All the work is now done by the MyDropBounceAndRollBehavior instance. This in‐
stance has received a reference to the view to be animated, and it may reasonably assume
that its superview is the dynamic animator’s reference view (if not, we could provide
the reference view as another parameter to the initializer). A UIDynamicBehavior re‐
ceives a reference to its dynamic animator just before being added to it, by implementing
willMoveToAnimator:, and can refer to it subsequently as self.dynamicAnimator. To
incorporate actual behaviors into itself, our custom UIDynamicBehavior subclass cre‐
ates and configures them, and calls addChildBehavior:; it can refer to the array of its
child behaviors as self.childBehaviors. When our custom behavior is added to or
removed from the dynamic animator, the effect is the same as if its child behaviors
themselves were added or removed.

Here is our UIDynamicAnimator subclass. Assume that the initializer has stored the
incoming view to be animated in a property v. Observe that, as I warned earlier, we must
take care in the action block not to cause a retain cycle:

-(void)willMoveToAnimator:(UIDynamicAnimator *)anim {
 if (!anim)
 return;
 UIView* sup = self.v.superview;
 // the gravity child
 UIGravityBehavior* grav = [UIGravityBehavior new];
 __weak MyDropBounceAndRollBehavior* wself = self;
 grav.action = ^{
 MyDropBounceAndRollBehavior* sself = wself;
 if (sself) {
 NSArray* items = [anim itemsInRect:sup.bounds];
 if (NSNotFound == [items indexOfObject:sself.v]) {
 [anim removeBehavior:sself];
 [sself.v removeFromSuperview];
 }
 }
 };
 [self addChildBehavior:grav];
 [grav addItem:self.v];
 // the push child
 UIPushBehavior* push =

UIKit Dynamics | 177

www.it-ebooks.info

http://www.it-ebooks.info/

 [[UIPushBehavior alloc] initWithItems:@[self.v]
 mode:UIPushBehaviorModeInstantaneous];
 push.pushDirection = CGVectorMake(2, 0);
 [self addChildBehavior:push];
 // the collision child
 UICollisionBehavior* coll = [UICollisionBehavior new];
 coll.collisionMode = UICollisionBehaviorModeBoundaries;
 coll.collisionDelegate = self;
 [coll addBoundaryWithIdentifier:@"floor"
 fromPoint:CGPointMake(0,sup.bounds.size.height)
 toPoint:CGPointMake(sup.bounds.size.width,
 sup.bounds.size.height)];
 [self addChildBehavior:coll];
 [coll addItem:self.v];
 // the bounce child
 UIDynamicItemBehavior* bounce = [UIDynamicItemBehavior new];
 bounce.elasticity = 0.4;
 [self addChildBehavior:bounce];
 [bounce addItem:self.v];
}
-(void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {
 for (UIDynamicBehavior* b in self.childBehaviors) {
 if ([b isKindOfClass: [UIDynamicItemBehavior class]]) {
 UIDynamicItemBehavior* bounce = (UIDynamicItemBehavior*) b;
 CGFloat v = [bounce angularVelocityForItem:item];
 if (v <= 0.1) {
 [bounce addAngularVelocity:30 forItem:item];
 }
 break;
 }
 }
}

Here are some further UIDynamicAnimator methods and properties:
delegate

The delegate (UIDynamicAnimatorDelegate) is sent messages dynamicAnimator-
DidPause: and dynamicAnimatorWillResume:. The animator is paused when it has
nothing to do: it has no dynamic items, or all its dynamic items are at rest.

running

If YES, the animator is not paused; some dynamic item is being animated.

elapsedTime

The total time during which this animator has been running since it first started
running. The elapsedTime does not increase while the animator is paused, nor is
it reset. You might use this in a delegate method or action method to decide that
the animation is over.

178 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

updateItemUsingCurrentState:

Once a dynamic item has come under the influence of the animator, the animator
is responsible for positioning that dynamic item. If your code subsequently man‐
ually changes the dynamic item’s position or other relevant attributes, call this
method so that the animator can take account of those changes.

Here is some more about the various built-in UIDynamicBehavior subclasses:
UIGravityBehavior

Imposes an acceleration on its dynamic items. By default, this acceleration is down‐
ward with a magnitude of 1 (arbitrarily defined as 1000 points per second per
second).

UIPushBehavior
Applies a force either instantaneously or continuously (mode), the latter constituting
an acceleration. How this force affects an object depends in part upon the object’s
“mass”, which is based on its size combined with its density (the latter can be set
through a UIDynamicItemBehavior); thus, by default, a smaller view is easier to
push. The effect of a push behavior can be toggled with the active property; an
instantaneous push is repeated each time the active property is set to YES.

In addition to a direction and a magnitude, a push may be given an offset from the
center of an item. This will apply an additional angular acceleration. Thus, I could
have started self.iv spinning clockwise by means of its initial push, like this:

[push setTargetOffsetFromCenter:UIOffsetMake(0, -200) forItem:self.iv];

UICollisionBehavior
Watches for collisions either amongst items belonging to this same behavior or
between an item and a boundary (mode). One collision behavior can have many
boundaries. A boundary may be described as a line between two points or as a
UIBezierPath, or you can turn the reference view’s bounds into boundaries (set-
TranslatesReferenceBoundsIntoBoundaryWithInsets:). Boundaries that you
create can have an identifier. The collisionDelegate (UICollisionBehaviorDele‐
gate) is called when a collision begins and again when it ends.

How a given collision affects the item(s) involved depends on the physical charac‐
teristics of the item(s), which may be configured through a UIDynamicItemBe‐
havior.

UISnapBehavior
Causes one item to snap to one point as if pulled by a spring. Its damping describes
how much the item should oscillate as its settles into that point. This is a very simple
behavior: the snap occurs once, immediately (when the behavior is added to the
animator), and there’s no notification when it’s over.

UIKit Dynamics | 179

www.it-ebooks.info

http://www.it-ebooks.info/

UIAttachmentBehavior
Attaches an item by a bar or a spring to another item (initWithItem:attachedTo-
Item:) or to a point in the reference view (initWithItem:attachedToAnchor:).
The attachment point is, by default, the item’s center; to change that, initialize with
initWithItem:offsetFromCenter:attachedToItem:offsetFromCenter: or init-
WithItem:offsetFromCenter:attachedToAnchor:.

The physics of the attaching medium is governed by the behavior’s length,
frequency, and damping. They are set for you when you initialize the behavior, but
you can modify them, and the anchorPoint (if attachment is to an anchor), over
the behavior’s lifetime.

As the other item or the anchorPoint moves, this item moves with it, in accordance
with the physics of the attaching medium. An anchorPoint is particularly useful
for implementing a draggable view within an animator world, as I’ll demonstrate
in the next chapter.

UIDynamicItemBehavior
Endows its items with internal physical characteristics such as density (changes
the impulse-resisting mass in relation to size), elasticity (bounce on collision),
friction, and resistance (tendency to come to rest unless forces are actively
applied), as well as injecting linear velocity or angular velocity.

Motion Effects
New in iOS 7, a view can respond in real time to the way the user tilts the device. Typically,
the view’s response will be to shift its position slightly. This is used, for example, in
various parts of the interface, to give a sense of the interface’s being layered. When a
UIAlertView is present, if the user tilts the device, the UIAlertView shifts its position;
the effect is subtle, but sufficient to suggest subconsciously that the UIAlertView is
floating slightly in front of everything else on the screen.

Your own views can behave in the same way. A view will respond to shifts in the position
of the device if it has one or more motion effects (UIMotionEffect). Motion effects are
added to a view with addMotionEffect:, listed with motionEffects, and removed with
removeMotionEffect:.

The UIMotionEffect class is abstract: its job is to be subclassed. The chief subclass pro‐
vided is UIInterpolatingMotionEffect. Every UIInterpolatingMotionEffect has a single
key path, which uses key–value coding to specify the property it affects. It also has a
type, specifying which axis of the device’s tilting (horizontal tilt or vertical tilt) is to affect
this property. Finally, it has a maximum and minimum relative value, the furthest dis‐
tance that the affected property of the view is to be permitted to wander from its actual

180 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

value as the user tilts the device. Related motion effects should be combined into a
UIMotionEffectGroup (a UIMotionEffect subclass), and the group added to the view.

So, for example:

UIInterpolatingMotionEffect* m1 =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.x"
 type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];
m1.maximumRelativeValue = @10.0;
m1.minimumRelativeValue = @-10.0;
UIInterpolatingMotionEffect* m2 =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.y"
 type:UIInterpolatingMotionEffectTypeTiltAlongVerticalAxis];
m2.maximumRelativeValue = @10.0;
m2.minimumRelativeValue = @-10.0;
UIMotionEffectGroup* g = [UIMotionEffectGroup new];
g.motionEffects = @[m1,m2];
[self.mars addMotionEffect:g];

You can write your own UIMotionEffect subclass by implementing a single method,
keyPathsAndRelativeValuesForViewerOffset:, but this will rarely be necessary.

The user can turn off motion effects in the Settings app (under Gen‐
eral → Accessibility → Reduce Motion).

Animation and Autolayout
The interplay between animation and autolayout can be tricky. As part of an animation,
you may be changing a view’s frame (or bounds, or center). You’re really not supposed
to do that when you’re using autolayout. As a result, an animation may not work cor‐
rectly. Or, it may appear to work perfectly, because no layout has happened; however, it
is entirely possible that layout will happen, and that it will be accompanied by undesir‐
able effects.

As I explained in Chapter 1, when layout takes place under autolayout, what matters
are a view’s constraints. If the constraints affecting a view don’t resolve to the size and
position that the view has at the moment of layout, the view will jump as the constraints
are obeyed. This is almost certainly not what you want.

To persuade yourself that this can be a problem, just animate a view’s position and then
ask for immediate layout by calling layoutIfNeeded, like this:

Animation and Autolayout | 181

www.it-ebooks.info

http://www.it-ebooks.info/

CGPoint p = self.v.center;
p.x += 100;
[UIView animateWithDuration:1 animations:^{
 self.v.center = p;
} completion:^(BOOL b){
 [self.v layoutIfNeeded]; // this is what will happen at layout time
}];

If we’re using autolayout, the view slides to the right and then jumps back to the left.
This is bad. It’s up to us to keep the constraints synchronized with the reality, so that
when layout comes along in the natural course of things, our views don’t jump into
undesirable states.

One option is to revise the violated constraints to match the new reality. If we’ve planned
far ahead, we may have armed ourselves in advance with a reference to those constraints;
in that case, our code can now remove and replace them — or, if the only thing that
needs changing is the constant value of a constraint, we can change that value in place
(recall that the constant is the only writable property of an existing constraint). Other‐
wise, discovering what constraints are now violated, and getting a reference to them, is
not at all easy.

An alternative approach, in the case where the only thing that needs changing is a
constraint’s constant, is this: instead of animating the view’s position and then com‐
pensating by changing the constant value of the constraint that positions it, animate
the change in the constant value in the first place. To do so, we set the constraint’s
constant to its new value, and animate the act of layout. Again, this assumes that we
have a reference to the constraint in question.

For example, if we are animating a view 100 points rightward, and if we have a reference
to the constraint whose constant positions that view horizontally, we would say this:

// con is the constraint
con.constant += 100;
[UIView animateWithDuration:1 animations:^{
 [self.v layoutIfNeeded];
}];

Another issue has to do with view transforms. As I said at the end of Chapter 1, applying
a view transform triggers layout immediately, and constraints then take a hand in po‐
sitioning the view. Thus an animation involving a view transform will likely misbehave
under autolayout.

For example, you would expect a simple autoreversing animation that waggles a view,
or scales it up and back down, to work under autolayout (after all, we’re not ultimately
changing anything’s frame). But, alas, that’s not true. Even this simple “throb” animation
can break under autolayout — instead of simply throbbing, the view may also jump
momentarily to a different position:

182 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

[UIView animateWithDuration:0.3 delay:0
 options:UIViewAnimationOptionAutoreverse animations:^{
 self.v.transform = CGAffineTransformMakeScale(1.1, 1.1);
} completion:^(BOOL finished) {
 self.v.transform = CGAffineTransformIdentity;
}];

One solution in this case is to use Core Animation instead; this works because applying
a layer transform, unlike a view transform, does not trigger layout:

CABasicAnimation* ba =
 [CABasicAnimation animationWithKeyPath:@"transform"];
ba.autoreverses = YES;
ba.duration = 0.3;
ba.toValue =
 [NSValue valueWithCATransform3D:CATransform3DMakeScale(1.1, 1.1, 1)];
[self.v.layer addAnimation:ba forKey:nil];

Another possibility is to use a snapshot of the original view (Chapter 1). Add the snap‐
shot temporarily to the interface — without using autolayout, and perhaps hiding the
original view — and animate the snapshot:

UIView* snap = [self.v snapshotViewAfterScreenUpdates:YES];
snap.frame = self.v.frame;
[self.v.superview addSubview:snap];
self.v.hidden = YES;
[UIView animateWithDuration:0.3 delay:0
 options:UIViewAnimationOptionAutoreverse animations:^{
 snap.transform = CGAffineTransformMakeScale(1.1, 1.1);
} completion:^(BOOL finished) {
 snap.transform = CGAffineTransformIdentity;
 self.v.hidden = NO;
 [snap removeFromSuperview];
}];

However, if the nature of the animation is such that the real view ultimately needs to be
shifted to a new permanent position, then its constraints will still have to be revised.

Another useful trick is to take advantage of the fact that the “animation movie” masks
the reality. In this example from one of my apps, I apparently shrink a view (english)
down to nothingness:

CABasicAnimation* ba = [CABasicAnimation animationWithKeyPath:@"opacity"];
self.english.layer.opacity = 0;
ba.duration = 0.2;
[self.english.layer addAnimation:ba forKey:nil];
CABasicAnimation* ba2 = [CABasicAnimation animationWithKeyPath:@"bounds"];
ba2.duration = 0.2;
ba2.toValue = [NSValue valueWithCGRect:self.english.layer.bounds];
[self.english.layer addAnimation:ba2 forKey:nil];

Animation and Autolayout | 183

www.it-ebooks.info

http://www.it-ebooks.info/

This doesn’t break under autolayout, because I never did anything to violate any existing
constraints: I never changed the view’s bounds! I did, however, make it invisible, chang‐
ing its opacity to 0. The “animation movie”, on the other hand, portrays the view as
shrinking to nothingness, and also as fading away; and by the time the “animation
movie” is ripped away, the view is invisible, so the user doesn’t see that it’s actually still
at its full size.

Yet another possibility, as I suggested at the end of Chapter 1, is to combine an invisible
“host view” that is positioned in relation to the surrounding interface by autolayout with
a subview that is not positioned in relation to its superview by autolayout — and can
thus be animated however you like without violating any constraints.

The need for such elaborate tactics is most unfortunate. Autolayout
was introduced into iOS 6 with a seeming disregard for its fundamen‐
tal incompatibility with animation. That incompatibility is a serious
flaw in iOS, and Apple, far from acknowledging and grappling with it,
has studiously glossed over it.

184 | Chapter 4: Animation

www.it-ebooks.info

http://www.it-ebooks.info/

[Winifred the Woebegone illustrates hit-testing:]
Hey nonny nonny, is it you? — Hey nonny nonny
nonny no! — Hey nonny nonny, is it you? — Hey

nonny nonny nonny no!
—Marshall Barer, Once Upon a Mattress

CHAPTER 5

Touches

A touch is an instance of the user putting a finger on the screen. The system and the
hardware, working together, know when a finger contacts the screen and where it is. A
finger is fat, but its location is cleverly reduced to a single appropriate point.

A UIView, by virtue of being a UIResponder, is the visible locus of touches. There are
other UIResponder subclasses, but none of them is visible on the screen. What the user
sees are views; what the user is touching are views. (The user actually sees layers, but a
layer is not a UIResponder and is not involved with touches.)

It would make sense, therefore, if every touch were reported directly to the view in which
it occurred. However, what the system “sees” is not particular views but an app as a
whole. So a touch is represented as an object (a UITouch instance) which is bundled up
in an envelope (a UIEvent) which the system delivers to your app. It is then up to your
app to deliver the envelope to an appropriate UIView. In the vast majority of cases, this
will happen automatically the way you expect, and you will respond to a touch by way
of the view in which the touch occurred.

In fact, usually you won’t concern yourself with UIEvents and UITouches at all. Most
built-in interface views deal with these low-level touch reports themselves, and notify
your code at a higher level — you hear about functionality and intention rather than
raw touches. When a UIButton emits an action message to report a control event such
as Touch Up Inside, it has already performed a reduction of a complex sequence of
touches (“the user put a finger down inside me and then, possibly with some dragging
hither and yon, raised it when it was still reasonably close to me”). A UITextField reports
touches on the keyboard as changes in its own text. A UITableView reports that the user

185

www.it-ebooks.info

http://www.it-ebooks.info/

selected a cell. A UIScrollView, when dragged, reports that it scrolled; when pinched
outward, it reports that it zoomed.

Nevertheless, it is useful to know how to respond to touches directly, so that you can
implement your own touchable views, and so that you understand what Cocoa’s built-
in views are actually doing. This chapter discusses touch detection and response by
views (and other UIResponders) at their lowest level, along with a slightly higher-level
mechanism, gesture recognizers, that categorizes touches into gesture types for you;
then it deconstructs the touch-delivery architecture by which touches are reported to
your views in the first place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-free.” Now the
user touches the screen with one or more fingers. From that moment until the time the
screen is once again finger-free, all touches and finger movements together constitute
what Apple calls a single multitouch sequence.

The system reports to your app, during a given multitouch sequence, every change in
finger configuration, so that your app can figure out what the user is doing. Every such
report is a UIEvent. In fact, every report having to do with the same multitouch sequence
is the same UIEvent instance, arriving repeatedly, each time there’s a change in finger
configuration.

Every UIEvent reporting a change in the user’s finger configuration contains one or
more UITouch objects. Each UITouch object corresponds to a single finger; conversely,
every finger touching the screen is represented in the UIEvent by a UITouch object.
Once a UITouch instance has been created to represent a finger that has touched the
screen, the same UITouch instance is used to represent that finger throughout this mul‐
titouch sequence until the finger leaves the screen.

Now, it might sound as if the system has to bombard the app with huge numbers of
reports constantly during a multitouch sequence. But that’s not really true. The system
needs to report only changes in the finger configuration. For a given UITouch object
(representing, remember, a specific finger), only four things can happen. These are
called touch phases, and are described by a UITouch instance’s phase property:
UITouchPhaseBegan

The finger touched the screen for the first time; this UITouch instance has just been
created. This is always the first phase, and arrives only once.

UITouchPhaseMoved

The finger moved upon the screen.

186 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

UITouchPhaseStationary

The finger remained on the screen without moving. Why is it necessary to report
this? Well, remember, once a UITouch instance has been created, it must be present
every time the UIEvent arrives. So if the UIEvent arrives because something else
happened (e.g., a new finger touched the screen), we must report what this finger
has been doing, even if it has been doing nothing.

UITouchPhaseEnded

The finger left the screen. Like UITouchPhaseBegan, this phase arrives only once.
The UITouch instance will now be destroyed and will no longer appear in UIEvents
for this multitouch sequence.

Those four phases are sufficient to describe everything that a finger can do. Actually,
there is one more possible phase:
UITouchPhaseCancelled

The system has aborted this multitouch sequence because something interrupted
it. What might interrupt a multitouch sequence? There are many possibilities. Per‐
haps the user clicked the Home button or the screen lock button in the middle of
the sequence. A local notification alert may have appeared (Chapter 13); on an
iPhone, a call might have come in. And as we shall see, a gesture recognizer recog‐
nizing its gesture may also trigger touch cancellation. The point is, if you’re dealing
with touches yourself, you cannot afford to ignore touch cancellation; they are your
opportunity to get things into a coherent state when the sequence is interrupted.

When a UITouch first appears (UITouchPhaseBegan), your app works out which UIView
it is associated with. (I’ll give full details, later in this chapter, as to how it does that.)
This view is then set as the touch’s view property; from then on, this UITouch is al‐
ways associated with this view. In other words, a touch’s view is that touch’s view forev‐
er (until that finger leaves the screen).

The same UIEvent containing the same UITouches can be sent to multiple views. Ac‐
cordingly, a UIEvent is distributed to all the views of all the UITouches it contains. Con‐
versely, if a view is sent a UIEvent, it’s because that UIEvent contains at least one UITouch
whose view is this view.

If every UITouch in a UIEvent associated with a certain UIView has the phase UITouch-
PhaseStationary, that UIEvent is not sent to that UIView. There’s no point, because as
far as that view is concerned, nothing happened.

Receiving Touches
A UIResponder, and therefore a UIView, has four methods corresponding to the four
UITouch phases that require UIEvent delivery. A UIEvent is delivered to a view by
calling one or more of these four methods (the touches... methods):

Receiving Touches | 187

www.it-ebooks.info

http://www.it-ebooks.info/

touchesBegan:withEvent:

A finger touched the screen, creating a UITouch.

touchesMoved:withEvent:

A finger previously reported to this view with touchesBegan:withEvent: has
moved.

touchesEnded:withEvent:

A finger previously reported to this view with touchesBegan:withEvent: has left
the screen.

touchesCancelled:withEvent:

We are bailing out on a finger previously reported to this view with touches-
Began:withEvent:.

The parameters of these methods are:
The relevant touches

These are the event’s touches whose phase corresponds to the name of the method
and (normally) whose view is this view. They arrive as an NSSet. If there is only one
touch in the set, or if any touch in the set will do, you can retrieve it with any-
Object (an NSSet doesn’t implement lastObject because a set is unordered).

The event
This is the UIEvent instance. It contains its touches as an NSSet, which you can
retrieve with the allTouches message. This means all the event’s touches, including
but not necessarily limited to those in the first parameter; there might be touches
in a different phase or intended for some other view. You can call touchesFor-
View: or touchesForWindow: to ask for the set of touches associated with a partic‐
ular view or window.

A UITouch has some useful methods and properties:
locationInView:, previousLocationInView:

The current and previous location of this touch with respect to the coordinate sys‐
tem of a given view. The view you’ll be interested in will often be self or
self.superview; supply nil to get the location with respect to the window. The
previous location will be of interest only if the phase is UITouchPhaseMoved.

timestamp

When the touch last changed. A touch is timestamped when it is created (UITouch-
PhaseBegan) and each time it moves (UITouchPhaseMoved). There can be a delay
between the occurrence of a physical touch and the delivery of the corresponding
UITouch, so to learn about the timing of touches, consult the timestamp, not the
clock.

188 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

tapCount

If two touches are in roughly the same place in quick succession, and the first one
is brief, the second one may be characterized as a repeat of the first. They are dif‐
ferent touch objects, but the second will be assigned a tapCount one larger than the
previous one. The default is 1, so if (for example) a touch’s tapCount is 3, then this
is the third tap in quick succession in roughly the same spot.

view

The view with which this touch is associated.

Here are some additional UIEvent properties:
type

This will be UIEventTypeTouches. There are other event types, but you’re not going
to receive any of them this way.

timestamp

When the event occurred.

So, when we say that a certain view is receiving a touch, that is a shorthand expression
meaning that it is being sent a UIEvent containing this UITouch, over and over, by
calling one of its touches... methods, corresponding to the phase this touch is in, from
the time the touch is created until the time it is destroyed.

Restricting Touches
Touch events can be turned off entirely at the application level with UIApplication’s
beginIgnoringInteractionEvents. It is quite common to do this during animations
and other lengthy operations during which responding to a touch could cause unde‐
sirable results. This call should be balanced by endIgnoringInteractionEvents. Pairs
can be nested, in which case interactivity won’t be restored until the outermost end-
IgnoringInteractionEvents has been reached.

A number of UIView properties also restrict the delivery of touches to particular views:
userInteractionEnabled

If set to NO, this view (along with its subviews) is excluded from receiving touches.
Touches on this view or one of its subviews “fall through” to a view behind it.

alpha

If set to 0.0 (or extremely close to it), this view (along with its subviews) is excluded
from receiving touches. Touches on this view or one of its subviews “fall through”
to a view behind it.

Restricting Touches | 189

www.it-ebooks.info

http://www.it-ebooks.info/

hidden

If set to YES, this view (along with its subviews) is excluded from receiving touches.
This makes sense, since from the user’s standpoint, the view and its subviews are
not even present.

multipleTouchEnabled

If set to NO, this view never receives more than one touch simultaneously; once it
receives a touch, it doesn’t receive any other touches until that first touch has ended.

exclusiveTouch

This is the only one of these properties that can’t be set in the nib editor. An
exclusiveTouch view receives a touch only if no other views in the same window
have touches associated with them; once an exclusiveTouch view has received a
touch, then while that touch exists no other view in the same window receives any
touches.

Interpreting Touches
Thanks to gesture recognizers (discussed later in this chapter), in most cases you won’t
have to interpret touches at all; you’ll let a gesture recognizer do most of that work. Even
so, it is beneficial to be conversant with the nature of touch interpretation; this will help
you interact with a gesture recognizer, write your own gesture recognizer, or subclass
an existing one. Furthermore, not every touch sequence can be codified through a ges‐
ture recognizer; sometimes, directly interpreting touches is the best approach.

To figure out what’s going on as touches are received by a view, your code must essentially
function as a kind of state machine. You’ll receive various touches... method calls, and
your response will partly depend upon what happened previously, so you’ll have to
record somehow, such as in instance variables, the information that you’ll need in order
to decide what to do when the next touches... method is called. Such an architecture
can make writing and maintaining touch-analysis code quite tricky. Moreover, although
you can distinguish a particular UITouch or UIEvent object over time by keeping a
reference to it, you mustn’t retain that reference; it doesn’t belong to you.

To illustrate the business of interpreting touches, we’ll start with a view that can be
dragged with the user’s finger. For simplicity, I’ll assume that this view receives only a
single touch at a time. (This assumption is easy to enforce by setting the view’s multiple-
TouchEnabled to NO, which is the default.)

The trick to making a view follow the user’s finger is to realize that a view is positioned
by its center, which is in superview coordinates, but the user’s finger might not be at
the center of the view. So at every stage of the drag we must change the view’s center by
the change in the user’s finger position in superview coordinates:

190 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch* t = touches.anyObject;
 CGPoint loc = [t locationInView: self.superview];
 CGPoint oldP = [t previousLocationInView: self.superview];
 CGFloat deltaX = loc.x - oldP.x;
 CGFloat deltaY = loc.y - oldP.y;
 CGPoint c = self.center;
 c.x += deltaX;
 c.y += deltaY;
 self.center = c;
}

Next, let’s add a restriction that the view can be dragged only vertically or horizontally.
All we have to do is hold one coordinate steady; but which coordinate? Everything seems
to depend on what the user does initially. So we’ll do a one-time test the first time we
receive touchesMoved:withEvent:. Now we’re maintaining two BOOL state variables,
_decided and _horiz:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->_decided = NO;
}
- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch* t = touches.anyObject;
 if (!self->_decided) {
 self->_decided = YES;
 CGPoint then = [t previousLocationInView: self];
 CGPoint now = [t locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->_horiz = (deltaX >= deltaY);
 }
 CGPoint loc =
 [t locationInView: self.superview];
 CGPoint oldP =
 [t previousLocationInView: self.superview];
 CGFloat deltaX = loc.x - oldP.x;
 CGFloat deltaY = loc.y - oldP.y;
 CGPoint c = self.center;
 if (self->_horiz)
 c.x += deltaX;
 else
 c.y += deltaY;
 self.center = c;
}

Look at how things are trending. We are maintaining multiple state variables, which we
are managing across multiple methods, and we are subdividing a touches... method
implementation into tests depending on the state of our state machine. Our state ma‐
chine is very simple, but already our code is becoming difficult to read and to maintain
— and things will only become more messy as we try to make our view’s behavior more
sophisticated.

Interpreting Touches | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Another area in which manual touch handling can rapidly prove overwhelming is when
it comes to distinguishing between different gestures that the user is to be permitted to
perform on a view. Imagine, for example, a view that distinguishes between a finger
tapping briefly and a finger remaining down for a longer time. We can’t know how long
a tap is until it’s over, so one approach might be to wait until then before deciding:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->_time = [(UITouch*)touches.anyObject timestamp];
}
- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->_time;
 if (diff < 0.4)
 NSLog(@"short");
 else
 NSLog(@"long");
}

On the other hand, one might argue that if a tap hasn’t ended after some set time (here,
0.4 seconds), we know that it is long, and so we could begin responding to it without
waiting for it to end. The problem is that we don’t automatically get an event after 0.4
seconds. So we’ll create one, using delayed performance:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->_time = [(UITouch*)touches.anyObject timestamp];
 [self performSelector:@selector(touchWasLong)
 withObject:nil afterDelay:0.4];
}
- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->_time;
 if (diff < 0.4)
 NSLog(@"short");
}
- (void) touchWasLong {
 NSLog(@"long");
}

But there’s a bug. If the tap is short, we report that it was short, but we also report that
it was long. That’s because the delayed call to touchWasLong arrives anyway. We could
use some sort of boolean flag to tell us when to ignore that call, but there’s a better way:
NSObject has a class method that lets us cancel any pending delayed performance calls:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->_time = [(UITouch*)touches.anyObject timestamp];
 [self performSelector:@selector(touchWasLong)
 withObject:nil afterDelay:0.4];
}
- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->_time;
 if (diff < 0.4) {
 NSLog(@"short");
 [NSObject cancelPreviousPerformRequestsWithTarget:self

192 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

 selector:@selector(touchWasLong) object:nil];
 }
}
- (void) touchWasLong {
 NSLog(@"long");
}

Here’s another use of the same technique. We’ll distinguish between a single tap and a
double tap. The UITouch tapCount property already makes this distinction, but that,
by itself, is not enough to help us react differently to the two. What we must do, having
received a tap whose tapCount is 1, is to delay responding to it long enough to give a
second tap a chance to arrive. This is unfortunate, because it means that if the user
intends a single tap, some time will elapse before anything happens in response to it;
however, there’s nothing we can easily do about that.

Distributing our various tasks correctly is a bit tricky. We know when we have a double
tap as early as touchesBegan:withEvent:, so that’s when we cancel our delayed response
to a single tap, but we respond to the double tap in touchesEnded:withEvent:. We don’t
start our delayed response to a single tap until touchesEnded:withEvent:, because what
matters is the time between the taps as a whole, not between the starts of the taps. This
code is adapted from Apple’s own example:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 int ct = [(UITouch*)touches.anyObject tapCount];
 if (ct == 2) {
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap) object:nil];
 }
}
- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 int ct = [(UITouch*)touches.anyObject tapCount];
 if (ct == 1)
 [self performSelector:@selector(singleTap)
 withObject:nil afterDelay:0.3];
 if (ct == 2)
 NSLog(@"double tap");
}
- (void) singleTap {
 NSLog(@"single tap");
}

Now let’s consider combining our detection for a single or double tap with our earlier
code for dragging a view horizontally or vertically. This is to be a view that can detect
four kinds of gesture: a single tap, a double tap, a horizontal drag, and a vertical drag.
We must include the code for all possibilities and make sure they don’t interfere with
each other. The result is rather horrifying — a forced join between two already com‐
plicated sets of code, along with an additional pair of state variables to track the decision
between the tap gestures on the one hand and the drag gestures on the other:

Interpreting Touches | 193

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 // be undecided
 self->_decidedTapOrDrag = NO;
 // prepare for a tap
 int ct = [(UITouch*)touches.anyObject tapCount];
 if (ct == 2) {
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap)
 object:nil];
 self->_decidedTapOrDrag = YES;
 self->_drag = NO;
 return;
 }
 // prepare for a drag
 self->_decidedDirection = NO;
}
- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch* t = touches.anyObject;
 if (self->_decidedTapOrDrag && !self->_drag)
 return;
 self->_decidedTapOrDrag = YES;
 self->_drag = YES;
 if (!self->_decidedDirection) {
 self->_decidedDirection = YES;
 CGPoint then = [t previousLocationInView: self];
 CGPoint now = [t locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->_horiz = (deltaX >= deltaY);
 }
 CGPoint loc = [t locationInView: self.superview];
 CGPoint oldP = [t previousLocationInView: self.superview];
 CGFloat deltaX = loc.x - oldP.x;
 CGFloat deltaY = loc.y - oldP.y;
 CGPoint c = self.center;
 if (self->_horiz)
 c.x += deltaX;
 else
 c.y += deltaY;
 self.center = c;
}
- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 if (!self->_decidedTapOrDrag || !self->_drag) {
 // end for a tap
 int ct = [(UITouch*)touches.anyObject tapCount];
 if (ct == 1)
 [self performSelector:@selector(singleTap)
 withObject:nilafterDelay:0.3];
 if (ct == 2)
 NSLog(@"double tap");
 return;
 }

194 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

}
- (void) singleTap {
 NSLog(@"single tap");
}

That code seems to work, but it’s hard to say whether it covers all possibilities coherently;
it’s barely legible and the logic borders on the mysterious. This is the kind of situation
for which gesture recognizers were devised.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a combination
of three or four touches... methods is hard enough when a view confines itself to
expecting only one kind of gesture, such as dragging. It becomes even more involved
when a view wants to accept and respond differently to different kinds of gesture. Fur‐
thermore, many types of gesture are conventional and standard; it seems insane to
require developers to implement independently the elements that constitute what is, in
effect, a universal vocabulary.

The solution is gesture recognizers, which standardize common gestures and allow the
code for different gestures to be separated and encapsulated into different objects.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object whose job is to
detect that a multitouch sequence equates to one particular type of gesture. It is attached
to a UIView, which has for this purpose methods addGestureRecognizer: and remove-
GestureRecognizer:, and a gestureRecognizers property. A UIGestureRecognizer
implements the four touches... handlers, but it is not a responder (a UIResponder),
so it does not participate in the responder chain.

If a new touch is going to be delivered to a view, it is also associated with and delivered
to that view’s gesture recognizers if it has any, and that view’s superview’s gesture rec‐
ognizers if it has any, and so on up the view hierarchy. Thus, the place of a gesture
recognizer in the view hierarchy matters, even though it isn’t part of the responder chain.

UITouch and UIEvent provide complementary ways of learning how touches and ges‐
ture recognizers are associated. UITouch’s gestureRecognizers lists the gesture rec‐
ognizers that are currently handling this touch. UIEvent’s touchesForGesture-
Recognizer: lists the touches that are currently being handled by a particular gesture
recognizer.

Each gesture recognizer maintains its own state as touch events arrive, building up
evidence as to what kind of gesture this is. When one of them decides that it has rec‐
ognized its own particular type of gesture, it emits either a single message (to indicate,
for example, that a finger has tapped) or a series of messages (to indicate, for example,

Gesture Recognizers | 195

www.it-ebooks.info

http://www.it-ebooks.info/

that a finger is moving); the distinction here is between a discrete and a continuous
gesture.

What message a gesture recognizer emits, and to what object it sends it, is set through
a target–action dispatch table attached to the gesture recognizer; a gesture recognizer
is rather like a UIControl in this regard. Indeed, one might say that a gesture recognizer
simplifies the touch handling of any view to be like that of a control. The difference is
that one control may report several different control events, whereas each gesture rec‐
ognizer reports only one gesture type, with different gestures being reported by different
gesture recognizers.

This architecture implies that it is unnecessary to subclass UIView merely in order to
implement touch analysis.

UIGestureRecognizer itself is abstract, providing methods and properties to its sub‐
classes. Among these are:
initWithTarget:action:

The designated initializer. Each message emitted by a UIGestureRecognizer is a
matter of sending the action message to the target. Further target–action pairs may
be added with addTarget:action: and removed with removeTarget:action:.

Two forms of action: selector are possible: either there is no parameter, or there
is a single parameter which will be the gesture recognizer. Most commonly, you’ll
use the second form, so that the target can identify and query the gesture recognizer;
moreover, using the second form also gives the target a reference to the view,
through the gesture recognizer’s view property.

locationOfTouch:inView:

The touch is specified by an index number. The numberOfTouches property pro‐
vides a count of current touches; the touches themselves are inaccessible by way of
the gesture recognizer.

enabled

A convenient way to turn a gesture recognizer off without having to remove it from
its view.

state, view
I’ll discuss state later on. The view is the view to which this gesture recognizer is
attached.

Built-in UIGestureRecognizer subclasses are provided for six common gesture types:
tap, pinch (inward or outward), pan (drag), swipe, rotate, and long press. Each embodies
properties and methods likely to be needed for each type of gesture, either in order to
configure the gesture recognizer beforehand or in order to query it as to the state of an
ongoing gesture:

196 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

UITapGestureRecognizer (discrete)
Configuration: numberOfTapsRequired, numberOfTouchesRequired (“touches”
means simultaneous fingers).

UIPinchGestureRecognizer (continuous)
Two fingers moving toward or away from each other. State: scale, velocity.

UIRotationGestureRecognizer (continuous)
Two fingers moving round a common center. State: rotation, velocity.

UISwipeGestureRecognizer (discrete)
A straight-line movement in one of the four cardinal directions. Configuration:
direction (meaning permitted directions, a bitmask), numberOfTouchesRequired.

UIPanGestureRecognizer (continuous)
Dragging. Configuration: minimumNumberOfTouches, maximumNumberOfTouches.
State: translationInView:, setTranslation:inView:, and velocityInView:; the
coordinate system of the specified view is used.
UIScreenEdgePanGestureRecognizer

A UIPanGestureRecognizer subclass, new in iOS 7. It recognizes a pan gesture
that starts at an edge of the screen. It adds a configuration property, edges, a
UIRectEdge; despite the name (and the documentation), this must be set to a
single edge.

UILongPressGestureRecognizer (continuous)
Configuration: numberOfTapsRequired, numberOfTouchesRequired, minimum-
PressDuration, allowableMovement. The numberOfTapsRequired is the count of
taps before the tap that stays down; so it can be 0 (the default). The allowable-
Movement setting lets you compensate for the fact that the user’s finger is unlikely
to remain steady during an extended press; thus we need to provide some limit
before deciding that this gesture is, say, a drag, and not a long press after all. On the
other hand, once the long press is recognized, the finger is permitted to drag.

UIGestureRecognizer also provides a locationInView: method. This is a single point,
even if there are multiple touches. The subclasses implement this variously. For example,
for UIPanGestureRecognizer, the location is where the touch is if there’s a single touch,
but it’s a sort of midpoint (“centroid”) if there are multiple touches.

We already know enough to implement, using a gesture recognizer, a view that responds
to a single tap, or a view that responds to a double tap. We don’t yet know quite enough
to implement a view that lets itself be dragged around, or a view that can respond to
more than one gesture; we’ll come to that. Meanwhile, here’s code that implements a
view (v) that responds to a single tap:

Gesture Recognizers | 197

www.it-ebooks.info

http://www.it-ebooks.info/

UITapGestureRecognizer* t =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(singleTap)];
[v addGestureRecognizer:t];
// ...
- (void) singleTap {
 NSLog(@"single");
}

And here’s code that implements a view (v) that responds to a double tap:

UITapGestureRecognizer* t =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(doubleTap)];
t.numberOfTapsRequired = 2;
[v addGestureRecognizer:t];
// ...
- (void) doubleTap {
 NSLog(@"double");
}

For a continuous gesture like dragging, we need to know both when the gesture is in
progress and when the gesture ends. This brings us to the subject of a gesture recognizer’s
state.

A gesture recognizer implements a notion of states (the state property); it passes
through these states in a definite progression. The gesture recognizer remains in the
Possible state until it can make a decision one way or the other as to whether this is in
fact the correct gesture. The documentation neatly lays out the possible progressions:
Wrong gesture

Possible → Failed. No action message is sent.

Discrete gesture (like a tap), recognized
Possible → Ended. One action message is sent, when the state changes to Ended.

Continuous gesture (like a drag), recognized
Possible → Began → Changed (repeatedly) → Ended. Action messages are sent once
for Began, as many times as necessary for Changed, and once for Ended.

Continuous gesture, recognized but later cancelled
Possible → Began → Changed (repeatedly) → Cancelled. Action messages are sent
once for Began, as many times as necessary for Changed, and once for Cancelled.

The actual state names are UIGestureRecognizerStatePossible and so forth. The
name UIGestureRecognizerStateRecognized is actually a synonym for the Ended
state; I find this unnecessary and confusing and I’ll ignore it in my discussion.

198 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

The same action message arrives at the same target every time, so the handler must
differentiate by asking about the gesture recognizer’s state. To illustrate, we will im‐
plement, using a gesture recognizer, a view (v) that lets itself be dragged around in any
direction by a single finger. Our maintenance of state is greatly simplified, because a
UIPanGestureRecognizer maintains a delta (translation) for us. This delta, available
using translationInView:, is reckoned from the touch’s initial position. So we need to
store our center only once:

UIPanGestureRecognizer* p =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
[v addGestureRecognizer:p];
// ...
- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* vv = p.view;
 if (p.state == UIGestureRecognizerStateBegan)
 self->_origC = vv.center;
 CGPoint delta = [p translationInView: vv.superview];
 CGPoint c = self->_origC;
 c.x += delta.x; c.y += delta.y;
 vv.center = c;
}

Actually, it’s possible to write that code without maintaining any state at all, because we
are allowed to reset the UIPanGestureRecognizer’s delta, using setTranslation:in-
View:. So:

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* vv = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: vv.superview];
 CGPoint c = vv.center;
 c.x += delta.x; c.y += delta.y;
 vv.center = c;
 [p setTranslation: CGPointZero inView: vv.superview];
 }
}

A pan gesture recognizer can be used also to make a view draggable under the influence
of a UIDynamicAnimator (Chapter 4). The strategy here is that the view is attached to
one or more anchor points through a UIAttachmentBehavior; as the user drags, we
move the anchor point(s), and the view follows. In this example, I set up the whole UIKit
dynamics “stack” of objects as the gesture begins, anchoring the view at the point where
the touch is; then I move the anchor point to stay with the touch. Instance variables
anim and att store the UIDynamicAnimator and the UIAttachmentBehavior, respec‐
tively; self.view is our view’s superview, and is the animator’s reference view:

Gesture Recognizers | 199

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) dragging: (UIPanGestureRecognizer*) g {
 if (g.state == UIGestureRecognizerStateBegan) {
 self.anim =
 [[UIDynamicAnimator alloc] initWithReferenceView:self.view];
 CGPoint loc = [g locationOfTouch:0 inView:g.view];
 CGPoint cen =
 CGPointMake(CGRectGetMidX(g.view.bounds),
 CGRectGetMidY(g.view.bounds));
 UIOffset off = UIOffsetMake(loc.x-cen.x, loc.y-cen.y);
 CGPoint anchor = [g locationOfTouch:0 inView:self.view];
 UIAttachmentBehavior* att =
 [[UIAttachmentBehavior alloc] initWithItem:g.view
 offsetFromCenter:off attachedToAnchor:anchor];
 [self.anim addBehavior:att];
 self.att = att;
 }
 else if (g.state == UIGestureRecognizerStateChanged) {
 self.att.anchorPoint = [g locationOfTouch:0 inView:self.view];
 }
 else {
 self.anim = nil;
 }
}

The outcome is that the view both moves and rotates in response to dragging, like a
plate being pulled about on a table by a single finger. Another implementation, suggested
in a WWDC 2013 video, is to attach the view by springs to four anchor points at some
distance outside its corners and move all four anchor points; the view then jiggles while
being dragged.

Gesture Recognizer Conflicts
The question naturally arises of what happens when multiple gesture recognizers are in
play. This isn’t a matter merely of multiple recognizers attached to a single view, because,
as I have said, if a view is touched, not only its own gesture recognizers but any gesture
recognizers attached to views further up the view hierarchy are also in play, simultane‐
ously. I like to think of a view as surrounded by a swarm of gesture recognizers — its
own, and those of its superview, and so on. (In reality, it is a touch that has a swarm of
gesture recognizers; that’s why a UITouch has a gestureRecognizers property, in the
plural.)

The superview gesture recognizer swarm comes as a surprise to beginners, but it makes
sense, because without it, certain gestures would be impossible. Imagine, for example,
a pair of views on each of which the user can tap individually, but which the user can
also touch simultaneously (one finger on each view) and rotate together around their
mutual centroid. Neither view can detect the rotation qua rotation, because neither view
receives both touches; only the superview can detect it, so the fact that the views them‐

200 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

selves respond to touches must not prevent the superview’s gesture recognizer from
operating.

In general, once a gesture recognizer succeeds in recognizing its gesture, any other
gesture recognizers associated with its touches are forced into the Failed state, and
whatever touches were associated with those gesture recognizers are no longer sent to
them; in effect, the first gesture recognizer in a swarm that recognizes its gesture owns
the gesture, and those touches, from then on.

In many cases, this “first past the post” behavior, on its own, will correctly eliminate
conflicts. If it doesn’t, you can modify it.

For example, we can add both our UITapGestureRecognizer for a single tap and our
UIPanGestureRecognizer to a view and everything will just work; “first past the post”
is exactly the desired behavior. What happens, though, if we also add the UITapGesture‐
Recognizer for a double tap? Dragging works, and single tap works; double tap works
too, but without preventing the single tap from working. So, on a double tap, both the
single tap action handler and the double tap action handler are called.

If that isn’t what we want, we don’t have to use delayed performance, as we did earlier.
Instead, we can create a dependency between one gesture recognizer and another, telling
the first to suspend judgement until the second has decided whether this is its ges‐
ture. We can do this by sending the first gesture recognizer the requireGesture-
RecognizerToFail: message. (This message is rather badly named; it doesn’t mean
“force this other recognizer to fail”, but rather, “you can’t succeed unless this other rec‐
ognizer has failed.”)

So our view v is now configured as follows:

UITapGestureRecognizer* t2 = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(doubleTap)];
t2.numberOfTapsRequired = 2;
[v addGestureRecognizer:t2];
UITapGestureRecognizer* t1 = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(singleTap)];
[t1 requireGestureRecognizerToFail:t2];
[v addGestureRecognizer:t1];
UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
[v addGestureRecognizer:p];

Gesture Recognizers | 201

www.it-ebooks.info

http://www.it-ebooks.info/

Apple would prefer, if you’re going to have a view respond both to a
single tap and to a double tap, that you not make the former wait upon
the latter (because this delays your response after the single tap). Rath‐
er, they would like you to arrange things so that it doesn’t matter that
you respond to a single tap that is the first tap of a double tap. This
isn’t always feasible, of course; Apple’s own Mobile Safari is a clear
counterexample.

Another conflict that can arise is between a gesture recognizer and a view that already
knows how respond to the same gesture, such as a UIControl. This problem pops up
particularly when the gesture recognizer belongs to the UIControl’s superview. The
UIControl’s mere presence does not “block” the superview’s gesture recognizer from
recognizing a gesture on the UIControl, even if it is a UIControl that responds auton‐
omously to touches. For example, your window’s root view might have a UITapGesture‐
Recognizer attached to it (perhaps because you want to be able to recognize taps on the
background), but there is also a UIButton within it. How is that gesture recognizer to
ignore a tap on the button?

The UIView instance method gestureRecognizerShouldBegin: solves the problem. It
is called automatically; to modify its behavior, use a custom UIView subclass and over‐
ride it. Its parameter is a gesture recognizer belonging to this view or to a view further
up the view hierarchy. That gesture recognizer has recognized its gesture as taking place
in this view; but by returning NO, the view can tell the gesture recognizer to bow out
and do nothing, not sending any action messages, and permitting this view to respond
to the touch as if the gesture recognizer weren’t there.

Thus, for example, a UIButton could return NO for a single tap UITapGesture‐
Recognizer; a single tap on the button would then trigger the button’s action message,
not the gesture recognizer’s action message. And in fact a UIButton, by default, does
return NO for a single tap UITapGestureRecognizer whose view is not the UIButton
itself. (If the gesture recognizer is for some gesture other than a tap, then the problem
never arises, because a tap on the button won’t cause the gesture recognizer to recognize
in the first place.) Other built-in controls may also implement gestureRecognizer-
ShouldBegin: in such a way as to prevent accidental interaction with a gesture recog‐
nizer; the documentation says that a UISlider implements it in such a way that a
UISwipeGestureRecognizer won’t prevent the user from sliding the “thumb,” and there
may be other cases that aren’t documented explicitly. Naturally, you can take advantage
of this feature in your own UIView subclasses.

Another way of resolving possible gesture recognizer conflicts is through the gesture
recognizer’s delegate, or with a gesture recognizer subclass. I’ll discuss these in a
moment.

202 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

Subclassing Gesture Recognizers
To subclass UIGestureRecognizer or a built-in gesture recognizer subclass, you must
do the following things:

• At the start of the implementation file, import <UIKit/UIGestureRecognizer-
Subclass.h>. This file contains a category on UIGestureRecognizer that allows you
to set the gesture recognizer’s state (which is otherwise read-only), along with dec‐
larations for the methods you may need to override.

• Override any touches... methods you need to (as if the gesture recognizer were
a UIResponder); if you’re subclassing a built-in gesture recognizer subclass, you
will almost certainly call super so as to take advantage of the built-in behavior. In
overriding a touches... method, you need to think like a gesture recognizer. As
these methods are called, a gesture recognizer is setting its state; you must interact
with that process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement a view that
can be moved only horizontally or vertically. Our strategy will be to make two UIPan‐
GestureRecognizer subclasses — one that allows only horizontal movement, and an‐
other that allows only vertical movement. They will make their recognition decisions
in a mutually exclusive manner, so we can attach an instance of each to our view. This
separates the decision-making logic in a gorgeously encapsulated object-oriented man‐
ner — a far cry from the spaghetti code we wrote earlier to do this same task.

I will show only the code for the horizontal drag gesture recognizer, because the vertical
recognizer is symmetrically identical. We maintain just one instance variable, _orig-
Loc, which we will use once to determine whether the user’s initial movement is hori‐
zontal. We override touchesBegan:withEvent: to set our instance variable with the
first touch’s location:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->_origLoc =
 [(UITouch*)touches.anyObject locationInView:self.view.superview];
 [super touchesBegan: touches withEvent: event];
}

We then override touchesMoved:withEvent:; all the recognition logic is here. This
method will be called for the first time with the state still at Possible. At that moment,
we look to see if the user’s movement is more horizontal than vertical. If it isn’t, we set
the state to Failed. But if it is, we just step back and let the superclass do its thing:

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (self.state == UIGestureRecognizerStatePossible) {
 CGPoint loc =
 [(UITouch*)touches.anyObject locationInView:self.view.superview];
 CGFloat deltaX = fabs(loc.x - self->_origLoc.x);

Gesture Recognizers | 203

www.it-ebooks.info

http://www.it-ebooks.info/

 CGFloat deltaY = fabs(loc.y - self->_origLoc.y);
 if (deltaY >= deltaX)
 self.state = UIGestureRecognizerStateFailed;
 }
 [super touchesMoved: touches withEvent:event];
}

We now have a view that moves only if the user’s initial gesture is horizontal. But that
isn’t the entirety of what we want; we want a view that, itself, moves horizontally only.
To implement this, we’ll simply lie to our client about where the user’s finger is, by
overriding translationInView::

- (CGPoint)translationInView:(UIView *)v {
 CGPoint proposedTranslation = [super translationInView:v];
 proposedTranslation.y = 0;
 return proposedTranslation;
}

That example was simple, because we subclassed a fully functional built-in UIGesture‐
Recognizer subclass. If you were to write your own UIGestureRecognizer subclass en‐
tirely from scratch, there would be more work to do:

• You should definitely implement all four touches... handlers. Their job, at a min‐
imum, is to advance the gesture recognizer through the canonical progression of
its states. When the first touch arrives at a gesture recognizer, its state will be Pos‐
sible; you never explicitly set the recognizer’s state to Possible yourself. As soon as
you know this can’t be our gesture, you set the state to Failed (Apple says that a
gesture recognizer should “fail early, fail often”). If the gesture gets past all the failure
tests, you set the state instead either to Ended (for a discrete gesture) or to Began
(for a continuous gesture); if Began, then you might set it to Changed, and ultimately
you must set it to Ended. Action messages will be sent automatically at the appro‐
priate moments.

• You should probably implement reset. This is called after you reach the end of the
progression of states to notify you that the gesture recognizer’s state is about to be
set back to Possible; it is your chance to return your state machine to its starting
configuration (resetting instance variables, for example).

Keep in mind that your gesture recognizer might stop receiving touches without notice.
Just because it gets a touchesBegan:withEvent: call for a particular touch doesn’t mean
it will ever get touchesEnded:withEvent: for that touch. If your gesture recognizer fails
to recognize its gesture, either because it declares failure or because it is still in the
Possible state when another gesture recognizer recognizes, it won’t get any more
touches... calls for any of the touches that were being sent to it. This is why reset is
so important; it’s the one reliable signal that it’s time to clean up and get ready to receive
the beginning of another possible gesture.

204 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

Gesture Recognizer Delegate
A gesture recognizer can have a delegate (UIGestureRecognizerDelegate), which can
perform two types of task.

These delegate methods can block a gesture recognizer’s operation:
gestureRecognizerShouldBegin:

Sent to the delegate before the gesture recognizer passes out of the Possible state;
return NO to force the gesture recognizer to proceed to the Failed state. (This hap‐
pens after gestureRecognizerShouldBegin: has been sent to the view in which the
touch took place. That view must not have returned NO, or we wouldn’t have
reached this stage.)

gestureRecognizer:shouldReceiveTouch:

Sent to the delegate before a touch is sent to the gesture recognizer’s touches-
Began:... method; return NO to prevent that touch from ever being sent to the
gesture recognizer.

These delegate methods can mediate gesture recognition conflict:
gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer:

Sent when a gesture recognizer recognizes its gesture, if this will force the failure
of another gesture recognizer, to the delegates of both gesture recognizers. Return
YES to prevent that failure, thus allowing both gesture recognizers to operate si‐
multaneously. For example, a view could respond to both a two-fingered pinch and
a two-fingered pan, the one applying a scale transform, the other changing the view’s
center.

gestureRecognizer:shouldRequireFailureOfGestureRecognizer:
gestureRecognizer:shouldBeRequiredToFailByGestureRecognizer:

New in iOS 7, these messages are sent very early in the life of a gesture, when all
gesture recognizers in a view’s swarm are still in the Possible state, to the delegates
of all of them, pairing the gesture recognizer whose delegate this is with every other
gesture recognizer in the swarm. Return YES to prioritize between a pair, saying
that one gesture recognizer cannot succeed until another has first failed. In essence,
these delegate methods turn the decision made once and permanently in require-
GestureRecognizerToFail: into a live decision that can be made freshly every time
a gesture occurs.

As an example, we will use delegate messages to combine a UILongPressGesture‐
Recognizer and a UIPanGestureRecognizer, as follows: the user must perform a tap-
and-a-half (tap and hold) to “get the view’s attention,” which we will indicate by a pulsing
animation on the view; then (and only then) the user can drag the view.

Gesture Recognizers | 205

www.it-ebooks.info

http://www.it-ebooks.info/

The UILongPressGestureRecognizer’s handler will take care of starting and stopping
the animation (and the UIPanGestureRecognizer’s handler will take care of the drag, as
shown earlier in this chapter):

- (void) longPress: (UILongPressGestureRecognizer*) lp {
 if (lp.state == UIGestureRecognizerStateBegan) {
 CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath: @"transform"];
 anim.toValue =
 [NSValue valueWithCATransform3D:
 CATransform3DMakeScale(1.1, 1.1, 1)];
 anim.fromValue =
 [NSValue valueWithCATransform3D:CATransform3DIdentity];
 anim.repeatCount = HUGE_VALF;
 anim.autoreverses = YES;
 [lp.view.layer addAnimation:anim forKey:nil];
 }
 if (lp.state == UIGestureRecognizerStateEnded ||
 lp.state == UIGestureRecognizerStateCancelled) {
 [lp.view.layer removeAllAnimations];
 }
}

As we created our gesture recognizers, we kept a reference to the UILongPressGesture‐
Recognizer (longPresser), and we made ourself the UIPanGestureRecognizer’s dele‐
gate. So we will receive delegate messages. If the UIPanGestureRecognizer tries to
declare success while the UILongPressGestureRecognizer’s state is Failed or still at Pos‐
sible, we prevent it. If the UILongPressGestureRecognizer succeeds, we permit the
UIPanGestureRecognizer to operate as well:

- (BOOL) gestureRecognizerShouldBegin: (UIGestureRecognizer*) g {
 if (self.longPresser.state == UIGestureRecognizerStatePossible ||
 self.longPresser.state == UIGestureRecognizerStateFailed)
 return NO;
 return YES;
}
- (BOOL)gestureRecognizer: (UIGestureRecognizer*) g1
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer*) g2 {
 return YES;
}

The result is that the view can be dragged only while it is pulsing; in effect, what we’ve
done is to compensate, using delegate methods, for the fact that UIGestureRecognizer
has no requireGestureRecognizerToSucceed: method.

If you are subclassing a gesture recognizer class, you can incorporate delegate-like be‐
havior into the subclass, by overriding the following methods:

206 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

• canPreventGestureRecognizer:

• canBePreventedByGestureRecognizer:

• shouldRequireFailureOfGestureRecognizer:

• shouldBeRequiredToFailByGestureRecognizer:

The “Prevent” methods are similar to the delegate shouldBegin: method, and the “Fail”
methods are similar to the delegate “Fail” methods. In this way, you can mediate gesture
recognizer conflict at the class level. The built-in gesture recognizer subclasses already
do this; that is why, for example, a single tap UITapGestureRecognizer does not, by
recognizing its gesture, cause the failure of a double tap UITapGestureRecognizer.

You can also, in a gesture recognizer subclass, send ignoreTouch:forEvent: directly to
a gesture recognizer (typically, to self). This has the same effect as the delegate method
gestureRecognizer:shouldReceiveTouch: returning NO, blocking all future delivery
of that touch to the gesture recognizer. For example, if you’re in the middle of an already
recognized gesture and a new touch arrives, you might well elect to ignore it.

Gesture Recognizers in the Nib
Instead of instantiating a gesture recognizer in code, you can create and configure it in
a .xib or .storyboard file. In the nib editor, drag a gesture recognizer from the Object
library into a view; the gesture recognizer becomes a top-level nib object, and the view’s
gestureRecognizers outlet is connected to the gesture recognizer. (You can add more
than one gesture recognizer to a view in the nib: the view’s gestureRecognizers prop‐
erty is an array, and its gestureRecognizers outlet is an outlet collection.) The gesture
recognizer’s properties are configurable in the Attributes inspector, and the gesture
recognizer has a delegate outlet. The gesture recognizer is a full-fledged nib object, so
you can make an outlet to it.

To configure a gesture recognizer’s target–action pair in the nib, treat it like a UIControl’s
control event. The action method’s signature should return IBAction, and it should take
a single parameter, which will be a reference to the gesture recognizer. You will then be
able to form the Sent Action connection in the usual way.

A gesture recognizer can have multiple target–action pairs, but only
one target–action pair can be configured for a gesture recognizer us‐
ing the nib editor.

A view retains its gesture recognizers, so there will usually be no need for additional
memory management on a gesture recognizer instantiated from a nib.

Gesture Recognizers | 207

www.it-ebooks.info

http://www.it-ebooks.info/

Touch Delivery
Here’s the full standard procedure by which a touch is delivered to views and gesture
recognizers:

• Whenever a new touch appears, the application uses hit-testing (see the next sec‐
tion) to determine the view that was touched, and that will be permanently asso‐
ciated with this touch. This view is called, appropriately, the hit-test view. The logic
of ignoring a view (denying it the ability to become the hit-test view) in response
to its userInteractionEnabled, hidden, and alpha is implemented at this stage.

• Each time the touch situation changes, the application calls its own sendEvent:,
which in turn calls the window’s sendEvent:. The window delivers each of an event’s
touches by calling the appropriate touches... method(s), as follows:
— As a touch first appears, the logic of obedience to multipleTouchEnabled and

exclusiveTouch is considered. If permitted by that logic (which I’ll discuss in
detail later):
— The touch is delivered to the hit-test view’s swarm of gesture recognizers.
— The touch is delivered to the hit-test view itself.

— If a gesture is recognized by a gesture recognizer, then for any touch associated
with this gesture recognizer:
— touchesCancelled:forEvent: is sent to the touch’s view, and the touch is

no longer delivered to its view.
— If that touch was associated with any other gesture recognizer, that gesture

recognizer is forced to fail.
— If a gesture recognizer fails, either because it declares failure or because it is

forced to fail, its touches are no longer delivered to it, but (except as already
specified) they continue to be delivered to their view.

— If a touch would be delivered to a view, but that view does not respond to the
appropriate touches... method, a responder further up the responder chain is
sought that does respond to it, and the touch is delivered there.

The rest of this chapter discusses the details. As you’ll see, nearly every bit of that stan‐
dard procedure can be customized to some extent.

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-testing uses the
UIView instance method hitTest:withEvent:, which returns either a view (the hit-
test view) or nil. The idea is to find the frontmost view containing the touch point. This
method uses an elegant recursive algorithm, as follows:

208 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

1. A view’s hitTest:withEvent: first calls the same method on its own subviews, if
it has any, because a subview is considered to be in front of its superview. The
subviews are queried in reverse order, because that’s front-to-back order (Chap‐
ter 1): thus, if two sibling views overlap, the one in front reports the hit first.

2. If, as a view hit-tests its subviews, any of those subviews responds by returning a
view, it stops querying its subviews and immediately returns the view that was
returned to it. Thus, the very first view to declare itself the hit-test view immediately
percolates all the way to the top of the call chain and is the hit-test view.

3. If, on the other hand, a view has no subviews, or if all of its subviews return nil
(indicating that neither they nor their subviews was hit), then the view calls point-
Inside:withEvent: on itself. If this call reveals that the touch was inside this view,
the view returns itself, declaring itself the hit-test view; otherwise it returns nil.
No problem arises if a view has a transform, because pointInside:withEvent:
takes the transform into account. That’s why a rotated button continues to work
correctly.

It is also up to hitTest:withEvent: to implement the logic of touch restrictions ex‐
clusive to a view. If a view’s userInteractionEnabled is NO, or its hidden is YES, or its
alpha is close to 0.0, it returns nil without hit-testing any of its subviews and without
calling pointInside:withEvent:. Thus these restrictions do not, of themselves, exclude
a view from being hit-tested; on the contrary, they operate precisely by modifying a
view’s hit-test result.

However, hit-testing knows nothing about multipleTouchEnabled (which involves
multiple touches) or exclusiveTouch (which involves multiple views). The logic of
obedience to these properties is implemented at a later stage of the story.

You can use hit-testing yourself at any moment where it might prove useful. In calling
hitTest:withEvent:, supply a point in the coordinates of the view to which the message
is sent. The second parameter can be nil if you have no event.

For example, suppose we have a UIView with two UIImageView subviews. We want to
detect a tap in either UIImageView, but we want to handle this at the level of the UIView.
We can attach a UITapGestureRecognizer to the UIView, but how will we know which
subview, if any, the tap was in?

First, verify that userInteractionEnabled is YES for both UIImageViews. UIImage‐
View is one of the few built-in view classes where this is NO by default, and a view whose
userInteractionEnabled is NO won’t normally be the result of a call to hitTest:with-
Event:. Then, when our gesture recognizer’s action handler is called, we can use hit-
testing to determine where the tap was:

Touch Delivery | 209

www.it-ebooks.info

http://www.it-ebooks.info/

// g is the gesture recognizer
CGPoint p = [g locationOfTouch:0 inView:g.view];
UIView* v = [g.view hitTest:p withEvent:nil];
if (v && [v isKindOfClass:[UIImageView class]]) { // ...

You can also override hitTest:withEvent: in a view subclass, to alter its results during
touch delivery, thus customizing the touch delivery mechanism. I call this hit-test
munging. Hit-test munging can be used selectively as a way of turning user interaction
on or off in an area of the interface. In this way, some unusual effects can be produced.

An important use of hit-test munging is to permit the touching of parts of subviews
outside the bounds of their superview. If a view’s clipsToBounds is NO, a paradox arises:
the user can see the regions of its subviews that are outside its bounds, but can’t touch
them. This can be confusing and seems wrong. The solution is for the view to override
hitTest:withEvent: as follows:

-(UIView *)hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 UIView* result = [super hitTest:point withEvent:event];
 if (result)
 return result;
 for (UIView* sub in [self.subviews reverseObjectEnumerator]) {
 CGPoint pt = [self convertPoint:point toView:sub];
 result = [sub hitTest:pt withEvent:event];
 if (result)
 return result;
 }
 return nil;
}

Hit-testing for layers

There is also hit-testing for layers. It doesn’t happen automatically, as part of send-
Event: or anything else; it’s up to you. It’s just a convenient way of finding out which
layer would receive a touch at a point, if layers received touches. To hit-test layers, call
hitTest: on a layer, with a point in superlayer coordinates.

Keep in mind, though, that layers do not receive touches. A touch is reported to a view,
not a layer. A layer, except insofar as it is a view’s underlying layer and gets touch re‐
porting because of its view, is completely untouchable; from the point of view of touches
and touch reporting, it’s as if the layer weren’t on the screen at all. No matter where a
layer may appear to be, a touch falls through the layer, to whatever view is behind it.

In the case of the layer that is a view’s underlying layer, you don’t need hit-testing. It is
the view’s drawing; where it appears is where the view is. So a touch in that layer is
equivalent to a touch in its view. Indeed, one might say (and it is often said) that this is
what views are actually for: to provide layers with touchability.

The only layers on which you’d need special hit-testing, then, would presumably be
layers that are not themselves any view’s underlying layer, because those are the only

210 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

ones you don’t find out about by normal view hit-testing. However, all layers, including
a layer that is its view’s underlying layer, are part of the layer hierarchy, and can partic‐
ipate in layer hit-testing. So the most comprehensive way to hit-test layers is to start
with the topmost layer, the window’s layer. In this example, we subclass UIWindow and
override its hitTest:withEvent: so as to get layer hit-testing every time there is view
hit-testing:

- (UIView*) hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 CALayer* lay = [self.layer hitTest:point];
 // ... possibly do something with that information ...
 return [super hitTest:point withEvent:event];
}

In that example, the view hit-test point works as the layer hit-test point; window bounds
are screen bounds (Chapter 1). But usually you’ll have to convert to superlayer coordi‐
nates. In this next example, we return to the CompassView developed in Chapter 3, in
which all the parts of the compass are layers; we want to know whether the user tapped
on the arrow layer. For simplicity, we’ve given the CompassView a UITapGesture‐
Recognizer, and this is its action handler, in the CompassView itself. We convert to our
superview’s coordinates, because these are also our layer’s superlayer coordinates:

// self is the CompassView
CGPoint p = [t locationOfTouch: 0 inView: self.superview];
CALayer* hitLayer = [self.layer hitTest:p];
if (hitLayer == ((CompassLayer*)self.layer).arrow) // ...

Layer hit-testing works by calling containsPoint:. However, containsPoint: takes a
point in the layer’s coordinates, so to hand it a point that arrives through hitTest: you
must first convert from superlayer coordinates:

BOOL hit =
 [lay containsPoint: [lay convertPoint:point fromLayer:lay.superlayer]];

Layer hit-testing knows nothing of the restrictions on touch delivery; it just reports on
every sublayer, even one whose view (for example) has userInteractionEnabled set
to NO.

The documentation warns that hitTest: must not be called on a
CATransformLayer.

Hit-testing for drawings
The preceding example (letting the user tap on the compass arrow) worked, but we
might complain that it is reporting a hit on the arrow even if the hit misses the draw‐
ing of the arrow. That’s true for view hit-testing as well. A hit is reported if we are within
the view or layer as a whole; hit-testing knows nothing of drawing, transparent areas,
and so forth.

Touch Delivery | 211

www.it-ebooks.info

http://www.it-ebooks.info/

If you know how the region is drawn and can reproduce the edge of that drawing as a
CGPath, you can test whether a point is inside it with CGPathContainsPoint. So, for a
layer, you could override hitTest along these lines:

- (CALayer*) hitTest:(CGPoint)p {
 CGPoint pt = [self convertPoint:p fromLayer:self.superlayer];
 CGMutablePathRef path = CGPathCreateMutable();
 // ... draw path here ...
 CALayer* result =
 CGPathContainsPoint(path, nil, pt, true) ? self : nil;
 CGPathRelease(path);
 return result;
}

Alternatively, it might be the case that if a pixel of the drawing is transparent, it’s outside
the drawn region, so that it suffices to detect whether the pixel tapped is transparent.
Unfortunately, there’s no way to ask a drawing (or a view, or a layer) for the color of a
pixel; you have to make a bitmap and copy the drawing into it, and then ask the bitmap
for the color of a pixel. If you can reproduce the content as an image, and all you care
about is transparency, you can make a one-pixel alpha-only bitmap, draw the image in
such a way that the pixel you want to test is the pixel drawn into the bitmap, and examine
the transparency of the resulting pixel:

// assume im is a UIImage, point is the CGPoint to test
unsigned char pixel[1] = {0};
CGContextRef context =
 CGBitmapContextCreate(pixel, 1, 1, 8, 1, nil,
 (CGBitmapInfo)kCGImageAlphaOnly);
UIGraphicsPushContext(context);
[im drawAtPoint:CGPointMake(-point.x, -point.y)];
UIGraphicsPopContext();
CGContextRelease(context);
CGFloat alpha = pixel[0]/255.0;
BOOL transparent = alpha < 0.01;

However, there may not be a one-to-one relationship between the pixels of the under‐
lying drawing and the points of the drawing as portrayed on the screen — because the
drawing is stretched, for example. In many cases, the CALayer method renderIn-
Context: can be helpful here. This method allows you to copy a layer’s actual drawing
into a context of your choice. If that context is, say, an image context created with
UIGraphicsBeginImageContextWithOptions, you can now use the resulting image as
im in the code above:

UIGraphicsBeginImageContextWithOptions(self.bounds.size, NO, 0);
CALayer* lay = // ... the layer whose content we're interested in
[lay renderInContext:UIGraphicsGetCurrentContext()];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext(); // ... and the rest is as before

212 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

Hit-testing during animation
The simplest solution to the problem of touch during animation is to disallow it entirely.
By default, view animation turns off touchability of a view while it’s being animated
(though you can prevent that with UIViewAnimationOptionAllowUserInteraction in
the options: argument), and you can temporarily turn off touchability altogether with
UIApplication’s beginIgnoringInteractionEvents, as I mentioned earlier in this
chapter.

If user interaction is allowed during an animation that moves a view from one place to
another, then if the user taps on the animated view, the tap might mysteriously fail
because the view in the model layer is elsewhere; conversely, the user might accidentally
tap where the view actually is in the model layer, and the tap will hit the animated view
even though it appears to be elsewhere. If the position of a view or layer is being animated
and you want the user to be able to tap on it, therefore, you’ll need to hit-test the pre‐
sentation layer.

In this simple example, we have a superview containing a subview. To allow the user to
tap on the subview even when it is being animated, we implement hit-test munging in
the superview:

- (UIView*) hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 // v is the animated subview
 CALayer* lay = [v.layer presentationLayer];
 CALayer* hitLayer = [lay hitTest: point];
 if (hitLayer == lay)
 return v;
 UIView* hitView = [super hitTest:point withEvent:event];
 if (hitView == v)
 return self;
 return hitView;
}

If the user taps outside the presentation layer, we cannot simply call super, because the
user might tap at the spot to which the subview has in reality already moved (behind
the “animation movie”), in which case super will report that it hit the subview. So if
super does report this, we return self (assuming that we are what’s behind the animated
subview at its new location).

However, as Apple puts it in the WWDC 2011 videos, the animated view “swallows the
touch.” For example, suppose the view in motion is a button. Although our hit-test
munging makes it possible for the user to tap the button as it is being animated, and
although the user sees the button highlight in response, the button’s action message is
not sent in response to this highlighting if the animation is in-flight when the tap takes
place. This behavior seems unfortunate, but it’s generally possible to work around it (for
instance, with a gesture recognizer).

Touch Delivery | 213

www.it-ebooks.info

http://www.it-ebooks.info/

Initial Touch Event Delivery
When the touch situation changes, an event containing all touches is handed to the
UIApplication instance by calling its sendEvent:, and the UIApplication in turn hands
it to the relevant UIWindow by calling its sendEvent:. The UIWindow then performs
the complicated logic of examining, for every touch, the hit-test view and its superviews
and their gesture recognizers and deciding which of them should be sent a touches...
message, and does so.

These are delicate and crucial maneuvers, and you wouldn’t want to lame your appli‐
cation by interfering with them. Nevertheless, you can override sendEvent: in a sub‐
class, and this is just about the only reason you might have for subclassing UIApplica‐
tion; if you do, remember to change the third argument in the call to UIApplication-
Main in your main.m file to the string name of your UIApplication subclass, so that your
subclass is used to generate the app’s singleton UIApplication instance. Subclassing UI‐
Window is discussed in Chapter 1.

It is unlikely, however, that you will need to resort to such measures. A typical case before
the advent of gesture recognizers was that you needed to detect touches directed to an
object of some built-in interface class in a way that subclassing it wouldn’t permit. For
example, you want to know when the user swipes a UIWebView; you’re not allowed to
subclass UIWebView, and in any case it eats the touch. The solution used to be to subclass
UIWindow and override sendEvent:; you would then work out whether this was a
swipe on the UIWebView and respond accordingly, or else call super. Now, however,
you can attach a UISwipeGestureRecognizer to the UIWebView.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also delivered
to its hit-test view, the same touches... method being called on both. Later, if a gesture
recognizer in a view’s swarm recognizes its gesture, that view is sent touches-
Cancelled:withEvent: for any touches that went to that gesture recognizer and were
hit-tested to that view, and subsequently the view no longer receives those touches.

This comes as a surprise to beginners, but it is the most reasonable approach, as it means
that touch interpretation by a view isn’t jettisoned just because gesture recognizers are
in the picture. Later on in the multitouch sequence, if all the gesture recognizers in a
view’s swarm declare failure to recognize their gesture, that view’s internal touch inter‐
pretation just proceeds as if gesture recognizers had never been invented.

Moreover, touches and gestures are two different things; sometimes you want to respond
to both. In one of my apps, where the user can tap cards, each card has a single tap
gesture recognizer and a double tap gesture recognizer, but it also responds directly to
touchesBegan:withEvent: by reducing its own opacity (and restores its opacity on

214 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

touchesEnded:withEvent: and touchesCancelled:withEvent:). The result is that
user always sees feedback when touching a card, instantly, regardless of what the gesture
turns out to be.

This behavior can be changed by setting a gesture recognizer’s cancelsTouchesIn-
View property to NO. If this is the case for every gesture recognizer in a view’s swarm,
the view will receive touch events more or less as if no gesture recognizers were in the
picture.

If a gesture recognizer happens to be ignoring a touch (because, for example, it was told
to do so by ignoreTouch:forEvent:), then touchesCancelled:withEvent: won’t be
sent to the view for that touch when that gesture recognizer recognizes its gesture. Thus,
a gesture recognizer’s ignoring a touch is the same as simply letting it fall through to the
view, as if the gesture recognizer weren’t there.

Gesture recognizers can also delay the delivery of touches to a view, and by default they
do. The UIGestureRecognizer property delaysTouchesEnded is YES by default, mean‐
ing that when a touch reaches UITouchPhaseEnded and the gesture recognizer’s touches-
Ended:withEvent: is called, if the gesture recognizer is still allowing touches to be
delivered to the view because its state is still Possible, it doesn’t deliver this touch until
it has resolved the gesture. When it does, either it will recognize the gesture, in which
case the view will have touchesCancelled:withEvent: called instead (as already ex‐
plained), or it will declare failure and now the view will have touchesEnded:with-
Event: called.

The reason for this behavior is most obvious with a gesture where multiple taps are
required. The first tap ends, but this is insufficient for the gesture recognizer to declare
success or failure, so it withholds that touch from the view. In this way, the gesture
recognizer gets the proper priority. In particular, if there is a second tap, the gesture
recognizer should succeed and send touchesCancelled:withEvent: to the view — but
it can’t do that if the view has already been sent touchesEnded:withEvent:.

It is also possible to delay the entire suite of touches... methods from being called on
a view, by setting a gesture recognizer’s delaysTouchesBegan property to YES. Again,
this delay would be until the gesture recognizer can resolve the gesture: either it will
recognize it, in which case the view will have touchesCancelled:withEvent: called, or
it will declare failure, in which case the view will receive touchesBegan:withEvent:
plus any further touches... calls that were withheld — except that it will receive at
most one touchesMoved:withEvent: call, the last one, because if a lot of these were
withheld, to queue them all up and send them all at once now would be simply insane.

It is unlikely that you’ll change a gesture recognizer’s delaysTouchesBegan property to
YES, however. You might do so, for example, if you have an elaborate touch analysis

Touch Delivery | 215

www.it-ebooks.info

http://www.it-ebooks.info/

within a view that simply cannot operate simultaneously with a gesture recognizer, but
this is improbable, and the latency involved may look strange to your user.

When touches are delayed and then delivered, what’s delivered is the original touch with
the original event, which still have their original timestamps. Because of the delay, these
timestamps may differ significantly from now. For this reason (and many others), Apple
warns that touch analysis that is concerned with timing should always look at the time‐
stamp, not the clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent: to implement the logic of multipleTouch-
Enabled and exclusiveTouch.

If a new touch is hit-tested to a view whose multipleTouchEnabled is NO and which
already has an existing touch hit-tested to it, then sendEvent: never delivers the new
touch to that view. However, that touch is delivered to the view’s swarm of gesture
recognizers.

Similarly, if there’s an exclusiveTouch view in the window, then sendEvent: must de‐
cide whether a particular touch should be delivered, in accordance with the meaning
of exclusiveTouch, which I described earlier. If a touch is not delivered to a view because
of exclusiveTouch restrictions, it is not delivered to its swarm of gesture recognizers
either.

The logic of touch delivery to gesture recognizers in response to
exclusiveTouch has changed in a confusing and possibly buggy way
from system to system, but I believe I’m describing it correctly for the
current system. The statement in Apple’s SimpleGestureRecognizers
sample code that “Recognizers ignore the exclusive touch setting for
views” probably dates back to an earlier implementation; it appears to
be flat-out false at this point.

Gesture Recognition Logic
When a gesture recognizer recognizes its gesture, everything changes. As we’ve already
seen, the touches for this gesture recognizer are sent to their hit-test views as a touches-
Cancelled:forEvent: message, and then no longer arrive at those views (unless the
gesture recognizer’s cancelsTouchesInView is NO). Moreover, all other gesture recog‐
nizers pending with regard to these touches are made to fail, and then are no longer
sent the touches they were receiving either.

If the very same event would cause more than one gesture recognizer to recognize,
there’s an algorithm for picking the one that will succeed and make the others fail: a

216 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

gesture recognizer lower down the view hierarchy (closer to the hit-test view) prevails
over one higher up the hierarchy, and a gesture recognizer more recently added to its
view prevails over one less recently added.

There are various means for modifying this “first past the post” behavior:
Dependency order

Certain methods institute a dependency order, causing a gesture recognizer to be
put on hold when it tries to transition from the Possible state to the Began (con‐
tinuous) or Ended (discrete) state; only if a certain other gesture recognizer fails is
this one permitted to perform that transition. Apple says that in a dependency like
this, the gesture recognizer that fails first is not sent reset (and won’t receive any
touches) until the second finishes its state sequence and is sent reset, so that they
resume recognizing together. The methods are:

• requireGestureRecognizerToFail: (sent to a gesture recognizer)
• shouldRequireFailureOfGestureRecognizer: (overridden in a subclass)
• shouldBeRequiredToFailByGestureRecognizer: (overridden in a subclass)
• gestureRecognizer:shouldRequireFailureOfGestureRecognizer: (imple‐

mented by the delegate)
• gestureRecognizer:shouldBeRequiredToFailByGestureRecognizer: (im‐

plemented by the delegate)

The first of those methods sets up a permanent relationship between two gesture
recognizers, and cannot be undone; but the others are sent every time a gesture
starts in a view whose swarm includes both gesture recognizers, and applies only
on this occasion.

The delegate methods work together as follows. For each pair of gesture recognizers
in the hit-test view’s swarm, the members of that pair are arranged in a fixed order
(as I’ve already described). The first of the pair is sent shouldRequire and then
shouldBeRequired, and then the second of the pair is sent shouldRequire and then
shouldBeRequired. But if any of those four methods returns YES, the relationship
between that pair is settled; the sequence stops (and we proceed to the next pair).

Success into failure
Certain methods, by returning NO, turn success into failure; at the moment when
the gesture recognizer is about to declare that it recognizes its gesture, transitioning
from the Possible state to the Began (continuous) or Ended (discrete) state, it is
forced to fail instead:

• UIView’s gestureRecognizerShouldBegin:
• The delegate’s gestureRecognizerShouldBegin:

Touch Delivery | 217

www.it-ebooks.info

http://www.it-ebooks.info/

Simultaneous recognition
A gesture recognizer succeeds, but some other gesture recognizer is not forced to
fail, in accordance with these methods:

• gestureRecognizer:shouldRecognizeSimultaneouslyWithGesture-

Recognizer: (implemented by the delegate)
• canPreventGestureRecognizer: (overridden in a subclass)
• canBePreventedByGestureRecognizer: (overridden in a subclass)

In the subclass methods, “prevent” means “by succeeding, you force failure upon
this other,” and “be prevented” means “by succeeding, this other forces failure on
you.” They work together as follows. canPreventGestureRecognizer: is called
first; if it returns NO, that’s the end of the story for that gesture recognizer, and can-
PreventGestureRecognizer: is called on the other gesture recognizer. But if
canPreventGestureRecognizer: returns YES when it is first called, the other ges‐
ture recognizer is sent canBePreventedByGestureRecognizer:. If it returns YES,
that’s the end of the story; if it returns NO, the process starts over the other way
around, sending canPreventGestureRecognizer: to the second gesture recogniz‐
er, and so forth. In this way, conflicting answers are resolved without the device
exploding: prevention is regarded as exceptional (even though it is in fact the norm)
and will happen only if it is acquiesced to by everyone involved.

Touches and the Responder Chain
A UIView is a responder, and participates in the responder chain. In particular, if a touch
is to be delivered to a UIView (because, for example, it’s the hit-test view) and that view
doesn’t implement the relevant touches... method, a walk up the responder chain is
performed, looking for a responder that does implement it; if such a responder is found,
the touch is delivered to that responder. Moreover, the default implementation of the
touches... methods — the behavior that you get if you call super — is to perform the
same walk up the responder chain, starting with the next responder in the chain.

The relationship between touch delivery and the responder chain can be useful, but you
must be careful not to allow it to develop into an incoherency. For example, if touches-
Began:withEvent: is implemented in a superview but not in a subview, then a touch to
the subview will result in the superview’s touchesBegan:withEvent: being called, with
the first parameter (the touches) containing a touch whose view is the subview. But
most UIView implementations of the touches... methods rely upon the assumption
that the first parameter consists of all and only touches whose view is self; built-in
UIView subclasses certainly assume this.

218 | Chapter 5: Touches

www.it-ebooks.info

http://www.it-ebooks.info/

Again, if touchesBegan:withEvent: is implemented in both a superview and a subview,
and you call super in the subview’s implementation, passing along the same arguments
that came in, then the same touch delivered to the subview will trigger both the subview’s
touchesBegan:withEvent: and the superview’s touchesBegan:withEvent: (and once
again the first parameter to the superview’s touchesBegan:withEvent: will contain a
touch whose view is the subview).

The solution is to behave rationally, as follows:

• If all the responders in the affected part of the responder chain are instances of your
own subclass of UIView itself or of your own subclass of UIViewController, you
will generally want to follow the simplest possible rule: implement all the
touches... events together in one class, so that touches arrive at an instance either
because it was the hit-test view or because it is up the responder chain from the hit-
test view, and do not call super in any of them. In this way, “the buck stops here”
— the touch handling for this object or for objects below it in the responder chain
is bottlenecked into one well-defined place.

• If you subclass a built-in UIView subclass and you override its touch handling, you
don’t have to override every single touches... event, but you do need to call super
so that the built-in touch handling can occur.

• Don’t allow touches to arrive from lower down the responder chain at an instance
of a built-in UIView subclass that implements built-in touch handling, because such
a class is completely unprepared for the first parameter of a touches... method
containing a touch not intended for itself. Judicious use of userInteraction-
Enabled or hit-test munging can be a big help here.
I’m not saying, however, that you have to block all touches from percolating up the
responder chain; it’s normal for unhandled touches to arrive at the UIWindow or
UIApplication, for example, because these classes do not (by default) do any touch
handling — so those touches will remain unhandled and will percolate right off the
end of the responder chain, which is perfectly fine.

• Never call a touches... method directly (except to call super).

Apple’s documentation has some discussion of a technique called event
forwarding where you do call touches... methods directly. But you
are far less likely to need this now that gesture recognizers exist, and
it can be extremely tricky and even downright dangerous to imple‐
ment, so I won’t give an example, and I suggest that you not use it.

Touch Delivery | 219

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

Interface

This part of the book is about view controllers, and about all the various kinds of view
provided by the Cocoa framework — the built-in “widgets” with which you’ll construct
an app’s interface.

• Chapter 6 is about view controllers, the fundamental iOS mechanism for allowing
an entire interface to be replaced by another. Every app you write will have its
interface managed by at least one view controller.

• Chapter 7 is about scroll views, the iOS mechanism for letting the user scroll and
zoom the interface.

• Chapter 8 explains table views, a type of scroll view that lets the user navigate
through any amount of data, along with collection views, a generalization of table
views.

• Chapter 9 is about two forms of interface unique to, and characteristic of, the iPad
— popovers and split views.

• Chapter 10 describes several ways of presenting text (including styled text) in an
app’s interface — labels, text fields, text views, and text drawn directly.

• Chapter 11 discusses web views. A web view is an easy-to-use interface widget
backed by the power of a full-fledged web browser.

• Chapter 12 describes all the remaining built-in iOS (UIKit) interface widgets.
• Chapter 13 is about the forms of modal dialog that can appear in front of an app’s

interface.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

View Controllers

An iOS app’s interface is dynamic, and with good reason. On the desktop, an application’s
windows can be big, and there can be more than one of them, so there’s room for lots
of interface. With iOS, everything needs to fit on a single display consisting of a single
window, which in the case of the iPhone is almost forbiddingly tiny. The iOS solution
is to introduce, at will, completely new interface — a new view, possibly with an elaborate
hierarchy of subviews — replacing or covering the previous interface.

For this to work, regions of interface material — often the entire contents of the screen
— must come and go in an agile fashion that is understandable to the user. There will
typically be a logical, structural, and functional relationship between the view that was
present and the view that replaces or covers it, and this relationship will need to be
maintained behind the scenes, in your code, as well as being indicated to the user:
multiple views may be pure alternatives or siblings of one another, or one view may be
a temporary replacement for another, or views may be like successive pages of a book.
Animation is often used to emphasize and clarify these relationships as one view is
superseded by another. Navigational interface and a vivid, suggestive gestural vocabu‐
lary give the user an ability to control what’s seen and an understanding of the possible
options: a tab bar whose buttons summon alternate views, a back button or a swipe
gesture for returning to a previously visited view, a tap on an interface element to dive
deeper into a conceptual world, a Done or Cancel button to escape from a settings screen,
and so forth.

In iOS, this management of the dynamic interface is performed through view control‐
lers. A view controller is an instance of UIViewController. Actually, a view controller is
most likely to be an instance of a UIViewController subclass; the UIViewController
class is designed to be subclassed, and you are very unlikely to use a plain vanilla
UIViewController object without subclassing it. You might write your own UIView‐
Controller subclass; you might use a built-in UIViewController subclass such as

223

www.it-ebooks.info

http://www.it-ebooks.info/

UINavigationController or UITabBarController; or you might subclass a built-in
UIViewController subclass such as UITableViewController (Chapter 8).

A view controller manages a single view (which can, of course, have subviews); its view
property points to the view it manages. This is the view controller’s main view, or simply
its view. A view controller’s main view has no explicit pointer to the view controller that
manages it, but a view controller is a UIResponder and is in the responder chain just
above its view, so it is the view’s nextResponder.

View Controller Responsibilities
A view controller’s most important responsibility is its view. A view controller must have
a view (it is useless without one). If that view is to be useful, it must somehow get into
the interface, and hence onto the screen; a view controller is usually responsible for
seeing to that, too, but typically not the view controller whose view this is; rather, it will
be some view controller whose view is already in the interface. In most cases, this will
be taken care of automatically for you by a built-in mechanism (I’ll talk more about this
in the next section), but you can participate in the process, and for some view controllers
you may have to do the work yourself. The reverse is also true: a view that comes may
also eventually go, and the view controller responsible for putting a view into the in‐
terface will also be responsible for removing it.

A view controller will also typically provide animation of the interface as a view comes
or goes. Built-in view controller subclasses and built-in ways of summoning or removing
a view controller and its view come with built-in animations. We are all familiar, for
example, with tapping something to make new interface slide in from the right, and
then tapping a back button to make that interface slide back out to the right. In cases
where you are responsible for getting a view controller’s view onto the screen, you are
also responsible for providing the animation. And, new in iOS 7, you can take complete
charge of the animation even for built-in view controllers.

View controllers, working together, can save and restore state automatically. This
feature, introduced in iOS 6, helps you ensure that if your app is terminated in the
background and subsequently relaunched, it will quickly resume displaying the same
interface that was showing when the user last saw it.

The most powerful view controller is the root view controller. This is the view controller
managing the view that sits at the top of the view hierarchy, as the one and only direct
subview of the main window, acting as the superview for all other interface (the root
view). I described in Chapter 1 how this view controller attains its lofty position: it is
assigned to the window’s rootViewController property. The window then takes that
view controller’s main view, gives it the correct frame (resizing it if necessary), and makes
it its own subview.

224 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

An app without a root view controller, while theoretically possible, is
strongly discouraged by a warning from the runtime (“Applications are
expected to have a root view controller at the end of application
launch”). I don’t consider such an option in this book.

The root view controller is responsible for rotation of the interface. The user can rotate
the device, and you might like the interface to rotate in response, to compensate. As I
explained in Chapter 1, the window is effectively pinned to the physical display (window
bounds are screen bounds and do not change), but a view can be given a transform so
that its top moves to the current top of the display. The root view controller can respond
to device rotation by applying this transform to the root view.

The root view controller also bears ultimate responsibility for manipulation of the status
bar. The status bar is actually a secondary window belonging to the runtime, but the
runtime consults the root view controller as to whether the status bar should be present
and, if so, whether its text should be light or dark. (This view controller responsibility
is new in iOS 7.)

Your participation in all these view controller responsibilities depends upon your cus‐
tomization of a view controller, through properties and methods provided for this pur‐
pose. View controllers do many things automatically, but the options that specify the
details are up to you. The root view controller rotates the interface in response to the
user’s rotation of the device; but should it do so on this particular occasion? A certain
transition between views of built-in view controllers may come with a choice of built-
in animations; which one would you like? (Or, in iOS 7, do you prefer to supply your
own animation?) Similarly, some view controllers add navigation interface to their
views; how should that interface look? You’ll determine all of this, and more, through
your customization of view controllers.

View Controller Hierarchy
As I said in the previous section, there is always one root view controller, along with its
view, the root view. There may also be other view controllers, each of which has its own
main view. Such view controllers are subordinate to the root view controller. In iOS,
there are two subordination relationships between view controllers:
Parentage (containment)

A view controller can contain another view controller. The containing view con‐
troller is the parent of the contained view controller; the contained view controller
is a child of the containing view controller. This containment relationship of the
view controllers is reflected in their views: the child view controller’s view is a
subview of the parent view controller’s view. (“Subview” here means “subview at
some depth.”)

View Controller Hierarchy | 225

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-1. The TidBITS News app

Replacement of one view with another often involves a parent view controller
managing its children and their views. The parent view controller is responsible for
getting a child view controller’s view into the interface, by making it a subview of
its own view, and (if necessary) for removing it later.

A familiar example is the navigation interface: the user taps something and new
interface slides in from the right, replacing the current interface. Figure 6-1 shows
the TidBITS News app displaying a typical iPhone interface, consisting of a list of
story headlines and summaries. This interface is managed by a parent view con‐
troller (a UINavigationController) with a child view controller whose view is the
list of headlines and summaries. If the user taps an entry in the list, the whole list
will slide away to the left and the text of that story will slide in from the right; the
parent view controller has added a new child view controller, and has manipulated
the views of its two children to bring about this animated change of the interface.
The parent view controller itself, meanwhile, stays put — and so does its own view.
(In this example, the UINavigationController is the root view controller, and its
view is the root view.)

Presentation (modal views)
A view controller can present another view controller. The first view controller is
the presenting view controller (not the parent) of the second; the second view con‐

226 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

troller is the presented view controller (not a child) of the first. The second view
controller’s view replaces or covers the first view controller’s view.

The name for this mechanism and relationship between view controllers has
changed over time. In iOS 4 and before, the presented view controller was called a
modal view controller, and its view was a modal view; there is an analogy here to
the desktop, where a window is modal if it sits in front of, and denies the user access
to, the rest of the interface until it is explicitly dismissed. The terms presented view
controller and presented view are more recent and more general, but the term “mo‐
dal” still appears in the documentation and in the API.

A presented view controller’s view does indeed sometimes look rather like a desktop
modal view; for example, it might have a button such as Done or Save for dismissing
the view, the implication being that this is a place where the user must make a
decision and can do nothing else until the decision is made. However, as I’ll explain
later, that isn’t the only use of a presented view controller.

There is thus a hierarchy of view controllers. In a properly constructed iOS app, there
should be exactly one root view controller, and it is the only nonsubordinate view con‐
troller — it has neither a parent view controller nor a presenting view controller. Any
other view controller, if its view is to appear in the interface, must be a child view con‐
troller (of some parent view controller) or a presented view controller (of some pre‐
senting view controller).

At the same time, at any given moment, the actual views of the interface form a hierarchy
dictated by and parallel to some portion of the view controller hierarchy. Every view
visible in the interface owes its presence to a view controller’s view: either it is a view
controller’s view, or it’s a subview of a view controller’s view.

The place of a view controller’s view in the view hierarchy will most often be automat‐
ic. You might never need to put a UIViewController’s view into the view hierarchy
manually. You’ll manipulate view controllers; their hierarchy and their built-in func‐
tionality will construct and manage the view hierarchy for you.

For example, in Figure 6-1, we see two interface elements:

• The navigation bar, containing the TidBITS logo.
• The list of stories, which is actually a UITableView.

I will describe how all of this comes to appear on the screen through the view controller
hierarchy and the view hierarchy (Figure 6-2):

• The app’s root view controller is a UINavigationController; the UINavigation‐
Controller’s view, which is never seen in isolation, is the window’s sole immediate
subview (the root view). The navigation bar is a subview of that view.

View Controller Hierarchy | 227

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-2. The TidBITS News app’s initial view controller and view hierarchy

• The UINavigationController contains a second UIViewController — a parent–
child relationship. The child is a custom UIViewController subclass; its view is what
occupies the rest of the window, as another subview of the UINavigationController’s
view. That view is the UITableView. This architecture means that when the user
taps a story listing in the UITableView, the whole table will slide out, to be replaced
by the view of a different UIViewController, while the navigation bar stays.

In Figure 6-2, notice the word “automatic” in the two large right-pointing arrows as‐
sociating a view controller with its view. This is intended to tell you how the view con‐
troller’s view became part of the view hierarchy. The UINavigationController’s view
became the window’s subview automatically, by virtue of the UINavigationController
being the window’s rootViewController. The custom UIViewController’s view became
the UINavigationController’s view’s second subview automatically, by virtue of the
UIViewController being the UINavigationController’s child.

Sometimes, you’ll write your own parent view controller class. In that case, you will be
doing the kind of work that the UINavigationController was doing in that example, so
you will need to put a child view controller’s view into the interface manually, as a
subview (at some depth) of the parent view controller’s view.

228 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-3. A Latin flashcard app

I’ll illustrate with another app of mine (Figure 6-3). The interface displays a flashcard
containing information about a Latin word, along with a toolbar (the dark area at the
bottom) where the user can tap an icon to choose additional functionality.

Again, I will describe how the interface shown in Figure 6-3 comes to appear on the
screen through the view controller hierarchy and the view hierarchy (Figure 6-4). The
app actually contains over a thousand of these Latin words, and I want the user to be
able to navigate between flashcards to see the next or previous word; there is an excellent
built-in view controller for this purpose, the UIPageViewController. However, that’s just
for the card; the toolbar at the bottom stays there, so it can’t be inside the UIPageView‐
Controller’s view. Therefore:

• The app’s root view controller is my own UIViewController subclass, which I call
RootViewController; its view contains the toolbar, and is also to contain the
UIPageViewController’s view. My RootViewController’s view becomes the win‐
dow’s subview (the root view) automatically, by virtue of the RootViewController’s
being the window’s rootViewController.

• In order for the UIPageViewController’s view to appear in the interface, since it is
not the root view controller, it must be some view controller’s child. There is only
one possible parent — my RootViewController. It must function as a custom parent
view controller, with the UIPageViewController as its child. So I have made that
happen, and I have therefore also had to put the UIPageViewController’s view
manually into my RootViewController’s view.

View Controller Hierarchy | 229

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-4. The Latin flashcard app’s initial view controller and view hierarchy

• I hand the UIPageViewController an instance of my CardController class (another
UIViewController subclass) as its child, and the UIPageViewController displays
the CardController’s view automatically.

Finally, here’s an example of a presented view controller. My Latin flashcard app has a
second mode, where the user is drilled on a subset of the cards in random order; the
interface looks very much like the first mode’s interface (Figure 6-5), but it behaves
completely differently.

To implement this, I have another UIViewController subclass, DrillViewController; it
is structured very much like RootViewController. When the user is in drill mode, a
DrillViewController is being presented by the RootViewController, meaning that the
DrillViewController’s interface takes over the screen automatically: the DrillView‐
Controller’s view, with its whole subview hierarchy, replaces the RootViewController’s
view and its whole subview hierarchy (Figure 6-6). The RootViewController and its
hierarchy of child view controllers remains in place, but the corresponding view hier‐
archy is not in the interface; it will be returned to the interface automatically when we
leave drill mode (because the presented DrillViewController is dismissed), and the sit‐
uation will look like Figure 6-4 once again.

230 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-5. The Latin flashcard app, in drill mode

For any app that you write, you should be able to construct a diagram showing the
hierarchy of view controllers and charting how each view controller’s view fits into the
view hierarchy. The diagram should be similar to mine! The view hierarchy should run
neatly parallel with the view controller hierarchy; there should be no crossed wires or
orphan views. And every view controller’s view should be placed automatically into the
view hierarchy, unless you have written your own parent view controller.

Do not put a view controller’s view into the interface manually, un‐
less one of the following is the case:

• The view controller is the child of your custom parent view
controller. There is a complicated parent–child dance you have
to do. See “Container View Controllers” on page 315.

• You’re doing a custom transition animation. See “Custom Tran‐
sition Animations” on page 290.

View Controller Creation
A view controller is an instance like any other instance, and it is created like any other
instance — by instantiating its class. You might perform this instantiation in code; in
that case, you will of course have to initialize the instance properly as you create it. Here’s
an example from one of my own apps:

LessonListController* llc =
 [[LessonListController alloc] initWithTerms: self.data];
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:llc];

View Controller Creation | 231

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-6. The Latin flashcard app’s drill mode view controller and view hierarchy

In that example, LessonListController is my own UIViewController subclass, so I have
called its designated initializer, which I myself have defined; UINavigationController is
a built-in UIViewController subclass, and I have used one of its convenience initializers.

Alternatively, a view controller instance might come into existence through the loading
of a nib. To make it possible to get a view controller into the nib in the first place, view
controllers are included among the object types available through the Object library in
the nib editor.

It is legal, though in practice not common, for a .xib file to contain a view controller.
A .storyboard file, on the other hand, is chock full of view controllers; view controllers
are the basis of a storyboard’s structure, with each scene consisting of one top-level view

232 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

controller object. A view controller in a storyboard will go into a nib file in the built
app, and that nib file will be loaded when the view controller instance is needed.

A nib file that comes from a storyboard is typically loaded automatically. If the nib file
contains a view controller, this will happen under two primary circumstances:

• This nib file contains the storyboard’s initial view controller, and the app is currently
launching.

• This nib file contains a view controller that is the destination of a segue, and that
segue is being performed.

Nevertheless, despite this automatic behavior of the storyboard mechanism, a view
controller in a storyboard is an ordinary nib object and, if it is to be used in the running
app, will be instantiated through the loading of the nib just like any other nib object. I’ll
give full details on how a view controller is instantiated from a storyboard later in this
chapter.

Once a view controller comes into existence, it must be retained so that it will persist.
This will happen automatically when the view controller is assigned a place in the view
controller hierarchy that I described in the previous section. A view controller assigned
as a window’s rootViewController is retained by the window. A view controller as‐
signed as another view controller’s child is retained by that other view controller (the
parent). A presented view controller is retained by the presenting view controller. The
parent view controller or presenting view controller then takes ownership, and will
release the other view controller in good order when it is no longer needed.

Here’s an example, from one of my apps, of view controllers being instantiated and then
being retained by being placed into the view controller hierarchy:

LessonListController* llc =
 [[LessonListController alloc] initWithTerms: self.data];
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:llc];
[self presentViewController:nav animated:YES completion:nil];

That’s the same code I showed a moment ago, extended by one line. It comes from a
view controller class called RootViewController. In the first line, I instantiate Lesson‐
ListController. In the second line, I instantiate UINavigationController, and I assign the
LessonListController instance to the UINavigationController instance as its child; the
UINavigationController retains and takes ownership of the LessonListController
instance. In the third line, I present the UINavigationController instance on self, a
RootViewController instance; the RootViewController instance is the presenting view
controller, and it retains and takes ownership of the UINavigationController instance.
The RootViewController instance itself is the window’s rootViewController, and so
the view controller hierarchy is safely established.

View Controller Creation | 233

www.it-ebooks.info

http://www.it-ebooks.info/

View controllers can be used in other ways, and you must take care to perform correct
memory management in those situations as well. For example, passing a view controller
as the argument to UIPopoverController’s initWithContentViewController: causes
the UIPopoverController instance to retain the view controller instance, but there is
then the problem of who will retain the UIPopoverController — this will cause much
gnashing of teeth in Chapter 9.

All of this sounds straightforward, but it is worth dwelling on, because things can go
wrong. It is quite possible, if things are mismanaged, for a view controller’s view to get
into the interface while the view controller itself is allowed to go out of existence. This
must not be permitted. If it does, at the very least the view will apparently misbehave,
failing to perform its intended functionality, because that functionality is embodied by
the view controller, which no longer exists. (I’ve made this mistake, so I speak from
experience here.) If you instantiate a view controller in code, you should immediately
ask yourself who will be retaining this view controller.

If a view controller is instantiated automatically from a storyboard, on the other hand,
it will be retained automatically. That isn’t magic, however; it’s done in exactly the same
ways I just listed — by assigning it as the window’s rootViewController, or by making
it another view controller’s child view controller or presented view controller.

How a View Controller Gets Its View
Initially, when it first comes into existence, a view controller has no view. A view con‐
troller is a small, lightweight object; a view is a relatively heavyweight object, involving
interface elements that occupy memory. Therefore, a view controller postpones ob‐
taining its view until it has to do so, namely, when it is asked for the value of its view
property. At that moment, if its view property is nil, the view controller sets about
obtaining its view. (We say that a view controller loads its view lazily.) Typically, this
happens because it is time to put the view controller’s view into the interface.

In working with a newly instantiated view controller, be careful not to refer to its view
property if you don’t need to, since this will trigger the view controller’s obtaining its
view prematurely. To learn whether a view controller has a view without causing it to
load its view, call isViewLoaded. (As usual, I speak from experience here. I once made
the mistake of mentioning a UIViewController’s view in its awakeFromNib and caused
the view to be loaded twice.)

As soon as a view controller has its view, its viewDidLoad method is called. If this view
controller is an instance of your own UIViewController subclass, viewDidLoad is your
opportunity to modify the contents of this view — to populate it with subviews, to tweak
the subviews it already has, and so forth — as well as to perform other initializations of
the view controller consonant with its acquisition of a view. The view property is now
pointing to the view, so it is safe to refer to self.view. Bear in mind, however, that the

234 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

view may not yet be part of the interface! In fact, it almost certainly is not;
self.view.window will be nil. Thus, for example, you cannot rely on the dimensions of
the view at this point to be the dimensions that the view will assume when it becomes
visible in the interface. Performing certain customizations prematurely in viewDid-
Load is a common beginner mistake. I’ll have more to say about this later in the chapter.

Before viewDidLoad will be called, however, the view controller must obtain its view.
The question of where and how the view controller will get its view is often crucial. In
some cases, to be sure, you won’t care about this; in particular, when a view controller
is an instance of a built-in UIViewController subclass such as UINavigationController
or UITabBarController, its view is out of your hands — you might never even have cause
to refer to it over the entire course of your app’s lifetime — and you simply trust that
the view controller will somehow generate its view. But when the view controller is of
your own subclass of UIViewController, and when you yourself will design or modify
its view, it becomes essential to understand the process whereby a view controller gets
its view.

This process is not difficult to understand, but it is rather elaborate, because there are
multiple possibilities. Most important, this process is not magic. Yet it quite possibly
causes more confusion to beginners than any other matter connected with iOS pro‐
gramming. Therefore, I will explain it in detail. The more you know about the details
of how a view controller gets its view, the deeper and clearer will be your understanding
of the entire workings of your app, its view controllers, its .storyboard and .xib files, and
so on.

The alternatives are as follows:

• The view may be created in the view controller’s own code, manually.
• The view may be created as an empty generic view, automatically.
• The view may be created in its own separate nib.
• The view may be created in a nib, which is the same nib from which the view

controller itself is instantiated.

Manual View
To supply a UIViewController’s view manually, in code, implement its loadView meth‐
od. Your job here is to obtain an instance of UIView (or a subclass of UIView) and assign
it to self.view. You must not call super (for reasons that I’ll make clear later on).

Do not confuse loadView with viewDidLoad. Yes, I’ve made this mis‐
take myself. I confess! loadView creates the view; viewDidLoad is called
afterward.

How a View Controller Gets Its View | 235

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s try it. Start with a project made (with Use Core Data unchecked, of course) from
the Empty Application project template (not the Single View Application template; our
purpose here is to generate the entire interface in code, ourselves):

1. We need a UIViewController subclass, so choose File → New → File; specify an iOS
Cocoa Touch Objective-C class. Click Next.

2. Name the class RootViewController, and specify that it is to be a UIViewController
subclass. Uncheck the XIB checkbox. Click Next.

3. Confirm that we’re saving into the appropriate folder and group, and that these files
will be part of the app target. Click Create.

We now have a RootViewController class, and we proceed to edit its code. In Root‐
ViewController.m, we’ll implement loadView. To convince ourselves that the example
is working correctly, we’ll give the view an identifiable color, and we’ll put some interface
inside it, namely a “Hello, World” label:

- (void) loadView {
 UIView* v = [UIView new];
 v.backgroundColor = [UIColor greenColor];
 self.view = v;
 UILabel* label = [UILabel new];
 [v addSubview:label];
 label.text = @"Hello, World!";
 label.autoresizingMask = (
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin
);
 [label sizeToFit];
 label.center = CGPointMake(CGRectGetMidX(v.bounds),
 CGRectGetMidY(v.bounds));
 label.frame = CGRectIntegral(label.frame);
}

We have not yet given a RootViewController instance a place in our view controller
hierarchy — in fact, we have no RootViewController instance (and no view controller
hierarchy). Let’s make one. To do so, we turn to AppDelegate.m. (It’s a little frustrating
having to set things up in two different places before our labors can bear any visible
fruit, but such is life.)

In AppDelegate.m, add the line #import "RootViewController.h" at the start, so that
our code can speak of the RootViewController class. Then modify the implementation
of application:didFinishLaunchingWithOptions: (Appendix A) to create a Root‐
ViewController instance and make it the window’s rootViewController. Observe that
we must do this after our window property actually has a UIWindow as its value! That’s

236 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

why the template’s comment, “Override point for customization after application
launch,” comes after the line that creates the UIWindow:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
RootViewController* theRVC = [RootViewController new];
self.window.rootViewController = theRVC;
// ... and the rest is as in the template

Build and run the app. Sure enough, there’s our green background and our “Hello,
world” label!

We have proved that we can create a view controller and get its view into the interface.
But perhaps you’re not persuaded that the view controller is managing that view in an
interesting way. To prove this, let’s rotate our interface. While our app is running in the
simulator, choose Hardware → Rotate Left or Hardware → Rotate Right. Observe that
both the app, as indicated by the orientation of the status bar, and the view, as indicated
by the orientation of the “Hello, World” label, automatically rotate to compensate; that’s
the work of the view controller. We were careful to give the label an appropriate
autoresizingMask, to keep it centered in the view even when the view’s bounds are
changed to fit the rotated window.

When we created our view controller’s view (self.view), we never gave it a reasonable
frame. This is because we are relying on someone else to frame the view appropriately.
In this case, the “someone else” is the window, which responds to having its rootView-
Controller property set to a view controller by framing the view controller’s view ap‐
propriately as the root view before putting it into the window as a subview. In general,
it is the responsibility of whoever puts a view controller’s view into the interface to give
the view the correct frame — and this will never be the view controller itself. Indeed,
the size of a view controller’s view may be changed as it is placed into the interface, and
you must keep in mind, as you design your view controller’s view and its subviews, the
possibility that this will happen.

Generic Automatic View
We should distinguish between creating a view and populating it. The preceding ex‐
ample fails to draw this distinction. The lines that create our RootViewController’s view
are merely these:

UIView* v = [UIView new];
self.view = v;

Everything else configures and populates the view, turning it green and putting a label
in it. A more appropriate place to populate a view controller’s view is in its viewDid-
Load implementation, which, as I’ve already mentioned, is called after the view exists
(so that it can be referred to as self.view). We could therefore rewrite the preceding
example like this:

How a View Controller Gets Its View | 237

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) loadView {
 UIView* v = [UIView new];
 self.view = v;
}
- (void)viewDidLoad {
 [super viewDidLoad];
 UIView* v = self.view;
 v.backgroundColor = [UIColor greenColor];
 UILabel* label = [UILabel new];
 [v addSubview:label];
 label.text = @"Hello, World!";
 label.autoresizingMask = (
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin
);
 [label sizeToFit];
 label.center = CGPointMake(CGRectGetMidX(v.bounds),
 CGRectGetMidY(v.bounds));
 label.frame = CGRectIntegral(label.frame);
}

But if we’re going to do that, we can go even further and remove our implementation
of loadView altogether! If you don’t implement loadView, and if no view is supplied in
any other way, then UIViewController’s implementation of loadView will do exactly
what we are already doing in code: it creates a generic UIView object and assigns it to
self.view. If we needed our view controller’s view to be a particular UIView subclass,
that wouldn’t be acceptable; but in this case, our view controller’s view is a generic
UIView object, so it is acceptable. Comment out or delete the entire loadView imple‐
mentation from the preceding code, and build and run the app; our example still works!

View in a Separate Nib
A view controller’s view can be supplied from a nib file. This approach gives you the
convenience of configuring and populating the view by designing it graphically in the
nib editor interface.

When the nib loads, the view controller instance will already have been created, and it
will serve as the nib’s owner. The view controller has a view property; the view control‐
ler’s representative in the nib has a view outlet, which must point to the view object in
the nib. Thus, when the nib loads, the view controller obtains its view through the nib-
loading mechanism.

I’ll illustrate by modifying the preceding example to use a .xib file. (I’ll deal later with
the use of a .storyboard file; knowing first how the process works for a .xib file will greatly
enhance your understanding of how it works for a .storyboard file.)

238 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

In a .xib file, the owner’s representative is the File’s Owner proxy object. Therefore,
a .xib file that is to serve as the source of a view controller’s view must be a .xib file in
which the following two things are true:

• The File’s Owner class must be set to a UIViewController subclass (depending on
the class of the view controller whose view this will be).

• The File’s Owner proxy now has a view outlet, corresponding to a UIView‐
Controller’s view property. This outlet must be connected to the view.

Let’s try it. We begin with the example we’ve already developed, with our RootView‐
Controller class. Delete the implementation of loadView and viewDidLoad from Root‐
ViewController.m, because we want the view to come from a nib and we’re going to
populate it in the nib. Then:

1. Choose File → New → File and specify an iOS User Interface View document. This
will be a .xib file containing a UIView object. Click Next.

2. In the Device Family pop-up menu, choose iPhone. Click Next.
3. Name the file MyNib (or MyNib.xib). Confirm the appropriate folder and group,

and make very sure that the file will be part of the app target. Click Create.
4. Edit MyNib.xib. Prepare it in the way I described a moment ago:

a. Set the File’s Owner class to RootViewController (in the Identity inspector).
b. Connect the File’s Owner view outlet to the View object.

5. Design the view. To make it clear that this is not the same view we were creating
previously, perhaps you should give the view a red background color (in the At‐
tributes inspector). Drag a UILabel into the middle of the view and give it some
text, such as “Hello, World!”

We have designed the nib, but we have done nothing as yet to associate this nib with
our RootViewController instance. To do so, we must once again return to App‐
Delegate.m, where we create our RootViewController instance:

RootViewController* theRVC = [RootViewController new];
self.window.rootViewController = theRVC;

We need to modify this code so that our RootViewController instance, theRVC, is aware
of this nib file, MyNib.xib, as its own nib file. That way, when theRVC needs to acquire
its view, it will load that nib file with itself as owner, thus ending up with the correct
view as its own view property. A UIViewController has a nibName property for this
purpose. However, we are not allowed to set its nibName directly (it is read-only). Instead,
as we instantiate the view controller, we must use the designated initializer, initWith-
NibName:bundle:, like this:

How a View Controller Gets Its View | 239

www.it-ebooks.info

http://www.it-ebooks.info/

RootViewController* theRVC =
 [[RootViewController alloc] initWithNibName:@"MyNib" bundle:nil];
self.window.rootViewController = theRVC;

(The nil argument to the bundle: parameter specifies the main bundle, which is almost
always what you want.)

To prove that this works, build and run. The red background appears! Our view is
loading from the nib.

Now I’m going to show you a shortcut based on the name of the nib. It turns out that if
the nib name passed to initWithNibName:bundle: is nil, a nib will be sought automat‐
ically with the same name as the view controller’s class. Moreover, UIViewController’s
init calls initWithNibName:bundle:, passing nil for both arguments. This means, in
effect, that we can return to using new (or init) to initialize the view controller, provided
that the nib file has a name that matches the name of the view controller class.

Let’s try it. Rename MyNib.xib to RootViewController.xib, and change the code that
instantiates and initializes our RootViewController back to what it was before, like this:

RootViewController* theRVC = [RootViewController new];
self.window.rootViewController = theRVC;

Build and run. The project still works!

There’s an additional aspect to this shortcut based on the name of the nib. It seems
ridiculous that we should end up with a nib that has “Controller” in its name merely
because our view controller, as is so often the case, has “Controller” in its name. A nib,
after all, is not a controller. It turns out that the runtime, in looking for a view controller’s
corresponding nib, will in fact try stripping “Controller” off the end of the view con‐
troller class’s name. (This feature is undocumented, but it works reliably and I can’t
believe it would ever be retracted.) Thus, we can name our nib file RootView.xib instead
of RootViewController.xib, and it will still be properly associated with our RootView‐
Controller instance when we initialize that instance using init (or new).

When you create the files for a UIViewController subclass, the Xcode dialog has a XIB
checkbox (which we unchecked earlier) offering to create an eponymous .xib file at the
same time. If you accept that option, the nib is created with the File’s Owner’s class
already set to the view controller’s class and with its view outlet already hooked up to
the view. This automatically created .xib file does not have “Controller” stripped off the
end of its name; you can rename it manually later (I generally do) if the default name
bothers you.

Another convention involving the nib name has to do with the rules for loading re‐
sources by name generally. I mentioned in Chapter 2 that when an image file is sought
by calling imageNamed: or pathForResource:ofType:, an image file with the specified
name but extended by the suffix ~ipad will be used, if there is one, when the app runs
on an iPad. The same rule applies to nib files. So, for example, a nib file named

240 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

RootViewController~ipad.xib will be loaded on an iPad when a nib named @"RootView-
Controller" is sought, regardless of whether it is specified explicitly (as the first argu‐
ment to initWithNibName:bundle:) or implicitly (because the view controller class is
RootViewController, and the first argument to initWithNibName:bundle: is nil). This
principle can greatly simplify your life when you’re writing a universal app.

Finally, let’s be specific about the place of this way of obtaining a view controller’s view
among the other of ways of obtaining it:

1. When the view controller first decides that it needs its view, loadView is always
called.

2. If we override loadView, we supply and set the view in code, and we do not call
super. Therefore the process of seeking a view comes to an end.

3. If we don’t override loadView, UIViewController’s built-in default implementation
of loadView is used. It is this default implementation of loadView that loads the
view controller’s associated nib (the one specified by its nibName, or, if that’s nil, the
one whose name matches the name of the view controller’s class).
That, indeed, is why, if we do override loadView, we must not call super — that
would cause us to get both behaviors!

4. If the previous steps all fail — we don’t override loadView, and there is no associated
nib — UIViewController’s default implementation of loadView proceeds to create
a generic UIView as discussed in the previous section.

It follows from what I’ve just said if a view controller’s view is to come
from a nib, you should not implement loadView. Once again, I’ve made
this mistake. The results were not pretty.

Nib-Instantiated View Controller
As I mentioned earlier, a view controller can be a nib object, to be instantiated through
the loading of the nib. In the nib editor, the Object library contains a View Controller
(UIViewController) as well as several built-in UIViewController subclasses. Any of
these can be dragged into the nib. This is the standard way of creating a scene in
a .storyboard file; it can also be used with a .xib file, but this is rarely done.

When a view controller has been instantiated from a nib, and when it comes eventually
to obtain its view, all the ways I’ve already described whereby a view controller can obtain
its view still apply.

If you’d like to try it, start over with a new project from the Empty Application template,
and give it a .xib file containing a view controller, as follows:

How a View Controller Gets Its View | 241

www.it-ebooks.info

http://www.it-ebooks.info/

1. Choose File → New → File and ask for an iOS User Interface Empty document.
Press Next.

2. Set the device family to iPhone. Press Next.
3. Name the new file Main.xib, make sure it’s being saved into the right place and that

it is part of the app target, and click Create.
4. Edit Main.xib. Drag a plain vanilla View Controller object into the canvas.

In AppDelegate.m, we must now arrange to load Main.xib and extract the view controller
instance created from the nib object we just put into the nib, making that view controller
our app’s root view controller. Here’s one very simple way to do that:

NSArray* arr =
 [[UINib nibWithNibName:@"Main" bundle:nil]
 instantiateWithOwner:nil options:nil];
self.window.rootViewController = arr[0];

You can now proceed, if you like, to experiment with various ways of helping this view
controller get its view. At the moment it is a plain UIViewController instance. Let’s make
it a class of our own:

1. Give the project a RootViewController class (a UIViewController subclass).
2. In Main.xib, select the view controller object and use its Identity inspector to set its

class to RootViewController.

Now you can implement loadView in RootViewController, or implement viewDid-
Load but not loadView. Alternatively, you can add another nib called RootView‐
Controller.xib (or RootView.xib) and configure it properly, and sure enough, the view
controller instantiated from Main.xib will find that nib, load it, and get its view from it.
There is also a way to specify in the nib editor the name of the nib that this view controller
should use to find its nib: select the view controller in its nib, and enter the name of the
view’s nib in the NIB Name field in its Attributes inspector. (This is the equivalent of
specifying a nib name when you call initWithNibName:bundle:).

When a nib contains a view controller, there is an additional way for it to obtain its
view: provide the view in the same nib as the view controller. In fact, using the nib editor
we can design the interface in the view controller itself. You’ve probably noticed that the
view controller, as portrayed in the canvas in the nib editor, is represented by a rectangle
the size of an iPhone screen, even though a view controller is not a view. This is intended
to accommodate the view controller’s view!

Let’s try it:

1. If you’ve been experimenting with the code in RootViewController.m, remove any
implementation of loadView or viewDidLoad from it.

242 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

2. In Main.xib, find the plain vanilla View object in the Object library and drag it into
the view controller object in the canvas. This view object automatically becomes this
view controller’s view, and is drawn inside it in the canvas. Thus, you can now add
further interface objects to this view.

Build and run. The interface you designed inside the view object inside the view con‐
troller object in Main.xib appears in the running app. (This way of supplying a view
controller’s view takes priority over looking for the view in another nib, so if you also
created a RootViewController.xib or RootView.xib as the source of this view controller’s
view, it is ignored.)

Like any other nib object, when a view controller is instantiated from
a nib, its designated initializer in your code (initWithNib-
Name:bundle:) is not called. If your UIViewController subclass code
needs access to the view controller instance very early in its lifetime,
it can override initWithCoder: or awakeFromNib.

Storyboard-Instantiated View Controller
If you’ve ever used a storyboard, it will not have escaped your attention that what we
constructed in Main.xib, in the previous section — a view controller directly containing
its view — looks a lot like a scene in a storyboard. That’s because, by default, this is the
structure of a scene in a storyboard.

Each scene in a .storyboard file is rather like a .xib file containing a view controller nib
object. Each scene’s view controller is instantiated only when needed; the underlying
mechanism is that each scene’s view controller (or the view controllers of multiple scenes
with a parent–child relationship) is stored in a nib file in the built app, inside
the .storyboardc bundle, and this nib file is loaded on demand and the view controller
is instantiated from it, as we did in the previous section.

Moreover, by default, the view controller in a scene in a .storyboard file comes equipped
with a view, which appears inside it in the canvas. You design the view and its subviews
in the nib editor. When the app is built, each view controller’s view goes into a separate
nib file, inside the .storyboardc bundle, and the view controller, once instantiated, loads
its view from that nib file lazily, exactly as we did earlier.

In this way, a storyboard embodies the very same mechanisms we’ve already explored
through .xib files. Even though a storyboard may appear, in the nib editor, to contain
many view controllers and their main views, each view controller and each main view
is loaded from its own nib in the running app, on demand, when needed, just as if we
had configured the project with multiple .xib files. Thus a storyboard combines the
memory management advantages of .xib files, which are not loaded until they’re needed,

How a View Controller Gets Its View | 243

www.it-ebooks.info

http://www.it-ebooks.info/

and can be loaded multiple times to give additional instances of the same nib objects,
with the convenience of your being able to see and edit a lot of your app’s interface
simultaneously in one place.

Furthermore, you don’t have to use the default scene structure in a storyboard. The
default is that a view controller in a storyboard contains its view — but you can delete
it. If you do, then that view controller will obtain its view in any of the other ways we’ve
already discussed: by an implementation of loadView in the code of that view controller
class, or by loading a nib file that comes from a .xib with the same name as this view
controller’s class, or even (if all of that fails) by creating a generic UIView.

(However, there’s no way in a .storyboard file to specify as the source of a view controller’s
view a .xib file with a different name from the view controller’s class. The nib editor
lacks the NIB Name field in a view controller’s Attributes inspector when you’re working
in a storyboard.)

The Xcode 5 app templates (with the exception of the Empty Application template) start
with a single main storyboard called Main.storyboard, which is designated the app’s
main storyboard by the Info.plist key “Main storyboard file base name” (UIMain-
StoryboardFile). Therefore, as the app launches, UIApplicationMain gets a reference
to this storyboard (by calling storyboardWithName:bundle:), instantiates its initial
view controller (by calling instantiateInitialViewController), and makes that in‐
stance the window’s rootViewController. If you edit the storyboard to contain segues,
then when one of those segues is performed — which can be configured to happen
automatically in response to the user tapping an interface object — the destination view
controller is automatically instantiated. In this way it is perfectly possible for a single
storyboard to be the source of every view controller that your app will ever instantiate,
and for all of that instantiation to take place automatically.

That’s convenient for beginners, but it can also be restrictive. You might have a feeling
that your app must have a main storyboard, and that every view controller must be
instantiated from it automatically. That’s not the case. It is possible to use storyboards
in a much more agile, intentional way, much as one would use .xib files. For example,
your app can have multiple storyboards. Why might that be useful? Well, since auto‐
layout is configured at the file level — either an entire .storyboard file uses autolayout
or none of it does — multiple storyboards constitute a very good way to use autolayout
selectively in only certain areas of your interface. Or you might use an ancillary story‐
board as a source of just one view controller, a more convenient and memory-efficient
way to do what we did with a view controller in a .xib file earlier.

I’ll summarize the ways in which a view controller can be instantiated from a storyboard.
You can get a reference to a storyboard either by calling the UIStoryboard class method
storyboardWithName:bundle: or through the storyboard property of a view controller
that has already been instantiated from that storyboard. With a storyboard instance in
hand, a view controller can be instantiated from that storyboard in one of four ways:

244 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

• At most one view controller in the storyboard is designated the storyboard’s initial
view controller. To instantiate that view controller, call instantiateInitialView-
Controller. The instance is returned.

• A view controller in a storyboard can be assigned an arbitrary string identifier; this
is its Storyboard ID in the Identity inspector. To instantiate that view controller, call
instantiateViewControllerWithIdentifier:. The instance is returned.

• A parent view controller in a storyboard may have immediate children, such as a
UINavigationController and its initial child view controller. The nib editor will
show a relationship connection between them. When the parent is instantiated (the
source of the relationship), the initial children (the destination of the relationship)
are instantiated automatically.

• A view controller in a storyboard may be (or contain) the source of a segue whose
destination is a future child view controller or a future presented view controller.
When the segue is triggered and performed, it instantiates the new view controller.

I’ll go into much greater detail about storyboards and segues later in this chapter.

View Resizing and the Status Bar
As I’ve already mentioned, a view controller’s main view may be resized as it is placed
into the interface, in order to fit into that interface correctly. You will want to design
your main view so as to accommodate such resizing. The same view may end up at
different sizes under different circumstances:

• An app’s interface may be rotated to compensate for device rotation, effectively
swapping its height and width measurements. (I’ll discuss rotation in detail in the
next section.)

• An iPhone app may run on a device with either of two screen heights — 480 points
or 568 points.

• Some built-in parent view controllers may resize a child view controller’s main view
differently depending on what other views are present. In particular:
— A navigation controller (UINavigationController) may resize a child view con‐

troller’s view differently depending on whether it (the navigation controller) is
also displaying a navigation bar at the top or a toolbar at the bottom (or both).

— A tab bar controller (UITabBarController) may resize a child view controller’s
view to accommodate the tab bar at the bottom.

• An app may be capable of running on multiple systems; the rules for how main
views are automatically resized are different in iOS 7 than in iOS 6 and before.

View Resizing and the Status Bar | 245

www.it-ebooks.info

http://www.it-ebooks.info/

In the nib editor, the size at which a view controller’s main view is shown may not be
the size it will end up at when the app runs and the view is placed into the interface. On
the other hand, the nib editor gives you tools to simulate a variety of specific sizes that
your view may assume:

• The Attributes inspector contains five Simulated Metrics pop-up menus letting you
set the view’s display size to match the taller or shorter iPhone screen, the rotation
of the app, and the presence of top bars and bottom bars. In a .storyboard file, this
is the Attributes inspector for a view controller; in a .xib file, it appears also for a
top-level view (since this might be intended as a view controller’s main view).

• New in Xcode 5, when you summon an assistant pane, if the main editor pane is
the nib editor, you can switch the assistant pane to Preview mode (through the
Tracking menu, the first component in the assistant pane’s jump bar, Control-4).
Buttons at the lower right let you toggle between “iOS 7.0 and Later” vs. “iOS 6.1
and Earlier”, between portrait and landscape orientation, and between the taller
and shorter iPhone screen.

These, however, are merely ways of experimenting with possible ultimate sizes that your
view may assume. The size at which a view controller’s main view is portrayed in the
nib has no effect on the size it will assume at runtime. The only way to discover the view’s
true size at runtime is to run the app.

In iOS 7, the rules have changed, in comparison to earlier systems, for how a view
controller’s view is resized to fit the screen as a whole (when, for example, it is the root
view controller’s view) or to fit into a navigation controller’s view or a tab bar controller’s
view:
The status bar is transparent

The iOS 7 status bar is transparent, so that the region of a view behind it is visible
through it. The root view, and any other fullscreen view such as a presented view
controller’s view, occupies the entire window, including the status bar area, the top
20 pixels of the view being visible behind the transparent status bar. You’ll want to
design your view so that its top doesn’t contain any interface objects that will be
overlapped by the status bar.

(In iOS 6 and before, the status bar was usually opaque, and a view was usually sized
smaller than the screen, so that the status bar would not overlap it, by setting its
frame to [UIScreen mainScreen].applicationFrame. Alternatively, a view con‐
troller’s view could be fullscreen, and this was desirable in cases where the status
bar was translucent or hidden, but you had to take explicit steps to achieve this
result, such as setting the view controller’s wantsFullScreenLayout to YES. In iOS
7, wantsFullScreenLayout is deprecated, and all apps are fullscreen apps.)

246 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Top and bottom bars may be underlapped
In iOS 7, top and bottom bars (navigation bar, tab bar, toolbar) can be translu‐
cent. When they are, the main view displayed within the view of a navigation con‐
troller or tab bar controller, by default, is extended behind the translucent bar, un‐
derlapping it. (In iOS 6, this never happened; the top of the view was the bottom of
the top bar, and bottom of the view was the top of the bottom bar.)

You can change this behavior for your UIViewController whose parent is a navi‐
gation controller or tab bar controller using two UIViewController properties:
edgesForExtendedLayout

A UIRectEdge. The default is UIRectEdgeAll, meaning that this view control‐
ler’s view will underlap a translucent top bar or a translucent bottom bar. The
other extreme is UIRectEdgeNone, meaning that this view controller’s view
won’t underlap top and bottom bars, just as on iOS 6 and before. Other possi‐
bilities are UIRectEdgeTop (underlap top bars only) and UIRectEdgeBottom
(underlap bottom bars only).

Note that edgesForExtendedLayout has nothing to do with the status bar. On
iOS 7, the status bar is transparent, all apps are fullscreen apps, and that’s that;
you can’t change this behavior.

extendedLayoutIncludesOpaqueBars

If YES, then if edgesForExtendedLayout permits underlapping of bars, those
bars will be underlapped even if they are opaque. The default is NO, meaning
that only translucent bars are underlapped.

It is possible to set these two extendedLayout properties using the
three Extend Edges checkboxes in a view controller’s Attributes in‐
spector. However, if there are already subviews in this view control‐
ler’s main view, changing the checkboxes may cause those subviews to
be repositioned unpredictably. I recommend changing these proper‐
ties in code instead; a view controller’s viewDidLoad is a good place.

If you’re using autolayout, a view controller can help you position subviews within its
main view in a way that compensates for changes in the size of the view. The view
controller supplies two properties, its topLayoutGuide and its bottomLayoutGuide, to
which you can form constraints. Typically, you’ll pin a view by its top to the topLayout-
Guide, or you’ll pin a view by its bottom to the bottomLayoutGuide. The position of
these guide objects moves automatically at runtime to reflect the view’s environment:

View Resizing and the Status Bar | 247

www.it-ebooks.info

http://www.it-ebooks.info/

topLayoutGuide

The topLayoutGuide is positioned as follows:

• If there is a status bar and no top bar, the topLayoutGuide is positioned at the
bottom of the status bar.

• If there is a top bar, the topLayoutGuide is positioned at the bottom of the top
bar.

• If there is no top bar and no status bar, the topLayoutGuide is positioned at
the top of the view.

bottomLayoutGuide

The bottomLayoutGuide is positioned as follows:

• If there is a bottom bar, the bottomLayoutGuide is positioned at the top of the
bottom bar.

• If there is no bottom bar, the bottomLayoutGuide is positioned at the bottom
of the view.

Thus, by pinning your subviews to the guides, you can achieve consistent results, re‐
gardless of whether or not the main view underlaps a bar (and regardless of whether or
not the status bar is present).

You can create constraints involving the topLayoutGuide and the bottomLayout-
Guide in the nib editor or in code:

• In the nib editor, if a view controller is a nib object (not a proxy object), it has Top
Layout Guide and Bottom Layout Guide objects in the document outline, and you
can control-drag to form constraints to them. In fact, if a view is the main view
inside a view controller in the nib, you can’t form a constraint between a subview
and the top or bottom of the main view; you must form that constraint to the Top
Layout Guide or the Bottom Layout Guide.

• In code, cast the view controller’s topLayoutGuide or bottomLayoutGuide to a UI‐
View and use that UIView as you form a constraint, as I demonstrated in “Top and
Bottom Layout Guides” on page 42.

A layout guide’s distance from the corresponding edge of the view controller’s main
view is reported by its length property. Note that viewDidLoad is too early to obtain a
meaningful value; the earliest coherent opportunity is probably viewWillLayout-
Subviews (see on rotation and layout events, in the next section).

The job of determining the look of the status bar is also vested, by default, in view
controllers — in the root view controller in the first instance. A view controller can
override these methods:

248 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Consistent Layout Across Systems
This book concentrates on iOS 7 and isn’t concerned with backward compatibility, but
the changes in how views are resized is the cause of much confusion. So here are some
hints on how to lay out the subviews of a view controller’s main view so as to achieve
consistent results between iOS 6 and iOS 7.

If you’re using autolayout and creating constraints in the nib editor, pin the top of a
subview to the top layout guide (and possibly the bottom of a subview to the bottom
layout guide) and lay everything else out in relation to those. If you create these con‐
straints in the nib, they will work on iOS 6, even though iOS 6 has no top layout guide
or bottom layout guide: on iOS 6, the guides are expressed as views with zero height at
the top and bottom of the main view, so the outcome is the same as if you had pinned
your subviews to the top or bottom of the main view — which, given the way the main
view is resized on iOS 6, gives exactly the same result as the guides will give in iOS 7.

If you’re using autolayout and creating constraints in code, use conditional code to pin
to a layout guide in iOS 7 and to the top or bottom of the main view in iOS 6.

If you’re not using autolayout and you’re laying out subviews in the nib editor, use the
iOS 6/7 Deltas settings to compensate for the difference in the resizing behavior of the
earlier and later systems. Typically, this will mean setting a ΔY of -20, as I suggested in
Chapter 1, to compensate for the fact that iOS 7 adds 20 pixels of height to the main
view in order to underlap the status bar.

If you’re not using autolayout and you’re laying out subviews in code, you’ll have to use
conditional code to perform that same compensation.

Also, if you’re not using autolayout, you can use conditional code on iOS 7 to set your
view controller’s edgesForExtendedLayout to UIRectEdgeNone, to make the resizing
behavior of the view controller’s view inside a navigation controller or tab bar controller’s
view the same on iOS 7 as on iOS 6 — namely, the view doesn’t underlap top bars and
bottom bars. (If you do this, though, you sacrifice the cool look of your view underlap‐
ping a transparent bar.)

preferredStatusBarStyle

Your choices are UIStatusBarStyleDefault and UIStatusBarStyleLight-

Content, meaning dark text and light text, respectively. Use light text for legibility
if the view content underlapping the status bar is dark.

prefersStatusBarHidden

Return YES to make the status bar invisible.

View Resizing and the Status Bar | 249

www.it-ebooks.info

http://www.it-ebooks.info/

childViewControllerForStatusBarStyle
childViewControllerForStatusBarHidden

Used to delegate the decision on the status bar style or visibility to a child view
controller’s preferredStatusBarStyle or prefersStatusBarHidden instead of
this view controller. For example, a navigation controller implements these methods
to allow your view controller to decide the status bar style and visibility when its
view becomes visible in the navigation controller’s view.

You never call any of those methods yourself; they are called automatically when the
view controller situation changes. If you want them to be called immediately, because
they are not being called when you need them to be, or because the situation has changed
and a call to one of them would now give a different answer, call the view controller
instance method setNeedsStatusBarAppearanceUpdate on your view controller. If this
call is inside an animation block, the animation of the change in the look of the status
bar will have the specified duration, thus matching the other animations that are also
taking place. The character of the animation from a visible to an invisible status bar (and
vice versa) is set by your view controller’s implementation of preferredStatusBar-
UpdateAnimation; you can return one of these values:

• UIStatusBarAnimationNone

• UIStatusBarAnimationFade

• UIStatusBarAnimationSlide

This entire view controller–based mechanism for determining the look of the status bar
is new in iOS 7. Previously, the status bar was controlled by calls to various UIApplication
methods. If your app is to be backward-compatible with iOS 6 or before, you may want
to opt out of the new mechanism and use the old UIApplication calls instead. To do so,
set the Info.plist key “View controller–based status bar appearance” (UIViewController-
BasedStatusBarAppearance) to NO. In that case, you can also hide the status bar ini‐
tially by setting the Info.plist key “Status bar is initially hidden” (UIStatusBarHidden)
to YES.

When you toggle the visibility of the status bar, the top layout guide
will move up or down by 20 points. If your main view has subviews
with constraints to the top layout guide, those subviews will move. If
this happens when the main view is visible, the user will see the sub‐
views move (as a jump). This is probably not what you want.

The resizing of the view as it is placed into the interface takes place after viewDidLoad.
For this reason, you should not use viewDidLoad to make any changes whose validity
depends upon the final dimensions of the view. A better location for such changes is
viewWillAppear: or viewDidAppear:; even better, perhaps (because they have to do

250 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

with layout) are viewWillLayoutSubviews and viewDidLayoutSubviews. However,
viewDidLoad has the advantage of being called only once during the lifetime of a view
controller; the others can be called any number of times, so if you need to perform one-
time initializations in any of them, use a BOOL instance variable flag to ensure that your
code runs only the first time:

-(void) viewWillLayoutSubviews {
 if (!self.didSetup) {
 self.didSetup = YES;
 // ... perform one-time setup here ...
 }
}

If you have older app code in which you were manually setting the
frame of a view controller’s view, in code, to [[UIScreen main-

Screen] applicationFrame] in iOS 6 or before, do not do that in iOS
7. Delete that line, or use conditional code. In iOS 7, allow the run‐
time to resize your view controller’s view automatically.

Rotation
A major part of a view controller’s job is to know how to rotate the view. The user will
experience this as rotation of the app itself: the top of the app shifts so that it is oriented
against a different side of the device’s display. There are two complementary uses for
rotation:
Compensatory rotation

The app rotates to compensate for the orientation of the device, so that the app
appears right way up with respect to how the user is holding the device. The chal‐
lenge of compensatory rotation stems, quite simply, from the fact that the screen is
not square. This means that if the app rotates 90 degrees, the interface no longer
fits the screen, and must be changed to compensate.

Forced rotation
The app rotates when a particular view appears in the interface, or when the app
launches, to indicate that the user needs to rotate the device in order to view the
app the right way up. This is typically because the interface has been specifically
designed, in the face of the fact that the screen is not square, to appear in one
particular mode (portrait or landscape).

In the case of the iPhone, no law says that your app has to perform compensatory
rotation. Most of my iPhone apps do not do so; indeed, I have no compunction about
doing just the opposite, forcing the user to rotate the device differently depending on
what view is being displayed. The iPhone is small and easily reoriented with a twist of
the user’s wrist, and it has a natural right way up, especially because it’s a phone. (The

Rotation | 251

www.it-ebooks.info

http://www.it-ebooks.info/

iPod touch isn’t a phone, but the same argument works by analogy.) On the other hand,
Apple would prefer iPad apps to rotate to at least two opposed orientations (such as
landscape with the button on the right and landscape with the button on the left), and
preferably to all four possible orientations, so that the user isn’t restricted in how the
device is held.

It’s fairly trivial to let your app rotate to two opposed orientations, because once the app
is set up to work in one of them, it can work with no change in the other. But allowing
a single interface to rotate between two orientations that are 90 degrees apart is trickier,
because its dimensions must change — roughly speaking, its height and width are
swapped — and this may require a change of layout and might even call for more sub‐
stantial alterations, such as removal or addition of part of the interface. A good example
is the behavior of Apple’s Mail app on the iPad: in landscape mode, the master pane and
the detail pane appear side by side, but in portrait mode, the master pane is removed
and must be summoned as a temporary overlay on top of the detail pane.

In iOS 7 (and iOS 6), an app is free, by default, to perform compensatory rotation in
response to the user’s rotation of the device. For an iPhone app, this means that the app
can appear with its top at the top of the device or either of the two sides of the device;
having the app’s top appear at the bottom of the device (because the device is held upside-
down) is generally frowned on. For an iPad app, this means that the app can assume
any orientation.

If this isn’t what you want, it is up to you to prevent it, as follows:

• The app itself, in its Info.plist, may declare once and for all every orientation the
interface will ever be permitted to assume. It does this under the “Supported inter‐
face orientations” key, UISupportedInterfaceOrientations (supplemented, for a
universal app, by “Supported interface orientations (iPad)”, UISupportedInterface-
Orientations~ipad). You don’t usually have to meddle directly with the Info.plist
file, though; these keys are set through checkboxes when you edit the app target, in
the General tab.

• The app delegate may implement application:supportedInterface-

OrientationsForWindow:, returning a bitmask listing every orientation the inter‐
face is permitted to assume. This list overrides the Info.plist settings. Thus, the app
delegate can do dynamically what the Info.plist can do only statically.
application:supportedInterfaceOrientationsForWindow: is called at least
once every time the device rotates.

• A view controller may implement supportedInterfaceOrientations, returning a
bitmask listing a set of orientations that intersects the set of orientations permitted
by the app or the app delegate. The resulting intersection will then be the set of
permitted orientations. The resulting intersection must not be empty; if it is, your

252 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

app will crash. supportedInterfaceOrientations is called at least once every time
the device rotates.
The view controller has a second way to interfere with the app’s permitted orien‐
tations: it can implement shouldAutorotate. This method returns a BOOL, and
the default is YES. shouldAutorotate is called at least once every time the device
rotates; if it returns NO, the interface will not rotate to compensate at this moment.
This can be a simpler way than supportedInterfaceOrientations to veto the app’s
rotation. If shouldAutorotate is implemented and returns NO, supported-
InterfaceOrientations is not called.
Only the view controller at the top of the visible view controller hierarchy is con‐
sulted — that is, the root view controller, or a view controller presented fullscreen
by the root view controller. Built-in view controllers do not consult their children
in response. Thus, if your view controller is, say, a child view controller of a
UINavigationController, it has no say in how the app rotates. (This was a major
change from iOS 5 to iOS 6, and is still the cause of much confusion, not to mention
gnashing of teeth.)

A UIViewController class method attemptRotationToDeviceOrientation prompts
the runtime to do immediately what it would do if the user were to rotate the device,
namely to walk the three levels I’ve just described and, if the results permit rotation of
the interface to match the current device orientation, to rotate the interface. This would
be useful if, say, your view controller had returned NO from shouldAutorotate, so that
the interface does not match the current device orientation, but is now for some reason
prepared to return YES and wants to be asked again, immediately.

The bitmask you return from application:supportedInterfaceOrientationsFor-
Window: or supportedInterfaceOrientations may be one of these values, or multiple
values combined with bitwise-or:

• UIInterfaceOrientationMaskPortrait

• UIInterfaceOrientationMaskLandscapeLeft

• UIInterfaceOrientationMaskLandscapeRight

• UIInterfaceOrientationMaskPortraitUpsideDown

• UIInterfaceOrientationMaskLandscape (a convenient combination of Left and
Right)

• UIInterfaceOrientationMaskAll (a convenient combination of Portrait,
UpsideDown, Left, and Right)

• UIInterfaceOrientationMaskAllButUpsideDown (a convenient combination of
Portrait, Left, and Right)

Rotation | 253

www.it-ebooks.info

http://www.it-ebooks.info/

What Rotates?
We say that your app rotates, and you’ll think of it as rotating, but what really rotates is
the status bar’s position. When the device rotates, a UIDeviceOrientationDidChange-
Notification is emitted by the UIDevice, and if the app’s interface is to rotate to match,
the UIApplication instance is sent the setStatusBarOrientation:animated: mes‐
sage. A transform is applied so that the window’s root view appears “right way up,” and
in a 90-degree rotation, the window’s root view has its width and height dimensions
swapped. Moreover, this is all accompanied by animation, so it really looks to the user
as if the app is rotating. But the window itself doesn’t budge; it remains pinned to the
screen (window bounds are screen bounds). It is taller than it is wide, and its top is at
the top of the device (away from the home button). As for the root view, its bounds are
wider than tall in a landscape orientation, but its frame remains taller than wide (though
you really shouldn’t be referring to the root view’s frame in this situation, because it has
a transform applied; see Chapter 1).

If your code needs to know the current orientation of the device, it can ask the device,
by calling [UIDevice currentDevice].orientation. Possible results are UIDevice-
OrientationUnknown, UIDeviceOrientationPortrait, and so on. Convenience mac‐
ros UIDeviceOrientationIsPortrait and UIDeviceOrientationIsLandscape let you
test a given orientation for whether it falls into that category. By the time you get a
rotation-related query event, the device’s orientation has already changed.

The current orientation of the interface is available as a view controller’s interface-
Orientation property. Never ask for this value if the device’s orientation is UIDevice-
OrientationUnknown.

The interface orientation mask values (UIInterfaceOrientation-
Mask...) that you return from application:supportedInterface-
OrientationsForWindow: or supportedInterfaceOrientations are
not the same as the device orientation values used by UIDevice to
report the current device orientation, or the interface orientation val‐
ues used by UIViewController to report the current interface orien‐
tation. Do not return a device orientation or interface orientation
value where an interface orientation mask value is expected!

Rotation and Layout Events
The resizing of your view controller’s view when the app rotates 90 degrees is even more
dramatic than the resizing that took place when it was inserted into the interface to
begin with (discussed in the previous section). The view doesn’t merely become taller
or shorter in height; rather, its height and width bounds dimensions are effectively

254 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

swapped. You will want to implement layout (Chapter 1) that can adapt to such a change.
Autoresizing or autolayout can change the size and position of your view’s subviews in
response to the change in bounds size.

In some cases, however, this won’t be sufficient; you may have to perform manual layout,
perhaps even adding or removing views entirely. For example, as I’ve already mentioned,
Apple’s Mail app on the iPad eliminates the entire master view (the list of messages)
when the app assumes a portrait orientation. The question is then when to perform this
manual layout. I will demonstrate two possible approaches.

Your UIViewController subclass can override any of the following methods (which are
called in the order shown) to be alerted in connection with interface rotation:
willRotateToInterfaceOrientation:duration:

The first parameter is the new orientation; self.interfaceOrientation is the old
orientation, and the view’s bounds are the old bounds.

willAnimateRotationToInterfaceOrientation:duration:

The first parameter is the new orientation; self.interfaceOrientation is the new
orientation, and the view’s bounds are the new bounds. The call is wrapped by an
animation block, so changes to animatable view properties are animated.

didRotateFromInterfaceOrientation:

The parameter is the old orientation; self.interfaceOrientation is the new ori‐
entation, and the view’s bounds are the new bounds.

You might take advantage of these events to perform manual layout in response to
interface rotation. Imagine, for example, that our app displays a black rectangle at the
left side of the screen if the device is in landscape orientation, but not if the device is in
portrait orientation. We could implement that as follows:

- (UIView*) blackRect { // property getter
 if (!self->_blackRect) {
 if (UIInterfaceOrientationIsPortrait(self.interfaceOrientation))
 return nil;
 CGRect f = self.view.bounds;
 f.size.width /= 3.0;
 f.origin.x = -f.size.width;
 UIView* br = [[UIView alloc] initWithFrame:f];
 br.backgroundColor = [UIColor blackColor];
 self.blackRect = br;
 }
 return self->_blackRect;
}
-(void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)duration {
 UIView* v = self.blackRect;
 if (UIInterfaceOrientationIsLandscape(io)) {
 if (!v.superview) {

Rotation | 255

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.view addSubview:v];
 CGRect f = v.frame;
 f.origin.x = 0;
 v.frame = f;
 }
 } else {
 if (v.superview) {
 CGRect f = v.frame;
 f.origin.x -= f.size.width;
 v.frame = f;
 }
 }
}
- (void) didRotateFromInterfaceOrientation:(UIInterfaceOrientation)io {
 if (UIInterfaceOrientationIsPortrait(self.interfaceOrientation))
 [self.blackRect removeFromSuperview];
}

We have a UIView property, blackRect, to retain the black rectangle; we implement its
getter to create the black rectangle if it hasn’t been created already, but only if we are in
landscape orientation, since otherwise we cannot set the rectangle’s dimensions
properly. The implementation of willAnimateRotationToInterfaceOrientation:
duration: slides the black rectangle in from the left as part of the rotation animation
if we have ended up in a landscape orientation, but only if it isn’t in the interface already;
after all, the user might rotate the device 180 degrees, from one landscape orientation
to the other. Similarly, it slides the black rectangle out to the left if we have ended up in
a portrait orientation, but only if it is in the interface already. Finally, didRotateFrom-
InterfaceOrientation:, called after the rotation animation is over, makes sure the
rectangle is removed from its superview if we have ended up in a portrait orientation.

However, there’s another way that I think is better. Recall from Chapter 1 that when a
view’s bounds change, it is asked to update its constraints (if necessary) with a call to
updateConstraints, and then to perform layout with a call to layoutSubviews. It turns
out that if this is a view controller’s view, the view controller is notified just before the
view’s constraints are updated, with updateViewConstraints; it is also notified before
and after view layout, with viewWillLayoutSubviews and viewDidLayoutSubviews.
Here’s the full sequence during rotation:

• willRotateToInterfaceOrientation:duration:

• updateViewConstraints (and you must call super!)
• updateConstraints (to the view)
• viewWillLayoutSubviews

• layoutSubviews (to the view)
• viewDidLayoutSubviews

256 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

• willAnimateRotationToInterfaceOrientation:duration:

• didRotateFromInterfaceOrientation:

These UIViewController events allow your view controller to participate in its view’s
layout, without your having to subclass UIView so as to implement update-
Constraints and layoutSubviews directly. Our problem is a layout problem, so it seems
more elegant to implement it through layout events.

Here’s a two-part solution involving constraints. I won’t bother to remove the black
rectangle from the interface; I’ll add it once and for all as I configure the view initially,
and just slide it onscreen and offscreen as needed. In viewDidLoad, then, we add the
black rectangle to our interface, and then we prepare two sets of constraints, one de‐
scribing the black rectangle’s position onscreen (within our view bounds) and one de‐
scribing its position offscreen (to the left of our view bounds):

-(void)viewDidLoad {
 UIView* br = [UIView new];
 br.translatesAutoresizingMaskIntoConstraints = NO;
 br.backgroundColor = [UIColor blackColor];
 [self.view addSubview:br];
 // b.r. is pinned to top and bottom of superview
 [self.view addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[br]|"
 options:0 metrics:nil views:@{@"br":br}]];
 // b.r. is 1/3 the width of superview
 [self.view addConstraint:
 [NSLayoutConstraint
 constraintWithItem:br attribute:NSLayoutAttributeWidth
 relatedBy:0
 toItem:self.view attribute:NSLayoutAttributeWidth
 multiplier:1.0/3.0 constant:0]];
 // onscreen, b.r.'s left is pinned to superview's left
 NSArray* marrOn =
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:|[br]"
 options:0 metrics:nil views:@{@"br":br}];
 // offscreen, b.r.'s right is pinned to superview's left
 NSArray* marrOff = @[
 [NSLayoutConstraint
 constraintWithItem:br attribute:NSLayoutAttributeRight
 relatedBy:NSLayoutRelationEqual
 toItem:self.view attribute:NSLayoutAttributeLeft
 multiplier:1 constant:0]
];
 // store constraints in instance variables
 self.blackRectConstraintsOnscreen = marrOn;
 self.blackRectConstraintsOffscreen = marrOff;
}

Rotation | 257

www.it-ebooks.info

http://www.it-ebooks.info/

That’s a lot of preparation, but the payoff is that responding to a request for layout is
simple and clear; we simply swap in the constraints appropriate to the new interface
orientation (self.interfaceOrientation at layout time):

-(void)updateViewConstraints {
 [self.view removeConstraints:self.blackRectConstraintsOnscreen];
 [self.view removeConstraints:self.blackRectConstraintsOffscreen];
 if (UIInterfaceOrientationIsLandscape(self.interfaceOrientation))
 [self.view addConstraints:self.blackRectConstraintsOnscreen];
 else
 [self.view addConstraints:self.blackRectConstraintsOffscreen];
 [super updateViewConstraints];
}

Moreover, the movement of the black rectangle is animated as the interface rotates,
because any constraint-based layout performed as the interface rotates is animated.

Initial Orientation
The basic way to dictate your app’s initial orientation, as the user will see it when
launching, is to use your app’s Info.plist settings. The reason is that the system can consult
those settings during launch, before any of your code runs:
On the iPhone

The app will launch, preferentially, into the first orientation listed in the Info.plist
in the “Supported interface orientations” array (UISupportedInterface-
Orientations). In Xcode, edit the Info.plist; the editor lets you drag the elements
of the array to reorder them.

If the root view controller limits the supported interface orientations, you should
arrange the order of the “Supported interface orientations” entries to agree with it.
For example, suppose your app as a whole supports portrait, landscape left, and
landscape right, but your initial root view controller supports only landscape left
and landscape right. Then you should put “Landscape (right home button)” and
“Landscape (left home button)” before “Portrait” in the Info.plist “Supported in‐
terface orientations” array. Otherwise, if “Portrait” comes first, the app will try to
launch into portrait orientation, only to discover, as your code finally starts running
and your root view controller’s supportedInterfaceOrientations is called, that
this was wrong.

On the iPad
iPad apps are supposed to be more or less orientation-agnostic, so the order of
orientations listed in the Info.plist in the “Supported interface orientations” array
(UISupportedInterfaceOrientations) or “Supported interface orientations
(iPad)” (UISupportedInterfaceOrientations~ipad) is ignored. Instead, the app
will launch into whatever permitted orientation is closest to the device’s current
orientation.

258 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Nevertheless, all apps launch into portrait mode initially. This is because the window
goes only one way, with its top at the top of the device (away from the home button) —
window bounds are screen bounds (see “What Rotates?” on page 254). If the app’s initial
visible orientation is not portrait, then there must be an initial rotation to that initial
visible orientation, even if the user never sees it. Thus, an app whose initial orientation
is landscape mode must be configured to rotate from portrait to landscape even if it doesn’t
support rotation after that.

A common beginner mistake, in this situation, is to try to work with the interface di‐
mensions in your code too soon, before the rotation has taken place, in viewDidLoad.
At the time viewDidLoad is called, the view controller has loaded its view — there is
now something called self.view — but this view has not yet been put into the interface.
It has not yet been resized to fit the interface (as I described in the previous section),
and if the app needs to rotate on launch, that rotation has not yet taken place. If you try
to work with the view’s dimensions in viewDidLoad in an app that launches into a non-
portrait orientation, it will appear that the width and height values of your interface
bounds are the reverse of what you expect.

For example, let’s say that our iPhone app’s Info.plist has its “Supported interface ori‐
entations” ordered with “Landscape (right home button)” first, and our root view con‐
troller’s viewDidLoad code places a small black square at the top center of the interface,
like this:

- (void) viewDidLoad {
 [super viewDidLoad];
 UIView* square =
 [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
 square.backgroundColor = [UIColor blackColor];
 square.center =
 CGPointMake(CGRectGetMidX(self.view.bounds),5); // top center?
 [self.view addSubview:square];
}

The app launches into landscape orientation; the user must hold the device with the
home button at the right to see it correctly. That’s good. But where’s the little black
square? Not at the top center of the screen! The square appears at the top of the screen,
but only about a third of the way across. The trouble is that in determining the x-
coordinate of the square’s center we examined the view’s bounds too soon, at a time
when the view’s x-dimension (its width dimension) was still its shorter dimension.

So when is it safe to work with our view’s initial dimensions? In iOS 5 and before, a
possible solution was to override one of the rotation events discussed in the previous
section, such as didRotateFromInterfaceOrientation:, and complete the configura‐
tion of your view there. In iOS 6 and iOS 7, however, that won’t work, because rotation
events are not sent in conjunction with the initial rotation of your app’s interface.

Rotation | 259

www.it-ebooks.info

http://www.it-ebooks.info/

The earliest event we receive at launch time after self.view has assumed its initial size
in the interface is viewWillLayoutSubviews. This seems a perfectly appropriate place
to configure our additional subview, since layout is exactly what we’re doing. This event
can be received multiple times over the lifetime of the view controller, but we want to
perform our initial configuration only once, so we’ll use a BOOL instance variable as a
flag:

- (void) viewWillLayoutSubviews {
 if (!self->_viewInitializationDone) {
 self->_viewInitializationDone = YES;
 UIView* square =
 [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
 square.backgroundColor = [UIColor blackColor];
 square.center = CGPointMake(CGRectGetMidX(self.view.bounds),5);
 [self.view addSubview:square];
 }
}

The best solution of all, I think, is to use autolayout if at all possible, positioning our
black square through constraints instead of its frame. The beauty of constraints is that
you describe your layout conceptually rather than numerically; those concepts continue
to apply through any future rotation. We don’t need a BOOL instance variable, and we
can even put our code back into viewDidLoad, because our constraints will continue to
position the subview correctly whenever the view assumes its ultimate size:

- (void) viewDidLoad {
 [super viewDidLoad];
 UIView* square = [UIView new];
 square.backgroundColor = [UIColor blackColor];
 [self.view addSubview:square];
 square.translatesAutoresizingMaskIntoConstraints = NO;
 CGFloat side = 10;
 [square addConstraint:
 [NSLayoutConstraint
 constraintWithItem:square attribute:NSLayoutAttributeWidth
 relatedBy:0
 toItem:nil attribute:0
 multiplier:1 constant:side]];
 [self.view addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[square(side)]"
 options:0 metrics:@{@"side":@(side)}
 views:@{@"square":square}]];
 [self.view addConstraint:
 [NSLayoutConstraint
 constraintWithItem:square attribute:NSLayoutAttributeCenterX
 relatedBy:0
 toItem:self.view attribute:NSLayoutAttributeCenterX
 multiplier:1 constant:0]];
}

260 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-7. A modal view

Presented View Controller
Back when the only iOS device was an iPhone, a presented view controller was called a
modal view controller. The root view controller remained in place, but its view was taken
out of the interface and the modal view controller’s view was used instead. Thus, this
was the simplest way to replace the entire interface with a different interface.

You can see why this configuration was characterized as “modal”. The presented view
controller’s view has, in a sense, blocked access to the “real” view, the root view con‐
troller’s view. The user is thus forced to work in the presented view controller’s view,
until that view is “dismissed” and the “real” view is visible again. These notions are
analogous to a modal dialog in a desktop application, where the user can’t do anything
else but work in the dialog as long as it is present. A presented view controller’s view
often reinforces this analogy with obvious dismissal buttons with titles like Save, Done,
or Cancel.

The color picker view in my own Zotz! app is a good example (Figure 6-7); this is an
interface that says, “You are now configuring a color, and that’s all you can do; change
the color or cancel, or you’ll be stuck here forever.” The user can’t get out of this view
without tapping Cancel or Done, and the view that the user was previously using is
visible as a blur behind this view, waiting for the user to return to it.

Presented View Controller | 261

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-5, from my Latin flashcard app, is another example of a presented view. It has
a Cancel button, and the user is in a special “mode”, performing a drill exercise rather
than scrolling through flashcards.

Nevertheless, the “modal” characterization is not always apt. A presented view controller
might be no more than a device that you, the programmer, have used to alter the inter‐
face; the user needn’t be conscious of this. A presented view controller’s view may have
a complex interface; it may have child view controllers; it may present yet another view
controller; it may take over the interface permanently, with the user never returning to
the interface that it replaced.

With the coming of the iPad, the range of what a presented view controller’s view could
do was extended. A presented view on the iPad, instead of replacing the entire interface,
can replace a subview within the existing interface. Alternatively, a presented view con‐
troller’s view on the iPad may cover the existing interface only partially; the existing
interface is never removed. And iOS 7 gives you a way to accomplish the same thing on
the iPhone.

Presenting a View
To make a view controller present another view controller, you send the first view con‐
troller presentViewController:animated:completion:, handing it the second view
controller, which you will probably instantiate for this very purpose. (The first view
controller is very typically self.) We now have two view controllers that stand in the
relationship of presentingViewController and presentedViewController, and the
latter is retained. The presented view controller’s view effectively replaces (or covers)
the presenting view controller’s view in the interface.

This state of affairs persists until the presenting view controller is sent dismissView-
ControllerAnimated:completion:. The presented view controller’s view is then re‐
moved from the interface, and the presented view controller is released; it will thereupon
typically go out of existence, together with its view, its child view controllers and their
views, and so on.

As the view of the presented view controller appears, and again when it is dismissed,
there’s an option for animation as the transition takes place (the animated: argument).
The completion: parameter, which can be nil, lets you supply a block of code to be run
after the transition (including the animation) has occurred. I’ll talk later about how to
determine the nature of the animation.

The presenting view controller (the presented view controller’s presentingView-
Controller) is not necessarily the view controller to which you sent presentView-
Controller:animated:completion:. It will help if we distinguish three roles that view
controllers can play in presenting a view controller:

262 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Presented view controller
The view controller specified as the first argument to presentView-

Controller:animated:completion:.

Original presenter
The view controller to which presentViewController:animated:completion:
was sent. Apple sometimes refers to this view controller as the source; “original
presenter” is my own term.

The presented view controller is set as the original presenter’s presentedView-
Controller.

Presenting view controller
The presented view controller’s presentingViewController. This is the view con‐
troller whose view is replaced or covered by the presented view controller’s view.
By default, it is the view controller whose view is the entire interface — namely, either
the root view controller or an already existing presented view controller. It might
not be the same as the original presenter.

The presented view controller is set as the presenting view controller’s presented-
ViewController. Thus, the presented view controller might be the presentedView-
Controller of two different view controllers.

The receiver of dismissViewControllerAnimated:completion: may be any of those
three objects; the runtime will use the linkages between them to transmit the necessary
messages up the chain on your behalf to the presentingViewController.

A view controller can have at most one presentedViewController. If you send present-
ViewController:animated:completion: to a view controller whose presentedView-
Controller isn’t nil, nothing will happen (and you’ll get a warning from the runtime).
However, a presented view controller can itself present a view controller, so there can
be a chain of presented view controllers.

Conversely, you can test for a nil presentedViewController or presentingView-
Controller to learn whether view presentation is occurring. For example, a view con‐
troller whose presentingViewController is nil is not a presented view controller at
this moment.

Let’s make one view controller present another. We could do this simply by connecting
one view controller to another in a storyboard with a modal segue, but I don’t want you
to do that: a modal segue calls presentViewController:animated:completion: for
you, whereas I want you to call it yourself.

So start with an iPhone project made from the Single View Application template. This
contains one view controller class, called ViewController. Our first move must be to add

Presented View Controller | 263

www.it-ebooks.info

http://www.it-ebooks.info/

a second view controller class, an instance of which will function as the presented view
controller:

1. Choose File → New → File and make a new iOS Cocoa Touch Objective-C class.
Click Next.

2. Name the class SecondViewController, make sure it is a subclass of UIView‐
Controller, and check the XIB checkbox so that we can design this view controller’s
view quickly and easily in a nib. Click Next.

3. Confirm the folder, group, and app target membership, and click Create.
4. Edit SecondViewController.xib, and do something there to make the view distinc‐

tive, so that you’ll recognize it when it appears; for example, give it a red background
color.

5. We need a way to trigger the presentation of SecondViewController. Edit
Main.storyboard and add a button to the ViewController’s view’s interface. Connect
that button to an action method in ViewController.m; let’s call it doPresent:.

6. Import "SecondViewController.h" at the top of ViewController.m, so that we can
speak of SecondViewController, and write the code for doPresent:, as follows:

- (IBAction)doPresent:(id)sender {
 [self presentViewController:[SecondViewController new]
 animated:YES completion:nil];
}

Run the project. In ViewController’s view, tap the button. SecondViewController’s view
slides into place over ViewController’s view.

In our lust for instant gratification, we have neglected to provide a way to dismiss the
presented view controller. If you’d like to do that, put a button into SecondView‐
Controller’s view and connect it to an action method in SecondViewController.m:

- (IBAction)doDismiss:(id)sender {
 [self.presentingViewController
 dismissViewControllerAnimated:YES completion:nil];
}

Run the project. You can now alternate between ViewController’s view and Second‐
ViewController’s view.

Communication With a Presented View Controller
In real life, it is quite probable that both presentation and dismissal will be a little more
involved; in particular, it is likely that the original presenter will have additional infor‐
mation to impart to the presented view controller as the latter is created and presented,
and that the presented view controller will want to pass information back to the original

264 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

presenter as it is dismissed. Knowing how to arrange this exchange of information is
very important.

Passing information from the original presenter to the presented view controller is usu‐
ally easy, because the original presenter typically has a reference to the presented view
controller before the latter’s view appears in the interface. For example, suppose the
presented view controller has a public data property. Then the original presenter can
easily set this property:

SecondViewController* svc = [SecondViewController new];
svc.data = @"This is very important data!";
[self presentViewController: svc
 animated: YES completion:nil];

Indeed, if you’re calling presentViewController:animated:completion: explicitly
like this, you might even give SecondViewController a designated initializer that accepts
the required data. In my Latin vocabulary app, the transition that engenders Figure 6-6
looks like this:

DrillViewController* dvc =
 [[DrillViewController alloc] initWithData:drillTerms];
[self presentViewController:dvc animated:YES completion:nil];

I’ve given DrillViewController a designated initializer initWithData: precisely so that
whoever creates it can pass it the data it will need to do its job while it exists.

Passing information back from the presented view controller to the original presenter
is a more interesting problem. The presented view controller will need to know who the
original presenter is, but it doesn’t automatically have a reference to it (the original
presenter, remember, is not necessarily the same as the presentingViewController).
Moreover, the presented view controller will need to know the signature of some method
implemented by the original presenter, so that it can call that method and hand over
the information — and this needs to work regardless of the original presenter’s class.

The standard solution is to use delegation. The presented view controller defines a
protocol declaring a method that the presented view controller wants to call before it is
dismissed. The original presenter conforms to this protocol, and hands the presented
view controller a reference to itself as it creates and configures the presented view con‐
troller; we can call this the presented view controller’s delegate. The delegate reference
is declared as an id adopting the presented view controller’s protocol, so the presented
view controller now not only has the required reference to the original presenter, but it
also knows the signature of a method that the original presenter implements.

Let’s modify our example to embody this architecture. First, modify SecondView‐
Controller to look like this:

Presented View Controller | 265

www.it-ebooks.info

http://www.it-ebooks.info/

// SecondViewController.h:
@protocol SecondViewControllerDelegate
- (void) dismissWithData: (id) data;
@end
@interface SecondViewController : UIViewController
@property (nonatomic, weak) id <SecondViewControllerDelegate> delegate;
@property (nonatomic, strong) id data;
@end

// SecondViewController.m:
- (IBAction)doDismiss:(id)sender {
 [self.delegate dismissWithData: @"Even more important data!"];
}

ViewController will need to declare itself as adopting SecondViewControllerDelegate;
I like to do this in a class extension in the implementation file (ViewController.m):

@interface ViewController () <SecondViewControllerDelegate>
@end

ViewController could then present and dismiss SecondViewController like this:

- (IBAction)doPresent:(id)sender {
 SecondViewController* svc = [SecondViewController new];
 svc.data = @"This is very important data!";
 svc.delegate = self;
 [self presentViewController: svc
 animated: YES completion:nil];
}
- (void) dismissWithData:(id)data {
 // do something with the data here
 [self dismissViewControllerAnimated:YES completion:nil];
}

In that example, the original presenter is sent the data and told to dismiss the presented
view controller, in a single method. It might be wiser to separate these two functional‐
ities. Here, I’ll rename dismissWithData: as acceptData:, and its job is just to receive
the data; ViewController will no longer dismiss SecondViewController. Rather, Second‐
ViewController will dismiss itself, and will then hear about that dismissal in a lifetime
event, viewWillDisappear:, which calls acceptData: to ensure that the data is handed
across. There is more than one reason why viewWillDisappear: might be called; we
can test that this is the moment of our own dismissal by calling isBeingDismissed.
Here is what SecondViewController looks like now:

// SecondViewController.h:
@protocol SecondViewControllerDelegate
- (void) acceptData: (id) data;
@end
@interface SecondViewController : UIViewController
@property (nonatomic, weak) id <SecondViewControllerDelegate> delegate;
@property (nonatomic, strong) id data;
@end

266 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

// SecondViewController.m:
- (IBAction)doDismiss:(id)sender {
 [self.presentingViewController
 dismissViewControllerAnimated:YES completion:nil];
}
- (void) viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear: animated];
 if ([self isBeingDismissed])
 [self.delegate acceptData: @"Even more important data!"];
}

Configuring this architecture involves considerable work, and I know from experience
that there is a strong temptation to be lazy and avoid it. It may indeed be possible to get
by with a simplified solution; for example, SecondViewController could post a notifi‐
cation for which ViewController has supposedly registered. Nevertheless, delegation is
the most reliable way for a presented view controller to communicate back to its original
presenter.

Presented View Animation
When a view is presented and later when it is dismissed, an animation can be performed,
according to whether the animated: parameter of the corresponding method is YES.

There are several built-in animation styles, whose names preserve the legacy “modal”
designation:
UIModalTransitionStyleCoverVertical (the default)

The presented view slides up from the bottom to cover the presenting view on
presentation and down to reveal the presenting view on dismissal. “Bottom” is de‐
fined differently depending on the orientation of the device and the orientations
the view controllers support.

UIModalTransitionStyleFlipHorizontal

The view flips on the vertical axis as if the two views were the front and back of a
piece of paper. The “vertical axis” is the device’s long axis, regardless of the app’s
orientation.

This animation style provides one of those rare occasions where the user may
glimpse the window behind the transitioning views. You may want to set the win‐
dow’s background color appropriately.

UIModalTransitionStyleCrossDissolve

The views remain stationary, and one fades into the other.

Presented View Controller | 267

www.it-ebooks.info

http://www.it-ebooks.info/

UIModalTransitionStylePartialCurl

The first view curls up like a page in a notepad to expose most of the second view,
but remains covering the top-left region of the second view. Thus there must not
be any important interface in that region, as the user will not be able to see it.

If the user clicks on the curl, dismissViewControllerAnimated:completion: is
called on the original presenter. That’s convenient, but make sure it doesn’t disrupt
communication between your view controllers; this is another reason for factoring
out any final handing back of information from the presented view controller into
its viewWillDisappear:, as I did in the previous section.

You do not pass the animation style as a parameter when presenting or dismissing a
view controller; rather, it is attached beforehand to a view controller as its modal-
TransitionStyle property. (It is legal, but not common, for the modalTransition-
Style value to differ at the time of dismissal from its value at the time of presentation.
Reversing on dismissal with the same animation style that was used on presentation is
a subtle cue to the user that we’re returning to a previous state.) The view controller that
should have this modalTransitionStyle property set will generally be the presented
view controller (I’ll talk about the exception to this rule later). There are three typical
ways in which this happens:

• The original presenter sets the presented view controller’s modalTransition-
Style property.

• The presented view controller sets its own modalTransitionStyle property early
in its lifetime; for example, it might override initWithNibName:bundle:.

• The presented view controller is instantiated from a nib; there’s a Transition Style
pop-up menu in the nib editor.

New in iOS 7, you can supply your own animation instead of using one of the built-in
modal transition styles. Moreover, if you do this, you are able, for the first time in iOS
history, to have the presented view controller’s view cover the original presenter’s view
only partially, even on the iPhone. I’ll discuss this topic later in the chapter.

Presentation Styles
On the iPad, additional options for how the presented view controller’s view should
cover the screen, and for what view controller should be the presenting view controller,
are expressed through the presented view controller’s modalPresentationStyle prop‐
erty. Your choices (which display more legacy “modal” names) are:
UIModalPresentationFullScreen

The default. As on the iPhone, the presenting view controller is the root view con‐
troller or a fullscreen presented view controller, and its view — meaning the entire

268 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

interface — is replaced. (This is the only mode in which UIModalTransitionStyle-
PartialCurl is legal.)

UIModalPresentationPageSheet

Similar to UIModalPresentationFullScreen, but in a landscape orientation, the
presented view has the width of the portrait-oriented screen, so the presenting view
controller’s view remains partially visible behind the presented view controller’s
view, dimmed so that the user can’t interact with it.

UIModalPresentationFormSheet

Similar to UIModalPresentationPageSheet, but the presented view controller’s
view is smaller, allowing the user to see more of the presenting view controller’s
view behind it. As the name implies, this is intended to allow the user to fill out a
form (Apple describes this as “gathering structured information from the user”).

UIModalPresentationCurrentContext

The presenting view controller is not necessarily the root view controller or a full‐
screen presented view controller; it can be any view controller, such as a child view
controller or a popover’s view controller. The presented view controller’s view re‐
places the presenting view controller’s view, both of which may occupy only a por‐
tion of the screen.

When the presented view controller’s modalPresentationStyle is UIModal-

PresentationCurrentContext, a decision has to be made by the runtime as to what
view controller should be the presenting view controller. This will determine what view
will be replaced by the presented view controller’s view. The decision involves another
UIViewController property, definesPresentationContext (a BOOL), and possibly
still another UIViewController property, providesPresentationContextTransition-
Style. Here’s how the decision operates:

1. Starting with the original presenter (the view controller to which presentView-
Controller:animated:completion: was sent), we walk up the chain of parent view
controllers, looking for one whose definesPresentationContext property is YES.
If we find one, that’s the one; it will be the presentingViewController, and its view
will be replaced by the presented view controller’s view.
(If we don’t find one, things work as if the presented view controller’s modal-
PresentationStyle had been UIModalPresentationFullScreen.)

2. If, during the search just described, we find a view controller whose defines-
PresentationContext property is YES, we also look to see if that view controller’s
providesPresentationContextTransitionStyle property is also YES. If so, that
view controller’s modalTransitionStyle is used for this transition animation, in‐
stead of using the presented view controller’s modalTransitionStyle.

Presented View Controller | 269

www.it-ebooks.info

http://www.it-ebooks.info/

To illustrate, I need a parent–child view controller arrangement to work with. This
chapter hasn’t yet discussed any parent view controllers in detail, but the simplest is
UITabBarController, which I discuss in the next section, and it’s easy to create a working
app with a UITabBarController-based interface, so that’s the example I’ll use.

Start with a universal version of the Tabbed Application project template. As in the
previous example, I want us to create and present the presented view controller man‐
ually, rather than letting the storyboard do it automatically; so make a new view con‐
troller class with an accompanying .xib file, to use as a presented view controller — call
it ExtraViewController. In ExtraViewController.xib, give the view a distinctive back‐
ground color, so you’ll recognize it when it appears.

In the iPad storyboard, put a button in the First View Controller view, and connect it
to an action method in FirstViewController.m that summons the new view controller
as a presented view controller:

- (IBAction)doPresent:(id)sender {
 UIViewController* vc = [ExtraViewController new];
 [self presentViewController:vc animated:YES completion:nil];
}

(You’ll also need to import "ExtraViewController.h" at the top of that file, obviously.)
Run the project in the iPad Simulator, and tap the button. Observe that the presented
view controller’s view occupies the entire interface, covering even the tab bar; it replaces
the root view.

Now change the code to look like this:

- (IBAction)doPresent:(id)sender {
 UIViewController* vc = [ExtraViewController new];
 self.definesPresentationContext = YES;
 vc.modalPresentationStyle = UIModalPresentationCurrentContext;
 [self presentViewController:vc animated:YES completion:nil];
}

Run the project in the iPad Simulator, and tap the button. The presented view controller’s
view replaces only the first view controller’s view; the tab bar remains, and you can
switch back and forth between the tab bar’s first and second views (while the first view
remains covered by the presented view). That’s because the presented view controller’s
modalPresentationStyle is UIModalPresentationCurrentContext, and the original
presenter’s definesPresentationContext is YES. Thus the search for a context stops
in FirstViewController (the original presenter), which thus also becomes the presenting
view controller — and the presented view replaces FirstViewController’s view instead
of the root view.

We can also override the presented view controller’s transition animation through the
modalTransitionStyle property of the presenting view controller:

270 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

- (IBAction)doPresent:(id)sender {
 UIViewController* vc = [ExtraViewController new];
 self.definesPresentationContext = YES;
 self.providesPresentationContextTransitionStyle = YES;
 self.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
 vc.modalPresentationStyle = UIModalPresentationCurrentContext;
 vc.modalTransitionStyle = UIModalTransitionStyleCoverVertical;
 [self presentViewController:vc animated:YES completion:nil];
}

The transition uses the flip horizontal animation belonging to the presenting view con‐
troller, rather than the cover vertical animation of the presented view controller.

It’s helpful to experiment with the above code, commenting out individual lines to see
what effect they have on the overall result. Note too that all the properties discussed in
this section can be set by way of the nib editor.

Finally, put the same button with the same action in the iPhone storyboard, and observe
that none of this works; the UIModalPresentationCurrentContext, and all that follows
from it, is an iPad-only feature.

There is, however, one more presentation style (other than UIModalPresentationFull-
Screen) that works on the iPhone — UIModalPresentationCustom. Its use has to do
with custom transition animations, which I’ll discuss later in this chapter.

When a view controller is presented, and its presentation style is not UIModal-
PresentationFullScreen, a question arises of whether its status bar methods (prefers-
StatusBarHidden and preferredStatusBarStyle) should be consulted. By default, the
answer is no, because this view controller is not becoming the top-level view controller,
supplanting the root view controller. To make the answer be yes, set this view controller’s
modalPresentationCapturesStatusBarAppearance to YES.

Rotation of a Presented View
When the presenting view controller is the top-level view controller — the root view
controller, or a fullscreen presented view controller — the presented view controller
becomes the new top-level view controller. This means that its supportedInterface-
Orientations is consulted and honored. If these supportedInterfaceOrientations
do not intersect with the app’s current orientation, the app’s orientation will be forced to
rotate as the presented view appears — and the same thing will be true in reverse when
the presented view controller is dismissed. This is a perfectly reasonable thing to do,
especially on the iPhone, where the user can easily rotate the device to compensate for
the new orientation of the interface.

Presented View Controller | 271

www.it-ebooks.info

http://www.it-ebooks.info/

In iOS 6 and iOS 7, a presented view controller is the only officially
sanctioned way to force the interface to rotate. In iOS 5 and before, the
interface could be forced to rotate by other kinds of view controller
transition, such as pushing a view controller onto a navigation con‐
troller’s stack, but this is no longer the case; attempts to circumvent
this change and restore the iOS 5 behavior are generally futile (and
unnecessary).

For example, in my Latin flashcard app (Figure 6-3), the individual flashcards are viewed
only in landscape orientation. But there is also an option to display a list (a UITableView)
of all vocabulary, which is permitted to assume portrait orientation only. Therefore the
interface rotates when the vocabulary list appears (to portrait orientation), and again
when it disappears (back to landscape orientation); the user is expected to respond by
rotating the device. Here’s how this is achieved:

• The app as a whole, as dictated by its Info.plist, supports three orientations, in this
order: “Landscape (right home button),” “Landscape (left home button),” and “Por‐
trait” — the set of all orientations the app will ever be permitted to assume.

• The RootViewController class implements supportedInterfaceOrientations to
return UIInterfaceOrientationMaskLandscape.

• The AllTermsListController class, whose view contains the total vocabulary list,
implements supportedInterfaceOrientations to return UIInterface-

OrientationMaskPortrait — and an AllTermsListController instance is used only
as a presented view controller.

In addition, a presented view controller whose supportedInterfaceOrientations: is
a mask permitting multiple possible orientations is able to specify which of those
orientations it would like to appear in initially. To do so, override preferredInterface-
OrientationForPresentation; this method is called before supportedInterface-
Orientations:, and should return a single interface orientation (not a mask). For
example:

-(UIInterfaceOrientation)preferredInterfaceOrientationForPresentation {
 return UIInterfaceOrientationPortrait;
}
-(NSUInteger)supportedInterfaceOrientations {
 return UIInterfaceOrientationMaskAll;
}

That says, “When I am summoned initially as a presented view controller, the app should
be rotated to portrait orientation. After that, while my view is being presented, the app
can rotate to compensate for any orientation of the device.”

272 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

The presented view controller’s supportedInterfaceOrientations (preceded by its
preferredInterfaceOrientationForPresentation if implemented) is consulted
when the presented view controller is first summoned. Subsequently, both the present‐
ing and presented view controllers’ supportedInterfaceOrientations are called on
each rotation of the device, and the presenting view controller’s supportedInterface-
Orientations is called when the presented view controller is dismissed. Both view
controllers may get layout events both when the presented view controller is summoned
and when it is dismissed.

Presenting a View in Response to Rotation
An interesting alternative to performing complex layout on rotation, as in “Rotation
and Layout Events” on page 254, might be to summon a presented view controller in‐
stead. We detect the rotation of the device directly. If the device passes into a landscape
orientation, we present a view controller whose view is suited to landscape orientation;
if the device passes out of landscape orientation, we dismiss that view controller.

Call the two view controllers ViewController and SecondViewController. SecondView‐
Controller is landscape-only:

-(NSUInteger)supportedInterfaceOrientations {
 return UIInterfaceOrientationMaskLandscape;
}

ViewController sets itself up to receive notifications when the device orientation
changes. When such a notification arrives, it presents or dismisses SecondView‐
Controller as appropriate:

- (void) viewDidLoad {
 [super viewDidLoad];
 [[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];
 [[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(screenRotated:)
 name:UIDeviceOrientationDidChangeNotification object:nil];
}
- (void)screenRotated:(NSNotification *)n {
 UIDeviceOrientation r = [UIDevice currentDevice].orientation;
 if (UIDeviceOrientationIsLandscape(r) & !self.presentedViewController) {
 UIViewController* vc = [SecondViewController new];
 vc.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
 [self presentViewController:vc animated:YES completion:nil];
 } else if (UIDeviceOrientationPortrait == rot) {
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

This works, but it lacks the animated rotation of the status bar as we transition from
portrait to landscape or from landscape to portrait. Adding the status bar rotation is
tricky, because setStatusBarOrientation:animated:, the UIApplication instance

Presented View Controller | 273

www.it-ebooks.info

http://www.it-ebooks.info/

method we want to call, doesn’t actually perform any animation unless supported-
InterfaceOrientations returns 0 — which the documentation says is forbidden. Nev‐
ertheless, I’ll demonstrate a way to do it.

In SecondViewController, supportedInterfaceOrientations now allows the interface
to rotate automatically if the user switches from one landscape orientation to the other,
but returns 0 if we’re rotating back to portrait:

-(NSUInteger)supportedInterfaceOrientations {
 if ([UIDevice currentDevice].orientation == UIDeviceOrientationPortrait)
 return 0;
 return UIInterfaceOrientationMaskLandscape;
}

And here’s ViewController:

-(NSUInteger)supportedInterfaceOrientations {
 return 0;
}
- (void) viewDidLoad {
 [super viewDidLoad];
 [[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];
 [[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(screenRotated:)
 name:UIDeviceOrientationDidChangeNotification object:nil];
}
- (void)screenRotated:(NSNotification *)n {
 UIDeviceOrientation r = [UIDevice currentDevice].orientation;
 UIInterfaceOrientation r2 = (UIInterfaceOrientation)r;
 if (UIDeviceOrientationIsLandscape(r) & !self.presentedViewController) {
 [[UIApplication sharedApplication]
 setStatusBarOrientation:r2 animated:YES];
 UIViewController* vc = [SecondViewController new];
 vc.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
 [self presentViewController:vc animated:YES completion:nil];
 } else if (UIDeviceOrientationPortrait == r) {
 [[UIApplication sharedApplication]
 setStatusBarOrientation:r2 animated:YES];
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

Tab Bar Controllers
A tab bar (UITabBar, see also Chapter 12) is a horizontal bar containing items. Each
item is a UITabBarItem; it displays, by default, an image and a title. At all times, exactly
one of these items is selected (highlighted); when the user taps an item, it becomes the
selected item.

274 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

If there are too many items to fit on a tab bar, the excess items are automatically sub‐
sumed into a final More item. When the user taps the More item, a list of the excess
items appears, and the user can select one; the user can also be permitted to edit the tab
bar, determining which items appear in the tab bar itself and which ones spill over into
the More list.

A tab bar is an independent interface object, but it is most commonly used in conjunc‐
tion with a tab bar controller (UITabBarController, a subclass of UIViewController) to
form a tab bar interface. The tab bar controller displays the tab bar at the bottom of its
own view. From the user’s standpoint, the tab bar items correspond to views; when the
user selects a tab bar item, the corresponding view appears. The user is thus employing
the tab bar to choose an entire area of your app’s functionality. In reality, the UITab‐
BarController is a parent view controller; you give it child view controllers, which the
tab bar controller then contains, and the views summoned by tapping the tab bar items
are the views of those child view controllers.

Familiar examples of a tab bar interface on the iPhone are Apple’s Clock app, which has
four tab bar items, and Apple’s Music app, which has four tab bar items plus a More
item that reveals a list of five more.

You can get a reference to the tab bar controller’s tab bar through its tabBar property.
In general, you won’t need this. When using a tab bar interface by way of a UITabBar‐
Controller, you do not interact (as a programmer) with the tab bar itself; you don’t create
it or set its delegate. You provide the UITabBarController with children, and it does the
rest; when the UITabBarController’s view is displayed, there’s the tab bar along with the
view of the selected item. You can, however, customize the look of the tab bar (see
Chapter 12 for details).

As discussed earlier in this chapter, your app’s automatic rotation in response to user
rotation of the device depends on the interplay between the app (represented by the
Info.plist and the app delegate) and the top-level view controller. If a UITabBar‐
Controller is the top-level view controller, it will help determine your app’s automatic
rotation, through its implementation of supportedInterfaceOrientations. By de‐
fault, a UITabBarController does not implement supportedInterfaceOrientations,
so your interface will be free to rotate to any orientation permitted by the app as a whole.

In iOS 6, the only way around this was to subclass UITabBarController for the sole
purpose of implementing supportedInterfaceOrientations, like this:

@implementation MyTabBarController : UITabBarController
-(NSUInteger)supportedInterfaceOrientations {
 return UIInterfaceOrientationMaskPortrait;
}
@end

It seems silly, however, to be compelled to subclass UITabBarController merely to take
control of its rotation behavior, and in iOS 7 there’s a better way: you can govern the

Tab Bar Controllers | 275

www.it-ebooks.info

http://www.it-ebooks.info/

tab bar controller’s rotation behavior in its delegate instead, by implementing tabBar-
ControllerSupportedInterfaceOrientations:. In this example, the tab bar control‐
ler’s first child view controller makes itself the tab bar controller’s delegate, and prevents
the app from rotating:

-(void)viewDidLoad {
 [super viewDidLoad];
 self.tabBarController.delegate = self;
}
-(NSUInteger)tabBarControllerSupportedInterfaceOrientations:
 (UITabBarController *) tabBarController {
 return UIInterfaceOrientationMaskPortrait;
}

Another tab bar controller delegate method that’s new in iOS 7, tabBarController-
PreferredInterfaceOrientationForPresentation:, comes into play when the tab
bar controller is a presented view controller. It dictates the orientation to which the app
will rotate when the tab bar controller’s view initially appears as a presented view.

Tab Bar Items
For each view controller you assign as a tab bar controller’s child, you’re going to need
a tab bar item, which will appear as its representative in the tab bar. This tab bar item
will be your child view controller’s tabBarItem. A tab bar item is a UITabBarItem; this
is a subclass of UIBarItem, an abstract class that provides some of its most important
properties, such as title, image, and enabled.

There are two ways to make a tab bar item:
By borrowing it from the system

Instantiate UITabBarItem using initWithTabBarSystemItem:tag:, and assign the
instance to your child view controller’s tabBarItem. Consult the documentation
for the list of available system items. Unfortunately, you can’t customize a system
tab bar item’s title; you must accept the title the system hands you. (You can’t work
around this restriction by somehow copying a system tab bar item’s image.)

By making your own
Instantiate UITabBarItem using initWithTitle:image:tag: and assign the in‐
stance to your child view controller’s tabBarItem. Alternatively, use the view con‐
troller’s existing tabBarItem and set its image and title. Instead of setting the
title of the tabBarItem, you can set the title property of the view controller
itself; setting a view controller’s title automatically sets the title of its current
tabBarItem (unless the tab bar item is a system tab bar item), but the converse is
not true.

276 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

New in iOS 7, you can add a separate selectedImage (possibly by initializing with
initWithTitle:image:selectedImage:). The selectedImage will be displayed in
place of the normal image when this tab bar item is selected in the tab bar.

The image (and selectedImage) for a tab bar item should be a 30×30 PNG; if it is larger,
it will be scaled down as needed. By default, it will be treated as a transparency mask (a
template): the hue of its pixels will be ignored, and the transparency of its pixels will be
combined with the tab bar’s tintColor, which may be inherited from higher up the
view hierarchy. However, new in iOS 7, you can instead display the image as is, and not
as a transparency mask. Send your image the imageWithRenderingMode: message, with
an argument of UIImageRenderingModeAlwaysOriginal (see Chapter 2), and use the
resulting image in your tab bar item.

(The finishedSelectedImage and finishedUnselectedImage of iOS 5 and 6 are thus
no longer necessary, and are deprecated in iOS 7.)

You can also give a tab bar item a badge (see the documentation on the badgeValue
property). Other ways in which you can customize the look of a tab bar item are dis‐
cussed in Chapter 12. For example, you can control the font and style of the title, or you
can give it an empty title and offset the image.

Configuring a Tab Bar Controller
As I’ve already said, you configure a tab bar controller by handing it the view controllers
that will be its children. To do so, collect those view controllers into an array and set the
UITabBarController’s viewControllers property to that array. The view controllers in
the array are now the tab bar controller’s child view controllers; the tab bar controller
is the parentViewController of the view controllers in the array. The tab bar controller
is also the tabBarController of the view controllers in the array and of all their children;
thus a child view controller at any depth can learn that it is contained by a tab bar
controller and can get a reference to that tab bar controller. The tab bar controller retains
the array, and the array retains the child view controllers.

Here’s a simple example excerpted from the app delegate’s application:didFinish-
LaunchingWithOptions: of one of my apps, in which I construct and display a tab bar
interface in code:

UITabBarController* tbc = [UITabBarController new];
UIViewController* b = [GameBoardController new];
UIViewController* s = [SettingsController new]
UINavigationController* n =
 [[UINavigationController alloc] initWithRootViewController:s];
tbc.viewControllers = @[b, n];
self.window.rootViewController = tbc;

Tab Bar Controllers | 277

www.it-ebooks.info

http://www.it-ebooks.info/

The tab bar controller’s tab bar will automatically display the tabBarItem of each child
view controller. The order of the tab bar items is the order of the view controllers in the
tab bar controller’s viewControllers array. Thus, a child view controller will probably
want to configure its tabBarItem property early in its lifetime, so that the tabBarItem
is ready by the time the view controller is handed as a child to the tab bar controller.
Observe that viewDidLoad is not early enough, because the view controllers (other than
the initially selected view controller) have no view when the tab bar controller initially
appears. Thus it is common to override initWithNibName:bundle: (or initWith-
Coder: or awakeFromNib, if appropriate) for this purpose. For example, in the same app
as the previous code:

// GameBoardController.m:
- (id) initWithNibName:(NSString *)nib bundle:(NSBundle *)bundle {
 self = [super initWithNibName:nib bundle:bundle];
 // we will be embedded in a tab view, configure
 if (self) {
 UIImage* im = [UIImage imageNamed:@"game.png"];
 self.tabBarItem.image = im;
 self.title = @"Game";
 }
 return self;
}

If you change the tab bar controller’s view controllers array later in its lifetime and you
want the corresponding change in the tab bar’s display of its items to be animated, call
setViewControllers:animated:.

Initially, by default, the first child view controller’s tab bar item is selected and its view
is displayed. To tell the tab bar controller which tab bar item should be selected, you can
couch your choice in terms of the contained view controller (selectedView-
Controller) or by index number in the array (selectedIndex). The same properties
also tell you what view controller’s view the user has displayed by tapping in the tab bar.

New in iOS 7, you can supply an animation when a tab bar controller’s selected tab item
changes and one child view controller’s view is replaced by another. I’ll discuss this topic
later in the chapter.

You can also set the UITabBarController’s delegate; the delegate should adopt the
UITabBarControllerDelegate protocol. The delegate gets messages allowing it to pre‐
vent a given tab bar item from being selected, and notifying it when a tab bar item is
selected and when the user is customizing the tab bar from the More item.

If the tab bar contains few enough items that it doesn’t need a More item, there won’t
be one and the tab bar won’t be user-customizable. If there is a More item, you can
exclude some tab bar items from being customizable by setting the customizableView-
Controllers property to an array that lacks them; setting this property to nil means
that the user can see the More list but can’t rearrange the items. Setting the view-

278 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers property sets the customizableViewControllers property to the same
value, so if you’re going to set the customizableViewControllers property, do it af‐
ter setting the viewControllers property. The moreNavigationController property
can be compared with the selectedViewController property to learn whether the user
is currently viewing the More list; apart from this, the More interface is mostly out of
your control, but I’ll discuss some sneaky ways of customizing it in Chapter 12.

(If you allow the user to rearrange items, you would presumably want to save the new
arrangement and restore it the next time the app runs. You might use NSUserDefaults
for this; you could also take advantage of the built-in automatic state saving and resto‐
ration facilities, discussed later in this chapter.)

You can also configure a UITabBarController in a .storyboard or .xib file. The UITab‐
BarController’s contained view controllers can be set directly — in a storyboard, there
will be a “view controllers” relationship between the tab bar controller and each of its
children — and the contained view controllers will be instantiated together with the tab
bar controller. Moreover, each contained view controller has a Tab Bar Item; you can
select this and set many aspects of the tabBarItem directly in the nib, such as its system
item or its title, image (but not its selected image), and tag, directly in the nib. (If a view
controller in a nib doesn’t have a Tab Bar Item and you want to configure this view
controller for use in a tab bar interface, drag a Tab Bar Item from the Object library onto
the view controller.)

To start a project with a main storyboard that has a UITabBarController as its root view
controller, begin with the Tabbed Application template.

See the discussion earlier in this chapter of how a view controller’s view
is resized to fit the interface. You will want to prepare your view for
this resizing. In iOS 7, a tab bar controller’s child controller’s view by
default will underlap the tab bar if the tab bar is translucent.

Navigation Controllers
A navigation bar (UINavigationBar, see also Chapter 12) is a horizontal bar displaying
a center title and a right button. When the user taps the right button, the navigation bar
animates, sliding its interface out to the left and replacing it with a new interface that
enters from the right. The new interface displays a back button at the left side, and a
new center title — and possibly a new right button. The user can tap the back button to
go back to the first interface, which slides in from the left; or, if there’s a right button in
the second interface, the user can tap it to go further forward to a third interface, which
slides in from the right.

Navigation Controllers | 279

www.it-ebooks.info

http://www.it-ebooks.info/

The successive interfaces of a navigation bar thus behave like a stack. In fact, a navigation
bar does represent an actual stack — an internal stack of navigation items
(UINavigationItem). It starts out with one navigation item: the root or bottom item of
the stack. Since there is just one navigation item, this is also the top item of the stack
(the navigation bar’s topItem). It is the top item whose interface is always reflected in
the navigation bar. When the user taps a right button, a new navigation item is pushed
onto the stack; it becomes the top item, and its interface is seen. When the user taps a
back button, the top item is popped off the stack, and what was previously the next item
beneath it in the stack — the back item (the navigation bar’s backItem) — becomes the
top item, and its interface is seen.

The state of the stack is thus reflected in the navigation bar’s interface. The navigation
bar’s center title comes automatically from the top item, and its back button comes from
the back item. (See Chapter 12 for a complete description.) Thus, the title tells the user
what item is current, and the left side is a button telling the user what item we would
return to if the user were to tap that button. The animations reinforce this notion of
directionality, giving the user a sense of position within a chain of items.

A navigation bar is an independent interface object, but it is most commonly used in
conjunction with a navigation controller (UINavigationController, a subclass of
UIViewController) to form a navigation interface. Just as there is a stack of navigation
items in the navigation bar, there is a stack of view controllers in the navigation con‐
troller. These view controllers are the navigation controller’s children, and each navi‐
gation item belongs to a view controller — it is a view controller’s navigationItem.

The navigation controller performs automatic coordination of the navigation bar and
the overall interface. Whenever a view controller comes to the top of the navigation
controller’s stack, its view is displayed in the interface. At the same time, its navigation-
Item is automatically pushed onto the top of the navigation bar’s stack — and thus is
automatically displayed in the navigation bar. Moreover, the animation in the navigation
bar is reinforced by animation of the interface as a whole: by default, a view controller’s
view slides into the main interface from the left or right just as its navigation item slides
into the navigation bar from the left or right. (New in iOS 7, the animation of the view
controller’s view can be changed; I’ll discuss that later in the chapter.)

Your code can control the overall navigation, so in real life, the user may well navigate
to the right, not by tapping the right button in the navigation bar, but by tapping some‐
thing inside the main interface, such as a listing in a table view. (Figure 6-1 is a navigation
interface that works this way.) In this situation, your code is deciding in real time what
the next view should be; typically, you won’t even create the next view controller until
the user asks to navigate to it. The navigation interface thus becomes a master–detail
interface.

280 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Conversely, you might put a view controller inside a navigation controller just to get the
convenience of the navigation bar, with its title and buttons, even when no actual push-
and-pop navigation is going to take place.

You can get a reference to the navigation controller’s navigation bar through its
navigationBar property. In general, you won’t need this. When using a navigation
interface by way of a UINavigationController, you do not interact (as a programmer)
with the navigation bar itself; you don’t create it or set its delegate. You provide the
UINavigationController with children, and it does the rest, handing each child view
controller’s navigationItem to the navigation bar for display and showing the child
view controller’s view each time navigation occurs. You can, however, customize the
look of the navigation bar (see Chapter 12 for details).

A navigation interface may also optionally display a toolbar at the bottom. A toolbar
(UIToolbar) is a horizontal view displaying a row of items, any of which the user can
tap. Typically, the tapped item may highlight momentarily, but it is not selected; it rep‐
resents the initiation of an action, like a button. You can get a reference to a
UINavigationController’s toolbar through its toolbar property. The look of the toolbar
can be customized (Chapter 12). In a navigation interface, however, the contents of the
toolbar are determined automatically by the view controller that is currently the top
item in the stack: they are its toolbarItems.

A UIToolbar can also be used independently, and often is. It then
typically appears at the bottom on an iPhone — Figure 6-3 has a tool‐
bar at the bottom — but often appears at the top on an iPad, where it
plays something of the role that the menu bar plays on the desktop.
When a toolbar is displayed by a navigation controller, though, it al‐
ways appears at the bottom.

A familiar example of a navigation interface is Apple’s Settings app on the iPhone. The
Mail app on the iPhone is a navigation interface that includes a toolbar.

As discussed earlier in this chapter, your app’s automatic rotation in response to user
rotation of the device depends on the interplay between the app (represented by the
Info.plist and the app delegate) and the top-level view controller. If a UINavigation‐
Controller is the top-level view controller, it will help determine your app’s automatic
rotation, through its implementation of supportedInterfaceOrientations. By de‐
fault, a UINavigationController does not implement supportedInterface-

Orientations, so your interface will be free to rotate to any orientation permitted by
the app as a whole.

In iOS 6, the only way around this was to subclass UINavigationController for the sole
purpose of implementing supportedInterfaceOrientations, like this:

Navigation Controllers | 281

www.it-ebooks.info

http://www.it-ebooks.info/

@implementation MyNavigationController : UINavigationController
-(NSUInteger)supportedInterfaceOrientations {
 return UIInterfaceOrientationMaskPortrait;
}
@end

It seems silly, however, to be compelled to subclass UINavigationController merely to
take control of its rotation behavior, and in iOS 7 there’s a better way: you can govern
the navigation controller’s rotation in its delegate instead, by implementing navigation-
ControllerSupportedInterfaceOrientations:.

Another navigation controller delegate method that’s new in iOS 7, navigation-
ControllerPreferredInterfaceOrientationForPresentation:, comes into play
when a navigation controller is a presented view controller. It dictates the orientation
to which the app will rotate when the navigation controller’s view initially appears as a
presented view.

Bar Button Items
The buttons in a UIToolbar or a UINavigationBar are bar button items — UIBar‐
ButtonItem, a subclass of UIBarItem. A bar button item comes in one of two broadly
different flavors:
Basic bar button item

The bar button item behaves like a simple button.

Custom view
The bar button item has no inherent behavior, but has (and displays) a customView.

UIBarItem is not a UIView subclass. A basic bar button item is button-like, but it has
no frame, no UIView touch handling, and so forth. A UIBarButtonItem’s customView,
however, is a UIView — indeed, it can be any kind of UIView. Thus, a bar button item
with a customView can display any sort of view in a toolbar or navigation bar, and that
view can implement touch handling however it likes.

Let’s start with the basic bar button item (no custom view). A bar button item, like a tab
bar item, inherits from UIBarItem the title, image, and enabled properties. The title
text color, by default, comes from the bar button item’s tintColor, which may be in‐
herited from the bar itself or from higher up the view hierarchy. Assigning an image
removes the title. The image should usually be quite small; Apple recommends 22×22.
By default, the image will be treated as a transparency mask (a template): the hue of its
pixels will be ignored, and the transparency of its pixels will be combined with the bar
button item’s tintColor. However, new in iOS 7, you can instead display the image as
is, and not as a transparency mask. Send your image the imageWithRenderingMode:
message, with an argument of UIImageRenderingModeAlwaysOriginal (see Chap‐
ter 2), and use the resulting image in your bar button item.

282 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

A basic bar button item has a style property; this will usually be UIBarButtonItem-
StylePlain. The alternative, UIBarButtonItemStyleDone, causes the title to be bold.
You can further refine the title font and style. In addition, a bar button item can have a
background image; this will typically be a small, resizable image, and can be used to
provide a border. Full details appear in Chapter 12.

A bar button item looks quite different in iOS 7 from iOS 6 and be‐
fore. In iOS 6, a bar button item could display both an image and a
title (in a toolbar), and there was usually a border around the item
(though this could be prevented in a toolbar by using UIBarButton-
ItemStylePlain). In iOS 7, the bar button item never draws its own
border, and the UIBarButtonItemStyleBordered style is irrelevant.
And the use and effect of the tintColor is completely changed in iOS
7. Adapting your iOS 6 app to look good when compiled for iOS 7 can
be quite a chore.

A bar button item also has target and action properties. These contribute to its button-
like behavior: tapping a bar button item can trigger an action method elsewhere.

There are three ways to make a bar button item:
By borrowing it from the system

Instantiate UIBarButtonItem using initWithBarButtonSystemItem:target:

action:. Consult the documentation for the list of available system items; they are
not the same as for a tab bar item. You can’t assign a title or change the image. (But
you can change the tint color or assign a background image.)

By making your own basic bar button item
Instantiate UIBarButtonItem using initWithTitle:style:target:action: or
initWithImage:style:target:action:.

An additional method, initWithImage:landscapeImagePhone:style:target:
action:, lets you supply two images, one for portrait orientation, the other for
landscape orientation; this is because by default, the bar’s height might change when
the interface is rotated.

By making a custom view bar button item
Instantiate UIBarButtonItem using initWithCustomView:, supplying a UIView
that the bar button item is to display. The bar button item has no action and target;
the UIView itself must somehow implement button behavior if that’s what you want.
For example, the customView might be a UISegmentedButton, but then it is the
UISegmentedButton’s target and action that give it button behavior.

Bar button items in a toolbar are horizontally positioned automatically by the system.
You can provide hints to help with this positioning. If you know that you’ll be changing

Navigation Controllers | 283

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-8. A segmented control in the center of a navigation bar

an item’s title dynamically, you’ll probably want its width to accommodate the longest
possible title right from the start; to arrange that, set the possibleTitles property to
an NSSet of strings that includes the longest title. Alternatively, you can supply an ab‐
solute width. Also, you can incorporate spacers into the toolbar; these are created with
initWithBarButtonSystemItem:target:action:, but they have no visible appearance,
and cannot be tapped. The UIBarButtonSystemItemFlexibleSpace is the one most
frequently used; place these between the visible items to distribute the visible items
equally across the width of the toolbar. There is also a UIBarButtonSystemItemFixed-
Space whose width lets you insert a space of defined size.

Navigation Items and Toolbar Items
What appears in a navigation bar (UINavigationBar) depends upon the navigation items
(UINavigationItem) in its stack. In a navigation interface, the navigation controller will
manage the navigation bar’s stack for you, but you must still configure each navigation
item by setting properties of the navigationItem of each child view controller. The
UINavigationItem properties are as follows (see also Chapter 12):
title or titleView

Determines what is to appear in the center of the navigation bar when this naviga‐
tion item is at the top of the stack.

The title is a string. Setting the view controller’s title property sets the title of
the navigationItem automatically, and is usually the best approach.

The titleView can be any kind of UIView; if set, it will be displayed instead of the
title. The titleView can implement further UIView functionality; for example,
it can be tappable. Even if you are using a titleView, you should still give your view
controller a title, as it will be needed for the back button when a view controller
is pushed onto the stack on top of this one.

Figure 6-1 shows the TidBITS News master view, with the navigation bar displaying
a titleView which is a (tappable) image view; the master view’s title is therefore
not displayed. In the TidBITS News detail view controller’s navigation bar
(Figure 6-8), the titleView is a segmented control providing a Previous and Next
button, and the back button displays the master view controller’s title.

284 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

prompt

An optional string to appear centered above everything else in the navigation bar.
The navigation bar’s height will be increased to accommodate it.

rightBarButtonItem or rightBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the right
side of the navigation bar; the first item in the array will be rightmost.

In Figure 6-8, the text size button is a right bar button item; it has nothing to do
with navigation, but is placed here merely because space is at a premium on the
small iPhone screen.

backBarButtonItem

When a view controller is pushed on top of this view controller, the navigation bar
will display at its left a button pointing to the left, whose title is this view controller’s
title. That button is this view controller’s navigation item’s backBarButtonItem.
That’s right: the back button displayed in the navigation bar belongs, not to the top
item (the navigationItem of the current view controller), but to the back item (the
navigationItem of the view controller that is one level down in the stack). In
Figure 6-8, the back button in the detail view is the master view controller’s default
back button, displaying its title.

The vast majority of the time, the default behavior is the behavior you’ll want, and
you’ll leave the back button alone. If you wish, though, you can customize the back
button by setting a view controller’s navigationItem.backBarButtonItem so that
it contains an image, or a title differing from the view controller’s title. The best
technique is to provide a new UIBarButtonItem whose target and action are nil; the
runtime will add a correct target and action, so as to create a working back button:

UIBarButtonItem* b =
 [[UIBarButtonItem alloc] initWithTitle:@"Go Back"
 style:UIBarButtonItemStylePlain target:nil action:nil];
self.navigationItem.backBarButtonItem = b;

A BOOL property, hidesBackButton, allows the top navigation item to suppress
display of the back item’s back bar button item. Obviously, if you set this to YES,
you’ll probably ensure some other means of letting the user navigate back.

In iOS 7, the visible indication that the back button is a back button is a left-pointing
chevron (the back indicator) that’s separate from the button itself. (This contrasts
with iOS 6 and before, where the button itself had a left-pointing shape.) This
chevron can also be customized, but it’s a feature of the navigation bar, not the bar
button item: set the navigation bar’s backIndicatorImage and backIndicator-
TransitionMask (I’ll give an example in Chapter 12). Alternatively, if the back but‐
ton is assigned a background image, the back indicator is removed; it is up to the
background image to point left, if desired.

Navigation Controllers | 285

www.it-ebooks.info

http://www.it-ebooks.info/

leftBarButtonItem or leftBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the left
side of the navigation bar; the first item in the array will be leftmost. The leftItems-
SupplementBackButton property, if set to YES, allows both the back button and
one or more left bar button items to appear.

A view controller’s navigation item can have its properties set at any time while being
displayed in the navigation bar. This (and not direct manipulation of the navigation bar)
is the way to change the navigation bar’s contents dynamically. For example, in one of
my apps, the titleView is a progress view (UIProgressView, Chapter 12) that needs
updating every second, and the right bar button should be either the system Play button
or the system Pause button, depending on whether music from the library is playing,
paused, or stopped. So I have a timer that periodically checks the state of the music
player:

// change the progress view
if (self->_nowPlayingItem) {
 MPMediaItem* item = self->_nowPlayingItem;
 NSTimeInterval current = self.mp.currentPlaybackTime;
 NSTimeInterval total =
 [[item valueForProperty:MPMediaItemPropertyPlaybackDuration]
 doubleValue];
 self.prog.progress = current / total;
} else {
 self.prog.progress = 0;
}
// change the bar button
int whichButton = -1;
if ([self.mp playbackState] == MPMusicPlaybackStatePlaying)
 whichButton = UIBarButtonSystemItemPause;
else if ([self.mp playbackState] == MPMusicPlaybackStatePaused ||
 [self.mp playbackState] == MPMusicPlaybackStateStopped)
 whichButton = UIBarButtonSystemItemPlay;
if (whichButton == -1)
 self.navigationItem.rightBarButtonItem = nil;
else {
 UIBarButtonItem* bb =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:whichButton
 target:self action:@selector(doPlayPause:)];
 self.navigationItem.rightBarButtonItem = bb;
}

Each view controller to be pushed onto the navigation controller’s stack is responsible
for supplying the items to appear in the navigation interface’s toolbar, if there is one. To
configure this, set the view controller’s toolbarItems property to an array of UIBar‐
ButtonItem instances. You can change the toolbar items even while the view controller’s
view and current toolbarItems are showing, optionally with animation, by sending
setToolbarItems:animated: to the view controller.

286 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

A view controller has the power to specify that its ancestor’s bottom bar (a navigation
controller’s toolbar, or a tab bar controller’s tab bar) should be hidden as this view
controller is pushed onto a navigation controller’s stack. To do so, set the view controller’s
hidesBottomBarWhenPushed property to YES. The trick is that you must do this very
early, before the view loads; the view controller’s initializer is a good place. The bottom
bar remains hidden from the time this view controller is pushed to the time it is popped,
even if other view controllers are pushed and popped on top of it in the meantime. For
more flexibility, you can send setToolbarHidden:animated: to the UINavigation‐
Controller at any time.

Configuring a Navigation Controller
You configure a navigation controller by manipulating its stack of view controllers. This
stack is the navigation controller’s viewControllers array property, though, as I’ll ex‐
plain in a moment, you will rarely need to manipulate that property directly.

The view controllers in a navigation controller’s viewControllers array are the navi‐
gation controller’s child view controllers; the navigation controller is the parentView-
Controller of the view controllers in the array. The navigation controller is also the
navigationController of the view controllers in the array and of all their children;
thus a child view controller at any depth can learn that it is contained by a navigation
controller and can get a reference to that navigation controller. The navigation controller
retains the array, and the array retains the child view controllers.

The normal way to manipulate a navigation controller’s stack is by pushing or popping
one view controller at a time. When the navigation controller is instantiated, it is usually
initialized with initWithRootViewController:; this is a convenience method that as‐
signs the navigation controller a single initial child view controller, the root view con‐
troller that goes at the bottom of the stack:

FirstViewController* fvc = [FirstViewController new];
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:fvc];
self.window.rootViewController = nav;

Instead of initWithRootViewController:, you might choose to create the navigation
controller with initWithNavigationBarClass:toolbarClass:, in which case you’ll
have to set its root view controller in a subsequent line of code. The reason for wanting
to set the navigation bar and toolbar class has to do with customization of the appearance
of the navigation bar and toolbar; sometimes you’ll create, say, a UIToolbar subclass for
no other reason than to mark this kind of toolbar as needing a certain appearance. I’ll
explain about that in Chapter 12.

Navigation Controllers | 287

www.it-ebooks.info

http://www.it-ebooks.info/

You can also set the UINavigationController’s delegate; the delegate should adopt the
UINavigationControllerDelegate protocol. The delegate receives messages before and
after a child view controller’s view is shown.

A navigation controller will typically appear on the screen initially containing just its
root view controller, and displaying its root view controller’s view. There will be no back
button, because there is no back item; there is nowhere to go back to. Subsequently,
when the user asks to navigate to a new view, you obtain the next view controller (typ‐
ically by creating it) and push it onto the stack by calling pushView-

Controller:animated: on the navigation controller. The navigation controller per‐
forms the animation, and displays the new view controller’s view:

// FirstViewController.m:
SecondViewController* svc = [SecondViewController new];
[self.navigationController pushViewController:svc animated:YES];

Typically, that’s all there is to it! There is usually no need to worry about going back;
when the user taps the back button to navigate back, the runtime will call popView-
ControllerAnimated: for you. When a view controller is popped from the stack, the
viewControllers array removes and releases the view controller, which is usually per‐
mitted to go out of existence at that point.

New in iOS 7, the user can alternatively go back by dragging a pushed view controller’s
view from the left edge of the screen. This too is a way of calling popViewController-
Animated:, with the difference that the animation is interactive. (Interactive view
controller transition animation is the subject of the next section.) The UINavigation‐
Controller uses a UIScreenEdgePanGestureRecognizer to detect and track the user’s
gesture. You can obtain a reference to this gesture recognizer as the navigation con‐
troller’s interactivePopGestureRecognizer; thus you can disable the gesture recog‐
nizer and prevent this way of going back, or you can mediate between your own gesture
recognizers and this one (see Chapter 5).

You can manipulate the stack more directly if you wish. You can call popViewController-
Animated: yourself; to pop multiple items so as to leave a particular view controller at
the top of the stack, call popToViewController:animated:, or to pop all the items down
to the root view controller, call popToRootViewControllerAnimated:. All of these
methods return the popped view controller (or view controllers, as an array), in case
you want to do something with them.

To set the entire stack at once, call setViewControllers:animated:. You can access the
stack through the viewControllers property. Manipulating the stack directly is the only
way, for instance, to delete or insert a view controller in the middle of the stack.

The view controller at the top of the stack is the topViewController; the view controller
whose view is displayed is the visibleViewController. Those will normally be the
same view controller, but they needn’t be, as the topViewController might present a

288 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

view controller, in which case the presented view controller will be the visibleView-
Controller. Other view controllers can be accessed through the viewControllers array
by index number. The root view controller is at index 0; if the array’s count is c, the back
view controller (the one whose navigationItem.backBarButtonItem is currently dis‐
played in the navigation bar) is at index c-2.

The topViewController may need to communicate with the next view controller as the
latter is pushed onto the stack, or with the back view controller as it itself is popped off
the stack. The problem is parallel to that of communication between an original pre‐
senter and a presented view controller, which I discussed earlier in this chapter.

The navigation controller’s navigation bar will automatically display the navigation-
Item of the topViewController (and the back button of the navigationItem of the
back view controller). Thus, a child view controller will probably want to configure its
navigationItem early in its lifetime, so that the navigationItem is ready by the time
the view controller is handed as a child to the navigation controller. Apple warns (in the
UIViewController class reference, under navigationItem) that loadView and viewDid-
Load are not appropriate places to do this, because the circumstances under which the
view is needed are not related to the circumstances under which the navigation item is
needed; however, Apple’s own code examples, including the Master–Detail Application
template, violate this warning. It is probably best to override initWithNib-

Name:bundle: (or initWithCoder: or awakeFromNib, if appropriate) for this purpose.

A navigation controller’s navigation bar is accessible as its navigationBar, and can be
hidden and shown with setNavigationBarHidden:animated:. (It is possible, though
not common, to maintain and manipulate a navigation stack through a navigation con‐
troller whose navigation bar never appears.) Its toolbar is accessible as its toolbar, and
can be hidden and shown with setToolbarHidden:animated:.

You can also configure a UINavigationController or any view controller that is to serve
in a navigation interface in a .storyboard or .xib file. In the Attributes inspector, use a
navigation controller’s Bar Visibility checkboxes to determine the presence of the nav‐
igation bar and toolbar. The navigation bar and toolbar are themselves subviews of the
navigation controller, and you can configure them with the Attributes inspector as well.
A navigation controller’s root view controller can be specified; in a storyboard, there
will be a “root view controller” relationship between the navigation controller and its
root view controller.

A view controller in a .storyboard or .xib file has a Navigation Item where you can specify
its title, its prompt, and the text of its back button. (If a view controller in a nib doesn’t
have a Navigation Item and you want to configure this view controller for use in a
navigation interface, drag a Navigation Item from the Object library onto the view con‐
troller.) You can drag Bar Button Items into a view controller’s navigation bar in the
canvas to set the left button and right button of its navigationItem. Moreover, the

Navigation Controllers | 289

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation Item has outlets, one of which permits you to set its titleView. (However,
you can’t assign a navigation item multiple rightBarButtonItems or leftBarButton-
Items in the nib editor.) Similarly, you can give a view controller Bar Button Items that
will appear in the toolbar.

To start an iPhone project with a main storyboard that has a UINavigationController
as its root view controller, begin with the Master–Detail Application template. Alter‐
natively, start with the Single View Application template, remove the existing view con‐
troller from the storyboard, and add a Navigation Controller in its place. Unfortunately,
the nib editor assumes that the navigation controller’s root view controller should be a
UITableViewController; if that’s not the case, here’s a better way: select the existing view
controller and choose Editor → Embed In → Navigation Controller. A view controller
to be subsequently pushed onto the navigation stack can be configured in the storyboard
as the destination of a push segue; I’ll talk more about that later in the chapter.

See the discussion earlier in this chapter of how a view controller’s view
is resized to fit the interface. You will want to prepare your view for
this resizing. In iOS 7, a navigation controller’s child controller’s view
by default will underlap a navigation bar or toolbar if the bar is trans‐
lucent; if it underlaps a navigation bar, it will also underlap the status
bar. If the view does not underlap a bar and you hide or show that bar
dynamically, the view will be resized then and there. If you show or
hide the status bar dynamically, the navigation bar’s height will ex‐
pand or contract accordingly; this too may cause the view’s size to
change. Showing or hiding the navigation bar or status bar will cause
your view controller’s topLayoutGuide to move; showing or hiding the
toolbar will cause your view controller’s bottomLayoutGuide to move.

Custom Transition Animations
New in iOS 7, you can supply your own custom transition animation for a tab bar
controller as its selected view controller changes, for a navigation controller as its child
view controller is pushed or popped, or for a presented view controller as it is presented
or dismissed.

Given the extensive animation resources of iOS 7 (see Chapter 4), this is an excellent
chance for you to provide your app with variety, interest, and distinctiveness. The view
of a child view controller pushed onto a navigation controller’s stack needn’t arrive
sliding from the right; it can expand by zooming from the middle of the screen, drop
from above and fall into place with a bounce, snap into place like a spring, or whatever
else you can dream up.

290 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

In your custom transition animation, you have control of both the outgoing view con‐
troller’s view and the incoming view controller’s view. Moreover, you are free to add
further temporary views during the course of the animation. For example, as the out‐
going view departs and the incoming view arrives, a third view can move across from
the outgoing view to the incoming view. This might be a way for you to suggest or
emphasize the significance of the transition that is now taking place. In a master–detail
navigation interface, for instance, where the master view is a list of story titles, when
the user taps a title and the detail view arrives to reveal the full story, the tapped title
might simultaneously fly from its place within the list to its new place at the top of the
full story, to clarify that these are the same story.

As you contemplate what might be possible and how it might be achieved, don’t forget
about view snapshotting (see Chapter 2). This is exactly why snapshotting was invented
for iOS 7. Instead of moving a view, which could upset the arrangement of things, you
can take a snapshot of that view and move the snapshot.

In addition, a custom animation can be interactively gesture-driven (similar to the way
a navigation controller’s view can be popped, in iOS 7, by dragging from the left edge
of the screen). The user does not merely tap and cause an animation to take place; the
user performs an extended gesture and gradually summons the new view to supersede
the old one. The user can thus participate in the progress of the transition.

Noninteractive Custom Transition Animation
Let’s start with the simpler case, where the custom animation is not interactive. Con‐
figuring your custom animation requires three steps:

1. The view controller in charge of the transition must have a delegate.
2. As the transition begins, the delegate will be asked for an animation controller. This

can be any object adopting the UIViewControllerAnimatedTransitioning protocol.
Return nil to specify that the default animation (if any) should be used.

3. The animation controller will be sent two messages:
transitionDuration:

The duration of the custom animation.
animateTransition:

The animation controller should perform the animation.

The implementation of animateTransition: works, in general, as follows:

• The parameter is an object supplied by the runtime, adopting the UIViewControl‐
lerContextTransitioning protocol, called the transition context. The transition
context points to a view, the container view, where all the action is to take place.
Typically, the outgoing view controller’s view is in the container view.

Custom Transition Animations | 291

www.it-ebooks.info

http://www.it-ebooks.info/

• By querying the transition context, you can obtain the outgoing and incoming view
controllers and their views. You can also learn the initial frame of the outgoing view
controller’s view and the ultimate frame of the incoming view controller’s view.

• Having gathered this information, your job is to put the incoming view controller’s
view into the container view and animate it in such a way as to end up at its correct
ultimate position.

• When the animation ends, you must call the transition context’s complete-
Transition: to tell it that the animation is over. The outgoing view is then typically
removed automatically.

To illustrate, I’ll start by animating the transition between two child view controllers of
a tab bar controller. The most obvious custom animation is that the new view controller’s
view should slide in from the side while the old view controller’s view should slide out
the other side. The direction of the slide should depend on whether the index of the
new view controller is greater or less than that of the old view controller.

The first step is to configure a delegate for the tab bar controller. Let’s assume that the
tab bar controller is our app’s root view controller. For simplicity, I’ll set its delegate in
the app delegate’s application:didFinishLaunchingWithOptions:, and I’ll make that
delegate be the app delegate itself:

UITabBarController* tbc = (UITabBarController*)self.window.rootViewController;
tbc.delegate = self;

The result is that when the user taps a tab bar item to change view controllers, the
corresponding delegate method is called, asking for an animation controller. This is
what that delegate method looks like for a tab bar controller:

- (id<UIViewControllerAnimatedTransitioning>)
 tabBarController:
 (UITabBarController *)tabBarController
 animationControllerForTransitionFromViewController:
 (UIViewController *)fromVC
 toViewController:
 (UIViewController *)toVC {
 return self;
}

There is no particular reason why the animation controller should be self; indeed, the
animation code can be rather elaborate, and it might make for cleaner code to move it
off into a class of its own. The animation controller can be any object implementing the
UIViewControllerAnimatedTransitioning protocol, and thus may be extremely light‐
weight; it can be a simple NSObject.

There is also no reason why the animation controller should be the same object every
time this method is called. We are provided with plenty of information about what’s
about to happen: we know the tab bar controller and both child view controllers. Thus

292 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

we could readily decide in real time to provide a different animation controller under
different circumstances, or we could return nil to use the default transition (which, for
a tab bar controller, means no animation).

One way or another, then, here we are in the animation controller. Our first job is to
reveal in advance the duration of our animation:

-(NSTimeInterval)transitionDuration:
 (id<UIViewControllerContextTransitioning>)transitionContext {
 return 0.4;
}

Again, the value returned needn’t be the same every time this method is called. The
transition context has arrived as parameter, and we could query it to identify the two
view controllers involved and make a decision based on that. But make sure that the
value you return here is indeed the duration of the animation you’ll perform in animate-
Transition:.

Finally, we come to animateTransition: itself:

-(void)animateTransition:
 (id<UIViewControllerContextTransitioning>)transitionContext {
 // ...
}

There are certain standard tasks to perform in animateTransition:, so its structure
will be roughly the same in every case:

1. Query the transition context (the transitionContext parameter) to get the view
controllers, the frames of their views, and the container view.

2. Put the second view controller’s view into the container view.
3. Perform the animation, ending with completeTransition:.

First, query the transition context. This code is practically boilerplate for any custom
view controller transition animation:

UIViewController* vc1 =
 [transitionContext viewControllerForKey:
 UITransitionContextFromViewControllerKey];
UIViewController* vc2 =
 [transitionContext viewControllerForKey:
 UITransitionContextToViewControllerKey];
UIView* con = [transitionContext containerView];
CGRect r1start = [transitionContext initialFrameForViewController:vc1];
CGRect r2end = [transitionContext finalFrameForViewController:vc2];
UIView* v1 = vc1.view;
UIView* v2 = vc2.view;

We have the view controllers and their views, and the initial frame of the outgoing view
and the destination frame of the incoming view. Now, for our intended animation, we

Custom Transition Animations | 293

www.it-ebooks.info

http://www.it-ebooks.info/

want to calculate the converse, the final frame of the outgoing view and the initial frame
of the incoming view. We are sliding the views sideways, so those frames should be
positioned sideways from the initial frame of the outgoing view and the final frame of
the incoming view. Which side they go on depends upon the relative place of these view
controllers among the children of the tab bar controller — is this to be a leftward slide
or a rightward slide? Since the animation controller is the app delegate, we can get a
reference to the tab bar controller the same way we did before:

UITabBarController* tbc = (UITabBarController*)self.window.rootViewController;
int ix1 = [tbc.viewControllers indexOfObject:vc1];
int ix2 = [tbc.viewControllers indexOfObject:vc2];
int dir = ix1 < ix2 ? 1 : -1;
CGRect r = r1start;
r.origin.x -= r.size.width * dir;
CGRect r1end = r;
r = r2end;
r.origin.x += r.size.width * dir;
CGRect r2start = r;

We now put the second view controller’s view into the container view at its initial frame,
and perform the animation. We must not forget to call completeTransition: after the
animation ends:

v2.frame = r2start;
[con addSubview:v2];
[UIView animateWithDuration:0.4 animations:^{
 v1.frame = r1end;
 v2.frame = r2end;
} completion:^(BOOL finished) {
 [transitionContext completeTransition:YES];
}];

A custom transition for a navigation controller is similar to a custom transition for a
tab bar controller, so I don’t need to give a separate example. The only slight difference
lies in the name of the navigation controller delegate method that will be called to dis‐
cover whether there’s a custom transition animation:

• navigationController:animationControllerForOperation:fromView-

Controller:toViewController:

The operation: parameter allows you to distinguish a push from a pop.

Interactive Custom Transition Animation
With an interactive custom transition animation, the idea is that we track something
the user is doing, typically using a gesture recognizer (see Chapter 5), and perform the
“frames” of the transition in response. There are two ways to write an interactive custom
transition animation. We’re going to need an interactive controller, namely an object

294 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

that conforms to the UIViewControllerInteractiveTransitioning protocol. The two ways
of writing the code correspond to the two ways of supplying this object:
Create a UIPercentDrivenInteractiveTransition object

We supply a UIPercentDrivenInteractiveTransition object (let’s call this the percent
driver). This percent driver object performs the frames of the animation for us by
calling our animateTransition: and “freezing” the animation block. All we have
to do is track the interaction and call the percent driver’s updateInteractive-
Transition:, telling it how far the interaction has proceeded; the percent driver
updates the interface, performing our animation partially to match the extent of
the gesture. At the end of the gesture, we decide whether to finish or cancel the
transition; accordingly, we call the percent driver’s finishInteractive-

Transition or cancelInteractiveTransition. Finally, we call the transition con‐
text’s completeTransition:

Adopt UIViewControllerInteractiveTransitioning
We supply our own object with our own code. This object, conforming to the UI‐
ViewControllerInteractiveTransitioning protocol, will need to respond to start-
InteractiveTransition:, whose parameter will be the transitionContext object
supplied by the system, adopting the UIViewControllerContextTransitioning pro‐
tocol. Once we are told that the transition has started, we will set up the initial
conditions for the animation and then constantly track the interaction, changing
the interface and calling the transition context’s updateInteractiveTransition:.
When the interaction ends, we decide whether to finish or cancel the transition;
accordingly, we animate into the final or initial conditions, and call the transition
context’s finishInteractiveTransition or cancelInteractiveTransition. Fi‐
nally, we call the transition context’s completeTransition:.

As an example, I’ll describe how to make an interactive version of the tab bar controller
transition animation that we’ve just developed. We’ll attach a UIScreenEdgePanGes‐
tureRecognizer to the interface so that the user can drag the tab bar controller’s adjacent
view controller in from the right or from the left.

Since we have already written a noninteractive version of our transition animation,
using the percent driver is going to be the simpler approach, because it lets us keep our
existing animateTransition: code. So let’s do that first. The steps build upon those of
a noninteractive transition animation; in fact, all the code we’ve already written can be
left more or less as is (which is one of the main reasons for using a percent driver):

1. The view controller in charge of the transition must have a delegate.
2. We observe that the user is interacting in a way that should trigger a change of view

controller. We respond by triggering that change.

Custom Transition Animations | 295

www.it-ebooks.info

http://www.it-ebooks.info/

3. As the transition begins, the delegate will be asked for an animation controller, as
before. We return an object adopting the UIViewControllerAnimatedTransitioning
protocol, as before.

4. The delegate is also asked for an interactive controller. (This happened before, but
we didn’t supply one, which is why our transition animation wasn’t interactive.) We
have elected to use a UIPercentDrivenInteractiveTransition object. So we return
that object.

5. The animation controller is sent the same two messages as before:
transitionDuration:

The duration of the custom animation.
animateTransition:

The animation controller should perform the animation. But the animation
will not in fact take place at this moment; its “frames” will be produced as the
interaction proceeds.

6. We continue tracking the interaction, calling our percent driver’s update-
InteractiveTransition: to tell it how far the interaction has proceeded. The per‐
cent driver performs that much of our animation for us.

7. Sooner or later the interaction will end. At this point, we must decide whether to
declare the transition completed or cancelled. The usual approach is to say that if
the user performed more than half the full interactive gesture, that constitutes
completion; otherwise, it constitutes cancellation. We call the percent driver’s
finishInteractiveTransition or cancelInteractiveTransition accordingly.
The percent driver either completes the animation or (if we cancelled) reverses the
animation.

8. The animation is now completed, and its completion block is called. We call
completeTransition:, with the argument stating whether the transition was fin‐
ished or cancelled.

Now I’ll write the code performing the additional steps. To track the user’s gesture, I’ll
put a pair of UIScreenEdgePanGestureRecognizers into the interface, and keep refer‐
ences to them so they can be identified later. The gesture recognizers are attached to the
tab view controller’s view (tbc.view), as this will remain constant while the views of its
view controllers are sliding across the screen:

UIScreenEdgePanGestureRecognizer* sep =
 [[UIScreenEdgePanGestureRecognizer alloc]
 initWithTarget:self action:@selector(pan:)];
sep.edges = UIRectEdgeRight;
[tbc.view addGestureRecognizer:sep];
sep.delegate = self;
self.rightEdger = sep;
sep =

296 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

 [[UIScreenEdgePanGestureRecognizer alloc]
 initWithTarget:self action:@selector(pan:)];
sep.edges = UIRectEdgeLeft;
[tbc.view addGestureRecognizer:sep];
sep.delegate = self;
self.leftEdger = sep;

The delegate of the two gesture recognizers prevents the pan gesture from operating
unless there is another child of the tab view controller available on that side of the current
child:

-(BOOL)gestureRecognizerShouldBegin:(UIScreenEdgePanGestureRecognizer *)g {
 UITabBarController* tbc =
 (UITabBarController*)self.window.rootViewController;
 BOOL result = NO;
 if (g == self.rightEdger)
 result = (tbc.selectedIndex < tbc.viewControllers.count - 1);
 else
 result = (tbc.selectedIndex > 0);
 return result;
}

So much for preparation. If the gesture recognizer action handler pan: is called, we now
know that this means our interactive transition animation is to take place. I’ll break
down the discussion to examine each of the gesture recognizer’s stages separately:

- (void) pan: (UIScreenEdgePanGestureRecognizer *) g {
 UIView* v = g.view;
 if (g.state == UIGestureRecognizerStateBegan) {
 self.inter = [UIPercentDrivenInteractiveTransition new];
 UITabBarController* tbc =
 (UITabBarController*)self.window.rootViewController;
 if (g == self.rightEdger)
 tbc.selectedIndex = tbc.selectedIndex + 1;
 else
 tbc.selectedIndex = tbc.selectedIndex - 1;
 }
 // ... more to come ...
}

As the gesture begins, we create the UIPercentDrivenInteractiveTransition object and
store it in an instance variable (self.inter). We then set the tab bar controller’s
selectedIndex. This triggers the animation! As before, the runtime turns to the tab bar
controller’s delegate to see whether there is a transition animation; as before, we make
ourselves the animation controller:

- (id<UIViewControllerAnimatedTransitioning>)
 tabBarController:
 (UITabBarController *)tabBarController
 animationControllerForTransitionFromViewController:
 (UIViewController *)fromVC

Custom Transition Animations | 297

www.it-ebooks.info

http://www.it-ebooks.info/

 toViewController:
 (UIViewController *)toVC {
 return self;
}

The runtime now asks if there is also an interactive controller. There wasn’t one in our
previous example, but now there is — the percent driver:

-(id<UIViewControllerInteractiveTransitioning>)
 tabBarController:
 (UITabBarController *)tabBarController
 interactionControllerForAnimationController:
 (id<UIViewControllerAnimatedTransitioning>)animationController {
 return self.inter;
}

The runtime now calls our percent driver’s startInteractiveTransition:, handing it
a reference to the transition context. This is where the magic happens. The percent
driver immediately turns around and calls our animateTransition: method. Yet the
animation does not happen! The percent driver has “frozen” the animation described
in the animation block. Our job now is to keep calling the percent driver, telling it what
“frame” of the animation to display at every moment; the percent driver will move the
views to correspond to that “frame” of the animation as the interaction proceeds, and
will call the transition context on our behalf.

(I suppose you’re wondering how this magic is performed. The percent driver takes
advantage of the fact that a CALayer conforms to the CAMediaTiming protocol, as I
mentioned in Chapter 4. It asks the transition context for the container view, obtains
that view’s layer, and sets the layer’s speed to 0. This freezes the animation. Then, as we
call the percent driver’s updateInteractiveTransition:, it adjusts that layer’s time-
Offset accordingly, thus displaying a different “frame” of the animation.)

We are now back in the gesture recognizer’s action handler, as the gesture proceeds; we
keep sending updateInteractiveTransition: to the percent driver:

- (void) pan: (UIScreenEdgePanGestureRecognizer *) g {
 UIView* v = g.view;
 // ...
 else if (g.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [g translationInView: v];
 CGFloat percent = fabs(delta.x/v.bounds.size.width);
 [self.inter updateInteractiveTransition:percent];
 }
 // ...
}

When the gesture ends, we decide whether this counts as finishing or canceling, and we
report to the percent driver accordingly:

298 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) pan: (UIScreenEdgePanGestureRecognizer *) g {
 UIView* v = g.view;
 // ...
 else if (g.state == UIGestureRecognizerStateEnded) {
 CGPoint delta = [g translationInView: v];
 CGFloat percent = fabs(delta.x/v.bounds.size.width);
 if (percent > 0.5)
 [self.inter finishInteractiveTransition];
 else
 [self.inter cancelInteractiveTransition];
 }
 // ...
}

If we call finishInteractiveTransition, the percent driver plays the rest of the ani‐
mation forward to completion. If we call cancelInteractiveTransition, the percent
driver plays the animation backward to its beginning!

Finally, we find ourselves back inside animateTransition:, in the animation
completion: handler. This is the only place where a change is needed in our previously
existing code. As I’ve just said, the transition can complete in one of two ways. We must
still call completeTransition: ourselves, but we must tell the transition context which
way things turned out, so that the transition context can restore the previous state of
things if the transition was cancelled. Luckily, the transition context already knows
whether the transition was cancelled. So we ask it:

BOOL cancelled = [transitionContext transitionWasCancelled];
[transitionContext completeTransition:!cancelled];

The amazing thing is that, with only a tiny bit of further modification (not shown), the
very same code will now serve us both for an interactive and a noninteractive version
of the transition animation. That is the point of using a percent driver.

If we don’t use a percent driver, then the entire interactive transition animation is up to
us. We ourselves must repeatedly reposition the views at every stage of the gesture, and
when the gesture ends, we ourselves must animate them either into their final position
or back into their initial position. We will no longer need an animateTransition:
method (it must be present, to satisfy the protocol requirements, but it can be empty);
all the logic of initializing, positioning, and finalizing the moving views must be effec‐
tively deconstructed and folded into the various stages of our gesture recognizer action
handler. There is no percent driver; at every stage, we must keep talking to the transition
context itself.

The resulting code is verbose, and can be difficult to express in a compact or object-
oriented way. However, it is more powerful, more flexible, and possibly more reliable
than using a percent driver. I’ll just sketch the structure. We have our gesture recog‐
nizer(s) as before. When the gesture begins, the UIGestureRecognizerStateBegan
section of the action handler triggers the transition as before. The delegate is asked for

Custom Transition Animations | 299

www.it-ebooks.info

http://www.it-ebooks.info/

an animation controller and an interaction controller; the interaction controller is now
not a percent driver, but some object that we will supply — let’s say it’s self:

-(id<UIViewControllerInteractiveTransitioning>)
 tabBarController:
 (UITabBarController *)tabBarController
 interactionControllerForAnimationController:
 (id<UIViewControllerAnimatedTransitioning>)animationController {
 return self;
}

The result is that, in our role as adopter of the UIViewControllerInteractiveTransition‐
ing protocol, our startInteractiveTransition: is called; here, we set up the initial
conditions of the transition, putting the view controllers’ views into place, and storing
a reference to the transitionContext in an instance variable where our gesture rec‐
ognizer action handler can access it:

-(void)startInteractiveTransition:
 (id<UIViewControllerContextTransitioning>)transitionContext {
 // store transition context so the gesture recognizer can get at it
 self.context = transitionContext;
 // ... set up initial conditions ...
 // ... store any additional instance variables ...
}

Now our gesture recognizer action handler is called again, repeatedly, at the UIGesture-
RecognizerStateChanged stage. We keep repositioning our views (not animating them)
in accordance with the progress of the interactive gesture. At the same time, we keep
informing the transition context of that progress:

else if (g.state == UIGestureRecognizerStateChanged) {
 // calculate progress
 CGPoint delta = [g translationInView: v];
 CGFloat percent = fabs(delta.x/v.bounds.size.width);
 // ... put views into position corresponding to current "frame" ...
 // ... and finally, notify the transition context
 v1.frame = // whatever
 v2.frame = // whatever
 [self.context updateInteractiveTransition:percent];
}

Finally, our gesture recognizer action handler is called one last time, at the UIGesture-
RecognizerStateEnded stage. We now animate our views the rest of the way, or else
back to the start, and call either finishInteractiveTransition or cancelInteractive-
Transition followed by completeTransition: with the appropriate argument:

if (percent > 0.5) {
 [UIView animateWithDuration:0.2 animations:^{
 v1.frame = r1end;
 v2.frame = r2end;
 } completion:^(BOOL finished) {

300 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

 [transitionContext finishInteractiveTransition];
 [transitionContext completeTransition:YES];
 }];
}
else {
 [UIView animateWithDuration:0.2 animations:^{
 v1.frame = r1start;
 v2.frame = r2start;
 } completion:^(BOOL finished) {
 [transitionContext cancelInteractiveTransition];
 [transitionContext completeTransition:NO];
 }];
}

Why must we call updateInteractiveTransition: throughout the progress of the in‐
teractive gesture? For a tab bar controller’s transition, this call has little or no signifi‐
cance. But in the case, say, of a navigation controller, the animation has a component
separate from what you’re doing — the change in the appearance of the navigation bar
(as the old title departs and the new title arrives, and so forth). The transition context
needs to coordinate that animation with the interactive gesture and with your anima‐
tion. So you need to keep telling it where things are in the course of the interaction.

Custom Presented View Controller Transition
A new iOS 7 view controller property, transitioningDelegate, allows you to set a
delegate (on the presented view controller) that will be asked for an animation controller
and an interactive controller separately for both the presentation and the dismissal:

• animationControllerForPresentedController:presenting-

Controller:sourceController:

• interactionControllerForPresentation:

• animationControllerForDismissedController:

• interactionControllerForDismissal:

If you return the same object as the animation controller for both presentation and
dismissal, your implementation of animateTransition: will need to distinguish which
is happening. During presentation, the “from” view controller’s view is the old interface,
and the “to” view controller is the presented view controller. But during dismissal, it’s
the other way round: the “from” view controller is the presented view controller.

A presented view controller transition has a problem that a tab bar controller or navi‐
gation controller transition doesn’t have — there’s no existing view to serve as the con‐
tainer view. Therefore, as the transition begins, the runtime has to pull some serious
hanky-panky (that’s a technical programming term): it creates an extra container view
and inserts it into the view hierarchy, and removes it after the transition is over.

Custom Transition Animations | 301

www.it-ebooks.info

http://www.it-ebooks.info/

When the modal presentation style is UIModalPresentationFullScreen or UIModal-
PresentationCurrentContext, the effect from your point of view is similar to a tab bar
controller or navigation controller animation. By the time you have a transition context,
the runtime has already ripped the “from” view out of its superview, created the container
view, put it into the “from” view’s old superview, and put the “from” view into the con‐
tainer view. You put the “to” view into the container view and do the animation, and
afterward the runtime rips the “to” view out of the container view, puts it into the con‐
tainer view’s superview, removes the “from” view from the interface, and throws away
the container view.

Other modal presentation styles, however, leave both view controllers’ views in place:
the presented view controller’s view appears only partially covering the already existing
view. You may have to make allowance for the special conditions of this arrangement.

Let’s consider, for example, the iPad’s UIModalPresentationFormSheet presentation
style. The presented view controller’s view appears smaller than the screen, leaving the
presenting view controller’s view in place, visible only “through a glass darkly”. That
darkness is in fact due to an extra view, a “dimming view”; in front of the dimming view
is a “drop shadow view”, and the presented view controller’s view is inside that. Moreover,
at the time the custom animation begins, neither view is in the transition context’s
containerView; both are already in their final places in the real interface.

This is a complicated arrangement, and we mustn’t do anything to upset it. Nevertheless,
I am quite willing to pluck the presented view controller’s view from its place in the
interface, stick it into the containerView, animate it, and return it to its original place.
Let’s say, for instance, that we want the presented view controller’s view to appear to
grow from the center of the screen. I pull the second view (v2) out of its superview,
preserve its frame, animate it, restore its frame, and put it back in its old superview. The
transition context has nothing useful to say about v2’s frame relative to the container-
View, so I copy its superview’s frame:

-(void)animateTransition:
 (id<UIViewControllerContextTransitioning>)transitionContext {
 UIViewController* vc2 =
 [transitionContext viewControllerForKey:
 UITransitionContextToViewControllerKey];
 UIView* con = [transitionContext containerView];
 UIView* v2 = vc2.view;
 UIView* drop = v2.superview;
 CGRect oldv2frame = v2.frame;
 [con addSubview: v2];
 v2.frame = drop.frame;
 v2.transform = CGAffineTransformMakeScale(0.1, 0.1);
 [UIView animateWithDuration:0.4 animations:^{
 v2.transform = CGAffineTransformIdentity;
 } completion:^(BOOL finished) {
 [drop addSubview: v2];

302 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

 v2.frame = oldv2frame;
 [transitionContext completeTransition:YES];
 }];
}

If that seems extreme, we might prefer to leave v2 in place and animate a snapshot
instead. But it is not easy to do this, because at the time animateTransition: is called,
v2 has not been rendered; there is nothing to take a snapshot of. I don’t know any way
to force v2 to be rendered immediately, short of calling its layer’s renderInContext:.
So I do that, rendering it into an image context, and end up animating an image view:

-(void)animateTransition:
 (id<UIViewControllerContextTransitioning>)transitionContext {
 UIViewController* vc2 =
 [transitionContext viewControllerForKey:
 UITransitionContextToViewControllerKey];
 UIView* con = [transitionContext containerView];
 UIView* v2 = vc2.view;
 // force rendering and snapshot now
 UIGraphicsBeginImageContextWithOptions(v2.bounds.size, YES, 0);
 [v2.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 UIView* snap = [[UIImageView alloc] initWithImage:im];
 snap.frame = v2.superview.frame;
 snap.transform = CGAffineTransformMakeScale(0.1, 0.1);
 [con addSubview: snap];
 // animate the snapshot
 [UIView animateWithDuration:0.4 animations:^{
 snap.transform = CGAffineTransformIdentity;
 } completion:^(BOOL finished) {
 [transitionContext completeTransition:YES];
 }];
}

When the modal presentation style is UIModalPresentationCustom (new in iOS 7), the
runtime leaves the final position of the presented view controller’s view entirely up to
you — possibly only partially covering the existing view, even on an iPhone. This is
possible because the transition context’s container view is not taken away when the
presentation transition ends; it remains in place until after the dismissal transition.
Therefore, you can also put extra views into the container view, and they will stay there
together with the presented view controller’s view.

To illustrate, I’ll write a presented view controller that imitates a UIAlertView — a small
view that floats over the existing interface, which is behind a darkened glass. This is
something that developers have longed for since the earliest days of iOS. A UIAlertView
is convenient and small, but you can’t (legally) customize its content very much. A
presented view controller’s view, on the other hand, is completely up to you. In the past,

Custom Transition Animations | 303

www.it-ebooks.info

http://www.it-ebooks.info/

a presented view controller’s view on the iPhone had to cover the entire screen. Now
that restriction is lifted.

Our view controller, then, has a small view — let’s say about 260×150 — and we aren’t
going to resize it. We will cause this view to shrink into place in the middle of the screen
when it is presented, and to shrink further when it is dismissed, just as an alert view
does. While our view is present, the surrounding screen behind it will be darkened
slightly.

Our view controller’s modalPresentationStyle is UIModalPresentationCustom, and
its transitioningDelegate is self. When the transitioning delegate methods are
called, the view controller returns self as the animation controller. When animate-
Transition: is called, we start by gathering up the relevant information from the tran‐
sition context, as usual:

UIViewController* vc1 =
 [transitionContext
 viewControllerForKey:UITransitionContextFromViewControllerKey];
UIViewController* vc2 =
 [transitionContext
 viewControllerForKey:UITransitionContextToViewControllerKey];
UIView* con = [transitionContext containerView];
UIView* v1 = vc1.view;
UIView* v2 = vc2.view;

We can distinguish presentation from dismissal easily: if this is presentation, the “to”
view controller’s view is our own view:

if (v2 == self.view) {
 // ... presentation ...
}

The “to” view is not yet in the containerView. The “from” view, on the other hand, is
in the containerView, where it will remain until after dismissal. We start by adding a
shadow view that fills the container view, covering the “to” view and creating the
“through a glass darkly” effect:

UIView* shadow = [[UIView alloc] initWithFrame:con.bounds];
shadow.backgroundColor = [UIColor colorWithWhite:0.4 alpha:0.2];
shadow.alpha = 0;
shadow.tag = 987;
[con addSubview: shadow];

Now we position the incoming view in the center of the container view, in front of the
shadow view. We must be careful in our treatment of this view, because of the possibility
that the interface will be rotated. If the interface has already been rotated when presen‐
tation occurs, the incoming view has a transform; we mustn’t accidentally remove that
transform. If the interface is rotated while our view is present, our view mustn’t be resized

304 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

as its superview’s bounds dimensions are swapped; I’ll use an autoresizing mask to
ensure that:

v2.center =
 CGPointMake(CGRectGetMidX(con.bounds), CGRectGetMidY(con.bounds));
v2.autoresizingMask =
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin |
 UIViewAutoresizingFlexibleLeftMargin;
CGAffineTransform scale = CGAffineTransformMakeScale(1.6,1.6);
v2.transform = CGAffineTransformConcat(scale, v2.transform);
v2.alpha = 0;
[con addSubview: v2];

Both the shadow view and our view are initially invisible. We animate them into visi‐
bility, shrinking our view’s scale transform to its proper size at the same time. As we do
so, we set the existing view’s tintAdjustmentMode to its dimmed appearance, just as a
UIAlertView does, to add to the sense that the user can work only within our view (see
Chapter 12 for more about the tintAdjustmentMode):

v1.tintAdjustmentMode = UIViewTintAdjustmentModeDimmed;
[UIView animateWithDuration:0.25 animations:^{
 v2.alpha = 1;
 v2.transform =
 CGAffineTransformConcat(CGAffineTransformInvert(scale), v2.transform);
 shadow.alpha = 1;
} completion:^(BOOL finished) {
 [transitionContext completeTransition:YES];
}];

At dismissal time, both views and our extra shadow view are still in the container-
View. We animate away the shadow view — we cleverly gave it a tag earlier so as to be
able to identify it now — while at the same time we animate away the presented view
(the “from” view); at the end, we restore the tint color of the background view (the “to”
view):

} else {
 UIView* shadow = [con viewWithTag:987];
 [UIView animateWithDuration:0.25 animations:^{
 shadow.alpha = 0;
 v1.transform = CGAffineTransformScale(v1.transform,0.5,0.5);
 v1.alpha = 0;
 } completion:^(BOOL finished) {
 v2.tintAdjustmentMode = UIViewTintAdjustmentModeAutomatic;
 [transitionContext completeTransition:YES];
 }];
}

Custom Transition Animations | 305

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-9. A view and a presented view that covers it

I’ll conclude by describing an elaborate real-life presentation animation from one of my
own apps. Figure 6-9 shows the existing view and the presented view. The presented
view appears to cover the existing view, which is visible through it in a blurred way.

The modal presentation style of the second view controller is UIModalPresentation-
Custom. The second view rises from the bottom of the screen, in imitation of a UIModal-
TransitionStyleCoverVertical animation. At the same time, the color swatch that
was tapped in the first view, which summons the presented view controller, rises to
become the color swatch in the second view; this serves as an almost subconscious
indication that the user is editing this swatch.

We thus have to manage three things simultaneously: the blurred background, the rising
presented view, and the moving swatch.

To create the blurred background, the first view is snapshotted into an image context:

[vc1.view drawViewHierarchyInRect: v1.bounds afterScreenUpdates: NO];

The image is then blurred and put into a UIImageView. This image view cannot simply
be the background of the second view, because the second view is going to rise from the
bottom of the screen: we don’t want the blurred image to rise with it, as this would break
the illusion that the second view itself is blurring the first view behind it. So the image
view is a separate view placed into the container view, with a contentMode of UIView-

306 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-10. An elaborate transition animation

ContentModeBottom and an initial height of zero. The second view, meanwhile, has a
transparent background. As the second view rises from the bottom of the screen, we
simultaneously increase the height of the image view behind it, also from the bottom
of the screen! Thus the blur is stationary behind the second view.

Figure 6-10 is a freeze frame in the middle of the animation, as the second view rises
from the bottom of the screen; as you can see, the part of the first view that’s behind the
second view appears blurred, but the part of the first view that isn’t yet covered by the
second view is still sharp.

At the same time, in Figure 6-10, the blue swatch, which the user tapped, is rising from
its place in the first view to its place in the second view. It is currently higher than the
black rectangle in the second view that it will eventually occupy, but they are both
heading toward the same spot, and will meet there precisely at the end of the animation.
The swatch is not really moving from one view to the other; what the user sees during
the transition is actually just a snapshot view, taken by snapshotting the colored rec‐
tangle that the user originally tapped:

UIView* swatch = [self.tappedColor snapshotViewAfterScreenUpdates:NO];

The swatch in the second view has been hidden; when the transition ends, the snapshot
of the swatch will be removed and the swatch in the second view will be made visible.

Custom Transition Animations | 307

www.it-ebooks.info

http://www.it-ebooks.info/

The really tricky part is getting the initial and final frame of the snapshot view and
translating those into containerView coordinates. The solution is to start by putting
the “to” view into its final position and then requesting immediate layout:

v2.frame = v1.bounds;
[con addSubview: v2];
[con layoutIfNeeded];

This causes everything in v2 to assume its ultimate position, and now we can work out
the initial and final frames of the moving swatch snapshot view:

CGRect r1 = self.tappedColor.frame;
r1 = [self.tappedColor.superview convertRect:r1 toView:vc1.view];
CGRect r2 = cpc.swatch.frame;
r2 = [vc2.view convertRect:r2 fromView:cpc.swatch.superview];

Then and only then do we move v2 to its position below the bottom of the screen, ready
to begin the animation.

Transition Coordinator
While a view controller is involved in a transition, its transitionCoordinator property
is set by the runtime to an object implementing the UIViewControllerTransitionCoor‐
dinator protocol. This object, the transition coordinator, is a kind of wrapper around
the transition context, and also adopts the UIViewControllerTransitionCoordinator‐
Context protocol, just like the transition context. Thus, in effect, view controllers can
find out about the transition they are involved in.

Unfortunately, exactly when the transition coordinator is available
seems to differ depending on the type of transition. Take, for exam‐
ple, an interactive transition instigated through a pan gesture from the
right edge of the screen, such as I described earlier. If the view con‐
trollers involved in this transition are children of a UINavigation‐
Controller, then the transition coordinator is available in the second
view controller’s viewWillAppear:; but if their parent is a UITabBar‐
Controller, it isn’t. I regard this inconsistency as a bug. You’ll have to
experiment for your particular situation.

One use of the transition coordinator is to ascertain whether we are in an interactive
transition and, if so, whether it has been cancelled. It may well be that what your view
controller wants to do will differ in this situation. You can send the transition coordi‐
nator the notifyWhenInteractionEndsUsingBlock: message to run a block at the mo‐
ment the user abandons the interactive gesture and the transition is about to be either
completed or cancelled. Here’s code from a view controller that might be pushed inter‐
actively onto a UINavigationController:

308 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

-(void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 id<UIViewControllerTransitionCoordinator> tc = self.transitionCoordinator;
 if (tc && [tc initiallyInteractive]) {
 [tc notifyWhenInteractionEndsUsingBlock:
 ^(id<UIViewControllerTransitionCoordinatorContext> context) {
 if ([context isCancelled]) {
 // ...
 }
 }];
 }
}

If the view controller’s parent is a UITabBarController, it can ask whether its view is
disappearing because an interactive gesture was abandoned and the transition was can‐
celled, like this:

- (void) viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 id<UIViewControllerTransitionCoordinator> tc = self.transitionCoordinator;
 if (tc && [tc initiallyInteractive] && [tc isCancelled]) {
 // ...
 }
}

You can also use the transition coordinator to be notified when the transition ends. This
works even if this is not a custom transition; for example, you can run code in response
to the default push transition ending. Call the transition coordinator’s animate-
AlongsideTransition:completion: with a completion: block. This code is from the
top view controller of a UINavigationController as another view controller is pushed
on top of it:

-(void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 id<UIViewControllerTransitionCoordinator> tc = self.transitionCoordinator;
 if (tc) {
 [tc animateAlongsideTransition:nil completion:
 ^(id<UIViewControllerTransitionCoordinatorContext> context) {
 // ...
 }];
 }
}

Another use of animateAlongsideTransition:completion: is, as the name suggests,
to supply an additional animation. This works even if the transition is interactive. If the
view affected by this additional animation is outside the transition context’s container
view, call animateAlongsideTransitionInView:animation:completion: instead.
(But this secondary animation is not reliable; sometimes, the affected view property is
changed immediately, without animation.)

Custom Transition Animations | 309

www.it-ebooks.info

http://www.it-ebooks.info/

Page View Controller
A page view controller (UIPageViewController) displays a view controller’s view. The
user, by a gesture, can navigate in one direction or the other to see the next or the previous
view controller’s view, successively — like turning the pages of a book.

To create a UIPageViewController, initialize it with initWithTransition-

Style:navigationOrientation:options:. Here’s what the parameters mean:
transitionStyle:

The animation style during navigation. Your choices are:

• UIPageViewControllerTransitionStylePageCurl

• UIPageViewControllerTransitionStyleScroll (sliding)

navigationOrientation:

The direction of navigation. Your choices are:

• UIPageViewControllerNavigationOrientationHorizontal

• UIPageViewControllerNavigationOrientationVertical

options:

A dictionary. Possible keys are:
UIPageViewControllerOptionSpineLocationKey

If you’re using the page curl transition, this is the position of the pivot line
around which those page curl transitions rotate. The value is an NSNumber
wrapping one of the following:

• UIPageViewControllerSpineLocationMin (left or top)
• UIPageViewControllerSpineLocationMid (middle; two pages are shown

at once)
• UIPageViewControllerSpineLocationMax (right or bottom)

UIPageViewControllerOptionInterPageSpacingKey

If you’re using the scroll transition, this is the spacing between successive pages,
visible as a gap during the transition. The value is an NSNumber wrapping a
float.

You then assign the page view controller a dataSource, which should conform to the
UIPageViewControllerDataSource protocol, and configure the page view controller’s
initial content by handing it its initial child view controller(s). You do that by calling
setViewControllers:direction:animated:completion:. Here’s what the parameters
mean:

310 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

viewControllers:

An array of one view controller, unless you’re using the page curl transition and the
Mid spine location, in which case it’s an array of two view controllers.

direction:

The animation direction. This probably won’t matter when you’re assigning the
page view controller its initial content, as you are not likely to want any animation.
Possible values are:

• UIPageViewControllerNavigationDirectionForward

• UIPageViewControllerNavigationDirectionBackward

animated:, completion:
A BOOL and a completion handler.

Here’s a minimal example. First I need to explain where my pages come from. I’ve got
a UIViewController subclass called Pep and a data model consisting of an array
(self.pep) of the names of the Pep Boys, along with eponymous image files in my app
bundle portraying each Pep Boy. I initialize a Pep object by calling initWithPep-
Boy:nib:bundle:, supplying the name of a Pep Boy from the array; Pep’s viewDid-
Load then fetches the corresponding image and assigns it as the image of a UIImageView
within its own view:

self.pic.image = [UIImage imageNamed: self.boy];

Thus, each page in the page view controller portrays an image of a named Pep Boy.
Here’s how I create the page view controller:

// make a page view controller
UIPageViewController* pvc =
 [[UIPageViewController alloc]
 initWithTransitionStyle:
 UIPageViewControllerTransitionStylePageCurl
 navigationOrientation:
 UIPageViewControllerNavigationOrientationHorizontal
 options: nil];
// give it an initial page
Pep* page = [[Pep alloc] initWithPepBoy:self.pep[0] nib:nil bundle:nil];
[pvc setViewControllers: @[page]
 direction: UIPageViewControllerNavigationDirectionForward
 animated: NO completion: nil];
// give it a data source
pvc.dataSource = self;

As for the page view controller’s view, the page view controller is a UIViewController,
and its view must get into the interface by standard means. You can make the page view
controller the window’s rootViewController, you can make it a presented view con‐
troller, or you can make it a child view controller of a tab bar controller or a navigation

Page View Controller | 311

www.it-ebooks.info

http://www.it-ebooks.info/

controller. If you want the page view controller’s view to be a subview of some other
view controller’s view, you must turn that other view controller into a custom container
view controller (as I’ll describe in the next section). At the same time, you must retain
the page view controller itself; that will happen in the natural course of things if you get
its view into the interface correctly.

We now have a page view controller’s view in our interface, itself containing and dis‐
playing the view of a Pep view controller that is its child. We have three pages, because
we have three Pep Boys and their images — but only potentially. Just as with a navigation
controller, you don’t supply (or even create) a page until the moment comes to navigate
to it. When that happens, one of these data source methods will be called:

• pageViewController:viewControllerAfterViewController:

• pageViewController:viewControllerBeforeViewController:

The job of those methods is to return the requested successive view controller. You’ll
need a strategy for doing that; the strategy you devise will depend on how your model
maintains the data.

My data is an array of unique strings, so all I have to do is find the previous name or the
next name in the array. Here’s one of my data source methods:

-(UIViewController *)pageViewController:(UIPageViewController *)pvc
 viewControllerAfterViewController:(UIViewController *)viewController {
 NSString* boy = [(Pep*)viewController boy]; // string name of this Pep Boy
 NSUInteger ix = [self.pep indexOfObject:boy]; // find it in the data model
 ix++;
 if (ix >= [self.pep count])
 return nil; // there is no next page
 return [[Pep alloc] initWithPepBoy: self.pep[ix] nib: nil bundle: nil];
}

You can also, at any time, call setViewControllers:... to change programmatically
what page is being displayed, possibly with animation. I do that in my Latin flashcard
app during drill mode (Figure 6-5), to advance to the next term in the current drill:

[self.terms shuffle];
Term* whichTerm = self.terms[0];
CardController* cdc = [[CardController alloc] initWithTerm:whichTerm];
[self.pvc setViewControllers:@[cdc]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:YES completion:nil];

If you refer, in the completion block of setViewControllers:..., to the page view
controller to which the message was sent, ARC will warn of a possible retain cycle. I
don’t know why there would be a retain cycle, but I take no chances: I do the weak–
strong dance to prevent it.

312 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

A page view controller with the scroll transition style has a long-standing bug that you
might need to watch out for. In order to be ready with the next or previous page as the
user starts to scroll, the page view controller caches the next or previous view controller
in the sequence. If you navigate manually with setViewControllers:... to a view
controller that isn’t the next or previous in the sequence, and if animated: is YES, this
cache is not refreshed; if the user now navigates with a scroll gesture, the wrong view
controller is shown. I have developed a gut-wrenchingly horrible workaround: in the
completion: handler, perform the same navigation again without animation. This re‐
quires doing the weak–strong dance and using delayed performance:

__weak UIPageViewController* pvcw = pvc;
[pvc setViewControllers:@[page]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:YES completion:^(BOOL finished) {
 UIPageViewController* pvcs = pvcw;
 if (!pvcs) return;
 dispatch_async(dispatch_get_main_queue(), ^{
 [pvcs setViewControllers:@[page]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO completion:nil];
 });
 }];

If you’re using the scroll style, the page view controller will optionally display a page
indicator (a UIPageControl, see Chapter 12). The user can look at this to get a sense of
what page we’re on, and can tap to the left or right of it to navigate. To get the page
indicator, you must implement two more data source methods; they are consulted in
response to setViewControllers:.... We called that method initially to configure the
page view controller, and if we never call it again, these data source methods won’t be
called again either, as the page view controller can keep track of the current index on
its own. Here’s my implementation for the Pep Boy example:

-(NSInteger)presentationCountForPageViewController:(UIPageViewController*)pvc {
 return [self.pep count];
}
-(NSInteger)presentationIndexForPageViewController:(UIPageViewController*)pvc {
 Pep* page = [pvc viewControllers][0];
 NSString* boy = page.boy;
 return [self.pep indexOfObject:boy];
}

In iOS 7, the page view controller’s page indicator by default has white dots and a clear
background, so it is invisible in front of a white background. Moreover, there is no direct
access to it. Use the appearance proxy (Chapter 12) to customize it. For example:

Page View Controller | 313

www.it-ebooks.info

http://www.it-ebooks.info/

UIPageControl* proxy =
 [UIPageControl appearanceWhenContainedIn:
 [UIPageViewController class], nil];
[proxy setPageIndicatorTintColor:
 [[UIColor redColor] colorWithAlphaComponent:0.6]];
[proxy setCurrentPageIndicatorTintColor:[UIColor redColor]];
[proxy setBackgroundColor:[UIColor yellowColor]];

It is also possible to assign a page view controller a delegate, which adopts the UIPage‐
ViewControllerDelegate protocol. You get an event when the user starts turning the
page and when the user finishes turning the page, and you get a chance to change the
spine location dynamically in response to a change in device orientation. As with a tab
bar controller’s delegate or a navigation controller’s delegate, a page view controller’s
delegate in iOS 7 also gets messages allowing it to specify the page view controller’s
rotation policy, so that you don’t have to subclass UIPageViewController solely for that
purpose.

If you’ve assigned the page view controller the page curl transition, the user can ask for
navigation by tapping at either edge of the view or by dragging across the view. These
gestures are detected through two gesture recognizers, which you can access through
the page view controller’s gestureRecognizers property. The documentation suggests
that you might change where the user can tap or drag by attaching them to a different
view, and other customizations are possible as well. In this code, I change the page view
controller’s behavior so that the user must double tap to request navigation:

for (UIGestureRecognizer* g in pvc.gestureRecognizers)
 if ([g isKindOfClass: [UITapGestureRecognizer class]])
 ((UITapGestureRecognizer*)g).numberOfTapsRequired = 2;

Of course you are also free to add to the user’s stock of gestures for requesting navigation.
You can supply any controls or gesture recognizers that make sense for your app, and
respond by calling setViewControllers:.... For example, if you’re using the scroll
transition style, there’s no tap gesture recognizer, so the user can’t tap at either edge of
the page view controller’s view to request navigation. Let’s change that. I’ve added in‐
visible views at either edge of my Pep view controller’s view, with tap gesture recognizers
attached. When the user taps, the tap gesture recognizer fires, and the action handler
posts a notification whose object is the tap gesture recognizer. I receive this notification
and use the tap gesture recognizer’s view’s tag to learn which view it is; I then navigate
accordingly (n is the notification, pvc is the page view controller):

UIGestureRecognizer* g = n.object;
int which = g.view.tag;
UIViewController* vc =
 which == 0 ?
 [self pageViewController:pvc
 viewControllerBeforeViewController:pvc.viewControllers[0]] :
 [self pageViewController:pvc
 viewControllerAfterViewController:pvc.viewControllers[0]];

314 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

if (!vc) return;
UIPageViewControllerNavigationDirection dir =
 which == 0 ?
 UIPageViewControllerNavigationDirectionReverse :
 UIPageViewControllerNavigationDirectionForward;
[pvc setViewControllers:@[vc] direction:dir animated:YES completion:nil];

One further bit of configuration, if you’re using the page curl transition, is performed
through the doubleSided property. If it is YES, the next page occupies the back of the
previous page. The default is NO, unless the spine is in the middle, in which case it’s
YES and can’t be changed. Your only option here, therefore, is to set it to YES when the
spine isn’t in the middle, and in that case the back of each page would be a sort of
throwaway page, glimpsed by the user during the page curl animation.

A page view controller in a storyboard lets you configure its transition style, navigation
orientation, and spine location. It also has delegate and data source outlets, though
you’re not allowed to connect them to other view controllers (you can’t draw an outlet
from one scene to another in a storyboard). It has no child view controller relationship,
so you can’t set the page view controller’s initial child view controller in the storyboard;
you’ll have to complete the page view controller’s initial configuration in code.

Container View Controllers
UITabBarController, UINavigationController, and UIPageViewController are built-in
parent view controllers: you hand them a child view controller and they put that child
view controller’s view into the interface for you, inside their own view. What if you want
your own view controller to do the same thing?

In iOS 3 and 4, that was illegal; the only way a view controller’s view could get into the
interface was if a built-in parent view controller put it there. You could put a view into
the interface, of course — but not a view controller’s view. Naturally, developers ignored
this restriction, and got themselves into all kinds of difficulties. In iOS 5, Apple relented,
and created a coherent way for you to create your own parent view controllers, which
can legally manage child view controllers and put their views into the interface. A custom
parent view controller of this sort is called a container view controller.

Your view controller has a childViewControllers array. You must not, however, just
wantonly populate this array however you like. A child view controller needs to receive
certain events as it becomes a child view controller, as it ceases to be a child view con‐
troller, and as its view is added to and removed from the interface. Therefore, to act as
a parent view controller, your UIViewController subclass must fulfill certain responsi‐
bilities:

Container View Controllers | 315

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a child
When a view controller is to become your view controller’s child, your view controller
must do these things, in this order:

1. Send addChildViewController: to itself, with the child as argument. The child
is automatically added to your childViewControllers array and is retained.

2. Get the child view controller’s view into the interface (as a subview of your view
controller’s view), if that’s what adding a child view controller means.

3. Send didMoveToParentViewController: to the child with your view controller
as its argument.

Removing a child
When a view controller is to cease being your view controller’s child, your view
controller must do these things, in this order:

1. Send willMoveToParentViewController: to the child with a nil argument.
2. Remove the child view controller’s view from your interface.
3. Send removeFromParentViewController to the child. The child is automati‐

cally removed from your childViewControllers array and is released.

This is a clumsy and rather confusing dance. The underlying reason for it is that a child
view controller must always receive willMoveToParentViewController: followed by
didMoveToParentViewController: (and your own child view controllers can take
advantage of these events however you like). But it turns out that addChildView-
Controller: sends willMoveToParentViewController: for you, and that removeFrom-
ParentViewController sends didMoveToParentViewController: for you; so in each
case you must send manually the other message, the one that adding or removing a child
view controller doesn’t send for you — and of course you must send it so that everything
happens in the correct order, as dictated by the rules I just listed.

I’ll illustrate two versions of the dance. First, we’ll simply obtain a new child view con‐
troller and put its view into the interface, where no child view controller’s view was
previously:

UIViewController* vc = // whatever; this the initial child view controller
[self addChildViewController:vc]; // "will" is called for us
[self.view addSubview: vc.view];
// when we call "add", we must call "did" afterward
[vc didMoveToParentViewController:self];
vc.view.frame = // whatever, or use constraints

This could very well be all you need to do. For example, consider Figure 6-3 and
Figure 6-4. My view controller’s view contains a UIPageViewController’s view as one of
its subviews. The only to achieve this legally and coherently is for my view controller —
in this case, it’s the app’s root view controller — to act as the UIPageViewController’s

316 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

parent view controller. Here’s the actual code as the root view controller configures its
interface:

// create the page view controller
UIPageViewController* pvc =
 [[UIPageViewController alloc]
 initWithTransitionStyle:UIPageViewControllerTransitionStylePageCurl
 navigationOrientation:UIPageViewControllerNavigationOrientationHorizontal
 options: @{UIPageViewControllerOptionSpineLocationKey:
 @(UIPageViewControllerSpineLocationMin)}
];
pvc.delegate = self;
pvc.dataSource = self;
// add its view to the interface
[self addChildViewController:pvc];
[self.view addSubview:pvc.view];
[pvc didMoveToParentViewController:self];
// configure the view
pvc.view.translatesAutoresizingMaskIntoConstraints = NO;
[self.view addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"|[pvc]|"
 options:0 metrics:nil views:@{@"pvc":pvc.view}]];
[self.view addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[pvc]|"
 options:0 metrics:nil views:@{@"pvc":pvc.view}]];

(A storyboard makes it simpler to configure a custom container view controller’s initial
child view controller and its view, as I’ll explain in the next section.)

The next question is how to replace one child view controller’s view in the interface with
another (comparable to how UITabBarController behaves when a different tab bar item
is selected). The simplest, most convenient way is for the parent view controller to send
itself this message:

• transitionFromViewController:toViewController:duration:options:

animations:completion:

That method manages the stages in good order, adding one child view controller’s view
to the interface before the transition and removing the other child view controller’s view
from the interface after the transition, and seeing to it that the child view controllers
receive lifetime events (such as viewWillAppear:) at the right moment. Here’s what the
last three arguments are for:
options:

A bitmask comprising the same possible options that apply to any block-based view
transition (see “Transitions” on page 136; these are the options whose names start
with UIViewAnimationOption...).

Container View Controllers | 317

www.it-ebooks.info

http://www.it-ebooks.info/

animations:

A block that may be used for additional view animations, besides the transition
animation specified in the options: argument. Alternatively, if none of the built-
in transition animations is suitable, you can animate the views yourself here; they
are both in the interface during this block.

completion:

This block will be important if the transition is part of removing or adding a child
view controller. At the time transitionFromViewController:... is called, both
view controllers involved must be children of the parent view controller; so if you’re
going to remove one of the view controllers as a child, you’ll do it in the completion:
block. Similarly, if you owe a new child view controller a didMoveToParentView-
Controller: call, you’ll use the completion: block to fulfill that debt.

Here’s an example. To keep things simple, suppose that our view controller has just one
child view controller at a time, and displays the view of that child view controller within
its own view. So let’s say that when our view controller is handed a new child view
controller, it substitutes that new child view controller for the old child view controller
and replaces the old child view controller’s view with the new child view controller’s
view. Here’s code that does that correctly; the two view controllers are called fromvc and
tovc:

// we have already been handed the new view controller
// set up the new view controller's view's frame
tovc.view.frame = // ... whatever
// must have both as children before we can transition between them
[self addChildViewController:tovc]; // "will" is called for us
// when we call "remove", we must call "will" (with nil) beforehand
[fromvc willMoveToParentViewController:nil];
[self transitionFromViewController:fromvc
 toViewController:tovc
 duration:0.4
 options:UIViewAnimationOptionTransitionFlipFromLeft
 animations:nil
 completion:^(BOOL done){
 // we called "add"; we must call "did" afterward
 [tovc didMoveToParentViewController:self];
 [fromvc removeFromParentViewController];
 // "did" is called for us
 }];

If we’re using constraints to position the new child view controller’s view, where will we
set up those constraints? Before transitionFromViewController:... is too soon, as
the new child view controller’s view is not yet in the interface. The completion: block
is too late: if the view is added with no constraints, it will have no initial size or position,
so the animation will be performed and then the view will suddenly seem to pop into

318 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

existence as we provide its constraints. The animations: block turns out to be a very
good place:

tovc.view.translatesAutoresizingMaskIntoConstraints = NO;
// must have both as children before we can transition between them
[self addChildViewController:tovc]; // "will" called for us
// when we call remove, we must call "will" (with nil) beforehand
[fromvc willMoveToParentViewController:nil];
[self transitionFromViewController:fromvc
 toViewController:tovc
 duration:0.4
 options:UIViewAnimationOptionTransitionFlipFromLeft
 animations:^{
 [self.panel addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:|[v]|"
 options:0 metrics:nil views:@{@"v":tovc.view}]];
 [self.panel addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[v]|"
 options:0 metrics:nil views:@{@"v":tovc.view}]];
 }
 completion:^(BOOL done){
 // when we call add, we must call "did" afterward
 [tovc didMoveToParentViewController:self];
 [fromvc removeFromParentViewController];
 // "did" is called for us
 }];

As I mentioned earlier, if the built-in transition animations are unsuitable, you can set
the options: argument to UIViewAnimationOptionTransitionNone and provide your
own animation in the animations: block, at which time both views are in the interface:

[self addChildViewController:tovc];
[fromvc willMoveToParentViewController:nil];
tovc.view.transform = CGAffineTransformMakeScale(0.1,0.1);
[self transitionFromViewController:fromvc
 toViewController:tovc
 duration:0.4
 options:UIViewAnimationOptionTransitionNone
 animations:^{
 tovc.view.transform = CGAffineTransformIdentity;
 }
 completion:^(BOOL done){
 [tovc didMoveToParentViewController:self];
 [fromvc removeFromParentViewController];
 }];

If your parent view controller is going to be consulted about the status bar (whether it
should be shown or hidden, and if shown, whether its text should be light or dark), it
can elect to defer the decision to one of its children, by implementing these methods:

Container View Controllers | 319

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-11. The storyboard of an actual app

• childViewControllerForStatusBarStyle

• childViewControllerForStatusBarHidden

Storyboards
Throughout this chapter, I’ve been describing how to create a view controller and
present it or make it another view controller’s child manually, entirely in code. But if
you’re using a storyboard, you will often (or always) allow the storyboard to do those
things for you automatically. A storyboard can be helpful and convenient in this regard,
though not, perhaps, for the reasons one might expect. It doesn’t necessarily reduce the
amount of code you’ll have to write; indeed, in some cases using a storyboard may
compel you to write more code, and in a less readable and maintainable way, than if you
were creating your view controllers manually. But a storyboard does clarify the rela‐
tionships between your view controllers over the course of your app’s lifetime. Instead
of having to hunt around in each of your classes to see which class creates which view
controller and when, you can view and manage the chain of view controller creation
graphically in the nib editor (Figure 6-11).

A storyboard, as I’ve already explained, is basically a collection of view controller nibs
(scenes) and view nibs. Each view controller is instantiated from its own nib, as needed,
and will then obtain its view, as needed — typically from a view nib that you’ve config‐
ured by editing the view controller’s view, within the view controller itself, in the same
storyboard. I described this process in detail, and listed the ways in which a view con‐
troller in a storyboard can be instantiated, in “Storyboard-Instantiated View Control‐
ler” on page 243. One of those ways is manual (calling instantiateViewController-
WithIdentifier:); the other three are, or can be, automatic:

320 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Initial view controller
If your app has a main storyboard, as specified by its Info.plist, that storyboard’s
initial view controller will be instantiated and assigned as the window’s rootView-
Controller automatically as the app launches. To specify that a view controller is
a storyboard’s initial view controller, check the “Is Initial View Controller” checkbox
in its Attributes inspector. This will cause any existing initial view controller to lose
its initial view controller status. The initial view controller is distinguished graph‐
ically in the canvas by an arrow pointing to it from the left. If a view controller is
added to an empty canvas, it is made the initial view controller automatically.

Relationship
Two built-in parent view controllers can specify their children directly in the story‐
board, setting their viewControllers array:

• UITabBarController can specify many children.
• UINavigationController can specify its single initial child (its root view

controller).

To add a view controller as a viewControllers child to a parent view controller,
Control-drag from the parent view controller to the child view controller; in the
little HUD that appears, choose “view controllers” for a UITabBarController, or
“root view controller” for a UINavigationController. The result is a relationship
whose source is the parent and whose destination is the child. The destination view
controller will be instantiated automatically when the source view controller is in‐
stantiated, and will be assigned into its viewControllers array, thus making it a
child and retaining it.

Segue
A segue configures a future situation, when the segue will be triggered. At that time,
one view controller that already exists will cause the instantiation of another, bring‐
ing the latter into existence. The two chief types of segue are:
Push

The future view controller will be pushed onto the stack of the navigation con‐
troller of which the existing view controller is already a child.

Modal
The future view controller will be a presented view controller (and the existing
view controller will be its original presenter).

Unlike a relationship, a segue does not have to emanate from a view controller; it
can emanate from certain kinds of gesture recognizer, or from an appropriate view
(such as a button or a table view cell) in the first view controller’s view. This is a
graphical shorthand signifying that the segue should be triggered, bringing the
second view controller into existence, when a tap or other gesture occurs.

Storyboards | 321

www.it-ebooks.info

http://www.it-ebooks.info/

To create a segue, Control-drag from the view in the first view controller, or from
the first view controller itself, to the second view controller. In the little HUD that
appears, choose the type of segue you want.

(The arrows to the left of the four view controllers in Figure 6-11 are, sequentially, the
initial view controller indicator, a relationship, a push segue, and a modal segue.)

Segues
A segue is a full-fledged object, an instance of UIStoryboardSegue (or your custom
subclass thereof). In a storyboard, however, it is not a nib object, in the sense that it is
not instantiated by the loading of a nib, and it cannot be pointed to by an outlet. Rather,
it will be instantiated when the segue is triggered, at which time its designated initializer
will be called, namely initWithIdentifier:source:destination:. It can, however, be
configured in the nib editor, through the Attributes inspector.

A segue’s source and destination are the two view controllers between which it runs.
The segue is directional, so the source and destination are clearly distinguished. The
source view controller is the one that will exist at the time the segue is triggered;
the destination view controller is the one that the segue itself will be responsible for
instantiating.

A segue’s identifier is a string. You can set this string for a segue in a storyboard
through its Attributes inspector; this can be useful when you want to trigger the segue
manually in code (you’ll specify it by means of its identifier), or when you have code
that can receive a segue as parameter and you need to distinguish which segue this is.

In the case of a push segue, the identifier is the only thing you can customize in the
Attributes inspector. The segue is going to call pushViewController:animated: for
you, and you can’t change anything about that.

In the case of a modal segue, the Attributes inspector lets you specify a Transition; if
this is not Default, you’re telling the segue to assign the destination view controller this
transition style (animation), which may be different from (and will therefore override)
the modalTransitionStyle that the destination view controller already has. This is
effectively the same as the code I showed earlier, where a view controller creates another
view controller and sets its modalTransitionStyle before presenting it:

UIViewController* vc = [ExtraViewController new];
vc.modalTransitionStyle = UIModalTransitionStyleCoverVertical;
[self presentViewController:vc animated:YES completion:nil];

A modal segue’s Attributes inspector also has an Animates checkbox. This is effectively
the same as the second argument in presentViewController:animated:completion:.

If neither of these behaviors is what you want, you can configure the segue as a Custom
segue. The Attributes inspector lets you specify a custom class, which must be a

322 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

UIStoryboardSegue subclass. In that subclass, you must override perform, which will
be called after the segue is triggered and instantiated. Your perform implementation can
access the segue’s identifier, sourceViewController, and destinationView-

Controller properties. The destinationViewController has already been instanti‐
ated, but that’s all; doing something with this view controller so as to make it a child
view controller or presented view controller, retaining it and causing its view to appear
in the interface, is entirely up to your code.

You do not, however, need a custom segue just in order to implement a custom transition
animation in iOS 7. A built-in segue is calling pushViewController:animated: or
presentViewController:animated:completion: just as you would do in code, so if
the relevant view controller has a delegate which returns an animation controller, your
custom transition animation will be performed as usual. Remember, though, to con‐
figure the view controller early enough; viewDidLoad will not do as a place for a view
controller to assign itself, say, a transitioningDelegate. This view controller is being
instantiated from a nib, so awakeFromNib or initWithCoder: is appropriate.

Now let’s talk about how a segue will be triggered:

• If a segue emanates from a gesture recognizer or from a tappable view, it will be
triggered automatically when the tap or other gesture occurs.
The source view controller can prevent this; if you don’t want this segue triggered
on this occasion, implement shouldPerformSegueWithIdentifier:sender: and
return NO.

• If a segue emanates from a view controller as a whole, then triggering it is up to
your code. To do so, send performSegueWithIdentifier:sender: to the source
view controller.
(In this case, shouldPerformSegueWithIdentifier:sender: will not be called.)

When a segue is triggered, the destination view controller is instantiated automatically.
This is nice in the sense that automatic behavior is convenient, but how are you going
to communicate between the source view controller and the destination view controller?
This, you’ll remember, was the subject of an earlier section of this chapter (“Commu‐
nication With a Presented View Controller” on page 264), where I used this code as an
example:

SecondViewController* svc = [SecondViewController new];
svc.data = @"This is very important data!";
[self presentViewController: svc
 animated:YES completion:nil];

In that code, the first view controller created the second view controller, and therefore
had an opportunity of passing along some data to it before presenting it. With a push
segue, however, the second view controller is instantiated for you, and the segue itself

Storyboards | 323

www.it-ebooks.info

http://www.it-ebooks.info/

is going to call presentViewController:animated:completion:. So when and how
will you be able to set svc.data?

The answer is that, after the segue has instantiated the second view controller but before
it is performed, the source view controller is sent prepareForSegue:sender:. (For a
custom segue, this happens before the segue’s own perform is called.) This is the moment
when the source view controller and the destination view controller meet; the source
view controller can thus perform configurations on the destination view controller, hand
it data, and so forth. The source view controller can work out which segue is being
triggered by examining the segue’s identifier and destinationViewController
properties, and the sender is the interface object that was tapped to trigger the segue
(or, if performSegueWithIdentifier:sender: was called in code, whatever object was
supplied as the sender: argument).

This solves the communication problem, though in a clumsy way; prepareFor-
Segue:sender: feels like a blunt instrument. The destinationViewController arrives
typed as a generic id, and it is up to your code to know its actual type, cast it, and
configure it. Moreover, if more than one segue emanates from a view controller, they
are all bottlenecked through the same prepareForSegue:sender: implementation,
which thus devolves into an ugly collection of conditions to distinguish them.

Container Views
You can configure a UITabViewController’s child view controllers or a UINavigation‐
Controller’s root view controller in a storyboard, because these are built-in parent view
controllers and the nib editor understands how they work. But if you write your own
custom container view controller, the nib editor doesn’t even know that your view con‐
troller is a container view controller. Nevertheless, if you’re able to conform to some
basic assumptions that the nib editor makes, you can perform some initial parent–child
configuration of your container view controller in a storyboard.

Those assumptions are:

• Your parent view controller will have one initial child view controller.
• You want the child view controller’s view placed somewhere in the parent view

controller’s view when the child view controller is instantiated.

Those are reasonable assumptions, and you can work around them if they don’t quite
give the desired effect. For example, if your parent view controller is to have additional
children, you can always add them later; and if the child view controller’s view is not to
be initially visible in the parent view controller’s view, you can always hide it.

To configure your parent view controller in a storyboard, locate the Container View
object in the Object library and drag it into the parent view controller’s view in the

324 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

canvas. The result is a view, together with a segue from it to an additional child view
controller. You can then assign the child view controller its correct class in its Identity
inspector.

The segue here is an embed segue. When it is triggered, the destination view controller
is instantiated and made the source view controller’s child, and its view is placed exactly
inside the container view as its subview. Thus, the container view is not only a way of
generating the embed segue, but also a way of specifying where you want the child view
controller’s view to go. The entire child-addition dance is performed correctly and au‐
tomatically for you: addChildViewController: is called, the child’s view is put into the
interface, and didMoveToParentViewController is called.

By default, an embed segue is triggered automatically, and the child view controller is
instantiated, when the parent view controller is instantiated. If that isn’t what you want,
override shouldPerformSegueWithIdentifier:sender: in the parent view controller
to return NO for this segue, and call performSegueWithIdentifier:sender: later when
you do want the child view controller instantiated.

Since this is a segue, the parent view controller is sent prepareForSegue:sender: before
the child’s view loads. At this time, the child has not yet been added to the parent’s child-
ViewControllers array. If you allow the segue to be triggered when the parent view
controller is instantiated, then by the time the parent’s viewDidLoad is called, the child
has been added to the parent’s childViewControllers, and the child’s view is inside the
parent’s view.

Subsequently replacing one child view controller’s view with another in the interface
will require that you call transitionFromViewController:... just as you would have
done if a storyboard weren’t involved (as I described earlier in this chapter). Still, you
can configure this through a storyboard by using a custom segue and a UIStoryboard‐
Segue subclass.

Unwind Segues
Storyboards and segues would appear to be useful only half the time, because segues
are asymmetrical. There is a push segue but no pop segue. There is a modal segue that
says presentViewController:animated:completion: but no modal segue that says
dismissViewControllerAnimated:completion:.

In a nutshell, you can’t use push and modal segues to mean “go back”. A segue’s desti‐
nation is a class; triggering the segue instantiates that class. But when dismissing a pre‐
sented view controller or popping a pushed view controller, we don’t need any new view
controller instances. We want to return, somehow, to an existing instance of a view
controller.

Storyboards | 325

www.it-ebooks.info

http://www.it-ebooks.info/

A common mistake among beginners is to make a modal segue from
view controller A to view controller B, and then try to express the
notion “go back” by making another modal segue from view control‐
ler B to view controller A. The result, of course, is not presentation and
subsequent dismissal, but presentation piled on presentation, one view
controller instantiated on top of another on top of another. Do not
construct a cycle of segues. (Unfortunately, the nib editor doesn’t alert
you to this mistake.)

Thus, when storyboards were introduced in iOS 5, the way to call popViewController-
Animated: was to call it, in code (or let a back button call it for you), just as if there were
no such thing as a storyboard. The way to call dismissViewController-

Animated:completion: was to call it, in code, just as if there were no such thing as a
storyboard.

To deal with this shortcoming, iOS 6 introduced the unwind segue. An unwind segue
does let you express the notion “go back” in a storyboard. It works in an ingenious and
rather elaborate way. It has to, because (as I’ve just shown) it can’t possibly work like a
normal segue! There are two chief problems to be solved: exactly what does “go back”
mean, and exactly where should we “go back” to?

The answer to both questions depends upon the notion of a view controller chain. This
is similar to, though not quite the same as, the view controller hierarchy; it refers to the
chain of view controller instantiations, making each new view controller instance a child
view controller or a presented view controller, that got us to the current view controller
situation. To “go back” means to walk this chain in reverse: every view controller has
either a parentViewController or a presentingViewController, so the next view
controller up the chain is that view controller.

(Observe that this chain is well-defined even if it takes us out of the storyboard. The
app’s entire view controller hierarchy might not come from a single storyboard, and
some parts of it might not come from a storyboard at all. Even so, there is a well-defined
chain and it still leads all the way back up to the root view controller.)

Before you can create an unwind segue, you implement an unwind method in the class
of any view controller represented in the storyboard. This should be a method returning
an IBAction (as a hint to the storyboard editor) and taking a single parameter, a
UIStoryboardSegue.

Once you’ve done that, you can create an unwind segue. Doing so involves the use of
the Exit proxy object that appears in every scene of a storyboard. Control-drag from
the view controller you want to go back from, connecting it to the Exit proxy object in
the same scene. A little HUD appears, listing all the unwind methods known to this
storyboard (similar to how action methods are listed in the HUD when you connect a

326 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

button to its target). Click the name of the unwind method you want. You have now
made an unwind segue, bound to that unwind method.

Even so, the name of the unwind method to which the unwind segue is bound is only a
name. The unwind segue’s source view controller is the view controller that contains it.
But its destination view controller is unknown; it will not be determined until the app
runs and the segue is triggered.

At runtime, when the unwind segue is triggered, the runtime conducts a search among
the existing view controllers for a destination view controller. Put simply, the first view
controller it finds that implements the unwind method will be the destination view con‐
troller. (I’ll describe the actual details of this search in a moment.)

Once the destination view controller is found, the following steps are performed:

1. The source view controller’s shouldPerformSegueWithIdentifier:sender: is
called. It can stop the whole process dead at this point by returning NO.

2. The source view controller’s prepareForSegue:identifier: is called. The two
view controllers are now in contact (because the other view controller is the segue’s
destinationViewController). This is an opportunity for the source view control‐
ler to hand information to the destination view controller before being destroyed.

3. The destination view controller’s unwind method is called. Its parameter is the segue;
this segue can be identified through its identifier property. The two view con‐
trollers are now in contact again (because the other view controller is the segue’s
sourceViewController). It is perfectly reasonable, however, for the unwind meth‐
od body to be empty; the unwind method’s real purpose is to mark this view con‐
troller as the destination view controller.

4. The segue is performed, destroying the source controller and any intervening view
controllers up to (but not including) the destination view controller, in good order.

Now I’ll go back and explain in detail how the destination view controller is found and
used to construct the actual segue. This is partly out of sheer interest (it’s a devilishly
clever procedure), and partly in case you need to customize the process.

When an unwind segue is triggered, the runtime starts walking back along the view
controller chain from the source view controller instance toward the root view con‐
troller, asking each view controller for the destination view controller, by calling view-
ControllerForUnwindSegueAction:fromViewController:withSender:. There are
two possible responses:

• If a view controller returns nil, the runtime will proceed to the next view controller
up the chain.

Storyboards | 327

www.it-ebooks.info

http://www.it-ebooks.info/

• If a view controller returns a view controller (which may be itself), the search ends:
the destination view controller has been found.

The default UIViewController implementation of viewControllerForUnwindSegue-
Action:... is for a view controller to send itself canPerformUnwindSegueAction:from-
ViewController:withSender:. Thus:

• If canPerformUnwindSegueAction:... returns NO, viewControllerForUnwind-
SegueAction:... returns nil, and the search continues.

• If canPerformUnwindSegueAction:... returns YES, viewControllerForUnwind-
SegueAction:... returns self, and the search ends here.

The default implementation of canPerformUnwindSegueAction:..., in turn, is for a
view controller to send itself respondsToSelector: for the unwind method! Thus, the
normal outcome is that if a view controller implements the unwind method, it will end
up as the destination view controller, and otherwise, the search will continue on up the
chain. You can, however, override canPerformUnwindSegueAction:... to return NO,
to force the runtime search to continue on up the view controller chain past this view
controller.

What I have said so far does not explain how a push is reversible. After all, the next view
controller up the chain from a pushed view controller is the UINavigationController
itself; nevertheless, a push can unwind by popping, which means that we end up at one
of the pushed view controller’s siblings, further down the navigation stack, as the unwind
segue’s destination view controller. How is that possible?

The answer is that UINavigationController implements viewControllerForUnwind-
SegueAction:... differently from UIViewController. It doesn’t consider itself as a pos‐
sible destination. Instead, it consults its children, starting at the top of the stack and
polling them in reverse order, looking for the first one that returns YES from canPerform-
UnwindSegueAction:...; if it finds one, it returns it (and otherwise it returns nil).
By default, canPerformUnwindSegueAction:... returns NO if the fromView-

Controller: is self, so if a pushed view controller is the source view controller of an
unwind segue, this constitutes an attempt to find a view controller to pop to.

Your own custom container view controller class, too, can override viewControllerFor-
UnwindSegueAction:fromViewController:withSender: to intervene in the process of
choosing a destination view controller. The unwind method will be called on the des‐
tination view controller that you return, so do not return a view controller that doesn’t
implement the unwind method, as you’ll be setting the app up to crash.

Presume that the search is now over, and the runtime has found a destination view
controller. The segue is now constructed by sending segueForUnwindingToView-
Controller:fromViewController:identifier: to the destination view controller —

328 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

or, if the destination view controller has a parent, to the parent. That view controller
then returns a segue whose perform method is tailor-made for the current situation,
dictating the entire “go back” sequence that will release the source view controller and
all intervening view controllers in good order, and performing an appropriate transition
animation.

This segue’s identifier is the identifier, if any, that you specified in the storyboard; its
sourceViewController is the source view controller from the storyboard (the fromView-
Controller:); and its destinationViewController is the destination view controller
we have at last settled on (the toViewController:).

Your view controller, typically a custom container view controller, can override segue-
ForUnwindingToViewController:fromViewController:identifier:. The simplest
implementation is to call the UIStoryboardSegue class method segueWith-

Identifier:source:destination:performHandler:, which lets you create on the fly
a segue complete with a perform implementation supplied as a block.

For example, consider this chain: a navigation controller, its root view controller, a
pushed view controller, and a presented view controller. By default, if we unwind directly
from the presented view controller to the root view controller, we get only the reverse
of the presented view controller’s original animation. That’s not very clear to the user,
since in fact we’re going back two steps. To improve things, our UINavigationController
subclass can substitute a segue that performs two successive animations:

-(UIStoryboardSegue*)segueForUnwindingToViewController:
 (UIViewController *)toViewController
 fromViewController:(UIViewController *)fromViewController
 identifier:(NSString *)identifier {
 return [UIStoryboardSegue segueWithIdentifier:identifier
 source:fromViewController
 destination:toViewController performHandler:^{
 [fromViewController.presentingViewController
 dismissViewControllerAnimated:YES completion:^{
 [self popToViewController:toViewController animated:YES];
 }];
 }];
}

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the user, events
arrive that give your view controller the opportunity to respond to the various stages of
its own existence and the management of its view. By overriding these methods, your
UIViewController subclass can perform appropriate tasks at appropriate moments.
Here’s a list:

View Controller Lifetime Events | 329

www.it-ebooks.info

http://www.it-ebooks.info/

viewDidLoad

The view controller has obtained its view. See the discussion earlier in this chapter
of how a view controller gets its view.

willRotateToInterfaceOrientation:duration:
willAnimateRotationToInterfaceOrientation:duration:
didRotateFromInterfaceOrientation:

The view controller is undergoing rotation. See the discussion of rotation earlier in
this chapter. When an app launches into an orientation other than portrait, these
events are not sent even though rotation takes place.

updateViewConstraints
viewWillLayoutSubviews
viewDidLayoutSubviews

The view is receiving updateConstraints and layoutSubviews events. See Chap‐
ter 1, and the discussion of rotation earlier in this chapter. Your implementation of
updateViewConstraints must call super.

willMoveToParentViewController:
didMoveToParentViewController:

The view controller is being added or removed as a child of another view controller.
See the discussion of container view controllers earlier in this chapter.

viewWillAppear:
viewDidAppear:
viewWillDisappear:
viewDidDisappear:

The view is being added to or removed from the interface. This includes being
supplanted by another view controller’s view or being restored by the removal of
another view controller’s view. A view that has appeared (or has not yet disappeared)
is in the window; it is part of your app’s active view hierarchy. A view that has
disappeared (or has not yet appeared) is not in the window; its window is nil. You
must call super in your override of any of these four methods; if you forget to do
so, things may go wrong in subtle ways.

To distinguish more precisely why your view is appearing or disappearing, call any
of these methods on self:

• isBeingPresented

• isBeingDismissed

• isMovingToParentViewController

• isMovingFromParentViewController

330 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

A good way to get a sense for when these events are useful is to track the sequence in
which they normally occur. Take, for example, a UIViewController being pushed onto
the stack of a navigation controller. It receives, in this order, the following messages:

• willMoveToParentViewController:

• viewWillAppear:

• updateViewConstraints

• viewWillLayoutSubviews

• viewDidLayoutSubviews

• viewDidAppear:

• didMoveToParentViewController:

When this same UIViewController is popped off the stack of the navigation controller,
it receives, in this order, the following messages:

• willMoveToParentViewController: (with argument nil)
• viewWillDisappear:

• viewDidDisappear:

• didMoveToParentViewController: (with argument nil)

Disappearance, as I mentioned a moment ago, can happen because another view con‐
troller’s view supplants this view controller’s view. For example, consider a UIView‐
Controller functioning as the top (and visible) view controller of a navigation controller.
When another view controller is pushed on top of it, the first view controller gets these
messages:

• viewWillDisappear:

• viewDidDisappear:

The converse is also true. For example, when a view controller is popped from a navi‐
gation controller, the view controller that was below it in the stack (the back view con‐
troller) receives these events:

• viewWillAppear:

• updateViewConstraints

• viewWillLayoutSubviews

• viewDidLayoutSubviews

• viewDidAppear:

View Controller Lifetime Events | 331

www.it-ebooks.info

http://www.it-ebooks.info/

Incoherencies in View Controller Events
Unfortunately, the exact sequence of events and the number of times they will be called
for any given view controller transition situation sometimes seems nondeterministic or
incoherent. For example:

• Sometimes didMoveToParentViewController: arrives without a corresponding
willMoveToParentViewController:.

• Sometimes didMoveToParentViewController: arrives even though this view con‐
troller was previously the child of this parent and remains the child of this parent.

• Sometimes the layout events (updateViewConstraints, viewWillLayout-

Subviews, viewDidLayoutSubviews) arrive more than once for the same view con‐
troller for the same transition.

• Sometimes updateViewConstraints arrives needlessly, as when the view control‐
ler’s view is about to leave the interface and the view controller is about to be
destroyed.

• Sometimes viewWillAppear: or viewWillDisappear: arrives without the corre‐
sponding viewDidAppear: or viewDidDisappear:. For example, if an interactive
transition animation begins and is cancelled, the cancelled view controller receives
viewWillAppear: at the start, without viewDidAppear:, and receives viewWill-
Disappear: and viewDidDisappear: at the end.

The best advice I can offer is that you should try to structure your code in such a way
that incoherencies of this sort don’t matter.

Appear and Disappear Events
The appear/disappear methods are particularly appropriate for making sure that a view
reflects the model or some form of saved state whenever it appears. Changes to the
interface performed in viewDidAppear: or viewWillDisappear: may be visible to the
user as they occur! If that’s not what you want, use the other member of the pair. For
example, in a certain view containing a long scrollable text, I want the scroll position to
be the same when the user returns to this view as it was when the user left it, so I save
the scroll position in viewWillDisappear: and restore it in viewWillAppear: (not view-
DidAppear:, where the user might see the scroll position jump).

Similarly, they are useful when something must be true exactly while a view is visible.
For example, a timer that must be running while a view is visible can be started in its
viewDidAppear: and stopped in its viewWillDisappear:. (This architecture also allows
you to avoid the retain cycle that could result if you waited to invalidate the timer in a
dealloc that might never arrive.)

332 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

A view does not disappear if a presented view controller’s view merely covers it rather
than supplanting it. For example, a view controller that presents another view controller
using the UIModalPresentationFormSheet presentation style gets no lifetime events
during presentation and dismissal.

Similarly, a view does not disappear merely because the app is backgrounded and sus‐
pended. Once suspended, your app might be killed. So you cannot rely on viewWill-
Disappear: and viewDidDisappear: alone for saving data that the app will need the
next time it launches. If you are to cover every case, you may need to ensure that your
data-saving code also runs in response to an application lifetime event such as
applicationWillResignActive: or applicationDidEnterBackground: (and see Ap‐
pendix A for a discussion of the application lifetime events).

Manual Event Forwarding to a Child View Controller
A custom container (parent) view controller, as I explained earlier, must effectively send
willMoveToParentViewController: and didMoveToParentViewController: to its
children manually. But other lifetime events, such as the appear events and rotation
events, are normally passed along automatically. However, you can take charge of calling
these events manually, by implementing these methods:
shouldAutomaticallyForwardRotationMethods

If you override this method to return NO, you are responsible for calling these
methods on your view controller’s children:

• willRotateToInterfaceOrientation:duration:

• willAnimateRotationToInterfaceOrientation:duration:

• didRotateFromInterfaceOrientation:

I have no idea how common it is to take charge of sending these events manually;
I’ve never done it.

shouldAutomaticallyForwardAppearanceMethods

If you override this method to return YES, you are responsible for seeing that these
methods on your view controller’s children are called:

• viewWillAppear:

• viewDidAppear:

• viewWillDisappear:

• viewDidDisappear:

In iOS 6 and iOS 7, however, you do not do this by calling these methods directly.
The reason is that you have no access to the correct moment for sending them.
Instead, you call these two methods on your child view controller:

View Controller Lifetime Events | 333

www.it-ebooks.info

http://www.it-ebooks.info/

• beginAppearanceTransition:animated:; the first parameter is a BOOL say‐
ing whether this view controller’s view is about to appear (YES) or disappear
(NO)

• endAppearanceTransition

There are two main occasions on which your custom container controller must forward
appear events to a child. First, what happens when your custom container controller’s
own view itself appears or disappears? If it has a child view controller’s view within its
own view, it must implement and forward all four appear events to that child. You’ll
need an implementation along these lines, for each of the four appear events:

- (void) viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 UIViewController* child = // child whose view might be in our interface;
 if (child.isViewLoaded && child.view.superview)
 [child beginAppearanceTransition:YES animated:YES];
}
- (void) viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 UIViewController* child = // child whose view might be in our interface;
 if (child.isViewLoaded && child.view.superview)
 [child endAppearanceTransition];
}

(The implementations for viewDidAppear: and viewDidDisappear: are similar, except
that the first argument for beginAppearanceTransition: is NO.)

Second, what happens when you swap one view controller’s child for another in your
interface? You must not call the UIViewController method transitionFromView-
Controller:toViewController:...! It takes charge of sending the appear calls to the
children itself, and it isn’t going to do so correctly in this situation. Instead, you must
perform the transition animation directly. A minimal correct implementation might
involve the UIView method transitionFromView:toView:.... Here, you can and
should call beginAppearanceTransition: and endAppearanceTransition yourself.

Here’s an example of a parent view controller swapping one child view controller and
its view for another, while taking charge of notifying the child view controllers of the
appearance and disappearance of their views. I’ve put asterisks to call attention to the
additional method calls that forward the appear events to the children:

[self addChildViewController:tovc];
[fromvc willMoveToParentViewController:nil];
[fromvc beginAppearanceTransition:NO animated:YES]; // *
[tovc beginAppearanceTransition:YES animated:YES]; // *
[UIView transitionFromView:fromvc.view
 toView:tovc.view
 duration:0.4
 options:UIViewAnimationOptionTransitionFlipFromLeft

334 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

 completion:^(BOOL finished) {
 [tovc endAppearanceTransition]; // *
 [fromvc endAppearanceTransition]; // *
 [tovc didMoveToParentViewController:self];
 [fromvc removeFromParentViewController];
 }];

View Controller Memory Management
Memory is at a premium on a mobile device. Thus you want to minimize your app’s use
of memory — especially when the memory-hogging objects you’re retaining are not
needed at this moment. Because a view controller is the basis of so much of your ap‐
plication’s architecture, it is likely to be a place where you’ll concern yourself with re‐
leasing unneeded memory.

The object of releasing memory, in the multitasking world, is partly altruistic and partly
selfish. You want to keep your memory usage as low as possible so that other apps can
be launched and the user can switch between suspended apps. You also want to prevent
your own app from being terminated! If your app is backgrounded and suspended while
using a lot of memory, it may be terminated in the background when memory runs
short. If your app uses an inordinate amount of memory while in the foreground, it may
be summarily killed before the user’s very eyes.

One of your view controller’s most memory-intensive objects is its view. Fortunately,
the iOS runtime manages a view controller’s view’s memory for you. If a view controller
has never received viewDidAppear:, or if it has received viewDidDisappear: without
subsequently receiving viewWillAppear:, its view is not in the interface, and can be
temporarily dispensed with. In such a situation, if memory is getting tight, then even
though the view controller itself persists, the runtime may release its view’s backing store
(the cached bitmap representing the view’s drawn contents). The view will then be re‐
drawn when and if it is to be shown again later.

In addition, if memory runs low, your view controller may be sent didReceiveMemory-
Warning (preceded by a call to the app delegate’s applicationDidReceiveMemory-
Warning:, together with a UIApplicationDidReceiveMemoryWarningNotification
posted to any registered objects). You are invited to respond by releasing any data that
you can do without. Do not release data that you can’t readily and quickly recreate! The
documentation advises that you should call super.

If you’re going to release data in didReceiveMemoryWarning, you must concern yourself
with how you’re going to get it back. A simple and reliable mechanism is lazy loading
— a getter that reconstructs or fetches the data if it is nil.

In this example, we have a property myBigData which might be a big piece of data. In
didReceiveMemoryWarning we write myBigData out as a file to disk (Chapter 23) and

View Controller Memory Management | 335

www.it-ebooks.info

http://www.it-ebooks.info/

release it from memory. We have also overridden the synthesized accessors for myBig-
Data to implement lazy loading: if we try to get myBigData and it’s nil, we attempt to
fetch it from disk — and if we succeed, we delete it from disk (to prevent stale data):

@interface ViewController ()
@property (strong) NSData* myBigDataAlias;
@property (nonatomic, strong) NSData* myBigData;
@end
@implementation ViewController
@synthesize myBigDataAlias = _myBigData;
- (void) setMyBigData: (NSData*) data {
 self.myBigDataAlias = data;
}
- (NSData*) myBigData { // lazy loading
 if (!self.myBigDataAlias) {
 NSFileManager* fm = [NSFileManager new];
 NSString* f =
 [NSTemporaryDirectory()
 stringByAppendingPathComponent:@"myBigData"];
 if ([fm fileExistsAtPath:f]) {
 self.myBigDataAlias = [NSData dataWithContentsOfFile:f];
 NSError* err = nil;
 BOOL ok = [fm removeItemAtPath:f error:&err];
 NSAssert(ok, @"Couldn't remove temp file");
 }
 }
 return self.myBigDataAlias;
}
- (void)saveAndReleaseMyBigData {
 if (self.myBigData) {
 NSString* f =
 [NSTemporaryDirectory()
 stringByAppendingPathComponent:@"myBigData"];
 [self.myBigData writeToFile:f atomically:NO];
 self.myBigData = nil;
 }
}
- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 [self saveAndReleaseMyBigData];
}
@end

To test low-memory circumstances artificially, run your app in the Simulator and choose
Hardware → Simulate Memory Warning. I don’t believe this has any actual effect on
memory, but a memory warning of sufficient severity is sent to your app, so you can see
the results of triggering your low-memory response code, including the app delegate’s
applicationDidReceiveMemoryWarning: and your view controller’s didReceive-
MemoryWarning.

On the device, the equivalent is to call an undocumented method:

336 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

[[UIApplication sharedApplication]
 performSelector:@selector(_performMemoryWarning)];

(Be sure to remove this code when it is no longer needed for testing, as the App Store
won’t accept it.)

You will also wish to concern yourself with releasing memory when your app is about
to be suspended. If your app has been backgrounded and suspended and the system
later discovers it is running short of memory, it will go hunting through the suspended
apps, looking for memory hogs that it can kill in order to free up that memory. If the
system decides that your suspended app is a memory hog, it isn’t politely going to wake
your app and send it a memory warning; it’s just going to terminate your app in its sleep.
The time to be concerned about releasing memory, therefore, is before the app is sus‐
pended. You’ll probably want your view controller to be registered with the shared
application to receive UIApplicationDidEnterBackgroundNotification. The arrival
of this notification is an opportunity to release any easily restored memory-hogging
objects, such as myBigData in the previous example:

-(void)backgrounding:(NSNotification*)n {
 // got UIApplicationDidEnterBackgroundNotification
 [self saveAndReleaseMyBigData];
}

Testing how your app’s memory behaves in the background isn’t easy. In a WWDC 2011
video, an interesting technique is demonstrated. The app is run under Instruments on
the device, using the virtual memory instrument, and is then backgrounded by pressing
the Home button, thus revealing how much memory it voluntarily relinquishes at that
time. Then a special memory-hogging app is launched on the device: its interface loads
and displays a very large image in a UIImageView. Even though your app is backgroun‐
ded and suspended, the virtual memory instrument continues to track its memory us‐
age, and you can see whether further memory is reclaimed under pressure from the
demands of the memory-hogging app in the foreground.

State Restoration
In the multitasking world, when the user leaves your app and then later returns to it,
one of two things might have happened in the meantime:
Your app was suspended

Your app was suspended in the background, and remained suspended while the
user did something else. When the user returns to your app, the system simply
unfreezes your app, and there it is, looking just as it did when the user left it.

Your app was terminated
Your app was suspended in the background, and then, as the user worked with other
apps, a moment came where the system decided it needed the resources (such as

State Restoration | 337

www.it-ebooks.info

http://www.it-ebooks.info/

memory) being held by your suspended app. Therefore it terminated your app.
When the user returns to your app, the app launches from scratch.

For most apps, a general goal should be to make those two situations more or less
indistinguishable to the user. The user, after all, doesn’t know the difference between
those two things, so why should the app behave differently some of the time? It should
always feel to the user as if the app is being resumed from where it left off the last time
it was in the foreground, even if in fact the app was terminated while suspended in the
background. Otherwise, as the WWDC 2013 video on this topic puts it, the user will
feel that the app has mysteriously and annoyingly “lost my place.”

This goal is state restoration. Your app has a state at every moment: some view control‐
ler’s view is occupying the screen, and views within it are displaying certain values (for
example, a certain switch is set to On, or a certain table view is scrolled to a certain
position). The idea of state restoration is to save that information when the app goes
into the background, and use it to make all those things true again if the app is subse‐
quently launched from scratch.

iOS provides a general solution to the problem of state restoration (introduced originally
in iOS 6). This solution is centered around view controllers, which makes sense, since
view controllers are the heart of the problem. What is the user’s “place” in the app, which
we don’t want to “lose”? It’s the chain of view controllers that got us to where we were
when the app was backgrounded, along with the configuration of each one. The goal of
state restoration must therefore be to reconstruct all existing view controllers, initial‐
izing each one into the state it previously had.

Note that state, in this sense, is neither user defaults nor data. If something is a prefer‐
ence, make it a preference and store it in NSUserDefaults. If something is data (for
example, the underlying model on which your app’s functionality is based), keep it in a
file (Chapter 23). Don’t misuse the state saving and restoration mechanism for such
things. The reason for this is not only conceptual; it’s also because saved state can be
lost. You don’t want to commit anything to the state restoration mechanism if it would
be a disaster to have lost it the next time the app launches.

For example, suppose the user kills your app outright by double-clicking the Home
button to show the app switcher interface and flicking your app’s snapshot upward; the
system will throw away its state. Similarly, if your app crashes, the system will throw
away its state. In both cases, the system assumes that something went wrong, and doesn’t
want to launch your app into what might be a troublesome saved state. Instead, your
app will launch cleanly, from the beginning. There’s no problem for the user, barring a
mild inconvenience — as long as the only thing that gets thrown away is state.

How to Test State Restoration
To test whether your app is saving and restoring state as you expect:

338 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

1. Run the app as usual, in the Simulator or on a device.
2. At some point, in the Simulator or on the device, click the Home button. This causes

the app to be suspended in good order, and state is saved.
3. Now, back in Xcode, stop the running project (Product → Stop).
4. Run the project again. If there is saved state, it is restored.

(To test the app’s behavior from a truly cold start, delete it from the Simulator or device.
You might need to do this after changing something about the underlying save-and-
restore model.)

Apple also provides a number of debugging tools (find them at http://develop
er.apple.com/downloads):
restorationArchiveTool

A command-line tool for reading a saved state archive in textual format. The archive
is in a folder called Saved Application State in your app’s sandboxed Library. See
Chapter 23 for more about the app’s sandbox, and how to copy it to your computer
from a device.

StateRestorationDebugLogging.mobileconfig
A configuration profile. When installed on a device (through the iPhone Config‐
uration Utility, or by emailing it to yourself and opening it on the device), it causes
the console to dump information as state saving and restoration proceeds.

StateRestorationDeveloperMode.mobileconfig
A configuration profile. When installed on a device, it prevents the state archive
from being jettisoned after unexpected termination of the app (a crash, or manual
termination through the app switcher interface). This can allow you to test state
restoration a bit more conveniently.

Participating in State Restoration
Built-in state restoration operates more or less automatically. All you have to do is tell
the system that you want to participate in it. To do so, you take three basic steps:
Implement app delegate methods

The app delegate must implement application:shouldSaveApplicationState:
and application:shouldRestoreApplicationState: to return YES. (Naturally,
your code can instead return NO to prevent state from being saved or restored on
some particular occasion.)

Implement application:willFinishLaunchingWithOptions:
Although it is very early, application:didFinishLaunchingWithOptions: is too
late for state restoration. Your app needs its basic interface before state restoration
begins. The solution is to use a different app delegate method, application:will-

State Restoration | 339

www.it-ebooks.info

http://developer.apple.com/downloads
http://developer.apple.com/downloads
http://www.it-ebooks.info/

FinishLaunchingWithOptions:. Typically, you can just change “did” to “will” in
the name of this method, keeping your existing code unchanged.

Provide restoration IDs
Both UIViewController and UIView have a restorationIdentifier property,
which is a string. Setting this string to a non-nil value is your signal to the system
that you want this view controller (or view) to participate in state restoration. If a
view controller’s restorationIdentifier is nil, neither it nor any subsequent view
controllers down the chain — neither its children nor its presented view controller,
if any — will be saved or restored. (A nice feature of this architecture is that it lets
you participate partially in state restoration, omitting some view controllers by not
assigning them a restoration identifier.)

You can set the restorationIdentifier manually, in code; typically you’ll do that
early in a view controller’s lifetime. If a view controller or view is instantiated from
a nib, you’ll want to set the restoration identifier in the nib editor; the Identity
inspector has a Restoration ID field for this purpose. (If you’re using a storyboard,
it’s a good idea, in general, to make a view controller’s restoration ID in the story‐
board the same as its storyboard ID, the string used to identify the view controller
in a call to instantiateViewControllerWithIdentifier:; in fact, it’s such a good
idea that the storyboard editor provides a checkbox, “Use Storyboard ID,” that
makes the one value automatically the same as the other.)

In the case of a simple storyboard-based app, where each needed view controller instance
can be reconstructed directly from the storyboard, those steps alone can be sufficient
to bring state restoration to life, operating correctly at the view controller level. Let’s test
it. Start with a storyboard-based app with the following architecture (Figure 6-12):

• A navigation controller.
• Its root view controller, connected by a relationship from the navigation controller.

Call its class RootViewController.
— A presented view controller, connected by a modal segue from a Present button

in the root view controller’s view. Call its class PresentedViewController. Its view
contains a Pop button.

• A second view controller, connected by a push segue from a Push bar button item
in the root view controller’s navigation item. Call its class SecondViewController.
— The very same presented view controller (PresentedViewController), also con‐

nected by a modal segue from a Present button in the second view controller’s
view.

This storyboard-based app runs perfectly with just about no code at all; all we need is
an empty implementation of an unwind method in RootViewController and Second‐

340 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-12. Architecture of an app for testing state restoration

ViewController so that we can create an unwind segue from the PresentedViewCon‐
troller Pop button.

We will now make this app implement state restoration:

1. Change the name of application:didFinishLaunchingWithOptions: in the app
delegate to application:willFinishLaunchingWithOptions:.

2. Implement application:shouldSaveApplicationState: and application:

shouldRestoreApplicationState: to return YES.
3. Give all four view controller instances in the storyboard restoration IDs: let’s call

them @"nav", @"root", @"second", and @"presented".

That’s all! The app now saves and restores state.

Restoration ID, Identifier Path, and Restoration Class
Having everything done for us by the storyboard reveals nothing about what’s really
happening. To learn more, let’s rewrite the example without a storyboard. Throw away
the storyboard (and delete the Main Storyboard entry from the Info.plist) and imple‐
ment the same architecture using code alone:

State Restoration | 341

www.it-ebooks.info

http://www.it-ebooks.info/

// AppDelegate.m:
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 self.window =
 [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 RootViewController* rvc = [RootViewController new];
 UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:rvc];
 self.window.rootViewController = nav;
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

// RootViewController.m:
-(void)viewDidLoad {
 [super viewDidLoad];
 // ... color view background, create buttons ...
}
-(void)doPresent:(id)sender {
 PresentedViewController* pvc = [PresentedViewController new];
 [self presentViewController:pvc animated:YES completion:nil];
}
-(void)doPush:(id)sender {
 SecondViewController* svc = [SecondViewController new];
 [self.navigationController pushViewController:svc animated:YES];
}

// SecondViewController.m:
-(void)viewDidLoad {
 [super viewDidLoad];
 // ... color view background, create button ...
}
-(void)doPresent:(id)sender {
 PresentedViewController* pvc = [PresentedViewController new];
 [self presentViewController:pvc animated:YES completion:nil];
}

// PresentedViewController.m:
-(void)viewDidLoad {
 [super viewDidLoad];
 // ... color view background, create button ...
}
-(void)doDismiss:(id)sender {
 [self dismissViewControllerAnimated:YES completion:nil];
}

That’s a working app. Now let’s start adding state restoration, just as before:

1. Change the name of application:didFinishLaunchingWithOptions: in the app
delegate to application:willFinishLaunchingWithOptions:.

342 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

2. Implement application:shouldSaveApplicationState: and application:

shouldRestoreApplicationState: to return YES.
3. Give all four view controller instances restoration IDs: let’s call them @"nav",

@"root", @"second", and @"presented". We’ll have to do this in code. We’re cre‐
ating each view controller instance manually, so we may as well assign its
restorationIdentifier in the next line, like this:

RootViewController* rvc = [RootViewController new];
rvc.restorationIdentifier = @"root";
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:rvc];
nav.restorationIdentifier = @"nav";

And so on.

Run the app. We are not getting state restoration. Why not?

The reason is that the restorationIdentifier alone is not sufficient to tell the state
restoration mechanism what to do as the app launches. The restoration mechanism
knows the chain of view controller classes that needs to be generated, but it is up to us
to generate the instances of those classes. (Our storyboard-based example didn’t exhibit
this problem, because the storyboard itself was the source of the instances.) To do that,
we need to know about the identifier path and the restoration class.

The restorationIdentifier serves as a guide during restoration as to what view con‐
troller is needed at each point in the view controller hierarchy. Any particular view
controller instance, given its position in the view controller hierarchy, is uniquely iden‐
tified by the sequence of restorationIdentifier values of all the view controllers
(including itself) in the chain that leads to it. Those restorationIdentifier values,
taken together and in sequence, constitute the identifier path for any given view con‐
troller instance.

Each identifier path is, in fact, merely an array of strings. In effect, the identifier paths
are like a trail of breadcrumbs that you left behind as you created each view controller
while the app was running, and that will now be used to identify each view controller
again as the app launches.

For example, if we launch the app and press the Push button and then the Present button,
then all four view controllers have been instantiated; those instances are identified as:

• @[@"nav"]

• @[@"nav", @"root"]

• @[@"nav", @"second"]

State Restoration | 343

www.it-ebooks.info

http://www.it-ebooks.info/

• @[@"nav", @"presented"] (because the navigation controller is the actual pre‐
senting view controller)

Observe that a view controller’s identifier path is not the full story of how we got here.
It’s just an identifier! The state-saving mechanism also saves a relational tree of identi‐
fiers. For example, if the app is suspended in the current situation, then the state-saving
mechanism will record that the root view controller has two children and a presented
view controller, along with their identifiers.

Now consider what the state restoration mechanism needs to do when the app has been
suspended and killed, and comes back to life, from the situation I just described. We
need to restore four view controllers; we know their identifiers and mutual relationships.
State restoration doesn’t start until after application:willFinishLaunchingWith-
Options:. So when the state restoration mechanism starts examining the situation, it
discovers that the @[@"nav"] and @[@"nav", @"root"] view controller instances have
already been created! However, the view controller instances for @[@"nav",

@"second"] and @[@"nav", @"presented"] must also be created now. The state resto‐
ration mechanism doesn’t know how to do that — so it’s going to ask your code for the
instances.

But what code should it ask? One way of specifying this is for you to provide a restoration
class for each view controller instance that is not restored in application:willFinish-
LaunchingWithOptions:. Here’s how you do that:

1. Give the view controller a restorationClass. Typically, this will be the view con‐
troller’s own class, or the class of the view controller responsible for creating this
view controller instance.

2. Implement the class method viewControllerWithRestorationIdentifier-

Path:coder: on the class named by each view controller’s restorationClass
property, returning a view controller instance as specified by the identifier path.
Very often, viewControllerWithRestorationIdentifierPath:coder: will itself
instantiate the view controller and return it.

3. Specify formally that each class named as a restorationClass implements the
UIViewControllerRestoration protocol.

Let’s make our PresentedViewController and SecondViewController instances restor‐
able. I’ll start with PresentedViewController. Our app can have two PresentedView‐
Controller instances (though not simultaneously) — the one created by RootView‐
Controller, and the one created by SecondViewController. Let’s start with the one created
by RootViewController.

Since RootViewController creates and configures a PresentedViewController instance,
it can reasonably act also as the restoration class for that instance. In its implementation

344 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

of viewControllerWithRestorationIdentifierPath:coder:, RootViewController
should then create and configure a PresentedViewController instance exactly as it was
doing before we added state restoration to our app — except for putting it into the view
controller hierarchy! The state restoration mechanism itself, remember, is responsible
for assembling the view controller hierarchy; our job is merely to supply any needed
view controller instances.

So RootViewController now must adopt UIViewControllerRestoration, and will con‐
tain this code:

+ (UIViewController*) viewControllerWithRestorationIdentifierPath:
 (NSArray*)ip
 coder: (NSCoder*)coder {
 UIViewController* vc = nil;
 if ([[ip lastObject] isEqualToString:@"presented"]) {
 PresentedViewController* pvc = [PresentedViewController new];
 pvc.restorationIdentifier = @"presented";
 pvc.restorationClass = [self class];
 vc = pvc;
 }
 return vc;
}
-(void)doPresent:(id)sender {
 PresentedViewController* pvc = [PresentedViewController new];
 pvc.restorationIdentifier = @"presented";
 pvc.restorationClass = [self class];
 [self presentViewController:pvc animated:YES completion:nil];
}

You can see what I mean when I say that the restoration class must do exactly what it
was doing before state restoration was added. Clearly this situation has led to some
annoying code duplication, so let’s factor out the common code. In doing so, we must
bear in mind that doPresent: is an instance method, whereas viewControllerWith-
RestorationIdentifierPath:coder: is a class method; our factored-out code must
therefore be a class method, so that they can both call it:

+ (UIViewController*) makePresentedViewController {
 PresentedViewController* pvc = [PresentedViewController new];
 pvc.restorationIdentifier = @"presented";
 pvc.restorationClass = [self class];
 return pvc;
}
+ (UIViewController*) viewControllerWithRestorationIdentifierPath:
 (NSArray*)ip
 coder:(NSCoder*)coder {
 UIViewController* vc = nil;
 if ([[ip lastObject] isEqualToString:@"presented"]) {
 vc = [self makePresentedViewController];
 }
 return vc;
}

State Restoration | 345

www.it-ebooks.info

http://www.it-ebooks.info/

-(void)doPresent:(id)sender {
 UIViewController* pvc = [[self class] makePresentedViewController];
 [self presentViewController:pvc animated:YES completion:nil];
}

Continuing in the same vein, we expand RootViewController still further to make it
also the restoration class for SecondViewController:

+ (UIViewController*) makePresentedViewController {
 PresentedViewController* pvc = [PresentedViewController new];
 pvc.restorationIdentifier = @"presented";
 pvc.restorationClass = [self class];
 return pvc;
}
+ (UIViewController*) makeSecondViewController {
 SecondViewController* svc = [SecondViewController new];
 svc.restorationIdentifier = @"second";
 svc.restorationClass = [self class];
 return svc;
}
+ (UIViewController*) viewControllerWithRestorationIdentifierPath:
 (NSArray*)ip
 coder:(NSCoder*)coder {
 UIViewController* vc = nil;
 if ([[ip lastObject] isEqualToString:@"presented"]) {
 vc = [self makePresentedViewController];
 }
 else if ([[ip lastObject] isEqualToString:@"second"]) {
 vc = [self makeSecondViewController];
 }
 return vc;
}
-(void)doPresent:(id)sender {
 UIViewController* pvc = [[self class] makePresentedViewController];
 [self presentViewController:pvc animated:YES completion:nil];
}
-(void)doPush:(id)sender {
 UIViewController* svc = [[self class] makeSecondViewController];
 [self.navigationController pushViewController:svc animated:YES];
}

Finally, SecondViewController can make itself the restoration class for the Presented‐
ViewController instance that it creates. (I won’t bother showing the code, which just
repeats what we’ve already done for RootViewController.) There’s no conflict in the
notion that both RootViewController and SecondViewController can fulfill this role,
as we’re talking about two different PresentedViewController instances.

The structure of our viewControllerWithRestorationIdentifierPath:coder: is typ‐
ical. We test the identifier path — usually, it’s sufficient to examine its last element —
and return the corresponding view controller; ultimately, we are also prepared to return
nil, in case we are called with an identifier path we can’t interpret.

346 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

viewControllerWithRestorationIdentifierPath:coder: can also return nil delib‐
erately, to tell the restoration mechanism, “Go no further; don’t restore the view con‐
troller you’re asking for here, or any view controller further down the same path.”

I said earlier that the state restoration mechanism can ask your code for needed instances
in two ways. The second way is that you implement your app delegate’s
application:viewControllerWithRestorationIdentifierPath:coder:. If you do, it
will be called for every view controller that doesn’t have a restoration class. This works
in a storyboard-based app, and thus is a chance for you to intervene and prevent the
restoration of a particular view controller on a particular occasion (by returning nil).

If you do implement this method, be prepared to receive identifier paths for existing
view controllers! For example, if we were to implement application:viewController-
WithRestorationIdentifierPath:coder: in the example app I’ve been describing, it
would be called for @[@"nav"] and for @[@"nav", @"root"], because those view con‐
trollers have no restoration class. But we needn’t, and we mustn’t, create a new view
controller; those view controller instances have already been created (in
application:willFinishLaunchingWithOptions:), and we must return pointers to
those instances.

Here’s an implementation of application:viewControllerWithRestoration-

IdentifierPath:coder: that works correctly with the storyboard-based version of our
example app. For the two view controllers that have already been created, it returns
pointers to them. For the other two, it instantiates them from the storyboard by treating
their restoration IDs as their storyboard IDs (I told you it was a good idea for these to
be the same!). The result is that there is no result: state restoration just keeps working
as it did before. The point, however, is that we could now, on some occasion, return nil
instead, in order to prevent restoration of a particular view controller:

-(UIViewController *)application:(UIApplication *)app
 viewControllerWithRestorationIdentifierPath:(NSArray *)ip
 coder:(NSCoder *)coder {
 if ([[ip lastObject] isEqualToString:@"nav"]) {
 return self.window.rootViewController;
 }
 if ([[ip lastObject] isEqualToString:@"root"]) {
 return [(UINavigationController*)self.window.rootViewController
 viewControllers][0];
 }
 UIStoryboard* board =
 [coder decodeObjectForKey:
 UIStateRestorationViewControllerStoryboardKey];
 return [board instantiateViewControllerWithIdentifier:[ip lastObject]];
}

State Restoration | 347

www.it-ebooks.info

http://www.it-ebooks.info/

Restoring View Controller State
The very simple example of four view controllers that I’ve been using in the preceding
couple of sections (diagrammed in Figure 6-12) is so simple that it ignores half the
problem. The truth is that when the state restoration mechanism creates a view con‐
troller and places it into the view controller hierarchy, the work of restoration is only
half done.

A newly restored view controller probably won’t yet have the data and instance variable
values it was holding at the time the app was terminated. The history of the creation
and configuration of this view controller are not repeated during restoration. If the view
controller comes from a storyboard, then any settings in its Attributes inspector are
obeyed, but the segue that generated the view controller in the first place is never run,
so the previous view controller’s prepareForSegue:sender: is never called, and the
previous view controller never gets to hand this view controller any data. If the view
controller is created by calling viewControllerWithRestorationIdentifier-

Path:coder:, it may have been given some initial configuration, but this very likely falls
short of the full state that the view controller was holding when the app was terminated.
Any additional communication between one view controller and another to hand it data
will be missing from the process. Indeed, since the history of the app during its previous
run is not repeated, there will be no data to hand over in the first place.

It is up to each view controller, therefore, to restore its own state when it itself is restored.
And in order to do that, it must previously save its own state when the app is back‐
grounded. The state saving and restoration mechanism provides a way of helping your
view controllers do this, through the use of a coder (an NSCoder object). Think of this
coder as a box in which the view controller is invited to place its valuables for safekeep‐
ing, and from which it can retrieve them later. Each of these valuables needs to be
identified, so it is tagged with a key (an arbitrary string) when it is placed into the box,
and is then later retrieved by using the same key, much as in a dictionary.

Anyone who has anything to save at the time it is handed a coder can do so by sending
the coder an appropriate encode message with a key, such as encodeFloat:forKey: or
encodeObject:forKey:. If an object’s class doesn’t adopt the NSCoding protocol, you
may have to archive it to an NSData object before you can encode it. However, views
and view controllers can be handled by the coder directly, because they are treated as
references. Whatever was saved in the coder can later be extracted by sending the coder
the reverse operation using the same key, such as decodeFloatForKey: or decodeObject-
ForKey:.

The keys do not have to be unique across the entire app; they only need to be unique
for a particular view controller. Each object that is handed a coder is handed its own
personal coder. It is handed this coder at state saving time, and it is handed the same
coder (that is, a coder with the same archived objects and keys) at state restoration time.

348 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s the sequence of events involving coders:
When state is saved

When it’s time to save state (as the app is about to be backgrounded), the state saving
mechanism provides coders as follows:

1. The app delegate is sent application:shouldSaveApplicationState:. The
coder is the second parameter.

2. The app delegate is sent application:willEncodeRestorableStateWith-
Coder:. This is the same coder as in the previous step, because this is the same
object (the app delegate).

3. Each view controller down the chain, starting at the root view controller, is sent
encodeRestorableStateWithCoder: if it implements it. The implementation
should call super. Each view controller gets its own coder.

When state is restored
When the app is launched, if state is to be restored, the state restoration mechanism
provides coders as follows:

1. The app delegate is sent application:shouldRestoreApplicationState:.
The coder (the one belonging to the app delegate) is the second parameter.

2. As each view controller down the chain is to be created, either the app delegate’s
application:viewControllerWithRestorationIdentifierPath:coder: (if
implemented) or the restoration class’s viewControllerWithRestoration-
IdentifierPath:coder: (if the view controller has a restoration class) is called.
The coder is the one appropriate to the view controller that’s to be created.

3. Each view controller down the chain, starting at the root view controller, is sent
decodeRestorableStateWithCoder: if it implements it. The implementation
should call super. The coder is the one appropriate to this view controller.

4. The app delegate is sent application:didDecodeRestorableStateWith-
Coder:. The coder is the same one sent to application:shouldRestore-
ApplicationState: (the one belonging to the app delegate).

The UIStateRestoration.h header file describes five built-in keys that are available from
every coder during restoration:
UIStateRestorationViewControllerStoryboardKey

A reference to the storyboard from which this view controller came, if any. (I took
advantage of this key in the example at the end of preceding section.)

UIApplicationStateRestorationBundleVersionKey

Your Info.plist CFBundleVersion string when state saving happened.

State Restoration | 349

www.it-ebooks.info

http://www.it-ebooks.info/

UIApplicationStateRestorationUserInterfaceIdiomKey

An NSNumber wrapping either UIUserInterfaceIdiomPhone or UIUser-

InterfaceIdiomPad, telling what kind of device we were running on when state
saving happened.

UIApplicationStateRestorationTimestampKey

An NSDate telling when state saving happened.

UIApplicationStateRestorationSystemVersionKey

A NSString telling the system version from when state saving happened.

One purpose of these keys is to allow your app to opt out of state restoration, wholly or
in part, because the archive is too old, was saved on the wrong kind of device (and
presumably migrated to this one by backup and restore), and so forth.

A typical implementation of encodeRestorableStateWithCoder: and decode-

RestorableStateWithCoder: will concern itself with instance variables and interface
views. decodeRestorableStateWithCoder: is guaranteed to be called after viewDid-
Load, so you know that viewDidLoad won’t overwrite any direct changes to the interface
performed in decodeRestorableStateWithCoder:.

Here’s an example from the TidBITS News app. Note that decodeRestorableStateWith-
Coder: uses nil tests, and that it updates the interface directly:

-(void)encodeRestorableStateWithCoder:(NSCoder *)coder {
 if (self.parsedData)
 [coder encodeObject: self.parsedData forKey:@"parsedData"];
 [coder encodeObject: self.refreshControl.attributedTitle.string
 forKey: @"lastPubDate"];
 [super encodeRestorableStateWithCoder:coder];
}
-(void)decodeRestorableStateWithCoder:(NSCoder *)coder {
 NSData* parsedData = [coder decodeObjectForKey:@"parsedData"];
 if (parsedData)
 self.parsedData = parsedData;
 NSString* s = [coder decodeObjectForKey:@"lastPubDate"];
 if (s)
 [self setRefreshControlTitle:s];
 [super decodeRestorableStateWithCoder:coder];
}

As a more complete demonstration, I’ll add state saving and restoration to my earlier
UIPageViewController example, the one that displays a Pep Boy on each page. The
project has no storyboard. There are just two classes, the app delegate and the Pep view
controller. The app delegate creates a UIPageViewController and makes it the window’s
root view controller, and makes itself the page view controller’s data source. The page
view controller’s data source creates and supplies an appropriate Pep instance whenever
a page is needed for the page view controller, along these lines:

350 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Pep* page = [[Pep alloc] initWithPepBoy:self.pep[ix] nib: nil bundle: nil];

The challenge is to restore the Pep object displayed in the page view controller as the
app launches. One solution involves recognizing that a Pep object is completely con‐
figured once created, and it is created just by handing it the name of a Pep Boy in its
designated initializer, which becomes its boy property. Thus it happens that we can
mediate between a Pep object and a mere string, so all we really need to save and restore
is that string.

All the additional work, therefore, can be performed in the app delegate. As usual, we
change “did” to “will” so that we are now implementing application:willFinish-
LaunchingWithOptions:, and we implement application:shouldSaveApplication-
State: and application:shouldRestoreApplicationState: to return YES. Now we
save and restore the current Pep Boy name in the app delegate’s encode and decode
methods:

-(void)application:(UIApplication *)application
 willEncodeRestorableStateWithCoder:(NSCoder *)coder {
 UIPageViewController* pvc =
 (UIPageViewController*)self.window.rootViewController;
 NSString* boy = [(Pep*)pvc.viewControllers[0] boy];
 [coder encodeObject:boy forKey:@"boy"];
}
-(void)application:(UIApplication *)application
 didDecodeRestorableStateWithCoder:(NSCoder *)coder {
 NSString* boy = [coder decodeObjectForKey:@"boy"];
 if (boy) {
 UIPageViewController* pvc =
 (UIPageViewController*)self.window.rootViewController;
 Pep* pep = [[Pep alloc] initWithPepBoy:boy nib:nil bundle:nil];
 [pvc setViewControllers:@[pep]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO completion:nil];
 }
}

A second solution, which is more realistic, assumes that we want our Pep view controller
class to be capable of saving and restoration. This means that every view controller down
the chain from the root view controller to our Pep view controller must have a resto‐
ration identifier. In our simple app, there’s just one such view controller, the UIPage‐
ViewController; the app delegate can assign it a restoration ID when it creates it:

UIPageViewController* pvc =
 [[UIPageViewController alloc]
 initWithTransitionStyle:
 UIPageViewControllerTransitionStyleScroll
 navigationOrientation:
 UIPageViewControllerNavigationOrientationHorizontal
 options:nil];
pvc.restorationIdentifier = @"pvc";

State Restoration | 351

www.it-ebooks.info

http://www.it-ebooks.info/

The app delegate is also the data source, and thus ends up creating Pep objects many
times. To prevent duplication of code, we’ll have a Pep object assign itself a restoration
ID in its own designated initializer. The Pep object will also need a restoration class; as
I mentioned earlier, this can perfectly well be the Pep class itself, and that seems most
appropriate here:

- (id) initWithPepBoy: (NSString*) inputboy
 nib: (NSString*) nib bundle: (NSBundle*) bundle {
 self = [self initWithNibName:nib bundle:bundle];
 if (self) {
 self->_boy = [inputboy copy];
 self.restorationIdentifier = @"pep";
 self.restorationClass = [self class];
 }
 return self;
}

Let’s be clever and efficient. The most important state that a Pep object needs to save is
its boy string. The coder in which that boy value is saved will come back to us in Pep’s
viewControllerWithRestorationIdentifierPath:coder:, so we can use it to create
the new Pep object by calling the designated initializer, thus avoiding code duplication:

-(void)encodeRestorableStateWithCoder:(NSCoder *)coder {
 [coder encodeObject:self->_boy forKey:@"boy"];
}
+(UIViewController *)viewControllerWithRestorationIdentifierPath:(NSArray*)ip
 coder:(NSCoder *)coder {
 NSString* boy = [coder decodeObjectForKey:@"boy"];
 return [[Pep alloc] initWithPepBoy: boy nib: nil bundle: nil];
}

Now comes a surprise. We run the app and test it, and we find that we’re not getting
saving and restoration of our Pep object. It isn’t being archived. Its encodeRestorable-
StateWithCoder: isn’t even being called. The reason is that the state saving mechanism
doesn’t work automatically for a UIPageViewController and its children (or for a custom
container view controller and its children, for that matter). It is up to us to see to it that
the current Pep object is archived.

To do so, we can archive and unarchive the current Pep object in an implementation of
encodeRestorableStateWithCoder: and decodeRestorableStateWithCoder: that is
being called. For our app, that would have to be in the app delegate. The code we’ve
written so far has all been necessary to make the current Pep object archivable and
restorable; now the app delegate will make sure that it is archived and restored:

-(void)application:(UIApplication *)application
 willEncodeRestorableStateWithCoder:(NSCoder *)coder {
 UIPageViewController* pvc =
 (UIPageViewController*)self.window.rootViewController;
 Pep* pep = (Pep*)pvc.viewControllers[0];
 [coder encodeObject:pep forKey:@"pep"];

352 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

}
-(void)application:(UIApplication *)application
 didDecodeRestorableStateWithCoder:(NSCoder *)coder {
 Pep* pep = [coder decodeObjectForKey:@"pep"];
 if (pep) {
 UIPageViewController* pvc =
 (UIPageViewController*)self.window.rootViewController;
 [pvc setViewControllers:@[pep]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO completion:nil];
 }
}

This solution may seem rather heavyweight, but it isn’t. We’re not really archiving an
entire Pep instance; it’s just a reference. The actual Pep instance is the one created by
viewControllerWithRestorationIdentifierPath:coder:.

Restoration Order of Operations
When you implement state saving and restoration for a view controller, the view con‐
troller ends up with two different ways of being configured. One way involves the life‐
time events I discussed earlier in this chapter (“View Controller Lifetime Events” on
page 329). The other involves the events I’ve been discussing in this section. You want
your view controller to be correctly configured no matter whether this view controller
is undergoing state restoration or not.

Before state saving and restoration, you were probably configuring your view controller,
at least in part, in viewWillAppear: and viewDidAppear:. With state saving and resto‐
ration added to the picture, you may also be receiving decodeRestorableStateWith-
Coder:. If you configure your view controller here, will you be overriding what happens
in viewWillAppear: and viewDidAppear:, or will they come along later and override
what you do in decodeRestorableStateWithCoder:?

The unfortunate fact is that you don’t know. For viewWillAppear: and viewDid-
Appear:, in particular, the only thing you do know during state restoration is that you’ll
get both of them for the top view controller (the one whose view actually appears). You
don’t know when they will arrive; it might be before or after decodeRestorableState-
WithCoder:. For other view controllers, you don’t even know whether viewDid-
Appear: will arrive: it might well never arrive, even if viewWillAppear: arrives.

In iOS 6, this indeterminacy made adoption of state saving and restoration difficult and
frustrating. In iOS 7, a new UIViewController event is available, applicationFinished-
RestoringState. If you implement this method, it will be called if and only if we’re
doing state restoration, at a time when all view controllers have already been sent decode-
RestorableStateWithCoder:.

Thus, the known order of events during state restoration is like this:

State Restoration | 353

www.it-ebooks.info

http://www.it-ebooks.info/

• application:shouldRestoreApplicationState:

• application:viewControllerWithRestorationIdentifierPath:coder:

• viewControllerWithRestorationIdentifierPath:coder:, in order down the
chain

• viewDidLoad, in order down the chain; possibly interleaved with the foregoing
• decodeRestorableStateWithCoder:, in order down the chain
• application:didDecodeRestorableStateWithCoder:

• applicationFinishedRestoringState, in order down the chain

You still don’t know when viewWillAppear: and viewDidAppear: will arrive, or wheth‐
er viewDidAppear: will arrive at all. But in applicationFinishedRestoringState you
can reliably finish configuring your view controller and your interface.

Here’s an example from one of my own apps. My configureView method relies on
self.detailItem. If state restoration is not happening, then detailItem was set by
another view controller, and viewWillAppear: will call configureView based on it; if
state restoration is happening, then detailItem was set by decodeRestorableState-
WithCoder:, and applicationFinishedRestoringState will call configureView based
on it:

-(void)decodeRestorableStateWithCoder:(NSCoder *)coder {
 FPItem* detailItem = [coder decodeObjectForKey:@"detailItem"];
 if (detailItem)
 self->_detailItem = detailItem;
 [super decodeRestorableStateWithCoder:coder];
}
-(void)applicationFinishedRestoringState {
 [self configureView];
}
- (void) viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self configureView];
}
- (void)configureView {
 if (self.detailItem) {
 // ...
 }
}

The worst that can happen is that configureView will be called twice in quick succession
with the same detailItem. If I don’t like that, I can prevent it — but not by trying to
mediate between viewWillAppear: and applicationFinishedRestoringState! That’s
a hopeless task; their order is undefined and unreliable. Instead, configureView can
use another instance variable as a flag. For example:

354 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

if (self.detailItem == self.lastDetailItem)
 return; // pointless to configure interface again
self.lastDetailItem = self.detailItem;
// ... configure ...

If your app has additional state restoration work to do on a back‐
ground thread (Chapter 25), the documentation says you should call
UIApplication’s extendStateRestoration as you begin and complete-
StateRestoration when you’ve finished. The idea is that if you don’t
call completeStateRestoration, the system can assume that some‐
thing has gone very wrong (like, your app has crashed) and will throw
away the saved state information, which may be faulty.

Restoration of Other Objects
A view will participate in automatic saving and restoration of state if its view controller
does, and if it itself has a restoration identifier. Some built-in UIView subclasses have
built-in restoration abilities. For example, a scroll view that participates in state saving
and restoration will automatically return to the point to which it was scrolled previously.
You should consult the documentation on each UIView subclass to see whether it par‐
ticipates usefully in state saving and restoration, and I’ll mention a few significant cases
when we come to discuss those views in later chapters.

New in iOS 7, an arbitrary object can be made to participate in automatic saving and
restoration of state. There are three requirements for such an object:

• The object’s class must adopt the UIStateRestoring protocol. This declares three
optional methods:
— encodeRestorableStateWithCoder:

— decodeRestorableStateWithCoder:

— applicationFinishedRestoringState

• When the object is created, someone must register it with the runtime by calling
this UIApplication class method:
— registerObjectForStateRestoration:restorationIdentifier:

• Some other object that participates in saving and restoration, such as a view con‐
troller, must make the archive aware of this object by storing it in the archive (typ‐
ically in encodeRestorableStateWithCoder:).

So, for example, here’s an NSObject subclass Thing that participates in saving and
restoration:

State Restoration | 355

www.it-ebooks.info

http://www.it-ebooks.info/

// Thing.h:
@interface Thing : NSObject <UIStateRestoring>
@end

// Thing.m:
@implementation Thing
-(void)encodeRestorableStateWithCoder:(NSCoder *)coder {
 // ...
}
-(void)decodeRestorableStateWithCoder:(NSCoder *)coder {
 // ...
}
-(void)applicationFinishedRestoringState {
 // ...
}
@end

Here’s a view controller with a Thing instance variable:

+(Thing*)makeThing {
 Thing* thing = [Thing new];
 [UIApplication registerObjectForStateRestoration:thing
 restorationIdentifier:@"thing"];
 return thing;
}
-(void)awakeFromNib {
 [super awakeFromNib];
 self.thing = [[self class] makeThing];
}
-(void)encodeRestorableStateWithCoder:(NSCoder *)coder {
 [super encodeRestorableStateWithCoder:coder];
 [coder encodeObject:self.thing forKey:@"mything"];
}

That last line is crucial; it introduces our Thing object to the archive and brings its
UIStateRestoring methods to life.

There is an objectRestorationClass property of the restorable object, and an object-
WithRestorationIdentifierPath:coder: method that the designated class must im‐
plement. But our object is restorable even without an objectRestorationClass! I
presume that this is because registerObjectForStateRestoration:restoration-
Identifier: sufficiently identifies this object to the runtime. If you do want to assign
an objectRestorationClass, you’ll have to redeclare the property, as it is read-only by
default:

@property (strong, nonatomic)
 Class<UIObjectRestoration> objectRestorationClass;

As the declaration shows, the class in question must adopt the UIObjectRestoration
protocol; its objectWithRestorationIdentifierPath:coder: will then be called, and

356 | Chapter 6: View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

can return the restorable object, by creating it or pointing to it. Alternatively, it can
return nil to prevent restoration.

Another optional property of the restorable object is restorationParent. Again, if you
want to assign to it, you’ll have to redeclare it, as it is read-only by default:

@property (strong, nonatomic) id<UIStateRestoring> restorationParent;

The parent must adopt the UIStateRestoring protocol, as the declaration shows. The
purpose of the parent is to give the restorable object an identifier path. For example, if
we have a chain of view controllers with a path @[@"nav", @"second"], then if that last
view controller is the restorationParent of our Thing object, the Thing object’s iden‐
tifier path in objectWithRestorationIdentifierPath:coder: will be @[@"nav",
@"second", @"thing"], rather than simply @[@"thing"]. This is useful if we are wor‐
ried that @[@"thing"] alone will not uniquely identify this object.

Snapshot Suppression
When your app is backgrounded, the system takes a snapshot of your interface. It is
used in the app switcher interface, and as a launch image when your app is resumed.
But what happens if your app is killed in the background and relaunched?

If your app isn’t participating in state restoration, then its default launch image is used.
This makes sense, because your app is starting from scratch. But if your app is partici‐
pating in state restoration, then the snapshot is used as a launch image. This makes
sense, too, because the interface that was showing when the app was backgrounded is
presumably the very interface your state restoration process is about to restore.

However, you might decide, while saving state, that there is reason not to use the system’s
snapshot when relaunching. (Perhaps there is something in your interface that it would
be inappropriate to display when the app is subsequently launched.) In that case, you
can call the UIApplication instance method ignoreSnapshotOnNextApplication-
Launch. When the app launches with state restoration, the user will see your app’s default
launch image, followed by a change to the restored interface. They may not match, but
at least there is a nice cross-dissolve between them.

By the same token, if the view controller whose view was showing at state saving time
is not restorable (it has no restoration ID), then if the app is killed in the background
and subsequently launches with state restoration, the restoration mechanism knows
that the snapshot taken at background time doesn’t match the interface we’re about to
restore to, so the user will initially see your app’s default launch image.

State Restoration | 357

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Scroll Views

A scroll view (UIScrollView) is a view whose content is larger than its bounds. To reveal
a desired area, the user can scroll the content by dragging or flicking, or you can repo‐
sition the content in code.

A scroll view isn’t magic; it takes advantage of ordinary UIView features (Chapter 1).
The content is simply the scroll view’s subviews. When the scroll view scrolls, what’s
really changing is the scroll view’s own bounds origin; the subviews are positioned with
respect to the bounds origin, so they move with it. The scroll view’s clipsToBounds is
usually YES, so any content positioned within the scroll view’s bounds width and height
is visible and any content positioned outside them is not.

In addition, a scroll view brings to the table some nontrivial abilities:

• It knows how to shift its bounds origin in response to the user’s gestures.
• It provides scroll indicators whose size and position give the user a clue as to the

content’s size and position.
• It can optionally enforce paging, whereby the user can view only integral portions

of the content.
• It supports zooming, so that the user can resize the content with a pinch gesture.
• It provides a plethora of delegate methods, so that your code knows exactly how

the user is scrolling and zooming.

A scroll view’s subviews, like those of any view, are positioned with respect to its bounds
origin; to scroll is to change the bounds origin. The scroll view thus knows how far it
should be allowed to slide its subviews downward and rightward — the limit is reached
when the scroll view’s bounds origin is {0,0}. What the scroll view needs to know is
how far it should be allowed to slide its subviews upward and leftward. That is the scroll
view’s content size — its contentSize property.

359

www.it-ebooks.info

http://www.it-ebooks.info/

The scroll view uses its contentSize, in combination with its own bounds size, to set
the limits on how large its bounds origin can become. It may also be helpful to think of
the scroll view’s scrollable content as the rectangle defined by {CGPointZero, content-
Size}; this is the rectangle that the user can inspect by scrolling. In effect, therefore, the
contentSize is how large the scrollable content is.

If a dimension of the contentSize isn’t larger than the same dimension of the scroll
view’s own bounds, the content won’t be scrollable in that dimension: there is nothing
to scroll, as the entire scrollable content is already showing. The contentSize is {0,0}
by default, meaning that the scroll view isn’t scrollable.

You can set the contentSize directly, in code. If you’re using autolayout (Chapter 1),
the contentSize is calculated for you based on the constraints of the scroll view’s
subviews.

Creating a Scroll View in Code
To illustrate, I’ll start by creating a scroll view, providing it with subviews, and making
those subviews viewable by scrolling, entirely in code. In the first instance, let’s not use
autolayout. Our project is based on the Single View Application template, with a single
view controller class, ViewController, and with the storyboard’s “Use Auto Layout” un‐
checked. In the ViewController’s viewDidLoad, I’ll create the scroll view to fill the main
view, and populate it with 30 UILabels whose text contains a sequential number so that
we can see where we are when we scroll:

UIScrollView* sv = [[UIScrollView alloc] initWithFrame: self.view.bounds];
sv.autoresizingMask = UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight;
[self.view addSubview:sv];
sv.backgroundColor = [UIColor whiteColor];
CGFloat y = 10;
for (int i=0; i<30; i++) {
 UILabel* lab = [UILabel new];
 lab.text = [NSString stringWithFormat:@"This is label %d", i+1];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10,y);
 lab.frame = f;
 [sv addSubview:lab];
 y += lab.bounds.size.height + 10;
}
CGSize sz = sv.bounds.size;
sz.height = y;
sv.contentSize = sz;

360 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

The crucial move is the last line, where we tell the scroll view how large its content is to
be. If we omit this step, the scroll view won’t be scrollable; the window will appear to
consist of a static column of labels.

There is no rule about the order in which you perform the two operations of setting the
contentSize and populating the scroll view with subviews. In that example, we set the
contentSize afterward because it is more convenient to track the heights of the sub‐
views as we add them than to calculate their total height in advance. Similarly, you can
alter a scroll view’s content (subviews) or contentSize, or both, dynamically as the app
runs.

Any direct subviews of the scroll view may need to have their autoresizing set appro‐
priately in case the scroll view is resized, as would happen, for instance, if our app
performs compensatory rotation. To see this, add these lines to the preceding example,
inside the for loop:

f.size.width = self.view.bounds.size.width - 20;
lab.frame = f;
lab.backgroundColor = [UIColor redColor]; // make label bounds visible
lab.autoresizingMask = UIViewAutoresizingFlexibleWidth;

Run the app, and rotate the device or the Simulator. The labels are wider in portrait
orientation because the scroll view itself is wider.

This, however, has nothing to do with the contentSize! The contentSize does not
change just because the scroll view’s bounds change; if you want the contentSize to
change in response to rotation, you will need to change it manually, in code. Conversely,
resizing the contentSize has no effect on the size of the scroll view’s subviews; it merely
determines the scrolling limit.

With autolayout, things are different. The difficult thing to understand — and it is
certainly counterintuitive — is that a constraint between a scroll view and a direct sub‐
view of that scroll view is not a way of positioning the subview relative to the scroll view
(as it would be if the superview were an ordinary UIView). Instead, it’s a way of de‐
scribing the scroll view’s contentSize.

To see this, let’s rewrite the preceding example to use autolayout. If the only change is
that the storyboard’s “Use Auto Layout” is checked, the example continues to work,
because the scroll view and its subviews all have their translatesAutoresizingMask-
IntoConstraints set to YES by default; all constraints are implicit, as if we weren’t using
autolayout at all. But what if the scroll view and its subviews have their translates-
AutoresizingMaskIntoConstraints set to NO, and we’re giving them explicit con‐
straints? Let’s try it:

Creating a Scroll View in Code | 361

www.it-ebooks.info

http://www.it-ebooks.info/

UIScrollView* sv = [UIScrollView new];
sv.backgroundColor = [UIColor whiteColor];
sv.translatesAutoresizingMaskIntoConstraints = NO;
[self.view addSubview:sv];
[self.view addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"H:|[sv]|"
 options:0 metrics:nil
 views:@{@"sv":sv}]];
[self.view addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:|[sv]|"
 options:0 metrics:nil
 views:@{@"sv":sv}]];
UILabel* previousLab = nil;
for (int i=0; i<30; i++) {
 UILabel* lab = [UILabel new];
 lab.translatesAutoresizingMaskIntoConstraints = NO;
 lab.text = [NSString stringWithFormat:@"This is label %d", i+1];
 [sv addSubview:lab];
 [sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"H:|-(10)-[lab]"
 options:0 metrics:nil
 views:@{@"lab":lab}]];
 if (!previousLab) { // first one, pin to top
 [sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:|-(10)-[lab]"
 options:0 metrics:nil
 views:@{@"lab":lab}]];
 } else { // all others, pin to previous
 [sv addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[prev]-(10)-[lab]"
 options:0 metrics:nil
 views:@{@"lab":lab, @"prev":previousLab}]];
 }
 previousLab = lab;
}

The labels are correctly positioned relative to one another, but the scroll view isn’t
scrollable. Moreover, setting the contentSize manually doesn’t help. The solution is to
add one more constraint, showing the scroll view what the height of its contentSize
should be:

// pin last label to bottom, dictating content size height
[sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:[lab]-(10)-|"
 options:0 metrics:nil
 views:@{@"lab":previousLab}]];

The constraints of the scroll view’s subviews now describe the contentSize height: the
top label is pinned to the top of the scroll view, the next one is pinned to the one above
it, and so on — and the bottom one is pinned to the bottom of the scroll view.

362 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

Consequently, the runtime calculates the contentSize height from the inside out, as it
were, as the sum of all the vertical constraints (including the intrinsic heights of the
labels), and the scroll view is vertically scrollable to show all the labels.

Using a Content View
Instead of putting all of our scroll view’s content directly inside the scroll view as its
immediate subviews, we can provide a generic UIView as the sole immediate subview
of the scroll view; everything else inside the scroll view is to be a subview of this generic
UIView, which we may term the content view. This is a commonly used arrangement.

Under autolayout, we then have two choices for setting the scroll view’s contentSize:

• Set the content view’s translatesAutoresizingMaskIntoConstraints to YES, and
set the scroll view’s contentSize manually to the size of the generic content view.

• Set the content view’s translatesAutoresizingMaskIntoConstraints to NO, set
its size with width and height constraints, and pin its edges to its superview (the
scroll view).

A convenient consequence of this arrangement is that it works independently of whether
the content view’s own subviews are positioned explicitly by their frames or using con‐
straints. There are thus four possible combinations.

I’ll illustrate by rewriting the previous example to use a content view. All four possible
combinations start the same way:

UIScrollView* sv = [UIScrollView new];
sv.backgroundColor = [UIColor whiteColor];
sv.translatesAutoresizingMaskIntoConstraints = NO;
[self.view addSubview:sv];
[self.view addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"H:|[sv]|"
 options:0 metrics:nil
 views:@{@"sv":sv}]];
[self.view addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:|[sv]|"
 options:0 metrics:nil
 views:@{@"sv":sv}]];
UIView* v = [UIView new]; // content view
[sv addSubview: v];

The first combination is that no constraints are used. It’s just like the first example in
the previous section, except that the labels are added to the content view, not to the scroll
view:

Using a Content View | 363

www.it-ebooks.info

http://www.it-ebooks.info/

CGFloat y = 10;
for (int i=0; i<30; i++) {
 UILabel* lab = [UILabel new];
 lab.text = [NSString stringWithFormat:@"This is label %d", i+1];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10,y);
 lab.frame = f;
 [v addSubview:lab]; // add to content view, not scroll view
 y += lab.bounds.size.height + 10;
}
// set content view frame and content size explicitly
v.frame = CGRectMake(0,0,0,y);
sv.contentSize = v.frame.size;

The second combination is that the content view uses explicit constraints, but its sub‐
views don’t. It’s just like the preceding code, except that we set the content view’s con‐
straints rather than the scroll view’s content size:

CGFloat y = 10;
for (int i=0; i<30; i++) {
 // ... same as before, create labels, keep incrementing y
}
// configure the content view using constraints
v.translatesAutoresizingMaskIntoConstraints = NO;
[sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:|[v(y)]|"
 options:0 metrics:@{@"y":@(y)} views:@{@"v":v}]];
[sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"H:|[v(0)]|"
 options:0 metrics:nil views:@{@"v":v}]];

The third combination is that explicit constraints are used throughout. This is just like
the second example in the previous section (except that the labels are added to the
content view) combined with the preceding code, setting the content view’s constraints:

UILabel* previousLab = nil;
for (int i=0; i<30; i++) {
 UILabel* lab = [UILabel new];
 lab.translatesAutoresizingMaskIntoConstraints = NO;
 lab.text = [NSString stringWithFormat:@"This is label %d", i+1];
 [v addSubview:lab];
 [v addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"H:|-(10)-[lab]"
 options:0 metrics:nil
 views:@{@"lab":lab}]];
 if (!previousLab) { // first one, pin to top
 [v addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:|-(10)-[lab]"
 options:0 metrics:nil
 views:@{@"lab":lab}]];
 } else { // all others, pin to previous
 [v addConstraints:

364 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:[prev]-(10)-[lab]"
 options:0 metrics:nil
 views:@{@"lab":lab, @"prev":previousLab}]];
 }
 previousLab = lab;
}
// last one, pin to bottom, this dictates content view height
[v addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:[lab]-(10)-|"
 options:0 metrics:nil
 views:@{@"lab":previousLab}]];
// configure the content view using constraints
v.translatesAutoresizingMaskIntoConstraints = NO;
[sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"V:|[v]|"
 options:0 metrics:nil views:@{@"v":v}]];
[sv addConstraints:
 [NSLayoutConstraint constraintsWithVisualFormat:@"H:|[v(0)]|"
 options:0 metrics:nil views:@{@"v":v}]];

The fourth combination is a curious hybrid: the content view’s subviews are positioned
using constraints, but we set the content view’s frame and the scroll view’s content size
explicitly. There is no y to track as we position the subviews, so how can we find out the
final content size height? Fortunately, systemLayoutSizeFittingSize: tells us:

UILabel* previousLab = nil;
// ... same as before, add subviews and constraints to content view ...
// autolayout helps us learn the consequences of those constraints
CGSize minsz = [v systemLayoutSizeFittingSize:UILayoutFittingCompressedSize];
// set content view frame and content size explicitly
v.frame = CGRectMake(0,0,0,minsz.height);
sv.contentSize = v.frame.size;

Scroll View in a Nib
A UIScrollView is available in the nib editor in the Object library, so you can drag it
into a view in the canvas and give it subviews. Alternatively, you can wrap existing views
in the canvas in a UIScrollView as an afterthought: select the views and choose Editor
→ Embed In → Scroll View. The scroll view can’t be scrolled in the nib editor, so to
design its subviews, you make the scroll view large enough to accommodate them; if
this makes the scroll view too large, you can resize the actual scroll view instance when
the nib loads. If the scroll view is inside the view controller’s main view, you may have
to make that view too large, in order to see and work with the full scroll view and its
contents (Figure 7-1). Set the view controller’s Size pop-up menu in the Simulated Met‐
rics section of its Attributes inspector to Freeform; now you can change the main view’s
size, and the view controller’s size in the canvas will change with it.

Scroll View in a Nib | 365

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-1. A scroll view in the nib editor

If you’re not using autolayout, judicious use of autoresizing settings in the nib editor
can be a big help here. In Figure 7-1, the scroll view is the main view’s subview; the scroll
view’s edges are pinned (struts) to its superview, and its width and height are flexible
(springs). Thus, when the app runs and the main view is resized (as I discussed in
Chapter 6), the scroll view will be resized too, to fit the main view. The content view, on
the other hand, must not be resized, so its width and height are not flexible (they are
struts, not springs), and only its top and left edges are pinned to its superview (struts).

But although everything is correctly sized at runtime, the scroll view doesn’t scroll. That’s
because we have failed to set the scroll view’s contentSize. Unfortunately, the nib editor
provides no way to do that! Thus, we’ll have to do it in code. This, in fact, is why I’m
using a content view. The content view is the correct size in the nib, and it won’t be
resized through autoresizing, so at runtime, when the nib loads, its size will be the desired
contentSize. I have an outlet to the scroll view, and I set its contentSize to the content
view’s size in viewDidLayoutSubviews. I don’t need an outlet to the content view, be‐
cause it is known to be the scroll view’s first subview:

-(void)viewDidLayoutSubviews {
 if (!_didSetup) {
 _didSetup = YES;
 self.sv.contentSize = ((UIView*)self.sv.subviews[0]).bounds.size;
 }
}

366 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

If you are using autolayout, constraints take care of everything; there is no need for any
code to set the scroll view’s contentSize. The scroll view’s edges are pinned to those of
its superview, the main view. The content view’s edges are pinned to those of its super‐
view, the scroll view. The content view’s size will dictate the scroll view’s contentSize
automatically. The only question now is how you’d like to dictate the content view’s size.

You have two choices, roughly corresponding to the second and third combinations in
the preceding section: you can set the content view’s width and height constraints ex‐
plicitly, or you can let the content view’s width and height be completely determined by
the constraints of its subviews. Do whichever feels suitable.

In Xcode 4, configuring a scroll view’s content view under autolayout could be tricky,
sometimes requiring a content view constraint’s constant to be changed at runtime.
You won’t need to do that with Xcode 5. Indeed, the Xcode 5 nib editor is extremely
helpful: it understands this aspect of scroll view configuration, and will alert you with
a warning (about the “scrollable content size”) until you’ve provided enough constraints
to determine unambiguously the scroll view’s contentSize.

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll. A number
of properties affect the user experience with regard to scrolling:
scrollEnabled

If NO, the user can’t scroll, but you can still scroll in code (as explained later in this
section). You could put a UIScrollView to various creative purposes other than
letting the user scroll; for example, scrolling in code to a different region of the
content might be a way of replacing one piece of interface by another, possibly with
animation.

scrollsToTop

If YES (the default), and assuming scrolling is enabled, the user can tap on the status
bar as a way of making the scroll view scroll its content to the top (that is, the content
moves all the way down). You can also override this setting dynamically through
the scroll view’s delegate, discussed later in this chapter.

bounces

If YES (the default), then when the user scrolls to a limit of the content, it is possible
to scroll somewhat further (possibly revealing the scroll view’s backgroundColor
behind the content, if a subview was covering it); the content then snaps back into
place when the user releases it. Otherwise, the user experiences the limit as a sudden
inability to scroll further in that direction.

Scrolling | 367

www.it-ebooks.info

http://www.it-ebooks.info/

alwaysBounceVertical, alwaysBounceHorizontal
If YES, and assuming that bounces is YES, then even if the contentSize in the given
dimension isn’t larger than the scroll view (so that no scrolling is actually possible
in that dimension), the user can nevertheless scroll somewhat and the content then
snaps back into place when the user releases it; otherwise, the user experiences a
simple inability to scroll in that dimension.

directionalLockEnabled

If YES, and if scrolling is possible in both dimensions (even if only because the
appropriate alwaysBounce... is YES), then the user, having begun to scroll in one
dimension, can’t scroll in the other dimension without ending the gesture and
starting over. In other words, the user is constrained to scroll vertically or hori‐
zontally but not both at once.

decelerationRate

The rate at which scrolling is damped out, and the content comes to a stop, after a
flick gesture. As convenient examples, standard constants are provided:

• UIScrollViewDecelerationRateNormal (0.998)
• UIScrollViewDecelerationRateFast (0.99)

Lower values mean faster damping; experimentation suggests that values lower than
0.5 are viable but barely distinguishable from one another. You can also effectively
override this value dynamically through the scroll view’s delegate, discussed later
in this chapter.

showsHorizontalScrollIndicator, showsVerticalScrollIndicator
The scroll indicators are bars that appear only while the user is scrolling in a scrol‐
lable dimension (where the content is larger than the scroll view), and serve to
indicate both the size of the content in that dimension relative to the scroll view
and where the user is within it. The default is YES for both.

Because the user cannot see the scroll indicators except when actively scrolling,
there is normally no indication that the view is scrollable. I regard this as somewhat
unfortunate, because it makes the possibility of scrolling less discoverable; I’d prefer
an option to make the scroll indicators constantly visible. Apple suggests that you
call flashScrollIndicators when the scroll view appears, to make the scroll in‐
dicators visible momentarily.

The scroll indicators are subviews of the scroll view (they are actual‐
ly UIImageViews). Do not assume that the subviews you add to a
UIScrollView are its only subviews!

368 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

indicatorStyle

The way the scroll indicators are drawn. Your choices are:

• UIScrollViewIndicatorStyleDefault (black with a white border)
• UIScrollViewIndicatorStyleBlack (black)
• UIScrollViewIndicatorStyleWhite (white)

You can scroll in code even if the user can’t scroll. The content simply moves to the
position you specify, with no bouncing and no exposure of the scroll indicators. You
can specify the new position in two ways:
contentOffset

The point (CGPoint) of the content that is located at the scroll view’s top left (ef‐
fectively the same thing as the scroll view’s bounds origin). You can get this property
to learn the current scroll position, and set it to change the current scroll position.
The values normally go up from 0 until the limit dictated by the contentSize and
the scroll view’s own bounds is reached.

To set the contentOffset with animation, call setContentOffset:animated:. The
animation does not cause the scroll indicators to appear; it just slides the content
to the desired position.

If a scroll view participates in state restoration (Chapter 6), its contentOffset is
saved and restored, so when the app is relaunched, the scroll view will reappear
scrolled to the same position as before.

scrollRectToVisible:animated:

Adjusts the content so that the specified CGRect of the content is within the scroll
view’s bounds. This is less precise than setting the contentOffset, because you’re
not saying exactly what the resulting scroll position will be, but sometimes guar‐
anteeing the visibility of a certain portion of the content is exactly what you’re after.

If you call a method to scroll with animation and you need to know when the animation
ends, implement scrollViewDidEndScrollingAnimation: in the scroll view’s delegate.

Finally, these properties affect the scroll view’s structural dimensions:
contentInset

A UIEdgeInsets struct (four CGFloats in the order top, left, bottom, right) spec‐
ifying margin space around the content.

If a scroll view participates in state restoration (Chapter 6), its contentInset is
saved and restored.

scrollIndicatorInsets

A UIEdgeInsets struct specifying a shift in the position of the scroll indicators.

Scrolling | 369

www.it-ebooks.info

http://www.it-ebooks.info/

A typical use for the contentInset would be that your scroll view underlaps an interface
element, such as a status bar, navigation bar, or toolbar, and you want your content to
be visible even when scrolled to its limit.

A good example is the app with 30 labels that we created at the start of this chapter. The
scroll view occupies the entirety of the view controller’s main view. But in iOS 7, all apps
are fullscreen apps, so the scroll view underlaps the status bar. This means that at launch
time, and whenever the scroll view’s content is scrolled all the way down, the first label,
which is as far down as it can go, is partly hidden by the text of the status bar. We can
prevent this by setting the scroll view’s contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0);

When changing the contentInset, you will probably want to change the scroll-
IndicatorInsets to match. Consider again the scroll view whose contentInset we
have just set. When scrolled all the way down, it now has a nice gap between the bottom
of the status bar and the top of the first label; but the top of the scroll indicator is still
up behind the status bar. We can prevent this by setting the scrollIndicatorInsets
to the same value as the contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0);
sv.scrollIndicatorInsets = sv.contentInset;

In iOS 7, the contentInset and scrollIndicatorInsets are of increased importance
because top bars and bottom bars are likely to be translucent. When they are, the runtime
would like to make your view underlap them. With a scroll view, this looks cool, because
the scroll view’s contents are visible in a blurry way through the translucent bar; but the
contentInset and scrollIndicatorInsets need to be adjusted so that the scrolling
limits stay between the top bar and the bottom bar. Moreover, the height of the bars can
change, depending on such factors as how the interface is rotated.

Therefore, if a scroll view is going to underlap top and bottom bars, it would be nice,
instead of hard-coding the top inset of 20 as in the preceding code, to make the scroll
view’s inset respond to its environment. A layout event seems the best place for such a
response, and we can use the view controller’s topLayoutGuide and bottomLayout-
Guide to help us:

- (void) viewWillLayoutSubviews {
 if (self.sv) {
 CGFloat top = self.topLayoutGuide.length;
 CGFloat bot = self.bottomLayoutGuide.length;
 self.sv.contentInset = UIEdgeInsetsMake(top, 0, bot, 0);
 self.sv.scrollIndicatorInsets = self.sv.contentInset;
 }
}

Even better, if our view controller’s main view contains one primary scroll view, and if
it contains it sufficiently early — in the nib, for example — then if our view controller’s

370 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

automaticallyAdjustsScrollViewInsets property (new in iOS 7) is YES, the runtime
will adjust our scroll view’s contentInset and scrollIndicatorInsets with no code
on our part. This property won’t help us in the examples earlier in this chapter where
we create the scroll view in code. But if the scroll view is created from the nib, as in
Figure 7-1, this property applies and works. Moreover, a value of YES is the default. In
the nib editor, you can change it with the Adjust Scroll View Insets checkbox in the
Attributes inspector. Be sure to set this property to NO if you want to take charge of
adjusting a scroll view’s contentInset and scrollIndicatorInsets yourself.

Paging
If its pagingEnabled property is YES, the scroll view doesn’t let the user scroll freely;
instead, the content is considered to consist of sections. The user can scroll only in such
a way as to move to a different section. The size of a section is set automatically to be
equal to the size of the scroll view’s bounds. The sections are the scroll view’s pages.

When the user stops dragging, a paging scroll view gently snaps automatically to the
nearest whole page. For example, let’s say that the scroll view scrolls only horizontally,
and that its subviews are image views showing photos, sized to match the scroll view’s
bounds. If the user drags horizontally to the left to a point where less than half of the
next photo to the right is visible, and raises the dragging finger, the paging scroll view
snaps its content back to the right until the entire first photo is visible again. If the user
drags horizontally to the left to a point where more than half of the next photo to the
right is visible, and raises the dragging finger, the paging scroll view snaps its content
further to the left until the entire second photo is visible.

The usual arrangement is that a paging scroll view is at least as large, or nearly as large,
in its scrollable dimension, as the screen. A moment’s thought will reveal that, under
this arrangement, it is impossible for the user to move the content more than a single
page in any direction with a single gesture. The reason is that the size of the page is the
size of the scroll view’s bounds. Thus the user will run out of surface area to drag on
before being able to move the content the distance of a page and a half, which is what
would be needed to make the scroll view snap to a page not adjacent to the page we
started on.

Sometimes, indeed, the paging scroll view will be slightly larger than the window in its
scrollable dimension. This allows each page’s content to fill the scroll view while also
providing gaps between the pages, visible when the user starts to scroll. The user is still
able to move from page to page, because it is still readily possible to drag more than half
a new page into view (and the scroll view will then snap the rest of the way when the
user raises the dragging finger).

When the user raises the dragging finger, the scroll view’s action in adjusting its content
is considered to be decelerating, and the scroll view’s delegate (discussed in more detail

Scrolling | 371

www.it-ebooks.info

http://www.it-ebooks.info/

later in this chapter) will receive scrollViewWillBeginDecelerating:, followed by
scrollViewDidEndDecelerating: when the scroll view’s content has stopped moving
and a full page is showing. I do not believe it is possible for the scroll view not to emit
these messages after a drag in a paging scroll view. Thus they can be used to detect
efficiently that the page may have changed.

You can take advantage of this, for example, to coordinate a paging scroll view with a
UIPageControl (Chapter 12). In this example, a page control (pager) is updated when‐
ever the user causes a horizontally scrollable scroll view (sv) to display a different page:

-(void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
 CGFloat x = self.sv.contentOffset.x;
 CGFloat w = self.sv.bounds.size.width;
 self.pager.currentPage = x/w;
}

Conversely, we can scroll the scroll view to a new page manually when the user taps the
page control; in this case we have to calculate the page boundaries ourselves:

- (IBAction) userDidPage: (id) sender {
 NSInteger p = self.pager.currentPage;
 CGFloat w = self.sv.bounds.size.width;
 [self.sv setContentOffset:CGPointMake(p*w,0) animated:YES];
}

A useful interface is a paging scroll view where you supply pages dynamically as the
user scrolls. In this way, you can display a huge number of pages without having to put
them all into the scroll view at once. A scrolling UIPageViewController (Chapter 6)
provides exactly that interface. Its UIPageViewControllerOptionInterPageSpacing-
Key even provides the gap between pages that I mentioned earlier. Prior to iOS 5, before
UIPageViewController was introduced, I was using a paging scroll view that did the
same thing. If you’re curious about the technique I was using, watch the Advanced Scroll
View Techniques video from WWDC 2011, which describes something very similar,
calling it “infinite scrolling.”

A compromise between a UIPageViewController and a completely preconfigured pag‐
ing scroll view is a scroll view whose contentSize can accommodate all pages, but whose
actual pages are supplied lazily. The only pages that have to be present at all times are
the page visible to the user and the two pages adjacent to it on either side (so that there
is no delay in displaying a new page’s content when the user starts to scroll). This ap‐
proach is exemplified by Apple’s PageControl sample code.

There are times when a scroll view, even one requiring a good deal of dynamic config‐
uration, is better than a scrolling UIPageViewController, because the scroll view pro‐
vides full information to its delegate about the user’s scrolling activity (as described later
in this chapter). For example, if you wanted to respond to the user’s dragging one area of
the interface by programmatically scrolling another area of the interface in a coordinated

372 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

fashion, you might want what the user is dragging to be a scroll view, because it tells you
what the user is up to at every moment.

Tiling
Suppose we have some finite but really big content that we want to display in a scroll
view, such as a very large image that the user can inspect, piecemeal, by scrolling. To
hold the entire image in memory may be onerous or impossible.

Tiling is one solution to this kind of problem. It takes advantage of the insight that there’s
really no need to hold the entire image in memory; all we need at any given moment is
the part of the image visible to the user right now. Mentally, divide the content rectangle
into a matrix of rectangles; these rectangles are the tiles. In reality, divide the huge image
into corresponding rectangles. Then whenever the user scrolls, we look to see whether
part of any empty tile has become visible, and if so, we supply its content. At the same
time, we can release the content of all tiles that are completely offscreen. Thus, at any
given moment, only the tiles that are showing have content. There is some latency as‐
sociated with this approach (the user scrolls, then any empty newly visible tiles are filled
in), but we will have to live with that.

There is actually a built-in CALayer subclass for helping us implement tiling —
CATiledLayer. Its tileSize property sets the dimensions of a tile. Its drawLayer:in-
Context: is called when content for an empty tile is needed; calling CGContextGetClip-
BoundingBox on the context reveals the location of the desired tile, and now we can
supply that tile’s content.

The usual approach is to implement drawRect: in a UIView that hosts the CATiledLayer.
Here, the CATiledLayer is the view’s underlying layer; therefore the view is the CATiled‐
Layer’s delegate. This means that when the CATiledLayer’s drawLayer:inContext: is
called, the host view’s drawRect: is called, and the drawRect: parameter is the same as
the result of calling CGContextGetClipBoundingBox — namely, it’s the rect of the tile
we are to draw.

The tileSize may need to be adjusted for the screen resolution. On a double-resolution
device, the CATiledLayer’s contentsScale will be doubled, and the tiles will be half the
size that we ask for. If that isn’t acceptable, we can double the tileSize dimensions.

To illustrate, we’ll use some tiles already created for us as part of Apple’s own Photo‐
Scroller sample code. In particular, I’ll use a few of the “CuriousFrog_500” images. These
all have names of the form CuriousFrog_500_x_y.png, where x and y are integers cor‐
responding to the picture’s position within the matrix. The images are 256×256 pixels,
except for the ones on the extreme right and bottom edges of the matrix, which are
shorter in one dimension, but I won’t be using those in this example; I’ve selected a
square matrix of 9 square images.

Scrolling | 373

www.it-ebooks.info

http://www.it-ebooks.info/

We will give our scroll view (sv) one subview, a TiledView, a UIView subclass that exists
purely to give our CATiledLayer a place to live. TILESIZE is defined as 256, to match
the image dimensions:

-(void)viewDidLoad {
 CGRect f = CGRectMake(0,0,3*TILESIZE,3*TILESIZE);
 TiledView* content = [[TiledView alloc] initWithFrame:f];
 float tsz = TILESIZE * content.layer.contentsScale;
 [(CATiledLayer*)content.layer setTileSize: CGSizeMake(tsz, tsz)];
 [self.sv addSubview:content];
 [self.sv setContentSize: f.size];
}

Here’s the code for TiledView. As Apple’s sample code points out, we must fetch images
with imageWithContentsOfFile: in order to avoid the automatic caching behavior of
imageNamed: — after all, we’re going to all this trouble exactly to avoid using more
memory than we have to:

+ (Class) layerClass {
 return [CATiledLayer class];
}
-(void)drawRect:(CGRect)r {
 CGRect tile = r;
 int x = tile.origin.x/TILESIZE;
 int y = tile.origin.y/TILESIZE;
 NSString *tileName =
 [NSString stringWithFormat:@"CuriousFrog_500_%d_%d", x+3, y];
 NSString *path =
 [[NSBundle mainBundle] pathForResource:tileName ofType:@"png"];
 UIImage *image = [UIImage imageWithContentsOfFile:path];
 [image drawAtPoint:CGPointMake(x*TILESIZE,y*TILESIZE)];
}

There is no special call for invalidating an offscreen tile. You can call setNeeds-
Display or setNeedsDisplayInRect: on the TiledView, but this doesn’t erase offscreen
tiles. You’re just supposed to trust that the CATiledLayer will eventually clear offscreen
tiles if needed to conserve memory.

There’s an iOS 7 bug that causes a CATiledLayer to unload previous‐
ly loaded tiles when there’s a low memory situation, and then when
the user scrolls, no drawRect: is sent and the tiles are not reloaded.
This results in a partially blank CATiledLayer, and makes CATiled‐
Layer somewhat useless until the bug is fixed.

CATiledLayer has a class method fadeDuration that dictates the duration of the ani‐
mation that fades a new tile into view. You can create a CATiledLayer subclass and
override this method to return a value different from the default (0.25), but this is

374 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

probably not worth doing, as the default value is a good one. Returning a smaller value
won’t make tiles appear faster; it just replaces the nice fade-in with an annoying flash.

Zooming
To implement zooming of a scroll view’s content, you set the scroll view’s minimumZoom-
Scale and maximumZoomScale so that at least one of them isn’t 1 (the default). You also
implement viewForZoomingInScrollView: in the scroll view’s delegate to tell the scroll
view which of its subviews is to be the scalable view. The scroll view then zooms by
applying a scale transform (Chapter 1) to this subview. The amount of that transform
is the scroll view’s zoomScale property. Typically, you’ll want the scroll view’s entire
content to be scalable, so you’ll have one direct subview of the scroll view that acts as
the scalable view, and anything else inside the scroll view will be a subview of the scalable
view, so as to be scaled together with it. This is another reason for arranging your scroll
view’s subviews inside a single content view, as I suggested earlier.

To illustrate, we can start with any of the four content view–based versions of our scroll
view containing 30 labels. I called the content view v. Now we add these lines:

v.tag = 999;
sv.minimumZoomScale = 1.0;
sv.maximumZoomScale = 2.0;
sv.delegate = self;

We have assigned a tag to the view that is to be scaled, so that we can refer to it later. We
have set the scale limits for the scroll view. And we have made ourselves the scroll view’s
delegate. Now all we have to do is implement viewForZoomingInScrollView: to return
the scalable view:

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView {
 return [scrollView viewWithTag:999];
}

One more thing from those examples needs fixing. Earlier, I gave the content view and
the contentSize a zero width; that was sufficient to prevent the scroll view from scroll‐
ing horizontally, which was all that mattered. However, these widths now also affect how
the content behaves as the user zooms it. This particular example, I think, looks good
while zooming if the content view width is a bit wider than the widest label. (Imple‐
menting that is left as an exercise for the reader.)

The scroll view now responds to pinch gestures by scaling appropriately! The user can
actually scale considerably beyond the limits we set in both directions; in that case, when
the gesture ends, the scale snaps back to the limit value. If we wish to confine scaling
strictly to our defined limits, we can set the scroll view’s bouncesZoom to NO; when the
user reaches a limit, scaling will simply stop.

Zooming | 375

www.it-ebooks.info

http://www.it-ebooks.info/

The actual amount of zoom is reflected as the scroll view’s current zoomScale. If a scroll
view participates in state restoration, its zoomScale is saved and restored, so when the
app is relaunched, the scroll view will reappear zoomed by the same amount as before.

The scroll view zooms by applying a scale transform to the scalable
view; therefore the frame of the scalable view is scaled as well. More‐
over, the scroll view is concerned to make scrolling continue to work
correctly: the limits as the user scrolls should continue to match the
limits of the content, and commands like scrollRectTo-

Visible:animated: should continue to work the same way for the
same values. Therefore, the scroll view automatically scales its own
contentSize to match the current zoomScale.

If the minimumZoomScale is less than 1, then when the scalable view becomes smaller
than the scroll view, it is pinned to the scroll view’s top left. If you don’t like this, you
can change it by subclassing UIScrollView and overriding layoutSubviews, or by im‐
plementing the scroll view delegate method scrollViewDidZoom:. Here’s a simple ex‐
ample (drawn from a WWDC 2010 video) demonstrating an override of layout-
Subviews that keeps the scalable view centered in either dimension whenever it is
smaller than the scroll view in that dimension:

-(void)layoutSubviews {
 [super layoutSubviews];
 UIView* v = [self.delegate viewForZoomingInScrollView:self];
 CGFloat svw = self.bounds.size.width;
 CGFloat svh = self.bounds.size.height;
 CGFloat vw = v.frame.size.width;
 CGFloat vh = v.frame.size.height;
 CGRect f = v.frame;
 if (vw < svw)
 f.origin.x = (svw - vw) / 2.0;
 else
 f.origin.x = 0;
 if (vh < svh)
 f.origin.y = (svh - vh) / 2.0;
 else
 f.origin.y = 0;
 v.frame = f;
}

Zooming Programmatically
To zoom programmatically, you have two choices:

376 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

setZoomScale:animated:

Zooms in terms of scale value. The contentOffset is automatically adjusted to keep
the current center centered and the content occupying the entire scroll view.

zoomToRect:animated:

Zooms so that the given rectangle of the content occupies as much as possible of
the scroll view’s bounds. The contentOffset is automatically adjusted to keep the
content occupying the entire scroll view.

In this example, I implement double tapping as a zoom gesture. In my action handler
for the double-tap UITapGestureRecognizer attached to the scalable view, a double tap
means to zoom to maximum scale, minimum scale, or actual size, depending on the
current scale value:

- (void) tapped: (UIGestureRecognizer*) tap {
 UIView* v = tap.view;
 UIScrollView* sv = (UIScrollView*)v.superview;
 if (sv.zoomScale < 1)
 [sv setZoomScale:1 animated:YES];
 else if (sv.zoomScale < sv.maximumZoomScale)
 [sv setZoomScale:sv.maximumZoomScale animated:YES];
 else
 [sv setZoomScale:sv.minimumZoomScale animated:YES];
}

Zooming with Detail
By default, when a scroll view zooms, it merely applies a scale transform to the scaled
view. The scaled view’s drawing is cached beforehand into its layer, so when we zoom
in, the bits of the resulting bitmap are drawn larger. This means that a zoomed-in scroll
view’s content may be fuzzy (pixellated). In some cases this might be acceptable, but in
others you might like the content to be redrawn more sharply at its new size.

(On a double-resolution device, this might not be such an issue. For example, if the user
is allowed to zoom only up to double scale, you can draw at double scale right from the
start; the results will look good at single scale, because the screen has double resolution,
as well as at double scale, because that’s the scale you drew at.)

One solution is to take advantage of a CATiledLayer feature that I didn’t mention earlier.
It turns out that CATiledLayer is aware not only of scrolling but also of scaling: you can
configure it to ask for tiles to be drawn when the layer is scaled to a new order of
magnitude. When your drawing routine is called, the graphics context itself has already
been scaled appropriately by a transform.

In the case of an image into which the user is to be permitted to zoom deeply, you would
be forearmed with multiple tile sets constituting the image, each set having double the

Zooming | 377

www.it-ebooks.info

http://www.it-ebooks.info/

tile size of the previous set (as in Apple’s PhotoScroller example). In other cases, you
may not need tiles at all; you’ll just draw again, at the new resolution.

Besides its tileSize, you’ll need to set two additional CATiledLayer properties:
levelsOfDetail

The number of different resolutions at which you want to redraw, where each level
has twice the resolution of the previous level. So, for example, with two levels of
detail we can ask to redraw when zooming to double size (2x) and when zooming
back to single size (1x).

levelsOfDetailBias

The number of levels of detail that are larger than single size (1x). For example, if
levelsOfDetail is 2, then if we want to redraw when zooming to 2x and when
zooming back to 1x, the levelsOfDetailBias is 1, because one of those levels is
larger than 1x; if we were to leave levelsOfDetailBias at 0 (the default), we would
be saying we want to redraw when zooming to 0.5x and back to 1x — we have two
levels of detail but neither is larger than 1x, so one must be smaller than 1x.

The CATiledLayer will ask for a redraw at a higher resolution as soon as the view’s size
becomes larger than the previous resolution. In other words, if there are two levels of
detail with a bias of 1, the layer will be redrawn at 2x as soon as it is zoomed even a little
bit larger than 1x. This is an excellent approach, because although a level of detail would
look blurry if scaled up, it looks pretty good scaled down.

For example, let’s say I have a TiledView that hosts a CATiledLayer, in which I intend
to draw an image. I haven’t broken the image into tiles, because the maximum size at
which the user can view it isn’t prohibitively large; the original image is 838×958, and
can be held in memory easily. Rather, I’m using a CATiledLayer in order to take ad‐
vantage of its ability to change resolutions automatically. The image will be displayed
initially at 208×238, and if the user never zooms in to view it larger, we can save memory
by drawing a quarter-size version of the image.

The CATiledLayer is configured as follows:

CGFloat scale = lay.contentsScale;
lay.tileSize = CGSizeMake(208*scale,238*scale);
lay.levelsOfDetail = 3;
lay.levelsOfDetailBias = 2;

The tileSize has been adjusted for screen resolution, so the result is as follows:

• As originally displayed at 208×238, there is one tile and we can draw our image at
quarter size.

• If the user zooms in, to show the image larger than its originally displayed size,
there will be 4 tiles and we can draw our image at half size.

378 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

• If the user zooms in still further, to show the image larger than double its originally
displayed size (416×476), there will be 16 tiles and we can draw our image at full
size, which will continue to look good as the user zooms all the way in to the full
size of the original image.

We do not, however, need to draw each tile individually. Each time we’re called upon to
draw a tile, we’ll draw the entire image into the TiledView’s bounds; whatever falls out‐
side the requested tile will be clipped out and won’t be drawn.

Here’s my TiledView’s drawRect: implementation. I have a UIImage property current-
Image, initialized to nil, and an NSValue property currentSize, initialized to an NSVal‐
ue wrapping CGSizeZero. Each time drawRect: is called, I compare the tile size (the
incoming rect parameter’s size) to currentSize. If it’s different, I know that we’ve
changed by one level of detail and we need a new version of currentImage, so I create
the new version of currentImage at a scale appropriate to this level of detail. Finally, I
draw currentImage into the TiledView’s bounds:

- (void)drawRect:(CGRect)rect {
 CGSize oldSize = self.currentSize.CGSizeValue;
 if (!CGSizeEqualToSize(oldSize, rect.size)) {
 // make a new current size
 self.currentSize = [NSValue valueWithCGSize:rect.size];
 // make a new current image
 CATiledLayer* lay = (CATiledLayer*) self.layer;
 CGAffineTransform tr =
 CGContextGetCTM(UIGraphicsGetCurrentContext());
 CGFloat sc = tr.a/lay.contentsScale; // tr.a is our scale transform
 CGFloat scale = sc/4.0;
 NSString* path =
 [[NSBundle mainBundle]
 pathForResource:@"earthFromSaturn" ofType:@"png"];
 UIImage* im = [[UIImage alloc] initWithContentsOfFile:path];
 CGSize sz =
 CGSizeMake(im.size.width * scale, im.size.height * scale);
 UIGraphicsBeginImageContextWithOptions(sz, YES, 1);
 [im drawInRect:CGRectMake(0,0,sz.width,sz.height)];
 self.currentImage = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 }
 [self.currentImage drawInRect:self.bounds];
}

An alternative and much simpler approach (from a WWDC 2011 video) is to make
yourself the scroll view’s delegate so that you get an event when the zoom ends, and then
change the scalable view’s contentScaleFactor to match the current zoom scale, com‐
pensating for the double-resolution screen at the same time:

Zooming | 379

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)scrollViewDidEndZooming:(UIScrollView *)scrollView
 withView:(UIView *)view
 atScale:(float)scale {
 view.contentScaleFactor = scale * [UIScreen mainScreen].scale;
}

In response, the scalable view’s drawRect: will be called, and its rect parameter will be
the CGRect to draw into. Thus, the view may appear fuzzy for a while as the user zooms
in, but when the user stops zooming, the view is redrawn sharply.

That approach comes with a caveat, however: you mustn’t overdo it. If the zoom scale,
screen resolution, and scalable view size are high, you will be asking for a very large
graphics context to be maintained in memory, which could cause your app to run low
on memory or even to be abruptly terminated by the system.

For more about displaying a large image in a zoomable scroll view, see Apple’s Large
Image Downsizing example.

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol) receives lots
of messages that can help you track, in great detail, exactly what the scroll view is up to:
scrollViewDidScroll:

If you scroll in code without animation, you will receive this message once after‐
ward. If the user drags or flicks, or uses the scroll-to-top feature, or if you scroll in
code with animation, you will receive this message repeatedly throughout the scroll,
including during the time the scroll view is decelerating after the user’s finger has
lifted; there are other delegate messages that tell you, in those cases, when the scroll
has finally ended.

scrollViewDidEndScrollingAnimation:

If you scroll in code with animation, you will receive this message afterward, when
the animation ends.

scrollViewWillBeginDragging:
scrollViewWillEndDragging:withVelocity:targetContentOffset:
scrollViewDidEndDragging:willDecelerate:

If the user scrolls by dragging or flicking, you will receive these messages at the start
and end of the user’s finger movement. If the user brings the scroll view to a stop
before lifting the finger, willDecelerate is NO and the scroll is over. If the user
lets go of the scroll view while the finger is moving, or when paging is turned on,
willDecelerate is YES and we proceed to the delegate messages reporting decel‐
eration.

The purpose of scrollViewWillEndDragging:... is to let you customize the out‐
come of the content’s deceleration. The third argument is a pointer to a CGPoint;

380 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

you can use it to set a different CGPoint, specifying the contentOffset value the
scroll view should have when the deceleration is over.

scrollViewWillBeginDecelerating:
scrollViewDidEndDecelerating:

Sent once each after scrollViewDidEndDragging:willDecelerate: arrives with a
value of YES. When scrollViewDidEndDecelerating: arrives, the scroll is over.

scrollViewShouldScrollToTop:
scrollViewDidScrollToTop:

These have to do with the feature where the user can tap the status bar to scroll the
scroll view’s content to its top. You won’t get either of them if scrollsToTop is NO,
because the scroll-to-top feature is turned off in that case. The first lets you prevent
the user from scrolling to the top on this occasion even if scrollsToTop is YES.
The second tells you that the user has employed this feature and the scroll is over.

In addition, the scroll view has read-only properties reporting its state:
tracking

The user has touched the scroll view, but the scroll view hasn’t decided whether this
is a scroll or some kind of tap.

dragging

The user is dragging to scroll.

decelerating

The user has scrolled and has lifted the finger, and the scroll is continuing.

So, if you wanted to do something after a scroll ends completely regardless of how the
scroll was performed, you’d need to implement multiple delegate methods:

• scrollViewDidEndDragging:willDecelerate: in case the user drags and stops
(willDecelerate is NO).

• scrollViewDidEndDecelerating: in case the user drags and the scroll continues
afterward.

• scrollViewDidScrollToTop: in case the user uses the scroll-to-top feature.
• scrollViewDidEndScrollingAnimation: in case you scroll with animation.

(You don’t need a delegate method to tell you when the scroll is over after you scroll in
code without animation: it’s over immediately, so if you have work to do after the scroll
ends, you can do it in the next line of code.)

There are also three delegate messages that report zooming:

Scroll View Delegate | 381

www.it-ebooks.info

http://www.it-ebooks.info/

scrollViewWillBeginZooming:withView:

If the user zooms or you zoom in code, you will receive this message as the zoom
begins.

scrollViewDidZoom:

If you zoom in code, even with animation, you will receive this message once. If the
user zooms, you will receive this message repeatedly as the zoom proceeds. (You
will probably also receive scrollViewDidScroll:, possibly many times, as the
zoom proceeds.)

scrollViewDidEndZooming:withView:atScale:

If the user zooms or you zoom in code, you will receive this message after the last
scrollViewDidZoom:.

In addition, the scroll view has read-only properties reporting its state during a zoom:
zooming

The scroll view is zooming. It is possible for dragging to be true at the same time.

zoomBouncing

The scroll view is returning automatically from having been zoomed outside its
minimum or maximum limit. As far as I can tell, you’ll get only one scrollView-
DidZoom: while the scroll view is in this state.

Scroll View Touches
Improvements in UIScrollView’s internal implementation have eliminated most of the
worry once associated with scroll view touches. A scroll view will interpret a drag or a
pinch as a command to scroll or zoom, and any other gesture will fall through to the
subviews; thus buttons and similar interface objects inside a scroll view work just fine.

You can even put a scroll view inside a scroll view, and this can be quite a useful thing
to do, in contexts where you might not think of it at first. Apple’s PhotoScroller example,
based on principles discussed in a delightful WWDC 2010 video, is an app where a
single photo fills the screen: you can page-scroll from one photo to the next, and you
can zoom into the current photo with a pinch gesture. This is implemented as a scroll
view inside a scroll view: the outer scroll view is for paging between images, and the
inner scroll view contains the current image and is for zooming (and for scrolling to
different parts of the zoomed-in image).

A WWDC 2013 video discusses the iOS 7 lock screen in terms of scroll views. The lock
screen itself is a horizontal paging scroll view; you scroll rightward to see the other page,
containing the passcode screen or the springboard. Notifications in the lock screen are
listed in a vertical scroll view, and the individual notifications are themselves horizontal
scroll views.

382 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

Gesture recognizers (Chapter 5) have also greatly simplified the task of adding custom
gestures to a scroll view. For instance, some older code in Apple’s documentation,
showing how to implement a double tap to zoom in and a two-finger tap to zoom out,
uses old-fashioned touch handling, but this is no longer necessary. Simply attach to your
scroll view’s scalable subview any gesture recognizers for these sorts of gesture, and they
will mediate automatically among the possibilities.

In the past, making something inside a scroll view draggable required setting the scroll
view’s canCancelContentTouches property to NO. (The reason for the name is that the
scroll view, when it realizes that a gesture is a drag or pinch gesture, normally sends
touchesCancelled:forEvent: to a subview tracking touches, so that the scroll view
and not the subview will be affected.) However, unless you’re implementing old-
fashioned direct touch handling, you probably won’t have to concern yourself with this.
Regardless of how canCancelContentTouches is set, a draggable control, such as a UI‐
Slider, remains draggable inside a scroll view.

Here’s an example of a draggable object inside a scroll view implemented through a
gesture recognizer. Suppose we have an image of a map, larger than the screen, and we
want the user to be able to scroll it in the normal way to see any part of the map, but we
also want the user to be able to drag a flag into a new location on the map. We’ll put the
map image in an image view and wrap the image view in a scroll view, with the scroll
view’s contentSize the same as the map image view’s size. The flag is a small image
view; it’s another subview of the scroll view, and it has a UIPanGestureRecognizer. The
gesture recognizer’s action handler allows the flag to be dragged, as described in Chap‐
ter 5:

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = v.center;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
 [p setTranslation: CGPointZero inView: v.superview];
 }
}

The user can now drag the map or the flag (Figure 7-2). Dragging the map brings the
flag along with it, but dragging the flag doesn’t move the map. The state of the scroll
view’s canCancelContentTouches is irrelevant, because the flag view isn’t tracking the
touches manually.

An interesting addition to that example would be to implement autoscrolling, meaning
that the scroll view scrolls itself when the user drags the flag close to its edge. This, too,
is greatly simplified by gesture recognizers; in fact, we can add autoscrolling code di‐
rectly to the dragging: action handler:

Scroll View Touches | 383

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-2. A scrollable map with a draggable flag

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = v.center;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
 [p setTranslation: CGPointZero inView: v.superview];
 }
 // autoscroll
 if (p.state == UIGestureRecognizerStateChanged) {
 UIScrollView* sv = self.sv;
 CGPoint loc = [p locationInView: sv];
 CGRect f = sv.bounds;
 CGPoint off = sv.contentOffset;
 CGSize sz = sv.contentSize;
 CGPoint c = v.center;
 // to the right
 if (loc.x > CGRectGetMaxX(f) - 30) {
 CGFloat margin = sz.width - CGRectGetMaxX(sv.bounds);
 if (margin > 6) {
 off.x += 5;
 sv.contentOffset = off;
 c.x += 5;
 v.center = c;

384 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

 [self keepDragging:p];
 }
 }
 // to the left
 if (loc.x < f.origin.x + 30) {
 CGFloat margin = off.x;
 if (margin > 6) {
 // ... omitted ...
 }
 }
 // to the bottom
 if (loc.y > CGRectGetMaxY(f) - 30) {
 CGFloat margin = sz.height - CGRectGetMaxY(sv.bounds);
 if (margin > 6) {
 // ... omitted ...
 }
 }
 // to the top
 if (loc.y < f.origin.y + 30) {
 CGFloat margin = off.y;
 if (margin > 6) {
 // ... omitted ...
 }
 }
 }
}
- (void) keepDragging: (UIPanGestureRecognizer*) p {
 float delay = 0.1;
 dispatch_time_t popTime =
 dispatch_time(DISPATCH_TIME_NOW, delay * NSEC_PER_SEC);
 dispatch_after(popTime, dispatch_get_main_queue(), ^{
 [self dragging: p];
 });
}

The delay in keepDragging:, combined with the change in offset, determines the speed
of autoscrolling. The material marked as omitted in the second, third, and fourth cases
is obviously parallel to the first case, and is left as an exercise for the reader.

A scroll view’s touch handling is itself based on gesture recognizers attached to the scroll
view, and these are available to your code through the scroll view’s panGesture-
Recognizer and pinchGestureRecognizer properties. This means that if you want to
customize a scroll view’s touch handling, it’s easy to add more gesture recognizers and
have them interact with those already attached to the scroll view.

To illustrate, I’ll build on the previous example. Suppose we want the flag to start out
offscreen, and we’d like the user to be able to summon it with a rightward swipe. We
can attach a UISwipeGestureRecognizer to our scroll view, but it will never recognize
its gesture because the scroll view’s own pan gesture recognizer will recognize first. But

Scroll View Touches | 385

www.it-ebooks.info

http://www.it-ebooks.info/

we have access to the scroll view’s pan gesture recognizer, so we can compel it to yield
to our swipe gesture recognizer by sending it requireGestureRecognizerToFail::

[self.sv.panGestureRecognizer requireGestureRecognizerToFail:self.swipe];

The UISwipeGestureRecognizer will recognize a rightward swipe. In my implementa‐
tion of its action handler, we position the flag, which has been waiting invisibly offscreen,
just off to the top left of the scroll view’s visible content, and animate it onto the screen:

- (IBAction) swiped: (UISwipeGestureRecognizer*) g {
 UIScrollView* sv = self.sv;
 CGPoint p = sv.contentOffset;
 CGRect f = self.flag.frame;
 f.origin = p;
 f.origin.x -= self.flag.bounds.size.width;
 self.flag.frame = f;
 self.flag.hidden = NO;
 [UIView animateWithDuration:0.25 animations:^{
 CGRect f = self.flag.frame;
 f.origin.x = p.x;
 self.flag.frame = f;
 // thanks for the flag, now stop operating altogether
 g.enabled = NO;
 }];
}

Floating Scroll View Subviews
A scroll view’s subview will appear to “float” over the scroll view if it remains stationary
while the rest of the scroll view’s content is being scrolled.

Before autolayout, this sort of thing was rather tricky to arrange; you had to use a delegate
event to respond to every change in the scroll view’s bounds origin by shifting the
“floating” view’s position to compensate, so as to appear to remain fixed.

With autolayout, however, all you have to do is set up constraints pinning the subview
to something outside the scroll view. Here’s an example:

UIImageView* iv = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"smiley.png"]];
iv.translatesAutoresizingMaskIntoConstraints = NO;
[sv addSubview:iv];
UIView* sup = sv.superview;
[sup addConstraint:
 [NSLayoutConstraint
 constraintWithItem:iv attribute:NSLayoutAttributeRight
 relatedBy:0
 toItem:sup attribute:NSLayoutAttributeRight
 multiplier:1 constant:-5]];
[sup addConstraint:
 [NSLayoutConstraint

386 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

 constraintWithItem:iv attribute:NSLayoutAttributeTop
 relatedBy:0
 toItem:sup attribute:NSLayoutAttributeTop
 multiplier:1 constant:30]];

Scroll View Performance
At several points in earlier chapters I’ve mentioned performance problems and ways to
increase drawing efficiency. Nowhere are you so likely to need these as in connection
with a scroll view. As a scroll view scrolls, views must be drawn very rapidly as they
appear on the screen. If the view-drawing system can’t keep up with the speed of the
scroll, the scrolling will visibly stutter.

Performance testing and optimization is a big subject, so I can’t tell you exactly what to
do if you encounter stuttering while scrolling. But certain general suggestions (mostly
extracted from a really great WWDC 2010 video) should come in handy:

• Everything that can be opaque should be opaque: don’t force the drawing system
to composite transparency, and remember to tell it that an opaque view or layer is
opaque by setting its opaque property to YES. If you really must composite trans‐
parency, keep the size of the nonopaque regions to a minimum; for example, if a
large layer is transparent at its edges, break it into five layers — the large central
layer, which is opaque, and the four edges, which are not.

• If you’re drawing shadows, don’t make the drawing system calculate the shadow
shape for a layer: supply a shadowPath, or use Core Graphics to create the shadow
with a drawing. Similarly, avoid making the drawing system composite the shadow
as a transparency against another layer; for example, if the background layer is
white, your opaque drawing can itself include a shadow already drawn on a white
background.

• Don’t make the drawing system scale images for you; supply the images at the target
size for the correct resolution.

• In a pinch, you can just eliminate massive swatches of the rendering operation by
setting a layer’s shouldRasterize to YES. You could, for example, do this when
scrolling starts and then set it back to NO when scrolling ends.

Apple’s documentation also says that setting a view’s clearsContextBeforeDrawing to
NO may make a difference. I can’t confirm or deny this; it may be true, but I haven’t
encountered a case that positively proves it.

Xcode provides tools that will help you detect inefficiencies in the drawing system. In
the Simulator, the Debug menu shows you blended layers (where transparency is being
composited) and images that are being copied, misaligned, or rendered offscreen. On
the device, the Core Animation module of Instruments provides the same functionality,

Scroll View Performance | 387

www.it-ebooks.info

http://www.it-ebooks.info/

plus it tracks the frame rate for you, allowing you to scroll and measure performance
objectively where it really counts.

388 | Chapter 7: Scroll Views

www.it-ebooks.info

http://www.it-ebooks.info/

I’m gonna ask you the three big questions. — Go
ahead. — Who made you? — You did. — Who

owns the biggest piece of you? — You do. — What
would happen if I dropped you? — I’d go right

down the drain.
—Dialogue by Garson Kanin and Ruth Gordon,

Pat and Mike

CHAPTER 8

Table Views and Collection Views

A table view (UITableView) is a vertically scrolling UIScrollView (Chapter 7) containing
a single column of rectangular cells (UITableViewCell, a UIView subclass). It is a key‐
stone of Apple’s strategy for making the small iPhone screen useful and powerful, and
has three main purposes:
Presentation of information

The cells typically contain text, which the user can read. The cells are usually quite
small, in order to maximize the quantity appearing on the screen at once, so this
text is often condensed, truncated, or simplified.

Selection
A table view can provide the user with a column of choices. The user chooses by
tapping a cell, which selects the cell; the app responds appropriately to that choice.

Navigation
The appropriate response to the user’s choosing a cell is often navigation to another
interface. This might be done, for example, through a presented view controller or
a navigation interface (Chapter 6). An extremely common configuration is a mas‐
ter–detail interface, where the master view is a table view within a navigation in‐
terface: the user taps a table view cell to navigate to the details about that cell. This
is one reason why truncation of text in a table view cell is acceptable: the detail view
contains the full information.

389

www.it-ebooks.info

http://www.it-ebooks.info/

In addition to its column of cells, a table view can be extended by a number of other
features that make it even more useful and flexible:

• A table can display a header view at the top and a footer view at the bottom.
• The cells can be clumped into sections. Each section can have a header and footer,

and these remain visible as long as the section itself occupies the screen, giving the
user a clue as to where we are within the table. Moreover, a section index can be
provided, in the form of an overlay column of abbreviated section titles, which the
user can tap or drag to jump to the start of a section, thus making a long table
tractable.

• A table can have a grouped format. This is often used for presenting small numbers
of related cells.

• Tables can be editable: the user can be permitted to insert, delete, and reorder cells.

Figure 8-1 illustrates four variations of the table view:

• Apple’s Music app lists song titles and artists for a given album in truncated form
in a table view within a navigation interface which is itself within a tab bar interface;
tapping an album in a table of album titles summons the list of songs within that
album, and tapping a song in that list plays it.

• Apple’s Settings app uses table view cells in a grouped format with a header, within
a navigation interface, to display a switch and a list of Bluetooth devices; tapping a
device name searches for it, while tapping the detail (info) button navigates to reveal
more information about it.

• My Latin vocabulary app lists Latin words and their definitions in alphabetical
order, divided into sections by first letter, with section headers and a section index.

• Apple’s Music app allows a custom playlist to be edited, with interface for deleting
and rearranging cells.

Table view cells, too, can be extremely flexible. Some basic cell formats are provided,
such as a text label along with a small image view, but you are free to design your own
cell as you would any other view. There are also some standard interface items that are
commonly used in a cell, such as a checkmark to indicate selection or a right-pointing
chevron to indicate that tapping the cell navigates to a detail view.

It would be difficult to overestimate the importance of table views. An iOS app without
a table view somewhere in its interface would be a rare thing, especially on the small
iPhone screen. I’ve written apps consisting almost entirely of table views. Indeed, it is
not uncommon to use a table view even in situations that have nothing particularly
table-like about them, simply because it is so convenient.

390 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-1. Four table view variations

Figure 8-2. A grouped table view as an interface for choosing options

For example, in one of my apps I want the user to be able to choose between three levels
of difficulty and two sets of images. In a desktop application I’d probably use radio
buttons; but there are no radio buttons among the standard iOS interface objects. In‐
stead, I use a grouped table view so small that it doesn’t even scroll. This gives me section
headers, tappable cells, and a checkmark indicating the current choice (Figure 8-2).

There is a UIViewController subclass, UITableViewController, dedicated to the pre‐
sentation of a table view. You never really need to use a UITableViewController; it’s a
convenience, but it doesn’t do anything that you couldn’t do yourself by other means.
Here’s some of what using a UITableViewController gives you:

Table Views and Collection Views | 391

www.it-ebooks.info

http://www.it-ebooks.info/

• UITableViewController’s initWithStyle: creates the table view with a plain or
grouped format.

• The view controller is automatically made the table view’s delegate and data source,
unless you specify otherwise.

• The table view is made the view controller’s tableView. It is also, of course, the view
controller’s view, but the tableView property is typed as a UITableView, so you can
send table view messages to it without typecasting.

Table View Cells
Beginners may be surprised to learn that a table view’s structure and contents are gen‐
erally not configured in advance. Rather, you supply the table view with a data source
and a delegate (which will often be the same object), and the table view turns to these
in real time, as the app runs, whenever it needs a piece of information about its structure
and contents.

This architecture is part of a brilliant strategy to conserve resources. Imagine a long
table consisting of thousands of rows. It must appear, therefore, to consist of thousands
of cells as the user scrolls. But a cell is a UIView and is memory-intensive; to maintain
thousands of cells internally would put a terrible strain on memory. Therefore, the table
typically maintains only as many cells as are showing simultaneously at any one moment
(about ten, let’s say). As the user scrolls to reveal new cells, those cells are created on the
spot; meanwhile, the cells that have been scrolled out of view are permitted to die.

This sounds ingenious but a bit wasteful, and possibly time-consuming. Wouldn’t it be
even cleverer if, instead of letting a cell die as it is scrolled out of view, it were whisked
around to the other side and used again as one of the cells being scrolled into view? Yes,
and in fact that’s exactly what you’re supposed to do. You do it by assigning each cell a
reuse identifier.

As cells with a given reuse identifier are scrolled out of view, the table view maintains a
bunch of them in a pile. As cells are scrolled into view, you ask the table view for a cell
from that pile, specifying it by means of the reuse identifier. The table view hands an
old used cell back to you, and now you can configure it as the cell that is about to be
scrolled into view. Cells are thus reused to minimize not only the number of actual cells
in existence at any one moment, but the number of actual cells ever created. A table of
1000 rows might very well never need to create more than a dozen cells over the entire
lifetime of the app.

Your code must be prepared, on demand, to supply the table with pieces of requested
data. Of these, the most important is the cell to be slotted into a given position. A position
in the table is specified by means of an index path (NSIndexPath), a class used here to

392 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

combine a section number with a row number, and is often referred to simply as a row
of the table. Your data source object may at any moment be sent the message table-
View:cellForRowAtIndexPath:, and must respond by returning the UITableViewCell
to be displayed at that row of the table. And you must return it fast: the user is scrolling
now, so the table needs the next cell now.

In this section, I’ll discuss what you’re going to be supplying — the table view cell. After
that, I’ll talk about how you supply it.

Built-In Cell Styles
The simplest way to obtain a table view cell is to start with one of the four built-in table
view cell styles. To create a cell using a built-in style, call initWithStyle:reuse-
Identifier:. The reuseIdentifier: is what allows cells previously assigned to rows
that are no longer showing to be reused for cells that are; it will usually be the same for
all cells in a table. Your choices of cell style are:
UITableViewCellStyleDefault

The cell has a UILabel (its textLabel), with an optional UIImageView (its image-
View) at the left. If there is no image, the label occupies the entire width of the cell.

UITableViewCellStyleValue1

The cell has two UILabels (its textLabel and its detailTextLabel), side by side,
with an optional UIImageView (its imageView) at the left. The first label is left-
aligned; the second label is right-aligned. If the first label’s text is too long, the second
label won’t appear.

UITableViewCellStyleValue2

The cell has two UILabels (its textLabel and its detailTextLabel), side by side.
No UIImageView will appear. The first label is right-aligned; the second label is left-
aligned. The label sizes are fixed, and the text of either will be truncated if it’s too
long.

UITableViewCellStyleSubtitle

The cell has two UILabels (its textLabel and its detailTextLabel), one above the
other, with an optional UIImageView (its imageView) at the left.

To experiment with the built-in cell styles, do this:

1. Make a new iPhone project from the Empty Application project template.
2. Choose File → New → File and ask for a Cocoa Touch Objective-C class.
3. Make it a UITableViewController subclass called RootViewController. The XIB

checkbox should be checked; Xcode will create a .xib file containing a table view,
correctly hooked to our RootViewController class.

Table View Cells | 393

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-3. The world’s simplest table

4. Make sure you’re saving into the correct folder and group, and that the app target
is checked. Click Create.

To get our table view into the interface, import "RootViewController.h" into App‐
Delegate.m, and add this line to AppDelegate’s application:didFinishLaunchingWith-
Options: at the override point:

self.window.rootViewController = [RootViewController new];

Now modify the RootViewController class (which comes with a lot of templated code),
as in Example 8-1. Run the app to see the world’s simplest table (Figure 8-3).

Example 8-1. The world’s simplest table
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 20;
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell =
 [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 cell.textLabel.textColor = [UIColor redColor];
 }
 cell.textLabel.text =
 [NSString stringWithFormat:@"Hello there! %d", indexPath.row];
 return cell;
}

The key parts of the code are:

394 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Our table will have one section.
Our table will consist of 20 rows. Having multiple rows will give us a sense of
how our cell looks when placed next to other cells.
This is where you specify the built-in table view cell style you want to experiment
with.
At this point in the code you can modify characteristics of the cell (cell) that
are to be the same for every cell of the table. For the moment, I’ve symbolized
this by assuming that every cell’s text is to be the same color.
We now have the cell to be used for this row of the table, so at this point in the
code you can modify characteristics of the cell (cell) that are unique to this row.
I’ve symbolized this by appending successive numbers to the text of each row.
Of course, that’s completely unrealistic; but that’s just because we’re only
beginners. In real life the different cells would reflect meaningful data. I’ll talk
about that later in this chapter.

Now you can experiment with your cell’s appearance by tweaking the code and running
the app. Feel free to try different built-in cell styles in the place where we are now
specifying UITableViewCellStyleDefault.

The flexibility of each built-in style is based mostly on the flexibility of UILabels. Not
everything can be customized, because after you return the cell some further configu‐
ration takes place, which may override your settings. For example, the size and position
of the cell’s subviews are not up to you. (I’ll explain, a little later, how to get around that.)
But you get a remarkable degree of freedom. Here are a few basic UILabel properties
for you to play with now (by customizing cell.textLabel), and I’ll talk much more
about UILabels in Chapter 10:
text

The string shown in the label.

textColor, highlightedTextColor
The color of the text. The highlightedTextColor applies when the cell is high‐
lighted or selected (tap on a cell to select it).

In earlier versions of iOS, if you didn’t set the highlightedTextColor, the label
would choose its own variant of the textColor when the cell was highlighted or
selected. In iOS 7, that’s no longer the case; the textColor is used unless you set the
highlightedTextColor explicitly.

textAlignment

How the text is aligned; some possible choices are NSTextAlignmentLeft, NSText-
AlignmentCenter, and NSTextAlignmentRight.

Table View Cells | 395

www.it-ebooks.info

http://www.it-ebooks.info/

numberOfLines

The maximum number of lines of text to appear in the label. Text that is long but
permitted to wrap, or that contains explicit linefeed characters, can appear com‐
pletely in the label if the label is tall enough and the number of permitted lines is
sufficient. 0 means there’s no maximum.

font

The label’s font. You could reduce the font size as a way of fitting more text into the
label. A font name includes its style. For example:

cell.textLabel.font = [UIFont fontWithName:@"Helvetica-Bold" size:12.0];

shadowColor, shadowOffset
The text shadow. Adding a little shadow can increase clarity and emphasis for large
text.

You can also assign the image view (cell.imageView) an image. The frame of the image
view can’t be changed, but you can inset its apparent size by supplying a smaller image
and setting the image view’s contentMode to UIViewContentModeCenter. It’s probably
a good idea in any case, for performance reasons, to supply images at their drawn size
and resolution rather than making the drawing system scale them for you (see the last
section of Chapter 7). For example:

CGFloat side = 30;
UIImage* im = [UIImage imageNamed:@"smiley"];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(side,side), YES, 0);
[im drawInRect:CGRectMake(0,0,side,side)];
UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
cell.imageView.image = im2;
cell.imageView.contentMode = UIViewContentModeCenter;

The cell itself also has some properties you can play with:
accessoryType

A built-in type of accessory view, which appears at the cell’s right end. For example:

cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

accessoryView

Your own UIView, which appears at the cell’s right end (overriding the accessory-
Type). For example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeSystem];
[b setTitle:@"Tap Me" forState:UIControlStateNormal];
[b sizeToFit];
// ... also assign button a target and action ...
cell.accessoryView = b;

396 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a hierarchy among
cells. You can also set a cell’s indentation level in real time, with respect to the
table row into which it is slotted, by implementing the delegate’s table-
View:indentationLevelForRowAtIndexPath: method.

separatorInset

A new iOS 7 feature. Only the left and right insets matter. The default is a left inset
of 15, though if you don’t set it explicitly, the built-in table view cell styles may shift
it. This property affects both the drawing of the separator between cells and the
indentation of content of the built-in cell styles.

selectionStyle

How the background looks when the cell is selected. The default, new in iOS 7, is
solid gray (UITableViewCellSelectionStyleDefault), or you can choose UITable-
ViewCellSelectionStyleNone.

(The blue and gray gradient backgrounds designated by UITableViewCell-
SelectionStyleBlue and UITableViewCellSelectionStyleGray in iOS 6 and
before are now abandoned, and are treated as equivalent to UITableViewCell-
SelectionStyleDefault.)

backgroundColor
backgroundView
selectedBackgroundView

What’s behind everything else drawn in the cell. The selectedBackgroundView is
drawn in front of the backgroundView (if any) when the cell is selected, and will
appear instead of whatever the selectionStyle dictates. The backgroundColor is
behind the backgroundView. (Thus, if both the selectedBackgroundView and the
backgroundView have some transparency, both of them and the background-
Color can appear composited together when the cell is selected.)

There is no need to set the frame of the backgroundView and selectedBackground-
View; they will be resized automatically to fit the cell.

multipleSelectionBackgroundView

If defined (not nil), and if the table’s allowsMultipleSelection (or, if editing,
allowsMultipleSelectionDuringEditing) is YES, used instead of the selected-
BackgroundView when the cell is selected.

In this example, we set the cell’s backgroundView to display an image with some trans‐
parency at the outside edges, so that the backgroundColor shows behind it, and we set
the selectedBackgroundView to an almost transparent blue rectangle, to darken that
image when the cell is selected (Figure 8-4):

Table View Cells | 397

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-4. A cell with an image background

cell.textLabel.textColor = [UIColor whiteColor];
UIImageView* v = [UIImageView new]; // no need to set frame
v.contentMode = UIViewContentModeScaleToFill;
v.image = [UIImage imageNamed:@"linen.png"];
cell.backgroundView = v;
UIView* v2 = [UIView new]; // no need to set frame
v2.backgroundColor = [[UIColor blueColor] colorWithAlphaComponent:0.2];
cell.selectedBackgroundView = v2;
cell.backgroundColor = [UIColor redColor];

If those features are to be true of every cell ever displayed in the table, then that code
should go in the spot numbered 4 in Example 8-1; there’s no need to waste time doing
the same thing all over again when an existing cell is reused.

Finally, here are a few properties of the table view itself worth playing with:
rowHeight

The height of a cell. A taller cell may accommodate more information. You can also
change this value in the nib editor; the table view’s row height appears in the Size
inspector. The cell’s subviews have their autoresizing set so as to compensate cor‐
rectly. You can also set a cell’s height in real time by implementing the delegate’s
tableView:heightForRowAtIndexPath: method; thus a table’s cells may differ
from one another in height (more about that later in this chapter).

separatorStyle
separatorColor
separatorInset

These can also be set in the nib. The table’s separatorInset is adopted by individual
cells that don’t have their own explicit separatorInset. Separator styles are:

• UITableViewCellSeparatorStyleNone

• UITableViewCellSeparatorStyleSingleLine.

(The former UITableViewCellSeparatorStyleSingleLineEtched style is aban‐
doned in iOS 7, and equates to None.)

398 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

backgroundColor, backgroundView
What’s behind all the cells of the table; this may be seen if the cells have transparency,
or if the user scrolls the cells beyond their limit. The backgroundView is drawn on
top of the backgroundColor.

tableHeaderView, tableFooterView
Views to be shown before the first row and after the last row, respectively (as part
of the table’s scrolling content). Their background color is, by default, the back‐
ground color of the table, but you can change that. You dictate their heights; their
widths will be dynamically resized to fit the table. The user can, if you like, interact
with these views (and their subviews); for example, a view can be (or can contain)
a UIButton.

You can alter a table header or footer view dynamically during the lifetime of the
app; if you change its height, you must set the corresponding table view property
afresh to notify the table view of what has happened.

Registering a Cell Class
In tableView:cellForRowAtIndexPath:, there are actually two possible ways to obtain
a reusable cell:

• dequeueReusableCellWithIdentifier:

• dequeueReusableCellWithIdentifier:forIndexPath:

If you use the second method, which was introduced in iOS 6, you pass along as the
second argument the same indexPath: value that you already received. I prefer the
second method, and will use it from now on. It has three advantages:
The result is never nil

Unlike dequeueReusableCellWithIdentifier:, the value returned by dequeue-
ReusableCellWithIdentifier:forIndexPath: is never nil. If there is a free reus‐
able cell with the given identifier, it is returned. If there isn’t, a new one is created
for you. Step 3 of Example 8-1 can thus be eliminated.

The row height is known earlier
Unlike dequeueReusableCellWithIdentifier:, the cell returned by dequeue-
ReusableCellWithIdentifier:forIndexPath: has its final bounds. That’s possi‐
ble because you’ve passed the index path as an argument, so the runtime knows this
cell’s ultimate destination within the table, and has already consulted the table’s row-
Height or the delegate’s tableView:heightForRowAtIndexPath:. This makes lay‐
ing out the cell’s contents much easier.

Table View Cells | 399

www.it-ebooks.info

http://www.it-ebooks.info/

The identifier is consistent
A danger with dequeueReusableCellWithIdentifier: is that you may acciden‐
tally pass an incorrect reuse identifier, or nil, and end up not reusing cells. With
dequeueReusableCellWithIdentifier:forIndexPath:, that can’t happen.

Before you call dequeueReusableCellWithIdentifier:forIndexPath: for the first
time, you must register with the table itself. You do this by calling registerClass:for-
CellReuseIdentifier:. This associates a class (which must be UITableViewCell or a
subclass thereof) with a string identifier. That’s how dequeueReusableCellWith-
Identifier:forIndexPath: knows what class to instantiate when it creates a new cell
for you: you pass an identifier, and you’ve already told the table what class it signifies.
The only cell types you can obtain are those for which you’ve registered in this way; if
you pass a bad identifier, the app will crash (with a helpful log message).

This is a very elegant mechanism. It also raises some new questions:
When should I call registerClass:forCellReuseIdentifier:?

Call it early, before the table view starts generating cells. viewDidLoad is a good
place:

- (void)viewDidLoad {
 [super viewDidLoad];
 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"Cell"];
}

How do I specify a built-in table view cell style?
We are no longer calling initWithStyle:reuseIdentifier:, so where do we make
our choice of built-in cell style? The default cell style is UITableViewCellStyle-
Default, so if that’s what you wanted, the problem is solved. Otherwise, subclass
UITableViewCell and override initWithStyle:reuseIdentifier: to substitute
the cell style you’re after (passing along the reuse identifier you were handed).

For example, let’s call our UITableViewCell subclass MyCell. So we now specify [My-
Cell class] in our call to registerClass:forCellReuseIdentifier:. MyCell’s
initializer looks like this:

- (id)initWithStyle:(UITableViewCellStyle)style
 reuseIdentifier:(NSString *)reuseIdentifier {
 self = [super initWithStyle:UITableViewCellStyleSubtitle // or whatever
 reuseIdentifier:reuseIdentifier];
 if (self) {
 // ...
 }
 return self;
}

400 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

How do I know whether the returned cell is new or reused?
It’s important to know this, because there needs to be a way distinguish between
step 4 of Example 8-1 (configurations to apply once and for all to a new cell) and
step 5 (configurations that differ for each row). It’s up to you, when performing
one-time configuration on a cell, to give that cell some distinguishing mark that
you can look for later to determine whether a cell requires one-time configuration.

For example, if every cell is to have a green background, there is no point giving
every cell returned by dequeueReusableCellWithIdentifier:forIndexPath: a
green background; the reused cells already have one. Now, however, no cell is nil,
and we are never instantiating the cell ourselves. So how will we know which ones
need to be given a green background? It’s easy: they are the ones without a green
background:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 if (![cell.backgroundColor isEqual:[UIColor greenColor]]) {
 // do one-time configurations
 cell.textLabel.textColor = [UIColor redColor];
 cell.backgroundColor = [UIColor greenColor];
 }
 // do individual cell configurations
 cell.textLabel.text =
 [NSString stringWithFormat:@"Hello there! %d", indexPath.row];
 return cell;
}

Cell class registration with registerClass:forCellReuseIdentifier: is also consis‐
tent with ways of generating a cell when you don’t want one of the four built-in table
view cell styles, or when you want to design the cell with the nib editor, as I’ll now
proceed to explain.

Custom Cells
The built-in cell styles give the beginner a leg up in getting started with table views, but
there is nothing sacred about them, and soon you’ll probably want to transcend them,
putting yourself in charge of how a table’s cells look and what subviews they contain.
The thing to remember is that the cell has a contentView property, which is one of its
subviews; things like the accessoryView are outside the contentView. All your cus‐
tomizations must be confined to subviews of the contentView; this allows the cell to
continue working correctly.

Table View Cells | 401

www.it-ebooks.info

http://www.it-ebooks.info/

There are four possible approaches:

• Start with a built-in cell style, but supply a UITableViewCell subclass and override
layoutSubviews to alter the frames of the built-in subviews.

• In tableView:cellForRowAtIndexPath:, add subviews to each cell’s content-
View as the cell is created. This approach can be combined with the previous one,
or you can ignore the built-in subviews and use your own exclusively. As long as
the built-in subviews for a particular built-in cell style are not referenced, they are
never created or inserted into the cell, so you don’t need to remove them if you don’t
want to use them.

• Design the cell in a nib, and load that nib in tableView:cellForRowAtIndex-
Path: each time a cell needs to be created.

• Design the cell in a storyboard.

I’ll illustrate each approach.

Overriding a cell’s subview layout

You can’t directly change the frame of a built-in cell style subview in tableView:cell-
ForRowAtIndexPath:, because after your changes, the cell’s layoutSubviews comes
along and overrides them. The workaround is to override the cell’s layoutSubviews!
This is a straightforward solution if your main objection to a built-in style is the frame
of an existing subview.

To illustrate, let’s modify a UITableViewCellStyleDefault cell so that the image is at
the right end instead of the left end (Figure 8-5). We’ll make a UITableViewCell subclass,
MyCell, remembering to register MyCell with the table view, so that dequeueReusable-
CellWithIdentifier:forIndexPath: produces a MyCell instance; here is MyCell’s
layoutSubviews:

- (void) layoutSubviews {
 [super layoutSubviews];
 CGRect cvb = self.contentView.bounds;
 CGRect imf = self.imageView.frame;
 imf.origin.x = cvb.size.width - imf.size.width - 15;
 self.imageView.frame = imf;
 CGRect tf = self.textLabel.frame;
 tf.origin.x = 15;
 self.textLabel.frame = tf;
}

In using this technique, I find it easier to move the subviews using their frame, rather
than with constraints. Otherwise, the runtime (which still thinks it owns these subviews)
tries to fight us.

402 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-5. A cell with its label and image view swapped

Adding subviews in code
Instead of modifying the existing default subviews, you can add completely new views
to each UITableViewCell’s content view. This has some great advantages over the pre‐
ceding technique. We won’t be fighting the runtime, so we can make our changes in
tableView:cellForRowAtIndexPath:, and we can assign a frame or constraints. Here
are some things to keep in mind:

• The new views must be added when we instantiate a new cell, but not when we reuse
a cell (because a reused cell already has them).

• We must never send addSubview: to the cell itself — only to its contentView (or
some subview thereof).

• We should assign the new views an appropriate autoresizingMask or constraints,
because the cell’s content view might be resized.

• Each new view should be assigned a tag so that it can be referred to elsewhere.

I’ll rewrite the previous example (Figure 8-5) to use this technique. We are no longer
using a UITableViewCell subclass; the registered cell class is UITableViewCell itself. If
this is a new cell, we add the subviews and assign them tags. If this is a reused cell, we
don’t add the subviews (the cell already has them), and we use the tags to refer to the
subviews:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 if (![cell viewWithTag:1]) {
 UIImageView* iv = [UIImageView new];
 iv.tag = 1;
 [cell.contentView addSubview:iv];
 UILabel* lab = [UILabel new];
 lab.tag = 2;
 [cell.contentView addSubview:lab];
 // position using constraints
 NSDictionary* d = NSDictionaryOfVariableBindings(iv, lab);
 iv.translatesAutoresizingMaskIntoConstraints = NO;
 lab.translatesAutoresizingMaskIntoConstraints = NO;
 // image view is vertically centered

Table View Cells | 403

www.it-ebooks.info

http://www.it-ebooks.info/

 [cell.contentView addConstraint:
 [NSLayoutConstraint
 constraintWithItem:iv attribute:NSLayoutAttributeCenterY
 relatedBy:0
 toItem:cell.contentView attribute:NSLayoutAttributeCenterY
 multiplier:1 constant:0]];
 // it's a square
 [cell.contentView addConstraint:
 [NSLayoutConstraint
 constraintWithItem:iv attribute:NSLayoutAttributeWidth
 relatedBy:0
 toItem:iv attribute:NSLayoutAttributeHeight
 multiplier:1 constant:0]];
 // label has height pinned to superview
 [cell.contentView addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[lab]|"
 options:0 metrics:nil views:d]];
 // horizontal margins
 [cell.contentView addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:|-15-[lab]-15-[iv]-15-|"
 options:0 metrics:nil views:d]];
 }
 UILabel* lab = (UILabel*)[cell.contentView viewWithTag: 2];
 UIImageView* iv = (UIImageView*)[cell.contentView viewWithTag: 1];
 // ...
 return cell;
}

Using our own cell subviews instead of the built-in cell style subviews has some clear
advantages; we no longer have to perform an elaborate dance to escape from the re‐
strictions imposed by the runtime. Still, the verbosity of this code is somewhat over‐
whelming. We can avoid this by designing the cell in a nib.

Designing a cell in a nib
In designing a cell in a nib, we start by creating a .xib file that will consist, in effect, solely
of this one cell. In Xcode, create a new iOS User Interface View .xib file for iPhone. Let’s
call it MyCell.xib. In the nib editor, delete the existing View and replace it with a Table
View Cell from the Object library.

The cell’s design window shows a standard-sized cell; you can resize it as desired, but
the actual size of the cell in the interface will be dictated by the table view’s width and
its rowHeight (or the delegate’s response to tableView:heightForRowAtIndexPath:).
The cell already has a contentView, and any subviews you add will be inside that; do
not subvert that arrangement.

You can choose a built-in table view cell style in the Style pop-up menu of the Attributes
inspector, and this gives you the default subviews, locked in their standard positions;

404 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

for example, if you choose Basic, the textLabel appears, and if you specify an image,
the imageView appears. If you set the Style pop-up menu to Custom, you start with a
blank slate. Let’s do that.

We’ll implement, from scratch, the same subviews we’ve already implemented in the
preceding two examples: a UILabel on the left side of the cell, and a UIImageView on
the right side. Just as when adding subviews in code, we should set each subview’s
autoresizing behavior or constraints, and give each subview a tag, so that later, in table-
View:cellForRowAtIndexPath:, we’ll be able to refer to the label and the image view
using viewWithTag:, exactly as in the previous example:

UILabel* lab = (UILabel*)[cell viewWithTag: 2];
UIImageView* iv = (UIImageView*)[cell viewWithTag: 1];
// ...
return cell;

The only remaining question is how to load the cell from the nib. This the Really Cool
Part. When we register with the table view, which we’re currently doing in viewDid-
Load, instead of calling registerClass:forCellReuseIdentifier:, we call register-
Nib:forCellReuseIdentifier:. To specify the nib, call UINib’s class method nibWith-
NibName:bundle:, like this:

[self.tableView registerNib:[UINib nibWithNibName:@"MyCell" bundle:nil]
 forCellReuseIdentifier:@"Cell"];

That’s all there is to it! In tableView:cellForRowAtIndexPath:, when we call dequeue-
ReusableCellWithIdentifier:forIndexPath:, if the table has no free reusable cell
already in existence, the nib will automatically be loaded and the cell will be instantiated
from it and returned to us.

You may wonder how that’s possible, when we haven’t specified a File’s Owner class or
added an outlet from the File’s Owner to the cell in the nib. The answer is that the nib
conforms to a specific format. The UINib instance method instantiateWith-
Owner:options: can load a nib with a nil owner; regardless, it returns an NSArray of
the nib’s instantiated top-level objects. A nib registered with the table view is expected
to have exactly one top-level object, and that top-level object is expected to be a
UITableViewCell; that being so, the cell can easily be extracted from the resulting
NSArray, as it is the array’s only element. Our nib meets those expectations!

The advantages of this approach should be immediately obvious. The subviews can now
be designed in the nib, and code that was creating and configuring each subview can be
deleted. For example, suppose we previously had this code:

if (![cell viewWithTag:1]) {
 UIImageView* iv = [UIImageView new];
 iv.tag = 1;
 [cell.contentView addSubview:iv];
 UILabel* lab = [UILabel new];

Table View Cells | 405

www.it-ebooks.info

http://www.it-ebooks.info/

 lab.tag = 2;
 [cell.contentView addSubview:lab];
 // ...
 lab.font = [UIFont fontWithName:@"Helvetica-Bold" size:16];
 lab.lineBreakMode = NSLineBreakByWordWrapping;
 lab.numberOfLines = 2;
}

All of that can now be eliminated, including setting the label’s font, lineBreakMode,
and numberOfLines; those configurations are to be applied to the label in every cell, so
they can be performed in the nib instead.

The nib must conform to the format I’ve described: it must have ex‐
actly one top-level object, a UITableViewCell. This means that some
configurations are difficult or impossible in the nib. Consider, for ex‐
ample, the cell’s backgroundView. The cell in the nib has a background-
View outlet, but if we drag a view into the canvas and hook that out‐
let to it, our app will crash when the nib loads (because there are now
two top-level nib objects). The simplest workaround is to add the
backgroundView in code.

In tableView:cellForRowAtIndexPath:, we are still referring to the cell’s subviews by
way of viewWithTag:. There’s nothing wrong with that, but perhaps you’d prefer to use
names. Now that we’re designing the cell in a nib, that’s easy. Provide a UITableViewCell
subclass with outlet properties, and configure the nib file accordingly:

1. Create the files for a UITableViewCell subclass; let’s call it MyCell. In MyCell.h,
declare two outlet properties:

@property (nonatomic, weak) IBOutlet UILabel* theLabel;
@property (nonatomic, weak) IBOutlet UIImageView* theImageView;

2. Edit the table view cell nib MyCell.xib. Change the class of the cell to MyCell, and
link up the outlets from the cell to the respective subviews.

The result is that in our implementation of tableView:cellForRowAtIndexPath:, once
we’ve typed the cell as a MyCell (which will require importing "MyCell.h"), the compiler
will let us use the property names to access the subviews:

MyCell* cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
UILabel* lab = cell.theLabel;
UIImageView* iv = cell.theImageView;

406 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Designing a cell in a storyboard
When your table view comes from a storyboard, it is open to you to employ any of the
ways of obtaining and designing its cells that I’ve already described. There is also an
additional option, available only if you’re using a UITableViewController subclass —
that is, there needs to be a UITableViewController scene in the storyboard. In that case,
you can have the table view obtain the cells from the storyboard itself, and you can also
design the cell directly in the table view in the storyboard.

To experiment with this way of obtaining and designing a cell, start with an iPhone
project based on the Single View Application template:

1. In the storyboard, delete the View Controller scene. In the project, delete the View
Controller class files.

2. In the project, create files for a UITableViewController subclass called RootView‐
Controller, without a corresponding .xib file.

3. In the storyboard, drag a Table View Controller into the empty canvas, and set its
class to RootViewController.

4. Now comes the Interesting Part. The table view controller in the storyboard comes
with a table view. In the storyboard, select that table view, and, in the Attributes
inspector, set the Content pop-up menu to Dynamic Prototypes, and set the number
of Prototype Cells to 1 (these are the defaults).

The table view now contains a single table view cell with a content view. You can do in
this cell exactly what we were doing before when designing a table view cell in a .xib file.

So, let’s do that. I like being able to refer to my custom cell subviews with property names.
Our procedure is just like what we did in the previous example:

1. In the project, create the files for a UITableViewCell subclass; let’s call it MyCell. In
MyCell.h, declare two outlet properties:

@property (nonatomic, weak) IBOutlet UILabel* theLabel;
@property (nonatomic, weak) IBOutlet UIImageView* theImageView;

2. In the storyboard, select the prototype cell and change its class to MyCell.
3. Drag a label and an image view into the prototype cell, position and configure them

as desired, and hook up the cell’s outlets to them appropriately.

There is one question I have not yet answered: How will your code tell the table view to
get its cells from the storyboard? Clearly, not by calling registerClass:forCellReuse-
Identifier:, and not by calling registerNib:forCellReuseIdentifier:; each of
those would do something perfectly valid, but not the thing we want done in this case.
The answer is that you don’t register anything with the table view at all! Instead, when

Table View Cells | 407

www.it-ebooks.info

http://www.it-ebooks.info/

you call dequeueReusableCellWithIdentifier:forIndexPath:, you supply an iden‐
tifier that matches the prototype cell’s identifier in the storyboard.

So, return once more to the storyboard:

1. Select the prototype cell.
2. In the Attributes inspector, enter Cell in the Identifier field. (This is an NSString,

so capitalization counts.)

Now RootViewController’s tableView:cellForRowAtIndexPath: works exactly as it
did in the previous example:

MyCell* cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
UILabel* lab = cell.theLabel;
UIImageView* iv = cell.theImageView;

If you call dequeueReusableCellWithIdentifier:forIndexPath: with an identifier
that you have not registered with the table view and that doesn’t match the identifier of
a prototype cell in the storyboard, your app will crash (with a helpful message in the
console).

Table View Data
The structure and content of the actual data portrayed in a table view comes from the
data source, an object pointed to by the table view’s dataSource property and adopting
the UITableViewDataSource protocol. The data source is thus the heart and soul of the
table. What surprises beginners is that the data source operates not by setting the table
view’s structure and content, but by responding on demand. The data source, qua data
source, consists of a set of methods that the table view will call when it needs information.
This architecture has important consequences for how you write your code, which can
be summarized by these simple guidelines:
Be ready

Your data source cannot know when or how often any of these methods will be
called, so it must be prepared to answer any question at any time.

Be fast
The table view is asking for data in real time; the user is probably scrolling through
the table right now. So you mustn’t gum up the works; you must be ready to supply
responses just as fast as you possibly can. (If you can’t supply a piece of data fast
enough, you may have to skip it, supply a placeholder, and insert the data into the
table later. This may involve you in threading issues that I don’t want to get into
here. I’ll give an example in Chapter 24.)

408 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Be consistent
There are multiple data source methods, and you cannot know which one will be
called at a given moment. So you must make sure your responses are mutually
consistent at any moment. For example, a common beginner error is forgetting to
take into account, in your data source methods, the possibility that the data might
not yet be ready.

This may sound daunting, but you’ll be fine as long as you maintain an unswerving
adherence to the principles of model–view–controller. How and when you accumulate
the actual data, and how that data is structured, is a model concern. Acting as a data
source is a controller concern. So you can acquire and arrange your data whenever and
however you like, just so long as when the table view actually turns to you and asks what
to do, you can lay your hands on the relevant data rapidly and consistently. You’ll want
to design the model in such a way that the controller can access any desired piece of
data more or less instantly.

Another source of confusion for beginners is that methods are rather oddly distributed
between the data source and the delegate, an object pointed to by the table view’s
delegate property and adopting the UITableViewDelegate protocol; in some cases, one
may seem to be doing the job of the other. This is not usually a cause of any real difficulty,
because the object serving as data source will probably also be the object serving as
delegate. Nevertheless, it is rather inconvenient when you’re consulting the documen‐
tation; you’ll probably want to keep the data source and delegate documentation pages
open simultaneously as you work.

If a table view’s contents are known beforehand, you can alternative‐
ly design the entire table, including the contents of individual cells, in
a storyboard. I’ll give an example later in this chapter.

The Three Big Questions
Like Katherine Hepburn in Pat and Mike, the basis of your success (as a data source) is
your ability, at any time, to answer the Three Big Questions. The questions the table
view will ask you are a little different from the questions Mike asks Pat, but the principle
is the same: know the answers, and be able to recite them at any moment. Here they are:
How many sections does this table have?

The table will call numberOfSectionsInTableView:; respond with an integer. In
theory you can sometimes omit this method, as the default response is 1, which is
often correct. However, I never omit it; for one thing, returning 0 is a good way to
say that the table has no data, and will prevent the table view from asking any other
questions.

Table View Data | 409

www.it-ebooks.info

http://www.it-ebooks.info/

How many rows does this section have?
The table will call tableView:numberOfRowsInSection:. The table supplies a sec‐
tion number — the first section is numbered 0 — and you respond with an integer.
In a table with only one section, of course, there is probably no need to examine
the incoming section number.

What cell goes in this row of this section?
The table will call tableView:cellForRowAtIndexPath:. The index path is ex‐
pressed as an NSIndexPath; this is a sophisticated and powerful class, but you don’t
actually have to know anything about it, because UITableView provides a category
on it that adds two read-only properties — section and row. Using these, you
extract the requested section number and row number, and return a fully configured
UITableViewCell, ready for display in the table view. The first row of a section is
numbered 0. I have already explained how to obtain the cell in the first place, by
calling tableView:dequeueReusableCellWithIdentifier:.

I have nothing particular to say about precisely how you’re going to fulfill these obli‐
gations. It all depends on your data model and what your table is trying to portray. The
important thing is to remember that you’re going to be receiving an NSIndexPath spec‐
ifying a section and a row, and you need to be able to lay your hands on the data cor‐
responding to that slot now and configure the cell now. So construct your model, and
your algorithm for consulting it in the Three Big Questions, and your way of configuring
the cell, in accordance with that necessity.

For example, suppose our table is to list the names of the Pep Boys. Our data model
might be an NSArray of string names (self.pep). Our table has only one section. So
our code might look like this:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 if (!self.pep) // data not ready?
 return 0;
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.pep count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MyCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 cell.theLabel.text = (self.pep)[indexPath.row];
 return cell;
}

At this point you may be feeling some exasperation. You want to object: “But that’s
trivial!” Exactly so! Your access to the data model should be trivial. That’s the sign of a

410 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

data model that’s well designed for access by your table view’s data source. Your imple‐
mentation of tableView:cellForRowAtIndexPath: might have some interesting work
to do in order to configure the form of the cell, but accessing the actual data should be
simple and boring.

For example, consider Figure 6-1. The actual code that fetches the data is trivial:

FPItem* item = self.parsedData.items[indexPath.row];
NSString* title = item.title;
NSString* blurb = item.blurbOfItem;

That’s all there is to it. And the reason why that’s all there is to it is that I’ve structured
the data model to be ready for access in exactly this way. (To be sure, there then follow
about thirty lines of code elaborately — but very quickly — formatting the layout of the
text within the cell.)

Reusing Cells
Another important goal of tableView:cellForRowAtIndexPath: should be to conserve
resources by reusing cells. As I’ve already explained, once a cell’s row is no longer visible
on the screen, that cell can be slotted into a row that is visible — with its portrayed data
appropriately modified, of course! — so that only a few more than the number of si‐
multaneously visible cells will ever need to be instantiated.

A table view is ready to implement this strategy for you; all you have to do is call dequeue-
ReusableCellWithIdentifier:forIndexPath:. For any given identifier, you’ll be
handed either a newly minted cell or a reused cell that previously appeared in the table
view but is now no longer needed because it has scrolled out of view.

The table view can maintain more than one cache of reusable cells; this could be useful
if your table view contains more than one type of cell (where the meaning of the concept
“type of cell” is pretty much up to you). This is why you must name each cache, by
attaching an identifier string to any cell that can be reused. All the examples in this
chapter (and in this book, and in fact in every UITableView I’ve ever created) use just
one cache and just one identifier, but there can be more than one. If you’re using a
storyboard as a source of cells, there would then need to be more than one prototype
cell.

To prove to yourself the efficiency of the cell-caching architecture, do something to
differentiate newly instantiated cells from reused cells, and count the newly instantiated
cells, like this:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 1000;

Table View Data | 411

www.it-ebooks.info

http://www.it-ebooks.info/

}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MyCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 UILabel* lab = cell.theLabel;
 lab.text = [NSString stringWithFormat:@"This is row %d of section %d",
 indexPath.row, indexPath.section];
 if (lab.tag != 999) {
 lab.tag = 999;
 NSLog(@"%@", @"New cell");
 }
 return cell;
}

When we run this code and scroll through the table, every cell is numbered correctly,
so there appear to be 1000 cells. But the log messages show that only about a dozen
distinct cells are ever actually created.

Be certain that your table view code passes that test, and that you are truly reusing cells!
Fortunately, one of the benefits of calling dequeueReusableCellWithIdentifier:for-
IndexPath: is that it forces you to use a valid reuse identifier. Still, I’ve seen beginners
obtain a cell in some other way, or even call dequeueReusableCellWithIdentifier:for-
IndexPath: without understanding what it really does, only to instantiate a fresh cell
manually in the next line. Don’t do that.

When your tableView:cellForRowAtIndexPath: implementation configures individ‐
ual cells (stage 5 in Example 8-1), the cell might be new or reused; at this point in your
code, you don’t know or care which. Therefore, you should always configure every‐
thing about the cell that might need configuring. If you fail to do this, and if the cell is
reused, you might be surprised when some aspect of the cell is left over from its previous
use; similarly, if you fail to do this, and if the cell is new, you might be surprised when
some aspect of the cell isn’t configured at all.

As usual, I learned that lesson the hard way. In the TidBITS News app, there is a little
loudspeaker icon that should appear in a given cell in the master view’s table view only
if there is a recording associated with this article. So I initially wrote this code:

if (item.enclosures && [item.enclosures count])
 cell.speaker.hidden = NO;

That turned out to be a mistake, because the cell might be reused, and therefore al‐
ways had a visible loudspeaker icon if, in a previous usage, that cell had ever had a visible
loudspeaker icon! The solution was to rewrite the logic to cover all possibilities com‐
pletely, like this:

cell.speaker.hidden = !(item.enclosures && [item.enclosures count]);

412 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

You do get a sort of second bite of the cherry: there’s a delegate method, tableView:will-
DisplayCell:forRowAtIndexPath:, that is called for every cell just before it appears in
the table. This is absolutely the last minute to configure a cell. But don’t misuse this
method. You’re functioning as the delegate here, not the data source; you may set the
final details of the cell’s appearance, but you shouldn’t be consulting the data model at
this point.

An additional delegate method (introduced in iOS 6) is tableView:didEndDisplaying-
Cell:forRowAtIndexPath:. This tells you that the cell no longer appears in the interface
and has become free for reuse. You could take advantage of this to tear down any
resource-heavy customization of the cell — I’ll give an example in Chapter 24 — or
simply to prepare it somehow for subsequent future reuse.

Table View Sections
Your table data can be expressed as divided into sections. You might clump your data
into sections for various reasons (and doubtless there are other reasons beyond these):

• You want to supply section headers (or footers, or both). This can clarify the pre‐
sentation of your data by dividing the rows into groups and by giving the user a
sense, at every moment, of where we are within the table (because the current section
header and footer are always visible). Also, a section header or footer can contain
custom views, so it’s a place where you might put additional information, or even
functional interface, such as a button the user can tap.

• You want to make navigation of the table easier by supplying an index down the
right side. You can’t have an index without sections.

• You want to facilitate programmatic rearrangement of the table. For example, it’s
very easy to hide or move an entire section at once, possibly with animation.

Don’t confuse the section headers and footers with the header and footer of the table as
a whole. The latter are view properties of the table view itself and are set through its
properties tableHeaderView and tableFooterView, discussed earlier in this chapter.
The table header appears only when the table is scrolled all the way down; the table
footer appears only when the table is scrolled all the way up.

A section header or footer, on the other hand, appears before or after its section, but (in
a nongrouped table) it also detaches itself while the user scrolls the table, positioning
itself at the top or bottom of the table view and floating over the scrolled rows, so that
the user always knows what section is currently being viewed.

The number of sections is determined by your reply to numberOfSectionsInTable-
View:. For each section, the table view will consult your data source and delegate to
learn whether this section has a header or a footer, or both, or neither (the default).

Table View Data | 413

www.it-ebooks.info

http://www.it-ebooks.info/

The UITableViewHeaderFooterView class (introduced in iOS 6) is a UIView subclass
intended specifically for use as the view of a header or footer; much like a table view
cell, it is reusable. It has the following properties:
textLabel

Label (UILabel) for displaying the text of the header or footer.

detailTextLabel

This label, if you set its text, appears only in a grouped style table.

contentView

A subview, the size of the header or footer. You can add subviews to this. If you do,
you probably should not use the built-in textLabel; the textLabel is not inside
the contentView and in a sense doesn’t belong to you.

backgroundView

Any view you want to assign. The contentView is in front of the backgroundView.
The contentView has a clear background by default, so the backgroundView shows
through. An opaque contentView.backgroundColor, on the other hand, would
completely obscure the backgroundView. In iOS 7, the header or footer view has a
default backgroundView whose backgroundColor is derived (in some annoyingly
unspecified way) from the table’s backgroundColor.

backgroundColor

You’re not supposed to set the header or footer’s backgroundColor; instead, set the
backgroundColor of its contentView, or assign a new backgroundView and con‐
figure it as you like.

tintColor

In iOS 7, this property appears to be meaningless. (This is a change from iOS 6,
where the tintColor affected the color of the background of the view. It also feels
like a bug; the tintColor should now affect the color of subviews, such a UIButton’s
title, but, as of this writing, it doesn’t.)

You can supply a header or footer in two ways:
Header or footer title string

You implement the data source method tableView:titleForHeaderInSection:
or tableView:titleForFooterInSection: (or both). Return nil to indicate that
the given section has no header (or footer). The header or footer view itself is a
UITableViewHeaderFooterView, and is reused automatically: there will be only as
many as needed for simultaneous display on the screen. The string you supply
becomes the view’s textLabel.text; however, in a grouped style table the string’s
capitalization may be changed. To avoid that, use the second way of supplying the
header or footer.

414 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Header or footer view
You implement the delegate method tableView:viewForHeaderInSection: or
tableView:viewForFooterInSection: (or both). The view you supply is used as
the entire header or footer and is automatically resized to the table’s width and the
section header or footer height (I’ll discuss how the height is determined in a
moment).

You are not required to return a UITableViewHeaderFooterView, but you will
probably want to, in order to take advantage of reusability. To do so, the procedure
is much like making a cell reusable. You register beforehand with the table view by
calling registerClass:forHeaderFooterViewReuseIdentifier:. To supply the
reusable view, send the table view dequeueReusableHeaderFooterViewWith-
Identifier:; the result will be either a newly instantiated view or a reused view.

You can then configure this view as desired. For example, you can set its text-
Label.text, or you can give its contentView custom subviews. In the latter case,
be sure to set proper autoresizing or constraints, so that the subviews will be posi‐
tioned and sized appropriately when the view itself is resized.

The documentation lists a second way of registering a header or foot‐
er view for reuse — registerNib:forHeaderFooterViewReuse-

Identifier:. But the nib editor’s Object library doesn’t include a UI‐
TableViewHeaderFooterView! This makes registerNib:forHeader-
FooterViewReuseIdentifier: pretty much useless, because there’s no
way to configure the view correctly in the nib.

In addition, two pairs of delegate methods permit you to perform final configurations
on your header or footer views:
tableView:willDisplayHeaderView:forSection:
tableView:willDisplayFooterView:forSection:

You can perform further configuration here, if desired. A useful possibility is to
generate the default UITableViewHeaderFooterView by implementing title-
For... and then tweak its form slightly here. These delegate methods are matched
by tableView:didEndDisplayingHeaderView:forSection: and tableView:did-
EndDisplayingFooterView:forSection:.

tableView:heightForHeaderInSection:
tableView:heightForFooterInSection:

The runtime resizes your header or footer before displaying it. Its width will be the
table view’s width; its height will be the table view’s sectionHeaderHeight and
sectionFooterHeight unless you implement one of these methods to say other‐
wise.

Table View Data | 415

www.it-ebooks.info

http://www.it-ebooks.info/

It is possible to implement both viewFor... and titleFor.... In that case, view-
For... is called first, and if it returns a UITableViewHeaderFooterView, titleFor...
will set its textLabel.text. If you implement both methods and you want height-
For... to return the height as set by the table view based on titleFor..., return
UITableViewAutomaticDimension.

Some lovely effects can be created by making use of the fact that a header or footer view
will be further forward than the table’s cells. For example, a header with transparency
shows the cells as they scroll behind it; a header with a shadow casts that shadow on the
adjacent cell.

Now let’s talk about where the header or footer view’s data will come from. Clearly, a
table that is to have section headers or footers (or both) may require some advance
planning in the formation of its data model. Just as with a cell, a section title must be
readily available so that it can be supplied quickly in real time. A structure that I com‐
monly use is a pair of parallel arrays: an array of strings containing the section names,
and an array of subarrays containing the data for each section.

For example, suppose we intend to display the names of all 50 U.S. states in alphabetical
order as the rows of a table view, and that we wish to divide the table into sections
according to the first letter of each state’s name. I’ll prepare the data model by walking
through the alphabetized list of state names, creating a new section name and a new
subarray when I encounter a new first letter:

NSString* s =
 [NSString stringWithContentsOfFile:
 [[NSBundle mainBundle] pathForResource:@"states" ofType:@"txt"]
 encoding:NSUTF8StringEncoding error:nil];
NSArray* states = [s componentsSeparatedByString:@"\n"];
self.sectionNames = [NSMutableArray array];
self.sectionData = [NSMutableArray array];
NSString* previous = @"";
for (NSString* aState in states) {
 // get the first letter
 NSString* c = [aState substringToIndex:1];
 // only add a letter to sectionNames when it's a different letter
 if (![c isEqualToString: previous]) {
 previous = c;
 [self.sectionNames addObject: [c uppercaseString]];
 // and in that case, also add a new subarray to our array of subarrays
 NSMutableArray* oneSection = [NSMutableArray array];
 [self.sectionData addObject: oneSection];
 }
 [[self.sectionData lastObject] addObject: aState];
}

The value of this preparatory dance is evident when we are bombarded with questions
from the table view about cells and headers; supplying the answers is trivial:

416 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [self.sectionNames count];
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [(self.sectionData)[section] count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 NSString* s = self.sectionData[indexPath.section][indexPath.row];
 cell.textLabel.text = s;
 return cell;
}
- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 return self.sectionNames[section];
}

Let’s modify that example to illustrate customization of a header view. I’ve already reg‐
istered my header identifier in viewDidLoad:

[self.tableView registerClass:[UITableViewHeaderFooterView class]
 forHeaderFooterViewReuseIdentifier:@"Header"];

Now, instead of tableView:titleForHeaderInSection:, I’ll implement table-
View:viewForHeaderInSection:. For completely new views, I’ll place my own label
and an image view inside the contentView and give them their basic configuration; then
I’ll perform individual configuration on all views, new or reused (very much like table-
View:cellForRowAtIndexPath:):

- (UIView *)tableView:(UITableView *)tableView
 viewForHeaderInSection:(NSInteger)section {
 UITableViewHeaderFooterView* h =
 [tableView dequeueReusableHeaderFooterViewWithIdentifier:@"Header"];
 if (![h.tintColor isEqual: [UIColor redColor]]) {
 h.tintColor = [UIColor redColor];
 h.backgroundView = [UIView new];
 h.backgroundView.backgroundColor = [UIColor blackColor];
 UILabel* lab = [UILabel new];
 lab.tag = 1;
 lab.font = [UIFont fontWithName:@"Georgia-Bold" size:22];
 lab.textColor = [UIColor greenColor];
 lab.backgroundColor = [UIColor clearColor];
 [h.contentView addSubview:lab];
 UIImageView* v = [UIImageView new];
 v.tag = 2;
 v.backgroundColor = [UIColor blackColor];
 v.image = [UIImage imageNamed:@"us_flag_small.gif"];
 [h.contentView addSubview:v];

Table View Data | 417

www.it-ebooks.info

http://www.it-ebooks.info/

 lab.translatesAutoresizingMaskIntoConstraints = NO;
 v.translatesAutoresizingMaskIntoConstraints = NO;
 [h.contentView addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"H:|-5-[lab(25)]-10-[v(40)]"
 options:0 metrics:nil views:@{@"v":v, @"lab":lab}]];
 [h.contentView addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[v]|"
 options:0 metrics:nil views:@{@"v":v}]];
 [h.contentView addConstraints:
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|[lab]|"
 options:0 metrics:nil views:@{@"lab":lab}]];
 }
 UILabel* lab = (UILabel*)[h.contentView viewWithTag:1];
 lab.text = self.sectionNames[section];
 return h;
}

Section Index
If your table view has the plain style, you can add an index down the right side of the
table, where the user can tap or drag to jump to the start of a section — helpful for
navigating long tables. To generate the index, implement the data source method
sectionIndexTitlesForTableView:, returning an NSArray of string titles to appear as
entries in the index. This works even if there are no section headers. The index will
appear only if the number of rows exceeds the table view’s sectionIndexMinimum-
DisplayRowCount property value; the default is 0, so the index is always displayed by
default. You will want the index entries to be short — preferably just one character —
because they will be partially obscuring the right edge of the table; plus, each cell’s content
view will shrink to compensate, so you’re sacrificing some cell real estate.

For our list of state names, that’s trivial, as it should be:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return self.sectionNames;
}

You can modify three properties that affect the index’s appearance:
sectionIndexColor

The index text color.

sectionIndexBackgroundColor

The index background color (new in iOS 7). I advise giving the index some back‐
ground color, even if it is clearColor, because otherwise the index distorts the
colors of what’s behind it in a distracting way.

418 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

sectionIndexTrackingBackgroundColor

The index background color while the user’s finger is sliding over it. By default, it’s
the same as the sectionIndexBackgroundColor.

Normally, there will be a one-to-one correspondence between the index entries and the
sections; when the user taps an index entry, the table jumps to the start of the corre‐
sponding section. However, under certain circumstances you may want to customize
this correspondence.

For example, suppose there are 100 sections, but there isn’t room to display 100 index
entries comfortably on the iPhone. The index will automatically curtail itself, omitting
some index entries and inserting bullets to suggest the omission, but you might prefer
to take charge of the situation.

To do so, supply a shorter index, and implement the data source method table-
View:sectionForSectionIndexTitle:atIndex:, returning the number of the section
to jump to. You are told both the title and the index number of the section index listing
that the user chose, so you can use whichever is convenient.

Apple’s documentation elaborates heavily on the details of implementing the model
behind a table with an index and suggests that you rely on a class called UILocalized‐
IndexedCollation. This class is effectively a way of generating an ordered list of letters
of the alphabet, with methods for helping to sort an array of strings and separate it into
sections. This might be useful if you need your app to be localized, because the notion
of the alphabet and its order changes automatically depending on the user’s preferred
language.

Unfortunately, you can’t readily use a UILocalizedIndexCollation to implement your
own sort order. For example, UILocalizedIndexCollation was of no use to me in writing
my Greek and Latin vocabulary apps, in which the Greek words must be sorted, sec‐
tioned, and indexed according to the Greek alphabet, and the Latin words use a reduced
version of the English alphabet (no initial J, K, or V through Z). Thus I’ve never actually
bothered to use UILocalizedIndexedCollation.

Refreshing Table View Data
The table view has no direct connection to the underlying data. If you want the table
view display to change because the underlying data have changed, you have to cause the
table view to refresh itself; basically, you’re requesting that the Big Questions be asked
all over again. At first blush, this seems inefficient (“regenerate all the data??”); but it
isn’t. Remember, in a table that caches reusable cells, there are no cells of interest other
than those actually showing in the table at this moment. Thus, having worked out the
layout of the table through the section header and footer heights and row heights, the
table has to regenerate only those cells that are actually visible.

Table View Data | 419

www.it-ebooks.info

http://www.it-ebooks.info/

You can cause the table data to be refreshed using any of several methods:
reloadData

The table view will ask the Three Big Questions all over again, including heights of
rows and section headers and footers, and the index, exactly as it does automatically
when the table view first appears.

reloadRowsAtIndexPaths:withRowAnimation:

The table view will ask the Three Big Questions all over again, including heights,
but not index entries. Cells are requested only for visible cells among those you
specify. The first parameter is an array of index paths; to form an index path, use
the NSIndexPath class method indexPathForRow:inSection:.

reloadSections:withRowAnimation:

The table view will ask the Three Big Questions all over again, including heights of
rows and section headers and footers, and the index. Cells, headers, and footers are
requested only for visible elements of the sections you specify. The first parameter
is an NSIndexSet.

The second two methods can perform animations that cue the user as to what’s changing.
For the rowAnimation: argument, you’ll pass one of the following:
UITableViewRowAnimationFade

The old fades into the new.

UITableViewRowAnimationRight, UITableViewRowAnimationLeft
UITableViewRowAnimationTop, UITableViewRowAnimationBottom

The old slides out in the stated direction, and is replaced from the opposite
direction.

UITableViewRowAnimationNone

No animation.

UITableViewRowAnimationMiddle

Hard to describe; it’s a sort of venetian blind effect on each cell individually.

UITableViewRowAnimationAutomatic

The table view just “does the right thing”. This is especially useful for grouped style
tables, because if you pick the wrong animation, the display can look very funny as
it proceeds.

If all you need to do is to refresh the index, call reloadSectionIndexTitles; this calls
the data source’s sectionIndexTitlesForTableView:.

If you want the table view to be laid out freshly without reloading any cells, send it begin-
Updates immediately followed by endUpdates. The section and row structure of the
table will be asked for, along with calculation of all heights, but no cells and no headers
or footers are requested. This is useful as a way of alerting the table that its measurements

420 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

have changed. It might be considered a misuse of an updates block (the real use of such
a block is discussed later in this chapter); but Apple takes advantage of this trick in the
Table View Animations and Gestures example, in which a pinch gesture is used to
change a table’s row height in real time, so it must be legal.

It is also possible to access and alter a table’s individual cells directly. This can be a
lightweight approach to refreshing the table, plus you can supply your own animation
within the cell as it alters its appearance. It is important to bear in mind, however, that
the cells are not the data (view is not model). If you change the content of a cell manually,
make sure that you have also changed the model corresponding to it, so that the row
will appear correctly if its data is reloaded later.

To do this, you need direct access to the cell you want to change. You’ll probably want
to make sure the cell is visible within the table view’s bounds; nonvisible cells don’t really
exist (except as potential cells waiting in the reuse cache), and there’s no point changing
them manually, as they’ll be changed when they are scrolled into view, through the usual
call to tableView:cellForRowAtIndexPath:.

Here are some UITableView methods that mediate between cells, rows, and visibility:
visibleCells

An array of the cells actually showing within the table’s bounds.

indexPathsForVisibleRows

An array of the rows actually showing within the table’s bounds.

cellForRowAtIndexPath:

Returns a UITableViewCell if the table is maintaining a cell for the given row (typ‐
ically because this is a visible row); otherwise, returns nil.

indexPathForCell:

Given a cell obtained from the table view, returns the row into which it is slotted.

By the same token, you can get access to the views constituting headers and footers, by
calling headerViewForSection: or footerViewForSection:. Thus you could modify
a view directly. You should assume that if a section is returned by indexPathsFor-
VisibleRows, its header or footer might be visible.

If you want to grant the user some interface for requesting that a table view be refreshed,
you might like to use a UIRefreshControl. You aren’t required to use this; it’s just Apple’s
attempt to provide a standard interface. In iOS 7, it is located behind the top of the
scrolling part of the table view, behind the table view’s backgroundView. To request a
refresh, the user scrolls the table view downward to reveal the refresh control and holds
long enough to indicate that this scrolling is deliberate. The refresh control then ac‐
knowledges visually that it is refreshing, and remains visible until refreshing is complete.

Table View Data | 421

www.it-ebooks.info

http://www.it-ebooks.info/

To give a table view a refresh control, assign a UIRefreshControl to the table view con‐
troller’s refreshControl property; it is a control (UIControl, Chapter 12), and you will
want to hook its Value Changed event to an action method:

self.refreshControl = [UIRefreshControl new];
[self.refreshControl addTarget:self action:@selector(doRefresh:)
 forControlEvents:UIControlEventValueChanged];

You can also configure a table view controller’s refresh control in the nib editor.

Once a refresh control’s action message has fired, the control remains visible and indi‐
cates by animation (similar to an activity indicator) that it is refreshing, until you send
it the endRefreshing message:

-(void)doRefresh:(UIRefreshControl*) sender {
 // ... refresh the table data ...
 [sender endRefreshing];
}

You can initiate a refresh animation in code with beginRefreshing, but this does not
fire the action message or display the refresh control; to display it, scroll the table view:

[self.tableView setContentOffset:
 CGPointMake(0,-self.refreshControl.bounds.size.height)
 animated:YES];
[self.refreshControl beginRefreshing];
// ... now actually do refresh, and later send endRefreshing

A refresh control also has these properties:
refreshing (read-only)

Whether the refresh control is refreshing.

tintColor

The refresh control’s color. It is not inherited from the view hierarchy (I regard this
as a bug).

attributedTitle

Styled text displayed below the refresh control’s activity indicator. On attributed
strings, see Chapter 10.

backgroundColor (inherited from UIView)
If you give a table view controller’s refreshControl a background color, that color
completely covers the table view’s own background color when the refresh control
is revealed. For some reason, I find the drawing of the attributedTitle more
reliable if the refresh control has a background color.

422 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s row-
Height. However, the delegate’s tableView:heightForRowAtIndexPath: can be used
to make different rows different heights. You can see an example in the TidBITS News
app (Figure 6-1).

Implementing variable row heights can be a tricky business. One problem is that as a
cell is reused or instantiated from a nib, its height may be changed, which is likely to
expose any weaknesses in your practice for laying out subviews. (Can you guess that I’m
speaking from experience here?) A mistake in the autoresizingMask value of subviews
can result in display errors that would not have arisen if all the rows were the same
height. You may have to resort to manual layout (such as implementing layout-
Subviews in a UITableViewCell subclass); alternatively, constraints can be a big help.

Another problem has to do with time consumed and the order of events. The runtime
needs to know the heights of everything in your table immediately, before it starts asking
for any cells. In effect, this means you have to gather all the data and lay out all the cells
before you can start showing the data in any single row. If that takes a long time, your
table view will remain blank during the calculation. Plus, there is now a danger of du‐
plicating your own work, since you’ll be laying out every cell twice, once when you’re
asked for all the heights and again when you’re asked for the actual cell.

In iOS 7, this second problem is not as severe as it used to be, thanks to three new table
view properties:

• estimatedRowHeight

• estimatedSectionHeaderHeight

• estimatedSectionFooterHeight

To accompany those, there are also three new table view delegate methods:

• tableView:estimatedHeightForRowAtIndexPath:

• tableView:estimatedHeightForHeaderInSection:

• tableView:estimatedHeightForFooterInSection:

The idea is that if you implement these, the runtime will use their values whenever it
gathers the heights for the whole table at once. Then, when a cell or a header or footer
is about to appear onscreen, the runtime will ask for its real height in the usual way. You
can thus get the table to appear quickly and postpone the calculation of an actual height
until it is needed (by which time you might have calculated all the real heights in a
background thread).

Table View Data | 423

www.it-ebooks.info

http://www.it-ebooks.info/

To illustrate, I’ll describe the strategy I use in the TidBITS News app. It predates the
estimated heights, so I don’t use them. The key is an NSMutableArray property,
self.rowHeights, consisting of NSNumbers wrapping floats. (An array is all that’s
needed, because the table has just one section; the row number can thus serve directly
as an index into the array.) Once that array is constructed, it can be used to supply a
requested height instantly.

As I’ve already said, calculating a cell height requires me to lay out that cell. Each cell
displays an attributed string. I have a utility method, attributedStringForIndex-
Path:, which generates the attributed string for a given row of the table (by consulting
the data model to obtain the title and description of the story represented by that row).

When the delegate’s tableView:heightForRowAtIndexPath: is called, either we’ve al‐
ready constructed self.rowHeights or we haven’t. If we haven’t, we construct it, by
calling attributedStringForIndexPath: for every index path, laying out its cell rec‐
tangle, and storing the height of that rectangle. Now we have all the heights, so from
now on we simply return the one we are asked for:

-(CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 if (!self.rowHeights) {
 NSMutableArray* heights = [NSMutableArray array];
 for (int i = 0; i < self.parsedData.items.count; i++) {
 NSAttributedString* s =
 [self attributedStringForIndexPath:
 [NSIndexPath indexPathForRow:i inSection:0]];
 CGFloat maxheight = // maximum permissible cell height
 CGRect r =
 [s boundingRectWithSize:CGSizeMake(320,maxheight)
 options:
 NSStringDrawingUsesLineFragmentOrigin |
 NSStringDrawingTruncatesLastVisibleLine
 context:nil];
 [heights addObject:@(r.size.height)];
 }
 self.rowHeights = heights;
 }
 CGFloat result = [self.rowHeights[indexPath.row] floatValue];
 return result;
}

In tableView:cellForRowAtIndexPath:, I call attributedStringForIndexPath:
again. (I suppose I could have cached the attributed strings in an array as well, but this
is not a time-consuming routine.) The wonderful thing is that, thanks to dequeue-
ReusableCellWithIdentifier:forIndexPath:, the cell already has the correct height,
and constraints have taken care of positioning its subviews correctly. So I just plop the
attributed string into it, configure the rest of the cell, and hand back the cell:

424 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 FPItem* item = self.parsedData.items[indexPath.row];
 Cell* cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 cell.drawer.attributedText = [self attributedStringForIndexPath: indexPath];
 cell.speaker.hidden = !(item.enclosures && [item.enclosures count]);
 return cell;
}

Now I’ll adapt my approach to use estimated heights. My table view has an estimated-
RowHeight of 80; on average, this should set the scrolling content height to be roughly
correct from the outset. All I really need to change now is my implementation of table-
View:heightForRowAtIndexPath:, to take account of the fact that I can no longer pre‐
dict when this method will be called for any given row. If we don’t have any self.row-
Heights array at all, I create it, and I fill it with [NSNull null] as a placeholder. If the
self.rowHeights entry for the requested row is [NSNull null], I calculate the actual
row height and set it as that entry. Finally, I return the self.rowHeights entry for the
requested row:

-(CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 if (!self.rowHeights) {
 NSMutableArray* heights = [NSMutableArray array];
 for (int i = 0; i < self.parsedData.items.count; i++)
 heights[i] = [NSNull null];
 self.rowHeights = heights;
 }
 int ix = indexPath.row;
 if (self.rowHeights[indexPath.row] == [NSNull null]) {
 NSAttributedString* s =
 [self attributedStringForIndexPath:
 [NSIndexPath indexPathForRow:ix inSection:0]];
 CGFloat maxheight = // maximum permissible cell height
 CGRect r =
 [s boundingRectWithSize:CGSizeMake(320,maxheight)
 options:
 NSStringDrawingUsesLineFragmentOrigin |
 NSStringDrawingTruncatesLastVisibleLine
 context:nil];
 self.rowHeights[ix] = @(r.size.height);
 }
 CGFloat result = [self.rowHeights[ix] floatValue];
 return result;
}

This method is called four or five times at launch, for the cells that will initially appear
onscreen, and after that only for individual cells as they are scrolled into view.

Table View Data | 425

www.it-ebooks.info

http://www.it-ebooks.info/

Table View Cell Selection
A table view cell has a normal state, a highlighted state (according to its highlighted
property), and a selected state (according to its selected property). It is possible
to change these states directly, possibly with animation, by calling set-

Highlighted:animated: or setSelected:animated: on the cell. But you don’t want to
act behind the table’s back, so you are more likely to manage selection through the table
view, letting the table view manage and track the state of its cells.

These two states are closely related. In particular, when a cell is selected, it propagates
the highlighted state down through its subviews by setting each subview’s highlighted
property if it has one. That is why a UILabel’s highlightedTextColor applies when the
cell is selected. Similarly, a UIImageView (such as the cell’s imageView) can have a
highlightedImage that is shown when the cell is selected, and a UIControl (such as a
UIButton) takes on its highlighted state when the cell is selected.

One of the chief purposes of your table view is likely to be to let the user select a cell.
This will be possible, provided you have not set the value of the table view’s allows-
Selection property to NO. The user taps a normal cell, and the cell switches to its
selected state. By default, this will mean that the cell is redrawn with a gray background
view, but you can change this at the individual cell level, as I’ve already explained: you
can set a cell’s selectedBackgroundView (or multipleSelectionBackgroundView), or
change its selectionStyle. If the user taps an already selected cell, by default it stays
selected.

Table views can permit the user to select multiple cells simultaneously. Set the table
view’s allowsMultipleSelection property to YES. If the user taps an already selected
cell, by default it is deselected.

Managing Cell Selection
Your code can learn and manage the selection through these UITableView instance
methods:
indexPathForSelectedRow
indexPathsForSelectedRows

These methods report the currently selected row(s), or nil if there is no selection.
Don’t accidentally call the wrong one. For example, calling indexPathForSelected-
Row when the table view allows multiple selection gives a result that will have you
scratching your head in confusion. (As usual, I speak from experience.)

selectRowAtIndexPath:animated:scrollPosition:

The animation involves fading in the selection, but the user may not see this unless
the selected row is already visible. The last parameter dictates whether and how the
table view should scroll to reveal the newly selected row:

426 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

• UITableViewScrollPositionTop

• UITableViewScrollPositionMiddle

• UITableViewScrollPositionBottom

• UITableViewScrollPositionNone

For the first three options, the table view scrolls (with animation, if the second
parameter is YES) so that the selected row is at the specified position among the
visible cells. For UITableViewScrollPositionNone, the table view does not scroll;
if the selected row is not already visible, it does not become visible.

deselectRowAtIndexPath:animated:

Deselects the given row (if it is selected); the optional animation involves fading
out the selection. No automatic scrolling takes place.

To deselect all currently selected rows, call selectRowAtIndexPath:animated:scroll-
Position: with a nil index path. Reloading a cell’s data also deselects that cell, and calling
reloadData deselects all selected rows.

Responding to Cell Selection
Response to user selection is through the table view’s delegate:

• tableView:shouldHighlightRowAtIndexPath:

• tableView:didHighlightRowAtIndexPath:

• tableView:didUnhighlightRowAtIndexPath:

• tableView:willSelectRowAtIndexPath:

• tableView:didSelectRowAtIndexPath:

• tableView:willDeselectRowAtIndexPath:

• tableView:didDeselectRowAtIndexPath:

Despite their names, the two “will” methods are actually “should” methods and expect
a return value:

• Return nil to prevent the selection (or deselection) from taking place.
• Return the index path handed in as argument to permit the selection (or deselec‐

tion), or a different index path to cause a different cell to be selected (or deselected).

The “highlight” methods are more sensibly named, and they arrive first, so you can
return NO from tableView:shouldHighlightRowAtIndexPath: to prevent a cell from
being selected.

Table View Cell Selection | 427

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s focus in more detail on the relationship between a cell’s highlighted state and its
selected state. They are, in fact, two different states. When the user touches a cell, the
cell passes through a complete highlight cycle. Then, if the touch turns out to be the
beginning of a scroll motion, the cell is unhighlighted immediately, and the cell is not
selected. Otherwise, the cell is unhighlighted and selected.

But the user doesn’t know the difference between these two states: whether the cell is
highlighted or selected, the cell’s subviews are highlighted, and the selectedBackground-
View appears. Thus, if the user touches and scrolls, what the user sees is the flash of the
selectedBackgroundView and the highlighted subviews, until the table begins to scroll
and the cell returns to normal. If the user touches and lifts the finger, the selected-
BackgroundView and highlighted subviews appear and remain; there is actually a mo‐
ment in the sequence where the cell has been highlighted and then unhighlighted and
not yet selected, but the user doesn’t see any momentary unhighlighting of the cell,
because no redraw moment occurs (see Chapter 4).

Here’s a summary of the sequence:

1. The user’s finger goes down. If shouldHighlight permits, the cell highlights, which
propagates to its subviews. Then didHighlight arrives.

2. There is a redraw moment. Thus, the user will see the cell as highlighted (including
the appearance of the selectedBackgroundView), regardless of what happens next.

3. The user either starts scrolling or lifts the finger. The cell unhighlights, which also
propagates to its subviews, and didUnhighlight arrives.
a. If the user starts scrolling, there is a redraw moment, so the user now sees the

cell unhighlighted. The sequence ends.
b. If the user merely lifts the finger, there is no redraw moment, so the cell keeps

its highlighted appearance. The sequence continues.
4. If willSelect permits, the cell is selected, and didSelect arrives. The cell is not

highlighted, but highlighting is propagated to its subviews.
5. There’s another redraw moment. The user still sees the cell as highlighted (including

the appearance of the selectedBackgroundView).

When tableView:willSelectRowAtIndexPath: is called because the user taps a cell,
and if this table view permits only single cell selection, tableView:willDeselectRowAt-
IndexPath: will be called subsequently for any previously selected cells.

Here’s an example of implementing tableView:willSelectRowAtIndexPath:. The de‐
fault behavior for allowsSelection (not multiple selection) is that the user can select
by tapping, and the cell remains selected; if the user taps a selected row, the selection
does not change. We can alter this so that tapping a selected row deselects it:

428 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

- (NSIndexPath*) tableView:(UITableView*)tv
 willSelectRowAtIndexPath:(NSIndexPath*)ip {
 if ([tv cellForRowAtIndexPath:ip].selected) {
 [tv deselectRowAtIndexPath:ip animated:NO];
 return nil;
 }
 return ip;
}

Navigation From a Table View
An extremely common response to user selection is navigation. A master–detail archi‐
tecture is typical: the table view lists things the user can see in more detail, and a tap
displays the detailed view of the selected thing. On the iPhone, very often the table view
will be in a navigation interface, and you will respond to user selection by creating the
detail view and pushing it onto the navigation controller’s stack.

For example, here’s the code from my Albumen app that navigates from the list of albums
to the list of songs in the album that the user has tapped:

- (void) tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 TracksViewController *t =
 [[TracksViewController alloc]
 initWithMediaItemCollection:(self.albums)[indexPath.row]];
 [self.navigationController pushViewController:t animated:YES];
}

This interface is so common that Xcode’s Master–Detail Application project template
implements it for you.

In a storyboard, when you draw a segue from a UITableViewCell, you are given a choice
of two segue triggers: Selection Segue and Accessory Action. If you create a Selection
Segue, the segue will be triggered when the user selects a cell. Thus you can readily push
or present another view controller in response to cell selection.

If you’re using a UITableViewController, then by default, whenever the table view ap‐
pears, the selection is cleared automatically in viewWillAppear:, and the scroll indica‐
tors are flashed in viewDidAppear:. You can prevent this automatic clearing of the
selection by setting the table view controller’s clearsSelectionOnViewWillAppear to
NO. I sometimes do that, preferring to implement deselection in viewDidAppear:; the
effect is that when the user returns to the table, the row is still momentarily selected
before it deselects itself:

- (void) viewDidAppear:(BOOL)animated {
 // deselect selected row
 [tableView selectRowAtIndexPath:nil animated:NO
 scrollPosition:UITableViewScrollPositionNone];
 [super viewDidAppear:animated];
}

Table View Cell Selection | 429

www.it-ebooks.info

http://www.it-ebooks.info/

By convention, if selecting a table view cell causes navigation, the cell should be given
an accessoryType of UITableViewCellAccessoryDisclosureIndicator. This is a
plain gray right-pointing chevron at the right end of the cell. The chevron itself doesn’t
respond to user interaction; it’s not a button, but is just a visual cue that the user can tap
the cell to learn more.

Two additional accessoryType settings are buttons:
UITableViewCellAccessoryDetailButton

New in iOS 7. It is drawn as a letter “i” in a circle.

UITableViewCellAccessoryDetailDisclosureButton

In iOS 7, it is drawn like UITableViewCellAccessoryDetailButton, along with a
disclosure indicator chevron to its right.

To respond to the tapping of an accessory button, implement the table view delegate’s
tableView:accessoryButtonTappedForRowWithIndexPath:. Or, in a storyboard, you
can Control-drag a connection from a cell and choose the Accessory Action segue.

A common convention is that selecting the cell as a whole does one thing and tapping
the detail button does something else. For example, in Apple’s Phone app, tapping a
contact’s listing in the Recents table places a call to that contact, but tapping the detail
button navigates to that contact’s detail view.

Cell Choice and Static Tables
Another use of cell selection is to implement a choice among cells, where a section of a
table effectively functions as an iOS alternative to OS X radio buttons. The table view
usually has the grouped format. An accessoryType of UITableViewCellAccessory-
Checkmark is typically used to indicate the current choice. Implementing radio button
behavior is up to you.

As an example, I’ll implement the interface shown in Figure 8-2. The table view has the
grouped style, with two sections. The first section, with a “Size” header, has three mu‐
tually exclusive choices: “Easy,” “Normal,” and “Hard.” The second section, with a “Style”
header, has two choices: “Animals” or “Snacks.”

This is a static table; its contents are known beforehand and won’t change. In a case like
this, if we’re using a UITableViewController subclass instantiated from a storyboard,
the nib editor lets us design the entire table, including the headers and the cells and their
content, directly in the storyboard. Select the table and set its Content pop-up menu in
the Attributes inspector to Static Cells to make the table editable in this way (Figure 8-6).

Even though each cell is designed initially in the storyboard, I can still implement table-
View:cellForRowAtIndexPath: to call super and then add further functionality. That’s
how I’ll add the checkmarks. The user defaults are storing the current choice in each of

430 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-6. Designing a static table in the storyboard editor

the two categories; there’s a @"Size" preference and a @"Style" preference, each con‐
sisting of a string denoting the title of the chosen cell:

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell* cell =
 [super tableView:tv cellForRowAtIndexPath:indexPath];
 NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
 cell.accessoryType = UITableViewCellAccessoryNone;
 if ([[ud valueForKey:@"Style"] isEqualToString:cell.textLabel.text] ||
 [[ud valueForKey:@"Size"] isEqualToString:cell.textLabel.text])
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
 return cell;
}

When the user taps a cell, the cell is selected. I want the user to see that selection mo‐
mentarily, as feedback, but then I want to deselect, adjusting the checkmarks so that
that cell is the only one checked in its section. In tableView:didSelectRowAtIndex-
Path:, I set the user defaults, and then I reload the table view’s data. This removes the
selection and causes tableView:cellForRowAtIndexPath: to be called to adjust the
checkmarks:

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
 NSString* setting = [tv cellForRowAtIndexPath:indexPath].textLabel.text;
 NSString* header =
 [self tableView:tv titleForHeaderInSection:indexPath.section];
 [ud setValue:setting forKey:header];
 [tv reloadData]; // deselect all cells, reassign checkmark as needed
}

Table View Cell Selection | 431

www.it-ebooks.info

http://www.it-ebooks.info/

Table View Scrolling and Layout
A UITableView is a UIScrollView, so everything you already know about scroll views is
applicable (Chapter 7). In addition, a table view supplies two convenience scrolling
methods:

• scrollToRowAtIndexPath:atScrollPosition:animated:

• scrollToNearestSelectedRowAtScrollPosition:animated:

The scrollPosition parameter is as for selectRowAtIndexPath:..., discussed earlier
in this chapter.

The following UITableView methods mediate between the table’s bounds coordinates
on the one hand and table structure on the other:

• indexPathForRowAtPoint:

• indexPathsForRowsInRect:

• rectForSection:

• rectForRowAtIndexPath:

• rectForFooterInSection:

• rectForHeaderInSection:

The table’s own header and footer are direct subviews of the table view, so their positions
within the table’s bounds are given by their frames.

Table View State Restoration
If a UITableView participates in state saving and restoration (Chapter 6), the restoration
mechanism would like to restore the selection and the scroll position. In iOS 7, this
behavior is automatic; the restoration mechanism knows both what cells should be
visible and what cells should be selected, in terms of their index paths. If that’s satisfac‐
tory, you’ve no further work to do.

In some apps, however, there is a possibility that when the app is relaunched, the un‐
derlying data may have been rearranged somehow. Perhaps what’s meaningful in dic‐
tating what the user should see in such a case is not the previous index paths but the
previous data. The state saving and restoration mechanism doesn’t know anything about
the relationship between the cells and the underlying data. If you’d like to tell it, adopt
the UIDataSourceModelAssociation protocol and implement two methods:

432 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

modelIdentifierForElementAtIndexPath:inView:

Based on the index path, you return some string that you will later be able to use
to identify uniquely this bit of model data.

indexPathForElementWithModelIdentifier:inView:

Based on the unique identifier you provided earlier, you return the index path at
which this bit of model data is displayed in the table now.

Devising a system of unique identification and incorporating it into your data model is
up to you. In the TidBITS News app, for example, where I was using this mechanism in
iOS 6, it happens that my bits of data come from a parsed RSS feed and have a guid
property that is a global unique identifier. So implementing the first method is easy:

- (NSString *) modelIdentifierForElementAtIndexPath:(NSIndexPath *)idx
 inView:(UIView *)view {
 FPItem* item = self.parsedData.items[idx.row];
 return item.guid;
}

Implementing the second method is a little more work; I walk the data model looking
for the object whose guid matches the identifier in question, and construct its index
path:

- (NSIndexPath*) indexPathForElementWithModelIdentifier:(NSString *)identifier
 inView:(UIView *)view {
 __block NSIndexPath* path = nil;
 [self.parsedData.items
 enumerateObjectsUsingBlock:^(FPItem* item, NSUInteger idx, BOOL *stop)
 {
 if ([item.guid isEqualToString:identifier]) {
 path = [NSIndexPath indexPathForRow:idx inSection:0];
 *stop = YES;
 }
 }];
 return path;
}

It is crucial, when the app is relaunched, that the table should have data before that
method is called, so I also call reloadData in my implementation of decodeRestorable-
StateWithCoder:.

In iOS 7, however, I no longer do any of that, since the automatic index path–based
restoration of the table view’s scroll position is sufficient.

Table View Searching
A table view is a common way to present the results of a search performed through a
search field (a UISearchBar; see Chapter 12). This is such a standard interface, in fact,

Table View Searching | 433

www.it-ebooks.info

http://www.it-ebooks.info/

that a class is provided, UISearchDisplayController, to mediate between the search field
where the user enters a search term and the table view listing the results of the search.

When the user initially taps in the search field, the UISearchDisplayController auto‐
matically constructs a new interface along with a nice animation. This indicates to the
user that the search field is ready to receive input; when the user proceeds to enter
characters into the search field, the UISearchDisplayController will display its own
search results table view in this interface. The UISearchBar has a Cancel button that the
user can tap to dismiss the interface created by the UISearchDisplayController.

The UISearchDisplayController needs the following things:
A search bar

A UISearchBar in the interface. This will be the UISearchDisplayController’s
searchBar.

A view controller
The view controller managing the view in the interface over which the search results
are to appear. This will be the UISearchDisplayController’s searchContents-
Controller.

A results table view
The table view in which the search results will be presented. This will be the
UISearchDisplayController’s searchResultsTableView. It can already exist, or the
UISearchDisplayController will create it.

A data source and delegate for the results table view
The UISearchDisplayController’s searchResultsDataSource and searchResults-
Delegate. They will control the data and structure of the search results table. They
are commonly the same object, as for any table view; moreover, they are commonly
the same as the view controller (the searchContentsController).

A delegate
An optional object adopting the UISearchDisplayDelegate protocol. It will be no‐
tified of events relating to the display of results. It, too, is commonly the view con‐
troller (the searchContentsController).

Moreover, the UISearchBar itself can also have a delegate, and this, too, is commonly
the view controller (the searchContentsController).

A UISearchDisplayController’s searchContentsController needn’t be a UITableView‐
Controller, and the data that the user is searching needn’t be the content of an existing
table view. But they frequently are! That’s because the mental connection between a table
and a search is a natural one; when the search results are presented as a table view, the
user feels that the search field is effectively filtering the contents of the original table
view. A single object may thus be playing all of the following roles:

434 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

• The searchable table view’s view controller
• The searchable table view’s data source
• The searchable table view’s delegate
• The view controller for the view over which the search results will appear
• The search results table view’s data source
• The search results table view’s delegate
• The UISearchDisplayController’s delegate
• The UISearchBar’s delegate

A common point of confusion among beginners, when using this architecture, is to
suppose that the search bar is genuinely filtering the original table. It isn’t! The search
bar and the UISearchDisplayController know nothing of your table. What’s being
searched is just some data — whatever data you care to search. The fact that this may
be the model data for your table is purely secondary.

Moreover, there are two distinct tables: yours (the original table view) and the UISearch‐
DisplayController’s (the search results table view). You own the former, just as you would
if no search were involved; you probably have a view controller that manages it, very
likely a UITableViewController whose tableView is this table. But the search results
table is a completely different table; you do not have a view controller managing it (the
UISearchDisplayController does), and in particular it is not your UITableView‐
Controller’s tableView. However, if you wish, you can make it look as if these are the
same table, by configuring the two tables and their cells the same way — typically, with
the same code.

To illustrate, we will implement a table view that is searchable through a UISearchBar
and that displays the results of that search in a second table view managed by a
UISearchDisplayController.

The first question is how to make the search field appear along with the table view.

One approach is to make the search field be the table view’s header view. Indeed, this is
such a common arrangement that, in the nib editor, if you drag a Search Bar and Search
Display Controller object onto a UITableView, the search field automatically becomes
the table’s header view and a UISearchDisplayController is created for you with all
properties hooked up appropriately through outlets, much as I just described.

It is more educational, however, to create the UISearchDisplayController and the
UISearchBar in code. So let’s do that. I’ll adapt my earlier example displaying the names
of states in a section-based table, so that it becomes searchable.

We already have a table managed by a UITableViewController. In viewDidLoad, we
create the search bar and slot it in as the table’s header view; we then load the data and

Table View Searching | 435

www.it-ebooks.info

http://www.it-ebooks.info/

scroll the header view out of sight. We also create the UISearchDisplayController and
tie it to the search bar — and to ourselves (the UITableViewController) as the UISearch‐
DisplayController’s controller, delegate, search table data source, and search table del‐
egate, as well as making ourselves the UISearchBar delegate. We also retain the
UISearchDisplayController by assigning it to a property, so that it doesn’t vanish in a
puff of smoke before we can use it:

UISearchBar* b = [UISearchBar new];
[b sizeToFit];
b.autocapitalizationType = UITextAutocapitalizationTypeNone;
b.delegate = self;
[self.tableView setTableHeaderView:b];
[self.tableView reloadData];
[self.tableView
 scrollToRowAtIndexPath:[NSIndexPath indexPathForRow:0 inSection:0]
 atScrollPosition:UITableViewScrollPositionTop animated:NO];
UISearchDisplayController* c =
 [[UISearchDisplayController alloc] initWithSearchBar:b
 contentsController:self];
self.sdc = c; // retain the UISearchDisplayController
c.delegate = self;
c.searchResultsDataSource = self;
c.searchResultsDelegate = self;

After the UISearchDisplayController is configured to use our view
controller (self) as its contentsController, it is also pointed to by
our view controller’s built-in searchDisplayController read-only
property. But that property does not retain it, as the documentation
misleadingly implies; you still need to assign it to a strong property of
your own.

Populating the search results table in response to what the user does in the UISearchBar
is up to us. The amazing thing is that this is almost working already, because we have
been fiendishly clever at the outset: the UITableViewController is both data source and
delegate for the original table view, as well as data source and delegate for the search
results table view, so by default the search results table will portray the same data as the
original table!

It isn’t quite working, however. We need to make a few tweaks.

As the UISearchDisplayController’s table view comes into existence, we get a delegate
message. This is the place to perform any initial configurations on the UISearch‐
DisplayController’s table view. For example, if my viewDidLoad is setting my table view’s
separator style to UITableViewCellSeparatorStyleNone, and if I want the two tables
to look identical, this would be the place to set the UISearchDisplayController’s table
view’s separator style to UITableViewCellSeparatorStyleNone as well. In this example,

436 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

I’ll take advantage of this moment to suppress display of headers in the search results
table:

-(void)searchDisplayController:(UISearchDisplayController *)controller
 didLoadSearchResultsTableView:(UITableView *)tableView {
 // configure search results table to look like our table
 tableView.sectionHeaderHeight = 0;
}

Next, let’s talk about where the search results table is going to get its cells. At present,
the original table gets its cells like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];

But when the search results table calls into this same delegate method, tableView will
be the search results table. That’s wrong. We don’t want to use cells from the search
results table; we want to use cells from the original table, so that they’ll be structured
like those of the original table. So we change tableView to self.tableView, referring
explicitly to our original table as the source of cells:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [self.tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];

Our search interface has now sprung to life! We can type in the search field, and a search
results table appears. It looks just like our original table, except that it has no sections.
The only problem is that the search bar itself is not doing anything. Instead of searching,
we’re displaying all the same data as the original table.

Clearly, we need to check whether the table view that’s talking to us is the search results
table view (this will be the UISearchDisplayController’s searchResultsTableView). If
it is, we want to limit our returned data with respect to the search bar’s text. The strategy
for doing this should be fairly obvious if we are maintaining our source data in a sensible
model.

Recall that our original table is displaying the names of the 50 United States, which it is
getting from a mutable array of mutable arrays of strings called sectionData. Let’s re‐
structure our responses to the Three Big Questions so that they refer to this array as
model, like this:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [self.sectionNames count];
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

Table View Searching | 437

www.it-ebooks.info

http://www.it-ebooks.info/

 NSArray* model = self.sectionData;
 return [model[section] count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [self.tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 NSArray* model = self.sectionData;
 NSString* s = model[indexPath.section][indexPath.row];
 cell.textLabel.text = s;
 return cell;
}

To implement searching, each time we speak of the NSArray called model, we will decide
whether it should be self.sectionData, as now, or whether it should be a different
array that is filtered with respect to the current search — let’s call it self.filtered-
SectionData. There are two occurrences of this line:

NSArray* model = self.sectionData;

They are now to be replaced by this:

NSArray* model =
 (tableView == self.sdc.searchResultsTableView) ?
 self.filteredSectionData : self.sectionData;

The remaining question is when and how this self.filteredSectionData array should
be calculated. An excellent approach, given our small and readily available data set, is
to generate a new set of search results every time the user types in the search field,
effectively implementing a “live” search (Figure 8-7). We are informed of the user typing
through a UISearchBar delegate method, searchBar:textDidChange:, so we imple‐
ment this to generate self.filteredSectionData freshly. There is no need to reload
the search results table’s data, as by default the UISearchDisplayController will do that
automatically:

- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {
 // this is the search criteria
 NSPredicate* p =
 [NSPredicate predicateWithBlock: ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 return ([s rangeOfString:searchText
 options:NSCaseInsensitiveSearch].location != NSNotFound);
 }];
 // generate filtered section data
 NSMutableArray* filteredData = [NSMutableArray new];
 // sectionData is an array of arrays; for every array...
 for (NSMutableArray* arr in self.sectionData) {
 // generate an array of strings passing the search criteria

438 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-7. Filtering a table with a search bar

 [filteredData addObject: [arr filteredArrayUsingPredicate:p]];
 }
 self.filteredSectionData = filteredData;
}

Our search interface is now working! In the rest of this section, I’ll discuss some addi‐
tional optional tweaks.

A UISearchBar can display scope buttons, letting the user alter the meaning of the
search. If you add these, then of course you must take them into account when filtering
the model data. For example, let’s have two scope buttons, “Starts With” and “Contains”:

UISearchBar* b = [UISearchBar new];
[b sizeToFit];
b.scopeButtonTitles = @[@"Starts With", @"Contains"];

Our filtering routine must now take the state of the scope buttons into account. More‐
over, the search results table view will reload when the user changes the scope; we can
detect this in another UISearchBar delegate method, searchBar:selectedScopeButton-
IndexDidChange:. If we’re doing a live search, we must respond by filtering the data
then as well. To prevent repetition, we’ll abstract the filtering routine into a method of
its own:

- (void) filterData: (UISearchBar*) sb {
 NSPredicate* p =
 [NSPredicate predicateWithBlock: ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 NSStringCompareOptions options = NSCaseInsensitiveSearch;
 if (sb.selectedScopeButtonIndex == 0)
 options |= NSAnchoredSearch;
 return ([s rangeOfString:sb.text
 options:options].location != NSNotFound);
 }];
 NSMutableArray* filteredData = [NSMutableArray new];
 for (NSMutableArray* arr in self.sectionData) {
 [filteredData addObject: [arr filteredArrayUsingPredicate:p]];
 }
 self.filteredSectionData = filteredData;

Table View Searching | 439

www.it-ebooks.info

http://www.it-ebooks.info/

}
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {
 [self filterData: searchBar];
}
- (void)searchBar:(UISearchBar *)searchBar
 selectedScopeButtonIndexDidChange:(NSInteger)selectedScope {
 [self filterData: searchBar];
}

In our original table, the search bar is initially scrolled out of sight. Let’s make it easier
for the user to discover its existence and summon it. In an indexed list — one with
sections and an index running down the right side — a “magnifying glass” search symbol
can be made to appear in the index by including UITableViewIndexSearch (usually as
the first item) in the string array returned from sectionIndexTitlesForTableView:.
The section names are already in an array called sectionNames:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 if (tableView != self.tableView)
 return nil;
 return [@[UITableViewIndexSearch]
 arrayByAddingObjectsFromArray:self.sectionNames];
}

The magnifying glass appears in the section index, but now there’s a bug: the corre‐
spondence between index entries and sections is off by one. To fix that, we need to
implement tableView:sectionForSectionIndexTitle:atIndex:. If the user taps on
or above the magnifying glass in the index, we scroll to reveal the search field (and we’ll
also have to return a bogus section number, but there is no penalty for that):

- (NSInteger)tableView:(UITableView *)tableView
 sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index {
 if (index == 0)
 [tableView scrollRectToVisible:tableView.tableHeaderView.frame
 animated:NO];
 return index-1;
}

Whenever the search results table becomes empty (because the search bar is nonempty
and self.filteredSectionData is nil), the words “No Results” appear in a label su‐
perimposed on it. I find this label incredibly obnoxious; yet, after all these years, Apple
still hasn’t granted programmers an official way to remove or customize it. Here’s an
unofficial way:

-(BOOL)searchDisplayController:(UISearchDisplayController *)controller
 shouldReloadTableForSearchString:(NSString *)searchString {
 dispatch_async(dispatch_get_main_queue(), ^{
 for (UIView* v in controller.searchResultsTableView.subviews) {
 if ([v isKindOfClass: [UILabel class]] &&
 [[(UILabel*)v text] isEqualToString:@"No Results"]) {

440 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

 [(UILabel*)v setText: @""];
 break;
 }
 }
 });
 return YES;
}

New in iOS 7, if our view controller (the UISearchDisplayController’s searchContents-
Controller) is the child of a UINavigationController, we can make the search bar appear
in the navigation bar. To do so, set the UISearchDisplayController’s displaysSearch-
BarInNavigationBar property to YES. If the UISearchDisplayController also has a
navigationItem, it is used instead of our view controller’s navigationItem to populate
the navigation bar.

This doesn’t mean that you can toggle displaysSearchBarInNavigationBar to make
a search bar appear and disappear in your navigation bar. On the contrary, the UISearch‐
DisplayController must be created early, and the search bar then will always be present
in the navigation bar for this view controller. However, you’re in a navigation interface,
so you can easily work around this limitation by navigating to and from the searchable
view controller.

Also, a search bar in a navigation bar can’t have scope buttons, and its Cancel button
doesn’t come and go automatically — either it is constantly present (because you set its
showsCancelButton to YES) or it never appears.

This example code is from our view controller’s viewDidLoad:

UISearchBar* b = [UISearchBar new];
b.delegate = self;
b.showsCancelButton = YES;
b.autocapitalizationType = UITextAutocapitalizationTypeNone;
UISearchDisplayController* c =
 [[UISearchDisplayController alloc] initWithSearchBar:b
 contentsController:self];
self.sdc = c; // retain the UISearchDisplayController
c.delegate = self;
c.searchResultsDataSource = self;
c.searchResultsDelegate = self;
c.displaysSearchBarInNavigationBar = YES;

The result is that our navigation bar’s title view is the search bar. The back bar button
item, if any, is shown, so the user can pop this view controller in the usual way. Any
other buttons you want to have appear in the navigation bar must added to the
UISearchDisplayController’s navigationItem (not the view controller’s navigation-
Item, which is ignored).

A UISearchBar has many properties through which its appearance can be configured;
I’ll discuss them in Chapter 12. Both the UISearchBar and UISearchDisplayController

Table View Searching | 441

www.it-ebooks.info

http://www.it-ebooks.info/

send their delegate numerous messages that you can take advantage of to customize
behavior; consult the documentation. A UISearchBar in a UIToolbar on the iPad can
display its results in a popover; I’ll talk about that in Chapter 9.

Table View Editing
A table view cell has a normal state and an editing state, according to its editing
property. The editing state is typically indicated visually by one or more of the following:
Editing controls

At least one editing control will usually appear, such as a Minus button (for deletion)
at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing control. If
there is no editing control, you can prevent a cell shifting its left end rightward in
editing mode with the table delegate’s tableView:shouldIndentWhileEditingRow-
AtIndexPath:. (There is also a cell property shouldIndentWhileEditing, but I find
it unreliable.)

Changing accessory view
The cell’s accessory view will change automatically in accordance with its editing-
AccessoryType or editingAccessoryView. If you assign neither, so that they are
nil, the cell’s existing accessory view will vanish when in editing mode.

As with selection, you could set a cell’s editing property directly (or use set-
Editing:animated: to get animation), but you are more likely to let the table view
manage editability. Table view editability is controlled through the table view’s editing
property, usually by sending the table the setEditing:animated: message. The table
is then responsible for putting its cells into edit mode.

A cell in edit mode can also be selected by the user if the table view’s allowsSelection-
DuringEditing or allowsMultipleSelectionDuringEditing is YES. But this would
be unusual.

Putting the table into edit mode is usually left up to the user. A typical interface would
be an Edit button that the user can tap. In a navigation interface, we might have our
view controller supply the button as the navigation item’s right button:

UIBarButtonItem* bbi =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemEdit
 target:self action:@selector(doEdit:)];
self.navigationItem.rightBarButtonItem = bbi;

Our action handler will be responsible for putting the table into edit mode, so in its
simplest form it might look like this:

442 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) doEdit: (id) sender {
 [self.tableView setEditing:YES animated:YES];
}

But that does not solve the problem of getting out of editing mode. The standard solution
is to have the Edit button replace itself by a Done button:

- (void) doEdit: (id) sender {
 int which;
 if (![self.tableView isEditing]) {
 [self.tableView setEditing:YES animated:YES];
 which = UIBarButtonSystemItemDone;
 } else {
 [self.tableView setEditing:NO animated:YES];
 which = UIBarButtonSystemItemEdit;
 }
 UIBarButtonItem* bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:which
 target:self action:@selector(doEdit:)];
 self.navigationItem.rightBarButtonItem = bbi;
}

However, it turns out that all of that is completely unnecessary! If we want standard
behavior, it’s already implemented for us. A UIViewController supplies an editButton-
Item that calls the UIViewController’s setEditing:animated: when tapped, tracks
whether we’re in edit mode with the UIViewController’s editing property, and changes
its own title accordingly (Edit or Done). Moreover, a UITableViewController’s imple‐
mentation of setEditing:animated: is to call setEditing:animated: on its table view.
Thus, if we’re using a UITableViewController, we get all of that behavior for free, just
by inserting the editButtonItem into our interface:

self.navigationItem.rightBarButtonItem = self.editButtonItem;

When the table view enters edit mode, it consults its data source and delegate about the
editability of individual rows:
tableView:canEditRowAtIndexPath: to the data source

The default is YES. The data source can return NO to prevent the given row from
entering edit mode.

tableView:editingStyleForRowAtIndexPath: to the delegate
Each standard editing style corresponds to a control that will appear in the cell. The
choices are:
UITableViewCellEditingStyleDelete

The cell shows a Minus button at its left end. The user can tap this to summon
a Delete button, which the user can then tap to confirm the deletion. This is
the default.

Table View Editing | 443

www.it-ebooks.info

http://www.it-ebooks.info/

UITableViewCellEditingStyleInsert

The cell shows a Plus button at its left end; this is usually taken to be an insert
button.

UITableViewCellEditingStyleNone

No editing control appears.

If the user taps an insert button (the Plus button) or a delete button (the Delete button
that appears after the user taps the Minus button), the data source is sent the table-
View:commitEditingStyle:forRowAtIndexPath: message and is responsible for obey‐
ing it. In your response, you will probably want to alter the structure of the table, and
UITableView methods for doing this are provided:

• insertRowsAtIndexPaths:withRowAnimation:

• deleteRowsAtIndexPaths:withRowAnimation:

• insertSections:withRowAnimation:

• deleteSections:withRowAnimation:

• moveSection:toSection:

• moveRowAtIndexPath:toIndexPath:

The row animations here are effectively the same ones discussed earlier in connection
with refreshing table data; “left” for an insertion means to slide in from the left, and for
a deletion it means to slide out to the left, and so on. The two “move” methods provide
animation with no provision for customizing it.

If you’re issuing more than one of these commands, you can combine them by sur‐
rounding them with beginUpdates and endUpdates, forming an updates block. An up‐
dates block combines not just the animations but the requested changes themselves.
This relieves you from having to worry about how a command is affected by earlier
commands in the same updates block; indeed, order of commands within an updates
block doesn’t really matter.

For example, if you delete row 1 of a certain section and then (in a separate command)
delete row 2 of the same section, you delete two successive rows, just as you would
expect; the notion “2” does not change its meaning because you deleted an earlier row
first, because you didn’t delete an earlier row first — the updates block combines the
commands for you, interpreting both index paths with respect to the state of the table
before any changes are made. If you perform insertions and deletions together in one
animation, the deletions are performed first, regardless of the order of your commands,
and the insertion row and section numbers refer to the state of the table after the
deletions.

444 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

An updates block can also include reloadRows... and reloadSections... commands
(but not reloadData).

I need hardly emphasize once again (but I will anyway) that view is not model. It is one
thing to rearrange the appearance of the table, another to alter the underlying data. It
is up to you to make certain you do both together. Do not, even for a moment, permit
the data and the view to get out of synch with each other. If you delete a row, remove
from the model the datum that it represents. The runtime will try to help you with error
messages if you forget to do this, but in the end the responsibility is yours. I’ll give
examples as we proceed.

Deleting Table Items
Deletion of table items is the default, so there’s not much for us to do in order to im‐
plement it. If our view controller is a UITableViewController and we’ve displayed the
Edit button as its navigation item’s right button, everything happens automatically: the
user taps the Edit button, the view controller’s setEditing:animated: is called, the table
view’s setEditing:animated: is called, and the cells all show the Minus button at the
left end. The user can then tap a Minus button; a Delete button is shown at the cell’s
right end. You can customize the Delete button’s title with the table delegate method
tableView:titleForDeleteConfirmationButtonForRowAtIndexPath:.

What is not automatic is the actual response to the Delete button. For that, we need to
implement tableView:commitEditingStyle:forRowAtIndexPath:. Typically, you’ll
remove the corresponding entry from the underlying model data, and you’ll call delete-
RowsAtIndexPaths:withRowAnimation: or deleteSections:withRowAnimation: to
update the appearance of the table. As I said a moment ago, you must delete the row or
section in such a way as to keep the table display coordinated with the model’s structure.
Otherwise, the app may crash (with an extremely helpful error message).

To illustrate, let’s suppose once again that the underlying model is a pair of parallel
arrays, a mutable array of strings (sectionNames) and a mutable array of arrays (section-
Data). Our approach will be in two stages:

1. Deal with the model data. We’ll delete the requested row; if this empties the section
array, we’ll also delete that section array and the corresponding section name.

2. Deal with the table’s appearance. If we deleted the section array, we’ll call delete-
Sections:withRowAnimation: (and reload the section index if there is one); other‐
wise, we’ll call deleteRowsAtIndexPaths:withRowAnimation::

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)ip {
 [self.sectionData[ip.section] removeObjectAtIndex:ip.row];
 if ([self.sectionData[ip.section] count] == 0) {

Table View Editing | 445

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.sectionData removeObjectAtIndex: ip.section];
 [self.sectionNames removeObjectAtIndex: ip.section];
 [tableView deleteSections:[NSIndexSet indexSetWithIndex: ip.section]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView reloadSectionIndexTitles];
 } else {
 [tableView deleteRowsAtIndexPaths:@[ip]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 }
}

The user can also delete a row by sliding it to the left to show its Delete button without
having explicitly entered edit mode; no other row is editable, and no other editing con‐
trols are shown. (In iOS 7, the table cell is itself inside a little horizontal scroll view; the
user is actually scrolling the cell to the left, revealing the Delete button behind it.) This
feature is implemented “for free” by virtue of our having supplied an implementation
of tableView:commitEditingStyle:forRowAtIndexPath:. If you’re like me, your first
response will be: “Thanks for the free functionality, Apple, and now how do I turn this
off?” Because the Edit button is already using the UIViewController’s editing property
to track edit mode, we can take advantage of this and refuse to let any cells be edited
unless the view controller is in edit mode:

- (UITableViewCellEditingStyle)tableView:(UITableView *)aTableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 return self.editing ?
 UITableViewCellEditingStyleDelete : UITableViewCellEditingStyleNone;
}

Editable Content in Table Items
A table item might have content that the user can edit directly, such as a UITextField
(Chapter 10). Because the user is working in the view, you need a way to reflect the user’s
changes into the model. This will probably involve putting yourself in contact with the
interface objects where the user does the editing.

To illustrate, I’ll implement a table view cell with a text field that is editable when the
cell is in editing mode. Imagine an app that maintains a list of names and phone num‐
bers. A name and phone number are displayed as a grouped style table, and they become
editable when the user taps the Edit button (Figure 8-8).

We don’t need a button at the left end of the cell when it’s being edited:

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 return UITableViewCellEditingStyleNone;
}

A UITextField is editable if its enabled is YES. To tie this to the cell’s editing state, it
is probably simplest to implement a custom UITableViewCell class. I’ll call it MyCell,

446 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-8. A simple phone directory app

and I’ll design it in the nib, giving it a single UITextField that’s pointed to through a
property called textField. In the code for MyCell, we override didTransitionTo-
State:, as follows:

- (void) didTransitionToState:(UITableViewCellStateMask)state {
 [super didTransitionToState:state];
 if (state == UITableViewCellStateEditingMask) {
 self.textField.enabled = YES;
 }
 if (state == UITableViewCellStateDefaultMask) {
 self.textField.enabled = NO;
 }
}

In the table’s data source, we make ourselves the text field’s delegate when we create and
configure the cell:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MyCell* cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 if (indexPath.section == 0)
 cell.textField.text = self.name;
 if (indexPath.section == 1) {
 cell.textField.text = self.numbers[indexPath.row];
 cell.textField.keyboardType = UIKeyboardTypeNumbersAndPunctuation;
 }
 cell.textField.delegate = self;
 return cell;
}

We are the UITextField’s delegate, so we are responsible for implementing the Return
button in the keyboard to dismiss the keyboard (I’ll talk more about this in Chapter 10):

Table View Editing | 447

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-9. Phone directory app in editing mode

- (BOOL)textFieldShouldReturn:(UITextField *)tf {
 [tf endEditing:YES];
 return NO;
}

When a text field stops editing, we are its delegate, so we can hear about it in textField-
DidEndEditing:. We work out which cell it belongs to, and update the model accord‐
ingly:

- (void)textFieldDidEndEditing:(UITextField *)tf {
 // some cell's text field has finished editing; which cell?
 UIView* v = tf;
 do {
 v = v.superview;
 } while (![v isKindOfClass: [UITableViewCell class]]);
 MyCell* cell = (MyCell*)v;
 // update data model to match
 NSIndexPath* ip = [self.tableView indexPathForCell:cell];
 if (ip.section == 1)
 self.numbers[ip.row] = cell.textField.text;
 else if (ip.section == 0)
 self.name = cell.textField.text;
}

Inserting Table Items
You are unlikely to attach a Plus (insert) button to every row. A more likely interface is
that when a table is edited, every row has a Minus button except the last row, which has
a Plus button; this shows the user that a new row can be appended at the end of the list.

Let’s implement this for phone numbers in our name-and-phone-number app, allowing
the user to give a person any quantity of phone numbers (Figure 8-9):

448 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1) {
 NSInteger ct =
 [self tableView:tableView numberOfRowsInSection:indexPath.section];
 if (ct-1 == indexPath.row)
 return UITableViewCellEditingStyleInsert;
 return UITableViewCellEditingStyleDelete;
 }
 return UITableViewCellEditingStyleNone;
}

The person’s name has no editing control (a person must have exactly one name), so we
prevent it from indenting in edit mode:

- (BOOL)tableView:(UITableView *)tableView
 shouldIndentWhileEditingRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1)
 return YES;
 return NO;
}

When the user taps an editing control, we must respond. We immediately force our text
fields to cease editing: the user have may tapped the editing control while editing, and
we want our model to contain the very latest changes, so this is effectively a way of
causing our textFieldDidEndEditing: to be called. The model for our phone numbers
is a mutable array of strings (self.numbers). We already know what to do when the
tapped control is a delete button; things are similar when it’s an insert button, but we’ve
a little more work to do. The new row will be empty, and it will be at the end of the table;
so we append an empty string to the self.numbers model array, and then we insert a
corresponding row at the end of the view. But now two successive rows have a Plus
button; the way to fix that is to reload the first of those rows. Finally, we also show the
keyboard for the new, empty phone number, so that the user can start editing it imme‐
diately; we do that outside the updates block:

- (void) tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 [tableView endEditing:YES];
 if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self.numbers addObject: @""];
 NSInteger ct = [self.numbers count];
 [tableView beginUpdates];
 [tableView insertRowsAtIndexPaths:
 @[[NSIndexPath indexPathForRow: ct-1 inSection:1]]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [self.tableView reloadRowsAtIndexPaths:
 @[[NSIndexPath indexPathForRow:ct-2 inSection:1]]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView endUpdates];
 // crucial that this next bit be *outside* the updates block

Table View Editing | 449

www.it-ebooks.info

http://www.it-ebooks.info/

 UITableViewCell* cell =
 [self.tableView cellForRowAtIndexPath:
 [NSIndexPath indexPathForRow:ct-1 inSection:1]];
 [((MyCell*)cell).textField becomeFirstResponder];
 }
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [self.numbers removeObjectAtIndex:indexPath.row];
 [tableView beginUpdates];
 [tableView deleteRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView reloadSections:[NSIndexSet indexSetWithIndex:1]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView endUpdates];
 }
}

Rearranging Table Items
If the data source implements tableView:moveRowAtIndexPath:toIndexPath:, the
table displays a reordering control at the right end of each row in editing mode
(Figure 8-9), and the user can drag it to rearrange table items. The reordering control
can be suppressed for individual table items by implementing tableView:canMoveRow-
AtIndexPath:. The user is free to move rows that display a reordering control, but the
delegate can limit where a row can be moved to by implementing tableView:target-
IndexPathForMoveFromRowAtIndexPath:toProposedIndexPath:.

To illustrate, we’ll add to our name-and-phone-number app the ability to rearrange
phone numbers. There must be multiple phone numbers to rearrange:

- (BOOL)tableView:(UITableView *)tableView
 canMoveRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1 && [self.numbers count] > 1)
 return YES;
 return NO;
}

A phone number must not be moved out of its section, so we implement the delegate
method to prevent this. We also take this opportunity to dismiss the keyboard if it is
showing.

- (NSIndexPath *)tableView:(UITableView *)tableView
 targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath*)sourceIndexPath
 toProposedIndexPath:(NSIndexPath*)proposedDestinationIndexPath {
 [tableView endEditing:YES];
 if (proposedDestinationIndexPath.section == 0)
 return [NSIndexPath indexPathForRow:0 inSection:1];
 return proposedDestinationIndexPath;
}

450 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

After the user moves an item, tableView:moveRowAtIndexPath:toIndexPath: is
called, and we trivially update the model to match. We also reload the table, to fix the
editing controls:

- (void)tableView:(UITableView *)tableView
 moveRowAtIndexPath:(NSIndexPath *)fromIndexPath
 toIndexPath:(NSIndexPath *)toIndexPath {
 NSString* s = self.numbers[fromIndexPath.row];
 [self.numbers removeObjectAtIndex: fromIndexPath.row];
 [self.numbers insertObject:s atIndex: toIndexPath.row];
 [tableView reloadData];
}

Dynamic Table Items
A table may be rearranged not just in response to the user working in edit mode, but
for some other reason entirely. In this way, many interesting and original interfaces are
possible.

In this example, we permit the user to double tap on a section header as a way of col‐
lapsing or expanding the section — that is, we’ll suppress or permit the display of the
rows of the section, with a nice animation as the change takes place. (This idea is
shamelessly stolen from a WWDC 2010 video.)

One more time, our data model consists of the two arrays, sectionNames and section-
Data. I’ve also got an NSMutableSet, hiddenSections, in which I’ll list the sections that
aren’t displaying their rows. That list is all I’ll need, since either a section is showing all
its rows or it’s showing none of them:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 if ([self.hiddenSections containsObject:@(section)])
 return 0;
 return [self.sectionData[section] count];
}

We need a correspondence between a section header and the number of its section. It’s
odd that UITableView doesn’t give us such a correspondence; it provides indexPathFor-
Cell:, but there is no sectionForHeaderFooterView:. My solution is to subclass UI‐
TableViewHeaderFooterView and give my subclass a public property section, to which
I assign the current section number whenever tableView:viewForHeaderInSection:
is called:

- (UIView *)tableView:(UITableView *)tableView
 viewForHeaderInSection:(NSInteger)section {
 MyHeaderView* h =
 [tableView dequeueReusableHeaderFooterViewWithIdentifier:@"Header"];

Table View Editing | 451

www.it-ebooks.info

http://www.it-ebooks.info/

 // ...
 h.section = section;
 return h;
}

The section headers are a UITableViewHeaderFooterView subclass with user-
InteractionEnabled set to YES and a UITapGestureRecognizer attached, so we can
detect a double tap. When the user double taps a section header, we learn from the
header what section this is; we also find out from the model how many rows this section
has, as we’ll need to know that later, regardless of whether we’re about to show or hide
rows. Then we look for the section number in our hiddenSections set. If it’s there, we’re
about to display the rows, so we remove that section number from hiddenSections;
now we work out the index paths of the rows we’re about to insert, and we insert them.
If it’s not there, we’re about to hide the rows, so we insert that section number into
hiddenSections; again, we work out the index paths of the rows we’re about to delete,
and we delete them:

- (void) tap: (UIGestureRecognizer*) g {
 UITableViewHeaderFooterView* v = (id)g.view;
 NSUInteger sec = v.section;
 NSUInteger ct = [(NSArray*)(self.sectionData)[sec] count];
 NSNumber* secnum = @(sec);
 if ([self.hiddenSections containsObject:secnum]) {
 [self.hiddenSections removeObject:secnum];
 [self.tableView beginUpdates];
 NSMutableArray* arr = [NSMutableArray array];
 for (int ix = 0; ix < ct; ix ++) {
 NSIndexPath* ip = [NSIndexPath indexPathForRow:ix inSection:sec];
 [arr addObject: ip];
 }
 [self.tableView insertRowsAtIndexPaths:arr
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [self.tableView endUpdates];
 [self.tableView scrollToRowAtIndexPath:[arr lastObject]
 atScrollPosition:UITableViewScrollPositionNone
 animated:YES];
 } else {
 [self.hiddenSections addObject:secnum];
 [self.tableView beginUpdates];
 NSMutableArray* arr = [NSMutableArray array];
 for (int ix = 0; ix < ct; ix ++) {
 NSIndexPath* ip = [NSIndexPath indexPathForRow:ix inSection:sec];
 [arr addObject: ip];
 }
 [self.tableView deleteRowsAtIndexPaths:arr
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [self.tableView endUpdates];
 }
}

452 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Table View Menus
A menu, in iOS, is a sort of balloon containing tappable words such as Copy, Cut, and
Paste. You can permit the user to display a menu from a table view cell by performing
a long press on the cell. The long press followed by display of the menu gives the cell a
selected appearance, but in iOS 7, the selected appearance goes away when the menu is
dismissed.

To allow the user to display a menu from a table view’s cells, you implement three
delegate methods:
tableView:shouldShowMenuForRowAtIndexPath:

Return YES if the user is to be permitted to summon a menu by performing a long
press on this cell.

tableView:canPerformAction:forRowAtIndexPath:withSender:

You’ll be called repeatedly with selectors for various actions that the system knows
about. Returning YES, regardless, causes the Copy, Cut, and Paste menu items to
appear in the menu, corresponding to the copy:, cut:, and paste: actions; return
NO to prevent the menu item for an action from appearing. The menu itself will
then appear unless you return NO to all three actions. The sender is the shared
UIMenuController, which I’ll discuss more in Chapter 10 and Chapter 26.

tableView:performAction:forRowAtIndexPath:withSender:

The user has tapped one of the menu items; your job is to respond to it somehow.

Here’s an example where the user can summon a Copy menu from any cell (Figure 8-10):

- (BOOL)tableView:(UITableView *)tableView
 shouldShowMenuForRowAtIndexPath:(NSIndexPath *)indexPath {
 return YES;
}
- (BOOL)tableView:(UITableView *)tableView canPerformAction:(SEL)action
 forRowAtIndexPath:(NSIndexPath *)indexPath withSender:(id)sender {
 return (action == NSSelectorFromString(@"copy:"));
}
- (void)tableView:(UITableView *)tableView performAction:(SEL)action
 forRowAtIndexPath:(NSIndexPath *)indexPath withSender:(id)sender {
 NSString* s = self.sectionData[indexPath.section][indexPath.row];
 if (action == NSSelectorFromString(@"copy:")) {
 // ... do whatever copying consists of ...
 }
}

To add a custom menu item to the menu (other than copy:, cut:, and paste:) is a little
more work. First, you must tell the shared UIMenuController to append the menu item
to the global menu; the tableView:shouldShowMenuForRowAtIndexPath: delegate
method is a good place to do this:

Table View Menus | 453

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-10. A table view cell with a menu

- (BOOL)tableView:(UITableView *)tableView
 shouldShowMenuForRowAtIndexPath:(NSIndexPath *)indexPath {
 // extra menu item
 UIMenuItem* mi =
 [[UIMenuItem alloc] initWithTitle:@"Abbrev"
 action:NSSelectorFromString(@"abbrev:")];
 [[UIMenuController sharedMenuController] setMenuItems:@[mi]];
 return YES;
}

We have now given the menu an additional menu item whose title is Abbrev, and whose
action when the menu item is tapped is abbrev:. (I am imagining here a table of the
names of U.S. states, where one can copy a state’s two-letter abbreviation to the clip‐
board.) If we want this menu item to appear in the menu, and if we want to respond to
it when the user taps it, we must add that selector to the two performAction: delegate
methods:

- (BOOL)tableView:(UITableView *)tableView canPerformAction:(SEL)action
 forRowAtIndexPath:(NSIndexPath *)indexPath withSender:(id)sender {
 return (action == NSSelectorFromString(@"copy:") ||
 action == NSSelectorFromString(@"abbrev:"));
}
- (void)tableView:(UITableView *)tableView performAction:(SEL)action
 forRowAtIndexPath:(NSIndexPath *)indexPath withSender:(id)sender {
 NSString* s = self.sectionData[indexPath.section][indexPath.row];
 if (action == NSSelectorFromString(@"copy:")) {
 // ... do whatever copying consists of ...
 NSLog(@"copying %@", s);
 }
 if (action == NSSelectorFromString(@"abbrev:")) {
 // ... do whatever abbreviating consists of ...
 NSLog(@"abbreviating %@", s);
 }
}

454 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Now comes the tricky part: we must implement our custom selector, abbrev:, in the
cell. We will therefore need our table to use a custom UITableViewCell subclass. Let’s
call it MyCell:

#import "MyCell.h"
@implementation MyCell
-(void)abbrev:(id)sender {
 // ...
}
@end

The Abbrev menu item now appears when the user long-presses a cell of our table, and
the cell’s abbrev: method is called when the user taps that menu item. We could respond
directly to the tap in the cell, but it seems more consistent that our table view delegate
should respond. So we work out what table view this cell belongs to and send its delegate
the very message it is already expecting:

-(void)abbrev:(id)sender {
 // find my table view
 UIView* v = self;
 do {
 v = v.superview;
 } while (![v isKindOfClass:[UITableView class]]);
 UITableView* tv = (UITableView*) v;
 // ask it what index path we are
 NSIndexPath* ip = [tv indexPathForCell:self];
 // talk to its delegate
 if (tv.delegate && [tv.delegate respondsToSelector:
 @selector(tableView:performAction:forRowAtIndexPath:withSender:)])
 [tv.delegate tableView:tv performAction:_cmd
 forRowAtIndexPath:ip withSender:sender];
}

Collection Views
A collection view (UICollectionView) is a UIScrollView subclass that generalizes the
notion of a UITableView. It has many similarities to a table view; indeed, knowing about
table views, you know a great deal about collection views already:

• Like a UITableView, you might well manage your UICollectionView through a
UIViewController subclass — a subclass of UICollectionViewController.

• Like a UITableView, a collection view has reusable cells. These are UICollection‐
ViewCell instances, and are extremely minimal.

• Like a UITableView, you’ll make the cells reusable by registering a class or nib with
the collection view, calling registerClass:forCellWithReuseIdentifier: or
registerNib:forCellWithReuseIdentifier:. Alternatively, if you’ve started with

Collection Views | 455

www.it-ebooks.info

http://www.it-ebooks.info/

a UICollectionViewController in a storyboard, just assign the reuse identifier in
the storyboard.

• Like a UITableView, a collection view has a data source (UICollectionViewData‐
Source) and a delegate (UICollectionViewDelegate), and it’s going to ask the data
source Three Big Questions:
— numberOfSectionsInCollectionView:

— collectionView:numberOfItemsInSection:

— collectionView:cellForItemAtIndexPath:

• Like a UITableView, to answer the third Big Question, your data source will supply
a cell by calling dequeueReusableCellWithReuseIdentifier:forIndexPath:.

• Like a UITableView, a collection view can clump its data into sections, identified by
section number. A section can have a header and footer, though the collection view
itself does not call them that; instead, it generalizes its subview types into cells, on
the one hand, and supplementary views, on the other. A supplementary view is just
a UICollectionReusableView, which happens to be UICollectionViewCell’s super‐
class. A supplementary view is associated with a kind, which is just an NSString
identifying its type; thus you can have a header as one kind, a footer as another
kind, and anything else you can imagine.
As with a UITableView, you make supplementary views reusable by registering a
class with the collection view, calling registerClass:forSupplementaryViewOf-
Kind:withReuseIdentifier: (or by entering a reuse identifier in a storyboard).
The data source method where you are asked for a supplementary view will be
collectionView:viewForSupplementaryElementOfKind:atIndexPath:. In it,
you’ll call dequeueReusableSupplementaryViewOfKind:withReuseIdentifier:
forIndexPath:. (The use of an indexPath: instead of a pure section number is
surprising; you’ll typically be interested only in the NSIndexPath’s section.)

• Like a UITableView, a collection view allows the user to select a cell, or multiple
cells. The delegate is notified of highlighting and selection just like a table view
delegate. Your code can rearrange the cells, inserting, moving, and deleting cells or
entire sections. If the delegate permits, the user can long-press a cell to produce a
menu.

The big difference between a table view and a collection view is how the collection view
lays out its elements (cells and supplementary views). A table view lays out its cells in
just one way: a vertically scrolling column, where the cells are the width of the table
view, the height dictated by the table view or the delegate, and touching one another. A
collection view doesn’t do that. In fact, a collection view doesn’t lay out its elements at
all! That job is left to another class, a subclass of UICollectionViewLayout.

456 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

A UICollectionViewLayout subclass instance is responsible for the overall layout of the
collection view that owns it. It does this by answering some Big Questions of its own,
posed by the collection view; the most important are these:
collectionViewContentSize

How big is the entire layout? The collection view needs to know this, because the
collection view is a scroll view (Chapter 7), and this will be the content size of the
scrollable material that it will display.

layoutAttributesForElementsInRect:

Where do all the elements go? The layout attributes, as I’ll explain in more detail
in a moment, are bundles of positional information.

To answer these questions, the collection view layout needs to ask the collection view
some questions of its own, such as numberOfSections and numberOfItemsIn-
Section:. (The collection view, in turn, gets the answers to those questions from its
data source.)

The collection view layout can thus assign the elements any positions it likes, and the
collection view will faithfully draw them in those positions within its content rectangle.
The elements are actually of three kinds:
Cells

These, as I’ve already said, are parallel to table view cells. The collection view learns
the position of each cell from its layout, and obtains the actual UICollectionView‐
Cell objects from its data source by calling collectionView:cellForItemAtIndex-
Path:.

Supplementary views
These represent the generalized notion of a header or footer. It is up to the collection
view layout to say what kinds of supplementary views it supports; it identifies each
kind by a string. For example, if it wants each section to be able to have a header
and a footer, it might call the kinds @"Header" and @"Footer". The collection view
learns the position of each supplementary view from its layout, and obtains the
actual UICollectionReusableView objects from its data source by calling
collectionView:viewForSupplementaryElementOfKind:atIndexPath:.

Decoration views
These are not directly analogous to anything in a table view (they are closest, per‐
haps, to the section index). They don’t represent data; the collection view won’t ask
the data source about them, and the collection view has no methods about them.
They are purely up to the collection view layout; it defines any decoration view
types, gives its decoration views actual view content, and states the positions its
decoration views are to have. I’ve never written or used a collection view layout that
implemented decoration views, and I’m not going to say any more about them.

Collection Views | 457

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-11. A collection view in my Latin flashcard app

The collection view layout can position its elements wherever it likes. That seems very
open-ended, and indeed it is. To get you started, there’s a built-in UICollectionView‐
Layout subclass — UICollectionViewFlowLayout.

UICollectionViewFlowLayout arranges its cells in something like a grid. The grid can
be scrolled either horizontally or vertically, so this grid is a series of rows or columns.
Through properties and a delegate protocol of its own (UICollectionViewDelegate‐
FlowLayout), the UICollectionViewFlowLayout instance lets you provide hints about
how big the cells are and how they should be spaced out. It defines two supplementary
view types, using them to let you give each section a header and a footer.

Figure 8-11 shows a collection view, laid out with a flow layout, from my Latin flashcard
app. This interface simply lists the chapters and lessons into which the flashcards them‐
selves are divided, and allows the user to jump to a desired lesson by tapping it. Previ‐
ously, I was using a table view to present this list; when collection views were introduced
(in iOS 6), I adopted one for this interface, and you can see why. Instead of a lesson item
like “1a” occupying an entire row that stretches the whole width of a table, it’s just a little
rectangle; in landscape orientation, the flow layout fits five of these rectangles onto a
line for me. So a collection view is a much more compact and appropriate way to present
this interface than a table view.

If UICollectionViewFlowLayout doesn’t quite meet your needs, you can subclass it, or
you can subclass UICollectionViewLayout itself. I’ll talk more about that later on.

458 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Collection View Classes
Here are the main classes associated with UICollectionView. This is just a conceptual
overview; I don’t recite all the properties and methods of each class, which you can learn
from the documentation:
UICollectionViewController

A UIViewController subclass. Like a table view controller, UICollectionViewCon‐
troller is convenient if a UICollectionView is to be a view controller’s view, but is
not required. It is the delegate and data source of its collectionView by default.
The initializer, if you create one in code, requires you to supply a layout instance
for the collection view’s designated initializer:

RootViewController* rvc =
 [[RootViewController alloc]
 initWithCollectionViewLayout:[UICollectionViewFlowLayout new]];

Alternatively, there is a Collection View Controller nib object.

UICollectionView
A UIScrollView subclass. It has a backgroundColor (because it’s a view) and op‐
tionally a backgroundView in front of that. Its designated initializer requires you to
supply a layout instance, which will be its collectionViewLayout. Alternatively,
there is a Collection View nib object, which comes with a Collection View Flow
Layout by default; you can change the collection view layout class with the Layout
pop-up menu in the Collection View’s Attributes inspector.

A collection view’s methods are very much parallel to those of a UITableView, only
fewer and simpler:

• Where a table view speaks of rows, a collection view speaks of items. UICol‐
lectionView even adds a category to NSIndexPath so that you can refer to its
item property instead of its row property.

• Where a table view speaks of a header or footer, a collection view speaks of a
supplementary view.

• A UICollectionView doesn’t do layout, so it is not where things like header and
cell size are configured.

• A UICollectionView has no notion of editing.
• A UICollectionView has no section index.
• Where a table view batches updates with beginUpdates and endUpdates, a

collection view uses performBatchUpdates:completion:, which takes blocks.
• A collection view performs animation when you insert, delete, or move sections

or items, but you don’t specify an animation type. (The layout can modify the
animation.)

Collection Views | 459

www.it-ebooks.info

http://www.it-ebooks.info/

Having made those mental adjustments, you can guess correctly all the methods of
a UICollectionView, except for a couple whose names begin with layout-
Attributes.... To understand what they do, you need to know about UICollec‐
tionViewLayoutAttributes.

UICollectionViewLayoutAttributes
A UICollectionViewLayoutAttributes object is basically just a glorified struct, tying
together an element’s index path within the collection view (indexPath) and the
specifications for how and where it should be drawn — specifications that are re‐
markably reminiscent of view or layer properties, with names like frame, center,
size, transform, and so forth. Layout attributes objects function as the mediators
between the layout and the collection view; they are what the layout passes to the
collection view to tell it where all the elements of the view should go.

UICollectionViewCell
An extremely minimal view class. It has a highlighted property and a selected
property. It has a contentView, a selectedBackgroundView, a backgroundView,
and of course (since it’s a view) a backgroundColor, layered in that order, just like
a table view cell; everything else is up to you.

If you start with a collection view controller in a storyboard, you get prototype cells,
just like a table view controller, which you obtain by dequeuing. Otherwise, you
obtain cells through registration and dequeuing. This is all exactly parallel to
UITableView.

UICollectionReusableView
The superclass of UICollectionViewCell — so it is even more minimal! This is the
class of supplementary views such as headers and footers. You obtain reusable views
through registration and dequeuing; if you’re using a flow layout in a storyboard,
you are given a header and footer prototype view.

UICollectionViewLayout
The layout workhorse class for a collection view. A collection view cannot exist
without a layout instance! As I’ve already said, the layout knows how much room
all the subviews occupy, and supplies the collectionViewContentSize that sets
the contentSize of the collection view, qua scroll view. In addition, the layout must
answer questions from the collection view, by supplying a UICollectionView‐
LayoutAttributes object, or an NSArray of such objects, saying where and how
elements should be drawn. These questions come in two categories:
Static attributes

The collection view wants to know the layout attributes of an item, supple‐
mentary view, or decoration view, specified by index path, or of all elements
within a given rect.

460 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic attributes
The collection view is inserting or removing elements. It asks for the layout
attributes that an element, specified by index path, should have before insertion
or after removal. The collection view can thus animate between the element’s
static attributes and these dynamic attributes. For example, if an element’s lay‐
out attributes alpha is 0 after removal, the element will appear to fade away as
it is removed.

The collection view also notifies the layout of pending changes through some
methods whose names start with prepare and finalize. This is another way for
the layout to participate in animations, or to perform other kinds of preparation
and cleanup.

UICollectionViewLayout is an abstract class; to use it, you must subclass it, or start
with the built-in subclass, UICollectionViewFlowLayout.

UICollectionViewFlowLayout
A concrete subclass of UICollectionViewLayout; you can use it as is, or you can
subclass it. It lays out items in a grid that can be scrolled either horizontally or
vertically, and it defines two supplementary element types to serve as the header
and footer of a section. A collection view in the nib editor has a Layout pop-up
menu that lets you choose a Flow layout, and you can configure the flow layout in
the Size inspector; in a storyboard, you can even add and design a header and a
footer.

A flow layout has a scroll direction, a sectionInset (the margins for a section), an
itemSize along with a minimumInteritemSpacing and minimumLineSpacing, and
a headerReferenceSize and footerReferenceSize. That’s all! At a minimum, if
you want to see any section headers, you must assign the flow layout a header-
ReferenceSize, because the default is {0,0}. Otherwise, you get initial defaults that
will at least allow you to see something immediately, such as an itemSize of {50,50}
and reasonable default spacing between items and lines.

UICollectionViewFlowLayout also defines a delegate protocol, UICollectionView‐
DelegateFlowLayout. The flow layout automatically treats the collection view’s del‐
egate as its own delegate. The section margins, item size, item spacing, line spacing,
and header and footer size can be set individually through this delegate.

Collection Views | 461

www.it-ebooks.info

http://www.it-ebooks.info/

Using a Collection View
To show that using a collection view is easy, here’s how the view shown in Figure 8-11
is created. I have a UICollectionViewController subclass, LessonListController. Every
collection view must have a layout, so LessonListController’s designated initializer in‐
itializes itself with a UICollectionViewFlowLayout:

- (id) initWithTerms: (NSArray*) data {
 UICollectionViewFlowLayout* layout = [UICollectionViewFlowLayout new];
 self = [super initWithCollectionViewLayout:layout];
 if (self) {
 // ... perform other self-initializations here ...
 }
 return self;
}

In viewDidLoad, we give the flow layout its hints about the sizes of the margins, cells,
and headers, as well as registering for cell and header reusability:

- (void)viewDidLoad {
 [super viewDidLoad];
 UICollectionViewFlowLayout* layout =
 (id)self.collectionView.collectionViewLayout;
 layout.sectionInset = UIEdgeInsetsMake(10, 20, 10, 20);
 layout.headerReferenceSize = CGSizeMake(0,40); // only height matters
 layout.itemSize = CGSizeMake(70,45);
 [self.collectionView
 registerNib:[UINib nibWithNibName:@"LessonCell" bundle:nil]
 forCellWithReuseIdentifier:@"LessonCell"];
 [self.collectionView
 registerClass:[UICollectionReusableView class]
 forSupplementaryViewOfKind:UICollectionElementKindSectionHeader
 withReuseIdentifier:@"LessonHeader"];
 self.collectionView.backgroundColor = [UIColor myGolden];
 // ...
}

The first two of the Three Big Questions to the data source are boring and familiar:

-(NSInteger)numberOfSectionsInCollectionView:
 (UICollectionView *)collectionView {
 return [self.sectionNames count];
}
-(NSInteger)collectionView:(UICollectionView *)collectionView
 numberOfItemsInSection:(NSInteger)section {
 return [self.sectionData[section] count];
}

The third of the Three Big Questions to the data source creates and configures the cells.
In a .xib file, I’ve designed the cell with a single subview, a UILabel with tag 1; if the text
of that label is still @"Label", this is a sign that the cell has come freshly minted from

462 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

the nib and needs further initial configuration. Among other things, I assign each new
cell a selectedBackgroundView and give the label a highlightedTextColor, to get an
automatic indication of selection:

- (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView
 cellForItemAtIndexPath:(NSIndexPath *)indexPath {
 UICollectionViewCell* cell =
 [collectionView dequeueReusableCellWithReuseIdentifier:@"LessonCell"
 forIndexPath:indexPath];
 UILabel* lab = (UILabel*)[cell viewWithTag:1];
 if ([lab.text isEqualToString:@"Label"]) {
 lab.highlightedTextColor = [UIColor whiteColor];
 cell.backgroundColor = [UIColor myPaler];
 cell.layer.borderColor = [UIColor brownColor].CGColor;
 cell.layer.borderWidth = 5;
 cell.layer.cornerRadius = 5;
 UIView* v = [UIView new];
 v.backgroundColor =
 [[UIColor blueColor] colorWithAlphaComponent:0.8];
 cell.selectedBackgroundView = v;
 }
 Term* term = self.sectionData[indexPath.section][indexPath.item];
 lab.text = term.lesson;
 return cell;
}

The fourth data source method asks for the supplementary element views; in my case,
these are the section headers. I haven’t bothered to design the header in a nib; instead,
I configure the entire thing in code. Again I distinguish between newly minted views
and reused views; the latter will already have a single subview, a UILabel:

-(UICollectionReusableView *)collectionView:(UICollectionView *)collectionView
 viewForSupplementaryElementOfKind:(NSString *)kind
 atIndexPath:(NSIndexPath *)indexPath {
 UICollectionReusableView* v =
 [collectionView
 dequeueReusableSupplementaryViewOfKind:
 UICollectionElementKindSectionHeader
 withReuseIdentifier:@"LessonHeader"
 forIndexPath:indexPath];
 if ([v.subviews count] == 0) { // no label? make one, configure
 UILabel* lab = [[UILabel alloc] initWithFrame:CGRectMake(10,0,100,40)];
 lab.font = [UIFont fontWithName:@"GillSans-Bold" size:20];
 lab.backgroundColor = [UIColor clearColor];
 [v addSubview:lab];
 v.backgroundColor = [UIColor blackColor];
 lab.textColor = [UIColor myPaler];
 }
 UILabel* lab = (UILabel*)v.subviews[0];
 lab.text = self.sectionNames[indexPath.section];
 return v;
}

Collection Views | 463

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see from Figure 8-11, the first section is treated specially — it has no header,
and its cell is wider. I take care of that with two UICollectionViewDelegateFlowLayout
methods:

- (CGSize)collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout*)collectionViewLayout
 sizeForItemAtIndexPath:(NSIndexPath *)indexPath {
 CGSize sz =
 ((UICollectionViewFlowLayout*)collectionViewLayout).itemSize;
 if (indexPath.section == 0)
 sz.width = 150;
 return sz;
}
- (CGSize)collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout*)collectionViewLayout
 referenceSizeForHeaderInSection:(NSInteger)section {
 CGSize sz =
 [(UICollectionViewFlowLayout*)collectionViewLayout)
 headerReferenceSize];
 if (section == 0)
 sz.height = 0;
 return sz;
}

When the user taps a cell, I hear about it through the delegate method collection-
View:didSelectItemAtIndexPath: and respond accordingly. That is the entire code
for managing this collection view!

Here’s an example of deleting cells in a collection view. Let’s assume that the cells to be
deleted have been selected, with multiple selection being possible. If there are selected
cells, they are provided as an array of NSIndexPaths. My data model is once again the
usual pair of parallel arrays, a mutable array of strings (sectionNames) and a mutable
array of arrays (sectionData); each NSIndexPath gets me directly to the corresponding
piece of data in sectionData, so I delete each piece of data in reverse order, keeping
track of any arrays (sections) that end up empty. Finally, I delete the items from the
collection view, and then do the same for the sections:

- (void) doDelete:(id)sender {
 // delete selected
 NSArray* arr = [self.collectionView indexPathsForSelectedItems];
 if (!arr || ![arr count])
 return;
 // sort, reverse, delete items from model, keep track of empty sections
 arr = [arr sortedArrayUsingSelector:@selector(compare:)];
 NSMutableIndexSet* empties = [NSMutableIndexSet indexSet];
 for (NSIndexPath* ip in [arr reverseObjectEnumerator]) {
 [self.sectionData[ip.section] removeObjectAtIndex:ip.item];
 if (![self.sectionData[ip.section] count])
 [empties addIndex:ip.section];
 }

464 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

 // delete items from view
 [self.collectionView performBatchUpdates:^{
 [self.collectionView deleteItemsAtIndexPaths:arr];
 } completion:^(BOOL finished) {
 // delete sections from model and then from view
 if ([empties count]) {
 [self.sectionNames removeObjectsAtIndexes:empties];
 [self.sectionData removeObjectsAtIndexes:empties];
 [self.collectionView deleteSections:empties];
 }
 }];
}

Menu handling is also completely parallel to a table view; if you want additional menu
items beyond the standard Copy, Cut, and Paste, the corresponding custom selectors
must be implemented in a UICollectionViewCell subclass.

Custom Collection View Layouts
To explore what’s involved in writing your own layout class, let’s introduce a simple
modification of UICollectionViewFlowLayout.

By default, the flow layout wants to full-justify every row of cells horizontally, spacing
the cells evenly between the left and right margins, except for the last row, which is left-
aligned. Let’s say that this isn’t what you want — you’d rather that every row be left-
aligned, with every cell as far to the left as possible given the size of the preceding cell
and the minimum spacing between cells.

To achieve this, you’ll need to subclass UICollectionViewFlowLayout and override two
methods, layoutAttributesForElementsInRect: and layoutAttributesForItemAt-
IndexPath:. Fortunately, we’re starting with a layout, UICollectionViewFlowLayout,
whose answers to these questions are almost right. So we call super and make modifi‐
cations as necessary.

The really important method here is layoutAttributesForItemAtIndexPath:, which
returns a single UICollectionViewLayoutAttributes object.

If the index path’s item is 0, we have a degenerate case: the answer we got from super
is right. Alternatively, if this cell is at the start of a row — we can find this out by asking
whether the left edge of its frame is close to the margin — we have another degenerate
case: the answer we got from super is right.

Otherwise, where this cell goes depends on where the previous cell goes, so we obtain
the frame of the previous cell recursively; we propose to position our left edge a minimal
spacing amount from the right edge of the previous cell. We do that by changing the
frame of the UICollectionViewLayoutAttributes object. Then we return that object:

Collection Views | 465

www.it-ebooks.info

http://www.it-ebooks.info/

- (UICollectionViewLayoutAttributes *)layoutAttributesForItemAtIndexPath:
 (NSIndexPath *)indexPath {
 UICollectionViewLayoutAttributes* atts =
 [super layoutAttributesForItemAtIndexPath:indexPath];
 if (indexPath.item == 0)
 return atts;
 if (atts.frame.origin.x - 1 <= self.sectionInset.left)
 return atts;
 NSIndexPath* ipPrev =
 [NSIndexPath indexPathForItem:indexPath.item-1
 inSection:indexPath.section];
 CGRect fPrev =
 [self layoutAttributesForItemAtIndexPath:ipPrev].frame;
 CGFloat rightPrev =
 fPrev.origin.x + fPrev.size.width + self.minimumInteritemSpacing;
 CGRect f = atts.frame;
 f.origin.x = rightPrev;
 atts.frame = f;
 return atts;
}

The other method, layoutAttributesForElementsInRect:, returns an NSArray of
UICollectionViewLayoutAttributes objects for all the cells and supplementary views in
a rect. Again we call super and modify the resulting array so that if an element is a cell,
its UICollectionViewLayoutAttributes is the result of our layoutAttributesForItem-
AtIndexPath::

- (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect {
 NSArray* arr = [super layoutAttributesForElementsInRect:rect];
 for (UICollectionViewLayoutAttributes* atts in arr) {
 if (nil == atts.representedElementKind) { // it's a cell
 NSIndexPath* ip = atts.indexPath;
 atts.frame =
 [self layoutAttributesForItemAtIndexPath:ip].frame;
 }
 }
 return arr;
}

Apple supplies some further interesting examples of subclassing UICollectionView‐
FlowLayout. For instance, the LineLayout example (accompanying the WWDC 2012
videos) implements a single row of horizontally scrolling cells, where a cell grows as it
approaches the center of the screen and shrinks as it moves away. To do this, it first of
all overrides a UICollectionViewLayout method I didn’t mention earlier, should-
InvalidateLayoutForBoundsChange:; this causes layout to happen repeatedly while
the collection view is scrolled. It then overrides layoutAttributesForElementsIn-
Rect: to do the same sort of thing I did a moment ago: it calls super and then modifies,
as needed, the transform3D property of the UICollectionViewLayoutAttributes for the
onscreen cells.

466 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

(It also overrides another UICollectionViewLayout method I didn’t mention, target-
ContentOffsetForProposedContentOffset:withScrollingVelocity:, which is like
UIScrollViewDelegate’s scrollViewWillEndDragging:withVelocity:targetContent-
Offset:. This is just a nice touch so that when the user scrolls, a cell always ends up
exactly centered on the screen.)

You can also subclass UICollectionViewLayout itself. The WWDC 2012 videos demon‐
strate a UICollectionViewLayout subclass that arranges its cells in a circle; the WWDC
2013 videos demonstrate a UICollectionViewLayout subclass that piles its cells into a
single stack in the center of the collection view, like a deck of cards seen from above.

A collection view layout can be powerful and complex, but getting started writing one
from scratch is not difficult. To illustrate, I’ll write a collection view layout that ignores
sections and presents all cells as a simple grid of squares.

In my UICollectionViewLayout subclass, called MyLayout, the really big questions I
need to answer are collectionViewContentSize and layoutAttributesForElements-
InRect:. To answer them, I’ll calculate the entire layout of my grid beforehand. The
prepareLayout method is the perfect place to do this; it is called every time something
about the collection view or its data changes. I’ll calculate the grid of cells and express
their positions as an array of UICollectionViewLayoutAttributes objects; I’ll store that
array in an instance variable _atts, and I’ll store the size of the grid in an instance
variable _sz:

-(void)prepareLayout {
 // how many items are there in total?
 int total = 0;
 NSInteger sections = [self.collectionView numberOfSections];
 for (int i = 0; i < sections; i++)
 total += [self.collectionView numberOfItemsInSection:i];
 // work out cell size based on bounds width
 CGSize sz = self.collectionView.bounds.size;
 CGFloat width = sz.width;
 int shortside = floor(width/50.0);
 CGFloat cellside = width/(float)shortside;
 // generate attributes for all cells
 int x = 0;
 int y = 0;
 NSMutableArray* atts = [NSMutableArray new];
 for (int i = 0; i < sections; i++) {
 int jj = [self.collectionView numberOfItemsInSection:i];
 for (int j = 0; j < jj; j++) {
 UICollectionViewLayoutAttributes* att =
 [UICollectionViewLayoutAttributes
 layoutAttributesForCellWithIndexPath:
 [NSIndexPath indexPathForItem:j
 inSection:i]];
 att.frame =
 CGRectMake(x*cellside,y*cellside,cellside,cellside);

Collection Views | 467

www.it-ebooks.info

http://www.it-ebooks.info/

 [atts addObject:att];
 x++;
 if (x >= shortside) {
 x = 0;
 y++;
 }
 }
 }
 self->_atts = atts;
 // generate overall grid size
 int fluff = (x == 0) ? 0 : 1;
 self->_sz = CGSizeMake(width, (y+fluff) * cellside);
}

collectionViewContentSize and layoutAttributesForElementsInRect: are obvi‐
ous: I’ll just return the _sz or _atts instance variable, respectively. I’m ignoring the
rect: parameter in layoutAttributesForElementsInRect:, as there is no efficiency
to be gained by limiting myself to it; I have the entire array of UICollectionView‐
LayoutAttributes objects ready, so it is simplest and quickest to provide a pointer to it:

- (CGSize)collectionViewContentSize {
 return self->_sz;
}
- (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect {
 return self->_atts;
}

layoutAttributesForItemAtIndexPath: is implemented by looking up the corre‐
sponding value in my _atts array:

- (UICollectionViewLayoutAttributes*)layoutAttributesForItemAtIndexPath:
 (NSIndexPath *)indexPath {
 for (UICollectionViewLayoutAttributes* att in self->_atts) {
 if ([att.indexPath isEqual:indexPath])
 return att;
 }
 return nil; // shouldn't happen
}

Finally, I implement shouldInvalidateLayoutForBoundsChange: to return YES, so
that if the interface is rotated, my prepareLayout will be called again to recalculate the
grid. There’s a potential source of inefficiency here: the user scrolling the collection view
counts as a bounds change as well. Therefore I return NO unless the bounds width has
changed:

-(BOOL)shouldInvalidateLayoutForBoundsChange:(CGRect)newBounds {
 return newBounds.size.width != self->_sz.width;
}

468 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

Switching Layouts
An astonishing and delightful feature of a collection view is that its layout object can be
swapped out on the fly. You can substitute one layout for another, by calling set-
CollectionViewLayout:animated:completion:. The data hasn’t changed, and the col‐
lection view can identify each element uniquely and persistently, so it responds by
moving every element from its position according to the old layout to its position
according to the new layout — and, if the animated: argument is YES, it does this with
animation! Thus the elements are seen to rearrange themselves, as if by magic.

New in iOS 7, this animated change of layout can be driven interactively (in response,
for example, to a user gesture; compare Chapter 6 on interactive transitions). You call
startInteractiveTransitionToCollectionViewLayout:completion: on the collec‐
tion view, and a special layout object is returned — a UICollectionViewTransitionLayout
instance (or a subclass thereof; to make it a subclass, you need to have implemented
collectionView:transitionLayoutForOldLayout:newLayout: in your collection
view delegate). This transition layout is temporarily made the collection view’s layout,
and your job is then to keep it apprised of the transition’s progress (through its
transitionProgress property) and ultimately to call finishInteractive-

Transition or cancelInteractiveTransition on the collection view.

Furthermore, also new in iOS 7, when one collection view controller is pushed on top
of another in a navigation interface, the runtime will do exactly the same thing for you,
as a custom view controller transition (again, compare Chapter 6). To arrange this, the
first collection view controller’s useLayoutToLayoutNavigationTransitions property
must be NO and the second collection view controller’s useLayoutToLayoutNavigation-
Transitions property must be YES. The result is that when the second collection view
controller is pushed onto the navigation controller, the collection view remains in
place, and the layout specified by the second collection view controller is substituted for
the collection view’s existing layout, with animation.

The effect, as the second collection view controller is pushed onto the navigation stack,
is conceptually rather unsettling. Although there are two collection view controllers,
and although the second view controller has a view (the collection view), and its view-
DidLoad and viewWillAppear: (as well as the first view controller’s viewWill-
Disappear:) are called as you would expect, the same collection view is also still the
first view controller’s view, and the collection view’s data source and delegate are still
the first view controller. Later, after the transition is complete, the collection view’s
delegate becomes the second view controller, but its data source is still the first view
controller. I find this profoundly weird.

Collection Views | 469

www.it-ebooks.info

http://www.it-ebooks.info/

Collection Views and UIKit Dynamics
The UICollectionViewLayoutAttributes class adopts the UIDynamicItem protocol (see
Chapter 4). Thus, collection view elements can be animated under UIKit dynamics. The
world of the animator here is not a superview but the layout itself; instead of initWith-
ReferenceView:, you’ll create the UIDynamicAnimator with initWithCollection-
ViewLayout:. The layout’s collectionViewContentSize determines the bounds of this
world. Convenience methods are provided so that your code can access an animated
collection view item’s layout attributes directly from the animator.

You’ll need a custom collection view layout subclass, because otherwise you won’t be
able to see any animation. On every frame of its animation, the UIDynamicAnimator
is going to change the layout attributes of some items, but the collection view is still
going to draw those items in accordance with the layout’s layoutAttributesFor-
ElementsInRect:. The simplest solution is to override layoutAttributesForElements-
InRect: so as to obtain those layout attributes from the UIDynamicAnimator. This
cooperation will be easiest if the layout itself owns and configures the animator.

In this example, we’re in the layout subclass, setting up the animation. The layout sub‐
class has a property to hold the animator, as well as a BOOL property to signal when an
animation is in progress:

UIDynamicAnimator* anim =
 [[UIDynamicAnimator alloc] initWithCollectionViewLayout:self];
self.animator = anim;
self.animating = YES;
// ... configure rest of animation ...

Our implementation of layoutAttributesForElementsInRect:, if we are animating,
substitutes the layout attributes that come from the animator for those we would nor‐
mally return; the technique I use here relies on the fact that the animator convenience
methods layoutAttributesForCellAtIndexPath: and so forth return nil if the speci‐
fied item is not being animated. In this particular example, both cells and supplementary
items (headers and footers) can be animated, so the two cases have to be distinguished:

- (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect {
 NSArray* arr = [super layoutAttributesForElementsInRect:rect];
 if (self.animating) {
 NSMutableArray* marr = [NSMutableArray new];
 for (UICollectionViewLayoutAttributes* atts in arr) {
 NSIndexPath* path = atts.indexPath;
 UICollectionViewLayoutAttributes* atts2 = nil;
 switch (atts.representedElementCategory) {
 case UICollectionElementCategoryCell: {
 atts2 =
 [self.animator
 layoutAttributesForCellAtIndexPath:path];
 break;

470 | Chapter 8: Table Views and Collection Views

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 case UICollectionElementCategorySupplementaryView: {
 NSString* kind = atts.representedElementKind;
 atts2 =
 [self.animator
 layoutAttributesForSupplementaryViewOfKind:kind
 atIndexPath:path];
 break;
 }
 default:
 break;
 }
 [marr addObject: (atts2 ? atts2 : atts)];
 }
 return marr;
 }
 return arr;
}

Collection Views | 471

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Popovers and Split Views

Popovers and split views are forms of interface that exist only on the iPad.

A popover (managed by a UIPopoverController) is a sort of secondary window or dialog:
it displays a view layered on top of the main interface. It is usually associated, through
a sort of arrow, with a view in the main interface — usually the button that the user
tapped to summon the popover. In iOS 7, the popover dims out the rest of the screen,
like a presented view whose presentation mode is UIModalPresentationPageSheet or
UIModalPresentationFormSheet (see Chapter 6). It might be effectively modal, pre‐
venting the user from working in the rest of the interface; alternatively, it might vanish
if the user taps outside it.

A popover, in effect, superimposes a roughly iPhone-sized screen on top of the iPad
screen, and is useful in part precisely because it brings to the larger iPad the smaller,
more lightweight flavor of the iPhone. For example, in my LinkSame app, both the
settings view (where the user configures the game) and the help view (which describes
how to play the game) are popovers (Figure 9-1). On the iPhone, both these views would
occupy the entire screen; for each, we’d need a way to navigate to it, and then the user
would have to return to the main interface afterward. But with the larger iPad screen,
neither view is large enough, or important enough, to occupy the entire screen exclu‐
sively; the user can summon them without leaving the main interface. As popovers, they
are characterized as smaller, secondary views which the user summons temporarily and
then dismisses.

A split view (managed by a UISplitViewController) is a combination of two views, the
first having the width of an iPhone screen in portrait orientation. When the iPad is in
landscape orientation, the two views appear side by side. When the iPad is in portrait
orientation, there are two possibilities:

473

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-1. Two popovers

• Both views continue to appear side by side; the second view is narrower than it is
in landscape orientation, because the screen is narrower. Apple’s Settings app is an
example.

• Only the second view appears, with an option to summon the first view by tapping
a bar button item (or, optionally, by swiping to the right). When the first view is
summoned in this way, it is a popover, although, since iOS 5.1, it hasn’t looked like
one — it has no arrow, its height is the full height of the screen, and it appears and
disappears by sliding. Apple’s Mail app is an example (Figure 9-2).

Like popovers, a split view may be regarded as an evolutionary link between the smaller
iPhone interface and the larger iPad interface. On the iPhone, you might have a master–
detail architecture in a navigation interface, where the master view is a table view, and
the detail view is a completely different view pushed onto the navigation stack in place
of the master view (Chapter 8). On the iPad, the large screen can accommodate the
master view and the detail view simultaneously; the split view is a built-in way to do
that. It is no coincidence that the Master–Detail Application template in Xcode generates
a navigation interface for the iPhone and a split view for the iPad.

474 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-2. A familiar split view interface

Before iOS 5, UISplitViewController was the only legal way in which a single view
controller could display the views of two child view controllers side by side. Nowadays,
you are free to design your own custom parent view controllers (Chapter 6), so UISplit‐
ViewController is of diminished value. Nevertheless, it’s built-in and easy to use.

Preparing a Popover
Before you can display a popover, you’ll need a UIPopoverController, along with a view
controller (UIViewController) whose view the popover will contain. UIPopover‐
Controller is not a UIViewController subclass! The view controller is the UIPopover‐
Controller’s contentViewController. You’ll set this property initially through
UIPopoverController’s designated initializer, initWithContentViewController:. Sub‐
sequently, if you like, you can swap out a popover controller’s view controller (and hence
its contained view) by calling setContentViewController:animated:.

Here’s how the UIPopoverController for the first popover in Figure 9-1 gets its content.
I have a UIViewController subclass, NewGameController. NewGameController’s view
contains a grouped table (whose code I showed you in Chapter 8) and a UIPickerView
(see Chapter 12), and is itself the data source and delegate for both. I instantiate New‐
GameController and use this instance as the root view controller of a UINavigation‐
Controller, giving its navigationItem a Done leftBarButtonItem and a Cancel right-
BarButtonItem. (I don’t really intend to do any navigation, but the navigation control‐
ler’s navigation bar is a convenient way of adding the two buttons to the interface.) The
UINavigationController then becomes a UIPopoverController’s view controller:

Preparing a Popover | 475

www.it-ebooks.info

http://www.it-ebooks.info/

NewGameController* dlg = [NewGameController new];
UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemCancel
 target: self
 action: @selector(cancelNewGame:)];
dlg.navigationItem.rightBarButtonItem = b;
b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemDone
 target: self
 action: @selector(saveNewGame:)];
dlg.navigationItem.leftBarButtonItem = b;
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:dlg];
UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nav];

That code doesn’t cause the popover to appear on the screen! I’ll come to that in the
next section. Observe also that I have done nothing as yet about retaining the
UIPopoverController; if I fail to do that, it will vanish in a puff of smoke. I’ll talk about
that in the next section as well.

Popover Size
The popover controller also needs to know the size of the view it is to display, which
will determine the size of the popover. You can provide the popover size in one of two
ways:
UIPopoverController’s popoverContentSize property

This property can be set before the popover appears; it can also be changed while
the popover is showing, with setPopoverContentSize:animated:.

UIViewController’s preferredContentSize property
The UIViewController in question is the UIPopoverController’s contentView-
Controller (or is contained by that view controller, as in a tab bar interface or
navigation interface). This approach often makes more sense, because a UIView‐
Controller will generally know its own view’s ideal size. If a view controller is to be
instantiated from a nib, this value can be set in the Attributes inspector.

(This property is new in iOS 7, and replaces the older contentSizeForViewIn-
Popover property, which is now deprecated.)

The default popover size is {320,480} (the size of an original iPhone screen); the doc‐
umentation suggests that a maximum width of 600 is permitted — the second popover
in Figure 9-1 adopts this width — but in fact there doesn’t seem to be any penalty for
using a larger width. The popover’s size is automatically restricted, however, based on
the amount of screen space actually available, and your view may need to be prepared
(through autoresizing or constraints) for the possibility that it won’t be shown at the
size you requested.

476 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

In the case of the first popover in Figure 9-1, the NewGameController sets its own
preferredContentSize in viewDidLoad, based on the size of its main view as it comes
from the nib:

self.preferredContentSize = self.view.bounds.size;

The popover itself, however, will need to be somewhat taller, because the NewGame‐
Controller is embedded in a UINavigationController, whose navigation bar occupies
additional vertical space. Delightfully, the UINavigationController takes care of that
automatically; its own preferredContentSize adds the necessary height.

If the UIPopoverController and the UIViewController have different settings for their
respective content size properties at the time the popover is initially displayed, the
UIPopoverController’s setting wins. But once the popover is visible, if either property
is changed (not merely set to the value it already has), the change is obeyed; if the
UIViewController’s preferredContentSize is changed, the UIPopoverController
adopts that value as its popoverContentSize and the popover’s size is adjusted accord‐
ingly (with animation).

If a popover’s contentViewController is a UINavigationController, and a view con‐
troller is pushed onto or popped off of its stack, then if the new current view controller’s
preferredContentSize differs from that of the previously displayed view controller,
my experiments suggest that the popover’s width will change to match the new width,
but the popover’s height will change only if the new height is taller. This feels like a bug.
A possible workaround is to implement the UINavigationController’s delegate method
navigationController:didShowViewController:animated:, so as to set the naviga‐
tion controller’s preferredContentSize explicitly:

- (void)navigationController:(UINavigationController *)navigationController
 didShowViewController:(UIViewController *)viewController
 animated:(BOOL)animated {
 navigationController.preferredContentSize =
 viewController.preferredContentSize;
}

The result is still cosmetically disturbing, however, and it is probably better not to do
that sort of thing in the first place.

Popover Appearance Customization
By default, a popover controller in iOS 7 takes charge of the background color of its
view controller’s view, including the navigation bar in a navigation interface. You can
see this in Figure 9-1; the first popover, along with its navigation bar, has automatically
adopted a somewhat transparent cream color that is apparently derived somehow from
the color of what’s behind it.

Preparing a Popover | 477

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-3. A very silly popover

If you don’t want this automatic background color and transparency, you can set the
popover controller’s backgroundColor (new in iOS 7). You can change the navigation
bar’s color separately, and customize the position and appearance of the navigation bar’s
bar button items; see Chapter 12.

You can also customize the outside of the popover — that is, the “frame” surrounding
the content, along with the arrow that points to the button that summoned it. To do so,
you set the UIPopoverController’s popoverBackgroundViewClass to your own subclass
of UIPopoverBackgroundView (a UIView subclass) — at which point you can achieve
just about anything you want, including the very silly popover shown in Figure 9-3.

Configuring your UIPopoverBackgroundView subclass is a bit tricky, because this single
view is responsible for drawing both the arrow and the frame. Thus, in a complete and
correct implementation, you’ll have to draw differently depending on the arrow direc‐
tion, which you can learn from the UIPopoverBackgroundView’s arrowDirection
property; it will be one of the following:

• UIPopoverArrowDirectionUp, UIPopoverArrowDirectionDown
• UIPopoverArrowDirectionLeft, UIPopoverArrowDirectionRight

I’ll give a simplified example in which I cheat by assuming that (as in Figure 9-3) the
arrow direction will be UIPopoverArrowDirectionUp. Drawing the frame is easy: here,
I divide the view’s overall rect into two areas, the arrow area on top (its height is a

478 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

#defined constant, ARHEIGHT) and the frame area on the bottom, and I draw the frame
into the bottom area as a resizable image (Chapter 2):

UIImage* linOrig = [UIImage imageNamed: @"linen.png"];
CGFloat capw = linOrig.size.width / 2.0 - 1;
CGFloat caph = linOrig.size.height / 2.0 - 1;
UIImage* lin = [linOrig
 resizableImageWithCapInsets:UIEdgeInsetsMake(caph, capw, caph, capw)
 resizingMode:UIImageResizingModeTile];
// ... draw arrow here ...
CGRect arrow;
CGRect body;
CGRectDivide(rect, &arrow, &body, ARHEIGHT, CGRectMinYEdge);
[lin drawInRect:body];

I omitted the drawing of the arrow; now let’s insert it. The UIPopoverBackgroundView
has arrowHeight and arrowBase class methods that you’ve overridden to describe the
arrow dimensions to the runtime. (In my code, their values are provided by two
#defined constants, ARHEIGHT and ARBASE; I’ve set them both to 20.) My arrow will
consist simply of a texture-filled isosceles triangle, with an excess base consisting of a
rectangle joining it to the frame. The UIPopoverBackgroundView also has an arrow-
Offset property that the runtime has set to tell you where to draw the arrow: this offset
measures the positive distance between the center of the view’s edge and the center of
the arrow. However, the runtime will have no hesitation in setting the arrowOffset all
the way at the edge of the view, or even beyond its bounds (in which case it won’t be
drawn); to prevent this, I provide a maximum offset limit:

CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSaveGState(con);
CGFloat proposedX = self.arrowOffset;
CGFloat limit = 22.0;
CGFloat maxX = rect.size.width/2.0 - limit;
if (proposedX > maxX)
 proposedX = maxX;
if (proposedX < limit)
 proposedX = limit;
CGContextTranslateCTM(con, rect.size.width/2.0 + proposedX - ARBASE/2.0, 0);
CGContextMoveToPoint(con, 0, ARHEIGHT);
CGContextAddLineToPoint(con, ARBASE / 2.0, 0);
CGContextAddLineToPoint(con, ARBASE, ARHEIGHT);
CGContextClosePath(con);
CGContextAddRect(con, CGRectMake(0,ARHEIGHT,ARBASE,15));
CGContextClip(con);
[lin drawAtPoint:CGPointMake(-40,-40)];
CGContextRestoreGState(con);

The thickness of the four sides of the frame is dictated by implementing the content-
ViewInsets class method.

Preparing a Popover | 479

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning and Dismissing a Popover
A popover is made to appear onscreen by sending a UIPopoverController one of the
following messages (and the UIPopoverController’s popoverVisible property then be‐
comes YES):

• presentPopoverFromRect:inView:permittedArrowDirections:animated:

• presentPopoverFromBarButtonItem:permittedArrowDirections:animated:

The difference between the two methods lies in how you specify the region to which
the popover’s arrow will point. With the first method, you can provide any CGRect with
respect to any visible UIView’s coordinate system; for example, to make the popover
emanate from a UIButton, you could provide the UIButton’s frame with respect to its
superview, or (better) the UIButton’s bounds with respect to itself. But you can’t do that
with a UIBarButtonItem, because a UIBarButtonItem isn’t a UIView and doesn’t have
a frame or bounds; hence the second method is provided.

The permitted arrow directions restrict which sides of the popover the arrow can appear
on. It’s a bitmask, and your choices are:

• UIPopoverArrowDirectionUp, UIPopoverArrowDirectionDown
• UIPopoverArrowDirectionLeft, UIPopoverArrowDirectionRight
• UIPopoverArrowDirectionAny

Usually, you’d specify UIPopoverArrowDirectionAny, allowing the runtime to put the
arrow on whatever side it feels is appropriate.

Even if you specify a particular arrow direction, you still have no precise control over a
popover’s location. However, you do get some veto power: set the UIPopoverController’s
popoverLayoutMargins beforehand to a UIEdgeInsets stating the margins, with respect
to the root view bounds, within which the popover must appear. If the inset that you
give is so large that the arrow can no longer touch the presenting rect, it may be ignored,
or the arrow may become disconnected from its presenting rect; you probably shouldn’t
do that.

Popover Segues
If you’re using a storyboard, you can draw (Control-drag) a segue from the button that
is to summon the popover to the view controller that is to be the UIPopoverController’s
contentViewController and specify “popover” as the segue type. The result is a popover
segue.

A popover segue, when it is triggered, will be an instance of UIStoryboardPopoverSegue.
This is a subclass of UIStoryboardSegue, and it has a popoverController property. The

480 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

segue, as it is triggered, creates the UIPopoverController for you, and initializes it with
the contentViewController you specified by drawing the segue in the first place. You
can then retrieve this UIPopoverController as the segue’s popoverController in your
implementation of prepareForSegue:sender:. The triggered segue also presents the
popover for you, calling the version of presentPopover... appropriate to the type of
object at the source of the segue (a normal button or a bar button item).

I must warn you that I do not recommend creation of a popover controller using this
approach. If you prefer using a storyboard rather a .xib file, you can certainly configure
the view controller in a storyboard, but then I recommend that you instantiate it as
needed by calling instantiateViewControllerWithIdentifier:. In any case, I suggest
that you create and configure the popover controller, and summon the popover itself,
entirely in code, avoiding popover segues; they are simple, but they can easily become
more trouble than they are worth, and for any serious use they won’t represent any
savings over popover creation in code.

Managing a Popover Controller
Unlike a presented view controller or a child view controller, a UIPopoverController
instance that you create in code is not automatically retained for you by some presenting
view controller or parent view controller just because you have displayed its popover.
You must retain it yourself. If you fail to do so, then if the UIPopoverController goes
out of existence while its popover is on the screen, your app will crash (with a helpful
message: “-[UIPopoverController dealloc] reached while popover is still visible”).

In any case, you might need the retained reference to the UIPopoverController later,
when the time comes to dismiss the popover. Indeed, the entire question of how you
want and expect this popover to be dismissed can require some careful planning, as I’ll
explain further in a moment. There are actually two ways in which a popover can be
dismissed:
The user can tap outside the popover

The user will have a natural expectation of being able to do this. As I’ll explain,
however, you can configure exactly where a tap outside the popover will have the
effect of dismissing it.

You can explicitly dismiss the popover, in code
In order to dismiss the popover explicitly, you send its UIPopoverController the
dismissPopoverAnimated: message. (That’s what I do with the first popover in
Figure 9-1 when the user taps the Done button or the Cancel button.) Obviously,
then, you need a reference to the UIPopoverController!

Even if a popover is normally dismissed automatically by the user tapping outside it,
you still might want to dismiss it explicitly sometimes — so you still might need a ref‐
erence to the popover controller.

Summoning and Dismissing a Popover | 481

www.it-ebooks.info

http://www.it-ebooks.info/

A UIPopoverController that is created automatically by triggering a UIStoryboard‐
PopoverSegue, on the other hand, does not have to be retained by your code; the segue,
which is itself retained by the runtime, retains the popover controller. Nevertheless, as
I’ve just said, you still might need a reference to the popover controller, in order to
dismiss it later.

The obvious solution is an instance variable or property with a strong (retain) policy.
In the case where you create the popover controller explicitly, you should immediately
assign it to such a property, so that it will persist as long as the popover is showing. In
the case where the popover controller is created for you by a segue, you should imple‐
ment prepareForSegue:sender: to grab a reference to the segue’s popover-

Controller and assign it to the property.

If, over the lifetime of the app, we’re going to be displaying more than one popover, how
many UIPopoverController properties do we need? In my view, one is enough. A well-
behaved app, in accordance with Apple’s interface guidelines, is never going to display
more than one popover simultaneously. Thus, this one property can be handed a ref‐
erence to the current popover controller each time we present a popover; using that
reference, we will be able later to dismiss the current popover. In fact, I usually call this
property something like currentPop.

Dismissing a Popover
In my earlier discussion of preparing a popover, I omitted one of the most important
aspects of popover configuration — whether, and to what extent, the user is to be per‐
mitted to operate outside the popover without automatically dismissing it. Two prop‐
erties are involved in determining this:
UIPopoverController’s passthroughViews property

This is an array of views in the interface behind the popover; the user can interact
normally with these views while the popover is showing, and the popover will not
be dismissed. What happens if the user taps a view that is not listed in the
passthroughViews array depends on the modalInPopover property.

UIViewController’s modalInPopover property
If this is YES for the popover controller’s view controller (or for its current child
view controller, as in a tab bar interface or navigation interface), then if the user
taps outside the popover on a view not listed in the popover controller’s
passthroughViews, nothing at all happens (the popover is not dismissed).

If it is NO (the default), then if the user taps outside the popover on a view not listed
in the popover controller’s passthroughViews, the view tapped on is unaffected,
and the popover is dismissed.

482 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

The claim made by the documentation (and by some earlier editions
of this book), that modalInPopover prevents all user interaction out‐
side a popover, is wrong. The user can still interact with a view listed
in the passthroughViews, even if modalInPopover is YES.

You should give attention to your popover controller’s passthroughViews, as the default
behavior may be undesirable. In particular, if a popover is summoned by the user tapping
a UIBarButton item in a toolbar using presentPopoverFromBarButtonItem:..., the
entire toolbar is a passthrough view. This means that the user can tap any button in the
toolbar — including the button that summoned the popover in the first place! The user
can thus by default summon another copy of the same popover while this popover is
already showing, which is certainly not what you want. I like to set the passthrough-
Views to nil; at the very least, while the popover is showing, you should probably disable
the UIBarButtonItem that summoned it.

Getting the timing right on setting a UIPopoverController’s passthroughViews is not
easy. It might not have any effect unless the UIPopoverController has already been sent
presentPopover.... This is one of the reasons I dislike popover segues; you don’t get
an event after the segue presents the popover, so there’s no good moment to set the
passthroughViews to nil — and, although you can set the passthroughViews in the nib
editor, you can’t set them to nil there.

We are now ready for a rigorous specification of the two ways in which a popover can
be dismissed:

• The popover controller’s view controller’s modalInPopover is NO, and the user taps
outside the popover on a view not listed in the popover controller’s passthrough-
Views.
The UIPopoverController’s delegate (adopting the UIPopoverControllerDelegate
protocol) is sent popoverControllerShouldDismissPopover:; if it doesn’t return
NO (which might be because it doesn’t implement this method), the popover is
dismissed, and the delegate is sent popoverControllerDidDismissPopover:.

• The UIPopoverController is sent dismissPopoverAnimated: by your code; the
delegate methods are not sent in that case.
If you’re using a popover segue, an unwind segue (see Chapter 6) in the popover
segue’s destination view controller will, when triggered, send dismissPopover-
Animated: to the popover controller for you.

Because a popover can be dismissed in two different ways, if you have a cleanup task to
perform as the popover vanishes, you may have to see to it that the task is performed
under two different circumstances. This can get tricky.

Summoning and Dismissing a Popover | 483

www.it-ebooks.info

http://www.it-ebooks.info/

To illustrate, I’ll describe what actually happens in my LinkSame app when the first
popover in Figure 9-1 is dismissed. Within this popover, the user is interacting with
several settings in the user defaults. But if the user taps Cancel, or if the user taps outside
the popover (which I take to be equivalent to canceling), I want to revert those defaults
to the way they were before the popover was summoned. Therefore, as I initially present
the popover, I preserve the relevant current user defaults through a property:

// save defaults so we can restore them later if user cancels
self.oldDefs =
 [[NSUserDefaults standardUserDefaults]
 dictionaryWithValuesForKeys: @[@"Style", @"Size", @"Stages"]];

The user now works within the popover. Any settings that the user changes within the
popover are immediately saved into the user defaults. So, if the user then taps Done, the
user’s settings within the popover have already been saved; I explicitly dismiss the po‐
pover and proceed to initiate the new game that the user has asked for:

- (void) saveNewGame: (id) sender { // done button in New Game popover
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 // ... set up new game interface, initialize scores, etc. ...
}

On the other hand, if the user taps Cancel, I must revert the user defaults as I dismiss
the popover:

- (void) cancelNewGame: (id) sender { // cancel button in New Game popover
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
}

So far, so good. But we have not yet covered every case. What if the user taps outside
the popover to dismiss it? I take that to mean Cancel (the user did not tap Done, after
all). Therefore I implement the delegate method to detect this, and I revert the user
defaults here as well:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)pc {
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 self.currentPop = nil;
}

But wait — there’s more. My app has another popover (the second popover in
Figure 9-1). This popover, too, can be dismissed by the user tapping outside it; in fact,
that’s the only way the user can dismiss it. The popover controllers for both popovers
have the same delegate. Thus, when the second popover is dismissed, the same popover-
ControllerDidDismissPopover: implementation will be called. But now we don’t want

484 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

to call setValuesForKeysWithDictionary:; it’s the wrong popover, and we have no
preserved defaults to revert.

Fortunately, the popover controller whose popover was dismissed is passed in as the
parameter to popoverControllerDidDismissPopover:. Unfortunately, it’s a bit hard to
see what there is about different popover controllers that distinguishes them from one
another! You can’t assign a popover controller a name or other identifier (unless you
subclass UIPopoverController). Luckily, my popover controllers have different types of
content view controller, but this problem is by no means always so easy to solve:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)pc {
 if ([pc.contentViewController isKindOfClass:
 [UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 self.currentPop = nil;
}

Popovers During Rotation or Backgrounding
A question arises of what should happen to a displayed popover when the app is rotated,
or goes into the background. If your app’s popovers behave properly through rotation
or backgrounding, there may be nothing to do. On the other hand, if a popover doesn’t
correctly recover automatically after rotation or backgrounding, it might be better to
dismiss it, giving the user the option to summon it again. You can respond to rotation
by implementing willRotateToInterfaceOrientation:duration: (see Chapter 6),
and you can hear about backgrounding by registering for UIApplicationDidEnter-
BackgroundNotification (see Appendix A).

Continuing from the preceding example, I’ll dismiss my popovers on rotation and
backgrounding. In the example, this kind of dismissal should count as canceling the
user’s actions within the popover, so I must perform the same tests as in popover-
ControllerDidDismissPopover:, restoring the user defaults if this popover is the one
for which the defaults were saved beforehand:

-(void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)duration {
 UIPopoverController* pc = self.currentPop;
 if (pc) {
 if ([pc.contentViewController isKindOfClass:
 [UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 [pc dismissPopoverAnimated:NO];
 self.currentPop = nil;
 }
}
-(void)backgrounding:(NSNotification*)n {

Summoning and Dismissing a Popover | 485

www.it-ebooks.info

http://www.it-ebooks.info/

 UIPopoverController* pc = self.currentPop;
 if (pc) {
 if ([pc.contentViewController isKindOfClass:
 [UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 [pc dismissPopoverAnimated:NO];
 self.currentPop = nil;
 }
}

Another reason for dismissing a popover manually on rotation is that the rotation may
result in the interface changing in such a way that the presence of the popover will no
longer make sense. For example, the button that the user tapped to summon the popover
may no longer be present after rotation.

If your popover was presented originally by calling presentPopoverFromRect:in-
View:..., a new iOS 7 UIPopoverController delegate method allows you to respond to
rotation by presenting the popover attached to a different view, or a different rectangle:

• popoverController:willRepositionPopoverToRect:inView:

In that method, the rect: is typed as a pointer to a CGRect, and the view: is typed as
a pointer to a pointer to a UIView. Thus you can set either or both of them by indirection;
in effect, you are being given the chance to do all over again what you did in present-
PopoverFromRect:inView:.... For example:

-(void)popoverController:(UIPopoverController *)popoverController
 willRepositionPopoverToRect:(inout CGRect *)rect
 inView:(inout UIView *__autoreleasing *)view {
 if (*view == self.button1) {
 *rect = self.button2.bounds;
 *view = self.button2;
 }
}

Popovers and Presented Views
A popover can present a view controller internally; you’ll specify a modalPresentation-
Style of UIModalPresentationCurrentContext, because otherwise the presented view
will be fullscreen by default (see Chapter 6). You’ll also specify a transition style of
UIModalTransitionStyleCoverVertical — with any other transition style, your app
will crash with this message: “Application tried to present inside popover with transition
style other than UIModalTransitionStyleCoverVertical.”

The presented view controller’s modalInPopover is automatically set to YES. (You can
subvert this by setting the presented view controller’s modalInPopover to NO after it is
presented, but you probably shouldn’t.)

486 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

If a presented view inside a popover proves troublesome — I’ve encountered some bugs
connected with this arrangement — I suggest trying an alternative interface, such as
replacing the popover controller’s content view controller with a different view
controller.

Automatic Popovers
In a few situations, the framework will automatically create and display a popover for
you. One such situation is what happens when a search bar (a UISearchBar) tied to a
search display controller (UISearchDisplayController) appears in a toolbar (UIToolbar)
on the iPad.

Recall the search display controller example from Chapter 8, where we search a list of
the 50 United States; I’ll modify that example to demonstrate. Bear in mind that in this
example there is no illusion of a searchable table; there’s just a search bar which presents
its results in a table (in a popover).

In the nib editor, start with a toolbar at the top of the root view, and drag into it the
combined Search Bar and Search Display Controller object from the Object library. This
causes a whole bunch of outlets to be configured automatically:

• The search bar’s delegate is the nib owner. (The nib owner in a storyboard is the
view controller for this scene; in a .xib file, it’s the File’s Owner proxy object.)

• The nib owner’s searchDisplayController is the search display controller. When
a UISearchDisplayController is instantiated from a nib, this property is an outlet
that retains the search display controller, as well as providing access to it in code.

• The search display controller’s search bar is the search bar.
• The search display controller’s delegate, searchContentsController, search-
ResultsDataSource, and searchResultsDelegate are the nib owner. Of these,
only the latter two appear to be of importance in this example.

Now for the code. When our view controller loads its view, we also load the model (the
list of states) into an NSArray property called states. We also have an NSArray property
called filteredStates. Here is the code for dealing with the search bar and the search
display controller’s results table:

-(void)searchDisplayController:(UISearchDisplayController *)controller
 didLoadSearchResultsTableView:(UITableView *)tableView {
 [tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"cell"];
}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView

Automatic Popovers | 487

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-4. An automatically created search results popover

 numberOfRowsInSection:(NSInteger)section {
 return [self.filteredStates count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"cell"
 forIndexPath:indexPath];
 cell.textLabel.text = self.filteredStates[indexPath.row];
 return cell;
}
- (void) filterData {
 NSString* target = self.searchDisplayController.searchBar.text;
 NSPredicate* p =
 [NSPredicate predicateWithBlock: ^(id obj, NSDictionary *d) {
 NSString* s = obj;
 NSStringCompareOptions options = NSCaseInsensitiveSearch;
 BOOL b =
 [s rangeOfString:target options:options].location
 != NSNotFound;
 return b;
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {
 [self filterData];
}

That’s all. There is no mention anywhere of a UIPopoverController; nevertheless, when
the user enters text in the search bar, a popover appears, containing a table of search
results (Figure 9-4)!

Although that’s very easy, I am not fond of this automatic way of creating a popover,
and I’m sure you can guess why: when things are so automatic, the programmer has

488 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

great difficulty getting control of anything. For example, there’s no reference to the
popover controller, so how is your code supposed to dismiss the popover? The best way
I’ve found, which is not very satisfactory, is to set the search display controller’s active
to NO:

-(void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSLog(@"You selected %@", self.filteredStates[indexPath.row]);
 [self.searchDisplayController setActive:NO animated:YES];
}

There is also a weird cosmetic bug where the search result’s table content inset is auto‐
matically set incorrectly. I work around that by setting its contentInset (and scroll-
IndicatorInsets) when the table is about to appear. I also take advantage of this mo‐
ment to set the UISearchDisplayController’s searchResultsTitle property, so that the
popover doesn’t say “Results” at the top; alternatively, it’s possible to do that in the nib
editor:

-(void)searchDisplayController:(UISearchDisplayController *)controller
 willShowSearchResultsTableView:(UITableView *)tableView {
 [tableView setContentInset:UIEdgeInsetsZero]; // work around weird bug
 [tableView setScrollIndicatorInsets:UIEdgeInsetsZero];
 controller.searchResultsTitle = @"States";
}

In general, I find the behavior of this automatic popover very peculiar and difficult to
customize, and I suggest you avoid it. Another example of an automatic popover on the
iPad is the alert sheet, discussed in Chapter 13.

Split Views
A split view (Figure 9-2) is implemented through a UISplitViewController (a UIView‐
Controller subclass) whose children are the two UIViewControllers whose views are to
be displayed in the two regions of the split view. You provide the children through the
UISplitViewController’s viewControllers property (an NSArray); it can be configured
in code or in a nib. A UIViewController that is a child, at any depth, of a UISplitView‐
Controller has a reference to the UISplitViewController through its splitView-
Controller property.

Using a Split View
There is very little work for you to do with regard to a split view controller. You can
hear about what the split view controller is doing through its delegate (adopting the
UISplitViewControllerDelegate protocol), which receives these messages:

Split Views | 489

www.it-ebooks.info

http://www.it-ebooks.info/

splitViewController:willHideViewController:withBarButtonItem:forPopover-

Controller:

The split view is rotating to portrait orientation, so it’s hiding the first view. The
split view controller creates a UIBarButtonItem and hands it to you as the third
parameter. The split view controller has already set things up so that if the user taps
this bar button item, a popover will be presented through the popover controller
(fourth parameter) displaying the view of the first view controller (second param‐
eter). Your mission, should you decide to accept it, is to put that bar button item
into the interface. You are free to configure the bar button item’s appearance as you
do so.

It’s common practice to keep a reference to the popover controller, in case you need
it in order to dismiss the popover later (but don’t set its delegate).

If an app with a split view interface launches into portrait orientation, this delegate
method is called.

splitViewController:popoverController:willPresentViewController:

The user has tapped the bar button item you were handed in the first delegate
method, and the popover is about to appear. You probably won’t need to implement
this method.

splitViewController:willShowViewController:invalidatingBarButtonItem:

This is the opposite of the first delegate method: the split view is rotating to land‐
scape orientation, so the split view controller going to break the connection between
the bar button item and the popover controller and is going to put the first view
back into the interface. You should remove the bar button item from the interface.

How you get the bar button item into and out of your interface depends on the nature
your interface. The current version of the iPad Master–Detail Application project tem‐
plate, which demonstrates a split view interface, uses a navigation interface in order to
get the navigation bar. As a result, the DetailViewController instance, functioning as
the UISplitViewController’s delegate, gets the bar button item into and out of the in‐
terface by setting its own navigationItem.leftBarButtonItem:

- (void)splitViewController:(UISplitViewController *)splitController
 willHideViewController:(UIViewController *)viewController
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)popoverController
{
 [self.navigationItem setLeftBarButtonItem:barButtonItem animated:YES];
 self.masterPopoverController = popoverController;
}
- (void)splitViewController:(UISplitViewController *)splitController
 willShowViewController:(UIViewController *)viewController
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem

490 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

{
 [self.navigationItem setLeftBarButtonItem:nil animated:YES];
 self.masterPopoverController = nil;
}

In addition, you might want to set the bar button item’s title in willHide...; by
default, it will be the first view controller’s title.

Split Views in a Storyboard
In a storyboard, the split view controller is hooked to its child view controllers by re‐
lationships; those child view controllers are navigation controllers, and are themselves
hooked to their root view controllers by relationships in the storyboard as well. Thus,
five view controllers are instantiated together, automatically, as the split view interface
loads.

Some things, however, can’t be configured in the storyboard. For example, there needs
to be a delegate relationship between the UISplitViewController and the DetailView‐
Controller; they are both in the storyboard together, but they’re in different scenes, so
no outlet can be drawn between them. To solve this, the Master–Detail Application
template includes the following code in the app delegate’s application:didFinish-
LaunchingWithOptions::

UISplitViewController *splitViewController =
 (UISplitViewController *)self.window.rootViewController;
UINavigationController *navigationController =
 [splitViewController.viewControllers lastObject];
splitViewController.delegate = (id)navigationController.topViewController;

By the time that code runs, the window’s rootViewController has been set and all the
view controllers are in place, in their various parent–child relationships; the code is thus
able to work its way through the parent–child hierarchy to get references to the two
desired view controllers and can make the one the delegate of the other.

Similarly, the first child view controller will probably need a reference to the second
child view controller. In the Master–Detail Application template, the MasterViewCon‐
troller works out its reference to the DetailViewController in its viewDidLoad:

self.detailViewController =
 (DetailViewController*)
 [[self.splitViewController.viewControllers lastObject]
 topViewController];

The storyboard editor also lets you create a “replace” segue for use in connection with
a split view. This allows either of the split view controller’s child view controllers to be
swapped out. A typical use is that the user taps something in the left (master) view
controller to cause the right (detail) view controller to be replaced by a different view
controller. To set that up, you’d create a replace segue leading from the tapped thing in

Split Views | 491

www.it-ebooks.info

http://www.it-ebooks.info/

the master view controller to the new view controller; then, in the segue’s Attributes
inspector, set the Destination pop-up menu to Detail Split.

Other Split View Configurations
If the UISplitViewController’s presentsWithGesture is YES, the second view in portrait
orientation will detect a rightward swipe and will respond by summoning the first view
(the popover). Otherwise, the bar button item will be the only way to summon the
popover in portrait orientation.

It is also possible for a split view interface not to hide the first view in portrait orientation.
Instead, the left and right view both appear in both orientations; the left view’s width is
unchanged, while the right view is resized appropriately (as in Apple’s Settings app). To
get that behavior, implement this delegate method:
splitViewController:shouldHideViewController:inOrientation:

Allows the left view controller to be hidden (return YES) or not (return NO) as the
interface rotates to the given orientation. If you return NO, the other delegate
methods won’t be called in this orientation; there will be no bar button item and no
popover.

New in iOS 7, a split view controller’s delegate gets a say in how the app is permitted to
rotate:

• splitViewControllerSupportedInterfaceOrientations:

• splitViewControllerPreferredInterfaceOrientationForPresentation:

Thus, as with a navigation controller or tab bar controller, it isn’t necessary to subclass
UISplitViewController just in order to control app rotation (see Chapter 6).

On the other hand, there are no parallel delegate messages for configuring the status
bar, and a split view controller doesn’t consult its children on the matter, so if you want
your split view to affect the status bar (for example, by hiding it), you will need to subclass
UISplitViewController.

Finally, there’s a rather confusing issue when a non-fullscreen presented view controller
(such as a UIModalPresentationFormSheet view controller) appearing in front of a split
view is to be dismissed through an unwind segue. The symptom is that when the unwind
method is called, the presented view isn’t dismissed. The solution is, again, to subclass
UISplitViewController and put the unwind method in the subclass.

492 | Chapter 9: Popovers and Split Views

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Text

Drawing text into your app’s interface is one of the most complex and powerful things
that iOS does for you. Fortunately, iOS also shields you from as much of that complexity
as you like. All you need is some text to draw, and possibly an interface object to draw
it for you.

Text to appear in your app’s interface will be an NSString or an NSAttributedString.
NSAttributedString adds text styling to an NSString, including runs of different char‐
acter styles, along with paragraph-level features such as alignment, line spacing, and
margins.

To make your NSString or NSAttributedString appear in the interface, you can draw it
into a graphics context, or hand it to an interface object that knows how to draw it:
Self-drawing text

Both NSString and NSAttributedString have methods (supplied by the NSString‐
Drawing category) for drawing themselves into any graphics context.

Text-drawing interface objects
Interface objects that know how to draw an NSString or NSAttributedString are:
UILabel

Displays text, possibly consisting of multiple lines; neither scrollable nor
editable.

UITextField
Displays a single line of user-editable text; may have a border, a background
image, and overlay views at its right and left end.

UITextView
Displays scrollable multiline text, possibly user-editable.

493

www.it-ebooks.info

http://www.it-ebooks.info/

(Another way of drawing text is to use a UIWebView, a scrollable view displaying ren‐
dered HTML. UIWebView can also display various additional document types, such as
PDF, RTF, and .doc. UIWebViews are a somewhat different technology, and are dis‐
cussed in Chapter 11.)

Deep under the hood, all text drawing is performed through a low-level technology with
a C API called Core Text. Before iOS 7, certain powerful and useful text-drawing features
were available only by working with Core Text.

New in iOS 7, however, is Text Kit, a middle-level technology with an Objective-C API,
lying on top of Core Text. UITextView in iOS 7 is largely just a lightweight drawing
wrapper around Text Kit, and Text Kit can also draw directly into a graphics context.
By working with Text Kit, you can readily do all sorts of useful text-drawing tricks that
previously would have required you to sweat your way through Core Text.

Fonts
There are two ways of describing a font: as a UIFont (suitable for use in an NSString or
a UIKit interface object) or as a CTFont (suitable for Core Text). Using CTFont, it is
fairly easy to perform various convenient font transformations, such as deriving one
font from another through the addition of a symbolic trait; for example, you could say,
“Here’s a font; please give me a bold version of it if there is one.”

Before iOS 7, CTFont and UIFont were unfortunately not toll-free bridged to one an‐
other, and what you usually started with and wanted to end with was a UIFont; thus, in
order to perform font transformations, it was necessary to convert a UIFont to a CTFont
manually, work with the CTFont, and then convert back to a UIFont manually — which
was by no means trivial.

In iOS 7, however, UIFont and CTFont are toll-free bridged to one another. Moreover,
another important Core Text type, CTFontDescriptorRef, is toll-free bridged to a new
iOS 7 class, UIFontDescriptor, which can be helpful for performing font transforma‐
tions.

Fonts and Dynamic Type
A font (UIFont, toll-free bridged in iOS 7 to Core Text’s CTFontRef) is an extremely
simple object. You specify a font by its name and size by calling the UIFont class method
fontWithName:size:, and you can also transform a font of one size to the same font in
a different size. UIFont also provides some methods for learning a font’s various meas‐
urements, such as its lineHeight and capHeight.

In order to ask for a font, you have to know the font’s name. Every font variant (bold,
italic, and so on) counts as a different font, and font variants are clumped into fami‐
lies. To learn, in the console, the name of every installed font, you would say:

494 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

for (NSString* s in [UIFont familyNames])
 NSLog(@"%@: %@", s, [UIFont fontNamesForFamilyName:s]);

You can specify a font by its family name or by its font name (technically, its PostScript
name). For example, @"Avenir" is a family name; the plain font within that family is
@"Avenir-Roman". Either is legal as the first argument of fontWithName:size:.

A few fonts can be obtained with reference to their functionality; for example, you can
ask for systemFontOfSize: to get the font used by default in a UIButton. You should
never use the name of such a font for anything, however, as the details are private and
subject to change.

New in iOS 7 is a set of fonts that you specify by their intended usage rather than by
name. These are the so-called Dynamic Type fonts. They are linked to the slider that
the user can adjust in the Settings app, under General → Text Size. The idea is that if
you have text for the user to read or edit (as opposed, say, to the static text of a button),
you can use a Dynamic Type font; it will be sized and styled for you in accordance with
the user’s Text Size preference and the role that this text is to play in your layout.

To obtain a Dynamic Type font, call preferredFontForTextStyle:. Possible roles that
you can supply as the argument are:

• UIFontTextStyleHeadline

• UIFontTextStyleSubheadline

• UIFontTextStyleBody

• UIFontTextStyleFootnote

• UIFontTextStyleCaption1

• UIFontTextStyleCaption2

You’ll probably want to experiment with specifying various roles for your individual
pieces of text, to see which looks appropriate in context. For example, in Figure 6-1, the
headlines are UIFontTextStyleSubheadline and the blurbs are UIFontTextStyle-
Caption1.

Dynamic Type fonts are not actually dynamic; preferredFontForTextStyle: will re‐
turn a font whose size is proportional to the user’s Text Size preference only at the
moment when it is called. If the user changes that preference, you’ll need to call
preferredFontForTextStyle: again. To hear about such changes, register for
UIContentSizeCategoryDidChangeNotification. When the notification arrives, you
will need to set the fonts for your Dynamic Type–savvy text all over again. This, in turn,
may have consequences for the physical features of your interface as a whole; autolayout
can be a big help here (Chapter 1).

Fonts | 495

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, we have a label (self.lab) whose font uses Dynamic Type; we set its
font both when the label first appears in the interface and subsequently whenever
UIContentSizeCategoryDidChangeNotification arrives:

- (void)viewDidLoad {
 [super viewDidLoad];
 [self doDynamicType:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(doDynamicType:)
 name:UIContentSizeCategoryDidChangeNotification
 object:nil];
}
- (void) doDynamicType: (NSNotification*) n {
 self.lab.font = [UIFont preferredFontForTextStyle:UIFontTextStyleBody];
}

In the nib editor, wherever the Attributes inspector lets you supply a font for an interface
object, the Dynamic Type roles are available in a pop-up menu. But you will still have
to set the font of every such interface object again, in code, when UIContentSize-
CategoryDidChangeNotification arrives.

You are not limited to fonts installed by default as part of iOS 7. There are two other
ways to obtain additional fonts:
Include a font in your app bundle

A font included at the top level of your app bundle will be loaded at launch time if
your Info.plist lists it under the “Fonts provided by application” key (UIAppFonts).

Download a font in real time
All OS X fonts are available for download from Apple’s servers; you can obtain and
install one while your app is running.

To download a font in real time, you’ll have specify the font as a font descriptor (dis‐
cussed in the next section) and drop down to the level of Core Text (@import Core-
Text) to call CTFontDescriptorMatchFontDescriptorsWithProgressHandler. This
function takes a block which is called repeatedly at every stage of the download process;
the block is called on a background thread, so if you want to use the downloaded font
immediately in the interface, you must step out to the main thread (see Chapter 25).

In this example, I’ll attempt to use Lucida Grande as my UILabel’s font; if it isn’t installed,
I’ll attempt to download it and then use it as my UILabel’s font. I’ve inserted a lot of
unnecessary logging to mark the stages of the download process:

NSString* name = @"LucidaGrande";
CGFloat size = 12;
UIFont* f = [UIFont fontWithName:name size:size];
if (f) {
 self.lab.font = f;
 NSLog(@"%@", @"already installed");
 return;

496 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

}
NSLog(@"%@", @"attempting to download font");
UIFontDescriptor* desc =
 [UIFontDescriptor fontDescriptorWithName:name size:size];
CTFontDescriptorMatchFontDescriptorsWithProgressHandler(
 (__bridge CFArrayRef)@[desc], nil,
 ^(CTFontDescriptorMatchingState state, CFDictionaryRef prog) {
 if (state == kCTFontDescriptorMatchingDidBegin) {
 NSLog(@"%@", @"matching did begin");
 }
 else if (state == kCTFontDescriptorMatchingWillBeginDownloading) {
 NSLog(@"%@", @"downloading will begin");
 }
 else if (state == kCTFontDescriptorMatchingDownloading) {
 NSDictionary* d = (__bridge NSDictionary*)prog;
 NSLog(@"progress: %@%%",
 d[(__bridge NSString*)kCTFontDescriptorMatchingPercentage]);
 }
 else if (state == kCTFontDescriptorMatchingDidFinishDownloading) {
 NSLog(@"%@", @"downloading did finish");
 }
 else if (state == kCTFontDescriptorMatchingDidFailWithError) {
 NSLog(@"%@", @"downloading failed");
 }
 else if (state == kCTFontDescriptorMatchingDidFinish) {
 NSLog(@"%@", @"matching did finish");
 dispatch_async(dispatch_get_main_queue(), ^{
 UIFont* f = [UIFont fontWithName:name size:size];
 if (f) {
 NSLog(@"%@", @"got the font!");
 self.lab.font = f;
 }
 });
 }
 return (bool)YES;
 });

Font Descriptors
A font descriptor (UIFontDescriptor, new in iOS 7, toll-free bridged to Core Text’s
CTFontDescriptorRef) is a way of describing a font, or converting between one font
description and another, in terms of its features. For example, given a font descriptor,
you can ask for a corresponding italic font descriptor like this:

desc = [desc fontDescriptorWithSymbolicTraits:UIFontDescriptorTraitItalic];

If desc was originally a descriptor for Avenir 15, it is now a descriptor for Avenir-
Oblique 15. However, it is not the font Avenir-Oblique 15; a font descriptor is not a font.

To convert from a font to a font descriptor, take its fontDescriptor property; to
convert from a font descriptor to a font, call the UIFont class method fontWith-

Fonts | 497

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-1. A Dynamic Type font with an italic variant

Descriptor:size:, typically supplying a size of 0 to signify that the size should not
change. Thus, this will be a typical pattern in your code, as you convert from font to
font descriptor to perform some transformation, and then back to font:

UIFont* font = // ...
UIFontDescriptor* desc = [font fontDescriptor];
desc = // font descriptor derived from desc
font = [UIFont fontWithDescriptor:desc size:0];

This same technique is useful also for obtaining styled variants of the Dynamic Type
fonts. A UIFontDescriptor class method, preferredFontDescriptorWithTextStyle:,
saves you from having to start with a UIFont. In this example, I form an NSAttributed‐
String whose font is mostly UIFontTextStyleBody, but with one italicized word
(Figure 10-1):

UIFontDescriptor* body =
 [UIFontDescriptor preferredFontDescriptorWithTextStyle:
 UIFontTextStyleBody];
UIFontDescriptor* emphasis =
 [body fontDescriptorWithSymbolicTraits:UIFontDescriptorTraitItalic];
UIFont* fbody = [UIFont fontWithDescriptor:body size:0];
UIFont* femphasis = [UIFont fontWithDescriptor:emphasis size:0];
NSString* s = @"This is very important!";
NSMutableAttributedString* mas =
 [[NSMutableAttributedString alloc] initWithString:s
 attributes:@{NSFontAttributeName:fbody}];
[mas addAttribute:NSFontAttributeName value:femphasis
 range:[s rangeOfString:@"very"]];

Unfortunately, converting between fonts by calling fontDescriptorWithSymbolic-
Traits: doesn’t work for every font family. (I regard this as a bug.) You might have to
drop down to the level of Core Text. Fortunately, in iOS 7, CTFontRef and UIFont are
toll-free bridged, so that’s not such a daunting prospect. You’ll have to @import Core-
Text first:

UIFont* f = [UIFont fontWithName:@"GillSans" size:15];
CTFontRef font2 =
 CTFontCreateCopyWithSymbolicTraits (
 (__bridge CTFontRef)f, 0, nil,
 kCTFontItalicTrait, kCTFontItalicTrait);
UIFont* f2 = CFBridgingRelease(font2);

CTFontCreateCopyWithSymbolicTraits takes two bitmasks: the first lists the traits you
care about, and the second says which traits those are. For example, suppose I’m starting

498 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-2. A small caps font variant

with a font that might or might not be bold, and I want to obtain its italic variant —
meaning that if it is bold, I want a bold italic font. It isn’t enough to supply a bitmask
whose value is kCTFontItalicTrait, because this appears to switch italics on and ev‐
erything else off. Thus, the second bitmask says, “Only this one bit is important to me.”
By the same token, to get a nonitalic variant of a font that might be italic, you’d supply
0 as the fourth argument and kCTFontItalicTrait as the fifth argument.

Another use of font descriptors is to access hidden built-in typographical features of
individual fonts. In this example, I’ll obtain a variant of the Didot font that draws its
minuscules as small caps (Figure 10-2). Before iOS 7, you could obtain the small caps
Didot font at the level of Core Text, but you couldn’t use it in a UIKit interface object,
because it wasn’t a UIFont. In iOS 7, everything happens at the UIKit level (though you
will need to @import CoreText to get the symbolic feature names kLetterCaseType
and kSmallCapsSelector; alternatively, use @3 for each):

UIFontDescriptor* desc =
 [UIFontDescriptor fontDescriptorWithName:@"Didot" size:18];
NSArray* arr =
 @[@{UIFontFeatureTypeIdentifierKey:@(kLetterCaseType),
 UIFontFeatureSelectorIdentifierKey:@(kSmallCapsSelector)}];
desc =
 [desc fontDescriptorByAddingAttributes:
 @{UIFontDescriptorFeatureSettingsAttribute:arr}];
UIFont* f = [UIFont fontWithDescriptor:desc size:0];

Attributed Strings
The basis of styled text — that is, text consisting of multiple style runs, with different
font, size, color, and other text features in different parts of the text — is the attributed
string. Attributed strings (NSAttributedString and its mutable subclass, NSMutableAt‐
tributedString) have been around in iOS for a long time, but before iOS 6 they were
difficult to use — you had to drop down to the level of Core Text — and they couldn’t
be used at all in connection with UIKit interface classes such as UILabel and UITextView.
Thus, such interface classes couldn’t display styled text. In iOS 6, NSAttributedString
became a first-class citizen; it can now be used to draw styled text directly, and can be
drawn by built-in interface classes.

Attributed Strings | 499

www.it-ebooks.info

http://www.it-ebooks.info/

In general, interface object methods and properties that accept at‐
tributed strings stand side by side with their pre-iOS 6 equivalents;
the new ones tend to have “attributed” in their name. Thus, you don’t
have to use attributed strings. If a UILabel, for example, is to dis‐
play text in a single font, size, color, and alignment, it might be easi‐
est to use the pre-iOS 6 plain-old-NSString features of UILabel. If
you do use an attributed string with an interface object, it is best not
to mix in any of the pre-iOS 6 settings: let the attributed string do all
the work of dictating text style features.

An NSAttributedString consists of an NSString (its string) plus the attributes, applied
in ranges. For example, if the string “one red word” is blue except for the word “red”
which is red, and if these are the only changes over the course of the string, then there
are three distinct style runs — everything before the word “red,” the word “red” itself,
and everything after the word “red.” However, we can apply the attributes in two steps,
first making the whole string blue, and then making the word “red” red, just as you
would expect.

Attributed String Attributes
The attributes applied to a range of an attributed string are described in dictionaries.
Each possible attribute has a predefined name, used as a key in these dictionaries; here
are some of the most important attributes (for the full list, see Apple’s NSAttributedString
UIKit Additions Reference):
NSFontAttributeName

A UIFont.

NSForegroundColorAttributeName

The text color, a UIColor.

NSBackgroundColorAttributeName

The color behind the text, a UIColor. You could use this to highlight a word, for
example.

NSLigatureAttributeName

An NSNumber wrapping 0 or 1, expressing whether or not you want ligatures used.
NSKernAttributeName

An NSNumber wrapping the floating-point amount of kerning. A negative value
brings a glyph closer to the following glyph; a positive value adds space between
them. (In iOS 6, the special value [NSNull null] turns on inherent autokerning if
the font supports it; in iOS 7, autokerning is the default.)

500 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

NSStrikethroughStyleAttributeName
NSUnderlineStyleAttributeName

Prior to iOS 7, could be only an NSNumber wrapping 0 or 1. Now, an NSNumber
wrapping one of these values describing the line weight (despite Underline in their
names, they apply equally to strikethrough):

• NSUnderlineStyleNone

• NSUnderlineStyleSingle

• NSUnderlineStyleDouble

• NSUnderlineStyleThick

Optionally, you may append (using logical-or) a specification of the line pattern,
with names like NSUnderlinePatternDot, NSUnderlinePatternDash, and so on.

Optionally, you may append (using logical-or) NSUnderlineByWord; if you do not,
then if the underline or strikethrough range involves multiple words, the whitespace
between the words will be underlined or struck through.

NSStrikethroughColorAttributeName
NSUnderlineColorAttributeName

A UIColor. New in iOS 7. If not defined, the foreground color is used.

NSStrokeWidthAttributeName

An NSNumber wrapping a float. The stroke width is peculiarly coded. If it isn’t zero,
it’s either a positive or negative float (wrapped in an NSNumber). If it’s positive,
then the text glyphs are stroked but not filled, giving an outline effect, and the
foreground color is used unless a separate stroke color is defined. If it’s negative,
then its absolute value is the width of the stroke, and the glyphs are both filled (with
the foreground color) and stroked (with the stroke color).

NSStrokeColorAttributeName

The stroke color, a UIColor.

NSShadowAttributeName

An NSShadow object. An NSShadow is just a glorified struct (what Apple calls a
“value object”), combining a shadowOffset, shadowColor, and shadowBlurRadius.

NSTextEffectAttributeName

If defined, the only possible value is NSTextEffectLetterpressStyle. New in iOS
7.

NSAttachmentAttributeName

An NSTextAttachment object. New in iOS 7. A text attachment is basically an inline
image. I’ll discuss text attachments later on.

Attributed Strings | 501

www.it-ebooks.info

http://www.it-ebooks.info/

NSLinkAttributeName

An NSURL. New in IOS 7. In a noneditable, selectable UITextView, the link is
tappable to go to the URL (depending on your implementation of the UITextView‐
Delegate method textView:shouldInteractWithURL:inRange:). By default, ap‐
pears as blue without an underline in a UITextView. Appears as blue with an un‐
derline in a UILabel, but is not a tappable link there.

NSBaselineOffsetAttributeName
NSObliquenessAttributeName
NSExpansionAttributeName

An NSNumber wrapping a float. New in iOS 7.

NSParagraphStyleAttributeName

An NSParagraphStyle object. This is basically just a glorified struct, assembling text
features that apply properly to paragraphs as a whole, not merely to characters, even
if your string consists only of a single paragraph. Here are its most important
properties:

• alignment

— NSTextAlignmentLeft

— NSTextAlignmentCenter

— NSTextAlignmentRight

— NSTextAlignmentJustified

— NSTextAlignmentNatural (left-aligned or right-aligned depending on the
writing direction)

• lineBreakMode

— NSLineBreakByWordWrapping

— NSLineBreakByCharWrapping

— NSLineBreakByClipping

— NSLineBreakByTruncatingHead

— NSLineBreakByTruncatingTail

— NSLineBreakByTruncatingMiddle

• firstLineHeadIndent, headIndent (left margin), tailIndent (right margin)
• lineHeightMultiple, maximumLineHeight, minimumLineHeight
• lineSpacing

• paragraphSpacing, paragraphSpacingBefore

502 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

• hyphenationFactor (0 or 1)
• defaultTabInterval, tabStops (new in iOS 7; the tab stops are an array of

NSTextTab objects)

To construct an NSAttributedString, you can call initWithString:attributes: if the
entire string has the same attributes; otherwise, you’ll use its mutable subclass NSMu‐
tableAttributedString, which lets you set attributes over a range.

To construct an NSParagraphStyle, you’ll use its mutable subclass NSMutablePara‐
graphStyle. (The properties of NSParagraphStyle itself are all read-only, for historical
reasons.) It is sufficient to apply a paragraph style to the first character of a paragraph;
to put it another way, the paragraph style of the first character of a paragraph dictates
how the whole paragraph is rendered.

Both NSAttributedString and NSParagraphStyle come with default values for all at‐
tributes, so you only have to set the attributes you care about.

Making an Attributed String
We now know enough for an example! I’ll draw my attributed strings in a disabled
(noninteractive) UITextView; its background is white, but its superview’s background
is gray, so you can see the text view’s bounds relative to the text. (Ignore the text’s vertical
positioning, which is configured by applying a top contentInset.)

First, two words of my attributed string are made extra-bold by stroking in a different
color. I start by dictating the entire string and the overall style of the text; then I apply
the special style to the two stroked words (Figure 10-3):

NSString* s1 = @"The Gettysburg Address, as delivered on a certain occasion "
 @"(namely Thursday, November 19, 1863) by A. Lincoln";
NSMutableAttributedString* content =
 [[NSMutableAttributedString alloc]
 initWithString:s1
 attributes:
 @{
 NSFontAttributeName:
 [UIFont fontWithName:@"Arial-BoldMT" size:15],
 NSForegroundColorAttributeName:
 [UIColor colorWithRed:0.251 green:0.000 blue:0.502 alpha:1]
 }];
NSRange r = [s1 rangeOfString:@"Gettysburg Address"];
[content addAttributes:
 @{
 NSStrokeColorAttributeName:[UIColor redColor],
 NSStrokeWidthAttributeName: @-2.0
 } range:r];
self.tv.attributedText = content;

Attributed Strings | 503

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-3. An attributed string

Figure 10-4. An attributed string with a paragraph style

Carrying on from the previous example, I’ll also make the whole paragraph centered
and indented from the edges of the text view. To do so, I create the paragraph style and
apply it to the first character. Note how the margins are dictated: the tailIndent is
negative, to bring the right margin leftward, and the firstLineHeadIndent must be set
separately, as the headIndent does not automatically apply to the first line (Figure 10-4):

NSMutableParagraphStyle* para = [NSMutableParagraphStyle new];
para.headIndent = 10;
para.firstLineHeadIndent = 10;
para.tailIndent = -10;
para.lineBreakMode = NSLineBreakByWordWrapping;
para.alignment = NSTextAlignmentCenter;
para.paragraphSpacing = 15;
[content addAttribute:NSParagraphStyleAttributeName
 value:para range:NSMakeRange(0,1)];
self.tv.attributedText = content;

In this next example, I’ll enlarge the first character of a paragraph. I assign the first
character a larger font size, I expand its width slightly (a new iOS 7 feature), and I reduce
its kerning (Figure 10-5):

NSString* s2 = @"Fourscore and seven years ago, our fathers brought forth "
@"upon this continent a new nation, conceived in liberty and dedicated "
@"to the proposition that all men are created equal.";
NSMutableAttributedString* content2 =

504 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-5. An attributed string with an expanded first character

[[NSMutableAttributedString alloc]
 initWithString:s2
 attributes:
 @{
 NSFontAttributeName:
 [UIFont fontWithName:@"HoeflerText-Black" size:16]
 }];
[content2 addAttributes:
 @{
 NSFontAttributeName:[UIFont fontWithName:@"HoeflerText-Black" size:24],
 NSExpansionAttributeName:@0.3,
 NSKernAttributeName:@-4
 } range:NSMakeRange(0,1)];
self.tv.attributedText = content2;

(I don’t know why I can’t get the “o” to come any closer to the “F” in Figure 10-5.)

Carrying on from the previous example, I’ll once again construct a paragraph style and
add it to the first character. My paragraph style illustrates full justification and automatic
hyphenation (Figure 10-6):

NSMutableParagraphStyle* para2 = [NSMutableParagraphStyle new];
para2.headIndent = 10;
para2.firstLineHeadIndent = 10;
para2.tailIndent = -10;
para2.lineBreakMode = NSLineBreakByWordWrapping;
para2.alignment = NSTextAlignmentJustified;
para2.lineHeightMultiple = 1.2;
para2.hyphenationFactor = 1.0;
[content2 addAttribute:NSParagraphStyleAttributeName
 value:para2 range:NSMakeRange(0,1)];
self.tv.attributedText = content2;

Now we come to the Really Amazing Part. I can make a single attributed string consisting
of both paragraphs, and a single text view can portray it (Figure 10-7):

int end = content.length;
[content replaceCharactersInRange:NSMakeRange(end, 0) withString:@"\n"];
[content appendAttributedString:content2];
self.tv.attributedText = content;

Attributed Strings | 505

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-6. An attributed string with justification and autohyphenation

Figure 10-7. A single attributed string comprising differently styled paragraphs

The nib editor includes an ingenious interface for letting you con‐
struct attributed strings wherever built-in interface objects (such as
UILabel or UITextView) accept them as a property; it’s not per‐
fect, however, and isn’t suitable for lengthy or complex text.

Tab stops
Tab stops are new in iOS 7. A tab stop is an NSTextTab, the initializer of which lets you
set its location (points from the left edge) and alignment. An options dictionary lets
you set the tab stop’s column terminator characters; a common use is to create a decimal
tab stop, for aligning currency values at their decimal point. The key, in that case, is
NSTabColumnTerminatorsAttributeName; you can obtain a value appropriate to a given
NSLocale by calling NSTextTab’s class method columnTerminatorsForLocale:.

Here’s an example (Figure 10-8); I have deliberately omitted the “0” from the end of the
second currency value, to prove that the tab stop really is aligning the numbers at their
decimal points:

506 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-8. Tab stops in an attributed string

NSString* s = @"Onions\t$2.34\nPeppers\t$15.2\n";
NSMutableParagraphStyle* p = [NSMutableParagraphStyle new];
NSMutableArray* tabs = [NSMutableArray new];
NSCharacterSet* terms =
 [NSTextTab columnTerminatorsForLocale:[NSLocale currentLocale]];
NSTextTab* tab =
 [[NSTextTab alloc] initWithTextAlignment:NSTextAlignmentRight
 location:170 options:@{NSTabColumnTerminatorsAttributeName:terms}];
[tabs addObject:tab];
p.tabStops = tabs;
p.firstLineHeadIndent = 20;
NSMutableAttributedString* mas =
 [[NSMutableAttributedString alloc] initWithString:s
 attributes:@{
 NSFontAttributeName:[UIFont fontWithName:@"GillSans" size:15],
 NSParagraphStyleAttributeName:p
 }];
self.tv.attributedText = mas;

Text attachments
Text attachments are also new in iOS 7. A text attachment is basically an inline image.
To make one, you need an instance of NSTextAttachment initialized with image data;
the easiest way to do this in iOS 7 is to start with a UIImage and assign directly to the
NSTextAttachment’s image property. You must also give the NSTextAttachment a non‐
zero bounds; the image will be scaled to the size of the bounds you provide, and a zero
origin places the image on the text baseline.

A text attachment is attached to an NSAttributedString using the NSAttachment-
AttributeName key; the text attachment itself is the value. The range of the string that
has this attribute must be a special nonprinting character, NSAttachmentCharacter
(0xFFFC). The simplest way to arrange that is to call the NSAttributedString class method
attributedStringWithAttachment:; you hand it an NSTextAttachment and it hands
you an attributed string consisting of the NSAttachmentCharacter with the
NSAttachmentAttributeName attribute set to that text attachment. You can then insert
this attributed string into your own attributed string at the point where you want the
image to appear.

Attributed Strings | 507

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-9. Text attachments in an attributed string

To illustrate, I’ll add an image of onions and an image of peppers just after the words
“Onions” and “Peppers” in the attributed string (mas) that I created in the previous
example (Figure 10-9):

UIImage* onions = // ...
UIImage* peppers = // ...
NSTextAttachment* onionatt = [NSTextAttachment new];
onionatt.image = onions;
onionatt.bounds =
 CGRectMake(0,-5,onions.size.width,onions.size.height);
NSAttributedString* onionattchar =
 [NSAttributedString attributedStringWithAttachment:onionatt];
NSTextAttachment* pepperatt = [NSTextAttachment new];
pepperatt.image = peppers;
pepperatt.bounds =
 CGRectMake(0,-1,peppers.size.width,peppers.size.height);
NSAttributedString* pepperattchar =
 [NSAttributedString attributedStringWithAttachment:pepperatt];
NSRange r = [[mas string] rangeOfString:@"Onions"];
[mas insertAttributedString:onionattchar atIndex:(r.location + r.length)];
r = [[mas string] rangeOfString:@"Peppers"];
[mas insertAttributedString:pepperattchar atIndex:(r.location + r.length)];
self.tv.attributedText = mas;

Modifying and Querying an Attributed String
Although attributes are applied to ranges, they actually belong to each individual char‐
acter. Thus we can coherently modify just the string part of a mutable attributed string.
The key method here is replaceCharactersInRange:withString:, which can be used
to replace characters with a plain string or, using a zero range length, to insert a plain
string at the start, middle, or end of an attributed string (as demonstrated in the pre‐
ceding code). The rule is:

• If we replace characters, the inserted string takes on the attributes of the first re‐
placed character.

• If we insert characters, the inserted string takes on the attributes of the character
preceding the insertion — except that, if we insert at the start, there is no preceding
character, so the inserted string takes on the attributes of the character following
the insertion.

508 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

You can query an attributed string about its attributes one character at a time — asking
either about all attributes at once (attributesAtIndex:effectiveRange:) or about a
particular attribute by name (attribute:atIndex:effectiveRange:). In those meth‐
ods, the effectiveRange parameter is a pointer to an NSRange variable, which will be
set by indirection to the range over which this same attribute value, or set of attribute
values, applies:

NSRange range;
NSDictionary* d =
 [content attributesAtIndex:content.length-1 effectiveRange:&range];

Because style runs are something of an artifice, however, you might not end up with
what you would think of as the entire style run. The methods with longestEffective-
Range: in their names, on the other hand, do (at the cost of some efficiency) work out
the entire style run for you. In practice, you typically don’t need the entire style run
range, because you’re cycling through ranges; you want to do that as fast as possible,
and speed matters more than getting the longest effective range every time.

In this example, I start with the combined two-paragraph attributed string constructed
in the previous examples, and change all the size 15 material to Arial Bold 20. I don’t
care whether I’m handed longest effective ranges (and my code explicitly says so); I just
want to cycle efficiently:

[content enumerateAttribute:NSFontAttributeName
 inRange:NSMakeRange(0,content.length)
 options:NSAttributedStringEnumerationLongestEffectiveRangeNotRequired
 usingBlock:^(id value, NSRange range, BOOL *stop)
{
 UIFont* font = value;
 if (font.pointSize == 15)
 [content addAttribute:NSFontAttributeName
 value:[UIFont fontWithName: @"Arial-BoldMT" size:20]
 range:range];
}];

Measuring and Drawing an Attributed String
You can draw an attributed string directly, without hosting it in a built-in interface
object, and sometimes this will prove to be the most reliable approach. Just as an
NSString can be drawn into a rect with drawInRect:withFont: and related methods,
an NSAttributedString can be drawn with drawAtPoint:, drawInRect:, and drawWith-
Rect:options:context:.

Here, I draw an attributed string into an image (which might then be displayed by an
image view):

Attributed Strings | 509

www.it-ebooks.info

http://www.it-ebooks.info/

UIGraphicsBeginImageContextWithOptions(rect.size, YES, 0);
[[UIColor whiteColor] setFill];
CGContextFillRect(UIGraphicsGetCurrentContext(), rect);
[content drawInRect:rect]; // draw attributed string
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

Similarly, you can draw an attributed string directly in a UIView’s drawRect:. That, in
fact, is how the TidBITS News app works (Figure 6-1): each table view cell portrays a
single attributed string consisting of the article title and the article summary.

I’ll describe how the attributed string is drawn in the TidBITS News app. The cell’s
contentView is completely occupied by a custom UIView class that I call StringDrawer;
it has a public attributedText property. In tableView:cellForRowAtIndexPath:, I
set that property by calling a utility method that generates this cell’s attributed string by
consulting my data model:

cell.drawer.attributedText = [self attributedStringForIndexPath: indexPath];

StringDrawer’s drawRect: draws its attributedText:

- (void)drawRect:(CGRect)rect {
 CGRect r = CGRectOffset(rect, 0, 2); // shoved down a little from top
 [self.attributedText drawWithRect:r
 options:NSStringDrawingTruncatesLastVisibleLine |
 NSStringDrawingUsesLineFragmentOrigin
 context:nil];
}

Note the options: argument in that code. I want an ellipsis at the end of the second
paragraph if the whole thing doesn’t fit in the given rect. This can’t be achieved using
NSLineBreakByTruncatingTail, which truncates the first line of the paragraph to which
it is applied. Therefore, I’m using drawWithRect:options:context:, instead of simple
drawInRect:, because it allows me to specify the option NSStringDrawingTruncates-
LastVisibleLine. However, I must then also specify NSStringDrawingUsesLine-
FragmentOrigin; otherwise, the string is drawn with its baseline at the rect origin (so
that it appears above that rect) and it doesn’t wrap. The rule is that NSStringDrawing-
UsesLineFragmentOrigin is the implicit default for simple drawInRect:, but with draw-
WithRect:options:context: you must specify it explicitly.

To derive the height of the cell, I also measure the attributed string beforehand, in table-
View:heightForRowAtIndexPath:. Again, the option NSStringDrawingUsesLine-
FragmentOrigin is crucial; without it, the measured text doesn’t wrap and the returned
height will be very small. New in iOS 7, the documentation warns that the returned
height can be fractional and that you should round up with the ceil function if the
height of a view is going to depend on this result:

510 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

CGRect r =
 [s boundingRectWithSize:CGSizeMake(320,10000)
 options:NSStringDrawingUsesLineFragmentOrigin context:nil];
CGFloat result = ceil(r.size.height);

The context: parameter of drawWithRect:options:context: and boundingRectWith-
Size:options:context: lets you attach an instance of NSStringDrawingContext. This
simple class tells you where you just drew. With a plain NSString, you derive this
information from the return value of the drawing command; for example, drawIn-
Rect:withFont: returns a CGSize telling you the size of the drawn string. But drawWith-
Rect:options:context: has no return value. Instead, if you attach an NSString‐
DrawingContext, its totalBounds property tells you, after you draw, the bounds of the
drawn string.

Other features of NSStringDrawingContext, such as minimumScale-
Factor, appear to be nonfunctional in iOS 7.

Labels
A label (UILabel) is a simple built-in interface object for displaying strings. I listed some
of its chief properties in Chapter 8 (in “Built-In Cell Styles” on page 393).

If you’re displaying a plain NSString in a label, by way of the label’s text property, then
you are likely also to set its font, textColor, and textAlignment properties, and pos‐
sibly its shadowColor and shadowOffset properties. The label’s text can have an alternate
highlightedTextColor, to be used when its highlighted property is YES — as hap‐
pens, for example, when the label is in a selected cell of a table view.

On the other hand, if you’re using an NSAttributedString, then you’ll set just the label’s
attributedText property and let the attributes dictate things like color, alignment, and
shadow. Those other UILabel properties do mostly still work, but they’re going to change
the attributes of your entire attributed string, in ways that you might not intend. Setting
the text of a UILabel that has attributedText will basically eliminate the attributes.
The highlightedTextColor property does not work on the attributedText.

Number of Lines
A UILabel’s numberOfLines property is extremely important. Together with the label’s
line breaking behavior and resizing behavior, it determines how much of the text will
appear. The default is 1 — a single line. To make a label display more than one line of
text, set its numberOfLines to a value greater than 1, or to 0 to indicate that there is to
be no maximum.

Labels | 511

www.it-ebooks.info

http://www.it-ebooks.info/

Line break characters in a label’s text are honored. Thus, for example, in a single-line
label, you won’t see whatever follows the first line break character. (This is new behavior
in iOS 7; in iOS 6 and before, if a single-line UILabel’s text contained a line break, it
was treated as a space.)

Wrapping and Truncation
UILabel line breaking (wrapping) and truncation behavior, which applies to both single-
line and multiline labels, is determined by the lineBreakMode (of the label or the at‐
tributed string). Your options are:
NSLineBreakByWordWrapping

Lines break at word-end, but if this is a single-line label, indistinguishable from
NSLineBreakByClipping.

NSLineBreakByClipping

Lines break at word-end, but the last line can continue past its boundary, even if
this leaves a character showing only partially.

NSLineBreakByCharWrapping

Identical to NSLineBreakByWordWrapping. (This is new behavior in iOS 7; in iOS 6
and before, this mode meant that lines could break in mid-word in order to max‐
imize the number of characters in each line. This may be a bug.)

NSLineBreakByTruncatingHead
NSLineBreakByTruncatingMiddle
NSLineBreakByTruncatingTail

Lines break at word-end; if the text is too long for the label, then the last line displays
an ellipsis at the start, middle, or end of the line respectively, and text is omitted at
the point of the ellipsis.

The default line break mode for a new label is NSLineBreakByTruncatingTail. But the
default line break mode for an attributed string’s NSParagraphStyle is NSLineBreakBy-
WordWrapping.

UILabel line break behavior is not the same as NSParagraphStyle line
break behavior. For example, an attributed string paragraph whose line
break mode has Truncating in its name doesn’t wrap when drawn
directly or in a UITextView — though it may wrap when drawn in a
label. And an attributed string paragraph whose line break mode is
NSLineBreakByCharWrapping does break lines in mid-word, as ex‐
pected, even in a label.

512 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Label Resizing
If a label is too small for its text, the entire text won’t show. If a label is too big for its
text, the text is vertically centered in the label, with white space above and below, which
may be undesirable. You might like to shrink or grow a label to fit its text.

If you’re not using autolayout, in most simple cases sizeToFit will do exactly the right
thing; I believe that behind the scenes it is calling boundingRectWithSize:options:
context:.

There are cases where UILabel’s sizeToFit will misbehave. The prob‐
lem arises particularly with paragraph styles involving margins (head-
Indent and tailIndent) — presumably because boundingRectWith-
Size:options:context: ignores the margins.

If you’re using autolayout, a label will correctly configure its own intrinsicContent-
Size automatically, based on its contents — and therefore, all other things being equal,
will size itself to fit its contents with no code at all. Every time you reconfigure the label
in a way that affects its contents (setting its text, changing its font, setting its attributed
text, and so forth), the label automatically invalidates and recalculates its intrinsic con‐
tent size.

In the case of a short single-line label, you might give the label no width or height
constraints; you’ll constrain its position, but you’ll let the label’s intrinsicContent-
Size provide both the label’s width and its height.

For a multiline label, it is more likely that you’ll want to dictate the label’s width, while
letting the label’s height change automatically to accommodate its contents. There are
two ways to do this:
Set the label’s width constraint

This is appropriate particularly when the label’s width is to remain fixed ever after.

Set the label’s preferredMaxLayoutWidth
This property is a hint to help the label’s calculation of its intrinsicContent-
Size. It is the width at which the label, as its contents increase, will stop growing
horizontally to accommodate those contents, and start growing vertically instead.

If a label’s width is to be permitted to vary because of constraints, you can tell it recal‐
culate its height to fit its contents by setting its preferredMaxLayoutWidth to its actual
width. For example, consider a label whose left and right edges are both pinned to the
superview. And imagine that the superview’s width can change, thus changing the width
of the label. (For example, perhaps the superview is the app’s main view, and the app’s
interface is permitted to rotate, thus changing the main view’s width to match the new

Labels | 513

www.it-ebooks.info

http://www.it-ebooks.info/

orientation of the screen.) Here is the code for a UILabel subclass that will respond to
that situation by resizing its own height automatically to fit its contents:

@implementation MySelfAdjustingLabel
-(void)layoutSubviews {
 [super layoutSubviews];
 self.preferredMaxLayoutWidth = self.bounds.size.width;
}
@end

Alternatively, you can change a label’s preferredMaxLayoutWidth in the view control‐
ler’s viewDidLayoutSubviews, but then you may need to use delayed performance to
wait until the label’s width has finished adjusting itself:

- (void)viewDidLayoutSubviews {
 // wait until *after* constraint-based layout has finished
 // that way, the label's width is correct when this code executes
 dispatch_async(dispatch_get_main_queue(), ^{
 self.theLabel.preferredMaxLayoutWidth =
 self.theLabel.bounds.size.width;
 });
}

Instead of letting a label grow, you can elect to permit its text font size to shrink if this
would allow more of the text to fit. How the text is repositioned when the font size
shrinks is determined by the label’s baselineAdjustment property. The conditions un‐
der which this feature operates are:

• The label’s adjustsFontSizeToFitWidth property must be YES.
• The label’s minimumScaleFactor must be less than 1.0.
• The label’s size must be limited.
• Either this must be a single-line label (numberOfLines is 1) or the line break mode

(of the label or the attributed string) must not have Wrapping in its name. (This is
new behavior in iOS 7; in iOS 6 and before, both those conditions had to be met.)

Customized Label Drawing
Methods that you can override in a subclass to modify a label’s drawing are drawText-
InRect: and textRectForBounds:limitedToNumberOfLines:.

For example, this is the code from a UILabel subclass that outlines the label with a black
rectangle and puts a five-point margin around the label’s contents:

514 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)drawTextInRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextStrokeRect(context, CGRectInset(self.bounds, 1.0, 1.0));
 [super drawTextInRect:CGRectInset(rect, 5.0, 5.0)];
}

A CATextLayer (Chapter 3) is like a lightweight, layer-level version of
a UILabel. If the width of the layer is insufficient to display the entire
string, we can get truncation behavior with the truncationMode prop‐
erty. If the wrapped property is set to YES, the string will wrap. We can
also set the alignment with the alignmentMode property. And its
string property can be an NSAttributedString.

Text Fields
A text field (UITextField) portrays just a single line of text; any line break characters in
its text are treated as spaces. It has many of the same properties as a label. You can can
provide it with a plain NSString, setting its text, font, textColor, and text-
Alignment, or provide it with an attributed string, setting its attributedText. New in
iOS 7, you can learn a text field’s overall text attributes as an attributes dictionary through
its defaultTextAttributes property. (Under the hood, the text is always attributed
text, so the displayed text can end up as a combination of, say, the attributedText and
the textColor.)

Under autolayout, a text field’s intrinsicContentSize will attempt to set its width to
fit its contents; if its width is fixed, you can set its adjustsFontSizeToFitWidth and
minimumFontSize properties to allow the text size to shrink somewhat.

Text that is too long for the text field is displayed with an ellipsis at the end. A text field
has no lineBreakMode, but you can change the position of the ellipsis by assigning the
text field an attributed string with different truncation behavior, such as NSLineBreak-
ByTruncatingHead. When long text is being edited, the ellipsis (if any) is removed, and
the text shifts horizontally to show the insertion point.

Regardless of whether you originally supplied a plain string or an attributed string, if
the text field’s allowsEditingTextAttributes property is YES, the user, when editing
in the text field, can summon a menu toggling the selected text’s bold, italics, or underline
features. (Oddly, there’s no way to set this property in a nib.)

A text field has a placeholder property, which is the text that appears faded within the
text field when it has no text (its text or attributedText has been set to nil, or the user
has removed all the text); the idea is that you can use this to suggest to the user what
the text field is for. It has a styled text alternative, attributedPlaceholder; the runtime
will apply an overall light gray color to your attributed string.

Text Fields | 515

www.it-ebooks.info

http://www.it-ebooks.info/

If a text field’s clearsOnBeginEditing property is YES, it automatically deletes its ex‐
isting text (and displays the placeholder) when editing begins within it. If a text field’s
clearsOnInsertion property is YES, then when editing begins within it, the text re‐
mains, but is invisibly selected, and will be replaced by the user’s typing.

A text field’s border drawing is determined by its borderStyle property. Your options
are:
UITextBorderStyleNone

No border.

UITextBorderStyleLine

A plain black rectangle.

UITextBorderStyleBezel

A gray rectangle, where the top and left sides have a very slight, thin shadow.

UITextBorderStyleRoundedRect

In iOS 7, a larger rectangle with slightly rounded corners and a flat, faded gray color.
(In iOS 6 and before, the corners are more rounded, and the top and left sides have
a strong shadow, so that the text appears markedly recessed behind the border.)

You can supply a background image (background); if you combine this with UIText-
BorderStyleNone, or if the image has no transparency, you thus get to supply your own
border — unless the borderStyle is UITextBorderStyleRoundedRect, in which case
the background is ignored. The image is automatically resized as needed (and you will
probably supply a resizable image). A second image (disabledBackground) can be dis‐
played when the text field’s enabled property, inherited from UIControl, is NO. The
user can’t interact with a disabled text field, but without a disabledBackground image,
the user may lack any visual clue to this fact. You can’t set the disabledBackground
unless you have also set the background.

A text field may contain one or two ancillary overlay views, its leftView and right-
View, and possibly a Clear button (a gray circle with a white X). The automatic visibility
of each of these is determined by the leftViewMode, rightViewMode, and clearView-
Mode, respectively. The view mode values are:
UITextFieldViewModeNever

The view never appears.

UITextFieldViewModeWhileEditing

A Clear button appears if there is text in the field and the user is editing. A left or
right view appears if there is no text in the field and the user is editing.

516 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

UITextFieldViewModeUnlessEditing

A Clear button appears if there is text in the field and the user is not editing. A left
or right view appears if the user is not editing, or if the user is editing but there is
no text in the field.

UITextFieldViewModeAlways

A Clear button appears if there is text in the field. A left or right view always appears.

Depending on what sort of view you use, your leftView and rightView may have to
be sized manually so as not to overwhelm the text view contents. If a right view and a
Clear button appear at the same time, the right view may cover the Clear button unless
you reposition it.

The positions and sizes of any of the components of the text field can be set in relation
to the text field’s bounds by overriding the appropriate method in a subclass:

• clearButtonRectForBounds:

• leftViewRectForBounds:

• rightViewRectForBounds:

• borderRectForBounds:

• textRectForBounds:

• placeholderRectForBounds:

• editingRectForBounds:

You should make no assumptions about when or how frequently these
methods will be called; the same method might be called several times
in quick succession. Also, these methods should all be called with a
parameter that is the bounds of the text field, but some are some‐
times called with a 100×100 bounds; this feels like a bug.

You can also override in a subclass the methods drawTextInRect: and draw-
PlaceholderInRect:. You should either draw the specified text or call super to draw
it; if you do neither, the text won’t appear. Both these methods are called with a parameter
whose size is the dimensions of the text field’s text area, but whose origin is {0,0}. In
effect what you’ve got is a graphics context for just the text area; any drawing you do
outside the given rectangle will be clipped.

Summoning and Dismissing the Keyboard
Making the onscreen simulated keyboard appear when the user taps in a text field is no
work at all — it’s automatic, as you’ve probably observed already. Making the keyboard

Text Fields | 517

www.it-ebooks.info

http://www.it-ebooks.info/

vanish again, on the other hand, can be a bit tricky. (Another problem is that the key‐
board can cover the text field that the user just tapped in; I’ll talk about that in a moment.)

The presence or absence of the keyboard, and a text field’s editing state, are intimately
tied to one another, and to the text field’s status as the first responder:

• When a text field is first responder, it is being edited and the keyboard is present.
• When a text field is no longer first responder, it is no longer being edited, and if no

other text field (or text view) becomes first responder, the keyboard is not present.
The keyboard is not dismissed if one text field takes over first responder status from
another.

Thus, you can programmatically control the presence or absence of the keyboard, to‐
gether with a text field’s editing state, by way of the text field’s first responder status:
Becoming first responder

To make the insertion point appear within a text field and to cause the keyboard to
appear, you send becomeFirstResponder to that text field.

You won’t often have to do that; more often, the user will tap in a text field and it
will become first responder automatically. Still, sometimes it’s useful to make a text
field the first responder programmatically; an example appeared in Chapter 8
(“Inserting Table Items” on page 448).

Resigning first responder
To make a text field stop being edited and to cause the keyboard to disappear, you
send resignFirstResponder to that text field. (Actually, resignFirstResponder
returns a BOOL, because a responder might return NO to indicate that for some
reason it refuses to obey this command.)

Alternatively, send the UIView endEditing: method to the first responder or any
superview (including the window) to ask or compel the first responder to resign
first responder status.

In a view presented in the UIModalPresentationFormSheet style on the iPad
(Chapter 6), the keyboard, by default, does not disappear when a text field resigns
first responder status. This is presumably because a form sheet is intended primarily
for text input, so the keyboard is felt as accompanying the form as a whole, not
individual text fields. Optionally, you can prevent this exceptional behavior: in your
UIViewController subclass, override disablesAutomaticKeyboardDismissal to
return NO.

There is no simple way to learn what view is first responder! This is very odd, because
a window surely knows what its first responder is — but it won’t tell you. There’s a
method isFirstResponder, but you’d have to send it to every view in a window until
you find the first responder. One workaround is to store a reference to the first responder

518 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

yourself, typically in your implementation of the text field delegate’s textFieldDid-
BeginEditing:.

Do not name such a reference firstResponder! This name is appa‐
rently already in use by Cocoa, and a name collision can cause your
app to misbehave. (Can you guess how I know that?)

Once the user has tapped in a text field and the keyboard has automatically appeared,
how is the user supposed to get rid of it? On the iPad, the keyboard typically contains
a special button that dismisses the keyboard. But on the iPhone, this is an oddly tricky
issue. You would think that the “return” button in the keyboard would dismiss the
keyboard; but, of itself, it doesn’t.

One solution is to be the text field’s delegate and to implement a text field delegate
method, textFieldShouldReturn:. When the user taps the Return key in the keyboard,
we hear about it through this method, and we tell the text field to resign its first responder
status, which dismisses the keyboard:

- (BOOL)textFieldShouldReturn: (UITextField*) tf {
 [tf resignFirstResponder];
 return YES;
}

I’ll provide a more automatic solution later in this chapter.

Keyboard Covers Text Field
The keyboard has a position “docked” at the bottom of the screen. This may cover the
text field in which the user wants to type, even if it is first responder. On the iPad, this
may not be an issue, because the user can “undock” the keyboard (possibly also splitting
and shrinking it) and slide it up and down the screen freely. On the iPhone, you’ll
typically want to do something to reveal the text field.

To help with this, you can register for keyboard-related notifications:

• UIKeyboardWillShowNotification

• UIKeyboardDidShowNotification

• UIKeyboardWillHideNotification

• UIKeyboardDidHideNotification

Those notifications all have to do with the docked position of the keyboard. On the
iPhone, keyboard docking and keyboard visibility are equivalent: the keyboard is visible
if and only if it is docked. On the iPad, the keyboard is said to “show” if it is being docked,
whether that’s because it is appearing from offscreen or because the user is docking it;

Text Fields | 519

www.it-ebooks.info

http://www.it-ebooks.info/

and it is said to “hide” if it is undocked, whether that’s because it is moving offscreen or
because the user is undocking it.

Two additional notifications are sent both when the keyboard enters and leaves the
screen and (on the iPad) when the user drags it, splits or unsplits it, and docks or undocks
it:

• UIKeyboardWillChangeFrameNotification

• UIKeyboardDidChangeFrameNotification

The notification’s userInfo dictionary contains information about the keyboard de‐
scribing what it will do or has done, under these keys:

• UIKeyboardFrameBeginUserInfoKey

• UIKeyboardFrameEndUserInfoKey

• UIKeyboardAnimationDurationUserInfoKey

• UIKeyboardAnimationCurveUserInfoKey

Thus, to a large extent, you can coordinate your actions with those of the keyboard. In
particular, by looking at the UIKeyboardFrameEndUserInfoKey, you know what position
the keyboard is moving to; you can compare this with the screen bounds to learn whether
the keyboard will now be on or off the screen and, if it will now be on the screen, you
can see whether it will cover a text field.

Finding a strategy for dealing with the keyboard’s presence depends on the needs of
your particular app. I’ll concentrate on the most universal case, where the keyboard
moves into and out of docked position and we detect this with UIKeyboardWillShow-
Notification and UIKeyboardWillHideNotification. What should we do if, when
the keyboard appears, it covers the text field being edited?

Sliding the interface
One natural-looking approach is to slide the entire interface upward as the keyboard
appears. To make this easy, you might start with a view hierarchy like this: the root view
contains a transparent view that’s the same size as the root view; everything else is
contained in that transparent view. The transparent view’s purpose is to host the rest of
the interface; if we slide it upward, the whole interface will slide upward.

Here’s an implementation involving constraints. The transparent view, which I’ll called
the sliding view, is pinned by constraints at the top and bottom to its superview with a
constant of 0, and we have outlets to those constraints. We also have an outlet to the
sliding view itself, and we’ve got a property prepared to hold the first responder:

520 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

@interface ViewController ()
@property (weak, nonatomic) IBOutlet NSLayoutConstraint* topConstraint;
@property (weak, nonatomic) IBOutlet NSLayoutConstraint* bottomConstraint;
@property (weak, nonatomic) IBOutlet UIView *slidingView;
@property (nonatomic, weak) UIView* fr;
@end

In our view controller’s viewDidLoad, we register for the keyboard notifications:

[super viewDidLoad];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardShow:)
 name:UIKeyboardWillShowNotification object:nil];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardHide:)
 name:UIKeyboardWillHideNotification object:nil];

We are the delegate of the various text fields in our interface. When one of them starts
editing, we keep a reference to it as first responder:

- (void)textFieldDidBeginEditing:(UITextField *)tf {
 self.fr = tf; // keep track of first responder
}

As I suggested in the previous section, we also dismiss the keyboard by resigning first
responder when the user taps the Return button in the keyboard:

- (BOOL)textFieldShouldReturn: (UITextField*) tf {
 [tf resignFirstResponder];
 self.fr = nil;
 return YES;
}

As the keyboard threatens to appear, we examine where its top will be. If the keyboard
will cover the text field that’s about to be edited, we animate the sliding view upward to
compensate, by changing the constant value of the constraints that pin its top and
bottom, gearing our animation to that of the keyboard. The keyboard’s frame comes to
us in window/screen coordinates, so it is necessary to convert it to our sliding view’s
coordinates in order to make sense of it:

- (void) keyboardShow: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 CGRect r = [d[UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.slidingView convertRect:r fromView:nil];
 CGRect f = self.fr.frame;
 CGFloat y =
 CGRectGetMaxY(f) + r.size.height -
 self.slidingView.bounds.size.height + 5;
 NSNumber* duration = d[UIKeyboardAnimationDurationUserInfoKey];
 NSNumber* curve = d[UIKeyboardAnimationCurveUserInfoKey];
 if (r.origin.y < CGRectGetMaxY(f)) {
 [UIView animateWithDuration:duration.floatValue
 delay:0

Text Fields | 521

www.it-ebooks.info

http://www.it-ebooks.info/

 options:curve.integerValue << 16
 animations:^{
 self.topConstraint.constant = -y;
 self.bottomConstraint.constant = y;
 [self.view layoutIfNeeded];
 } completion:nil];
 }
}

When the keyboard disappears, we reverse the procedure:

- (void) keyboardHide: (NSNotification*) n {
 NSNumber* duration = n.userInfo[UIKeyboardAnimationDurationUserInfoKey];
 NSNumber* curve = n.userInfo[UIKeyboardAnimationCurveUserInfoKey];
 [UIView animateWithDuration:duration.floatValue
 delay:0
 options:curve.integerValue << 16
 animations:^{
 self.topConstraint.constant = 0;
 self.bottomConstraint.constant = 0;
 [self.view layoutIfNeeded];
 } completion:nil];
}

Text field in a scroll view
Instead of moving the sliding view itself, we could instead shift its bounds origin. If
we’re going to do that, we might as well make the sliding view a scroll view — a view
that already knows all about shifting its bounds origin! This approach has two notable
advantages over the preceding approach:

• We can permit the user to scroll the view within the area not covered by the key‐
board. This is a job for contentInset, whose purpose, you will recall (Chapter 7),
is precisely to make it possible for the user to view all of the scroll view’s content
even though part of the scroll view is being covered by something.
(This behavior is in fact implemented automatically by a UITableViewController.
When a text field inside a table cell is first responder, the table view controller adjusts
the table view’s contentInset and scrollIndicatorInsets to compensate for the
keyboard. The result is that the entire table view is available within the space be‐
tween the top of the keyboard and the top of the screen.)

• A scroll view has some built-in behavior that will help us: it scrolls automatically
to reveal the first responder. Furthermore, new in iOS 7, a UIScrollView has a
keyboardDismissMode, governing what will happen to the keyboard when the user
scrolls.

Let’s imitate UITableViewController’s behavior with a scroll view containing text fields.
In viewDidLoad, we register for keyboard notifications, and we are the delegate of any

522 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

text fields, exactly as in the previous example. When the keyboard appears, we store the
current content offset, content inset, and scroll indicator insets; then we alter them. I
set the scroll view’s bounds directly, rather than calling setContentOffset:

animated:, because I want to match the keyboard animation:

- (void) keyboardShow: (NSNotification*) n {
 self->_oldContentInset = self.scrollView.contentInset;
 self->_oldIndicatorInset = self.scrollView.scrollIndicatorInsets;
 self->_oldOffset = self.scrollView.contentOffset;
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.scrollView convertRect:r fromView:nil];
 CGRect f = self.fr.frame;
 CGFloat y =
 CGRectGetMaxY(f) + r.size.height -
 self.scrollView.bounds.size.height + 5;
 if (r.origin.y < CGRectGetMaxY(f)) {
 NSNumber* duration = d[UIKeyboardAnimationDurationUserInfoKey];
 NSNumber* curve = d[UIKeyboardAnimationCurveUserInfoKey];
 [UIView animateWithDuration:duration.floatValue
 delay:0
 options:curve.integerValue << 16
 animations:^{
 CGRect b = self.scrollView.bounds;
 b.origin = CGPointMake(0, y);
 self.scrollView.bounds = b;
 } completion: nil];
 }
 UIEdgeInsets insets = self.scrollView.contentInset;
 insets.bottom = r.size.height;
 self.scrollView.contentInset = insets;
 insets = self.scrollView.scrollIndicatorInsets;
 insets.bottom = r.size.height;
 self.scrollView.scrollIndicatorInsets = insets;
}

When the keyboard disappears, we restore the saved values:

- (void) keyboardHide: (NSNotification*) n {
 NSNumber* duration = n.userInfo[UIKeyboardAnimationDurationUserInfoKey];
 NSNumber* curve = n.userInfo[UIKeyboardAnimationCurveUserInfoKey];
 [UIView animateWithDuration:duration.floatValue
 delay:0
 options:curve.integerValue << 16
 animations:^{
 CGRect b = self.scrollView.bounds;
 b.origin = self->_oldOffset;
 self.scrollView.bounds = b;
 self.scrollView.scrollIndicatorInsets =
 self->_oldIndicatorInset;

Text Fields | 523

www.it-ebooks.info

http://www.it-ebooks.info/

 self.scrollView.contentInset =
 self->_oldContentInset;
 } completion:nil];
}

New in iOS 7, UIScrollView’s keyboardDismissMode provides some new ways letting
the user dismiss the keyboard. The options are:
UIScrollViewKeyboardDismissModeNone

The default. The same as the old behavior; we must use code to dismiss the keyboard.

UIScrollViewKeyboardDismissModeInteractive

The user can dismiss the keyboard by dragging it down, a completely new iOS 7
behavior.

UIScrollViewKeyboardDismissModeOnDrag

The keyboard dismisses itself if the user scrolls the scroll view.

Configuring the Keyboard
A UITextField implements the UITextInputTraits protocol, which defines properties on
the UITextField that you can set to determine how the keyboard will look and how
typing in the text field will behave. (These properties can also be set in the nib.) For
example, you can set the keyboardType to UIKeyboardTypePhonePad to make the key‐
board for this text field consist of digits only. You can set the returnKeyType to deter‐
mine the text of the Return key (if the keyboard is of a type that has one). New in iOS
7, you can give the keyboard a dark or light shade (keyboardAppearance). You can turn
off autocapitalization (autocapitalizationType) or autocorrection (autocorrection-
Type), make the Return key disable itself if the text field has no content (enablesReturn-
KeyAutomatically), and make the text field a password field (secureTextEntry). You
can even supply your own keyboard or other input mechanism by setting the text field’s
inputView.

You can attach an accessory view to the top of the keyboard by setting the text field’s
inputAccessoryView. In this example, the accessory view has been loaded from a nib
and is available through a property, accessoryView. When editing starts, we configure
the keyboard as we store our reference to the text field:

- (void)textFieldDidBeginEditing:(UITextField *)tf {
 self.fr = tf; // keep track of first responder
 tf.inputAccessoryView = self.accessoryView;
}

We have an NSArray property populated with references to all our text fields (this might
be an appropriate use of an outlet collection). The accessory view contains a Next button,
whose action method is doNextField:. When the user taps the button, we move editing
to the next text field:

524 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) doNextButton: (id) sender {
 NSUInteger ix = [self.textFields indexOfObject:self.fr];
 if (ix == NSNotFound)
 return; // shouldn't happen
 ix++;
 if (ix >= [self.textFields count])
 ix = 0;
 UIView* v = self.textFields[ix];
 [v becomeFirstResponder];
}

The user can control the localization of the keyboard character set in the Settings app,
either through a choice of the system’s base language or by enabling additional “inter‐
national keyboards.” In the latter case, the user can switch among keyboard character
sets while the keyboard is showing. But, as far as I can tell, your code can’t make this
choice; you cannot, for example, force a certain text field to display the Cyrillic keyboard.
You can ask the user to switch keyboards manually, but if you really want a particular
keyboard to appear regardless of the user’s settings and behavior, you’ll have to create
it yourself and provide it as the inputView.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, a sequence of messages is sent to the text
field’s delegate, adopting the UITextFieldDelegate protocol. (Some of these messages
are also available as notifications.) Using them, you can customize the text field’s be‐
havior during editing:
textFieldShouldBeginEditing:

Return NO to prevent the text field from becoming first responder.

textFieldDidBeginEditing:
UITextFieldTextDidBeginEditingNotification

The text field has become first responder.

textFieldShouldClear:

Return NO to prevent the operation of the Clear button or of automatic clearing
on entry (clearsOnBeginEditing). This event is not sent when the text is cleared
because clearsOnInsertion is YES, because the user is not clearing the text but
rather changing it.

textFieldShouldReturn:

The user has tapped the Return button in the keyboard. We have already seen that
this can be used as a signal to dismiss the keyboard.

textField:shouldChangeCharactersInRange:replacementString:

Sent when the user changes the text in the field by typing or pasting, or by back‐
spacing or cutting (in which case the replacement string will have zero length).

Text Fields | 525

www.it-ebooks.info

http://www.it-ebooks.info/

Return NO to prevent the proposed change; you can substitute text by changing
the text field’s text directly (there is no circularity, as this delegate method is not
called when you do that).

In this example, the user can enter only lowercase characters:

-(BOOL)textField:(UITextField *)textField
 shouldChangeCharactersInRange:(NSRange)range
 replacementString:(NSString *)string {
 NSString* lc = [string lowercaseString];
 textField.text =
 [textField.text stringByReplacingCharactersInRange:range
 withString:lc];
 return NO;
}

Another use of textField:shouldChangeCharactersInRange:replacement-

String: is to take advantage of the typingAttributes property to set the attributes
of the text the user is about to enter. In this example, I’ll set the user’s text to be red
underlined (in iOS 6, due to a bug, this code didn’t work):

NSDictionary* d = textField.typingAttributes;
NSMutableDictionary* md = [d mutableCopy];
[md addEntriesFromDictionary:
 @{NSForegroundColorAttributeName:[UIColor redColor],
 NSUnderlineStyleAttributeName:@(NSUnderlineStyleSingle)}];
textField.typingAttributes = md;

It is common practice to implement textField:shouldChangeCharactersIn-
Range:replacementString: as a way of learning that the text has been changed,
even if you then always return YES. This method is not called when the user changes
text styling through the Bold, Italics, or Underline menu items.

UITextFieldTextDidChangeNotification corresponds loosely.

textFieldShouldEndEditing:

Return NO to prevent the text field from resigning first responder (even if you just
sent resignFirstResponder to it). You might do this, for example, because the text
is invalid or unacceptable in some way. The user will not know why the text field is
refusing to end editing, so the usual thing is to put up an alert (Chapter 13) ex‐
plaining the problem.

textFieldDidEndEditing:
UITextFieldTextDidEndEditingNotification

The text field has resigned first responder. See Chapter 8 (“Editable Content in Table
Items” on page 446) for an example of using textFieldDidEndEditing: to fetch
the text field’s current text and store it in the model.

526 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

A text field is also a control (UIControl; see also Chapter 12). This means you can attach
a target–action pair to any of the events that it reports in order to receive a message
when that event occurs:

• The user can touch and drag, triggering Touch Down and the various Touch Drag
events.

• If the user touches in such a way that the text field enters editing mode (and the
keyboard appears), Editing Did Begin and Touch Cancel are triggered; if the user
causes the text field to enter editing mode in some other way (such as by tabbing
into it), Editing Did Begin is triggered without any Touch events.

• As the user edits (including changing attributes), Editing Changed is triggered.
• If the user taps while in editing mode, Touch Down (and possibly Touch Down

Repeat) and Touch Cancel are triggered.
• When editing ends, Editing Did End is triggered; if the user stops editing by tapping

Return in the keyboard, Did End on Exit is triggered first.

In general, you’re more likely to treat a text field as a text field (through its delegate
messages) than as a control (through its control events). However, the Did End on Exit
event message has an interesting property: it provides an alternative way to dismiss the
keyboard when the user taps a text field keyboard’s Return button. If there is a Did End
on Exit target–action pair for this text field, then if the text field’s delegate does not
return NO from textFieldShouldReturn:, the keyboard will be dismissed automati‐
cally when the user taps the Return key. (The action handler for Did End on Exit doesn’t
actually have to do anything.)

This suggests the following trick for getting automatic keyboard dismissal with no code
at all. In the nib, edit the First Responder proxy object in the Attributes inspector, adding
a new First Responder Action; let’s call it dummy:. Now hook the Did End on Exit event
of the text field to the dummy: action of the First Responder proxy object. That’s it!
Because the text field’s Did End on Exit event now has a target–action pair, the text field
automatically dismisses its keyboard when the user taps Return; there is no penalty for
not finding a handler for a message sent up the responder chain, so the app doesn’t crash
even though there is no implementation of dummy: anywhere.

Alternatively, you can implement the same trick in code:

[textField addTarget:nil action:@selector(dummy:)
 forControlEvents:UIControlEventEditingDidEndOnExit];

A disabled text field emits no delegate messages or control events.

Text Fields | 527

www.it-ebooks.info

http://www.it-ebooks.info/

Text Field Menu
When the user double-taps or long-presses in a text field, the menu appears. It contains
menu items such as Select, Select All, Paste, Copy, Cut, and Replace; which menu items
appear depends on the circumstances. The menu can be customized; the key facts you
need to know are these:

• You can add potential menu items to the menu through the singleton global shared
UIMenuController object. Its menuItems property is an array of custom menu items
— that is, menu items that may appear in addition to those that the system puts
there. A menu item is a UIMenuItem, which is simply a title (which appears in the
menu) plus an action selector. The action will be called, nil-targeted, thus sending
it up the responder chain, when the user taps the menu item.

• The actions for the standard menu items are nil-targeted, so they percolate up the
responder chain, and you can interfere with their behavior by implementing their
actions. Many of the selectors are listed in the UIResponderStandardEditActions
informal protocol. Commonly used standard actions are:
— cut:

— copy:

— select:

— selectAll:

— paste:

— delete:

— _promptForReplace:

— _define:

— _showTextStyleOptions:

— toggleBoldface:

— toggleItalics:

— toggleUnderline:

• You govern the presence or absence of any menu item by implementing the
UIResponder method canPerformAction:withSender: in the responder chain.

As an example, we’ll devise a text field whose menu includes our own menu item, Ex‐
pand. I’m imagining here, for instance, a text field where the user can select a U.S. state
two-letter abbreviation (such as “CA”) and can then summon the menu and tap Expand
to replace it with the state’s full name (such as “California”).

528 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

At some point before the user can tap in an instance of our UITextField subclass, we
modify the global menu:

UIMenuItem *mi = [[UIMenuItem alloc] initWithTitle:@"Expand"
 action:@selector(expand:)];
UIMenuController *mc = [UIMenuController sharedMenuController];
mc.menuItems = @[mi];

In a UITextField subclass, we implement canPerformAction:withSender: to govern
the contents of the menu. The reason for putting this code in a subclass is to guarantee
that this implementation of canPerformAction:withSender: will be called when an
instance of this subclass is first responder, but at no other time. Let’s presume that we
want our Expand menu item to be present only if the selection consists of a two-letter
state abbreviation. UITextField itself provides no way to learn the selected text, but it
conforms to the UITextInput protocol, which does:

- (BOOL) canPerformAction:(SEL)action withSender: (id) sender {
 if (action == @selector(expand:)) {
 NSString* s = [self textInRange:self.selectedTextRange];
 return (s.length == 2 && [self.class stateForAbbrev: s]);
 }
 return [super canPerformAction:action withSender:sender];
}

When the user chooses the Expand menu item, the expand: message is sent up the
responder chain. We catch it in our UITextField subclass and obey it by replacing the
selected text with the corresponding state name:

- (void) expand: (id) sender {
 NSString* s = [self textInRange:self.selectedTextRange];
 s = [self stateForAbbrev:s]; // left as an exercise for the reader
 [self replaceRange:self.selectedTextRange withText:s];
}

We can also implement the selector for, and thus modify the behavior of, any of the
standard menu items. For example, I’ll implement copy: and modify its behavior. First
we call super to get standard copying behavior; then we modify what’s now on the
pasteboard:

- (void) copy: (id) sender {
 [super copy: sender];
 UIPasteboard* pb = [UIPasteboard generalPasteboard];
 NSString* s = pb.string;
 // ... alter s here
 pb.string = s;
}

(Implementing the selectors for toggleBoldface:, toggleItalics:, and toggle-
Underline: is probably the best way to get an event when the user changes these
attributes.)

Text Fields | 529

www.it-ebooks.info

http://www.it-ebooks.info/

Text Views
A text view (UITextView) is a scroll view subclass (UIScrollView); it is not a control.
Many of its properties are similar to those of a text field:

• A text view has text, font, textColor, and textAlignment properties; it can be
user-editable or not, according to its editable property.

• A text view has attributedText, allowsEditingTextAttributes, and typing-
Attributes properties, as well as clearsOnInsertion.

• An editable text view governs its keyboard just as a text field does: when it is first
responder, it is being edited and shows the keyboard, and it implements the UIText‐
Input protocol and has inputView and inputAccessoryView properties.

• A text view’s menu works the same way as a text field’s.

A text view provides (official) information about, and control of, its selection: it has a
selectedRange property which you can get and set, along with a scrollRangeTo-
Visible: method so that you can scroll in terms of a range of its text.

A text view’s delegate messages (UITextViewDelegate protocol) and notifications, too,
are similar to those of a text field. The following delegate methods (and notifications)
should have a familiar ring:

• textViewShouldBeginEditing:

• textViewDidBeginEditing: (UITextViewTextDidBeginEditingNotification)
• textViewShouldEndEditing:

• textViewDidEndEditing: (UITextViewTextDidEndEditingNotification)
• textView:shouldChangeTextInRange:replacementText:

Some differences are:
textViewDidChange:
UITextViewTextDidChangeNotification

Sent when the user changes text or attributes. A text field has no corresponding
delegate method, though the Editing Changed control event and notification are
similar.

textViewDidChangeSelection:

In contrast, a text field is officially uninformative about the selection.

New in iOS 7, a text view’s delegate can also decide how to respond when the user taps
on a text attachment or a link. The text view must have its selectable property (new
in iOS 7) set to YES, and its editable property set to NO:

530 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

textView:shouldInteractWithTextAttachment:inRange:

The default behavior (you return YES) is an action sheet letting the user copy the
image to the clipboard or the camera roll.

textView:shouldInteractWithURL:inRange:

The default behavior (you return YES) is that the URL is opened in Safari.

By returning NO from either of those methods, you can substitute your own response,
effectively treating the image or URL as a button.

A text view also has a dataDetectorTypes property; this, too, if the text view is selectable
but not editable, allows text of certain types, specified as a bitmask (and presumably
located using NSDataDetector), to be treated as tappable links; the types are:
UIDataDetectorTypePhoneNumber

The default response to a tap is an alert view with an option to call the number; the
default response to a long press is an action sheet with options Call, Send Message,
Add to Contacts, and Copy.

UIDataDetectorTypeLink

The default response to a tap is to go the URL in Mobile Safari; the default response
to a long press is an action sheet with options Open, Add to Reading List, and Copy.

UIDataDetectorTypeAddress

The default response to a tap is to search for the address in the Maps app; the default
response to a long press is an action sheet with options Open in Maps, Add to
Contacts, and Copy.

UIDataDetectorTypeCalendarEvent

The default response is an action sheet with options Create Event, Show in Calendar,
and Copy.

New in iOS 7, the delegate’s implementation of textView:shouldInteractWithURL:in-
Range: catches data detector taps as well, so you can prevent the default behavior and
substitute your own. You can distinguish a phone number through the URL’s scheme (it
will be @"tel"), but an address or calendar event will be opaque (the scheme is
@"x-apple-data-detectors") and returning NO probably makes no sense. The dele‐
gate method doesn’t distinguish a tap from a long press for you.

Text View as Scroll View
A text view is a scroll view, so everything you know about scroll views applies (see
Chapter 7). It has, by default, no border, because a scroll view has no border. It can be
user-scrollable or not.

A text view’s contentSize is maintained for you, automatically, as the text changes, so
as to contain the text exactly; thus, if the text view is scrollable, the user can see any of

Text Views | 531

www.it-ebooks.info

http://www.it-ebooks.info/

its text. You can track changes to the content size by tracking changes to the text (in the
delegate’s textViewDidChange:, for example). A common reason for doing so is to im‐
plement a self-sizing text view, that is, a text view that adjusts its height automatically to
embrace the amount of text it contains. In this example, we have an outlet to the text
view’s internal height constraint:

- (void)textViewDidChange:(UITextView *)textView {
 self.heightConstraint.constant = textView.contentSize.height;
}

Text View and Keyboard
The fact that a text view is a scroll view comes in handy also when the keyboard partially
covers a text view. The text view quite often dominates the screen, or a large portion of
the screen, and you can respond to the keyboard partially covering it by adjusting the
text view’s contentInset, just as we did earlier in this chapter with a scroll view (“Text
field in a scroll view” on page 522).

Here’s a fairly straightforward implementation for dealing with what happens when the
user taps in the text view to start editing and the keyboard partially covers the text view
(self.tv):

-(void)viewDidLoad {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardShow:)
 name:UIKeyboardWillShowNotification object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardHide:)
 name:UIKeyboardWillHideNotification object:nil];
}
- (void) keyboardShow: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.tv.superview convertRect:r fromView:nil];
 CGRect f = self.tv.frame;
 CGRect fs = self.tv.superview.bounds;
 CGFloat diff = fs.size.height - f.origin.y - f.size.height;
 CGFloat keyboardTop = r.size.height - diff;
 UIEdgeInsets insets = self.tv.contentInset;
 insets.bottom = keyboardTop;
 self.tv.contentInset = insets;
 insets = self.tv.scrollIndicatorInsets;
 insets.bottom = keyboardTop;
 self.tv.scrollIndicatorInsets = insets;
}

However, in iOS 7 there’s a bug: if the keyboard now covers the spot in the text view
where the user tapped, the selection remains hidden behind the keyboard — and calling
scrollRangeToVisible: doesn’t help. (In previous versions of iOS, the text view scrol‐

532 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

led automatically to reveal the selection.) And there’s another bug: as the user types, the
text view doesn’t automatically scroll up to keep newly entered characters above the top
of the keyboard. (In previous versions of iOS, it did.)

A possible workaround involves taking advantage of the fact that UITextView imple‐
ments the UITextInput protocol. For example:

-(void)textViewDidChange:(UITextView *)textView {
 // prevent typed characters from going behind keyboard
 // the keyboard should be doing this for us automatically!
 CGRect r =
 [textView caretRectForPosition:textView.selectedTextRange.end];
 [textView scrollRectToVisible:r animated:NO];
}

Now let’s talk about what happens when the keyboard is dismissed. First of all, how is
the keyboard to be dismissed? On the iPad, the virtual keyboard usually contains a
button that dismisses the keyboard. But what about the iPhone? The Return key is
meaningful for character entry; you aren’t likely to want to misuse it as a way of dis‐
missing the keyboard.

On the iPhone, the interface might well consist of a text view and the keyboard, which
is always showing: instead of dismissing the keyboard, the user dismisses the entire
interface. For example, in Apple’s Mail app on the iPhone, when the user is composing
a message, in what is presumably a presented view controller, the keyboard is present
the whole time; the keyboard is dismissed because the user sends or cancels the message
and the presented view controller is dismissed.

Alternatively, you can provide interface for dismissing the keyboard explicitly. For ex‐
ample, in Apple’s Notes app, a note alternates between being read fullscreen and being
edited with the keyboard present; in the latter case, a Done button appears, and the user
taps it to dismiss the keyboard. If there’s no good place to put a Done button in the
interface, you could attach an accessory view to the keyboard itself.

Here’s a possible implementation of a Done button’s action method, with resulting dis‐
missal of the keyboard:

- (IBAction)doDone:(id)sender {
 [self.view endEditing:NO];
}
- (void) keyboardHide: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 NSNumber* curve = d[UIKeyboardAnimationCurveUserInfoKey];
 NSNumber* duration = d[UIKeyboardAnimationDurationUserInfoKey];
 [UIView animateWithDuration:duration.floatValue delay:0
 options:curve.integerValue << 16
 animations:
 ^{
 [self.tv setContentOffset:CGPointZero];
 } completion:^(BOOL finished) {

Text Views | 533

www.it-ebooks.info

http://www.it-ebooks.info/

 self.tv.contentInset = UIEdgeInsetsZero;
 self.tv.scrollIndicatorInsets = UIEdgeInsetsZero;
 }];
}

Text Kit
New in iOS 7, Text Kit has been introduced — actually, imported from OS X, where you
may already be more familiar with its use than you realize. For example, much of the
text-editing “magic” of Xcode is due to Text Kit.

Text Kit is a group of Objective-C classes that are responsible for drawing text; simply
put, they turn an NSAttributedString into graphics. You can take advantage of Text Kit
to modify text drawing in ways that were possible in previous systems only by dipping
down to the low-level C-based world of Core Text (if at all).

A UITextView in iOS 7 provides direct access to the underlying Text Kit engine. It has
the following Text Kit–related properties:
textContainer

The text view’s text container (an NSTextContainer instance). The designated ini‐
tializer is now initWithFrame:textContainer:.

textContainerInset

The margins of the text container, designating the area within the contentSize
rectangle in which the text as a whole is drawn. Changing this value changes the
margins immediately, causing the text to be freshly laid out (try it!).

layoutManager

The text view’s layout manager (an NSLayoutManager instance).

textStorage

The text view’s text storage (an NSTextStorage instance).

When you initialize a text view with a text container, you hand it the entire “stack” of
Text Kit instances: a text container, a layout manager, and a text storage. In the simplest
and most common case, a text storage has a layout manager, and a layout manager has
a text container, thus forming the “stack”. If the text container is a UITextView’s text
container, the stack is retained, and the text view is operative. Thus, the simplest case
might look like this (and we may suppose that this is in fact what the runtime does when
you call UITextView’s initWithFrame:):

CGRect r = // ... frame for the new text view
NSLayoutManager* lm = [NSLayoutManager new];
NSTextStorage* ts = [NSTextStorage new];
[ts addLayoutManager:lm];
NSTextContainer* tc =

534 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

 [[NSTextContainer alloc]
 initWithSize:CGSizeMake(r.size.width, CGFLOAT_MAX)];
[lm addTextContainer:tc];
UITextView* tv = [[UITextView alloc] initWithFrame:r textContainer:tc];

Here’s what the three chief Text Kit classes do:
NSTextStorage

A subclass of NSMutableAttributedString. It is, or holds, the underlying text. It has
one or more layout managers, and notifies them when the text changes. By sub‐
classing and delegation (NSTextStorageDelegate), its behavior can be modified so
that it applies attributes in a custom fashion.

NSTextContainer
It is owned by a layout manager, and helps that layout manager by defining the
region in which the text is to be laid out. It does this in three primary ways:

• It has a size. The text container’s top left is the origin for the text layout coor‐
dinate system, and the text will be laid out within the text container’s rectangle.

• It can specify exclusion paths (exclusionPaths property). These are UIBezier‐
Path objects within which no text is to be drawn.

• It can be subclassed to override lineFragmentRectForProposedRect:at-
Index:writingDirection:remainingRect:, thus placing the next chunk of
text drawing anywhere at all (except inside an exclusion path).

NSLayoutManager
This is the master text drawing class! It has one or more text containers, and is
owned by a text storage — thus forming the Text Kit stack. It draws the text storage’s
text into the boundaries defined by the text container(s).

A layout manager can have a delegate (NSLayoutManagerDelegate), and can be
subclassed. This, as you may well imagine, is a powerful and sophisticated class.

Text Container
An NSTextContainer has a size, within which the text will be drawn. By default, as in
the preceding code, a text view’s text container’s width is the width of the text view, while
its height is effectively infinite, allowing the drawing of the text to grow vertically but
not horizontally beyond the bounds of the text view, and making it possible to scroll the
text vertically.

It also has heightTracksTextView and widthTracksTextView properties, causing the
text container to be resized to match changes in the size of the text view — for example,
if the text view is resized because of interface rotation. By default, as you might expect,
widthTracksTextView is YES (the documentation is wrong about this), while height-
TracksTextView is NO: the text fills the width of the text view, and is laid out freshly if

Text Kit | 535

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-10. A text view with an exclusion path

the text view’s width changes, but its height remains effectively infinite. The text view
itself, of course, configures its own contentSize so that the user can scroll just to the
bottom of the existing text.

When you change a text view’s textContainerInset, it modifies its text container’s size
to match, as necessary. In the default configuration, this means that it modifies the text
container’s width; the top and bottom insets are implemented through the text con‐
tainer’s position within the content rect. Within the text container, additional side mar‐
gins correspond to the text container’s lineFragmentPadding; the default is 5, but you
can change it.

If the text view’s scrollEnabled is NO, then by default its text container’s heightTracks-
TextView and widthTracksTextView are both YES, and the text container size is ad‐
justed so that the text fills the text view. In that case, you can also set the text container’s
lineBreakMode. This works like the line break mode of a UILabel. For example, if the
line break mode is NSLineBreakByTruncatingTail, then the last line has an ellipsis at
the end (if the text is too long for the text view). You can also set the text container’s
maximumNumberOfLines, which is like a UILabel’s numberOfLines. In effect, you’ve
turned the text view into a label!

But, of course, a nonscrolling text view isn’t just a label, because you’ve got access to the
Text Kit stack that backs it. For example, you can apply exclusion paths to the text
container. Figure 10-10 shows a case in point. The text wraps in longer and longer lines,
and then in shorter and shorter lines, because there’s an exclusion path on the right side
of the text container that’s a rectangle with a large V-shaped indentation.

In Figure 10-10, the text view (self.tv) is initially configured in the view controller’s
viewDidLoad:

536 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-11. A text view with a subclassed text container

self.tv.attributedText = // ...
self.tv.textContainerInset = UIEdgeInsetsMake(20, 20, 20, 0);
self.tv.scrollEnabled = NO;

The exclusion path is then drawn and applied in viewDidLayoutSubviews:

-(void)viewDidLayoutSubviews {
 CGSize sz = self.tv.textContainer.size;
 UIBezierPath* p = [UIBezierPath new];
 [p moveToPoint:CGPointMake(sz.width/4.0,0)];
 [p addLineToPoint:CGPointMake(sz.width,0)];
 [p addLineToPoint:CGPointMake(sz.width,sz.height)];
 [p addLineToPoint:CGPointMake(sz.width/4.0,sz.height)];
 [p addLineToPoint:CGPointMake(sz.width,sz.height/2.0)];
 [p closePath];
 self.tv.textContainer.exclusionPaths = @[p];
}

Instead of (or in addition to) an exclusion path, you can subclass NSTextContainer to
modify the rectangle in which the layout manager wants to position a piece of text. (Each
piece of text is actually a line fragment; I’ll explain in the next section what a line frag‐
ment is.) In Figure 10-11, the text is inside a circle.

To achieve the layout shown in Figure 10-11, I set the attributed string’s line break mode
to NSLineBreakByCharWrapping (to bring the right edge of each line as close as possible
to the circular shape), and constructed the TextKit stack by hand to include an instance
of my NSTextContainer subclass. That subclass contains this code, in which I simple‐
mindedly increase each line fragment’s horizontal origin and decrease its width until its
top edge fits entirely within a circle:

-(CGRect)lineFragmentRectForProposedRect:(CGRect)proposedRect
 atIndex:(NSUInteger)characterIndex
 writingDirection:(NSWritingDirection)baseWritingDirection
 remainingRect:(CGRect *)remainingRect {

Text Kit | 537

www.it-ebooks.info

http://www.it-ebooks.info/

 CGRect result =
 [super lineFragmentRectForProposedRect:proposedRect
 atIndex:characterIndex
 writingDirection:baseWritingDirection
 remainingRect:remainingRect];
 CGRect r = CGRectMake(0,0,self.size.width,self.size.height);
 UIBezierPath* circle = [UIBezierPath bezierPathWithOvalInRect:r];
 CGPoint p = result.origin;
 while (![circle containsPoint:p]) {
 p.x += .1;
 result.origin = p;
 }
 CGFloat w = result.size.width;
 p = result.origin;
 p.x += w;
 while (![circle containsPoint:p]) {
 w -= .1;
 result.size.width = w;
 p = result.origin;
 p.x += w;
 }
 return result;
}

Alternative Text Kit Stack Architectures
The default Text Kit stack is one text storage, which has one layout manager, which has
one text container. But a text storage can have multiple layout managers, and a layout
manager can have multiple text containers. What’s that all about?

If a layout manager has multiple text containers, the overflow from each text container
is drawn in the next one. For example, in Figure 10-12, there are two text views; the text
has filled the first text view, and has then continued by flowing into and filling the second
text view. As far as I can tell, the text views can’t be made editable in this configuration.
But clearly this is a way to achieve a multicolumn or multipage layout, or you could use
text views of different sizes for a magazine-style layout.

It is possible to achieve that arrangement by disconnecting the layout managers of ex‐
isting text views from their text containers and rebuilding the stack from below. How‐
ever, I think it’s probably safer to build the entire stack by hand:

CGRect r = //
CGRect r2 = //
NSAttributedString* mas = //
NSTextStorage* ts1 = [[NSTextStorage alloc] initWithAttributedString:mas];
NSLayoutManager* lm1 = [NSLayoutManager new];
[ts1 addLayoutManager:lm1];
NSTextContainer* tc1 = [[NSTextContainer alloc] initWithSize:r.size];
[lm1 addTextContainer:tc1];
UITextView* tv = [[UITextView alloc] initWithFrame:r textContainer:tc1];

538 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-12. A layout manager with two text containers

Figure 10-13. A text storage with two layout managers

tv.scrollEnabled = NO;
NSTextContainer* tc2 = [[NSTextContainer alloc] initWithSize:r2.size];
[lm1 addTextContainer:tc2];
UITextView* tv2 = [[UITextView alloc] initWithFrame:r2 textContainer:tc2];
tv2.scrollEnabled = NO;

If a text storage has multiple layout managers, then each layout manager is laying out
the same text. For example, in Figure 10-13, there are two text views displaying the same
text. The remarkable thing is that if you edit one text view, the other changes to match.
(That’s how Xcode lets you edit the same code file in different windows, tabs, or panes.)

Again, this arrangement is probably best achieved by building the entire text stack by
hand:

CGRect r = //
CGRect r2 = //
NSAttributedString* mas = //
NSTextStorage* ts1 = [[NSTextStorage alloc] initWithAttributedString:mas];

Text Kit | 539

www.it-ebooks.info

http://www.it-ebooks.info/

NSLayoutManager* lm1 = [NSLayoutManager new];
[ts1 addLayoutManager:lm1];
NSLayoutManager* lm2 = [NSLayoutManager new];
[ts1 addLayoutManager:lm2];
NSTextContainer* tc1 = [[NSTextContainer alloc] initWithSize:r.size];
NSTextContainer* tc2 = [[NSTextContainer alloc] initWithSize:r2.size];
[lm1 addTextContainer:tc1];
[lm2 addTextContainer:tc2];
UITextView* tv = [[UITextView alloc] initWithFrame:r textContainer:tc1];
UITextView* tv2 = [[UITextView alloc] initWithFrame:r2 textContainer:tc2];

Layout Manager
The first thing to know about a layout manager is the geometry in which it thinks. To
envision a layout manager’s geometrical world, think in terms of glyphs and line
fragments:

• A glyph is the drawn analog of a character. The layout manager’s primary job is to
get glyphs from a font and draw them.

• A line fragment is a rectangle in which glyphs are drawn, one after another. (The
reason it’s a line fragment, and not just a line, is that a line might be interrupted by
the text container’s exclusion paths.)

A glyph has a location in terms of the line fragment into which it is drawn. A line
fragment’s coordinates are in terms of the text container. The layout manager can con‐
vert between these coordinate systems, and between text and glyphs. Given a range of
text in the text storage, it knows where the corresponding glyphs are drawn in the text
container. Conversely, given a location in the text container, it knows what glyph is
drawn there and what range of text in the text storage that glyph represents.

What’s missing from that geometry is what, if anything, the text container corresponds
to in the real world. A text container is not, itself, a real rectangle in the real world; it’s
just a class that tells the layout manager a size to draw into. Making that rectangle
meaningful for drawing purposes is up to some other class outside the Text Kit stack.
A UITextView, for example, has a text container, which it shares with a layout manager.
The text view knows how its own content is scrolled and how the rectangle represented
by its text container is inset within that scrolling content. The layout manager, however,
doesn’t know anything about that; it sees the text container as a purely theoretical rec‐
tangular boundary. (Only when the layout manager actually draws does it make contact
with the real world of some graphics context — and it must be told, on those occasions,
how the text container’s rectangle is offset within that graphics context.)

To illustrate, I’ll use a TextKit method to learn the index of the first character visible at
the top left of a text view (self.tv); I’ll then use NSLinguisticTagger to derive the first
word visible at the top left of the text view. I can ask the layout manager what character
or glyph corresponds to a certain point in the text container, but what point should I

540 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

ask about? Translating from the real world to text container coordinates is up to me; I
must take into account both the scroll position of the text view’s content and the inset
of the text container within that content:

CGPoint off = self.tv.contentOffset;
CGFloat top = self.tv.textContainerInset.top;
CGPoint tctopleft = CGPointMake(0, off.y - top);

Now I’m speaking in terms of text container coordinates, which are layout manager
coordinates. One possibility is then to ask directly for the index (in the text storage’s
string) of the corresponding character:

NSUInteger ix =
 [self.tv.layoutManager characterIndexForPoint:tctopleft
 inTextContainer:self.tv.textContainer
 fractionOfDistanceBetweenInsertionPoints:nil];

That, however, does not give quite the results one might intuitively expect. If any of a
word is poking down from above into the visible area of the text view, that is the word
whose first character is returned. I think we intuitively expect, if a word isn’t fully visible,
that the answer should be the word that starts the next line, which is fully visible. So I’ll
modify that code in a simpleminded way. I’ll obtain the index of the glyph at my initial
point; from this, I can derive the rect of the line fragment containing it. If that line
fragment is not at least three-quarters visible, I’ll add one line fragment height to the
starting point and derive the glyph index again. Then I’ll convert the glyph index to a
character index:

NSUInteger ix =
 [self.tv.layoutManager glyphIndexForPoint:tctopleft
 inTextContainer:self.tv.textContainer
 fractionOfDistanceThroughGlyph:nil];
CGRect frag =
 [self.tv.layoutManager lineFragmentRectForGlyphAtIndex:ix
 effectiveRange:nil];
if (tctopleft.y > frag.origin.y + .5*frag.size.height) {
 tctopleft.y += frag.size.height;
 ix = [self.tv.layoutManager glyphIndexForPoint:tctopleft
 inTextContainer:self.tv.textContainer
 fractionOfDistanceThroughGlyph:nil];
}
NSRange charRange =
 [self.tv.layoutManager characterRangeForGlyphRange:NSMakeRange(ix,0)
 actualGlyphRange:nil];
ix = charRange.location;

Finally, I’ll use NSLinguisticTagger to get the range of the entire word to which this
character belongs:

Text Kit | 541

www.it-ebooks.info

http://www.it-ebooks.info/

NSLinguisticTagger* t =
 [[NSLinguisticTagger alloc]
 initWithTagSchemes:@[NSLinguisticTagSchemeTokenType] options:0];
t.string = self.tv.text;
NSRange r;
NSString* tag =
 [t tagAtIndex:ix scheme:NSLinguisticTagSchemeTokenType
 tokenRange:&r sentenceRange:nil];
if ([tag isEqualToString: NSLinguisticTagWord])
 NSLog(@"%@", [self.tv.text substringWithRange:r]);

Clearly, the same sort of technique could be used to formulate a custom response to a
tap (“what word did the user just tap on?”).

By subclassing NSLayoutManager (and by implementing its delegate), many powerful
effects can be achieved. As a simple example, I’ll carry on from the preceding code by
drawing a rectangular outline around the word we just located. To make this possible,
I have an NSLayoutManager subclass, MyLayoutManager, an instance of which is built
into the Text Kit stack for this text view. MyLayoutManager has a public NSRange
property, wordRange. Having worked out what word I want to outline, I set the layout
manager’s wordRange and invalidate its drawing of that word, to force a redraw:

MyLayoutManager* lm = (MyLayoutManager*)self.tv.layoutManager;
lm.wordRange = r;
[lm invalidateDisplayForCharacterRange:r];

In MyLayoutManager, I’ve overridden the method that draws the background behind
glyphs. At the moment this method is called, there is already a graphics context.

First, I call super. Then, if the range of glyphs to be drawn includes the glyphs for the
range of characters in self.wordRange, I ask for the rect of the bounding box of those
glyphs, and stroke it to form the rectangle. As I mentioned earlier, the bounding box is
in text container coordinates, but now we’re drawing in the real world, so I have to
compensate by offsetting the drawn rectangle by the same amount that the text container
is supposed to be offset in the real world; fortunately, the text view tells us (origin) what
that offset is:

-(void)drawBackgroundForGlyphRange:(NSRange)glyphsToShow
 atPoint:(CGPoint)origin {
 [super drawBackgroundForGlyphRange:glyphsToShow atPoint:origin];
 if (!self.wordRange.length)
 return;
 NSRange range =
 [self glyphRangeForCharacterRange:self.wordRange
 actualCharacterRange:nil];
 range = NSIntersectionRange(glyphsToShow, range);
 if (!range.length)
 return;
 NSTextContainer* tc =
 [self textContainerForGlyphAtIndex:range.location

542 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

 effectiveRange:nil];
 CGRect r = [self boundingRectForGlyphRange:range inTextContainer:tc];
 r.origin.x += origin.x;
 r.origin.y += origin.y;
 CGContextRef c = UIGraphicsGetCurrentContext();
 CGContextSaveGState(c);
 CGContextSetStrokeColorWithColor(c, [UIColor blackColor].CGColor);
 CGContextSetLineWidth(c, 1.0);
 CGContextStrokeRect(c, r);
 CGContextRestoreGState(c);
}

Text Kit Without a Text View
UITextView is the only built-in iOS class that has a Text Kit stack to which you are given
programmatic access. But that doesn’t mean it’s the only place where you can draw with
Text Kit! You can draw with Text Kit anywhere you can draw — that is, in any graphics
context (Chapter 2). When you do so, you should always call both drawBackgroundFor-
GlyphRange:atPoint: (the method I overrode in the previous example) and draw-
GlyphsForGlyphRange:atPoint:, in that order. The point: argument is where you
consider the text container’s origin to be within the current graphics context.

To illustrate, I’ll change the implementation of the StringDrawer class that I described
earlier in this chapter. Previously, StringDrawer’s drawRect: implementation told the
attributed string (self.attributedText) to draw itself:

- (void)drawRect:(CGRect)rect {
 CGRect r = CGRectOffset(rect, 0, 2); // shoved down a little from top
 [self.attributedText drawWithRect:r
 options:NSStringDrawingTruncatesLastVisibleLine |
 NSStringDrawingUsesLineFragmentOrigin
 context:nil];
}

Instead, I’ll construct the Text Kit stack and tell its layout manager to draw the text:

- (void)drawRect:(CGRect)rect {
 NSLayoutManager* lm = [NSLayoutManager new];
 NSTextStorage* ts =
 [[NSTextStorage alloc] initWithAttributedString:self.attributedText];
 [ts addLayoutManager:lm];
 NSTextContainer* tc =
 [[NSTextContainer alloc] initWithSize:rect.size];
 [lm addTextContainer:tc];
 tc.lineBreakMode = NSLineBreakByTruncatingTail;
 tc.lineFragmentPadding = 0;
 NSRange r = [lm glyphRangeForTextContainer:tc];
 [lm drawBackgroundForGlyphRange:r atPoint:CGPointMake(0,2)];
 [lm drawGlyphsForGlyphRange:r atPoint:CGPointMake(0,2)];
}

Text Kit | 543

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-14. Two-column text in small caps

Building the entire Text Kit stack by hand may seem like overkill for that simple example,
but imagine what else I could do now that I have access to the entire Text Kit stack! I
can use properties, subclassing and delegation, and alternative stack architectures to
achieve customizations and effects that, before iOS 7, were difficult or impossible to
achieve without dipping down to the level of Core Text.

For example, the two-column display of U.S. state names on the iPad shown in
Figure 10-14 was a Core Text example in previous editions of this book, requiring 50
or 60 lines of elaborate C code, complicated by the necessity of flipping the context to
prevent the text from being drawn upside-down. But in iOS 7 it can be achieved easily
through Objective-C and Text Kit — effectively just by reusing code from earlier ex‐
amples in this chapter.

Furthermore, the example from previous editions went on to describe how to make the
display of state names interactive, with the name of the tapped state briefly outlined
with a rectangle (Figure 10-15). With Core Text, this was almost insanely difficult, not
least because we had to keep track of all the line fragment rectangles ourselves. But it’s
easy with Text Kit, because the layout manager knows all the answers.

We have a UIView subclass, StyledText. In its layoutSubviews, it creates the Text Kit
stack — a layout manager with two text containers, to achieve the two-column layout
— and stores the whole stack, along with the rects at which the two text containers are
to be drawn, in properties:

544 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-15. The user has tapped on California

-(void)layoutSubviews {
 [super layoutSubviews];
 CGRect r1 = self.bounds;
 r1.origin.y += 2; // a little top space
 r1.size.width /= 2.0; // column 1
 CGRect r2 = r1;
 r2.origin.x += r2.size.width; // column 2
 NSLayoutManager* lm = [MyLayoutManager new];
 NSTextStorage* ts =
 [[NSTextStorage alloc] initWithAttributedString:self.text];
 [ts addLayoutManager:lm];
 NSTextContainer* tc = [[NSTextContainer alloc] initWithSize:r1.size];
 [lm addTextContainer:tc];
 NSTextContainer* tc2 = [[NSTextContainer alloc] initWithSize:r2.size];
 [lm addTextContainer:tc2];
 self.lm = lm;
 self.ts = ts;
 self.tc = tc;
 self.tc2 = tc2;
 self.r1 = r1;
 self.r2 = r2;
}

Our drawRect: is just like the previous example, except that we have two text containers
to draw:

- (void) drawRect:(CGRect)rect {
 NSRange range1 = [self.lm glyphRangeForTextContainer:self.tc];
 [self.lm drawBackgroundForGlyphRange:range1 atPoint:self.r1.origin];
 [self.lm drawGlyphsForGlyphRange:range1 atPoint:self.r1.origin];
 NSRange range2 = [self.lm glyphRangeForTextContainer:self.tc2];
 [self.lm drawBackgroundForGlyphRange:range2 atPoint:self.r2.origin];
 [self.lm drawGlyphsForGlyphRange:range2 atPoint:self.r2.origin];
}

So much for drawing the text! Now, when the user taps on our view, a tap gesture
recognizer’s action handler is called. We are using the same layout manager subclass
developed earlier in this chapter; it draws a rectangle around the glyphs corresponding
to the characters of its wordRange property. Thus, all we have to do in order to make the
flashing rectangle around the tapped word is work out what that range is, set the layout

Text Kit | 545

www.it-ebooks.info

http://www.it-ebooks.info/

manager’s wordRange and redraw ourselves, and then set the layout manager’s word-
Range back to a zero range and redraw ourselves again to remove the rectangle.

We start by working out which column the user tapped in; this tells us which text con‐
tainer it is, and what the tapped point is in text container coordinates:

CGPoint p = [g locationInView:self]; // g is the tap gesture recognizer
NSTextContainer* tc = self.tc;
if (!CGRectContainsPoint(self.r1, p)) {
 tc = self.tc2;
 p.x -= self.r1.size.width;
}

Now we can ask the layout manager what glyph the user tapped on, and hence the whole
range of glyphs within the line fragment the user tapped in. If the user tapped to the left
of the first glyph or to the right of the last glyph, no word was tapped, and we return:

CGFloat f;
NSUInteger ix =
 [self.lm glyphIndexForPoint:p inTextContainer:tc
 fractionOfDistanceThroughGlyph:&f];
NSRange glyphRange;
[self.lm lineFragmentRectForGlyphAtIndex:ix effectiveRange:&glyphRange];
if (ix == glyphRange.location && f == 0.0)
 return;
if (ix == glyphRange.location + glyphRange.length - 1 && f == 1.0)
 return;

If the last glyph of the line fragment is a whitespace glyph, we don’t want to include it
in our rectangle, so we subtract it from the end of our range. Now we’re ready to convert
to a character range, and thus we can learn the name of the state that the user tapped
on:

while (NSGlyphPropertyControlCharacter &
 [self.lm propertyForGlyphAtIndex:
 glyphRange.location + glyphRange.length - 1])
 glyphRange.length -= 1;
NSRange characterRange =
 [self.lm characterRangeForGlyphRange:glyphRange actualGlyphRange:nil];
NSString* s = [self.text.string substringWithRange:characterRange];
NSLog(@"you tapped %@", s);

Finally, we flash the rectangle around the state name by setting and resetting the word-
Range property of the subclassed layout manager:

MyLayoutManager* lm = (MyLayoutManager*)self.lm;
lm.wordRange = characterRange;
[self setNeedsDisplay];
dispatch_time_t popTime =
 dispatch_time(DISPATCH_TIME_NOW, (int64_t)(0.3 * NSEC_PER_SEC));

546 | Chapter 10: Text

www.it-ebooks.info

http://www.it-ebooks.info/

dispatch_after(popTime, dispatch_get_main_queue(), ^{
 lm.wordRange = NSMakeRange(0, 0);
 [self setNeedsDisplay];
});

Text Kit | 547

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Web Views

A web view (UIWebView) is a UIView subclass that acts as a versatile renderer of text
in various formats, including:

• HTML
• PDF
• RTF, including .rtfd (which must be supplied in a zipped format, .rtfd.zip)
• Microsoft Word (.doc), Excel (.xls), and PowerPoint (.ppt)
• Pages, Numbers, and Keynote; before iWork 2009, these must be zipped

(e.g., .key.zip), but starting with iWork 2009 they must not be zipped.

In addition to displaying rendered text, a web view is a web browser. If you ask a web
view to display HTML that refers to a resource available on disk or over the Internet,
such as an image to be shown as the source of an tag, the web view will attempt
to fetch it and display it. Similarly, if the user taps, within the web view, on a link that
leads to content on disk or over the Internet that the web view can render, the web view
by default will attempt to fetch that content and display it. Indeed, a web view is, in
effect, a front end for WebKit, the same rendering engine used by Mobile Safari (and
by Safari on OS X). A web view can display non-HTML file formats such as PDF, RTF,
and so on, precisely because WebKit can display them.

As the user taps links and displays web pages, the web view keeps a Back list and a
Forward list, just like a web browser. Two properties, canGoBack and canGoForward,
and two methods, goBack and goForward, let you interact with this list. Your interface
could thus contain Back and Forward buttons, like a miniature web browser.

A web view is scrollable, but UIWebView is not a UIScrollView subclass (Chapter 7); it
has a scroll view, rather than being a scroll view. You can access a web view’s scroll view
as its scrollView property. You can use the scroll view to learn and set how far the

549

www.it-ebooks.info

http://www.it-ebooks.info/

content is scrolled and zoomed, and you can install a gesture recognizer on it, to detect
gestures not intended for the web view itself.

A web view is zoomable if its scalesToFit property is YES; in that case, it initially scales
its content to fit, and the user can zoom the content (this includes use of the gesture,
familiar from Mobile Safari, whereby double-tapping part of a web page zooms to that
region of the page). Like a text view (Chapter 10), its dataDetectorTypes property lets
you set certain types of data to be automatically converted to tappable links.

It is possible to design an entire app that is effectively nothing but a UIWebView —
especially if you have control of the server with which the user is interacting. Indeed,
before the advent of iOS, an iPhone app was a web application. There are still iPhone
apps that work this way, but such an approach to app design is outside the scope of this
book.

A web view’s most important task is to render HTML content; like any browser, a web
view understands HTML, CSS, and JavaScript. In order to construct content for a web
view, you must know HTML, CSS, and JavaScript. Discussion of those languages is
beyond the scope of this book; each would require a book (at least) of its own. The thing
to bear in mind is that you can use a web view to display content that isn’t fetched from
the Internet or that isn’t obviously (to the user) a web page. WebKit is a powerful layout
(and animation) engine; HTML and CSS (and JavaScript) are how you tell it what to
do. In my TidBITS News app, a UIWebView is the obvious way to present each individual
article, because an article arrives through the RSS feed as HTML; but in other apps, such
as my Latin flashcard app or my Zotz! game, I present the Help documentation in a
UIWebView just because it’s so convenient for laying out styled text with pictures.

Web View Content
To obtain content for a web view initially, you’re going to need one of three things:
An NSURLRequest

Construct an NSURLRequest and call loadRequest:. An NSURLRequest might
involve a file URL referring to a file on disk (within your app’s bundle, for instance);
the web view will deduce the file’s type from its extension. But it might also involve
the URL of a resource to be fetched across the Internet, in which case you can
configure various additional aspects of the request (for example, you can form a
POST request). This is the only form of loading that works with goBack, because
in the other two forms, there is no URL to go back to.

An HTML string
Construct an NSString consisting of valid HTML and call loadHTMLString:base-
URL:. The baseURL: will be used to fetch any resources referred to by a partial
(relative) URL in the string. For example, you could cause partial URLs to refer to
resources inside your app’s bundle.

550 | Chapter 11: Web Views

www.it-ebooks.info

http://www.it-ebooks.info/

Data and a MIME type
Obtain an NSData object and call loadData:MIMEType:textEncodingName:base-
URL:. Obviously, this requires that you know the appropriate MIME type, and that
you obtain the content as NSData (or convert it to NSData). Typically, this will be
because the content was itself obtained by fetching it from the Internet (more about
that in Chapter 24).

There is often more than one way to load a given piece of content. For instance, one of
Apple’s own examples suggests that you display a PDF file in your app’s bundle by loading
it as data, along these lines:

NSString *thePath =
 [[NSBundle mainBundle] pathForResource:@"MyPDF" ofType:@"pdf"];
NSData *pdfData = [NSData dataWithContentsOfFile:thePath];
[self.wv loadData:pdfData MIMEType:@"application/pdf"
 textEncodingName:@"utf-8" baseURL:nil];

But the same thing can be done with a file URL and loadRequest:, like this:

NSURL* url =
 [[NSBundle mainBundle] URLForResource:@"MyPDF" withExtension:@"pdf"];
NSURLRequest* req = [[NSURLRequest alloc] initWithURL:url];
[self.wv loadRequest:req];

Similarly, in one of my apps, where the Help screen is a web view (Figure 11-1), the
content is an HTML file along with some referenced image files. I used to load it like
this:

NSString* path =
 [[NSBundle mainBundle] pathForResource:@"help" ofType:@"html"];
NSURL* url = [NSURL fileURLWithPath:path];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding error:&err];
// error-checking omitted
[self.wv loadHTMLString:s baseURL:url];

Observe that I obtain both the string contents of the HTML file and the URL reference
to the same file, the latter to act as a base URL so that the relative references to the images
will work properly.

At the time I wrote that code, the NSBundle method URLForResource:with-
Extension: didn’t yet exist. Now it does, and I load the web view simply by calling load-
Request: with the file URL:

NSString* path =
 [[NSBundle mainBundle] pathForResource:@"help" ofType:@"html"];
NSURL* url = [NSURL fileURLWithPath:path];
NSURLRequest* req = [[NSURLRequest alloc] initWithURL:url];
[self.wv loadRequest: req];

Web View Content | 551

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-1. A Help screen that’s a web view

You can use loadHTMLString:baseURL: to form your own web view content dynami‐
cally as an NSString. For example, in the TidBITS News app, the content of an article is
displayed in a web view that is loaded using loadHTMLString:baseURL:. The body of
the article comes from an RSS feed, but it is wrapped in programmatically supplied
material. Thus, in Figure 11-2, the right-aligned author byline and publication date,
along with the overall formatting of the text (including the font size), are imposed as
the web view appears.

There are many possible strategies for doing this. In the case of the TidBITS News app,
I start with a template loaded from disk:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no">
 <style type="text/css">
 p.inflow_image {
 text-align:center;
 }
 div.indented_image {
 text-align:center;

552 | Chapter 11: Web Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-2. A web view with dynamically formed content

 margin-left:0;
 }
 img {
 max-width:<maximagewidth>;
 height:auto;
 }
 </style>
 <title>no title</title>
</head>
<body style="font-size:<fontsize>px; font-family:Georgia;
margin:1px <margin>px">
 <!-- author and date -->
 <div style="width:100%">
 <span style="float:right; margin-bottom: 15px; display:block;
 text-align:right; font-size:80%;">
 By <author>
<date>

 </div>
 <!-- body, from feed -->
 <div style="clear:both; margin:30px 0px;">
 <content>
 </div>
</body>
</html>

The template defines the structure of an HTML document — the opening and closing
tags, the head area (including some CSS styling), and a body consisting of <div>s laying
out the parts of the page. But it also includes some pseudotags that are not HTML —
<maximagewidth>, <fontsize>, and so on. When the web view is to be loaded, the
template will be read from disk and real values will be substituted for those pseudotags:

Web View Content | 553

www.it-ebooks.info

http://www.it-ebooks.info/

NSString* template =
 [NSString stringWithContentsOfFile:
 [[NSBundle mainBundle] pathForResource:@"template" ofType:@"txt"]
 encoding: NSUTF8StringEncoding error:nil];
NSString* s = template;
s = [s stringByReplacingOccurrencesOfString:@"<maximagewidth>"
 withString:maxImageWidth];
s = [s stringByReplacingOccurrencesOfString:@"<fontsize>"
 withString:fontsize.stringValue];
s = [s stringByReplacingOccurrencesOfString:@"<margin>"
 withString:margin];
s = [s stringByReplacingOccurrencesOfString:@"<author>"
 withString:anitem.authorOfItem];
s = [s stringByReplacingOccurrencesOfString:@"<date>"
 withString:date];
s = [s stringByReplacingOccurrencesOfString:@"<content>"
 withString:anitem.content];

Some of these arguments, such as anitem.authorOfItem and anitem.content, slot
values more or less directly from the app’s model into the web view. Others are derived
from the current circumstances. For example, the local variable margin has been set
depending on whether the app is running on the iPhone or on the iPad; fontsize comes
from the user defaults, because the user is allowed to determine how large the text should
be. The result is an HTML string ready for loadHTMLString:baseURL:.

Loading Web View Content
Web view content is loaded asynchronously (gradually, in a thread of its own), and it
might not be loaded at all (because the user might not be connected to the Internet, the
server might not respond properly, and so on). If you’re loading a resource directly from
disk, loading is quick and nothing is going to go wrong; nevertheless, rendering the
content can take time, and even a resource loaded from disk, or content formed directly
as an HTML string, might refer to material out on the Internet that takes time to fetch.

Your app’s interface is not blocked or frozen while the content is loading. On the contrary,
it remains accessible and operative; that’s what “asynchronous” means. The web view,
in fetching a web page and its linked components, is doing something quite complex,
involving both threading and network interaction — I’ll have a lot more to say about
this in Chapter 24 and Chapter 25 — but it shields you from this complexity. Your own
interaction with the web view stays on the main thread and is straightforward. You ask
the web view to load some content; then you sit back and let it worry about the details.

Indeed, there’s very little you can do once you’ve asked a web view to load content. Your
main concerns will probably be to know when loading really starts, when it has finished,
and whether it succeeded. To help you with this, a UIWebView’s delegate (adopting the
UIWebViewDelegate protocol) gets three messages:

554 | Chapter 11: Web Views

www.it-ebooks.info

http://www.it-ebooks.info/

• webViewDidStartLoad:

• webViewDidFinishLoad:

• webView:didFailLoadWithError:

In this example from the TidBITS News app, I mask the delay while the content loads
by displaying in the center of the interface an activity indicator (a UIActivityIndicator‐
View, Chapter 12), referred to by a property, activity:

- (void)webViewDidStartLoad:(UIWebView *)wv {
 [self.view addSubview:self.activity];
 self.activity.center = CGPointMake(CGRectGetMidX(self.view.bounds),
 CGRectGetMidY(self.view.bounds));
 [self.activity startAnimating];
 [[UIApplication sharedApplication] beginIgnoringInteractionEvents];
}
- (void)webViewDidFinishLoad:(UIWebView *)webView {
 [self.activity stopAnimating];
 [self.activity removeFromSuperview];
 [[UIApplication sharedApplication] endIgnoringInteractionEvents];
}
- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error {
 [self.activity stopAnimating];
 [self.activity removeFromSuperview];
 [[UIApplication sharedApplication] endIgnoringInteractionEvents];
}

Exceptions triggered by UIWebViewDelegate code are caught by Web‐
Kit. This means that you can make a serious programming error
without the exception percolating up to crash your app; you’ll get a
message in the console (“WebKit discarded an uncaught exception”),
but you might not notice that. The solution is an exception break‐
point. (Thanks to reader Jonathan Lundell for bringing this phenom‐
enon to my attention.)

A web view’s loading property tells you whether it is in the process of loading a request.
If, at the time a web view is to be destroyed, its loading is YES, it is up to you to cancel
the request by sending it the stopLoading message first; actually, it does no harm to
send the web view stopLoading in any case. In addition, UIWebView is one of those
weird classes whose memory management behavior is odd: Apple’s documentation
warns that if you assign a UIWebView a delegate, you must nilify its delegate property
before releasing the web view. Thus, in a controller class whose view contains a web
view, I do an extra little dance in dealloc:

Web View Content | 555

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) dealloc {
 [self.wv stopLoading];
 self.wv.delegate = nil;
}

A related problem is that a web view will sometimes leak memory. I’ve never understood
what causes this, but the workaround appears to be to load the empty string into the
web view. The TidBITS News app does this in the view controller whose view contains
the web view:

- (void) viewWillDisappear:(BOOL)animated {
 if (self.isMovingFromParentViewController) {
 [self.wv loadHTMLString: @"" baseURL: nil];
 }
}

The suppressesIncrementalRendering property changes nothing about the request-
loading process, but it does change what the user sees. The default is NO: the web view
assembles its display of a resource incrementally, as it arrives. If this property is YES,
the web view does nothing outwardly until the resource has completely arrived and the
web view is ready to render the whole thing.

Designing Web View Content
Before designing the HTML to be displayed in a web view, you might want to read up
on the brand of HTML native to the mobile WebKit engine. There are certain limita‐
tions; for example, mobile WebKit notoriously doesn’t use plug-ins, such as Flash, and
it imposes limits on the size of resources (such as images) that it can display. On the
plus side, WebKit is in the forefront of the march toward HTML 5 and CSS 3, and has
many special capabilities suited for display on a mobile device.

A good place to start is Apple’s Safari Web Content Guide. It contains links to all the
other relevant documentation, such as the Safari CSS Visual Effects Guide, which de‐
scribes some things you can do with WebKit’s implementation of CSS3 (like animations),
and the Safari HTML5 Audio and Video Guide, which describes WebKit’s audio and
video player support.

If nothing else, you’ll definitely want to be aware of one important aspect of web page
content — the viewport. You’ll notice that the TidBITS News HTML template I showed
a moment ago contains this line within its <head> area:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no">

Without that line, the HTML string is laid out incorrectly when it is rendered. This is
noticeable especially with the iPad version of TidBITS News, where the web view can
be rotated when the device is rotated, causing its width to change: in one orientation or
the other, the text will be too wide for the web view, and the user has to scroll horizontally
to read it. The Safari Web Content Guide explains why: if no viewport is specified, the

556 | Chapter 11: Web Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-3. The Web Inspector inspects an app running in the Simulator

viewport can change when the app rotates. Setting the initial-scale causes the view‐
port size to adopt correct values in both orientations.

Another important section of the Safari Web Content Guide describes how you can use
a media attribute in the <link> tag that loads your CSS to load different CSS depending
on what kind of device your app is running on. For example, you might have one CSS
file that lays out your web view’s content on an iPhone, and another that lays it out on
an iPad.

Inspecting, debugging, and experimenting with UIWebView content is greatly eased by
the Web Inspector, built into Safari 6.1 and later. It can see a web view in your app
running in the Simulator, and lets you analyze every aspect of how it works. For example,
in Figure 11-3, I’m examining an image to see how it is sized and scaled.

Moreover, the Web Inspector lets you change your web view’s content in real time, with
many helpful features such as CSS autocompletion; this can be a better way to discover
WebKit CSS features than the documentation, which isn’t always kept up to date. For
example, your web view can display Dynamic Type fonts, as discussed in Chapter 10,
by setting the font CSS property to -apple-system-body and so forth; but, as of this
writing, the only way to discover that is apparently through the Web Inspector’s auto‐
completion.

Web View Content | 557

www.it-ebooks.info

http://www.it-ebooks.info/

Paginated Web Views
New in iOS 7, a web view can break its content into pages, allowing the user to browse
that content in chunks by scrolling horizontally or vertically. This may seem an unac‐
customed way of viewing web pages, but as I mentioned earlier, a web view is good for
content that is not obviously a web page.

Configuration can be as simple as setting the web view’s paginationMode property:

self.wv.paginationMode = UIWebPaginationModeLeftToRight;

The result of that code is that the web view’s content is rendered into columns; instead
of scrolling down in one long single column to read the content, the user scrolls left or
right to see one screenful at a time. Scrolling does not automatically snap to pages, but
you can enable that through the web view’s scrollView:

self.wv.paginationMode = UIWebPaginationModeLeftToRight;
self.wv.scrollView.pagingEnabled = YES;

You can set the page size (pageLength, the same as the viewport size by default) and the
gap between pages (gapBetweenPages, 0 by default).

Web View State Restoration
If you provided an HTML string to your web view, then restoring its state when the app
is relaunched is up to you; you can use the built-in state saving and restoration to help
you, but you’ll have to do all the work yourself. The web view has a scrollView which
has a contentOffset, so it’s easy to save the scroll position (as an NSValue wrapping a
CGPoint) in encodeRestorableStateWithCoder:, and restore it in decodeRestorable-
StateWithCoder:.

What the TidBITS News app does is to restore the scroll position initially into an instance
variable:

-(void)decodeRestorableStateWithCoder:(NSCoder *)coder {
 // scroll position is a CGPoint wrapped in an NSValue
 self.lastOffset = [coder decodeObjectForKey:@"lastOffset"];
 // ... other stuff ...
 [super decodeRestorableStateWithCoder:coder];
}

Then we reload the web view content (manually); when the web view has loaded, we set
its scroll position:

- (void)webViewDidFinishLoad:(UIWebView *)webView {
 if (self.lastOffset)
 webView.scrollView.contentOffset = self.lastOffset.CGPointValue;
 // ...
}

558 | Chapter 11: Web Views

www.it-ebooks.info

http://www.it-ebooks.info/

If, however, the web view had a URL request (not an HTML string) when the user left
the app, then the state restoration mechanism will restore that request, in the web view’s
request property, along with its Back and Forward lists. To restore the web view’s actual
content, send it the reload message. The web view will then restore its contents and its
scroll position. A good place to do this is applicationFinishedRestoringState:

-(void)applicationFinishedRestoringState {
 UIWebView* wv = (id)self.view;
 if (wv.request)
 [wv reload];
}

If we’d like to load a default page in viewDidAppear: when state restoration has not
taken place, we can use our web view’s request property as a flag:

UIWebView* wv = (id)self.view;
if (wv.request) { // state has been restored already
 return;
}
NSURL* url = // default URL
[wv loadRequest:[NSURLRequest requestWithURL:url]];

Communicating with a Web View
Having loaded a web view with content, you don’t so much configure or command the
web view as communicate with it. There are two modes of communication with a web
view and its content:
JavaScript execution

You can speak JavaScript to a web view’s content by sending it the stringBy-
EvaluatingJavaScriptFromString: message. Thus you can enquire as to the na‐
ture and details of that content, and you can alter the content dynamically.

Load requests
When a web view is asked to load content, possibly because the user has tapped a
link within it, its delegate is sent the message webView:shouldStartLoadWith-
Request:navigationType:. This is your opportunity to interfere with the web
view’s loading behavior; if you return NO, the content won’t load.

The second parameter is an NSURLRequest, whose URL property you can easily
analyze. The third parameter is a constant describing the type of navigation in‐
volved, whose value will be one of the following:

• UIWebViewNavigationTypeLinkClicked

• UIWebViewNavigationTypeFormSubmitted

• UIWebViewNavigationTypeBackForward

• UIWebViewNavigationTypeReload

Communicating with a Web View | 559

www.it-ebooks.info

http://www.it-ebooks.info/

• UIWebViewNavigationTypeFormResubmitted

• UIWebViewNavigationTypeOther (includes loading the web view with content
initially)

In the TidBITS News app, I don’t want my web view to function as a web browser; if the
user taps a link, I want to open it in Mobile Safari. So I implement webView:should-
StartLoadWithRequest:navigationType: to pass any link-tap requests on to the sys‐
tem, and return NO:

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)r
 navigationType:(UIWebViewNavigationType)nt {
 if (nt == UIWebViewNavigationTypeLinkClicked) {
 [[UIApplication sharedApplication] openURL:[r URL]];
 return NO;
 }
 return YES;
}

Note that in the general case I still return YES, because otherwise the web view won’t
load my initial HTML content!

Another use of webView:shouldStartLoadWithRequest:navigationType: is to re‐
spond to link taps by doing something that has nothing to do with the web view itself.
For example, in TidBITS News, the Listen button, which the user taps to hear the podcast
recording of an article, used to be an image in the web view itself. When the user taps
that image, I want to navigate to a different view controller entirely. To implement this,
I wrapped the image in an <a> tag whose onclick script executes this JavaScript code:

document.location='play:me'

When the user taps the button, the web view delegate’s webView:shouldStartLoadWith-
Request:navigationType: gets an NSURLRequest play:me. That, of course, is a totally
bogus URL; it’s just an internal signal, telling me that the user has tapped the Listen
image:

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)r
 navigationType:(UIWebViewNavigationType)nt {
 if ([r.URL.scheme isEqualToString: @"play"]) {
 [self doPlay:nil];
 return NO;
 }
 // ...
}

JavaScript and the document object model (DOM) are quite powerful. Event listeners
even allow JavaScript code to respond directly to touch and gesture events, so that the
user can interact with elements of a web page much as if they were touchable views; it

560 | Chapter 11: Web Views

www.it-ebooks.info

http://www.it-ebooks.info/

can also take advantage of Core Location and Core Motion facilities to respond to where
the user is on earth and how the device is positioned (Chapter 22). Additional helpful
documentation includes Apple’s WebKit DOM Programming Topics and Safari DOM
Additions Reference.

New in iOS 7, your Objective-C code can load a JavaScript virtual
machine and communicate back and forth between JavaScript and
Objective-C. See Apple’s JavaScriptCore Framework Reference (cur‐
rently documented only for OS X, not iOS). I don’t think this has
anything to do with UIWebView per se, but it’s so cool that I couldn’t
resist mentioning it.

Communicating with a Web View | 561

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Controls and Other Views

This chapter discusses all UIView subclasses provided by UIKit that haven’t been dis‐
cussed already (except for the two modal dialog classes, which are described in the next
chapter). It’s remarkable how few of them there are; UIKit exhibits a noteworthy econ‐
omy of means in this regard.

Additional UIView subclasses, as well as UIViewController subclasses that create in‐
terface, are provided by other frameworks. There will be lots of examples in Part III.
For example, the Map Kit framework provides the MKMapView (Chapter 21); and the
MessageUI framework provides MFMailComposeViewController, which supplies a
user interface for composing and sending a mail message (Chapter 20).

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a small
wheel. You set the spokes spinning with startAnimating, giving the user a sense that
some time-consuming process is taking place. You stop the spinning with stop-
Animating. If the activity indicator’s hidesWhenStopped is YES (the default), it is visible
only while spinning.

An activity indicator comes in a style, its activityIndicatorViewStyle; if it is created
in code, you’ll set its style with initWithActivityIndicatorStyle:. Your choices are:

• UIActivityIndicatorViewStyleWhiteLarge

• UIActivityIndicatorViewStyleWhite

• UIActivityIndicatorViewStyleGray

An activity indicator has a standard size, which depends on its style. Changing its size
in code changes the size of the view, but not the size of the spokes. For bigger spokes,
you can resort to a scale transform.

563

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-1. A large activity indicator

You can assign an activity indicator a color; this overrides the color assigned through
the style. An activity indicator is a UIView, so you can set its backgroundColor; a nice
effect is to give an activity indicator a contrasting background color and to round its
corners by way of the view’s layer (Figure 12-1).

Here’s some code from a UITableViewCell subclass in one of my apps. In this app, it
takes some time, after the user taps a cell to select it, for me to construct the next view
and navigate to it; to cover the delay, I show a spinning activity indicator in the center
of the cell while it’s selected:

- (void)setSelected:(BOOL)selected animated:(BOOL)animated {
 [super setSelected:selected animated:animated];
 if (selected) {
 UIActivityIndicatorView* v =
 [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:
 UIActivityIndicatorViewStyleWhiteLarge];
 v.color = [UIColor yellowColor];
 dispatch_async(dispatch_get_main_queue(), ^{
 // cell tries to change background color match selection color
 v.backgroundColor = [UIColor colorWithWhite:0.2 alpha:0.6];
 });
 v.layer.cornerRadius = 10;
 CGRect f = v.frame;
 f = CGRectInset(f, -10, -10);
 v.frame = f;
 CGRect cf = self.frame;
 cf = [self.contentView convertRect:cf fromView:self];
 v.center = CGPointMake(CGRectGetMidX(cf), CGRectGetMidY(cf));
 v.tag = 1001;
 [self.contentView addSubview:v];
 [v startAnimating];
 } else {
 UIView* v = [self viewWithTag:1001];
 if (v) {
 [v removeFromSuperview];
 }
 }
}

If activity involves the network, you might want to set UIApplication’s networkActivity-
IndicatorVisible to YES. This displays a small spinning activity indicator in the status

564 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-2. A progress view

bar. The indicator is not reflecting actual network activity; if it’s visible, it’s spinning. Be
sure to set it back to NO when the activity is over.

An activity indicator is simple and standard, but you can’t change the way it’s drawn.
One obvious alternative would be a UIImageView with an animated image, as described
in Chapter 4.

UIProgressView
A progress view (UIProgressView) is a “thermometer,” graphically displaying a per‐
centage. It is often used to represent a time-consuming process whose percentage of
completion is known (if the percentage of completion is unknown, you’re more likely
to use an activity indicator). But it’s good for static percentages too. In one of my apps,
I use a progress view to show the current position within the song being played by the
built-in music player; in another app, which is a card game, I use a progress view to
show how many cards are left in the deck.

A progress view comes in a style, its progressViewStyle; if the progress view is created
in code, you’ll set its style with initWithProgressViewStyle:. Your choices are:

• UIProgressViewStyleDefault

• UIProgressViewStyleBar

UIProgressViewStyleBar is intended for use in a UIBarButtonItem, as the title view of
a navigation item, and so on. In iOS 7, both styles by default draw the thermometer
extremely thin — just 2 pixels and 3 pixels, respectively. (Figure 12-2 shows a
UIProgressViewStyleDefault progress view.) Changing a progress view’s frame height
directly has no visible effect on how the thermometer is drawn. Under autolayout, to
make a thicker thermometer, supply a height constraint with a larger value (thus over‐
riding the intrinsic content height).

The fullness of the thermometer is the progress view’s progress property. This is a value
between 0 and 1, inclusive; you’ll usually need to do some elementary arithmetic in
order to convert from the actual value you’re reflecting to a value within that range. For
example, to reflect the number of cards remaining in a deck of 52 cards:

prog.progress = [[deck cards] count] / 52.0;

A change in progress value can be animated by calling setProgress:animated:.

UIProgressView | 565

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-3. A thicker progress view using a custom progress image

In iOS 7, the default color of the filled portion of a progress view is the tintColor (which
may be inherited from higher up the view hierarchy). The default color for the unfilled
portion is gray for a UIProgressViewStyleDefault progress view and transparent for
a UIProgressViewStyleBar progress view. You can customize the colors; set the pro‐
gress view’s progressTintColor and trackTintColor, respectively. This can also be
done in the nib.

Alternatively, you can customize the image used to draw the filled portion of the progress
view, the progress view’s progressImage. If you do that, you can optionally customize
also the image used to draw the unfilled portion, the trackImage. This can also be done
in the nib. Each image must be stretched to the length of the filled or unfilled area, so
you’ll want to use a resizable image.

Here’s a simple example from one of my apps (Figure 12-3):

self.prog.backgroundColor = [UIColor blackColor];
self.prog.trackTintColor = [UIColor blackColor];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,10), YES, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSetFillColorWithColor(con, [UIColor yellowColor].CGColor);
CGContextFillRect(con, CGRectMake(0, 0, 10, 10));
CGRect r = CGRectInset(CGContextGetClipBoundingBox(con),1,1);
CGContextSetLineWidth(con, 2);
CGContextSetStrokeColorWithColor(con, [UIColor blackColor].CGColor);
CGContextStrokeRect(con, r);
CGContextStrokeEllipseInRect(con, r);
self.prog.progressImage =
 [UIGraphicsGetImageFromCurrentImageContext()
 resizableImageWithCapInsets:UIEdgeInsetsMake(0, 4, 0, 4)];
UIGraphicsEndImageContext();

For maximum flexibility, you can design your own UIView subclass that draws some‐
thing similar to a thermometer. Figure 12-4 shows a simple custom thermometer view;
it has a value property, and you set this to something between 0 and 1 and call setNeeds-
Display to make the view redraw itself. Here’s its drawRect: code:

- (void)drawRect:(CGRect)rect {
 CGContextRef c = UIGraphicsGetCurrentContext();
 [[UIColor whiteColor] set];
 CGFloat ins = 2.0;
 CGRect r = CGRectInset(self.bounds, ins, ins);
 CGFloat radius = r.size.height / 2.0;
 CGMutablePathRef path = CGPathCreateMutable();

566 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-4. A custom progress view

 CGPathMoveToPoint(path, nil, CGRectGetMaxX(r)-radius, ins);
 CGPathAddArc(path, nil,
 radius+ins, radius+ins, radius, -M_PI/2.0, M_PI/2.0, true);
 CGPathAddArc(path, nil,
 CGRectGetMaxX(r)-radius, radius+ins, radius,
 M_PI/2.0, -M_PI/2.0, true);
 CGPathCloseSubpath(path);
 CGContextAddPath(c, path);
 CGContextSetLineWidth(c, 2);
 CGContextStrokePath(c);
 CGContextAddPath(c, path);
 CGContextClip(c);
 CGContextFillRect(c, CGRectMake(
 r.origin.x, r.origin.y, r.size.width * self.value, r.size.height));
}

UIPickerView
A picker view (UIPickerView) displays selectable choices using a rotating drum meta‐
phor. It has a standard legal range of possible heights, which is undocumented but seems
to be between 162 and 180; its width is largely up to you. Each drum, or column, is called
a component.

Your code configures the UIPickerView’s content through its data source (UIPicker‐
ViewDataSource) and delegate (UIPickerViewDelegate), which are usually the same
object. Your data source and delegate must answer questions similar to those posed by
a UITableView (Chapter 8):
numberOfComponentsInPickerView: (data source)

How many components (drums) does this picker view have?

pickerView:numberOfRowsInComponent: (data source)
How many rows does this component have? The first component is numbered 0.

pickerView:titleForRow:forComponent:
pickerView:attributedTitleForRow:forComponent:
pickerView:viewForRow:forComponent:reusingView: (delegate)

What should this row of this component display? The first row is numbered 0. You
can supply a simple string, an attributed string (Chapter 10), or an entire view such
as a UILabel; but you should supply every row of every component the same way.
The reusingView parameter, if not nil, is a view that you supplied for a row now

UIPickerView | 567

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-5. A picker view

no longer visible, giving you a chance to reuse it, much as cells are reused in a table
view.

Here’s the code for a UIPickerView (Figure 12-5) that displays the names of the
50 U.S. states, stored in an array. We implement pickerView:viewForRow:for-
Component:reusingView: just because it’s the most interesting case; as our views, we
supply UILabel instances. The state names appear centered because the labels are cen‐
tered within the picker view:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 1;
}
- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 return 50;
}
- (UIView *)pickerView:(UIPickerView *)pickerView viewForRow:(NSInteger)row
 forComponent:(NSInteger)component reusingView:(UIView *)view {
 UILabel* lab;
 if (view)
 lab = (UILabel*)view; // reuse it
 else
 lab = [UILabel new];
 lab.text = self.states[row];
 lab.backgroundColor = [UIColor clearColor];
 [lab sizeToFit];
 return lab;
}

The delegate may further configure the UIPickerView’s physical appearance by means
of these methods:

• pickerView:rowHeightForComponent:

• pickerView:widthForComponent:

568 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-6. A search bar with a search results button

The delegate may implement pickerView:didSelectRow:inComponent: to be notified
each time the user spins a drum to a new position. You can also query the picker view
directly by sending it selectedRowInComponent:.

You can set the value to which any drum is turned using selectRow:in-

Component:animated:. Other handy picker view methods allow you to request that the
data be reloaded, and there are properties and methods to query the picker view’s con‐
tents (though of course they do not relieve you of responsibility for knowing the data
model from which the picker view’s contents are supplied):

• reloadComponent:

• reloadAllComponents

• numberOfComponents

• numberOfRowsInComponent:

• viewForRow:forComponent:

By implementing pickerView:didSelectRow:inComponent: and using reload-

Component:, you can make a picker view where the values displayed by one drum depend
dynamically on what is selected in another. For example, one can imagine expanding
our U.S. states example to include a second drum listing major cities in each state; when
the user switches to a different state in the first drum, a different set of major cities
appears in the second drum.

UISearchBar
A search bar (UISearchBar) is essentially a wrapper for a text field; it has a text field as
one of its subviews, though there is no official access to it. It is displayed by default as a
rounded rectangle containing a magnifying glass icon, where the user can enter text
(Figure 12-6). It does not, of itself, do any searching or display the results of a search; a
common interface involves displaying the results of a search as a table, and the
UISearchDisplayController class makes this easy to do (see Chapter 8).

A search bar’s current text is its text property. It can have a placeholder, which appears
when there is no text. A prompt can be displayed above the search bar to explain its

UISearchBar | 569

www.it-ebooks.info

http://www.it-ebooks.info/

purpose. Delegate methods (UISearchBarDelegate) notify you of editing events; for
their use, compare the text field and text view delegate methods discussed in Chapter 10:

• searchBarShouldBeginEditing:

• searchBarTextDidBeginEditing:

• searchBar:textDidChange:

• searchBar:shouldChangeTextInRange:replacementText:

• searchBarShouldEndEditing:

• searchBarTextDidEndEditing:

A search bar has a barStyle, for which your choices and their default appearances are:

• UIBarStyleDefault, a flat light gray background and a white search field
• UIBarStyleBlack, a black background and a black search field

In iOS 7, both styles are translucent. In addition, iOS 7 introduces a searchBarStyle
property:

• UISearchBarStyleDefault, as already described
• UISearchBarStyleProminent, identical to UISearchBarStyleDefault
• UISearchBarStyleMinimal, transparent background and dark transparent search

field

Alternatively, you can set a UISearchBarStyleDefault search bar’s barTintColor to
change its background color; if the bar style is UIBarStyleBlack, the barTintColor will
also tint the search field itself. An opaque barTintColor is a way to make a search bar
opaque. This property is new in iOS 7; the old tintColor property, whose value may
be inherited from higher up the view hierarchy, now governs the color of search bar
components such as the Cancel button title and the flashing insertion cursor.

A search bar can also have a custom backgroundImage; this will be treated as a resizable
image. The full setter method in iOS 7 is setBackgroundImage:forBarPosition:bar-
Metrics:; I’ll talk later about what bar position and bar metrics are. The background-
Image overrides all other ways of determining the background, and the search bar’s
backgroundColor, if any, appears behind it — though under some circumstances, if the
search bar’s translucent is NO, the barTintColor may appear behind it instead.

The search field area where the user enters text can be offset with respect to its back‐
ground, using the searchFieldBackgroundPositionAdjustment property; you might
do this, for example, if you had enlarged the search bar’s height and wanted to position

570 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

the search field within that height. The text can be offset within the search field with the
searchTextPositionAdjustment property.

You can also replace the image of the search field itself; this is the image that is normally
a rounded rectangle. To do so, call setSearchFieldBackgroundImage:forState:. Ac‐
cording to the documentation, the possible state: values are UIControlStateNormal
and UIControlStateDisabled; but the API provides no way to disable a search field,
so what does Apple have in mind here? The only way I’ve found is to cycle through the
search bar’s subviews, find the search field, and disable it:

for (UIView* v in [self.searchbar.subviews[0] subviews]) {
 if ([v isKindOfClass: [UITextField class]]) {
 UITextField* tf = (UITextField*)v;
 tf.enabled = NO;
 break;
 }
}

The search field image will be drawn in front of the background and behind the contents
of the search field (such as the text); its width will be adjusted for you, but its height will
not be — instead, the image is placed vertically centered where the search field needs
to go. It’s up to you choose an appropriate height, and to ensure an appropriate color in
the middle so the user can read the text.

A search bar displays an internal cancel button automatically (normally an X in a circle)
if there is text in the search field. Internally, at its right end, a search bar may display a
search results button (showsSearchResultsButton), which may be selected or not
(searchResultsButtonSelected), or a bookmark button (showsBookmarkButton); if
you ask to display both, you’ll get the search results button. These buttons vanish if text
is entered in the search bar so that the cancel button can be displayed. There is also an
option to display a Cancel button externally (showsCancelButton, or call setShows-
CancelButton:animated:). The internal cancel button works automatically to remove
whatever text is in the field; the other buttons do nothing, but delegate methods notify
you when they are tapped:

• searchBarResultsListButtonClicked:

• searchBarBookmarkButtonClicked:

• searchBarCancelButtonClicked:

You can customize the images used for the search icon (a magnifying glass, by default)
and any of the internal right icons (the internal cancel button, the search results button,
and the bookmark button) with setImage:forSearchBarIcon:state:. The images will
be resized for you, except for the internal cancel button, for which about 20×20 seems
to be a good size. The icons are specified with constants:

UISearchBar | 571

www.it-ebooks.info

http://www.it-ebooks.info/

• UISearchBarIconSearch

• UISearchBarIconClear (the internal cancel button)
• UISearchBarIconBookmark

• UISearchBarIconResultsList

The documentation says that the possible state: values are UIControlStateNormal
and UIControlStateDisabled, but this is wrong; the choices are UIControlState-
Normal and UIControlStateHighlighted. The highlighted image appears while the
user taps on the icon (except for the search icon, which isn’t a button). If you don’t supply
a normal image, the default image is used; if you supply a normal image but no high‐
lighted image, the normal image is used for both. Setting searchResultsButton-
Selected to YES reverses this button’s behavior: it displays the highlighted image, but
when the user taps it, it displays the normal image.

The position of an icon can be adjusted with setPositionAdjustment:forSearchBar-
Icon:.

A search bar may also display scope buttons (see the example in Chapter 8). These are
intended to let the user alter the meaning of the search; precisely how you use them is
up to you. To make the scope buttons appear, use the showsScopeBar property; the
button titles are the scopeButtonTitles property, and the currently selected scope
button is the selectedScopeButtonIndex property. The delegate is notified when the
user taps a different scope button:

• searchBar:selectedScopeButtonIndexDidChange:

A background image applied with setBackgroundImage:forBar-
Position:barMetrics: using UIBarMetricsDefault will not appear
when the scope bar is showing. In iOS 7, when the scope bar is show‐
ing, the bar metrics value becomes UIBarMetricsDefaultPrompt (or
UIBarMetricsLandscapePhonePrompt).

The overall look of the scope bar can be heavily customized. Its background is the scope-
BarBackgroundImage, which will be stretched or tiled as needed. To set the background
of the smaller area constituting the actual buttons, call setScopeBarButtonBackground-
Image:forState:; the states are UIControlStateNormal and UIControlState-

Selected. If you don’t supply a separate selected image, a darkened version of the normal
image is used. If you don’t supply a resizable image, the image will be made resizable
for you; the runtime decides what region of the image will be stretched behind each
button.

572 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-7. A horrible search bar

The dividers between the buttons are normally vertical lines, but you can customize
them as well: call setScopeBarButtonDividerImage:forLeftSegmentState:right-
SegmentState:. A full complement of dividers consists of three images, one when the
buttons on both sides of the divider are normal (unselected) and one each when a button
on one side or the other is selected; if you supply an image for just one state combination,
it is used for the other two state combinations. The height of the divider image is adjusted
for you, but the width is not; you’ll normally use an image just a few pixels wide.

The font attributes of the titles of the scope buttons can customized by calling setScope-
BarButtonTitleTextAttributes:forState:. In iOS 7, the attributes: argument is
an NSAttributedString attributes dictionary; in earlier systems, you could set only the
font, text color, and text shadow, but in iOS 7 it is legal to provide other attributes, such
as an underline.

It may appear that there is no way to customize the external Can‐
cel button, but in fact, although you’ve no official direct access to it
through the search bar, the Cancel button is a UIBarButtonItem and
you can customize it using the UIBarButtonItem appearance proxy,
discussed later in this chapter.

By combining the various customization possibilities, a completely unrecognizable
search bar of inconceivable ugliness can easily be achieved (Figure 12-7). Let’s be careful
out there.

The problem of allowing the keyboard to appear without hiding the search bar is exactly
as for a text field (Chapter 10). Text input properties of the search bar configure its
keyboard and typing behavior like a text field as well:

• keyboardType

• autocapitalizationType

• autocorrectionType

UISearchBar | 573

www.it-ebooks.info

http://www.it-ebooks.info/

• spellCheckingType

• inputAccessoryView

When the user taps the Search key in the keyboard, the delegate is notified, and it is
then up to you to dismiss the keyboard (resignFirstResponder) and perform the
search:

• searchBarSearchButtonClicked:

A common interface is a search bar at the top of the screen. On the iPad, a search bar
can be embedded as a bar button item’s view in a toolbar at the top of the screen. On
the iPhone, a search bar can be a navigation item’s titleView. In Chapter 8, I discussed
UISearchDisplayController’s displaysSearchBarInNavigationBar property. A search
bar used in this way, however, has some limitations: for example, there may be no room
for a prompt, scope buttons, or an external Cancel button, and you might not be able
to assign it a background image or change its barTintColor.

On the other hand, in iOS 7, a UISearchBar can itself function as a top bar, like a navi‐
gation bar without being in a navigation bar. If you use a search bar in this way, you’ll
want its height to be extended automatically under the status bar; I’ll explain later in
this chapter how to arrange that.

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the superclass of several
further built-in classes and to endow them with common behavior. These are classes
representing views with which the user can interact (controls).

The most important thing that controls have in common is that they automatically track
and analyze touch events (Chapter 5) and report them to your code as significant control
events by way of action messages. Each control implements some subset of the possible
control events. The full set of control events is listed under UIControlEvents in the
Constants section of the UIControl class documentation:

• UIControlEventTouchDown

• UIControlEventTouchDownRepeat

• UIControlEventTouchDragInside

• UIControlEventTouchDragOutside

• UIControlEventTouchDragEnter

• UIControlEventTouchDragExit

• UIControlEventTouchUpInside

574 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

• UIControlEventTouchUpOutside

• UIControlEventTouchCancel

• UIControlEventValueChanged

• UIControlEventEditingDidBegin

• UIControlEventEditingChanged

• UIControlEventEditingDidEnd

• UIControlEventEditingDidEndOnExit

• UIControlEventAllTouchEvents

• UIControlEventAllEditingEvents

• UIControlEventAllEvents

The control events also have informal names that are visible in the Connections in‐
spector when you’re editing a nib. I’ll mostly use the informal names in the next couple
of paragraphs.

Control events fall roughly into three groups: the user has touched the screen (Touch
Down, Touch Drag Inside, Touch Up Inside, etc.), edited text (Editing Did Begin, Ed‐
iting Changed, etc.), or changed the control’s value (Value Changed).

Apple’s documentation is rather coy about which controls normally emit actions for
which control events, so here’s a list obtained through experimentation (but keep in
mind that Apple’s silence on this matter may mean that the details are subject to change):
UIButton

All “Touch” events.

UIDatePicker
Value Changed.

UIPageControl
All “Touch” events, Value Changed.

UIRefreshControl
Value Changed.

UISegmentedControl
Value Changed.

UISlider
All “Touch” events, Value Changed.

UISwitch
All “Touch” events, Value Changed.

UIControl | 575

www.it-ebooks.info

http://www.it-ebooks.info/

Touch Inside and Touch Outside
There is no explicit “Touch Down Inside” event, because any sequence of “Touch” events
begins with “Touch Down,” which must be inside the control. (If it weren’t, this sequence
of touches would not “belong” to the control, and there would be no control events at
all.)

When the user taps within a control and starts dragging, the “Inside” events are triggered
even after the drag moves outside the control’s bounds. But after a certain distance from
the control is exceeded, an invisible boundary is crossed, Touch Drag Exit is triggered,
and now “Outside” events are reported until the drag crosses back within the invisible
boundary, at which point Touch Drag Enter is triggered and the “Inside” events are
reported again. In the case of a UIButton, the crossing of this invisible boundary is
exactly when the button automatically unhighlights (as the drag exits). Thus, to catch a
legitimate button press, you probably want to consider only Touch Up Inside.

For other controls, there may be some slight complications. For example, a UISwitch
will unhighlight when a drag reaches a certain distance from it, but the touch is still
considered legitimate and can still change the UISwitch’s value; therefore, when the
user’s finger leaves the screen, the UISwitch reports a Touch Up Inside event, even while
reporting Touch Drag Outside events.

UIStepper
All “Touch” events, Value Changed.

UITextField
All “Touch” events except the “Up” events, and all “Editing” events (see Chap‐
ter 10 for details).

UIControl (generic)
All “Touch” events.

For each control event that you want to hear about automatically, you attach to the
control one or more target–action pairs. You can do this in the nib or in code.

For any given control, each control event and its target–action pairs form a dispatch
table. The following methods permit you to manipulate and query the dispatch table:

• addTarget:action:forControlEvents:

• removeTarget:action:forControlEvents:

• actionsForTarget:forControlEvent:

576 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

• allTargets

• allControlEvents (a bitmask of control events to which a target–action pair is
attached)

An action method (the method that will be called on the target when the control event
occurs) may adopt any of three signatures, whose parameters are:

• The control and the UIEvent
• The control only
• No parameters

The second signature is by far the most common. It’s unlikely that you’d want to dispense
altogether with the parameter telling you which control sent the control event. On the
other hand, it’s equally unlikely that you’d want to examine the original UIEvent that
triggered this control event, since control events deliberately shield you from dealing
with the nitty-gritty of touches — though you might have some reason to examine the
UIEvent’s timestamp.

When a control event occurs, the control consults its dispatch table, finds all the target–
action pairs associated with that control event, and reports the control event by sending
each action message to the corresponding target.

The action messaging mechanism is actually more complex than I’ve
just stated. The UIControl does not really send the action message
directly; rather, it tells the shared application to send it. When a con‐
trol wants to send an action message reporting a control event, it calls
its own sendAction:to:forEvent: method. This in turn calls the
shared application instance’s sendAction:to:from:forEvent:, which
actually sends the specified action message to the specified target. In
theory, you could call or override either of these methods to custom‐
ize this aspect of the message-sending architecture, but it is extreme‐
ly unlikely that you would do so.

To make a control emit its action message(s) corresponding to a particular control event
right now, in code, call its sendActionsForControlEvents: method (which is never
called automatically by the framework). For example, suppose you tell a UISwitch pro‐
grammatically to change its setting from Off to On. This doesn’t cause the switch to
report a control event, as it would if the user had slid the switch from Off to On; if you
wanted it to do so, you could use sendActionsForControlEvents:, like this:

[self.sw setOn: YES animated: YES];
[self.sw sendActionsForControlEvents:UIControlEventValueChanged];

UIControl | 577

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-8. A switch

You might also use sendActionsForControlEvents: in a subclass to customize the
circumstances under which a control reports control events.

A control has enabled, selected, and highlighted properties; any of these can be YES
or NO independently of the others. Together, they correspond to the control’s state,
which is reported as a bitmask of three possible values:

• UIControlStateHighlighted

• UIControlStateDisabled

• UIControlStateSelected

A fourth state, UIControlStateNormal, corresponds to a zero state bitmask, and means
that enabled, selected, and highlighted are all NO.

A control that is not enabled does not respond to user interaction. Whether the control
also portrays itself differently, to cue the user to this fact, depends upon the control. For
example, a disabled UISwitch is faded; but a rounded rect text field gives the user no
cue that it is disabled. The visual nature of control selection and highlighting, too, de‐
pends on the control. Neither highlighting nor selection make any difference to the
appearance of a UISwitch, but a highlighted UIButton usually looks quite different from
a nonhighlighted UIButton.

A control has contentHorizontalAlignment and contentVerticalAlignment prop‐
erties. These matter only if the control has content that can be aligned. You are most
likely to use them in connection with a UIButton to position its title and internal image.

A text field (UITextField) is a control; see Chapter 10. A refresh control (UIRefresh‐
Control) is a control; see Chapter 8. The remaining controls are covered here, and then
I’ll give a simple example of writing your own custom control.

UISwitch
A switch (UISwitch, Figure 12-8) portrays a BOOL value: it looks like a sliding switch,
and its on property is either YES or NO. The user can slide or tap to toggle the switch’s
position. When the user changes the switch’s position, the switch reports a Value
Changed control event. To change the on property’s value with accompanying anima‐
tion, call setOn:animated:.

578 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-9. A stepper

A switch has only one size (radically changed in iOS 7 to 51×31); any attempt to set its
size will be ignored.

You can customize a switch’s appearance by setting these properties:
onTintColor

The color of the track when the switch is in the On position.

thumbTintColor

The color of the slidable button.

tintColor

In iOS 7, the color of the outline when the switch is in the Off position.

In iOS 7, a switch’s track when the switch is in the Off position is transparent, and can’t
be customized. I regard this as a bug. (Changing the switch’s backgroundColor is not a
successful workaround, because the background color shows outside the switch’s out‐
line.)

The UISwitch properties onImage and offImage, added in iOS 6 after much clamoring
(and hacking) by developers, are withdrawn in iOS 7.

Don’t name a UISwitch instance variable or property switch,
as this is a reserved word in C.

UIStepper
A stepper (UIStepper, Figure 12-9) lets the user increase or decrease a numeric value:
it looks like two buttons side by side, one labeled (by default) with a minus sign, the
other with a plus sign. The user can tap or hold a button, and can slide a finger from
one button to the other as part of the same interaction with the stepper. It has only one
size (apparently 94×29). It maintains a numeric value, which is its value. Each time the
user increments or decrements the value, it changes by the stepper’s stepValue. If the
minimumValue or maximumValue is reached, the user can go no further in that direction,
and to show this, the corresponding button is disabled — unless the stepper’s wraps
property is YES, in which case the value goes beyond the maximum by starting again
at the minimum, and vice versa.

UIControl | 579

www.it-ebooks.info

http://www.it-ebooks.info/

As the user changes the stepper’s value, a Value Changed control event is reported.
Portraying the numeric value itself is up to you; you might, for example, use a label or
(as here) a progress view:

- (IBAction)doStep:(UIStepper*)step {
 self.prog.progress = step.value / (step.maximumValue - step.minimumValue);
}

If a stepper’s continuous is YES (the default), a long touch on one of the buttons will
update the value repeatedly; the updates start slowly and get faster. If the stepper’s
autorepeat is NO, the updated value is not reported as a Value Changed control event
until the entire interaction with the stepper ends; the default is YES.

The appearance of a stepper can be customized. In iOS 7, the color of the outline and
the button captions is the stepper’s tintColor, which may be inherited from further up
the view hierarchy. You can also dictate the images that constitute the stepper’s structure
with these methods:

• setDecrementImageForState:

• setIncrementImageForState:

• setDividerImage:forLeftSegmentState:rightSegmentState:

• setBackgroundImage:forState:

The images work similarly to a search bar’s scope bar (described earlier in this chapter).
The background images should probably be resizable. They are stretched behind both
buttons, half the image being seen as the background of each button. If the button is
disabled (because we’ve reached the value’s limit in that direction), it displays the
UIControlStateDisabled background image; otherwise, it displays the UIControl-
StateNormal background image, except that it displays the UIControlState-

Highlighted background image while the user is tapping it. You’ll probably want to
provide all three background images if you’re going to provide any; the default is used
if a state’s background image is nil. You’ll probably want to provide three divider images
as well, to cover the three combinations normal left and normal right, highlighted left
and normal right, and normal left and highlighted right. The increment and decrement
images are composited on top of the background image; in iOS 7, they are treated as
template images, colored by the tintColor, unless you explicitly provide a UIImage-
RenderingModeAlwaysOriginal image. At a minimum, you’ll provide a UIControl-
StateNormal image, which will be adjusted automatically for the other two states,
though of course you can provide all three images for each button. Figure 12-9 shows
a customized stepper.

580 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-10. A customized stepper

UIPageControl
A page control (UIPageControl) is a row of dots; each dot is called a page, because it is
intended to be used in conjunction with some other interface that portrays something
analogous to pages, such as a UIScrollView with its pagingEnabled set to YES. Coor‐
dinating the page control with this other interface is usually up to you; see Chapter 7
for an example. A UIPageViewController in scroll style can optionally display a page
control that’s automatically coordinated with its content (Chapter 6).

The number of dots is the page control’s numberOfPages. To learn the minimum size
required for a given number of pages, call sizeForNumberOfPages:. You can make the
page control wider than the dots to increase the target region on which the user can tap.
The user can tap to one side or the other of the current page’s dot to increment or
decrement the current page; the page control then reports a Value Changed control
event. It is possible to set a page control’s backgroundColor to show the user the tappable
area, but that isn’t commonly done: the background is usually transparent.

The dot colors differentiate the current page, the page control’s currentPage, from the
others; by default, the current page is portrayed as a solid dot, while the others are slightly
transparent. You can customize a page control’s pageIndicatorTintColor (the color of
the dots in general) and currentPageIndicatorTintColor (the color of the current
page’s dot).

If a page control’s hidesForSinglePage is YES, the page control becomes invisible
when its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is YES, then when the user taps to in‐
crement or decrement the page control’s value, the display of the current page is not
changed. A Value Changed control event is reported, but it is up to your code to handle
this action and call updateCurrentPageDisplay. A case in point might be if the user’s
changing the current page triggers an animation, but you don’t want the current page
dot to change until the animation ends.

UIDatePicker
A date picker (UIDatePicker) looks like a UIPickerView (discussed earlier in this chap‐
ter), but it is not a UIPickerView subclass; it uses a UIPickerView to draw itself, but it
provides no official access to that picker view. Its purpose is to express the notion of a
date and time, taking care of the calendrical and numerical complexities so that you

UIControl | 581

www.it-ebooks.info

http://www.it-ebooks.info/

don’t have to. When the user changes its setting, the date picker reports a Value Changed
control event.

A UIDatePicker has one of four modes (datePickerMode), determining how it is drawn:
UIDatePickerModeTime

The date picker displays a time; for example, it has an hour component and a mi‐
nutes component.

UIDatePickerModeDate

The date picker displays a date; for example, it has a month component, a day
component, and a year component.

UIDatePickerModeDateAndTime

The date picker displays a date and time; for example, it has a component showing
day of the week, month, and day, plus an hour component and a minutes compo‐
nent.

UIDatePickerModeCountDownTimer

The date picker displays a number of hours and minutes; for example, it has an
hours component and a minutes component.

Exactly what components a date picker displays, and what values they contain, depends
by default upon the user’s preferences in the Settings app (General → International →
Region Format). For example, a U.S. time displays an hour numbered 1 through 12 plus
minutes and AM or PM, but a British time displays an hour numbered 1 through 24
plus minutes. If the user changes the region format in the Settings app, the date picker’s
display will change immediately.

A date picker has calendar and timeZone properties, respectively an NSCalendar and
an NSTimeZone; these are nil by default, meaning that the date picker responds to the
user’s system-level settings. You can also change these values manually; for example, if
you live in California and you set a date picker’s timeZone to GMT, the displayed time
is shifted forward by 8 hours, so that 11 AM is displayed as 7 PM (if it is winter).

Don’t change the timeZone of a UIDatePickerModeCountDownTimer
date picker; if you do, the displayed value will be shifted, and you will
confuse the heck out of yourself and your users.

The minutes component, if there is one, defaults to showing every minute, but you can
change this with the minuteInterval property. The maximum value is 30, in which case
the minutes component values are 0 and 30. An attempt to set a value that doesn’t divide
evenly into 60 will be silently ignored.

The date represented by a date picker (unless its mode is UIDatePickerModeCountDown-
Timer) is its date property, an NSDate. The default date is now, at the time the date

582 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

picker is instantiated. For a UIDatePickerModeDate date picker, the time by default is
12 AM (midnight), local time; for a UIDatePickerModeTime date picker, the date by
default is today. The internal value is reckoned in the local time zone, so it may be
different from the displayed value, if you have changed the date picker’s timeZone.

The maximum and minimum values enabled in the date picker are determined by its
maximumDate and minimumDate properties. Values outside this range may appear dis‐
abled. There isn’t really any practical limit on the range that a date picker can display,
because the “drums” representing its components are not physical, and values are added
dynamically as the user spins them. In this example, we set the initial minimum and
maximum dates of a date picker (self.picker) to the beginning and end of 1954. We
also set the actual date, so that the date picker will be set initially to a value within the
minimum–maximum range:

self.picker.datePickerMode = UIDatePickerModeDate;
NSDateComponents* dc = [NSDateComponents new];
[dc setYear:1954];
[dc setMonth:1];
[dc setDay:1];
NSCalendar* c =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDate* d = [c dateFromComponents:dc];
self.picker.minimumDate = d;
[dc setYear:1955];
d = [c dateFromComponents:dc];
self.picker.maximumDate = d;
self.picker.date = self.picker.minimumDate;

Don’t set the maximumDate and minimumDate properties values for a
UIDatePickerModeCountDownTimer date picker; if you do, you might
cause a crash with an out-of-range exception.

To convert between an NSDate and a string, you’ll need an NSDateFormatter (see
Apple’s Date and Time Programming Guide):

NSDate* d = self.picker.date;
NSDateFormatter* df = [NSDateFormatter new];
[df setTimeStyle:kCFDateFormatterFullStyle];
[df setDateStyle:kCFDateFormatterFullStyle];
NSLog(@"%@", [df stringFromDate:d]);
// "Tuesday, August 10, 1954, 3:16:25 AM GMT-07:00"

The value displayed in a UIDatePickerModeCountDownTimer date picker is its count-
DownDuration; this is an NSTimeInterval, which is a double representing a number of
seconds, even though the minimum interval displayed is a minute. A UIDatePicker-
ModeCountDownTimer date picker does not actually do any counting down! You are
expected to use some other interface to display the countdown. The Timer tab of Apple’s

UIControl | 583

www.it-ebooks.info

http://www.it-ebooks.info/

Clock app shows a typical interface; the user configures the date picker to set the count-
DownDuration initially, but once the counting starts, the date picker is hidden and a label
displays the remaining time.

Converting the countDownDuration from an NSTimeInterval to hours and minutes is
up to you; you could use the built-in calendrical classes:

NSTimeInterval t = self.picker.countDownDuration;
NSDate* d = [NSDate dateWithTimeIntervalSinceReferenceDate:t];
NSCalendar* c =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
[c setTimeZone: [NSTimeZone timeZoneForSecondsFromGMT:0]]; // normalize
NSUInteger units = NSHourCalendarUnit | NSMinuteCalendarUnit;
NSDateComponents* dc = [c components:units fromDate:d];
NSLog(@"%d hr, %d min", [dc hour], [dc minute]);

A nasty iOS 7 bug makes the Value Changed event from a UIDate-
PickerModeCountDownTimer date picker unreliable (especially just af‐
ter the app launches, and whenever the user has tried to set the timer
to zero). The workaround is not to rely on the Value Changed event;
for example, provide a button in the interface that the user can tap to
make your code read the date picker’s countDownDuration.

UISlider
A slider (UISlider) is an expression of a continuously settable value (its value) between
some minimum and maximum (its minimumValue and maximumValue; they are 0 and 1
by default). It is portrayed as an object, the thumb, positioned along a track. As the user
changes the thumb’s position, the slider reports a Value Changed control event; it may
do this continuously as the user presses and drags the thumb (if the slider’s continuous
is YES, the default) or only when the user releases the thumb (if its continuous is NO).
While the user is pressing on the thumb, the slider is in the highlighted state. To change
the slider’s value with animation, call setValue:animated:. (But in iOS 7, there’s no
animation; that’s presumably a bug.)

A commonly expressed desire is to modify a slider’s behavior so that if the user taps on
its track, the slider moves to the spot where the user tapped. Unfortunately, a slider does
not, of itself, respond to taps on its track; such a tap doesn’t even cause it to report a
Touch Up Inside control event. However, with a gesture recognizer, most things are
possible; here’s the action handler for a UITapGestureRecognizer attached to a UISlider:

- (void) tapped: (UIGestureRecognizer*) g {
 UISlider* s = (UISlider*)g.view;
 if (s.highlighted)
 return; // tap on thumb, let slider deal with it
 CGPoint pt = [g locationInView: s];
 CGRect track = [s trackRectForBounds:s.bounds];

584 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-11. Repositioning a slider’s images and track

 if (!CGRectContainsPoint(CGRectInset(track, 0, -10), pt))
 return; // not on track, forget it
 CGFloat percentage = pt.x / s.bounds.size.width;
 CGFloat delta = percentage * (s.maximumValue - s.minimumValue);
 CGFloat value = s.minimumValue + delta;
 [s setValue:value animated:YES];
}

In iOS 7, a slider’s tintColor (which may be inherited from further up the view hier‐
archy) determines the color of the track to the left of the thumb. You can change the
color of the two parts of the track with the minimumTrackTintColor and maximumTrack-
TintColor properties. (The thumbTintColor property does not affect the thumb color
in iOS 7.)

To go further, you can provide your own thumb image and your own track image, along
with images to appear at each end of the track, and you can override in a subclass the
methods that position these.

The images at the ends of the track are the slider’s minimumValueImage and maximum-
ValueImage, and they are nil by default. If you set them to actual images (which can
also be done in the nib), the slider will attempt to position them within its own bounds,
shrinking the drawing of the track to compensate.

You can change that behavior by overriding minimumValueImageRectForBounds:,
maximumValueImageRectForBounds:, and trackRectForBounds: in a subclass. The
bounds passed in are the slider’s bounds. In this example (Figure 12-11), we expand the
track width to the full width of the slider, and draw the images outside the slider’s bounds.
The images are still visible, because the slider does not clip its subviews to its bounds.
In the figure, I’ve given the slider a green background color so you can see how the track
and images are related to its bounds:

- (CGRect)maximumValueImageRectForBounds:(CGRect)bounds {
 CGRect result = [super maximumValueImageRectForBounds:bounds];
 result = CGRectOffset(result, 31, 0);
 return result;
}
- (CGRect)minimumValueImageRectForBounds:(CGRect)bounds {
 CGRect result = [super minimumValueImageRectForBounds:bounds];
 result = CGRectOffset(result, -31, 0);
 return result;
}
- (CGRect)trackRectForBounds:(CGRect)bounds {

UIControl | 585

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-12. Replacing a slider’s thumb

 CGRect result = [super trackRectForBounds:bounds];
 result.origin.x = 0;
 result.size.width = bounds.size.width;
 return result;
}

The thumb is also an image, and you set it with setThumbImage:forState:. There are
two chiefly relevant states, UIControlStateNormal and UIControlStateHighlighted.
If you supply images for both, the thumb will change automatically while the user is
dragging it. By default, the image will be centered in the track at the point represented
by the slider’s current value; you can shift this position by overriding thumbRectFor-
Bounds:trackRect:value: in a subclass. In this example, the image is repositioned
upward slightly (Figure 12-12):

- (CGRect)thumbRectForBounds:(CGRect)bounds
 trackRect:(CGRect)rect value:(float)value {
 CGRect result =
 [super thumbRectForBounds:bounds trackRect:rect value:value];
 result = CGRectOffset(result, 0, -7);
 return result;
}

Enlarging or offsetting a slider’s thumb can mislead the user as to the area on which it
can be touched to drag it. The slider, not the thumb, is the touchable UIControl; only
the part of the thumb that intersects the slider’s bounds will be draggable. The user may
try to drag the part of the thumb that is drawn outside the slider’s bounds, and will fail
(and be confused). A solution is to increase the slider’s height; if you’re using autolayout,
you can add an explicit height constraint in the nib, or override intrinsicContent-
Size in code (Chapter 1).

The track is two images, one appearing to the left of the thumb, the other to its right.
They are set with setMinimumTrackImage:forState: and setMaximumTrackImage:for-
State:. If you supply images both for normal state and for highlighted state, the images
will change while the user is dragging the thumb.

The images should be resizable, because that’s how the slider cleverly makes it look like
the user is dragging the thumb along a single static track. In reality, there are two images;
as the user drags the thumb, one image grows horizontally and the other shrinks hori‐
zontally. For the left track image, the right end cap inset will be partially or entirely
hidden under the thumb; for the right track image, the left end cap inset will be partially

586 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-13. Replacing a slider’s track

Figure 12-14. A segmented control

or entirely hidden under the thumb. Figure 12-13 shows a track derived from a single
15×15 image of a circular object (a coin):

UIImage* coin = [UIImage imageNamed: @"coin.png"];
UIImage* coinEnd = [coin resizableImageWithCapInsets:UIEdgeInsetsMake(0,7,0,7)
 resizingMode:UIImageResizingModeStretch];
[slider setMinimumTrackImage:coinEnd forState:UIControlStateNormal];
[slider setMaximumTrackImage:coinEnd forState:UIControlStateNormal];

UISegmentedControl
A segmented control (UISegmentedControl, Figure 12-14) is a row of tappable seg‐
ments; a segment is rather like a button. The user is thus choosing among options. By
default (momentary is NO), the most recently tapped segment remains selected. Alter‐
natively (momentary is YES), the tapped segment is shown as highlighted momentarily
(by default, highlighted is indistinguishable from selected, but you can change that);
afterward, no segment selection is displayed, though internally the tapped segment re‐
mains the selected segment.

The selected segment can be set and retrieved with the selectedSegmentIndex prop‐
erty; when you set it in code, the selected segment remains visibly selected, even for a
momentary segmented control. A selectedSegmentIndex value of UISegmented-
ControlNoSegment means no segment is selected. When the user taps a segment that
isn’t already visibly selected, the segmented control reports a Value Changed event.

A segment can be separately enabled or disabled with setEnabled:forSegmentAt-
Index:, and its enabled state can be retrieved with isEnabledForSegmentAtIndex:. A
disabled segment, by default, is drawn faded; the user can’t tap it, but it can still be
selected in code.

A segment has either a title or an image; when one is set, the other becomes nil. In iOS
7, an image is treated as a template image, colored by the tintColor, unless you explicitly
provide a UIImageRenderingModeAlwaysOriginal image. The methods for setting and
fetching the title and image for existing segments are:

UIControl | 587

www.it-ebooks.info

http://www.it-ebooks.info/

• setTitle:forSegmentAtIndex:, titleForSegmentAtIndex:
• setImage:forSegmentAtIndex:, imageForSegmentAtIndex:

You will also want to set the title or image when creating the segment. You can do this
in code if you’re creating the segmented control from scratch, with initWithItems:,
which takes an array each item of which is either a string or an image.

Methods for managing segments dynamically are:

• insertSegmentWithTitle:atIndex:animated:

• insertSegmentWithImage:atIndex:animated:

• removeSegmentAtIndex:animated:

• removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegments
property.

A segmented control has a standard height; if you’re using autolayout, you can change
the height through constraints or by overriding intrinsicContentSize — or by setting
its background image, as I’ll describe in a moment.

If you’re using autolayout, the width of all segments and the intrinsicContentSize
width of the entire segmented control are adjusted automatically whenever you set a
segment’s title or image. If the segmented control’s apportionsSegmentWidthsBy-
Content property is NO, segment sizes will be made equal to one another; if it is YES,
each segment will be sized individually to fit its content. Alternatively, you can set a
segment’s width explicitly with setWidth:forSegmentAtIndex: (and retrieve it with
widthForSegmentAtIndex:); setting a width of 0 means that this segment is to be sized
automatically.

To change the position of the content (title or image) within a segment, call setContent-
Offset:forSegmentAtIndex: (and retrieve it with contentOffsetForSegmentAt-
Index:).

In iOS 7, the color of a segmented control’s outline, title text, and selection are dictated
by its tintColor, which may be inherited from further up the view hierarchy. (The
segmentedControlStyle property is deprecated in iOS 7.)

Further methods for customizing a segmented control’s appearance are parallel to those
for setting the look of a stepper or the scope bar portion of a search bar, both described
earlier in this chapter. You can set the overall background, the divider image, the text
attributes for the segment titles, and the position of segment contents:

• setBackgroundImage:forState:barMetrics:

588 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-15. A segmented control, customized

• setDividerImage:forLeftSegmentState:rightSegmentState:barMetrics:

• setTitleTextAttributes:forState:

• setContentPositionAdjustment:forSegmentType:barMetrics:

You don’t have to customize for every state, as the segmented control will use the normal
state setting for the states you don’t specify. As I mentioned a moment ago, setting a
background image changes the segmented control’s height.

Here’s the code that achieved Figure 12-15; selecting a segment automatically darkens
the background image for us (similar to a button’s adjustsImageWhenHighlighted,
described in the next section), so there’s no need to specify a separate selected image:

// background, set desired height but make width resizable
// sufficient to set for Normal only
UIImage* image = [UIImage imageNamed: @"linen.png"];
CGFloat w = 100;
CGFloat h = 60;
UIGraphicsBeginImageContextWithOptions(CGSizeMake(w,h), NO, 0);
[image drawInRect:CGRectMake(0,0,w,h)];
UIImage* image2 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
UIImage* image3 =
 [image2 resizableImageWithCapInsets:UIEdgeInsetsMake(0,10,0,10)
 resizingMode:UIImageResizingModeStretch];
[self.seg setBackgroundImage:image3 forState:UIControlStateNormal
 barMetrics:UIBarMetricsDefault];
// segment images, redraw at final size
NSArray* pep = @[@"manny.jpg", @"moe.jpg", @"jack.jpg"];
for (int i = 0; i < 3; i++) {
 UIImage* image = [UIImage imageNamed: pep[i]];
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(30,30), NO, 0);
 [image drawInRect:CGRectMake(0,0,30,30)];
 UIImage* image2 = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 image2 =
 [image2 imageWithRenderingMode:UIImageRenderingModeAlwaysOriginal];
 [self.seg setImage:image2 forSegmentAtIndex:i];
 [self.seg setWidth:80 forSegmentAtIndex:i];
}
// divider, set at desired width, sufficient to set for Normal only
UIGraphicsBeginImageContextWithOptions(CGSizeMake(1,10), NO, 0);
[[UIColor whiteColor] set];

UIControl | 589

www.it-ebooks.info

http://www.it-ebooks.info/

CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(0,0,1,10));
UIImage* div = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
[self.seg setDividerImage:div
 forLeftSegmentState:UIControlStateNormal
 rightSegmentState:UIControlStateNormal
 barMetrics:UIBarMetricsDefault];

The segmentType: parameter in setContentPositionAdjustment:forSegmentType:
barMetrics: is needed because, by default, the segments at the two extremes have
rounded ends (and, if a segment is the lone segment, both its ends are rounded). The
argument allows you distinguish between the various possibilities:

• UISegmentedControlSegmentAny

• UISegmentedControlSegmentLeft

• UISegmentedControlSegmentCenter

• UISegmentedControlSegmentRight

• UISegmentedControlSegmentAlone

The barMetrics: parameter will be ignored in iOS 7 unless its value is UIBarMetrics-
Default.

UIButton
A button (UIButton) is a fundamental tappable control, which may contain a title, an
image, and a background image (and may have a backgroundColor). A button has a
type, and the code creation method is a class method, buttonWithType:. The types are:
UIButtonTypeSystem

New in iOS 7. The title text appears in the button’s tintColor, which may be in‐
herited from further up the view hierarchy; when the button is tapped, the title text
color momentarily changes to a color derived from what’s behind it (which might
be the button’s backgroundColor). The image is treated as a template image, colored
by the tintColor, unless you explicitly provide a UIImageRenderingModeAlways-
Original image; when the button is tapped, the image (even if it isn’t a template
image) is momentarily tinted to a color derived from what’s behind it.

UIButtonTypeDetailDisclosure
UIButtonTypeInfoLight
UIButtonTypeInfoDark
UIButtonTypeContactAdd

Basically, these are all UIButtonTypeSystem buttons whose image is set automati‐
cally to standard button images. In iOS 7, the first three are an “i” in a circle, and
the last is a Plus in a circle; the two Info types are identical, and they differ from

590 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

the DetailDisclosure type only in that their showsTouchWhenHighlighted is YES
by default.

UIButtonTypeCustom

In iOS 7, identical to UIButtonTypeSystem, except that there’s no automatic color‐
ing of the title or image by the tintColor or the color of what’s behind the button,
and the image is a normal image by default.

UIButtonTypeSystem replaces the old UIButtonTypeRoundedRect, which equates to it
numerically. There is no built-in iOS 7 button type with an outline (border). You can
add an outline — by adding a background image, for example, or by manipulating the
button’s layer — but the default look of an iOS 7 button is the text or image alone. In
one of my apps, I make a button stand out a bit more, like a pre-iOS 7 button, entirely
through settings made in the nib:

• In the Attributes inspector, I give the button a background color.
• In the Identity inspector, I use the User Defined Runtime Attributes to set the but‐

ton’s layer.borderWidth to 2 and its layer.cornerRadius to 5.

A button has a title, a title color, and a title shadow color — or you can supply an
attributed title, thus dictating these features and more in a single value through an
NSAttributedString (Chapter 10).

Distinguish a button’s internal image from its background image. The background im‐
age, if any, is stretched, if necessary, to fill the button’s bounds (technically, its
backgroundRectForBounds:). The image, on the other hand, if smaller than the button,
is not resized, and is thus shown internally within the button. The button can have both
a title and an image, if the image is small enough; in that case, the image is shown to the
left of the title by default.

These six features (title, title color, title shadow color, attributed title, image, and back‐
ground image) can all be made to vary depending on the button’s current state:
UIControlStateHighlighted, UIControlStateSelected, UIControlStateDisabled,
and UIControlStateNormal. The button can be in more than one state at once, except
for UIControlStateNormal which means “none of the other states”. A state change,
whether automatic (the button is highlighted while the user is tapping it) or program‐
matically imposed, will thus in and of itself alter a button’s appearance. The methods
for setting these button features, therefore, all involve specifying a corresponding state
— or multiple states, using a bitmask:

• setTitle:forState:

• setTitleColor:forState:

• setTitleShadowColor:forState:

UIControl | 591

www.it-ebooks.info

http://www.it-ebooks.info/

• setAttributedTitle:forState:

• setImage:forState:

• setBackgroundImage:forState:

Similarly, when getting these button features, you must either specify a single state you’re
interested in or ask about the feature as currently displayed:

• titleForState:, currentTitle
• titleColorForState:, currentTitleColor
• titleShadowColorForState:, currentTitleShadowColor
• attributedTitleForState:, currentAttributedTitle
• imageForState:, currentImage
• backgroundImageForState:, currentBackgroundImage

If you don’t specify a feature for a particular state, or if the button adopts more than one
state at once, an internal heuristic is used to determine what to display. I can’t describe
all possible combinations, but here are some general observations:

• If you specify a feature for a particular state (highlighted, selected, or disabled), and
the button is in only that state, that feature will be used.

• If you don’t specify a feature for a particular state (highlighted, selected, or disabled),
and the button is in only that state, the normal version of that feature will be used
as fallback. (That’s why many examples earlier in this book have assigned a title for
UIControlStateNormal only; this is sufficient to give the button a title in every
state.)

• Combinations of states often cause the button to fall back on the feature for normal
state. For example, if a button is both highlighted and selected, the button will
display its normal title, even if it has a highlighted title, a selected title, or both.

A UIButtonTypeSystem button with an attributed normal title will tint the title to the
tintColor if you don’t give the attributed string a color, and will tint the title while
highlighted to the color derived from what’s behind the button if you haven’t supplied
a highlighted title with its own color. But a UIButtonTypeCustom button will not do any
of that; it leaves control of the title color for each state completely up to you.

In addition, a UIButton has some properties determining how it draws itself in various
states, which can save you the trouble of specifying different images for different states:
showsTouchWhenHighlighted

If YES, then the button projects a circular white glow when highlighted. If the button
has an internal image, the glow is centered behind it; thus, this feature is suitable

592 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

particularly if the button image is small and circular; for example, it’s the default
behavior for a UIButtonTypeInfoLight or UIButtonTypeInfoDark button. If the
button has no internal image, the glow is centered at the button’s center. The glow
is drawn on top of the background image or color, if any.

adjustsImageWhenHighlighted

In a UIButtonTypeCustom button, if this property is YES (the default), then if there
is no separate highlighted image (and if showsTouchWhenHighlighted is NO), the
normal image is darkened when the button is highlighted. This applies equally to
the internal image and the background image. (A UIButtonTypeSystem button is
already tinting its highlighted image, so this property doesn’t apply.)

adjustsImageWhenDisabled

If YES, then if there is no separate disabled image, the normal image is shaded when
the button is disabled. This applies equally to the internal image and the background
image. The default is YES for a UIButtonTypeCustom button and NO for a UIButton-
TypeSystem button.

A button has a natural size in relation to its contents. If you’re using autolayout, the
button can adopt that size automatically as its intrinsicContentSize, and you can
modify the way it does this by overriding intrinsicContentSize in a subclass or by
applying explicit constraints. If you’re not using autolayout and you create a button in
code, send it sizeToFit or give it an explicit size — otherwise, the button will have a
zero size and you’ll be left wondering why your button hasn’t appeared in the interface.

The title is a UILabel (Chapter 10), and the label features of the title can be accessed
through the button’s titleLabel. Its properties may be set, provided they do not conflict
with existing UIButton features. For example, you can set the title’s font and shadow-
Offset by way of the label, but the title’s text, color, and shadow color should be set
using the appropriate button methods. If the title is given a shadow in this way, then the
button’s reversesTitleShadowWhenHighlighted property also applies: if YES, the
shadowOffset values are replaced with their additive inverses when the button is high‐
lighted. Similarly, you can manipulate the label’s wrapping behavior to make the button’s
title consist of multiple lines. The modern way, however, is to manipulate all these fea‐
tures using attributed strings.

The internal image is drawn by a UIImageView (Chapter 2), whose features can be
accessed through the button’s imageView. Thus, for example, you can change the internal
image view’s alpha to make the image more transparent.

The internal position of the image and title as a whole are governed by the button’s
contentVerticalAlignment and contentHorizontalAlignment (inherited from UI‐
Control). You can also tweak the position of the image and title, together or separately,
by setting the button’s contentEdgeInsets, titleEdgeInsets, or imageEdgeInsets.

UIControl | 593

www.it-ebooks.info

http://www.it-ebooks.info/

Increasing an inset component increases that margin; thus, for example, a positive top
component makes the distance between that object and the top of the button larger than
normal (where “normal” is where the object would be according to the alignment set‐
tings). The titleEdgeInsets or imageEdgeInsets values are added to the overall
contentEdgeInsets values. So, for example, if you really wanted to, you could make
the internal image appear to the right of the title by decreasing the left titleEdge-
Insets and increasing the left imageEdgeInsets.

Four methods also provide access to the button’s positioning of its elements:

• titleRectForContentRect:

• imageRectForContentRect:

• contentRectForBounds:

• backgroundRectForBounds:

These methods are called whenever the button is redrawn, including every time it
changes state. The content rect is the area in which the title and image are placed. By
default, contentRectForBounds: and backgroundRectForBounds: yield the same re‐
sult. You can override these methods in a subclass to change the way the button’s ele‐
ments are positioned.

Here’s an example of a customized button. In a UIButton subclass, we increase the
button’s intrinsicContentSize to give it larger margins around its content, and we
override backgroundRectForBounds to shrink the button slightly when highlighted as
a way of providing feedback:

- (CGRect)backgroundRectForBounds:(CGRect)bounds {
 CGRect result = [super backgroundRectForBounds:bounds];
 if (self.highlighted)
 result = CGRectInset(result, 3, 3);
 return result;
}
-(CGSize)intrinsicContentSize {
 CGSize sz = [super intrinsicContentSize];
 sz.height += 16;
 sz.width += 20;
 return sz;
}

The button, which is a UIButtonTypeCustom button, is assigned an internal image and
a background image from the same image, along with an attributed title. When high‐
lighted, its title color changes, thanks to a second attributed string, and its image glows,
thanks to adjustsImageWhenHighlighted (Figure 12-16):

594 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-16. A custom button

UIImage* im = [UIImage imageNamed: @"coin2.png"];
CGSize sz = [im size];
UIImage* im2 =
 [im resizableImageWithCapInsets:
 UIEdgeInsetsMake(sz.height/2.0, sz.width/2.0,
 sz.height/2.0, sz.width/2.0)
 resizingMode: UIImageResizingModeStretch];
[self.button setBackgroundImage: im2 forState: UIControlStateNormal];
self.button.backgroundColor = [UIColor clearColor];
[self.button setImage: im2 forState: UIControlStateNormal];
NSMutableAttributedString* mas =
 [[NSMutableAttributedString alloc]
 initWithString: @"Pay Tribute"
 attributes: @{
 NSFontAttributeName:
 [UIFont fontWithName:@"GillSans-Bold" size:16],
 NSForegroundColorAttributeName:
 [UIColor purpleColor] }];
[mas addAttributes: @{
 NSStrokeColorAttributeName:[UIColor redColor],
 NSStrokeWidthAttributeName:@(-2.0),
 NSUnderlineStyleAttributeName:@1}
 range: NSMakeRange(4,mas.length-4)];
[self.button setAttributedTitle: mas forState: UIControlStateNormal];
mas = [mas mutableCopy];
[mas addAttributes: @{
 NSForegroundColorAttributeName:[UIColor whiteColor]}
 range: NSMakeRange(0,mas.length)];
[self.button setAttributedTitle: mas forState: UIControlStateHighlighted];
self.button.adjustsImageWhenHighlighted = YES;

Custom Controls
The UIControl class implements several touch-tracking methods that you might over‐
ride in order to customize a built-in UIControl type or to create your own UIControl
subclass, along with properties that tell you whether touch tracking is going on:

• beginTrackingWithTouch:withEvent:

• continueTrackingWithTouch:withEvent:

• endTrackingWithTouch:withEvent:

UIControl | 595

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-17. A custom control

• cancelTrackingWithEvent:

• tracking (property)
• touchInside (property)

With the advent of gesture recognizers (Chapter 5), such direct involvement with touch
tracking is probably less needed than it used to be, especially if your purpose is to modify
the behavior of a built-in UIControl subclass. So, to illustrate their use, I’ll give a simple
example of creating a custom control. The main reason for doing this (rather than using,
say, a UIView and gesture recognizers) would probably be to obtain the convenience of
control events. Also, the touch-tracking methods, though not as high-level as gesture
recognizers, are at least a level up from the UIResponder touches... methods (Chap‐
ter 5): they track a single touch, and both beginTracking... and continue-
Tracking... return a BOOL, giving you a chance to stop tracking the current touch.

We’ll build a simplified knob control (Figure 12-17). The control starts life at its mini‐
mum position, with an internal angle value of 0; it can be rotated clockwise with a single
finger as far as its maximum position, with an internal angle value of 5 (radians). To
keep things simple, the words “Min” and “Max” appearing in the interface are actually
labels; the control just draws the knob, and to rotate it we’ll apply a rotation transform.

Our control is a UIControl subclass, MyKnob. It has a public CGFloat angle property,
and a CGFloat instance variable _initialAngle that we’ll use internally during rotation.
Because a UIControl is a UIView, it can draw itself, which it does with an image file
included in our app bundle:

- (void) drawRect:(CGRect)rect {
 UIImage* knob = [UIImage imageNamed:@"knob.png"];
 [knob drawInRect:rect];
}

We’ll need a utility function for transforming a touch’s Cartesian coordinates into polar
coordinates, giving us the angle to be applied as a rotation to the view:

596 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

static inline CGFloat pToA (UITouch* touch, UIView* self) {
 CGPoint loc = [touch locationInView: self];
 CGPoint c = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));
 return atan2(loc.y - c.y, loc.x - c.x);
}

Now we’re ready to override the tracking methods. beginTrackingWithTouch:with-
Event: simply notes down the angle of the initial touch location. continueTracking-
WithTouch:withEvent: uses the difference between the current touch location’s angle
and the initial touch location’s angle to apply a transform to the view, and updates the
angle property. endTrackingWithTouch:withEvent: triggers the Value Changed con‐
trol event. So our first draft looks like this:

- (BOOL) beginTrackingWithTouch:(UITouch*)touch withEvent:(UIEvent*)event {
 self->_initialAngle = pToA(touch, self);
 return YES;
}
- (BOOL) continueTrackingWithTouch:(UITouch*)touch withEvent:(UIEvent*)event {
 CGFloat ang = pToA(touch, self);
 ang -= self->_initialAngle;
 CGFloat absoluteAngle = self->_angle + ang;
 self.transform = CGAffineTransformRotate(self.transform, ang);
 self->_angle = absoluteAngle;
 return YES;
}
- (void) endTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 [self sendActionsForControlEvents:UIControlEventValueChanged];
}

This works: we can put a MyKnob into the interface and hook up its Value Changed
control event (this can be done in the nib editor), and sure enough, when we run the
app, we can rotate the knob and, when our finger lifts from the knob, the Value Changed
action handler is called. However, continueTrackingWithTouch:withEvent: needs
modification.

First, we need to peg the minimum and maximum rotation at 0 and 5, respectively. For
simplicity, we’ll just stop tracking, by returning NO, if the rotation goes below 0 or above
5, fixing the angle at the exceeded limit. However, because we’re no longer tracking, end-
Tracking... will never be called, so we also need to trigger the Value Changed control
event. (Doubtless you can come up with a more sophisticated way of pegging the knob
at its minimum and maximum, but remember, this is only a simple example.) Second,
it might be nice to give the programmer the option to have the Value Changed control
event reported continuously as continueTracking... is called repeatedly. So we’ll add
a public continuous BOOL property and obey it.

Here, then, is our revised continueTracking... implementation:

UIControl | 597

www.it-ebooks.info

http://www.it-ebooks.info/

- (BOOL) continueTrackingWithTouch:(UITouch*)touch withEvent:(UIEvent*)event {
 CGFloat ang = pToA(touch, self);
 ang -= self->_initialAngle;
 CGFloat absoluteAngle = self->_angle + ang;
 if (absoluteAngle < 0) {
 self.transform = CGAffineTransformIdentity;
 self->_angle = 0;
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return NO;
 }
 if (absoluteAngle > 5) {
 self.transform = CGAffineTransformMakeRotation(5);
 self->_angle = 5;
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return NO;
 }
 self.transform = CGAffineTransformRotate(self.transform, ang);
 self->_angle = absoluteAngle;
 if (self->continuous)
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return YES;
}

Finally, we’ll probably want a method that sets the angle programmatically as a way of
rotating the knob:

- (void) setAngle: (CGFloat) ang {
 if (ang < 0)
 ang = 0;
 if (ang > 5)
 ang = 5;
 self.transform = CGAffineTransformMakeRotation(ang);
 self->_angle = ang;
}

Bars
There are three bar types: navigation bar (UINavigationBar), toolbar (UIToolbar), and
tab bar (UITabBar). They are often used in conjunction with a built-in view controller
(Chapter 6):

• A UINavigationController has a UINavigationBar.
• A UINavigationController has a UIToolbar.
• A UITabBarController has a UITabBar.

You can also use these bar types independently. You are most likely to do that with a
UIToolbar, which is often used as an independent bottom bar. On the iPad, it can also
be used as a top bar, adopting a role analogous to a menu bar on the desktop. That’s
such a common interface, in fact, that certain special automatic behaviors are associated

598 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

with it; for example, a UISearchBar in a UIToolbar and managed by a UISearchDisplay‐
Controller will automatically display its search results table in a popover (Chapter 9).

This section summarizes the facts about the three bar types (along with UISearchBar,
which can act as a top bar), and about the items that populate them.

Bar Position and Bar Metrics
If a navigation bar or toolbar — or a search bar (discussed earlier in this chapter) — is
to occupy the top of the screen, the iOS 7 convention is that its height should be increased
to underlap the transparent status bar. To make this possible, iOS 7 introduces the notion
of a bar position. The UIBarPositioning protocol, adopted by UINavigationBar, UI‐
Toolbar, and UISearchbar, defines one property, barPosition, whose possible values
are:

• UIBarPositionAny

• UIBarPositionBottom

• UIBarPositionTop

• UIBarPositionTopAttached

But barPosition is read-only, so how are you supposed to set it? The UIBarPosition‐
Delegate protocol defines one method, positionForBar:. This provides a way for a
bar’s delegate to dictate the bar’s barPosition. The delegate protocols UINavigation‐
BarDelegate, UIToolbarDelegate, and UISearchBarDelegate all conform to UIBarPosi‐
tionDelegate.

Thus, if you use one of these bar types alone (not in conjunction with a view controller),
you can give it a delegate and, in that delegate, implement positionForBar: to return
the bar’s desired barPosition value.

The rule is then that the bar’s height will be extended upward, so that its top can go
behind the status bar, if the bar’s delegate returns UIBarPositionTopAttached from its
implementation of positionForBar:. To get the final position right, the bar’s top should
also have a zero-length constraint to the view controller’s top layout guide — or, if you’re
not using autolayout, then the bar’s top should have a y value of 20. Unfortunately, a
toolbar in the nib editor has no delegate outlet — I regard that as a bug — so you’ll
have to form an outlet to the toolbar and assign the toolbar a delegate in code. Here’s
an example for a toolbar:

Bars | 599

www.it-ebooks.info

http://www.it-ebooks.info/

- (UIBarPosition)positionForBar: (id<UIBarPositioning>) bar {
 return UIBarPositionTopAttached;
}
- (void)viewDidLoad {
 [super viewDidLoad];
 self.toolbar.delegate = self;
}

A bar’s height is reflected also by its bar metrics. If a navigation bar or toolbar belongs
to a UINavigationController on the iPhone (not on the iPad), then if the interface rotates,
the UINavigationController changes the height of the bar. The standard heights are 44
(portrait) and 32 (landscape) — plus 20 if the bar also underlaps the status bar. Possible
bar metrics values are:

• UIBarMetricsDefault

• UIBarMetricsLandscapePhone

• UIBarMetricsDefaultPrompt

• UIBarMetricsLandscapePhonePrompt

(The two Prompt values, new in iOS 7, apply to a bar whose height is extended downward
to accommodate prompt text.)

When you’re customizing a feature of a bar, you may find yourself calling a method that
takes a bar metrics parameter, and possibly a bar position parameter as well. The idea
is that you can customize that feature differently depending on the bar metrics and the
bar position. You don’t have to set that value for every possible combination of bar
position and bar metrics! In general (though, unfortunately, the details are a little in‐
consistent from class to class), UIBarPositionAny and UIBarMetricsDefault are treat‐
ed as defaults that encompass any positions and metrics you don’t specify.

The interface object classes and their features that participate in this system are:
UISearchBar

A search bar can function as a top bar and can have a prompt. You can set its
background image.

UINavigationBar
A navigation bar can function as a top bar, it can have a prompt, and its height in
a navigation interface is changed automatically on the iPhone depending on the
app’s orientation. You can set its background image. In addition, the vertical offset
of its title can depend on the bar metrics.

UIToolbar
A toolbar can function as a top bar or a bottom bar, and its height in a navigation
interface is changed automatically on the iPhone depending on the app’s orienta‐

600 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

tion. You can set its background image. In addition, its shadow can depend on its
bar position.

UIBarButtonItem
You can set a bar button item’s image, image inset, background image, title offset,
and background offset, so as to depend upon the bar metrics of the containing bar,
either a UINavigationBar or a UIToolbar (and the bar position is irrelevant).

Bar Appearance
In iOS 7, the overall look of the three bar types is identical by default, and the ways of
customizing that overall look are unified. A bar can be styled at three levels:
barStyle, translucent

The barStyle options are:

• UIBarStyleDefault

• UIBarStyleBlack

In iOS 7 the bar styles are flat white and flat black respectively. The translucent
property turns on or off the blurry translucency that is so characteristic of iOS 7.

barTintColor

This property tints the bar with a solid color, replacing the earlier tintColor prop‐
erty which is used for something else in iOS 7 (namely, it is inherited by bar button
items to be the default color of their titles and template images). If you set the bar-
TintColor and you want translucency, then supplying a color with a low alpha
component is up to you. However, if you set the bar’s translucent to NO, then the
barTintColor is treated as opaque.

backgroundImage

This, as I’ve just explained, can vary depending on the bar position and bar metrics
(setBackgroundImage:forBarPosition:barMetrics:). The transparency of the
image is obeyed, but if you set the bar’s translucent to NO, then the barTint-
Color will appear opaque behind the image. If the image is too large, it is sized down
to fit in iOS 7; if it is too small, it is tiled by default, but you can change that by
supplying a resizable image.

If you assign a bar a background image, you can also customize its shadow, which is
cast from the bottom of the bar (if the bar is at the top) or the top of the bar (if the bar
is at the bottom) on whatever is behind it. The setter is usually the shadowImage property,
but a toolbar can be either at the top or the bottom, so its setter is setShadowImage:for-
ToolbarPosition:, and the barPosition is used to decide whether the shadow should
appear at the top or the bottom of the toolbar.

Bars | 601

www.it-ebooks.info

http://www.it-ebooks.info/

You’ll want a shadow image to be very small and very transparent; the image will be
tiled horizontally. Here’s an example for a navigation bar:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(4,4), NO, 0);
[[[UIColor grayColor] colorWithAlphaComponent:0.3] setFill];
CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(0,0,4,2));
[[[UIColor grayColor] colorWithAlphaComponent:0.15] setFill];
CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(0,2,4,2));
im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
self.navbar.shadowImage = im;

UIBarButtonItem
The only things that can appear inside a navigation bar or a toolbar — aside from a
navigation bar’s title and prompt — are bar button items (UIBarButtonItem, a subclass
of UIBarItem). This is not much of a limitation, however, because a bar button item can
contain a custom view, which can be any type of UIView at all. A bar button item itself,
however, is not a UIView subclass.

A bar button item may be instantiated with any of five methods:

• initWithBarButtonSystemItem:target:action:

• initWithTitle:style:target:action:

• initWithImage:style:target:action:

• initWithImage:landscapeImagePhone:style:target:action:

• initWithCustomView:

In iOS 7, a bar button item’s image is treated by default as a template image, unless you
explicitly provide a UIImageRenderingModeAlwaysOriginal image.

The style: options are:

• UIBarButtonItemStylePlain

• UIBarButtonItemStyleDone (in iOS 7, the title text is bold)

As I mentioned a moment ago, many aspects of a bar button item can be made dependent
upon the bar metrics of the containing bar. Thus, you can initialize a bar button item
with both an image and a landscapeImagePhone, the latter to be used when the bar
metrics has landscape in its name. A bar button item inherits from UIBarItem the
ability to adjust the image position with imageInsets (and landscapeImagePhone-
Insets), plus the enabled and tag properties. Recall from Chapter 6 that you can also
set a bar button item’s possibleTitles and width properties, to determine its width.

602 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

A bar button item’s tintColor property, in iOS 7, tints the title text or template image
of the button; it is inherited from the tintColor of the bar, or you can override it for
an individual bar button item.

You can apply a text attributes dictionary to a bar button item’s title, and you can give
it a background image:

• setTitleTextAttributes:forState: (inherited from UIBarItem)
• setTitlePositionAdjustment:forBarMetrics:

• setBackgroundImage:forState:barMetrics:

• setBackgroundImage:forState:style:barMetrics:

• setBackgroundVerticalPositionAdjustment:forBarMetrics:

In addition, these methods apply only if the bar button item is being used as a back
button item in a navigation bar (as I’ll describe in the next section):

• setBackButtonTitlePositionAdjustment:forBarMetrics:

• setBackButtonBackgroundImage:forState:barMetrics:

• setBackButtonBackgroundVerticalPositionAdjustment:forBarMetrics:

In a bar button item with a custom view, the background vertical
position adjustment doesn’t apply (because the custom view is the
button’s content, not its background). To shift the apparent position of
a custom view, construct the custom view as a subview within a su‐
perview, and shift the position of the subview. This technique can cause
the subview to appear outside the containing bar, so be careful.

In iOS 7, no bar button item style supplies an outline (border); the default look of a
button is just the text or image. (The old bar button item style UIBarButtonItemStyle-
Bordered, in iOS 7, is identical to UIBarButtonItemStylePlain.) If you want an outline,
you have to supply it yourself by way of the background image. Here’s how I create the
outlined left bar button item in the settings view of my Zotz! app (Figure 12-18):

UIBarButtonItem* bb =
 [[UIBarButtonItem alloc] initWithTitle:@"New Game"
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(doNewGame:)];
[bb setTitleTextAttributes:
 @{NSFontAttributeName:[UIFont fontWithName:@"Avenir-Medium" size:11]}
 forState:UIControlStateNormal];
CAGradientLayer* grad = [CAGradientLayer new];

Bars | 603

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-18. A bar button item with a border

grad.frame = CGRectMake(0,0,15,15);
grad.colors =
 @[(id)[UIColor colorWithRed:1 green:1 blue:0 alpha:0.8].CGColor,
 (id)[UIColor colorWithRed:.7 green:.7 blue:.3 alpha:0.8].CGColor];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(15,15), NO, 0);
UIBezierPath* p =
 [UIBezierPath bezierPathWithRoundedRect:CGRectMake(0,0,15,15)
 cornerRadius:8];
[p addClip];
[grad renderInContext:UIGraphicsGetCurrentContext()];
[[UIColor blackColor] setStroke];
p.lineWidth = 2;
[p stroke];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
im = [im resizableImageWithCapInsets:UIEdgeInsetsMake(7,7,7,7)
 resizingMode:UIImageResizingModeStretch];
[bb setBackgroundImage:im forState:UIControlStateNormal
 barMetrics:UIBarMetricsDefault];

UINavigationBar
A navigation bar (UINavigationBar) is populated by navigation items (UINavigation‐
Item). The UINavigationBar maintains a stack; UINavigationItems are pushed onto and
popped off of this stack. Whatever UINavigationItem is currently topmost in the stack
(the UINavigationBar’s topItem), in combination with the UINavigationItem just be‐
neath it in the stack (the UINavigationBar’s backItem), determines what appears in the
navigation bar:
title, titleView

The title (string) or titleView (UIView) of the topItem appears in the center of
the navigation bar.

prompt

The prompt (string) of the topItem appears at the top of the navigation bar, whose
height increases to accommodate it.

rightBarButtonItem, leftBarButtonItem
The rightBarButtonItem and leftBarButtonItem appear at the right and left ends
of the navigation bar. A UINavigationItem can have multiple right bar button items
and multiple left bar button items; its rightBarButtonItems and leftBarButton-

604 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-19. A back button animating to the left

Items properties are arrays (of bar button items). The bar button items are displayed
from the outside in: that is, the first item in the leftBarButtonItems is leftmost,
while the first item in the rightBarButtonItems is rightmost. If there are multiple
buttons on a side, the rightBarButtonItem is the first item of the rightBarButton-
Items array, and the leftBarButtonItem is the first item of the leftBarButton-
Items array.

backBarButtonItem

The backBarButtonItem of the backItem appears at the left end of the navigation
bar. It is automatically configured so that, when tapped, the topItem is popped off
the stack. If the backItem has no backBarButtonItem, then there is still a back
button at the left end of the navigation bar, taking its title from the title of the
backItem. However, if the topItem has its hidesBackButton set to YES, the back
button is suppressed. Also, unless the topItem has its leftItemsSupplementBack-
Button set to YES, the back button is suppressed if the topItem has a leftBarButton-
Item.

In iOS 7, the indication that the back button is a back button is supplied by the navigation
bar’s backIndicatorImage, which by default is a left-pointing chevron appearing to the
left of the back button. You can customize this image; the image that you supply is treated
as a template image by default. If you set the backIndicatorImage, you must also supply
a backIndicatorTransitionMaskImage. The purpose of the mask image is to indicate
the region where the back button should disappear as it slides out to the left when a new
navigation item is pushed onto the stack. For example, in Figure 12-19, the back button
title is visible to the right of the chevron but not to the left of the chevron; that’s because
on the left side of the chevron it is masked out (the mask is transparent).

In this example, I replace the chevron with a vertical bar. The vertical bar is not the
entire image; the image is actually a wider rectangle, with the vertical bar at its right
side. The mask is the entire wider rectangle, and is completely transparent; thus, the
back button disappears as it passes behind the bar and stays invisible as it continues on
to the left:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,20), NO, 0);
CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(6,0,4,20));
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
self.navbar.backIndicatorImage = im;

Bars | 605

www.it-ebooks.info

http://www.it-ebooks.info/

UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,20), NO, 0);
UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
self.navbar.backIndicatorTransitionMaskImage = im2;

Changes to the navigation bar’s buttons can be animated by sending its topItem any of
these messages:

• setRightBarButtonItem:animated:

• setLeftBarButtonItem:animated:

• setRightBarButtonItems:animated:

• setLeftBarButtonItems:animated:

• setHidesBackButton:animated:

UINavigationItems are pushed and popped with pushNavigationItem:animated: and
popNavigationItemAnimated:, or you can set all items on the stack at once with set-
Items:animated:.

You can set the title’s attributes dictionary (titleTextAttributes), and you can shift
the title’s vertical position by calling setTitleVerticalPositionAdjustment:forBar-
Metrics:.

When you use a UINavigationBar implicitly as part of a UINavigationController inter‐
face, the navigation controller is the navigation bar’s delegate. If you were to use a
UINavigationBar on its own, you might want to supply your own delegate. The delegate
methods are:

• navigationBar:shouldPushItem:

• navigationBar:didPushItem:

• navigationBar:shouldPopItem:

• navigationBar:didPopItem:

This simple (and silly) example of a standalone UINavigationBar implements the leg‐
endary baseball combination trio of Tinker to Evers to Chance; see the relevant Wiki‐
pedia article if you don’t know about them (Figure 12-20, which also shows the custom
back indicator and shadow I described earlier):

- (void)viewDidLoad {
 [super viewDidLoad];
 UINavigationItem* ni =
 [[UINavigationItem alloc] initWithTitle:@"Tinker"];
 UIBarButtonItem* b =
 [[UIBarButtonItem alloc] initWithTitle:@"Evers"
 style:UIBarButtonItemStylePlain

606 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-20. A navigation bar

Figure 12-21. A toolbar

 target:self action:@selector(pushNext:)];
 ni.rightBarButtonItem = b;
 self.navbar.items = @[ni];
}
- (void) pushNext: (id) sender {
 UIBarButtonItem* oldb = sender;
 NSString* s = oldb.title;
 UINavigationItem* ni = [[UINavigationItem alloc] initWithTitle:s];
 if ([s isEqualToString: @"Evers"]) {
 UIBarButtonItem* b =
 [[UIBarButtonItem alloc] initWithTitle:@"Chance"
 style:UIBarButtonItemStylePlain
 target:self action:@selector(pushNext:)];
 ni.rightBarButtonItem = b;
 }
 [self.navbar pushNavigationItem:ni animated:YES];
}

UIToolbar
A toolbar (UIToolbar, Figure 12-21) is intended to appear at the bottom of the screen;
on the iPad, it may appear at the top of the screen. It displays a row of UIBarButtonItems,
which are its items. The items are displayed from left to right in the order in which they
appear in the items array. You can set the items with animation by calling set-
Items:animated:. The items within the toolbar are positioned automatically; you can
intervene in this positioning by using the system bar button items UIBarButtonSystem-
ItemFlexibleSpace and UIBarButtonSystemItemFixedSpace, along with the UIBar‐
ButtonItem width property.

UITabBar
A tab bar (UITabBar) displays tab bar items (UITabBarItem), its items, each consisting
of an image and a name. To change the items in an animated fashion, call set-
Items:animated:. The tab bar maintains a current selection among its items, its

Bars | 607

www.it-ebooks.info

http://www.it-ebooks.info/

selectedItem, which is a UITabBarItem, not an index number. If no item is selected
initially, you can set the initial selection in code:

self.tabbar.selectedItem = self.tabbar.items[0];

To hear about the user changing the selection, implement tabBar:didSelectItem: in
the delegate (UITabBarDelegate).

New in iOS 7, you get some control over how the tab bar items are laid out:
itemPositioning

There are three possible values:
UITabBarItemPositioningCentered

The items are crowded together at the center.

UITabBarItemPositioningFill

The items are spaced out evenly.

UITabBarItemPositioningAutomatic

On the iPad, the same as Centered; on the iPhone, the same as Fill.

itemSpacing

The space between items, if the positioning is Centered. For the default space,
specify 0.

itemWidth

The width of items, if the positioning is Centered. For the default width, specify 0.

You can set the image drawn behind the selected tab bar item to indicate that it’s selected,
the selectionIndicatorImage.

A UITabBarItem is created with one of these two methods:

• initWithTabBarSystemItem:tag:

• initWithTitle:image:tag:

UITabBarItem is a subclass of UIBarItem, so in addition to its title and image it inherits
the ability to adjust the image position with imageInsets, plus the enabled and tag
properties.

In iOS 7, a bar item title text and template image are tinted, by default, with the tab bar’s
tintColor when selected (this is a change from iOS 6 behavior); the tab bar’s selected-
ImageTintColor is ignored, and there’s no way to set the deselected tint color (I regard
this as a bug).

In iOS 7, a tab bar item’s image is treated as a template image, but you can override that
by supplying a UIImageRenderingModeAlwaysOriginal image. For this reason, the
method introduced in iOS 6 for specifying a nontemplate image (setFinishedSelected-

608 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-22. A tab bar

Image:withFinishedUnselectedImage:) is unnecessary and has been deprecated.
Similarly, you can customize a tab bar item’s title (including its color) with an attributes
dictionary (setTitleTextAttributes:forState:, inherited from UIBarItem), and
you can adjust the title’s position with the titlePositionAdjustment property.

Figure 12-22 (from the first screen shown in Figure 6-9) is an example of a customized
tab bar; I’ve set the selection indicator image (the checkmark), the tint color, and the
text attributes (including the color, when selected) of the tab bar items.

The user can be permitted to alter the contents of the tab bar, setting its tab bar items
from among a larger repertory of tab bar items. To summon the interface that lets the
user do this, call beginCustomizingItems:, passing an array of UITabBarItems that
may or may not appear in the tab bar. (To prevent the user from removing an item from
the tab bar, include it in the tab bar’s items and don’t include it in the argument passed
to beginCustomizingItems:.) A presented view with a Done button appears, behind
the tab bar but in front of everything else, displaying the customizable items. The user
can then drag an item into the tab bar, replacing an item that’s already there. To hear
about the customizing view appearing and disappearing, implement delegate methods:

• tabBar:willBeginCustomizingItems:

• tabBar:didBeginCustomizingItems:

• tabBar:willEndCustomizingItems:changed:

• tabBar:didEndCustomizingItems:changed:

A UITabBar on its own (outside a UITabBarController) does not provide any automatic
access to the user customization interface; it’s up to you. In this (silly) example, we
populate a UITabBar with four system tab bar items and a More item; we also populate
an instance variable array with those same four system tab bar items, plus four more.
When the user taps the More item, we show the user customization interface with all
eight tab bar items:

- (void)viewDidLoad {
 [super viewDidLoad];
 NSMutableArray* arr = [NSMutableArray new];
 for (int ix = 1; ix < 8; ix++) {
 UITabBarItem* tbi =
 [[UITabBarItem alloc] initWithTabBarSystemItem:ix tag:ix];
 [arr addObject: tbi];

Bars | 609

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-23. Automatically generated More list

 }
 self.items = arr; // copy policy
 [arr removeAllObjects];
 [arr addObjectsFromArray:
 [self.items subarrayWithRange:NSMakeRange(0,4)]];
 UITabBarItem* tbi =
 [[UITabBarItem alloc] initWithTabBarSystemItem:0 tag:0];
 [arr addObject: tbi]; // More button
 self.tabbar.items = arr;
 self.tabbar.selectedItem = self.tabbar.items[0];
}
- (void)tabBar:(UITabBar *)tabBar didSelectItem:(UITabBarItem *)item {
 NSLog(@"did select item with tag %d", item.tag);
 if (item.tag == 0) {
 // More button
 tabBar.selectedItem = nil;
 [tabBar beginCustomizingItems:self.items];
 }
}
-(void)tabBar:(UITabBar *)tabBar didEndCustomizingItems:(NSArray *)items
 changed:(BOOL)changed {
 self.tabbar.selectedItem = self.tabbar.items[0];
}

When used in conjunction with a UITabBarController, the customization interface is
provided automatically, in an elaborate way. If there are a lot of items, a More item is
automatically present, and can be used to access the remaining items in a table view.
Here, the user can select any of the excess items, navigating to the corresponding view.
Or, the user can switch to the customization interface by tapping the Edit button. (See
the iPhone Music app for a familiar example.) Figure 12-23 shows how a More list looks
by default.

The way this works is that the automatically provided More item corresponds to a
UINavigationController with a root view controller (UIViewController) whose view is
a UITableView. Thus, a navigation interface containing this UITableView appears
through the tabbed interface when the user taps the More button. When the user selects

610 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

an item in the table, the corresponding UIViewController is pushed onto the
UINavigationController’s stack.

You can access this UINavigationController: it is the UITabBarController’s more-
NavigationController. Through it, you can access the root view controller: it is the
first item in the UINavigationController’s viewControllers array. And through that,
you can access the table view: it is the root view controller’s view. This means you can
customize what appears when the user taps the More button! For example, let’s make
the navigation bar black with white button titles, and let’s remove the word More from
its title:

UINavigationController* more =
 self.tabBarController.moreNavigationController;
UIViewController* list = more.viewControllers[0];
list.title = @"";
UIBarButtonItem* b = [UIBarButtonItem new];
b.title = @"Back";
list.navigationItem.backBarButtonItem = b; // so user can navigate back
more.navigationBar.barStyle = UIBarStyleBlack;
more.navigationBar.tintColor = [UIColor whiteColor];

We can go even further by supplementing the table view’s data source with a data source
of our own, thus proceeding to customize the table itself. This is tricky because we have
no internal access to the actual data source, and we mustn’t accidentally disable it from
populating the table. Still, it can be done. I’ll start by replacing the table view’s data
source with an instance of my own MyDataSource. It has a public instance variable
called originalDataSource; in it, I’ll store a reference to the original data source object:

UITableView* tv = (UITableView*)list.view;
MyDataSource* mds = [MyDataSource new];
self.myDataSource = mds; // retain policy
self.myDataSource.originalDataSource = tv.dataSource;
tv.dataSource = self.myDataSource;

In MyDataSource, I’ll use Objective-C’s automatic message forwarding mechanism (see
Apple’s Objective-C Runtime Programming Guide) so that MyDataSource acts as a front
end for originalDataSource. MyDataSource will magically appear to respond to any
message that originalDataSource responds to, and any message that arrives that My‐
DataSource can’t handle will be magically forwarded to originalDataSource. This way,
the insertion of the MyDataSource instance as data source doesn’t break whatever the
original data source does:

- (id)forwardingTargetForSelector:(SEL)aSelector {
 if ([self.originalDataSource respondsToSelector: aSelector])
 return self.originalDataSource;
 return [super forwardingTargetForSelector:aSelector];
}

Bars | 611

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-24. Customized More list

Finally, we’ll implement the two Big Questions required by the UITableViewDataSource
protocol, to quiet the compiler. In both cases, we first pass the message along to original-
DataSource (somewhat analogous to calling super); then we add our own customiza‐
tions as desired. Here, just as a proof of concept, I’ll change each cell’s text font
(Figure 12-24):

- (NSInteger)tableView:(UITableView *)tv numberOfRowsInSection:(NSInteger)sec {
 // this is just to quiet the compiler
 return [self.originalDataSource tableView:tv numberOfRowsInSection:sec];
}
- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)ip {
 UITableViewCell* cell =
 [self.originalDataSource tableView:tv cellForRowAtIndexPath:ip];
 cell.textLabel.font = [UIFont fontWithName:@"GillSans-Bold" size:14];
 return cell;
}

Tint Color
New in iOS 7, tintColor is a UIView property, and it has a remarkable built-in feature:
its value, if not set explicitly (or if set to nil), is inherited from its superview. The idea
is to simplify the task of giving your app a consistent overall appearance.

This works exactly the way you would expect. You can set the tintColor of your UI‐
Window instance, and its value will be inherited by every view that ever appears. Any
built-in view (or view-like interface object, such as a UIBarItem) whose details are col‐
ored by the tintColor will display this same color. For example, if you set your window’s
tintColor to red, then every UIButtonTypeSystem button that appears anywhere in
your interface will have red title text by default.

Moreover, the inherited tintColor can be overridden by setting a view’s tintColor
explicitly. In other words, you can set the tintColor of a view partway down the view
hierarchy so that it and all its subviews have a different tintColor from the rest of the

612 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

interface. In this way, you might subtly suggest that the user has entered a different
world.

If you change the tintColor of a view, the change immediately propagates down the
hierarchy of its subviews — except, of course, that a view whose tintColor has been
explicitly set to a color of its own is unaffected, along with its subviews.

When you ask a view for its tintColor, what you get is the tintColor of the view itself,
if its own tintColor has been explicitly set to a color, or else the tintColor inherited
from up the view hierarchy. In this way, you can always learn what the effective tint color
of a view is.

Whenever a view’s tintColor changes, including when its tintColor is initially set at
launch time, it and all its affected subviews are sent the tintColorDidChange message.
A subview whose tintColor has previously been explicitly set to a color of its own isn’t
affected, so it is not sent the tintColorDidChange message merely because its super‐
view’s tintColor changes — the subview’s own tintColor didn’t change.

A UIView also has a tintAdjustmentMode. Under certain circumstances, such as the
summoning of a UIAlertView (Chapter 13) or a popover (Chapter 9), the system will
set the tintAdjustmentMode of the view at the top of the view hierarchy to UIViewTint-
AdjustmentModeDimmed. This causes the tintColor to change to a variety of gray. The
idea is that the tinting of the background should become monochrome, thus empha‐
sizing the primacy of the view that occupies the foreground (the alert view or popover).
This change in the tintAdjustmentMode propagates all the way down the view hierarchy,
changing all tintAdjustmentMode values and all tintColor values — and sending all
subviews the tintColorDidChange message. When the foreground view goes away, the
system will set the topmost view’s tintAdjustmentMode to UIViewTintAdjustmentMode-
Normal, and that change will propagate down the hierarchy.

The default tintAdjustmentMode value is UIViewTintAdjustmentModeAutomatic,
meaning that you want this view’s tintAdjustmentMode to adopt its superview’s tint-
AdjustmentMode automatically. When you ask for such a view’s tintAdjustmentMode,
what you get is just like what you get for tintColor — you’re told the effective tint
adjustment mode (UIViewTintAdjustmentModeNormal or UIViewTintAdjustmentMode-
Dimmed) inherited from up the view hierarchy.

If, on the other hand, you set a view’s tintAdjustmentMode explicitly to UIViewTint-
AdjustmentModeNormal or UIViewTintAdjustmentModeDimmed, this tells the system
that you want to be left in charge of the tintAdjustmentMode for this part of the hier‐
archy; the automatic propagation of the tintAdjustmentMode down the view hierarchy
is prevented. To turn automatic propagation back on, set the tintAdjustmentMode back
to UIViewTintAdjustmentModeAutomatic. (See “Custom Presented View Controller

Tint Color | 613

www.it-ebooks.info

http://www.it-ebooks.info/

Transition” on page 301 for an example of setting the interface’s tintAdjustmentMode
to UIViewTintAdjustmentModeDimmed in imitation of an alert view.)

You can take advantage of tintColorDidChange to make your custom UIView subclass
behave like a built-in UIView subclass. For example, if you subclass UIButton, your
subclass might not automatically dim the title text color; your button’s tintColor is
being dimmed, but that color isn’t being applied to the visible interface. You might be
able to correct that problem just by calling super:

-(void)tintColorDidChange {
 [super tintColorDidChange];
}

In a more elaborate case, you might have to apply the tintColor explicitly to some
aspect of your view subclass’s interface. In this example, I apply the tintColor to my
button subclass’s attributed string title:

-(void)tintColorDidChange {
 NSMutableAttributedString* mas =
 [[self attributedTitleForState:UIControlStateNormal] mutableCopy];
 [mas addAttribute:NSForegroundColorAttributeName
 value:self.tintColor range:NSMakeRange(0,mas.length)];
 [self setAttributedTitle:mas forState:UIControlStateNormal];
}

Don’t set the tintColor from within tintColorDidChange without
taking precautions against an infinite recursion.

Appearance Proxy
Instead of sending messages that customize the look of an interface object to the object
itself, you can send them to an appearance proxy for that object’s class. The appearance
proxy then passes that same message along to the actual future instances of that class.
You’ll usually configure your appearance proxies very early in the lifetime of the app,
and never again. The app delegate’s application:didFinishLaunchingWithOptions:,
before the app’s window has been displayed, is the most obvious and common location.

Thus, for example, instead of sending setTitleTextAttributes:forState: to a par‐
ticular UIBarButtonItem, you could send it to a UIBarButtonItem appearance proxy.
All actual UIBarButtonItems from then on would have the text attributes you specified.

Like the tintColor that I discussed in the previous section, this architecture helps you
give your app a consistent appearance, as well as saving you from having to write a lot
of code; instead of having to send setTitleTextAttributes:forState: to every
UIBarButtonItem your app ever instantiates, you send it once to the appearance proxy,
and it is sent to all future UIBarButtonItems for you.

614 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

Also, the appearance proxy sometimes provides access to interface objects that might
otherwise be difficult to refer to. For example, you don’t get direct access to a search
bar’s external Cancel button, but it is a UIBarButtonItem and you can customize it
through the UIBarButtonItem appearance proxy.

There are two class methods for obtaining an appearance proxy:
appearance

Returns a general appearance proxy for the receiver class.

appearanceWhenContainedIn:

The argument is a nil-terminated list (not an array!) of classes, arranged in order
of containment from inner to outer. The method you send to the appearance proxy
returned from this call will be passed on only to instances of the receiver class that
are actually contained in the way you describe. The notion of what “contained”
means is deliberately left vague; basically, it works the way you intuitively expect it
to work.

When configuring appearance proxy objects, specificity trumps generality. Thus, you
could call appearance to say what should happen for most instances of some class, and
call appearanceWhenContainedIn: to say what should happen instead for certain in‐
stances of that class. Similarly, longer appearanceWhenContainedIn: chains are more
specific than shorter ones.

For example, here’s some code from my Latin flashcard app (myGolden and myPaler are
methods defined by a category on UIColor):

[[UIBarButtonItem appearance]
 setTintColor: [UIColor myGolden]];
[[UIBarButtonItem appearanceWhenContainedIn:
 [UIToolbar class], nil]
 setTintColor: [UIColor myPaler]];
[[UIBarButtonItem appearanceWhenContainedIn:
 [UIToolbar class], [DrillViewController class], nil]
 setTintColor: [UIColor myGolden]];

That means:

In general, bar button items should be tinted golden.
But bar button items in a toolbar are an exception: they should be tinted paler.
But bar button items in a toolbar in DrillViewController’s view are an exception
to the exception: they should be tinted golden.

(If you’re looking at this book’s figures in color, you can see this difference made manifest
in Figure 6-3 and Figure 6-5.)

Appearance Proxy | 615

www.it-ebooks.info

http://www.it-ebooks.info/

Sometimes, in order to express sufficient specificity, I find myself defining subclasses
for no other purpose than to refer to them when obtaining an appearance proxy. For
example, here’s some more code from my Latin flashcard app:

[[UINavigationBar appearance] setBackgroundImage:marble2
 forBarMetrics:UIBarMetricsDefault];
// counteract the above for the black navigation bar
[[BlackNavigationBar appearance] setBackgroundImage:nil
 forBarMetrics:UIBarMetricsDefault];

In that code, BlackNavigationBar is a UINavigationBar subclass that does nothing
whatever. Its sole purpose is to tag one navigation bar in my interface so that I can refer
to it in that code! Thus, I’m able to say, in effect, “All navigation bars in this app should
have marble2 as their background image, unless they are instances of BlackNavigation‐
Bar.”

The ultimate in specificity is, of course, to customize the look of an instance directly.
Thus, for example, if you set one particular UIBarButtonItem’s tintColor property,
then setTintColor: sent to a UIBarButtonItem appearance proxy will have no effect
on that particular bar button item.

The appearance proxy object returned by appearance or appearanceWhenContained-
In is, in reality, an instance of some hidden class that performs some deep trickery called
method swizzling. The API has to cover this fact somehow, so this object was typed as
an id in earlier systems. In iOS 7, however, it’s an instancetype. This means that,
regardless of its real class, the compiler sees it as equivalent to an instance of the class
to which the message was sent. This is extremely convenient, for several reasons:

• The compiler won’t let you send the appearance proxy a message that you can’t send
to an instance of that class. This won’t compile:

[[UINavigationBar appearance] setWidth: 7];

• You can use dot-notation with properties. Previously, you had to say this:
[[UINavigationBar appearance] setBarTintColor:[UIColor redColor]];

But in iOS 7, you can say this:
[UINavigationBar appearance].barTintColor = [UIColor redColor];

• Code completion works.

However, just because your code will compile doesn’t mean it’s legal. Not every message
that can be sent to an instance of a class can be sent to that class’s appearance proxy. For
example:

[UINavigationBar appearance].translucent = NO;

That code is legal in the sense that it compiles, but we crash when it is encountered
(“Illegal type for appearance setter”).

616 | Chapter 12: Controls and Other Views

www.it-ebooks.info

http://www.it-ebooks.info/

So how are you supposed to know which messages can be sent to the appearance proxies
for which classes? One way is to try it and see whether you crash! Another way is to
look in the header for that class (or a superclass); an appropriate property or method
should be tagged UI_APPEARANCE_SELECTOR. For example, here’s how the barTint-
Color property is declared in UINavigationBar.h:

@property(nonatomic,retain) UIColor *barTintColor NS_AVAILABLE_IOS(7_0)
 UI_APPEARANCE_SELECTOR;

Finally, you can look in the class documentation; there should be a subsection of the
Tasks section that lists the properties and methods applicable to the appearance proxy
for this class. For example, the UINavigationBar class documentation has a section called
“Customizing the Bar Appearance”, the UIBarButtonItem class documentation has a
section called “Customizing Appearance”, and so forth.

In iOS 7, tintColor is a legal appearance proxy message. I stress this
because the headers do not make this fact clear (it is not tagged with
UI_APPEARANCE_SELECTOR). Moreover, early in the iOS 7 beta process
it wasn’t a legal appearance proxy message, and you may encounter
claims, on the Internet and even in the documentation, to that effect.
Ignore them.

Appearance Proxy | 617

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Modal Dialogs

A modal dialog demands attention; while it is present, the user can do nothing other
than work within it or dismiss it. You might need to put up a simple modal dialog in
order to give the user some information or to ask the user how to proceed. Two UIView
subclasses, UIAlertView and UIActionSheet, construct and present rudimentary modal
dialogs.

One sees occasionally a misuse of the built-in dialogs to include additional interface.
For example, a UIActionSheet is a UIView, so in theory you can add a subview to it. I
cannot recommend such behavior; it clearly isn’t intended, and there’s no need for it. If
what you want isn’t what a built-in dialog normally does, don’t use a built-in dialog. I’ll
suggest some alternatives later.

A local notification is an alert that the system presents at a predetermined time on your
app’s behalf when your app isn’t frontmost. This alert can generate a UIAlertView, so I
discuss it in this chapter as well.

An activity view is a modal dialog displaying icons representing possible courses of
action, and intended in certain circumstances to replace the action sheet. For example,
Mobile Safari presents an activity view from its Action button; the icons represent ex‐
ternal modes of sharing a URL such as Mail, Message, and Twitter, as well as internal
actions such as Bookmark and Add to Reading List.

In iOS 7, an alert view, an action sheet, and an activity view all interpose a “through a
glass darkly” shadow view between themselves and the interface in front of which they
appear, as well as setting that interface’s tintAdjustmentMode to UIViewTint-
AdjustmentModeDimmed (see Chapter 12).

619

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-1. An alert view

Alert View
An alert view (UIAlertView) pops up unexpectedly with an elaborate animation and
may be thought of as an attention-getting interruption. An alert is displayed in the center
of the screen; it contains a title, a message, and some number of buttons, one of which
may be the cancel button, meaning that it does nothing but dismiss the alert. In addition,
an alert view may contain a text field, a password field, or both.

Alert views are minimal, but intentionally so; they are intended for simple, quick in‐
teraction or display of information. Often there is only a cancel button, the primary
purpose of the alert being to show the user the message (“You won the game”); additional
buttons may be used to give the user a choice of how to proceed (“You won the game;
would you like to play another?” “Yes,” “No,” “Replay”). The text field and password
field might allow the user to supply login credentials.

The basic method for constructing an alert view is:

• initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:

The method for making a constructed alert view appear onscreen is show. The alert is
automatically dismissed as soon as the user taps any button. Here’s an example
(Figure 13-1):

UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Not So Fast!"
 message:@"Do you really want to do this tremendously destructive thing?"
 delegate:self cancelButtonTitle:@"Yes"
 otherButtonTitles:@"No", @"Maybe", nil];
[alert show];

The otherButtonTitles parameter is of indefinite length, so it must be either nil or a
nil-terminated list (not an array!) of strings. The cancel button needn’t be titled “Cancel”;
its text is bolder than the other buttons and it comes last in a column of buttons, as you

620 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

can see from Figure 13-1. If there are more than two otherButtonTitles and a nil
cancelButtonTitle, the last of the otherButtonTitles is drawn as if it were a cancel
button; this code, too, produces Figure 13-1:

UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Not So Fast!"
 message:@"Do you really want to do this tremendously destructive thing?"
 delegate:self cancelButtonTitle:nil
 otherButtonTitles:@"No", @"Maybe", @"Yes", nil];

If an alert view is to contain a text field, it probably should have at most one or two
buttons, with short titles such as “OK” and “Cancel”. Otherwise, there might not be
room on the screen for the alert view and the keyboard (and the problem is even more
severe in landscape orientation). To add a text field to the alert view, modify its alert-
ViewStyle before calling show. Your choices are:

• UIAlertViewStyleDefault, the default (no text fields)
• UIAlertViewStylePlainTextInput, one normal text field
• UIAlertViewStyleSecureTextInput, one secureTextEntry text field
• UIAlertViewStyleLoginAndPasswordInput, one normal text field and one secure-
TextEntry text field

You can retrieve the text fields with textFieldAtIndex:; possible arguments are 0 and
1 (where 1 is the password field when the style is UIAlertViewStyleLoginAndPassword-
Input). You can treat the text fields as you would any text field (see Chapter 10); for
example, you can set the text field’s delegate, arrange to receive control events from the
text field, determine the text field’s keyboard type, and so on:

UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Enter a number:"
 message:nil delegate:self cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"OK", nil];
alert.alertViewStyle = UIAlertViewStylePlainTextInput;
UITextField* tf = [alert textFieldAtIndex:0];
tf.keyboardType = UIKeyboardTypeNumberPad;
[tf addTarget:self action:@selector(textChanged:)
 forControlEvents:UIControlEventEditingChanged];
[alert show];

The alert dialog is modal, but the code that presents it is not: after the alert is shown,
your code continues to run. If an alert consists of a single button (the cancel button),
you might show it and forget about it, secure in the knowledge that the user must dismiss
it sooner or later and that nothing can happen until then. But if you want to respond at
the time the user dismisses the alert, or if there are several buttons and you want to
know which one the user tapped to dismiss the alert, you’ll need to implement at least
one of these delegate methods (UIAlertViewDelegate):

• alertView:clickedButtonAtIndex:

Alert View | 621

www.it-ebooks.info

http://www.it-ebooks.info/

• alertView:willDismissWithButtonIndex:

• alertView:didDismissWithButtonIndex:

The cancel button index is usually 0, with the remaining button indexes increasing in
the order in which they were defined. If you’re in any doubt, or if you need the button
title for any other reason, you can call buttonTitleAtIndex:. Properties allow you to
work out the correspondence between indexes and buttons without making any
assumptions:

• cancelButtonIndex (-1 if none)
• firstOtherButtonIndex (-1 if none)
• numberOfButtons (including the cancel button)

You can also dismiss an alert view programmatically, by calling dismissWithClicked-
ButtonIndex:animated:. The delegate method alertView:clickedButtonAtIndex: is
then not called, because no button was actually clicked by the user. But the button index
you specify is still passed along to the two dismiss delegate methods. The button index
you specify needn’t correspond to any existing button; thus, you could use it as a way
of telling your delegate method that your code, and not the user, dismissed the alert.

Two additional delegate methods notify you when the alert is initially shown:

• willPresentAlertView:

• didPresentAlertView:

A further delegate method asks whether the first “other button” should be enabled:

• alertViewShouldEnableFirstOtherButton:

The delegate receives that message each time the state of things changes in the alert —
in particular, when the alert appears and when the text in a text field changes. In this
example, there’s a text field, my cancel button says Cancel, and my other button says
OK; I enable the OK button only if there is text in the text field:

- (BOOL)alertViewShouldEnableFirstOtherButton:(UIAlertView *)alertView {
 UITextField* tf = [alertView textFieldAtIndex:0];
 return [tf.text length] > 0;
}

Action Sheet
An action sheet (UIActionSheet) may be considered the iOS equivalent of a menu. On
the iPhone, it slides up from the bottom of the screen; on the iPad, it appears in the
middle of the screen like an alert view, or may be displayed as (or in) a popover. It consists

622 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

of some number of buttons (and an optional title); one may be the cancel button, which
appears last, and one may be a “destructive” button, which appears first in red, empha‐
sizing the severity of that option.

Where a UIAlertView is an interruption, a UIActionSheet is a logical branching of what
the user is already doing: it typically divides a single piece of interface into multiple
possible courses of action. For example, in Apple’s Mail app, a single Action button
summons an action sheet that lets the user reply to the current message, forward it, or
print it (or cancel and do nothing).

The basic method for constructing an action sheet is:

• initWithTitle:delegate:cancelButtonTitle:destructiveButton-

Title:otherButtonTitles:

There are various methods for summoning the actual sheet, depending on what part of
the interface you want the sheet to arise from. The following are appropriate on the
iPhone, where the sheet typically rises from the bottom of the screen:
showInView:

On the iPhone, far and away the most commonly used method. You will usually
specify the root view controller’s view. Don’t specify a view whose view controller
is contained by a view controller that hides the bottom of the interface, such as a
tab bar controller or a navigation controller with a toolbar; if you do, some of the
buttons may not function (and you get a helpful warning in the console: “Presenting
action sheet clipped by its superview”). Instead, specify the tab bar controller’s view
itself, or the navigation controller’s view itself, or use one of the other methods. For
example, in my Zotz! app, which has a tab bar interface, the settings view controller
summons an action sheet like this (Figure 13-2):

[sheet showInView: self.tabBarController.view];

showFromTabBar:
showFromToolbar:

On the iPhone, these cause the sheet to rise from the bottom of the screen, just like
showInView:, because the tab bar or toolbar is at the bottom of the screen; however,
they avoid the clipping problem with showInView: described earlier.

On the iPad, the same methods are available, and cause the action sheet to appear floating
in the middle of the screen like an alert view. Alternatively, you can use one of the
following methods, which resemble the methods for presenting a popover (Chapter 9);
they do in fact present the action sheet as a popover, with its arrow pointing to the
specified part of the interface (Figure 13-3):

• showFromRect:inView:animated:

Action Sheet | 623

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-2. An action sheet on the iPhone

Figure 13-3. An action sheet presented as a popover

• showFromBarButtonItem:animated:

On the iPad, the cancelButtonTitle: argument is ignored; there is no cancel button.
Regardless of whether the action sheet appears floating in the middle of the screen or
as a popover, it is configured to be dismissed when the user taps outside it, which is the
same as canceling it.

Alternatively, it is possible on the iPad to show an alert sheet in an existing popover. In
this scenario, we are already presenting the popover, and then we summon an action
sheet within the popover’s view. The action sheet then behaves just as if the popover

624 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-4. An action sheet presented inside a popover

were an iPhone: you summon the action sheet with showInView:, it slides up from the
bottom of the popover, and the cancel button, if specified, does appear (Figure 13-4).
The action sheet behaves like a presented view inside a popover, where modalIn-
Popover is YES.

In other respects an action sheet is managed in a manner largely parallel to an alert view.
When one of its buttons is tapped, the sheet is dismissed automatically, but you’ll prob‐
ably want to implement a delegate method (UIActionSheetDelegate) in order to learn
which button it was:

• actionSheet:clickedButtonAtIndex:

• actionSheet:willDismissWithButtonIndex:

• actionSheet:didDismissWithButtonIndex:

To respond appropriately to the delegate methods without making assumptions about
how the indexes correspond to the buttons, you can use the buttonTitleAtIndex:
method, and these properties:

• cancelButtonIndex

• destructiveButtonIndex

• firstOtherButtonIndex

• numberOfButtons

In iOS 7, the action sheet can be dismissed by the user tapping outside it; in that case,
the button index parameter to your delegate methods will be actionSheet.cancel-
ButtonIndex — even if (as on the iPad) there is no Cancel button.

Action Sheet | 625

www.it-ebooks.info

http://www.it-ebooks.info/

You can dismiss an action sheet programmatically with dismissWithClickedButton-
Index:animated:, in which case actionSheet:clickedButtonAtIndex: is not called,
but the two dismiss delegate methods are. Two additional delegate methods notify you
when the sheet is initially shown:

• willPresentActionSheet:

• didPresentActionSheet:

Here’s the code that presents the action sheet shown in Figure 13-2, along with the code
that responds to its dismissal:

- (void) chooseLayout: (id) sender {
 UIActionSheet* sheet = [[UIActionSheet alloc]
 initWithTitle:@"Choose New Layout"
 delegate:self
 cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
 otherButtonTitles:@"3 by 3", @"4 by 3", @"4 by 4",
 @"5 by 4", @"5 by 5", nil];
 [sheet showInView: self.tabBarController.view];
}
- (void)actionSheet:(UIActionSheet*)as clickedButtonAtIndex:(NSInteger)ix {
 if (ix == as.cancelButtonIndex)
 return;
 NSString* s = [as buttonTitleAtIndex:ix];
 // ...
}

The UIActionSheet actionSheetStyle property appears to have no
effect in iOS 7.

An action sheet shown as a popover or inside an existing popover on an iPad introduces
all the same issues with regard to the popover’s passthroughViews that I enumerated
in Chapter 9. When an action sheet is shown as a popover from a bar button item in a
toolbar, the toolbar becomes a passthrough view for the popover, and the user can now
tap a bar button item without causing the action sheet’s popover to be dismissed, possibly
even summoning simultaneously another popover — perhaps even another instance of
the same action sheet. You can’t solve this problem by adjusting the popover controller’s
passthroughViews, because you’ve no access to the popover controller! One work‐
around is to implement the delegate methods to toggle user interaction with the toolbar:

- (IBAction)doButton:(id)sender { // sender is a bar button item
 UIActionSheet* act = [[UIActionSheet alloc]
 initWithTitle:nil delegate:self cancelButtonTitle:nil
 destructiveButtonTitle:nil
 otherButtonTitles:@"Hey", @"Ho", @"Hey Nonny No", nil];

626 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-5. A presented view behaving like an alert view

 [act showFromBarButtonItem:sender animated:YES];
}
- (void)didPresentActionSheet:(UIActionSheet *)actionSheet {
 [self.toolbar setUserInteractionEnabled:NO];
}
- (void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 [self.toolbar setUserInteractionEnabled:YES];
}

Similarly, an action sheet shown inside a popover causes the popover to behave as if
modalInPopover is YES; thus, while the action sheet is showing, the user can’t dismiss
the popover by tapping anywhere that isn’t listed in the popover’s passthroughViews.
So far, so good. But you must take care that the popover’s passthroughViews make sense
for this situation; setting the passthroughViews property to nil while the action sheet
is present (if it isn’t nil already) might be a good idea. But the view controller that presents
the action sheet might not have ready access to the popover controller in order to set
its passthroughViews! This entire situation is just another maddening consequence of
iOS’s poor built-in popover management.

Dialog Alternatives
Alert views and action sheets are limited, inflexible, and inappropriate to any but the
simplest cases. Some developers have hacked into their alert views or action sheets in
an attempt to force them to be more customizable. But there is really no need for such
extremes, especially in iOS 7, where, as I have already shown (“Custom Presented View
Controller Transition” on page 301), it is now perfectly possible to create a smaller
presented view that looks and behaves quite like an alert view or action sheet, floating
in front of the main interface and darkening everything behind it — the difference being
that this is an ordinary view controller’s view, belonging entirely to you, and capable of
being populated with any interface you like (Figure 13-5).

More generally, on the iPhone, it is always possible to navigate to a new screenful of
interface, whether by way of a navigation interface or by using a presented view (Chap‐

Dialog Alternatives | 627

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-6. A presented view functioning as a modal dialog

ter 6). The color picker in my Zotz! app (Figure 13-6) has the same lightweight, tem‐
porary quality that an alert view offers, and on the desktop would probably be presented
as part of a secondary Preferences window acting as a dialog; it happens that, on the
iPhone, it occupies the entire screen, but it is still effectively a modal dialog (and, in iOS
7, it even appears to be covering the previous interface; see “Custom Presented View
Controller Transition” on page 301 for an explanation of how this effect is achieved).

On the iPad, a popover is virtually a secondary window, and can be truly modal. The
popovers in Figure 9-1, for example, are effectively modal dialogs. A popover can in‐
ternally display a secondary presented view or even an action sheet, as we’ve already
seen. Also on the iPad, a presented view can use the UIModalPresentationFormSheet
presentation style, which is effectively a dialog window smaller than the screen; and iOS
7 lets you make a presented view any size you like — the presented view shown in
Figure 13-5 works just as well on the iPad as on the iPhone.

Local Notifications
A local notification is an alert to the user that can appear even if your app is not running.
It may appear, according to the user’s preferences under Notification Center in the Set‐
tings app, as an alert view interrupting whatever the user is doing at that moment (op‐
tionally popping up even in the lock screen), or as a momentary banner at the top of
the screen. It can be accompanied by a sound. It can be listed in the Notification Center.
The user, however, can veto any of these options — no alert or banner, no sound, no
listing in the Notification Center — effectively suppressing your local notifications
completely.

628 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

This use of the term notification has nothing to do with
NSNotification. The ambiguity is unfortunate.

Your app does not present a local notification alert; the system does. You hand the system
instructions for when the local notification is to fire, and then you just stand back and
let the system deal with it. That’s why the local notification can appear even if your app
isn’t frontmost or isn’t even running. Indeed, if your app is frontmost, the local notifi‐
cation’s alert view or banner does not automatically appear when it fires; instead, your
app is notified, and you can notify the user if you like. The only local notification alert
view that can appear when your app is frontmost is some other app’s local notification
(and in that case, your app will become inactive; see Appendix A).

The interface whereby a notification presents itself provides a way for the user to sum‐
mon your app in response, bringing it to the front if it is backgrounded, and launching
it if it isn’t running. If the notification is a banner or a listing in the Notification Center,
the user can tap it. If the notification appears in the lock screen, the user can slide it. If
the notification is an alert, the user can tap its action button. Your app will know that it
was summoned by way of the user’s action, as I’ll explain in a moment.

To create a local notification, you configure a UILocalNotification object and hand it
to the shared UIApplication instance by calling scheduleLocalNotification:. The
UILocalNotification object has properties as follows:
alertBody

The message displayed in the notification.

alertAction

This matters only if your notification is displayed as an alert; in that case, this is the
text of the action button. If you don’t set alertAction, the text of the action button
will be “Launch” (in the user’s chosen system language).

(According to the documentation, you should be able to set hasAction to NO to
suppress the action button altogether, but in my testing, doing so has no effect.)

soundName

The name of a sound file at the top level of your app bundle, to be played when the
alert appears. This should be an uncompressed sound (AIFF or WAV). Alterna‐
tively, you can specify the default sound, UILocalNotificationDefaultSound-
Name. If you don’t set this property, there won’t be a sound.

(Regardless of the value you supply here, the user can prevent your app’s notifica‐
tions from emitting a sound.)

Local Notifications | 629

www.it-ebooks.info

http://www.it-ebooks.info/

userInfo

An optional NSDictionary whose contents are up to you. Your app can retrieve this
dictionary later on, if it receives the notification after the notification fires.

fireDate, timeZone
When you want the local notification to fire. The fireDate is an NSDate. If you
don’t include a timeZone, the date is measured against universal time; if you do
include a timeZone, the date is measured against the user’s local time zone, and thus
it keeps working correctly if that time zone changes (because the user travels, for
instance).

repeatInterval, repeatCalendar
If set, the local notification will recur. Setting the repeatInterval to NSSecond-
CalendarUnit will result in a value of NSMinuteCalendarUnit. Recurrence survives
a restart of the device.

Additional UIApplication methods let you manipulate the list of local notifications
you’ve already scheduled. You can cancel one or all scheduled local notifications (cancel-
LocalNotification:, cancelAllLocalNotifications:); you can also manipulate the
list directly by setting UIApplication’s scheduledLocalNotifications, an NSArray
property.

Canceling a recurring local notification is up to your code; if you don’t
provide a way of doing that, and if the user wants to prevent the no‐
tification from recurring, the user’s only recourse will be to delete your
app.

Figure 13-7 shows an alert generated by the firing of a local notification, in its banner
form and in its alert view form. Here’s a simple example of creating and scheduling the
local notification that resulted in that alert:

UILocalNotification* ln = [UILocalNotification new];
ln.alertBody = @"Time for another cup of coffee!";
ln.fireDate = [NSDate dateWithTimeIntervalSinceNow:15];
ln.soundName = UILocalNotificationDefaultSoundName;
[[UIApplication sharedApplication] scheduleLocalNotification:ln];

Now let’s talk about what happens when one of your scheduled local notifications fires.
There are three possibilities, depending on the state of your app at that moment:
Your app is frontmost

The user won’t be informed by the system that the notification has fired; if there is
an attached sound, it won’t be played.

630 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-7. Things the system can display when a local notification fires

Your app delegate will receive application:didReceiveLocalNotification:,
where the second parameter is the UILocalNotification, and your application’s
applicationState will be UIApplicationStateActive.

Your app is suspended in the background
If the user summons your app from a notification, your app is brought to the front.

Your app delegate will then receive application:didReceiveLocal-

Notification:, where the second parameter is the UILocalNotification, and your
application’s applicationState will be UIApplicationStateInactive.

Your app isn’t running
If the user summons your app from a notification, your app is launched.

Your app delegate will then receive application:didFinishLaunchingWith-
Options:, with an NSDictionary parameter that includes the UIApplication-
LaunchOptionsLocalNotificationKey, whose value is the UILocalNotification.

Thus, to cover all possible cases, you should implement application:didReceiveLocal-
Notification: to check the UIApplication’s applicationState, and you should
implement application:didFinishLaunchingWithOptions: to check its second pa‐
rameter to see whether we are launching in response to a local notification.

If your app wasn’t frontmost and the user summons it from a notification, you may want
to show the user, immediately, some interface appropriate to this local notification.
However, as your app appears, the user will first see either your default launch image
(if the app is launched from scratch) or the screenshot image taken by the system when
your app was suspended (if the app is activated from the background). To prevent a
mismatch between that image and what the user will see when your app’s interface
actually appears, you can include in the original UILocalNotification an alertLaunch-
Image that more closely matches your app’s interface.

Local Notifications | 631

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-8. An activity view

Under some special circumstances (addressed, for example, in Chapter 14 and Chap‐
ter 22), your app might be running, not suspended, in the background. In this case, the
situation is similar to what happens when your app is suspended: the user may be no‐
tified, and can summon your app to the front. Your running-in-the-background app
can even schedule a notification to fire immediately with the convenience method
presentLocalNotificationNow:.

Activity View
An activity view is the view belonging to a UIActivityViewController. You start with
one or more pieces of data, such as an NSString, that you want the user to have the
option of sharing or working with in your app. The activity view contains an icon for
every activity (UIActivity) that can work with this type of data. There are 14 built-in
activities in iOS 7 (up from 9 in iOS 6), and your app can provide more. The user may
tap an icon in the activity view, and is then perhaps shown additional interface, be‐
longing to the provider of the chosen activity. For example, as I mentioned earlier, the
Action button in Mobile Safari presents an activity view (Figure 13-8).

Don’t confuse UIActivityViewController, UIActivity, UIActivity‐
ItemProvider, and UIActivityItemSource, on the one hand, with
UIActivityIndicatorView (Chapter 12) on the other. The similari‐
ty of the names is unfortunate.

Presenting an activity view is easy. You instantiate UIActivityViewController by calling
initWithActivityItems:applicationActivities:, where the first argument is an
NSArray of objects — the activity items — to be shared or operated on, such as NSString

632 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

or UIImage objects. Presumably these are objects associated somehow with the interface
the user is looking at right now. You set the controller’s completionHandler to a block
that will be called when the user’s interaction with the activity interface ends. Then you
present the controller, as a presented controller on the iPhone or as a popover on the
iPad. The presented view or popover will be dismissed automatically when the user
cancels or chooses an activity. So, for example, on the iPhone:

UIActivityViewController* avc =
 [[UIActivityViewController alloc] initWithActivityItems:@[myCoolString]
 applicationActivities:nil];
avc.completionHandler = ^(NSString *activityType, BOOL completed) {
 // ...
};
[self presentViewController:avc animated:YES completion:nil];

And on the iPad:

UIActivityViewController* avc =
 [[UIActivityViewController alloc] initWithActivityItems:@[myCoolString]
 applicationActivities:nil];
avc.completionHandler = ^(NSString *activityType, BOOL completed) {
 // ...
};
UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:avc];
self.currentPop = pop;
[pop presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
pop.passthroughViews = nil;

There is no Cancel button in the popover presentation of the activity view; the user
cancels by tapping outside the popover. In iOS 7, the user can cancel by tapping outside
the activity view even on the iPhone.

The activity view is populated automatically with known system-wide activities that can
handle any of the types of data you provided as activity items. These activities represent
UIActivity types, and are designated by NSString constants:

• UIActivityTypePostToFacebook

• UIActivityTypePostToTwitter

• UIActivityTypePostToWeibo

• UIActivityTypeMessage

• UIActivityTypeMail

• UIActivityTypePrint

• UIActivityTypeCopyToPasteboard

• UIActivityTypeAssignToContact

Activity View | 633

www.it-ebooks.info

http://www.it-ebooks.info/

• UIActivityTypeSaveToCameraRoll

• UIActivityTypeAddToReadingList

• UIActivityTypePostToFlickr

• UIActivityTypePostToVimeo

• UIActivityTypePostToTencentWeibo

• UIActivityTypeAirDrop

Consult the UIActivity class documentation to learn what types of activity item each of
these activities can handle. For example, the UIActivityTypeMail activity will accept
an NSString, a UIImage, or a file on disk (such as an image file) designated by an NSURL;
it will present a mail composition interface with the activity item in the body of the
email.

Since the default is to include all the system-wide activities that can handle the provided
data, if you don’t want a certain system-wide activity included in the activity view, you
must exclude it explicitly. You do this by setting the UIActivityViewController’s
excludedActivityTypes property to an NSArray of activity type constants.

The UIActivityItemSource protocol and the UIActivityItemProvider class give you a
way to supply an activity item whose real value differs from its surface value, or whose
real data takes time to obtain. I’m not going to go into detail about them.

A commonly asked question is how to use the Mail activity and pop‐
ulate the mail composition form with a recipient and a subject. In iOS
7, there’s now an official and easy way to provide a subject: supply as
one of the activity items an object (which might be self) that adopts
the UIActivityItemSource protocol and that implements activityView-
Controller:subjectForActivityType:. But there is still no official
way to provide a recipient!

The purpose of the applicationActivities: parameter of initWithActivity-
Items:applicationActivities: is for you to list any additional activities implemented
by your own app, so that their icons will appear as choices in the activity view as well.
Each activity will be an instance of one of your own UIActivity subclasses.

To illustrate, I’ll create a minimal (and nonsensical) activity called Be Cool that accepts
NSString activity items. It is a UIActivity subclass called MyCoolActivity. So, to include
Be Cool among the choices presented to the user by a UIActivityViewController, I’d say:

UIActivityViewController* avc =
 [[UIActivityViewController alloc]
 initWithActivityItems:@[myCoolString]
 applicationActivities:@[[MyCoolActivity new]]];

634 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s implement MyCoolActivity. It has an NSArray property called items, for rea‐
sons that will be apparent in a moment. We need to arm ourselves with an image to
represent this activity in the activity view; this will be treated as a template image. In
iOS 7, it should be no larger than 60×60 (76×76 on iPad); it can be smaller, and looks
better if it is, because the system will draw a rounded rectangle around it, and the image
should be somewhat inset from this. It needn’t be square, as it will be centered in the
rounded rectangle automatically.

Here’s the preparatory part of the implementation of MyCoolActivity:

+ (UIActivityCategory)activityCategory {
 return UIActivityCategoryAction;
}
-(NSString *)activityType {
 return @"com.neuburg.matt.coolActivity"; // make up your own unique string
}
-(NSString *)activityTitle {
 return @"Be Cool";
}
-(UIImage *)activityImage {
 return self.image; // prepared beforehand
}
-(BOOL)canPerformWithActivityItems:(NSArray *)activityItems {
 for (id obj in activityItems) {
 if ([obj isKindOfClass: [NSString class]])
 return YES;
 }
 return NO;
}
-(void)prepareWithActivityItems:(NSArray *)activityItems {
 self.items = activityItems;
}

If we return YES from canPerformWithActivityItems:, then an icon for this activity,
labeled Be Cool and displaying our activityImage, will appear in the activity view. If
the user taps our icon, prepareWithActivityItems: will be called. We retain the
activityItems into a property, because they won’t be arriving again when we are ac‐
tually told to perform the activity.

To perform the activity, we implement one of two methods:
performActivity

We simply perform the activity directly, using the activity items we’ve already re‐
tained. If the activity is time-consuming, the activity should be performed on a
background thread (Chapter 25) so that we can return immediately; the activity
view interface will be taken down and the user will be able to go on interacting with
the app.

Activity View | 635

www.it-ebooks.info

http://www.it-ebooks.info/

activityViewController

We have further interface that we’d like to show the user as part of the activity, so
we return a UIViewController subclass. The activity view mechanism will present
this UIViewController as a presented view controller; it is not our job to present or
dismiss it. (We may, however, present or dismiss dependent interface. For example,
if our UIViewController is a navigation controller with a custom root view con‐
troller, we might push another view controller onto its stack while the user is work‐
ing on the activity.)

No matter which of these two methods we implement, we must eventually call this
activity instance’s activityDidFinish:. This is the signal to the activity view mecha‐
nism that the activity is over. If the activity view mechanism is still presenting any
interface, it will be taken down, and the argument we supply here, a BOOL signifying
whether the activity completed successfully, will be passed into the block we supplied
earlier as the activity view controller’s completionHandler. So, for example:

-(void)performActivity {
 // ... do something with self.items here ...
 [self activityDidFinish:YES];
}

If your UIActivity is returning a view controller from activityViewController, it will
want to hand that view controller a reference to self before returning it, so that the
view controller can call its activityDidFinish: when the time comes.

For example, suppose our activity involves letting the user draw a mustache on a photo
of someone. Our view controller will provide interface for doing that, including some
way of letting the user signal completion, such as a Cancel button and a Done button.
When the user taps either of those, we’ll do whatever else is necessary (such as saving
the altered photo somewhere if the user tapped Done) and then call activityDid-
Finish:. Thus, we could implement activityViewController like this:

-(UIViewController *)activityViewController {
 MustacheViewController* mvc = [MustacheViewController new];
 mvc.activity = self; // weak
 mvc.items = self.items; // copy
 return mvc;
}

And then MustacheViewController would have code like this:

- (IBAction)doCancel:(id)sender {
 [self.activity activityDidFinish:NO];
}
- (IBAction)doDone:(id)sender {
 [self.activity activityDidFinish:YES];
}

636 | Chapter 13: Modal Dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

PART III

Some Frameworks

Cocoa supplies numerous specialized optional frameworks. This part of the book ex‐
plains the basics of some of these frameworks, showing you how to get started, and
training you to understand and explore these and related frameworks independently if
your app requires a further level of depth and detail.

• Chapter 14 introduces the various iOS means for playing sound files, including
audio sessions and playing sounds in the background.

• Chapter 15 describes some basic ways of playing video (movies), along with an
introduction to the powerful AV Foundation framework.

• Chapter 16 is about how an app can access the user’s music library.
• Chapter 17 is about how an app can access the user’s photo library, along with the

ability to take photos and capture movies.
• Chapter 18 discusses how an app can access the user’s address book.
• Chapter 19 talks about how an app can access the user’s calendar data.
• Chapter 20 describes how an app can allow the user to compose and send email

and SMS messages and social media posts.
• Chapter 21 explains how an app can display a map, along with custom annotations

and overlays. It also talks about how a map can display the user’s current location
and how to convert between a location and an address.

• Chapter 22 is about how an app can learn where the device is located, how it is
moving, and how it is oriented.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Audio

iOS provides various means and technologies for allowing your app to produce and
input sound. The topic is a large one, so this chapter can only introduce it; I’ll concentrate
on basic sound production. You’ll want to read Apple’s Multimedia Programming
Guide and Core Audio Overview.

None of the classes discussed in this chapter provides any user interface within your
application for allowing the user to stop and start playback of sound. You can create
your own such interface, and I’ll discuss how you can associate the “remote control”
buttons with your application. Also, a web view (Chapter 11) supports the HTML 5
<audio> tag; this can be a simple, lightweight way to play audio and to allow the user to
control playback. (By default, a web view even allows use of AirPlay.) Alternatively, you
could treat the sound as a movie and use the MPMoviePlayerController class discussed
in Chapter 15; this can also be a good way to play a sound file located remotely over the
Internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of the basic
computer “beep.” This is implemented through System Sound Services, part of the Audio
Toolbox framework; you’ll need to @import AudioToolbox. You’ll be calling one of two
C functions, which behave very similarly to one another:
AudioServicesPlayAlertSound

On an iPhone, may also vibrate the device, depending on the user’s settings.

AudioServicesPlaySystemSound

On an iPhone, there won’t be an accompanying vibration, but you can specifically
elect to have this “sound” be a device vibration (by passing kSystemSound-
ID_Vibrate as the name of the “sound”).

639

www.it-ebooks.info

http://www.it-ebooks.info/

The sound file to be played needs to be an uncompressed AIFF or WAV file (or an Apple
CAF file wrapping one of these). To hand the sound to these functions, you’ll need a
SystemSoundID, which you obtain by calling AudioServicesCreateSystemSoundID
with a CFURLRef (or NSURL) that points to a sound file. In this example, the sound
file is in our app bundle:

NSURL* sndurl =
 [[NSBundle mainBundle] URLForResource:@"test" withExtension:@"aif"];
SystemSoundID snd;
AudioServicesCreateSystemSoundID ((__bridge CFURLRef)sndurl, &snd);
AudioServicesPlaySystemSound(snd);

However, there’s a problem with that code: we have failed to exercise proper memory
management. We need to call AudioServicesDisposeSystemSoundID to release our
SystemSoundID. But when shall we do this? AudioServicesPlaySystemSound executes
asynchronously. So the solution can’t be to call AudioServicesDisposeSystemSound-
ID in the next line of the same snippet, because this would release our sound just as it
is about to start playing, resulting in silence. The solution is to implement a sound
completion handler, a function that is called when the sound has finished playing. So,
our sound-playing snippet now looks like this:

NSURL* sndurl =
 [[NSBundle mainBundle] URLForResource:@"test" withExtension:@"aif"];
SystemSoundID snd;
AudioServicesCreateSystemSoundID((__bridge CFURLRef)sndurl, &snd);
AudioServicesAddSystemSoundCompletion(snd, nil, nil, SoundFinished, nil);
AudioServicesPlaySystemSound(snd);

And here is our sound completion handler, the SoundFinished function referred to in
the previous snippet:

void SoundFinished (SystemSoundID snd, void* context) {
 AudioServicesRemoveSystemSoundCompletion(snd);
 AudioServicesDisposeSystemSoundID(snd);
}

Note that because we are about to release the sound, we first release the sound comple‐
tion handler information applied to it. The last argument passed to AudioServicesAdd-
SystemSoundCompletion is a pointer-to-void that comes back as the second parameter
of our sound completion handler function; you can use this parameter in any way you
like, such as to help identify the sound.

Audio Session
If your app is going to use a more sophisticated way of producing sound, such as an
audio player (discussed in the next section), it must specify a policy regarding that sound.
This policy will answer such questions as:

640 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

• Should sound stop when the screen is locked?
• Should sound interrupt existing sound (being played, for example, by the Music

app) or should it be layered on top of it?

Your policy is declared in an audio session, which is a singleton AVAudioSession instance
created automatically as your app launches. This is part of the AV Foundation frame‐
work; you’ll need to @import AVFoundation. You’ll refer to your app’s AVAudioSession
by way of the class method sharedInstance. This shared audio session instance is ac‐
tually your pipeline to the part of the system that mediates all audio belonging to all
apps and processes, the media services daemon; this daemon must juggle many demands,
which is why your app’s audio can be affected and even overruled by other apps and
external factors.

To declare your audio session’s policy, you’ll set its category, by calling set-
Category:withOptions:error:. The basic policies for audio playback are:
Ambient (AVAudioSessionCategoryAmbient)

Your app’s audio plays even while Music app music or other background audio is
playing, and is silenced by the phone’s Silent switch and screen locking.

Solo Ambient (AVAudioSessionCategorySoloAmbient, the default)
Your app stops Music app music or other background audio from playing, and is
silenced by the phone’s Silent switch and screen locking.

Playback (AVAudioSessionCategoryPlayback)
Your app stops Music app music or other background audio from playing, and is
not silenced by the Silent switch. It is silenced by screen locking, unless it is also
configured to play in the background (as explained later in this chapter).

Your audio session’s otherAudioPlaying property can tell you whether audio is already
playing in some other app, such as the Music app. Apple suggests that you might want
your choice of audio session policy, and perhaps what kinds of sound your app plays,
to take into account the answer to that question.

Audio session category options (the withOptions: parameter of setCategory:with-
Options:error:) allow you to modify the playback policies to some extent:
Mixable audio

You can override the Playback policy so as to allow Music app music or other back‐
ground audio to play (AVAudioSessionCategoryOptionMixWithOthers). Your
sound is then said to be mixable. If you don’t make your sound mixable, then mix‐
able background audio will still be able to play, but non-mixable background audio
won’t be able to play.

Audio Session | 641

www.it-ebooks.info

http://www.it-ebooks.info/

Ducking audio
You can override a policy that allows Music app music or other background audio
to play, so as to duck (diminish the volume of) that background audio (AVAudio-
SessionCategoryOptionDuckOthers). Ducking does not depend automatically on
whether your app is actively producing any sound; rather, it starts as soon as you
turn this override on and remains in place until your audio session is deactivated.

It is common practice to declare your app’s initial audio session policy very early in the
life of the app, possibly as early as application:didFinishLaunchingWithOptions:.
You can later, if necessary, change your audio session policy as your app runs.

Your audio session policy is not in effect, however, unless your audio session is also
active. By default, it isn’t. Thus, asserting your audio session policy is done by a com‐
bination of configuring the audio session and activating the audio session. To activate
(or deactivate) your audio session, you call setActive:withOptions:error:.

The question then is when to call setActive:withOptions:error:. This is a little tricky
because of multitasking. Your audio session can be deactivated automatically if your app
is no longer active. So if you want your policy to be obeyed under all circumstances, you
must explicitly activate your audio session each time your app becomes active. The best
place to do this is in applicationDidBecomeActive:, as this is the only method guar‐
anteed to be called every time your app is reactivated under circumstances where your
audio session might have been deactivated in the background (see Appendix A).

Apple also suggests that you might want to register for AVAudioSession-
MediaServicesWereResetNotification and activate your audio ses‐
sion in response, as well as resetting and recreating various audio-
related objects. See Apple’s Technical Q&A QA1749.

The first parameter to setActive:withOptions:error: is a BOOL saying whether we
want to activate or deactivate our audio session. There are various reasons why you
might deactivate (and perhaps reactivate) your audio session over the lifetime of your
app.

One such reason is that you no longer need to hog the device’s audio, and you want to
yield to other apps to play music in the background. The second parameter to set-
Active:withOptions:error: lets you supply a single option, AVAudioSessionSet-
ActiveOptionNotifyOthersOnDeactivation (only when the first parameter is NO).
By doing this, you tell the system to allow any audio suspended by the activation of your
audio session to resume. After all, enforcing a Playback audio session policy that silences
music that was playing in the background is not very nice if your app isn’t actively
producing any sound at the moment; better to activate your Playback audio session only
when your app is actively producing sound, and deactivate it when your sound finishes.

642 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

When you do that along with this option, the effect is one of pausing background audio,
playing your audio, and then resuming background audio (if the app providing the
background audio responds correctly to this option). I’ll give an example later in this
chapter.

Another reason for deactivating (and reactivating) your audio session is to bring a
change of audio policy into effect. A good example is ducking. Let’s say that, in general,
we don’t play any sounds, and we want background sound, such as Music app sound,
to continue playing while our app runs. So we configure our audio session to use the
Ambient policy in application:didFinishLaunchingWithOptions:, as follows:

[[AVAudioSession sharedInstance] setCategory: AVAudioSessionCategoryAmbient
 withOptions: 0 error: nil];

We aren’t interrupting any other audio with our Ambient policy, so it does no harm to
activate our audio session every time our app becomes active, no matter how, in
applicationDidBecomeActive:, like this:

[[AVAudioSession sharedInstance] setActive: YES withOptions: 0 error: nil];

That’s all it takes to set and enforce your app’s overall audio session policy. Now let’s say
we do sometimes play a sound, but it’s brief and doesn’t require background sound to
stop entirely; it suffices for background audio to be quieter momentarily while we’re
playing our sound. That’s ducking! So, just before we play our sound, we duck any
background sound by changing the options on our Ambient category:

[[AVAudioSession sharedInstance]
 setCategory: AVAudioSessionCategoryAmbient
 withOptions: AVAudioSessionCategoryOptionDuckOthers
 error: nil];

When we finish playing our sound, we turn off ducking. This is the tricky part. Not only
must we remove the ducking property from our audio session policy, but we must also
deactivate our audio session to make the change take effect immediately and bring the
background sound back to its original level; there is then no harm in reactivating our
audio session:

[[AVAudioSession sharedInstance] setActive:NO withOptions:0 error:nil];
[[AVAudioSession sharedInstance] setCategory: AVAudioSessionCategoryAmbient
 withOptions: 0
 error: nil];
[[AVAudioSession sharedInstance] setActive:YES withOptions: 0 error:nil];

Interruptions
Your audio session can be interrupted. This could mean that some other app deactivates
it: for example, on an iPhone a phone call can arrive or an alarm can go off. In the
multitasking world, it could mean that another app asserts its audio session over yours.

Audio Session | 643

www.it-ebooks.info

http://www.it-ebooks.info/

To learn of interruptions, register for this notification:

• AVAudioSessionInterruptionNotification

To learn whether the interruption began or ended, examine the AVAudioSession-
InterruptionTypeKey entry in the notification’s userInfo dictionary; this will be one
of the following:

• AVAudioSessionInterruptionTypeBegan

• AVAudioSessionInterruptionTypeEnded

In the latter case, the AVAudioSessionInterruptionOptionKey entry may be present,
containing an NSNumber wrapping AVAudioSessionInterruptionOptionShould-
Resume; this is the flip side of AVAudioSessionSetActiveOptionNotifyOthersOn-
Deactivation, which I mentioned earlier: some other app that interrupted you has now
deactivated its audio session, and is telling you to feel free to resume your audio.

Interruptions are not as intrusive as you might suppose. When your audio session is
interrupted, your audio has already stopped and your audio session has been deactiva‐
ted; you might respond by altering something about your app’s user interface to reflect
the fact that your audio isn’t playing, but apart from this there’s no particular work for
you to do. When the interruption ends, on the other hand, activating your audio session
and possibly resuming playback of your audio might be up to you.

In the multitasking world, when your app switches to the background, your audio is
paused (unless your app plays audio in the background, as discussed later in this chap‐
ter). Various things can happen when your app comes back to the front:

• If you were playing audio with an audio player (AVAudioPlayer, discussed in the
next section), it’s possible that the AVAudioPlayer will handle the entire situation:
it will automatically reactivate your audio session and resume playing, and you won’t
get any interruption notifications.

• If you’re not using an AVAudioPlayer, it is likely that being moved into the back‐
ground will count as an interruption of your audio session. You don’t get any no‐
tifications while you’re suspended in the background, so everything happens at once
when your app comes back to the front: at that time, you’ll be notified that the
interruption began, then notified that it ended, and then your applicationDid-
BecomeActive: will be called, all in quick succession (and in that order). Make sure
that your responses to these events, arriving in a sudden cluster, don’t step on each
other’s toes somehow.

644 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

When your app is frontmost and the user brings up the Control Cen‐
ter and uses the Play button to resume the current Music app song,
you get a notification that an interruption began; when the user dis‐
misses the Control Center, you get applicationDidBecomeActive:,
but you do not get any notification that the interruption has ended
(and an AVAudioPlayer does not automatically resume playing). This
seems incoherent.

Routing Changes
Your audio is routed through a particular output (and input). The user can make changes
in this routing — for example, by plugging headphones into the device, which causes
sound to stop coming out of the speaker and to come out of the headphones instead.
By default, your audio continues uninterrupted if any is playing, but your code might
like to be notified when routing is changed. You can register for AVAudioSessionRoute-
ChangeNotification to hear about routing changes.

The notification’s userInfo dictionary is chock full of useful information about what
just happened. Here’s NSLog’s display of the dictionary that results when I detach head‐
phones from the device:

AVAudioSessionRouteChangePreviousRouteKey =
 "<AVAudioSessionRouteDescription: 0x1f028840,
 inputs = (null);
 outputs = (
 "<AVAudioSessionPortDescription: 0x1f02af30,
 type = Headphones;
 name = Headphones;
 UID = Wired Headphones;
 selectedDataSource = (null)
 >"
)>";
AVAudioSessionRouteChangeReasonKey = 2;

Upon receipt of this notification, I can find out what the audio route is now, by calling
AVAudioSession’s currentRoute method:

<AVAudioSessionRouteDescription: 0x14e34c10,
 inputs = (null);
 outputs = (
 "<AVAudioSessionPortDescription: 0x14e59bc0,
 type = Speaker;
 name = Speaker;
 UID = Built-In Speaker;
 selectedDataSource = (null)
 >"
)>

Audio Session | 645

www.it-ebooks.info

http://www.it-ebooks.info/

The classes mentioned here — AVAudioSessionRouteDescription and AVAudioSes‐
sionPortDescription — are value classes (glorified structs). For the meaning of the
AVAudioSessionRouteChangeReasonKey, see the AVAudioSession class reference; the
value here, 2, is AVAudioSessionRouteChangeReasonOldDeviceUnavailable — we
stopped using the headphones because there are no headphones any longer.

A routing change may not of itself interrupt your sound, but Apple suggests that in this
particular situation you might like to respond by stopping your audio deliberately, be‐
cause otherwise sound may now suddenly be coming out of the speaker in a public place.

Audio Player
An audio player (AVAudioPlayer) is the easiest way to play sounds with any degree of
sophistication. A wide range of sound types is acceptable, including MP3, AAC, and
ALAC, as well as AIFF and WAV. You can set a sound’s volume and stereo pan features,
loop a sound, synchronize the playing of multiple sounds simultaneously, change the
playing rate, and set playback to begin somewhere in the middle of a sound.

AVAudioPlayer is part of the AV Foundation framework; you’ll need to @import
AVFoundation. An audio player should always be used in conjunction with an audio
session; see the previous section.

Not every device type can play a compressed sound format in every
degree of compression, and the limits can be difficult or impossible to
learn except by experimentation. I encountered this issue when an app
of mine worked correctly on an iPod touch 32GB but failed to play its
sounds on an iPod touch 8GB (even though the latter was newer). Even
more frustrating, the files played just fine in the Music app on both
devices. The problem appears to be that the compression bit rate of my
sound files was too low for AVAudioPlayer on the 8GB device, but not
on the 32GB device. But there is no documentation of the limits
involved.

An audio player can possess and play only one sound, but it can play that sound re‐
peatedly, and you can have multiple audio players, possibly playing simultaneously. An
audio player is initialized with its sound, using a local file URL or NSData. (New in iOS
7, the initializer can also state the expected sound file format.) To play the sound, first
tell the audio player to prepareToPlay, causing it to load buffers and initialize hardware;
then tell it to play. The audio player’s delegate (AVAudioPlayerDelegate) is notified
when the sound finishes playing (audioPlayerDidFinishPlaying:successfully:); do
not repeatedly check the audio player’s playing property to learn its state. Other useful
methods include pause and stop; the chief difference between them is that pause doesn’t
release the buffers and hardware set up by prepareToPlay, but stop does (so you’d want

646 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

to call prepareToPlay again before resuming play). Neither pause nor stop changes
the playhead position (the point in the sound where playback will start if play is sent
again); for that, use the currentTime property.

In a WWDC 2011 video, Apple points out that simultaneously play‐
ing multiple sounds that have different sample rates is computation‐
ally expensive, and suggests that you prepare your sounds before‐
hand by converting them to a single sample rate. Also, decoding AAC
is faster and less expensive than decoding MP3.

Devising a strategy for instantiating, retaining, and releasing your audio players is up
to you. In one of my apps, I use a class called Player, which implements a play: method
expecting a string path to a sound file in the app bundle. This method creates a new
AVAudioPlayer, stores it as an instance variable, and tells it to play the sound file; it also
sets itself up as that audio player’s delegate, and emits a notification when the sound
finishes playing. In this way, by maintaining a single Player instance, I can play different
sounds in succession:

- (void) play: (NSString*) path {
 NSURL *fileURL = [[NSURL alloc] initFileURLWithPath:path];
 NSError* err = nil;
 AVAudioPlayer *newPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL:fileURL error:&err];
 // error-checking omitted
 self.player = newPlayer; // retain policy
 [self.player prepareToPlay];
 [self.player setDelegate: self];
 [self.player play];
}
- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player
 successfully:(BOOL)flag {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"soundFinished" object:nil];
}

Here are some useful audio player properties:
pan, volume

Stereo positioning and loudness, respectively.

numberOfLoops

How many times the sound should repeat after it finishes playing; 0 (the default)
means it doesn’t repeat. A negative value causes the sound to repeat indefinitely
(until told to stop).

duration

The length of the sound (read-only).

Audio Player | 647

www.it-ebooks.info

http://www.it-ebooks.info/

currentTime

The playhead position within the sound. If the sound is paused or stopped, play
will start at the currentTime. You can set this in order to “seek” to a playback po‐
sition within the sound.

enableRate, rate
These properties allow the sound to be played at anywhere from half speed (0.5)
to double speed (2.0). Set enableRate to YES before calling prepareToPlay; you
are then free to set the rate.

meteringEnabled

If YES (the default is NO), you can call updateMeters followed by averagePower-
ForChannel: and/or peakPowerForChannel:, periodically, to track how loud the
sound is. Presumably this would be so you could provide some sort of graphical
representation of this value in your interface.

settings

A read-only dictionary describing features of the sound, such as its bit rate
(AVEncoderBitRateKey), its sample rate (AVSampleRateKey), and its data format
(AVFormatIDKey).

The playAtTime: method allows playing to be scheduled to start at a certain time. The
time should be described in terms of the audio player’s deviceCurrentTime property.

As I mentioned in the previous section, an audio player resumes playing when your app
comes to the front if it was playing and was forced to stop playing when your app was
moved to the background. There are delegate methods audioPlayerBegin-

Interruption: and audioPlayerEndInterruption:withOptions:, but my experience
is that the audio player will normally resume playing automatically and the delegate
won’t be sent these messages at all. In fact, I have yet to discover a situation in which
audioPlayerEndInterruption:withOptions: is ever called when your app is in the
foreground (active); it may, however, be called when your app is capable of playing sound
in the background, as I’ll explain later in this chapter.

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote control; the
user might be using earbuds with buttons, for example. There is also software remote
control — for example, the playback controls that you see in the Control Center
(Figure 14-1). Similarly, the buttons that appear when the screen is locked and sound
is playing are a form of software remote control (Figure 14-2).

648 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 14-1. The software remote controls in the Control Center

Figure 14-2. The software remote controls on the locked screen

Your app can arrange to be targeted by remote control events reporting that the user has
tapped a remote control. Your sound-playing app can respond to the remote play/pause
button, for example, by playing or pausing its sound.

Remote control events are a form of UIEvent, and they are sent initially to the first
responder. To arrange to be a recipient of remote control events:

• Your app must contain a UIResponder in its responder chain that returns YES from
canBecomeFirstResponder, and that responder must actually be first responder.

• Some UIResponder in the responder chain, at or above the first responder, must
implement remoteControlReceivedWithEvent:.

• Your app must call the UIApplication instance method beginReceivingRemote-
ControlEvents.

• Your app’s audio session policy must be Playback.

Remote Control of Your Sound | 649

www.it-ebooks.info

http://www.it-ebooks.info/

• Your app must emit some sound. The rule is that the running app that is capable of
receiving remote control events and that last actually produced sound is the target
of remote events. The remote control event target defaults to the Music app if no
other app takes precedence by this rule.

A typical place to put all of this is in your view controller, which is, after all, a
UIResponder:

- (BOOL)canBecomeFirstResponder {
 return YES;
}
- (void) viewDidAppear:(BOOL)animated {
 [super viewDidAppear: animated];
 [self becomeFirstResponder];
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
}
- (void)remoteControlReceivedWithEvent:(UIEvent *)event {
 // ...
}

The question is then how to implement remoteControlReceivedWithEvent:. Your im‐
plementation will examine the subtype of the incoming UIEvent to decide what to do.
There are many possible subtype values, listed under UIEventSubtype in the UIEvent
class documentation.

Earbuds with a central button will probably send UIEventSubtypeRemoteControl-
TogglePlayPause. The software remote control play/pause button used to send UIEvent-
SubtypeRemoteControlTogglePlayPause as well, but, new in iOS 7, it sends UIEvent-
SubtypeRemoteControlPlay or UIEventSubtypeRemoteControlPause. So your code
needs to cover all three possibilities.

This is a major change in iOS 7. It breaks the ability of existing apps
to respond to the software remote control play/pause button, even if
they are linked against iOS 6 or earlier.

Here’s an example in an app where sound is produced by an AVAudioPlayer:

- (void)remoteControlReceivedWithEvent:(UIEvent *)event {
 UIEventSubtype rc = event.subtype;
 if (rc == UIEventSubtypeRemoteControlTogglePlayPause) {
 if ([self.player isPlaying])
 [self.player stop];
 else
 [self.player play];
 } else if (rc == UIEventSubtypeRemoteControlPlay) {
 [self.player play];

650 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

 } else if (rc == UIEventSubtypeRemoteControlPause) {
 [self.player stop];
 }
}

You can also influence what information the user will see, in the remote control interface,
about what’s being played. For that, you’ll use MPNowPlayingInfoCenter, from the Me‐
dia Player framework; you’ll need to @import MediaPlayer. Call the class method
defaultCenter and set the resulting instance’s nowPlayingInfo property to a dictio‐
nary. The relevant keys are listed in the class documentation; they will make more sense
after you’ve read Chapter 16, which discusses the Media Player framework. Here’s some
example code from my TidBITS News app:

MPNowPlayingInfoCenter* mpic = [MPNowPlayingInfoCenter defaultCenter];
mpic.nowPlayingInfo = @{
 MPMediaItemPropertyTitle: self.titleLabel.text,
 MPMediaItemPropertyArtist: self.authorLabel.text
};

Playing Sound in the Background
In the multitasking world, when the user switches away from your app to another app,
by default, your app is suspended and stops producing sound. But if the business of
your app is to play sound, you might like your app to continue playing sound in the
background. In earlier sections of this chapter, I’ve spoken about how your app, in the
foreground, relates its sound production to background sound such as the Music app.
Now we’re talking about how your app can be that background sound, possibly playing
sound while some other app is in the foreground.

To play sound in the background, your app must do these things:

• In your Info.plist, you must include the “Required background modes” key
(UIBackgroundModes) with a value that includes “App plays audio” (audio). This is
simpler to arrange in Xcode 5 than in previous versions of Xcode; there’s a checkbox
in the Capabilities tab of the target editor (Figure 14-3).

• Your audio session’s policy must be active and must be Playback.

If those things are true, then the sound that your app is playing when the user clicks the
Home button and dismisses your application, or switches to another app, will go right
on playing.

When the screen is locked, your app can continue to play sound only
if it is capable of playing sound in the background.

Playing Sound in the Background | 651

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 14-3. Using Capabilities to enable background audio

Moreover, your app may be able to start playing in the background even if it was not
playing previously — namely, if it is mixable (AVAudioSessionCategoryOptionMixWith-
Others, see earlier in this chapter), or if it is capable of being the remote control target.
Indeed, an extremely cool feature of playing sound in the background is that remote
control events continue to work. Even if your app was not actively playing at the time
it was put into the background, it may be the remote control target (because it was
playing sound earlier, as explained in the preceding section). In that case, if the user
causes a remote control event to be sent, your app, if suspended in the background, will
be woken up (still in the background) in order to receive the remote control event and
can begin playing sound. However, the rules for interruptions still apply; another app
can interrupt your app’s audio session while your app is in the background, and if that
app receives remote control events, then your app is no longer the remote control target.

If your app is the remote control target in the background, then another app can inter‐
rupt your app’s audio, play some audio of its own, and then deactivate its own audio
session with the option telling your app to resume playing. I’ll give a minimal example
of how this works with an AVAudioPlayer.

Let’s call the two apps BackgroundPlayer and Interrupter. Suppose Interrupter has an
audio session policy of Ambient. This means that when it comes to the front, back‐

652 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

ground audio doesn’t stop. But now Interrupter wants to play a sound of its own, tem‐
porarily stopping background audio. To pause the background audio, it sets its own
audio session policy to Playback:

[[AVAudioSession sharedInstance] setCategory:AVAudioSessionCategoryPlayback
 withOptions:0 error:nil];
[[AVAudioSession sharedInstance] setActive:YES withOptions:0 error:nil];
[self.player setDelegate: self];
[self.player prepareToPlay];
[self.player play];

When Interrupter’s sound finishes playing, its AVAudioPlayer’s delegate is notified. In
response, Interrupter deactivates its audio session with the AVAudioSessionSetActive-
OptionNotifyOthersOnDeactivation option; then it’s fine for it to switch its audio
session policy back to Ambient and activate it once again:

[[AVAudioSession sharedInstance] setActive:NO
 withOptions:AVAudioSessionSetActiveOptionNotifyOthersOnDeactivation
 error:nil];
[[AVAudioSession sharedInstance] setCategory:AVAudioSessionCategoryAmbient
 withOptions:0 error:nil];
[[AVAudioSession sharedInstance] setActive: YES withOptions:0 error:nil];

So much for Interrupter. Now let’s turn to BackgroundPlayer, which was playing in the
background when Interrupter came along and changed its own audio session policy to
Playback. At that moment, here’s what happens to BackgroundPlayer:

• It is sent AVAudioSessionInterruptionNotification (if registered for it) with
AVAudioSessionInterruptionTypeKey set to 1 (meaning that the interruption
began).

• Its AVAudioPlayer stops playing.
• Its AVAudioPlayer’s delegate is sent audioPlayerBeginInterruption:.

When Interrupter deactivates its audio session, here’s what happens to Background‐
Player:

• It is sent AVAudioSessionInterruptionNotification (if registered for it) with
AVAudioSessionInterruptionTypeKey set to 0 (meaning that the interruption
ended) and AVAudioSessionInterruptionOptionKey set to 1 (meaning that play‐
ing should resume).

• Its AVAudioPlayer delegate is sent audioPlayerEndInterruption:withOptions:.

So now, BackgroundPlayer’s AVAudioPlayer delegate can test for the resume option and,
if it is set, can start playing again:

Playing Sound in the Background | 653

www.it-ebooks.info

http://www.it-ebooks.info/

-(void)audioPlayerEndInterruption:(AVAudioPlayer *)p
 withOptions:(NSUInteger)opts {
 if (opts & AVAudioSessionInterruptionOptionShouldResume) {
 [p prepareToPlay];
 [p play];
 }
}

An interesting byproduct of your app being capable of playing sound in the background
is that while it is playing sound, a timer can fire. The timer must have been created and
scheduled in the foreground, but after that, it will fire even while your app is in the
background, unless your app is currently not playing any sound. This is remarkable,
because many other sorts of activity are forbidden when your app is running in the
background.

Another byproduct of your app playing sound in the background has to do with app
delegate events (see Appendix A). Typically, your app delegate will probably never re‐
ceive the applicationWillTerminate: message, because by the time the app termi‐
nates, it will already have been suspended and incapable of receiving any events. How‐
ever, an app that is playing sound in the background is not suspended, even though it
is in the background. If it is terminated while playing sound in the background, it will
receive applicationDidEnterBackground:, even though it has already received this
event previously when it was moved into the background, and then it will receive
applicationWillTerminate:. This is one of the few situations in which application-
WillTerminate: is sent to an app in the modern multitasking world.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-related
technologies are extensive. This is a big topic, and an entire book could be written about
it (in fact, such books do exist). I’ll talk in Chapter 16 about accessing sound files in the
user’s music library. But here are some further topics that there is no room to discuss
here:
Other audio session policies

If your app accepts sound input or does audio processing, you’ll want to look into
additional audio session policies I didn’t talk about earlier — Record, Play and
Record, and Audio Processing. In addition, if you’re using Record or Play and Re‐
cord, there are modes — voice chat, video recording, and measurement (of the
sound being input) — that optimize how sound is routed (for example, what mi‐
crophone is used) and how it is modified.

654 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

New in iOS 7, your app must obtain the user’s permission to use the
microphone. This permission will be requested on your behalf when
you adopt a Record audio session policy. You can modify the body of
the system alert by setting the “Privacy — Microphone Usage Descrip‐
tion” key (NSMicrophoneUsageDescription) in your app’s Info.plist.
You can learn whether permission has been granted by calling the
AVAudioSession method requestRecordPermission:.

Recording sound
To record sound simply, use AVAudioRecorder. Your audio session policy will need
to adopt a Record policy before recording begins.

Audio queues
Audio queues implement sound playing and recording through a C API with more
granularity than the Objective-C AVAudioPlayer and AVAudioRecorder (though
it is still regarded as a high-level API), giving you access to the buffers used to move
chunks of sound data between a storage format (a sound file) and sound hardware.

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in connection
with technologies such as audio queues.

Audio Converter Services
A C API for converting sound files between formats.

Streaming audio
Audio streamed in real time over the network, such as an Internet radio station,
can be played with Audio File Stream Services, in connection with audio queues.

OpenAL
An advanced technology for playing sound with fine control over its stereo stage
and directionality.

Audio units
Plug-ins that filter and modify the nature and quality of a sound as it passes through
them. See the Audio Unit Hosting Guide for iOS.

MIDI
The CoreMIDI framework allows interaction with MIDI devices. The Audio Tool‐
box framework allows you to play a MIDI file, possibly passing it through an AU‐
Graph that uses the AUSampler audio unit to produce synthesized sound.

Further Topics in Sound | 655

www.it-ebooks.info

http://www.it-ebooks.info/

Sound sharing
New in iOS 7, sound generated or processed by one app can be streamed to and
recorded by another app. An astounding WWDC 2013 video demonstrates some
of the possibilities.

Speech synthesis
New in iOS 7, text can be transformed into synthesized speech. This can be ex‐
tremely easy to do, using the AVSpeechUtterance and AVSpeechSynthesizer classes.
In this example, I also use the AVSpeechSynthesisVoice class to make sure the device
speaks the text in English, regardless of the user’s language settings:

NSString* s = @"Polly, want a cracker?";
AVSpeechUtterance* utter =
 [[AVSpeechUtterance alloc] initWithString:s];
AVSpeechSynthesisVoice* v =
 [AVSpeechSynthesisVoice voiceWithLanguage:@"en-US"];
utter.voice = v;
CGFloat rate =
 AVSpeechUtteranceMaximumSpeechRate -
 AVSpeechUtteranceMinimumSpeechRate;
rate = rate * 0.3 + AVSpeechUtteranceMinimumSpeechRate;
utter.rate = rate;
if (!self.talker)
 self.talker = [AVSpeechSynthesizer new];
self.talker.delegate = self;
[self.talker speakUtterance:utter];

The delegate (AVSpeechSynthesizerDelegate) is told when the speech starts, when
it comes to a new range of text (usually a word), and when it finishes.

656 | Chapter 14: Audio

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Video

Simple video playback is performed in a view provided by the Media Player framework.
You’ll need to @import MediaPlayer. There are two relevant classes:
MPMoviePlayerController

Vends a view that plays a movie, along with controls letting the user regulate
playback.

MPMoviePlayerViewController
A UIViewController subclass that owns an MPMoviePlayerController and displays
its view.

A simple interface for letting the user trim video (UIVideoEditorController) is also
supplied.

Sophisticated video playing and editing can be performed through the AV Foundation
framework. I’ll introduce AV Foundation, describing AVPlayer, an alternative class for
playing a movie or a sound, and demonstrating AV Foundation’s video- and audio-
editing capabilities.

If an MPMoviePlayerController or an AVPlayer produces sound, you may need to con‐
cern yourself with your application’s audio session; see Chapter 14. Both classes deal
gracefully with the app being sent into the background; they will pause when your app
is backgrounded and resume when your app returns to the foreground.

A movie file can be in a standard movie format, such as .mov or .mp4, but it can also be
a sound file. An MPMoviePlayerController or MPMoviePlayerViewController is thus
an easy way to play a sound file, including a sound file obtained in real time over the
Internet, along with standard controls for pausing the sound and moving the playhead
— unlike AVAudioPlayer, which, as I pointed out in Chapter 14, lacks a user interface.

A mobile device does not have unlimited power for decoding and presenting video in
real time. A video that plays on your computer might not play at all on an iOS device.

657

www.it-ebooks.info

http://www.it-ebooks.info/

See the “Media Layer” chapter of Apple’s iOS Technology Overview for a list of specifi‐
cations and limits within which video is eligible for playing.

A web view (Chapter 11) supports the HTML 5 <video> tag. This can be a simple
lightweight way to present video and to allow the user to control playback. Both web
view video and MPMoviePlayerController support AirPlay.

MPMoviePlayerController
An MPMoviePlayerController vends and controls a view, its view property; you assign
it a movie described by a URL, its contentURL, which it will present in that view. You
are responsible for instantiating and retaining the MPMoviePlayerController, and you’ll
provide the contentURL in its initializer, initWithContentURL:. The movie URL can
be a local file URL, so that the player can show, for example, a movie stored as a file in
the app’s bundle, or obtained from the user’s photo library (see Chapter 17); or it can
be a resource (possibly streamed) to be fetched over the Internet, in which case the
MPMoviePlayerController initiates the download automatically as soon as it has the
contentURL.

You are also responsible for placing the MPMoviePlayerController’s view into your
interface. MPMoviePlayerController is not a UIViewController, so you can put its view
directly into your interface. No law says you have to put the MPMoviePlayerController’s
view into your interface, but if you don’t, the user won’t be able to see the movie or the
controls. An MPMoviePlayerController’s view is a real view; you can set its frame, its
autoresizingMask, and so forth, and you can give it subviews. An MPMoviePlayer‐
Controller also has a backgroundView which automatically appears behind its view; you
can give the backgroundView subviews as well.

Before you can display a movie in your interface with an MPMoviePlayerController,
you must call prepareToPlay, which is part of the MPMediaPlayer protocol, adopted
by MPMoviePlayerController.

Things happen slowly with a movie. Even when a movie is a local file, a certain amount
of it has to load before the MPMoviePlayerController knows enough about the movie
to report its specifications, to display its first frame, or to begin playing it. The delay can
be perceptible. In the case of a remote resource, this loading process will take even
longer. I’ll talk in a moment about how you can know when the movie is ready to play.

If an MPMoviePlayerController fails to load its movie into its view
when you’re testing your app in the Simulator, this may be due to an
All Exceptions breakpoint. If you have such a breakpoint, try disa‐
bling it. Alternatively, test on a device.

658 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

If the MPMoviePlayerController’s shouldAutoplay property is YES (the default), play
will begin as soon as possible, with no further action from you or the user; indeed, play
will begin even if you don’t put the MPMoviePlayerController’s view into your interface!
If the movie has sound, the user will then hear it without being able to see it, which
could be confusing. To prevent this, put the view into your interface, or set should-
Autoplay to NO (or both).

In this example, we create an MPMoviePlayerController, give it a reference to a movie
from our app bundle, retain it through a property, and put its view into our interface:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"ElMirage"
 withExtension:@"mp4"];
MPMoviePlayerController* mp =
 [[MPMoviePlayerController alloc] initWithContentURL:m];
self.mpc = mp; // retain policy
self.mpc.shouldAutoplay = NO;
[self.mpc prepareToPlay];
self.mpc.view.frame = CGRectMake(10, 10, 300, 250);
self.mpc.backgroundView.backgroundColor = [UIColor redColor];
[self.view addSubview:self.mpc.view];

However, as I mentioned a moment ago, it takes time before the movie is ready even for
initial display. It is probably better to wait until the movie is ready before putting the
MPMoviePlayerController’s view into the interface. How can we know when it is ready?
An MPMoviePlayerController doesn’t have a delegate. Instead, to learn of events as they
happen, you must register for notifications. In this case, we’ll wait for MPMoviePlayer-
ReadyForDisplayDidChangeNotification:

// ... prepare self.mpc as before ...
// but don't add its view to the interface just yet
// [self.view addSubview:self.mpc.view];
__block id observer =
 [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMoviePlayerReadyForDisplayDidChangeNotification
 object:nil queue:nil usingBlock:^(NSNotification *note)
 {
 if (self.mpc.readyForDisplay) {
 [[NSNotificationCenter defaultCenter] removeObserver:observer];
 [self.view addSubview:self.mpc.view];
 }
 }];

The controls (controlStyle is MPMovieControlStyleEmbedded) include a play/pause
button, a slider for changing the current frame of the movie (which may be omitted if
the runtime feels the view isn’t wide enough to display it), and a fullscreen button
(Figure 15-1); there may also be an AirPlay route button, if an appropriate device is
found on the network. The controls appear at the bottom of the view. The user can tap
the view to show or hide the controls; the controls may also disappear automatically
after play begins.

MPMoviePlayerController | 659

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-1. A movie player with controls

Figure 15-2. A movie player whose view fits its movie

The movie itself is centered and scaled to fill the size of the view in accordance with the
MPMoviePlayerController’s scalingMode; the default is MPMovieScalingModeAspect-
Fit, which scales to fit, keeping the correct aspect ratio, and fills the unfilled dimension
with the color of the MPMoviePlayerController’s backgroundView.

That explains why Figure 15-1 doesn’t look very good. Our code is not sophisticated
about the dimensions of the movie; it just tells the movie’s view to adopt a certain size.
It would be better to set the size of the view in relation to the dimensions of the movie.
You can learn the actual size and aspect ratio of the movie, so as to eliminate the excess
unfilled dimension, by getting the MPMoviePlayerController’s naturalSize; but, as I
mentioned earlier, it takes time (after the content URL is set and you call prepareTo-
Play) before this value can be determined. In this example, I’ll wait for MPMovieNatural-
SizeAvailableNotification; then I’ll embed the movie view into the interface, at the
correct aspect ratio (Figure 15-2):

- (void) setUpMPC {
 NSURL* m = [[NSBundle mainBundle] URLForResource:@"ElMirage"
 withExtension:@"mp4"];
 // ... the rest as before; do NOT add to view yet ...
 __block id observer =

660 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-3. A movie player when the movie is a sound file

 [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMovieNaturalSizeAvailableNotification
 object:nil queue:nil usingBlock:^(NSNotification *note)
 {
 [[NSNotificationCenter defaultCenter] removeObserver:observer];
 [self finishSetup];
 }];
}
- (void) finishSetup {
 CGRect f = self.mpc.view.bounds;
 f.size = self.mpc.naturalSize; // safe to ask for this now
 // make width 300, keep ratio
 CGFloat ratio = 300.0/f.size.width;
 f.size.width *= ratio;
 f.size.height *= ratio;
 self.mpc.view.bounds = f;
 [self.view addSubview:self.mpc.view];
}

If the “movie” is actually a sound file, the controls are drawn differently: there is a start/
pause button, a slider, and possibly an AirPlay route button, and that’s all. The controls
are centered in the view (Figure 15-3).

If the user taps the fullscreen button (or pinches outward) to enter fullscreen mode, the
controls (controlStyle is MPMovieControlStyleFullscreen) at the top include a Done
button, a slider, and an increased fullscreen button, and a second set of controls appears
at the bottom with a play/pause button and rewind and fast-forward buttons, plus pos‐
sibly a volume slider and an AirPlay route button. The user can tap to dismiss or sum‐
mon the controls, double-tap to toggle increased fullscreen mode, and tap Done to stop
play and leave fullscreen mode (Figure 15-4). The user can also pinch inward to leave
fullscreen mode without stopping play.

MPMoviePlayerController | 661

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-4. A movie player in fullscreen mode, with controls

Figure 15-5. A fullscreen movie player when the movie is a sound file

If the “movie” is a sound file, the controller lacks a fullscreen button, but the user can
pinch outward to enter fullscreen mode anyway (Figure 15-5).

You can set the style of the controls (controlStyle) manually; for example, you might
want to make it impossible for the user to summon the controls (MPMovieControlStyle-
None). You can programmatically toggle between fullscreen and not, with set-
Fullscreen:animated:.

662 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

The fullscreen rendering will rotate to compensate for a change in
device orientation even if the view controller in whose interface the
MPMoviePlayerController’s view is embedded would not. I regard
this as a bug.

The movie can be made to repeat automatically (repeatMode) when it reaches its end.
You can get the movie’s duration. You can change its initialPlaybackTime and end-
PlaybackTime, effectively trimming the start and end off the movie.

Further programmatic control over the actual playing of the movie is obtained through
the MPMediaPlayback protocol, which (as I mentioned a moment ago) MPMovie‐
PlayerController adopts. This gives you the expected play, pause, and stop methods,
as well as commands for seeking quickly forward and backward, and you can get and
set the currentPlaybackTime to position the playhead. You can also set the current-
PlaybackRate, making the movie play slower or faster than normal, and even backward.

Additional notifications tell such things as when fullscreen mode is entered and exited,
and when the movie finishes playing. One of the most important notifications is MPMovie-
PlayerPlaybackStateDidChangeNotification; to learn the actual playback state,
query the MPMoviePlayerController’s playbackState, which will be one of these:

• MPMoviePlaybackStateStopped

• MPMoviePlaybackStatePlaying

• MPMoviePlaybackStatePaused

• MPMoviePlaybackStateInterrupted

• MPMoviePlaybackStateSeekingForward

• MPMoviePlaybackStateSeekingBackward

If the content comes from the Internet, there is of course many a slip possible. Things
take time; the Internet might slow down, or go away completely; the resource to be
fetched might not exist. You’ll want to register for notifications that tell you when things
happen — especially when things go wrong. In the TidBITS News app, where an
MPMoviePlayerController is used to play a sound file located remotely across the In‐
ternet, I register for MPMoviePlayerLoadStateDidChangeNotification. When the no‐
tification arrives, I check the MPMoviePlayerController’s loadState; it’s a bitmask, and
I look to see whether the MPMovieLoadStatePlaythroughOK bit is set:

if (self.mpc.loadState & MPMovieLoadStatePlaythroughOK) { // ...

If, on the other hand, the MPMovieLoadStateStalled bit is set, we can assume that the
network is in trouble. Play will not stop automatically; the MPMoviePlayerController

MPMoviePlayerController | 663

www.it-ebooks.info

http://www.it-ebooks.info/

There Can Be Only One
Only one MPMoviePlayerController can display a movie in your interface. Judicious
use of prepareToPlay can make any MPMoviePlayerController’s view the One, but if
your interface displays the views of any other MPMoviePlayerControllers, those views
may become empty, which doesn’t look good and may puzzle the user. To avoid confu‐
sion about why one of your MPMoviePlayerControllers is not playing its movie suc‐
cessfully, the simplest solution is, if possible, to restrict your interface so that it contains
only one MPMoviePlayerController’s view.

will keep trying to obtain data. If we want to prevent that, we have to stop it manually
(at which point I’d put up an alert informing the user that there’s a problem).

Another way to detect a problem is by registering for MPMoviePlayerPlaybackDid-
FinishNotification. If there’s an error, the userInfo dictionary’s MPMoviePlayer-
PlaybackDidFinishReasonUserInfoKey will be an NSNumber wrapping MPMovie-
FinishReasonPlaybackError, and the dictionary may also have a key called
@"error", which will be an NSError; the localizedDescription of this NSError could
be suitable for presentation to the user as a statement of the difficulty.

For extended information about the playback of a movie streamed across the Internet,
look into MPMoviePlayerController’s accessLog and errorLog properties.

MPMoviePlayerViewController
An MPMoviePlayerViewController is, as its name implies, a view controller (a UIView‐
Controller subclass, Chapter 6). It manages an MPMoviePlayerController (its movie-
Player) and automatically provides a fullscreen presentation of the MPMoviePlayer‐
Controller’s view. Thus, an MPMoviePlayerViewController has some strong advantages
of simplicity.

(On the other hand, that very simplicity means that a number of choices are made for
you, and you may find yourself struggling against them. For example, when an
MPMoviePlayerViewController’s view is showing, it becomes a recipient of remote
control events — see Chapter 14. That’s convenient, but if it’s not what you want, it is
not easily overcome; there is no property for turning it off.)

The documentation says that you can use an MPMoviePlayerViewController wherever
you would use a UIViewController, such as a child view controller in a tab bar interface
or navigation interface, but the MPMoviePlayerViewController’s own interface seems
to make the most sense when it is a presented view controller. A category on UIView‐
Controller even provides a special method for presenting it, presentMoviePlayerView-
ControllerAnimated:, which uses a special style of animation, whereby the current

664 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

view slides out to reveal the movie view. To remove the view in code, you could then
call dismissMoviePlayerViewControllerAnimated. Here’s a simple example:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"ElMirage"
 withExtension:@"mp4"];
MPMoviePlayerViewController* mpvc =
 [[MPMoviePlayerViewController alloc] initWithContentURL: m];
mpvc.moviePlayer.shouldAutoplay = NO; // optional
[self presentMoviePlayerViewControllerAnimated:mpvc];

In that code, I’ve set the MPMoviePlayerViewController’s moviePlayer’s should-
Autoplay property just to show that it can be done; the moviePlayer is an MPMovie‐
PlayerController, and can be sent the same messages you’d send it if you were using it
on its own. For example, you can register for its notifications. You will not, however,
need to send it prepareToPlay.

You can detect the user pressing the Done button by registering for the MPMoviePlayer-
PlaybackDidFinishNotification. If the user tapped Done, the MPMoviePlayer-
PlaybackDidFinishReasonUserInfoKey in the notification’s userInfo dictionary will
be an NSNumber wrapping MPMovieFinishReasonUserExited. If the MPMoviePlayer‐
ViewController is a presented view controller, it is dismissed automatically when the
user taps the Done button or when the movie plays to its end (in which case the MPMovie-
PlayerPlaybackDidFinishReasonUserInfoKey is MPMovieFinishReasonPlayback-
Ended). If you use the MPMoviePlayerViewController in some other way, the Done
button stops play but that’s all, and dealing with the interface is up to you.

MPMoviePlayerViewController is a view controller, so if it is used as a presented view
controller, it takes charge of whether to rotate in response to a change in the device
orientation. By default, it does nothing, meaning that it will rotate to any orientation
permitted by the app and the app delegate. You can subclass MPMoviePlayerView‐
Controller to override supportedInterfaceOrientations if that isn’t what you want.

After an MPMoviePlayerViewController’s view is dismissed, if your app’s revealed in‐
terface contains an MPMoviePlayerController’s view, that view may be unable to play
its movie — see “There Can Be Only One” on page 664. The MPMoviePlayerView‐
Controller’s view was the One, so now the MPMoviePlayerController’s view is broken.
To fix it, send prepareToPlay to the MPMoviePlayerController.

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface where the user
can trim video. Its view and internal behavior are outside your control, and you’re not
supposed to subclass it. You are expected to show the view controller’s view as a pre‐
sented view on the iPhone or in a popover on the iPad, and respond by way of its delegate.

UIVideoEditorController | 665

www.it-ebooks.info

http://www.it-ebooks.info/

Before summoning a UIVideoEditorController, be sure to call its class method canEdit-
VideoAtPath:. (This call can take some noticeable time to return.) If this call returns
NO, don’t instantiate UIVideoEditorController to edit the given file. Not every video
format is editable, and not every device supports video editing. You must also set the
UIVideoEditorController instance’s delegate and videoPath before presenting it; the
delegate should adopt both UINavigationControllerDelegate and UIVideoEditorCon‐
trollerDelegate:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"ElMirage"
 withExtension:@"mp4"];
BOOL can = [UIVideoEditorController canEditVideoAtPath:path];
if (!can) {
 NSLog(@"can't edit this video");
 return;
}
UIVideoEditorController* vc = [UIVideoEditorController new];
vc.delegate = self;
vc.videoPath = path;
if ([[UIDevice currentDevice] userInterfaceIdiom]
 == UIUserInterfaceIdiomPad) {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:vc];
 pop.delegate = self;
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds]
 inView:sender permittedArrowDirections:UIPopoverArrowDirectionAny
 animated:NO];
}
else {
 [self presentViewController:vc animated:YES completion:nil];
}

In actual fact I have never been able to get a UIVideoEditor‐
Controller to work properly on the iPad! I can summon the interface
in a popover, but it is not the correct interface — its title is Choose
Video, the right button says Use, and the Cancel button does nothing
— and trying to summon the interface as a presented view controller
causes a crash. This is a very long-standing bug, and I am astounded
that Apple has done nothing about it.

The view’s interface (on the iPhone) contains Cancel and Save buttons, a trimming box
displaying thumbnails from the movie, a Play/Pause button, and the movie itself. The
user slides the ends of the trimming box to set the beginning and end of the saved movie.
The Cancel and Save buttons do not dismiss the presented view; you must do that in
your implementation of the delegate methods. There are three of them, and you should
implement all three and dismiss the presented view in all of them:

666 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

• videoEditorController:didSaveEditedVideoToPath:

• videoEditorControllerDidCancel:

• videoEditorController:didFailWithError:

Implementing the second two delegate methods is straightforward:

-(void)videoEditorControllerDidCancel:(UIVideoEditorController *)editor {
 [self dismissViewControllerAnimated:YES completion:nil];
}
-(void)videoEditorController:(UIVideoEditorController *)editor
 didFailWithError:(NSError *)error {
 NSString* s = [error localizedDescription];
 NSLog(@"error: %@", s); // should do something with this information
 [self dismissViewControllerAnimated:YES completion:nil];
}

Saving the trimmed video is more involved. Like everything else about a movie, it takes
time. When the user taps Save, there’s a progress view while the video is trimmed and
compressed. By the time the delegate method videoEditorController:didSaveEdited-
VideoToPath: is called, the trimmed video has already been saved to a file in your app’s
temporary directory (the same directory returned from a call to NSTemporary-
Directory).

Doing something useful with the saved file at this point is up to you; if you merely leave
it in the temporary directory, you can’t rely on it to persist. In this example, I copy the
edited movie into the user’s Camera Roll photo album (called Saved Photos if the device
has no camera). That takes time too, so when I call UISaveVideoAtPathToSavedPhotos-
Album, I use the second and third arguments to call a method that dismisses the editor
after the saving is over:

- (void) videoEditorController: (UIVideoEditorController*) editor
 didSaveEditedVideoToPath: (NSString*) editedVideoPath {
 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(editedVideoPath))
 UISaveVideoAtPathToSavedPhotosAlbum(editedVideoPath, self,
 @selector(video:savedWithError:ci:), nil);
 else
 // need to think of something else to do with it
}

In our secondary method (here, video:savedWithError:ci:), it’s important to check
for errors, because things can still go wrong. In particular, the user could deny us access
to the photo library (see Chapter 17 for more about that). If that’s the case, we’ll get an
NSError whose domain is ALAssetsLibraryErrorDomain:

UIVideoEditorController | 667

www.it-ebooks.info

http://www.it-ebooks.info/

-(void)video:(NSString*)path savedWithError:(NSError*)err ci:(void*)ci {
 if (err)
 NSLog(@"error in saving: %@", err);
 [self dismissViewControllerAnimated:YES completion:nil];
}

Introduction to AV Foundation
The AV Foundation framework provides an extensive suite of tools for working directly
with video — and audio, since video files can have audio tracks. (Recall that AVAudio‐
Player, the simple audio player class described in Chapter 14, comes from AV Founda‐
tion.) You will need to @import AVFoundation. The AV Foundation framework has an
object-oriented Objective-C API, but a few fundamental types and C functions for
working with them live in the Core Media framework, so you will probably need to
@import CoreMedia as well.

In working with AV Foundation, there are two main facts to be aware of:
There are a lot of classes

The AV Foundation Framework Reference lists about 90 classes and 16 protocols.
This may seem daunting, but there’s a good reason for it: video has a lot of structure
and can be manipulated in many ways, and AV Foundation very carefully and cor‐
rectly draws all the distinctions needed for good object-oriented encapsulation.

Things take time
Working with with video is time-consuming, from reading a video a file to learn its
metadata to transcoding and saving a video file. The user interface must not freeze
while a video task is in progress, so AV Foundation relies heavily on threading
(Chapter 25). You’ll frequently use key–value observing and blocks to run your code
at the right moment.

AV Foundation is a very big topic; the rest of this chapter will barely scratch the surface,
just to orient you initially and give you a sense of what it’s like to use AV Foundation.
Further AV Foundation examples will appear in Chapter 16 and Chapter 17. But even‐
tually you’ll want to read Apple’s AV Foundation Programming Guide for a full overview.

Some AV Foundation Building Blocks
A full unit of media, such as a media file, is expressed as an AVAsset; this provides access
to metadata and tracks (AVAssetTrack). Actual playing of media is performed by an
AVPlayer. The media that it will play is its AVPlayerItem, whose tracks, as seen from
the player’s point of view, are AVPlayerItemTrack objects, which can be individually
enabled or disabled. (That’s an example of what I said a moment ago about how AV
Foundation draws object distinctions correctly: an AVAssetTrack is a fact about an
AVAsset, but an AVPlayerItemTrack lets a track be manipulated for purposes of play‐
back.)

668 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

An AVPlayer can be an AVQueuePlayer, a subclass that allows multiple AVPlayerItems
to be loaded up and then played in sequence; I’ll give an example in Chapter 16 of using
an AVQueuePlayer to play a series of songs. AVQueuePlayer also has an advanceToNext-
Item method, and its list of items can be changed dynamically, so you could use it to
give the user access to a set of “chapters.”

An AVPlayer is not an interface object. The corresponding interface object — an AV‐
Player made visible, as it were — is an AVPlayerLayer (a CALayer subclass). It has no
controls for letting the user play and pause a movie and visualize its progress; it just
shows the movie, acting as a bridge between the AV Foundation world of media and
the CALayer world of things the user can see.

Time is measured in its own way in the media world. This is necessary because calcu‐
lations using an ordinary built-in numeric class such as CGFloat will always have slight
rounding errors that quickly begin to matter when you’re trying to specify a time within
a large piece of media. That’s why the Core Media framework provides the CMTime
class, which under the hood is a pair of integers; they are called the value and the
timescale, but they are simply the numerator and denominator of a rational number.

Displaying a Movie
As an example, let’s configure an AVPlayerLayer in our interface and show a movie.
There are two ways to do this — the easy way and the real way. The easy way comes
from an AVPlayer convenience initializer, playerWithURL:, which bypasses direct con‐
tact with the underlying AVAsset:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"ElMirage"
 withExtension:@"mp4"];
AVPlayer* p = [AVPlayer playerWithURL:m];
self.player = p; // we'll need a reference later
AVPlayerLayer* lay = [AVPlayerLayer playerLayerWithPlayer:p];
lay.frame = CGRectMake(10,10,300,200);
[self.view.layer addSublayer:lay];

The real way to configure an AVPlayerLayer is to start with an AVAsset and work up‐
ward. Instead of saying this:

AVPlayer* p = [AVPlayer playerWithURL:m];

We say this:

AVURLAsset* asset = [AVURLAsset URLAssetWithURL:m options:nil];
AVPlayerItem* item = [AVPlayerItem playerItemWithAsset:asset];
AVPlayer* p = [AVPlayer playerWithPlayerItem:item];

As with the earlier MPMoviePlayerController example, we might like to postpone
putting the AVPlayerLayer into the interface until the movie is ready for display. We can
check for this by way of AVPlayerLayer’s readyForDisplay property. We must not poll
this property repeatedly, and there’s no notification; instead, we construct our own

Introduction to AV Foundation | 669

www.it-ebooks.info

http://www.it-ebooks.info/

notification through key–value observing. I don’t want to make any assumptions about
whether key-value observing will call me back on the main thread, so I deliberately jump
out to the main thread before proceeding (Chapter 25). Here’s the complete code for
getting our movie into the interface, starting in viewDidLoad:

- (void) viewDidLoad {
 [super viewDidLoad];
 NSURL* m = [[NSBundle mainBundle] URLForResource:@"ElMirage"
 withExtension:@"mp4"];
 AVURLAsset* asset = [AVURLAsset URLAssetWithURL:m options:nil];
 AVPlayerItem* item = [AVPlayerItem playerItemWithAsset:asset];
 AVPlayer* p = [AVPlayer playerWithPlayerItem:item];
 self.player = p; // we'll need a reference later
 AVPlayerLayer* lay = [AVPlayerLayer playerLayerWithPlayer:p];
 lay.frame = CGRectMake(10,10,300,200);
 self.playerLayer = lay; // we'll need a reference later
 [lay addObserver:self forKeyPath:@"readyForDisplay"
 options:0 context:nil];
}
-(void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
 change:(NSDictionary *)change context:(void *)context {
 if ([keyPath isEqualToString: @"readyForDisplay"]) {
 dispatch_async(dispatch_get_main_queue(), ^{
 [self finishConstructingInterface];
 });
 }
}
-(void) finishConstructingInterface {
 if (!self.playerLayer.readyForDisplay)
 return;
 [self.playerLayer removeObserver:self forKeyPath:@"readyForDisplay"];
 [self.view.layer addSublayer:self.playerLayer];
}

The movie is now visible in the interface, but it isn’t doing anything. We haven’t told
our AVPlayer to play, and we haven’t given the user a way to do so either. To let the user
start playing the movie, let’s provide a Play button. Here, the button toggles the playing
status of the movie by changing its rate:

- (IBAction) doButton: (id) sender {
 CGFloat rate = self.player.rate;
 if (rate < 0.01)
 self.player.rate = 1;
 else
 self.player.rate = 0;
}

It might be nice for the user to have a way to jump the playhead back to the start of the
movie. The playhead position is a feature, not of an AVPlayer, but of an AVPlayerItem:

670 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

- (IBAction) restart: (id) sender {
 AVPlayerItem* item = [self.player currentItem];
 [item seekToTime:CMTimeMake(0, 1)];
}

Synchronizing Video With Animation
Just as an AVPlayerLayer crosses the bridge between the world of video and the visible
interface, an AVSynchronizedLayer crosses the bridge between video time (the CMTime
within the progress of a movie) and Core Animation time (the time within the progress
of an animation). This means that you can coordinate animation in your interface
(Chapter 4) with the playing of the movie. You attach an animation to a layer in more
or less the usual way, but the animation takes place in movie playback time: if the movie
is stopped, the animation is stopped, and if the movie is run at double rate, the animation
runs at double rate.

To demonstrate, I’ll extend the previous example; after we insert our AVPlayerLayer
into the interface, we also create and insert an AVSynchronizedLayer:

// create synch layer, put it in the interface
AVPlayerItem* item = self.player.currentItem;
AVSynchronizedLayer* syncLayer =
[AVSynchronizedLayer synchronizedLayerWithPlayerItem:item];
syncLayer.frame = CGRectMake(10,220,300,10);
syncLayer.backgroundColor = [[UIColor lightGrayColor] CGColor];
[self.view.layer addSublayer:syncLayer];
// give synch layer a sublayer
CALayer* subLayer = [CALayer layer];
subLayer.backgroundColor = [[UIColor blackColor] CGColor];
subLayer.frame = CGRectMake(0,0,10,10);
[syncLayer addSublayer:subLayer];
// animate the sublayer
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"position"];
anim.fromValue = [NSValue valueWithCGPoint: subLayer.position];
anim.toValue = [NSValue valueWithCGPoint: CGPointMake(295,5)];
anim.removedOnCompletion = NO;
anim.beginTime = AVCoreAnimationBeginTimeAtZero; // important trick
anim.duration = CMTimeGetSeconds(item.asset.duration);
[subLayer addAnimation:anim forKey:nil];

The result is shown in Figure 15-6. The gray rectangle is the AVSynchronizedLayer, tied
to our movie. The little black square inside it is its sublayer; when we animate the black
square, that animation will be synchronized to the movie, changing its position from
the left end of the gray rectangle to the right end, starting at the beginning of the movie
and with the same duration as the movie. Thus, although we attach this animation to
the black square layer in the usual way, the black square doesn’t move until we tap the
button to call doButton: and start the movie playing. Moreover, if we tap the button
again to pause the movie, the black square stops. The black square is thus automatical‐
ly representing the current play position within the movie!

Introduction to AV Foundation | 671

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 15-6. The black square’s position is synchronized to the movie

Building Media
AV Foundation allows you to construct your own media asset in code (AVComposition,
an AVAsset subclass, along with its subclass, AVMutableComposition). In this example,
I start with an AVAsset (a video file) and assemble its first 5 seconds and its last 5 seconds
of video into a new AVAsset:

AVAsset* oldAsset = // whatever
NSString* type = AVMediaTypeVideo;
NSArray* arr = [oldAsset tracksWithMediaType:type];
AVAssetTrack* track = [arr lastObject];
CMTime duration = track.timeRange.duration;
CGFloat dur = CMTimeGetSeconds(duration);
AVMutableComposition* comp = [AVMutableComposition composition];
AVMutableCompositionTrack* comptrack =
 [comp addMutableTrackWithMediaType:type
 preferredTrackID:kCMPersistentTrackID_Invalid];
[comptrack insertTimeRange:
 CMTimeRangeMake(CMTimeMakeWithSeconds(0,1),
 CMTimeMakeWithSeconds(5,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(0,1) error:nil];
[comptrack insertTimeRange:
 CMTimeRangeMake(CMTimeMakeWithSeconds(dur-5,1),
 CMTimeMakeWithSeconds(5,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(5,1) error:nil];

An AVMutableComposition is an AVAsset, so we can now, for instance, display it in an
AVPlayerLayer.

We are not very good video editors, however, as we have forgotten the corresponding
soundtrack. Let’s go back and get it and add it to our AVMutableComposition (comp):

type = AVMediaTypeAudio;
arr = [oldAsset tracksWithMediaType:type];
track = [arr lastObject];
comptrack =
 [comp addMutableTrackWithMediaType:type

672 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

 preferredTrackID:kCMPersistentTrackID_Invalid];
[comptrack insertTimeRange:
 CMTimeRangeMake(CMTimeMakeWithSeconds(0,1),
 CMTimeMakeWithSeconds(5,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(0,1) error:nil];
[comptrack insertTimeRange:
 CMTimeRangeMake(CMTimeMakeWithSeconds(dur-5,1),
 CMTimeMakeWithSeconds(5,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(5,1) error:nil];

But wait! Now let’s overlay another audio track; this might be, for example, some addi‐
tional narration:

type = AVMediaTypeAudio;
NSURL* s = [[NSBundle mainBundle] URLForResource:@"aboutTiagol"
 withExtension:@"m4a"];
AVAsset* asset = [AVURLAsset URLAssetWithURL:s options:nil];
arr = [asset tracksWithMediaType:type];
track = [arr lastObject];
comptrack =
 [comp addMutableTrackWithMediaType:type
 preferredTrackID:kCMPersistentTrackID_Invalid];
[comptrack insertTimeRange:
 CMTimeRangeMake(CMTimeMakeWithSeconds(0,1),
 CMTimeMakeWithSeconds(10,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(0,1) error:nil];

You can also apply audio volume changes and video opacity and transform changes to
the playback of individual tracks. I’ll continue from the previous example, applying a
fadeout to the last three seconds of the narration track (comptrack) by creating an
AVAudioMix. The audio mix must be applied to a playback milieu, such as an AVPlayer‐
Item, so I’ll make one out of our existing AVAsset (comp):

AVMutableAudioMixInputParameters* params =
 [AVMutableAudioMixInputParameters
 audioMixInputParametersWithTrack:comptrack];
[params setVolume:1 atTime:CMTimeMakeWithSeconds(0,1)];
[params setVolumeRampFromStartVolume:1 toEndVolume:0
 timeRange:CMTimeRangeMake(CMTimeMakeWithSeconds(6,1),
 CMTimeMakeWithSeconds(2,1))];
AVMutableAudioMix* mix = [AVMutableAudioMix new];
mix.inputParameters = @[params];
AVPlayerItem* item = [AVPlayerItem playerItemWithAsset:comp];
item.audioMix = mix;

Further Exploration of AV Foundation
Here are some other things you can do with AV Foundation:

• Extract single images (“thumbnails”) from a movie (AVAssetImageGenerator).

Introduction to AV Foundation | 673

www.it-ebooks.info

http://www.it-ebooks.info/

• Export a movie in a different format (AVAssetExportSession), or read/write raw
uncompressed data through a buffer to or from a track (AVAssetReader, AVAsset‐
ReaderOutput, AVAssetWriter, AVAssetWriterInput, and so on). New in iOS 7 is
AVOutputSettingsAssistant, a class that embodies presets likely to be useful with
AVAssetWriter.

• Capture audio, video, and stills (AVCaptureSession and so on). I’ll say more about
this in Chapter 17.

• Tap into video and audio being captured or played, including capturing video
frames as still images (AVPlayerItemVideoOutput, AVCaptureVideoDataOutput,
and so on; and see Apple’s Technical Q&A QA1702).

674 | Chapter 15: Video

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Music Library

An iOS device can be used for the same purpose as the original iPod — to hold and play
music, podcasts, and audiobooks. These items constitute the device’s iPod library, or
music library. iOS provides the programmer with various forms of access to the device’s
music library; you can:

• Explore the music library.
• Play an item from the music library.
• Learn and control what the Music app’s music player is doing.
• Present a standard interface for allowing the user to select a music library item.

These abilities are provided by the Media Player framework. You’ll need to @import
MediaPlayer.

Exploring the Music Library
Everything in the music library, as seen by your code, is an MPMediaEntity. This is an
abstract class that endows its subclasses with the ability to describe themselves through
key–value pairs called properties. (This use of the word “properties” has nothing to do
with Objective-C language properties; these properties are more like entries in an
NSDictionary.)

MPMediaEntity has two concrete subclasses, MPMediaItem and MPMediaCollection.
An MPMediaItem is a single item (a “song”). An MPMediaCollection is an ordered list
of MPMediaItems, rather like an array; it has a count, and its items property is an array.

An MPMediaItem has a type, according to the value of its MPMediaItemPropertyMedia-
Type property: it might, for example, be music, a podcast, an audiobook, or a video. A
media item’s properties will be intuitively familiar from your use of iTunes: it has a title,

675

www.it-ebooks.info

http://www.it-ebooks.info/

an album title, a track number, an artist, a composer, and so on. Different types of item
have slightly different properties; for example, a podcast, in addition to its normal title,
has a podcast title.

A playlist is an MPMediaPlaylist, a subclass of MPMediaCollection. Its properties in‐
clude a title, a flag indicating whether it is a “smart” playlist, and so on.

The property keys have names like MPMediaItemPropertyTitle. To fetch a property’s
value, call valueForProperty: with its key. You can fetch multiple properties with
enumerateValuesForProperties:usingBlock:.

An item’s artwork image is an instance of the MPMediaItemArtwork class, from which
you are supposed to be able to get the image itself scaled to a specified size by calling
imageWithSize:; my experience is that in reality you’ll receive an image of any old size
the system cares to give you, so you may have to scale it further yourself. This, for
example, is what my Albumen app does:

MPMediaItemArtwork* art = //...
UIImage* im = [art imageWithSize:CGSizeMake(36,36)];
// but it probably *isn't* 36 by 36; scale it so that it is
if (im) {
 CGFloat scalew = 36.0/im.size.width;
 CGFloat scaleh = 36.0/im.size.height;
 CGFloat scale = (scalew < scaleh) ? scalew : scaleh;
 CGSize sz = CGSizeMake(im.size.width*scale, im.size.height*scale);
 UIGraphicsBeginImageContextWithOptions(sz, NO, 0);
 [im drawInRect:CGRectMake(0,0,sz.width,sz.height)];
 im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
}

Querying the Music Library
Obtaining actual information from the music library requires a query, an MPMedia‐
Query. First, you form the query. There are two main ways to do this:
With a convenience constructor

MPMediaQuery provides several class methods that form a query ready to ask the
music library for all of its songs, or all of its podcasts, and so on. Here’s the complete
list:

• songsQuery

• podcastsQuery

• audiobooksQuery

• playlistsQuery

• albumsQuery

676 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

• artistsQuery

• composersQuery

• genresQuery

• compilationsQuery

With filter predicates
You can attach to the query one or more MPMediaPropertyPredicate instances,
forming a set (NSSet) of predicates. These predicates filter the music library ac‐
cording to criteria you specify; to be included in the result, a media item must
successfully pass through all the filters (in other words, the predicates are combined
using logical-and). A predicate is a simple comparison. It has three aspects:
A property

The key to the property you want to compare against. Not every property can
be used in a filter predicate; the documentation makes the distinction clear (and
you can get additional help from an MPMediaEntity class method, canFilter-
ByProperty:).

A value
The value that the property must have in order to pass through the filter.

A comparison type (optional)
In order to pass through the filter, a media item’s property value can either
match the value you provide (MPMediaPredicateComparisonEqualTo, the de‐
fault) or contain the value you provide (MPMediaPredicateComparison-
Contains).

These two ways of forming a query are actually the same; a convenience constructor is
just a quick way of obtaining a query already endowed with a filter predicate.

A query also groups its results, according to its groupingType. Your choices are:

• MPMediaGroupingTitle

• MPMediaGroupingAlbum

• MPMediaGroupingArtist

• MPMediaGroupingAlbumArtist

• MPMediaGroupingComposer

• MPMediaGroupingGenre

• MPMediaGroupingPlaylist

• MPMediaGroupingPodcastTitle

Exploring the Music Library | 677

www.it-ebooks.info

http://www.it-ebooks.info/

The query convenience constructors all supply a groupingType in addition to a filter
predicate. Indeed, the grouping is often the salient aspect of the query. For example, an
albumsQuery is in fact merely a songsQuery with the added feature that its results are
grouped by album.

The groups resulting from a query are collections; that is, each is an MPMediaItem‐
Collection. This class, you will recall, is an MPMediaEntity subclass, so a collection has
properties. In addition, it has items and a count. It also has a representativeItem
property, which gives you just one item from the collection. The reason you need this
is that properties of a collection are often embodied in its items rather than in the
collection itself. For example, an album has no title; rather, its items have album titles
that are all the same. So to learn the title of an album, you ask for the album title of a
representative item.

After you form the query, you perform the query. You do this simply by asking for the
query’s results. You can ask either for its collections (if you care about the groups
returned from the query) or for its items. Here, I’ll discover the titles of all the albums:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
NSArray* result = [query collections];
// prove we've performed the query, by logging the album titles
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [album.representativeItem
 valueForProperty:MPMediaItemPropertyAlbumTitle]);
/*
Output starts like this on my device:
Beethoven Canons
Beethoven Dances
Beethoven Piano Duet
Beethoven Piano Other
Brahms Lieder
...
*/

Now let’s make our query more elaborate; we’ll get the titles of all the albums whose
name contains “Beethoven”. Observe that what we really do is to ask for all songs whose
album title contains “Beethoven”, grouped by album; then we learn the album title of a
representative item from each resulting collection:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
MPMediaPropertyPredicate* hasBeethoven =
 [MPMediaPropertyPredicate predicateWithValue:@"Beethoven"
 forProperty:MPMediaItemPropertyAlbumTitle
 comparisonType:MPMediaPredicateComparisonContains];
[query addFilterPredicate:hasBeethoven];
NSArray* result = [query collections];
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [album.representativeItem
 valueForProperty:MPMediaItemPropertyAlbumTitle]);
/*

678 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

Output on my device:
Beethoven Canons
Beethoven Dances
Beethoven Piano Duet
Beethoven Piano Other
*/

Similarly, we can get the titles of all the albums containing any songs whose name con‐
tains “Sonata”. To do so, we ask for all songs whose title contains “Sonata”, grouped by
album; then, as before, we learn the album title of a representative item from each
resulting collection:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
MPMediaPropertyPredicate* hasSonata =
 [MPMediaPropertyPredicate predicateWithValue:@"Sonata"
 forProperty:MPMediaItemPropertyTitle
 comparisonType:MPMediaPredicateComparisonContains];
[query addFilterPredicate:hasSonata];
NSArray* result = [query collections];
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [album.representativeItem
 valueForProperty:MPMediaItemPropertyAlbumTitle]);
/*
Output on my device:
Beethoven Piano Duet
Beethoven Piano Other
Scarlatti Complete Sonatas, Vol. I
*/

An interesting complication is that the Scarlatti album listed in the results of that ex‐
ample is not actually present on my device. The user’s music library can include pur‐
chases and iTunes Match songs that are actually off in “the cloud”. The user can prevent
such songs from appearing in the Music app (in the Settings app, Music → Show All
Music → Off), but they are still present in the library, and therefore in the results of our
queries.

I’ll modify the previous example to list only albums containing “Sonata” songs that are
present on the device. The concept “present on the device” is embodied by the MPMedia-
ItemPropertyIsCloudItem property. All we have to do is add a second predicate:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
MPMediaPropertyPredicate* hasSonata =
 [MPMediaPropertyPredicate predicateWithValue:@"Sonata"
 forProperty:MPMediaItemPropertyTitle
 comparisonType:MPMediaPredicateComparisonContains];
[query addFilterPredicate:hasSonata];
MPMediaPropertyPredicate* isPresent =
 [MPMediaPropertyPredicate predicateWithValue:@NO
 forProperty:MPMediaItemPropertyIsCloudItem
 comparisonType:MPMediaPredicateComparisonEqualTo];
[query addFilterPredicate:isPresent];

Exploring the Music Library | 679

www.it-ebooks.info

http://www.it-ebooks.info/

NSArray* result = [query collections];
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [album.representativeItem
 valueForProperty:MPMediaItemPropertyAlbumTitle]);
/*
Output on my device:
Beethoven Piano Duet
Beethoven Piano Other
*/

The results of an albumsQuery are actually songs (MPMediaItems). That means we can
immediately access any song in any of those albums. Let’s modify the output from our
previous query to print the titles of all the matching songs in the first album returned,
which happens to be the Beethoven Piano Duet album. We don’t have to change our
query, so I’ll start at the point where we perform it; result is the array of collections
returned from our query:

// ... same as before ...
MPMediaItemCollection* album = result[0];
for (MPMediaItem* song in album.items)
 NSLog(@"%@", [song valueForProperty:MPMediaItemPropertyTitle]);
/*
Output on my device:
Sonata for piano 4-hands in D major Op. 6 - 1. Allegro molto
Sonata for piano 4-hands in D major Op. 6 - 2. Rondo
*/

Persistence and Change in the Music Library
One of the properties of an MPMediaEntity is its persistent ID, which uniquely identifies
this song (MPMediaItemPropertyPersistentID) or playlist (MPMediaPlaylist-
PropertyPersistentID). No other means of identification is guaranteed unique; two
songs or two playlists can have the same title, for example. Using the persistent ID, you
can retrieve again at a later time the same song or playlist you retrieved earlier, even
across launches of your app. All sorts of things have persistent IDs — entities in general
(MPMediaEntityPropertyPersistentID), albums, artists, composers, and more.

While you are maintaining the results of a search, the contents of the music library may
themselves change. For example, the user might connect the device to a computer and
add or delete music with iTunes. This can put your results out of date. For this reason,
the library’s own modified date is available through the MPMediaLibrary class. Call the
class method defaultMediaLibrary to get the actual library instance; now you can ask
it for its lastModifiedDate. You can also register to receive a notification, MPMedia-
LibraryDidChangeNotification, when the music library is modified. This notification
is not emitted unless you first send the library beginGeneratingLibraryChange-
Notifications; you should eventually balance this with endGeneratingLibrary-
ChangeNotifications.

680 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

The user can play a song that lives in the cloud without explicitly downloading it. In
iOS 7, this can cause MPMediaLibraryDidChangeNotification to be triggered even
though there is no change in the library — the library still consists of the same songs,
and this song is still in the cloud (its MPMediaItemPropertyIsCloudItem is still @YES).
Alternatively, the user can explicitly download the song; this causes the song to be no
longer a cloud item, which is correct, but it can also cause MPMediaLibraryDidChange-
Notification to be triggered twice in quick succession. Finally, if the user deletes the
song from the device (so that it returns to being a cloud item), MPMediaLibraryDid-
ChangeNotification is not triggered. Also, if the user so much as looks at the Radio tab
in the Music app, MPMediaLibraryDidChangeNotification may be triggered many
times in quick succession. I regard all of this as a bug.

Music Player
The Media Player framework class for playing an MPMediaItem is MPMusicPlayer‐
Controller. It comes in two flavors, depending on which class method you use to get an
instance:
iPodMusicPlayer

The global music player — the very same player used by the Music app. This might
already be playing an item, or might be paused with a current item, at any time
while your app runs; you can learn or change what item this is. The global music
player continues playing independently of the state of your app, and the user, by
way of the Music app, can at any time alter what it is doing.

applicationMusicPlayer

Plays an MPMediaItem from the music library within your application. The song
being played by the applicationMusicPlayer can be different from the Music app’s
current song. This player stops when your app is not in the foreground.

An applicationMusicPlayer MPMusicPlayerController is not really inside your
app. It is actually the global music player behaving differently. It has its own audio
session. You cannot play its audio when your app is in the background. You cannot
make it the target of remote control events. If these limitations prove troublesome,
use the iPodMusicPlayer (or some other means of playing the song, as discussed
later in this chapter).

A music player doesn’t merely play an item; it plays from a queue of items. This behavior
is familiar from iTunes and the Music app. For example, in iTunes, when you switch to
a playlist and double-click the first song to start playing, when iTunes comes to the end
of that song, it proceeds by default to the next song in the playlist. So at that moment,
its queue is the totality of songs in the playlist. The music player behaves the same way;
when it reaches the end of a song, it proceeds to the next song in its queue.

Music Player | 681

www.it-ebooks.info

http://www.it-ebooks.info/

Your methods for controlling playback also reflect this queue-based orientation. In ad‐
dition to the expected play, pause, and stop commands, there’s a skipToNextItem and
skipToPreviousItem command. Anyone who has ever used iTunes or the Music app
(or, for that matter, an old-fashioned iPod) will have an intuitive grasp of this and ev‐
erything else a music player does. For example, you can also set a music player’s repeat-
Mode and shuffleMode, just as in iTunes.

You provide a music player with its queue in one of two ways:
With a query

You hand the music player an MPMediaQuery. The query’s items are the items of
the queue.

With a collection
You hand the music player an MPMediaItemCollection. This might be obtained
from a query you performed, but you can also assemble your own collection of
MPMediaItems in any way you like, putting them into an array and calling
collectionWithItems: or initWithItems:.

In this example, we collect all songs actually present in the library shorter than 30 sec‐
onds into a queue and set the queue playing in random order using the application-
internal music player:

MPMediaQuery* query = [MPMediaQuery songsQuery];
MPMediaPropertyPredicate* isPresent =
 [MPMediaPropertyPredicate predicateWithValue:@NO
 forProperty:MPMediaItemPropertyIsCloudItem
 comparisonType:MPMediaPredicateComparisonEqualTo];
[query addFilterPredicate:isPresent];
NSMutableArray* marr = [NSMutableArray array];
MPMediaItemCollection* queue = nil;
for (MPMediaItem* song in query.items) {
 NSNumber* dur =
 [song valueForProperty:MPMediaItemPropertyPlaybackDuration];
 if ([dur floatValue] < 30)
 [marr addObject: song];
}
if ([marr count] == 0)
 NSLog(@"No songs that short!");
else
 queue = [MPMediaItemCollection collectionWithItems:marr];
if (queue) {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:queue];
 player.shuffleMode = MPMusicShuffleModeSongs;
 [player play];
}

682 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

If a music player is currently playing, setting its queue will stop it; restarting play is up
to you.

You can ask a music player for its nowPlayingItem, and since this is an MPMediaItem,
you can learn all about it through its properties. Unfortunately, you can’t query a music
player as to its queue, but you can keep your own pointer to the MPMediaItemCollection
constituting the queue when you hand it to the music player, and you can ask the music
player for which song within the queue is currently playing (indexOfNowPlaying-
Item). The user can completely change the queue of an iPodMusicPlayer, so if control
over the queue is important to you, use the applicationMusicPlayer.

A music player has a playbackState that you can query to learn what it’s doing (whether
it is playing, paused, stopped, or seeking). It also emits notifications so you can hear
about changes in its state:

• MPMusicPlayerControllerPlaybackStateDidChangeNotification

• MPMusicPlayerControllerNowPlayingItemDidChangeNotification

• MPMusicPlayerControllerVolumeDidChangeNotification

These notifications are not emitted until you tell the music player to beginGenerating-
PlaybackNotifications. This is an instance method, so you can arrange to receive
notifications from just one of the two possible music players. If you do receive notifi‐
cations from both, you can distinguish them by examining the NSNotification’s object
and comparing it to each player. You should eventually balance this call with end-
GeneratingPlaybackNotifications.

To illustrate, I’ll extend the previous example to set a UILabel in our interface every time
a different song starts playing. Before we start the player playing, we insert these lines
to generate the notifications:

[player beginGeneratingPlaybackNotifications];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(changed:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:player];
self.q = queue; // retain a pointer to the queue

And here’s how we respond to those notifications:

- (void) changed: (NSNotification*) n {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 if ([n object] == player) { // just playing safe
 NSString* title =
 [player.nowPlayingItem
 valueForProperty:MPMediaItemPropertyTitle];
 NSUInteger ix = player.indexOfNowPlayingItem;

Music Player | 683

www.it-ebooks.info

http://www.it-ebooks.info/

 if (NSNotFound == ix)
 self.label.text = @"";
 else
 self.label.text = [NSString stringWithFormat:@"%i of %i: %@",
 ix+1, [self.q count], title];
 }
}

There’s no periodic notification as a song plays and the current playhead position ad‐
vances. To get this information, you’ll have to resort to polling. This is not objectionable
as long as your polling interval is reasonably sparse; your display may occasionally fall
a little behind reality, but this won’t usually matter. To illustrate, let’s add to our existing
example a UIProgressView (self.prog) showing the current percentage of the current
song played by the global player. I’ll use an NSTimer to poll the state of the player every
second:

self.timer = [NSTimer scheduledTimerWithTimeInterval:1
 target:self selector:@selector(timerFired:)
 userInfo:nil repeats:YES];
self.timer.tolerance = 0.1;

When the timer fires, the progress view displays the state of the currently playing item:

- (void) timerFired: (id) dummy {
 MPMusicPlayerController* mp =
 [MPMusicPlayerController applicationMusicPlayer];
 MPMediaItem* item = mp.nowPlayingItem;
 if (!item || mp.playbackState == MPMusicPlaybackStateStopped) {
 self.prog.hidden = YES;
 return;
 }
 self.prog.hidden = NO;
 NSTimeInterval current = mp.currentPlaybackTime;
 NSTimeInterval total =
 [[item valueForProperty:MPMediaItemPropertyPlaybackDuration]
 doubleValue];
 self.prog.progress = current / total;
}

The applicationMusicPlayer has no user interface, unless you count the remote play‐
back controls (Figure 14-1); if you want the user to have controls for playing and stop‐
ping a song, you’ll have to create them yourself. The iPodMusicPlayer has its own
natural interface — the Music app.

MPVolumeView
The Media Player framework offers a slider for letting the user set the system output
volume, along with an AirPlay route button if appropriate; this is an MPVolumeView.
An MPVolumeView works only on a device — not in the Simulator. It is customizable
similarly to a UISlider; you can set the images for the two halves of the track, the thumb,

684 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

and even the AirPlay route button, for both the normal and the highlighted state (while
the user is touching the thumb). New in iOS 7, you can also customize the image (volume-
WarningSliderImage) that flashes in the right half of the track when the user tries to
exceed the volume limit (set in the Settings app, Music → Volume Limit). In this ex‐
ample, we make the left half of the track black and the right half red, with flashing orange
if the volume limit is exceeded, and we provide a custom thumb image:

CGSize sz = CGSizeMake(20,20);
UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.height,sz.height), NO, 0);
[[UIColor blackColor] setFill];
[[UIBezierPath bezierPathWithOvalInRect:
 CGRectMake(0,0,sz.height,sz.height)] fill];
UIImage* im1 = UIGraphicsGetImageFromCurrentImageContext();
[[UIColor redColor] setFill];
[[UIBezierPath bezierPathWithOvalInRect:
 CGRectMake(0,0,sz.height,sz.height)] fill];
UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
[[UIColor orangeColor] setFill];
[[UIBezierPath bezierPathWithOvalInRect:
 CGRectMake(0,0,sz.height,sz.height)] fill];
UIImage* im3 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
[self.vv setMinimumVolumeSliderImage:
 [im1 resizableImageWithCapInsets:UIEdgeInsetsMake(9,9,9,9)
 resizingMode:UIImageResizingModeStretch]
 forState:UIControlStateNormal];
[self.vv setMaximumVolumeSliderImage:
 [im2 resizableImageWithCapInsets:UIEdgeInsetsMake(9,9,9,9)
 resizingMode:UIImageResizingModeStretch]
 forState:UIControlStateNormal];
[self.vv setVolumeWarningSliderImage:
 [im3 resizableImageWithCapInsets:UIEdgeInsetsMake(9,9,9,9)
 resizingMode:UIImageResizingModeStretch]];
UIImage* thumb = [UIImage imageNamed:@"SmileyRound.png"];
sz = CGSizeMake(40,40);
UIGraphicsBeginImageContextWithOptions(sz, NO, 0);
[thumb drawInRect:CGRectMake(0,0,sz.width,sz.height)];
thumb = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
[self.vv setVolumeThumbImage:thumb forState:UIControlStateNormal];

In my testing, the orange warning flash never appeared unless the EU
Volume Limit setting was also switched to On (Developer → EU Vol‐
ume Limit in the Settings app). Presumably this feature works on
devices destined for the European Union market, but on my device,
the MPVolumeView ignores the Volume Limit from the Settings app.

MPVolumeView | 685

www.it-ebooks.info

http://www.it-ebooks.info/

For further customization, you can subclass MPVolumeView and override volume-
SliderRectForBounds:. (An additional overridable method is documented, volume-
ThumbRectForBounds:volumeSliderRect:value:, but in my testing it is never called;
I regard this as a bug.)

New in iOS 7, you can register for notifications when a wireless route (Bluetooth or
AirPlay) appears or disappears (MPVolumeViewWirelessRoutesAvailableDidChange-
Notification) and when a wireless route becomes active or inactive (MPVolumeView-
WirelessRouteActiveDidChangeNotification).

Playing Songs With AV Foundation
MPMusicPlayerController is convenient and simple, but it’s also simpleminded. Its au‐
dio session isn’t your audio session; the music player doesn’t really belong to you. An
MPMediaItem, however, has an MPMediaItemPropertyAssetURL key whose value is a
URL. Now everything from Chapter 14 and Chapter 15 comes into play.

So, for example, having obtained an MPMediaItem’s MPMediaItemPropertyAssetURL,
you could use that URL in any of the following ways:

• Initialize an AVAudioPlayer (initWithContentsOfURL:error: or initWith-
ContentsOfURL:fileTypeHint:error:).

• Set the contentURL of an MPMoviePlayerController.
• Initialize an AVPlayer (initWithURL: or playerWithURL:).
• Form an AVAsset (assetWithURL:).

Each of these ways of playing an MPMediaItem has its advantages. For example,
AVAudioPlayer is easy to use, and lets you loop a sound, poll the power value of its
channels, and so forth. MPMoviePlayerController gives you a built-in play/pause button
and playhead slider. AVAsset gives you the full power of the AV Foundation framework,
letting you edit the sound, assemble multiple sounds, perform a fadeout effect, and even
attach the sound to a video (and then play it with an AVPlayer).

To demonstrate the use of AVAsset and AVPlayer, I’ll use AVQueuePlayer (an AVPlayer
subclass) to play a sequence of MPMediaItems, just as MPMusicPlayerController does:

NSArray* arr = // array of MPMediaItem
NSMutableArray* assets = [NSMutableArray array];
for (MPMediaItem* item in arr) {
 AVPlayerItem* pi = [[AVPlayerItem alloc] initWithURL:
 [item valueForProperty:MPMediaItemPropertyAssetURL]];
 [assets addObject:pi];
}
self.qp = [AVQueuePlayer queuePlayerWithItems:assets];
[self.qp play];

686 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

That works, but I have the impression, based on something said in one of the WWDC
2011 videos, that instead of adding a whole batch of AVPlayerItems to an AVQueue‐
Player all at once, you’re supposed to add just a few AVPlayerItems to start with and
then add each additional AVPlayerItem when an item finishes playing. So I’ll start out
by adding just three AVPlayerItems, and use key–value observing to watch for changes
in the AVQueuePlayer’s currentItem:

NSArray* arr = // array of MPMediaItem
self.assets = [NSMutableArray array];
for (MPMediaItem* item in arr) {
 AVPlayerItem* pi = [[AVPlayerItem alloc] initWithURL:
 [item valueForProperty:MPMediaItemPropertyAssetURL]];
 [self.assets addObject:pi];
}
self->_curnum = 0; // we'll need this later
self->_total = [self.assets count]; // ditto
self.qp = [AVQueuePlayer queuePlayerWithItems:
 [self.assets objectsAtIndexes:
 [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(0,3)]]];
[self.assets removeObjectsAtIndexes:
 [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(0,3)]];
[self.qp addObserver:self
 forKeyPath:@"currentItem" options:0 context:nil];
[self.qp play];

The implementation of observeValueForKeyPath:... looks like this:

AVPlayerItem* item = self.qp.currentItem;
NSArray* arr = item.asset.commonMetadata;
arr = [AVMetadataItem metadataItemsFromArray:arr
 withKey:AVMetadataCommonKeyTitle
 keySpace:AVMetadataKeySpaceCommon];
AVMetadataItem* met = arr[0];
[met loadValuesAsynchronouslyForKeys:@[@"value"]
 completionHandler:^{
 dispatch_async(dispatch_get_main_queue(), ^{
 self.label.text =
 [NSString stringWithFormat:@"%d of %d: %@",
 ++self->_curnum, self->_total, met.value];
 });
}];
if (![self.assets count])
 return;
AVPlayerItem* newItem = self.assets[0];
[self.qp insertItem:newItem afterItem:[self.qp.items lastObject]];
[self.assets removeObjectAtIndex:0];

That code illustrates how to extract metadata from an AVAsset by way of an
AVMetadataItem; in this case, we fetch the AVMetadataCommonKeyTitle and get its
value property, as the equivalent of fetching an MPMediaItem’s MPMediaItemProperty-
Title property in our earlier code. As with everything else in the AV Foundation world,

Playing Songs With AV Foundation | 687

www.it-ebooks.info

http://www.it-ebooks.info/

it can take time for the value property to become available, so we call loadValues-
AsynchronouslyForKeys:completionHandler: to run our completion handler when
it is available. There are no guarantees about what thread the completion handler will
be called on, so to set the label’s text, I step out to the main thread (Chapter 25).

In the last three lines, we pull an AVPlayerItem off the front of our assets mutable array
and add it to the end of the AVQueuePlayer’s queue. The AVQueuePlayer itself deletes
an item from the start of its queue after playing it, so this way the queue never exceeds
three items in length.

Just as in the previous example, where we updated a progress view in response to the
firing of a timer to reflect an MPMusicPlayerController’s current item’s time and dura‐
tion, we can do the same thing with the currently playing AVPlayerItem. Again, we can’t
be certain when the duration property will become available, so we call loadValues-
AsynchronouslyForKeys:completionHandler:, and again, to update the progress view,
we step out to the main thread:

if (!self.qp.currentItem) { // finished!
 self.prog.hidden = YES;
 [self.timer invalidate];
} else {
 AVPlayerItem* item = self.qp.currentItem;
 AVAsset* asset = item.asset;
 [asset loadValuesAsynchronouslyForKeys:@[@"duration"]
 completionHandler:^{
 dispatch_async(dispatch_get_main_queue(), ^{
 CMTime cur = self.qp.currentTime;
 CMTime dur = asset.duration;
 self.prog.progress =
 CMTimeGetSeconds(cur)/CMTimeGetSeconds(dur);
 self.prog.hidden = NO;
 });
 }];
}

Music Picker
The music picker (MPMediaPickerController), supplied by the Media Player frame‐
work, is a view controller (UIViewController) whose view is a self-contained navigation
interface in which the user can select a media item. This interface looks very much like
the iPhone Music app. You have no access to the actual view; you are expected to present
the view controller (presentViewController:animated:completion:).

You can limit the type of media items displayed by creating the controller using init-
WithMediaTypes:. You can make a prompt appear at the top of the navigation bar
(prompt). And you can govern whether the user can choose multiple media items or

688 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

just one, with the allowsPickingMultipleItems property. You can filter out items
stored in the cloud by setting showsCloudItems to NO.

While the view is showing, you learn what the user is doing through two delegate meth‐
ods (MPMediaPickerControllerDelegate); the presented view controller is not auto‐
matically dismissed, so it is up to you dismiss it in these delegate methods:

• mediaPicker:didPickMediaItems:

• mediaPickerDidCancel:

The behavior of the delegate methods depends on the value of the controller’s allows-
PickingMultipleItems:
The controller’s allowsPickingMultipleItems is NO (the default)

There’s a Cancel button. Every time the user taps a media item, your media-
Picker:didPickMediaItems: is called, handing you an MPMediaItemCollection
consisting of that item; you are likely to dismiss the presented view controller at
this point. When the user taps Cancel, your mediaPickerDidCancel: is called.

The controller’s allowsPickingMultipleItems is YES
There’s a Done button. Every time the user taps a media item, it is disabled to
indicate that it has been selected. When the user taps Done, mediaPicker:didPick-
MediaItems: is called, handing you an MPMediaItemCollection consisting of all
items the user tapped. Your mediaPickerDidCancel: is never called.

In this example, we put up the music picker; we then play the user’s chosen media item
with the application’s music player. The example works equally well whether allows-
PickingMultipleItems is YES or NO:

- (void) presentPicker {
 MPMediaPickerController* picker = [MPMediaPickerController new];
 picker.delegate = self;
 // picker.allowsPickingMultipleItems = YES;
 [self presentViewController:picker animated:YES completion:nil];
}
- (void) mediaPicker: (MPMediaPickerController*) mediaPicker
 didPickMediaItems: (MPMediaItemCollection*) mediaItemCollection {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:mediaItemCollection];
 [player play];
 [self dismissViewControllerAnimated:YES completion:nil];
}
- (void) mediaPickerDidCancel: (MPMediaPickerController*) mediaPicker {
 [self dismissViewControllerAnimated:YES completion:nil];
}

Music Picker | 689

www.it-ebooks.info

http://www.it-ebooks.info/

On the iPad, the music picker can be displayed as a presented view, and I think it looks
best that way. But it also works reasonably well in a popover, especially if we increase
its popoverContentSize; so I’ll use this opportunity to provide a complete example
(Example 16-1) of managing a single view controller as either a presented view on the
iPhone or a popover on the iPad.

The presentPicker method is now a button’s control event action handler, so that we
can point the popover’s arrow to the button. How we summon the picker depends on
the device; we use UI_USER_INTERFACE_IDIOM to distinguish the two cases. If it’s an iPad,
we create a popover and set an instance variable to retain it (as discussed in Chapter 9).
Two methods dismiss the picker, so that operation is factored out into a utility method
(dismissPicker:) that does one thing if there’s a popover and another if there’s a pre‐
sented view controller.

Example 16-1. A presented view on the iPhone, a popover on the iPad
- (void) presentPicker: (id) sender {
 MPMediaPickerController* picker = [MPMediaPickerController new];
 picker.delegate = self;
 // picker.allowsPickingMultipleItems = YES;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentViewController:picker animated:YES completion:nil];
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:picker];
 self.currentPop = pop;
 pop.popoverContentSize = CGSizeMake(500,600);
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 pop.passthroughViews = nil;
 }
}
- (void) dismissPicker: (MPMediaPickerController*) mediaPicker {
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 } else {
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}
- (void)mediaPicker: (MPMediaPickerController *)mediaPicker
 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:mediaItemCollection];
 [player play];
 [self dismissPicker: mediaPicker];
}
- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker {
 [self dismissPicker: mediaPicker];

690 | Chapter 16: Music Library

www.it-ebooks.info

http://www.it-ebooks.info/

}
- (void)popoverControllerDidDismissPopover:(UIPopoverController*)popoverController {
 self.currentPop = nil;
}

Music Picker | 691

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

Photo Library and Image Capture

The still photos and movies accessed by the user through the Photos app constitute the
photo library. Your app can give the user an interface for exploring this library through
the UIImagePickerController class.

In addition, the Assets Library framework lets you access the photo library and its
contents programmatically. You’ll need to @import AssetsLibrary.

The UIImagePickerController class can also be used to give the user an interface similar
to the Camera app, letting the user take photos and videos on devices with the necessary
hardware.

At a deeper level, the AV Foundation framework (Chapter 15) provides direct control
over the camera hardware. You’ll need to @import AVFoundation (and probably Core-
Media).

Constants such as kUTTypeImage, referred to in this chapter, are provided by the Mobile
Core Services framework; you’ll need to @import MobileCoreServices.

Choosing From the Photo Library
UIImagePickerController is a view controller (UINavigationController) providing a
navigation interface in which the user can choose an item from the photo library. There
are two ways to show this interface:
As a presented view controller

This is the expected approach on the iPhone; it does also work on the iPad. (In
earlier versions of iOS, trying to present a UIImagePickerController as a presented
view controller on the iPad caused a runtime error; the documentation claims that
this is still the case, but it isn’t.) This presented view controller will appear in portrait
orientation, regardless of your app’s rotation settings.

693

www.it-ebooks.info

http://www.it-ebooks.info/

As a popover
This is the expected approach on the iPad, according to the documentation.

To let the user choose an item from the photo library, instantiate UIImagePicker‐
Controller and assign its sourceType one of these values:
UIImagePickerControllerSourceTypeSavedPhotosAlbum

The user is confined to the contents of the Camera Roll / Saved Photos album.

UIImagePickerControllerSourceTypePhotoLibrary

The user is shown a table of all albums, and can navigate into any of them.

You should call the class method isSourceTypeAvailable: beforehand; if it doesn’t
return YES, don’t present the controller with that source type.

You’ll probably want to specify an array of mediaTypes you’re interested in. This array
will usually contain kUTTypeImage, kUTTypeMovie, or both; or you can specify all avail‐
able types by calling the class method availableMediaTypesForSourceType:.

After doing all of that, and having supplied a delegate (adopting UIImagePicker‐
ControllerDelegate and UINavigationControllerDelegate), present the view controller.
Here’s a complete example for the iPhone:

UIImagePickerControllerSourceType type =
 UIImagePickerControllerSourceTypePhotoLibrary;
BOOL ok = [UIImagePickerController isSourceTypeAvailable:type];
if (!ok) {
 NSLog(@"alas");
 return;
}
UIImagePickerController* picker = [UIImagePickerController new];
picker.sourceType = type;
picker.mediaTypes =
 [UIImagePickerController availableMediaTypesForSourceType:type];
picker.delegate = self;
[self presentViewController:picker animated:YES completion:nil]; // iPhone

Your app is now attempting to access the photo library. The very first time your app
does that, a system alert will appear, prompting the user to grant your app permission
(Figure 17-1). You can modify the body of this alert by setting the “Privacy — Photo
Library Usage Description” key (NSPhotoLibraryUsageDescription) in your app’s
Info.plist to tell the user why you want to access the photo library. This is a kind of
“elevator pitch”; you need to persuade the user in very few words.

If the user denies your app access, you’ll still be able to present the UIImagePicker‐
Controller, but it will be empty (with a reminder that the user has denied your app access
to the photo library) and the user won’t be able to do anything but cancel (Figure 17-2).
Thus, your code is unaffected. You can check beforehand to learn whether your app has
access to the photo library — I’ll explain how later in this chapter — and opt to do

694 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 17-1. The system prompts for photo library access

Figure 17-2. The image picker, when the user has denied access

something other than present the UIImagePickerController if access has been denied;
but you don’t have to, because the user will see a coherent interface and will cancel, and
your app will proceed normally from there.

To retest the system alert and other access-related behaviors, go to
the Settings app and choose General → Reset → Reset Location &
Privacy. This, unfortunately, causes the system to revert to its de‐
fault settings for everything in the Privacy section of Settings: Loca‐
tion Services and all System Services will be On, and all permis‐
sions lists will be empty.

If the user does what Figure 17-2 suggests, switching to the Set‐
tings app and enabling access for your app under Privacy → Pho‐
tos, your app will be terminated in the background! This is unfor‐
tunate, but is probably not a bug; Apple presumably feels that in this
situation your app cannot continue coherently and should start over
from scratch.

Choosing From the Photo Library | 695

www.it-ebooks.info

http://www.it-ebooks.info/

On the iPhone, the delegate will receive one of these messages:

• imagePickerController:didFinishPickingMediaWithInfo:

• imagePickerControllerDidCancel:

On the iPad, if you’re using a popover, there’s no Cancel button, so there’s no image-
PickerControllerDidCancel:; you can detect the dismissal of the popover through
the popover delegate. With a presented view controller, if a UIImagePickerController‐
Delegate method is not implemented, the view controller is dismissed automatically at
the point where that method would be called; but rather than relying on this, you should
probably implement both delegate methods and dismiss the view controller yourself in
each.

The didFinish... method is handed a dictionary of information about the chosen
item. The keys in this dictionary depend on the media type:
An image

The keys are:
UIImagePickerControllerMediaType

A UTI; probably @"public.image", which is the same as kUTTypeImage.

UIImagePickerControllerReferenceURL

An ALAsset URL pointing to the original image file in the library.

UIImagePickerControllerOriginalImage

A UIImage. This is the output you are expected to use. For example, you might
display it in a UIImageView.

A movie
The keys are:
UIImagePickerControllerMediaType

A UTI; probably @"public.movie", which is the same as kUTTypeMovie.

UIImagePickerControllerReferenceURL

An ALAsset URL pointing to the original movie file in the library.

UIImagePickerControllerMediaURL

A file URL to a copy of the movie saved into a temporary directory. This is the
output you are expected to use. For example, you might display it in an
MPMoviePlayerController or an AVPlayerLayer (Chapter 15).

Optionally, you can set the view controller’s allowsEditing to YES. In the case of an
image, the interface then allows the user to scale the image up and to move it so as to
be cropped by a preset rectangle; the dictionary will include two additional keys:

696 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

UIImagePickerControllerCropRect

An NSValue wrapping a CGRect.

UIImagePickerControllerEditedImage

A UIImage. This becomes the image you are expected to use.

In the case of a movie, if the view controller’s allowsEditing is YES, the user can trim
the movie just as with a UIVideoEditorController (Chapter 15). The dictionary keys are
the same as before.

Here’s an example implementation of imagePickerController:didFinishPicking-
MediaWithInfo: that covers the fundamental cases:

-(void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 NSURL* url = info[UIImagePickerControllerMediaURL];
 UIImage* im = info[UIImagePickerControllerOriginalImage];
 UIImage* edim = info[UIImagePickerControllerEditedImage];
 if (edim)
 im = edim;
 if (!self.currentPop) { // presented view
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 else { // popover
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 }
 NSString* type = info[UIImagePickerControllerMediaType];
 if ([type isEqualToString: (NSString*)kUTTypeImage] && im)
 [self showImage:im];
 else if ([type isEqualToString: (NSString*)kUTTypeMovie] && url)
 [self showMovie:url];
}

Assets Library Framework
The Assets Library framework does for the photo library roughly what the Media Player
framework does for the music library (Chapter 16), letting your code explore the li‐
brary’s contents. One obvious use of the Assets Library framework might be to imple‐
ment your own interface for letting the user choose an image, in a way that transcends
the limitations of UIImagePickerController. But you can go further with the photo
library than you can with the media library: you can save media into the Camera Roll /
Saved Photos album, and you can even create a new album and save media into it.

A photo or video in the photo library is an ALAsset. Like a media entity, an ALAsset
can describe itself through key–value pairs called properties. (This use of the word
“properties” has nothing to do with Objective-C language properties.) For example, it
can report its type (photo or video), its creation date, its orientation if it is a photo whose

Assets Library Framework | 697

www.it-ebooks.info

http://www.it-ebooks.info/

metadata contains this information, and its duration if it is a video. You fetch a property
value with valueForProperty:. The properties have names like ALAssetPropertyType.

A photo can provide multiple representations (roughly, image file formats). A given
photo ALAsset lists these representations as one of its properties, ALAssetProperty-
Representations, an array of strings giving the UTIs identifying the file formats; a
typical UTI might be @"public.jpeg" (kUTTypeJPEG). A representation is an ALAsset‐
Representation. You can get a photo’s defaultRepresentation, or ask for a particular
representation by submitting a file format’s UTI to representationForUTI:.

Once you have an ALAssetRepresentation, you can interrogate it to get the actual image,
either as raw data or as a CGImage (see Chapter 2). The simplest way is to ask for its
fullResolutionImage or its fullScreenImage (the latter is more suitable for display
in your interface, and is identical to what the Photos app displays); you may then want
to derive a UIImage from this using imageWithCGImage:scale:orientation:. The
original scale and orientation of the image are available as the ALAssetRepresentation’s
scale and orientation. Alternatively, if all you need is a small version of the image to
display in your interface, you can ask the ALAsset itself for its aspectRatio-
Thumbnail. An ALAssetRepresentation also has a url, which is the unique identifier for
the ALAsset.

The photo library itself is an ALAssetsLibrary instance. It is divided into groups
(ALAssetsGroup), which have types. For example, the user might have multiple albums;
each of these is a group of type ALAssetsGroupAlbum. You also have access to the Photo‐
Stream album. An ALAssetsGroup has properties, such as a name, which you can fetch
with valueForProperty:; one such property, the group’s URL (ALAssetsGroup-
PropertyURL), is its unique identifier. To fetch assets from the library, you either fetch
one specific asset by providing its URL, or you can start with a group, in which case you
can then enumerate the group’s assets. To obtain a group, you can enumerate the library’s
groups of a certain type, in which case you are handed each group as an ALAssetsGroup,
or you can provide a particular group’s URL. Before enumerating a group’s assets, you
may optionally filter the group using a simple ALAssetsFilter; this limits any subsequent
enumeration to photos only, videos only, or both.

The Assets Library framework uses Objective-C blocks for fetching and enumerating
assets and groups. These blocks behave in a special way: at the end of the enumeration,
they are called one extra time with a nil first parameter. Thus, you must code your block
carefully to avoid treating the first parameter as real on that final call. I was initially
mystified by this curious block enumeration behavior, but one day the reason for it came
to me in a flash: these blocks are all called asynchronously (on the main thread), meaning
that the rest of your code has already finished running, so you’re given an extra pass
through the block as your first opportunity to do something with all the data you’ve
presumably gathered in the previous passes.

698 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

As I mentioned in the previous section, the system will ask the user for permission the
first time your app tries to access the photo library, and the user can refuse. You can
learn directly beforehand whether access has been refused:

ALAuthorizationStatus stat = [ALAssetsLibrary authorizationStatus];
if (stat == ALAuthorizationStatusDenied ||
 stat == ALAuthorizationStatusRestricted) {
 NSLog(@"%@", @"No access");
 return;
}

There is, however, no need to do this, because all the block-based methods for accessing
the library allow you to supply a failure block; thus, your code will be able to retreat in
good order when it discovers that it can’t access the library.

We now know enough for an example! Given an album title, I’ll find that album, pull
out the first photo, and display that photo in the interface. The first step is to find the
album; I do that by cycling through all albums, stopping when I find the one whose title
matches the target title. The block will then be called one last time; at that point, I call
another method to pull the first photo out of that album:

- (void) findAlbumWithTitle: (NSString*) albumTitle {
 __block ALAssetsGroup* album = nil;
 ALAssetsLibrary* library = [ALAssetsLibrary new];
 [library enumerateGroupsWithTypes: ALAssetsGroupAlbum
 usingBlock: ^ (ALAssetsGroup *group, BOOL *stop) {
 if (group) {
 NSString* title =
 [group valueForProperty: ALAssetsGroupPropertyName];
 if ([title isEqualToString: albumTitle]) {
 album = group;
 *stop = YES;
 }
 } else { // afterward
 if (!album) {
 NSLog(@"%@", @"failed to find album");
 return;
 }
 [self showFirstPhotoOfGroup:album];
 }
 }
 failureBlock: ^ (NSError *error) {
 NSLog(@"oops! %@", [error localizedDescription]);
 // e.g. "Global denied access"
 }
];
}

And here’s the second method; it starts to enumerate the items of the album, stopping
immediately after the first photo and showing that photo in the interface. I don’t need
a very big version of the photo, so I use the asset’s aspectRatioThumbnail:

Assets Library Framework | 699

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) showFirstPhotoOfGroup: (ALAssetsGroup*) group {
 __block ALAsset* photo;
 [group enumerateAssetsUsingBlock:
 ^(ALAsset *result, NSUInteger index, BOOL *stop) {
 if (result) {
 NSString* type = [result valueForProperty:ALAssetPropertyType];
 if ([type isEqualToString: ALAssetTypePhoto]) {
 photo = result;
 *stop = YES;
 }
 } else { // afterward
 if (!photo)
 return;
 CGImageRef im = photo.aspectRatioThumbnail;
 UIImage* im2 = [UIImage imageWithCGImage:im scale:0
 orientation:UIImageOrientationUp];
 self.iv.image = im2; // put image into our UIImageView
 }
 }];
}

You can write files into the Camera Roll / Saved Photos album. The basic function for
writing an image file to this location is UIImageWriteToSavedPhotosAlbum. Some kinds
of video file can also be saved here; in an example in Chapter 15, I checked whether this
was true of a certain video file by calling UIVideoAtPathIsCompatibleWithSaved-
PhotosAlbum, and I saved the file by calling UISaveVideoAtPathToSavedPhotosAlbum.

The ALAssetsLibrary class extends these abilities by providing five additional methods:
writeImageToSavedPhotosAlbum:orientation:completionBlock:

Takes a CGImageRef and orientation.

writeImageToSavedPhotosAlbum:metadata:completionBlock:

Takes a CGImageRef and optional metadata dictionary (such as might arrive
through the UIImagePickerControllerMediaMetadata key when the user takes a
picture using UIImagePickerController).

writeImageDataToSavedPhotosAlbum:metadata:completionBlock:

Takes raw image data (NSData) and optional metadata.

videoAtPathIsCompatibleWithSavedPhotosAlbum:

Takes a file path string. Returns a boolean.

writeVideoAtPathToSavedPhotosAlbum:completionBlock:

Takes a file path string.

Saving takes time, so a completion block allows you to be notified when it’s over. The
completion block supplies two parameters: an NSURL and an NSError. If the first pa‐
rameter is not nil, the write succeeded, and this is the URL of the resulting ALAsset. If
the first parameter is nil, the write failed, and the second parameter describes the error.

700 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

You can create in the Camera Roll / Saved Photos album an image or video that is
considered to be a modified version of an existing image or video, by calling an instance
method on the original asset:

• writeModifiedImageDataToSavedPhotosAlbum:metadata:completionBlock:

• writeModifiedVideoAtPathToSavedPhotosAlbum:completionBlock:

Afterward, you can get from the modified asset to the original asset through the former’s
originalAsset property.

You are also allowed to “edit” an asset — that is, you can replace an image or video in
the library with a different image or video — but only if your application created the
asset. Check the asset’s editable property; if it is YES, you can call either of these
methods:

• setImageData:metadata:completionBlock:

• setVideoAtPath:completionBlock:

Finally, you are allowed to create an album:

• addAssetsGroupAlbumWithName:resultBlock:failureBlock:

If an album is editable, which would be because you created it, you can add an existing
asset to it by calling addAsset:. This is not the same thing as saving a new asset to an
album other than the Camera Roll / Saved Photos album; you can’t do that, but once an
asset exists, it can belong to more than one album.

Using the Camera
The simplest way to prompt the user to take a photo or video is to use our old friend
UIImagePickerController, which provides an interface similar to the Camera app.

To use UIImagePickerController in this way, first check isSourceTypeAvailable: for
UIImagePickerControllerSourceTypeCamera; it will be NO if the user’s device has no
camera or the camera is unavailable. If it is YES, call availableMediaTypesForSource-
Type: to learn whether the user can take a still photo (kUTTypeImage), a video (kUTType-
Movie), or both. Now instantiate UIImagePickerController, set its source type to
UIImagePickerControllerSourceTypeCamera, and set its mediaTypes in accordance
with which types you just learned are available. Finally, set a delegate (adopting
UINavigationControllerDelegate and UIImagePickerControllerDelegate), and present
the view controller. In this situation, it is legal (and preferable) to use a presented view
controller even on the iPad.

So, for example:

Using the Camera | 701

www.it-ebooks.info

http://www.it-ebooks.info/

BOOL ok = [UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera];
if (!ok) {
 NSLog(@"no camera");
 return;
}
NSArray* arr = [UIImagePickerController availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera];
if ([arr indexOfObject:(NSString*)kUTTypeImage] == NSNotFound) {
 NSLog(@"no stills");
 return;
}
UIImagePickerController* picker = [UIImagePickerController new];
picker.sourceType = UIImagePickerControllerSourceTypeCamera;
picker.mediaTypes = @[(NSString*)kUTTypeImage];
picker.delegate = self;
[self presentViewController:picker animated:YES completion:nil];

For video, you can also specify the videoQuality and videoMaximumDuration. More‐
over, these additional properties and class methods allow you to discover the camera
capabilities:
isCameraDeviceAvailable:

Checks to see whether the front or rear camera is available, using one of these values
as argument:

• UIImagePickerControllerCameraDeviceFront

• UIImagePickerControllerCameraDeviceRear

cameraDevice

Lets you learn and set which camera is being used.

availableCaptureModesForCameraDevice:

Checks whether the given camera can capture still images, video, or both. You
specify the front or rear camera; returns an NSArray of NSNumbers, from which
you can extract the integer value. Possible modes are:

• UIImagePickerControllerCameraCaptureModePhoto

• UIImagePickerControllerCameraCaptureModeVideo

cameraCaptureMode

Lets you learn and set the capture mode (still or video).

isFlashAvailableForCameraDevice:

Checks whether flash is available.

cameraFlashMode

Lets you learn and set the flash mode (or, for a movie, toggles the LED “torch”).
Your choices are:

702 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

• UIImagePickerControllerCameraFlashModeOff

• UIImagePickerControllerCameraFlashModeAuto

• UIImagePickerControllerCameraFlashModeOn

Setting camera-related properties such as cameraDevice when there is
no camera or when the UIImagePickerController is not set to cam‐
era mode can crash your app.

When the view controller’s view appears, the user will see the interface for taking a
picture, familiar from the Camera app, possibly including flash options, camera selec‐
tion button, digital zoom (if the hardware supports it), photo/video option (if your
mediaTypes setting allows both), and Cancel and Shutter buttons. If the user takes a
picture, the presented view offers an opportunity to use the picture or to retake it.

New in iOS 7, the first time your app tries to let the user capture video, a system dialog
will appear requesting access to the microphone. You can modify the body of this alert
by setting the “Privacy — Microphone Usage Description” key (NSMicrophoneUsage-
Description) in your app’s Info.plist. See the discussion of privacy settings earlier in
this chapter. You can learn whether microphone permission has been granted by calling
the AVAudioSession method requestRecordPermission: (Chapter 14).

Allowing the user to edit the captured image or movie (allowsEditing), and handling
the outcome with the delegate messages, is the same as I described earlier. There won’t
be any UIImagePickerControllerReferenceURL key in the dictionary delivered to the
delegate, because the image isn’t in the photo library. A still image might report a UIImage-
PickerControllerMediaMetadata key containing the metadata for the photo. The
photo library was not involved in the process of media capture, so no user permission
to access the photo library is needed; of course, if you now propose to save the media
into the photo library (as I described in the previous section), you will need permission.

New in iOS 7, devices destined for some markets may request permis‐
sion to access the camera itself. But I have not been able to test this
feature.

Customizing the Image Capture Interface
You can customize the UIImagePickerController interface. If you need to do that, you
should probably consider dispensing with UIImagePickerController altogether and
designing your own image capture interface from scratch, based around AV Foundation

Customizing the Image Capture Interface | 703

www.it-ebooks.info

http://www.it-ebooks.info/

and AVCaptureSession, which I’ll introduce in the next section. Still, it may be that a
modified UIImagePickerController is all you need.

In the image capture interface, you can hide the standard controls by setting shows-
CameraControls to NO, replacing them with your own overlay view, which you supply
as the value of the cameraOverlayView. In this case, you’re probably going to want some
means in your overlay view to allow the user to take a picture! You can do that through
these methods:

• takePicture

• startVideoCapture

• stopVideoCapture

The key to customizing the look and behavior of the image capture interface is that a
UIImagePickerController is a UINavigationController; the controls shown at the bot‐
tom of the default interface are the navigation controller’s toolbar. In this example, I’ll
remove all the default controls and use a gesture recognizer on the cameraOverlay-
View to permit the user to double-tap the image in order to take a picture:

// ... starts out as before ...
picker.delegate = self;
picker.showsCameraControls = NO;
CGRect f = self.view.window.bounds;
UIView* v = [[UIView alloc] initWithFrame:f];
UITapGestureRecognizer* t =
 [[UITapGestureRecognizer alloc] initWithTarget:self
 action:@selector(tap:)];
t.numberOfTapsRequired = 2;
[v addGestureRecognizer:t];
picker.cameraOverlayView = v;
[self presentViewController:picker animated:YES completion:nil];
self.picker = picker;

Our tap: gesture recognizer action handler simply calls takePicture:

- (void) tap: (id) g {
 [self.picker takePicture];
}

It would be nice, however, to tell the user to double-tap to take a picture; we also need
to give the user a way to dismiss the image capture interface. We could put a button and
a label into the cameraOverlayView, but here, I’ll take advantage of the UINavigation‐
Controller’s toolbar. We are the UIImagePickerController’s delegate, meaning that we
are not only its UIImagePickerControllerDelegate but also its UINavigationController‐
Delegate; I’ll use a delegate method to populate the toolbar:

704 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)navigationController:(UINavigationController *)nc
 didShowViewController:(UIViewController *)vc
 animated:(BOOL)animated {
 [nc setToolbarHidden:NO];
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,10), NO, 0);
 [[[UIColor blackColor] colorWithAlphaComponent:0.1] setFill];
 CGContextFillRect(UIGraphicsGetCurrentContext(), CGRectMake(0,0,10,10));
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 [nc.toolbar setBackgroundImage:im forToolbarPosition:UIBarPositionAny
 barMetrics:UIBarMetricsDefault];
 nc.toolbar.translucent = YES;
 UIBarButtonItem* b =
 [[UIBarButtonItem alloc] initWithTitle:@"Cancel"
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(doCancel:)];
 UILabel* lab = [UILabel new];
 lab.text = @"Double tap to take a picture";
 lab.textColor = [UIColor whiteColor];
 lab.backgroundColor = [UIColor clearColor];
 [lab sizeToFit];
 UIBarButtonItem* b2 = [[UIBarButtonItem alloc] initWithCustomView:lab];
 [nc.topViewController setToolbarItems:@[b, b2]];
}

When the user double-taps to take a picture, our didFinishPickingMediaWithInfo
delegate method is called, just as before. We don’t automatically get the secondary in‐
terface where the user is shown the resulting image and offered an opportunity to use
it or retake the image. But we can provide such an interface ourselves, by pushing an‐
other view controller onto the navigation controller:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage* im = info[UIImagePickerControllerOriginalImage];
 if (!im)
 return;
 SecondViewController* svc =
 [[SecondViewController alloc] initWithNibName:nil
 bundle:nil image:im];
 [picker pushViewController:svc animated:YES];
}

(Designing the SecondViewController class is left as an exercise for the reader.)

Image Capture With AV Foundation
Instead of using UIImagePickerController, you can control the camera and capture
images using the AV Foundation framework (Chapter 15). You get no help with interface
(except for displaying in your interface what the camera “sees”), but you get vastly more

Image Capture With AV Foundation | 705

www.it-ebooks.info

http://www.it-ebooks.info/

detailed control than UIImagePickerController can give you; for example, for stills, you
can control focus and exposure directly and independently, and for video, you can de‐
termine the quality, size, and frame rate of the resulting movie. You can also capture
audio, of course.

The heart of all AV Foundation capture operations is an AVCaptureSession object. You
configure this and provide it as desired with inputs (such as a camera) and outputs (such
as a file); then you call startRunning to begin the actual capture. You can reconfigure
an AVCaptureSession, possibly adding or removing an input or output, while it is run‐
ning — indeed, doing so is far more efficient than stopping the session and starting it
again — but you should wrap your configuration changes in beginConfiguration and
commitConfiguration.

As a rock-bottom example, let’s start by displaying in our interface, in real time, what
the camera sees. This requires an AVCaptureVideoPreviewLayer, a CALayer subclass.
This layer is not an AVCaptureSession output; rather, the layer receives its imagery by
owning the AVCaptureSession. Our AVCaptureSession’s input is the default video cam‐
era. We have no intention of doing anything with the captured video other than dis‐
playing it in the interface, so our AVCaptureSession doesn’t need an output:

self.sess = [AVCaptureSession new];
// add input
AVCaptureDevice* cam =
 [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];
AVCaptureDeviceInput* input =
 [AVCaptureDeviceInput deviceInputWithDevice:cam error:nil];
[self.sess addInput:input];
// create preview layer
AVCaptureVideoPreviewLayer* lay =
 [[AVCaptureVideoPreviewLayer alloc] initWithSession:self.sess];
lay.frame = // whatever
[self.view.layer addSublayer:lay];
self.previewLayer = lay; // keep a reference so we can remove it later
// go!
[self.sess startRunning];

Presto! Our interface now contains a window on the world, so to speak.

Expanding on that example, let’s permit the user to snap a still photo, which our interface
will display. Now we do need an output for our AVCaptureSession; since all we want is
a still image, this will be an AVCaptureStillImageOutput, and we’ll set its output-
Settings to specify the quality of the JPEG image we’re after. We also need to configure
the quality of image that the camera is to capture; the simplest and most common way
to set that is to apply a sessionPreset to the AVCaptureSession. In this case, since this
image is to go directly into our interface, we won’t need the full eight megapixel size of
which the iPhone 4 and 5 cameras are capable; so we’ll configure our AVCaptureSession’s
sessionPreset to ask for a much smaller image:

706 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

self.sess = [AVCaptureSession new];
self.sess.sessionPreset = AVCaptureSessionPreset640x480;
self.snapper = [AVCaptureStillImageOutput new];
self.snapper.outputSettings =
 @{AVVideoCodecKey: AVVideoCodecJPEG, AVVideoQualityKey:@0.6};
[self.sess addOutput:self.snapper];
// ... and the rest is as before ...

When the user asks to snap a picture, we send captureStillImageAsynchronouslyFrom-
Connection:completionHandler: to our AVCaptureStillImageOutput object. The first
argument is an AVCaptureConnection; to find it, we ask the output for its connection
that is currently inputting video. The second argument is the block that will be called,
possibly on a background thread, when the image data is ready; in the block, we capture
the data into a UIImage and, stepping out to the main thread (Chapter 25), we construct
in the interface a UIImageView containing that image, in place of the AVCapture‐
VideoPreviewLayer we were displaying previously:

if (!self.sess || !self.sess.isRunning)
 return;
AVCaptureConnection *vc =
 [self.snapper connectionWithMediaType:AVMediaTypeVideo];
[self.snapper captureStillImageAsynchronouslyFromConnection:vc
 completionHandler:
 ^(CMSampleBufferRef buf, NSError *err) {
 NSData* data =
 [AVCaptureStillImageOutput jpegStillImageNSDataRepresentation:buf];
 UIImage* im = [UIImage imageWithData:data];
 dispatch_async(dispatch_get_main_queue(), ^{
 UIImageView* iv =
 [[UIImageView alloc] initWithFrame:self.previewLayer.frame];
 iv.contentMode = UIViewContentModeScaleAspectFit;
 iv.image = im;
 [self.view addSubview: iv];
 [self.iv removeFromSuperview];
 self.iv = iv;
 [self.previewLayer removeFromSuperlayer];
 self.previewLayer = nil;
 [self.sess stopRunning];
 });
 }];

My favorite part of that example is that capturing the image emits, automatically, the
built-in “shutter” sound!

Our code has not illustrated setting the focus, changing the flash settings, and so forth;
doing so is not difficult (see the class documentation on AVCaptureDevice), but note
that you should wrap such changes in calls to lockForConfiguration: and unlockFor-
Configuration. Also, always call the corresponding is...Supported: method before
setting any feature of an AVCaptureDevice; for example, before setting the flashMode,
call isFlashModeSupported: for that mode. You can turn on the LED “torch” by setting

Image Capture With AV Foundation | 707

www.it-ebooks.info

http://www.it-ebooks.info/

the back camera’s torchMode to AVCaptureTorchModeOn, even if no AVCaptureSession
is running.

You can stop the flow of video data by setting the AVCaptureConnection’s enabled to
NO, and there are some other interesting AVCaptureConnection features, mostly in‐
volving stabilization of the video image (not relevant to the example, because a preview
layer’s video isn’t stabilized). Plus, AVCaptureVideoPreviewLayer provides methods for
converting between layer coordinates and capture device coordinates; without such
methods, this can be a very difficult problem to solve. New in iOS 7, you can scan bar
codes, shoot video at 60 frames per second (on some devices), and more.

AV Foundation’s control over the camera, and its ability to process incoming data —
especially video data — goes far deeper than there is room to discuss here, so consult
the documentation; in particular, see the “Media Capture” chapter of the AV Foundation
Programming Guide. There are also excellent WWDC videos on AV Foundation, and
some fine sample code; I found Apple’s AVCam example very helpful while preparing
this discussion.

708 | Chapter 17: Photo Library and Image Capture

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

Address Book

The user’s address book, which the user sees through the Contacts app, is effectively a
database that can be accessed directly through the Address Book framework. You’ll need
to @import AddressBook. This is, unfortunately, a C API, which means that you’re going
to be doing a lot of manual memory management.

A user interface for interacting with the address book is also provided, through
Objective-C classes, by the Address Book UI framework. You’ll need to @import
AddressBookUI.

Address Book Database
The address book is an ABAddressBookRef obtained by calling ABAddressBookCreate-
WithOptions. There are in fact no options to pass, so the first parameter is always nil.
The important thing is the second parameter, a pointer to a CFErrorRef; if the result is
nil, the CFErrorRef describes the error. The reason there can be an error is that the user
can deny your app access to the address book:

CFErrorRef err = nil;
ABAddressBookRef adbk = ABAddressBookCreateWithOptions(nil, &err);
if (nil == adbk) {
 NSLog(@"error: %@", err);
 return;
}

If access has neither been denied nor granted, however, the result will not be nil, and
there will be no CFErrorRef. This can be a disaster, because you are now working with
an ABAddressBookRef that is non-nil but is nevertheless invalid and useless, and what‐
ever further actions you perform involving the address book will fail. To prevent this,
you should call ABAddressBookGetAuthorizationStatus to learn the current status. If

709

www.it-ebooks.info

http://www.it-ebooks.info/

it is kABAuthorizationStatusNotDetermined, you should request authorization from
the user before attempting to use the address book.

To request authorization when the authorization status is kABAuthorizationStatusNot-
Determined, call ABAddressBookRequestAccessWithCompletion; it takes a completion
handler that is called asynchronously, so you’ll want to request authorization in a meth‐
od that runs before you do anything involving the address book. Calling ABAddressBook-
RequestAccessWithCompletion if access has already been granted does not summon
the authorization request.

Calling ABAddressBookRequestAccessWithCompletion requires an ABAddressBook‐
Ref. If the authorization status was kABAuthorizationStatusNotDetermined and you
call ABAddressBookRequestAccessWithCompletion with that ABAddressBookRef and
access is granted, that ABAddressBookRef springs to life and becomes useful.

All of that suggests the following approach. I ascertain authorization status in my view
controller’s viewDidAppear:. I have an instance variable _authDone, so that viewDid-
Appear: doesn’t run this routine more than once, and an id property adbk, where I’ll
store a reference to the ABAddressBookRef — but only if access is granted. Thus, adbk
serves both as an ABAddressBookRef usable by any subsequent methods for database
access and as a flag telling those methods whether access has been granted; moreover,
because it has been wrapped in an id property, this ABAddressBookRef is automatically
memory-managed by ARC:

- (void) viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 if (!self->_authDone) {
 self->_authDone = YES;
 ABAuthorizationStatus stat = ABAddressBookGetAuthorizationStatus();
 switch (stat) {
 case kABAuthorizationStatusDenied:
 case kABAuthorizationStatusRestricted: {
 NSLog(@"%@", @"no access");
 break;
 }
 case kABAuthorizationStatusAuthorized:
 case kABAuthorizationStatusNotDetermined: {
 CFErrorRef err = nil;
 ABAddressBookRef adbk =
 ABAddressBookCreateWithOptions(nil, &err);
 if (nil == adbk) {
 NSLog(@"error: %@", err);
 return;
 }
 ABAddressBookRequestAccessWithCompletion
 (adbk, ^(bool granted, CFErrorRef error) {
 if (granted)
 self.adbk = CFBridgingRelease(adbk);
 else

710 | Chapter 18: Address Book

www.it-ebooks.info

http://www.it-ebooks.info/

 NSLog(@"error: %@", error);
 });
 }
 }
 }
}

You can modify the body of the system alert prompting the user to grant your app
permission to access the user’s Contacts, by setting the “Privacy — Contacts Usage
Description” key (NSContactsUsageDescription) in your app’s Info.plist to tell the user
why you want to access the address book. This is a kind of “elevator pitch”; you need to
persuade the user in very few words.

If the user has denied your app access, you can’t make the system alert appear again.
You can, of course, use some other interface to request that the user grant access in
the Settings app, under Privacy → Contacts. (If the authorization status is
kABAuthorizationStatusRestricted, however, there’s no point doing that, as the user
is incapable of granting access.)

To retest the system alert and other access-related behaviors, go to the
Settings app and choose General → Reset → Reset Location & Privacy.
This, unfortunately, causes the system to revert to its default settings
for everything in the Privacy section of Settings: Location Services and
all System Services will be On, and all permissions lists will be empty.

If the user does in fact switch to the Settings app and enables access
for your app under Privacy → Contacts, your app will be terminated
in the background! This is unfortunate, but is probably not a bug;
Apple presumably feels that in this situation your app cannot contin‐
ue coherently and should start over from scratch.

Assuming that access has been granted, ABAddressBookCreateWithOptions returns a
usable ABAddressBookRef object. This method’s name contains “Create,” so you must
CFRelease the ABAddressBookRef when you’re finished with it. (But don’t release it
until you are finished with it!) The address book’s data starts out exactly the same as the
user’s Contacts data. If you make any changes to the data, they are not written through
to the user’s real address book until you call ABAddressBookSave.

The address book can change while your app is running (the user might edit with the
Calendar app, or changes might percolate in from the network), which can put your
information out of date. You can call ABAddressBookRegisterExternalChange-
Callback, passing it the address of a function to be called when there’s a change; this
function must take three parameters: an ABAddressBookRef, a CFDictionaryRef, and
a pointer-to-void. Apple recommends that, if you don’t have (or can afford to lose) any

Address Book Database | 711

www.it-ebooks.info

http://www.it-ebooks.info/

unsaved changes, you should simply call ABAddressBookRevert, causing your reference
to the address book to be updated.

The primary constituent record of the address book database is the ABPerson. You’ll
typically extract persons from the address book by using these functions:

• ABAddressBookGetPersonCount

• ABAddressBookGetPersonWithRecordID

• ABAddressBookCopyPeopleWithName

• ABAddressBookCopyArrayOfAllPeople

The result of the latter two is a CFArrayRef. Their names contain “Copy,” so you must
CFRelease the array when you’re finished with it. (I’m going to stop reminding you
about memory management from here on.)

An ABPerson doesn’t formally exist as a type; it is actually an ABRecord (ABRecordRef),
and by virtue of this has an ID, a type, and properties with values. To fetch the value of
a property, you’ll call ABRecordCopyValue, supplying a property identifier to specify the
property that interests you. ABPerson properties, as you might expect, include things
like first name, last name, and email.

Working with a property value is a little tricky, because the way you treat it depends on
what type of value it is. You can learn a property value’s type dynamically by calling
ABPersonGetTypeOfProperty, but usually you’ll know in advance. Some values are
simple, but some are not. For example, a last name is a string, which is straightforward.
But a person can have more than one email, so an email value is a “multistring.” To work
with it, you’ll treat it as an ABMultiValue (ABMultiValueRef). This is like an array of
values where each value also has a label and an identifier. The label categorizes (for
example, a Home email as opposed to a Work email) but is not a unique specifier (be‐
cause a person might have, say, two or more Work emails); the identifier is the unique
specifier.

A person’s address is even more involved because not only is it an ABMultiValue (a
person can have more than one address), but also a particular address is itself a dictio‐
nary (a CFDictionary). Each dictionary may have a key for street, city, state, country,
and so on. There is a lot more to parsing address book information, but that’s enough
to get you started.

We are now ready for an example! Assume we’ve already run the viewDidAppear:
method I showed earlier. I’ll fetch my own record out of the address book database on
my device and detect that I’ve got two email addresses:

712 | Chapter 18: Address Book

www.it-ebooks.info

http://www.it-ebooks.info/

ABAddressBookRef adbk = (__bridge ABAddressBookRef)self.adbk;
if (!adbk)
 return;
ABRecordRef moi = nil;
CFArrayRef matts =
 ABAddressBookCopyPeopleWithName(adbk, (CFStringRef)@"Matt");
// might be multiple matts; let's find the one with last name Neuburg
for (CFIndex ix = 0; ix < CFArrayGetCount(matts); ix++) {
 ABRecordRef matt = CFArrayGetValueAtIndex(matts, ix);
 CFStringRef last = ABRecordCopyValue(matt, kABPersonLastNameProperty);
 if (last && CFStringCompare(last, (CFStringRef)@"Neuburg", 0) == 0)
 moi = matt;
 if (last) CFRelease(last);
}
if (nil == moi) {
 NSLog(@"Couldn't find myself");
 if (matts) CFRelease(matts);
 return;
}
// parse my emails
ABMultiValueRef emails = ABRecordCopyValue(moi, kABPersonEmailProperty);
for (CFIndex ix = 0; ix < ABMultiValueGetCount(emails); ix++) {
 CFStringRef label = ABMultiValueCopyLabelAtIndex(emails, ix);
 CFStringRef value = ABMultiValueCopyValueAtIndex(emails, ix);
 NSLog(@"I have a %@ address: %@", label, value);
 if (label) CFRelease(label);
 if (value) CFRelease(value);
}
if (emails) CFRelease(emails);
if (matts) CFRelease(matts);
/*
output:
I have a _$!<Home>!$_ address: matt@tidbits.com
I have a _$!<Work>!$_ address: matt@tidbits.com
*/

You can also modify an existing record, add a new record (ABAddressBookAddRecord),
and delete a record (ABAddressBookRemoveRecord). In this example, I’ll create a person
called Snidely Whiplash with a Home email snidely@villains.com, add him to the
database, and save the database:

// ... obtain adbk as before ...
ABRecordRef snidely = ABPersonCreate();
ABRecordSetValue(snidely, kABPersonFirstNameProperty, @"Snidely", nil);
ABRecordSetValue(snidely, kABPersonLastNameProperty, @"Whiplash", nil);
ABMutableMultiValueRef addr =
 ABMultiValueCreateMutable(kABStringPropertyType);
ABMultiValueAddValueAndLabel(addr,
 @"snidely@villains.com", kABHomeLabel, nil);
ABRecordSetValue(snidely, kABPersonEmailProperty, addr, nil);

Address Book Database | 713

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 18-1. A contact created programmatically

ABAddressBookAddRecord(adbk, snidely, nil);
ABAddressBookSave(adbk, nil);
if (addr) CFRelease(addr);
if (snidely) CFRelease(snidely);

Sure enough, if we then check the state of the database through the Contacts app, the
new person exists (Figure 18-1).

There are also groups (ABGroup); a group, like a person, is a record (ABRecord), so
you can add a new group, delete an existing group, add a person to a group, and remove
a person from a group (which is more than the Contacts app allows the user to do!). A
group doesn’t own a person, nor a person a group; they are independent, and a person
can be associated with multiple groups just as a group is associated with multiple per‐
sons. At an even higher level, there are sources (yet another kind of ABRecord): a person
or group might be on the device or might come from an Exchange server or a CardDAV
server. The source really does, in a sense, own the group or person; a person can’t belong
to two sources. A complicating factor, however, is that the same real person might appear
in two different sources as two different ABPersons; to deal with this, it is possible for
multiple persons to be linked, indicating that they are the same person. For a practical
introduction to groups and sources, see Apple’s ABUIGroups sample code.

Address Book Interface
The Address Book UI framework puts a user interface, similar to the Contacts app, in
front of common tasks involving the address book database. This is a great help, because
designing your own interface to do the same thing would be tedious and involved. The
framework provides four UIViewController subclasses:

714 | Chapter 18: Address Book

www.it-ebooks.info

http://www.it-ebooks.info/

ABPeoplePickerNavigationController
Presents a navigation interface, effectively the same as the Contacts app but without
an Edit button: it lists the people in the database and allows the user to pick one
and view the details.

ABPersonViewController
Presents an interface showing the properties of a specific person in the database,
possibly editable.

ABNewPersonViewController
Presents an interface showing the editable properties of a new person.

ABUnknownPersonViewController
Presents an interface showing a proposed person with a partial set of noneditable
properties.

These view controllers operate coherently with respect to the question of whether your
app has access to the address book. For example, if the user has never granted or denied
your app access to the address book, attempting to use ABPeoplePickerNavigation‐
Controller will cause the system alert to appear, requesting access. If the user has denied
your app access to the address book, the ABPeoplePickerNavigationController’s view
will appear, but it will be empty (like Figure 17-2). ABNewPersonViewController, sim‐
ilarly, will lack interface for saving into the database if your app has been denied access,
and the user’s only option will be to back out of the view controller. On the other hand,
you can’t even get started usefully with ABPersonViewController if you don’t already
have access, so if you lack access, you’ll discover that fact beforehand.

ABPeoplePickerNavigationController
An ABPeoplePickerNavigationController is a UINavigationController. With it, the user
can survey groups, along with the names of all persons in each group. Presenting it can
be as simple as instantiating it, assigning it a delegate, and showing it as a presented
view controller. On the iPad, you’ll probably use a popover; presenting the view con‐
troller does work, but a popover looks better. (For the structure of a universal app, see
Example 16-1.) Here’s the code for an iPhone:

ABPeoplePickerNavigationController* picker =
 [ABPeoplePickerNavigationController new];
picker.peoplePickerDelegate = self; // note: not merely "delegate"
[self presentViewController:picker animated:YES completion:nil];

You should certainly provide a delegate, because without it the presented view will never
be dismissed. This delegate is not the controller’s delegate property! It is the controller’s
peoplePickerDelegate property. You should implement all three delegate methods:

Address Book Interface | 715

www.it-ebooks.info

http://www.it-ebooks.info/

peoplePickerNavigationController:shouldContinueAfterSelectingPerson:

The user has tapped a person in the contacts list, provided to you as an ABRecord‐
Ref. You have two options:
Return NO

The user has chosen a person and that’s all you wanted done. The selected
person remains selected unless the user chooses another person. You are likely
to dismiss the picker at this point.

Return YES (and don’t dismiss the picker)
The view will navigate to a view of the person’s properties. You can limit the set
of properties the user will see at this point by setting the ABPeoplePicker‐
NavigationController’s displayedItems. This is an array of NSNumbers wrap‐
ping the property identifiers such as kABPersonEmailProperty.

peoplePickerNavigationController:shouldContinueAfterSelecting-

Person:property:identifier:

The user is viewing a person’s properties and has tapped a property. Note that you
are not handed the value of this property! You can fetch that yourself if desired,
because you have the person and the property; plus, if the property has multiple
values, you are handed an identifier so you can pick the correct one out of the array
of values by calling ABMultiValueGetIndexForIdentifier and fetching the value
at that index. You have two options:
Return NO

The view is now still sitting there, displaying the person’s properties. You are
likely to dismiss the picker at this point.

Return YES
This means that if the property is one that can be displayed in some other app,
we will switch to that app. For example, if the user taps an address, it will be
displayed in the Maps app; if the user taps an email, we will switch to the Mail
app and compose a message addressed to that email.

peoplePickerNavigationControllerDidCancel:

The user has cancelled; you should dismiss the picker.

In this example, we want the user to pick an email. We have limited the display of
properties to emails only:

picker.displayedProperties = @[@(kABPersonEmailProperty)];

We return YES from the first delegate method. The second delegate method fetches the
value of the tapped email and dismisses the picker:

716 | Chapter 18: Address Book

www.it-ebooks.info

http://www.it-ebooks.info/

- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)peoplePicker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
 property:(ABPropertyID)property
 identifier:(ABMultiValueIdentifier)identifier {
 ABMultiValueRef emails = ABRecordCopyValue(person, property);
 CFIndex ix = ABMultiValueGetIndexForIdentifier(emails, identifier);
 CFStringRef email = ABMultiValueCopyValueAtIndex(emails, ix);
 NSLog(@"%@", email); // do something with the email here
 if (email) CFRelease(email);
 if (emails) CFRelease(emails);
 [self dismissViewControllerAnimated:YES completion:nil];
 return NO;
}

ABPersonViewController
An ABPersonViewController is a UIViewController. To use it, instantiate it, set its
displayedPerson and personViewDelegate (not delegate); in iOS 7 you must also
explicitly pass a reference to the address book to the ABPersonViewController, as its
addressBook property. Then push the ABPersonViewController onto an existing nav‐
igation controller’s stack. The user’s only way out of the resulting interface will be
through the back button. For example:

// ... obtain adbk as before ...
CFArrayRef snides =
 ABAddressBookCopyPeopleWithName(adbk, (CFStringRef)@"Snidely Whiplash");
if (CFArrayGetCount(snides) < 1) {
 NSLog(@"%@", @"No Snidely!");
 if (snides) CFRelease(snides);
 return;
}
ABRecordRef snidely = CFArrayGetValueAtIndex(snides, 0);
ABPersonViewController* pvc = [ABPersonViewController new];
pvc.addressBook = adbk;
pvc.displayedPerson = snidely;
pvc.personViewDelegate = self;
[self.navigationController pushViewController:pvc animated:YES];
if (snides) CFRelease(snides);

On the iPad, the same interface works, or alternatively you can use a popover. In the
latter case you’ll probably make the ABPersonViewController the root view of a
UINavigationController created on the fly, especially if you intend to set allows-
Editing to YES, since without the navigation interface the Edit button won’t appear.
No back button is present or needed, because the user can dismiss the popover by
tapping outside it.

Address Book Interface | 717

www.it-ebooks.info

http://www.it-ebooks.info/

You can limit the properties to be displayed, as with ABPeoplePickerNavigation‐
Controller, by setting the displayedProperties. You can highlight a property with set-
HighlightedItemForProperty:withIdentifier:.

The delegate is notified when the user taps a property. As with ABPeoplePicker‐
NavigationController’s second delegate method, you’ll return YES to allow some other
app, such as Maps or Mail, to open the tapped value; return NO to prevent this.

If ABPersonViewController’s allowsActions is YES (the default), then buttons such as
Send Message, FaceTime, Share Contact, and Add to Favorites appear in the interface.
(Exactly what buttons appear depends on what categories of information are displayed.)

If ABPersonViewController’s allowsEditing is YES (the default), the right bar button
is an Edit button. If the user taps this, the interface is transformed into the same sort of
editing interface as ABNewPersonViewController. The user can tap Done or Cancel; if
Done, the edits are automatically saved into the database. Either way, the user returns
to the original display of the person’s properties.

Your code is not notified that the user has edited the person, or that the user has returned
from the person view controller to the main interface. If that’s the kind of thing you
need to know, consider one of the next two view controllers.

ABNewPersonViewController
An ABNewPersonController is a UIViewController. To use it, instantiate it, set its new-
PersonViewDelegate (not delegate), instantiate a UINavigationController with the
ABNewPersonController as its root view, and present the navigation controller:

ABNewPersonViewController* npvc = [ABNewPersonViewController new];
npvc.newPersonViewDelegate = self;
UINavigationController* nc =
 [[UINavigationController alloc] initWithRootViewController:npvc];
[self presentViewController:nc animated:YES completion:nil];

The presented view controller works on the iPad as well. Alternatively, you can display
the UINavigationController in a popover; the resulting popover is effectively modal.

The interface allows the user to fill in all properties of a new contact. You cannot limit
the properties displayed. You can provide properties with default values by creating a
fresh ABRecordRef representing an ABPerson with ABPersonCreate, giving it any
property values you like, and assigning it to the displayedPerson property.

The delegate has one method, newPersonViewController:didCompleteWithNew-
Person:, which is responsible for dismissing the presented view or popover. If the new
person is nil, the user tapped Cancel. Otherwise, the user tapped Done; the new person
is an ABRecordRef and has already been saved into the database.

718 | Chapter 18: Address Book

www.it-ebooks.info

http://www.it-ebooks.info/

But what if you don’t want the new person saved into the database? What if you were
presenting this interface merely because it’s such a convenient way of letting the user fill
in the property values of an ABPerson? Then simply remove the newly created person
from the database, like this:

- (void)newPersonViewController:
 (ABNewPersonViewController*)newPersonViewController
 didCompleteWithNewPerson:(ABRecordRef)person {
 if (nil != person) {
 // if we didn't have access, we wouldn't be here!
 ABAddressBookRef adbk = (__bridge ABAddressBookRef)self.adbk;
 ABAddressBookRemoveRecord(adbk, person, nil);
 ABAddressBookSave(adbk, nil);
 CFStringRef name = ABRecordCopyCompositeName(person);
 NSLog(@"I have a person named %@", name);
 // do something with new person
 if (name) CFRelease(name);
 }
 [self dismissViewControllerAnimated:YES completion:nil];
}

ABUnknownPersonViewController
An ABUnknownPersonViewController is a UIViewController. It presents, as it were, a
proposed partial person. You can set the name displayed as the controller’s alternate-
Name property, and the text below this as the controller’s message property. You can add
actual person property values just as for an ABNewPersonViewController, namely, by
creating a fresh ABRecordRef representing an ABPerson with ABPersonCreate, giving
it some property values, and assigning it to the displayedPerson property.

To use ABUnknownPersonViewController, instantiate it, set the properties listed in the
foregoing paragraph, set its unknownPersonViewDelegate (not delegate), and push it
onto the stack of an existing navigation controller. The user’s only way out of the re‐
sulting interface will be through the back button. For example:

ABUnknownPersonViewController* unk =
 [ABUnknownPersonViewController new];
unk.message = @"Person who really knows trees";
unk.allowsAddingToAddressBook = YES;
ABRecordRef person = ABPersonCreate();
ABRecordSetValue(person, kABPersonFirstNameProperty, @"Johnny", nil);
ABRecordSetValue(person, kABPersonLastNameProperty, @"Appleseed", nil);
ABMutableMultiValueRef addr =
 ABMultiValueCreateMutable(kABStringPropertyType);
ABMultiValueAddValueAndLabel(addr, @"johnny@seeds.com",
 kABHomeLabel, nil);
ABRecordSetValue(person, kABPersonEmailProperty, addr, nil);
unk.displayedPerson = person;

Address Book Interface | 719

www.it-ebooks.info

http://www.it-ebooks.info/

unk.unknownPersonViewDelegate = self;
[self.navigationController pushViewController:unk animated:YES];
if (person) CFRelease(person);
if (addr) CFRelease(addr);

On the iPad, make the ABUnknownPersonViewController the root view of a
UINavigationController and present the navigation controller as a popover. No back
button is present or needed, because the user can dismiss the popover by tapping outside
it.

What the user can do here depends on two other properties:
allowsAddingToAddressBook

If YES (the default), and if your app has access to the address book, a Create New
Contact button and an Add to Existing Contact button appear:
The user taps Create New Contact

The editing interface appears (as in ABNewPersonViewController and an ed‐
itable ABPersonViewController). It is filled in with the property values of the
displayedPerson. If the user taps Done, the person is saved into the database.

The user taps Add to Existing Contact
A list of all contacts appears (as in the first screen of ABPersonViewController).
The user can Cancel or tap a person. If the user taps a person, the properties
from the displayedPerson are merged into that person’s record.

allowsActions

If YES (the default), buttons such as Send Message, FaceTime, and Share Contact
appear. (Exactly what buttons appear depends on what categories of information
are displayed.)

The delegate has two methods, the first of which is required:
unknownPersonViewController:didResolveToPerson:

Called if allowsAddingToAddressBook is YES and the user finishes working in a
presented editing view. The editing view has already been dismissed and the user
has either cancelled (the second parameter is nil) or has tapped Done (the second
parameter is the ABPerson already saved into the database).

unknownPersonViewController:shouldPerformDefaultActionForPerson:property:

identifier:

Return NO, as with ABPeoplePickerNavigationController, to prevent a tap on a
property value from navigating to another app.

720 | Chapter 18: Address Book

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

Calendar

The user’s calendar information, which the user sees through the Calendar app, is ef‐
fectively a database of calendar events. Since iOS 6, the calendar database has also in‐
cluded reminders, which the user sees through the Reminders app. This database can
be accessed directly through the Event Kit framework. You’ll need to @import Event-
Kit.

A user interface for interacting with the calendar is also provided, through the Event
Kit UI framework. You’ll need to @import EventKitUI.

Calendar Database
The calendar database is accessed as an instance of the EKEventStore class. This instance
is expensive to obtain but lightweight to maintain, so your usual strategy will be to
instantiate EKEventStore early on, maintaining that instance in an instance variable
until you no longer need it (similar to what I did with the address book database in
Chapter 18). In the examples in this chapter, my EKEventStore instance is called
self.database throughout.

An attempt to work with the calendar database will fail unless the user has granted your
app access to it. You should start by calling the class method authorizationStatusFor-
EntityType: with either EKEntityTypeEvent (to work with calendar events) or
EKEntityTypeReminder (to work with reminders). If the returned EKAuthorization‐
Status is EKAuthorizationStatusNotDetermined, you can call requestAccessTo-
EntityType:completion:, with a non-nil completion block taking a BOOL and an
NSError; this causes a system alert to appear, prompting the user to grant your app
permission to access the user’s Calendar or Reminders.

You can modify the body of this alert by setting the “Privacy — Calendars Usage De‐
scription” key (NSCalendarsUsageDescription) or the “Privacy — Reminders Usage

721

www.it-ebooks.info

http://www.it-ebooks.info/

Description” key (NSRemindersUsageDescription) in your app’s Info.plist to tell the
user why you want to access the database. This is a kind of “elevator pitch”; you need to
persuade the user in very few words.

I’ll use my view controller’s viewDidAppear: to check the authorization status, to ask
the user for authorization if authorization has never been granted or denied, and to set
self.database if authorization is granted; the code is exactly parallel to the first example
in Chapter 18:

- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 EKEntityType type = EKEntityTypeEvent;
 if (!self->_authDone) {
 self->_authDone = YES;
 EKAuthorizationStatus stat =
 [EKEventStore authorizationStatusForEntityType:type];
 switch (stat) {
 case EKAuthorizationStatusDenied:
 case EKAuthorizationStatusRestricted: {
 NSLog(@"%@", @"no access");
 break;
 }
 case EKAuthorizationStatusAuthorized:
 case EKAuthorizationStatusNotDetermined: {
 EKEventStore* database = [EKEventStore new];
 [database requestAccessToEntityType:type completion:
 ^(BOOL granted, NSError *error) {
 if (granted)
 self.database = database;
 else
 NSLog(@"error: %@", error);
 }];
 }
 }
 }
}

If the user has denied your app access, you can’t make the system alert appear again.
You can, of course, use some other interface to request that the user grant access in the
Settings app, under Privacy → Calendars or Privacy → Reminders. (If the authorization
status is EKAuthorizationStatusRestricted, however, there’s no point doing that, as
the user is incapable of granting access.)

722 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

To retest the system alert and other access-related behaviors, go to the
Settings app and choose General → Reset → Reset Location & Privacy.
This, unfortunately, causes the system to revert to its default settings
for everything in the Privacy section of Settings: Location Services and
all System Services will be On, and all permissions lists will be empty.

If the user does in fact switch to the Settings app and enables access
for your app under Privacy → Calendars or Privacy → Reminders, your
app will be terminated in the background! This is unfortunate, but is
probably not a bug; Apple presumably feels that in this situation your
app cannot continue coherently and should start over from scratch.

Starting with an EKEventStore instance, you can obtain two kinds of object:
A calendar

A calendar represents a named (title) collection of calendar items, meaning events
or reminders. It is an instance of EKCalendar. Curiously, however, an EKCalendar
instance doesn’t contain or link to its calendar items; to obtain and create calendar
items, you work directly with the EKEventStore itself. A calendar’s allowedEntity-
Types, despite the plural, will probably return just one entity type; you can’t create
a calendar that allows both.

Calendars have various types (type), reflecting the nature of their origin: a calendar
can be created and maintained by the user locally (EKCalendarTypeLocal), but it
might also live remotely on the network (EKCalendarTypeCalDAV, EKCalendarType-
Exchange), possibly being updated by subscription (EKCalendarType-
Subscription); the Birthday calendar (EKCalendarTypeBirthday) is generated
automatically from information in the address book.

The type is supplemented and embraced by the calendar’s source, an EKSource
whose sourceType can be EKSourceTypeLocal, EKSourceTypeExchange, EKSource-
TypeCalDAV (which includes iCloud), and so forth; a source can also have a
title, and it has a unique identifier (sourceIdentifier). You can get an array of
all sources known to the EKEventStore, or specify a source by its identifier. You’ll
probably use the source exclusively and ignore the calendar’s type property.

There are three ways of requesting a calendar:
All calendars

Fetch all calendars permitting a particular calendar item type (EKEntityType-
Event or EKEntityTypeReminder) by calling calendarsForEntityType:. You
can send this message either to the EKEventStore or to an EKSource.

Calendar Database | 723

www.it-ebooks.info

http://www.it-ebooks.info/

Particular calendar
Fetch an individual calendar by means of a previously obtained calendar-
Identifier by calling calendarWithIdentifier:.

Default calendar
Fetch the default calendar for a particular calendar item type through the
defaultCalendarForNewEvents property or the defaultCalendarForNew-
Reminders property; this is appropriate particularly if your intention is to create
a new calendar item.

You can also create a calendar, by calling calendarForEntityType:eventStore:.
At that point, you can specify the source to which the calendar belongs.

Depending on the source, a calendar will be modifiable in various ways. The cal‐
endar might be subscribed. If the calendar is immutable, you can’t delete the
calendar or change its attributes; but its allowsContentModifications might still
be YES, in which case you can add, remove, and alter its events. You can update
your copy of the calendar from any remote sources by calling refreshSourcesIf-
Necessary.

A calendar item
A calendar item (EKCalendarItem) is either a calendar event (EKEvent) or a re‐
minder (EKReminder). Think of it as a memorandum describing when something
happens. As I mentioned a moment ago, you don’t get calendar items from a cal‐
endar; rather, a calendar item has a calendar, but you get it from the EKEventStore
as a whole. There are two chief ways of doing so:
By predicate

Fetch all events or reminders according to a predicate:

• eventsMatchingPredicate:

• enumerateEventsMatchingPredicate:

• fetchRemindersMatchingPredicate:completion:

Methods starting with predicate... allow you to form the predicate. The
predicate specifies things like the calendar(s) the item is to come from and the
item’s date range. By identifier:: Fetch an individual calendar item by means of
a previously obtained calendarItemIdentifier by calling calendarItemWith-
Identifier:.

Changes to the database can be atomic. There are two prongs to the implementation of
this feature:

• The methods for saving and removing calendar items and calendars have a commit:
parameter. If you pass NO as the argument, the changes that you’re ordering are

724 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

batched; later, you can call commit: (or reset if you change your mind). If you pass
NO and fail to call commit: later, your changes will never happen.

• An abstract class, EKObject, functions as the superclass for all the other persistent
object types, such as EKCalendar, EKCalendarItem, EKSource, and so on. It endows
those classes with methods isNew and hasChanges, along with refresh,
rollback, and reset.

The calendar database is an odd sort of database, because calendars can be maintained
in so many ways and places. A calendar can change while your app is running (the user
might sync, or the user might edit with the Calendar app), which can put your
information out of date. You can register for a single EKEventStore notification, EKEvent-
StoreChangedNotification; if you receive it, you should assume that any calendar-
related instances you’re holding are invalid. This situation is made relatively painless,
though, by the fact that every calendar-related instance can be refreshed with
refresh. Keep in mind that refresh returns a Boolean; if it returns NO, this object is
really invalid and you should stop working with it entirely (it may have been deleted
from the database).

Creating Calendars and Events
Let’s start by creating an events calendar. We need to assign a source; we’ll choose
EKSourceTypeLocal, meaning that the calendar will be created on the device itself.

If an iPhone’s calendar is subscribed to a remote source (such as
iCloud), EKCalendarTypeLocal calendars are inaccessible. The exam‐
ples in this chapter use a local calendar (because I don’t want to risk
damaging your online calendars); to test them, you’ll have to unsub‐
scribe from iCloud. The iPad can access both local and online calen‐
dars, so I regard the iPhone limitation as a bug.

Assume that the viewWillAppear: code from earlier in this chapter has already run.
We can’t ask the database for the local source directly, so we have to cycle through all
sources looking for it. When we find it, we make a new calendar called “CoolCal”:

if (!self.database)
 return;
EKSource* src = nil;
for (src in self.database.sources)
 if (src.sourceType == EKSourceTypeLocal)
 break;
if (!src) {
 NSLog(@"%@", @"failed to find local source");
 return;
}

Calendar Database | 725

www.it-ebooks.info

http://www.it-ebooks.info/

EKCalendar* cal = [EKCalendar calendarForEntityType:EKEntityTypeEvent
 eventStore:self.database];
cal.source = src;
cal.title = @"CoolCal";
NSError* err;
BOOL ok = [self.database saveCalendar:cal commit:YES error:&err];
if (!ok) {
 NSLog(@"save calendar %@", err.localizedDescription);
 return;
}
NSLog(@"%@", @"no errors");

EKEvent is a subclass of EKCalendarItem, from which it inherits some of its important
properties. If you’ve ever used the Calendar app in iOS or OS X, you already have a sense
for how an EKEvent can be configured. It has a title and optional notes. It is associated
with a calendar, as I’ve already said. It can have one or more alarms and one or more
recurrence rules; I’ll talk about both of those in a moment. All of that is inherited from
EKCalendarItem. EKEvent itself adds the all-important startDate and endDate prop‐
erties; these are NSDates and involve both date and time. If the event’s allDay property
is YES, the time aspect of its dates is ignored; the event is associated with a day or a
stretch of days as a whole. If the event’s allDay property is NO, the time aspect of its
dates matters; a typical event will then usually be bounded by two times on the same
day.

Making an event is simple, if tedious. You must provide a startDate and an endDate!
The simplest way to construct dates is with NSDateComponents. I’ll create an event and
add it to our new calendar, which I’ll locate by its title. We really should be using the
calendarIdentifier to obtain our calendar; the title isn’t reliable, since the user might
change it, and since multiple calendars can have the same title. However, it’s only an
example:

if (!self.database)
 return;
// obtain calendar
EKCalendar* cal = nil;
NSArray* calendars =
 [self.database calendarsForEntityType:EKEntityTypeEvent];
for (cal in calendars) // (should be using identifier)
 if ([cal.title isEqualToString: @"CoolCal"])
 break;
if (!cal) {
 NSLog(@"%@", @"failed to find calendar");
 return;
}
// construct start and end dates
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents* comp = [NSDateComponents new];
comp.year = 2014;

726 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

comp.month = 8;
comp.day = 10;
comp.hour = 15;
NSDate* d1 = [greg dateFromComponents:comp];
comp.hour = comp.hour + 1;
NSDate* d2 = [greg dateFromComponents:comp];
// construct event
EKEvent* ev = [EKEvent eventWithEventStore:self.database];
ev.title = @"Take a nap";
ev.notes = @"You deserve it!";
ev.calendar = cal;
ev.startDate = d1;
ev.endDate = d2;
// save event
NSError* err;
BOOL ok =
 [self.database saveEvent:ev span:EKSpanThisEvent commit:YES error:&err];
if (!ok) {
 NSLog(@"save simple event %@", err.localizedDescription);
 return;
}
NSLog(@"%@", @"no errors");

An alarm is an EKAlarm, a very simple class; it can be set to fire either at an absolute
date or at a relative offset from the event time. On an iOS device, an alarm fires through
a local notification (Chapter 13). We could easily have added an alarm to our event as
we were configuring it:

EKAlarm* alarm = [EKAlarm alarmWithRelativeOffset:-3600]; // one hour before
[ev addAlarm:alarm];

Recurrence
Recurrence is embodied in a recurrence rule (EKRecurrenceRule); a calendar item can
have multiple recurrence rules, which you manipulate through its recurrenceRules
property, along with methods addRecurrenceRule: and removeRecurrenceRule:. A
simple EKRecurrenceRule is described by three properties:
Frequency

By day, by week, by month, or by year.

Interval
Fine-tunes the notion “by” in the frequency. A value of 1 means “every.” A value of
2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an EKRecurrenceEnd instance,
describing the limit of the event’s recurrence either as an end date or as a maximum
number of occurrences.

Calendar Database | 727

www.it-ebooks.info

http://www.it-ebooks.info/

The options for describing a more complex EKRecurrenceRule are best summarized by
its initializer:

- (id)initRecurrenceWithFrequency:(EKRecurrenceFrequency)type
 interval:(NSInteger)interval
 daysOfTheWeek:(NSArray *)days
 daysOfTheMonth:(NSArray *)monthDays
 monthsOfTheYear:(NSArray *)months
 weeksOfTheYear:(NSArray *)weeksOfTheYear
 daysOfTheYear:(NSArray *)daysOfTheYear
 setPositions:(NSArray *)setPositions
 end:(EKRecurrenceEnd *)end

The meanings of all these parameters are mostly obvious from their names. The arrays
are of NSNumber, except for daysOfTheWeek, which is an array of EKRecurrenceDay‐
OfWeek, a class that allows specification of a week number as well as a day number so
that you can say things like “the fourth Thursday of the month.” Many of these values
can be negative to indicate counting backward from the last one. Numbers are all 1-
based, not 0-based. The setPositions parameter is an array of numbers filtering the
occurrences defined by the rest of the specification against the interval; for example, if
daysOfTheWeek is Sunday, -1 means the final Sunday. You can use any valid combination
of parameters; the penalty for an invalid combination is a return value of nil.

An EKRecurrenceRule is intended to embody the RRULE event component in the
iCalendar standard specification (originally published as RFC 2445 and recently su‐
perseded by RFC 5545, http://datatracker.ietf.org/doc/rfc5545); in fact, the documen‐
tation tells you how each EKRecurrenceRule property corresponds to an RRULE
attribute, and if you log an EKRecurrenceRule with NSLog, what you’re shown is the
underlying RRULE. RRULE can describe some amazingly sophisticated recurrence rules,
such as this one:

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

That means “every Sunday in January, every other year.” Let’s form this rule. Observe
that we should attach it to an event whose startDate and endDate make sense as an
example of the rule — that is, on a Sunday in January. Fortunately, NSDateComponents
makes that easy:

// ... make sure we have authorization ...
// ... obtain our calendar (cal) ...
// form the rule
EKRecurrenceDayOfWeek* everySunday = [EKRecurrenceDayOfWeek dayOfWeek:1];
NSNumber* january = @1;
EKRecurrenceRule* recur =
 [[EKRecurrenceRule alloc]
 initRecurrenceWithFrequency:EKRecurrenceFrequencyYearly // every year
 interval:2 // no, every *two* years!
 daysOfTheWeek:@[everySunday]
 daysOfTheMonth:nil

728 | Chapter 19: Calendar

www.it-ebooks.info

http://datatracker.ietf.org/doc/rfc5545
http://www.it-ebooks.info/

 monthsOfTheYear:@[january]
 weeksOfTheYear:nil
 daysOfTheYear:nil
 setPositions: nil
 end:nil];
// create event with this rule
EKEvent* ev = [EKEvent eventWithEventStore:self.database];
ev.title = @"Mysterious biennial Sunday-in-January morning ritual";
[ev addRecurrenceRule: recur];
ev.calendar = cal;
// need a start date and end date
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents* comp = [NSDateComponents new];
comp.year = 2014;
comp.month = 1;
comp.weekday = 1; // Sunday
comp.weekdayOrdinal = 1; // *first* Sunday
comp.hour = 10;
ev.startDate = [greg dateFromComponents:comp];
comp.hour = 11;
ev.endDate = [greg dateFromComponents:comp];
// save the event
NSError* err;
BOOL ok = [self.database saveEvent:ev span:EKSpanFutureEvents
 commit:YES error:&err];
if (!ok) {
 NSLog(@"save recurring event %@", err.localizedDescription);
 return;
}
NSLog(@"%@", @"no errors");

In that code, the event we save into the database is a recurring event. When we save or
delete a recurring event, we must specify a span: argument. This is either EKSpanThis-
Event or EKSpanFutureEvents, and corresponds exactly to the two buttons the user
sees in the Calendar interface when saving or deleting a recurring event (Figure 19-1).
The buttons and the span types reflect their meaning exactly: the change affects either
this event alone, or this event plus all future (not past) recurrences. This choice deter‐
mines not only how this and future recurrences of the event are affected now, but also
how they relate to one another from now on.

Fetching Events
Now let’s talk about how to extract an event from the database. One way, as I mentioned
earlier, is by its unique identifier (calendarItemIdentifier). Not only is this identifier
a fast and unique way to obtain an event, but also it’s just a string, which means that it
persists even if the EKEventStore subsequently goes out of existence. Remember to
obtain it, though, while the EKEventStore is still in existence; an EKEvent drawn from
the database loses its meaning and its usability if the EKEventStore instance is destroyed.

Calendar Database | 729

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 19-1. The user specifies a span

(Even this unique identifier might not survive changes in a calendar between launches
of your app.)

You can also extract events from the database by matching a predicate (NSPredicate).
To form this predicate, you specify a start and end date and an array of eligible calendars,
and call the EKEventStore method predicateForEventsWithStartDate:end-

Date:calendars:. That’s the only kind of predicate you can use, so any further filtering
of events is then up to you. In this example, I’ll gather all events from our “CoolCal”
calendar; because I have to specify a date range, I ask for events occurring over the next
year. Because enumerateEventsMatchingPredicate: can be time-consuming, it’s best
to run it on a background thread (Chapter 25):

// ... make sure we have authorization ...
// ... obtain our calendar (cal) ...
NSDate* d1 = [NSDate date]; // today
// how to do calendrical arithmetic
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents* comp = [NSDateComponents new];
comp.year = 1; // we're going to add 1 to the year
NSDate* d2 = [greg dateByAddingComponents:comp toDate:d1 options:0];
NSPredicate* pred =
 [self.database predicateForEventsWithStartDate:d1 endDate:d2
 calendars:@[cal]];
NSMutableArray* marr = [NSMutableArray array];
dispatch_async(dispatch_get_global_queue(0, 0), ^{
 [self.database enumerateEventsMatchingPredicate:pred usingBlock:
 ^(EKEvent *event, BOOL *stop) {
 [marr addObject: event];
 if ([event.title rangeOfString:@"nap"].location != NSNotFound)
 self.napid = event.calendarItemIdentifier;
 }];
 [marr sortUsingSelector:@selector(compareStartDateWithEvent:)];
 NSLog(@"%@", marr);
});

730 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

That example shows you what I mean about further filtering of events. I obtain the “nap”
event and the “mysterious biennial Sunday-in-January morning ritual” events, but the
“nap” event is the one I really want, so I filter further to find it in the block. (In real life,
if I weren’t also testing this call by collecting all returned events into an array, I would
then set *stop to YES to end the enumeration.) The events are enumerated in no par‐
ticular order; the convenience method compareStartDateWithEvent: is provided as a
sort selector to put them in order by start date.

When you extract events from the database, event recurrences are treated as separate
events (as happened in the preceding example). Recurrences of the same event will have
different start and end dates but the same identifier. When you fetch an event by iden‐
tifier, you get the earliest event with that identifier. This makes sense, because if you’re
going to make a change affecting this and future recurrences of the event, you need the
option to start with the earliest possible recurrence (so that “future” means “all”).

Reminders
A reminder (EKReminder) is very parallel to an event (EKEvent); they both inherit from
EKCalendarItem, so a reminder has a calendar (which the Reminders app refers to as a
“list”), a title, notes, alarms, recurrence rules, and attendees. Instead of a start date and
an end date, it has a start date, a due date, a completion date, and a completed property.
The start date and due date are expressed directly as NSDateComponents, so you can
supply as much detail as you wish: if you don’t include any time components, it’s an all-
day reminder.

To illustrate, I’ll make an all-day reminder for today:

// specify calendar
EKCalendar* cal = [self.database defaultCalendarForNewReminders];
if (!cal) {
 NSLog(@"%@", @"failed to find calendar");
 return;
}
// create and configure the reminder
EKReminder* rem = [EKReminder reminderWithEventStore:self.database];
rem.title = @"Get bread";
rem.calendar = cal;
NSDate* today = [NSDate date];
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
unsigned comps =
 NSYearCalendarUnit | NSMonthCalendarUnit | NSDayCalendarUnit;
rem.dueDateComponents = [greg components:comps fromDate:today];
// save the reminder
NSError* err = nil;
BOOL ok = [self.database saveReminder:rem commit:YES error:&err];
if (!ok) {

Calendar Database | 731

www.it-ebooks.info

http://www.it-ebooks.info/

 NSLog(@"save calendar %@", err.localizedDescription);
 return;
}
NSLog(@"%@", @"no error");

When you call fetchRemindersMatchingPredicate:completion:, the possible pred‐
icates let you fetch all reminders in given calendars, incomplete reminders, or completed
reminders.

Proximity Alarms
A proximity alarm is triggered by the user’s approaching or leaving a certain location
(also known as geofencing). This is appropriate particularly for reminders: one might
wish to be reminded of something when approaching the place where that thing can be
accomplished. To form the location, you’ll need to use the CLLocation class (see Chap‐
ter 22). Here, I’ll attach a proximity alarm to a reminder (rem); the alarm will fire when
I’m near my local Trader Joe’s:

EKAlarm* alarm = [EKAlarm new];
EKStructuredLocation *loc =
 [EKStructuredLocation locationWithTitle:@"Trader Joe's"];
loc.geoLocation =
 [[CLLocation alloc] initWithLatitude:34.271848 longitude:-119.247714];
loc.radius = 10*1000; // meters
alarm.structuredLocation = loc;
alarm.proximity = EKAlarmProximityEnter; // "geofence": alarm when *arriving*
[rem addAlarm:alarm];

If Reminders doesn’t have location access, it might ask for it when you save a reminder
with a proximity alarm into the database. New in iOS 7, background use of geofencing
can be disabled by the user (in the Settings app, under General → Background App
Refresh). If you add a proximity alarm to the event database and the Reminders app
can’t perform background geofencing, the alarm will not fire (unless the Reminders app
is frontmost).

Calendar Interface
The Event Kit UI framework provides three classes that manage views for letting the
user work with events and calendars:
EKEventViewController

Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

EKCalendarChooser
Allows the user to pick a calendar.

732 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 19-2. The event interface

These view controllers automatically listen for changes in the database and, if needed,
will automatically call refresh on the information being edited, updating their display
to match. If a view controller is displaying an event in the database and the database is
deleted while the user is viewing it, the delegate will get the same notification as if the
user had deleted it.

EKEventViewController
EKEventViewController shows the event display listing the event’s title, date and time,
calendar, alert, and notes, familiar from the Calendar app (Figure 19-2). To use
EKEventViewController, instantiate it, give it an event in the database, and push it onto
the stack of an existing UINavigationController. The user’s only way out will be the back
button.

Do not use EKEventViewController for an event that isn’t in the
database, or at a time when the database isn’t open! It won’t func‐
tion correctly if you do.

So, for example:

EKEventViewController* evc = [EKEventViewController new];
evc.event = ev; // must be an event in the database...
// ...and the database must be open (like our retained self.database)
evc.delegate = self;
evc.allowsEditing = YES;
[self.navigationController pushViewController:evc animated:YES];

Calendar Interface | 733

www.it-ebooks.info

http://www.it-ebooks.info/

If allowsEditing is YES (the default), an Edit button appears in the navigation bar, and
by tapping this, the user can edit the various aspects of an event in the same interface
as the Calendar app, including the Delete button at the bottom. If the user ultimately
deletes the event, or edits it and taps Done, the change is saved into the database.

Even if allowsEditing is NO, the user can change what calendar this
event belongs to, and can change an alert’s firing time if there is one.
I regard this as a bug.

You can assign the EKEventViewController a delegate (EKEventViewDelegate) in order
to hear about what the user did. However, the delegate method, eventView-
Controller:didCompleteWithAction:, is called only if the user deletes an event or
accepts an invitation. There is no EKEventViewController delegate method informing
you that the user has left the interface (though of course you can learn this in some other
way); if you want to know what editing the user may have performed on your event,
you’ll have to examine the event in the database.

On the iPad, you use the EKEventViewController as the root view of a navigation con‐
troller created on the fly, and set the navigation controller as a popover’s view controller.
A Done button appears as the right bar button; the delegate method eventView-
Controller:didCompleteWithAction: is called if the user taps the Done button, and
you’ll need to dismiss the popover there. If allowsEditing is YES, the left bar button
is the Edit button. Here’s a complete example that works both on the iPhone and on the
iPad:

- (IBAction) showEventUI:(id)sender {
 if (!self.database || !self.napid)
 return;
 // get event
 EKEvent* ev =
 (EKEvent*)[self.database calendarItemWithIdentifier:self.napid];
 if (!ev) {
 NSLog(@"failed to retrieve event");
 return;
 }
 // create and configure the controller
 EKEventViewController* evc = [EKEventViewController new];
 evc.event = ev;
 evc.delegate = self;
 evc.allowsEditing = YES;
 // on iPhone, push onto existing navigation interface
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self.navigationController pushViewController:evc animated:YES];
 // on iPad, create navigation interface in popover
 else {
 UINavigationController* nc =
 [[UINavigationController alloc] initWithRootViewController:evc];

734 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nc];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}
-(void)eventViewController:(EKEventViewController *)controller
 didCompleteWithAction:(EKEventViewAction)action {
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 }
}

EKEventEditViewController
EKEventEditViewController (a UINavigationController) presents the interface for ed‐
iting an event. To use it, set its eventStore and editViewDelegate (EKEventEditView‐
Delegate, not delegate), and optionally its event, and present it as a presented view
controller (or, on the iPad, in a popover). The event can be nil for a completely empty
new event; it can be an event you’ve just created (and possibly partially configured) and
not stored in the database, or it can be an existing event from the database. If access to
the database has been denied, the interface will be empty (like Figure 17-2) and the user
will simply cancel.

The delegate method eventEditViewControllerDefaultCalendarForNewEvents:

may be implemented to specify what calendar a completely new event should be assigned
to. If you’re partially constructing a new event, you can assign it a calendar then, and of
course an event from the database already has a calendar.

You must implement the delegate method eventEditViewController:didComplete-
WithAction: so that you can dismiss the presented view. Possible actions are that the
user cancelled, saved the edited event into the database, or deleted an already existing
event from the database. You can get a reference to the edited event as the EKEvent‐
EditViewController’s event.

On the iPad, the presented view works, or you can present the EKEventEditView‐
Controller as a popover. You’ll use eventEditViewController:didCompleteWith-
Action: to dismiss the popover; the user can also dismiss it by tapping outside it (in
which case the user’s changes are not saved to the database). Here’s a complete example
that works on both platforms to let the user create an event from scratch:

- (IBAction)editEvent:(id)sender {
 EKEventEditViewController* evc = [EKEventEditViewController new];
 evc.eventStore = self.database;
 evc.editViewDelegate = self;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)

Calendar Interface | 735

www.it-ebooks.info

http://www.it-ebooks.info/

 [self presentViewController:evc animated:YES completion:nil];
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:evc];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}
-(void)eventEditViewController:(EKEventEditViewController *)controller
 didCompleteWithAction:(EKEventEditViewAction)action {
 NSLog(@"%@", controller.event); // could do something with event here
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 } else if (self.presentedViewController)
 [self dismissViewControllerAnimated:YES completion:nil];
}

EKCalendarChooser
EKCalendarChooser displays a list of calendars. To use it, call initWithSelection-
Style:displayStyle:entityType:eventStore:, set a delegate (EKCalendar‐
ChooserDelegate), create a UINavigationController with the EKCalendarChooser as its
root view controller, and show the navigation controller as a presented view controller
(iPhone) or a popover (iPad). The selectionStyle dictates whether the user can pick
one or multiple calendars; the displayStyle states whether all calendars or only writ‐
able calendars will be displayed. If access to the database has been denied, the interface
will be empty (like Figure 17-2) and the user will simply cancel.

Two properties, showsCancelButton and showsDoneButton, determine whether these
buttons will appear in the navigation bar. In a presented view controller, you’ll certainly
show at least one and probably both, because otherwise the user has no way to dismiss
the presented view. In a popover, though, the user can dismiss the popover by tapping
elsewhere, and your delegate will hear about what the user does in the view, so depending
on the circumstances you might not need either button; for example, if your purpose is
to let the user change what calendar an existing event belongs to, this might be consid‐
ered a reversible, nondestructive action, so it wouldn’t need the overhead of Cancel and
Done buttons.

There are three delegate methods, all of them required:

• calendarChooserSelectionDidChange:

• calendarChooserDidFinish:

• calendarChooserDidCancel:

736 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

(“Finish” means the user tapped the Done button.) In the Finish and Cancel methods,
you’ll certainly dismiss the presented view controller or popover. What else you do will
depend on the circumstances.

In this example, we implement a potentially destructive action: we offer to delete the
selected calendar. Because this is potentially destructive, we pass through a UIAction‐
Sheet for confirmation. There is no way to pass context information into a UIAction‐
Sheet, so we store the chosen calendar’s identifier in an instance variable:

- (IBAction)deleteCalendar:(id)sender {
 EKCalendarChooser* choo =
 [[EKCalendarChooser alloc]
 initWithSelectionStyle:EKCalendarChooserSelectionStyleSingle
 displayStyle:EKCalendarChooserDisplayAllCalendars
 entityType:EKEntityTypeEvent
 eventStore:self.database];
 choo.showsDoneButton = YES;
 choo.showsCancelButton = YES;
 choo.delegate = self;
 UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:choo];
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentViewController:nav animated:YES completion:nil];
 // on iPad, create navigation interface in popover
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nav];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}
-(void)calendarChooserDidCancel:(EKCalendarChooser *)calendarChooser {
 NSLog(@"chooser cancel");
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 } else if (self.presentedViewController)
 [self dismissViewControllerAnimated:YES completion:nil];
}
-(void)calendarChooserDidFinish:(EKCalendarChooser *)calendarChooser {
 NSLog(@"chooser finish");
 NSSet* cals = calendarChooser.selectedCalendars;
 if (cals && cals.count) {
 self.calsToDelete = [cals valueForKey:@"calendarIdentifier"];
 UIActionSheet* act =
 [[UIActionSheet alloc] initWithTitle:@"Delete selected calendar?"
 delegate:self cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Delete" otherButtonTitles: nil];
 [act showInView:calendarChooser.view];
 return;
 }

Calendar Interface | 737

www.it-ebooks.info

http://www.it-ebooks.info/

 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 } else if (self.presentedViewController)
 [self dismissViewControllerAnimated:YES completion:nil];
}
-(void)calendarChooserSelectionDidChange:(EKCalendarChooser*)calendarChooser {
 NSLog(@"chooser change");
}
-(void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 NSString* title = [actionSheet buttonTitleAtIndex:buttonIndex];
 if ([title isEqualToString:@"Delete"]) {
 for (id ident in self.calsToDelete) {
 EKCalendar* cal = [self.database calendarWithIdentifier:ident];
 if (cal)
 [self.database removeCalendar:cal commit:YES error:nil];
 }
 self.calsToDelete = nil;
 }
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 } else if (self.presentedViewController)
 [self dismissViewControllerAnimated:YES completion:nil];
}

738 | Chapter 19: Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Mail and Messages

Your app can present an interface allowing the user to edit and send a mail message or
an SMS message. Two view controller classes are provided by the Message UI frame‐
work; you’ll need to @import MessageUI. In addition, the Social framework lets you
post to Twitter or Facebook on the user’s behalf. You’ll need to @import Social. The
classes are:
MFMailComposeViewController

Allows composition and sending of a mail message.

MFMessageComposeViewController
Allows composition and sending of an SMS message.

SLComposeViewController
Allows composition and sending of a Twitter or Facebook post. Alternatively, you
can prepare and post a message directly using SLRequest.

UIActivityViewController (Chapter 13) also provides a unified interface for permitting
the user to choose any of the built-in messaging milieus and to send a message through
it. However, the Message UI framework and the Social framework remain important,
because the user can be presented with a message form without having to pass through
an activity view, and because you can fill in fields, such as the To field in a mail com‐
position form, that UIActivityViewController doesn’t let you fill in.

Mail Message
The MFMailComposeViewController class, a UINavigationController, allows the user
to edit a mail message. The user can attempt to send the message there and then, or can
cancel but save a draft, or can cancel completely. Before using this class to present a
view, call canSendMail; if the result is NO, go no further, as a negative result means that
the device is not configured for sending mail. A positive result does not mean that the

739

www.it-ebooks.info

http://www.it-ebooks.info/

device is connected to the network and can send mail right now, only that sending mail
is generally possible with this device; actually sending the mail (or storing it as a draft)
will be up to the device’s internal processes.

To use MFMailComposeViewController, instantiate it, provide a mailCompose-
Delegate (not delegate), and configure the message to any desired extent. Configu‐
ration methods are:

• setSubject:

• setToRecipients:

• setCcRecipients:

• setBccRecipients:

• setMessageBody:isHTML:

• addAttachmentData:mimeType:fileName:

Typically, you’ll show the MFMailComposeViewController as a presented view con‐
troller. This approach works equally well on the iPad; use UIModalPresentationForm-
Sheet if a fullscreen presentation feels too overwhelming. The user can later alter your
preset configurations, at which time the message details will be out of your hands.

The delegate (MFMailComposeViewControllerDelegate) will receive the message mail-
ComposeController:didFinishWithResult:error: describing the user’s final action,
which might be any of these:

• MFMailComposeResultCancelled

• MFMailComposeResultSaved

• MFMailComposeResultSent

• MFMailComposeResultFailed

Dismissing the presented view is up to you, in the delegate method. Here’s a minimal
example:

- (IBAction)doMail:(id)sender {
 BOOL ok = [MFMailComposeViewController canSendMail];
 if (!ok) return;
 MFMailComposeViewController* vc = [MFMailComposeViewController new];
 vc.mailComposeDelegate = self;
 [self presentViewController:vc animated:YES completion:nil];
}
-(void)mailComposeController:(MFMailComposeViewController *)controller
 didFinishWithResult:(MFMailComposeResult)result

740 | Chapter 20: Mail and Messages

www.it-ebooks.info

http://www.it-ebooks.info/

 error:(NSError *)error {
 // could do something with result/error
 [self dismissViewControllerAnimated:YES completion:nil];
}

Text Message
The MFMessageComposeViewController class is a UINavigationController subclass.
Before using this class to present a view, call canSendText; if the result is NO, go no
further. The user has no option to save an SMS message as a draft, so even if this device
sometimes can send text, there’s no point proceeding if the device can’t send text now.
However, you can register for the MFMessageComposeViewControllerTextMessage-
AvailabilityDidChangeNotification in the hope that the device might later be able
to send text; if the notification arrives, examine its MFMessageComposeViewController-
TextMessageAvailabilityKey.

To use MFMessageComposeViewController, instantiate the class, give it a message-
ComposeDelegate (not delegate), and configure it as desired through the recipients
(phone number strings) and body properties. New in iOS 7, you can also configure the
message subject and provide attachments. For the subject, call the class method canSend-
Subject, and if it returns YES, you can set the subject. For attachments, call the class
method canSendAttachments, and if it returns YES, you may want to call isSupported-
AttachmentUTI: to see if a particular file type can be sent as an attachment; finally, call
addAttachmentURL:withAlternateFilename: (if you have a file URL) or add-
AttachmentData:typeIdentifier:filename:.

When you’ve finished configuring the MFMessageComposeViewController, show it as
a presented view controller. The user can later alter your preset configurations, at which
time the message details will be out of your hands.

The delegate (MFMessageComposeViewControllerDelegate) will receive the message
messageComposeViewController:didFinishWithResult: with a description of the
user’s final action, which might be any of these:

• MessageComposeResultCancelled

• MessageComposeResultSent

• MessageComposeResultFailed

Dismissing the presented view is up to you, in the delegate method. Here’s a minimal
example:

- (IBAction)doMessage:(id)sender {
 BOOL ok = [MFMessageComposeViewController canSendText];
 if (!ok) return;
 MFMessageComposeViewController* vc = [MFMessageComposeViewController new];

Text Message | 741

www.it-ebooks.info

http://www.it-ebooks.info/

 vc.messageComposeDelegate = self;
 [self presentViewController:vc animated:YES completion:nil];
}
-(void)messageComposeViewController:(MFMessageComposeViewController*)controller
 didFinishWithResult:(MessageComposeResult)result {
 // could do something with result
 [self dismissViewControllerAnimated:YES completion:nil];
}

Twitter Post
The interface for letting the user construct a Twitter post is SLComposeViewController,
part of the Social framework. Twitter, together with Facebook (and Weibo), are repre‐
sented by constant strings. You’ll use the class method isAvailableForServiceType:
to learn whether the desired service is available; if it is, you can instantiate SLCompo‐
seViewController for that service and present it as a presented view controller. Instead
of a delegate, SLComposeViewController has a completionHandler. Set it to a block
taking one parameter, an SLComposeViewControllerResult. In the block, dismiss the
view controller. The result will be one of these:

• SLComposeViewControllerResultCancelled

• SLComposeViewControllerResultDone

Here’s a minimal example:

BOOL ok =
 [SLComposeViewController
 isAvailableForServiceType:SLServiceTypeTwitter];
if (!ok) return;
SLComposeViewController* vc =
 [SLComposeViewController
 composeViewControllerForServiceType:SLServiceTypeTwitter];
if (!vc) return;
vc.completionHandler = ^(SLComposeViewControllerResult result) {
 // could do something with result
 [self dismissViewControllerAnimated:YES completion:nil];
};
[self presentViewController:vc animated:YES completion:nil];

You can also, with the user’s permission, gain secure access to the user’s account infor‐
mation through the ACAccountStore class (part of the Accounts framework). Using
this, along with the SLRequest class, your app can construct and post a message direct‐
ly, without passing through the message composition interface. The ACAccountStore
class can manipulate accounts in other ways as well.

742 | Chapter 20: Mail and Messages

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Maps

Your app can imitate the Maps app, displaying a map interface and placing annotations
and overlays on the map. The relevant classes are provided by the Map Kit framework.
You’ll need to @import MapKit. The classes used to describe locations in terms of latitude
and longitude, whose names start with “CL”, come from the Core Location framework,
but you won’t need to import it explicitly.

Displaying a Map
A map is displayed through a UIView subclass, an MKMapView. An MKMapView in‐
stance can be created in code or through the nib editor.

To instantiate an MKMapView from the nib, you’ll need to link your
target explicitly to the MapKit framework (under Linked Frame‐
works and Libraries in the General tab when you edit the target);
otherwise, your app will crash when the nib tries to load.

A map has a type, which is one of the following:

• MKMapTypeStandard

• MKMapTypeSatellite

• MKMapTypeHybrid

The area displayed on the map is its region, an MKCoordinateRegion. This is a struct
comprising a location (a CLLocationCoordinate2D), describing the latitude and lon‐
gitude of the point at the center of the region (the map’s centerCoordinate), along with
a span (an MKCoordinateSpan), describing the quantity of latitude and longitude

743

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-1. A map view showing a happy place

embraced by the region and hence the scale of the map. Convenience functions help
you construct an MKCoordinateRegion.

In this example, I’ll initialize the display of an MKMapView (self.map) to show a place
where I like to go dirt biking (Figure 21-1):

CLLocationCoordinate2D loc =
 CLLocationCoordinate2DMake(34.927752,-120.217608);
MKCoordinateSpan span = MKCoordinateSpanMake(.015, .015);
MKCoordinateRegion reg = MKCoordinateRegionMake(loc, span);
self.map.region = reg;

Data types such as MKCoordinateSpan are documented in the Map
Kit Data Types Reference, but convenience functions such as
MKCoordinateSpanMake are documented in the Map Kit Functions
Reference — and there are some useful constants in the Map Kit
Constants Reference. For a better overview, refer to the MKGeome‐
try.h header.

An MKCoordinateSpan is described in degrees of latitude and longitude. It may be,
however, that what you know is the region’s proposed dimensions in meters. To convert,
call MKCoordinateRegionMakeWithDistance. The ability to perform this conversion is
important, because an MKMapView shows the world through a Mercator projection,
where longitude lines are parallel and equidistant, and scale increases at higher latitudes.

I happen to know that the area I want to display is about 1200 meters on a side. Hence,
this is another way of displaying roughly the same region:

744 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

CLLocationCoordinate2D loc =
 CLLocationCoordinate2DMake(34.927752,-120.217608);
MKCoordinateRegion reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200);
self.map.region = reg;

Another way of describing a map region is with an MKMapRect, a struct built up from
MKMapPoint and MKMapSize. The earth has already been projected onto the map for
us, and now we are describing a rectangle of that map, in terms of the units in which
the map is drawn. The exact relationship between an MKMapPoint and the corre‐
sponding latitude/longitude coordinates is arbitrary and of no interest; what matters is
that you can ask for the conversion, along with the ratio of points to meters (which will
vary with latitude):

• MKMapPointForCoordinate

• MKCoordinateForMapPoint

• MKMetersPerMapPointAtLatitude

• MKMapPointsPerMeterAtLatitude

• MKMetersBetweenMapPoints

To determine what the map view is showing in MKMapRect terms, use its visibleMap-
Rect property. Thus, this is yet another way of displaying approximately the same region:

CLLocationCoordinate2D loc =
 CLLocationCoordinate2DMake(34.927752,-120.217608);
MKMapPoint pt = MKMapPointForCoordinate(loc);
double w = MKMapPointsPerMeterAtLatitude(loc.latitude) * 1200;
self.map.visibleMapRect = MKMapRectMake(pt.x - w/2.0, pt.y - w/2.0, w, w);

A map of the entire world displays MKMapRectWorld. New in iOS 7,
such a map may be scrolled continuously left or right (east or west); in
previous versions of iOS, it stopped at the 180th meridian, just as it
stops at zero latitude north and south.

In none of those examples did I bother with the question of the actual dimensions of
the map view itself. I simply threw a proposed region at the map view, and it decided
how best to portray the corresponding area. Values you assign to the map’s region and
visibleMapRect are unlikely to be the exact values the map adopts in any case; that’s
because the map view will optimize for display without distorting the map’s scale. You
can perform this same optimization in code by calling these methods:

• regionThatFits:

• mapRectThatFits:

Displaying a Map | 745

www.it-ebooks.info

http://www.it-ebooks.info/

• mapRectThatFits:edgePadding:

By default, the user can zoom and scroll the map with the usual gestures; you can turn
this off by setting the map view’s zoomEnabled and scrollEnabled to NO. Usually you
will set them both to YES or both to NO. For further customization of an MKMapView’s
response to touches, use a UIGestureRecognizer (Chapter 5).

You can change programmatically the region displayed, optionally with animation, by
calling these methods:

• setRegion:animated:

• setCenterCoordinate:animated:

• setVisibleMapRect:animated:

• setVisibleMapRect:edgePadding:animated:

The map view’s delegate (MKMapViewDelegate) is notified as the map loads and as the
region changes (including changes triggered programmatically):

• mapViewWillStartLoadingMap:

• mapViewDidFinishLoadingMap:

• mapViewDidFailLoadingMap:withError:

• mapView:regionWillChangeAnimated:

• mapView:regionDidChangeAnimated:

New in iOS 7, you can enable 3D viewing of the map (pitchEnabled), and there’s a large
and powerful API putting control of 3D viewing in your hands. Discussion of 3D map
viewing is beyond the scope of this chapter; an excellent WWDC 2013 video surveys
the topic.

Annotations
An annotation is a marker associated with a location on a map. To make an annotation
appear on a map, two objects are needed:
The object attached to the MKMapView

The annotation itself is attached to the MKMapView. It consists of any instance
whose class adopts the MKAnnotation protocol, which specifies a coordinate, a
title, and a subtitle for the annotation. You might have reason to define your
own class to handle this task, or you can use the simple built-in MKPointAnnotation
class. The annotation’s coordinate is crucial; it says where on earth the annotation
should be drawn. The title and subtitle are optional, to be displayed in a callout.

746 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass. This can be
extremely simple. In fact, even a nil MKAnnotationView might be perfectly satis‐
factory: it draws a red pin. If red is not your favorite color, a built-in MKAnnotation‐
View subclass, MKPinAnnotationView, displays a pin in red, green, or purple; by
convention you are supposed to use these colors for different purposes (destination
points, starting points, and user-specified points, respectively). For more flexibility,
you can provide your own UIImage as the MKAnnotationView’s image property.
And for even more flexibility, you can take over the drawing of an MKAnnotation‐
View by overriding drawRect: in a subclass.

Not only does an annotation require two separate objects, but in fact those objects do
not initially exist together. An annotation object has no pointer to the annotation view
object that will draw it. Rather, it is up to you to supply the annotation view object in
real time, on demand, in the MKMapView’s delegate. This architecture may sound
confusing, but in fact it’s a very clever way of reducing the amount of resources needed
at any given moment. An annotation itself is merely a lightweight object that a map can
always possess; the corresponding annotation view is a heavyweight object that is needed
only so long as that annotation’s coordinates are within the visible portion of the map.

Let’s add the simplest possible annotation to our map. The point where the annotation
is to go has been stored in an instance variable:

self.annloc = CLLocationCoordinate2DMake(34.923964,-120.219558);

We create the annotation, configure its properties, and add it to the MKMapView:

MKPointAnnotation* ann = [MKPointAnnotation new];
ann.coordinate = self.annloc;
ann.title = @"Park here";
ann.subtitle = @"Fun awaits down the road!";
[self.map addAnnotation:ann];

That code is sufficient to produce Figure 21-2. I didn’t implement any MKMapView
delegate methods, so the MKAnnotationView is nil. But a nil MKAnnotationView, as
I’ve already said, produces a red pin. I’ve also tapped the annotation, to display its callout,
containing the annotation’s title and subtitle.

Custom Annotation View
The location marked by our annotation is the starting point of a suggested dirt bike ride,
so by convention the pin should be green. We can easily create a green pin using
MKPinAnnotationView, which has a pinColor property. To supply the annotation view,
we must give the map view a delegate (MKMapViewDelegate) and implement map-
View:viewForAnnotation:.

Annotations | 747

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-2. A simple annotation

The structure of mapView:viewForAnnotation: is rather similar to the structure of
tableView:cellForRowAtIndexPath: (Chapter 8), which is not surprising, considering
that they both do the same sort of thing. Recall that the goal of tableView:cellForRow-
AtIndexPath: is to allow the table view to reuse cells, so that at any given moment only
as many cells are needed as are visible in the table view, regardless of how many rows
the table as a whole may consist of. The same thing holds for a map and its annotation
views. The map may have a huge number of annotations, but it needs to display anno‐
tation views for only those annotations that are within its current region. Any extra
annotation views that have been scrolled out of view can thus be reused and are held
for us by the map view in a cache for exactly this purpose.

So, in mapView:viewForAnnotation:, we start by calling dequeueReusableAnnotation-
ViewWithIdentifier: to see whether there’s an already existing annotation view that’s
not currently being displayed and that we might be able to reuse. If there isn’t, we create
one, attaching to it an appropriate reuse identifier.

Here’s our implementation of mapView:viewForAnnotation:. Observe that in creating
our green pin, we explicitly set its canShowCallout to YES, as this is not the default:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 MKAnnotationView* v = nil;
 if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"greenPin";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident];
 ((MKPinAnnotationView*)v).pinColor = MKPinAnnotationColorGreen;
 v.canShowCallout = YES;
 }

748 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

 v.annotation = annotation;
 }
 return v;
}

The structure of this implementation of mapView:viewForAnnotation: is typical
(though it seems pointlessly elaborate when we have only one annotation in our map):

We might have more than one reusable type of annotation view, so we must
somehow distinguish the possible cases, based on something about the incoming
annotation. Here, I use the annotation’s title as a distinguishing mark; later in
this chapter, I’ll suggest a much better approach.
For each reusable type, we proceed much as with table view cells. We have an
identifier that categorizes this sort of reusable view. We try to dequeue an unused
annotation view of the appropriate type, and if we can’t, we create one and
configure it.
Even if we can dequeue an unused annotation view, and even if we have no other
configuration to perform, we must associate the annotation view with the
incoming annotation by assigning the annotation to this annotation view’s
annotation property.

MKAnnotationView has one more option of which we might avail ourselves: when it
draws the annotation view (the pin), it can animate it into place, dropping it in the
manner familiar from the Maps app. All we have to do is add one line of code:

((MKPinAnnotationView*)v).animatesDrop = YES;

Now let’s go further. Instead of a green pin, we’ll substitute our own artwork. I’ll revise
the code at the heart of my mapView:viewForAnnotation: implementation, such that
instead of creating an MKPinAnnotationView, I create an instance of its superclass,
MKAnnotationView, and give it a custom image showing a dirt bike. The image is too
large, so I shrink the view’s bounds before returning it; I also move the view up a bit, so
that the bottom of the image is at the coordinates on the map (Figure 21-3):

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 MKAnnotationView* v = nil;
 if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"greenPin";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[MKAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident];
 v.image = [UIImage imageNamed:@"clipartdirtbike.gif"];
 CGRect f = v.bounds;
 f.size.height /= 3.0;
 f.size.width /= 3.0;
 v.bounds = f;

Annotations | 749

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-3. A custom annotation image

 v.centerOffset = CGPointMake(0,-20);
 v.canShowCallout = YES;
 }
 v.annotation = annotation;
 }
 return v;
}

For more flexibility, we can create our own MKAnnotationView subclass and endow it
with the ability to draw itself. At a minimum, such a subclass should override the ini‐
tializer and assign itself a frame, and should implement drawRect:. Here’s the imple‐
mentation for a class MyAnnotationView that draws a dirt bike:

- (id)initWithAnnotation:(id <MKAnnotation>)annotation
 reuseIdentifier:(NSString *)reuseIdentifier {
 self = [super initWithAnnotation:annotation
 reuseIdentifier:reuseIdentifier];
 if (self) {
 UIImage* im = [UIImage imageNamed:@"clipartdirtbike.gif"];
 self.frame =
 CGRectMake(0, 0, im.size.width/3.0 + 5, im.size.height/3.0 + 5);
 self.centerOffset = CGPointMake(0,-20);
 self.opaque = NO;
 }
 return self;
}
- (void) drawRect: (CGRect) rect {
 UIImage* im = [UIImage imageNamed:@"clipartdirtbike.gif"];
 [im drawInRect:CGRectInset(self.bounds, 5, 5)];
}

The corresponding implementation of mapView:viewForAnnotation: now has much
less work to do:

750 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 MKAnnotationView* v = nil;
 if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"bike";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[MyAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident];
 v.canShowCallout = YES;
 }
 v.annotation = annotation;
 }
 return v;
}

Custom Annotation Class
For ultimate flexibility, we can provide our own annotation class as well! A minimal
annotation class will look like this:

@interface MyAnnotation : NSObject <MKAnnotation>
@property (nonatomic) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title, *subtitle;
- (id)initWithLocation:(CLLocationCoordinate2D)coord;
@end
@implementation MyAnnotation
- (id)initWithLocation: (CLLocationCoordinate2D) coord {
 self = [super init];
 if (self) {
 self->_coordinate = coord;
 }
 return self;
}
@end

Now when we create our annotation and add it to our map, our code looks like this:

MyAnnotation* ann = [[MyAnnotation alloc] initWithLocation:self.annloc];
ann.title = @"Park here";
ann.subtitle = @"Fun awaits down the road!";
[self.map addAnnotation:ann];

A major advantage of this change appears in our implementation of mapView:viewFor-
Annotation:, where we test for the annotation type. Formerly, it wasn’t easy to distin‐
guish those annotations that needed to be drawn as a dirt bike; we were rather artificially
examining the title:

if ([annotation.title isEqualToString:@"Park here"]) {

Now, however, we can just look at the class:

if ([annotation isKindOfClass:[MyAnnotation class]]) {

Annotations | 751

www.it-ebooks.info

http://www.it-ebooks.info/

A further advantage of supplying our own annotation class is that this approach gives
our implementation room to grow. For example, at the moment, every MyAnnotation
is drawn as a bike, but we could now add another property to MyAnnotation that tells
us what drawing to use. We could also give MyAnnotation further properties saying
such things as which way the bike should face, what angle it should be drawn at, and so
on. Each instance of MyAnnotationView will end up with a reference to the corre‐
sponding MyAnnotation instance (as its annotation property), so it would be able to
read those MyAnnotation properties and draw itself appropriately.

Other Annotation Features
To add our own animation to an annotation view as it appears on the map, analogous
to the built-in MKPinAnnotationView pin-drop animation, we implement the map
view delegate method mapView:didAddAnnotationViews:. The key fact here is that at
the moment this method is called, the annotation view has been added but the redraw
moment has not yet arrived (Chapter 4). So if we animate the view, that animation will
be performed at the moment the view appears onscreen. Here, I’ll animate the opacity
of the view so that it fades in, while growing the view from a point to its full size; I
identify the view type through its reuseIdentifier:

- (void)mapView:(MKMapView *)mapView didAddAnnotationViews:(NSArray *)views {
 for (MKAnnotationView* aView in views) {
 if ([aView.reuseIdentifier isEqualToString:@"bike"]) {
 aView.transform = CGAffineTransformMakeScale(0, 0);
 aView.alpha = 0;
 [UIView animateWithDuration:0.8 animations:^{
 aView.alpha = 1;
 aView.transform = CGAffineTransformIdentity;
 }];
 }
 }
}

The callout is visible in Figure 21-2 and Figure 21-3 because before taking the screenshot,
I tapped on the annotation, thus selecting it. MKMapView has methods allowing an‐
notations to be selected or deselected programmatically, thus (by default) causing their
callouts to appear or disappear. The delegate has methods notifying you when the user
selects or deselects an annotation, and you are free to override your custom
MKAnnotationView’s setSelected:animated: if you want to change what happens
when the user taps an annotation. For example, you could show and hide a custom view
instead of, or in addition to, the built-in callout.

A callout can contain left and right accessory views; these are the MKAnnotationView’s
leftCalloutAccessoryView and rightCalloutAccessoryView. They are UIViews,
and should be small (less than 32 pixels in height). In iOS 7, the map view’s tint-
Color (see Chapter 12) affects such accessory view elements as template images and

752 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

button titles. You can respond to taps on these views as you would any view or control;
as a convenience, a delegate method mapView:annotationView:calloutAccessory-
ControlTapped: is called when the user taps an accessory view, provided it is a UI‐
Control.

An MKAnnotationView can optionally be draggable by the user; set its draggable
property to YES and implement the map view delegate’s mapView:annotationView:did-
ChangeDragState:fromOldState:. You can also customize changes to the appearance
of the view as it is dragged, by implementing your annotation view class’s setDrag-
State:animated: method. If you’re using a custom annotation class, you’ll also need
to implement its setCoordinate: method; in our custom annotation class, My‐
Annotation, that’s done automatically, as the coordinate property is synthesized and is
not readonly.

Certain annotation properties and annotation view properties are automatically ani‐
matable through view animation, provided you’ve implemented them in a KVO com‐
pliant way. For example, in MyAnnotation, the coordinate property is synthesized, so
it is KVO compliant; therefore, we are able to animate the shifting of the annotation’s
position:

[UIView animateWithDuration:0.25 animations:^{
 CLLocationCoordinate2D loc = ann.coordinate;
 loc.latitude = loc.latitude + 0.0005;
 loc.longitude = loc.longitude + 0.001;
 ann.coordinate = loc;
}];

MKMapView has extensive support for adding and removing annotations. New in iOS
7, given a bunch of annotations, you can ask your MKMapView to zoom in such a way
that all of them are showing (showAnnotations:animated:).

Annotation views don’t change size as the map is zoomed in and out, so if there are
several annotations and they are brought close together by the user zooming out, the
display can become crowded. Moreover, if too many annotations are being drawn si‐
multaneously in a map view, scroll and zoom performance can degrade. The only way
to prevent this is to respond to changes in the map’s visible region (for example, in the
delegate method mapView:regionDidChangeAnimated:) by removing and adding an‐
notations dynamically. This is a tricky problem; new in iOS 7, MKMapView’s
annotationsInMapRect: efficiently lists the annotations within a given MKMapRect,
but deciding which ones to eliminate or restore, and when, is still up to you.

Annotations | 753

www.it-ebooks.info

http://www.it-ebooks.info/

Overlays
An overlay differs from an annotation in being drawn entirely with respect to points on
the surface of the earth. Thus, whereas an annotation’s size is always the same, an over‐
lay’s size is tied to the zoom of the map view.

Overlays are implemented much like annotations. You provide an object that adopts
the MKOverlay protocol (which itself conforms to the MKAnnotation protocol) and
add it to the map view. When the map view delegate method mapView:viewFor-
Overlay: is called, you provide an MKOverlayRenderer and hand it the overlay object;
the overlay renderer then draws the overlay on demand. As with annotations, this ar‐
chitecture means that the overlay itself is a lightweight object, and the overlay is drawn
only if the part of the earth that the overlay covers is actually being displayed in the map
view. An MKOverlayRenderer has no reuse identifier.

MKOverlayRenderer and related overlay classes are new in iOS 7, replacing MKOverlay‐
View and its companions. This change is intended to improve performance; a separate
UIView for each overlay was too heavy-handed, since all the overlay really needs to
know is how to draw itself directly into the MKMapView’s sublayer hierarchy. Fortu‐
nately, the behavior of the new classes is just the same as that of the old classes; if you
have existing code from iOS 6 or before, globally replace “view” with “renderer” in the
names of all classes and methods, and your code will continue to work. (I actually
performed such a substitution, which is why the overlay renderer variables in my code
have names like v — they used to be views!)

Some built-in MKShape subclasses adopt the MKOverlay protocol: MKCircle,
MKPolygon, and MKPolyline. In parallel to those, MKOverlayRenderer has built-in
subclasses MKCircleRenderer, MKPolygonRenderer, and MKPolylineRenderer, ready
to draw the corresponding shapes. Thus, as with annotations, you can base your overlay
entirely on the power of existing classes.

In this example, I’ll use MKPolygonRenderer to draw an overlay triangle pointing up
the road from the parking place annotated in our earlier examples (Figure 21-4). We
add the MKPolygon as an overlay to our map view, and derive the MKPolygonRenderer
from it in our implementation of mapView:viewForOverlay:. First, the MKPolygon
overlay:

CGFloat lat = self.annloc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(self.annloc);
c.x += 150/metersPerPoint;
c.y -= 50/metersPerPoint;
MKMapPoint p1 = MKMapPointMake(c.x, c.y);
p1.y -= 100/metersPerPoint;
MKMapPoint p2 = MKMapPointMake(c.x, c.y);
p2.x += 100/metersPerPoint;
MKMapPoint p3 = MKMapPointMake(c.x, c.y);

754 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-4. An overlay

p3.x += 300/metersPerPoint;
p3.y -= 400/metersPerPoint;
MKMapPoint pts[3] = {
 p1, p2, p3
};
MKPolygon* tri = [MKPolygon polygonWithPoints:pts count:3];
[self.map addOverlay:tri];

Second, the delegate method, where we provide the MKPolygonRenderer:

- (MKOverlayRenderer *)mapView:(MKMapView *)mapView
 rendererForOverlay:(id <MKOverlay>)overlay {
 MKPolygonRenderer* v = nil;
 if ([overlay isKindOfClass:[MKPolygon class]]) {
 v = [[MKPolygonRenderer alloc] initWithPolygon:(MKPolygon*)overlay];
 v.fillColor = [[UIColor redColor] colorWithAlphaComponent:0.1];
 v.strokeColor = [[UIColor redColor] colorWithAlphaComponent:0.8];
 v.lineWidth = 2;
 }
 return v;
}

Custom Overlay Class
The triangle in Figure 21-4 is rather crude; I could draw a better arrow shape using a
CGPath (Chapter 2). The built-in MKOverlayRenderer subclass that lets me do that is
MKOverlayPathRenderer. To structure my use of MKOverlayRenderer similarly to the
preceding example, I’ll supply the CGPath when I add the overlay instance to the map
view. No built-in class lets me do that, so I’ll use a custom class, MyOverlay, that im‐
plements the MKOverlay protocol.

A minimal overlay class looks like this:

@interface MyOverlay : NSObject <MKOverlay>
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly) MKMapRect boundingMapRect;
- (id) initWithRect: (MKMapRect) rect;

Overlays | 755

www.it-ebooks.info

http://www.it-ebooks.info/

@end
@implementation MyOverlay
- (id) initWithRect: (MKMapRect) rect {
 self = [super init];
 if (self) {
 self->_boundingMapRect = rect;
 }
 return self;
}
- (CLLocationCoordinate2D) coordinate {
 MKMapPoint pt = MKMapPointMake(
 MKMapRectGetMidX(self.boundingMapRect),
 MKMapRectGetMidY(self.boundingMapRect));
 return MKCoordinateForMapPoint(pt);
}
@end

Our actual MyOverlay class will also have a path property; this will be a UIBezierPath
that holds our CGPath and supplies it to the MKOverlayRenderer.

Just as the coordinate property of an annotation tells the map view where on earth the
annotation is to be drawn, the boundingMapRect property of an overlay tells the map
view where on earth the overlay is to be drawn. Whenever any part of the boundingMap-
Rect is displayed within the map view’s bounds, the map view will have to concern itself
with drawing the overlay. With MKPolygon, we supplied the points of the polygon in
earth coordinates and the boundingMapRect was calculated for us. With our custom
overlay class, we must supply or calculate it ourselves.

At first it may appear that there is a typological impedance mismatch: the boundingMap-
Rect is an MKMapRect, whereas a CGPath is defined by CGPoints. However, it turns
out that these units are interchangeable: the CGPoints of our CGPath will be translated
for us directly into MKMapPoints on the same scale — that is, the distance between any
two CGPoints will be the distance between the two corresponding MKMapPoints.
However, the origins are different: the CGPath must be described relative to the top-left
corner of the boundingMapRect — that is, the boundingMapRect is described in earth
coordinates, but the top-left corner of the boundingMapRect is {0,0} as far as the
CGPath is concerned. (You might think of this difference as analogous to the difference
between a UIView’s frame and its bounds.)

To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75 meters,
because this turns out to be a good unit for positioning and laying out the arrow. In
other words, a line one unit long would in fact be 75 meters long if I were to arrive at
this actual spot on the earth and discover the overlay literally drawn on the ground.
Having derived this chunk (unit), I use it to lay out the boundingMapRect, four units
on a side and positioned slightly east and north of the annotation point (because that’s
where the road is). Then I simply construct the arrow shape within the 4×4-unit square,
rotating it so that it points in roughly the same direction as the road:

756 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

// start with our position and derive a nice unit for drawing
CGFloat lat = self.annloc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(self.annloc);
CGFloat unit = 75.0/metersPerPoint;
// size and position the overlay bounds on the earth
CGSize sz = CGSizeMake(4*unit, 4*unit);
MKMapRect mr =
 MKMapRectMake(c.x + 2*unit, c.y - 4.5*unit, sz.width, sz.height);
// describe the arrow as a CGPath
CGMutablePathRef p = CGPathCreateMutable();
CGPoint start = CGPointMake(0, unit*1.5);
CGPoint p1 = CGPointMake(start.x+2*unit, start.y);
CGPoint p2 = CGPointMake(p1.x, p1.y-unit);
CGPoint p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5);
CGPoint p4 = CGPointMake(p2.x, p2.y+unit*3);
CGPoint p5 = CGPointMake(p4.x, p4.y-unit);
CGPoint p6 = CGPointMake(p5.x-2*unit, p5.y);
CGPoint points[] = {
 start, p1, p2, p3, p4, p5, p6
};
// rotate the arrow around its center
CGAffineTransform t1 = CGAffineTransformMakeTranslation(unit*2, unit*2);
CGAffineTransform t2 = CGAffineTransformRotate(t1, -M_PI/3.5);
CGAffineTransform t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2);
CGPathAddLines(p, &t3, points, 7);
CGPathCloseSubpath(p);
// create the overlay and give it the path
MyOverlay* over = [[MyOverlay alloc] initWithRect:mr];
over.path = [UIBezierPath bezierPathWithCGPath:p];
CGPathRelease(p);
// add the overlay to the map
[self.map addOverlay:over];

The delegate method, where we provide the MKOverlayPathRenderer, is simple. We
pull the CGPath out of the MyOverlay instance and hand it to the MKOverlayPathRen‐
derer, also telling the MKOverlayPathRenderer how to stroke and fill that path:

- (MKOverlayRenderer*)mapView:(MKMapView*)mapView
 rendererForOverlay:(id <MKOverlay>)overlay {
 MKOverlayRenderer* v = nil;
 if ([overlay isKindOfClass: [MyOverlay class]]) {
 v = [[MKOverlayPathRenderer alloc] initWithOverlay:overlay];
 MKOverlayPathRenderer* vv = (MKOverlayPathRenderer*)v;
 vv.path = ((MyOverlay*)overlay).path.CGPath;
 vv.strokeColor = [UIColor blackColor];
 vv.fillColor = [[UIColor redColor] colorWithAlphaComponent:0.2];
 vv.lineWidth = 2;
 }
 return v;
}

Overlays | 757

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-5. A nicer overlay

The result is a much nicer arrow (Figure 21-5), and of course this technique can be
generalized to draw an overlay from any CGPath we like.

Custom Overlay Renderer
For full generality, you could define your own MKOverlayRenderer subclass; your sub‐
class must override and implement drawMapRect:zoomScale:inContext:. The incom‐
ing mapRect: parameter describes a tile of the visible map (not the size and position of
the overlay). The overlay itself is available through the inherited overlay property, and
conversion methods such as rectForMapRect: are provided for converting between the
map’s mapRect: coordinates and the overlay renderer’s graphics context coordinates.

In our example, we can move the entire functionality for drawing the arrow into an
MKOverlayRenderer subclass, which I’ll call MyOverlayRenderer. Its initializer takes
an angle: parameter, with which I’ll set its angle property; now our arrow can point
in any direction. Another nice benefit of this architectural change is that we can use the
zoomScale: parameter to determine the stroke width. For simplicity, our implementa‐
tion of drawMapRect:zoomScale:inContext: ignores the incoming mapRect value and
just draws the entire arrow every time it is called:

- (id) initWithOverlay:(id <MKOverlay>)overlay angle: (CGFloat) ang {
 self = [super initWithOverlay:overlay];
 if (self) {
 self->_angle = ang;
 }
 return self;
}
- (void)drawMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale
 inContext:(CGContextRef)context {
 NSLog(@"draw this: %@", MKStringFromMapRect(mapRect));
 CGContextSetStrokeColorWithColor(context, [UIColor blackColor].CGColor);
 CGContextSetFillColorWithColor(context,
 [[UIColor redColor] colorWithAlphaComponent:0.2].CGColor);
 CGContextSetLineWidth(context, 1.2/zoomScale);

758 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

 CGFloat unit = MKMapRectGetWidth([self.overlay boundingMapRect])/4.0;
 CGMutablePathRef p = CGPathCreateMutable();
 CGPoint start = CGPointMake(0, unit*1.5);
 CGPoint p1 = CGPointMake(start.x+2*unit, start.y);
 CGPoint p2 = CGPointMake(p1.x, p1.y-unit);
 CGPoint p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5);
 CGPoint p4 = CGPointMake(p2.x, p2.y+unit*3);
 CGPoint p5 = CGPointMake(p4.x, p4.y-unit);
 CGPoint p6 = CGPointMake(p5.x-2*unit, p5.y);
 CGPoint points[] = {
 start, p1, p2, p3, p4, p5, p6
 };
 // rotate the arrow around its center
 CGAffineTransform t1 = CGAffineTransformMakeTranslation(unit*2, unit*2);
 CGAffineTransform t2 = CGAffineTransformRotate(t1, self.angle);
 CGAffineTransform t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2);
 CGPathAddLines(p, &t3, points, 7);
 CGPathCloseSubpath(p);
 CGContextAddPath(context, p);
 CGContextDrawPath(context, kCGPathFillStroke);
 CGPathRelease(p);
}

To add the overlay to our map, we still must determine its MKMapRect:

CGFloat lat = self.annloc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(self.annloc);
CGFloat unit = 75.0/metersPerPoint;
// size and position the overlay bounds on the earth
CGSize sz = CGSizeMake(4*unit, 4*unit);
MKMapRect mr =
 MKMapRectMake(c.x + 2*unit, c.y - 4.5*unit, sz.width, sz.height);
MyOverlay* over = [[MyOverlay alloc] initWithRect:mr];
[self.map addOverlay:over];

The delegate, providing the overlay renderer, now has very little work to do; in our
implementation, it must supply an angle for the arrow:

- (MKOverlayRenderer *)mapView:(MKMapView *)mapView
 rendererForOverlay:(id <MKOverlay>)overlay {
 MKOverlayRenderer* v = nil;
 if ([overlay isKindOfClass: [MyOverlay class]]) {
 v = [[MyOverlayRenderer alloc] initWithOverlay: overlay
 angle: -M_PI/3.5];
 }
 return v;
}

Overlays | 759

www.it-ebooks.info

http://www.it-ebooks.info/

Other Overlay Features
Our MyOverlay class, adopting the MKOverlay protocol, also implements the
coordinate getter method to return the center of the boundingMapRect. This is crude,
but it’s a good minimal implementation. The purpose of the MKOverlay coordinate
property is to specify the position where you would add an annotation describing the
overlay. For example:

// ... create overlay and assign it a path as before ...
[self.map addOverlay:over];
MKPointAnnotation* annot = [MKPointAnnotation new];
annot.coordinate = over.coordinate;
annot.title = @"This way!";
[self.map addAnnotation:annot];

The MKOverlay protocol also lets you provide an implementation of intersectsMap-
Rect: to refine your overlay’s definition of what constitutes an intersection with itself;
the default is to use the boundingMapRect, but if your overlay is drawn in some non‐
rectangular shape, you might want to use its actual shape as the basis for determining
intersection.

Overlays are maintained by the map view as an array and are drawn from back to front
starting at the beginning of the array. MKMapView has extensive support for adding
and removing overlays, and for managing their layering order. New in iOS 7, when you
add the overlay to the map, you can say where you want it drawn among the map view’s
sublayers; methods for adding and inserting overlays have a level: parameter (for
example, addOverlay:level:). The levels are:

• MKOverlayLevelAboveRoads (and below labels)
• MKOverlayLevelAboveLabels

Figure 21-6 shows our overlay drawn with MKOverlayLevelAboveRoads; the road name
is drawn on top of the overlay, and stands out a little more clearly.

New in iOS 7 is the MKOverlayTile class, adopting the MKOverlay protocol. It lets you
superimpose, or even substitute (canReplaceMapContent), a map view’s drawing of the
map itself. It works much like CATiledLayer (Chapter 7): you provide a set of tiles at
multiple sizes to match multiple zoom levels, and the map view fetches and draws the
tiles needed for the current region and degree of zoom. In this way, for example, you
could integrate your own topo map into an MKMapView’s display. It takes a lot of tiles
to draw an area of any size, so MKOverlayTile starts with a URL, which can be a remote
URL for tiles to be fetched across the Internet.

760 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-6. An overlay drawn behind a road label

Map Kit and Current Location
A device may have sensors that can determine its current location (Chapter 22). Map
Kit provides simple integration with these facilities. Keep in mind that the user can turn
off these sensors or can refuse your app access to them (in the Settings app, under Privacy
→ Location Services), so trying to use these features may fail. Also, determining the
device’s location can take time.

You can ask an MKMapView in your app to display the device’s location just by setting
its showsUserLocation property to YES. If your app has not been granted or denied
access to Location Services, the system alert requesting authorization will appear. If
access is granted, the map automatically puts an annotation at that location.

The userLocation property of the map view is an MKUserLocation, adopting the
MKAnnotation protocol. It has a location property, a CLLocation, whose coordinate
is a CLLocationCoordinate2D; if the map view’s showsUserLocation is YES and the
map view has actually worked out the user’s location, the coordinate describes that
location. It also has title and subtitle properties, plus you can check whether it is
currently updating. In iOS 7, the default annotation appearance comes from the map
view’s tintColor. You are free to supply your own annotation view to be displayed for
this annotation, just as for any annotation.

Displaying the appropriate region of the map — that is, actually showing the part of the
world where the user is located — is the responsibility of the map view delegate’s map-
View:didUpdateUserLocation: method. Here’s an example:

- (void)mapView:(MKMapView *)mapView
 didUpdateUserLocation:(MKUserLocation *)userLocation {
 CLLocationCoordinate2D coordinate = userLocation.location.coordinate;
 MKCoordinateRegion reg =
 MKCoordinateRegionMakeWithDistance(coordinate, 600, 600);
 mapView.region = reg;
}

Map Kit and Current Location | 761

www.it-ebooks.info

http://www.it-ebooks.info/

You can ask the map view whether the user’s location, if known, is in the visible region
of the map (isUserLocationVisible).

MKMapView also has a userTrackingMode that you can set to determine how the user’s
real-world location should be tracked automatically by the map display; your options
are:
MKUserTrackingModeNone

If showsUserLocation is YES, the map gets an annotation at the user’s location, but
that’s all. Deciding whether to set the map’s region in mapView:didUpdateUser-
Location:, as I’ve just shown, is up to you.

MKUserTrackingModeFollow

Setting this mode sets showsUserLocation to YES. The map automatically centers
the user’s location and scales appropriately. You should not set the map’s region in
mapView:didUpdateUserLocation:, as you’ll be struggling against the tracking
mode’s attempts to do the same thing.

MKUserTrackingModeFollowWithHeading

Like MKUserTrackingModeFollow, but the map is also rotated so that the direction
the user is facing is up. In this case, the userLocation annotation also has a heading
property, a CLHeading; I’ll talk more about headings in Chapter 22.

When the userTrackingMode is one of the follow modes, if the user is left free to zoom
and scroll the map, and if the user scrolls in such a way that the user location annotation
is no longer visible, the userTrackingMode may be automatically changed back to
MKUserTrackingModeNone (and the user location annotation may be removed). You’ll
probably want to provide a way to let the user turn tracking back on again, or to toggle
among the three tracking modes.

One way to do that is with an MKUserTrackingBarButtonItem, a UIBarButtonItem
subclass. You initialize MKUserTrackingBarButtonItem with a map view, and its be‐
havior is automatic from then on: when the user taps it, it switches the map view to the
next tracking mode, and its icon reflects the current tracking mode. This is the same
bar button item that appears at the far left in the toolbar of the Maps app.

Alternatively, you can ask the Maps app to display the device’s current location, as I’ll
describe in the next section.

Communicating With the Maps App
Your app can communicate with the Maps app. For example, instead of displaying a
point of interest in a map view in our own app, we can ask the Maps app to display it.
The user could then bookmark or share the location. The channel of communication
between your app and the Maps app is the MKMapItem class.

762 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 21-7. The Maps app displays our point of interest

Here, I’ll ask the Maps app to display the same point marked by the annotation in our
earlier examples, on a hybrid map portraying the same region of the earth (Figure 21-7):

MKPlacemark* p =
 [[MKPlacemark alloc] initWithCoordinate:self.annloc
 addressDictionary:nil];
MKMapItem* mi = [[MKMapItem alloc] initWithPlacemark: p];
mi.name = @"A Great Place to Dirt Bike"; // label to appear in Maps app
NSValue* span = [NSValue valueWithMKCoordinateSpan:self.map.region.span];
[mi openInMapsWithLaunchOptions:
 @{MKLaunchOptionsMapTypeKey: @(MKMapTypeHybrid),
 MKLaunchOptionsMapSpanKey: span
 }
];

If you start with an MKMapItem returned by the class method mapItemForCurrent-
Location, you’re asking the Maps app to display the device’s current location. This call
doesn’t attempt to determine the device’s location, nor does it contain any location in‐
formation; it merely generates an MKMapItem which, when sent to the Maps app, will
cause it to attempt to determine (and display) the device’s location:

MKMapItem* mi = [MKMapItem mapItemForCurrentLocation];
[mi openInMapsWithLaunchOptions:
 @{MKLaunchOptionsMapTypeKey:@(MKMapTypeStandard)}];

Communicating With the Maps App | 763

www.it-ebooks.info

http://www.it-ebooks.info/

Geocoding, Searching, and Directions
Map Kit provides your app with three services that involve performing queries over the
network. These services take time and might not succeed at all, as they depend upon
network and server availability; moreover, results may be more or less uncertain. There‐
fore, they involve a completion handler that is called back asynchronously on the main
thread. The three services are:
Geocoding

Translation of a street address to a coordinate and vice versa. For example, what
address am I at right now? Or conversely, what are the coordinates of my home
address?

Searching
Lookup of possible matches for a natural language search. For example, what are
some Thai restaurants near me?

Directions
Lookup of turn-by-turn instructions and route mapping from a source location to
a destination location.

The completion handler is called, in every case, with a single response object plus an
NSError. If the response object is nil, the NSError tells you what the problem was.

Geocoding
Geocoding functionality is encapsulated in the CLGeocoder class. The response, if
things went well, is an NSArray of CLPlacemark objects, a series of guesses from best
to worst; if things went really well, the array will contain exactly one CLPlacemark.

A CLPlacemark can be used to initialize an MKPlacemark, a CLPlacemark subclass that
adopts the MKAnnotation protocol, and is therefore suitable to be handed directly over
to an MKMapView for display.

Here is an (unbelievably simpleminded) example that allows the user to enter an address
in a UISearchBar (Chapter 12) to be displayed in an MKMapView:

-(void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSString* s = searchBar.text;
 [searchBar resignFirstResponder];
 CLGeocoder* geo = [CLGeocoder new];
 [geo geocodeAddressString:s
 completionHandler:^(NSArray *placemarks, NSError *error) {
 if (nil == placemarks) {
 NSLog(@"%@", error.localizedDescription);
 return;
 }
 CLPlacemark* p = [placemarks objectAtIndex:0];
 MKPlacemark* mp = [[MKPlacemark alloc] initWithPlacemark:p];

764 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.map removeAnnotations:self.map.annotations];
 [self.map addAnnotation:mp];
 [self.map setRegion:
 MKCoordinateRegionMakeWithDistance(mp.coordinate, 1000, 1000)
 animated: YES];
 }];
}

By default, the resulting annotation’s callout title contains a nicely formatted string
describing the address.

That example illustrates forward geocoding, the conversion of an address to a coordinate.
Instead of a string, you can provide a dictionary. By an amazing coincidence, the keys
of this dictionary are exactly the keys you would get by extracting an address from the
user’s address book (Chapter 18); thus, you can go quite directly from an address book
contact to a coordinate.

The converse operation is reverse geocoding: you start with a coordinate — actually a
CLLocation, which you’ll obtain from elsewhere, or construct from a coordinate using
initWithLatitude:longitude: — and call reverseGeocodeLocation:completion-
Handler: in order to obtain an address. The address is expressed through the
CLPlacemark addressDictionary property, which is an address in address book for‐
mat; you can translate it to a string with ABCreateStringWithAddressDictionary. Al‐
ternatively, you can consult directly various CLPlacemark properties, such as
subthoroughfare (such as a house number), thoroughfare (a street name), locality
(a town), and administrativeArea (a state).

Those properties are present in a placemark resulting from forward
geocoding as well; thus, one nice byproduct of forward geocoding is
that it can format and complete an address, including adding a zip code
(postalCode) to the address.

In this example of reverse geocoding, we have an MKMapView that is already tracking
the user, and so we have the user’s location as the map’s userLocation; we ask for the
corresponding address:

CLGeocoder* geo = [CLGeocoder new];
CLLocation* loc = self.map.userLocation.location;
[geo reverseGeocodeLocation:loc
 completionHandler:^(NSArray *placemarks, NSError *error)
 {
 if (placemarks) {
 CLPlacemark* p = [placemarks objectAtIndex:0];
 NSLog(@"%@", p.addressDictionary); // do something with address
 }
 }];

Geocoding, Searching, and Directions | 765

www.it-ebooks.info

http://www.it-ebooks.info/

Searching
The MKLocalSearch class, along with MKLocalSearchRequest and MKLocalSearchRes‐
ponse, lets you ask the server to perform a natural language search for you. This is less
formal than forward geocoding, described in the previous section; instead of searching
for an address, you can search for a point of interest by name or description. It can be
useful, for some types of search, to constrain the area of interest by setting the MKLo‐
calSearchRequest’s region. In this example, I’ll do a natural language search for a Thai
restaurant near the area currently displayed in the map, and I’ll display it with an an‐
notation in our map view:

- (IBAction) thaiFoodNearMapLocation: (id) sender {
 MKLocalSearchRequest* req = [MKLocalSearchRequest new];
 req.naturalLanguageQuery = @"Thai restaurant";
 req.region = self.map.region;
 MKLocalSearch* search = [[MKLocalSearch alloc] initWithRequest:req];
 [search startWithCompletionHandler:
 ^(MKLocalSearchResponse *response, NSError *error) {
 if (!response) {
 NSLog(@"%@", error);
 return;
 }
 self.map.showsUserLocation = NO;
 MKMapItem* where = response.mapItems[0]; // I'm feeling lucky
 MKPlacemark* place = where.placemark;
 CLLocationCoordinate2D loc = place.location.coordinate;
 MKCoordinateRegion reg =
 MKCoordinateRegionMakeWithDistance(loc, 1200, 1200);
 [self.map setRegion:reg animated:YES];
 MKPointAnnotation* ann = [MKPointAnnotation new];
 ann.title = where.name;
 ann.subtitle = where.phoneNumber;
 ann.coordinate = loc;
 [self.map addAnnotation:ann];
 }];
}

Directions
The MKDirections class (new in iOS 7), along with MKDirectionsRequest and MKDir‐
ectionsResponse, looks up walking or driving directions between two locations ex‐
pressed as MKMapItem objects. The resulting MKDirectionsResponse includes an array
of MKRoute objects; each MKRoute includes an MKPolyline suitable for display as an
overlay in your map, as well as an array of MKRouteStep objects, each of which provides
its own MKPolyline plus instructions and distances. The MKDirectionsResponse also
has its own source and destination MKMapItems, which may be different from what
we started with.

766 | Chapter 21: Maps

www.it-ebooks.info

http://www.it-ebooks.info/

To illustrate, I’ll continue from the Thai food example in the previous section. Presume
that the map is displaying my location, and that we have performed the search from the
previous section, so that the MKMapItem where corresponds to the restaurant location:

MKDirectionsRequest* req = [MKDirectionsRequest new];
req.source = [MKMapItem mapItemForCurrentLocation];
req.destination = where;
MKDirections* dir = [[MKDirections alloc] initWithRequest:req];
[dir calculateDirectionsWithCompletionHandler:
 ^(MKDirectionsResponse *response, NSError *error) {
 if (!response) {
 NSLog(@"%@", error);
 return;
 }
 MKRoute* route = response.routes[0]; // just get me there!
 MKPolyline* poly = route.polyline;
 [self.map addOverlay:poly];
 for (MKRouteStep* step in route.steps) {
 NSLog(@"In %d meters: %@", (int)step.distance, step.instructions);
 }
 }];

The step-by-step instructions appear in the console; in real life, of course, we would
presumably display these in our app’s interface. The route is drawn in our map view,
provided we have an appropriate implementation of mapView:rendererForOverlay:,
such as this:

- (MKOverlayRenderer *)mapView:(MKMapView *)mapView
 rendererForOverlay:(id <MKOverlay>)overlay {
 MKPolylineRenderer* v = nil;
 if ([overlay isKindOfClass:[MKPolyline class]]) {
 v = [[MKPolylineRenderer alloc]
 initWithPolyline:(MKPolyline*)overlay];
 v.strokeColor = [[UIColor blueColor] colorWithAlphaComponent:0.8];
 v.lineWidth = 2;
 }
 return v;
}

Geocoding, Searching, and Directions | 767

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22

Sensors

A device may contain hardware for sensing the world around itself — where it is located,
how it is oriented, how it is moving.

Information about the device’s current location and how that location is changing over
time, using its Wi-Fi, cellular networking, and GPS capabilities, along with information
about the device’s orientation relative to north, using its magnetometer, is provided
through the Core Location framework. You’ll need to @import CoreLocation.

Information about the device’s change in speed and attitude using its accelerometer is
provided through the UIEvent class (for device shake) and the Core Motion framework,
which provides increased accuracy by incorporating the device’s gyroscope, if it has one,
as well as the magnetometer; you’ll need to @import CoreMotion.

One of the major challenges associated with writing code that takes advantage of the
sensors is that not all devices have all of this hardware. If you don’t want to impose
stringent restrictions on what devices your app will run on in the first place (UIRequired-
DeviceCapabilities in Info.plist), your code must be prepared to fail gracefully and
possibly provide a subset of its full capabilities when it discovers that the current device
lacks certain features.

Moreover, certain sensors may experience momentary inadequacy; for example, Core
Location might not be able to get a fix on the device’s position because it can’t see cell
towers, GPS satellites, or both. And some sensors take time to “warm up,” so that the
values you’ll get from them initially will be invalid. You’ll want to respond to such
changes in the external circumstances, in order to give the user a decent experience of
your application regardless.

769

www.it-ebooks.info

http://www.it-ebooks.info/

Core Location
The Core Location framework provides facilities for the device to determine and report
its location (location services). It takes advantage of three sensors:
Wi-Fi

The device, if Wi-Fi is turned on, may scan for nearby Wi-Fi devices and compare
these against an online database.

Cell
The device, if it has cell capabilities and they are not turned off, may compare nearby
telephone cell towers against an online database.

GPS
The device’s GPS, if it has one, may be able to obtain a position fix from GPS
satellites.

Core Location will automatically use whatever facilities the device has available; all you
have to do is ask for the device’s location. Core Location allows you to specify how
accurate a position fix you want; more accurate fixes may require more time.

The notion of a location is encapsulated by the CLLocation class and its properties,
which include:
coordinate

A CLLocationCoordinate2D, a struct consisting of two doubles representing lati‐
tude and longitude.

altitude

A CLLocationDistance, which is a double representing a number of meters.

speed

A CLLocationSpeed, which is a double representing meters per second.

course

A CLLocationDirection, which is a double representing degrees (not radians)
clockwise from north.

horizontalAccuracy

A CLLocationAccuracy, which is a double representing meters.

timestamp

An NSDate.

In addition to the sensor-related considerations I mentioned a moment ago, use of Core
Location poses the following challenges:

• Accuracy of a reported location may vary depending on a number of factors. The
GPS is the most accurate location sensor, but it takes the longest to get a fix.

770 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

• Battery usage due to running the sensors is a serious concern. The GPS in particular
is probably the most battery-intensive of all the onboard sensors.

• Behavior of your app may depend on the device’s physical location. To help you
test, Xcode lets you pretend that the device is at a particular location on earth. The
Simulator’s Debug → Location menu lets you enter a location; the Scheme editor
lets you set a default location (under Options); and the Debug → Simulate Location
menu lets you switch among locations. You can set a built-in location or supply a
standard GPX file containing a waypoint. You can also set the location to None; it’s
important to test for what happens when no location information is available.

Basic Location Determination
To use Core Location and location services directly, you need a location manager — a
CLLocationManager instance. Use of a location manager typically operates along the
following lines:

1. You’ll confirm that the desired services are available. CLLocationManager class
methods let you find out whether the user has switched on the device’s location
services as a whole (locationServicesEnabled), whether the user has authorized
this app to use location services (authorizedStatus), and whether a particular
service is available.
If location services are switched off, you can start using a location manager anyway,
as a way of getting the runtime to present the dialog asking the user to switch them
on. Be prepared, though, for the possibility that the user won’t do so. You can modify
the body of this alert by setting the “Privacy — Location Usage Description” key
(NSLocationUsageDescription) in your app’s Info.plist to tell the user why you
want to use location services. This is a kind of “elevator pitch”; you need to persuade
the user in very few words.

2. You’ll instantiate CLLocationManager and retain the instance somewhere, usually
an instance variable.

3. You’ll set yourself as the location manager’s delegate (CLLocationManager‐
Delegate).

4. You’ll configure the location manager. I’ll talk more about this in a moment.
5. You’ll tell the location manager to begin generating information; for example, you’ll

call startUpdatingLocation. The location manager, in turn, will begin calling the
appropriate delegate method repeatedly; in the case of startUpdatingLocation,
it’s locationManager:didUpdateLocations:. Your delegate will also always im‐
plement locationManager:didFailWithError:, to receive error messages. You’ll

Core Location | 771

www.it-ebooks.info

http://www.it-ebooks.info/

deal with each delegate method call in turn. Remember to call the corresponding
stop... method when you no longer need location services.

Here are some location manager configuration properties that are useful to set:
desiredAccuracy

Your choices are:

• kCLLocationAccuracyBestForNavigation

• kCLLocationAccuracyBest

• kCLLocationAccuracyNearestTenMeters

• kCLLocationAccuracyHundredMeters

• kCLLocationAccuracyKilometer

• kCLLocationAccuracyThreeKilometers

It might be sufficient for your purposes to know very quickly but very roughly the
device’s location, and recall that highest accuracy may also cause the highest battery
drain; indeed, kCLLocationAccuracyBestForNavigation is supposed to be used
only when the device is connected to external power. The accuracy setting is not a
filter: the location manager will send you whatever location information it has, even
if it isn’t as accurate as you asked for, and checking a location’s horizontal-
Accuracy is then up to you.

distanceFilter

Perhaps you don’t need a location report unless the device has moved a certain
distance since the previous report. This property can help keep you from being
bombarded with events you don’t need.

activityType

Your choices are:

• CLActivityTypeOther

• CLActivityTypeAutomotiveNavigation

• CLActivityTypeFitness

• CLActivityTypeOtherNavigation

This affects how persistently and frequently updates will be sent, based on the
movement of the device. With CLActivityTypeAutomotiveNavigation, updates
can cease temporarily if the device is not moving significantly. With CLActivity-
TypeFitness, on the other hand, the user is assumed to be on foot, so updates will
arrive even if the device is stationary.

772 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

New in iOS 7, you may be able to use the Core Motion framework’s
CMMotionActivityManager to learn what the user seems to be do‐
ing, along with a record of what the user has been doing earlier (e.g.
walking or in a moving vehicle). This feature requires a special app
entitlement and permission from the user, as well as appropriate hard‐
ware — presumably an iPhone 5S with the separate M7 chip. See al‐
so the new CMStepCounter, which accesses the record of the user’s
steps.

As a simple example, we’ll turn on location services manually, just long enough to see
if we can determine our position. We begin by ascertaining that location services are in
fact available and that we have or can get authorization. If all is well, we instantiate
CLLocationManager and retain it in an instance variable (self.locman), set ourselves
as the delegate, configure the location manager, set some instance variables so we can
track what’s happening, and call startUpdatingLocation to turn on location services:

BOOL ok = [CLLocationManager locationServicesEnabled];
if (!ok) {
 NSLog(@"%@", @"Alas");
 return;
}
CLAuthorizationStatus stat = [CLLocationManager authorizationStatus];
if (stat == kCLAuthorizationStatusRestricted ||
 stat == kCLAuthorizationStatusDenied) {
 NSLog(@"%@", @"Oh well");
 return;
}
if (self.trying)
 return;
self.trying = YES;
CLLocationManager* locman = [CLLocationManager new];
self.locman = locman;
locman.delegate = self;
locman.desiredAccuracy = kCLLocationAccuracyBest;
locman.activityType = CLActivityTypeFitness;
self.startTime = nil;
[self.locman startUpdatingLocation];

We have a utility method for turning off updates and resetting our instance variables:

-(void) stopTrying {
 [self.locman stopUpdatingLocation];
 self.startTime = nil;
 self.trying = NO;
}

If something goes wrong, such as the user refusing to authorize this app, we’ll just turn
location services back off:

Core Location | 773

www.it-ebooks.info

http://www.it-ebooks.info/

-(void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {
 NSLog(@"%@", error);
 [self stopTrying];
}

If things don’t go wrong, we’ll be handed our location as soon as it is determined, in
locationManager:didUpdateLocations:. For purposes of this example, I’m going to
insist on a fairly high level of accuracy; if I don’t get it, I wait for the next update. But I
don’t want to wait too long, either, so on the very first pass I record the current time, so
that I can compare the location’s timestamp on subsequent calls. (I also return imme‐
diately from the first update, as I find this seems to contain spurious information.) If I
get the desired accuracy within the desired time, I turn off updates and am ready to use
the location information:

#define REQ_ACC 10
#define REQ_TIME 10
-(void)locationManager:(CLLocationManager *)manager
 didUpdateLocations:(NSArray *)locations {
 CLLocation* loc = locations.lastObject;
 CLLocationAccuracy acc = loc.horizontalAccuracy;
 NSDate* time = loc.timestamp;
 CLLocationCoordinate2D coord = loc.coordinate;
 if (!self.startTime) {
 self.startTime = [NSDate date];
 return; // ignore first attempt
 }
 NSLog(@"%f", acc);
 NSTimeInterval elapsed = [time timeIntervalSinceDate:self.startTime];
 if (elapsed > REQ_TIME) {
 NSLog(@"%@", @"This is taking too long");
 [self stopTrying];
 return;
 }
 if (acc < 0 || acc > REQ_ACC) {
 return; // wait for the next one
 }
 // got it
 NSLog(@"You are at: %f %f", coord.latitude, coord.longitude);
 [self stopTrying];
}

Feel free to experiment with different values for the required accuracy and the required
time. On my device, it was clearly worth waiting a few seconds to get better accuracy:

2013-11-09 08:36:24.149 ch35p1032location[561:60b] 936.537122
2013-11-09 08:36:24.160 ch35p1032location[561:60b] 936.537159
2013-11-09 08:36:24.178 ch35p1032location[561:60b] 936.537511
2013-11-09 08:36:24.262 ch35p1032location[561:60b] 65.000000
2013-11-09 08:36:24.698 ch35p1032location[561:60b] 65.000000
2013-11-09 08:36:28.161 ch35p1032location[561:60b] 50.000000

774 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

2013-11-09 08:36:29.157 ch35p1032location[561:60b] 30.000000
2013-11-09 08:36:29.940 ch35p1032location[561:60b] 30.000000
2013-11-09 08:36:30.943 ch35p1032location[561:60b] 10.000000
2013-11-09 08:36:30.944 ch35p1032location[561:60b] You are at: ...

Heading
For appropriately equipped devices, Core Location supports use of the magnetometer
to determine which way the device is facing (its heading). Although this information is
accessed through a location manager, you do not need location services to be turned
on, nor your app to be authorized, merely to use the magnetometer to report the device’s
orientation with respect to magnetic north; but you do need those things in order to
report true north, as this depends on the device’s location.

As with location, you’ll first check that the desired feature is available (heading-
Available); then you’ll instantiate and configure the location manager, and call start-
UpdatingHeading. The delegate will be sent locationManager:didUpdateHeading: (or
locationManager:didFailWithError:). A heading object is a CLHeading instance; its
magneticHeading and trueHeading properties are CLLocationDirection values, which
report degrees (not radians) clockwise from the reference direction (magnetic or true
north, respectively).

In this example, I’ll use the device as a compass. The headingFilter setting is to prevent
us from being bombarded constantly with readings. For best results, the device should
probably be held level (like a tabletop, or a compass); we are setting the heading-
Orientation so that the reported heading will be the direction in which the top of the
device (the end away from the Home button) is pointing:

BOOL ok = [CLLocationManager headingAvailable];
if (!ok) {
 NSLog(@"drat");
 return;
}
CLLocationManager* lm = [CLLocationManager new];
self.locman = lm;
self.locman.delegate = self;
self.locman.headingFilter = 5;
self.locman.headingOrientation = CLDeviceOrientationPortrait;
[self.locman startUpdatingHeading];

In the delegate, I’ll display our magnetic heading as a rough cardinal direction in a label
in the interface (self.lab):

-(void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {
 CGFloat h = newHeading.magneticHeading;
 CGFloat h2 = newHeading.trueHeading; // will be -1
 __block NSString* dir = @"N";
 NSArray* cards = @[@"N", @"NE", @"E", @"SE",

Core Location | 775

www.it-ebooks.info

http://www.it-ebooks.info/

 @"S", @"SW", @"W", @"NW"];
 [cards enumerateObjectsUsingBlock:
 ^(id obj, NSUInteger idx, BOOL *stop) {
 if (h < 45.0/2.0 + 45*idx) {
 dir = obj;
 *stop = YES;
 }
 }];
 if (![self.lab.text isEqualToString:dir])
 self.lab.text = dir;
}

In that code, I asked only for the heading’s magneticHeading. I can ask for its true-
Heading, but the resulting value will be invalid (a negative number) unless we are also
receiving location updates.

If the user has switched off Compass Calibration in the Settings app
(under Privacy → Location Services → System Services), the value of
the heading’s trueHeading will always be a negative number.

Background Location
You can use Core Location when your app is not in the foreground. There are two quite
different ways to do this:
Continuous background location

This is an extension of what we did earlier. You tell the location manager to start-
UpdatingLocation, and updates are permitted to continue even if the app goes into
the background. Your app runs in the background in order to receive these updates
(except during periods when you elect to receive deferred updates, if the hardware
supports it).

Significant event monitoring
The system monitors location for you. Your app does not run in the background.
If a significant location event occurs, your app is awakened in the background (or
launched in the background, if it is not running) and notified. For example, a re‐
minder alarm uses region monitoring to notify the user when approaching or leav‐
ing a specific place (geofencing), as shown in Chapter 19.

New in iOS 7, the user can deny your app any background use of Core Location. The
user does this in the Settings app, under General → Background App Refresh; the user
may switch off either Background App Refresh as a whole or the ability of your app in
particular to use Core Location in the background. You can determine the situation
through the shared UIApplication instance’s backgroundRefreshStatus property; the
possibilities are:

776 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

• UIBackgroundRefreshStatusRestricted

• UIBackgroundRefreshStatusDenied

• UIBackgroundRefreshStatusAvailable

If the status is not UIBackgroundRefreshStatusAvailable and your app goes into the
background, your app won’t receive any delegate update messages until it is frontmost
once again. If your app was receiving delegate update messages in the background and
the user kills your app (from the app switcher interface), the system won’t relaunch it
to receive delegate update messages.

Continuous background location
Use of Core Location to perform continuous background updates is similar to produc‐
tion and recording of sound in the background (Chapter 14): you set the UIBackground-
Modes key of your app’s Info.plist, giving it a value of location (in Xcode 5, check
Location Updates under Background Modes in the Capabilities tab when editing the
target). This tells the system that if you have a location manager to which you have sent
startUpdatingLocation and the user sends your app into the background, your app
should not be suspended, the use of location services should continue, and your delegate
should keep receiving Core Location events.

Background use of location services can cause a power drain, but if you want your app
to function as a positional data logger, for instance, it may be the only way; you can also
help conserve power by making judicious choices, such as setting a coarse distance-
Filter value, by not requiring overly high accuracy, and by being correct about the
activityType.

Core Location may be able to operate in deferred mode (allowDeferredLocation-
UpdatesUntilTraveled:timeout:) so that your background app doesn’t receive up‐
dates until the user has moved a specified amount or until a fixed time interval has
elapsed; this, too, can help conserve power, especially if the user locks the screen, as the
device may be able to power down some of its sensors temporarily, and your app can
be allowed to stop running in the background. This feature is dependent on hardware
capabilities; use it only if the class method deferredLocationUpdatesAvailable re‐
turns YES. For this feature to work, the location manager’s desiredAccuracy must be
kCLLocationAccuracyBest or kCLLocationAccuracyBestForNavigation, and its
distanceFilter must be kCLDistanceFilterNone (the default).

When you’re using deferred updates, updates are accumulated and then delivered all at
once after the specified distance or time: the delegate is sent these messages:

Core Location | 777

www.it-ebooks.info

http://www.it-ebooks.info/

• locationManager:didFinishDeferredUpdatesWithError:

• locationManager:didUpdateLocations:

The second parameter of the second delegate method is an NSArray of all the accumu‐
lated updates. At this point, deferred updating has ceased; asking for the next set of
updates to be deferred is up to you, by calling allowDeferred... again. If the user brings
your app to the foreground, any undelivered accumulated updates are delivered then
and there, so that your interface can present the most recent information.

Significant event monitoring
Using Core Location to perform significant event monitoring without being in the
foreground doesn’t require your app to run in the background, and you do not have to
set the UIBackgroundModes of your Info.plist. There are two types of significant event
monitoring:
Significant location monitoring

If the class method significantLocationChangeMonitoringAvailable returns
YES, you can call startMonitoringSignificantLocationChanges. The delegate’s
locationManager:didUpdateLocations: will be called when the device’s location
has changed significantly.

Region monitoring
New in iOS 7, region monitoring has been divided into two types, which I’ll call
old-fashioned region monitoring and iBeacon monitoring. (iBeacon monitoring is
so new that it’s virtually experimental, and isn’t discussed in this book.) To distin‐
guish the two types, the old CLRegion class has been made abstract and broken into
two subclasses, CLBeaconRegion and CLCircularRegion.

Thus, to perform old-fashioned region monitoring in iOS 7, the procedure now is:
first check the class method isMonitoringAvailableForClass: with an argument
of [CLCircularRegion class]. If it returns YES, then you can call start-
MonitoringForRegion: for each region in which you are interested. Regions are
collected as an NSSet, which is the location manager’s monitoredRegions.

A region in iOS 7 is a CLCircularRegion, initialized with initWithCenter:radius:
identifier:; the identifier serves as a unique key, so that if you start monitoring for
a region whose identifier matches that of a region already in the monitoredRegions set,
the latter will be ejected from the set. You should also set the region’s notifyOnEntry or
notifyOnExit to NO if you’re interested in just one type of event.

The following delegate methods may be called:

778 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

• locationManager:didEnterRegion:

• locationManager:didExitRegion:

• locationManager:monitoringDidFailForRegion:withError:

Both significant location monitoring and region monitoring use cell tower position to
estimate the device’s location. Since the cell is probably working anyway — for example,
the device is a phone, so the cell is always on and is always concerned with what cell
towers are available — little or no additional power is required. Apple says that the
system will also take advantage of other clues (requiring no extra battery drain) to decide
that there may have been a change in location: for example, the device may observe a
change in the available Wi-Fi networks, strongly suggesting that the device has moved.

Notifications for location monitoring and region monitoring can arrive even if your
app isn’t in the foreground. In that case, there are two possible states in which your app
might find itself when an event arrives:
Your app is suspended in the background

Your app is woken up (remaining in the background) long enough to receive the
normal delegate event and do something with it.

Your app is not running at all
Your app is relaunched (remaining in the background), and your app delegate will
be sent application:didFinishLaunchingWithOptions: with an NSDictionary
containing UIApplicationLaunchOptionsLocationKey, thus allowing it to discern
the special nature of the situation. At this point you probably have no location
manager — your app has just launched from scratch. So you should get yourself a
location manager and start up location services for long enough to receive the nor‐
mal delegate event.

Acceleration and Attitude
Acceleration results from the application of a force to the device, and is detected through
the device’s accelerometer, supplemented by the gyroscope if it has one. Gravity is a
force, so the accelerometer always has something to measure, even if the user isn’t con‐
sciously applying a force to the device; thus the device can report its attitude relative to
the vertical.

Acceleration information can arrive in two ways:
As a prepackaged UIEvent

You can receive a UIEvent notifying you of a predefined gesture performed by
accelerating the device. At present, the only such gesture is the user shaking the
device.

Acceleration and Attitude | 779

www.it-ebooks.info

http://www.it-ebooks.info/

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a desired type.
You can ask for accelerometer information, gyroscope information, or device
motion information (and you can also use Core Motion to get magnetometer
information); device motion combines the gyroscope data with data from the other
sensors to give you the best possible description of the device’s attitude in space.

Shake Events
A shake event is a UIEvent (Chapter 5). Receiving shake events is rather like receiving
remote events (Chapter 14), involving the notion of the first responder. To receive shake
events, your app must contain a UIResponder which:

• Returns YES from canBecomeFirstResponder
• Is in fact first responder

This responder, or a UIResponder further up the responder chain, should implement
some or all of these methods:
motionBegan:withEvent:

Something has started to happen that might or might not turn out to be a shake.

motionEnded:withEvent:

The motion reported in motionBegan:withEvent: is over and has turned out to be
a shake.

motionCancelled:withEvent:

The motion reported in motionBegan:withEvent: wasn’t a shake after all.

It might be sufficient to implement motionEnded:withEvent:, because this arrives if
and only if the user performs a shake gesture. The first parameter will be the event
subtype, but at present this is guaranteed to be UIEventSubtypeMotionShake, so testing
it is pointless.

The view controller in charge of the current view is a good candidate to receive shake
events. Thus, a minimal implementation might look like this:

- (BOOL) canBecomeFirstResponder {
 return YES;
}
- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear: animated];
 [self becomeFirstResponder];
}
- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 NSLog(@"hey, you shook me!");
}

780 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

By default, if some other object is first responder, and is of a type that supports undo
(such as a UITextField), and if motionBegan:withEvent: is sent up the responder chain,
and if you have not set the shared UIApplication’s applicationSupportsShakeToEdit
property to NO, a shake will be handled through an Undo or Redo alert. Your view
controller might not want to rob any responders in its view of this capability. A simple
way to prevent this is to test whether the view controller is itself the first responder; if
it isn’t, we call super to pass the event on up the responder chain:

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 if ([self isFirstResponder])
 NSLog(@"hey, you shook me!");
 else
 [super motionEnded:motion withEvent:event];
}

Raw Acceleration
If the device has an accelerometer but no gyroscope, you can learn about the forces
being applied to it, but some compromises will be necessary. The chief problem is that,
even if the device is completely motionless, its acceleration values will constitute a nor‐
malized vector pointing toward the center of the earth, popularly known as gravity. The
accelerometer is thus constantly reporting a combination of gravity and user-induced
acceleration. This is good and bad. It’s good because it means that, with certain restric‐
tions, you can use the accelerometer to detect the device’s attitude in space. It’s bad
because gravity values and user-induced acceleration values are mixed together. Fortu‐
nately, there are ways to separate these values mathematically:
With a low-pass filter

A low-pass filter will damp out user acceleration so as to report gravity only.

With a high-pass filter
A high-pass filter will damp out the effect of gravity so as to detect user acceleration
only, reporting a motionless device as having zero acceleration.

In some situations, it is desirable to apply both a low-pass filter and a high-pass filter,
so as to learn both the gravity values and the user acceleration values. A common ad‐
ditional technique is to run the output of the high-pass filter itself through a low-pass
filter to reduce noise and small twitches. Apple provides some nice sample code for
implementing a low-pass or a high-pass filter; see especially the AccelerometerGraph
example, which is also very helpful for exploring how the accelerometer behaves.

The technique of applying filters to the accelerometer output has some serious down‐
sides, which are inevitable in a device that lacks a gyroscope:

• It’s up to you to apply the filters; you have to implement boilerplate code and hope
that you don’t make a mistake.

Acceleration and Attitude | 781

www.it-ebooks.info

http://www.it-ebooks.info/

• Filters mean latency. Your response to the accelerometer values will lag behind what
the device is actually doing; this lag may be noticeable.

Reading raw accelerometer values with Core Motion is really a subset of how you read
any values with Core Motion; in some ways it is similar to how you use Core Location:

1. You start by instantiating CMMotionManager; retain the instance somewhere, typ‐
ically as an instance variable.

2. Confirm, using instance properties, that the desired hardware is available.
3. Set the interval at which you wish the motion manager to update itself with new

sensor readings.
4. Call the appropriate start method.
5. Poll the motion manager whenever you want data, asking for the appropriate data

property. This step is surprising; you probably expected that the motion manager
would call into a delegate, but in fact a motion manager has no delegate. The polling
interval doesn’t have to be the same as the motion manager’s update interval; when
you poll, you’ll obtain the motion manager’s current data — that is, the data gen‐
erated by its most recent update, whenever that was.
If your app’s purpose is to collect all the data, then instead of calling a start method,
you can call a start...UpdatesToQueue:withHandler: method and receive call‐
backs in a block, possibly on a background thread, managed by an NSOperation‐
Queue (Chapter 25); but this is an advanced technique and you aren’t likely to need
it, so I’m not going to talk about it.

6. Don’t forget to call the corresponding stop method when you no longer need data.

In this example, I will simply report whether the device is lying flat on its back. I start
by creating and configuring my motion manager, and I launch a repeating timer to
trigger polling:

self.motman = [CMMotionManager new];
if (!self.motman.accelerometerAvailable) {
 NSLog(@"oh well");
 return;
}
self.motman.accelerometerUpdateInterval = 1.0 / 30.0;
[self.motman startAccelerometerUpdates];
self.timer =
 [NSTimer
 scheduledTimerWithTimeInterval:
 self.motman.accelerometerUpdateInterval
 target:self selector:@selector(pollAccel:)
 userInfo:nil repeats:YES];

782 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

My pollAccel: method is now being called repeatedly. In pollAccel:, I ask the motion
manager for its accelerometer data. This arrives as a CMAccelerometerData object,
which is a timestamp plus a CMAcceleration; a CMAcceleration is simply a struct of
three values, one for each axis of the device, measured in Gs. The positive x-axis points
to the right of the device. The positive y-axis points toward the top of the device, away
from the Home button. The positive z-axis points out the front of the screen.

The two axes orthogonal to gravity, which are the x- and y-axes when the device is lying
more or less on its back, are much more accurate and sensitive to small variation than
the axis pointing toward or away from gravity. So our approach is to ask first whether
the x and y values are close to zero; only then do we use the z value to learn whether the
device is on its back or on its face. To keep from updating our interface constantly, we
implement a crude state machine; the state (an instance variable) starts out at -1, and
then switches between 0 (device on its back) and 1 (device not on its back), and we
update the interface only when there is a state change:

CMAccelerometerData* dat = self.motman.accelerometerData;
CMAcceleration acc = dat.acceleration;
CGFloat x = acc.x;
CGFloat y = acc.y;
CGFloat z = acc.z;
CGFloat accu = 0.08;
if (fabs(x) < accu && fabs(y) < accu && z < -0.5) {
 if (self->_state == -1 || self->_state == 1) {
 self->_state = 0;
 self.label.text = @"I'm lying on my back... ahhh...";
 }
} else {
 if (self->_state == -1 || self->_state == 0) {
 self->_state = 1;
 self.label.text = @"Hey, put me back down on the table!";
 }
}

This works, but it’s sensitive to small motions of the device on the table. To damp this
sensitivity, we can run our input through a low-pass filter. The low-pass filter code comes
straight from Apple’s own examples, and involves maintaining the previously filtered
reading as a set of instance variables:

-(void)addAcceleration:(CMAcceleration)accel {
 double alpha = 0.1;
 self->_oldX = accel.x * alpha + self->_oldX * (1.0 - alpha);
 self->_oldY = accel.y * alpha + self->_oldY * (1.0 - alpha);
 self->_oldZ = accel.z * alpha + self->_oldZ * (1.0 - alpha);
}

Our polling code now starts out by passing the data through the filter:

Acceleration and Attitude | 783

www.it-ebooks.info

http://www.it-ebooks.info/

CMAccelerometerData* dat = self.motman.accelerometerData;
CMAcceleration acc = dat.acceleration;
[self addAcceleration: acc];
CGFloat x = self->_oldX;
CGFloat y = self->_oldY;
CGFloat z = self->_oldZ;
// ... and the rest is as before ...

In this next example, the user is allowed to slap the side of the device into an open hand
— perhaps as a way of telling it to go to the next or previous image or whatever it is
we’re displaying. We pass the acceleration input through a high-pass filter to eliminate
gravity (again, the filter code comes straight from Apple’s examples):

-(void)addAcceleration:(CMAcceleration)accel {
 double alpha = 0.1;
 self->_oldX =
 accel.x - ((accel.x * alpha) + (self->_oldX * (1.0 - alpha)));
 self->_oldY =
 accel.y - ((accel.y * alpha) + (self->_oldY * (1.0 - alpha)));
 self->_oldZ =
 accel.z - ((accel.z * alpha) + (self->_oldZ * (1.0 - alpha)));
}

What we’re looking for, in our polling routine, is a high positive or negative x value. A
single slap is likely to consist of several consecutive readings above our threshold, but
we want to report each slap only once, sο we take advantage of the timestamp attached
to a CMAccelerometerData, maintaining the timestamp of our previous high reading
as an instance variable and ignoring readings that are too close to one another in time.
Another problem is that a sudden jerk involves both an acceleration (as the user starts
the device moving) and a deceleration (as the device stops moving); thus a left slap might
be preceded by a high value in the opposite direction, which we might interpret wrongly
as a right slap. We can compensate crudely, at the expense of some latency, with delayed
performance (the report: method simply logs to the console):

CMAccelerometerData* dat = self.motman.accelerometerData;
CMAcceleration acc = dat.acceleration;
[self addAcceleration: acc];
CGFloat x = self->_oldX;
CGFloat thresh = 1.0;
if ((x < -thresh) || (x > thresh))
 NSLog(@"%f", x);
if (x < -thresh) {
 if (dat.timestamp - self->_oldTime > 0.5 || self->_lastSlap == 1) {
 self->_oldTime = dat.timestamp;
 self->_lastSlap = -1;
 [NSObject cancelPreviousPerformRequestsWithTarget:self];
 [self performSelector:@selector(report:)
 withObject:@"left" afterDelay:0.5];
 }
}
if (x > thresh) {

784 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

 if (dat.timestamp - self->_oldTime > 0.5 || self->_lastSlap == -1) {
 self->_oldTime = dat.timestamp;
 self->_lastSlap = 1;
 [NSObject cancelPreviousPerformRequestsWithTarget:self];
 [self performSelector:@selector(report:)
 withObject:@"right" afterDelay:0.5];
 }
}

The gesture we’re detecting is a little tricky to make: the user must slap the device into
an open hand and hold it there; if the device jumps out of the open hand, that movement
may be detected as the last in the series, resulting in the wrong report (left instead of
right, or vice versa). And the latency of our gesture detection is very high; here’s a typical
successful detection of a leftward slap:

2013-11-09 18:19:56.055 ch35p1041smackMe[954:60b] -1.175150
2013-11-09 18:19:56.122 ch35p1041smackMe[954:60b] 1.086159
2013-11-09 18:19:56.189 ch35p1041smackMe[954:60b] 1.077831
2013-11-09 18:19:56.222 ch35p1041smackMe[954:60b] -2.716380
2013-11-09 18:19:56.289 ch35p1041smackMe[954:60b] -1.086869
2013-11-09 18:19:56.725 ch35p1041smackMe[954:60b] left

The gesture started with an involuntary shake; then the rapid acceleration to the left
was detected as a positive value; finally, the rapid deceleration was detected as a negative
value, and it took several tenths of a second for our delayed performance to decide that
this was the end of the gesture and report a leftward slap. Of course we might try tweak‐
ing some of the magic numbers in this code to improve accuracy and performance, but
a more sophisticated analysis would probably involve storing a stream of all the most
recent CMAccelerometerData objects and studying the entire stream to work out the
overall trend.

Gyroscope
The inclusion of an electronic gyroscope in the panoply of onboard hardware in some
devices has made a huge difference in the accuracy and speed of gravity and attitude
reporting. A gyroscope has the property that its attitude in space remains constant; thus
it can detect any change in the attitude of the containing device. This has two important
consequences for accelerometer measurements:

• The accelerometer can be supplemented by the gyroscope to detect quickly the
difference between gravity and user-induced acceleration.

• The gyroscope can observe pure rotation, where little or no acceleration is involved
and so the accelerometer would not have been helpful. The extreme case is constant
attitudinal rotation around the gravity axis, which the accelerometer alone would
be completely unable to detect (because there is no user-induced force, and gravity
remains constant).

Acceleration and Attitude | 785

www.it-ebooks.info

http://www.it-ebooks.info/

It is possible to track the raw gyroscope data: make sure the device has a gyroscope
(gyroAvailable), and then call startGyroUpdates. What we get from the motion
manager is a CMGyroData object, which combines a timestamp with a CMRotationRate
that reports the rate of rotation around each axis, measured in radians per second, where
a positive value is counterclockwise as seen by someone whose eye is pointed to by the
positive axis. (This is the opposite of the direction graphed in Figure 3-9.) The problem,
however, is that the gyroscope values are scaled and biased. This means that the values
are based on an arbitrary scale and are increasing (or decreasing) at a roughly constant
rate. Thus there is very little merit in the exercise of dealing with the raw gyroscope
data.

What you are likely to be interested in is a combination of at least the gyroscope and
the accelerometer. The mathematics required to combine the data from these sensors
can be daunting. Fortunately, there’s no need to know anything about that. Core Motion
will happily package up the calculated combination of data as a CMDeviceMotion in‐
stance, with the effects of the sensors’ internal bias and scaling already factored out.
CMDeviceMotion consists of the following properties, all of which provide a triple of
values corresponding to the device’s natural 3D frame (x increasing to the right, y
increasing to the top, z increasing out the front):
gravity

A CMAcceleration expressing a vector with value 1 pointing to the center of the
earth, measured in Gs.

userAcceleration

A CMAcceleration describing user-induced acceleration, with no gravity compo‐
nent, measured in Gs.

rotationRate

A CMRotationRate describing how the device is rotating around its own center.
This is essentially the CMGyroData rotationRate with scale and bias accounted
for.

magneticField

A CMCalibratedMagneticField describing (in its field, a CMMagneticField) the
magnetic forces acting on the device, measured in microteslas. The sensor’s internal
bias has already been factored out. The accuracy is one of the following:

• CMMagneticFieldCalibrationAccuracyUncalibrated

• CMMagneticFieldCalibrationAccuracyLow

• CMMagneticFieldCalibrationAccuracyMedium

• CMMagneticFieldCalibrationAccuracyHigh

786 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

attitude

A CMAttitude, descriptive of the device’s instantaneous attitude in space. When
you ask the motion manager to start generating updates, you can ask for any of four
reference systems for the attitude (having first called the class method available-
AttitudeReferenceFrames to ascertain that the desired reference frame is available
on this device). In every case, the negative z-axis points at the center of the earth:
CMAttitudeReferenceFrameXArbitraryZVertical

The x-axis and y-axis, though orthogonal to the other axes, could be pointing
anywhere.

CMAttitudeReferenceFrameXArbitraryCorrectedZVertical

The same as in the previous option, but the magnetometer is used to maintain
accuracy (preventing drift of the reference frame over time).

CMAttitudeReferenceFrameXMagneticNorthZVertical

The x-axis points toward magnetic north.

CMAttitudeReferenceFrameXTrueNorthZVertical

The x-axis points toward true north. This value will be inaccurate unless you
are also using Core Location to obtain the device’s location.

The attitude value’s numbers can be accessed through various CMAttitude prop‐
erties corresponding to three different systems, each being convenient for a differ‐
ent purpose:
pitch, roll, yaw

The device’s angle of offset from the reference frame, in radians, around the
device’s natural x-axis, y-axis, and z-axis respectively.

rotationMatrix

A CMRotationMatrix struct embodying a 3×3 matrix expressing a rotation in
the reference frame.

quaternion

A CMQuaternion describing an attitude. (Quaternions are commonly used in
OpenGL.)

In this example, we turn the device into a simple compass/clinometer, merely by asking
for its attitude with reference to magnetic north and taking its pitch, roll, and yaw.
We begin by making the usual preparations; notice the use of the showsDeviceMovement-
Display property, intended to allow the runtime to prompt the user if the magnetometer
needs calibration:

self.motman = [CMMotionManager new];
if (!self.motman.deviceMotionAvailable) {
 NSLog(@"oh well");
 return;

Acceleration and Attitude | 787

www.it-ebooks.info

http://www.it-ebooks.info/

}
CMAttitudeReferenceFrame f =
 CMAttitudeReferenceFrameXMagneticNorthZVertical;
if (([CMMotionManager availableAttitudeReferenceFrames] & f) == 0) {
 NSLog(@"darn");
 return;
}
self.motman.showsDeviceMovementDisplay = YES;
self.motman.deviceMotionUpdateInterval = 1.0 / 30.0;
[self.motman startDeviceMotionUpdatesUsingReferenceFrame:f];
NSTimeInterval t = self.motman.deviceMotionUpdateInterval * 10;
self.timer =
 [NSTimer scheduledTimerWithTimeInterval:t target:self
 selector:@selector(pollAttitude:) userInfo:nil repeats:YES];

In pollAttitude:, we wait until the magnetometer is ready, and then we start taking
attitude readings (converted to degrees):

CMDeviceMotion* mot = self.motman.deviceMotion;
if (mot.magneticField.accuracy <= CMMagneticFieldCalibrationAccuracyLow)
 return; // not ready yet
CMAttitude* att = mot.attitude;
CGFloat deg = 180.0 / M_PI; // I like degrees
NSLog(@"%f %f %f", att.pitch*deg, att.roll*deg, att.yaw*deg);

The values are all close to zero when the device is level with its x-axis pointing to mag‐
netic north, and each value increases as the device is rotated counterclockwise with re‐
spect to an eye that has the corresponding positive axis pointing at it. So, for example,
a device held upright (top pointing at the sky) has a pitch approaching 90; a device
lying on its right edge has a roll approaching 90; and a device lying on its back with its
top pointing north has a yaw approaching -90.

There are some quirks in the way Euler angles operate mathematically:

• roll and yaw increase with counterclockwise rotation from 0 to π (180 degrees)
and then jump to -π (-180 degrees) and continue to increase to 0 as the rotation
completes a circle; but pitch increases to π/2 (90 degrees) and then decreases to 0,
then decreases to -π/2 (-90 degrees) and increases to 0. This means that attitude
alone, if we are exploring it through pitch, roll, and yaw, is insufficient to describe
the device’s attitude, since a pitch value of, say, π/4 (45 degrees) could mean two
different things. To distinguish those two things, we can supplement attitude with
the z-component of gravity:

NSLog(@"%f %f %f", att.pitch*deg, att.roll*deg, att.yaw*deg);
CMAcceleration g = mot.gravity;
NSLog(@"pitch is tilted %@", g.z > 0 ? @"forward" : @"back");

• Values become inaccurate in certain orientations. In particular, when pitch is ±90
degrees (the device is upright or inverted), roll and yaw become erratic. (You may
see this effect referred to as “the singularity” or as “gimbal lock.”) I believe that,

788 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

depending on what you are trying to accomplish, you can solve this by using a
different expression of the attitude, such as the rotationMatrix, which does not
suffer from this limitation.

This next (simple and very silly) example illustrates a use of CMAttitude’s rotation-
Matrix property. Our goal is to make a CALayer rotate in response to the current attitude
of the device. We start as before, except that our reference frame is CMAttitude-
ReferenceFrameXArbitraryZVertical; we are interested in how the device moves
from its initial attitude, without reference to any particular fixed external direction such
as magnetic north. In pollAttitude, our first step is to store the device’s current attitude
in a CMAttitude instance variable, self.ref:

CMDeviceMotion* mot = self.motman.deviceMotion;
CMAttitude* att = mot.attitude;
if (!self.ref) {
 self.ref = att;
 return;
}

That code works correctly because on the first few polls, as the attitude-detection hard‐
ware warms up, att is nil, so we don’t get past the return call until we have a valid initial
attitude. Our next step is highly characteristic of how CMAttitude is used: we call the
CMAttitude instance method multiplyByInverseOfAttitude:, which transforms our
attitude so that it is relative to the stored initial attitude:

[att multiplyByInverseOfAttitude:self.ref];

Finally, we apply the attitude’s rotation matrix directly to a layer in our interface as a
transform. Well, not quite directly: a rotation matrix is a 3×3 matrix, whereas a CA‐
Transform3D, which is what we need in order to set a layer’s transform, is a 4×4 matrix.
However, it happens that the top left nine entries in a CATransform3D’s 4×4 matrix
constitute its rotation component, so we start with an identity matrix and set those
entries directly:

CMRotationMatrix r = att.rotationMatrix;
CATransform3D t = CATransform3DIdentity;
t.m11 = r.m11;
t.m12 = r.m12;
t.m13 = r.m13;
t.m21 = r.m21;
t.m22 = r.m22;
t.m23 = r.m23;
t.m31 = r.m31;
t.m32 = r.m32;
t.m33 = r.m33;
CALayer* lay = // whatever
[CATransaction setDisableActions:YES];
lay.transform = t;

Acceleration and Attitude | 789

www.it-ebooks.info

http://www.it-ebooks.info/

The result is that the layer apparently tries to hold itself still as the device rotates. The
example is rather crude because we aren’t using OpenGL to draw a three-dimensional
object, but it illustrates the principle well enough.

There is a quirk to be aware of in this case as well: over time, the transform has a tendency
to drift. Thus, even if we leave the device stationary, the layer will gradually rotate. That
is the sort of effect that CMAttitudeReferenceFrameXArbitraryCorrectedZVertical
is designed to help mitigate, by bringing the magnetometer into play.

Here are some additional considerations to be aware of when using Core Motion:

• The documentation warns that your app should create only one CMMotion‐
Manager instance. This is not a terribly onerous restriction, but it’s rather odd that,
if this is important, the API doesn’t provide a shared singleton instance accessed
through a class method.

• Use of Core Motion is legal while your app is running in the background. To take
advantage of this, your app would need to be running in the background for some
other reason; there is no Core Motion UIBackgroundModes setting in an Info.plist.
For example, you might run in the background because you’re using Core Location,
and take advantage of this to employ Core Motion as well.

• Core Motion requires that various sensors be turned on, such as the magnetometer
and the gyroscope. This can result in some increased battery drain, so try not to
use any sensors you don’t have to, and remember to stop generating updates as soon
as you no longer need them.

790 | Chapter 22: Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

PART IV

Final Topics

This part of the book is a miscellany of topics.

• Chapter 23 is about files. It explains how your app can store data on disk to be
retrieved the next time the app runs (including both standalone files and user de‐
faults). It also discusses sharing files with the user through iTunes and with other
apps, plus the document architecture and iCloud, and concludes with a survey of
how iOS can work with some common file formats (XML, SQLite, Core Data, and
image files).

• Chapter 24 introduces networking, with an emphasis on HTTP downloading of
data. It also introduces in-app purchasing (a specialized form of networking) and
Bonjour.

• Chapter 25 is about threads. Making your code multithreaded can introduce great
complexity and is not a beginner topic, but you still might need to understand the
basic concepts of multithreading, either in order to prevent a lengthy task from
blocking user interaction with your app, or because some framework explicitly relies
on it. Particular attention is paid to the advantages of NSOperation and (especially)
Grand Central Dispatch.

• Chapter 26 describes how iOS supports Undo in your app.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23

Persistent Storage

The device on which your app runs contains flash memory that functions as the equiv‐
alent of a hard disk, holding files that survive between runs of your app, even if the
device is powered down. This chapter is about how and where files are saved and re‐
trieved, and about some of the additional ways in which files can be manipulated: for
example, apps can define document types in which they specialize and can hand such
documents to one another, and can share documents into the cloud (iCloud), so that
multiple copies of the same app can retrieve them on different devices. The chapter also
explains how user preferences are maintained in NSUserDefaults, and describes some
specialized file formats and ways of working with their data, such as XML, SQLite, Core
Data, and images.

The Sandbox
The hard disk as a whole is not open to your app’s view. A limited portion of the hard
disk is dedicated to your app alone: this is your app’s sandbox. The idea is that every app,
seeing only its own sandbox, is hindered from spying or impinging on the files belonging
to other apps, and in turn is protected from having its own files spied or impinged on
by other apps. Your app’s sandbox is thus a safe place for you to store your data. Your
sandbox, and hence your data, will be deleted if the user deletes your app; otherwise, it
should reliably persist. (Your app can also see some higher-level directories owned by
the system as a whole, but cannot write to them.)

The sandbox contains some standard directories, and there are built-in methods for
referring to them. For example, suppose you want a reference to the Documents direc‐
tory. Here’s one way to access it:

NSString* docs = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

793

www.it-ebooks.info

http://www.it-ebooks.info/

That code returns a path string for the Documents directory. The preferred way to refer
to a file or directory, however, is with a URL. You can obtain this from an NSFileManager
instance:

NSFileManager* fm = [NSFileManager new];
NSError* err = nil;
NSURL* docsurl =
 [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil
 create:YES error:&err];
// error-checking omitted

A question that will immediately occur to you is: where should I put files and folders
that I want to save now and read later? The Documents directory can be a good place.
But if your app supports file sharing (discussed later in this chapter), the user can see
and modify your app’s Documents directory through iTunes, so you might not want to
put things there that the user isn’t supposed to see and change.

Personally, I favor the Application Support directory for most purposes. In OS X, this
directory is shared by multiple applications, each of which must confine itself to an
individual subfolder, but on iOS each app has its own private Application Support di‐
rectory in its own sandbox, so you can safely put files anywhere within it. This directory
may not exist initially, so you can obtain it and create it at the same time:

NSURL* suppurl =
 [fm URLForDirectory:NSApplicationSupportDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil
 create:YES error:&err];

Temporary files, whose loss you are willing to accept (because their contents can be
recreated), can be written into the Caches directory (NSCachesDirectory) or the Tem‐
porary directory (NSTemporaryDirectory). You can write temporary files into the Ap‐
plication Support folder, but by default this means they can be backed up by the user
through iTunes or iCloud; to prevent that, exclude such a file from backup by way of its
file URL:

BOOL ok = [myDocumentUrl setResourceValue:@YES
 forKey:NSURLIsExcludedFromBackupKey
 error:&err];

Although URLs are the favored way of referring to files and folders, they are a more
recent innovation than path strings, and you may encounter file operations that still
require a string. To derive a path string from an NSURL, send it the path message.

Basic File Operations
Let’s say we intend to create a folder MyFolder inside the Documents directory. Assume
that we have an NSFileManager instance fm and an NSURL docsurl pointing at the

794 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Inspecting the Sandbox
The Simulator’s sandbox is a folder on your Mac that you can inspect visually. Appli‐
cations appearing in the Simulator are actually located in a directory inside ~/Library/
Application Support/iPhone Simulator, followed by the system version of the SDK (for
example, there might be a folder called 7.0.3). Inside this folder you’ll find an Applica‐
tions folder; inside that are the sandbox folders for the apps you’ve run from Xcode on
the Simulator. These sandbox folders have mysterious names, but you can identify a
folder by opening it to reveal the name of the app.

You can also view the file structure of the sandbox on the device. When the device is
connected and no app is being run from Xcode, look in the Applications section of the
Organizer window. Choose your app; you’ll see the entire hierarchy of its sandbox con‐
tents displayed at the bottom of the window. If you click Download, the whole sandbox
is copied and arrives on your computer as an .xcappdata package; you can open it in
the Finder with Show Package Contents.

Documents directory, as shown in the previous section. We can then generate a reference
to MyFolder, from which we can ask our NSFileManager instance to create the folder
if it doesn’t exist already:

NSURL* myfolder = [docsurl URLByAppendingPathComponent:@"MyFolder"];
NSError* err = nil;
BOOL ok =
 [fm createDirectoryAtURL:myfolder
 withIntermediateDirectories:YES attributes:nil error:&err];
// ... error-checking omitted

To learn what files and folders exist within a directory, you can ask for an array of the
directory’s contents:

NSError* err = nil;
NSArray* arr =
 [fm contentsOfDirectoryAtURL:docsurl
 includingPropertiesForKeys:nil options:0 error:&err];
// ... error-checking omitted
NSLog(@"%@", [arr valueForKey:@"lastPathComponent"]);
/*
MyFolder
*/

The array resulting from contentsOfDirectoryAtURL:... lists full URLs of the direc‐
tory’s immediate contents; it is shallow. For a deep array, which might be very big, you
can enumerate the directory, so that you are handed only one file reference at a time:

Basic File Operations | 795

www.it-ebooks.info

http://www.it-ebooks.info/

NSDirectoryEnumerator* dir =
 [fm enumeratorAtURL:docsurl
 includingPropertiesForKeys:nil options:0 errorHandler:nil];
for (NSURL* f in dir)
 if ([[f pathExtension] isEqualToString: @"txt"])
 NSLog(@"%@", [f lastPathComponent]);
/*
file1.txt
file2.txt
*/

A directory enumerator also permits you to decline to dive into a particular subdirectory
(skipDescendants), so you can make your traversal even more efficient.

Consult the NSFileManager class documentation for more about what you can do with
files, and see also Apple’s File System Programming Guide.

Saving and Reading Files
To save or read a simple file, you are likely to use one of the convenience methods for
the class appropriate to the file’s contents. NSString, NSData, NSArray, and NSDiction‐
ary provide methods writeToURL... (for writing) and initWithContentsOfURL...
(for reading).

NSString and NSData objects map directly between their own contents and the contents
of the file. Here, I’ll generate a text file from a string:

NSError* err = nil;
BOOL ok =
 [@"howdy" writeToURL:[myfolder URLByAppendingPathComponent:@"file1.txt"]
 atomically:YES encoding:NSUTF8StringEncoding error:&err];
// error-checking omitted

NSArray and NSDictionary files are actually property lists, and will work only if all the
contents of the array or dictionary are property list types (NSString, NSData, NSDate,
NSNumber, NSArray, and NSDictionary).

So how do you save to a file an object of some other class? Well, if an object’s class adopts
the NSCoding protocol, you can convert it to an NSData and back again using NSKeyed‐
Archiver and NSKeyedUnarchiver; an NSData can then be saved as a file or in a property
list.

You can make your own class adopt the NSCoding protocol. This can become somewhat
complicated because an object can refer (through an instance variable) to another object,
which may also adopt the NSCoding protocol, and thus you can end up saving an entire
graph of interconnected objects if you wish. However, I’ll confine myself to illustrating
a simple case (and you can read Apple’s Archives and Serializations Programming
Guide for more information).

796 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s say, then, that we have a simple Person class with a firstName property and a last-
Name property. We’ll declare that it adopts the NSCoding protocol:

@interface Person : NSObject <NSCoding>

To make this class actually conform to NSCoding, we must implement encodeWith-
Coder: (to archive the object) and initWithCoder: (to unarchive the object). In encode-
WithCoder:, we must first call super if the superclass adopts NSCoding — in this case,
it doesn’t — and then call the appropriate encode... method for each instance variable
we want preserved:

- (void)encodeWithCoder:(NSCoder *)encoder {
 //[super encodeWithCoder: encoder]; // not in this case
 [encoder encodeObject:self.lastName forKey:@"last"];
 [encoder encodeObject:self.firstName forKey:@"first"];
}

In initWithCoder, we must call super, using either initWithCoder: if the superclass
adopts the NSCoding protocol or the designated initializer if not, and then call the
appropriate decode... method for each instance variable stored earlier, finally return‐
ing self; memory management is up to us (but under ARC there will probably be no
need to think about that):

- (id) initWithCoder:(NSCoder *)decoder {
 //self = [super initWithCoder: decoder]; // not in this case
 self = [super init];
 self->_lastName = [decoder decodeObjectForKey:@"last"];
 self->_firstName = [decoder decodeObjectForKey:@"first"];
 return self;
}

We can test our code by creating, configuring, and saving a Person instance as a file:

Person* moi = [Person new];
moi.firstName = @"Matt";
moi.lastName = @"Neuburg";
NSData* moidata = [NSKeyedArchiver archivedDataWithRootObject:moi];
NSURL* moifile = [docsurl URLByAppendingPathComponent:@"moi.txt"];
[moidata writeToURL:moifile atomically:NO];

We can retrieve the saved Person at a later time:

NSData* persondata = [[NSData alloc] initWithContentsOfURL:moifile];
Person* person = [NSKeyedUnarchiver unarchiveObjectWithData:persondata];
NSLog(@"%@ %@", person.firstName, person.lastName); // Matt Neuburg

If the NSData object is itself the entire content of the file, as here, then instead of using
archivedDataWithRootObject: and unarchiveObjectWithData:, you can skip the in‐
termediate NSData object and use archiveRootObject:toFile: and unarchiveObject-
WithFile:.

Saving and Reading Files | 797

www.it-ebooks.info

http://www.it-ebooks.info/

Saving a single Person as an archive may seem like overkill; why didn’t we just make a
text file consisting of the first and last names? But imagine that a Person has a lot more
properties, or that we have an array of hundreds of Persons, or an array of hundreds of
dictionaries where one value in each dictionary is a Person; now the power of an ar‐
chivable Person is evident. Even though Person now adopts the NSCoding protocol, an
NSArray containing a Person object still cannot be written to disk using NSArray’s
writeToFile... or writeToURL..., because Person is still not a property list type. But
the array can be archived and written to disk with NSKeyedArchiver.

User Defaults
User defaults (NSUserDefaults) are intended as the persistent storage of the user’s pref‐
erences. They are little more, really, than a special case of an NSDictionary property list
file. You talk to the NSUserDefaults standardUserDefaults object much as if it were a
dictionary; it has keys and values. And the only legal values are property list values (see
the preceding section); thus, for example, to store a Person in user defaults, you’d have
to archive it first to an NSData object. Unlike NSDictionary, NSUserDefaults provides
convenience methods for converting between a simple data type such as a float or a
BOOL and the object that is stored in the defaults (setFloat:forKey:, floatForKey:,
and so forth). But the defaults themselves are still a dictionary.

Meanwhile, somewhere on disk, this dictionary is being saved for you automatically as
a property list file — though you don’t concern yourself with that. You simply set or
retrieve values from the dictionary by way of their keys, secure in the knowledge that
the file is being read into memory or written to disk as needed. Your chief concern is to
make sure that you’ve written everything needful into user defaults before your app
terminates; in the multitasking world (Appendix A), this will usually mean when the
app delegate receives applicationDidEnterBackground: at the latest. If you’re worried
that your app might crash, you can tell the standardUserDefaults object to
synchronize as a way of forcing it to save right now, but this is rarely necessary.

To provide the value for a key before the user has had a chance to do so — the default
default, as it were — use registerDefaults:. What you’re supplying here is a dictionary
whose key–value pairs will each be written into the user defaults, but only if there is no
such key already. For example:

[[NSUserDefaults standardUserDefaults] registerDefaults:
 @{@"cardMatrixRows":@4, @"cardMatrixColumns":@3}];

The idea is that we call registerDefaults: extremely early as the app launches. Either
the app has run at some time previously and the user has set these preferences, in which
case this call has no effect and does no harm, or not, in which case we now have initial
values for these preferences with which to get started. So, in the game app from which

798 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

that code comes, we start out with a 4×3 game layout, but the user can change this at
any time.

This leaves only the question of how the user is to interact with the defaults. One way
is that your app provides some kind of interface.

For example, the game app from which the previous code comes has a tab bar interface;
the second tab is where the user sets preferences (Figure 6-9). The app doesn’t participate
in the built-in state saving and restoration mechanism. So it uses (or misuses) the user
defaults to store state information. It records the state of the game board and the card
deck into user defaults every time these change, so that if the app is terminated and then
launched again later, we can restore the game as it was when the user left off. One might
argue that, while the current card layout may be state, the card deck itself is data — and
so I am also misusing the user defaults to store data. However, while purists may grum‐
ble, it’s a very small amount of data and I don’t think the distinction is terribly significant
in this case.

Alternatively, you can provide a settings bundle, consisting mostly of one or more prop‐
erty list files describing an interface and the corresponding user default keys and their
initial values; the Settings app is then responsible for translating your instructions into
an actual interface, and for presenting it to the user.

Using a settings bundle has some obvious disadvantages: the user may not think to look
in the Settings app; the user has to leave your app to access preferences; and you don’t
get the kind of control over the interface that you have within your own app. Also, in a
multitasking world, this means that the user can set preferences while your app is back‐
grounded; you’ll need to register for NSUserDefaultsDidChangeNotification in order
to hear about this.

In some situations, though, a settings bundle has some clear advantages. Keeping the
preferences interface out of your app can make your app’s own interface cleaner and
simpler. You don’t have to write any of the “glue” code that coordinates the preferences
interface with the user default values. And it may be appropriate for the user to be able
to set preferences for your app even when your app isn’t running.

Writing a settings bundle is described in Apple’s Preferences and Settings Programming
Guide.

File Sharing
If your app supports file sharing, its Documents directory becomes available to the user
through iTunes (Figure 23-1). The user can add files to your app’s Documents directory,
and can save files and folders from your app’s Documents directory to the computer, as
well as renaming and deleting files and folders. This could be appropriate, for example,

File Sharing | 799

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-1. The iTunes file sharing interface

if your app works with common types of file that the user might obtain elsewhere, such
as PDFs or JPEGs.

To support file sharing, set the Info.plist key “Application supports iTunes file sharing”
(UIFileSharingEnabled).

Once your entire Documents directory is exposed to the user this way, you are unlikely
to use the Documents directory to store private files. As I mentioned earlier, I like to
use the Application Support directory instead.

Your app doesn’t get any notification when the user has altered the contents of the
Documents directory. Noticing that the situation has changed and responding appro‐
priately is entirely up to you.

Document Types
Your app can declare itself willing to open documents of a certain type. In this way, if
another app obtains a document of this type, it can propose to hand the document off
to your app. For example, the user might download the document with Mobile Safari,
or receive it in a mail message with the Mail app; now we need a way to get it from Safari
or Mail to you.

To let the system know that your app is a candidate for opening a certain kind of docu‐
ment, you will configure the “Document types” (CFBundleDocumentTypes) key in your
Info.plist. This is an array, where each entry will be a dictionary specifying a document
type by using keys such as “Document Content Type UTIs” (LSItemContentTypes),
“Document Type Name” (CFBundleTypeName), CFBundleTypeIconFiles, and
LSHandlerRank. Far and away the simplest method for configuring the Info.plist is
through the interface available in the Info tab when you edit the target.

For example, suppose I want to declare that my app opens PDFs. In my target’s Info tab
in Xcode 5, I would edit the Document Types section to look like Figure 23-2.

800 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-2. Creating a document type

Figure 23-3. The Mail app offers to hand off a PDF

The result is that my Info.plist contains this entry:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeIconFiles</key>
 <array/>
 <key>CFBundleTypeName</key>
 <string>PDF</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>com.adobe.pdf</string>
 </array>
 </dict>
</array>

Now suppose the user receives a PDF in an email message. The Mail app can display
this PDF, but the user can also tap the Action button to bring up an activity view offering,
among other things, to open the file in my app. The interface will resemble
Figure 23-3, but with my app listed as one of the buttons.

Document Types | 801

www.it-ebooks.info

http://www.it-ebooks.info/

Next, suppose the user actually taps the button that hands the PDF off to my app. For
this to work, my app delegate must implement application:openURL:source-
Application:annotation:. When that method is called, my app has been brought to
the front, either by launching it from scratch or by reviving it from background sus‐
pension; its job is now to handle the opening of the document whose URL has arrived
as the second parameter. To prevent me from peeking into another app’s sandbox, the
system has already copied the document into my sandbox, into the Inbox directory,
which is created for exactly this purpose.

The Inbox directory is created in your Documents folder. Thus, if your
app implements file sharing, the user can see the Inbox folder; you may
wish to delete the Inbox folder, therefore, as soon as you’re done re‐
trieving files from it.

In this simple example, my app has just one view controller, which has an outlet to a
UIWebView where we will display any PDFs that arrive in this fashion. So my app
delegate contains this code:

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation {
 ViewController* viewController =
 (ViewController*)self.window.rootViewController;
 [viewController displayPDF:url];
 return YES;
}

And my view controller contains this code:

- (void) displayPDF: (NSURL*) url {
 NSURLRequest* req = [NSURLRequest requestWithURL:url];
 [self.wv loadRequest:req];
}

In real life, things might be more complicated. Our implementation of
application:openURL:... might check to see whether this really is a PDF, and return
NO if it isn’t. Also, our app might be in the middle of something else, possibly displaying
a completely different view controller’s view; because application:openURL:... can
arrive at any time, we may have to be prepared to drop whatever we were doing and
display the incoming document instead.

If our app is launched from scratch by the arrival of this URL, application:didFinish-
LaunchingWithOptions: will be sent to our app delegate as usual. The options dictio‐
nary (the second parameter) will contain the UIApplicationLaunchOptionsURLKey,
and we can take into account, if we like, the fact that we are being launched specifically
to open a document. We can also return NO to refuse to open the document. If we return

802 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-4. The document Open In activity view

YES as usual, application:openURL:... will arrive in good order after our interface
has been set up.

The example I’ve been discussing assumes that the UTI for the document type is stan‐
dard and well-known. It is also possible that your app will operate on a new document
type, that is, a type of document that the app itself defines. In that case, you’ll also want
to add this UTI to your app’s list of Exported UTIs in the Info.plist. I’ll give an example
later in this chapter.

Handing Off a Document
The converse of the situation discussed in the previous section is this: your app has
somehow acquired a document and wants to let the user hand off a copy of it to whatever
app can deal with it. This is done through the UIDocumentInteractionController class.
This class operates asynchronously, so retaining an instance of it is up to you; typically,
you’ll store it in an instance variable with a retain setter policy.

For example, let’s say our app has a PDF sitting in its Documents directory. Assuming
we have an NSURL pointing to this document, presenting the interface for handing the
document off to some other application (Figure 23-4) could be as simple as this
(sender is a button that the user has just tapped):

self.dic =
 [UIDocumentInteractionController interactionControllerWithURL:url];
BOOL ok =
 [self.dic presentOpenInMenuFromRect:[sender bounds]
 inView:sender animated:YES];

This interface is an activity view (Chapter 13). There are actually two activity views
available:
presentOpenInMenuFromRect:inView:animated:
presentOpenInMenuFromBarButtonItem:animated:

Presents an activity view listing apps in which the document can be opened (like
Figure 23-4).

Handing Off a Document | 803

www.it-ebooks.info

http://www.it-ebooks.info/

presentOptionsMenuFromRect:inView:animated:
presentOptionsMenuFromBarButtonItem:animated:

Presents an activity view listing apps in which the document can be opened, along
with other possible actions, such as Print, Copy, and Mail (like Figure 23-3).

These methods work on both iPhone and iPad interfaces; on the iPad, the buttons appear
in a popover.

Your app can’t learn which other applications are capable of accepting the document!
Indeed, it can’t even learn in advance whether any other applications are capable of
accepting the document; your only clue is that the returned BOOL value afterward will
be NO if UIDocumentInteractionController couldn’t present the requested interface.

A UIDocumentInteractionController can also present a preview of the document, if the
document is of a type for which preview is enabled, by calling presentPreview-
Animated:. You must give the UIDocumentInteractionController a delegate
(UIDocumentInteractionControllerDelegate), and the delegate must implement
documentInteractionControllerViewControllerForPreview:, returning an existing
view controller that will contain the preview’s view controller. So, here we ask for the
preview:

self.dic =
 [UIDocumentInteractionController interactionControllerWithURL:url];
self.dic.delegate = self;
[self.dic presentPreviewAnimated:YES];

In the delegate, we supply the view controller; it happens that, in my code, this delegate
is a view controller — in fact, it’s the very view controller that is presenting the
UIDocumentInteractionController — so it simply returns self:

- (UIViewController *) documentInteractionControllerViewControllerForPreview:
 (UIDocumentInteractionController *) controller {
 return self;
}

If the view controller returned were a UINavigationController, the preview’s view con‐
troller would be pushed onto it. In this case it isn’t, so the preview’s view controller is a
presented view controller with a Done button. The preview interface also contains an
Action button that lets the user summon the Options activity view. In fact, this preview
interface is exactly the same interface already familiar from the Mail app.

Delegate methods allow you to track what’s happening in the interface presented by the
UIDocumentInteractionController. Probably most important are those that inform you
that key stages of the interaction are ending:

• documentInteractionControllerDidDismissOptionsMenu:

• documentInteractionControllerDidDismissOpenInMenu:

804 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

• documentInteractionControllerDidEndPreview:

• documentInteractionController:didEndSendingToApplication:

Previews are actually provided through the Quick Look framework, and you can skip
the UIDocumentInteractionController and present the preview yourself through a
QLPreviewController; you’ll need to @import QuickLook. It’s a view controller, so to
display the preview you show it as a presented view controller or push it onto a navi‐
gation controller’s stack, just as UIDocumentInteractionController would have done.
A nice feature of QLPreviewController is that you can give it more than one document
to preview; the user can move between these, within the preview, using a table of contents
summoned by a button at the bottom of the interface. Apart from this, the interface
looks like the interface presented by the UIDocumentInteractionController.

In this example, I may have in my Documents directory, at some depth (like perhaps in
the Inbox directory), one or more PDF documents. I acquire a list of their URLs and
present a preview for them:

// obtain URLs of PDFs as an array
NSFileManager* fm = [NSFileManager new];
NSURL* docsurl =
 [fm URLForDirectory:NSDocumentDirectory inDomain:NSUserDomainMask
 appropriateForURL:nil create:NO error:nil];
NSDirectoryEnumerator* dir =
 [fm enumeratorAtURL:docsurl
 includingPropertiesForKeys:nil options:0 errorHandler:nil];
if (!dir)
 return; // proper error-checking omitted
NSMutableArray* marr = [NSMutableArray new];
for (NSURL* f in dir) {
 if ([[f pathExtension] isEqualToString: @"pdf"])
 [marr addObject: f];
}
self.pdfs = marr; // retain policy
if (![self.pdfs count])
 return;
// show preview interface
QLPreviewController* preview = [QLPreviewController new];
preview.dataSource = self;
[self presentViewController:preview animated:YES completion:nil];

You’ll notice that I haven’t told the QLPreviewController what documents to preview.
That is the job of QLPreviewController’s data source. In my code, this very same view
controller is also the data source. It simply fetches the requested information from the
list of URLs, which was previously saved into an instance variable:

- (NSInteger) numberOfPreviewItemsInPreviewController:
 (QLPreviewController *) controller {
 return [self.pdfs count];
}

Handing Off a Document | 805

www.it-ebooks.info

http://www.it-ebooks.info/

- (id <QLPreviewItem>) previewController: (QLPreviewController *) controller
 previewItemAtIndex: (NSInteger) index {
 return self.pdfs[index];
}

The second data source method requires us to return an object that adopts the
QLPreviewItem protocol. By a wildly improbable coincidence, NSURL does adopt this
protocol, so the example works.

Document Architecture
If your app opens and saves documents of a type peculiar to itself, you may want to take
advantage of the document architecture. This architecture revolves around a class, UI‐
Document, that takes care of a number of pesky issues, such as the fact that loading or
writing your data might take some time. Plus, UIDocument provides autosaving be‐
havior, so that your data is written out automatically whenever it changes. Moreover,
UIDocument is your gateway to allowing your documents to participate in iCloud; with
iCloud, your app’s documents on one of the user’s devices will automatically be mirrored
onto another of the user’s devices.

Getting started with UIDocument is not difficult. You’ll start with a UIDocument sub‐
class, and you’ll override two methods:
loadFromContents:ofType:error:

Called when it’s time to open a document from disk. You are expected to convert
the contents value into a model object that your app can use, store that model
object, and return YES. (If there was a problem, you’ll set the error: by indirection
and return NO.)

contentsForType:error:

Called when it’s time to save a document to disk. You are expected to convert the
app’s model object into an NSData instance (or, if your document is a package, an
NSFileWrapper) and return it. (If there was a problem, you’ll set the error: by
indirection and return nil.)

Your UIDocument subclass will need a place to store and retrieve the data model object.
Obviously, this can be an instance variable of the UIDocument subclass itself. At the
same time, keep in mind that your UIDocument instance will probably be partnered in
some way with a view controller instance, which will also need access to the same data.

To instantiate a UIDocument, call its designated initializer, initWithFileURL:. This
sets the UIDocument’s fileURL property, and associates the UIDocument with this file
on disk, typically for the remainder of its lifetime.

In my description of the two key UIDocument methods that your subclass will override,
I used the phrase, “when it’s time” (to open or save the document). This raises the

806 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

question of how your UIDocument instance will know when to open and save a docu‐
ment. There are three circumstances to distinguish:
Make a new document

The fileURL: points to a nonexistent file. Immediately after instantiating the UI‐
Document, you send it saveToURL:forSaveOperation:completionHandler:,
where the second argument is UIDocumentSaveForCreating. (The first argument
will be the UIDocument’s own fileURL.) This in turn causes contentsFor-
Type:error: to be called, and the contents of an empty document are saved out to
disk. This implies that your UIDocument subclass should know of some default
value that represents the model data when there is no data.

Open an existing document
Send the UIDocument instance openWithCompletionHandler:. This in turn causes
loadFromContents:ofType:error: to be called.

Save an existing document
There are two approaches to saving an existing document:
Autosave

Usually, you’ll mark the document as “dirty” by calling updateChangeCount:.
From time to time, the UIDocument will notice this situation and will save the
document to disk, calling contentsForType:error: in the process.

Manual save
On certain occasions, waiting for autosave won’t be appropriate. We’ve already
seen an example of such an occasion — when the file itself needs to be created
on the spot. Another is when the app is going into the background; we will want
to preserve our document there and then, in case the app is terminated. You’ll
call saveToURL:forSaveOperation:completionHandler:; if the file is not be‐
ing created for the first time, the second argument will be UIDocumentSaveFor-
Overwriting. Alternatively, if you know you’re finished with the document
(perhaps the interface displaying the document is about to be torn down) you
can call closeWithCompletionHandler:.

The open..., close..., and saveTo... methods have a completionHandler: argu‐
ment. This is UIDocument’s solution to the fact that reading and saving may take time.
The file operations themselves take place on a background thread; the completion-
Handler: block is then called on the main thread.

We now know enough for an example! I’ll reuse my Person class from earlier in this
chapter. Imagine a document effectively consisting of multiple Person instances; I’ll call
each such document a people group. Our app, People Groups, will list all people groups
in the user’s Documents folder; it will also open any people group from disk and display
its contents, allowing the user to edit any Person’s firstName or lastName (Figure 23-5).

Document Architecture | 807

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-5. The People Groups interface

My first step is to define a custom UTI in my app’s Info.plist, associating a file type
com.neuburg.pplgrp with a file extension @"pplgrp". I then also define a document
type that uses this UTI, as shown earlier in this chapter (Figure 23-6).

A document consists of multiple Persons, so a natural model implementation is an
NSArray of Persons. Moreover, as I mentioned earlier, since Person implements NSCod‐
ing, an NSArray of Persons can be archived directly into an NSData. Thus, our UIDo‐
cument subclass (which I’ll call PeopleDocument) has a public NSMutableArray people
property, and can be implemented very simply. We override initWithFileURL: to give
ourselves something to save if we are called upon to save a new empty document; then,
to mediate between our model and the data on disk, we use NSKeyedUnarchiver and
NSKeyedArchiver exactly as in our earlier examples:

-(id)initWithFileURL:(NSURL *)url {
 self = [super initWithFileURL:url];
 if (self) {
 self->_people = [NSMutableArray array];
 }
 return self;
}
- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName
 error:(NSError **)outError {
 NSArray* arr = [NSKeyedUnarchiver unarchiveObjectWithData:contents];

808 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-6. Defining a custom UTI

 self.people = [NSMutableArray arrayWithArray:arr];
 return YES;
}
- (id)contentsForType:(NSString *)typeName error:(NSError **)outError {
 NSData* data = [NSKeyedArchiver archivedDataWithRootObject:self.people];
 return data;
}

The remaining questions are architectural: when should a PeopleDocument be initial‐
ized, where should it be stored, and what should be the nature of communications with
it?

The first view controller, DocumentLister, merely lists documents by name, and pro‐
vides an interface for letting the user create a new group; only the second view controller,
PeopleLister, the one that displays the first and last names of the people in the group,
actually needs to work with PeopleDocument.

PeopleLister’s designated initializer therefore requires that it be given a fileURL: ar‐
gument, with which it sets its own fileURL property. In its viewDidLoad implementa‐
tion, PeopleLister instantiates a PeopleDocument with that same fileURL, and retains
it through a PeopleDocument property (self.doc). If the URL points to a nonexistent
file, PeopleLister requests that it be created by calling saveToURL:forSave-

Document Architecture | 809

www.it-ebooks.info

http://www.it-ebooks.info/

Operation:completionHandler:; otherwise, it requests that the document be read, by
calling openWithCompletionHandler:. Either way, the completion handler points
PeopleLister’s own people property at the PeopleDocument’s people property (so that
they share the same data model object) and refreshes the interface:

NSFileManager* fm = [NSFileManager new];
self.doc = [[PeopleDocument alloc] initWithFileURL:self.fileURL];
void (^listPeople) (BOOL) = ^(BOOL success) {
 if (success) {
 self.people = self.doc.people;
 [self.tableView reloadData];
 }
};
if (![fm fileExistsAtPath:[self.fileURL path]])
 [self.doc saveToURL:doc.fileURL
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:listPeople];
else
 [self.doc openWithCompletionHandler:listPeople];

When the user performs a significant editing maneuver, such as creating or deleting a
person or editing a person’s first or last name, PeopleLister tells its PeopleDocument
that the document is dirty, and allows autosaving to take it from there:

[self.doc updateChangeCount:UIDocumentChangeDone];

When the app is about to go into the background, or when PeopleLister’s own view is
disappearing, PeopleLister forces PeopleDocument to save immediately:

- (void) forceSave: (id) n {
 [self.tableView endEditing:YES];
 [self.doc saveToURL:doc.fileURL
 forSaveOperation:UIDocumentSaveForOverwriting
 completionHandler:nil];
}

That’s all it takes; adding UIDocument support to your app is easy, because UIDocument
is merely acting as a supplier and preserver of your app’s data model object. UIDocument
presents itself in the documentation as a large and complex class, but that’s chiefly be‐
cause it is so heavily customizable both at high and low levels; for the most part, you
won’t need any of that heavy customization, and use of UIDocument really will be as
simple as what I’ve shown here. You might go further in order to give your UIDocument
a more sophisticated understanding of what constitutes a significant change in your
data by working with its undo manager; I’ll talk about undo managers in Chapter 26.
For further details, see Apple’s Document-based App Programming Guide for iOS.

810 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-7. Turning on iCloud support

iCloud
Once your app is operating through UIDocument, iCloud compatibility effectively falls
right into your lap. You have just two steps to perform:
Obtain iCloud entitlements

In Xcode 5, all you have to do is edit the target and, in the Capabilities tab, set the
iCloud switch to On. This causes a transaction to take place between Xcode and the
Member Center; automatically, your app gets a Ubiquity Container, and an appro‐
priately configured entitlements file is added to the project (Figure 23-7).

Obtain an iCloud-compatible directory
Early in your app’s lifetime, call NSFileManager’s URLForUbiquityContainer-
Identifier: (typically passing nil as the argument), on a background thread, to
obtain the URL of a cloud-shared directory. It will probably be an app-specific
directory in file://localhost/private/var/mobile/Library/Mobile%20Documents/;
you are given sandbox access to this directory even though strictly speaking it isn’t
inside your sandbox area. Any documents your app puts here by way of a UIDo‐
cument subclass will be automatically shared into the cloud.

Thus, having switched on iCloud support, I was able to make my People Groups example
app iCloud-compatible with just two code changes. In the app delegate, as my app
launches, I step out to a background thread (Chapter 25), obtain the cloud-shared di‐
rectory’s URL, and then step back to the main thread and retain the URL through a
property, self.ubiq:

iCloud | 811

www.it-ebooks.info

http://www.it-ebooks.info/

dispatch_async(dispatch_get_global_queue(0, 0), ^{
 NSFileManager* fm = [NSFileManager new];
 NSURL* ubiq = [fm URLForUbiquityContainerIdentifier:nil];
 dispatch_async(dispatch_get_main_queue(), ^{
 self.ubiq = ubiq;
 });
});

(Actually, that code should probably be preceded by a call to NSFileManager’s ubiquity-
IdentityToken. If the result is nil, iCloud isn’t available, or this user hasn’t registered
for iCloud, and we might as well omit any subsequent attempt to work with iCloud. If
it isn’t nil, it identifies the user’s iCloud account; this can be useful, for example, to detect
when the user has logged into a different account.)

Then, anywhere in my code where I was specifying the URL for the user’s Documents
folder as the place to seek and save people groups, I now specify ubiq if it isn’t nil:

NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask
 appropriateForURL:nil create:NO error:nil];
NSURL* ubiq =
 [(AppDelegate*)[[UIApplication sharedApplication] delegate] ubiq];
if (ubiq)
 docsurl = ubiq;

To test, I ran the app on a device (with iCloud → Documents & Data switched to On in
the Settings app) and created a people group with some people in it. I then switched to
a different device (also with iCloud → Documents & Data switched to On) and ran the
app there, and tapped the Refresh button, which looks through the docsurl directory
for pplgrp files:

NSDirectoryEnumerator* dir = [fm enumeratorAtURL:docsurl
 includingPropertiesForKeys:nil options:0
 errorHandler:nil];
self.files = [NSMutableArray array];
for (NSURL* aFile in dir) {
 [dir skipDescendants];
 if ([[aFile pathExtension] isEqualToString:@"pplgrp"])
 [self.files addObject:aFile];
}
[self.tableView reloadData];

Presto, there was a people group with the same name containing the same people! It
was quite thrilling.

There are a few further refinements that my app probably needs in order to be a good
iCloud citizen. For example, my app is not automatically aware that a new document
has appeared in the cloud (that’s why I had to tap Refresh to discover an existing people
group). To be notified of that, I’d want to run an NSMetadataQuery. The usual strategy
is: instantiate NSMetadataQuery, configure the search, register for notifications such as

812 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

NSMetadataQueryDidFinishGatheringNotification and NSMetadataQueryDid-

UpdateNotification, start the search, and retain the NSMetadataQuery instance with
the search continuing to run for the entire lifetime of the app.

Another concern is that my app should be notified when the currently open document
changes on disk because a new version of it was downloaded from the cloud (that is,
someone edited the document while I had it open). For that, register for UIDocument-
StateChangedNotification. To learn the document’s state, consult its document-
State property. A big issue is likely to be what should happen if the document state is
UIDocumentStateInConflict. You’ll want to resolve the conflict in coordination with
the NSFileVersion class; for details and example code, see the “Resolving Document
Version Conflicts” chapter of Apple’s Document-based App Programming Guide for iOS.

Yet another issue is the question of what should happen if the availability of iCloud
changes in the course of our app’s career. The problem here is that the data is stored in
two different places — the Documents directory or the cloud-shared directory. Suppose,
for example, that our app starts life without iCloud — because the user hasn’t registered
for it, or has it turned off for our app — and then suddenly iCloud is available. We could
then call NSFileManager’s setUbiquitous:itemAtURL:destinationURL:error: to
transfer the document to our ubiquity container directory. However, it is not so obvious
what to do if iCloud is switched from On to Off, as it is now too late to access the ubiquity
container directory to rescue the document; in effect, the cloud-based data is lost (until
the user logs back into that iCloud account).

Note also the “Use key–value store” checkbox in Figure 23-7. Instead of, or in addition
to, storing full-fledged documents in the cloud, your app might like to store some key–
value pairs, similar to a sort of online NSUserDefaults. To do so, check that checkbox,
and then use the NSUbiquitousKeyValueStore class; get the defaultStore shared object
and talk to it much as you would talk to NSUserDefaults. The NSUbiquitousKeyValue-
StoreDidChangeExternallyNotification tells you when data is changed in the cloud.
Material that you store in the cloud through NSUbiquitousKeyValueStore does not
count against the user’s iCloud storage limit, but it needs to be kept short and simple.

Further iCloud details are outside the scope of this discussion; see Apple’s iCloud Design
Guide. Getting started is easy; making your app a good iCloud citizen, capable of dealing
with the complexities that iCloud may entail, is not.

New in Xcode 5, iCloud apps can be tested in the Simulator. Also, the
Debug navigator adds an iCloud graph when your app is working with
iCloud, allowing you to track cloud storage and transfer (Figure 23-8);
in my testing, however, this worked only when running on a device.

iCloud | 813

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-8. The iCloud graph in Xcode’s Debug navigator

XML
XML is a highly flexible and widely used general-purpose text file format for storage
and retrieval of structured data. You might use it yourself to store data that you’ll need
to retrieve later, or you could encounter it when obtaining information from elsewhere,
such as the Internet.

OS X Cocoa provides a set of classes (NSXMLDocument and so forth) for reading,
parsing, maintaining, searching, and modifying XML data in a completely general way,
but iOS does not include these. I think the reason must be that their tree-based approach
is too memory-intensive. Instead, iOS provides NSXMLParser, a much simpler class
that walks through an XML document, sending delegate messages as it encounters el‐
ements. With this, you can parse an XML document once, but what you do with the
pieces as they arrive is up to you. The general assumption here is that you know in
advance the structure of the particular XML data you intend to read and that you have
provided classes for storage of the same data in object form and for transforming the
XML pieces into that storage.

To illustrate, let’s return once more to our Person class with a firstName and a last-
Name property. Imagine that as our app starts up, we would like to populate it with Person
objects, and that we’ve stored the data describing these objects as an XML file in our
app bundle, like this:

814 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

<?xml version="1.0" encoding="utf-8"?>
<people>
 <person>
 <firstName>Matt</firstName>
 <lastName>Neuburg</lastName>
 </person>
 <person>
 <firstName>Snidely</firstName>
 <lastName>Whiplash</lastName>
 </person>
 <person>
 <firstName>Dudley</firstName>
 <lastName>Doright</lastName>
 </person>
</people>

This data could be mapped to an array of Person objects, each with its firstName and
lastName properties appropriately set. (This is a deliberately easy example, of course;
not all XML is so readily expressed as objects.) Let’s consider how we might do that.

Using NSXMLParser is not difficult in theory. You create the NSXMLParser, handing
it the URL of a local XML file (or an NSData, perhaps downloaded from the Internet),
set its delegate, and tell it to parse. The delegate starts receiving delegate messages. For
simple XML like ours, there are only three delegate messages of interest:
parser:didStartElement:namespaceURI:qualifiedName:attributes:

The parser has encountered an opening element tag. In our document, this would
be <people>, <person>, <firstName>, or <lastName>.

parser:didEndElement:namespaceURI:qualifiedName:

The parser has encountered the corresponding closing element tag. In our docu‐
ment this would be </people>, </person>, </firstName>, or </lastName>.

parser:foundCharacters:

The parser has encountered some text between the starting and closing tags for the
current element. In our document this would be, for example, Matt or Neuburg and
so on.

In practice, responding to these delegate messages poses challenges of maintaining state.
If there is just one delegate, it will have to bear in mind at every moment what element
it is currently encountering; this could make for a lot of instance variables and a lot of
if-statements in the implementation of the delegate methods. To aggravate the issue,
parser:foundCharacters: can arrive multiple times for a single stretch of text; that is,
the text may arrive in pieces, so we have to accumulate it into an instance variable.

An elegant way to meet these challenges is by resetting the NSXMLParser’s delegate to
different objects at different stages of the parsing process. We make each delegate re‐
sponsible for parsing one element; when a child of that element is encountered, we make

XML | 815

www.it-ebooks.info

http://www.it-ebooks.info/

a new object and make it the delegate. The child element delegate is then responsible
for making the parent the delegate once again when it finishes parsing its own element.
This is slightly counterintuitive because it means parser:didStartElement... and
parser:didEndElement... for the same element are arriving at two different objects.
Imagine, for example, what the job of our <people> parser will be:

• When parser:didStartElement... arrives, the <people> parser looks to see if this
is a <person>. If so, it creates an object that knows how to deal with a <person>,
handing that object a reference to itself (the <people> parser), and makes it the
delegate.

• Delegate messages now arrive at this newly created <person> parser. If any text is
encountered, parser:foundCharacters: will be called, and the text must be accu‐
mulated into an instance variable.

• Eventually, parser:didEndElement... arrives. The <person> parser now uses its
reference to make the <people> parser the delegate once again. Thus, the <people>
parser is in charge once again, ready if another <person> element is encountered
(and the old <person> parser might now go quietly out of existence).

With this in mind, we can design a simple all-purpose base class for parsing an element
(simple especially because we are taking no account of namespaces, attributes, and other
complications):

@interface MyXMLParserDelegate : NSObject <NSXMLParserDelegate>
@property (nonatomic, copy) NSString* name;
@property (nonatomic, strong) NSMutableString* text;
@property (nonatomic, weak) MyXMLParserDelegate* parent;
@property (nonatomic, strong) MyXMLParserDelegate* child;
- (void) start: (NSString*) elementName parent: (id) parent;
- (void) makeChild: (Class) class
 elementName: (NSString*) elementName
 parser: (NSXMLParser*) parser;
- (void) finishedChild: (NSString*) s;
@end

Here’s how these properties and methods are intended to work:
name

The name of the element we are parsing now.

text

A place for any characters to accumulate as we parse our element.

parent

The MyXMLParserDelegate who created us and whose child we are.

816 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

child

If we encounter a child element, we’ll create a MyXMLParserDelegate and retain it
here, making it the delegate.

start:parent:

When we create a child parser, we’ll call this method on the child so that it knows
who its parent is. The first parameter is the name of the element the child will be
parsing; we know this because we, not the child, received parser:didStart-
Element.... (In a fuller implementation, this method would be more elaborate and
we’d hand the child all the information we got with parser:didStart-

Element....)

makeChild:elementName:parser:

If we encounter a child element, there’s a standard dance to do: instantiate some
subclass of MyXMLParserDelegate, make it our child, make it the parser’s delegate,
and send it start:parent:. This is a utility method that embodies that dance.

finishedChild:

When a child receives parser:didEndElement..., it sends this message to its par‐
ent before making its parent the delegate. The parameter is the text, but the parent
can use this signal to obtain any information it expects from the child before the
child goes out of existence.

Now we can sketch in the default implementation for MyXMLParserDelegate:

- (void) start: (NSString*) el parent: (id) p {
 self.name = el;
 self.parent = p;
 self.text = [NSMutableString string];
}
- (void) makeChild: (Class) class
 elementName: (NSString*) elementName
 parser: (NSXMLParser*) parser {
 MyXMLParserDelegate* del = [class new];
 self.child = del;
 parser.delegate = del;
 [del start: elementName parent: self];
}
- (void) finishedChild: (NSString*) s { // subclass implements as desired
}
- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {
 [self.text appendString:string];
}
- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName {
 if (self.parent) {

XML | 817

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.parent finishedChild: [self.text copy]];
 parser.delegate = self.parent;
 }
}

Next, we create subclasses of MyXMLParserDelegate, one for each kind of element we
expect to parse. The chief responsibility of such a subclass, if it encounters a child ele‐
ment in parser:didStartElement..., is to create an instance of the appropriate My‐
XMLParserDelegate subclass, send it start:parent:, and make it the delegate; we have
already embodied this in the utility method makeChild:elementName:parser:. The
reverse process is already built into the default implementation of parser:didEnd-
Element...: we call the parent’s finishedChild: and make the parent the delegate.

We can now parse our sample XML into an array of Person objects very easily. We start
by obtaining the URL of the XML file, handing it to an NSXMLParser, creating our first
delegate parser and making it the delegate, and telling the NSXMLParser to start parsing:

NSURL* url =
 [[NSBundle mainBundle] URLForResource:@"folks" withExtension:@"xml"];
NSXMLParser* parser = [[NSXMLParser alloc] initWithContentsOfURL:url];
MyPeopleParser* people = [MyPeopleParser new];
[parser setDelegate: people];
[parser parse];
// ... do something with people.people ...

Here is MyPeopleParser. It is the top-level parser, so it has some extra work to do: when
it encounters the <people> element, which is the first thing that should happen, it creates
the people array that will hold the Person objects; this array will be the final result of
the entire parsing operation. If it encounters a <person> element, it does the standard
dance I described earlier, creating a <person> parser (MyPersonParser) as its child and
making it the delegate; when the <person> parser calls back to tell us it’s finished, My‐
PeopleParser expects the <person> parser to supply a Person through its person
property:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqualToString: @"people"])
 self.people = [NSMutableArray array];
 if ([elementName isEqualToString: @"person"])
 [self makeChild:[MyPersonParser class] elementName:elementName
 parser:parser];
}
- (void) finishedChild: (NSString*) s {
 [self.people addObject: [(MyPersonParser*)self.child person]];
}

818 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

MyPersonParser does the same child-making dance when it encounters a <first-
Name> or a <lastName> element; it uses a plain vanilla MyXMLParserDelegate to parse
these children, because the built-in ability to accumulate text and hand it back is all
that’s needed. In finishedChild:, it makes sure it has a Person object ready to hand
back to its parent through its person property; key–value coding is elegantly used to
match the name of the element with the name of the Person property to be set:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict {
 [self makeChild:[MyXMLParserDelegate class] elementName:elementName
 parser:parser];
}
- (void) finishedChild:(NSString *)s {
 if (!self.person) {
 Person* p = [Person new];
 self.person = p; // retain policy
 }
 [self.person setValue: s forKey: self.child.name];
}

This may seem like a lot of work to parse such a simple bit of XML, but it is neatly object-
oriented and requires very little new code once we’ve established the MyXMLParser‐
Delegate superclass, which is of course reusable in many other situations.

On the other hand, if you really want tree-based XML parsing along with XPath and so
forth, you can have it, because the libxml2 library is present in the SDK (and on the
device). This is a C dylib (short for “dynamic library,” extension .dylib), and Xcode
doesn’t automatically know during the build process where to find its headers (even
though it’s part of the SDK), so the instructions for accessing it in your project are a tiny
bit more involved than linking to an Objective-C framework:

1. Add libxml2.dylib to the Link Binary With Libraries build phase for your app target,
just as you would do with a framework.

2. Edit the target’s build settings and set the Header Search Paths build setting to
$SDKROOT/usr/include/libxml2. (When you close the dialog for adding a search
path, this will transform itself into iphoneos/usr/include/libxml2.)

3. In your code, import <libxml/tree.h>.

You now have to talk to libxml2 using C. This is no trivial task. Here’s an example
proving we can do it; we read our XML file, parse it into a tree, and traverse all its
elements:

XML | 819

www.it-ebooks.info

http://www.it-ebooks.info/

NSURL* url =
 [[NSBundle mainBundle] URLForResource:@"folks" withExtension:@"xml"];
NSString* path = [url absoluteString];
const char* filename = [path UTF8String];
xmlDocPtr doc = nil;
xmlNode *root_element = nil;
doc = xmlReadFile(filename, nil, 0);
root_element = xmlDocGetRootElement(doc);
traverse_elements(root_element); // must be previously defined
xmlFreeDoc(doc);
xmlCleanupParser();

Here’s our definition for traverse_elements; it logs each person and the person’s first
and last name, just to prove we are traversing successfully:

void traverse_elements(xmlNode * a_node) {
 xmlNode *cur_node = nil;
 for (cur_node = a_node; cur_node; cur_node = cur_node->next) {
 if (cur_node->type == XML_ELEMENT_NODE) {
 if (strcmp(cur_node->name, "person") == 0)
 NSLog(@"found a person");
 if (strcmp(cur_node->name, "firstName") == 0)
 NSLog(@"First name: %s", cur_node->children->content);
 if (strcmp(cur_node->name, "lastName") == 0)
 NSLog(@"Last name: %s", cur_node->children->content);
 }
 traverse_elements(cur_node->children);
 }
}

If talking C to libxml2 is too daunting, you can interpose an Objective-C front end by
taking advantage of a third-party library. See, for example, https://github.com/Touch
Code/TouchXML.

Keep in mind, however, that you’re really not supposed to do what I just did. Even if
you use libxml2, you’re supposed to use stream-based parsing, not tree-based parsing.
See Apple’s XMLPerformance example code.

A foundation class for constructing and parsing JSON strings is also provided —
NSJSONSerialization. It’s a very simple class: all its methods are class methods, and
eligible structures are required to be an array or dictionary (corresponding to what
JSON calls an object) whose elements must be a string, number, array, dictionary, or
null. NSData is used as the medium of exchange; you’ll archive or unarchive as appro‐
priate. JSON arises often as a lightweight way of communicating structured data across
the network; for more information, see http://www.json.org/.

820 | Chapter 23: Persistent Storage

www.it-ebooks.info

https://github.com/TouchCode/TouchXML
https://github.com/TouchCode/TouchXML
http://www.json.org/
http://www.it-ebooks.info/

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured relational data‐
base that you can talk to using SQL, the universal language of databases. This can be an
appropriate storage format when your data comes in rows and columns (records and
fields) and needs to be rapidly searchable. Also, the database as a whole is never loaded
into memory; the data is accessed only as needed. This is valuable in an environment
like an iOS device, where memory is at a premium.

To use SQLite, link to libsqlite3.dylib (and import <sqlite3.h>). As with libxml2, talk‐
ing C to sqlite3 may prove annoying. There are a number of lightweight Objective-C
front ends. In this example, I use fmdb (https://github.com/ccgus/fmdb) to read the names
of people out of a previously created database:

NSString* docsdir = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];
NSString* dbpath = [docsdir stringByAppendingPathComponent:@"people.db"];
FMDatabase* db = [FMDatabase databaseWithPath:dbpath];
if (![db open]) {
 NSLog(@"Ooops");
 return;
}
FMResultSet *rs = [db executeQuery:@"select * from people"];
while ([rs next]) {
 NSLog(@"%@ %@", rs[@"firstname"], rs[@"lastname"]);
}
[db close];
/* output:
Matt Neuburg
Snidely Whiplash
Dudley Doright
*/

You can include a previously constructed SQLite file in your app bundle, but you can’t
write to it there; the solution is to copy it from your app bundle into another location,
such as the Documents directory, before you start working with it.

Core Data
The Core Data framework provides a generalized way of expressing objects and prop‐
erties that form a relational graph; moreover, it has built-in facilities for persisting those
objects to disk — typically using SQLite as a storage format — and reading them from
disk only when they are needed, thus making efficient use of memory. For example, a
person might have not only multiple addresses but also multiple friends who are also
persons; expressing persons and addresses as explicit object types, working out how to
link them and how to translate between objects in memory and data in storage, and

SQLite | 821

www.it-ebooks.info

http://www.sqlite.org/docs.html
https://github.com/ccgus/fmdb
http://www.it-ebooks.info/

tracking the effects of changes, such as when a person is deleted from the data, can be
tedious. Core Data can help.

It is important to stress, however, that Core Data is not a beginner-level technology. It
is difficult to use and extremely difficult to debug. It expresses itself in a highly verbose,
rigid, arcane way. It has its own elaborate way of doing things — everything you already
know about how to create, access, alter, or delete an object within an object collection
becomes completely irrelevant! — and trying to bend it to your particular needs can be
tricky and can have unintended side effects. Nor should Core Data be seen as a substitute
for a true relational database.

Therefore, I have no intention of explaining Core Data; that would require an entire
book. Indeed, such books exist, and if Core Data interests you, you should read some
of them. See also Apple’s Core Data Programming Guide and the other resources referred
to there. I will, however, illustrate what it’s like to work with Core Data.

I will describe the People Groups example from earlier in this chapter as a Core Data
app. We will no longer have multiple documents, each representing a single group of
people; instead, we will now have a single document, maintained for us by Core Data,
containing all of our groups and all of their people.

A Core Data project is linked to CoreData.framework and will import <CoreData/Core-
Data.h>, usually in the precompiled header file. To construct a Core Data project from
scratch, it is simplest to specify the Master–Detail Application template (or the Empty
Application template) and check Use Core Data in the second screen. This gives you
the necessary linkage to the Core Data framework, along with template code in the app
delegate implementation file for constructing the Core Data persistence stack, a set of
objects that work together to fetch and save your data; in most cases there will no reason
to alter this template code, and I have not done so for this example.

The app delegate template code gives the app delegate three properties representing the
important singleton objects constituting the persistence stack: managedObject-
Context, managedObjectModel, and persistentStoreCoordinator. It also supplies
“lazy” getters to give these properties their values when first needed. Of these, the
managedObjectContext is the most important for other classes to have access to. The
managed object context is the world in which your data objects live and move and have
their being: to obtain an object, you fetch it from the managed object context; to create
an object, you insert it into the managed object context; to save your data, you save the
managed object context.

The Master–Detail Application template also gives the Master view controller a managed-
ObjectContext property, and the app delegate sets its value. My Master view controller
is called GroupLister, so the app delegate’s application:didFinishLaunchingWith-
Options: contains these lines:

822 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 23-9. The Core Data model for the People Groups app

UINavigationController *navigationController =
 (UINavigationController *)self.window.rootViewController;
GroupLister *controller =
 (GroupLister *)navigationController.topViewController;
controller.managedObjectContext = self.managedObjectContext;

To describe the structure and relationships of the objects constituting your data model,
you design an object graph in a data model document. Our object graph is very simple:
a Group can have multiple Persons (Figure 23-9). The attributes, analogous to object
properties, are all strings, except for the timestamps which are dates; the timestamps
will be used for determining the sort order in which groups and people will be displayed
in the interface — the display order is the order of creation.

Core Data attributes are not quite object properties. Group and Person are not classes;
they are entity names. All Core Data model objects are instances of NSManagedObject,
and therefore they do not, of themselves, have a name property, a firstName property,
a lastName property, and so on. Instead, Core Data model objects make themselves
dynamically KVC compliant for attribute names. For example, Core Data knows, thanks
to our object graph, that a Person entity is to have a firstName attribute, so you can set
a Person’s firstName attribute using KVC (setValue:forKey:). I find this maddening,
so, at the very least, I like to give NSManagedObject the necessary properties through
a category:

// NSManagedObject+GroupAndPerson.h:
#import <CoreData/CoreData.h>
@interface NSManagedObject (GroupAndPerson)
@property (nonatomic) NSString *firstName, *lastName;
@property (nonatomic) NSString *name, *uuid;
@property (nonatomic) NSDate* timestamp;

Core Data | 823

www.it-ebooks.info

http://www.it-ebooks.info/

@property (nonatomic) NSManagedObject* group;
@end

// NSManagedObject+GroupAndPerson.m:
#import "NSManagedObject+GroupAndPerson.h"
@implementation NSManagedObject (GroupAndPerson)
@dynamic firstName, lastName, name, uuid, timestamp, group;
@end

Now we’ll be able to use name and firstName and the rest as properties, and CoreData
will generate the corresponding accessors for us.

Now let’s talk about the first view controller, GroupLister. Its job is to list groups and to
allow the user to create a new group (Figure 23-5). The way you ask Core Data for a
model object is with a fetch request. In iOS, where Core Data model objects are often
the data source for a UITableView, fetch requests are conveniently managed through
an NSFetchedResultsController. The template code gives us an NSFetchedResultsCon‐
troller property, along with a “lazy” getter method that generates an NSFetchedResults‐
Controller if the property is nil, and for GroupLister I’ve only had to change it a little
bit: my entity name is Group and my cache name is Groups, and I’ve renamed the
property itself, frc.

The result is that self.frc is the data model, analogous to an array of Group objects.
The implementation of the table view’s Three Big Questions to the data source, all pretty
much straight from the template code, looks like this:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [self.frc.sections count];
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 id<NSFetchedResultsSectionInfo> sectionInfo = self.frc.sections[section];
 return sectionInfo.numberOfObjects;
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 NSManagedObject *object = [self.frc objectAtIndexPath:indexPath];
 cell.textLabel.text = object.name;
 return cell;
}

Now let’s talk about object creation. GroupLister’s table is initially empty because our
app starts out life with no data. When the user asks to create a group, I put up a UIAlert‐
View asking for the name of the new group. If the user provides a valid name, I create
a new Group entity and save the managed object context. Again, this is almost boilerplate
code, copied from the template’s insertNewObject: method:

824 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

NSManagedObjectContext *context = self.frc.managedObjectContext;
NSEntityDescription *entity = self.frc.fetchRequest.entity;
NSManagedObject *mo =
 [NSEntityDescription insertNewObjectForEntityForName:entity.name
 inManagedObjectContext:context];
mo.name = name;
mo.uuid = [[NSUUID UUID] UUIDString];
mo.timestamp = [NSDate date];
// save context
NSError *error = nil;
BOOL ok = [context save:&error];
if (!ok) {
 NSLog(@"%@", error);
 return;
}

The second view controller class is PeopleLister (Figure 23-5). It lists all the people in a
particular Group, so I don’t want PeopleLister to be instantiated without a Group;
therefore, its designated initializer is initWithNibName:bundle:groupManaged-

Object:, and it looks like this:

- (id) initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
 groupManagedObject: (NSManagedObject*) object {
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 self->_groupObject = object;
 }
 return self;
}

To navigate from the GroupLister view to the PeopleLister view, I instantiate People‐
Lister and push it onto the navigation controller’s stack. For example, here’s what hap‐
pens when the user taps a Group name in the GroupLister table view:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 PeopleLister* pl =
 [[PeopleLister alloc] initWithNibName:@"PeopleLister" bundle:nil
 groupManagedObject:[self.frc objectAtIndexPath:indexPath]];
 [self.navigationController pushViewController:pl animated:YES];
}

PeopleLister, too, has an frc property, along with a getter that is almost identical to the
template code for generating an NSFetchedResultsController — almost, but not quite.
In the case of GroupLister, we wanted every group; but a PeopleLister instance should
list only the People belonging to one particular group, which has been stored as the
groupObject property. So PeopleLister’s implementation of the frc getter method con‐
tains these lines:

Core Data | 825

www.it-ebooks.info

http://www.it-ebooks.info/

NSPredicate* pred =
 [NSPredicate predicateWithFormat:@"group = %@", self.groupObject];
req.predicate = pred; // req is the NSFetchRequest we're configuring

As you can see from Figure 23-5, the PeopleLister interface consists of a table of text
fields. Populating the table is easy enough:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Person"
 forIndexPath:indexPath];
 NSManagedObject *object = [self.frc objectAtIndexPath:indexPath];
 UITextField* first = (UITextField*)[cell viewWithTag:1];
 UITextField* last = (UITextField*)[cell viewWithTag:2];
 first.text = object.firstName;
 last.text = object.lastName;
 first.delegate = last.delegate = self;
 return cell;
}

When the user edits a text field (the first or last name of a Person), I update the data
model and save the managed object context; the first part of this code should be familiar
from Chapter 8:

-(void)textFieldDidEndEditing:(UITextField *)textField {
 UIView* v = textField.superview;
 while (![v isKindOfClass: [UITableViewCell class]])
 v = v.superview;
 UITableViewCell* cell = (UITableViewCell*)v;
 NSIndexPath* ip = [self.tableView indexPathForCell:cell];
 NSManagedObject* object = [self.frc objectAtIndexPath:ip];
 [object setValue:textField.text
 forKey: ((textField.tag == 1) ? @"firstName" : @"lastName")];
 // save context
 NSError *error = nil;
 BOOL ok = [object.managedObjectContext save:&error];
 if (!ok) {
 NSLog(@"%@", error);
 return;
 }
}

The trickiest part is what happens when the user asks to make a new Person. It starts
out analogously to making a new Group: I make a new Person entity, configure its
attributes with an empty first name and last name, and save the context. But we must
also make this empty Person appear in the table! To do so, we act as the NSFetchedRe‐
sultsController’s delegate (NSFetchedResultsControllerDelegate); the delegate methods
are triggered by the change in the managed object context:

826 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) doAdd: (id) sender {
 [self.tableView endEditing:YES];
 NSManagedObjectContext *context = self.frc.managedObjectContext;
 NSEntityDescription *entity = self.frc.fetchRequest.entity;
 NSManagedObject *mo =
 [NSEntityDescription insertNewObjectForEntityForName:[entity name]
 inManagedObjectContext:context];
 mo.group = self.groupObject;
 mo.lastName = @"";
 mo.firstName = @"";
 mo.timestamp = [NSDate date];
 // save context
 NSError *error = nil;
 BOOL ok = [context save:&error];
 if (!ok) {
 NSLog(@"%@", error);
 return;
 }
}
// ================= delegate methods ======================
-(void)controllerWillChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView beginUpdates];
}
-(void)controllerDidChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView endUpdates];
}
-(void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath {
 if (type == NSFetchedResultsChangeInsert) {
 [self.tableView insertRowsAtIndexPaths:@[newIndexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 // wait for interface to settle...
 // ...then start editing first name of new person
 dispatch_async(dispatch_get_main_queue(), ^{
 UITableViewCell* cell =
 [self.tableView cellForRowAtIndexPath:newIndexPath];
 UITextField* tf = (UITextField*)[cell viewWithTag:1];
 [tf becomeFirstResponder];
 });
 }
}

Image File Formats
The Image I/O framework provides a simple, unified way to open image files (from disk
or downloaded from the network, as described in Chapter 24), to save image files, to
convert between image file formats, and to read metadata from standard image file

Image File Formats | 827

www.it-ebooks.info

http://www.it-ebooks.info/

formats, including EXIF and GPS information from a digital camera. You’ll need to
@import ImageIO.

Obviously, such features were not entirely missing from iOS before the Image I/O
framework was introduced (starting in iOS 4). UIImage can read the data from most
standard image formats, and you can convert formats with functions such as UIImage-
JPEGRepresentation and UIImagePNGRepresentation. But you could not, for example,
save an image as a TIFF without the Image I/O framework.

The Image I/O framework introduces the notion of an image source (CGImageSource‐
Ref). This can be created from the URL of a file on disk or from an NSData object
(actually CFDataRef, to which NSData is toll-free bridged). You can use this to obtain
a CGImage of the source’s image (or, if the source format contains multiple images, a
particular image). But you can also obtain metadata from the source without trans‐
forming the source into a CGImage, thus conserving memory. For example:

NSURL* url =
 [[NSBundle mainBundle] URLForResource:@"colson"
 withExtension:@"jpg"];
CGImageSourceRef src =
 CGImageSourceCreateWithURL((__bridge CFURLRef)url, nil);
CFDictionaryRef result1 = CGImageSourceCopyPropertiesAtIndex(src, 0, nil);
NSDictionary* result = CFBridgingRelease(result1);
// ... do something with result ...
CFRelease(src);

Without having opened the image file as an image, we now have a dictionary full of
information about it, including its pixel dimensions (kCGImagePropertyPixelWidth
and kCGImagePropertyPixelHeight), its resolution, its color model, its color depth,
and its orientation — plus, because this picture originally comes from a digital camera,
the EXIF data such as the aperture and exposure at which it was taken, plus the make
and model of the camera.

We can obtain the image as a CGImage, with CGImageSourceCreateImageAtIndex. Al‐
ternatively, we can request a thumbnail version of the image. This is a very useful thing
to do, and the name “thumbnail” doesn’t really do it justice. If your purpose in opening
this image is to display it in your interface, you don’t care about the original image data;
a thumbnail is precisely what you want, especially because you can specify any size for
this “thumbnail” all the way up to the original size of the image! This is tremendously
convenient, because to assign a small UIImageView a large image wastes all the memory
reflected by the size difference.

To generate a thumbnail at a given size, you start with a dictionary specifying the size
along with other instructions, and pass that, together with the image source, to CGImage-
SourceCreateThumbnailAtIndex. The only pitfall is that, because we are working with
a CGImage and specifying actual pixels, we must remember to take account of the scale
of our device’s screen. So, for example, let’s say we want to scale our image so that its

828 | Chapter 23: Persistent Storage

www.it-ebooks.info

http://www.it-ebooks.info/

largest dimension is no larger than the width of the UIImageView (self.iv) into which
we intend to place it:

NSURL* url =
 [[NSBundle mainBundle] URLForResource:@"colson"
 withExtension:@"jpg"];
CGImageSourceRef src =
 CGImageSourceCreateWithURL((__bridge CFURLRef)url, nil);
CGFloat scale = [UIScreen mainScreen].scale;
CGFloat w = self.iv.bounds.size.width*scale;
NSDictionary* d =
 @{(id)kCGImageSourceShouldAllowFloat: (id)kCFBooleanTrue,
 (id)kCGImageSourceCreateThumbnailWithTransform: (id)kCFBooleanTrue,
 (id)kCGImageSourceCreateThumbnailFromImageAlways: (id)kCFBooleanTrue,
 (id)kCGImageSourceThumbnailMaxPixelSize: @((int)w)};
CGImageRef imref =
 CGImageSourceCreateThumbnailAtIndex(src, 0, (__bridge CFDictionaryRef)d);
UIImage* im =
 [UIImage imageWithCGImage:imref scale:scale
 orientation:UIImageOrientationUp];
self.iv.image = im;
CFRelease(imref); CFRelease(src);

The Image I/O framework also introduces the notion of an image destination, used for
saving an image into a specified file format. As a final example, I’ll show how to save
our image as a TIFF. We never open the image as an image! We save directly from the
image source to the image destination:

NSURL* url =
 [[NSBundle mainBundle] URLForResource:@"colson"
 withExtension:@"jpg"];
CGImageSourceRef src =
 CGImageSourceCreateWithURL((__bridge CFURLRef)url, nil);
NSFileManager* fm = [NSFileManager new];
NSURL* suppurl = [fm URLForDirectory:NSApplicationSupportDirectory
 inDomain:NSUserDomainMask
 appropriateForURL:nil
 create:YES error:nil];
NSURL* tiff = [suppurl URLByAppendingPathComponent:@"mytiff.tiff"];
CGImageDestinationRef dest =
 CGImageDestinationCreateWithURL((__bridge CFURLRef)tiff,
 (CFStringRef)@"public.tiff", 1, nil);
CGImageDestinationAddImageFromSource(dest, src, 0, nil);
bool ok = CGImageDestinationFinalize(dest);
// error-checking omitted
CFRelease(src); CFRelease(dest);

Image File Formats | 829

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24

Basic Networking

Networking is difficult and complicated, chiefly because it’s ultimately out of your con‐
trol. My motto with regard to the network is, “There’s many a slip ’twixt the cup and
the lip.” You can ask for a resource from across the network, but at that point anything
can happen: the resource might not be found (the server is down, perhaps), it might
take a while to arrive, it might never arrive, the network itself might vanish after the
resource has partially arrived. iOS, however, makes at least the basics of networking very
easy, so that’s what this chapter will deal with.

To go further into networking than this chapter takes you, start with Apple’s URL Load‐
ing System Programming Guide. To go even deeper under the hood, see the CFNetwork
Programming Guide. Apple also provides a generous amount of sample code. See in
particular SimpleURLConnections, AdvancedURLConnections, SimpleNetwork‐
Streams, SimpleFTPSample, and MVCNetworking.

Many earlier chapters have described interface and frameworks that network for you
automatically. Put a UIWebView in your interface (Chapter 11) and poof, you’re net‐
working; the UIWebView does all the grunt work, and it does it a lot better than you’d
be likely to do it from scratch. The same is true of MPMovieViewController (Chap‐
ter 15), MFMailComposeViewController (Chapter 20), and MKMapView (Chapter 24).

HTTP Requests
In iOS 7, an HTTP request is made through an NSURLSession object. An NSURLSes‐
sion is a kind of grand overarching environment in which network-related tasks are to
take place. You will often need only one NSURLSession object. For very simple, occa‐
sional use, this object might be the singleton sharedSession object. More generally,
you’ll create your own NSURLSession by calling sessionWithConfiguration: or
sessionWithConfiguration:delegate:delegateQueue:, handing it an NSURLSes‐
sionConfiguration object describing the desired environment.

831

www.it-ebooks.info

http://www.it-ebooks.info/

The NSURLSession class, together with its related classes, supersedes
the NSURLConnection class from iOS 6 and before. NSURLConnec‐
tion still exists and is not deprecated, but you won’t need it unless you
have backward-compatible code, so I’m not going to discuss it; the
future, and the power, lies in NSURLSession.

To use the NSURLSession object to perform a request across the network, you ask it for
a new NSURLSessionTask object. This is the object that actually performs (and repre‐
sents) one upload or download process. NSURLSessionTask is an abstract class, em‐
bodying various properties, such as:

• A taskDescription and taskIdentifier; the former is up to you, while the latter
is a unique identifier within the NSURLSession

• The originalRequest and currentRequest (the request can change because there
might be a redirect)

• An initial response from the server
• Various countOfBytes... properties allowing you to track progress
• A state, which might be:

— NSURLSessionTaskStateRunning

— NSURLSessionTaskStateSuspended

— NSURLSessionTaskStateCanceling

— NSURLSessionTaskStateCompleted

• An error if the task failed

In addition, you can tell a task to resume, suspend, or cancel. A task is born suspended,
and does not start until it is told to resume for the first time.

There are three kinds of actual session task:
NSURLSessionDataTask

An NSURLSessionTask subclass. With a data task, the data is provided incremen‐
tally to your app as it arrives across the network.

NSURLSessionDownloadTask
An NSURLSessionTask subclass. With a download task, the data is stored as a file,
and the saved file URL is handed to you at the end of the process. The file is outside
your sandbox and will be destroyed, so preserving it (or its contents) is up to you.

832 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

NSURLSessionUploadTask
An NSURLSessionDataTask subclass. With an upload task, you can provide a file
to be uploaded and stand back, though you can also hear about the upload progress
if you wish.

Once you’ve obtained a new session task from the NSURLSession, you can keep a ref‐
erence to it if you wish, but you don’t have to; the NSURLSession retains it. The NSURL‐
Session will provide you with a list of its tasks in progress; call getTasksWithCompletion-
Handler:. The completion handler is handed three arrays, one for each type of task.
The NSURLSession releases a task after it is canceled or completed. Thus, if an NSURL‐
Session has no running or suspended tasks, the three arrays are empty.

There are two ways to ask your NSURLSession for a new NSURLSessionTask:
Call a convenience method

The convenience methods all take a completionHandler: parameter. This com‐
pletion handler is called when the task process ends.

Call a delegate-based method
You give the NSURLSession a delegate when you create it, and the delegate is called
back at various stages of a task’s progress.

The two ways of asking for an NSURLSessionTask entail two different ways of working
with it. I’ll demonstrate both.

Simple HTTP Request
I’ll start by illustrating the utmost in simplicity:

• We use the shared NSURLSession.
• We obtain a download task, handing it a URL and a completion handler.
• We call resume to start the data task.

Our code then finishes. Meanwhile, the download proceeds asynchronously on a back‐
ground thread (so the interface is not blocked, and the user can tap buttons and so
forth). When the download finishes, the completion handler is called. We must make
no assumptions about when the completion handler will be called or what thread it will
be called on; indeed, unless we take steps to the contrary, it will be a background thread.
In this particular example, the URL is that of an image that I intend to display in my
interface; therefore, I step out to the main thread (Chapter 25) in order to talk to the
interface:

NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLSession* session = [NSURLSession sharedSession];
NSURLSessionDownloadTask* task =

HTTP Requests | 833

www.it-ebooks.info

http://www.it-ebooks.info/

 [session downloadTaskWithURL:url completionHandler:
 ^(NSURL *loc, NSURLResponse *response, NSError *error) {
 NSData* d = [NSData dataWithContentsOfURL:loc];
 UIImage* im = [UIImage imageWithData:d];
 dispatch_async(dispatch_get_main_queue(), ^{
 self.iv.image = im;
 });
 }];
[task resume];

There’s many a slip, as I’ve already mentioned, so in real life I would probably hedge my
bets a little more by checking for errors along the way; but the skeleton of the structure
remains exactly the same:

NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLSession* session = [NSURLSession sharedSession];
NSURLSessionDownloadTask* task =
 [session downloadTaskWithURL:url completionHandler:
 ^(NSURL *loc, NSURLResponse *response, NSError *error) {
 NSLog(@"%@", @"here");
 if (error) {
 NSLog(@"%@", error);
 return;
 }
 NSInteger status = [(NSHTTPURLResponse*)response statusCode];
 NSLog(@"response status: %i", status);
 if (status != 200) {
 NSLog(@"%@", @"oh well");
 return;
 }
 NSData* d = [NSData dataWithContentsOfURL:loc];
 UIImage* im = [UIImage imageWithData:d];
 dispatch_async(dispatch_get_main_queue(), ^{
 self.iv.image = im;
 NSLog(@"%@", @"done");
 });
 }];
[task resume];

Formal HTTP Request
Now let’s go to the other extreme and be very formal:

• We’ll create and retain our own NSURLSession.
• We’ll configure the NSURLSession with an NSURLSessionConfiguration object.
• We’ll give the session a delegate.
• Instead of a mere URL, we’ll start with an NSURLRequest.

834 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

The NSURLSession class method we’ll call to create the session will be sessionWith-
Configuration:delegate:delegateQueue:. This lets us supply an NSURLSession‐
Configuration object dictating various options to be applied to the session. Possible
options include:

• Whether to permit cell data use, or to require Wi-Fi
• The maximum number of simultaneous connections to the remote server
• Timeout values:
timeoutIntervalForRequest

The maximum time you’re willing to wait between pieces of data.
timeoutIntervalForResource

The maximum time for the entire download to arrive.

• Cookie, caching, and credential policies

We also specify a delegate, as well as stating the queue (roughly, the thread — see
Chapter 25) on which the delegate methods are to be called. For each type of task, there’s
a delegate protocol, which is itself often a composite of multiple protocols.

For example, for a data task, we would want a data delegate — an object conforming to
the NSURLSessionDataDelegate protocol, which itself conforms to the NSURLSes‐
sionTaskDelegate protocol, which in turn conforms to the NSURLSessionDelegate pro‐
tocol, resulting in about a dozen delegate methods we could implement, though only a
few are crucial:
URLSession:dataTask:didReceiveData:

Some data has arrived, as an NSData object. The data will arrive piecemeal, so this
method may be called many times during the download process, supplying new
data each time. Our job is to accumulate all those chunks of data; this involves
maintaining state between calls.

URLSession:task:didCompleteWithError:

If there is an error, we’ll find out about it here. If there’s no error, this is our signal
that the download is over; we can now do something with the accumulated data.

Similarly, for a download task, we need a download delegate, conforming to NSURL‐
SessionDownloadDelegate, which conforms to NSURLSessionTaskDelegate, which
conforms to NSURLSessionDelegate. We’ll need to implement these methods:
URLSession:downloadTask:didResumeAtOffset:expectedTotalBytes:

This method is of interest only in the case of a resumable download that has in fact
been paused and resumed, but we have to implement it in order to silence the
compiler.

HTTP Requests | 835

www.it-ebooks.info

http://www.it-ebooks.info/

URLSession:downloadTask:didWriteData:totalBytesWritten:totalBytes-

ExpectedToWrite:

Called periodically, to keep us apprised of the download’s progress.

URLSession:downloadTask:didFinishDownloadingToURL:

Called at the end of the process; we must grab the downloaded file immediately, as
it will be destroyed.

It’s also a good idea to implement URLSession:task:didCompleteWithError:; it will
be called in any case, but if there was a communication problem, the error: parameter
will tell you about it.

Here, then, is my recasting of the same image file download as in the previous example.
Since one NSURLSession can perform multiple tasks, there will typically be just one
NSURLSession; so I’ll start with a utility method that creates and configures it:

- (NSURLSession*) configureSession {
 NSURLSessionConfiguration* config =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
 config.allowsCellularAccess = NO;
 NSURLSession* session =
 [NSURLSession sessionWithConfiguration:config delegate:self
 delegateQueue:[NSOperationQueue mainQueue]];
 return session;
}

I’ve specified, for purposes of the example, that no caching is to take place and that data
downloading via cell is forbidden; you could configure the NSURLSession much more
heavily and meaningfully, of course. I have specified self as the delegate, and I have
requested delegate callbacks on the main thread.

I’m going to keep a reference both to the NSURLSession (self.session) and to the
current download task (self.task). In this particular example, I’ll perform just one
task at a time, so I can use the task instance variable as a flag to indicate that the task is
in progress. I blank out the image view, to make the progress of the task more obvious
for test purposes, and I create, retain, and start the download task:

if (self.task)
 return;
if (!self.session)
 self.session = [self configureSession];
NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLRequest* req = [NSURLRequest requestWithURL:url];
NSURLSessionDownloadTask* task =
 [self.session downloadTaskWithRequest:req];
self.task = task;
self.iv.image = nil;
[task resume];

836 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

In this particular example, there is very little merit in using an NSURLRequest instead
of an NSURL to form our task. Still, an NSURLRequest can come in handy (as I’ll
demonstrate later in this chapter), and an upload task requires one.

When using NSURLSession, do not use the NSURLRequest to config‐
ure properties of the request that are configurable through the ses‐
sion. For example, there is no point setting the NSURLRequest’s
timeoutInterval, as it is the NSURLSession’s timeout properties that
are significant.

Here are some delegate methods for responding to the download:

-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten
 totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite {
 NSLog(@"downloaded %d%%",
 (int)(100.0*totalBytesWritten/totalBytesExpectedToWrite));
}
-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didResumeAtOffset:(int64_t)fileOffset
 expectedTotalBytes:(int64_t)expectedTotalBytes {
 // unused in this example
}
-(void)URLSession:(NSURLSession *)session
 task:(NSURLSessionTask *)task
 didCompleteWithError:(NSError *)error {
 NSLog(@"completed; error: %@", error);
}
-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didFinishDownloadingToURL:(NSURL *)location {
 self.task = nil;
 NSHTTPURLResponse* response =
 (NSHTTPURLResponse*)downloadTask.response;
 NSInteger stat = response.statusCode;
 NSLog(@"status %i", stat);
 if (stat != 200)
 return;
 NSData* d = [NSData dataWithContentsOfURL:location];
 UIImage* im = [UIImage imageWithData:d];
 dispatch_async(dispatch_get_main_queue(), ^{
 self.iv.image = im;
 });
}

HTTP Requests | 837

www.it-ebooks.info

http://www.it-ebooks.info/

Some delegate methods provide a completionHandler: parameter. These are delegate
methods that require a response from you. For example, in the case of a data task,
URLSession:dataTask:didReceiveResponse:completionHandler: arrives when we
first connect to the server. Here, we could check the status code of the initial
NSHTTPURLResponse. We must also return a response saying whether or not to pro‐
ceed (or whether to convert the data task to a download task, which could certainly
come in handy). But because of the multithreaded nature of networking, we do this, not
by returning a value directly, but by calling the completionHandler: that we’re handed
as a parameter and passing our response into it. Several of the delegate methods are
constructed in this way.

So, for example:

-(void)URLSession:(NSURLSession *)session
 dataTask:(NSURLSessionDataTask *)dataTask
 didReceiveResponse:(NSURLResponse *)response
 completionHandler:(void (^)(NSURLSessionResponseDisposition))ch {
 NSInteger status = [(NSHTTPURLResponse*)response statusCode];
 NSLog(@"got response: %d", status);
 ch(NSURLSessionResponseAllow);
}

There is one final and extremely important consideration when using NSURLSession
with a delegate — memory management. The NSURLSession retains its delegate. This
is understandable, as it would be disastrous if the delegate could simply vanish out from
the middle of an asynchronous time-consuming process; but it is also unusual, and
requires special measures on our part. At the moment, we have a retain cycle! We have
an NSURLSession instance variable self.session, but that NSURLSession is retaining
self as its delegate.

Like an NSTimer, the solution is to invalidate the NSURLSession at some appropriate
moment. There are two ways to do this:
finishTasksAndInvalidate

Allows any existing tasks to run to completion. Afterward, the NSURLSession re‐
leases the delegate and cannot be used for anything further.

invalidateAndCancel

Interrupts any existing tasks immediately. The NSURLSession releases the delegate
and cannot be used for anything further.

Let’s suppose that self is a view controller. Then viewWillDisappear: could be a good
place to invalidate the NSURLSession. (We cannot use dealloc, because dealloc won’t
be called until after we have invalidated the NSURLSession; that’s what it means to have
a retain cycle.) We should also nilify our reference to the NSURLSession so that, in case
the view controller instance does not also go out of existence, we won’t accidentally try
to use the invalid NSURLSession again:

838 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

-(void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 [self.session finishTasksAndInvalidate];
 self.session = nil;
}

Multiple Tasks
The little memory-management dance at the end of the preceding section is rather
unsatisfactory. Things would be better if we had an instance of some separate class whose
job is to hold the NSURLSession in a property and to serve as its delegate. There would
still be a retain cycle until the NSURLSession was invalidated, but at least the manage‐
ment of this object’s memory would not be entangled with that of a view controller.

Imagine, for example, a class MyDownloader, which holds an NSURLSession and serves
as its delegate, and which has a public method cancelAllTasks. Then our view con‐
troller could create and maintain an instance of MyDownloader early in its lifetime, and
could invalidate it in dealloc:

- (void) viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 if (!self.downloader) {
 MyDownloader* downloader = // ...
 self.downloader = downloader;
 }
 // ...
}
- (void) dealloc {
 if (self->_downloader)
 [self->_downloader cancelAllTasks];
}

In that code, I omitted the creation and initialization of MyDownloader. How should
this work? The MyDownloader object will create its own NSURLSession, but I think
the client should be allowed to configure the session; doing this is extremely convenient,
because the NSURLSessionConfiguration is a separate object. So the missing initiali‐
zation should look like this:

NSURLSessionConfiguration* config = // ... set up configuration
MyDownloader* downloader =
 [[MyDownloader alloc] initWithConfiguration:config];

Now let’s decide how a client will get a MyDownloader object to perform a download.
A client will hand a MyDownloader a URL string, and the MyDownloader will generate
the NSURLSessionDownloadTask and tell it to resume. Acting as the NSURLSession’s
delegate, the MyDownloader will be told when the download is over. At that point, the
MyDownloader has a file URL for the downloaded object, which it needs to hand back
to the client immediately. How should this work?

HTTP Requests | 839

www.it-ebooks.info

http://www.it-ebooks.info/

MyDownloader might define a delegate protocol; the client would then be the delegate,
and the MyDownloader could call the client back using a method defined by the pro‐
tocol. But that’s far too rigid and restrictive. One NSURLSession can have many simul‐
taneous tasks; I want a MyDownloader to be able to serve as a central locus for lots of
downloading activity. I’m imagining, for example, that a MyDownloader might have
multiple clients, or that a single client might initiate multiple downloads from various
different contexts. All that downloading takes place asynchronously, and perhaps si‐
multaneously. When the MyDownloader hands a downloaded file’s URL to a client, how
is that client to know which download request this file URL corresponds to?

My solution, which I think is rather elegant, is that the client, when it orders the down‐
load at the outset, should also hand the MyDownloader a completion handler block. To
return the file URL at the end of a download, the MyDownloader calls that block. From
the client’s point of view, the process looks something like this:

NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
[self.downloader download:s completionHandler:^(NSURL* url){
 if (!url)
 return;
 NSData* d = [NSData dataWithContentsOfURL:url];
 UIImage* im = [UIImage imageWithData:d];
 dispatch_async(dispatch_get_main_queue(), ^{
 self.iv.image = im;
 });
}];

Now let’s implement this architecture within MyDownloader. We have posited a method
download:completionHandler:. When that method is called, MyDownloader asks for
a new download task and sets it going:

- (void) download:(NSString*)s completionHandler:(void(^)(NSURL* url))ch {
 NSURL* url = [NSURL URLWithString:s];
 NSURLRequest* req = [NSURLRequest requestWithURL:url];
 NSURLSessionDownloadTask* task =
 [self.session downloadTaskWithRequest:req];
 // ... store the completion handler somehow ...
 [task resume];
}

When the download finishes, the MyDownloader hears about it (as session delegate)
and calls the completion handler:

-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didFinishDownloadingToURL:(NSURL *)location {
 NSHTTPURLResponse* response = (NSHTTPURLResponse*)downloadTask.response;
 NSInteger stat = response.statusCode;
 NSLog(@"status %i", stat);
 NSURL* url = nil;
 if (stat == 200) {
 url = location;

840 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

 NSLog(@"downloaded %@", req.URL.lastPathComponent);
 }
 void(^ch)(NSURL* url) = // ... retrieve the completion handler somehow
 ch(url);
}

In the preceding two code snippets, I have twice thrown up my hands, using the word
“somehow” in a comment to signify an unsolved problem. There are actually two prob‐
lems here:

• The completion handler arrives in one method (download:completionHandler:)
but is called in another (URLSession:downloadTask:didFinishDownloadingTo-
URL:). The completion handler needs to be stored, in the first method, in such a
way that it can be retrieved, in the second method.

• There can be multiple download tasks — and each one has a different completion
handler associated with it. That’s the entire point of this architecture! Thus we need
a way to implement this association.

Clearly, we want to store each completion handler together with its download task. In
fact, since we are guaranteed that the same download task instance makes its appearance
in both methods, it would be truly ideal if we could store the completion handler in its
download task!

At first glance, it appears that this is impossible, because we can’t subclass NSURLSes‐
sionDownloadTask (and even if we could, we can’t ask NSURLSession to generate an
instance of our subclass). But there is, in fact, a way to do this. It turns out that we are
allowed to attach an arbitrary property to an NSURLRequest, as long as we start with
its mutable subclass, NSMutableURLRequest. The mechanism for doing this is a little
weird — we actually call an NSURLProtocol class method — but that doesn’t matter.
The NSURLRequest is attached to the download task as its originalRequest, and we
can retrieve it, and hence the arbitrary property, at the end of the download.

We are now ready to write MyDownloader for real. I’ll make just one more change in
its API: I’ll have download:completionHandler: return the download task to the client.
This is so that, if the client decides to cancel the download later, the client can send the
cancel message directly to the task. Here is the whole of MyDownloader:

#import "MyDownloader.h"
@interface MyDownloader() <NSURLSessionDownloadDelegate>
@property (nonatomic, strong) NSURLSession* session;
@end
@implementation MyDownloader
// public method, initializer
- (id) initWithConfiguration: (NSURLSessionConfiguration*) config {
 self = [super init];
 if (self) {
 NSURLSession* session =

HTTP Requests | 841

www.it-ebooks.info

http://www.it-ebooks.info/

 [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:[NSOperationQueue mainQueue]];
 self->_session = session;
 }
 return self;
}
// public method, start one download
- (NSURLSessionTask*) download:(NSString*)s
 completionHandler:(void(^)(NSURL* url))ch {
 NSURL* url = [NSURL URLWithString:s];
 NSMutableURLRequest* req = [NSMutableURLRequest requestWithURL:url];
 [NSURLProtocol setProperty:ch forKey:@"ch" inRequest:req];
 NSURLSessionDownloadTask* task =
 [self.session downloadTaskWithRequest:req];
 [task resume];
 return task;
}
// delegate methods
-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten
 totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite {
 ;;;
}
-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didResumeAtOffset:(int64_t)fileOffset
 expectedTotalBytes:(int64_t)expectedTotalBytes {
 ;;;
}
-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didFinishDownloadingToURL:(NSURL *)location {
 NSURLRequest* req = downloadTask.originalRequest;
 void(^ch)(NSURL* url) =
 [NSURLProtocol propertyForKey:@"ch" inRequest:req];
 NSHTTPURLResponse* response = (NSHTTPURLResponse*)downloadTask.response;
 NSInteger stat = response.statusCode;
 NSURL* url = nil;
 if (stat == 200)
 url = location;
 ch(url);
}
// public method; client *must* call this for memory management
- (void) cancelAllTasks {
 [self.session invalidateAndCancel];
}
@end

To exercise MyDownloader, I’ll show how to solve a pesky problem that arises quite
often in real life: we have a UITableView where each cell displays text and a picture, and

842 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

the picture needs to be downloaded in real time. The idea is to supply each picture lazily,
on demand, downloading a picture only when its cell becomes visible.

The model, as we saw in Chapter 8, might be an array of dictionaries. So what I’m
proposing is a model like this:

array
 dictionary (mutable)
 text: @"Manny"
 picurl: String URL for a downloadable image of Manny
 dictionary (mutable)
 text: @"Moe"
 picurl: String URL for a downloadable image of Moe
 dictionary (mutable)
 text: @"Jack"
 picurl: String URL for a downloadable image of Jack

When the table turns to the data source for a cell (tableView:cellForRowAtIndex-
Path:), the data source will turn to the model and consult the dictionary corresponding
to the requested row, asking for its @"im" entry, which is supposed to be its image.
Initially, this will be missing. In that case, the data source will display no image in this
cell — and will turn to the downloader and ask for the image to be downloaded from
the @"picurl".

When the downloader succeeds in downloading an image, it calls the table’s data source
back through the completion block. Here we come to the Insanely Cool Part (pat. pend.).
This completion block has captured the contextual environment from inside table-
View:cellForRowAtIndexPath:, where it was defined. In effect, therefore, we are back
in the very same call to tableView:cellForRowAtIndexPath:, accessing the very same
mutable dictionary in the model! We can thus set that dictionary’s @"im" entry, and tell
the table to reload this row. The table thus calls tableView:cellForRowAtIndexPath:
again, for the very same row, and the data source turns to the same dictionary and asks
for its @"im" entry again — and finds it, and displays the image in the cell:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 NSMutableDictionary* d = (self.model)[indexPath.row];
 cell.textLabel.text = d[@"text"];
 // have we got a picture?
 if (d[@"im"]) {
 cell.imageView.image = d[@"im"];
 } else {
 cell.imageView.image = nil;
 NSURLSessionTask* task = [self.downloader download:d[@"picurl"]
 completionHandler:^(NSURL* url){

HTTP Requests | 843

www.it-ebooks.info

http://www.it-ebooks.info/

 if (!url)
 return;
 NSData* data = [NSData dataWithContentsOfURL:url];
 UIImage* im = [UIImage imageWithData:data];
 d[@"im"] = im;
 dispatch_async(dispatch_get_main_queue(), ^{
 [self.tableView reloadRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationNone];
 });
 }];
 }
 return cell;
}

A possible further refinement is this. Consider what happens when the user scrolls
quickly through the entire table, possibly passing through hundreds of rows. The down‐
loads for all of those rows, if they do not already have their pictures, will be initiated.
This seems wasteful, as each row is scrolled out of sight before it has its picture, and
therefore doesn’t need its picture after all. To prevent such waste, we can implement
tableView:didEndDisplayingCell:forRowAtIndexPath: to send cancel to the
NSURLSessionTask we captured earlier, when calling the downloader’s download:
completionHandler:. I am proposing, for example, that we have stored our reference
to the task in the model, in the mutable dictionary corresponding to this row:

-(void)tableView:(UITableView *)tableView
 didEndDisplayingCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 NSMutableDictionary* d = self.model[indexPath.row];
 NSURLSessionTask* task = d[@"task"];
 if (task && task.state == NSURLSessionTaskStateRunning) {
 [task cancel];
 [d removeObjectForKey: @"task"];
 }
}

The only missing piece of the puzzle is what should happen when a picture download
fails. If the user scrolls the failed cell out of view and later scrolls it back into view, the
table will ask the data source for that cell and the downloader will try again to download
its image. But that won’t happen for a failed cell that’s never scrolled out of view. How
you deal with this is up to you; it’s a matter of providing the best user experience without
having an undue impact upon performance, battery, and so forth. In this instance, be‐
cause these images are fairly unimportant, I might arrange that when an NSTimer with
a fairly large interval fires (every 60 seconds, say), we reload the visible rows; this will
cause any visible row without an image to try again to download its image.

844 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

Background Downloads
If your app goes into the background while in the middle of a download, the download
might be completed coherently, or it might not. To ensure that an NSURLSession‐
DownloadTask (or an NSURLSessionUploadTask) is carried out regardless, even if your
app isn’t frontmost — indeed, even if your app isn’t running! — make your NSURL‐
SessionConfiguration a background configuration (call backgroundSession-

Configuration: to create it).

This feature, new in iOS 7, hands the work of downloading over to the system. Your app
is not actually involved. You still need an NSURLSession, but this serves primarily as a
gateway for putting your app in touch with the download process; in particular, you
need to operate as the NSURLSession’s delegate.

The argument that you pass to backgroundSessionConfiguration: is a string identi‐
fier. This will distinguish your background session from all the other background ses‐
sions that other apps have requested from the system. Therefore, it should be unique to
your app; a good approach is to use your app’s bundle ID as its basis.

You may also want to set your configuration’s discretionary to YES. This will permit
the system to postpone network communications to some moment that will conserve
bandwidth and battery — for example, when Wi-Fi is available, and the device is plugged
into a power socket. Of course, that might be days from now! But this is part of the
beauty of background downloads.

There are three possibilities for how a background download will conclude, depending
on the state of your app at that moment:
Your app is frontmost

If your app is frontmost during any part of a background download, the download
is treated normally: your session delegate will get URLSession:downloadTask:did-
WriteData... and URLSession:downloadTask:didFinishDownloadingToURL:

messages, just as you expect.

Your app is suspended in the background
Your app is awakened, still in the background, long enough to receive
URLSession:downloadTask:didFinishDownloadingToURL: and deal with it.

Your app is not running
Your app is launched in the background. You have no NSURLSession, because your
app has just launched from scratch. You will need to create one, calling background-
SessionConfiguration: with the same identifier as before; you will then be able
to receive delegate messages, including URLSession:downloadTask:didFinish-
DownloadingToURL:.

HTTP Requests | 845

www.it-ebooks.info

http://www.it-ebooks.info/

As with significant event monitoring (Chapter 22), your app does not formally run in
the background, so you do not have to set the UIBackgroundModes of your Info.plist.

You do have to implement two extra methods, to be called if your app is not frontmost
at the time the download is completed:
application:handleEventsForBackgroundURLSession:completionHandler:

This message is sent to the app delegate. The session: parameter is the string iden‐
tifier you handed earlier to the configuration object; you might use this to identify
the session, or even as a prompt to create and configure the session if you haven’t
done so already. The app delegate must store the completionHandler: parameter
as an instance variable, because it will be needed later.

URLSessionDidFinishEventsForBackgroundURLSession:

This message is sent to the session delegate. The session delegate must call the pre‐
viously stored completion handler. This is how the system knows that your app has
finished updating its interface. The system will thereupon take a new snapshot of
your app’s interface, still in the background, to serve as your app’s thumbnail in the
app switcher interface — and your app will then be suspended.

All of this is much easier if the app delegate and the session delegate are one and the
same object. In this example, the app delegate holds the NSURLSession property, as well
as the completion handler property that will be needed if the download completes when
we are not frontmost:

@interface AppDelegate () <NSURLSessionDownloadDelegate>
@property (nonatomic, strong) NSURLSession* session;
@property (nonatomic, strong) void (^ch)();
@end

To ensure that we always have an NSURLSession, we create the session at launch time.
This is the app delegate, so it cannot leak; therefore, we have no memory management
considerations connected with being the session delegate:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Override point for customization after application launch.
 if (!self.session)
 self.session = [self configureSession];
 return YES;
}
- (NSURLSession*) configureSession {
 NSURLSessionConfiguration* config =
 [NSURLSessionConfiguration
 backgroundSessionConfiguration:MY_SESSION_ID];
 config.allowsCellularAccess = NO;
 // ... could set config.discretionary here ...
 NSURLSession* session =

846 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

 [NSURLSession sessionWithConfiguration:config delegate:self
 delegateQueue:[NSOperationQueue mainQueue]];
 return session;
}

The three NSURLSessionDownloadDelegate methods are exactly as before. Finally, we
have the two extra methods that come into play only if the download completes when
we are not frontmost:

-(void)application:(UIApplication *)application
 handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler {
 self.ch = completionHandler;
}
-(void)URLSessionDidFinishEventsForBackgroundURLSession:
 (NSURLSession *)session {
 self.ch();
}

If the user kills your app in the background by way of the app switch‐
er interface, pending background downloads will not be completed.
The system assumes that the user doesn’t want your app coming mag‐
ically back to life in the background.

Background App Refresh
Background app refresh, which is new in iOS 7, is the thing that the user can disable in
the Settings app, under General → Background App Refresh, as I mentioned in Chap‐
ter 22. The idea is that if your app has a periodic network download to perform —
because, for example, it is a news app — you can ask the system to wake or launch your
app in the background from time to time so that it can perform that download in the
background. That way, the next time the user brings your app to the front, it has already
been refreshed with recent downloaded content.

This feature is a background mode; in the Capabilities tab for your app target, switch
on Background Modes and check “Background fetch”. Your code must also set the shared
application’s minimumBackgroundFetchInterval property; you can supply an actual
number here, but in most cases you’ll want to use UIApplicationBackgroundFetch-
IntervalMinimum, which lets the system work out the best moments for your app to
refresh its content, based on the user’s behavior.

When it’s time to perform a background fetch, the app delegate will be sent
application:performFetchWithCompletionHandler:. At that moment, a clock starts
counting down; your job is to do whatever needs doing, just as fast as possible, and then
call the completionHandler: parameter to stop the clock, passing in one of these values:

Background App Refresh | 847

www.it-ebooks.info

http://www.it-ebooks.info/

• UIBackgroundFetchResultNewData

• UIBackgroundFetchResultNoData

• UIBackgroundFetchResultFailed

If you don’t do that fast enough, the clock will time out and your app will be suspended;
and the longer you take, the less willing the system will be to send you
application:performFetchWithCompletionHandler: in the first place. If the value
you return is UIBackgroundFetchResultNewData, a new snapshot will be taken, still
with your app in the background, so that the thumbnail in the app switcher matches
your updated app.

In-App Purchases
An in-app purchase is a specialized form of network communication: your app com‐
municates with the App Store to permit the user to buy something there, or to confirm
that something has already been bought there. For example, your app might be free, but
the user could then be offered the opportunity to pay to unlock additional functionality.
In-app purchases are made possible through the Store Kit framework; you’ll need to
@import StoreKit.

There are various kinds of in-app purchase; you’ll want to read the relevant chapter in
Apple’s iTunes Connect Developer Guide and the In-App Purchase Programming
Guide, along with the PDF Getting Started guide available at https://developer.apple.com/
in-app-purchase/In-App-Purchase-Guidelines.pdf.

I’ll describe the simplest possible in-app purchase: my app offers a single one-time
purchase, which unlocks additional functionality, allowing the user to choose a photo
from the photo library (Chapter 17). (This is what Apple calls a non-consumable pur‐
chase.) When the user taps the Choose button, if the in-app purchase has not been made,
a pair of dialogs appear, offering and describing the purchase (Figure 24-1); if the in-
app purchase has been made, a UIImagePickerController’s view appears instead.

To configure an in-app purchase, you need first to use iTunes Connect to create, in
connection with your app, something that the user can purchase; this is easiest to do if
your app is already available through the App Store. For a simple non-consumable
purchase like mine, you are associating your app’s bundle ID with a name and arbitrary
product ID representing your in-app purchase, along with a price. You’ll also want to
create a special Apple ID for testing purposes; you can’t test your in-app purchase in‐
terface without such a test Apple ID. (If you accidentally perform the in-app purchase
later when logged into the App Store with your real Apple ID, you’ll be charged for the
purchase and you won’t be able to get your money back. Can you guess how I know
that?)

848 | Chapter 24: Basic Networking

www.it-ebooks.info

https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
http://www.it-ebooks.info/

Figure 24-1. Interface for an in-app purchase

Let’s skip merrily past all that and proceed to your app’s interface and inner workings.
For a non-consumable in-app purchase, your app must provide the following interface
(all of which is visible in Figure 24-1):

• A place where the in-app purchase is described. I say “a place” rather than “a de‐
scription” because you do not hard-code the description into your app; rather, it is
downloaded in real time from the App Store, using the Display Name and De‐
scription (and price) that you entered at iTunes Connect.

• A button that launches the purchase process.
• A button that restores an existing purchase. The idea here is that the user has per‐

formed the purchase, but is now on a different device or has deleted and reinstalled
your app, so that the NSUserDefaults entry stating that the purchase has been per‐
formed is missing. The user needs to be able to contact the App Store to get your
app to recognize that the purchase has been performed and turn on the purchased
functionality.

Both the purchase process and the restore process are performed through dialogs pre‐
sented by the system. New in iOS 7, your iPhone app must be in portrait orientation
when these dialogs appear, or there will not be room to display them (and the purchase
will fail). To ensure this in my app, the interface shown in Figure 24-1 comes from two
presented view controllers, StoreViewController and StoreViewController2, both of
which support portrait orientation only:

-(NSUInteger)supportedInterfaceOrientations {
 return UIInterfaceOrientationMaskPortrait;
}

In my app, the purchase process proceeds in two stages. When the user taps the Learn
More button (StoreViewController), I first confirm that the user has not been restricted
from making purchases, and I then create an SKProductsRequest, which will attempt

In-App Purchases | 849

www.it-ebooks.info

http://www.it-ebooks.info/

to download an SKProductsResponse object embodying the in-app purchase corre‐
sponding to my single product ID:

if (![SKPaymentQueue canMakePayments]) {
 UIAlertView* alert = // alert saying "Sorry, no purchases"
 [alert show];
 return;
}
SKProductsRequest* req =
 [[SKProductsRequest alloc]
 initWithProductIdentifiers:[NSSet setWithObject:@"MyProductID"]];
req.delegate = self;
[req start];

This kicks off some network activity, and eventually the delegate of this SKProducts‐
Request, namely self (conforming to SKProductsRequestDelegate), is called back with
one of two delegate messages. If we get request:didFailWithError:, I put up an apol‐
ogetic alert, and that’s the end. But if we get productsRequest:didReceiveResponse:,
the request has succeeded, and we can proceed to the second stage.

The response from the App Store arrives as an SKProductsResponse object containing
an SKProduct representing the proposed purchase. I extract the descriptive information
from this object, populate the second view controller, give it a reference to the SKProd‐
uct, and present it:

- (void) productsRequest:(SKProductsRequest *)request
 didReceiveResponse:(SKProductsResponse *)response {
 StoreViewController2* s = [StoreViewController2 new];
 SKProduct* p = response.products[0];
 // ... populate s, based on p.localizedTitle, p.localizedDescription, ...
 // ... and p.priceLocale and p.price ...
 s.product = p;
 [self presentViewController:s animated:YES completion:nil];;
}

We are now in my second view controller (StoreViewController2). If the user taps the
Purchase button, I load the SKProduct into the default SKPaymentQueue and stand
back:

SKPayment* p = [SKPayment paymentWithProduct:self.product];
SKPaymentQueue* q = [SKPaymentQueue defaultQueue];
[q addPayment:p];

The system is now in charge of presenting a sequence of dialogs, confirming the pur‐
chase, asking for the user’s App Store password, and so forth. My app knows nothing
about that; if the purchase fails, or if the user cancels, then we are still sitting there
showing my second view controller’s view, and it is up to the user to dismiss it. If the
user performs the purchase, however, my app delegate will be sent payment-
Queue:updatedTransactions:. I’ll return in a moment to the implementation of this
method.

850 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s talk about what happens when the user taps the Restore button (StoreView‐
Controller). It’s very simple; I just tell the default SKPaymentQueue to restore any ex‐
isting purchases:

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions];

Again, what happens now in the interface is out of my hands; the system will present
the necessary dialogs. If the purchase is restored, however, my app delegate will be sent
paymentQueue:updatedTransactions:.

The rest of the action takes place in the app delegate. When my app launches, it must
register to receive transactions from the payment queue:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // ...
 [[SKPaymentQueue defaultQueue] addTransactionObserver:self];
 return YES;
}

My app delegate adopts the SKPaymentTransactionObserver protocol. There is only
one required method, and it is the only one my app delegate implements — payment-
Queue:updatedTransactions:. This arrives with a reference to the payment queue and
an array of SKPaymentTransaction objects. My job is to cycle through these transactions
and, for each one, do whatever it requires, and then (this is crucial) send finish-
Transaction: to the payment queue.

My implementation is extremely simple, because I have only one purchasable product,
and because I’m not maintaining any separate record of receipts. For each transaction,
I check its transactionState. If this is SKPaymentTransactionStatePurchased or
SKPaymentTransactionStateRestored, I pull out its payment, confirm that the pay‐
ment’s productIdentifier is my product identifier (it had darned well better be, since
I have only the one product), and, if so, I throw the NSUserDefaults switch that indicates
to my app that the user has performed the purchase. Otherwise, I do nothing, but I
always call finishTransaction:, no matter what:

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions {
 for (SKPaymentTransaction* t in transactions) {
 if (t.transactionState == SKPaymentTransactionStatePurchased ||
 t.transactionState == SKPaymentTransactionStateRestored) {
 SKPayment* p = t.payment;
 if ([p.productIdentifier isEqualToString: @"MyProductID"]) {
 [[NSUserDefaults standardUserDefaults]
 setBool:YES forKey:@"choose"];
 [queue finishTransaction:t];
 // ... put up interface alerting the user ...
 }
 }

In-App Purchases | 851

www.it-ebooks.info

http://www.it-ebooks.info/

 else if (t.transactionState == SKPaymentTransactionStateFailed) {
 [queue finishTransaction:t];
 }
 }
}

Bonjour
Bonjour is the ingenious technology, originated at Apple and now becoming a universal
standard, for allowing network devices to advertise services they provide and to discover
dynamically other devices offering such services. Once an appropriate service is detec‐
ted, a client device can resolve it to get a network address and can then begin commu‐
nicating with the server device. Communicating itself is outside the scope of this book,
but device discovery via Bonjour is easy.

In this example, we’ll look to see whether any device, such as a Mac, is running iTunes
with library sharing turned on. (This is not Home Sharing in the iTunes File menu; it’s
the “Share my library on my local network” checkbox in the iTunes Sharing preferences.)
We can search for domains or for a particular service; here, we’ll pass the empty string
as the domain to signify “any domain,” and concentrate on the service, which is
@"_daap._tcp". We maintain two instance variables, the NSNetServiceBrowser that will
look for devices, and a mutable array in which to store any services it discovers:

self.services = [NSMutableArray new];
NSNetServiceBrowser* browser = [NSNetServiceBrowser new];
self.nsb = browser;
self.nsb.delegate = self;
[self.nsb searchForServicesOfType:@"_daap._tcp" inDomain:@""];

The NSNetServiceBrowser is now searching for devices advertising iTunes sharing and
will keep doing so until we destroy it or tell it to stop. It is common to leave the service
browser running, because devices can come and go very readily. As they do, the service
browser’s delegate (NSNetServiceBrowserDelegate) will be informed. For purposes of
this example, I’ll simply maintain a list of services, and update the app’s interface when
the situation changes:

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
 didFindService:(NSNetService *)netService
 moreComing:(BOOL)moreServicesComing {
 [self.services addObject:netService];
 if (!moreServicesComing)
 [self updateInterface];
}
- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
 didRemoveService:(NSNetService *)netService
 moreComing:(BOOL)moreServicesComing {

852 | Chapter 24: Basic Networking

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.services removeObject:netService];
 if (!moreServicesComing)
 [self updateInterface];
}

The delegate messages very kindly tell me whether they have finished listing a series of
changes, so I can wait to update the interface until after a full batch of changes has ended.
In this example, I don’t really have any interface to update; I’ll just log the list of services,
each of which is an NSNetService instance:

- (void) updateInterface {
 for (NSNetService* service in self.services) {
 if (service.port == -1) {
 NSLog(@"service %@ of type %@, not yet resolved",
 service.name, service.type);
 }
 }
}

To connect to a service, we would first need to resolve it, thus obtaining an address and
other useful information. An unresolved service has port -1, as shown in the previous
code. To resolve a service, you tell it to resolve (resolveWithTimeout:); you will prob‐
ably also set a delegate on the service (NSNetServiceDelegate), so as to be notified when
the resolution succeeds (or fails). Here, I’ll have the delegate call my update-
Interface method again if a resolution succeeds, and I’ll extend updateInterface to
show the port number for any resolved services:

- (void) updateInterface {
 for (NSNetService* service in self.services) {
 if (service.port == -1) {
 NSLog(@"service %@ of type %@, not yet resolved",
 service.name, service.type);
 [service setDelegate:self];
 [service resolveWithTimeout:10];
 } else {
 NSLog(@"service %@ of type %@, port %d, addresses %@",
 service.name, service.type, service.port, service.addresses);
 }
 }
}
- (void)netServiceDidResolveAddress:(NSNetService *)sender {
 [self updateInterface];
}

The addresses of a resolved service constitute an array of NSData. Logging an address
like this is largely pointless, as it is not human-readable, but it’s useful for handing to a
CFSocket. In general you’ll call the service’s getInputStream:outputStream: to start
talking over the connection; that’s outside the scope of this discussion. See Apple’s WiTap
example for more.

Bonjour | 853

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25

Threads

A thread is, simply put, a subprocess of your app that can execute even while other
subprocesses are also executing. Such simultaneous execution is called concurrency. The
iOS frameworks use threads all the time; if they didn’t, your app would be less responsive
to the user — perhaps even completely unresponsive. The genius of the frameworks,
though, is that, for the most part, they use threads precisely so that you don’t have to.

For example, suppose your app is downloading something from the network (Chap‐
ter 24). This download doesn’t happen all by itself; somewhere, someone is running
code that interacts with the network and obtains data. Similarly, how does Core Motion
work (Chapter 22)? The data from the sensors is being gathered and processed con‐
stantly, with extra calculations to separate gravity from user-induced acceleration and
to account for bias and scaling in the gyroscope. Yet none of that interferes with your
code, or prevents the user from tapping and swiping things in your interface. That’s
concurrency in action.

It is a testament to the ingenuity of the iOS frameworks that this book has proceeded
so far with so little mention of threads. Indeed, it would have been nice to dispense with
the topic altogether. Threads are difficult and dangerous, and should be avoided if pos‐
sible. But sometimes that isn’t possible. So this chapter introduces threads, along with
a warning: threads entail complications and subtle pitfalls, and can make your code hard
to debug. There is much more to threading, and especially to making your threaded
code safe, than this chapter can possibly touch on. For detailed information about the
topics introduced in this chapter, read Apple’s Concurrency Programming Guide and
Threading Programming Guide.

Main Thread
You are always using some thread. All your code must run somewhere; “somewhere”
means a thread. When code calls a method, that method normally runs on the same

855

www.it-ebooks.info

http://www.it-ebooks.info/

thread as the code that called it. Your code is called through events; those events normally
call your code on the main thread. The main thread has certain special properties:
The main thread automatically has a run loop.

A run loop is a recipient of events. It is how your code is notified that something is
happening; without a run loop, a thread can’t receive events. Cocoa events normally
arrive on the main thread’s run loop; that’s why your code, called by those events,
executes on the main thread.

The main thread is the interface thread.
When the user interacts with the interface, those interactions are reported as events
— on the main thread. When your code interacts with the interface, it too must do
so on the main thread. Of course that will normally happen automatically, because
your code normally runs on the main thread.

The main thread thus has a very great deal of work to do. Here’s how life goes in your
app:

1. An event arrives on the main thread; the user has tapped a button, for example, and
this is reported to your app as a UIEvent and to the button through the touch
delivery mechanism (Chapter 5) — on the main thread.

2. The control event causes your code (the action handler) to be called — on the main
thread. Your code now runs — on the main thread. While your code runs, nothing
else can happen on the main thread. Your code might command some changes in
the interface; this is safe, because your code is running on the main thread.

3. Your code finishes. The main thread’s run loop is now free to report more events,
and the user is free to interact with the interface once again.

The bottleneck here is obviously step 2, the running of your code. Your code runs on
the main thread. That means the main thread can’t do anything else while your code is
running. No events can arrive while your code is running. The user can’t interact with
the interface while your code is running. But this is usually no problem, because:

• Your code executes really fast. It’s true that the user can’t interact with the interface
while your code runs, but this is such a tiny interval of time that the user will
probably never even notice.

• Your code, as it runs, blocks the user from interacting with the interface. But that’s
not bad: it’s good! Your code, in response to what the user does, might update the
interface; it would be insane if the user could do something else in the interface
while you’re in the middle of updating it.

On the other hand, as I’ve already mentioned, the frameworks operate in secondary
threads all the time. The reason this doesn’t affect you is that they usually talk to your

856 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

code on the main thread. You have seen many examples of this in the preceding chapters.
For example:

• During an animation (Chapter 4), the interface remains responsive to the user, and
it is possible for your code to run. The Core Animation framework is running the
animation and updating the presentation layer on a background thread. But your
delegate methods or completion blocks are called on the main thread.

• A UIWebView’s fetching and loading of its content is asynchronous (Chapter 11);
that means the work is done in a background thread. But your delegate methods
are called on the main thread.

• Sounds are played asynchronously (Chapter 14 and Chapter 16). But your delegate
methods are called on the main thread. Similarly, loading, preparation, and playing
of movies happens asynchronously (Chapter 15). But your delegate methods are
called on the main thread.

• Saving a movie file takes time (Chapter 15 and Chapter 17). So the saving takes
place on a background thread. Similarly, UIDocument saves and reads on a back‐
ground thread (Chapter 23). But your delegate methods or completion blocks are
called on the main thread.

Thus, you can (and should) usually ignore threads and just keep plugging away on the
main thread. However, there are two kinds of situation in which your code will need to
be explicitly aware of threading issues:
Your code is called back, but not on the main thread.

Some frameworks explicitly inform you in their documentation that callbacks are
not guaranteed to take place on the main thread. For example, the documentation
on CATiledLayer (Chapter 7) warns that drawLayer:inContext: is called in a
background thread. By implication, our drawRect: code, triggered by CATiled‐
Layer to update tiles, is running in a background thread. Fortunately, the UIKit
drawing-related classes are thread-safe, and so is accessing the current context.
Nevertheless, we cannot completely ignore the fact that this code is not running on
the main thread.

Similarly, the documentation on AV Foundation (Chapter 15 and Chapter 17)
warns that its blocks and notifications can arrive on a background thread. So if you
intend to update the user interface, or use a value that might also be used by your
main-thread code, you’ll need to be thread-conscious.

Your code takes significant time.
If your code takes significant time to run, you might need to run that code on a
background thread, rather than letting it block the main thread and prevent any‐
thing else from happening there. For example:

Main Thread | 857

www.it-ebooks.info

http://www.it-ebooks.info/

During startup
You want your app to launch as quickly as possible. In Chapter 23, I called
URLForUbiquityContainerIdentifier: during app launch. The documenta‐
tion told me to call this method on a background thread, because it can take
some time to return; we don’t want to block the main thread waiting for it,
because the app is trying to launch on the main thread, and the user won’t see
our interface until the launch process is over.

When the user can see or interact with the app
In Chapter 19, I called enumerateEventsMatchingPredicate: on a back‐
ground thread in order to prevent the user interface from freezing up in case
the enumeration took a long time. If I hadn’t done this, then when the user taps
the button that triggers this call, the button will stay highlighted for a significant
amount of time, during which the interface will be completely frozen.

Similarly, when your app is in the process of being suspended into the background,
or resumed from the background, your app should not block the main thread for
too long; it must act quickly and get out of the way. This isn’t just a matter of
aesthetics or politeness; the system “watchdog” will summarily kill your app if it
discovers that the main thread is blocked for too long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the path of exe‐
cution, one statement at a time. Lines of code, in effect, are performed in the order in
which they appear. With threading, that certainty goes right out the window. If you have
code that can be performed on a background thread, then you don’t know when it will
be performed in relation to the code being performed on any other thread. Any line of
your background-thread code could be interleaved between any two lines of your main-
thread code.

You also might not know how many times a piece of your background-thread code might
be running simultaneously. Unless you take steps to prevent it, the same code could be
spawned off as a thread even while it’s already running in a thread. So any line of your
background-thread code could be interleaved between any two lines of itself.

This situation is particularly threatening with regard to shared data. Suppose two
threads were to get hold of the same object and change it. Who knows what horrors
might result? Objects in general have state, adding up to the state of your app as a whole.
If multiple threads are permitted to access your objects, they and your entire app can
be put into an indeterminate or nonsensical state.

This problem cannot be solved by simple logic. For example, suppose you try to make
data access safe with a condition, as in this pseudocode:

858 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

if (no other thread is touching this data)
 do something to the data...

Such logic cannot succeed. Suppose the condition succeeds; no other thread is touching
this data. But between the time when that condition is evaluated and the time when the
next line executes and you start to do something to the data, another thread can come
along and start touching the data!

It is possible to request assistance at a deeper level to ensure that a section of code is not
run by two threads simultaneously. For example, you can implement a lock around a
section of code. But locks generate an entirely new level of potential pitfalls. In general,
a lock is an invitation to forget to use the lock, or to forget to remove the lock after you’ve
set it. And threads can end up contending for a lock in a way that permits neither thread
to proceed.

Another problem is that the lifetime of a thread is independent of the lifetimes of other
objects in your app. When an object is about to go out of existence and its dealloc has
been called and executed, you are guaranteed that none of your code in that object will
ever run again. But a thread might still be running, and might try to talk to your object,
even after your object has gone out of existence. You cannot solve this problem by having
the thread retain your object, because then there is the danger that the thread might be
the last code retaining your object, so that when the thread releases your object, your
object’s dealloc is called on that thread rather than the main thread, which could be a
disaster.

Not only is threaded code hard to get right; it’s also hard to test and hard to debug. It
introduces indeterminacy, so you can easily make a mistake that never appears in your
testing, but that does appear for some user. The real danger is that the user’s experience
will consist only of distant consequences of your mistake, long after the point where
you made it, making the true cause of the problem extraordinarily difficult to track
down.

Perhaps you think I’m trying to scare you away from using threads. You’re right! For an
excellent (and suitably frightening) account of some of the dangers and considerations
that threading involves, see Apple’s Technical Note TN2109. If terms like race condi‐
tion and deadlock don’t strike fear into your veins, look them up on Wikipedia.

Xcode’s Debug navigator distinguishes threads. Moreover, when you
call NSLog in your multithreaded code, the output in the console dis‐
plays a number (in square brackets, after the colon) identifying the
thread on which it was called. This is unbelievably helpful.

Why Threading Is Hard | 859

www.it-ebooks.info

http://www.it-ebooks.info/

Three Ways of Threading
Without pretending to completeness or even safety, this section will illustrate three
approaches to threading, progressing from worst to best. To give the examples a com‐
mon base, we envision an app that draws the Mandelbrot set. (The actual code, not all
of which is shown here, is adapted from a small open source project I downloaded from
the Internet.) All it does is draw the basic Mandelbrot set in black and white, but that’s
enough crunching of numbers to introduce a significant delay. The idea is then to see
how we can get that delay off the main thread.

The app contains a UIView subclass, MyMandelbrotView, which has one instance vari‐
able, a CGContextRef called _bitmapContext. Here’s the structure of MyMandelbrot‐
View’s implementation:

// jumping-off point: draw the Mandelbrot set
- (void) drawThatPuppy {
 [self makeBitmapContext: self.bounds.size];
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 [self drawAtCenter: center zoom: 1];
 [self setNeedsDisplay];
}
// create (and memory manage) instance variable
- (void) makeBitmapContext:(CGSize)size {
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
 // ... configure arguments ...
 CGContextRef context = CGBitmapContextCreate(nil, /* ... */);
 self->_bitmapContext = context;
}
// draw pixels of self->_bitmapContext
- (void) drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom {
 // do stuff to self->_bitmapContext ...
}
// turn pixels of self->_bitmapContext into CGImage, draw into ourselves
- (void) drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGImageRef im = CGBitmapContextCreateImage(self->_bitmapContext);
 CGContextDrawImage(context, self.bounds, im);
 CGImageRelease(im);
}
// final memory managment
- (void) dealloc {
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
}

The drawAtCenter:zoom: method, which calculates the pixels of the instance variable
_bitmapContext, is time-consuming, and we can see this by running the app on a device.
If the entire process is kicked off by tapping a button whose action handler calls draw-

860 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

ThatPuppy, there is a significant delay before the Mandelbrot graphic appears in the
interface, during which time the button remains highlighted. That is a sure sign that we
are blocking the main thread. We will consider three ways of moving this work off onto
a background thread: with an old-fashioned manual thread, with NSOperation, and
with Grand Central Dispatch.

Manual Threads
The simple way to create a thread manually is to call performSelectorIn-

Background:withObject:, specifying a method to be performed on a background
thread. Even with this simple approach, there is additional work to do:
Pack the arguments.

The method designated by the first argument to performSelectorIn-

Background:withObject: can take only one parameter, whose value you supply as
the second argument. So, if you want to pass more than one piece of information
into the thread, or if the information you want to pass isn’t an object, you’ll need to
pack it into a single object. Typically, this will be an NSDictionary.

Set up an autorelease pool.
Secondary threads don’t participate in the global autorelease pool. So the first thing
you must do in your threaded code is to wrap everything in an autorelease pool.
Otherwise, you’ll probably leak memory as autoreleased objects are created behind
the scenes and are never released.

We’ll rewrite MyMandelbrotView to use manual threading. Our drawAtCenter:zoom:
method takes two parameters (and neither is an object), so we’ll have to pack the ar‐
gument that we pass into the thread, as a dictionary. Once inside the thread, we’ll set
up our autorelease pool and unpack the dictionary. This will all be made much easier if
we interpose a trampoline method between drawThatPuppy and drawAtCenter:zoom:.
So our implementation now looks like this (ignoring the parts that haven’t changed):

- (void) drawThatPuppy {
 [self makeBitmapContext: self.bounds.size];
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 NSDictionary* d =
 @{@"center": [NSValue valueWithCGPoint:center], @"zoom": @1};
 [self performSelectorInBackground:@selector(reallyDraw:) withObject:d];
 // [self setNeedsDisplay];
}
// trampoline, background thread entry point
- (void) reallyDraw: (NSDictionary*) d {
 @autoreleasepool {

Three Ways of Threading | 861

www.it-ebooks.info

http://www.it-ebooks.info/

 [self drawAtCenter: [d[@"center"] CGPointValue]
 zoom: [d[@"zoom"] intValue]];
 }
}

So far so good, but we haven’t yet figured out how to draw our view. We have commented
out the call to setNeedsDisplay in drawThatPuppy, because it’s too soon; the call to
performSelectorInBackground:withObject: launches the thread and returns imme‐
diately, so our _bitmapContext instance variable isn’t ready yet. Clearly, we need to call
setNeedsDisplay after drawAtCenter:zoom: finishes generating the pixels of the
graphics context. We can do this at the end of our trampoline method reallyDraw:, but
we must remember that we’re now in a background thread. Because setNeeds-
Display is a form of communication with the interface, we should call it on the main
thread, with performSelectorOnMainThread:withObject:waitUntilDone:. For max‐
imum flexibility, it will probably be best to implement a second trampoline method:

// trampoline, background thread entry point
- (void) reallyDraw: (NSDictionary*) d {
 @autoreleasepool {
 [self drawAtCenter: [[d objectForKey:@"center"] CGPointValue]
 zoom: [[d objectForKey:@"zoom"] intValue]];
 [self performSelectorOnMainThread:@selector(allDone)
 withObject:nil waitUntilDone:NO];
 }
}
// called on main thread! background thread exit point
- (void) allDone {
 [self setNeedsDisplay];
}

This code is specious; the seeds of nightmare are already sown. We now have a single
object, MyMandelbrotView, some of whose methods are to be called on the main thread
and some on a background thread; this invites us to become confused at some later time.
Even worse, the main thread and the background thread are constantly sharing a piece
of data, the instance variable _bitmapContext; what’s to stop some other code from
coming along and triggering drawRect: while drawAtCenter:zoom: is in the middle of
filling _bitmapContext?

To solve these problems, we might need to use locks, and we would probably have to
manage the thread more explicitly. For instance, we might use the NSThread class, which
lets us retain our thread as an instance and query it from outside (with isExecuting
and similar). Such code can become quite elaborate and difficult to understand, even
with an extremely basic implementation. It will be easier and safer at this point to use
NSOperation, the subject of the next threading approach.

862 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

NSOperation
The essence of NSOperation is that it encapsulates a task, not a thread. The operation
described by an NSOperation object may be performed on a background thread, but
you don’t have to concern yourself with that directly. You describe the operation and
add the NSOperation to an NSOperationQueue to set it going. You arrange to be notified
when the operation ends, typically by the NSOperation posting a notification. You can
query both the queue and its operations from outside with regard to their state.

We’ll rewrite MyMandelbrotView to use NSOperation. We need a property, an
NSOperationQueue; we’ll call it queue. And we have a new class, MyMandelbrot‐
Operation, an NSOperation subclass. (It is possible to take advantage of a built-in
NSOperation subclass such as NSInvocationOperation or NSBlockOperation, but I’m
deliberately illustrating the more general case by subclassing NSOperation itself.)

Our implementation of drawThatPuppy makes sure that the queue exists; it then creates
an instance of MyMandelbrotOperation, configures it, registers for its notification, and
adds it to the queue:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 if (!self.queue) {
 NSOperationQueue* q = [NSOperationQueue new];
 self.queue = q; // retain policy
 }
 MyMandelbrotOperation* op =
 [[MyMandelbrotOperation alloc] initWithSize:self.bounds.size
 center:center zoom:1];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(operationFinished:)
 name:@"MyMandelbrotOperationFinished"
 object:op];
 [self.queue addOperation:op];
}

Our time-consuming calculations are performed by MyMandelbrotOperation. An
NSOperation subclass, such as MyMandelbrotOperation, will typically have at least two
methods:
A designated initializer

The NSOperation may need some configuration data. Once the NSOperation is
added to a queue, it’s too late to talk to it, so you’ll usually hand it this configuration
data as you create it, in its designated initializer.

A main method
This method will be called (with no parameters) automatically by the NSOperation‐
Queue when it’s time for the NSOperation to start.

Three Ways of Threading | 863

www.it-ebooks.info

http://www.it-ebooks.info/

MyMandelbrotOperation has three instance variables for configuration (_size,
_center, and _zoom), to be set in its initializer; it must be told MyMandelbrotView’s
geometry explicitly because it is completely separate from MyMandelbrotView. My‐
MandelbrotOperation also has its own CGContextRef instance variable, _bitmap-
Context, along with a public accessor so that MyMandelbrotView can retrieve a refer‐
ence to this graphics context when the operation has finished. Note that this is different
from MyMandelbrotView’s _bitmapContext; one of the benefits of using NSOperation
is that we are no longer sharing data so promiscuously between threads.

Here’s the implementation for MyMandelbrotOperation. All the calculation work has
been transferred from MyMandelbrotView to MyMandelbrotOperation without
change; the only difference is that _bitmapContext now means MyMandelbrot‐
Operation’s instance variable:

- (id) initWithSize: (CGSize) sz center: (CGPoint) c zoom: (CGFloat) z {
 self = [super init];
 if (self) {
 self->_size = sz;
 self->_center = c;
 self->_zoom = z;
 }
 return self;
}
- (void) dealloc {
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
}
- (CGContextRef) bitmapContext {
 return self->_bitmapContext;
}
- (void)makeBitmapContext:(CGSize)size {
 // ... same as before ...
}
- (void)drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom {
 // ... same as before ...
}
- (void) main {
 if ([self isCancelled])
 return;
 [self makeBitmapContext: self->_size];
 [self drawAtCenter: self->_center zoom: self->_zoom];
 if (![self isCancelled])
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"MyMandelbrotOperationFinished"
 object:self];
}

The only method of interest is main. First, we call the NSOperation method isCancelled
to make sure we haven’t been cancelled while sitting in the queue; this is good practice.

864 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

Then, we do exactly what drawThatPuppy used to do, initializing our graphics context
and drawing into its pixels.

When the operation is over, we need to notify MyMandelbrotView to come and fetch
our data. There are two ways to do this; either main can post a notification through the
NSNotificationCenter, or MyMandelbrotView can use key–value observing to be noti‐
fied when our isFinished property changes. We’ve chosen the former approach; ob‐
serve that we check one more time to make sure we haven’t been cancelled.

Now we are back in MyMandelbrotView, hearing through the notification that My‐
MandelbrotOperation has finished. We must immediately pick up any required data,
because the NSOperationQueue is about to release this NSOperation. However, we must
be careful; the notification may have been posted on a background thread, in which case
our method for responding to it will also be called on a background thread. We are about
to set our own graphics context and tell ourselves to redraw; those are things we want
to do on the main thread. So we immediately trampoline ourselves out to the main
thread:

// warning! called on background thread
- (void) operationFinished: (NSNotification*) n {
 [self performSelectorOnMainThread:@selector(redrawWithOperation:)
 withObject:[n object] waitUntilDone:NO];
}

As we set MyMandelbrotView’s _bitmapContext by reading MyMandelbrotOperation’s
_bitmapContext, we must concern ourselves with the memory management of a
CGContext obtained from an object that may be about to release that context:

// now we're back on the main thread
- (void) redrawWithOperation: (MyMandelbrotOperation*) op {
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:@"MyMandelbrotOperationFinished"
 object:op];
 CGContextRef context = [op bitmapContext];
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
 self->_bitmapContext = (CGContextRef) context;
 CGContextRetain(self->_bitmapContext);
 [self setNeedsDisplay];
}

Using NSOperation instead of manual threading may not seem like any reduction in
work, but it is a tremendous reduction in headaches:
The operation is encapsulated.

Because MyMandelbrotOperation is an object, we’ve been able to move all the code
having to do with drawing the pixels of the Mandelbrot set into it. No longer does
MyMandelbrotView contain some code to be called on the main thread and some

Three Ways of Threading | 865

www.it-ebooks.info

http://www.it-ebooks.info/

code to be called on a background thread. The only MyMandelbrotView method
that can be called in the background is operationFinished:, and that’s a method
we’d never call explicitly ourselves, so we won’t misuse it accidentally.

The data sharing is rationalized.
Because MyMandelbrotOperation is an object, it has its own _bitmapContext. The
only moment of data sharing comes in redrawWithOperation:, when we must set
MyMandelbrotView’s _bitmapContext to MyMandelbrotOperation’s _bitmap-
Context. Even if multiple MyMandelbrotOperation objects are added to the queue,
the moments when we set MyMandelbrotView’s _bitmapContext all occur on the
main thread, so they cannot conflict with one another.

If we are concerned with the possibility that more than one instance of MyMandelbrot‐
Operation might be added to the queue and executed concurrently, we have a further
defense — we can set the NSOperationQueue’s maximum concurrency level to 1:

NSOperationQueue* q = [NSOperationQueue new];
[q setMaxConcurrentOperationCount:1];
self.queue = q;

This turns the NSOperationQueue into a true serial queue; every operation on the queue
must be completely executed before the next can begin. This might cause an operation
added to the queue to take longer to execute, if it must wait for another operation to
finish before it can even get started; however, this delay might not be important. What
is important is that by executing the operations on this queue completely separately, we
guarantee that only one operation at a time can do any data sharing. A serial queue is
thus a form of data locking.

Because MyMandelbrotView can be destroyed (if, for example, its view controller is
destroyed), there is still a risk that it will create an operation that will outlive it and will
try to access it after it has been destroyed. We can reduce that risk by canceling all
operations in our queue before releasing it:

- (void)dealloc {
 // release the bitmap context
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
 [self->_queue cancelAllOperations];
}

Operation queues are good to know about. A number of useful methods mentioned
earlier in this book expect an NSOperationQueue argument; see Chapter 22 (start-
DeviceMotionUpdatesToQueue:withHandler:, and similarly for the other sensors) and
Chapter 24 (sessionWithConfiguration:delegate:delegateQueue:).

866 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

Grand Central Dispatch
Grand Central Dispatch, or GCD, is a sort of low-level analogue to NSOperation and
NSOperationQueue (in fact, NSOperationQueue uses GCD under the hood). When I
say GCD is low-level, I’m not kidding; it is effectively baked into the operating system
kernel. Thus it can be used by any code whatsoever and is tremendously efficient.

Using GCD is like a mixture of the manual threading approach with the NSOperation‐
Queue approach. It’s like the manual threading approach because code to be executed
on one thread appears together with code to be executed on another; however, you have
a much better chance of keeping the threads and data management straight, because
GCD uses Objective-C blocks. It’s like the NSOperationQueue approach because it uses
queues; you express a task and add it to a queue, and the task is executed on a thread as
needed. Moreover, by default these queues are serial queues, with each task on a queue
finishing before the next is started, which, as I’ve already said, is a form of data locking.

We’ll rewrite MyMandelbrotView to use GCD. The structure of its interface is very
slightly changed from the original, nonthreaded version. Our makeBitmapContext:
method now returns a graphics context rather than setting an instance variable directly;
and our drawAtCenter:zoom: method now takes an additional parameter, the graphics
context to draw into. Also, we have a new instance variable to hold our queue, which is
a dispatch queue; a dispatch queue is a lightweight opaque pseudo-object consisting
essentially of a list of blocks to be executed:

@implementation MyMandelbrotView {
 CGContextRef _bitmapContext;
 dispatch_queue_t _draw_queue;
}

In MyMandelbrotView’s implementation, we create our dispatch queue as the view is
created:

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder: aDecoder];
 if (self) {
 self->_draw_queue =
 dispatch_queue_create("com.neuburg.mandeldraw", nil);
 }
 return self;
}

A call to dispatch_queue_create must be balanced by a call to dispatch_release.
However, ARC understands GCD pseudo-objects and will take care of this for us (and
in fact calling dispatch_release explicitly is forbidden).

Now for the implementation of drawThatPuppy. Here it is:

Three Ways of Threading | 867

www.it-ebooks.info

http://www.it-ebooks.info/

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 dispatch_async(self->_draw_queue, ^{
 CGContextRef bitmap = [self makeBitmapContext: self.bounds.size];
 [self drawAtCenter: center zoom: 1 context:bitmap];
 dispatch_async(dispatch_get_main_queue(), ^{
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
 self->_bitmapContext = bitmap;
 [self setNeedsDisplay];
 });
 });
}

That’s all there is to it. No trampoline methods. No performSelector.... No packing
arguments into a dictionary. No autorelease pools. No instance variables. No notifica‐
tions. And effectively no sharing of data across threads. That’s the beauty of blocks.
Here’s how drawThatPuppy works:

We begin by calculating our center, as before. This value will be visible within
the blocks, because blocks can see their surrounding context.
Now comes our task to be performed in a background thread on our queue,
_draw_queue. We specify this task with the dispatch_async function. GCD has
a lot of functions, but this is the one you’ll use 99 percent of the time; it’s the
most important thing you need to know about GCD. We specify a queue and
we provide a block saying what we’d like to do. Thanks to the block, we don’t
need any trampoline methods. In the block, we begin by declaring bitmap as a
variable local to the block. We then call makeBitmapContext: to create the
graphics context bitmap, and drawAtCenter:zoom:context: to set its pixels; we
make these calls directly, just as we would do if we weren’t threading in the first
place.
Now we need to step back out to the main thread. How do we do that? With
dispatch_async again! We specify the main queue (which is effectively the main
thread) with a function provided for this purpose and describe what we want to
do in another block. This second block is nested inside the first, so it isn’t
performed until the preceding commands in the first block have finished;
moreover, because the first block is part of the second block’s surrounding
context, the second block can see our block-local bitmap variable! We set our
_bitmapContext instance variable (with no need for further memory
management, because makeBitmapContext has returned a retained graphics
context), and call setNeedsDisplay.

The benefits and elegance of GCD as a form of concurrency management are stunning.
The bitmap variable is not shared; it is local to each specific call to drawThatPuppy. The

868 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

nested blocks are executed in succession, so any instance of bitmap must be completely
filled with pixels before being used to set the _bitmapContext instance variable. More‐
over, the entire operation is performed on a serial queue, and _bitmapContext is touched
only from code running on the main thread; thus there is no data sharing and no pos‐
sibility of conflict. Our code is also highly maintainable, because the entire task on all
threads is expressed within the single drawThatPuppy method, thanks to the use of
blocks; indeed, the code is only very slightly modified from the original, nonthreaded
version.

You might object that we still have methods makeBitmapContext: and drawAt-
Center:zoom:context: hanging around MyMandelbrotView, and that we must there‐
fore still be careful not to call them on the main thread, or indeed from anywhere except
from within drawThatPuppy. If that were true, we could at this point destroy makeBitmap-
Context: and drawAtCenter:zoom:context: and move their functionality completely
into drawThatPuppy. But it isn’t true, because these methods are now thread-safe: they
are self-contained utilities that touch no instance variables or persistent objects, so it
doesn’t matter what thread they are called on. Still, I’ll demonstrate in a moment how
we can intercept an accidental attempt to call a method on the wrong thread.

The two most important GCD functions are:
dispatch_async

Push a block onto the end of a queue for later execution, and proceed immediately
with our own code. Thus, we can finish our own execution without waiting for the
block to execute.

Examples of using dispatch_async to execute code in a background thread
(dispatch_get_global_queue(0,0)) appeared in Chapter 19 and Chapter 23. Ex‐
amples of using dispatch_async as a way of stepping back onto the main thread
(dispatch_get_main_queue) in order to talk to the interface from inside code that
might be executed on a background thread appeared in Chapters 10, 15, 16, 17, and
24.

Also, it can be useful to call dispatch_async to step out to the main thread even
though you’re already on the main thread, as a way of waiting for the run loop to
complete and for the interface to settle down — a minimal form of delayed per‐
formance. I used that technique in Chapters 6, 8, 10, 12, and 23.

dispatch_sync

Push a block onto the end of a queue for later execution, and wait until the block
has executed before proceeding with our own code — because, for example, you
intend to use a result that the block is to provide. The purpose of the queue would
be, once again, as a lightweight, reliable version of a lock, mediating access to a
shared resource. Here’s a case in point, from Apple’s own code:

Three Ways of Threading | 869

www.it-ebooks.info

http://www.it-ebooks.info/

- (AVAsset*)asset {
 __block AVAsset *theAsset = nil;
 dispatch_sync(assetQueue, ^{
 theAsset = [[self getAssetInternal] copy];
 });
 return theAsset;
}

Any thread might call the asset method; to avoid problems with shared data, we
require that only blocks that are executed from a particular queue (assetQueue)
may touch an AVAsset. But we need the result that this block returns; hence the call
to dispatch_sync.

An interesting and useful exercise is to revise the MyDownloader class from Chap‐
ter 24 so that NSURLSession delegate messages are sent on a background thread, thus
taking some strain off the main thread (and hence the user interface) while these mes‐
sages are flying around behind the scenes. This looks like a reasonable and safe thing
to do, because the NSURLSession and the delegate methods are all packaged inside the
MyDownloader object, isolated from our view controller. To configure the NSURLSes‐
sion in this way, we add an NSOperationQueue property, self.q, to MyDownloader:

- (id) initWithConfiguration: (NSURLSessionConfiguration*) config {
 self = [super init];
 if (self) {
 self->_q = [NSOperationQueue new];
 NSURLSession* session =
 [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:self->_q];
 self->_session = session;
 }
 return self;
}

We must now give some thought to what will happen in URLSession:downloadTask:did-
FinishDownloadingToURL: when we call back into the client through the completion
handler that we received in download:completionHandler:. It would not be very nice
to involve the client in threading issues; our entire goal is to isolate such issues within
MyDownloader itself. Therefore we must step out to the main thread as we call the
completion handler. But there’s a problem. We cannot simply say this:

dispatch_async(dispatch_get_main_queue(), ^{
 ch(url);
});

The problem is that the downloaded file is due to be destroyed as soon as we return
from URLSession:downloadTask:didFinishDownloadingToURL: — and if we call
dispatch_async, we will return immediately. Thus the downloaded file will be de‐
stroyed, and url will end up pointing at nothing by the time the client receives it. The

870 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

solution is to use dispatch_sync instead; this is a good example of the kind of thing
dispatch_sync is good for:

dispatch_sync(dispatch_get_main_queue(), ^{
 ch(url);
});

That code steps out to the main thread and also postpones returning from
URLSession:downloadTask:didFinishDownloadingToURL: until the client has had an
opportunity to do something with the file pointed to by url. We are blocking our back‐
ground NSOperationQueue, but only very briefly; and, after all, if we were to read the
file at url into a UIImage inside URLSession:downloadTask:didFinishDownloading-
ToURL: ourselves, the effect would be exactly the same. Again, our real purpose in using
dispatch_sync is to lock down some shared data — in this case, the downloaded file.

It is also good to know about the GCD function dispatch_after; examples in this book
have made use of it (Chapters 2, 7, and 10) as an alternative to performSelector:with-
Object:afterDelay:.

Another useful GCD function is dispatch_once, a thread-safe way of ensuring that a
block is called only once; it’s often used to vend a singleton.

Besides serial dispatch queues, there are also concurrent dispatch queues. A concurrent
queue’s blocks are started in the order in which they were submitted to the queue, but
a block is allowed to start while another block is still executing. Obviously, you wouldn’t
want to submit to a concurrent queue a task that touches a shared resource — that would
be throwing away the entire point of serial queues. The advantage of concurrent queues
is a possible speed boost when you don’t care about the order in which multiple tasks
are finished — for example, when you want to do something with regard to every
element of an array. The built-in global queues (available by calling
dispatch_get_global_queue) are concurrent; you can also create a concurrent queue
by passing DISPATCH_QUEUE_CONCURRENT as the second argument to
dispatch_queue_create.

A frequent use of concurrent queues is with dispatch_apply. This function is like
dispatch_sync (the caller pauses until the block has finished executing), but the block
is called multiple times with an iterator argument. Thus, dispatch_apply on a con‐
current queue is like a for loop whose iterations are multithreaded; on a device with
multiple cores, this could result in a speed improvement. (Of course, this technique is
applicable only if the iterations do not depend on one another.)

Arbitrary context data can be attached to a queue in the form of key–value
pairs (dispatch_queue_set_specific) and retrieved by key. There are two ways to
retrieve the context data:

Three Ways of Threading | 871

www.it-ebooks.info

http://www.it-ebooks.info/

dispatch_queue_get_specific

Retrieves a key’s value for a queue to which we already have a valid reference.

dispatch_get_specific

Retrieves a key’s value for the current queue, the one in whose thread we are actually
running. In fact, dispatch_get_specific is the only valid way to identify the cur‐
rent queue. (dispatch_get_current_queue, a function formerly used for this pur‐
pose, has been shown to be potentially unsafe and is now deprecated.)

We can use this technique, for example, to make certain that a method is called only on
the correct queue. Recall that in our Mandelbrot-drawing example, we may be con‐
cerned that a method such as makeBitmapContext: might be called on some other queue
than the background queue that we created for this purpose. If this is really a worry, we
can attach an identifying key–value pair to that queue when we create it. Both key and
value should be pointers, so let’s start by defining some static C strings:

static char* QKEY = "label";
static char* QVAL = "com.neuburg.mandeldraw";

We then create the queue like this:

self->_draw_queue = dispatch_queue_create(QVAL, nil);
dispatch_queue_set_specific(self->_draw_queue, QKEY, QVAL, nil);

Later, we can examine that identifying key–value pair for the queue on which a particular
method is called:

- (CGContextRef) makeBitmapContext:(CGSize)size {
 NSAssert(dispatch_get_specific(QKEY) == QVAL, @"Wrong thread");

Note that we are comparing the values purely as pointers; the fact that either one of
them is a C string is irrelevant. A common device, where threads generated by different
instances of the same class need to be distinguished, is to attach to a queue a key–value
pair whose value is the instance itself.

Threads and App Backgrounding
When your app is backgrounded and suspended, a problem arises if your code is run‐
ning. The system doesn’t want to stop your code while it’s executing; on the other hand,
some other app may need to be given the bulk of the device’s resources now. So as your
app goes into the background, the system waits a very short time for your app to finish
doing whatever it may be doing, and it then suspends your app.

This shouldn’t be a problem from your main thread’s point of view, because your app
shouldn’t have any time-consuming code on the main thread in the first place; you now
know that you can avoid this by using a background thread. On the other hand, it could
be a problem for lengthy background operations, including asynchronous tasks per‐
formed by the frameworks. You can request extra time to complete a lengthy task (or

872 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

at to least abort it yourself, coherently) in case your app is backgrounded, by wrapping
it in calls to UIApplication’s beginBackgroundTaskWithExpirationHandler: and end-
BackgroundTask:. Here’s how you do it:

• You call beginBackgroundTaskWithExpirationHandler: to announce that a
lengthy task is beginning; it returns an identification number. This tells the system
that if your app is backgrounded, you’d like to be woken from suspension in the
background now and then in order to complete the task.

• At the end of your lengthy task, you call endBackgroundTask:, passing in the same
identification number that you got from your call to beginBackgroundTaskWith-
ExpirationHandler:. This tells the system that your lengthy task is over and that
there is no need to grant you any more background time.

The argument to beginBackgroundTaskWithExpirationHandler: is a block, but this
block does not express the lengthy task. It expresses what you will do if your extra time
expires before you finish your lengthy task. At the very least, your expiration handler
must call endBackgroundTask:, just as your lengthy task would have done; otherwise,
your app may be killed, as a punishment for trying to use too much background time.
If your expiration handler block is called, you should make no assumptions about what
thread it is running on.

Let’s use MyMandelbrotView, from the preceding section, as an example. Let’s say that
if drawThatPuppy is started, we’d like it to be allowed to finish, even if the app is sus‐
pended in the middle of it, so that our _bitmapContext instance variable is updated as
requested. To try to ensure this, we call beginBackgroundTaskWithExpiration-
Handler: beforehand and call endBackgroundTask: at the end of the innermost block:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 __block UIBackgroundTaskIdentifier bti =
 [[UIApplication sharedApplication]
 beginBackgroundTaskWithExpirationHandler: ^{
 [[UIApplication sharedApplication] endBackgroundTask:bti];
 }];
 if (bti == UIBackgroundTaskInvalid)
 return;
 dispatch_async(self->_draw_queue, ^{
 CGContextRef bitmap = [self makeBitmapContext: self.bounds.size];
 [self drawAtCenter: center zoom: 1 context:bitmap];
 dispatch_async(dispatch_get_main_queue(), ^{
 if (self->_bitmapContext)
 CGContextRelease(self->_bitmapContext);
 self->_bitmapContext = bitmap;
 [self setNeedsDisplay];

Threads and App Backgrounding | 873

www.it-ebooks.info

http://www.it-ebooks.info/

 [[UIApplication sharedApplication] endBackgroundTask:bti];
 });
 });
}

If our app is backgrounded while drawThatPuppy is in progress, it will (we hope) be
given enough background time to run that it can eventually proceed all the way to the
end. Thus, the instance variable _bitmapContext will be updated, and setNeeds-
Display will be called, while we are still in the background. Our drawRect: will not be
called until our app is brought back to the front, but there’s nothing wrong with that.

The __block qualifier on the declaration of bti allows us to see, inside the block, the
value that bti will have when the call to beginBackgroundTaskWithExpiration-
Handler: returns. The check against UIBackgroundTaskInvalid can do no harm, and
there may be situations or devices where our request to complete this task in the back‐
ground will be denied.

It’s good policy to use a similar technique when you’re notified that your app is
being backgrounded. You might respond to the app delegate message applicationDid-
EnterBackground: (or the corresponding UIApplicationDidEnterBackground-

Notification) by saving data and reducing memory usage, but this can take time,
whereas you’d like to return from applicationDidEnterBackground: as quickly as
possible. A reasonable solution is to implement applicationDidEnterBackground:
very much like drawThatPuppy in the example I just gave: call beginBackgroundTask-
WithExpirationHandler: and then call dispatch_async to get off the main thread, and
do your saving and so forth in its block.

874 | Chapter 25: Threads

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

Undo

The ability to undo the most recent action is familiar from OS X. The idea is that,
provided the user realizes soon enough that a mistake has been made, that mistake can
be reversed. Typically, a Mac application will maintain an internal stack of undoable
actions; choosing Edit → Undo or pressing Command-Z will reverse the action at the
top of the stack, and will also make that action available for Redo.

Some iOS apps, too, may benefit from at least a limited Undo facility, and this is not
difficult to implement. Some built-in views — in particular, those that involve text entry,
UITextField and UITextView (Chapter 10) — implement Undo already. And you can
add it in other areas of your app.

Undo is provided through an instance of NSUndoManager, which basically just main‐
tains a stack of undoable actions, along with a secondary stack of redoable actions. The
goal in general is to work with the NSUndoManager so as to handle both Undo and
Redo in the standard manner: when the user chooses to undo the most recent action,
the action at the top of the Undo stack is popped off and reversed and is pushed onto
the top of the Redo stack.

In this chapter, I’ll illustrate a simple NSUndoManager for a simple app that has just
one kind of undoable action. More complicated apps, obviously, will be more compli‐
cated! On the other hand, iOS apps, unlike OS X apps, do not generally need deep or
pervasive Undo functionality. For more about the NSUndoManager class and how to
use it, read Apple’s Undo Architecture as well as the documentation for the class itself.
See also Chapter 23; as I mentioned there, UIDocument has an undo manager (its undo-
Manager property), and you can mark a file as dirty by using it.

Undo Manager
In our artificially simple app, the user can drag a small square around the screen. We’ll
start with an instance of a UIView subclass, MyView, to which has been attached a

875

www.it-ebooks.info

http://www.it-ebooks.info/

UIPanGestureRecognizer to make it draggable, as described in Chapter 5. The gesture
recognizer’s action target is the MyView instance itself:

- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 self.center = c;
 [p setTranslation: CGPointZero inView: self.superview];
 }
}

To make dragging of this view undoable, we need an NSUndoManager instance. Let’s
store this in an instance variable of MyView itself, accessible through a property,
self.undoer.

Target–Action Undo
There are two ways to register an action as undoable. The one we’ll use here involves
the NSUndoManager method registerUndoWithTarget:selector:object:. This
method uses a target–action architecture: you provide a target, a selector for a method
that takes one parameter, and the object value to be passed as argument when the method
is called. Then, later, if the NSUndoManager is sent the undo message, it simply sends
that action to that target with that argument. The job of the action method is to undo
whatever it is that needs undoing.

What we want to undo here is the setting of our center property. This can’t expressed
directly using a target–action architecture, because the parameter of setCenter: needs
to be a CGPoint, which isn’t an object. Therefore we’re going to have to provide, as our
action method, a secondary method that does take an object parameter. This is neither
bad nor unusual; it is quite common for actions to have a special representation just for
the purpose of making them undoable.

So, in our dragging: method, instead of setting self.center to c directly, we now call
a secondary method (let’s call it setCenterUndoably:):

CGPoint c = self.center;
c.x += delta.x; c.y += delta.y;
[self setCenterUndoably: [NSValue valueWithCGPoint:c]];

At a minimum, setCenterUndoably: should do the job that setting self.center used
to do:

- (void) setCenterUndoably: (NSValue*) newCenter {
 self.center = [newCenter CGPointValue];
}

876 | Chapter 26: Undo

www.it-ebooks.info

http://www.it-ebooks.info/

This works in the sense that the view is draggable exactly as before, but we have not yet
made this action undoable. To do so, we must ask ourselves what message the NSUndo‐
Manager would need to send in order to undo the action we are about to perform. We
would want the NSUndoManager to set self.center back to the value it has now, before
we change it as we are about to do. And what method would NSUndoManager call in
order to do that? It would call setCenterUndoably:, the very method we are imple‐
menting now! So:

- (void) setCenterUndoably: (NSValue*) newCenter {
 [self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];
 self.center = [newCenter CGPointValue];
}

That code has a remarkable effect: it makes our action not only undoable but also re‐
doable. The reason is that NSUndoManager has an internal state, and responds differ‐
ently to registerUndoWithTarget:selector:object: depending on its state. If the
NSUndoManager is sent registerUndoWithTarget:selector:object: while it is un‐
doing, it puts the target–action information on the Redo stack instead of the Undo stack
(because Redo is the Undo of an Undo, if you see what I mean).

Thus, here’s how we Undo and then Redo an action:

1. We perform an action by way of setCenterUndoably:, which calls registerUndo-
WithTarget:selector:object: with the old value of self.center. The NSUndo‐
Manager adds this to its Undo stack.

2. Now suppose we want to undo that action. We send undo to the NSUndoManager.
3. The NSUndoManager calls setCenterUndoably: with the old value that we passed

in earlier when we called registerUndoWithTarget:selector:object:. Thus, we
are going to set the center back to that old value. But before we do that, we send
registerUndoWithTarget:selector:object: to the NSUndoManager with the
current value of self.center. The NSUndoManager knows that it is currently un‐
doing, so it understands this registration as something to be added to its Redo stack.

4. Now suppose we want to redo that Undo. We send redo to the NSUndoManager,
and sure enough, the NSUndoManager calls setCenterUndoably: with the value
that we previously undid. (And, once again, we call registerUndoWith-

Target:selector:object: with an action that goes onto the NSUndoManager’s
Undo stack.)

Undo Manager | 877

www.it-ebooks.info

http://www.it-ebooks.info/

Undo Grouping
So far, so good. But our implementation of Undo is very annoying, because we are adding
a single object to the Undo stack every time dragging: is called — and it is called many
times during the course of a single drag. Thus, undoing merely undoes the tiny incre‐
ment corresponding to one individual dragging: call. What we’d like, surely, is for
undoing to undo an entire dragging gesture. We can implement this through undo
grouping. As the gesture begins, we start a group; when the gesture ends, we end the
group:

- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan)
 [self.undoer beginUndoGrouping];
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 [self setCenterUndoably: [NSValue valueWithCGPoint:c]];
 [p setTranslation: CGPointZero inView: self.superview];
 }
 if (p.state == UIGestureRecognizerStateEnded ||
 p.state == UIGestureRecognizerStateCancelled)
 [self.undoer endUndoGrouping];
}

This works: each complete gesture of dragging MyView, from the time the user’s finger
contacts the view to the time it leaves, is now undoable (and then redoable) as a single
unit.

A further refinement would be to animate the “drag” that the NSUndoManager performs
when it undoes or redoes a user drag gesture. To do so, we take advantage of the fact
that we, too, can examine the NSUndoManager’s state by way of its isUndoing and
isRedoing properties; we animate the center change when the NSUndoManager is
“dragging,” but not when the user is dragging:

- (void) setCenterUndoably: (NSValue*) newCenter {
 [self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];
 if (self.undoer.isUndoing || self.undoer.isRedoing) { // animate
 UIViewAnimationOptions opt =
 UIViewAnimationOptionBeginFromCurrentState;
 [UIView animateWithDuration:0.4 delay:0.1 options:opt animations:^{
 self.center = [newCenter CGPointValue];
 } completion:nil];
 } else { // just do it
 self.center = [newCenter CGPointValue];
 }
}

878 | Chapter 26: Undo

www.it-ebooks.info

http://www.it-ebooks.info/

Invocation Undo
Earlier I said that registerUndoWithTarget:selector:object: was one of two ways
to register an action as undoable. The other is prepareWithInvocationTarget:. In
general, the advantage of prepareWithInvocationTarget: is that it lets you specify a
method with any number of parameters, and those parameters needn’t be objects. You
provide the target and, in the same line of code, send to the object returned from this
call the message and arguments you want sent when the NSUndoManager is sent undo
(or, if we are undoing now, redo). So, in our example, instead of this line:

[self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];

You’d say this:

[[self.undoer prepareWithInvocationTarget:self]
 setCenterUndoably: [NSValue valueWithCGPoint:self.center]];

That code seems impossible: how can we send setCenterUndoably: without calling set-
CenterUndoably:? Either we are sending it to self, in which case it should actually be
called at this moment, or we are sending it to some other object that doesn’t implement
setCenterUndoably:, in which case our app should crash. However, under the hood,
the NSUndoManager is cleverly using Objective-C’s dynamism (similarly to the
message-forwarding example in Chapter 12) to capture this call as an NSInvocation
object, which it can use later to send the same message with the same arguments to the
specified target.

If we’re going to use prepareWithInvocationTarget:, there’s no need to wrap the
CGPoint value representing the old and new center of our view as an NSNumber. So
our complete implementation now looks like this:

- (void) setCenterUndoably: (CGPoint) newCenter {
 [[self.undoer prepareWithInvocationTarget:self]
 setCenterUndoably: self.center];
 if (self.undoer.isUndoing || self.undoer.isRedoing) { // animate
 UIViewAnimationOptions opt =
 UIViewAnimationOptionBeginFromCurrentState;
 [UIView animateWithDuration:0.4 delay:0.1 options:opt animations:^{
 self.center = newCenter;
 } completion:nil];
 } else { // just do it
 self.center = newCenter;
 }
}
- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan)
 [self.undoer beginUndoGrouping];
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {

Undo Manager | 879

www.it-ebooks.info

http://www.it-ebooks.info/

 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 [self setCenterUndoably: c];
 [p setTranslation: CGPointZero inView: self.superview];
 }
 if (p.state == UIGestureRecognizerStateEnded ||
 p.state == UIGestureRecognizerStateCancelled)
 [self.undoer endUndoGrouping];
}

Undo Interface
We must also decide how to let the user request Undo and Redo. In developing the code
from the preceding section, I used two buttons: an Undo button that sent undo to the
NSUndoManager, and a Redo button that sent redo to the NSUndoManager. This can
be a perfectly reasonable interface, but let’s talk about some others.

Shake-To-Edit
By default, your app supports shake-to-edit. This means the user can shake the device
to bring up an undo/redo interface. We discussed this briefly in Chapter 22. If you don’t
turn off this feature by setting the shared UIApplication’s applicationSupportsShake-
ToEdit property to NO, then when the user shakes the device, the runtime walks up the
responder chain, starting with the first responder, looking for a responder whose in‐
herited undoManager property returns an actual NSUndoManager instance. If it finds
one, it puts up the undo/redo interface, allowing the user to communicate with that
NSUndoManager.

You will recall what it takes for a UIResponder to be first responder in this sense: it must
return YES from canBecomeFirstResponder, and it must actually be made first res‐
ponder through a call to becomeFirstResponder. Let’s make MyView satisfy these re‐
quirements. For example, we might call becomeFirstResponder at the end of
dragging:, like this:

- (BOOL) canBecomeFirstResponder {
 return YES;
}
- (void) dragging: (UIPanGestureRecognizer*) p {
 // ... the rest as before ...
 if (p.state == UIGestureRecognizerStateEnded ||
 p.state == UIGestureRecognizerStateCancelled) {
 [self.undoer endUndoGrouping];
 [self becomeFirstResponder];
 }
}

880 | Chapter 26: Undo

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 26-1. The shake-to-edit undo/redo interface

Then, to make shake-to-edit work, we have only to provide a getter for the undo-
Manager property that returns our undo manager, self.undoer:

- (NSUndoManager*) undoManager {
 return self.undoer;
}

This works: shaking the device now brings up the undo/redo interface, and its buttons
work correctly. However, I don’t like the way the buttons are labeled; they just say Undo
and Redo. To make this interface more expressive, we should provide a string describing
each undoable action by calling setActionName:. We can appropriately and conven‐
iently do this in setCenterUndoably:, as follows:

[[self.undoer prepareWithInvocationTarget:self]
 setCenterUndoably: self.center];
[self.undoer setActionName: @"Move"];
// ... and so on ...

Now the undo/redo interface has more informative labels, as shown in Figure 26-1.

Undo Menu
Another possible interface is through a menu (Figure 26-2). Personally, I prefer this
approach, as I am not fond of shake-to-edit (it seems both violent and unreliable). This
is the same menu used by a UITextField or UITextView for displaying the Copy and
Paste menu items (Chapter 10). The requirements for summoning this menu are ef‐
fectively the same as those for shake-to-edit: we need a responder chain with a first
responder at the bottom of it. So the code we’ve just supplied for making MyView first
responder remains applicable.

We can make a menu appear, for example, in response to a long press on our MyView
instance. So let’s attach another gesture recognizer to MyView. This will be a UILong‐
PressGestureRecognizer, whose action handler is called longPress:. Recall from Chap‐
ter 10 how to implement the menu: we get the singleton global UIMenuController object

Undo Interface | 881

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 26-2. The shared menu as an undo/redo interface

and specify an array of custom UIMenuItems as its menuItems property. We can make
the menu appear by sending the UIMenuController the setMenuVisible:animated:
message. But a particular menu item will appear in the menu only if we also return YES
from canPerformAction:withSender: for that menu item’s action. Delightfully, the
NSUndoManager’s canUndo and canRedo methods tell us what value canPerform-
Action:withSender: should return. We can also get the titles for our custom menu
items from the NSUndoManager itself, by calling undoMenuItemTitle:

- (void) longPress: (UIGestureRecognizer*) g {
 if (g.state == UIGestureRecognizerStateBegan) {
 UIMenuController *m = [UIMenuController sharedMenuController];
 [m setTargetRect:self.bounds inView:self];
 UIMenuItem *mi1 =
 [[UIMenuItem alloc] initWithTitle:[self.undoer undoMenuItemTitle]
 action:@selector(undo:)];
 UIMenuItem *mi2 =
 [[UIMenuItem alloc] initWithTitle:[self.undoer redoMenuItemTitle]
 action:@selector(redo:)];
 [m setMenuItems:@[mi1, mi2]];
 [m setMenuVisible:YES animated:YES];
 }
}
- (BOOL)canPerformAction:(SEL)action withSender:(id)sender {
 if (action == @selector(undo:))
 return [self.undoer canUndo];
 if (action == @selector(redo:))
 return [self.undoer canRedo];
 return [super canPerformAction:action withSender:sender];
}
- (void) undo: (id) dummy {
 [self.undoer undo];
}
- (void) redo: (id) dummy {
 [self.undoer redo];
}

882 | Chapter 26: Undo

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Application Lifetime Events

Your app’s one and only application object (a UIApplication instance, or on rare occa‐
sions a UIApplication subclass instance) is created for you as the shared application
object by UIApplicationMain, along with its delegate; in the Xcode project templates,
this is an instance of the AppDelegate class. The application reports lifetime events
through method calls to its delegate; other instances can also register to receive most of
these events as notifications.

What application lifetime events you can receive depends on whether or not your app
participates in multitasking. It almost certainly will. In the old days, before iOS 4, there
was no multitasking. If the user pressed the Home button while running your app, your
app was terminated. The next time the user launched your app by tapping its icon, your
app launched from scratch. Even under iOS 7, your app can opt out of multitasking and
behave like a pre–iOS 4 app, if you set the “Application does not run in background”
key (UIApplicationExitsOnSuspend) in your Info.plist. For some apps, such as certain
games, this might be a reasonable thing to do.

In the multitasking world, however, the Home button doesn’t terminate your app; it
backgrounds and suspends it. This means that your app is essentially freeze-dried in the
background; its process still exists, but it isn’t actively running, and it isn’t getting any
events — though notifications can be stored by the system for later delivery if your app
comes to the front once again. If your app is terminated, it’s not because the user switches
away from it, but because the system has killed it while it was suspended — for example,
because it needed to reclaim the memory your suspended app was using, or because the
user switched off the device.

(A backgrounded app can, however, continue to run certain specialized activities, such
as playing music; and in iOS 7, a backgrounded app can be woken periodically in order
to update its data via the network. See Chapters 14, 22, and 24. So a backgrounded app
isn’t always necessarily completely suspended. But in general, most backgrounded apps
are suspended most of the time.)

883

www.it-ebooks.info

http://www.it-ebooks.info/

The suite of basic application lifetime events in the multitasking world is quite limited;
indeed, in my opinion, the information your app is given is unfortunately rather too
coarse-grained. The events are as follows:
application:didFinishLaunchingWithOptions:

The app has started up. You’ll typically perform initializations here. If an app doesn’t
have a main storyboard, this code must also create the app’s window and show it.

In iOS 6 and iOS 7, another event, application:willFinishLaunchingWith-
Options:, arrives even earlier. Its purpose is to allow your app to participate in the
state saving and restoration mechanism discussed in Chapter 6.

applicationDidBecomeActive:

Received after application:didFinishLaunchingWithOptions:. Also received
after the end of the situation that caused the app delegate to receive application-
WillResignActive:.

applicationWillResignActive:

One possibility is that something has blocked the app’s interface — for example, the
screen has been locked. An alert dialog from outside your app, or an incoming
phone call whose interface takes over the screen, could also cause this event. When
this situation ends, the app delegate will receive applicationDidBecomeActive:.
Alternatively, the app may be about to go into the background (and will then be
suspended); in that case, the next event will be applicationDidEnterBackground:.

applicationDidEnterBackground:

The application has been backgrounded (and is about to be suspended). Always
preceded by applicationWillResignActive:.

applicationWillEnterForeground:

The application was backgrounded (and suspended), and is now coming back to
life. Always followed by applicationDidBecomeActive:.

An additional event, applicationWillTerminate:, was your last signal in the non‐
multitasking world to preserve state and perform other final cleanup tasks. In the
multitasking world, however, you’ll probably never get applicationWillTerminate:,
because by the time your app is terminated by the system, it was already suspended and
incapable of receiving events.

The application lifetime events are best understood through some typical scenarios:
The app launches freshly

Your app delegate receives these messages:

• application:didFinishLaunchingWithOptions:

• applicationDidBecomeActive:

884 | Appendix A: Application Lifetime Events

www.it-ebooks.info

http://www.it-ebooks.info/

The user clicks the Home button
If your app is frontmost, it will be suspended; before that, your app delegate receives
these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The user summons your backgrounded app to the front
Your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

If the user summons your backgrounded app to the front indirectly, another dele‐
gate message may be sent between these two calls. For example, if the user asks
another app to hand a file off to your app (Chapter 23), your app receives
application:handleOpenURL: between applicationWillEnterForeground: and
applicationDidBecomeActive:.

The user double-clicks the Home button
The user can now work in the app switcher. If your app is frontmost, your app
delegate receives this message:

• applicationWillResignActive:

The user, in the app switcher, chooses another app
If your app was frontmost, your app delegate receives this message:

• applicationDidEnterBackground:

The user, in the app switcher, chooses your app
If your app was the most recently frontmost app, then it was never backgrounded
and suspended, so your app delegate receives this message:

• applicationDidBecomeActive:

The user summons the control center or notification center
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

The user dismisses the control center or notification center
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

Application Lifetime Events | 885

www.it-ebooks.info

http://www.it-ebooks.info/

A local notification alert from another app appears
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

From a local notification alert, the user launches the other app
Your app delegate receives these messages:

• applicationDidBecomeActive:

• applicationWillResignActive:

• applicationDidEnterBackground:

The screen is locked
If your app is frontmost, your app delegate receives these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The screen is unlocked
If your app is frontmost, your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

The user holds the screen-lock button down
The device offers to shut itself down. If your app is frontmost, your app delegate
receives this message:

• applicationWillResignActive:

The user, as the device offers to shut itself down, cancels
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

The user, as the device offers to shut itself down, accepts
If your app is frontmost, the app delegate receives no further messages. (This is a
major change from earlier systems.)

You can see what I mean when I say that this repertory of events is rather coarse-grained.
applicationWillResignActive:, for example, could indicate (among other things)
that the user is summoning the app switcher, or that another application’s local notifi‐
cation alert has appeared in front of your app, or that the user is locking the screen, or
that the user has single-clicked the Home button to leave your app altogether, or that a
phone call has arrived while your app was frontmost, or that the user is about to shut
down the device. But you can’t distinguish which of these things is happening.

886 | Appendix A: Application Lifetime Events

www.it-ebooks.info

http://www.it-ebooks.info/

Perhaps the most significant lifetime issue for your app is when to save information that
might be lost, but must not be, if your app were terminated. In the nonmultitasking
world, the last moment to do that was applicationWillTerminate:. In the multitasking
world, the last moment to do that used to be applicationDidEnterBackground:, but
in iOS 7 you won’t get that event if the user shuts down the device when your app is
frontmost. This leaves only applicationWillResignActive:.

Application Lifetime Events | 887

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
ABNewPersonController, 718
ABPeoplePickerNavigationController, 715
ABPerson, 712
ABPersonViewController, 717
ABRecordRef, 712
ABUnknownPersonViewController, 719
accelerometer, 779
accessory views, 396, 430
action mechanism (implicit animation), 159
action message (control), 577
action search (implicit animation), 160
action selector signatures (control), 577
action sheet, 623
actions (animation), 160
actions (control), 576
activity indicator, 563
activity view, 632
address book, 709
Address Book framework, 709
Address Book UI framework, 709
address, converting to a coordinate, 764
address, natural language search, 766
alarms, 727
alarms, proximity, 732
ALAsset, 697
alert view, 620
animation, 121–184

action mechanism, 159

action search, 160
animation controller, 291
animation “movie”, 123
animations list, 157
autolayout vs. animation, 181
canceling, 132, 157
constraints, 182
delegate, 144
emitter layers, 166
gravity, 179
grouped animations, 151
hit-testing during animation, 213
image animation, 125
image view animation, 125
keyframe animation, 134, 149
layer animation, explicit, 143
layer animation, implicit, 139
layer, adding an animation to, 157
motion effects, 180
physics, 174
presented view, 267
preventing, 128, 140, 162
properties, animatable, 138
properties, custom animatable, 151
redrawing with animation, 136, 155
repeating, 130
slowing animation, 122
spring animation, 134, 179
stuttering animation, 116

889

www.it-ebooks.info

http://www.it-ebooks.info/

subviews, animating, 138, 164
synchronized with video, 671
transactions, 140
transitions, 136, 155
transitions, Core Image, 171
transitions, interactive, 295
transitions, view controller, 290
UIKit dynamics, 174, 470
view animation, 126
view controller, custom, 290
view controller, interactive, 295
when actually happens, 141

annotation (on map), 746
app bundle, resources inside, 50
appearance proxy, 614
application lifetime events, 883
Application Support folder, 794
ARC, xix
archiving data, 796
asset catalog, 49, 55
Assets Library framework, 693, 697
asynchronous, 554
asynchronous layer drawing, 118
attitude of device, 779
attributed strings, 499–511

creating, 503
drawing, 509
inline images, 507
measuring, 510
modifying, 508
tab stops, 506

audio, 639–656, 657
(see also video)
audio session, 641
audio session, activating, 642
audio session, declaring, 641
ducking, 643
interruption, 643
mixable, 641
music library, 681
playing, 646
playing in background, 651
remote control, 648
routing, 645
screen locking, 641
volume, 684

Audio Toolbox framework, 639
AUSampler, 655

autolayout, 27–47
(see also constraints)
animation vs. autolayout, 181
button, 593
image view, 52
label, 513
progress view, 565
scroll view, 361
segmented control, 588
slider, 586
transform vs. autolayout, 46

autorelease pool, 861
autoresizing, 23
autoresizing constraints, 29
autosaving, 807
AV Foundation framework, 641, 668–674

controlling the camera, 706
ducking audio, 673
editing video, 672
playing audio, 646
playing video, 669
queuing audio, 686

AVAsset, 668
AVAudioPlayer, 646
AVCaptureSession, 706
AVPlayer, 668
AVQueuePlayer, 686
AVSpeechSynthesizer, 656
AVSynchronizedLayer, 671

B
back indicator, 605
back item, 280
background app refresh, 847
background audio, 651
background downloading, 845
background location, 732, 776
background of view, black, 73, 88
background tasks, lengthy, 872
backgrounding of the app, 337, 883
bar button item, 282, 602, 607
bars, 598–612

appearance, 601
bar button item, 602
bar metrics, 600
bar position, 599
color, 601
height, 599
image, 601

890 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

navigation bar, 604
navigation bar, back indicator, 605
shadow, 601
tab bar, 607
tab bar item, 607
tab bar More item, 609
toolbar, 607
underlapping status bar, 599

base URL, 551
beep, 639
black background, 103
blurring, 66, 306
Bonjour, 852
borders, 115
bottom and top reversed, 104, 156
bottom layout guide, 42, 247
bounds, 13
browser, web, 549
button, 590

C
CA prefix, 91
CAAction, 160
CAAnimationGroup, 151
CABasicAnimation, 143
caching a drawing, 93
CADisplayLink, 172
CAEmitterCell, 166
CAEmitterLayer, 166
CAGradientLayer, 107
CAKeyframeAnimation, 149
CALayer, 91

(see also layers)
Calendar app, 721
CAMediaTimingFunction, 141
camera, 701
Camera app, 703
Camera Roll album, 700
CAPropertyAnimation, 145
CAScrollLayer, 99
CAShapeLayer, 107
catalog, asset (see asset catalog)
CATextLayer, 106
CATextLayer and attributed strings, 515
CATiledLayer, scrolling, 373
CATiledLayer, zooming, 377
CATransaction, 140
CATransform3D, 109
CATransformLayer, 113

CATransition, 155
cells, 392–408

(see also table views)
accessory views, 396, 430
background, 397
built-in styles, 393, 400
collection views, 460
configuration, 396
custom content, 401–408
height, 398, 423
labels in, 395
layout of, 402
menus, 453
nib-loaded, 404
prototype, 407
registration of class, 399
registration of nib, 405
reusing, 392, 411
selected, 426
storyboard-loaded, 407

CGAffineTransform, 16, 85, 108
CGContextClearRect, 87, 103
CGContextRef, 59
CGGradientRef, 80
CGImageRef, 63
CGPathRef, 78
CGPatternRef, 82
CIFilter, 68
CIImage, 68
CLCircularRegion, 778
CLGeocoder, 764
clipboard, 529
clipping, 9, 79
CLLocationManager, 773
cloud-based calendars, 723
cloud-based files, 811
cloud-based music, 679, 689
CLPlacemark, 764
CLRegion, 778
CMAttitude, 787
CMDeviceMotion, 786
CMMotionManager, 782
CMTime, 669
code that differs on iPad, 690
collection views, 455–471

animated with UIKit dynamics, 470
cells, 460
headers and footers, 460
layout, 460

Index | 891

www.it-ebooks.info

http://www.it-ebooks.info/

layout, changing, 469
layout, custom, 465
supplementary views, 460

columns of text, 544
compass, digital, 775
component of a picker view, 567
compound paths, 77
concurrency, 855
constraints, 27, 28–45

(see also autolayout)
ambiguous, 34
animation of constraints, 182
autoresizing constraints, 29
conflicting, 34
creating in code, 30
creating in the nib, 39
debugging, 35
editing in the nib, 41
implicit constraints, 29
intrinsic content size, 36

Contacts app, 709
container view, 291
content size (scroll view), 359
content view (scroll view), 363
context (see graphics context)
Control Center, controlling audio, 648
controls, 574–598

action message, 577
action selector signatures, 577
actions, 576
button, 590
control events, 575
custom, 595
date picker, 581
page control, 581
segmented control, 587
slider, 584
state, 578
stepper, 579
switch, 578
touches, 575, 595

coordinate, converting to an address, 765
coordinates

converting coordinates, 16, 97
layer coordinates, 97
main window coordinates, 17
polar coordinates, 596
screen coordinates, 17
systems, 12

view coordinates, 14
Core Animation, 143
Core Data, 822–826
Core Data framework, 822
Core Image framework, 68
Core Location framework, 732, 743, 769
Core Media framework, 668, 693
Core Motion framework, 769
Core Text, 494
Core Text framework, 496
creating a file, 796
creating a folder, 795
creating a view controller, 231–245
CTFont, 494
CTM, 84
current graphics context, 58

D
date calculation, 728
date picker, 581
date, constructing, 584, 726
date, converting to string, 583
Debug menu of Simulator, 117, 122, 387
deferred location updates, 777
delayed performance, 869
delayed performance, canceling, 192
delegation, 265
deltas, iOS 6/7, 26
device, attitude of, 779
device, heading of, 775
device, location of, 761, 770
device, shake to undo, 781, 880
device, user acceleration of, 784
dialogs, modal (see modal dialogs)
dimming background views, 302, 304, 619
dimming tint color, 613
directions (on map), 766
directories (see folders)
dispatch table, 196, 576
document architecture, 806
document types, 800
document, receiving from another app, 802
document, sending to another app, 803
Documents folder, 793
documents in the cloud, 811
double resolution image files, 50
double resolution layers, 103
double tap vs. single tap, 193, 201
downloading from the network, 833

892 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

drawing a layer, 100
drawing a path, 75
drawing a view, 72
drawing an image, 58, 61
drawing efficiently, 12, 117, 387
drawing rotated, 85
drawing text, 509
drawing text with Text Kit, 543
drawing, caching of, 93
drawing, hit-testing of, 211
drawing, when actually happens, 122, 141
dynamic directive, 151
dynamic message handling, 611
Dynamic Type fonts, 495
dynamics, UIKit, 174

E
EKAlarm, 727
EKCalendarChooser, 736
EKEventEditViewController, 735
EKEventViewController, 733
EKRecurrenceRule, 727
EKReminder, 731
ellipsis, 510, 512, 515
email, 739
emitter layers, 166
Empty Application template, 5
errors

affineTransform of layer not animatable, 139
ambiguous constraints, 34
animation triggered immediately, 141
blurry drawing, 16
conflicting constraints, 34
cycle of segues, 326
frame of layer not animatable, 139, 145
frame, forgetting to assign, 12, 99
interface configured too soon, 259
invalid nib registered for identifier, 406
layer contents, setting to a UIImage, 101
layer delegate, changing, 93, 102
layer size, forgetting to set, 99
orientation instead of orientation mask, 254
unable to install constraint on view, 29
view controller’s view placed manually into

interface, 231
view hierarchy not prepared for constraint,

29
Event Kit framework, 721
Event Kit UI framework, 721

events, layout, 45, 255
events, remote, 648
events, rotation, 255
events, shake, 780
events, touch, 186
EXIF data, 828

F
Facebook, 739, 742
file sharing, 794
files, 793–829

cloud-based files, 811
creating a file, 796
document types, 800
document, receiving from another app, 802
document, sending to another app, 803
previewing a document, 804
reading a file, 796
sandbox, 793
saving to a file, 796, 807
sharing files through iTunes, 800
temporary, 794
where to save, 794

first responder, 518, 649
first responder, learning, 518
flipping, 64, 86
floating views, 180
fmdb, 821
folders, creating, 795
folders, listing contents, 795
fonts, 494–499

app bundle, 496
converting between, 497
downloadable, 496
Dynamic Type, 495
families, 494
font descriptors, 497
variants, 498

footer, 399, 413
(see also header)

forwarding of messages, 611
frame, 12, 98

G
GCD, 867
geocoding, 764
geofencing, 732, 776

Index | 893

www.it-ebooks.info

http://www.it-ebooks.info/

gesture recognizers, 195–219
(see also touches)
action message, 196
action target, 196
conflicting, 200
delegate, 205
exclusivity of touches, 216
scroll view, 385
subclassing, 203
swarm, 200
touch delivery, 214

gestures, distinguishing, 192
glyph, 540
GPS, 769
gradients, 80, 107
Grand Central Dispatch, 867
graphics context, 58–89

clipping region, 79
opaque, 88
size, 80
state, 74

gravity, 781
groups, undo, 878
GUI (see interface)
guides, layout, 42, 247
gyroscope, 785

H
header, 399, 413
heading, 775
height and width reversed, 259
hierarchy, layer, 94
hierarchy, view, 8
hierarchy, view controller, 227
highlighted table view cells, 426
hit-testing drawings, 211
hit-testing during animation, 213
hit-testing layers, 210
hit-testing views, 208
Home button, 883
HTML files, 549
HTTP requests, 833

I
iCloud, 681, 811

(see also cloud)
iCloud identity token, 812
identifier path, 343

image context, 58
image files, 49, 828
Image I/O framework, 828
images, animated, 125
images, drawing, 58, 61
images, inline, 507
images, resizable, 53
images, template, 56
implicit constraints, 29
import, xx
in-app purchase, 848
initial view controller, 245
initialization of nib-based instances, 243
Instruments, 117, 387
interactive controller, 296
interactive view controller transitions, 295
interface and threads, 856
interface for address book, 714
interface for calendar, 732
interface for mail, 739
interface for map, 743
interface for messages, 739
interface for music library, 688
interface for photo library, 693
interface for playing video or audio, 658, 669
interface for posting, 739
interface for taking pictures, 701
interface for trimming video, 665
interface that differs on iPad, 241
interface, rotating, 271
Internet, displaying resources from, 549
intrinsic content size, 36
iOS 6/7 Deltas, 26
iPad, code that differs on, 690
iPad, interface that differs on, 241
iPad, presented view controllers on, 269
iPad, resources that differ on, 50
iPod app (see Music app)
iPod library, 675
iTunes Match (see cloud)
iTunes, sharing files through, 800
iWork files, 549

J
JavaScript, 559

894 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

K
keyboard, 517–525, 532–533

customizing, 524
dismissing, 519, 527, 533
language, 525
scrolling in response, 519
table views, 522

L
labels, 511–514

line breaking vs. attributed strings, 512
number of lines, 511
sizing to fit content, 513
wrapping and truncation, 512

labels in built-in cell styles, 395
landscape orientation at startup, 258
layers, 91–184

adding an animation to, 157
animating a layer, 139, 143
animations list, 157
black background, 103
borders, 115
contents, 100
contents, positioning, 104
coordinates, 97
depth, 97, 111
drawing a layer, 100
emitter layers, 166
gradient layers, 107
hierarchy, 94
hit-testing layers, 210
key–value coding, 118
layer animation, explicit, 143
layer animation, implicit, 139
layer animation, preventing, 140, 162
layout, 100
mask, 115
opaque, 103
position, 98
redisplaying, 101, 104
resolution, 102
shadows, 115
shape layers, 107
text layers, 107, 515
transform, 108
transparency, 87, 103
transparent background, 103
underlying layer, 92

layout bar, 40
layout events, 45
layout events and rotation, 255
layout of cells, 402
layout of layers, 100
layout of views, 22
layout, iOS 7 vs. iOS 6, 249
library, iPod, 675
library, music, 675
library, photo, 693
libsqlite3, 821
libxml2, 819
line breaking (see wrapping)
line fragment, 540
listing a folder’s contents, 795
loading a view controller’s view, 234
local notifications, 628
location manager, 771
location of device, 761, 770
location services, 770
location updates, deferred, 777
locked screen, controlling audio, 648
locking screen silences audio, 641
Lundell, Jonathan, 555

M
magnetometer, 775
mail, 739
main storyboard, xix, 5, 244
main thread, 856
main view of view controller, 224
main window, 4, 5
main window, background color of, 5
main window, coordinates, 17
main window, root view of, 4
main window, subclassing, 5
Map Kit framework, 743
map view, 743
map view, displaying user’s location, 761
Maps app, 743
Maps app, displaying point of interest, 762
mask, 115
mask, orientation, 253
mask, transparency, 56
Master–Detail Application template, 290, 429,

490
master–detail interface, 389, 429
Media Player framework, 651, 657, 675
media timing functions, 141

Index | 895

www.it-ebooks.info

http://www.it-ebooks.info/

memory, low, 335
menus, 881
menus in a table view, 453
message forwarding, 611
Message UI framework, 739
MFMailComposeViewController, 739
MFMessageComposeViewController, 741
Microsoft Office files, 549
misaligned views, 16
misplaced views, 43
MKAnnotation, 746
MKAnnotationView, 747
MKDirections, 766
MKLocalSearch, 766
MKMapRect, 745
MKMapView, 743
MKOverlay, 754
MKOverlayRenderer, 754
MKPlacemark, 764
MKUserTrackingBarButtonItem, 762
Mobile Core Services framework, 693
modal dialogs, 619

action sheet, 623
activity view, 632
alert view, 620
alternatives, 627

modal popovers, 482
modal presentation context, 269
modal presentation style, 268
modal transition style, 267
modal view in popover, 486
modal views, 261
More item, 278, 609
motion effects, 180
motion manager, 782
motion of device, 779
movies (see video)
MPMediaCollection, 675
MPMediaEntity, 675
MPMediaItem, 675
MPMediaLibrary, 680
MPMediaPickerController, 688
MPMediaQuery, 676
MPMoviePlayerController, 658
MPMoviePlayerViewController, 664
MPMusicPlayerController, 681
MPNowPlayingInfoCenter, 651
MPVolumeView, 684
multitasking, 883

multitouch sequence, 186
multivalue, 712
Music app, 675
Music app, controlling and querying, 681
Music app, remote control event target, 650
music library, 675

N
navigation bar, 279, 604
navigation bar contents, configuring, 284
navigation bar, back indicator, 605
navigation bar, underlapped by view, 247
navigation controller, 280
navigation interface, 280, 429
navigation interface, configuring, 287
navigation item, 280, 284, 604
network activity in status bar, 564
nib-loaded cells, 404
notifications, local, 628
NSAttributedString, 499

(see also attributed strings)
NSCoder, 348
NSCoding, 796
NSDateComponents, 583, 726, 728
NSDateFormatter, 583
NSFileManager, 795
NSInvocation, 879
NSKeyedArchiver, 796
NSKeyedUnarchiver, 796
NSLayoutConstraint, 28

(see also constraints)
NSLayoutManager, 535
NSLinguisticTagger, 540
NSNetServiceBrowser, 852
NSOperation, 863
NSOperationQueue, 863
NSParagraphStyle, 502
NSShadow, 501
NSStringDrawingContext, 511
NSTextAttachment, 507
NSTextContainer, 535
NSTextStorage, 535
NSTextTab, 506
NSThread, 862
NSUndoManager, 875
NSURLRequest, 550, 834
NSURLSession, 831
NSURLSessionTask, 832
NSUserDefaults, 798

896 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

NSXMLParser, 814

O
opaque graphics context, 88
opaque layers, 103
operation queues, 863
orientation mask, 253
orientation of device, 251
orientation of interface at startup, 258
overlay (on map), 754

P
page control, 581
page view controller, 310
parallax, 180
passthrough views (popovers), 482
password field, 524
pasteboard, 529
path, 75
path, compound, 77
patterns, 82
PDF files, 549
percent driver, 295
phases of a touch, 186
photo library, 693
photo, taking, 701
Photos app, 693
picker view, 567
pixels vs. points, 88
pixels, transparent, 212
points vs. pixels, 88
polar coordinates, 596
pool, autorelease, 861
popovers, 473–489, 623–627

backgrounding of app, 485
customizing, 477
delegate, 483
dismissing, 481, 482
distinguishing, 485
modal, 482
passthrough views, 482
preparing, 475
presented view controller, 486
reference to, 482, 489
rotation, 485
search results, 487
size, 476
storyboard, 480

summoning, 480
preferences, user (see NSUserDefaults)
presentation context, 269
presentation layer, 124, 213
presentation style, 268
presented view controllers and rotation, 271
presented view in popover, 486
presented view, animation of, 267
presented view, what view it replaces, 269
previewing a document, 804
progress view, 565
properties, animatable, 138
properties, custom animatable, 151
prototype cells, 407
proximity alarms, 732
purchase, in-app, 848

Q
QLPreviewController, 805
questions, three big, 409
queues (see threads)
Quick Look framework, 805

R
reading a file, 796
rectangle, rounded, 78, 115
redraw moment, 122, 141
redrawing with animation, 136
region monitoring, 778
Reminders app, 721
resizable image, 53
resolution, 50, 64, 103
resources in app bundle, 50
resources that differ on iPad, 50
responder chain, 218
restoration identifier, 340
restoration identifier path, 343
restoration of state, 337
Retina display (see screen, double resolution)
root view, 4
root view controller, 7, 224
rotating a drawing, 85
rotating interface, 251–260, 271
rotation, 258

(see also orientation)
rotation 3D transform, 110
rotation and bar height, 600
rotation and navigation controllers, 281

Index | 897

www.it-ebooks.info

http://www.it-ebooks.info/

rotation and popovers, 485
rotation and presented view controllers, 271
rotation and split view controllers, 489
rotation and tab bar controllers, 275
rotation events, 255
rounded rectangle, 78, 115
route (on map), 766
RTF files, 549
run loop, 856
runtime environment, testing for, 690

S
sandbox, 793
Saved Photos album, 700
saving state, 337, 799
saving to a file, 796, 807
screen coordinates, 17
screen, double resolution, 50, 64, 103
screen, user locks or unlocks, 886
screens, multiple, 4
scroll indicators, 368
scroll views, 359–388

content size, 359
content view, 363
delegate, 380
floating subviews, 386
gesture recognizers, 385
keyboard dismissal, 524
nib-instantiated, 365
paging, 371
scrolling, 367
stuttering, 387
tiling, 373
touches, 382
underlapping bars, 370
zooming, 375

scrolling in response to keyboard, 519
search bar, 569
search bar in a toolbar, 487
search bar in a top bar, 574
search results in table view, 434, 487
segmented control, 587
segue, 245, 321, 322–329

embed segue, 324
popover segue, 480
replace segue, 491
reversing a segue, 325
triggering, 323
unwind segue, 326

session task, 832
Settings app, 799
settings bundle, 799
shadows, 86, 115, 601
shaking the device, 780, 880
shape layers, 107
shapes, hit-testing of, 211
sharing files through iTunes, 800
significant location monitoring, 778
Simulator, Debug menu, 117, 122, 387
single tap vs. double tap, 193, 201
SLComposeViewController, 742
slicing in asset catalog, 55
slider, 584
small caps, 499
SMS messages, 739
snapshots, 66
Social framework, 739
sound (see audio)
speech, synthesized, 656
split views, 473, 489–492

delegate, 489
rotation, 492
storyboard, 491

Sprite Kit, 122
SQLite files, 821
stack, navigation bar, 280, 604
stack, navigation controller, 280
state of a button, 591
state of a control, 578
state saving and restoration, 337–357
state, restoring, 337
state, saving, 799
static tables, 430
status bar, color, 248
status bar, network activity in, 564
status bar, rotation, 254, 274
status bar, transparent, 246
status bar, underlapped by top bar, 599
status bar, underlapped by view controller’s

view, 246
status bar, visibility, 248
stepper, 579
Store Kit framework, 848
storyboards, 243–245, 320–329

(see also segue)
container view controllers, 324
Exit proxy object, 326
main storyboard, 5, 244

898 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

popovers, 480
prototype cells, 407
relationships, 321
scene, 320
split views, 491
static tables, 430
view controllers, 233, 244, 320

stretching a resizable image, 54
stuttering animation, 116
stuttering scroll views, 387
style runs, 499
styled text, 499

(see also attributed strings)
subclassing NSLayoutManager, 542
subclassing NSTextContainer, 537
subclassing UIApplication, 214
subclassing UICollectionViewFlowLayout, 465
subclassing UIGestureRecognizer, 203
subclassing UIWindow, 5, 214
sublayer, 94
subview, 3
subviews, animating, 138, 164
subviews, removing all, 11
superlayer, 94
superview, 3
suspension of the app, 872, 883
switch, 578
System Sound Services, 639

T
tab bar, 274, 608
tab bar controller, 275
tab bar interface, 275
tab bar interface, configuring, 277
tab bar item, 274, 608
tab bar item, creating, 276
tab bar item, images, 277
tab bar More item, 278, 609
tab bar, underlapped by view, 247
tab stops, 506
Tabbed Application template, 279
table views, 389–455

(see also cells)
data, 408
data, downloading, 843
data, refreshing, 420
editing, 442–452
grouped, 391
height of row, 398, 423

keyboard, 522
menus, 453
navigation interface, 429
restoration of state, 432
search results, 434, 487
sections, 413
sections, collapsing, 451
sections, header and footer, 414
sections, index, 418
selection, 426
selection, multiple, 426
separators, 398
storyboard, designed statically in, 430

tap, single vs. double, 193, 201
template images, 56
text, 493–546
text columns, 544
text fields, 515–529

control events, 527
delegate, 525
keyboard, 517
menus, 528

Text Kit, 494, 534–546
layout manager, 540
layout manager, subclassing, 542
layout managers, multiple, 539
multicolumn text, 544
responding to tap, 545
text container, 535
text container, exclusion paths, 536
text container, subclassing, 537
text containers, multiple, 538

text layers, 107, 515
text views, 530–534

delegate, 530
keyboard, 532
responding to tap, 530
selection, 530
self-sizing, 532
text container, 536

text, alignment, 502
text, drawing, 509, 543
text, truncation, 502, 510, 512
text, wrapping, 502, 512
texting, 739
there can be only one (movie playing), 664
threads, 855–874

dealloc, 859
GCD, 867

Index | 899

www.it-ebooks.info

http://www.it-ebooks.info/

interface, 856
locks, 859
locks, queues instead of, 866
main thread, 856
manual, 861
NSOperation, 863
queues, dispatch, 867
queues, operation, 863
queues, serial, 866
shared data, 858

TIFF, converting to, 829
tiling a resizable image, 53
tint color, 57, 612
tint color, dimming, 613
toolbar, 281, 607
toolbar items, 286, 607
toolbar, underlapped by view, 247
top and bottom reversed, 104, 156
top item, 280
top layout guide, 42, 247
touches, 185–219

(see also gesture recognizers)
control, 575, 595
delivery, 208
phases, 186
responder chain, 218
restricting, 189, 216
touches… methods, 187

TouchXML, 820
transactions, 140
transform, 16, 84, 108
transform vs. autolayout, 46
transform, depth, 111
transition animation, interactive, 295
transition animation, layer, 155
transition animation, view, 136
transition animation, view controller, 290
transition context, 291
transition coordinator, 308
transitions, Core Image, 171
transparency layer, 87
transparency mask, 56
transparent pixels, 212
transparent status bar, 246
Twitter, 739, 742
typecasting to quiet compiler, 100, 107, 162

U
UIActionSheet, 623

UIActivityIndicatorView, 563
UIActivityViewController, 632
UIAlertView, 620
UIApplication, 214
UIApplicationMain, 4, 244
UIBarButtonItem, 282, 602, 607
UIBarItem, 276, 282
UIBezierPath, 78
UIButton, 590
UICollectionView, 455

(see also collection views)
UICollectionViewCell, 460
UICollectionViewController, 459
UICollectionViewFlowLayout, 461, 465
UICollectionViewLayoutAttributes, 460
UIControl, 574

(see also controls)
UIDatePicker, 581
UIDocument, 806
UIDocumentInteractionController, 803
UIDynamicAnimator, 174, 470
UIDynamicBehavior, 174
UIDynamicItem, 174, 470
UIEdgeInsets, 53, 369
UIEvent, 185
UIFont, 494
UIFontDescriptor, 497
UIGestureRecognizer, 195

(see also gesture recognizers)
UIImage, 49, 58

(see also images)
UIImagePickerController, 693
UIImageView, 49
UIKit dynamics, 174, 470
UILabel, 395, 511–514

(see also labels)
UILocalizedIndexedCollation, 419
UILocalNotification, 629
UIMenuController, 528, 881
UIMenuItem, 528, 882
UIMotionEffect, 180
UINavigationBar, 279, 604
UINavigationController, 280
UINavigationItem, 280, 284, 604
UIPageControl, 581
UIPageViewController, 310
UIPercentDrivenInteractiveTransition, 295
UIPickerView, 567

900 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

UIPopoverController, 475
(see also popovers)

UIProgressView, 565
UIRectEdge, 197
UIRefreshControl, 421
UIScrollView, 359

(see also scroll views)
UISearchBar, 569
UISearchDisplayController, 434, 487
UISegmentedControl, 587
UISlider, 584
UISplitViewController, 489

(see also split views)
UIStepper, 579
UIStoryboardPopoverSegue, 480
UIStoryboardSegue, 322
UISwitch, 578
UITabBar, 274, 608
UITabBarController, 275
UITabBarItem, 274, 608
UITableView, 389

(see also table views)
UITableViewCell, 389

(see also cells)
UITableViewController, 391
UITableViewHeaderFooterView, 414
UITextField, 515

(see also text fields)
UITextView, 530

(see also text views)
UIToolbar, 281, 607
UITouch, 185, 188

(see also touches)
UIVideoEditorController, 665
UIView, 3

(see also views)
UIViewController, 223

(see also view controllers)
UIViewControllerRestoration, 344
UIWebView, 549

(see also web views)
UIWindow, 4, 214

(see also window)
unarchiving data, 796
underlying layer, 92
underlying layer, animating, 139, 143
undo alert, button titles in, 881
Undo and Redo, 875–882
Undo by shaking, 781, 880

undo manager, 876
unwind method, 326
user address book, 709
user calendar, 721
user defaults, 798
user interaction, preventing, 124, 189
user library, music, 675
user library, photo, 693
user reminders, 721

V
video, 657–674

playback controls, 659
recording, 701
trimming, 665

view controller for address book, 714
view controller for calendar, 732
view controller for mail, 739
view controller for messages, 739
view controller for music library, 688
view controller for photo library, 693
view controller for playing video or audio, 664
view controller for posting, 739
view controller for taking pictures, 701
view controller for trimming video, 665
view controllers, 223–337

animation, custom, 290
animation, interactive, 295
appearing and disappearing, reason for, 330
child view controller, 226
communication between, 265, 323
contained view controllers, 226
container view controllers, 315
creating, 231–245
delegate, 329
hierarchy, 227
lifetime events, 329
main view, 224
memory management, 335
modal view controller, 227, 261
navigation bar, hiding and showing, 289
navigation item, 284
nib name matching, 240
nib-instantiated, 241
parent view controller, 226
parent view controller, custom, 315
presented view controller, 227, 261
presenting view controller, 227, 262
rotating interface, 271

Index | 901

www.it-ebooks.info

http://www.it-ebooks.info/

storyboard-instantiated, 233, 244, 320
subclassing, 224
toolbar items, 286
toolbar, hiding and showing, 287
view property, 224
view, created in code, 235
view, nib-loaded, 238
view, storyboard-loaded, 243

view controller’s view, creating, 234–245
view controller’s view, in view hierarchy, 227,

316
view controller’s view, loading of, 234
view controller’s view, populating, 237
view controller’s view, resizing of, 245
view for map, 743
view for playing video or audio, 658
view hierarchy, 8
viewport, 556
views, 3–219

animation, 126
appearance proxy, 614
autolayout, 27–47
autoresizing, 23
black background, 73, 88
blurring, 66, 306
bounds, 13
constraints, 27

(see also autolayout)
content mode, 89
coordinates, 14
dragging a view, 190, 199
drawing a view, 72
floating, 180
frame, 12
hidden, 11
hit-testing views, 208
intrinsic content size, 36
layering order, 9
layout, 22
misalignment, 16
misplaced, 43
opaque, 12, 73
overlapping, 8

position of a subview, 12
root view, 4
snapshot, 66
tint color, 57, 612
tint color, dimming, 613
touch delivery, 214
transform, 16
transparency, 11
transparent background, 73, 88
underlying layer, 92

volume, audio, 684

W
warnings

application expected to have root view con‐
troller, 7, 225

presenting action sheet clipped by its super‐
view, 623

unable to simultaneously satisfy constraints,
34

WebKit discarded an uncaught exception,
555

Web Inspector, 557
web views, 494, 549–561

debugging, 557
delegate, 554, 559
JavaScript, 559
loading content, 554
memory leakage, 556
paginated, 558
providing content, 550
restoration of state, 558
viewport, 556

WebKit, 549
width and height reversed, 259
window coordinates, 17
window, main, 4

(see also main window)

X
XML files, 814

902 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Matt Neuburg has a PhD in Classics and has taught at many universities and colleges.
He has been programming computers since 1968. He has written applications for OS X
and iOS, is a former editor of MacTech Magazine, and is a long-standing contributing
editor for TidBITS. His previous O’Reilly books are Frontier: The Definitive Guide,
REALbasic: The Definitive Guide, and AppleScript: The Definitive Guide. He makes a
living writing books, articles, and software documentation, as well as by programming,
consulting, and training.

Colophon
The animal on the cover of Programming iOS 6 is a kingbird, one of the 13 species of
North American songbirds making up the genus Tyrannus. A group of kingbirds is
called a “coronation,” a “court,” or a “tyranny.”

Kingbirds eat insects, which they often catch in flight, swooping from a perch to grab
the insect midair. They may also supplement their diets with berries and fruits. They
have long, pointed wings, and males perform elaborate aerial courtship displays.

Both the genus name (meaning “tyrant” or “despot”) and the common name (“king‐
bird”) refer to these birds’ aggressive defense of their territories, breeding areas, and
mates. They have been documented attacking red-tailed hawks (which are more than
twenty times their size), knocking bluejays out of trees, and driving away crows and
ravens. (For its habit of standing up to much larger birds, the gray kingbird has been
adopted as a Puerto Rican nationalist symbol.)

“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an average-size
kingbird (7.5–9 inches long, wingspan 13–15 inches) found all across North America.
This common and widespread bird has a dark head and back, with a white throat, chest,
and belly. Its red crown patch is rarely seen. Its high-pitched, buzzing, stuttering sounds
have been described as resembling “sparks jumping between wires” or an electric fence.

The cover image is from Cassell’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Table of Contents
	Preface
	Versions
	Acknowledgments
	From the Programming iOS 4 Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Views
	Chapter 1. Views
	The Window
	Experimenting With Views
	Subview and Superview
	Visibility and Opacity
	Frame
	Bounds and Center
	Transform
	Layout
	Autoresizing
	Autolayout
	Constraints in the Nib
	Order of Layout Events
	Autolayout and View Transforms

	Chapter 2. Drawing
	UIImage and UIImageView
	Resizable Images
	Image Rendering Mode

	Graphics Contexts
	UIImage Drawing
	CGImage Drawing
	Snapshots
	CIFilter and CIImage
	Drawing a UIView
	Graphics Context Settings
	Paths and Shapes
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Erasing
	Points and Pixels
	Content Mode

	Chapter 3. Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer
	Layout of Sublayers

	Drawing in a Layer
	Content Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Depth

	Shadows, Borders, and Masks
	Layer Efficiency
	Layers and Key–Value Coding

	Chapter 4. Animation
	Drawing, Animation, and Threading
	UIImageView and UIImage Animation
	View Animation
	Block-Based View Animation
	View Animation Options
	Springing View Animation
	Keyframe View Animation
	Transitions

	Implicit Layer Animation
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Transitions
	Animations List

	Actions
	What an Action Is
	Action Search
	Hooking Into the Action Search
	Nonproperty Actions

	Emitter Layers
	CIFilter Transitions
	UIKit Dynamics
	Motion Effects
	Animation and Autolayout

	Chapter 5. Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Gesture Recognizer Classes
	Gesture Recognizer Conflicts
	Subclassing Gesture Recognizers
	Gesture Recognizer Delegate
	Gesture Recognizers in the Nib

	Touch Delivery
	Hit-Testing
	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Gesture Recognition Logic
	Touches and the Responder Chain

	Part II. Interface
	Chapter 6. View Controllers
	View Controller Responsibilities
	View Controller Hierarchy
	View Controller Creation
	How a View Controller Gets Its View
	Manual View
	Generic Automatic View
	View in a Separate Nib
	Nib-Instantiated View Controller
	Storyboard-Instantiated View Controller

	View Resizing and the Status Bar
	Rotation
	Rotation and Layout Events
	Initial Orientation

	Presented View Controller
	Presenting a View
	Communication With a Presented View Controller
	Presented View Animation
	Presentation Styles
	Rotation of a Presented View
	Presenting a View in Response to Rotation

	Tab Bar Controllers
	Tab Bar Items
	Configuring a Tab Bar Controller

	Navigation Controllers
	Bar Button Items
	Navigation Items and Toolbar Items
	Configuring a Navigation Controller

	Custom Transition Animations
	Noninteractive Custom Transition Animation
	Interactive Custom Transition Animation
	Custom Presented View Controller Transition
	Transition Coordinator

	Page View Controller
	Container View Controllers
	Storyboards
	Segues
	Container Views
	Unwind Segues

	View Controller Lifetime Events
	Incoherencies in View Controller Events
	Appear and Disappear Events
	Manual Event Forwarding to a Child View Controller

	View Controller Memory Management
	State Restoration
	How to Test State Restoration
	Participating in State Restoration
	Restoration ID, Identifier Path, and Restoration Class
	Restoring View Controller State
	Restoration Order of Operations
	Restoration of Other Objects
	Snapshot Suppression

	Chapter 7. Scroll Views
	Creating a Scroll View in Code
	Using a Content View
	Scroll View in a Nib
	Scrolling
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Floating Scroll View Subviews
	Scroll View Performance

	Chapter 8. Table Views and Collection Views
	Table View Cells
	Built-In Cell Styles
	Registering a Cell Class
	Custom Cells

	Table View Data
	The Three Big Questions
	Reusing Cells
	Table View Sections
	Section Index
	Refreshing Table View Data
	Variable Row Heights

	Table View Cell Selection
	Managing Cell Selection
	Responding to Cell Selection
	Navigation From a Table View
	Cell Choice and Static Tables

	Table View Scrolling and Layout
	Table View State Restoration
	Table View Searching
	Table View Editing
	Deleting Table Items
	Editable Content in Table Items
	Inserting Table Items
	Rearranging Table Items
	Dynamic Table Items

	Table View Menus
	Collection Views
	Collection View Classes
	Using a Collection View
	Custom Collection View Layouts
	Switching Layouts
	Collection Views and UIKit Dynamics

	Chapter 9. Popovers and Split Views
	Preparing a Popover
	Popover Size
	Popover Appearance Customization

	Summoning and Dismissing a Popover
	Popover Segues
	Managing a Popover Controller
	Dismissing a Popover
	Popovers During Rotation or Backgrounding

	Popovers and Presented Views
	Automatic Popovers
	Split Views
	Using a Split View
	Split Views in a Storyboard
	Other Split View Configurations

	Chapter 10. Text
	Fonts
	Fonts and Dynamic Type
	Font Descriptors

	Attributed Strings
	Attributed String Attributes
	Making an Attributed String
	Modifying and Querying an Attributed String
	Measuring and Drawing an Attributed String

	Labels
	Number of Lines
	Wrapping and Truncation
	Label Resizing
	Customized Label Drawing

	Text Fields
	Summoning and Dismissing the Keyboard
	Keyboard Covers Text Field
	Configuring the Keyboard
	Text Field Delegate and Control Event Messages
	Text Field Menu

	Text Views
	Text View as Scroll View
	Text View and Keyboard

	Text Kit
	Text Container
	Alternative Text Kit Stack Architectures
	Layout Manager
	Text Kit Without a Text View

	Chapter 11. Web Views
	Web View Content
	Loading Web View Content
	Designing Web View Content

	Paginated Web Views
	Web View State Restoration
	Communicating with a Web View

	Chapter 12. Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIStepper
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	Bar Position and Bar Metrics
	Bar Appearance
	UIBarButtonItem
	UINavigationBar
	UIToolbar
	UITabBar

	Tint Color
	Appearance Proxy

	Chapter 13. Modal Dialogs
	Alert View
	Action Sheet
	Dialog Alternatives
	Local Notifications
	Activity View

	Part III. Some Frameworks
	Chapter 14. Audio
	System Sounds
	Audio Session
	Interruptions
	Routing Changes

	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	Further Topics in Sound

	Chapter 15. Video
	MPMoviePlayerController
	MPMoviePlayerViewController
	UIVideoEditorController
	Introduction to AV Foundation
	Some AV Foundation Building Blocks
	Displaying a Movie
	Synchronizing Video With Animation
	Building Media
	Further Exploration of AV Foundation

	Chapter 16. Music Library
	Exploring the Music Library
	Querying the Music Library
	Persistence and Change in the Music Library

	Music Player
	MPVolumeView
	Playing Songs With AV Foundation
	Music Picker

	Chapter 17. Photo Library and Image Capture
	Choosing From the Photo Library
	Assets Library Framework
	Using the Camera
	Customizing the Image Capture Interface
	Image Capture With AV Foundation

	Chapter 18. Address Book
	Address Book Database
	Address Book Interface
	ABPeoplePickerNavigationController
	ABPersonViewController
	ABNewPersonViewController
	ABUnknownPersonViewController

	Chapter 19. Calendar
	Calendar Database
	Creating Calendars and Events
	Recurrence
	Fetching Events
	Reminders
	Proximity Alarms

	Calendar Interface
	EKEventViewController
	EKEventEditViewController
	EKCalendarChooser

	Chapter 20. Mail and Messages
	Mail Message
	Text Message
	Twitter Post

	Chapter 21. Maps
	Displaying a Map
	Annotations
	Custom Annotation View
	Custom Annotation Class
	Other Annotation Features

	Overlays
	Custom Overlay Class
	Custom Overlay Renderer
	Other Overlay Features

	Map Kit and Current Location
	Communicating With the Maps App
	Geocoding, Searching, and Directions
	Geocoding
	Searching
	Directions

	Chapter 22. Sensors
	Core Location
	Basic Location Determination
	Heading
	Background Location

	Acceleration and Attitude
	Shake Events
	Raw Acceleration
	Gyroscope

	Part IV. Final Topics
	Chapter 23. Persistent Storage
	The Sandbox
	Basic File Operations
	Saving and Reading Files
	User Defaults
	File Sharing
	Document Types
	Handing Off a Document
	Document Architecture
	iCloud
	XML
	SQLite
	Core Data
	Image File Formats

	Chapter 24. Basic Networking
	HTTP Requests
	Simple HTTP Request
	Formal HTTP Request
	Multiple Tasks
	Background Downloads

	Background App Refresh
	In-App Purchases
	Bonjour

	Chapter 25. Threads
	Main Thread
	Why Threading Is Hard
	Three Ways of Threading
	Manual Threads
	NSOperation
	Grand Central Dispatch

	Threads and App Backgrounding

	Chapter 26. Undo
	Undo Manager
	Target–Action Undo
	Undo Grouping
	Invocation Undo

	Undo Interface
	Shake-To-Edit
	Undo Menu

	Appendix A. Application Lifetime Events
	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

