


About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB
and its many features varies across reading devices and applications. Use your device
or app settings to customize the presentation to your liking. Settings that you can
customize often include font, font size, single or double column, landscape or portrait
mode, and figures that you can click or tap to enlarge. For additional information about
the settings and features on your reading device or app, visit the device manufacturer’s
Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to
view code image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

2



The Policy Driven Data Center with
ACI

Architecture, Concepts, and Methodology

Lucien Avramov, CCIE No. 19945
Maurizio Portolani

Cisco Press
800 East 96th Street

Indianapolis, IN 46240

3



The Policy Driven Data Center with ACI: Architecture,
Concepts, and Methodology
Lucien Avramov and Maurizio Portolani

Copyright © 2015 Cisco Systems, Inc.

Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without written permission from the
publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

First Printing January 2015

Library of Congress Control Number: 2014955987

ISBN-13: 978-1-58714-490-5

ISBN-10: 1-58714-490-5

Warning and Disclaimer
This book is designed to provide information about Cisco ACI. Every effort has been
made to make this book as complete and as accurate as possible, but no warranty or
fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco
Systems, Inc. shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book or
from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those
of Cisco Systems, Inc.

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality
and value. Each book is crafted with care and precision, undergoing rigorous

4



development that involves the unique expertise of members from the professional
technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments
regarding how we could improve the quality of this book, or otherwise alter it to
better suit your needs, you can contact us through email at feedback@ciscopress.com.
Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest
to the accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Publisher: Paul Boger
Associate Publisher: Dave Dusthimer
Business Operation Manager, Cisco Press: Jan Cornelssen
Executive Editor: Brett Bartow
Managing Editor: Sandra Schroeder
Development Editor: Marianne Bartow
Project Editor: Mandie Frank
Copy Editor: Bill McManus
Technical Editors: Tom Edsall, Mike Cohen, Krishna Doddapaneni
Editorial Assistant: Vanessa Evans
Designer: Mark Shirar
Composition: Bumpy Design
Indexer: Cheryl Lenser
Proofreader: Debbie Williams

Americas Headquarters
Cisco Systems. Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

5

mailto:feedback@ciscopress.com


Europe Headquarters
Cisco Systems International BV
Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax
numbers are listed on the Cisco Website at www.cisco.com/go/offices.

 CCDE, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin,
Cisco Nexus, Cisco Stadium Vision, Cisco Telepresence, Cisco WebEx, DCE, and
Welcome to the Human Network are trademarks; Changing the Way We Work. Live,
Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet,
AsyncOS. Bringing the Meeting To You. Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA,
CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS,
Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco
Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast
Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient,
IOS, Phone, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys,
MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers,
Networking Academy. Network Registrar, PCNow, PIX, PowerPanels, ProConnect,
ScriptShare, SenderBase, SMARTnet, Spectrum Expert. StackWise, The Fastest Way
to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are
registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States
and certain other countries.

All other trademarks mentioned in this document or website are the property of their
respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (0812R)

6

http://www.cisco.com/go/offices


About the Authors

Lucien Avramov, CCIE 19945, is a Senior Technical Marketing Engineer at Cisco.
Lucien specializes in the Nexus data center portfolio and the ACI. Lucien designs
datacenter networks worldwide and has wide experience in switch architectures,
QoS, ultra-low latency networks, high-performance computing designs, and
OpenStack. Lucien is a distinguished Cisco Live speaker and former TAC technical
leader, he has several industry certifications, authors RFCs at IETF, and owns an
active patent. Lucien holds a master’s degree in Computer Science and a bachelor’s
degree in General Engineering from Ecole des Mines d’Ales, France. In his spare
time, Lucien can be found hiking, biking, running marathons around the world, and on
Twitter: @flying91.
Maurizio Portolani, Distinguished Technical Marketing Engineer at Cisco Systems,
focuses on the design of data center networks. He coauthored Data Center
Fundamentals for Cisco Press, and holds several patents on current data center
technologies. He attended the Politecnico of Torino (“Laurea in Ingegneria”) and
Ecole Centrale Paris (“Diplôme d’Ingénieur”) where he majored in Electronics.

7



About the Technical Reviewers

Tom Edsall is the Chief Technology Officer of Cisco’s Insieme Business Unit, a Cisco
Fellow, and a co-founder of Insieme Networks, a developer of application-centric
infrastructure products, where he is responsible for system architecture and product
evangelism. Insieme Networks was described in Network World as “one of the most
anticipated events in the networking industry over the past 18 months or so, ever since
word leaked that Cisco was funding the spin-in as its response to the software-defined
networking trend.” At Insieme (recently spun back into Cisco), Edsall has led the
development of the Application Centric Infrastructure (ACI), which includes a new
line of Nexus 9000 switches that form an application-aware switching fabric along
with a centralized controller that manages both virtual and physical network
infrastructures.
Tom has been with Cisco since 1993, except for a stint as CTO and co-founder of
spin-in Andiamo Systems (building SAN switches). One of Cisco’s leading switch
architects, he has been responsible for the MDS, Nexus 7000, and Catalyst 5000 and
6000 product lines. Two of his products, the Catalyst 6000 and Nexus 7000, have been
the recipients of the prestigious Cisco Pioneer Award. During this time he has been
awarded more than 70 patents in the networking industry and was recently an author of
“CONGA: Distributed Congestion-Aware Load Balancing for Data Centers,” which
won the prestigious SIGCOMM 2014 best paper award.
Before joining Cisco, Tom was a co-founder and a member of the senior engineering
management team at Crescendo Communications, Cisco’s first acquisition. Edsall
holds BSEE and MSEE degrees from Stanford, where he has also been a Visiting
Scholar and occasional lecturer.
Mike Cohen is Director of Product Management at Cisco Systems. Mike began his
career as an early engineer on VMware’s hypervisor team and subsequently worked in
infrastructure product management on Google and Big Switch Networks. Mike holds a
BSE in Electrical Engineering from Princeton University and an MBA from Harvard
Business School.
Krishna Doddapaneni is responsible for the switching infrastructure and iNXOS part
of ACI. Previously, he served as Director in SAVBU (Cisco) (part of the acquisition
of Nuova Systems). In Nuova Systems, he was responsible for the delivery of the first
FCoE switch. He was responsible for multiple generations of Nexus 5k/2k product
lines. Before Nuova, he was the first employee of Greenfield Networks (acquired by
Cisco). He holds an MS degree in Computer Engineering from Texas A&M University.
He holds numerous patents in the networking field.

8



Dedications

Lucien Avramov:

For Regina and Michel, my precious parents who made lifetime sacrifices to give me
a better future.

Maurizio Portolani:
This book is dedicated to my friends and my family.

9



Acknowledgments

We would like to thank Mike Dvorkin, Tom Edsall, and Praveen Jain for founding
ACI.
Lucien Avramov:
First, I would like to thank my family, friends, colleagues, customers, and mentors for
supporting me during this journey, you know who you are. It means a lot to me. Thank
you Mike Dvorkin for sharing your knowledge, philosophy, and friendship. Mike
Cohen, thank you for always being available and willing to work hard on the reviews,
your opinions, and being a great friend. Tom Edsall, thank you for the quality feedback
and time you gave us in this project. Takashi Oikawa, thank you for your kindness and
wisdom. Along this journey I made friends and shared incredible memories. Writing a
book is a journey mainly with yourself, with a reward comparable to reaching a
summit. This journey is stronger when shared with a co-author: I am fortunate to have
made a great friend along the way, Maurizio Portolani.
Second, I thank Ron Fuller for introducing me to the pleasure of going into a book
project. Thank you to my Cisco colleagues who supported me along the way: Francois
Couderc for the great knowledge sharing, time spent thinking about the structure of this
book, your advice and reviews; Chih-Tsung Huang, Garry Lemasa, Arkadiy Shapiro,
Mike Pavlovich, Jonathan Cornell, and Aleksandr Oysgelt for your encouragement,
reviews, and support along the way. A profound acknowledgement and thanks to the
Cisco Press team: Brett Bartow, your kindness, availability, and patience have meant a
lot to me. Thank you for the opportunity to develop this content and for giving me a
chance. Marianne Bartow, thank you for spending so much time with quality reviews.
Bill McManus, thank you for the editing. Chris Cleveland, thank you for your support
along the way. Mandie Frank, thank you for all the efforts, including keeping this
project on time; and Mark Shirar, for design help.
Finally, I thank the people who gave me a chance in my professional career, starting
with Jean-Louis Delhaye mentoring me for years at Airbus and being my friend ever
since, Didier Fernandes for introducing me and mentoring me in Cisco, Erin Foster for
giving me a chance to join Cisco and relocating me to the United States, Ed Swenson
and Ali Ali for giving me a full time job in Cisco TAC, John Bunney for taking me
along to build the TAC Data Center team and mentoring me. Thank you Yousuf Khan
for giving me a chance to join Technical Marketing first, in the Nexus Team, and later
in the ACI team, and for coaching me along the way; Jacob Rapp, Pramod Srivatsa,
and Tuqiang Cao for your leadership and developing my career.
Maurizio Portolani:

10



I would personally like to acknowledge many people who opened my eyes to modern
software development methodology and technology that I could relate to the changes
that ACI is bringing to networking. A special acknowledgment goes to Marco Molteni
for his in-depth philosophical views on XML versus JSON and Yaml and for
enlightening me on GitHub and Python. I would also like to acknowledge Amine
Choukir in particular for his insights on continuous integration, and Luca Relandini for
his expertise on automation.

11



Contents at a Glance

Foreword

Introduction

Chapter 1 Data Center Architecture Considerations

Chapter 2 Building Blocks for Cloud Architectures

Chapter 3 The Policy Data Center

Chapter 4 Operational Model

Chapter 5 Data Center Design with Hypervisors

Chapter 6 OpenStack

Chapter 7 ACI Fabric Design Methodology

Chapter 8 Service Insertion with ACI

Chapter 9 Advanced Telemetry

Chapter 10 Data Center Switch Architecture

Conclusion

Index

12



Contents

Foreword

Introduction

Chapter 1 Data Center Architecture Considerations
Application and Storage

Virtualized Data Center
Introduction
Definition and Virtualization Concepts
Network and Design Requirements
Storage Requirements

Big Data
Definition
Network Requirements
Cluster Design with the Hadoop Building Blocks: the POD
Storage Requirements
Design Considerations

High-Performance Compute
Definition
Network Requirements
Storage Requirements
Design Considerations
Design Topologies

Ultra-Low Latency
Definition
Network Requirements
Storage Requirements
Design Considerations
Design Topologies

Massively Scalable Data Center
Definition

13



Network Requirements
Storage Requirements
Design Considerations
Design Topologies

Design Topologies Examples
The POD-based Designs

The POD Model or the Data Model for Shared Infrastructure and Cloud
Computing
The FlexPod Design

Data Center Designs
End of Row

Middle of Row
Top of Rack: The Modern Data Center Approach
Single-Homed Servers Design

Logical Data Center Design with the Spine-Leaf ACI Foundation
Architecture

Summary

Chapter 2 Building Blocks for Cloud Architectures
Introduction to Cloud Architectures
Network Requirements of Clouds and the ACI Solution
Amazon Web Services Model
Automating Server Provisioning

PXE Booting
Deploying the OS with Chef, Puppet, CFengine, or Similar Tools

Chef
Puppet

Orchestrators for Infrastructure as a Service
vCloud Director
OpenStack

Project and Releases
Multi-Hypervisor Support
Installers

14



Architecture Models
Networking Considerations

UCS Director
Cisco Intelligent Automation for Cloud
Conciliating Different Abstraction Models

Summary

Chapter 3 The Policy Data Center
Why the Need for the Policy-Based Model?
The Policy Theory
Cisco APIC Policy Object Model

Endpoint Groups
Cisco APIC Policy Enforcement

Unicast Policy Enforcement
Multicast Policy Enforcement

Application Network Profiles
Contracts

Understanding Cisco APIC
Cisco ACI Operating System (Cisco ACI Fabric OS)
Architecture: Components and Functions of the Cisco APIC
Policy Manager
Topology Manager
Observer
Boot Director
Appliance Director
VMM Manager
Event Manager
Appliance Element
Architecture: Data Management with Sharding

Effect of Replication on Reliability
Effect of Sharding on Reliability
Sharding Technology

User Interface: Graphical User Interface

15



User Interface: Command-Line Interface
User Interface: RESTful API
System Access: Authentication, Authorization, and RBAC

Summary

Chapter 4 Operational Model
Introduction to Key Technologies and Tools for Modern Data Centers

Network Management Options
REST Protocol
XML, JSON, and YAML
Python

Python Basics
Where Is the main() Function?
Functions Definition
Useful Data Structures
Parsing Files
Verifying Python Scripts
Where to Run Python
Pip, EasyInstall, and Setup Tools
Which Packages Do I Need?
virtualenv

Git and GitHub
Basic Concepts of Version Control
Centralized Versus Distributed
Overview of Basic Operations with Git
Installing/Setting Up Git
Key Commands in Git

Operations with the Cisco APIC
Object Tree

Classes, Objects, and Relations
Naming Conventions
Object Store

Using REST to Program the Network

16



Tools to Send REST Calls
REST Syntax in Cisco ACI
Modeling Tenants in XML
Defining the Relationship Among EPGs (Providers and Consumers)
A Simple Any-to-Any Policy

ACI SDK
ACI Python Egg
How to Develop Python Scripts for ACI
Where to Find Python Scripts for ACI

For Additional Information
Summary

Chapter 5 Data Center Design with Hypervisors
Virtualized Server Networking

Why Have a Software Switching Component on the Server?
Overview of Networking Components

Virtual Network Adapters
Virtual Switching
Endpoint Groups
Distributed Switching

Hot Migration of Virtual Machines
Segmentation Options

VLANs
VXLANs

VXLAN Packet Format
VXLAN Packet Forwarding
VXLANs Without Multicast

Microsoft Hyper-V Networking
Linux KVM and Networking

Linux Bridging
Open vSwitch

OVS Architecture
Example Topology

17



Open vSwitch with OpenStack
OpenFlow

VMware ESX/ESXi Networking
VMware vSwitch and Distributed Virtual Switch
VMware ESXi Server Traffic Requirements

VXLAN Tagging with vShield
vCloud Director and vApps

vCloud Networks
Cisco Nexus 1000V
Port Extension with VN-TAG
Cisco ACI Modeling of Virtual Server Connectivity

Overlay Normalization
VMM Domain
Endpoint Discovery
Policy Resolution Immediacy
Cisco ACI Integration with Hyper-V
Cisco ACI Integration with KVM
Cisco ACI Integration with VMware ESX

Summary

Chapter 6 OpenStack
What Is OpenStack?

Nova
Neutron
Swift
Cinder
Horizon
Heat
Ironic

OpenStack Deployments in the Enterprise
Benefits of Cisco ACI and OpenStack

Cisco ACI Policy Model
Physical and Virtual Integration

18



Fabric Tunnels
Service Chaining
Telemetry

OpenStack APIC Driver Architecture and Operations
How Integration Works

Deployment Example
Installation of Icehouse
Configuration of the Cisco APIC Driver

Neutron.conf File
ML2_conf.ini File
ML2_cisco_conf.ini File
Configuration Parameters
Host-Port Connectivity
External Networks
PortChannel Configuration

Troubleshooting
The Group Based Policy Project at OpenStack
Summary

Chapter 7 ACI Fabric Design Methodology
Summary of ACI Fabric Key Functionalities

ACI Forwarding Behavior
Prescriptive Topology
Overlay Frame Format
VXLAN Forwarding
Pervasive Gateway
Outside Versus Inside
Packet Walk

Segmentation with Endpoint Groups
Management Model

Hardware and Software
Physical Topology

Cisco APIC Design Considerations

19



Spine Design Considerations
Leaf Design Considerations

Unknown Unicast and Broadcast
Use of VLANs as a Segmentation Mechanism
VLANs and VXLANs Namespaces
Concept of Domain
Concept of Attach Entity Profile

Multi-tenancy Considerations
Initial Configuration Steps

Zero-Touch Provisioning
Network Management
Policy-based Configuration of Access Ports

Configuring Switch Profiles for Each Leaf
Configuring Interface Policies

Interface Policy Groups and PortChannels
Interface Policy Groups
PortChannels
Virtual PortChannels

Virtual Machine Manager (VMM) Domains
VMM Domain
AEP for Virtualized Servers Connectivity

Configuring a Virtual Topology
Bridge Domain

Hardware Proxy
Flooding Mode
fvCtx

Endpoint Connectivity
Connecting a Physical Server
Connecting a Virtual Server

External Connectivity
Summary

Chapter 8 Service Insertion with ACI

20



Overview of ACI Design with Layer 4 Through Layer 7 Services
Benefits
Connecting Endpoint Groups with a Service Graph
Extension to Virtualized Servers
Management Model
Service Graphs, Functions, and Rendering

Hardware and Software Support
Cisco ACI Modeling of Service Insertion

Service Graph Definition
Concrete Devices and Logical Devices
Logical Device Selector (or Context)
Splitting Bridge Domains

Configuration Steps
Definition of a Service Graph

Defining the Boundaries of the Service Graph
The Metadevice
Defining an Abstract Node’s Functions
Defining an Abstract Node’s Connectors
Abstract Node Elements Summary
Connecting Abstract Nodes to Create the Graph

Definition of Concrete Devices and Cluster of Concrete Devices
Configuration of the Logical Device and Concrete Device
Configuration of the Logical Device Context (Cluster Device Selector)
Naming Summary

Summary

Chapter 9 Advanced Telemetry
Atomic Counters

The Principle
Further Explanation and Example
Atomic Counters and the APIC

Latency Metrics
ACI Health Monitoring

21



Statistics
Faults
Events, Logs, Diagnostics
Health Score

The Centralized show tech-support ACI Approach
Summary

Chapter 10 Data Center Switch Architecture
Data, Control, and Management Planes

Separation Between Data, Control, and Management Planes
Interaction Between Control, Data, and Management Planes
Protection of the Control Plane with CoPP

Control Plane Packet Types
CoPP Classification
CoPP Rate-Controlling Mechanisms

Data Center Switch Architecture
Cut-through Switching: Performance for the Data Center
Crossbar Switch Fabric Architecture

Unicast Switching over Crossbar Fabrics
Multicast Switching over Crossbar Fabrics
Overspeed in Crossbar Fabrics
Superframing in the Crossbar Fabric
The Scheduler
Crossbar Cut-through Architecture Summary
Output Queuing (Classic Crossbar)
Input Queuing (Ingress Crossbar)
Understanding HOLB
Overcoming HOLB with VoQ
Multistage Crossbar

Centralized Shared Memory (SoC)
Multistage SoC

Crossbar Fabric with SoC
SoC Fabric

22



QoS Fundamentals
Data Center QoS Requirements

Data Center Requirements
Type of QoS Used in Different Data Center Use Cases
Trust, Classification, and Marking Boundaries

Data Center QoS Capabilities
Understanding Buffer Utilization
The Buffer Bloat
Priority Flow Control
Enhanced Transmission Selection
Data Center Bridging Exchange
ECN and DCTCP
Priority Queue
Flowlet Switching: Nexus 9000 Fabric Load Balancing

Nexus QoS Implementation: The MQC Model
Summary

Conclusion

Index

23



Command Syntax Conventions

The conventions used to present command syntax in this book are the same
conventions used in Cisco’s Command Reference. The Command Reference describes
these conventions as follows:

 Boldface indicates commands and keywords that are entered literally as shown.
In actual configuration examples and output (not general command syntax),
boldface indicates commands that are manually input by the user (such as a show
command).
 Italics indicate arguments for which you supply actual values.
 Vertical bars (|) separate alternative, mutually exclusive elements.
 Square brackets [ ] indicate optional elements.
 Braces { } indicate a required choice.
 Braces within brackets [{ }] indicate a required choice within an optional
element.

Note
This book covers multiple operating systems, and different icons and
router names are used to indicate the appropriate OS that is being
referenced. Cisco IOS and IOS XE use router names such as R1 and R2
and are referenced by the IOS router icon. Cisco IOS XR routers use
router names such as XR1 and XR2 and are referenced by the IOS XR
router icon.

24



Foreword

Looking at the history of network control, one can wonder why so much complexity
emerged out of so simple concepts. Network management systems have traditionally
focused on control of features, without thinking of networks as systems. Any network
control scheme, at the heart, aims to solve two things: control of endpoint behaviors,
where regulations are imposed on what sets of endpoints can communicate or not, also
known as access control, and path optimization problems instrumented through
management of numerous network control plane protocols. Unfortunately, this natural
separation has rarely been honored, resulting in the control models that are both
difficult to consume and operationally fragile.
IT does not exist for the benefit of itself. The purpose of any IT organization is to run
business applications. The application owner, architect, and developer all have
intimate understanding of their applications. They have a complete picture of the
application’s infrastructure requirements and full understanding of other application
components necessary for communication. However, once it comes to deployment, all
this knowledge, the original intent, is forever lost in the implementation detail of the
translation between the application requirements and the actual configuration of the
infrastructure. The unfortunate consequence of this is that there’s no easy way to map
resources and configurations back to the application. Now, what if we need to expand
the app, add more components, or simply retire it from the data center? What happens
to the residual configuration?
When we started Insieme, one of the chief goals was to bring networking into the reach
of those who don’t need to understand it: an application guy who needs to identify how
his application interacts with other application components in the data center, an ops
guy who needs to configure cluster expansion, a compliance guy who needs to ensure
that no enterprise-wide business rules are violated. We felt that the way operational
teams interact with the network needed to change in order for networking to enter the
next logical step in the evolution.
Lucien and Maurizio explain the new Policy Driven Data Center and its associated
operational model. This book focuses, on one hand, on the architecture, concept, and
methodology to build a modern data center solving this paradigm; while also, on the
other hand, detailing the Cisco ACI solution.
Mike Dvorkin
Distinguished Cisco Engineer, Chief Scientist, and Co-founder of Insieme Networks

25



Introduction

Welcome to the Policy Driven Data Center with Application Centric Infrastructure
(ACI). You are embarking on a journey to understand the latest Cisco data center
fabric and the many innovations that are part of it.
The objective of this book is to explain the architecture design principles, the
concepts, and the methodology to build new data center fabrics. Several key concepts
in this book, such as the policy data model, programming, and automation, have a
domain of applicability that goes beyond the ACI technology itself and forms a core
skillset of network engineers and architects.
Cisco Application Centric Infrastructure (ACI) is a data center fabric that enables you
to integrate virtual and physical workloads in a highly programmable multi-hypervisor
environment that is designed for any multi-service or cloud data center.
To fully appreciate the ACI innovations, one has to understand the key new industry
trends in the networking field.

Industry Trends
At the time of this writing, the network industry is experiencing the emergence of new
operational models. Many of these changes are influenced by innovations and
methodology that have happened in the server world or in the application world.
The following list provides a nonexhaustive collection of trends currently influencing
new data center designs:

 Adoption of cloud services.
 New methodology of provisioning network connectivity (namely self-service
catalogs).
 Ability to put new applications into production more quickly and to do A/B
testing. This concept relates to the ability to shorten the time necessary to
provision a complete network infrastructure for a given application.
 Ability to “fail fast”; that is, being able to put a new version of an application
into production for a limited time and then to decommission it quickly should
bugs arise during the testing.
 Ability to use the same tools that manage servers (such as Puppet, Chef,
CFengines, etc.) to manage networking equipment.
 The need for better interaction between server and application teams and
operation teams (DevOps).
 Ability to deal with “elephant flows”; that is, the ability to have backups or

26



commonly bulk transfers without affecting the rest of the traffic.
 Ability to automate network configuration with a more systematic and less prone
to error programmatic way using scripts.
 Adoption of software development methodologies such as Agile and Continuous
Integration.

Some of these trends are collectively summarized as “application velocity,” which
refers to the ability to shorten the time to bring an application from development to
production (and back to testing, if needed) by spawning new servers and network
connectivity in a much faster way than before.

What Is an “Application”?
The meaning of “application” varies depending on the context or job role of the person
that is using this term. For a networking professional, an application may be a DNS
server, a virtualized server, a web server, and so on. For a developer of an online
ordering tool, the application is the ordering tool itself, which comprises various
servers: presentation servers, databases, and so on. For a middleware professional, an
application may be the IBM WebSphere environment, SAP, and so on.
For the purpose of this book, in the context of Cisco ACI, an application refers to a set
of networking components that provides connectivity for a given set of workloads.
These workloads’ relationship is what ACI calls an “application,” and the relationship
is expressed by what ACI calls an application network profile, explained after Figure
1.

27



Figure 1 Example of an “Application”
Figure 1 provides an example illustrating an application that is accessible from a
company intranet and that is connected to an external company that provides some
business function. This could be, for instance, a travel reservation system, an ordering
tool, a billing tool, and so on.
This relationship can be expressed in ACI by using the concept of application
network profile (ANP), which abstracts the specific VLANs or subnets that the
building blocks reside on. The configuration of network connectivity is expressed in
terms of policies, which define which endpoints consume (or provide) services
provided by (consumed by) other endpoints.
Using ACI doesn’t require deep understanding of these application relationships.
These often are implicit in existing networking configurations by means of VLANs and
access control lists. Hence, one can just use ANPs and associated policies as
containers of existing configurations without the need to map exact server-to-server
communication patterns.
The value proposition of using ANPs is that it enables network administrators to
express network configurations in a more abstract manner that can be more closely
mapped to the building blocks of a business application such as an ordering tool, a
travel reservation system, and so on. After the applications are defined, they can be
validated in a test environment and immediately moved to a production environment.

28



The Need for Abstraction
Applications already run in data centers today even without ACI. Network
administrators create the connectivity between building blocks by using VLANs, IP
addresses, routing, and ACLs by translating the requirements of the IT organization to
support a given tool. However, without ACI, administrators have no way to really
express such configurations directly in a format that can be mapped to the network,
leaving administrators with no choice but to focus primarily on expressing a very open
connectivity policy to ensure that servers can talk to each other if they are internal to
the company and can talk to the outside if they are on the DMZ or extranet. This
requires administrators to harden ACLs and put firewalls to restrict the scope of
which service clients and other servers can use from a given set of servers.
This approach results in configurations that are not very portable. They are very much
hard-coded in the specific data center environment where they are implemented. If the
same environment must be built in a different data center, somebody must perform the
tedious job of reconfiguring IP addresses and VLANs and deciphering ACLs.
ACI is revolutionizing this process by introducing the ability to create an application
network profile, a configuration template to express relationships between compute
segments. ACI then translates those relationships into networking constructs that
routers and switches can implement (i.e., in VLANs, VXLANs, VRFs, IP addresses,
and so on).

What Is Cisco ACI
The Cisco ACI fabric consists of discrete components that operate as routers and
switches but are provisioned and monitored as a single entity. The operation is like a
distributed switch and router configuration that provides advanced traffic
optimization, security, and telemetry functions, stitching together virtual and physical
workloads. The controller, called the Application Policy Infrastructure Controller
(APIC), is the central point of management of the fabric. This is the device that
distributes ANP policies to the devices that are part of the fabric.
The Cisco ACI Fabric OS runs on the building blocks of the fabric, which are, at time
of writing, the Cisco Nexus 9000 Series nodes. The Cisco ACI Fabric OS is object-
oriented and enables programming of objects for each configurable element of the
system. The ACI Fabric OS renders policies (such as the ANP and its relationships)
from the controller into a concrete model that runs in the physical infrastructure. The
concrete model is analogous to compiled software; it is the form of the model that the
switch operating system can execute.
Cisco ACI is designed for many types of deployments, including public and private
clouds, big data environments, and hosting of virtualized and physical workloads. It

29



provides the ability to instantiate new networks almost instantaneously and to remove
them just as quickly. ACI is designed to simplify automation and can be easily
integrated into the workflow of common orchestration tools.
Figure 2 illustrates the ACI fabric with the spine-leaf architecture and controllers.
Physical and virtual servers can be connected to the ACI fabric and also receive
connectivity to the external network.

Figure 2 ACI Fabric

Cisco ACI Innovations
Cisco ACI introduces many innovations:

 The whole fabric is managed as a single entity but without a centralized control
plane.
 The fabric is managed via an object tree with methods and classes that are
accessible with REST calls.
 It introduces a new management model based on a declarative approach instead
of an imperative approach.
 It allows a clear mapping of application relationships to the network
infrastructure.
 It is designed for multi-tenancy.
 It is multi-hypervisor capable.
 It allows the definition of abstract configurations (or templates) that make
configurations portable.

30



 It changes the way that networking configurations are expressed, from VLAN
and IP addresses to policies.
 It revolutionizes equal-cost multipathing and quality of service (QoS) with
flowlet load balancing, dynamic flow prioritization, and congestion
management.
 It introduces new concepts for telemetry, such as the concept of health scores
and atomic counters.

Book Structure
Chapter 1: Data Center Architecture Considerations
The goal of this chapter is to describe the network requirements of different server
environments and how to meet them in terms of network design.
Chapter 2: Building Blocks for Cloud Architectures
At the time of this writing, most large-scale data center deployments are designed with
the principles of cloud computing. This is equally true for data centers that are built by
providers or by large enterprises. This chapter illustrates the design and technology
requirements of building a cloud.
Chapter 3: The Policy Data Center
The goal of this chapter is to elucidate the Cisco ACI approach to modeling business
applications. This approach provides a unique blend of mapping hardware and
software capabilities to the deployment of applications either graphically through the
Cisco Application Policy Infrastructure Controller (APIC) GUI or programmatically
through the Cisco APIC API model. The APIC concepts and principles are explained
in detail in this chapter. Finally, the ACI fabric is not only for greenfield deployment.
Many users will consider how to deploy an ACI fabric into an existing environment.
Therefore, the last part of this chapter explains how to integrate the ACI fabric with an
existing network.
Chapter 4: Operational Model
Command-line interfaces (CLI) are great tools for interactive changes to the
configuration, but they are not designed for automation, nor for ease of parsing (CLI
scraping is neither efficient nor practical) or customization. Furthermore, CLIs don’t
have the ability to compete with the power of parsing, string manipulation, or the
advanced logic that sophisticated scripting languages like Python can offer. This
chapter covers the key technologies and tools that new administrators and operators
must be familiar with, and it explains how they are used in an ACI-based data center.
Chapter 5: Data Center Design with Hypervisors

31



This chapter describes the networking requirements and design considerations when
using hypervisors in the data center.
Chapter 6: OpenStack
This chapter explains in detail OpenStack and its relation to Cisco ACI. The goal of
this chapter is to explain what OpenStack is and present the details of the Cisco ACI
APIC OpenStack driver architecture.
Chapter 7: ACI Fabric Design Methodology
This chapter describes the topology of an ACI fabric and how to configure it both as
an infrastructure administrator and as a tenant administrator. The chapter covers the
configuration of physical interfaces, PortChannels, virtual PortChannels, and VLAN
namespaces as part of the infrastructure configurations. The chapter also covers the
topics of segmentation, multi-tenancy, connectivity to physical and virtual servers, and
external connectivity as part of the tenant configuration.
Chapter 8: Service Insertion with ACI
Cisco ACI technology provides the capability to insert Layer 4 through Layer 7
functions using an approach called a service graph. The industry normally refers to the
capability to add Layer 4 through Layer 7 devices in the path between endpoints as
service insertion. The Cisco ACI service graph technology can be considered a
superset of service insertion. This chapter describes the service graph concept and
how to design for service insertion with the service graph.
Chapter 9: Advanced Telemetry
The goal of this chapter is to explain the centralized troubleshooting techniques that
ACI offers for isolating problems. It includes topics such as atomic counters and
health scores.
Chapter 10: Data Center Switch Architecture
The goal of this chapter is to provide a clear explanation of the data center switching
architecture. It is divided into three sections: the hardware switch architecture, the
fundamental principles of switching, and the quality of service in the data center.

Terminology
Node: Physical network device.
Spine node: Network device placed in the core part of the data center. Typically it’s a
device with high port density and higher speed.
Leaf node: Network device placed at the access of the data center. It is the first tier of
network equipment defining the data center network fabric.
Fabric: A group of leaf and spine nodes defining the data center network physical

32



topology.
Workload: A virtual machine defining a single virtual entity.
Two-tier topology: Typically defined by a spine-leaf fabric topology.
Three-tier topology: A network topology with access, aggregation, and core tiers.
Services: Category defined by the following (nonexhaustive) group of appliances:
load balancers, security devices, content accelerators, network monitoring devices,
network management devices, traffic analyzers, automation and scripting servers, etc.
ULL: Ultra-low latency. Characterizes network equipment in which the latency is
under a microsecond. Current technology is nanosecond level.
HPC: High-performance compute. Applications using structured data schemes
(database) or unstructured data (NoSQL) where performance is important at
predictable and low latency and with the capability to scale. The traffic patterns are
east-west.
HFT: High-frequency trading. Typically occurs in a financial trading environment,
where the latency needs to be minimal on the data center fabric to provide as close as
possible to real time information to the end users. Traffic is mainly north-south
Clos: Multistage switching network, sometimes called “fat tree,” based on a 1985
article by Charles Leiserson. The idea of Clos is to build a very high-speed,
nonblocking switching fabric.

33



Chapter 1. Data Center Architecture
Considerations

This chapter covers data center architecture considerations. It explains the design
considerations and methodology used to approach the design process in order to
efficiently select the end-to-end network design for a data center fabric project for an
architect and provide the needed growth capability for its evolution.
In the data center network design process, there are key considerations for the
architecture choice and final design:

 The applications to be hosted in the data center along with the type of storage
the applications will use
 The data center needs and constraints, including physical decisions and the pod
model
 The different types of data center designs

The virtualized data center represents the majority of data center fabric deployments.
The data center’s other use cases: big data, ultra-low latency, high-performance
compute, and massive scale are also explained. The trend in the data center is toward
the spine-leaf architecture, which is a building block for the Application Centric
Infrastructure fabric (ACI) explained all along in this book.

Application and Storage
When designing a data center, the most common approach is to use the three-tier
approach. This comprises the classical access, aggregation, and core layers,
commonly referred to as a three-tier topology. The data center designs evolve from
this three-tier approach into more specific data center trends, the modern trend being
toward the two-tier spine-leaf architecture. Understanding the different technical
trends in the data center along with the requirements of the project will guide you in
triaging the essential aspects of the design. This understanding will give you key
knowledge to plan the best type of solution to meet the data center project
requirements. This section covers the current recommended methodology to achieve
an end-to-end data center design.
This chapter describes how to use the latest design methodologies to address the
requirements of the following workload types:

 Virtualized data center
 Big data

34



 High-performance compute (HPC)
 Ultra-low latency data center
 Massively scalable data centers

Many data centers have a mix of workloads that fall into several of the previous listed
catagories. For these types of data centers, you need to build a fabric that is
multipurpose; for example, a fabric based on the Cisco Nexus 9000 product family of
switches.

Virtualized Data Center
Modern data centers include a significant number of virtualized servers. This chapter
explains the design considerations for Virtualized workloads.

Introduction
The virtualized data center represents most of the current data center fabric
deployments. These environments include small-, medium-, and commercial-size
businesses as well as larger enterprises. The full Cisco data center fabric portfolio is
being used from the hypervisor-level switches, such as Nexus 1000v, to the Nexus
9000 product family, including the Cisco Unified Computing System (UCS) servers
with blade chassis servers or rack mounts. The Fibre Channel storage is consolidated
on the Ethernet wire and coexists with other Ethernet traffic and IP traffic. NFS
storage traffic is used as well to store the virtual machines (VMs). FCoE is not
mandatory; many deployments in the virtualized data center are with IP storage.
The virtualized data center is built around one or multiple hypervisor types that must
coexist and communicate. The data center network needs to handle virtualized traffic,
but it must also be highly available. It has to minimize VM interruption when a
workload mobility event occurs, such as when a VM needs to move to another host. A
key difference in the virtualized data center is the fabric itself. The first cable up to the
top-of-rack (ToR) switch is already “fabric” in the sense that it carries traffic from
multiple hosts toward the first physical network device, which is a ToR or access
switch. The first switch is now a virtual switch device. The letter v is placed in front
of each commonly known network element: vSwitch, vEthernet, vNIC, and so forth.
When building the data center network fabric, it is important to consider the number of
VMs that will run on each host and the applications that will provide guidance for the
oversubscription ratio. The virtualization has multiple layers. For example, a cloud
provider that is running a virtual environment may allow its users to also run their own
hypervisors. This creates a data center environment, which handles multiple levels of
virtualization. Therefore, the number of different encapsulations expands. This creates
even further levels inside the hypervisor to reach the first virtual access port where

35



the different properties will be applied (quality of service [QoS], bandwidth
restriction, security, port mirroring, etc.).
Within a layer of virtualization, different traffic can run IP or Ethernet application
traffic, video, voice, and storage. Therefore, the virtual data center design offers
various QoS capabilities to prioritize the various traffic patterns that take the same
uplink toward the first ToR switch. The typical type of application running in a
virtualized data center is what is often called the three-tier application model:
consisting of the combination of a specific application, a database, and a web server.
Each typically runs on a dedicated virtual machine. In enteprise deployment, databases
are often hosted on bare-metal servers.

Definition and Virtualization Concepts
Virtualization in the data center is not restricted to servers. As a result modern data
centers use the following technologies:

 Server virtualization
 Storage virtualization
 Services virtualization
 Network virtualization
 Orchestration (management virtualization)

Server Virtualization
Server virtualization is the most common type of hardware virtualization. The current
x86 computer hardware is largely underutilized when running a single operating
system with its applications. With virtualization, the hardware resources are much
better employed, by running multiple VMs and applications on the same physical
computer, as shown in Figure 1-1. There is a hypervisor software layer between the
physical server and the VMs, emulating a physical dedicated computer logically
isolated from the real physical host server. It allows multiple operating systems to
share a single hardware host, running simultaneously with their independent
functionalities and applications. The VMs are stored as files, making recovery
possible on the same or a different physical host. Server virtualization optimizes the
data center projects, also called consolidation projects, so that the physical servers
are used more efficiently.

36



Figure 1-1 Server Virtualization

Storage Virtualization
Storage virtualization is a logical and abstracted view of all the physical storage
devices in a specific data center project. Users and applications access the storage via
the storage virtualization without having to know where the storage is located, how to
access it, or how to manage it. This further enables the sharing capability across
multiple applications and servers: storage appears as one large pool with no physical
boundaries. Storage virtualization applies to large storage-area network (SAN)
arrays, logical portioning of a local workstation hard drive, or redundant array of
independent disks (RAID). Storage virtualization provides four key benefits:

 Optimization of the resources: The storage devices are no longer dedicated to
specific servers or applications, optimizing the use of storage globally available
for all the servers and applications in the data center farm. When more storage is
needed, physical storage is added to the shared pool.
 Lower cost of operation: The storage configuration is centralized and does not
require each server to be configured for its own storage. A storage management
tool allows adding, maintaining, and operating the shared storage. The total cost
of operation for storage is lowered by this approach, and considerable time is
saved.
 Increased storage availability: In a traditional environment, planned or

37



unplanned downtime for maintenance, storage upgrades, power outages, viruses,
and so on results in application downtime for the end user. With storage
virtualization and redundancy, new storage resources are provisioned quickly,
reducing the impact of downtime.
 Improved storage performance: The workload for a storage operation created
by an application can be distributed across several different physical storage
devices. This improves completion time for the application to perform a read or
write operation, as a single task can overwhelm a single storage device.

Services Virtualization
Services virtualization in a data center refers to the use of service devices such as
firewalls, load balancers, cache acceleration engines, and so on. A virtual interface,
also called a virtual IP address, is exposed to the outside of the data center,
representing itself as a web server. The virtual interface then manages the connections
to and from the web server as needed. A load balancer provides a more robust
topology and secure server access, allowing users entry to multiple web servers and
applications as a single instance instead of a per-individual-server approach. One
server is shown to the outside users, hiding the multiple servers available behind a
reverse proxy device. Network services can be physical or virtual. At the time of this
writing, several virtual firewalls and virtual load balancers are available on the
market.

Network Virtualization
Virtualized servers also require changes to the network infrastructure in order to
preserve the segmentation among virtual machines. The main change is the shift of the
network access layer inside the server, at the hypervisor level, which contrasts the
traditional bare-metal server, where the access layer starts from the first access port to
which a physical network cable is connected toward the end server. Network
virtualization can leverage one or more of the following technologies:

 Use of VLANs
 Use of Virtual Extensible LAN (VXLAN)
 Use of Virtual Routing and Forwarding (VRF)

38



Orchestration
Orchestration refers to the coordinated provisioning of virtualized resources pools
and virtual instances. This includes static and dynamic mapping of virtual resources to
physical resources, along with management capabilities such as capacity planning,
analytics, billing, and service-level agreements (SLA). The services are usually
abstracted to a customer portal layer, where the end user selects the service and then
the service is automatically provisioned using various domain and middleware
management systems along with the following (as depicted in Figure 1-2):

 Configuration management database (CMDB)
 Service catalog
 Accounting
 SLA management
 Service management
 Service portal

Figure 1-2 Orchestration

Network and Design Requirements
The impacts of using a virtualized data center on the network include the following:

39



 Less physical ports and more virtual ports to manage.
 Increase of risk. A rack has hundreds of VMs, which means a higher impact from
outage or upgrade and the need for high availability.
 The need to increase scalability. The more VMs, the more MAC addresses and
VLANs.
 Mobility makes capacity planning very difficult. You must overprovision uplinks
with higher bandwidth.
 Server evolution to 10-Gigabit Ethernet (GE) at the access layer due to
consolidation.
 With overprovisioning, the uplinks move to 40-GE and 100-GE.
 Hypervisor NIC teaming is different from the rack-mount servers’ NIC teaming
 70 to 80 percent of the traffic flow is now east to west (that is, between servers)
within the data center.
 The services are now virtual and physical, not only physical.
 The need to adapt to the new multitenancy models with mobility of the VLANs.
 The need for knowledge about the localization of the VM for a physical server.
 Multiple layers of virtualization (cloud offerings).
 Legacy needs to coexist with the virtual environment (mission-critical
databases, for example).
 New pay-as-you-grow model, where the growth of the virtualized DC is per
rack and not an initial fixed end-to-end data center project.
 Virtualization introduces the need to manage the virtual switch.

Storage Requirements
The virtualization encourages NFS to be used for storing the VMs and Fibre Channel
over Ethernet (FCoE) to be used for storing the hypervisors. There is currently a trend
to move to IP storage as well for the hypervisor storage. This is why high bandwidth
capacity, or QoS, are key to assure the data transfer of storage between the storage
arrays and the production compute nodes.

Big Data
This section explains in detail the big data data center trend.

40



Definition
Big data is loosely defined by its main attributes (as Gartner and other market analysts
indicate): volume, velocity, variety, and complexity. Big data is composed of
structured and unstructured elements. Although structured data accounts for an
enormous number of records, often representing more than petabytes of data,
unstructured data, and for the most part human generated, normally makes up a much
larger percentage of the total size. This large amount of information is generated as a
result of democratization and ecosystem factors such as the following:

 Mobility trends: Mobile devices, mobile events and sharing, and sensory
integration
 Data access and consumption: Internet, interconnected systems, social
networking, and convergent interfaces and access models (Internet, search and
social networking, and messaging)
 Ecosystem capabilities: Major changes in the information processing model
and the availability of an open source framework; the general-purpose
computing and unified network integration

Big data is a foundational element of social networking and web-based information
companies. Consequently, big data, particularly when originated from external
sources, tends to contain errors, wrong content, and missing parts. Also, big data
usually does not include unique identifiers. These issues generate significant
challenges for entity resolution and entity disambiguation. Data generation,
consumption, and analytics have provided competitive business advantages for web
portals and Internet-centric firms that offer services to customers and services
differentiation through correlation of adjacent data.
Some companies with a large Internet presence use big data for the following reasons:

 Targeted marketing and advertising
 Related attached sale promotions
 Analysis of behavioral social patterns
 Metadata-based optimization of workload and performance management for
millions of users

41



Big Data Moves into the Enterprise
The requirements of traditional enterprise data models for application, database, and
storage resources have grown over the years, and the cost and complexity of these
models have increased along the way to meet the needs of big data. This rapid change
prompted changes in the fundamental models that describe the way that big data is
stored, analyzed, and accessed. The new models are based on a scaled-out, shared-
nothing architecture, bringing new challenges to enterprises to decide what
technologies to use, where to use them, and how. One size no longer fits all, and the
traditional three-tier network model (access/aggregation/core) is now being expanded
to incorporate new building blocks that address the challenges with new information
processing frameworks that are purpose-built to meet big data’s requirements.
However, these systems must also meet the inherent requirement for integration into
current business models, data strategies, and network infrastructures.

Big Data Components
Two main building blocks are being added to the enterprise stack to accommodate big
data, as shown in Figure 1-3:

 Hadoop: Provides storage capability through a distributed, shared file system,
and provides analysis capability through a task called MapReduce.
 NoSQL: Provides the capability to capture, read, and update, in real time, the
large influx of unstructured data and data without schemas. Examples include

 Click streams
 Social media
 Log files
 Event data
 Mobility trends
 Sensor and machine data

42



Figure 1-3 Big Data Enterprise Model
A trend is to store this data in flash or RAM memory for faster access. NoSQL has
become more popular because the volume of data to handle is higher than the SQL type
of database structures.

Network Requirements
Big data components need to integrate alongside the current business models in the
enterprise. This integration of new, dedicated big data models can be completely
transparent by using Cisco Nexus network infrastructures optimized for big data, as
shown in Figure 1-4.

43



Figure 1-4 Integration of Big Data Model into Enterprise Network Architecture

44



Cluster Design with the Hadoop Building Blocks: the POD
Divide-and-conquer strategies are quite effective for several kinds of workloads that
deal with massive amounts of data. A single large workload can be divided or mapped
into smaller subworkloads, and the results from the subworkloads can be merged,
condensed, and reduced to obtain the final result. The idea behind Hadoop is to
exploit this feature of the workload and assign the smaller subworkloads to a large
cluster of inexpensive nodes built with general-purpose hardware, rather than use
expensive, fault-tolerant hardware. Further, handling massive amounts of data requires
storage. Hadoop has a distributed, cluster file system that scales to warehouse these
massive amounts of data. The cluster is built so that the entire infrastructure is resilient
and fault tolerant, even though individual components can fail, dramatically lowering
the system-wide MTBF (mean time between failure) rate despite having a higher
component MTBF rate, as shown in Figure 1-5.

Figure 1-5 Cluster Design

45



Storage Requirements
Big data applications use a distributed IP storage. It is a shared file system, typically
NFS or direct attach storage (DAS). The storage is located on each server node. Some
performance applications in big data are similar to the ultra-low latency type of
application storage located on the volatile memory of each node instead of a hard
drive. Flash hard drives are also expanding in this environment.

Design Considerations
A functional and resilient network is crucial to an effective big data cluster. However,
analysis has proven that factors other than the network have a greater influence on the
performance of the cluster. Nevertheless, consider some of the relevant network
characteristics and their potential effects. Figure 1-6 shows the relative importance of
the primary parameters validated during extensive testing.

Figure 1-6 Relative Importance of Parameters to Job Completion

Availability and Resiliency
The failure of a networking device can affect multiple data nodes of a Hadoop cluster.
The tasks on the affected nodes may then need to be rescheduled on other functioning
nodes, increasing their load. Further, the Hadoop infrastructure may start certain
maintenance activities such as data rebalancing and replication factor to compensate
for the failed nodes, increasing the load on the cluster even more. These events are
critical factors in degradation of the cluster performance. Project completion will take
longer, impairing the ability to schedule new jobs.
It is important to build a network that is available and resilient. First, focus on the
network architecture: deploy architectures that provide the required redundancy and
that can also scale as the cluster grows. Technologies that allow network designs with

46



multiple redundant paths between the data nodes are inherently better than
technologies that have one or two points of failure.
After the architectural framework is laid out, consider the availability aspects of
individual devices. Switches and routers that run operating systems that are proven in
the industry to be resilient provide better network availability to servers. Switches
and routers that can be upgraded without any disruption to the data nodes provide
higher availability. Further, devices that are proven to be easy to manage,
troubleshoot, and upgrade help ensure less network downtime and increase the
availability of the network and, hence, the cluster.

Burst Handling and Queue Depth
In Hadoop-type big data jobs, several operations and phases are bursty. A network
that cannot handle bursts effectively drops packets, so optimal buffering is needed in
devices to absorb bursts. Any packet dropped because a buffer is not available results
in retransmission, which if excessive leads to longer job completion times. Be sure to
choose switches and routers with architectures that employ buffer and queuing
strategies that can handle bursts effectively. An example of burst and buffer utilization
is shown in Chapter 10, “Data Center Switch Architecture.”

Oversubscription Ratio
A good network design must consider the possibility of unacceptable congestion at
critical points in the network under realistic loads. A ToR device that accepts 20 Gbps
of traffic from the servers but has only two 1-Gbps uplinks (a total of 2 Gbps)
provisioned (a 20:2 [or 10:1] oversubscription ratio) can drop packets, leading to
poor cluster performance. However, overprovisioning the network can be costly.
Generally accepted oversubscription ratios are around 4:1 at the server access layer
and 2:1 between the access layer and the aggregation layer or core. Lower
oversubscription ratios should be considered if higher performance is required. How
does oversubscription increase when certain devices fail? Be sure to provision
critical points in the network (such as the core) adequately. Multipathing technologies,
such as Layer 3 Equal Cost Multipath [ECMP] with or without VXLAN or ACI,
deliver a linear increase in oversubscription with each device failure and are better
than architectures that degrade dramatically during failures.

47



Data Node Network Speed
Be sure to provision data nodes with enough bandwidth for efficient job completion.
Also remember the price-to-performance ratio entailed in adding more bandwidth to
nodes. The recommendations for a cluster depend on workload characteristics.
Typical clusters are provisioned with one or two 1-Gbps uplinks per data node.
Cluster management is made easier by choosing network architectures that are proven
to be resilient and easy to manage and that can scale as your data grows. The use of
10-Gbps server access is largely dependent on the cost/performance trade-off. The
workload characteristics and business requirement to complete the job in required
time drives the 10-Gbps server connectivity. As 10-Gbps Ethernet LAN-on-
motherboard (LOM) connectors become more commonly available on servers in the
future, more clusters are more likely to be built with 10-Gigabit Ethernet data node
uplinks. The Nexus 2000 Fabric Extender (FEX) is not a common best practice in
Hadoop environments.

Network Latency
Variations in switch and router latency are shown to have only limited impact on
cluster performance. From a network point of view, any latency-related optimization
must start with a network-wide analysis. “Architecture first, and device next” is an
effective strategy. Architectures that deliver consistently lower latency at scale are
better than architectures with higher overall latency but lower individual device
latency. The latency contribution to the workload is much higher at the application
level, contributed to by the application logic (Java Virtual Machine software stack,
socket buffer, etc.), than at the network level. In any case, slightly more or less
network latency does not noticeably affect job completion times. Layer 2 is not
mandatory. Some designs find L3 with BGP or OSPF protools running down to the
compute node.

High-Performance Compute
This section explains in detail the high-performance compute data center trend.

Definition
High-performance compute (HPC) refers to the practice of aggregating compute
capability to provide higher performance than a typical workstation to solve large
problems in engineering, industry, science, business, and so on.

48



Network Requirements
The network traffic is usually an east-to-west traffic pattern and contained within a
single data center. The scale is achieved using a pod model, discussed in detail in the
“Design Considerations” section. Predictability and ultra-low latency are key. A data
center fabric providing similar low latency (regardless of whether a server is
connected in the same rack, same cluster, or same row) reduces the compute time for
the HPC applications. Adequate throughput and buffering (while capable of elastically
scaling with the growth of the compute nodes) is key.
HPC and big data are very similar in terms of network requirements and designs, with
one major difference: big data is IP based, whereas HPC is usually Ethernet and non-
IP. This restricts the options to build a data center fabric for HPC compared to doing
so for big data. The other network properties remain similar. Layer 2 data center
fabric protocols such as Cisco vPC and VXLAN are leverages to build an HPC
cluster at scale.
The network requirements for HPC can be summarized as follows:

 L2 network
 90+ percent of the traffic is east to west
 No virtualization
 1-GE NICs moving to 10-GE and 40-GE
 Core network running at 10-GE or 40-GE

Storage Requirements
Storage is contained on each host; it’s called a distributed storage model. The storage
is handled by the HPC application. There is typically no Fibre Channel requirement
for the HPC storage, nor any specific storage network constraint to address on the
switches.

Design Considerations
The traffic can be IP but also non-IP (running over Ethernet). The non-Ethernet
supercomputing capabilities are not discussed in this book. Today’s Ethernet
technology enables non-Ethernet traffic to be encapsulated and transported over
standard Ethernet media and to be moved over a standard consolidated Ethernet data
center by using, for example, Cisco Nexus products. The Cisco approach is to build
Ethernet-based HPC clusters.
Typical HPC environments use clusters of 32 nodes each. A node represents a logical
entity with 24 core CPUs and one 10-GE NIC, in a rack-mount server. This provides
768 cores per rack. A typical environment for HPC can start with a rack of only 32

49



nodes. Deployments commonly have four racks at least, representing 128 nodes.
It’s important to define the size of the POD. This is the critical initial size for the
project. As the project grows, the POD concept is repeated to add more HPC clusters.
The example provided in this section illustrates a POD that consists of the 128-node
servers and the appropriate switches forming a logical compute entity.
The Cisco approach for HPC is to leverage the UCS-C rack-mount servers along with
the specific HPC NIC card called usNIC. Cisco userspace NIC (usNIC) provides
direct access to the NIC hardware from the Linux userspace. It uses an operating
system bypass via the linux Verbs API (UD) and OpenMPI. This NIC provides a back-
to-back latency of 1.7 us, while offering up to 89.69% of HPL efficiency accross 512
cores. The benefit of this NIC is to rely on Ethernet standards versus the use of an
RDMA network media. It is to note that RDMA solutions can be accomodated accross
Cisco Nexus switches and ACI with the RDMA over Ethernet protocol. iWarp is
another TCP protocol to allow acceleration; its performance is slower than usNIC.
The HPC network needs to be as fast as possible to provide the lowest possible
latency between nodes. The lowest-latency product at the moment of writing is the
Cisco Nexus 3548 switch, providing line-rate forwarding with 190-ns latency. It can
be used as a ToR, defining the leaf layer, and also at the spine layer when the
oversubscription ratio is sufficient. The network fabric needs to carry Ethernet traffic;
therefore, fabric technologies such as Cisco vPC and Cisco VXLAN are well suited to
build an Ethernet fabric capable of carrying HPC traffic from any host to another. A
typical network oversubscription ratio for an HPC design is 2:1. To achieve lower-
cost designs, the oversubscription ratio can be raised, up to typically a 5:1 ratio.

Design Topologies
In HPC topologies, the typical design is a one- or two-tier network infrastructure. It
also can be referred to as a spine/leaf type of design, where the spine plays the role of
an aggregation device. The goal of the design topology is to provide the necessary port
count at a given service NIC speed. Most common are 10-GE designs from the access
to the network; 40-GE uplinks can be used toward the aggregation device. You must
consider the end-to-end latency when choosing the design. Figure 1-7 depicts the
different topologies possible for an HPC cluster, divided into 10-GE fabric and 40-
GE fabric. These are nonblocking fabrics with end-to-end, nonoversubscribed 10-GE
or 40-GE speeds. It is possible and a good practice to aggregate 10-GE server access
connections with 40-GE spine switches.

50



Figure 1-7 Example of an HPC Cluster of 160 Nodes with a 2:1 Oversubscription
Ratio

Figure 1-7 depicts an example of an HPC cluster with 160 server nodes where an
oversubscription ratio of 2:1 is used.

Ultra-Low Latency
This section explains in detail the ultra-low latency data center trend.

Definition
Ultra-low latency (ULL) data center design is the race to zero. In these data centers,
the goal is to design the fastest possible Ethernet-based network with the lowest
possible end-to-end latency.
Port density is reduced to the minimum and the applications are clustered to decrease
the number of network devices for each environment to the strict minimum. Most of the
typical ULL designs are under the 500 server port count for the whole ULL data center.
In the high-frequency trading (HFT) environment, which is the most representative of
the ULL data center trend, typically 24 to a maximum of 48 ports per rack are used.
The data center is collocated at an exchange data center facility to reduce the latency
of the information coming from the exchange itself to the HFT firm.
In HFT data centers, it is imperative to provide the information from the stock
exchanges as quickly as possible, with minimum delay. Being able to build the fastest
possible network allows the HFT companies to offer a more competitive solution to
their clients; therefore, the main criteria for HFT customers to adopt one firm versus
another is the latency of their data center.
HFT data center designs are very different from the other designs. For example, there
is no virtualization in this environment, and NICs with kernel bypass technologies are
used to reduce at maximum the latency on the server-processing side and avoid the

51



CPU delays. On the network side, CX-1 (twinax) cables are preferred over optical
fiber up to 5 meters. The design is often nonblocking and provides end-to-end 10-GE
to 40-GE speeds. The congestion and queuing impacts on the data center switch are
reduced as much as possible. To reduce the need for buffering, factors such as speed
mismatch or the many-to-one conversation on the network devices are reduced by
dividing the applications across different servers. The traffic patterns east to west and
north to south are therefore separated in the network and very often even on different
data center topologies. This removes the need for QoS on the network side. In an ULL
environment, everything is designed to avoid the need for QoS.
The latency now is relatively close to zero, with performances of IP/Ethernet
switching as low as 50 ns, which is the serialization delay of the smallest possible
frame on the wire: 64 bytes at 10-GE speed, and the main efforts to reduce the data
center switching equipment latency have reached maturity. This moves the paradigm to
look now into NICs, servers, flash storage, and, foremost, application optimization.
Figure 1-8 illustrates the order of magnitude of latency for different components on the
network side and also for middleware and applications. It is not an exhaustive list, but
rather an overview to understand the level of latency.

Figure 1-8 Latency Order of Magnitude

Network Requirements
For ultra-low latency, the network requirements are as follows:

 Fastest possible network with the bare minimum feature set providing the best
possible performance. Line-rate equipment (nonblocking switching) is preferred
when available.
 Uniform speed in the end design; no speed mismatch (for example, 1 GE–10-
GE). Most commonly the speed is end-to-end 10-GE for the network equipment

52



all the way to the server port. There is a trend for higher speed, which can be
adopted as the switch latency reduces with 40-GE/100-GE and 40-GE/100-GE
NICs becoming more common in the industry.
 No queuing, no QoS.
 Layer 3–capable data center switching devices, Layer 3 data center fabrics.
 Multicast at Layer 2 and Layer 3.
 Network Address Translation (NAT).
 Traffic replication as fast as possible.
 Analytics and scripting.

This latency reduction also develops a new area for the data center architect: the
analytics. Because it’s not possible to improve what cannot be measured, and a short
congestion event of even 1.5 Mb creates a delay of 1 ms of network latency, which is
already 1 million times more than the switch latency during noncongestion, monitoring
is becoming a requirement. Production environments running at such ultra-low latency
need to be monitored. When an application issue presents itself, the data center
operation team must examine the network and determine if this issue occurred in the
network environment (switch buffering, for example). This is why the network
monitoring and application-centric view become very important.

Storage Requirements
In HFT environments the storage is local to the hosts, following a distributed model.
The amount of storage is considerably small and, for performance reasons, stays on
the host in the form of RAM or flash type of memory for the duration of the data
process. The backup storage for the HFT network can also use a centralized IP storage
model such as NFS/CIFS.

Design Considerations
Ten design principles to reduce the end-to-end data center latency are as follows:

 Speed: The faster the network, the lower the serialization delay and latency.
 Physical media type: Copper twinax cables are faster today than fiber optic,
and microwave can be a faster media than fiber for interconnects for certain
speeds and distances; for example, interconnecting Chicago and NYC with
microwave saves a considerable latency compared to the traditional dark fiber
between the two cities, because dark fiber is not in line of sight and therefore
takes a longer distance between the two cities.
 Switching mode: Cut-through switching provides a predictable performance
across packet size, versus store-and-forward switching.

53



 Buffer amount in the network: What is the right buffer amount to provide high
performance? Buffer bloat affects data center latency numbers. Large,
throughput-sensitive TCP flows build up queue depth and cause delays for
smaller, latency-sensitive flows.
 Feature set used on the network equipment: This has a direct impact on the
end-to-end latency. For example, protocols such as CDP, STP, and LLDP
contribute up to 2.5 times more latency than when they are not used.
 Rack-mount servers: These are lower latency than blades, and the
nonvirtualized OS also saves latency.
 The CPU/memory choice: This does matter in the server because it dictates the
performance of the compute.
 Network adapter card and protocol used: This has impact that can lower
latency by up to four times (from 20 usec to 5 usec).
 Visibility and analytics: These are key in understanding the effects of latency.
Precision Time Protocol (PTP), IEEE 1588 v2, helps provide a precise clock
across networking and compute devices to gain insight.
 Security: Security measures increase latency considerably, to a level at which
the solution is far from being ultra-low latency or even low latency. There are
ways to get around this in the network.

Design Topologies
The two main design topologies that are covered in this section are feed replication
and HFT.

Feed Replication
Feed replication provides the fastest possible replication of market data information
destined to different servers handling the market data, called feed handlers. With the
Cisco Nexus 3548, it is possible to deliver north-to-south traffic replication at 50 ns.
The feed handlers therefore receive the traffic from the exchange feed with a network-
added latency of only 50 ns. The return traffic, south to north, which is used for order
transactions, is achieved at 190 ns. In such a design, the goal is to minimize as much as
possible the number of switches, cable length, and so forth between the exchange
feeds and the feed handler servers. Figure 1-9 depicts a feed replication design
example with Nexus 3548 where the switch latency can be as low as 50 ns for north-
to-south traffic coming from the exchange feeds. With the Cisco Nexus 9000
standalone Top of Rack switches, the performance would be around 0.600 us; with the
ACI switches, it would be in the range of 1 us.

54



Figure 1-9 Feed Replication Design Example

HFT Example
In HFT topologies, the typical design is a one- or two-tier network infrastructure. This
is also referred to as a spine/leaf type of design, where the spine plays the role of an
aggregation device. The goal of the design topology is to provide the necessary port
count at a given service NIC speed. Most common are 10-GE designs from the access
to the network. 40-GE uplinks can be used toward the aggregation device. Consider
the end-to-end latency when choosing your design. Figure 1-10 depicts the different
topologies possible for an HFT cluster, divided in 10-GE fabric and 40-GE fabric.
These are nonblocking fabrics with end-to-end, nonoversubscribed 10-GE or 40-GE
speeds. It is possible and a good practice to aggregate 10-GE server access
connections with 40-GE spine switches. However, there is a speed change introduced
that creates an in-cast buffering scenario, which increases burst impact on the network.
Therefore, this type of design should be considered only when it provides the fastest
end-to-end latency. Currently the fastest solution is with the Nexus 3548 two-tier 10-
GE fabric design.

55



Figure 1-10 HFT Colocation Design
Figure 1-10 has design topologies for HFT; first with up to 12 servers and second
with up to 48 servers at 10-GE, nonblocking, with two NICs in each.

Massively Scalable Data Center
This section explains in detail the MSDC data center trend.

Definition
Massively scalable data center (MSDC) is not an industry-standard term, but rather a
name used by Cisco to cover this data center type. The MSDC system is a reference
architecture based on a Clos fabric (topology) built using Cisco platforms. The MSDC
system targets very large data centers that have hundreds of thousands of servers with
10-GE interfaces connected to a network with Layer-3 adjacencies in a nonblocking
fashion. It is even possible to have routing protocols peering into the network
equipment from the host machine itself, in order to provide the capability to arbitrate
and optimize the path selection from the host. Typically this type of data center is
found in the field of web search engines, social networks, and cloud-hosting devices
that have structured and unstructured data schemes.

56



The MSDC architecture is driven by two key application segments: content serving
and big data analytics.
Content delivery applications include Akamai’s Technologies and Limelight
Networks’ content delivery network (CDN), Apple’s iTunes, YouTube’s video,
Facebook photos, and so forth. The scalability challenge in serving media to millions
of users over tens of thousands of devices necessitates the use of tools and techniques
that normally are not available off-the-shelf. Service providers build these clusters or
grids in house. Today these home-grown infrastructures serve as differentiators for
these service providers. Some of them, such as LinkedIn, Facebook, and Google, have
open sourced the infrastructure to seed an ecosystem.
Big data analytics is a new application that has taken parallel storage and processing
to analyze large data warehouses with unstructured (no metadata) data. There are
multiple frameworks to process big data. However, open source Hadoop is now seen
as a clear winner. In a social application these technologies are used to generate
customized web pages for the visitors to a website. The back-end analytics to
populate various sections of the page are accomplished using Hadoop or a related
parallel processing infrastructure.
Figure 1-11 shows the workflow of a typical social application web infrastructure
solution.

Figure 1-11 Typical Social Network Application

57



The MSDC customer system characteristics are summarized in Table 1-1.

Table 1-1 Characteristics of MSDC Customer-Designed Systems

Network Requirements
The following three main requirements drive the networking in the data center to adapt
to the MSDC systems:

 Scale exceeds the current limits: The industry is in the midst of a fundamental
transition toward consolidation of application delivery via concentrated and
dense computing data centers. The sites are designed on a scale that far exceeds

58



the published configuration limits of today’s data center networking equipment
and protocols.
 Change in traffic flow direction: Data center applications have changed the
dominant direction of network traffic from north–south (in/out of data center) to
east–west (among servers in a cluster). The new pattern requires a scale-out
architecture for the network akin to scale-out architecture in compute/storage
infrastructure.
 Scale-out with multirooted topology with fewer tiers: MSDC is among the
few scale-out architectures that have found traction in industry. The key feature
of this architecture is a distributed core architecture using a multistage Clos
topology that uses Layer 3 protocols as the control plane. Clos topology is also
known as nonblocking topology, or fat-tree topology.

For MSDC systems, the network requirements are summarized as follow:
 Scale (size of the nonblocking network)
 Port density
 Bandwidth
 1 GE, mainly 10-GE to the leaf switch and higher speed from the leaf to the
spine
 Variable oversubscription, capability to adapt the oversubscription over time
 IP transport: TCP/UDP
 Layer 3 fabric down to the host (mainly OSPF and/or BGP; EIGRP can be
found)
 IPv6

Research and development in the area of more advanced congestion control, transport
mechanisms, and advanced load-balancing algorithms (PFC, DCTCP, etc.) is active.
However, the most common features are the host-based Equal Cost Multipath (ECMP)
for uplink forwarding path selection and simple drop-and-tail queuing.

Storage Requirements
MSDC storage is typically distributed and hosted directly on the servers. In some
cases it is hosted on a dedicated storage facility.

Design Considerations
The key design considerations for the MSDC type of data center include the following:

 Spine and leaf topologies
 Layer 3 control plane

59



 Open hardware and open software
 Multi-tenancy includes tenant based and application based

Design Topologies
Figure 1-12 shows an MSDC system that uses a three-stage Clos topology and can
scale to connect up to 12,288 node ports with 1:1 oversubscribed or 36,864 node
ports with 3:1 oversubscription. All hosts are physical nodes with 10-GE interfaces. It
also supports up to 122,880 (1:1) and 368,640 (3:1) physical nodes using 1-Gbps
links in a Layer 3 adjacent manner. The system does not rely on Spanning Tree
Protocol for resiliency. Instead, it manages multiple paths using ECMP, which runs as
a function of the routing protocol on the leaf switches. The network provides for a
Layer 3 lookup that is available at every hop (beginning at the leaf). The network has
border gateways or border leafs that provide 10-Gbps throughput to the public Internet
or a DCI link.

Figure 1-12 MSDC Design Topology

60



Design Topologies Examples
The virtualized data center, big data, HPC, ULL, and MSDC (spine-leaf) design
topologies can be achieved with Cisco ACI or standalone Cisco Nexus 9000
switches. Three examples are summarized in Figure 1-13 for a CLOS nonblocking
architecture, where each 10G host facing port can send line rate traffic. This design
example is based on a choice of the Cisco Nexus 9396 leaf switch and the Cisco
Nexus 9336, 9508, and 9516 spine switches, each with 36x40GE spine linecard. The
example is given with N spines; the goal here is to show an example of a
small/medium to large scale. The calculation is based on the number of spines, N, the
number of ports in a spine, or spine card: 36x40GE ports and the leaf having 12x40GE
uplinks for 48x10GE ports down. There is an immediate correlation between the type
of spine and the potential number of nonblocking leaf ports depicted in the formula
displayed in Figure 1-13. The interconnect between spine and leaf here uses a 40-GE
speed. It is expected to have 40-GE at the leaf port facing level and 100-GE in the
spine leaf interconnect in the future. The same methodology would apply for the
design, the port densities would be then subject to change.

61



Figure 1-13 ACI Fabric/N9K CLOS Fabric Examples with 40-GE Interconnect

The POD-based Designs
This section explains the concept of the POD and looks specifically at the FlexPod
architecture from Cisco and NetApp.

62



The POD Model or the Data Model for Shared
Infrastructure and Cloud Computing
The way in which data is consumed has evolved and is dynamic. Today, data center
projects have a fixed budget and specific scope and requirements. Once the design is
finalized, the requirements translate into a network topology, the number of switches,
and so forth. Most projects have a goal of not only meeting initial requirements but
also including the capacity to expand in the future as needed, with the same site or a
different physical location. The current industry trends indicate a vast data center
transformation toward shared infrastructure and cloud computing. Therefore, the way
of consuming information in the data center is a “pay as you grow model,” where the
compute, storage, and network components have the potential to be added over time.
Understanding that the requirements and data center plans may change over time,
Cisco designed the Cisco Nexus Series switches to allow incremental growth along
with migration—coexistence of different generations of data center fabrics such as the
Cisco Nexus 7000, 6000-5000, 2000 series three-tier design, the latest Cisco Nexus
9000 Standalone or with Application Centric Infrastructure software. An alternative to
manually using all the Cisco Nexus network equipment is to make a design to support
this consumption model; there is the all-in-one solution with compute, storage, and
network. There are different types of all-in-one, pay-as-you-grow solutions, such as
for example FlexPod and Vblock. The goal is to provide a model that allows
incremental growth by repeating the same block model or “POD” and extending this
toward the data center. By introducing such standardization, the POD helps customers
mitigate the risk and uncertainty involved in planning, designing, implementing, and
automating the expansion of a data center or a new data center infrastructure. This
results in a more predictive and adaptable architecture with the capacity to meet future
growth.
A key difference between the FlexPod model and Vblock model is the storage:
FlexPod uses NetApp storage, whereas Vblock uses EMC storage. Both solutions use
Cisco UCS for the compute and the Cisco Nexus series switches for the network.
When choosing a model, it is critical to understand the number of VMs required and
the applications to be used in the data center, as these factors will dictate solutions
that are either storage intensive or CPU intensive. For example, Oracle Database is
storage intensive, whereas Big Data is CPU intensive. In the storage selection, a key
technical decision is the type of storage to use for the application: centralized shared
storage or distributed local storage on the hosts? Fibre Channel type of storage or IP-
based storage? It is possible to have different applications and types of PODs for each
purpose running in the same data center fabric.
This POD model addresses the following design principles and architecture goals:

63



 Application availability: Ensures that the services are accessible and ready to
use
 Scalability: Addresses increasing demands with appropriate resources
 Flexibility: Provides new services or recovers resources without infrastructure
modification requirements
 Manageability: Facilitates efficient infrastructure operations through open
standards and APIs
 Performance: Assures that the required application or network performance is
met
 Comprehensive security: Facilitates different organizations to have their own
specific policies and security models

With FlexPod, Vblock, and Hitachi, the solution architecture and its many use cases
have been thoroughly validated and verified while creating a portfolio of detailed
documentation, information, and references to assist customers in transforming their
data centers to this shared infrastructure model. This portfolio includes, but is not
limited to, the following items:

 Best practice architectural design
 Workload sizing and scaling guidance
 Implementation and deployment instructions
 Technical specifications (rules for what is, and what is not, a FlexPod
configuration)
 Frequently asked questions (FAQs)
 Cisco Validated Designs (CVDs) and NetApp Validated Architectures (NVAs)
focused on a variety of use cases

The FlexPod Design
FlexPod is a best-practice data center architecture that includes three components:

 Cisco Unified Computing System (Cisco UCS)
 Cisco Nexus switches
 NetApp Fabric-Attached Storage (FAS) systems

These components are connected and configured according to best practices of both
Cisco and NetApp. FlexPod can scale up for greater performance and capacity
(adding compute, network, or storage resources individually as needed), or it can
scale out for environments that need multiple consistent deployments (rolling out
additional FlexPod stacks). This model delivers a baseline configuration and also has

64



the flexibility to be sized and optimized to accommodate many different use cases.
Typically, the more scalable and flexible a solution is, the more difficult it becomes to
maintain a single unified architecture capable of offering the same features and
functionalities across each implementation. This is one of the key benefits of FlexPod.
Each of the component families offers platform and resource options to scale the
infrastructure up or down, while supporting the same features and functionalities that
are required under the configuration and connectivity best practices of FlexPod.
The POD approach enables a data center project to grow on demand, keeping the same
initial architecture with compute, network, and storage, and add more scale as the
project needs to expand.

Data Center Designs
Designing a data center network infrastructure consists of defining how the switches
are interconnected and how data communication is assured in the network. There is the
three-tier approach, access, aggregation, and core, where Cisco vPC is the most
commonly deployed technology in the data centers. There is also the newly emerging
two-tier fabric method called spine-leaf. Both approaches are discussed in the
“Logical Data Center Design with the Spine-Leaf ACI Foundation Architecture”
section later in the chapter.
There are three fundamental approaches to physical data center design: end of row
(EoR), middle of row (MoR), and top of rack (ToR). The naming convention
represents the placement of the network switches in the data center row.
These deployment models are selected depending on the data center project
requirements:

 Failure domain size
 Power available for the racks and the data center
 Number of servers per rack
 Number of NICs per server
 NIC speed
 Cabling constraints
 Operational constraints
 Switch form factors available on the market
 Budget available
 Oversubscription ratio

This list is not meant to be exhaustive but rather is intended to explain the concept
behind the final decision of mainly middle-of-row or top-of-rack approaches.

65



Currently, the trend is to design data centers with the ToR approach. This doesn’t mean
that ToR is the only design approach to follow, as the requirements differ for data
centers, but it is the most common current deployment.

End of Row
EoR is the classical data center model, with the switches located at the end of the row
of the data center. There is cabling from each rack running to the end-of-row network
equipment, as depicted in Figure 1-14. The EoR model reduces the number of network
devices to manage and optimizes the port utilization of the network. With this model,
the server placement decisions are less constrained in the racks. For a redundant
design, it is possible to have two bundles of copper to each rack, both running to
opposite EoR network infrastructure. The drawback of this model is the necessity of
large preinstalled cabling running horizontally on each row and from each end of row
either on aerial trays or under the floor. Additionally, it creates a significant network
failure domain for each row. This is even further impacted when the servers are
virtualized and each runs tens to hundreds of VMs. These drawbacks discourage the
EoR model in modern data centers, where racks are deployed in various fashions and
the speed and cabling requirements may change from one rack to another, which
requires recabling. The EoR model is well suited for highly available chassis
switches, where the server access ports are in fact connected to the modular chassis
switches.

Figure 1-14 EoR Connection Model

66



Middle of Row
MoR is a variant of the EoR model. The MoR model defines an architecture in which
servers are connected to the switches that are located in the middle of the row. The
MoR model reduces the need for longer cables from one extremity of the row to the
other end, because with MoR the network is located in the middle. MoR reduces cable
cost not only by the length but also by the type of cable. CX-1 twinax cables 7 m to 10
m long can be used to interconnect devices to the MoR network equipment, instead of
longer fiber runs with patch panel.

Top of Rack: The Modern Data Center Approach
As previously mentioned, the ToR approach is currently the most common. It is better
suited for the pod design and contains a failure domain. The ToR model defines an
architecture in which servers are connected to switches that are located within the
same racks. These switches are connected to aggregation switches, typically using
horizontal fiber-optic cabling. This model offers a clear access-layer migration path to
an optimized high-bandwidth network and cabling facilities architecture that enables
low capital and operating expenses. It also supports a pay-as-you-grow computer
deployment model, which increases business agility. The data center’s access layer
presents the biggest challenge to architects because they need to choose the cabling
architecture to support the data center computer connectivity needs.
The ToR network architecture and cabling model suggest the use of fiber as the
backbone cabling to the rack, with mainly copper or fiber media for server
connectivity at the rack level. The use of fiber from each rack also helps protect
infrastructure investments as evolving standards, including 40-GE and 100-GE, are
more likely to be implemented using fiber before any other transmission mechanism.
For example, 40-GE is now capable of running on existing multimode 10-GE fiber
cable infrastructure with the Cisco QSFP BiDi optics as transceivers. By limiting the
use of copper within racks, the ToR model isolates the cabling that changes most often
to the parts of the data center that are modified most frequently: the racks themselves.
The use of fiber runs from racks provides a flexible data center cabling infrastructure
that supports the transition from Gigabit Ethernet to 10-GE and 40-GE now, while
enabling transition to 100-GE and higher in the future. The main drawback with the
ToR approach is the number of switches to manage. This is not an issue with the Cisco
Nexus 2000 approach, which centralizes the management. Furthermore, with the Cisco
ACI fabric, this is even less of a concern, as all the fabric is application defined and
controlled. ACI fabric is extensively covered in this book.
With the ToR approach, the leaf, spine, or aggregation can still be connected at the
EoR (see Figure 1-15) or MoR (see Figure 1-16) while drastically reducing the
amount of cabling and providing a scalable pay-as-you-grow model at the rack level.

67



Figure 1-15 ToR Deployment with EoR Aggregation/Spine/Leaf

Figure 1-16 ToR Deployment with MoR Aggregation/Spine/Leaf

A typical oversubscription ratio is 5:1 between the servers and the uplink bandwidth
on the ToR. This motivates the initial 48-port-based nonblocking switches for ToR,
where 40 ports are server facing and 8 ports are used for uplinks. Depending on
deployment requirements, nonblocking ToR design or high oversubscription design
can be achieved. For example, an HFT environment requires a nonblocking and
nonoversubscribed network, whereas a highly dense virtualized environment or virtual
desktop demands a higher ratio. Depending on whether or not the environment is
virtualized, dual-homed or single-homed servers are utilized with either 1-GE, 10-
GE, or 40-GE NIC cards. The same principles apply whenever 100-GE or higher-
speed NICs become available.
The rack sizes are evolving from the standard 42 rack units (RU) and 19-inch wide
slot to denser and taller models. There are many options in rack sizes, currently up to
23 inches wide with height options ranging from 44 RU to extra-tall customized rack
designs with 57 RU. One RU represents 1.75 inches in height. In current designs, the
size of 48 RU is becoming more common as it stretches the 42 RU size to a denser
format, while still staying practical for transport trucks, doorway sizes, and so forth.
It is common to find 2 to 4 RU used for the management of out-of-band network, the
patch panel, console cables, and so on. This leaves 4 to 6 RU for ToR switches, as it
is a common requirement to be able to fit 40 RU of server density. The airflow for
ToR switches is front-to-back. and there is no need to add spaces between the
switches. They should be stacked on the servers. It is possible to reverse the airflow

68



to back-to-front by replacing the fan trays and power supplies in the Cisco Nexus
switches. A back-to-front airflow can be found in end-of-row type of designs.

Single-Homed Servers Design
A single ToR switch is typically deployed in a rack for single-homed servers. The
ToR switch has switch ports for the servers as well as uplink ports going to the
aggregation layer, which can be MoR, EoR, and so on. Typically, the ToR switches’
ports all have the same functionality. There is no specific dedicated uplink port except
for the Cisco Nexus 2000 product family, where the uplink ports are specific and only
they can be connected to the upstream Nexus 5000, 5500, 6000, 7000, 7700, or 9000
products. The fabric technology or connectivity technology can be with Layer 2 or
Layer 3, using upstream in the network vPC, VXLAN, IP, or the latest end-to-end
application-centric infrastructure fabric ACI.
A pair of ToR switches is deployed in a rack for the dual-homed servers. In this
scenario, for each NIC on a given server, the connectivity is to a different ToR switch.
The servers can operate in the following scenarios:

 Active/active Layer 2
 Active/active Layer 3
 Active/passive

The fabric or connectivity technology can have either Layer 2 and Layer 3 redundancy
to the fabric with the ToR or Layer 2 redundancy with vPC technology. From the ToR
upstream, the technologies used are similar to the single-homed server designs.

Logical Data Center Design with the Spine-Leaf ACI
Foundation Architecture
Traditional networks have been built using a redundancy model with Spanning Tree
Protocol. Later, leveraging vPC provided an active/active type of connectivity that
enhanced by a factor of two the bandwidth available compared to an STP
active/standby topology. The vPC design and topologies have been used most
commonly in the data centers in the past five years, and are not covered in this section.
The new trend of designing a data center is using a spine-and-leaf two-tier design, and
this is the design the ACI fabric also relies on. This section explains the spine-leaf
architecture and design and then covers the ACI spine-leaf benefits.
A data center network is typically physically collocated and under a single
administrative domain. Unlike traditional enterprise networks, the majority of the
traffic in a data center is east to west (between servers within the data center) rather
than north to south (between the servers within the data center and the outside). The

69



equipment in a data center tends to be homogenized (servers, networking gear, NIC,
storage, and connectivity). In terms of server ports, data center networks range
anywhere from 3000 ports to upward of 100,000 ports. They are also more cost
sensitive, and not as feature rich as traditional enterprise networks. Finally, most of
the applications in a data center are tailored to take advantage of these regular
characteristics.
The spine-leaf data center architecture is designed to meet these requirements and
consists of a topology, a set of open protocols, and a minimal set of functionality in
each network node. The physical topology, in its simplest form, is based on a two-tier,
“fat-tree” topology, also known as a Clos or nonblocking topology. This topology
consists of a set of leaf edge devices connected to a set of spine devices in a full
bipartite graph—that is, each leaf edge device is connected to each spine and vice
versa, as shown in Figure 1-17.

Figure 1-17 Spine-Leaf Architecture
This architecture has four fundamental characteristics:

 Fat-tree topology
 Fine-grained redundancy to get very high network availability
 Based on open, interoperable, standard technologies
 Relies on homogeneity, regularity, and simplicity for scaling management

The benefits of this architecture are
 Scalability
 Flexibility
 Reliability
 Availability today

70



 Open, interoperable components
 Low CAPEX and OPEX

Each node is a fully functional switch. For instance, each node can receive a standard
network packet and forward it as you expect a typical switch or router to do. In
addition, each node has a control plane associated with it that determines the
forwarding state of that node.
This topology makes heavy use of multipathing to achieve the desired bandwidth
between the nodes. The forwarding paradigm used with a spine-leaf architecture can
be based on Layer 2 forwarding (bridging) or Layer 3 forwarding (routing) depending
on the requirements of a particular customer. Each of these has real (and perceived)
advantages and disadvantages. This section does not discuss the trade-offs. For
instance, the ACI architecture relies on a routed host approach, or Layer 3 for the
spine-leaf architecture.
The spine-leaf architecture provides the advantage of fine-grained redundancy,
meaning many elements are working in parallel such that the failure of any one
component or a small number of components does not have much effect on the total
function of the network. If a switch fails, it is not critical to the network administrator.
This is a subtle yet very powerful concept. The benefits of fine-grained redundancy
are best illustrated with a comparative example. With the traditional data center
network design that has two switches at the top of a tree, if you lose, for whatever
reason, one of those switches, 50 percent of the capacity of the network becomes lost.
The probability of losing that one switch is related to its reliability, and the typical
reliability goal is five 9s, meaning that you have a 0.00001 percent chance of losing
50 percent of your network capacity. Although this is a small chance, your customers
would clearly like better.
Contrast this with a spine-leaf based network with 20 switches in the spine. To lose
the same amount of bandwidth, 50 percent, you would have to lose ten switches
simultaneously. It is obvious that this is very unlikely, but to put some concrete
numbers on it, let’s make an assumption and a simple calculation. Assume that for
some reason you have very poor reliability in the switches, only two 9s; that is, the
chance of a switch failing is 1%. The chance of ten of these miserable switches failing
simultaneously is 0.01^10 or 0.000000000000000001 percent. Not bad compared to
the highly reliable switch’s 0.00001 percent chance. The basic idea here is to design
your network with the assumption that things will fail, rather than trying to make the
components of your network flawless. No component is “too big to fail.” For example,
this approach should be taken by the MSDC customers to compute resources as well
as for the infrastructure. It is much easier to convince someone that their network is
designed to handle failure gracefully than it is to convince them that any single
component’s failure is so unlikely that they can sleep well at night.

71



The same arguments can be applied to operational aspects of the network. When the
software of a switch must be upgraded, even when that switch supports Cisco In-
Service Software Upgrade (ISSU), there is usually a significant concern about the
impact of that upgrade on the network service. With fine-grained redundancy, the
administrator simply takes the switch out of service, upgrades it, reboots it, or does
whatever else is necessary without a concern for the impact on the overall network
service. With the spine-leaf architecture, high availability is handled by the whole
fabric, without the need to have a single device to support ISSU to prevent application
disruption.
And finally, the latency characteristics are very low and constant port to port. Many
MSDC customers desire consistent any-port to any-port latency, assuming zero
queuing delay. The maximum latency of a packet going from one port to any other port
in the spine-leaf architecture is the same regardless of the network size. That latency is
twice the latency of the edge device plus the latency of the spine. As the industry and
Cisco develop new switches that are more and more latency optimized, the spine-leaf
architecture will seamlessly take advantage of those advancements. As it is, it is easy
to see a way to achieve a maximum of 1.5 microseconds of latency for 100,000
nonblocking ports of 10-GE using switches currently under development at Cisco.
Thus, this network can even meet low-latency network requirements. Similar
considerations apply to buffering and forwarding table size. These are functions of the
implementation of the switches used. If larger buffers are needed, then use switches
with bigger buffers. The same goes for table sizes. This freedom to design each
network element according to the particular trade-offs and market considerations that a
development group may have is a nice flexibility of the spine-leaf architecture. Very
large scale, fixed per-port cost, and low, consistent latency are all compelling
characteristics of the spine-leaf architecture.
The ACI architecture relies on the spine-leaf model described in this section. The ACI
fabric also leverages a central point of management while keeping an independent
device distributed control plane. This allows the fabric to provide a single switch
type of operation while having all the benefits of the spine-leaf architecture.

Summary
In the data center network design process, there are key considerations for the
architecture choice and final design:

 The applications to be hosted in the data center along with the type of storage
the applications use
 The data center needs and constraints, including the pod model design
 The different types of data center designs

72



The trend is toward the spine-leaf architecture, which addresses the considerations
and data center requirements. The ACI fabric relies on the spine-leaf architecture and
ToR approach depicted in this chapter. This fabric approach is suitable for all trends
of application and storage types of design, providing a degree of flexibility in the data
center design, where one technology can be used for different application and storage
use cases.
Table 1-2 summarizes the five different application trends and the fabric choices. The
new spine-leaf ACI architecture is suitable for all use cases, and the benefits of ACI
are described in the chapters that follow.

Table 1-2 Summary of the Five Different Application Trends and the Network
Choices for Each

Note: Figure 1-1 and Figure 1-2 are courtesy of Cisco Press publication:
‘Cloud Computing: Automating the Virtualized Data Center’

73



Chapter 2. Building Blocks for Cloud
Architectures

At the time of this writing, most large-scale data center deployments are designed with
the principles of cloud computing at the forefront. This is equally true for data centers
that are built by providers or by large enterprises. This chapter illustrates the design
and technology requirements for building a cloud.

Introduction to Cloud Architectures
The National Institute of Technology and Standards (NIST) defines cloud computing as
“a model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.” (See http://csrc.nist.gov/groups/SNS/cloud-
computing.)
Data center resources, such as individual servers or applications, are offered as
elastic services, which means that capacity is added on demand, and when the
compute or application is not needed, the resources providing it can be
decommissioned. Amazon Web Services (AWS) is often regarded as the pioneer of
this concept and many similar services that exist today.
Cloud computing services are often classified according to two different categories:

 Cloud delivery model: Public cloud, private cloud, or hybrid cloud
 Service delivery model: Infrastructure as a Service, Platform as a Service, or
Software as a Service

The cloud delivery model indicates where the compute is provisioned. The following
terminology is often used:

 Private cloud: A service on the premises of an enterprise. A data center
designed as a private cloud offers shared resources to internal users. A private
cloud is shared by tenants, where each tenant is, for instance, a business unit.
 Public cloud: A service offered by a service provider or cloud provider such as
Amazon, Rackspace, Google, or Microsoft. A public cloud is typically shared
by multiple tenants, where each tenant is, for instance, an enterprise.
 Hybrid cloud: Offers some resources for workloads through a private cloud and
other resources through a public cloud. The ability to move some compute to the
public cloud is sometimes referred to as cloud burst.

74

http://csrc.nist.gov/groups/SNS/cloud-computing


The service delivery model indicates what the user employs from the cloud service:
 Infrastructure as a Service (IaaS): A user requests a dedicated machine (a
virtual machine) on which they install applications, some storage, and
networking infrastructure. Examples include Amazon AWS, VMware vCloud
Express, and so on.
 Platform as a Service (PaaS): A user requests a database, web server
environment, and so on. Examples include Google App Engine and Microsoft
Azure.
 Software as a Service (SaaS) or Application as a Service (AaaS): A user
runs applications such as Microsoft Office, Salesforce, or Cisco WebEx on the
cloud instead of on their own premises.

The cloud model of consumption of IT services, and in particular for IaaS, is based on
the concept that the user relies on a self-service portal to provide services from a
catalog and the provisioning workflow is completely automated. This ensures that the
user of the service doesn’t need to wait for IT personnel to allocate VLANs, stitch
load balancers or firewalls, and so on. The key benefit is that the fulfillment of the
user’s request is quasi-instantaneous.
Until recently, configurations were performed via the CLI to manipulate on a box-by-
box basis. Now, ACI offers the ability to instantiate “virtual” networks of a very large
scale with a very compact description using Extensible Markup Language (XML) or
JavaScript Object Notation (JSON).
Tools such as Cisco UCS Director (UCSD) and Cisco Intelligent Automation for
Cloud (CIAC) orchestrate the ACI services together with compute provisioning (such
as via Cisco UCS, VMware vCenter, or OpenStack) to provide a fast provisioning
service for the entire infrastructure (which the industry terms a virtual private cloud,
a virtual data center, or a container).
The components of the cloud infrastructure are represented at a very high level in
Figure 2-1. The user (a) of the cloud service (b) orders a self-contained environment
(c) represented by the container with firewall load balancing and virtual machines
(VM). CIAC provides the service catalog function, while UCSD and OpenStack
operate as the element managers.

75



Figure 2-1 Building Blocks of a Cloud Infrastructure
This request is serviced by the service catalog and portal via the orchestration layer
(d). The orchestration layer can be composed of several components. Cisco, for
instance, offers CIAC, which interacts with various element managers to provision
compute, network, and storage resources.
Figure 2-1 also explains where Application Centric Infrastructure (ACI) and, more
precisely, the Cisco Application Policy Infrastructure Controller (APIC), fit in the
cloud architecture.

Network Requirements of Clouds and the ACI Solution
The network infrastructure that provides support for cloud deployments must meet
several requirements, such as:

 Scale for a very large number of virtual machines
 Support Layer 2 adjacency between workloads
 Support multi-tenancy

76



 Be highly programmable
 Support the insertion of load balancers and firewalls
 Support the insertion of virtual load balancers and virtual firewalls

The first and second requirements are almost incompatible because if the data center
were built with traditional spanning-tree technologies, it would incur two problems:

 Spanning-tree scalability limits on the control plane
 Exhaustion of the MAC address tables

To address these requirements, the ACI fabric is built based on a VXLAN overlay,
which allows switches to maintain perceived Layer 2 adjacency on top of a Layer 3
network, thus removing the control plane load associated with spanning tree from the
switching infrastructure. To address the mobility requirements over a Layer 3
infrastructure, the forwarding is based on host-based forwarding of full /32 addresses
combined with the mapping database.
This overlay, like most, requires the data path at the edge of the network to map from
the tenant end point address in the packet, a.k.a. its identifier, to the location of the
endpoint, a.k.a. its locator. This mapping occurs in a function called a tunnel
endpoint (TEP). The challenge with this mapping is having to scale for very large data
centers, because the mapping state must exist in many network devices.
The second problem with scale is that when an endpoint moves (that is, its locator
changes), the mapping state must be updated across the network in all TEPs that have
that mapping.
The ACI solution addresses these problems by using a combination of a centralized
database of the mappings implemented in the packet data path, at line rate, and a
caching mechanism, again in the data path, at the TEP. (Chapter 7, “ACI Fabric Design
Methodology,” explains the traffic forwarding in ACI in detail.)
The other key requirement of building a cloud solution is to be able to instantiate
networks in a programmatic way. If the network is managed box by box, link by link,
the script or the automation tool must access individual boxes and trace where a
workload is in order to enable VLAN trunking on a number of links. It must also
ensure that the end-to-end path is provisioned according to the abstraction model. ACI
solves this issue by providing a centralized configuration point, the APIC controller,
while still maintaining individual control plane capabilities on each node in the fabric.
The controller exposes the entire network as a hierarchy of objects in a tree. It
describes network properties related to workloads as logical properties instead of
physical properties. So, to define connectivity requirements for workloads, you don’t
have to express which physical interface a particular workload is on.
Furthermore, the fabric exposes the networking properties of all the switches so that

77



they can all be configured and managed via Representational State Transfer (REST)
calls as a single giant switch/router. The APIC REST API accepts and returns HTTP
or HTTPS messages that contain JSON or XML documents. Orchestration tools can
easily program the network infrastructure by using REST calls. (Chapter 4,
“Operational Model,” illustrates this new model and how to automate configurations
with REST calls and scripting.)
Multi-tenancy is conveyed in the management information model by expressing all
configurations of bridge domains, VRF contexts, and application network profile as
children of an object of type fvTenant. The segmentation on the network transport is
guaranteed by the use of different VXLAN VNIDs.
Insertion of firewall and load balancers is also automated to simplify the creation of
virtual containers comprising physical or virtual firewall and load balancing services.
(Chapter 8, “Service Insertion with ACI,” illustrates in more detail the modeling of
services and how they are added to the fabric.)

Amazon Web Services Model
This section describes some of the services offered by Amazon Web Services and
some of the AWS naming conventions. AWS offers a very wide variety of services,
and the purpose of this section is not to describe all of them. Rather, this section is
useful to the network administrator for two reasons:

 As a reference for a popular IaaS service
 The potential need to extend a private cloud into the Amazon Virtual Private
Cloud

The following list provides some key AWS terminology:
 Availability Zone: A distinct location within a region that is insulated from
failures in other Availability Zones, and provides inexpensive, low-latency
network connectivity to other Availability Zones in the same region.
 Region: A collection of Availability Zones, such as us-west, us-east-1a, eu-
west, etc., in the same geographical region
 Access credentials: A public key that is used to access AWS resources
allocated to a given user
 Amazon Machine Image (AMI): The image of a given virtual machine (which
Amazon calls an instance)
 Instance: A virtual machine that is running a given AMI image
 Elastic IP address: A static address associated with an instance

Amazon Elastic Compute Cloud (EC2) services enable you to launch an AMI in a

78



region of the user’s choice and in an Availability Zone of the user’s choice. Instances
are protected by a firewall. The instance also gets an IP address and a DNS entry. The
EC2 services can also be accompanied by the Elastic Load Balancing, which
distributes traffic across EC2 compute instances. Auto Scaling helps with
provisioning enough EC2 instances based on the utilization. Amazon CloudWatch
provides information about CPU load, disk I/O rate, and network I/O rate of each EC2
instance.

Note
More information can be found at:
http://docs.aws.amazon.com/general/latest/gr/glos-chap.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html

Amazon Simple Storage Service (S3) is accessed via web services API based on
SOAP or with the HTTP API that uses the standard HTTP verbs (GET, PUT, HEAD,
and DELETE). The objects are identified by using the protocol name, the S3 endpoint
(s3.amazonaws.com), the object key, and what is called the bucket name.
All resources can be created and manipulated by using Amazon SDKs available for
various programming languages, such as the Python and PHP SDKs available at the
following respective URLs:

http://aws.amazon.com/sdk-for-python/
http://aws.amazon.com/sdk-for-php/

With this approach, you can fully automate tasks such as the following:
 Locating the server resources
 Attaching storage
 Providing Internet connectivity
 Setting up switching and routing
 Booting the server
 Installing the OS
 Configuring applications
 Assigning IP addresses
 Configuring firewalling
 Scaling up the infrastructure

79

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html
http://aws.amazon.com/sdk-for-python/
http://aws.amazon.com/sdk-for-php/


Note
For more information, please refer to the book Host Your Web Site in the
Cloud: Amazon Web Services Made Easy, by Jeff Barr (SitePoint, 2010).

You can access the AWS-hosted Amazon Virtual Private Cloud (VPC) in multiple
ways. One way is to set a jumphost to which you log in over SSH with the public key
that AWS generates. Another approach is to connect the enterprise network to the
Amazon VPC via VPNs.

Automating Server Provisioning
In large-scale cloud deployments with thousands of physical and virtual servers,
administrators must be able to provision servers in a consistent and timely manner.
This section is of interest to the network administrator for several reasons:

 Some of these technologies can also be used to maintain network equipment
designs.
 Cisco ACI reuses some of the concepts from these technologies that have proven
to be effective to the task of maintaining network configurations.
 A complete design of ACI must include support for these technologies because
the compute attached to ACI will use them.

The high-level approach to automating server provisioning consists of performing the
following:

 PXE booting a server (physical or virtual)
 Deploying the OS or customized OS on the server with Puppet/Chef/CFEngine
agents

Because of the above reasons, a typical setup for a cloud deployment requires the
following components:

 A DHCP server
 A TFTP server
 An NFS/HTTP or FTP server to deliver the kickstart files
 A master for Puppet or Chef or similar tools

PXE Booting
In modern data centers, administrators rarely install new software via removable
media such as DVDs. Instead, administrators rely on PXE (Preboot eXecution
Environment) booting to image servers.

80



The booting process occurs in the following sequence:
1. The host boots up and sends a DHCP request.
2. The DHCP server provides the IP address and the location of the PXE/TFTP

server.
3. The host sends a TFTP request for pxelinux.0 to the TFTP server.
4. The TFTP server provides pxelinux.0.
5. The host runs the PXE code and requests the kernel (vmlinuz).
6. The TFTP server provides vmlinuz code and provides the location of the

kickstart configuration files (NFS/HTTP/FTP and so on).
7. The host requests the kickstart configuration from the server.
8. The HTTP/NFS/FTP server provides the kickstart configuration.
9. The host requests to install packages such as the RPMs.

10. The HTTP/NFS/FTP server provides the RPMs.
11. The host runs Anaconda, which is the post-installation scripts.
12. The HTTP/NFS/FTP server provides the scripts and the Puppet/Chef

installation information.

Deploying the OS with Chef, Puppet, CFengine, or Similar
Tools
One of the important tasks that administrators have to deal with in large-scale data
centers is maintaining up-to-date compute nodes with the necessary level of patches,
the latest packages, and with the intended services enabled.
You can maintain configurations by creating VM templates or a golden image and
instantiating many of them, but this process produces a monolithic image, and
replicating this process every time a change is required is a lengthy task. It is also
difficult, if not impossible, to propagate updates to the configuration or libraries to all
the servers generated from the template. The better approach consists of using a tool
such as Chef, Puppet, or CFengine. With these tools, you create a bare-bones golden
image or VM template and you push servers day-2.
These tools offer the capability to define the node end state with a language that is
abstracted from the underlying OS. For instance, you don’t need to know whether to
install a package with “yum” or “apt”; simply define that a given package is needed.
You don’t have to use different commands on different machines to set up users,
packages, services, and so on.
If you need to create a web server configuration, define it with a high-level language.

81



Then, the tool creates the necessary directories, installs the required packages, and
starts the processes listening on the ports specified by the end user.
Some of the key characteristics of these tools are that they are based on principles
such as a “declarative” model (in that they define the desired end state) and
idempotent configurations (in that you can rerun the same configuration multiple times
and it always yields the same result). The policy model relies on the declarative
approach. (You can find more details about the declarative model in Chapter 3, “The
Policy Data Center.”)
With these automation tools, you can also simulate the result of a given operation
before it is actually executed, implement the change, and prevent configuration
drifting.

Chef
The following list provides a reference for some key terminology used by Chef:

 Node: The server (but could be a network device).
 Attributes: The configuration of a node.
 Resources: Packages, services, files, users, software, networks, and routes.
 Recipe: The intended end state of a collection of resources. It is defined in
Ruby.
 Cookbook: The collection of recipes, files, and so on for a particular
configuration need. A cookbook is based on a particular application deployment
and defines all the components necessary for that application deployment.
 Templates: Configuration files or fragments with embedded Ruby code (.erb)
that is resolved at run time.
 Run list: The list of recipes that a particular node should run.
 Knife: The command line for Chef.
 Chef client: The agent that runs on a node.

Normally the administrator performs configurations from “Knife” from a Chef
workstation, which has a local repository of the configurations. The cookbooks are
saved on the Chef server, which pushes them to the nodes, as shown in Figure 2-2.

82



Figure 2-2 Chef Process and Interactions
The recipe that is relevant to the action to be performed on the device is configured on
the Chef workstation and uploaded to the Chef server.

Puppet
Figure 2-3 illustrates how Puppet operates. With the Puppet language, you define the
desired state of resources (users, packages, services, and so on), simulate the
deployment of the desired end state as defined in the manifest file, and then apply the
manifest file to the infrastructure. Finally, it is possible to track the components
deployed, track the changes, and correct configurations from drifting from the intended
state.

83



Figure 2-3 Puppet
The following is a list of some key terminology used in Puppet:

 Nodes: The servers, or network devices
 Resource: The object of configuration: packages, files, users, groups, services,
and custom server configuration.
 Manifest: A source file written using Puppet language (.pp)
 Class: A named block of Puppet code
 Module: A collection of classes, resource types, files, and templates, organized
around a particular purpose
 Catalog: Compiled collection of all resources to be applied to a specific node,
including relationships between those resources

84



Orchestrators for Infrastructure as a Service
Amazon EC2, VMware vCloud Director, OpenStack, and Cisco UCS Director are
IaaS orchestrators that unify the provisioning of virtual machines, physical machines,
storage, and networking and can power up the entire infrastructure for a given user
environment (called a container, virtual data center, or tenant).
The following common operations are enabled by these tools:

 Creating a VM
 Powering up a VM
 Powering down a VM
 Power cycling a VM
 Changing ownership of a server
 Taking a snapshot of an image

vCloud Director
VMware supports the implementation of clouds with the use of vCloud Director.
vCloud Director builds on top of vCenter, which in turn coordinates VMs across a
number of hosts that are running vSphere. Figure 2-4 illustrates the features of vCloud
Director, which provides tenant abstraction and resource abstraction and a vApp
Catalog for users of the cloud computing service.

Figure 2-4 vCloud Director Components

Figure 2-5 shows how vCloud Director organizes resources in a different way and
provides them as part of a hierarchy where the Organization is at the top. Inside the
Organization there are multiple vDCs.

85



Figure 2-5 vCloud Director Organization of Resources

OpenStack
Chapter 6, “OpenStack,” covers the details of OpenStack as it relates to ACI. The
purpose of this section is to explain how OpenStack fits in cloud architectures.

Project and Releases
Each functional area of OpenStack is a separate project. For the purpose of cloud
deployments, you don’t have to use the entire OpenStack set of capabilities; you can,
for instance, just leverage the APIs of a particular project.
The list of projects is as follows:

 Nova for compute
 Glance, Swift, and Cinder for image management, object storage, and block
storage, respectively
 Horizon for the dashboard, self-service portal, and GUI
 Neutron for networking and IP address management
 Telemetry for metering
 Heat for orchestration

The release naming is very important because different releases may have significant
changes in capabilities. At the time of this writing, you may encounter the following

86



releases:
 Folsom (September 27, 2012)
 Grizzly (April 4, 2013)
 Havana (October 17, 2013)
 Icehouse (April 17, 2014)
 Juno (October 2014)
 Kilo (April 2015)

Note
You can find the list of releases at:
http://docs.openstack.org/training-guides/content/associate-getting-
started.html#associate-core-projects

The releases of particular interest currently for the network administrator are Folsom,
because it introduced the Quantum component to manage networking, and Havana,
which replaced the Quantum component with Neutron. Neutron gives more flexibility
to manage multiple network components simultaneously, especially with the ML2
architecture, and is explained in detail in Chapter 6.
The concept of the plug-in for Neutron is significant. It is how networking vendors
plug into the OpenStack architecture. Neutron provides a plug-in that can be used by
OpenStack to configure their specific networking devices through a common API.

Multi-Hypervisor Support
OpenStack manages compute via the Nova component, which controls a variety of
compute instances, such as the following:

 Kernel-based Virtual Machine (KVM)
 Linux Containers (LXC), through libvirt
 Quick EMUlator (QEMU)
 User Mode Linux (UML)
 VMware vSphere 4.1 update 1 and newer
 Xen, Citrix XenServer, and Xen Cloud Platform (XCP)
 Hyper-V
 Baremetal, which provisions physical hardware via pluggable subdrivers

87

http://docs.openstack.org/training-guides/content/associate-getting-started.html#associate-core-projects


Installers
The installation of OpenStack is a big topic because installing OpenStack has been
complicated historically. In fact, Cisco took the initiative to provide an OpenStack
rapid scripted installation to facilitate the adoption of OpenStack. At this time many
other installers exist.
When installing OpenStack for proof-of-concept purposes, you often hear the
following terminology:

 All-in-one installation: Places the OpenStack controller and nodes’ components
all on the same machine
 Two-roles installation: Places the OpenStack controller on one machine and a
compute on another machine

To get started with OpenStack, you typically download a devstack distribution that
provides an all-in-one, latest-and-greatest version. Devstack is a means for
developers to quickly “stack” and “unstack” an OpenStack full environment, which
allows them to develop and test their code. The scale of devstack is limited, naturally.
If you want to perform an all-in-one installation of a particular release, you may use
the Cisco installer for Havana by following the instructions at
http://docwiki.cisco.com/wiki/OpenStack:Havana:All-in-One, which use the git repo
with the code at https://github.com/CiscoSystems/puppet_openstack_builder. Chapter
6 provides additional information regarding the install process.
There are several rapid installers currently available, such as these:

 Red Hat OpenStack provides PackStack and Foreman
 Canonical/Ubuntu provides Metal as a Service (MaaS) and JuJu
 SUSE provides SUSE Cloud
 Mirantis provides Fuel
 Piston Cloud provides one

Architecture Models
When deploying OpenStack in a data center, you need to consider the following
components:

 A PXE server/Cobbler server (Quoting from Fedora: “Cobbler is a Linux
installation server that allows for rapid setup of network installation
environments. It glues together and automates many associated Linux tasks so
you do not have to hop between lots of various commands and applications
when rolling out new systems, and, in some cases, changing existing ones.”)
 A Puppet server to provide image management for the compute nodes and

88

http://docwiki.cisco.com/wiki/OpenStack:Havana:All-in-One
https://github.com/CiscoSystems/puppet_openstack_builder


potentially to image the very controller node of OpenStack
 A node or more for OpenStack controllers running keystone, Nova (api, cert,
common, conductor, scheduler, and console), Glance, Cinder, Dashboard, and
Quantum with Open vSwitch
 The nodes running the virtual machines with Nova (common and compute) and
Quantum with Open vSwitch
 The nodes providing the proxy to the storage infrastructure

Networking Considerations
Cisco products provide plug-ins for the provisioning of network functionalities to be
part of the OpenStack orchestration. Figure 2-6 illustrates the architecture of the
networking infrastructure in OpenStack.

Figure 2-6 OpenStack Networking Plug-ins
Networks in OpenStack represent an isolated Layer 2 segment, analogous to VLAN in
the physical networking world. They can be mapped to VLANs or VLXANs and
become part of the ACI End Point Groups (EPGs) and Application Network Policies
(ANP). As Figure 2-6 illustrates, the core plug-ins infrastructure offers the option to
have vendor plug-ins. This topic is described in Chapter 6.

Note
For more information about OpenStack, visit http://www.openstack.org.

89

http://www.openstack.org


UCS Director
UCS Director is an automation tool that allows you to abstract the provisioning from
the use of the element managers and configure compute, storage, and ACI networking
as part of an automated workflow in order to provision applications. The workflow
provided by UCS Director is such that the administrator defines server policies,
application network policies, storage policies, and virtualization policies, and UCSD
applies these policies across the data center as shown in Figure 2-7.

Figure 2-7 UCS Director
The workflow can be defined in a very intuitive way via the graphical workflow
designer.
UCSD has both a northbound API and a southbound API. The southbound API allows
UCSD to be an extensible platform.

Note
For additional information on UCS Director, visit:
https://developer.cisco.com/site/data-center/converged-
infrastructure/ucs-director/overview/

90

https://developer.cisco.com/site/data-center/converged-infrastructure/ucs-director/overview/


Cisco Intelligent Automation for Cloud
Cisco Intelligent Automation for Cloud is a tool that enables a self-service portal and
is powered by an orchestration engine to automate the provisioning of virtual and
physical servers. Although there are some blurred lines between UCSD and CIAC,
CIAC uses the UCSD northbound interface and complements the orchestration with the
ability to standardize operations such as offering a self-service portal, opening a
ticket, doing chargeback, and so on. CIAC orchestrates across UCSD, OpenStack, and
Amazon EC2, and integrates with Puppet/Chef. It also provides measurement of the
utilization of resources for the purpose of pricing. Resources being monitored include
vNIC, hard drive usage, and so on.
Figure 2-8 illustrates the operations performed by CIAC for PaaS via the use of
Puppet.

Figure 2-8 CIAC Operations

Figure 2-9 illustrates more details of the provisioning part of the process.

91



Figure 2-9 CIAC Workflow
CIAC organizes the data center resources with the following hierarchy:

 Tenants
 Organization within tenants
 Virtual data centers
 Resources

Figure 2-10 illustrates the hierarchy used by CIAC.

92



Figure 2-10 Hierarchy in CIAC
The user is offered a complete self-service catalog that includes different options with
the classic Bronze, Silver, and Gold “containers” or data centers to choose from, as
illustrated in Figure 2-11.

93



Figure 2-11 Containers

Conciliating Different Abstraction Models
One of the tasks of an administrator is to create a cloud infrastructure that maps the
abstraction model of the service being offered to the abstractions of the components
that make the cloud.
A typical offering may consist of a mix of VMware-based workloads,
OpenStack/KVM-based workloads with an ACI network, and UCSD/CIAC
orchestration. Each technology has its own way of creating hierarchy and virtualizing
the compute and network.
Table 2-1 provides a comparison between the different environments.

94



Table 2-1 Differences Among VMware vCenter Server, VMware vCloud Director,
OpenStack, Amazon EC2, UCS Director, CIAC, and ACI

In ACI the network is divided into tenants, and the administration of the tenants is
organized with the concept of a security domain. Different administrators are
associated with one or more security domains and, similarly, each tenant network can
be associated with one or more security domains. The result is a many-to-many
mapping, which allows creating sophisticated hierarchies. Furthermore, if two tenant
networks represent the same “tenant” in CIAC but two different organizations within
the same “tenant,” it is possible to share resources and enable the communication
between them.
In CIAC, a tenant can contain different organizations (e.g., departments) and each
organization can own one or more virtual data centers (aggregates of physical and
virtual resources). Network and other resources can be either shared or segregated,
and the API exposed by the ACI controller (APIC) to the orchestrator makes it very
easy.

Note
For more information regarding Cisco’s development in the OpenStack
area, visit these links:
http://www.cisco.com/web/solutions/openstack
http://docwiki.cisco.com/wiki/OpenStack

95

http://www.cisco.com/web/solutions/openstack
http://docwiki.cisco.com/wiki/OpenStack


Summary
This chapter described the components of a cloud infrastructure and how ACI
provides network automation for the cloud. It explained the Amazon Web Services
approach. This chapter also described the role of the various orchestration tools, such
as OpenStack, Cisco UCS Director, and Cisco Intelligent Automation for Cloud. It
also introduced some key concepts regarding how to automate the provisioning of
servers and how to get started with OpenStack. It explained the OpenStack modeling
of the cloud infrastructure and compared it to similar modeling by CIAC and ACI. It
also discussed the administrator’s task of mapping the requirements of IaaS services
onto the models of these technologies.

96



Chapter 3. The Policy Data Center

The goals of this chapter are to help understand the Cisco Application Centric
Infrastructure (ACI) approach to modeling business applications to the Cisco ACI
network fabric and to show how to apply consistent, robust policies to these
applications. The Cisco ACI approach provides a unique blend of mapping hardware
and software capabilities to the deployment of applications either graphically through
the Cisco Application Policy Infrastructure Controller (APIC) GUI or
programmatically through the Cisco APIC API model, a RESTful (Representational
State Transfer) interface. The APIC model offers a type of controller that is unique in
the industry. The APIC concepts and principles are explained in detail in this chapter.
Finally, the Cisco ACI fabric is not only for greenfield deployment. Many users are
interested in deploying the ACI fabric into an existing environment. The last part of
this chapter explains how to integrate the ACI fabric with an existing network.

Why the Need for the Policy-Based Model?
The current enterprise customers, service providers, cloud providers, and (more
generally) data center environment customers are required to deploy applications
faster and faster in their respective environments. The applications that a data center is
hosting can multiply in an exponential fashion. At the same time, the hardware
complexity of the network devices is expanding as more features need to be
compressed into smaller-size chipsets while increasing the port density, port
throughput, and functionalities. The network environments also become more diverse
because there are different devices used for spine, leaf, and various generations of the
products in the same data center environment. This further segregates the application
owners’ needs and the network team’s capability to implement the new applications in
a timely fashion. Figure 3-1 depicts this barrier of communication that needs to be
addressed by the network and application owners in order to deploy a new solution on
the infrastructure.

97



Figure 3-1 Language Difference Between Network and Application
To deploy a new application in the network, the network team needs to execute the
following:

 Locate a VLAN and subnet
 Assure the security with access control lists (ACL)
 Determine whether a quality of service (QoS) map is needed for the new
application in the end-to-end network QoS model, which will vary in terms of
capability depending on the hardware it is deployed on

The bottom line is that to achieve a new application deployment, the network team
must become true experts of the network infrastructure, in addition to understanding
the long processes for certification of the network changes and the testing environment.
Naturally, the same issues will arise for troubleshooting an application. Correlating
the application events such as latency, bandwidth, and drops to the network operation
(where packets need to be traced down to each hardware to confirm if it is a network
issue) is very time consuming and difficult in larger-scale environments.
This brings us to the idea of a level of abstraction: human translation between network
and application language shouldn’t be necessary. Furthermore, the resources should be
optimized. Systems should be capable to deploy applications where the infrastructure
is ready to accept them without disruption to other traffic, as well as optimizing the
available hardware network resources. This is the value of the Policy Driven Data
Center approach.
This Policy Driven Data Center brings a declarative approach model leveraged by the
policy to supersede the older, imperative control model, as depicted in Figure 3-2.

98



With the declarative control model, the switches are educated and instructed from the
application requirements (called endpoint groups in Cisco ACI) and deploy the
application where and when they are capable, instead of manually hard-coding with a
set of basic instructions. For example, the control tower instructs an airplane where to
take off. The pilot of the plane, not the control tower, handles the take-off. This is the
essence of using a declarative control model from the promise theory.

Figure 3-2 Policy Data Center Declarative Control Model

With the policy data center approach, there is a new level of abstraction between the
hardware and the software and a methodology to adapt networking across various
hardware platforms, capabilities, and future evolutions. This allows automation
between networking and application teams and reduces the time of deployment for
applications from months to seconds or less.

The Policy Theory
The Cisco APIC policy model is defined from the top down as a policy enforcement
engine focused on the application itself and abstracting the networking functionality
underneath.
The Cisco APIC policy model is an object-oriented model based on promise theory.
Promise theory is based on declarative, scalable control of intelligent objects, in
comparison to legacy imperative control models.
An imperative control model is a big-brain system or top-down style of management.
In these systems, the central manager must be aware of both the configuration
commands of underlying objects and the current state of those objects, as shown in
Figure 3-3.

99



Figure 3-3 Configuration to Underlying Components
Promise theory, in contrast, relies on the underlying objects to handle configuration
state changes initiated by the control system as desired state changes. The objects are
in turn also responsible for passing exceptions or faults back to the control system.
This lightens the burden and complexity of the control system and allows for greater
scale. These systems scale further by allowing for methods of underlying objects to in
turn request state changes from one another and/or lower-level objects. Figure 3-4
depicts promise theory.

100



Figure 3-4 Promise Theory Approach to Large-Scale System Control

Cisco APIC Policy Object Model
Traditionally applications have been restricted by capabilities of the network.
Concepts such as addressing, VLAN, and security have been tied together, limiting the
scale and mobility of the application itself. Because today’s applications are being
redesigned for mobility and web scale, this is not conducive to rapid and consistent
deployment.
The physical Cisco ACI fabric is built on a spine-leaf design; its topology is
illustrated in Figure 3-5. It uses a bipartite graph where each leaf is a switch that
connects to each spine switch, and no direct connections are allowed between leaf
switches and between spine switches. The leaves act as the connection point for all
external devices and networks, and the spine acts as the high-speed forwarding engine
between leaves. Cisco ACI fabric is managed, monitored, and administered by the
Cisco APIC.

101



Figure 3-5 Cisco ACI Fabric Design
At the top level, the Cisco APIC policy model is built on a series of one or more
tenants that allow segregation of the network infrastructure administration and data
flows. These tenants can be used for customers, business units, or groups, depending
on organizational needs. For instance, a given enterprise might use one tenant for the
entire organization, while a cloud provider might have customers using one or more
tenants to represent their organization.
Tenants further break down into private Layer 3 networks, which directly relate to a
Virtual Route Forwarding (VRF) instance or separate IP space. Each tenant may have
one or more private Layer 3 networks depending on their business needs. Private
Layer 3 networks provide a way to further separate the organizational and forwarding
requirements below a given tenant. Because contexts use separate forwarding
instances, IP addressing can be duplicated in separate contexts for the purpose of
multitenancy.
A tenant is a logical container or a folder for application policies. It can represent an
actual tenant, an organization, or a domain, or can just be used for the convenience of
organizing information. A normal tenant represents a unit of isolation from a policy
perspective, but it does not represent a private network. A special tenant named
common has sharable policies that can be used by all tenants. A context is a
representation of a private Layer 3 namespace or Layer 3 network. It is a unit of
isolation in the Cisco ACI framework. A tenant can rely on several contexts. Contexts
can be declared within a tenant (contained by the tenant) or can be in the “common”
tenant. This approach provides both multiple private Layer 3 networks per tenant and
shared Layer 3 networks used by multiple tenants. This way, you do not dictate a

102



specific rigidly constrained tenancy model. The endpoint policy specifies a common
Cisco ACI behavior for all endpoints defined within a given virtual ACI context.
Below the context, the model provides a series of objects that define the application
itself. These objects are called endpoint groups (EPG). EPGs are a collection of
similar endpoints representing an application tier or set of services. EPGs are
connected to each other via policies. It is important to note that policies in this case
are more than just a set of ACLs and include a collection of inbound/outbound filters,
traffic quality settings, marking rules/redirection rules, and Layers 4–7 service device
graphs. This relationship is shown in Figure 3-6.

Figure 3-6 Cisco APIC Logical Object Model
Figure 3-6 depicts two contexts under a given tenant and the series of applications that
make up that context. The EPGs shown are groups of endpoints that make up an
application tier or other logical application grouping. For example, Application B
(shown expanded on the right of Figure 3-6) could be a blue web tier, red application
tier, and orange database tier. The combination of EPGs and the policies that define
their interaction is an application network profile on the Cisco ACI fabric.

103



Endpoint Groups
EPGs provide a logical grouping for objects that require similar policy. For example,
an EPG could be the group of components that make up an application’s web tier.
Endpoints themselves are defined using NIC, vNIC, IP address, or DNS name with
extensibility for future methods of identifying application components.
EPGs are also used to represent other entities such as outside networks, network
services, security devices, network storage, and so on. They are collections of one or
more endpoints providing a similar function. They are a logical grouping with varying
use options depending on the application deployment model in use. Figure 3-7 depicts
the relationship between endpoints, EPGs, and applications.

Figure 3-7 Endpoint Group Relationships

EPGs are designed for flexibility, allowing their use to be customized to one or more
deployment models a given customer might choose. The EPGs are then used to define
where policy is applied. Within the Cisco ACI fabric, policy is applied between
EPGs, therefore defining how EPGs communicate with one another. This is designed
to be extensible in the future to policy application within an EPG itself.
Some example uses of EPGs are as follows:

 EPG defined by traditional network VLANs: All endpoints connecting to a
given VLAN are placed in an EPG
 EPG defined by a VxLAN: All endpoints connecting to a given VLAN are

104



placed in an EPG
 EPG mapped to a VMware port group
 EPG defined by IPs or subnet: For example, 172.168.10.10 or 172.168.10*
 EPG defined by DNS names or DNS ranges: For example,
example.web.networks.com or *.web.networks.com

The use of EPGs is intentionally left both flexible and extensible. The model is
intended to provide tools to build an application’s network representation that maps to
the actual environment’s deployment model. Additionally, the definition of endpoints
is intended to be extensible to provide support for future product enhancements and
industry requirements.
The implementation of EPGs within the fabric provides several valuable benefits.
EPGs act as a single policy enforcement point for a group of contained objects. This
simplifies configuration of these policies and makes sure that it is consistent.
Additional policy is applied based not on subnet, but rather on the EPG itself. This
means that IP addressing changes to the endpoint do not necessarily change its policy,
which is common in the case of traditional networks (the exception here is an endpoint
defined by its IP). Alternatively, moving an endpoint to another EPG applies the new
policy to the leaf switch that the endpoint is connected to and defines new behavior for
that endpoint based on the new EPG.
Figure 3-8 displays the relationship between endpoints, EPGs, and policies.

105



Figure 3-8 Relationship Between EPGs and Policies
The final benefit provided by EPGs is in the way in which policy is enforced for an
EPG. The physical ternary content-addressable memory (TCAM) where policy is
stored for enforcement is an expensive component of switch hardware and therefore
tends to lower policy scale or raise hardware costs. Within the Cisco ACI fabric,
policy is applied based on the EPG rather than the endpoint itself. This policy size can
be expressed as n * m * f, where n is the number of sources, m is the number of
destinations, and f is the number of policy filters. Within the Cisco ACI fabric, sources
and destinations become one entry for a given EPG, which reduces the number of total
entries required. An EPG is different from a VLAN: an EPG can be restricted to a
VLAN in a specific bridge domain. However the EPG can be much more than VLANs,
it can be collection vNICs, MAC addresses, subnets, and so on, as explained in the
“Endpoint Groups” section. Figure 3-9 displays the EPG role in policy table size
reduction.

106



Figure 3-9 EPG Role in Policy Table Size Reduction
As discussed, policy within a Cisco ACI fabric is applied between two EPGs. They
can be utilized in either a unidirectional or bidirectional mode between any given pair
of EPGs. These policies then define the allowed communication between EPGs, as
shown in Figure 3-10.

Figure 3-10 Unidirectional and Bidirectional Policy Enforcement

107



Cisco APIC Policy Enforcement
This section covers the concept of Cisco APIC policy enforcement, including unicast
and multicast enforcement.

Unicast Policy Enforcement
The relationship between EPGs and policies can be thought of as a matrix with one
axis representing source EPGs (sEPG) and the other destination EPGs (dEPG), as
shown in Figure 3-11. One or more policies are placed in the intersection between
appropriate sEPGs and dEPGs. The matrix becomes sparsely populated in most cases
because many EPGs have no need to communicate with one another.

Figure 3-11 Policy Enforcement Matrix

Policies break down into a series of filters for quality of service, access control, and
so on. Filters are specific rules that make up the policy between two EPGs. Filters are
composed of inbound and outbound: permit, deny, redirect, log, copy (separate from
SPAN), and mark functions. Policies allow for wildcard functionality within the
definition. The enforcement of policy typically takes an approach of most specific
match first. The wildcard enforcement rules are illustrated in Figure 3-12.

108



Figure 3-12 Wildcard Enforcement Rules
Enforcement of policy within the fabric is always guaranteed; however, policy can be
applied in one of two places. Policy can be enforced opportunistically at the ingress
leaf; otherwise, it is enforced on the egress leaf. Policy can be enforced at ingress
only if the destination EPG is known. The source EPG is always known, and policy
rules pertaining to that source as both an sEPG and a dEPG are always pushed to the
appropriate leaf switch when an endpoint attaches. After policy is pushed to a leaf, it
is stored and enforced in hardware. Because the Cisco APIC is aware of all EPGs and
the endpoints assigned to them, the leaf to which the EPG is attached always has all
policies required and never needs to punt traffic to a controller, as might be the case in
other systems. Figure 3-13 displays the summary of the application of a policy to the
leaf nodes.

Figure 3-13 Applying Policy to Leaf Nodes
As mentioned, if the destination EPG is not known, policy cannot be enforced at

109



ingress. Instead, the source EPG is tagged, and the policy applied bits are not marked.
Both of these fields exist in the reserved bits of the VxLAN header. The packet is then
forwarded to the forwarding proxy, typically resident in the spine. The spine is aware
of all destinations in the fabric; therefore, if the destination is unknown, the packet is
dropped. If the destination is recognized, the packet is forwarded to the destination
leaf. The spine never enforces policy; this is handled by the egress leaf.
When a packet is received by the egress leaf, the sEPG and the policy applied bits are
read (these were tagged at ingress). If the policy applied bits are marked as applied,
the packet is forwarded without additional processing. If instead the policy applied
bits do not show that policy has been applied, the sEPG marked in the packet is
matched with the dEPG (always known on the egress leaf), and the appropriate policy
is then applied. Figure 3-14 displays the enforcement of the policy on the whole
fabric.

Figure 3-14 Enforcing Policy on Fabric
The opportunistic policy application allows for efficient handling of policy within the
fabric. This application is further represented in Figure 3-15.

110



Figure 3-15 Opportunistic Ingress Enforcement of Policy

Multicast Policy Enforcement
The nature of multicast makes the requirements for policy enforcement slightly
different. Although the source EPG is easily determined at ingress because it is never
a multicast address, the destination is an abstract entity; the multicast group may
consist of endpoints from multiple EPGs. In multicast cases the Cisco ACI fabric uses
a multicast group for policy enforcement. These groups are defined by specifying a
multicast address range or ranges. Policy is then configured between the sEPG and the
multicast group as shown in Figure 3-16.

Figure 3-16 Multicast Group (Specialized Multicast EPG)

111



The multicast group (EPG group corresponding to the multicast stream) is always the
destination and never used as a source EPG. Traffic sent to a multicast group is either
from the multicast source or a receiver joining the stream through an Internet Group
Management Protocol (IGMP) join. Because multicast streams are nonhierarchical and
the stream itself is already in the forwarding table (using IGMP join), multicast policy
is always enforced at ingress. This prevents the need for multicast policy to be written
to egress leaves, as shown in Figure 3-17.

Figure 3-17 Multicast Policy Enforcement

Application Network Profiles
As stated earlier, an application network profile (ANP) within the fabric is a
collection of the EPGs, their connections, and the policies that define those
connections. ANPs become the logical representation of the entire application and its
interdependencies on the Cisco ACI fabric.
ANPs are designed to be modeled in a logical fashion, which matches the way
applications are created and deployed. The configuration and enforcement of the
policies and connectivity are then handled by the system itself using the Cisco APIC
rather than through an administrator. Figure 3-18 illustrates the ANP concept.

112



Figure 3-18 Application Network Profile
Creating ANPs requires three general steps:

 Creation of EPGs (as discussed earlier)
 Creation of policies that define connectivity, including:

 Permit
 Deny
 Log
 Mark
 Redirect
 Copy to
 Service graphs

 Creation of connection points between EPGs using policy constructs known as
contracts

Contracts
Contracts define inbound and outbound permits, denies, QoS, redirects, and service
graphs. They allow for both simple and complex definition of how a given EPG
communicates with other EPGs dependent on the requirements of a given environment.
In Figure 3-19 notice the relationship between the three tiers of a web application
defined by EPG connectivity and the contracts that define their communication. The
sum of these parts becomes an ANP. Contracts also provide reusability and policy
consistency for services that typically communicate with multiple EPGs. Figure 3-20
uses the concept of network file system (NFS) and management resources.

113



Figure 3-19 Contracts with Application Network Profiles

Figure 3-20 Complete Application Network Profile

Figure 3-20 shows the basic three-tier web application used previously with some
additional connectivity that is usually required. Notice the shared network services,
NFS, and management, which is used by all three tiers as well as other EPGs within
the fabric. In these cases the contract provides a reusable policy defining how the NFS
and MGMT EPGs produce functions or services that can be consumed by other EPGs.
Within the Cisco ACI fabric, the “what” and “where” of policy application have been

114



intentionally separated. This allows policy to be created independently of how it is
applied and reused where required. The actual policy configured in the fabric is
determined based on the policy defined as a contract (the what) and the intersection of
EPGs and other contracts with those policies (the where).
In more complex application deployment environments, contracts are further broken
down using subjects, which can be thought of as applications or subapplications. To
better understand this concept, think of a web server. Although it might be classified as
web, it might be producing HTTP, HTTPS, FTP, and so on, and each of these
subapplications might require different policies. Within the Cisco APIC model, these
separate functions or services are defined using subjects, and subjects are combined
within contracts to represent the set of rules that define how an EPG communicates
with other EPGs, as shown in Figure 3-21.

Figure 3-21 Subjects Within Contract
Subjects describe the functions that an application exposes to other processes on the
network. Think of it as producing a set of functions: that is, the web server produces
HTTP, HTTPS, and FTP. Other EPGs then consume one or more of these functions;
which EPGs consume these services are defined by creating relationships between
EPGs and contracts, which contain the subjects defining applications or
subapplications. Full policy is defined by administrators defining groups of EPGs
consuming what other EPGs provides. Figure 3-22 illustrates how this model offers
functionality for hierarchical EPGs, or more simply EPGs that are groups of
applications and subapplications.

115



Figure 3-22 Detail View of Subjects Within Contract
Additionally, this model provides the capability to define a disallow list on a per-
EPG basis. These disallows, known as taboos, override the contract itself, making
sure that certain communications are denied on a per-EPG basis. This capability
provides a blacklist model within the Cisco ACI fabric, as shown in Figure 3-23.

116



Figure 3-23 Use of Taboos to Create Blacklist Behavior
Figure 3-23 shows that a contract can be defined allowing all traffic from all EPGs.
The allow is then refined by creating a taboo list of specific ports or ranges that are
undesirable. The model provides a transitional method for customers desiring to
migrate over time from a blacklist model, which is typically in use today, to the more
desirable whitelist model. In a blacklist model, all communication is open unless
explicitly denied, whereas a whitelist model requires communication to be explicitly
defined before being permitted. It is important to remember that disallow lists are
optional, and in a full whitelist model they are rarely needed.
Contracts provide a grouping for the descriptions and associated policies that define
those application services. They can be contained within a given scope, tenant,
context, or EPG as a local contract. An EPG is also capable of subscribing to multiple
contracts, which provide the superset of defined policies.
Although contracts can be used to define complex real-world application
relationships, they can also be used very simply for traditional application deployment
models. For instance, if a single VLAN or VxLAN is used to define separate services,
and those VLANs or VxLANs are tied to port groups within VMware, a simple
contract model can be defined without unneeded complexity.
However, in more advanced application deployment models such as PaaS, SOA 2.0,
and Web 2.0 models, where more application granularity is required, complex
contract relationships are used. These relationships are implemented to define

117



detailed relationships between components within a single EPG and to multiple other
EPGs.
Although contracts provide the means to support more complex application models,
they do not dictate additional complexity. As stated, for simple application
relationships, simple contracts can be used. For complex application relationships, the
contract provides a means for building those relationships and reusing them where
required.
Contracts break down into subcomponents:

 Subjects: Group of filters that apply to a specific app or service
 Filters: Used to classify traffic
 Actions: Such as permit, deny, mark, and so on to perform on matches to those
filters
 Labels: Used optionally to group objects such as subjects and EPGs for the
purpose of further defining policy enforcement

In a simple environment, the relationship between two EPGs is similar to that in
Figure 3-24. Here web and app EPGs are considered a single application construct
and defined by a given set of filters. This is a very common deployment scenario.
Even in complex environments, this model is preferred for many applications.

Figure 3-24 Simple Policy Contract Relationships
Many environments require more complex relationships; some examples include

 Environments using complex middleware systems
 Environments in which one set of servers provides functionality to multiple

118



applications or groups (for example, a database farm providing data for several
applications)
 PaaS, SOA, and Web 2.0 environments
 Environments where multiple services run within a single OS

In these environments the Cisco ACI fabric provides a more robust set of optional
features to model actual application deployments in a logical fashion. In both cases,
the Cisco APIC and fabric software are responsible for flattening the policy down and
applying it for hardware enforcement. This relationship between the logical model,
which is used to configure application relationships, and the concrete model, which is
used to implement the application relationships on the fabric, simplifies design,
deployment, and change within the fabric.
An example of this would be an SQL database farm providing database services to
multiple development teams within an organization, such as a red team, blue team, and
green team each using separate database constructs supplied by the same farm. In this
instance, a separate policy might be required for each team’s access to the database
farm, as shown in Figure 3-25.

Figure 3-25 Single Database Farm Serving Three Separate Groups Requiring
Separate Policy Controls

The simple models discussed previously do not adequately cover this more complex
relationship between EPGs. In these instances, you need the ability to separate policy

119



for the three separate database instances within the SQL-DB EPG, which can be
thought of as subapplications and are referred to within the Cisco ACI fabric as
subjects.
The Cisco ACI fabric provides multiple ways to model this application behavior
depending on user preference and application complexity. The first way is to use three
contracts, one for each team. Remember that an EPG can inherit more than one
contract and receives the superset of rules defined there. In Figure 3-26 each app
team’s EPG connects to the SQL-DB EPG using its own specific contract.

Figure 3-26 Utilizing Three Contracts to Define Separate Consumer Relationships
As shown, the SQL-DB EPG inherits the superset of policies from three separate
contracts. Each application team’s EPG then connects to the appropriate contract. The
contract designates the policy, while the relationship defined by the arrows denotes
where the policy will be applied or who is providing/consuming which service. In
this example the Red-App EPG consumes SQL-DB services with the QoS, ACL,
marking, redirect, and so on behavior defined within the Red-Team APC. The same is
true for the blue and green teams.
In many instances, groups of contracts get applied together. For example, if multiple
DB farms are created that all require access by the three teams in this example,
development, test, and production farms are used. In these cases, a bundle can be used
to logically group the contracts. Bundles are optional; a bundle can be thought of as a
container for one or more contracts for the purpose of ease of use. The utilization of

120



bundles is depicted in Figure 3-27.

Figure 3-27 Using Bundles to Group Contracts

In Figure 3-27 it is very important to note the attachment points of the arrows showing
relationship. In this example you want SQL-DB EPG to provide all contracts within
the contract bundle, so attach the bundle itself to the EPG. For each of the three
application teams, you want access defined only by its specific contract, so attach
each team to consume the corresponding contract itself within the bundle.
This same relationship can optionally be modeled in another way using labels. Labels
provide an alternative grouping function for use within application policy definition.
In most environments labels are not required, but they are available for deployments
with advanced application models and teams who are familiar with the concept.
When employing labels, a single contract can be used to represent multiple services or
components of applications provided by a given EPG. In this case the labels represent
the DB EPG providing database services to three separate teams. By labeling the
subjects and the EPGs using them, separate policy is applied within a given contract
even if the traffic types or other classifiers are identical. Figure 3-28 shows this
relationship.

121



Figure 3-28 Using Labels to Group Objects Within Policy Model
In Figure 3-28 the SQL-DB EPG provides services using a single contract called SQ-
DB, which defines the database services it supplies to three different teams. Each of
the three teams’ EPGs that will consume these services are then attached to the same
traffic. By using labels on the subjects and the EPGs, specific rules are defined for
each team. The rules within the contract that matches the label are the only ones
applied for each EPG. This holds true even if the classification within the construct is
the same: for example, the same Layer 4 ports and so on.
Labels provide a very powerful classification tool that allows objects to be grouped
together for the purpose of policy enforcement. This also permits applications to be
moved quickly through various development life cycles. For example, if the red label
service Red-App represents a “development environment” that needs to be promoted
to “test environment,” which is represented by the blue label, the only required change
would be to the label assigned to that EPG.

Understanding Cisco APIC
This section explains the architecture and components of the Cisco APIC: Application
Policy Infrastructure Controller.

122



Cisco ACI Operating System (Cisco ACI Fabric OS)
Cisco has taken the traditional Cisco Nexus OS (NX-OS) developed for the data
center and pared it down to the essential features required for a modern data center
deploying Cisco ACI. Cisco has also made deeper structural changes so that the Cisco
ACI Fabric OS can easily render policy from the APIC into the physical infrastructure.
A Data Management Engine (DME) in the ACI Fabric OS provides the framework that
serves read and write requests from a shared lockless data store. The data store is
object oriented, with each object stored as chunks of data. A chunk is owned by one
ACI Fabric OS process, and only the owner of this process can write to the data
chunk. However, any ACI Fabric OS process can read any of the data simultaneously
through the CLI, Simple Network Management Protocol (SNMP), or an API call. A
local policy element (PE) enables the APIC to implement the policy model directly in
the ACI Fabric OS, as illustrated in Figure 3-29.

Figure 3-29 Cisco ACI Fabric OS

Architecture: Components and Functions of the Cisco APIC
The APIC consists of a set of basic control functions, displayed in Figure 3-30, which
include

 Policy Manager (policy repository)
 Topology Manager
 Observer
 Boot Director
 Appliance Director (cluster controller)
 VMM Manager
 Event Manager
 Appliance Element

123



Figure 3-30 Cisco APIC Component Architecture

Policy Manager
The Policy Manager is a distributed repository responsible for the definition and
deployment of the policy-based configuration of Cisco ACI. This is a collection of
policies and rules applied to existing or hypothetical (not yet created) endpoints. The
endpoint registry is a subset of the Policy Manager that tracks endpoints connecting to
Cisco ACI and their assignment to endpoint groups as defined by the policy repository.

Topology Manager
The Topology Manager maintains up-to-date Cisco ACI topology and inventory
information. Topology data is reported to the APIC by the leaf and spine switches. The
physical topology is based on the information discovered by the Link Layer Discovery
Protocol (LLDP) and the routing topology of the fabric as reported by protocols
(modified Intermediate System-to-Intermediate System [IS-IS]) running within the
fabric infrastructure space.
A global view of time-accurate topology information is available in the Topology
Manager and includes

124



 Physical topology (Layer 1; physical links and nodes)
 Logical path topology (reflection of Layer 2 + Layer 3)

Topology data, along with associated aggregated operational state, is asynchronously
updated in the Topology Manager upon detection of topology changes, and is available
for queries via the APIC API, CLI, and UI.
A subfunction of the Topology Manager performs inventory management for the APIC
and maintains a complete inventory of the entire Cisco ACI. The APIC inventory
management subfunction provides full identification, including model and serial
number, as well as user-defined asset tags (for ease of correlation with asset and
inventory management systems) for all ports, line cards, switches, chassis, and so
forth.
Inventory is automatically pushed by the DME-based policy element/agent embedded
in the switches as soon as new inventory items are discovered or removed or
transition in state occurs in the local repository of the Cisco ACI node.

Observer
The Observer is the monitoring subsystem of the APIC, and it serves as a data
repository of the Cisco ACI operational state, health, and performance, which includes

 Hardware and software state and health of ACI components
 Operational state of protocols
 Performance data (statistics)
 Outstanding and past fault and alarm data
 Record of events

Monitoring data is available for queries via the APIC API, CLI, and UI.

Boot Director
The Boot Director controls the booting and firmware updates of the Cisco spine and
leaf and the APIC controller elements. It also functions as the address allocation
authority for the infrastructure network, which allows the APIC and the spine and leaf
nodes to communicate. The following process describes bringing up the APIC and
cluster discovery.
Each APIC in Cisco ACI uses an internal private IP address to communicate with the
ACI nodes and other APICs in the cluster. APICs discover the IP address of other
APICs in the cluster using an LLDP-based discovery process.
APICs maintain an appliance vector (AV), which provides a mapping from an APIC
ID to an APIC IP address and a universally unique identifier (UUID) of the APIC.

125



Initially, each APIC starts with an AV filled with its local IP address, and all other
APIC slots are marked unknown.
Upon switch reboot, the PE on the leaf gets its AV from the APIC. The switch then
advertises this AV to all of its neighbors and reports any discrepancies between its
local AV and neighbors’ AVs to all the APICs in its local AV.
Using this process, APICs learn about the other APICs in Cisco ACI via switches.
After validating these newly discovered APICs in the cluster, APICs update their local
AV and program the switches with the new AV. Switches then start advertising this
new AV. This process continues until all the switches have the identical AV and all
APICs know the IP address of all the other APICs.

Appliance Director
The Appliance Director is responsible for formation and control of the APIC
appliance cluster. The APIC controller runs on server hardware (“bare metal”). A
minimum of three controllers are initially installed for control of the scale-out ACI.
The ultimate size of the APIC cluster is directly proportionate to the ACI size and is
driven by the transaction rate requirements. Any controller in the cluster is able to
service any user for any operation, and a controller can be seamlessly added to or
removed from the APIC cluster. It is important to understand that, unlike an OpenFlow
controller, none of the APIC controllers are ever in the data path. The Appliance
Director is illustrated in Figure 3-31.

Figure 3-31 Appliance Director

VMM Manager
The VMM Manager acts as an agent between the policy repository and a hypervisor. It
is responsible for interacting with hypervisor management systems such as VMware’s
vCenter and cloud software platforms such as OpenStack and CloudStack. VMM
Manager inventories all of the hypervisor elements (pNICs, vNICs, VM names, etc.)
and pushes policy into the hypervisor, creating port groups and so forth. It also listens
to hypervisor events such as VM mobility.

126



Event Manager
The Event Manager is a repository for all the events and faults initiated from the APIC
or the fabric nodes. It is detailed in Chapter 9, “Advanced Telemetry.”

Appliance Element
The Appliance Element is a monitor for the local appliance. It manages the inventory
and state of the local APIC appliance.

Architecture: Data Management with Sharding
The Cisco APIC cluster uses a technology from large databases called sharding. To
understand the sharding concept, consider the concept of database partitioning.
Sharding is a result of the evolution of what is called horizontal partitioning of a
database. In this partitioning, the rows of the database are held separately instead of
being normalized and split vertically into columns. Sharding goes further than
horizontal partitioning, also partitioning the database across multiple instances of the
schema. In addition to increasing redundancy, sharding increases performance because
the search load for a large partitioned table can be split across multiple database
servers, not just multiple indexes on the same logical server. With sharding, large
partitionable tables are split across the servers, and smaller tables are replicated as
complete units. After a table is sharded, each shard can reside in a completely
separated logical and physical server, data center, physical location, and so forth.
There is no ongoing need to retain shared access between the shards to the other
unpartitioned tables located in other shards.
Sharding makes replication across multiple servers easy, unlike horizontal
partitioning. It is a useful concept for distributed applications. Otherwise, a lot more
interdatabase server communication is needed because the information wouldn’t be
located in a separated logical and physical server. Sharding, for example, reduces the
number of data center interconnect links needed for database querying. It requires a
notification and replication mechanism between schema instances, to help ensure that
the unpartitioned tables remain as synchronized as the applications require. In
situations where distributed computing is used to separate loads between multiple
servers, a shard approach offers a strong advantage.

127



Effect of Replication on Reliability
Figure 3-32 shows the proportion of data that is lost when the nth appliance is lost out
of a total of five appliances and there is a variable replication factor of K. When K =
1, no replication occurs, and each shard has one copy; when K = 5, full replication
occurs, and all appliances contain a copy. N indicates the number of Cisco APIC
appliances lost. When n = 1, one appliance has been lost; when n = 5, the last
appliance has been disconnected.

Figure 3-32 Effect of Replication on Reliability
Consider the example of K = 1: just one copy is made. Therefore, for every appliance
lost, the same amount of data is lost from n = 1 to n = 5. As the replication factor K
increases, no data loss occurs unless at least K appliances are lost; also, the data loss
is gradual and starts at a smaller value. For example, with three appliances (K = 3),
no data is lost until the third appliance (n = 3) is lost, at which point only 10 percent
of the data is lost. Cisco APIC uses a minimum of three appliances (n = 3) for this
reason.

128



Effect of Sharding on Reliability
In Figure 3-33, L represents the number of appliances, starting with a minimum of
three. By maintaining a replication factor of K = 3, no data loss occurs as long as the
three appliances are not missing at the same time. Only when the third Cisco APIC
appliance is lost does data loss occur, and it is a complete loss. Increasing the number
of appliances significantly and rapidly improves resilience. For example, with four
appliances, as shown in Figure 3-32, losing the third appliance means a loss of 25
percent of the data. With 12 appliances, the loss of the third appliance means only a
0.5 percent data loss. With sharding, increasing the number of appliances can very
quickly reduce the likelihood of data loss. Full replication is not needed to achieve a
very high rate of data protection.

Figure 3-33 Effect of Sharding on Reliability

Sharding Technology
The sharding technology provides scalability and reliability to the data sets generated
and processed by the distributed policy repository, the endpoint registry, the Observer,
and the Topology Manager. The data for these Cisco APIC functions is partitioned into
logically bounded subsets called shards (analogous to database shards). A shard is a
unit of data management, and all of the above data sets are placed into shards.

129



The sharding technology illustrated in Figure 3-34 has the following characteristics:
 Each shard has three replicas.
 Shards are evenly distributed.
 Shards enable horizontal (scale-out) scaling.
 Shards simplify the scope of replications.

Figure 3-34 Sharding
One or more shards are located on each Cisco APIC appliance and processed by a
controller instance located on that appliance. The shard data assignments are based on
a predetermined hash function, and a static shard layout determines the assignment of
shards to appliances. Each replica in the shard has a use preference, and writes occur
on the replica that is elected leader. Other replicas are followers and do not allow
writes. In the case of a split-brain condition, automatic reconciliation is performed
based on time stamps. Each Cisco APIC has all Cisco APIC functions; however,
processing is evenly distributed throughout the Cisco APIC cluster.

User Interface: Graphical User Interface
The GUI is an HTML5-based web UI that works with most modern web browsers.
The GUI provides seamless access to both the APIC and the individual nodes.

130



User Interface: Command-Line Interface
A full stylistic and semantic (where it applies) compatibility with Cisco NX-OS CLI
is provided. The CLI for the entire Cisco ACI is accessed through the APIC and
supports a transactional mode. There is also the ability to access specific Cisco ACI
nodes with a read-only CLI for troubleshooting. An integrated Python-based scripting
interface is supported that allows user-defined commands to attach to the command
tree as if they were native platform-supported commands. Additionally, the APIC
provides a library for any custom scripts.

User Interface: RESTful API
The Cisco APIC supports a comprehensive RESTful API over HTTP(S) with XML
and JSON encoding bindings. Both class-level and tree-oriented data access are
provided by the API. Representational state transfer (REST) is a style of software
architecture for distributed systems such as the World Wide Web. REST has emerged
over the past few years as a predominant web services design model. REST has
increasingly displaced other design models such as SOAP and Web Services
Description Language (WSDL) because of its simpler style. The uniform interface that
any REST interface must provide is considered fundamental to the design of any REST
service, and thus the interface has these guiding principles:

 Identification of resources: Individual resources are identified in requests, for
example, using URIs in web-based REST systems. The resources are
conceptually separate from the representations that are returned to the client.
 Manipulation of resources through these representations: When a client
holds a representation of a resource, including any metadata attached, it has
enough information to modify or delete the resource on the server, provided it
has permission.
 Self-descriptive messages: Each message includes enough information to
describe how to process the message. Responses also explicitly indicate their
cache ability.

An important concept in REST is the existence of resources (sources of specific
information), each of which is referenced with a global identifier (such as a URI in
HTTP). In order to manipulate these resources, components of the network (user
agents and origin servers) communicate via a standardized interface (such as HTTP)
and exchange representations of these resources (the actual documents conveying the
information).
Any number of connectors (clients, servers, caches, tunnels, etc.) can mediate the
request, but each does so without “seeing past” its own request (referred to as

131



layering, another constraint of REST and a common principle in many other parts of
information and networking architecture). Thus, an application can interact with a
resource by knowing two things: the identifier of the resource and the action required.
The application does not need to know whether there are caches, proxies, gateways,
firewalls, tunnels, or anything else between it and the server actually holding the
information. The application must understand the format of the information
(representation) returned, which is typically an HTML, XML, or JSON document of
some kind, although it may be an image, plain text, or any other content. The document
model in XML and JSON is described in Chapter 4, “Operational Model.”

System Access: Authentication, Authorization, and RBAC
The Cisco APIC supports both local and external authentication and authorization
(TACACS+, RADIUS, Lightweight Directory Access Protocol [LDAP]) as well as
role-based administrative control (RBAC) to control read and write access for all
managed objects and to enforce Cisco ACI administrative and per-tenant
administrative separation as shown in Figure 3-35. The APIC also supports domain-
based access control, which enforces where (under which subtrees) a user has access
permissions.

132



Figure 3-35 Authentication, Authorization, and RBAC

Summary
The Cisco ACI policy model enables the configuration and management of a scalable
architecture of network and service objects. The policy model provides robust
repeatable controls, multitenancy, and minimal requirements for detailed knowledge of
the underlying network infrastructure as this information is known by the Cisco APIC.
The model is designed for multiple types of data centers including private and public
clouds.
ACI provides a logical model for laying out applications, which is then applied to the
fabric by Cisco APIC. It helps to bridge the gaps in communication between
application requirements and the network constructs that enforce them. The Cisco

133



APIC model is designed for rapid provisioning of applications on the network that can
be tied to robust policy enforcement while maintaining a workload-anywhere
approach.
The Cisco APIC is a modern, highly scalable distributed control system that manages
the Cisco ACI switch elements and offers policy-driven network provisioning that is
implicitly automated. The APIC is designed to accomplish all of this while remaining
out of the data path, thus allowing extremely high performance of Cisco ACI.

134



Chapter 4. Operational Model

RFC 3535 (http://tools.ietf.org/html/rfc3535) is an informational RFC initiated in
2002 that captures the status of the industry in terms of network management and the
requests of operation teams to networking gear manufacturers. The document
highlights the shortcomings of existing technologies such as the Simple Network
Management Protocol (SNMP) and the command-line interface (CLI). It also calls for
networks to be configured as a whole, and for configurations to be text based so that
revision control can be easily applied to them with tools such as Apache Subversion
(SVN), Mercurial, or Git.
CLIs are great tools for interactive changes to the configuration, but they are not
designed for automation, ease of parsing (CLI scraping is neither efficient nor
practical), or customization. Furthermore, CLIs don’t have the capability to compete
with the power of parsing, string manipulation, and the advanced logic that
sophisticated scripting languages such as Python can offer.
The operational model introduced by Cisco Application Centric Infrastructure (ACI)
technology is intended to address the network management requirements described in
RFC 3535. An operator can configure Cisco ACI using specialized scripts or
graphical user interfaces that execute Representational state transfer (REST) calls.
This operational model is designed to replace or complement the traditional CLI.
This chapter covers the key technologies and tools that new administrators and
operators need to be familiar with to work in a Cisco ACI environment, and it
explains how those tools and technologies are used in a Cisco ACI–based data center.

Introduction to Key Technologies and Tools for Modern
Data Centers
In a data center based on the Cisco ACI fabric, the operator can use

 The Graphical User Interface
 Custom Python scripts that perform complex operations on the entire fabric
 Native REST calls via tools such as Postman

The administrator of a modern data center must be familiar with the following:
 REST: RESTful APIs used with an Extensible Markup Language (XML) or
JavaScript Object Notation (JSON) payload have become the preferred web
service model, replacing previous models such as SOAP and WSDL. Modern
controllers such as the Cisco APIC can be managed entirely via REST calls.
 Python: Python is becoming one of the preferred scripting languages for

135

http://tools.ietf.org/html/rfc3535


operations including data center management and configuration.
 Git (or similar tools): Git is a revision control system built to facilitate
distributed software development. Git is used by enterprises to manage
revisions of configuration scripts.

Network Management Options
The networking industry has developed various approaches to network management.
Table 4-1 outlines the differences among the industry’s network management
technologies and protocols that are currently used the most: REST, Network
Configuration Protocol (NETCONF), and Simple Network Management Protocol
(SNMP).

Table 4-1 Comparison of REST, NETCONF, and SNMP

The following are the key requirements for management protocols as expressed in
RFC 3535:

 The payload must be human readable.
 The payload must be text based for ease of revision control.
 Transactions must follow the ACID rules: they must be atomic, consistent,
independent, and durable.

The Cisco ACI implementation is based on REST, which meets the first two
requirements in the list. Cisco ACI is designed to ensure that transactions meet the
ACID rules.

REST Protocol
A RESTful web service (also called a RESTful web API) is implemented using HTTP
and the principles of REST. A RESTful web service is a collection of resources that
includes the following:

 The base universal resource identifier (URI) for the web service, such as
https://<IP of controller>/resources/.
 The Internet media type of the data supported by the service, typically XML or

136



JSON.
 The set of operations supported by using the HTTP methods GET, POST, and
DELETE. Standard HTTP requests have the following semantics:

 POST: Used to perform configurations. Target domain name, class, and
options specify roots of subtrees at which modifications are applied. Data
carried in the request is in the form of structured text (XML or JSON)
subtrees.
 DELETE: Used to delete objects; for example, to delete configurations.
 GET: Used to perform queries. It specifies the retrieval of objects in the
scope of the URL.

The typical sequence of configuration is shown in the following steps:
Step 1. Authenticate: Call https://<IP of controller>/login.xml with a payload that

in XML could look similar to <user name='username' pwd= 'password'/>.
This call returns a cookie value that the browser uses for the next calls.

Step 2. Send HTTP POST to apply the configuration: The URL of the POST
message varies depending on the object; for example: https://<IP of
controller>/api/mo/uni.xml, where api indicates that this call is to the API,
mo indicates that this call is to modify a managed object, uni (universe)
refers to the root of the object tree, and .xml indicates that the payload is in
XML format. If the end of the URL were .json, that would mean that the
payload is in JSON format.

Step 3. Verify the HTTP status code: You want a response of 200 OK.
Most automation tools include the native capability to perform REST calls and use
XML or JSON payloads. This makes it easy to integrate REST-capable network
devices into an automation workflow.
Various tools enable you to test REST calls individually. One convenient tool is
Postman (http://www.getpostman.com). Postman makes sending REST calls easy: just
choose the HTTP method (POST, DELETE, or GET), enter the URL, enter the XML
payload, and click the Send button to send the post to the controller. You can also use
Python (or any other scripting language) by creating a simple script that transforms
XML files into REST calls, or you can use a software development kit (SDK) that
makes REST calls directly.

137

http://www.getpostman.com


XML, JSON, and YAML
XML and JSON are formats to structure data. Both enable you to serialize objects for
the purpose of transferring data (name/value pairs) between clients and servers. Their
structuring formats differ in their syntax and how they provide a representation of such
things as hierarchy and arrays of data.
The XML format is very similar to HTML.
The JSON format has the following characteristics:

 Each object is delimited by curly brackets.
 Key-value pairs are separated by a colon (:).
 Arrays are enclosed in square brackets and a comma follows each element of
the array.

Note
For additional information on the JSON syntax, visit http://json.org/.

Examples 4-1 and 4-2 show the same tenant configuration in the Cisco ACI fabric in
XML format and JSON format, respectively. The configuration creates a tenant called
NewCorp in a bridge domain called bridgedomain1.

Example 4-1 Tenant Configuration in Cisco ACI Formatted in XML

Click here to view code image

<fvTenant descr="" dn="uni/tn-NewCorp" name="NewCorp" >
  <fvCtx name="router1" >
  </fvCtx>
  <fvBD arpFlood="no" descr="" mac="00:22:BD:F8:19:FF"
name="bridgedomain1"
  unicastRoute="yes" unkMacUcastAct="proxy" unkMcastAct="flood">
     <fvRsCtx tnFvCtxName="router1"/>
  </fvBD>
</fvTenant>

Example 4-2 Tenant Configuration in Cisco ACI Formatted in JSON

Click here to view code image

{

138

http://json.org/


    "fvTenant": {
        "attributes":{
            "dn":"uni/tn-NewCorp",
            "name":"NewCorp"
        },
        "children":[
            {
                "fvCtx":{
                    "attributes":{
                        "name":"router1"
                    }
                }
            },
            {
                "fvBD":{
                    "attributes":{
                        "arpFlood":"no",
                        "name":"bridgedomain1",
                        "unicastRoute":"yes"
                    },
                    "children":[
                        {
                            "fvRsCtx":{
                                "attributes":{
                                    "tnFvCtxName":"router1"
                                }
                            }
                        }
                    ]
                }
            }
        ]
    }
}

YAML defines a format that is as powerful as JSON or XML in that it enables you to
create hierarchical structures, arrays, and so on, but it is more compact and human-
readable than JSON and XML.
Example 4-3 shows a configuration file formatted in YAML, which defines “tests” as
an array of two elements, where each element includes three key-value pairs.

Example 4-3 Using YAML Format for Configuration Files

Click here to view code image

139



host:   192.168.10.1:7580
name:   admin
passwd: password

tests:
    - type: xml
      path:  /api/node/mo/.xml
      file: tenant1.xml

    - type: xml
      path:  /api/node/mo/.xml
      file: application.xml

REST calls used to perform configurations in Cisco ACI carry either an XML-
formatted payload or a JSON-formatted payload.
This chapter describes the use of YAML to format text files used as configuration files
for Python scripts.

Python
This chapter isn’t intended to be a comprehensive guide on Python. For most
operators, the minimum knowledge of Python required may be to simply type

python code.py

But because you may want to either create a customized script or modify an existing
one using Python, this section gives you an overview of Python and provides some
basic knowledge in case you haven’t used Python before.
Python is an interpreted programming language; it is not compiled into a standalone
binary code. It is translated into bytecode that is automatically executed within a
Python virtual machine. Python also offers a prompt from which to execute scripts in
an interactive manner via the interpreter. This feature is useful for testing each
individual line of a script. When you run the interpreter by invoking python from the
prompt, you get this prompt: >>>. Because the examples in this chapter are often
based on the use of the interpreter, all configuration lines that start with >>> refer to
the use of the Python interpreter.

Python Basics
A good place to start learning Python is the online tutorial at
https://docs.python.org/2/tutorial/inputoutput.html.
The following are some of the key characteristics of Python scripting:

140

https://docs.python.org/2/tutorial/inputoutput.html


 Indentation is mandatory.
 It is case sensitive.
 Python doesn’t distinguish between “D” and ‘D’.
 Comments start with #.
 Libraries in Python are called modules.
 The typical script starts with import followed by the modules that are needed.
 The module named sys is almost always needed because, among other things, it
provides the capability to parse the command-line options with sys.argv[1],
sys.argv[2], and so on.
 You don’t need to declare the type of variables because this is done dynamically
(you can check the type by using the command type(n)).
 It’s possible to define new functions with the command def function (abc).
 Python offers data structures that make data handling very convenient: lists,
tuples, dictionaries (dict).
 Python checks errors at run time.

Where Is the main() Function?
In Python, there’s no strict need for a main() function. But in a well-structured script,
you may want to define the equivalent of a main() function as follows. Python invokes
standard methods, which are defined with a double underscore (__) at the beginning.
One example of such methods is __main__. When you call the Python script directly,
__name__ is set to __main__. If this function is imported, then __name__ takes the
name of the filename of that module.

def main()
if __name__ == '__main__':
  main()

Functions Definition
Basic functions in Python are created by using the keyword def, as shown in Example
4-4.

Example 4-4 Defining a Function

Click here to view code image

def myfunction (A):
  If A>10:

141



   Return "morethan10"

  If A<5:
    Return "lessthan5"

The import math command brings the module math into the current script. Use the
command dir to see which classes and methods are defined in this module, as shown
in Example 4-5.

Example 4-5 Importing a Module

Click here to view code image

>>> import math
>>> dir (math)
['__doc__', '__name__', '__package__', 'acos', 'acosh', 'asin',
'asinh', 'atan',
'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees',
'e', 'erf',
'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod',
'frexp', 'fsum',
'gamma', 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',
'log10', 'log1p',
'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan',
'tanh', 'trunc']
>>> math.cos(0)
1.0

You can import a specific function or method from a module; for example, from the
argparse module, you can import the ArgumentParser function. In this case, you can
invoke the function by its name directly without having to prepend the name of the
module; in other words, you can call ArgumentParser instead of argparse.
ArgumentParser.

Useful Data Structures
Python offers several types of data structures:

 Lists: A list is a number of connected items. For example the list a: a= [1, 2, 3,
4, 'five', [6, 'six']]. You can modify an element of a list; for instance, you can
change a[0] from the value of 1 to “one” by entering a[0]='one'.
 Tuples: A tuple is similar to a list but cannot be modified: for example, a=(1, 2,
3, 4, 'five').

142



 Dictionaries: A dictionary is a collection of key-value pairs; for instance, you
can define protocols = {'tcp': '6', 'udp': '17'}.
 Sets: A set is an unordered list of elements; for instance, you can define
protocols = {'tcp', '6', 'udp', '17'}.
 Strings: A string is a linear sequence of characters, words, or other data; for
instance, you can define 'abcdef'.

Example 4-6 shows a list.

Example 4-6 List

Click here to view code image

>>> a = [1, [2, 'two']]
>>> a
[1, [2, 'two']]
>>> a[0]
1
>>> a[-1]
[2, 'two']

The following configuration shows a dictionary:
Click here to view code image

>>> protocols = {'tcp': '6', 'udp': '17'}
>>> protocols['tcp']
'6'

Example 4-7 shows a set.

Example 4-7 Set

Click here to view code image

>>> a = {'a', 'b', 'c'}
>>> a[0]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing

Strings offer the option to concatenate string elements by using %s, which can be used
regardless of whether the variables are numbers or strings. For instance, if a=10, then

143



“foo%s“%a is Foo10.
You can perform sophisticated operations on strings. You can index individual
elements, or select ranges of elements. Example 4-8 shows a string.

Example 4-8 String

Click here to view code image

>>> a ='abcdef'
>>> a[3]
'd'
>>> a[4:]
'ef'

Parsing Files
Parsing the content of files is made simple by using libraries offered by Python. The
content of files (for instance, configuration files) can be parsed into a dictionary or a
list depending on the configuration needs. A common human-readable format is
YAML. One can import YAML libraries and parse files using existing functions.

Note
More information can be found at
https://docs.python.org/2/library/configparser.html.

Example 4-9 shows how Python parses a YAML-formatted file into a dictionary. It
shows the use of YAML parsing modules in Python.

Example 4-9 Using YAML Libraries

Click here to view code image

>>> import yaml
>>> f = open('mgmt0.cfg', 'r')
>>> config = yam.safe_load(f)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'yam' is not defined
>>> config = yaml.safe_load(f)
>>> config
{'leafnumber': 101, 'passwd': 'ins3965!', 'name': 'admin', 'url':

144

https://docs.python.org/2/library/configparser.html


  'https://10.51.66.243', 'IP': '172.18.66.245', 'gateway':
'172.18.66.1/16'}

YAML is not included by default in Python, so you need to install this library
separately.
Python offers the capability to easily parse JSON-formatted files
(https://docs.python.org/2/library/json.html). Example 4-10 shows the use of JSON
parsing modules in Python.

Example 4-10 Using JSON-Formatted Files

Click here to view code image

{
  "name" : "ExampleCorp",
  "pvn"  : "pvn1",
  "bd"   : "bd1",
  "ap"   : [ {"name" : "OnlineStore",
              "epgs" : [{"name" : "app"},
                        {"name" : "web"},
                        {"name" : "db"}
                       ]
            }
           ]
}

>>> import json
>>> f = open('filename.json', 'r')
>>> dict = json.load(f)
>>> dict
{u'bd': u'bd1', u'ap': {u'epgs': [{u'name': u'app'}, {u'name':
u'web'}, {u'name':
u'db'}], u'name': u'OnlineStore'}, u'name': u'ExampleCorp',
u'pvn': u'pvn1'}
>>> dict['name']
u'ExampleCorp'

Verifying Python Scripts
Python code is not compiled, so you discover errors in the code when the code is
executing. You can use pylint <file name> | grep E to find errors before you execute
the code. You can install Pylint with pip as follows:

145

https://docs.python.org/2/library/json.html


sudo pip install pylint

The errors start with the letter E.

Where to Run Python
Support for Python varies depending on the host operating system that you are running.
If, for example, you have an Apple OS X–based machine, Python support is built-in.
All the examples in this chapter are based on the use of Python on an Apple MacBook.
If you are using an OS X machine, you may need to install Xcode
(https://developer.apple.com/xcode/). Many operating systems support python, but
they are not covered.

Pip, EasyInstall, and Setup Tools
In general, it is convenient to have pip installed to install other Python packages,
known as eggs. Think of an egg as being similar to a Java JAR file.
If you need to run Python on a Linux machine, use yum or apt-get to install the Python
setup tools (https://pypi.python.org/pypi/setuptools or wget
https://bootstrap.pypa.io/ez_setup.py -O - | sudo python), then use easy_install
(which is part of the setup tools) to install pip, and then use pip to install other
packages:

 yum (or apt-get) install python-setuptools
 easy_install –i http://pypi.gocept.com/simple/ pip

If you run Python on an OS X machine, first install Homebrew (http://brew.sh/) to
install the setup tools, then use Homebrew or easy_install to install pip, and then use
pip to install Python packages.
In the case of the Python egg for ACI, use easy_install to install it.

Which Packages Do I Need?
Python calls libraries modules. Some modules are installed by default, while others
come as part of packages. The common tool used to install Python packages is pip
(https://pypi.python.org/pypi/pip), with the syntax pip install –i <url>.
This is a list of common packages that you should install:

 CodeTalker: https://pypi.python.org/pypi/CodeTalker/0.5
 Websockets: https://pypi.python.org/pypi/websockets

This is a common list of libraries that you need to import in Python:
 import sys
 import os

146

https://developer.apple.com/xcode/
https://pypi.python.org/pypi/setuptools
https://bootstrap.pypa.io/ez_setup.py
http://pypi.gocept.com/simple/
http://brew.sh/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/CodeTalker/0.5
https://pypi.python.org/pypi/websockets


 import json
 import re
 import yaml
 import requests

The following configuration shows how to set the path in a Python script so that it can
find the proper libraries:
Click here to view code image

sys.path.append('pysdk')
sys.path.append('vmware/pylib')
sys.path.append('scvmm')

virtualenv
Virtual Env is a way to create separate Python environments with different packages
installed. Imagine that you need to run Python applications that have different
dependencies. One application requires library version 1, and the other requires
library version 2, so you need to choose which version to install. Virtual Env scopes
the installation of the packages to individual and separate Python environments so that
you don’t have to choose.

Note
Additional information about Virtual Env is available at
https://pypi.python.org/pypi/virtualenv.

Example 4-11 shows how to create a new virtualenv. First, install virtualenv with
sudo pip install virtualenv. Next, virtualenv cobra1 creates a virtual environment
called cobra1. Enter cobra1 by using cd cobra1, and then activate it with source
bin/activate. You now can install packages that are specific to this environment. If you
want to leave the virtual environment, just enter deactivate.

Example 4-11 Creation of a Virtual Environment

Click here to view code image

prompt# sudo pip install virtualenv
prompt# virtualenv cobra1
prompt# cd cobra1
prompt# source bin/activate
(cobra1)prompt# pip install requests

147

https://pypi.python.org/pypi/virtualenv


[...]
(cobra1)prompt# deactivate

You can run Python scripts with this virtual environment from any folder on the host. If
you want to switch to a different virtual environment, use source
<newvenv>/bin/activate, then run the scripts, and then enter deactivate.
You can also compress the virtual environment with tar and share it with other
administrators.

Git and GitHub
Centralized version control systems have been available since the early days of
software development. Distributed version control systems are newer to the market, so
you may be more familiar with the centralized type of system. Git is a distributed
version/revision control system. Because Git is one of the most popular version
control systems currently in use, every network administrator should be familiar with
its key concepts.
Revision control is used for managing software development projects or
documentation.
GitHub is a Git-based repository that offers a cloud-based centralized repository.
Cisco has several repositories on GitHub. You can find the Cisco ACI repository at
https://github.com/datacenter/ACI.

Basic Concepts of Version Control
The following are some of the key services of a version control system:

 Synchronization of the changes performed on the same code by different
developers
 Tracking of the changes
 Backup and restore capabilities

Key terminology that you should be familiar with includes the following:
 Repository (repo): Where the files are stored
 Trunk, master, main, or mainline: The main location of the code in the
repository
 Working set: The local copy of the files from the central repository

Version control systems are used in networking to control the development of scripts
that will be used to manage the network. As a network administrator, you need to be
able to perform the following key version control system operations:

148

https://github.com/datacenter/ACI


 Cloning a repository or checking out; for example, creating a local copy of the
entire repository
 Pulling from a repository or rebasing; for example, updating the local repository
with the changes from the central repository
 Adding a new file to a repository (if permitted)
 Pushing changes (checking in or committing) to the central repository (if
permitted): for example, sending the modifications that you performed on your
local copy of the script back to the main repository

If you contribute changes to the main repository, your changes will conflict with other
administrators’ changes or with the existing repository, and those conflicts will have to
be resolved before your changes are merged and become effective.

Centralized Versus Distributed
Popular version control systems such as Apache Subversion (SVN) use a centralized
repository, which means that after you make changes to a local copy of the main code
and want to check in those changes, you need to be online and connected to the
centralized repository. In a distributed version control system such as Git or
Mercurial, each developer has a local copy of the central repository and makes local
commits before pushing the changes to the central repository. This offers the advantage
of having a local system with the history of the changes and enabling the developer to
defer synchronizing the changes to the central repository. Clearly, if many people are
contributing to the same code, it is practical to rebase the local copy frequently so that
only minor conflicts have to be resolved before the commit to the central repository.
Enhanced patching is among the improvements that Git has brought to the development
of code. Previously, after a developer made local changes to the code on his machine,
the patch process required the developer to use the diff utility to create a file showing
the changes between the new code and the original code, and then send the file as an
email attachment to the owner of the code so that the owner could review and apply
the changes. Git solves this problem by having on the main repository a fork (now
called a repository mirror) of the central code to which the developer can push
changes. This generates a “pull request,” which is then handled by the person who
owns the main repository.
In most cases, you would work with a central repository from which all the people on
the team pull changes, but Git also provides the capability to work with a fully
distributed version control system without a central repository.

149



Overview of Basic Operations with Git
As a network administrator, you won’t need to manage sophisticated handling of
branches, but you should know how to get a local copy of the scripts that Cisco makes
available and keep them up to date. You might even want to contribute improvements
to the central repository of the community.
If your company has a local repository of scripts, you may need to maintain a revision
control system to synchronize changes to these scripts across multiple operators. If so,
you need to be familiar with the following key operations:

 Get a local copy of a central repository: git clone
 Add files to a local repository: git add
 Update the local repository: git pull
 Upload to the central repository: git push
 Execute a local commit: git commit

The changes that you perform on the scripts daily are done on what is called a
workspace. The local commits are saved in the local repository.
Figure 4-1 illustrates a very simplified view of Git operations.

Figure 4-1 Simplified View of Git Operations

150



Installing/Setting Up Git
Git installation procedures vary depending on the platform. For instance, the
installation command would be something like yum install git or apt-get install git
depending on the OS distribution.
Configure your username and email address with git config, and this configuration
information is stored in the ~/.gitconfig file.
Create a directory that you want to be the local repository on your computer by using
the following configuration:

mkdir <directory name>
git init

Key Commands in Git
To get started, first clone a repository to your computer as shown in the following
configuration:
Click here to view code image

git clone git+ssh://<username>@git.company.local:port/folder

As the command indicates, Git can use SSH to connect to the repository. Alternatively,
it can use HTTP/HTTPS, as shown in the following configuration:
Click here to view code image

git clone https://github.com/datacenter/ACI

The clone command also adds a shortcut called origin to link to the main repository.
After you modify local files on your workspace, you save the changes in the local
copy of the repository by “staging” the file with git add and saving it into the local
repository with git commit, as shown in the following configuration:

git add <file name>
git commit

You also use git add to add new files to the repository.
The git commit command doesn’t change the centralized repository (aka trunk or
mainline). It saves changes on your local machine.
After several commits, you may want to upload your changes to the central repository.
Before you do so, to avoid conflicts with other changes that may have occurred on the
remote repository since you cloned or pulled it, rebase the local copy first, using
either of these configurations:
Click here to view code image

151



git pull --rebase origin master

or

git fetch origin master
git rebase -i origin/master

where origin refers to the remote repository, master indicates that git is asking the
local repository to appear as master, and the interactive rebase lets you fix the
conflicts.
After you merge the changes from the remote repository and the local changes, use the
following command to upload the changes to the remote repository:

git push origin master

Operations with the Cisco APIC
With Cisco ACI, administrators configure modern data center networks by using a mix
of CLI commands, REST calls, and Python scripting, as illustrated by Figure 4-2.

Figure 4-2 Cisco APIC Northbound and Southbound Interfaces

With Cisco ACI, the user defines configurations on the Cisco APIC controller in
several ways:

 Using REST calls with XML- or JSON-formatted payloads that are sent to the
Cisco APIC. These can be sent in many ways, using tools such as Postman or
Python scripts that send REST calls.

152



 Using a custom-built graphical user interface that sends REST calls.
 Using the CLI to navigate the object model from the Cisco APIC.
 Using Python scripts that use the associated Cisco ACI libraries.

Each tool has its areas of strength and weakness, but the following is most likely how
different teams use the tools:

 GUI: Mainly used for infrastructure administration and for monitoring and
troubleshooting purposes. It is also used to generate templates.
 CLI on Cisco APIC: Mainly used to create shell scripts and to troubleshoot.
 POSTMAN and other REST tools: Mainly used for testing and to define
configurations to be automated.
 Scripts based on XML, JSON, and REST calls: Simple scripts for the
operator to perform CLI-like operations without the need to really understand
Python.
 Scripts based on the software development kit (SDK): Simple scripts for the
operator to perform feature functionalities without the need to wait for a
software release to provide the automated results desired.
 PHP and web pages with embedded REST calls: Mainly used to create simple
user interfaces for operators or IT customers.
 Advanced orchestration tools such as Cisco Intelligent Automation for
Cloud or UCS Director: Used for end-to-end provisioning of compute and
network.

Object Tree
Everything in the Cisco ACI infrastructure is represented as a class or a managed
object (abbreviated “MO”). Each managed object is identified by a name and contains
a set of typed values, or properties. For instance, a given tenant is an object of the
same type and with a specific name, such as Example.com. A routing instance in the
fabric is an object, as is a port on a switch. Objects can be concrete (labeled “C” in
the Cisco APIC REST API User Guide) or abstract (labeled “A” in the Cisco APIC
REST API User Guide); a tenant, for instance, is an abstract object, while a port is a
concrete object.
All configurations in Cisco ACI consist of creating such objects, modifying their
properties, deleting the objects, or querying the tree. For instance, to create or
manipulate objects, you use REST calls with a URL of this type: https://<IP of the
controller>/api/mo/uni/.xml. To perform an operation on a class, use a REST call with
a URL of this type: https://<IP of the controller>/api/class/uni/.xml. You navigate the

153



object data store (that is, the current tree saved in the distributed database) with a tool
called Visore, which is accessible by pointing your browser to the APIC controller
with the following URL: https://<hostname>/visore.html.
Visore is an object browser; as such, it lets you query the tree for classes or objects.
For instance, you can enter the name of a class such as tenant and get the list of
instances of this class (that is, the specific tenants that you instantiated). Or, if you can
enter the distinguished name of a particular tenant object, you get the information about
that specific tenant. An example of Visore is depicted in Figure 4-3.

Figure 4-3 Visore

Classes, Objects, and Relations
Managed object instances can contain other instances, forming a parent-child
relationship as part of a tree, known as the Managed Information Tree (MIT). Figure
4-4 provides a high-level view of the object tree organization. At the root is “the class
universe.” Next are the classes that belong to the infrastructure (that is, physical
concepts such as ports, port channels, VLANs, etc.) and classes that belong to logical
concepts (such as the tenant, networks within the tenant, etc.).

154



Figure 4-4 Hierarchy of the Object Model
To create or manipulate objects, you send REST calls that identify the resources by
their distinguished name (DN) or by their relative name (RN). A DN identifies a
managed object directly, while an RN identifies an object by reference to its parent
object. A switch port is the child of a line card, which is the child of a switch, which
is a child of the root class. As an example, the RN for a particular port is Port-7 and
its DN is /Root/Switch-3/Linecard-1/Port-7.

Note
You can find the list of packages and all the classes by exploring the
APIC API Model Documentation on the APIC controller itself (this link
provides the instructions:
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-
x/api/rest/b_APIC_RESTful_API_User_Guide.html).

All classes are organized as members of packages. Cisco ACI defines, among others,
the following packages:

 Aaa: user class for authentication, authorization, accounting
 fv: fabric virtualization
 vz: virtual zone

Figure 4-5 illustrates the list of classes that are part of the package fv.

155

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/api/rest/b_APIC_RESTful_API_User_Guide.html


Figure 4-5 The APIC Management Information Model Reference
The class for tenant is named fv:Tenant, where fv indicates the package that the class
belongs to. The distinguished name of a tenant is uni/tn-[name], where uni is the class
universe and tn stands for target name. Figure 4-6 illustrates the information that you
find for the class tenant in the API APIC Model Documentation, which shows the
relationship of the class tenant with the other classes. The vrf/routing information
(Ctx) is a child of the class tenant.

156



Figure 4-6 Tenant Class
You can explore the object data store for the class tenant by entering the string
fvTenant (without a colon) in the search field (labeled “Class or DN”) of Visore.
The relationship is expressed in XML format following a template that resembles
Example 4-12.

Example 4-12 XML Format

Click here to view code image

<zzzObject property1 = "value1",
      property2 = "value2",
      property3 = "value3">
     <zzzChild1 childProperty1 = "childValue1",
          childProperty2 = "childValue1">
       </zzzChild1>
 </zzzObject>

It is not possible to express all object relationships simply by using the parent-child
relationship. Some objects are not related in terms of parent-child relationship but
depend on each other. The dependency between two such objects is expressed in terms
of a relation. All managed objects that express a relationship between classes or
objects that is not a parent-child relationship are prefixed with Rs, which stands for

157



relation source: {SOURCE MO PKG}::Rs{RELATION NAME}.
Figure 4-7 illustrates the model for the class infra from package infra.

Figure 4-7 The Infra Class
Example 4-13 shows an object called the selector.
The configuration in Example 4-13 shows a selector for leaf 101 and a reference to a
selection of ports on this leaf (port 1 and port 2). NodeP is a class that is a child of
class infra (hence infraNodeP). The name of the object that selects leaf101 is
“leaf101” (an arbitrary name chosen by the administrator). The object LeafS is a
selector of switches that are children of the class NodeP. Furthermore, RsAccPortP
defines a relation to the port selector that has been instantiated as “port1and2”
(arbitrary name chosen by the admin).

Example 4-13 Object NodeP in XML Format

Click here to view code image

<infraInfra dn="uni/infra">
[...]
   <infraNodeP name="leaf101 ">
      <infraLeafS name="line1" type="range">
         <infraNodeBlk name="block0" from_="101" to_="101" />
      </infraLeafS>

158



      <infraRsAccPortP tDn="uni/infra/accportprof-port1and2 " />
   </infraNodeP>
[...]
</infraInfra>

Figure 4-8 illustrates the relationship between the classes. The solid line indicates a
parent-child relationship and the dashed line indicates a relation.

Figure 4-8 NodeP Class

Naming Conventions
Using the API APIC Model Documentation, you can find the exact naming rules. These
are some of the common naming rules:

 MO: Managed Object (i.e., a class)
 PKG: Package (collection of classes)
 vz: virtual zone
 Br: Binary
 CP: Contract Profile
 fv: fabric virtualization
 AEPg: application endpoint group

159



 Rs: relation source
 Cons: consumer

Class names are expressed as package:class.

Object Store
The object store is a distributed database that runs on the APIC controller and stores
key-value pairs with relational and tree capabilities. The object store can be viewed
as multiple independent databases. The object store exposes all the state of the system
in a formalized way according to the information model.

Using REST to Program the Network
The Cisco ACI management model is designed for automation. Every configurable
element is part of the object tree known as the Management Information Tree (MIT).
The networking elements in Cisco ACI can be configured using the GUI, REST calls,
or a CLI that operates on the managed objects.
The typical sequence of configuration is as follows:

Step 1. Authenticate: Call https://<IP of APIC controller>/api/mo/aaaLogin.xml
with a payload that in XML is <aaaUser name='username'
pwd='password'/>. This call returns a cookie value that the browser uses
for the next calls.

Step 2. Send HTTP POST to apply the configuration: The URL of the POST
message varies depending on the object; for example: https://<IP of APIC
controller>/ /api/mo/uni.xml, where api indicates that this call is to the API,
mo indicates that this call is to modify a managed object, uni (universe)
refers to the root of the object tree, and .xml indicates that the payload is in
XML format. If the end of URL were .json, that would mean that the payload
is in JSON format.

Step 3. Verify the HTTP status code: You want a response of 200 OK.
With REST calls, the configuration is defined in the XML or JSON payload. The XML
or JSON syntax/format depends on the controller object model. You can find examples
for the Cisco Nexus 9000 and ACI on Github.
The following configuration shows a REST call to create a “tenant” (or virtual data
center) with APIC:
Click here to view code image

HTTP POST call to https://ipaddress/api/node/mo/uni.xml
XML payload: <fvTenant name='Tenant1' status='created,modified'>

160



</fvTenant>

You can also use REST calls to delete objects by using the HTTP method DELETE or
by using "status="deleted" with a POST call, as shown in Example 4-14.

Example 4-14 Deleting Objects with REST Calls

Click here to view code image

method: POST
url: http://<APIC IP>/api/node/mo/uni/fabric/comm-foo2.json
payload {
                "commPol":{
                   "attributes":{
                       "dn":"uni/fabric/comm-foo2",
                       "status":"deleted"
                    },
                  "children":[]
                }
              }

Tools to Send REST Calls
A simple way to perform configurations via REST calls is by using the tool called
POSTMAN. Figure 4-9 shows how to use POSTMAN with the Cisco APIC.

Figure 4-9 Sending a REST Call with POSTMAN
The first call you want to place is the Authentication call, with which you provide
your username and password to the controller. Subsequent calls reuse the cookie token
that you receive from the controller. Figure 4-9 also illustrates the configuration

161



controls that POSTMAN offers. To place a call, you simply need to enter the URL of
the resource as indicated, select the POST method, and fill the payload field with the
XML- or JSON-formatted configuration.
Example 4-15 shows portions of a script, xml2REST.py, that takes as input the Domain
Name System (DNS) name or IP address of the server and the name of a text file that
includes the XML configuration settings.

Example 4-15 Python Script to Send REST Calls

Click here to view code image

#!/usr/bin/python
[...]

def runConfig( status ):
            with open( xmlFile, 'r' ) as payload:
                if( status==200):
                    time.sleep(5)
                else:
                    raw_input( 'Hit return to process %s' %
xmlFile )
                data = payload.read()
                url = 'http://%s/api/node/mo/.xml' % apic
                r = requests.post( url, cookies=cookies,
data=data )
                result = xml.dom.minidom.parseString( r.text )
                status = r.status_code
try:
    xmlFile = sys.argv[1]
except Exception as e:
    print str(e)
    sys.exit(0)
apic = sys.argv[2]
auth = {
    'aaaUser': {
        'attributes': {
            'name':'admin',
            'pwd':'P@ssw0rd'
            }
        }
    }
status = 0
while( status != 200 ):
    url = 'http://%s/api/aaaLogin.json' % apic

162



    while(1):
        try:
            r = requests.post( url, data=json.dumps(auth),
timeout=1 )
            break;
        except Exception as e:
            print "timeout"
    status = r.status_code
    print r.text
    cookies = r.cookies
    time.sleep(1)
runConfig( status )

Alternatively, if you want to perform a CLI-based configuration from your desktop to
the controller, you can also use cURL or wget, as shown in Example 4-16, where the
first REST call is used to provide a token cookie, which is saved in a text file and then
reused in later calls.

Example 4-16 Using cURL to Send REST Calls

Click here to view code image

curl -X POST http://<APIC-IP>/api/aaaLogin.xml -d '<aaaUser
name="admin"
  pwd="password" />' – cookie.txt

curl -b cookie.txt -X POST http://<APIC-IP>/api/mo/uni/tn-
finance.xml -d
  '<fvTenant />'

REST Syntax in Cisco ACI
The format for the URL to place REST calls in Cisco ACI is as follows:
http://host[:port]/api/{mo|class}/{dn|className}.{json/xml}[?options]
The following list explains the meaning of each field in the URL:

 /api/: Specifies that the message is directed to the API.
 mo | class: Specifies whether the target of the operation is a managed object
(MO) or an object class.
 dn: Specifies the distinguished name (DN) of the targeted MO.
 className: Specifies the name of the targeted class. This name is a
concatenation of the package name of the object queried and the name of the

163



class queried in the context of the corresponding package. For example, the
class aaa:User results in a className of aaaUser in the URI.
 json/xml: Specifies whether the encoding format of the command or response
HTML body is JSON or XML.

Simple operations are performed as shown in the following configuration to create a
tenant (fvTenant):
Click here to view code image

POST to http://apic1/api/mo/uni.xml
<fvTenant name='Tenant1' status='created,modified'>
</fvTenant>

Example 4-17 shows how to create an application network profile (fvAp).

Example 4-17 REST Call to Create an Application Network Profile

Click here to view code image

POST to http://apic1/api/mo/uni.xml
<fvTenant name='Tenant1' status='created,modified'>
   <fvAp name='WebApp'>
   </fvAp>
</fvTenant>

Example 4-18 shows how to add an endpoint group (fvAEPg).

Example 4-18 REST Call to Add an EPG

Click here to view code image

POST to http://apic1/api/mo/uni.xml
<fvTenant name='Tenant1' status='created,modified'>
<fvAp name='WebApp'>
   <fvAEPg name="WEB" status="created,modified"/>
</fvAp>
</fvTenant>

The syntax for class-level queries is different in that, instead of using the distinguished
name, you enter the concatenation of the package name and the class name:
Click here to view code image

<system>/api/<component>/class/<pkgName><ClassName>.[xml|json]?

164



{options}

The following list explains the meaning of each field in the URL:
 pkgName: Represents the package name of the object queried.
 className: Represents the name of the class queried in the context of the
corresponding package.
 RN: Collection of relative names forming a full DN identifying the path to the
managed object on the MIT.

The following options can be used for queries:
 query-target=[_self|children|subtree]: Specifies whether to retrieve the object
itself, children of the object, or a subtree
 target-subtree-class=[mo-class*]: Specifies the object classes to be retrieved
if query-target is other than self
 query-target-filter=[FILTER]: Specifies object filters to be retrieved if
query-target is other than self
 rsp-subtree=[no|children|full]: For objects returned, indicates whether subtree
information should be included
 rsp-prop-include=[all|naming-only|config-explicit|config-all|oper]: Specifies
what type of properties to include in the result

The format of the filter is as follows:
Click here to view code image

FILTER = OPERATOR(parameter|(FILTER)[/parameter|
(FILTER)|value[,parameter|
(FILTER)|value]...])

The supported operators are
 eq: Equality
 ne: Inequality
 lt: Less than
 gt: Greater than
 le: Less or equal
 ge: Greater or equal
 bw: Between
 Logical operators: Not, and, or, xor, true, false
 Anybit: True if at least one bit is set

165



 Allbits: True if all bits are set
 Wcard: Wildcard
 Pholder: Property holder
 Passive: Passive holder

As an example, this is a query to show all fabric ports that failed in the given data
range:
Click here to view code image

query-target-filter =
"and(eq(faultevent:type,failed),eq(faultevent:object,
fabric_port), bw(faultevent:timestamp,06-14-12,06-30-12))"

Modeling Tenants in XML
This section shows how to create a tenant with the necessary bridging domain and
routing instance. Example 4-19 shows how the tenant provides connectivity to servers
through subnets 10.0.0.1/24 and 20.0.0.1/24. The default gateway can be either
10.0.0.1 or 20.0.0.1. Servers can connect to EPG VLAN10 or EPG VLAN20.
The EPG is also created as a port group in a VMware vSphere Distributed Switch
(vDS) on VMware ESX. The virtual machine manager and Cisco APIC negotiate to
determine which VLAN or VxLAN to use for the communication in this port group.
In Example 4-19, the meaning of the fields is as follows:

 fvCtx: Indicates the routing instance
 fvBD: The bridge domain
 fvRsCtx: The pointer from the bridge domain to the routing instance
 fvSubnet: The list of subnets and default gateways for the bridge domain
 fvRsDomAtt: The reference to the virtual machine mobility domain

Example 4-19 Complete Tenant Configuration

Click here to view code image

POST to http://apic1/api/mo/uni.xml
<polUni>
    <fvTenant dn="uni/tn-Customer1" name="Customer1">
    <fvCtx name="customer1-router"/>
    <fvBD name="BD1">
       <fvRsCtx tnFvCtxName="customer1-router" />
       <fvSubnet ip="10.0.0.1/24" scope="public"/>

166



       <fvSubnet ip="20.0.0.1/24" scope="public"/>
    </fvBD>
   <fvAp name="web-and-ordering">
     <fvAEPg name="VLAN10">
       <fvRsBd tnFvBDName="BD1"/>
       <fvRsDomAtt tDn="uni/vmmp-VMware/dom-Datacenter"/>
     </fvAEPg>
     <fvAEPg name="VLAN20">
       <fvRsBd tnFvBDName="BD1"/>
       <fvRsDomAtt tDn="uni/vmmp-VMware/dom-Datacenter"/>
     </fvAEPg>
 </fvTenant>
 </polUni>

Defining the Relationship Among EPGs (Providers and Consumers)
The communication path between EPGs is managed using the concept of contracts.
Contracts define the protocols and Layer 4 ports that are used for the communication
path between two EPGs.
Example 4-20 shows how a contract defines a permit all filter, where:

 vzBrCP: Indicates the name of the contract.
 vzSubj: Refers to the subject and is the name of the container of filters, which
are similar to an ACL but more powerful in that they allow for separate inbound
and outbound filtering
 vzRsSubfiltAtt: Refers to a filter; the default filter is permit any any

Example 4-20 Definition of a Contract

Click here to view code image

 <vzBrCP name="A-to-B">
     <vzSubj name="any">
         <vzRsSubjFiltAtt tnVzFilterName="default"/>
     </vzSubj>
  </vzBrCP>

The relationship between contracts is defined according to which EPG provides the
contract and which EPG consumes the contract. Example 4-21 illustrates how EPG-A
is made to talk to EPG-B, where:

 fvRsProv: Indicates the name of the contract that EPG-A provides

167



 fvRsCons: Indicates the name of the contract that EPG-B consumes

Example 4-21 Definition of an EPG

Click here to view code image

<fvAp name="web-and-ordering">
  <fvAEPg name="EPG-A">
     <fvRsProv tnVzBrCPName="A-to-B" />
  </fvAEPg>
  <fvAEPg name="EPG-B">
     <fvRsCons tnVzBrCPName="A-to-B"/>
  </fvAEPg>
</fvAp>

A Simple Any-to-Any Policy
The configuration described in the previous section instantiates a bridge domain for
use by the tenant and a routing instance and default gateway. Servers can then be
associated with EPGs VLAN10 and VLAN20. If the servers are in the same EPG, they
can talk without any further configuration, but if they are part of different EPGs, the
administrator has to configure explicit contracts and define which EPG can talk with
which EPG.
Example 4-22 completes the previous configuration and enables any-to-any
communication among EPGs just as a conventional routing and switching
infrastructure would provide.

Example 4-22 Definition of an Any-to-Any Policy

Click here to view code image

POST to http://apic1/api/mo/uni.xml
<polUni>
   <fvTenant dn="uni/tn-Customer1" name="Customer1">
   <vzBrCP name="ALL">
     <vzSubj name="any">
       <vzRsSubjFiltAtt tnVzFilterName="default"/>
     </vzSubj>
   </vzBrCP>
   <fvAp name="web-and-ordering">
     <fvAEPg name="VLAN10">
       <fvRsCons tnVzBrCPName="ALL"/>

168



       <fvRsProv tnVzBrCPName="ALL" />
     </fvAEPg>
     <fvAEPg name="VLAN20">
       <fvRsCons tnVzBrCPName="ALL"/>
       <fvRsProv tnVzBrCPName="ALL" />
     </fvAEPg>
   </fvAp>
 </fvTenant>
 </polUni>

ACI SDK
The main reason to use Python instead of sending plain-vanilla REST calls is that
Python enables you to parse command-line options and configurations. You could use
Python with simple scripts that turn XML into REST calls, but this approach requires
formatting the XML configuration files according to the ACI object model. As a result,
if you create such a script and you want to share it with other administrators/operators,
they would have to understand the ACI object model. Ideally, you want to create
scripts with configuration files and command-line options that anybody skilled in
networking could use without having to learn the ACI object model. For this you need
a Python SDK for ACI.
The ACI SDK provides modules that enable you to perform all the operations that the
Cisco ACI fabric offers with the following advantages compared to the approach of
just using REST calls and XML configurations:

 You can use Python to parse configuration files in whichever format you prefer.
 The SDK APIs can be identical over time, while the specific format of the XML
object model may change.
 You can perform more sophisticated conditional operations, string manipulation,
and so on.

ACI Python Egg
To use the functionalities provided by the SDK, you need to install the SDK egg files
as shown in the following configuration. The filename of the egg looks like this:
acicobra-1.0.0_457a-py2.7.egg. To install this package, use setup tools and pip as
previously described.
Click here to view code image

sudo python setup.py easy_install ../acicobra-1.0.0_457a-
py2.7.egg

169



Depending on where the ACI files have been installed, you may need to indicate the
path in the Python code with the following call:
Click here to view code image

sys.path.append('your sdk path')

A good practice is to use virtualenv to create multiple Python environments with
potentially different sets of libraries installed. To do this, you need to start with the
virtualenv installation as shown in Example 4-23.

Example 4-23 Creating a Virtual Environment for Cobra

Click here to view code image

prompt# sudo pip install virtualenv
prompt# virtualenv cobra1
prompt# cd cobra1
prompt# source bin/activate
(cobra1)prompt# pip install requests
(cobra1)prompt# easy_install –Z acicobra-1.0.0_457a-py2.7.egg

Now run Python scripts from any directory on the host.

How to Develop Python Scripts for ACI
Python scripts must log in to the controller, get a token, and keep using this token to
perform the whole configuration. Example 4-24 shows the initial calls for logging in
to the fabric.

Example 4-24 Logging In to the Fabric with the SDK

Click here to view code image

import cobra.mit.access
import cobra.mit.session

ls = cobra.mit.session.LoginSession(apicurl, args.user,
args.password)
md = cobra.mit.access.MoDirectory(ls)
md.login()

After logging in, look up objects by DN or classes as shown in the following
configuration:

170



Click here to view code image

topMo=md.lookupByDn('uni')
topMp=md.lookupByClass('polUni')

A previous configuration illustrated how to create objects that perform operations
related to fabric discovery of leafs. This is not going to modify anything on the object
store of the controller until someone sends a configuration request as shown in
Example 4-25.

Example 4-25 Fabric Discovery

Click here to view code image

import cobra.model.fabric

# login as in the previous Example
#
topMo = md.lookupByDn(str(md.lookupByClass('fabricNodeIdentPol')
[0].dn)
leaf1IdentP = cobra.model.fabric.NodeIdentP(topMo, serial='ABC',
nodeId='101',
name="leaf1")
leaf2IdentP = cobra.model.fabric.NodeIdentyP(topMo, serial='DEF',
nodeId='102',
name="leaf2")
[...]
c = cobra.mit.request.ConfigRequest()
c.addMo(topMo)
md.commit(c)

Query the object tree for a particular class or object as described in Example 4-26.
The advantage of doing this is that the DN is not hard-coded.

Example 4-26 Querying with Cobra

Click here to view code image

from cobra.mit.request import DnQuery, ClassQuery
# After logging in, get a Dn of the Tenant
cokeQuery = ClassQuery('fvTenant')
cokeQuery.propFilter = 'eq(fvTenant.name, "tenantname")'
cokeDn = str(md.query(cokeQuery)[0].dn)

171



Where to Find Python Scripts for ACI
At the time of writing, Python scripts are posted on github at the following URL:
https://github.com/datacenter/ACI

For Additional Information
RFC 3535: http://tools.ietf.org/html/rfc3535
ACI Management Information Model:

http://www.cisco.com/c/en/us/support/cloud-systems-management/application-
policy-infrastructure-controller-apic/products-technical-reference-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-
policy-infrastructure-controller-apic/tsd-products-support-configure.html

Github: https://github.com/
Python: https://www.python.org/

Summary
This chapter described the new skills that administrators and operators need to have to
use Application Centric Infrastructure to configure network properties. These include
the ability to configure REST calls and the ability to use and potentially create Python
scripts. This chapter also introduced the key concepts of Python and the key formats
that are used for REST calls and for configuration files. Finally, this chapter explained
how to get started with REST configurations and the ACI SDK, and provided
examples to illustrate the concepts.

172

https://github.com/datacenter/ACI
http://tools.ietf.org/html/rfc3535
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/products-technical-reference-list.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-configure.html
https://github.com/
https://www.python.org/


Chapter 5. Data Center Design with Hypervisors

The goal of this chapter is to describe the networking requirements and design
considerations when using hypervisors in the data center.
Managing virtualized data centers poses several challenges to the network
administrator, such as:

 Because every server includes a networking component, the number of
networking components is proportional to the number of servers.
 There is little visibility of the traffic originated by virtual machines (VM)
because often the switching is performed within the server itself.
 Network configurations need to be deployed across a large number of servers
while ensuring that they fit with the mobility requirements of VMs.

Cisco provides several technologies that address the networking needs for these
environments. There are at least four different approaches to integrate VM switching
in the data center:

 Using virtual switches: Involves switching traffic with a software switch
within the server (for instance, based on the Cisco Nexus 1000V Series
Switches)
 Port extension: Entails modeling the virtual ports on a “controlling bridge”
(Virtual Networking TAG, VNTAG also found as VN-TAG)
 Endpoint group extension: Involves extending the Cisco ACI endpoint groups
into the virtualized server
 Building an overlay from the server: consists of creating an overlay network
from the virtual switch level.

Cisco ACI is designed to provide a multi-hypervisor solution, so the network
administrator must be familiar with a variety of hypervisors. This chapter illustrates
the key characteristics and naming conventions of the most popular hypervisors,
including Linux Kernel-based Virtual Machine (KVM), Microsoft Hyper-V, and
VMware ESX/ESXi, Citrix XenServer.
The approach that ACI takes with regard to switching VM traffic consists of having
virtualized servers send traffic out to the leaf of the ACI fabric for data-forwarding
purposes. This approach has the following advantages:

 The network infrastructure can be tested independently of the software, which
allows validation with known traffic-generation tools to automatically validate
the traffic forwarding for virtualized servers.

173



 This type of infrastructure offers predictable performance because traffic
forwarding involves no compute processors.

Virtualized Server Networking
Virtualized server solutions are comparable in many ways and have similar goals.
However, they use different naming conventions to reference components. This section
sheds light on the role and naming of each component.
Typical components of a given virtualized server environment consist of the
following:

 Hypervisor: The software that provides virtualization of a physical host
 Virtual machine manager: The element that manages virtual machines across
multiple virtualized hosts
 Virtual software switch: The software that provides switching for virtual
network adapters
 Endpoint group: The segmentation of a virtual switch into multiple security
zones
 Cloud orchestration: The element that provides the ability to order and
instantiate virtualized workloads and their connectivity

Table 5-1 offers a mapping between these components and the most widely used
virtualization solutions on the market.

174



Table 5-1 Virtualized Server Solution Concepts in Different Vendor
Implementations

Why Have a Software Switching Component on the Server?
Quoting from the “Transparent Bridging” section of Cisco DocWiki
(http://docwiki.cisco.com/wiki/Transparent_Bridging):

The bridge uses its [MAC address] table as the basis for traffic forwarding.
When a frame is received on one of the bridge’s interfaces, the bridge looks up
the frame’s destination address in its internal table. If the table contains an
association between the destination address and any of the bridge’s ports aside
from the one on which the frame was received, the frame is forwarded out the

175

http://docwiki.cisco.com/wiki/Transparent_Bridging


indicated port. If no association is found, the frame is flooded to all ports except
the inbound port.

Figure 5-1 represents a virtualized server with two VMs: VM1 and VM2. This server
connects to an external Layer 2 switch via an Ethernet port (whether it is Gigabit
Ethernet or 10-Gigabit Ethernet is immaterial). VM1’s MAC address is MAC1, and
VM2’s MAC address is MAC2. The switch port connecting to the virtualized server is
Ethernet1/1. The Layer 2 forwarding table (i.e., MAC address table) contains the
MAC address of each VM and the port from which it has been learned. As an
example, the switch forwards a frame whose destination MAC address is MAC1 to
port Ethernet1/1; similarly, this switch forwards a frame whose destination MAC
address is MAC2 out of port Ethernet1/1.

Figure 5-1 Topology to Explain Why vSwitches Are Necessary
Imagine now that a server needs to send traffic to VM1 as shown in Figure 5-2. The
switch simply looks up the destination MAC address in the Layer 2 forwarding table
and forwards the frame accordingly.

176



Figure 5-2 Physical-to-Virtual Communication Path
Now the VM1 sends a frame to VM2 (MAC2) as shown in Figure 5-3. The switch
looks up the destination MAC address in the Layer 2 forwarding table and finds a
match for MAC2 associated with Ethernet1/1. What do you expect to happen at this
point?

177



Figure 5-3 Virtual-to-Virtual Communication Violates Transparent Bridging Rules
Based on the rules of Layer 2 forwarding, a Layer 2 frame is never sent “back” to the
same interface where it came in. This means that the communication between VM1 and
VM2 is not possible.
Based on the previous paragraph, it should be clear that for two VMs that reside on
the same server to be able to communicate at Layer 2, an external Layer 2 switch is
not enough. In fact, an external switch is never able to switch traffic for two VMs that
are sending frames on the same physical interface (or, in other words, for two VMs
that reside on the same physical server).
The solutions to enable VM-to-VM communication are as follows:

 A virtual switch such as the Cisco Nexus 1000V or Open vSwitch
 A tag to preserve the semantics of transparent bridging and expose the virtual
machines’ virtual ports to an external bridge based, for instance, on the Cisco
VN-TAG

The above are the reasons why virtual switching exists.

Overview of Networking Components
This section covers the networking concepts that are common on most hypervisors.

178



Virtual Network Adapters
Within a virtualized server, the term network interface card (NIC) has several
meanings:

 The physical NICs of the server are the regular network adapters physically
installed on the server, sometimes referred to as pNICs or physical interfaces
(PIF).
 The virtual network adapters refer to the virtual machine NIC (called a vNIC in
VMware nomenclature), which is a “software entity” within the guest operating
system (although it can be hardware accelerated).

Some of the physical NICs that exist on a virtualized server are used for virtual
machine access to the physical network. In VMware ESX terminology, these are
referred to as vmnic(s).
A virtual switch carries the traffic between a virtual network adapter and a physical
NIC and switches traffic between virtual network adapters.
Figure 5-4 shows the physical and virtual network adapters.

Figure 5-4 Networking in a Virtualized Server

In Figure 5-4, four physical NICs are present on the server platform. The virtualized
server contains two virtual Ethernet bridges. Four VM are present, each configured
with one single virtual network adapter.

179



Virtual Switching
The virtual Ethernet bridge links local VMs to each other and to the external enterprise
network via a software construct named virtual Ethernet bridge. The virtual Ethernet
bridge or virtual switch emulates a traditional physical Ethernet network switch to the
extent that it forwards frames at the data link layer (Layer 2). The virtual switch
doesn’t run Spanning Tree Protocol (STP), yet it ensures loop-free connectivity and
traffic load distribution from the virtual servers to the upstream links.
The vSwitch has a Layer 2 forwarding table that it uses to forward traffic based on the
destination MAC address. The vSwitch forwarding table contains the MAC addresses
for the VMs and their associated ports. When a frame is destined to a VM, the vSwitch
sends the frame directly to the VM. When the destination MAC address does not exist
in the VM, or it is multicast or broadcast, the vSwitch sends the traffic out to the
physical network adapters. If multiple physical network adapters are present, virtual
Ethernet bridges implement solutions to avoid introducing loops.
In summary, a regular Ethernet switch “learns” the forwarding table based on traffic
that it sees on its ports. In a vSwitch, the forwarding table contains only the MAC
addresses of the VMs. Everything that doesn’t match the VM entries goes out to the
server NICs, including broadcasts and multicast traffic.

Endpoint Groups
The concept of the endpoint group (EGP) introduced by Cisco Application Centric
Infrastructure is similar to the concept of port profile used on the Cisco Nexus 1000V
Switch and the concept of port group used in VMware ESX.
Virtual machines connect to virtual Ethernet bridges by means of virtual network
adapters. The networking configuration on the virtualized server associates virtual
network adapters with a “security zone” that is associated with a VLAN or a VXLAN.
Endpoint groups enable administrators to group virtual network adapters from
multiple VMs and configure them simultaneously. The administrator can set specific
QoS, security policies, and VLANs by changing the EPG configuration. Even if EPGs
on the virtualized servers assign virtual network adapters to a VLAN, no one-to-one
mapping exists between them and VLANs.

180



Distributed Switching
Distributed switching simplifies the provisioning of network properties across
virtualized servers. With a distributed virtual switch, a user can define the switching
properties for a cluster of several virtualized hosts simultaneously, instead of having
to configure each host individually for networking. An example of such an
implementation is the Cisco Nexus 1000V Switch or Open vSwitch or VMware
vNetwork Distributed Switch.

Hot Migration of Virtual Machines
Hot migration is the method used by virtualized servers to migrate powered-on VMs
from one physical host to another. For this migration to be possible, the originating
virtualized host and the target virtualized host must provide Layer 2 connectivity on
the production VLAN for the VM, because the moving VM must find the same exact
endpoint group on the target virtualized server, as shown in Figure 5-5.

Figure 5-5 Hot Migration of Virtual Machines

Segmentation Options
One of the principal requirements of large-scale data centers is the capability to
segment several tenants, each of which is a hosted enterprise or a department. This
requires the capability to offer enough “labels” to distinguish traffic of different
tenants. The traditional way to provide this segmentation consists of using VLANs, but
more and more implementations are using VXLAN for scalability reasons.

181



VLANs
The current VLAN space is expressed over 12 bits (802.1Q tag), which limits the
maximum number of Layer 2 segments in a data center to 4096 VLANs. This often
becomes a scalability limit quickly, considering that every tenant may need at least a
couple of security zones also called segments. In recent years, most software switch
implementations have introduced support for VXLAN. The Cisco Nexus 1000V
provides this service.

VXLANs
VXLAN offers the same service to an end system as a VLAN but with a much larger
addressing space. VXLAN is an overlay that encapsulates a Layer 2 frame into a User
Datagram Protocol (UDP) header. Within this header, the 24-bit VXLAN identifier
provides 16 million logical networks that are mapped to bridge domains locally.
Figure 5-6 illustrates this approach with the Cisco Nexus 1000V. Two virtualized
servers are enabled with the Cisco Nexus 1000V Virtual Ethernet Module (VEM).
Virtual machines on either server have the illusion of being connected on adjacent
Layer 2 segments, while in reality their traffic is encapsulated in VXLAN and carried
across a routed network.

Figure 5-6 Solving VLAN Scalability Problems with Overlays

182



VXLAN Packet Format
Figure 5-7 shows the packet format of a VXLAN packet. VXLAN is an Ethernet
packet encapsulated in UDP.

Figure 5-7 VXLAN Packet Format

VXLAN Packet Forwarding
Figure 5-8 illustrates the key architectural elements of a VXLAN transport. Two
entities, which can be physical or virtual, communicate over a routed infrastructure.
Each entity provides a bridge domain locally and encapsulates the traffic in the
overlay to send it to the destination end host (or switch).

Figure 5-8 VXLAN Architecture with VXLAN Termination Endpoints

When a host (physical or virtual) needs to communicate to another host (physical or

183



virtual) whose MAC-to-VTEP association is known, the packet is encapsulated by the
local VTEP with the destination IP address of the destination VTEP. In this case the
traffic is unicast.
When the MAC-to-VTEP association is unknown, the packet must be flooded in order
for the originating VTEP to learn where the target MAC is located. Therefore,
VXLAN implementations today require the capability to run IP multicast in the data
center core to create multicast distribution trees for unknown unicast traffic and for
broadcast traffic. The IP core must be configured for IP Any Source Multicast (*,G) to
provide the support for broadcast, unknown unicast, and multicast traffic (normally
referred to as BUM).
The constraint with this approach is that even if the number of unique labels has
increased, the scalability limits on the control plane related to flooding are not
removed. The other limitation is the concept of the gateway that translates from the
VXLAN addressing space to the VLAN addressing space.
In summary, these are the advantages of using full VXLAN tunnels from virtualized
server to virtualized server in the case of Cisco Nexus 1000V:

 No need to configure trunking of VLANs on all server NICs
 Larger segmentation space
 Alleviates the load on STP in the network

These are the main disadvantages of using VXLAN tunnels from virtualized servers:
 Multicast still required to provide the MAC learning functionalities, so VXLAN
per se doesn’t remove flooding
 Lack of visibility for proper traffic prioritization
 Gateway from VXLAN to VLANs (also known as VXLAN Tunnel Endpoint, or
VTEP) is a bottleneck

VXLANs Without Multicast
Most software switching implementations, such as Cisco Nexus 1000V, have found
ways to remove the need for multicast. A centralized management element (which in
the case of Cisco Nexus 1000V is called Virtual Supervisor Module [VSM])
maintains a database of which segments are configured on a particular virtualized host
and which MACs are on which host. The first information enables the replication of
multicast and broadcast frames only to the hosts where the bridge domain exists.
The mapping database of MAC to VTEP (or VEM) association enables the traffic
forwarding from a VEM directly to another VEM as follows:

 A VEM detects the MAC address of a VM (by the port attached or by looking at
the source MAC address in the data traffic).

184



 The information about the learned MAC address, along with segment
information, is published by the VEM to the VSM.
 The VSM creates the segment and MAC address to VTEP association.
 The VSM distributes the associations to all other VEMs (can be localized based
on segment locations).
 VEMs populate the MAC addresses learned in the Layer 2 table for forwarding.

Microsoft Hyper-V Networking
Hyper-V is a different type of hypervisor than ESX in that it has the concept of a
parent operating system. To run any OS on top of Hyper-V, you need to paravirtualize
the OS. Paravirtualization means that if a VM needs to use the I/O functions, the
request must be routed to the parent OS and use the drivers from the parent OS. The
result is that Hyper-V support for other OSs is more limited, and Hyper-V naturally
works very well with Windows operating systems. In academic terms, the type of
virtualization provided by Hyper-V is considered type 2, whereas the virtualization
implemented by ESX is considered type 1. The parent OS is called Windows core
OS, which is the version of Windows Servers 2012 with fewer features; the key
function is to run the OS in the virtual machines.
Among other things, using Windows core OS means that there is no graphical user
interface and the configurations are performed via Windows PowerShell.
The feature set of Hyper-V is similar to the features of VMware ESX. For instance,
instead of vMotion migration, Hyper-V has Live Migration. Instead of a vNetwork
Distributed Switch (vDS), Hyper-V has a logical switch. Instead of the concept of the
data center, Hyper-V has a folder.
The suite of products that manages Hyper-V is called System Center. The following
list provides the key components and terminology that you need to understand to use
Hyper-V:

 System Center Virtual Machine Manager (SCVMM): Runs on a centralized
server and manages virtualized hosts, VMs, storage, and virtual networks.
Equivalent to vCenter.
 SCVMM Server Console: A console process to interface with SCVMM server
that provides the PowerShell API for scripting and automation.
 Virtual Machine Management Service (VMMS): A process running in the
parent partition of each virtualized server that uses the WMI interface. It
manages Hyper-V and VMs on the host.
 Hyper-V Switch: The extensible virtual switch in the hypervisor.

185



 Windows Management Instrumentation (WMI): Used by SCVMM to
interface with VMMS on the host.
 Windows Network Virtualization (WNV): A module that adds network
virtualization generic routing encapsulation (NVGRE) capabilities to build
overlays.
 Virtual Subnet Identifier (VSID) or Tenant ID: Used in NVGRE

Figure 5-9 displays the Hyper-V architecture and interaction with the key components
just defined.

Figure 5-9 Hyper-V Architecture

Another key concept in Microsoft Hyper-V is the forwarding extension, which allows
the insertion of third-party processing in the data path from the guest to the network
adapters. A forwarding extension can accomplish the following in the two directions
of the data path:

 Filter packets
 Inject new packets or modified packets into the data path
 Deliver packets to one of the extensible switch ports

Figure 5-10 shows a topology with multiple host groups.

186



Figure 5-10 Hyper-V Topology
Figure 5-11 illustrates some of the key networking concepts introduced by Hyper-V
and described in detail next.

Figure 5-11 Networking Concepts in Hyper-V
Microsoft uses the following terminology for the networking components of Hyper-V:

 Logical switch: Represents a distributed virtual switch. One instance of it is
deployed in each Hyper-V host. Each uplink NIC (or a NIC team) can have only
one logical switch. This is the equivalent of a VMware vDS.
 Logical Network: A placeholder for all networking constructs such as subnets,
VLANs, network virtualization, and VM networks.
 Logical Network Definition (LND) or network site: An isolation construct in
SCVMM. This building block contains one or more VLANs with IP subnets.

187



 VM Network: A virtual machine networking construct. It enables connectivity
from VMs to logical networks, VLANs, and subnets.

A logical network represents a network with a certain type of connectivity
characteristic. A logical network is not a one-to-one mapping with a specific classic
network concept. An instantiation of a logical network on a set of host groups is called
a network site. As Figure 5-12 illustrates, it is possible to have a single logical
network but three different network sites for the same logical network. Furthermore,
you can divide the network site into multiple VM networks and associate VMs with
the VM network.

Figure 5-12 Networking Concepts Hierarchy in Hyper-V

Linux KVM and Networking
Linux Kernel-based Virtual Machine (KVM) is part of the kernel but it doesn’t
perform hardware emulation—a user-space element provides this. The management of
virtual machines in Linux is achieved by using two elements:

 libvirt: A toolkit that enables the interaction with the virtualization features of
Linux. Virt-viewer, virt-manager, and virsh (shell to manage virtual machines)

188



rely on libvirt.
 qemu: A hardware-emulation component that runs in user space in KVM.

Figure 5-13 illustrates the relationship between these components.

Figure 5-13 Components in a Virtualized Server Running KVM

When running KVM, you should also install the following packages:
 libvirt: The virtual library
 virt-manager: A GUI tool that manages KVM guests
 virt-install: A command-line tool to install virtual machines
 virt-viewer: The virtual viewer

The libvirt daemon service must be started at bootup of the KVM server. It is
responsible for, among other things, the association of guest VM network adapters
with Linux bridges and Open vSwitch (OVS) bridges.

189



Linux Bridging
Several configurations related to networking in a virtualized Linux host rely on the
bridging capabilities offered by Linux. You should be familiar with the command
brctl, with which you can

 Add a bridge: brctl addbr <bridge name>
 Add a physical interface to a Linux bridge: brctl addif <bridge name>
<device>
 List the bridges: brctl show
 List the MAC addresses that have been learned: brctl showmac <bridge name>

The brctl command can also be used to control virtual bridges that are created via
libvirt.

Note
To discover how to configure networking in a virtualized Linux host,
refer to the libvirt documentation at
http://wiki.libvirt.org/page/VirtualNetworking.

By default, a virtualized Linux host that is running the libvirt daemon has a virtual
bridge running, called virbr0. Use the commands ifconfig virbr0 to see its
characteristics. If you need to add network adapters to a virtual bridge, use the brctl
command as follows: brctl addif <name of the bridge> <name of the interface>.

Note
To attach a guest VM network adapter to a virtual bridge, refer to the
instructions at
http://wiki.libvirt.org/page/Networking#Guest_configuration.

Using virt-manager simplifies the configuration tasks.

Open vSwitch
Open vSwitch (OVS) is a software switch with many networking features, such as:

 IEEE 802.1Q support
 NetFlow
 Mirroring

190

http://wiki.libvirt.org/page/VirtualNetworking
http://wiki.libvirt.org/page/Networking#Guest_configuration


Note
You can find the complete list of features of Open vSwitch at
http://openvswitch.org/features/.

Open vSwitch works on hypervisors such as KVM, XenServer, and VirtualBox. Open
vSwitch can run as a standalone virtual switch, where every virtual switch is managed
independently, or it can run in a “distributed” manner with a centralized controller by
exposing these two configuration elements:

 Flow-based forwarding state, which can be remotely programmed via
OpenFlow
 Switch port state, which can be remotely programmed via the Open vSwitch
Database (OVSDB) management protocol

Open vSwitch also supports the ability to create GRE- or VXLAN-based tunnels.

OVS Architecture
One of the key characteristics of Open vSwitch is that it has a flow-based forwarding
architecture. This is similar to the concept of a control plane and data plane separation
in many Cisco architectures where the supervisor provides the control plane function
and the data plane handles the packet-forwarding capabilities. This particular aspect
of OVS allows it to run in a distributed manner in OpenFlow architectures.
OVS has three main components:

 A kernel component implementing the fast path
 A user space component implementing the OpenFlow protocol
 A user space database server

Figure 5-14 illustrates the architectural components of OVS.

191

http://openvswitch.org/features/


Figure 5-14 OVS Architecture
OVS has a user-space control plane and a kernel-space data plane component. The
control plane has two elements:

 vswitchd: Manages the individual instances of Open vSwitch(es) on the server
 ovsdb-server: The configuration database

The OVS database stores switch configurations in JSON format, and in fact it can be
programmed via JSON RPCs.
The virtual switch can be divided in multiple bridges for segmentation purposes.
Traffic forwarding is performed after parsing packets via a classifier and a flow
lookup. If a flow entry exists in kernel space, the packet is forwarded according to this
entry, including in the case where the packet must be tunneled over VXLAN or GRE.
Otherwise it is sent to user space for further processing.
The flow lookup includes matching the following fields:

 Input port
 VLAN ID
 Source MAC address
 Destination MAC address

192



 IP Source
 IP Destination
 TCP/UDP/... Source Port
 TCP/UDP/... Destination Port

Note
The main performance challenge in Open vSwitch is related to the
connection setup rate, because the lookup is performed in user space.

Note
For additional information regarding OVS code and architecture, visit
https://github.com/openvswitch/ovs.

Example Topology
Figure 5-15 illustrates a simple topology for an OVS deployment. Each virtualized
server has an OVS instance with a bridge (br0). The virtual machines’ NICs (tap0 and
tap1) are connected to the bridge.

Figure 5-15 OVS Deployment Topology

193

https://github.com/openvswitch/ovs


ovs-vsctl is the utility for querying and configuring ovs-vswitchd. Example 5-1 shows
the configuration for the topology depicted in Figure 5-15. The configuration
parameter tag specifies which VLAN tap0 or tap1 connects to by means of the
configuration parameter called tag. The physical NIC that is used as the uplink is
configured by adding eth0 or eth1 to the bridge instance (br0 in Example 5-1).

Example 5-1 Configuring an OVS Switch

Click here to view code image

ovs-vsctl add-br0
ovs-vsctl add-port br0 tap0 tag=1
ovs-vsctl add-br0 eth1
ovs-vsctl list-br

Note
To see more examples of OVS configuration:
http://openvswitch.org/support/config-cookbooks/vlan-configuration-
cookbook/
https://raw.githubusercontent.com/openvswitch/ovs/master/FAQ

The following configuration shows how to install OVS and design OVS to
communicate with an OpenFlow controller that is not running on the same server as
OVS itself (hence “out-of-band” as the mode). This design also configures OVS to run
with local forwarding if the connectivity to the controller is lost.
Click here to view code image

ovs-vsctl set-controller br0 tcp:<IP of the controller>:6633
ovs-vsctl set-controller br0 connection-mode=out-of-band
ovs-vsctl set-fail-mode br0 standalone

Open vSwitch with OpenStack
When Open vSwitch is used with OpenStack, the mapping between Linux bridges, tap
interfaces, and the Open vSwitch elements can implement more complex topologies in
order to be consistent with the semantics of OpenStack. As shown in Figure 5-16, each
VM has a tap interface connected to a Linux bridge, which connects via a virtual
Ethernet interface called veth to an Open vSwitch (br-int). VLAN tagging is also used
to create multi-tenancy. This topology also allows the integration of iptables.

194

http://openvswitch.org/support/config-cookbooks/vlan-configuration-cookbook/
https://raw.githubusercontent.com/openvswitch/ovs/master/FAQ


Figure 5-16 OpenStack with Open vSwitch

OpenFlow
OpenFlow is a specification developed by the Open Networking Foundation (OFM)
that defines a flow-based forwarding infrastructure and a standardized application
programming interface (API) that allows a controller to direct the functions of a
switch through a secure channel.

Note
For more information about OpenFlow, visit
http://pomi.stanford.edu/content.php?page=research&subpage=openflow.

OVS can potentially be deployed with an OpenFlow controller. The centralized
controller could be NOX, for instance (www.noxrepo.org). The topology looks like
the one depicted in Figure 5-17.

195

http://pomi.stanford.edu/content.php?page=research&subpage=openflow
http://www.noxrepo.org


Figure 5-17 OVS Deployment with OpenFlow Controller
This architecture enables the control plane processing to be redirected to the
controller. The flow tables in the OVS switches store flow information, a set of action
rules, and counters. The action rules can be any of the following:

 Forward packet to a port
 Encapsulate and forward to controller
 Drop the packet
 Send to normal processing pipeline

OpenFlow features and capabilities evolve with newer versions. This is a list of the
versions currently available:

 OpenFlow 1.0, which is the basic OpenFlow implementation
 OpenFlow 1.1, which includes, among other things, the ability to model “virtual
ports” (complex network configurations such as link aggregation) and the ability
to implement multiple flow tables
 OpenFlow 1.2, which includes IPv6 and extensible flow match support
 OpenFlow 1.3, which includes per-flow meters and on-demand flow counters
 OpenFlow 1.4, which includes more extensible protocols and flow monitoring

196



Note
For more information, refer to the latest OpenFlow specifications.

The following snippet shows how to set the OpenFlow versions allowed:
Click here to view code image

ovs-vsctl set bridge switch
protocols=OpenFlow10,OpenFlow12,OpenFlow13

Open vSwitch Database (OVSDB) management protocol is a management interface
that allows a controller to configure tunnels, QoS, and configurations that cannot be
achieved by simply storing flows.

Note
For more details regarding OVSDB, visit
http://tools.ietf.org/html/rfc7047.

The following is a list of the functions that OVSDB provides:
 Creation, modification, and deletion of OpenFlow data paths (bridges)
 Configuration of the controllers to which an OpenFlow data path should connect
 Configuration of the managers to which the OVSDB server should connect
 Creation, modification, and deletion of ports on OpenFlow data paths
 Creation, modification, and deletion of tunnel interfaces on OpenFlow data
paths
 Creation, modification, and deletion of queues
 Configuration of QoS policies, and attachment of those policies to queues
 Collection of statistics

VMware ESX/ESXi Networking
Describing the details of VMware ESX/ESXi is beyond the scope of this chapter.
However, the following list includes some key terminology and concepts that you must
be familiar with to configure ESX/ESXi in the data center:

 vSphere ESXi: The hypervisor.
 vCenter: Enables the administrator to manage a group of ESX hosts and the
associated data storage.
 vNetwork Distributed Switch (aka Distributed Virtual Switch): A single

197

http://tools.ietf.org/html/rfc7047


vSwitch running across all hosts on a data center within a vCenter. This
simplifies the task of maintaining a consistent network configuration across
multiple hosts.
 dvPort group: A port group associated with a vNetwork Distributed Switch.
 vShield Manager: The equivalent of a firewall running on each ESX host.
vShield Manager works in association with a vCenter Server.
 vCloud Director: Cloud orchestration software that enables customers to build
multi-tenant hybrid clouds. It does so by managing vCenter and vShield
instances.
 vApp: A collection of VMs managed as a single entity by vCloud Director. The
VMs are connected by multiple segments, some of which are specific to the
vApp itself.

In a data center fabric, the element that requires physical network connectivity is the
ESXi server.
An ESX server, in its basic configuration, includes interfaces used for management
(the Service Console), production traffic (traffic going to VMs), and what is called the
VM Kernel. The most notable examples of why the VM Kernel needs network access
include iSCSI access to storage (when configured as VM File System) and ESX-to-
ESX server communication for the purpose of “migrating” VM from one server to
another (vMotion technology).
The elements in the topology that require virtual network connectivity are the VMs that
are part of a vApp.

VMware vSwitch and Distributed Virtual Switch
VMware ESX provides support for switching via either the standard vSwitch or a
distributed virtual switch. Distributed switching can be configured either with the
native VMware implementation, the VMware vNetwork Distributed Switch (vDS), or
the Cisco Nexus 1000V distributed virtual switch (DVS).
The vSwitch operates like a regular Layer 2 Ethernet switch. The vSwitch forwards
traffic among VMs and between VMs and the LAN switching infrastructure. The ESX
server NICs (vmnic(s)) are the vSwitch uplinks.
The vSwitch has a Layer 2 forwarding table that it uses to forward traffic based on the
destination MAC address. The vSwitch forwarding table contains the MAC address
for the VMs and their associated virtual ports. When a frame is destined to a VM, the
vSwitch sends the frame directly to the VM. When the destination MAC address does
not exist in the VM, or it is multicast or broadcast, it sends the traffic out to the
vmnic(s) (that is, to the server NIC ports).

198



The configuration of redundant vSwitch uplinks is called NIC teaming. vSwitches do
not run Spanning Tree Protocol, so the vSwitch implements other loop-prevention
mechanisms. These loop-prevention mechanisms include dropping inbound traffic for
possible “returning” frames, and distance vectors which are logics where, a frame for
example ingressing from one NIC (uplink) is not going to go out (egress) of the
ESX/ESXi server from a different NIC (which would otherwise be the case for, say,
broadcasts).
With a vSwitch, you can create segmentation to isolate groups of VMs by using the
concept of port groups. Each port group can be associated with a particular VLAN.
The vNICs of the VM are assigned to a port group that is associated with a specific
VLAN, in this case VLANs A and B. The virtual switch defines the Vmnic(s) as ports
supporting all of the VLANs within the switch; that is, as trunks.
Figure 5-18 illustrates the concept.

Figure 5-18 Port Group and VLANs

Note
For more information, visit
http://www.vmware.com/files/pdf/virtual_networking_concepts.pdf.

VMware ESXi Server Traffic Requirements
The three most relevant traffic types to consider when deploying virtualized servers
are as follows:

199

http://www.vmware.com/files/pdf/virtual_networking_concepts.pdf


 Virtual machine data traffic: You need to consider data traffic transmitted or
received by virtual machines.
 VMware ESX management traffic: VMware vCenter Server requires access
to the VMware ESX management interface to monitor and configure the VMware
ESX host.
 VMware VMKernel traffic: VMware vMotion uses the VMware VMKernel
path to copy the memory from the originating host to the destination VMware
ESX host.

VMware vMotion traffic requires a constant high level of bandwidth only when
VMware vMotion is initiated. It usually generates a burst of data over a period of 10
to 60 seconds. The duration of the virtual machine migration is extended based on the
amount of bandwidth available. Because VMware vMotion processing is mainly a
memory operation, it can easily take advantage of connectivity that exceeds Gigabit
Ethernet bandwidth.

VXLAN Tagging with vShield
vShield Manager creates networks by using VXLANs. A VXLAN network is allocated
a unique VNID by vShield Manager from a pool of VNIDs assigned by the user.
vShield is configured with a VXLAN Segment ID range and a multicast address pool.
This configuration is located under the Datacenter field in vShield Manager on the
Network Virtualization tab. This is where you can define a pool of Segment-IDs and a
multicast address range. You would then assign to this pool a “network scope,” which
is normally one or more clusters. Then, you can create VXLAN networks with a name,
and they appear in vCenter as port groups that you can connect a VM vNIC to. Next,
add vShield Edge VM to the VXLAN network so that it connects to the regular VLAN-
based network. To do this, select the “Edge” option from vShield Manager and choose
which host or physical port is providing the VXLAN gateway function.

Note
For more information about vShield Edge, visit
http://www.vmware.com/files/pdf/techpaper/vShield-Edge-Design-
Guide-WP.pdf.

vCloud Director and vApps
VMware vCloud Director is a cloud orchestration product that has the capability to
build secure multi-tenant clouds. vCloud Director provides resources management and
enables you to create the following:

200

http://www.vmware.com/files/pdf/techpaper/vShield-Edge-Design-Guide-WP.pdf


 A virtual data center (vDC) for each tenant organization
 A catalog and a self-service portal for the end user to start and decommission a
virtual application (vApp) on-the-fly

vCloud organizes resources in a hierarchy, as follows:
 Provider vDC: A collection of vCenter resources that constitutes a “provider,”
such as the IT department of an enterprise
 Organization vDC: A segment of the provider vDC, such as a business unit
within an enterprise.
 vApp: A collection of VMs that is powered on or off as a single building block

To orchestrate resources, vCloud Director relies on vCenter, vShield Manager, and
vShield Edge, as depicted in Figure 5-19.

Figure 5-19 Building Blocks of vCloud Director

As Figure 5-19 illustrates, vShield Manager manages the networking component of
vCloud Director. vShield Edge is the element that runs in each ESXi host, and it is
provisioned automatically by vShield Manager.

201



vCloud Networks
vCloud Director introduces a new hierarchy of networking constructs:

 External (provider) network: The “real” network that connects to the external
world. Organizations (tenants) connect to this network to exit the cloud.
 Organization vDC network: It can be “external” (i.e., the network that is then
plugged into the external network) or internal. The external one can use Network
Address Translation (NAT).
 vApp network: vApp networks are created by vCloud consumers and connect
multiple virtual machines in a vApp. vApp networks separate vApp virtual
machines from the workloads in the organization virtual datacenter network. The
effect is similar to placing a router in front of a group of systems (vApp) to
shield the systems from the rest of the corporate network. vApp networks are
instantiated from a network pool and consume vSphere resources while the
vApp is running.

From a vSphere point of view, these are all VM networks.
The unit of defining networks in vCloud is called organizations. Each organization
uses external organization vDC network (which is a traditional port group) and some
internal organization networks (which can be vDCNI). Within each organization there
are several vDCs, which are basically resource pools with networks as one of the
types of resources. There is a one-to-one mapping between network pools and
organization vDC network. vApps belong to some vDC within this organization and
take network resources from the pools defined in the vDC.
Each vApp can use the following:

 External organization network (which then is mapped to a provider external
network)
 Internal organization network
 vApp networks (which exist only within a vApp)

There’s no substantial difference between vApp networks and internal organization
networks. The main difference is that internal organization networks are available to
any vApp in an organization, while vApp networks exist only within the vApp itself.
When the end user selects a vApp from a template, it instantiates a new server, or
several servers interconnected, and the network resources associated with it. Each one
of these networks must be backed by some network segmentation/transport technology.
The backing type can be

 VLAN backed
 Cloud Director Network Isolated (vCNI) backed (which is Mac-in-Mac

202



mechanism as defined in IEEE 802.1ah-2008)
 Port group backed (only preprovisioned)
 VXLAN backed

Figure 5-20 illustrates the concept of a vApp as part of an organization.

Figure 5-20 vApp

Cisco Nexus 1000V
Cisco Nexus 1000V is a feature-rich software switch that runs on multiple
hypervisors. Cisco Nexus 1000V provides functions such as:

 ACL filtering on individual VM ports
 Switched Port Analyzer (SPAN), or Remote SPAN, features of individual VMs
 NetFlow statistics of the local traffic
 Capability to shut down VM ports individually

The Cisco Nexus 1000V is a distributed software switch. It consists of two main
components: the Virtual Supervisor Module (VSM, the control-plane component) and
the Virtual Ethernet Module (VEM, the data-plane component). Together these
components provide the abstraction of a physical switch, whose supervisor is the

203



VSM and whose line cards are the VEMs that run within each VMware ESX host.
All configurations are performed on the VSM and propagated to the VEMs that are
associated with it. A VSM can be a virtual machine and run redundantly just like a
redundant supervisor. It is possible to add a VMware ESX host to the Cisco Nexus
1000V vDS from VMware vCenter to make a VMware ESX host become part of a
Cisco Nexus 1000V domain, and as a result run a VEM. A VSM running as a virtual
machine provides the abstraction of a CLI managing a large modular switch. The user
employs Secure Shell (SSH) Protocol at the management interface of the VSM, or
simply uses the console—the virtual machine console screen—to configure the
network characteristics of the VMware deployment. The VSM forwards the
configurations (VLANs, QoS, private VLANs, etc.) to all the VEMs that are part of the
same domain or, in other words, that are under the same Cisco Nexus 1000V.
The following are the most important traffic types that make the VEMs and the VSM
operate like a single entity:

 Control traffic: This traffic is generated by the Cisco Nexus 1000V and
exchanged between the primary and secondary VSMs as well as the VSMs and
VEMs. It requires very little bandwidth (less than 10 KBps) but demands
absolute priority. Control traffic should be considered the most important traffic
in a Cisco Nexus 1000V network.
 Packet traffic: Packet traffic is used to transport selected packets to the VSM
for processing. The bandwidth required for the packet interface is extremely
low, and its use is intermittent. If Cisco Discovery Protocol (CDP) and Interior
Gateway Management Protocol (IGMP) features are turned off, there is no
packet traffic at all.

Control and packet VLANs are carried on the uplink from the VMware ESX server to
the switch. For this reason, the initial communication between the VSM and the VEM
is aided by VMware vCenter to remove any dependency on the success of the VSM-
to-VEM communication. This is so that communication can begin even if the network
configuration on the uplinks is not yet functioning.
The communication between VSM and VMware vCenter uses the management
interface (mgmt0) on the VSM. The protocol runs on HTTPS. The key information is
provided to VMware vCenter by pointing the browser to the VSM IP address and
downloading the extension key, extension.xml, which is added to VMware vCenter as
a plug-in.
As a first approximation, port profiles are the equivalent of a distributed virtual port
group on a VMware vNetwork Distributed Switch. Port profiles are used to configure
interfaces. A port profile can be assigned to multiple interfaces, giving them all the
same configuration. Changes to the port profile can be propagated automatically to the

204



configuration of any interface assigned to it.
In the VMware vCenter Server, a port profile is represented as a distributed virtual
port group. The virtual Ethernet and Ethernet interfaces are assigned in VMware
vCenter Server to a port profile for the following reasons:

 To define port configuration by policy
 To apply a single policy across a large number of ports
 To support both virtual Ethernet and Ethernet ports

Port profiles that are configured as capability uplinks can be assigned by the server
administrator to physical ports (vmnic(s)).
An uplink port profile can also be a system port profile. An uplink port profile is a
system port profile when it carries the system VLANs used for the communication
between the VSM and the VEM.
A typical configuration of an uplink port profile that is also a system port profile looks
like the configuration shown in Example 5-2.

Example 5-2 Uplink Port Profile in Nexus 1000V

Click here to view code image

port-profile system-uplink
  capability uplink
  vmware port-group fabric_uplinks
  switchport mode trunk
  switchport trunk allowed vlan 23-24
  <channel-group configuration>
  no shutdown
  system vlan 23-24
state enabled

Some parameters in this configuration are of special interest:
 capability uplink: Indicates that this port profile is to be used on the physical
NICs.
 system vlan: Makes this particular uplink port profile also a system port
profile. The most common use of system vlan is to add the packet and control
VLANs to this port profile. These VLANs still need to be configured under
switchport trunk for them to be forwarding.

Every VMware ESX host must have at least one physical interface associated with a
system port profile. Without this port profile, the Cisco Nexus 1000V associations

205



with the VMware ESX host can still happen, but the VEMs will not appear as line
cards or modules on the VSM.
The system VLANs have a special meaning because they are granted network
communication in a preferential way over the regular VLANs. So even if the
PortChannel configuration on the uplink port profile is not fully functional, the VSM
can still configure the VEM.
In the absence of the system VLAN definition, the VEM connectivity is dependent on a
successful PortChannel configuration on the VSM. But this configuration requires a
preexistent functioning PortChannel configuration to help ensure VSM-to-VEM
connectivity. The system VLAN configuration removes this dependency, allowing the
VSM to configure the VEM even if the PortChannel setup has not yet been completed
for the virtual machine production VLANs.
Users can assign vmnic(s) to an uplink port profile when they add a VMware ESX
host to the Cisco Nexus 1000V from VMware vCenter and select the distributed
virtual uplink port profile. After the VEMs are associated with the VSM, the network
adapters of the VMware ESX hosts appear as an Ethernet module.
Regular port profiles are assigned to virtual machine virtual adapters. In Cisco Nexus
1000V terminology, these virtual adapters are referred to as virtual Ethernet (vEth)
interfaces. A regular port profile is defined as shown in Example 5-3.

Example 5-3 Port Profile in Cisco Nexus 1000V

Click here to view code image

port-profile vm-connectivity
  vmware port-group connectivity-via-quad-gige
  switchport mode access
  switchport access vlan 50
  no shutdown
  state enabled

Virtual machines attach to port profiles through the choice of the distributed virtual
port group from the VMware vCenter configuration. The association between the port
profile and a VLAN defines the way the traffic flows from the virtual machine to the
outside network.
It is possible to have multiple uplink port profiles for each VMware ESX host, but
they cannot have overlapping VLANs, which would break the uniqueness of the
association.
The ability to define the associated VLAN on a particular port profile and uplink port

206



profile allows the user to control which path the virtual machines take to communicate
to the rest of the network.

Port Extension with VN-TAG
Port extension refers to the capability to index a remote port as if it were directly
attached to a switch (Controlling Bridge). The remote entity where the port is located
is called a port extender. A port extender can aggregate physical ports or virtual
ports, so this concept has several areas of applicability: for instance, virtualized
servers and blade servers, or even satellite switches.
In the case of virtualized servers, the Controlling Bridge is a physical switch, and the
network adapter within the virtualized servers provides the port extender functionality.
With this arrangement, each virtual NIC defined on the server appears as a physical
NIC directly connected to the Controlling Bridge. For this to occur, the port extender
needs to tag the traffic that is generated by the VMs with information about the source
interface (a virtual interface) and forward the traffic to the Controlling Bridge.
The Controlling Bridge performs the lookup in the Layer 2 table to identify the
destination interface (which may be a virtual interface). Before sending the frame to a
virtualized server, the Controlling Bridge attaches the TAG containing information
about the destination virtual interface. Compare the port extender functionality to that
of a line card and the Controlling Bridge to that of a supervisor/fabric device in a
large modular system (“Extended Bridge”). At the time of this writing, Cisco offers
technology that is based on the VN-TAG. Cisco and other vendors are currently
working on the definition of the IEEE 802.1Qbh standard, which defines a very
similar tag for the same purpose.

Note
A summary of the current status of the standards for port extension and
how they map to Cisco technology can be found at:
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/whitepaper_c11-
620065_ps10277_Products_White_Paper.html

The VN-TAG is a special tag added to a Layer 2 frame that allows for an external
switch to forward frames that “belong” to the same physical port. Quoting the
proposal by Joe Pelissier (Cisco Systems), “For frames from the bridge to the VNIC,
the tag should provide a simple indication of the path through the IV(s) to the final
VNIC. For frames from the VNIC to the bridge, the tag should provide a simple
indication of the source VNIC.” (See
http://www.ieee802.org/1/files/public/docs2008/new-dcb-pelissier-NIV-Proposal-

207

http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/whitepaper_c11-620065_ps10277_Products_White_Paper.html
http://www.ieee802.org/1/files/public/docs2008/new-dcb-pelissier-NIV-Proposal-1108.pdf


1108.pdf.)

Note
IV stands for “interface virtualizer,” the component that adds the VNTAG
to the traffic coming in from the virtual interfaces (downlinks) going to
the bridge (uplinks).

The tag referred to in the previous quotation is the VNTAG that is prepended to the
Layer 2 frame as depicted in Figure 5-21.

Figure 5-21 VNTAG
The VN-TAG allows association of a MAC not only with the Ethernet port of the
upstream switch but also with the “virtual” Ethernet port (the virtual interface, or VIF)
internal to the server, thus preserving the Ethernet switching semantics. As depicted in
Figure 5-22, VM1 is “attached” to VIF1, and VM2 is “attached” to VIF2. The
forwarding table of a VNTAG-capable switch contains the information about the
destination MAC address and the virtual interface that the MAC is associated with.

208



Figure 5-22 Traffic Forwarding with VNTAG
VM1 sends out a frame that the network adapter modifies to include the virtual
interface information as follows:

SMAC=MAC1 DMAC=MAC2 Source Interface=VIF1 Destination Interface=0
The upstream switch looks up the Layer 2 forwarding table to match the destination
MAC (DMAC), which in the example is MAC2. The lookup returns VIF2 as the result,
thus the VNTAG-capable switch adds the destination interface (DIF) information to
the Layer 2 frame, which in this example is VIF2:

SMAC=MAC1 DMAC=MAC2 Source Interface=VIF1 Destination
Interface=VIF2

By performing this operation, Layer 2 forwarding can be extended to VM-to-VM
switching.
As this section makes clear, VN-TAG is an enabler of virtualization insofar as that

209



without VNTAG, two VMs would not be able to communicate (if it weren’t for some
software running on the server itself).
Additionally, VN-TAG can identify the configuration of the vNIC port of a given VM
independently of which ESX server the VM resides on.

Cisco ACI Modeling of Virtual Server Connectivity
Cisco ACI is the latest technology introduced by Cisco to address the need for
connectivity of both virtual and physical workloads. Cisco ACI complements and
integrates with existing technologies described so far in the chapter.
Applications are a collection of virtual and physical workloads interconnected by
virtual and physical networks. ACI provides a way to define the relationships between
these workloads and to instantiate their connectivity in the network fabric.
ACI defines the concept of the endpoint group (EPG), which is a collection of
physical or virtual endpoints. EPGs are correlated to a bridge domain or Layer 2
namespace, and each Layer 2 bridge domain can be enabled with or without flooding
semantics. Bridge domains are part of a single Layer 3. The Layer 3 offers the subnet
connectivity to the workloads connected to the EPGs. Think of this almost as an SVI
with corresponding IP primary addresses or IP secondary addresses.
The entire definition of the EPG with their associated network protocols, as well as
networking constructs, together is part of a folder such as a self-contained tenant.

Overlay Normalization
Cisco ACI provides overlay independence and bridges frames to and from VXLAN,
NVGRE, VLAN, and IEEE 802.1Q encapsulation. This approach provides flexibility
for heterogeneous environments, which may have services residing on disparate
overlays.
ACI also enables dynamic workload mobility, management automation, and
programmatic policy. As workloads move within the virtual environment, the policies
attached to the workloads are enforced seamlessly and consistently within the
infrastructure.
Figure 5-23 illustrates the interaction between the APIC and the hypervisors in the
data center.

210



Figure 5-23 Interaction Between the APIC Controller and Multiple Hypervisor
Types

VMM Domain
ACI uses the concept of a Virtual Machine Manager (VMM) domain. Examples of
VMMs include VMware vCenter and Microsoft SCVMM. ACI associates some
attributes with a VMM domain such as the VMM IP addresses and credentials. A
VMM domain is also a VM mobility domain. VMM domain mobility is only achieved
within the VMM domain, not across different VMM domains. The other information
that is part of a VMM domain is the namespace, which can be either a VLAN
namespace or a VXLAN namespace. You can reuse namespaces across different VMM
domains.
When implementing a VXLAN namespace, there is no need to reuse the namespace.
Sixteen million tags should be more than enough even for a data center with a large
number of security zones.
In ACI, VLANs or VXLAN at the leaf have local significance on the leaf itself or even
at the port level. This is because ACI remaps them to a fabric-wide unique VXLAN
number. At the time of this writing, using VLANs for segmentation is advantageous
because it is very efficient in terms of performance on the server (less overhead).

211



Hence, given that the VLAN space is limited to 4096 tags, by using the VMM domain
concept you can create multiple pockets of 4096 VLANs (4096 EPGs) where VMs can
move without constraints.

Endpoint Discovery
ACI uses three methods to discover the presence of virtual endpoints. The first method
of learning is control plane learning, which is achieved through an out-of-band
handshake. vCenter or SCVMM can run a control protocol that is used to communicate
with APIC.
The in-band mechanism to discover endpoints is a protocol called OpFlex. OpFlex is
a southbound policy protocol that is used not only to relegate policy information but
also to propagate information such as endpoint reachability. If OpFlex is not available,
ACI also uses CDP and Link Layer Discovery Protocol (LLDP) to map which port a
given virtualized server is connected to.
In addition to control protocol–based discovery, ACI also uses data path learning.

Policy Resolution Immediacy
ACI defines connectivity between EPGs with policies. To prevent consuming
hardware resources unnecessarily, ACI tries to optimize the distribution and
instantiation of policies.
ACI defines two types of policy deployment and resolution:

 Immediate
 On-demand

The policy resolution immediacy controls whether policies are distributed to the leaf
Data Management Engine (deployment) immediately or upon discovery of endpoints
(on-demand). Similarly, the resolution configuration controls whether the application
of the policy in hardware is based on the discovery of the endpoint (on-demand) or
immediate.
If the policy is on-demand, ACI pushes the policies down to leaf nodes only when an
actual vNIC is attached.

212



Cisco ACI Integration with Hyper-V
ACI integrates with Hyper-V not via SCVMM APIs, but through the Windows Azure
Pack API. The Windows Azure Pack is a new cloud portal offering from Microsoft. In
this case, an administrator creates different types of options for tenants and provides
them with certain privileges, such as access and the ability to create networks. There’s
a plug-in that allows populating the information such as: ACI networks, EPGs,
contracts, and so forth.
There is a specific tab underneath the tenant space in the Azure Pack where the
administrator can post in the XML representation of an EPG contract or application
network protocol. The XML representation is then transferred into the APIC
controller. That pushes the actual network configurations to the APIC, and then the
APIC allocates the specific VLAN to be used for each of the EPGs.
As Figure 5-24 illustrates, the APIC creates a logical switch in Hyper-V and each
EPG becomes a VM network.

Figure 5-24 Cisco ACI Concepts Equivalent in Hyper-V

After this, the tenant can instantiate the VMs that are on Windows Server 2012 and can

213



attach endpoints through the leaf nodes. At that point, because OpFlex is running on the
actual hypervisor, ACI knows where the VM is, so ACI can download the policies
where necessary.

Cisco ACI Integration with KVM
The integration of ACI with KVM is mediated by the use of OpenStack, which is
covered in Chapter 6. This section simply illustrates the communication pattern among
the components, as shown in Figure 5-25.

Figure 5-25 Cisco ACI Interaction with OpenStack and KVM
In the case of KVM and OpenStack, the plug-in in OpenStack communicates with the
APIC and with KVM to synchronize the allocation of VLANs and VXLANs to ensure
they match the EPG definition.

Cisco ACI Integration with VMware ESX
The APIC controller integrates with VMware vCenter to extend the ACI policy
framework to vSphere workloads. ACI integrates with vShield Manager for the
provisioning of VXLANs between virtualized hosts and ACI leafs. Endpoint groups in
ACI are automatically extended to virtualized hosts via the automatic creation of a
vDS switch that represents ACI.

214



Figure 5-26 illustrates how ACI interacts with VMware vCenter.

Figure 5-26 Interaction Between the APIC Controller and vCenter

Associate APIC and vCenter by setting up a VMM domain. This creates a new
VMware distributed virtual switch on vCenter. Next, attach each particular hypervisor
to the DVS itself by associating the DV uplinks on the newly created vSwitch to the
EXS host.
The ACI fabric learns the location of the DVS via LLDP. From this moment on, the
APIC administrator runs the APIC and then creates application network profiles.
These get pushed out through the respective VMM domain as a port group. Each of the
EPGs that the administrator creates, such as EPG web, EPG app, EPG database, and
equivalent port groups, is also created under the DVS. The virtual administrator then
associates these port groups to the relevant VM.

Summary
This chapter described the requirements to connect virtual machines to each other and
the rest of the network. It explained why virtual switches and other technologies like
VN-TAG have been developed. This chapter also illustrated the differences in the
implementation of virtual switching in different hypervisors. The last part of the
chapter explained how ACI provides multi-hypervisor connectivity and how it
interfaces with each hypervisor.

215



216



Chapter 6. OpenStack

This chapter explains the benefits of combining OpenStack with Cisco ACI. It
examines the Cisco ACI APIC OpenStack architecture along with the possible
operations of this combination. The goal of this chapter is to present the OpenStack
concepts and allow you to use it together with Cisco ACI.

What Is OpenStack?
OpenStack (http://www.openstack.org/) is an open source software platform for
orchestration and automation in data center environments. It is typically used for
private and public clouds. OpenStack is designed to automate, supervise, and manage
compute, network, storage, and security in virtualized environments. The goal of the
OpenStack project is to deliver solutions for all types of clouds by being simple to
implement, feature rich, scalable, and easy to deploy and operate. OpenStack consists
of several different projects that deliver components of the OpenStack solution.
Historically, OpenStack was founded by Rackspace and NASA and grew into a
community of collaborating developers working on open projects.
OpenStack has different components. The software suite is available for download
online and can operate on multiple Linux distributions. The current main components
of OpenStack are

 Compute (Nova)
 Networking (Neutron)
 Storage (Cinder and Swift)
 Dashboard GUI (Horizon)
 Identity (Keystone)
 Image service (Glance)

The major components are illustrated in Figure 6-1.

217

http://www.openstack.org/


Figure 6-1 OpenStack Main Components and High-Level Interaction
Newer components are being created, such as:

 Physical compute provisioning (Ironic)
 Automation (Heat)

Each element uses the following design guidelines:
 Component-based architecture: Provides the capability to quickly add new
functions
 Highly available: Provides scale for workloads
 Fault-tolerant: Isolates the processes to avoid cascading failures
 Recoverable: Failures should be easy to recover and debug
 Open standards: Provide a reference implementation for community APIs and
compatibility with other popular cloud systems such as, for example, Amazon
EC2.

218



Nova
Nova is the project for OpenStack Compute, a cloud computing fabric controller. It is
the main component of an Infrastructure as a Service (IaaS) system. Its role is to host,
provision, and manage virtual machines. This includes controlling the server, the
operating system image management, and the dashboard for compute. The server
resources are CPU, memory, disk, and interfaces. The image management consists of
the storage, import, and sharing of virtual machine ISO files. Other functionalities in
OpenStack include, but are not limited to, role-based access control (RBAC),
allocation of pooled resources across compute elements, and the dashboard. Nova
spans computes not only across KVM, but across other types of hypervisors such as
Hyper-V, VMware ESX, and Citrix XenServer. This allows OpenStack to orchestrate
various hypervisors at the same time via APIs. With this compute element, you can
create, configure, delete, and move VMs across hypervisors.

Neutron
The network element Neutron (previously called Quantum) offers a Networking as a
Service interface to OpenStack. Whereas Nova provides an API to dynamically
request and configure virtual servers for various hypervisors, Neutron provides an
API to dynamically request and configure virtual networks. These networks connect
interfaces from other OpenStack services such as the vNICs (virtual NICs) from Nova
virtual machines. Although the core Neutron API is focused on Layer 2, it contains
several extensions to provide additional services. Neutron is based on a plug-in
model that enables various network solutions to implement the platform’s virtual
network constructs. Two popular open source virtual switching solutions are Linux
Bridge and Open vSwitch (OVS, introduced in Chapter 5).
The type of functionality provided by OVS is comparable at a high level to the Cisco
Nexus 1000V or the VMware vDS (virtual Distributed Switch). With Linux Bridge,
it’s possible to create bridge interfaces, interconnect virtual network interfaces with
each other, and bridge the virtual network interfaces to the uplink interface. OVS uses
a database model, called OVSDB, which can receive via CLI or API instructions for
virtual networking configuration and store the configuration in a local database. This
is different from Linux network environments, where you make network changes
without saving the configuration files (for example, in /etc/network/interfaces), which
is not persistent across a reboot. With OVSDB, all the changes are stored in a
database. OVSDB communicates with the OVS process that sends instructions to the
kernel.
Neutron provides a messaging bus, currently called Modular Layer 2 (ML2), which
operates as a Layer 2 messaging bus. ML2 is an architecture employed to reuse plug-

219



ins across different segments of the network. ML2 breaks the elements into “type” and
“mechanism” drivers.
Cisco has multiple ML2 plug-ins for the Nexus 9000 as well:

 A Nexus plug-in that supports standalone mode
 AN ML2 version of the Nexus plug-in that supports Nexus 3000, 5000, 7000,
and 9000
 An ML2 APIC plug-in (available starting from the Juno release)

The Neutron Core API structure has three core components:
 Network: An isolated Layer 2 segment, similar to a VLAN in the physical
world. The network can be shared among tenants, and there is an admin-
controlled network state.
 Subnet: A block of IPv4 or IPv6 addresses that can be associated with a
network. The allocation block is customizable, and it’s possible to disable the
default DHCP service of Neutron for the given subnet.
 Port: A connection point for attaching a single device such as a NIC of a virtual
server to a virtual network. It’s possible to preassign MAC and/or IP addresses
to a port.

Example 6-1 shows the options offered by the Neutron Network API, and Example 6-2
shows the subnet options.

Example 6-1 Neutron Network API Options

Click here to view code image

stack@control-server:/home/localadmin/devstack$ neutron net-
create –help
usage: neutron net-create [-h] [-f {shell,table,value}] [-c
COLUMN]
                          [--max-width <integer>] [--variable
VARIABLE]
                          [--prefix PREFIX] [--request-format
{json,xml}]
                          [--tenant-id TENANT_ID] [--admin-state-
down]
                          [--shared]
                          NAME
Create a network for a given tenant.
Positional arguments
NAME
Name of network to create.

220



Optional arguments
-h, --help
show this help message and exit
--request-format {json,xml}
The XML or JSON request format.
--tenant-id TENANT_ID
The owner tenant ID.
--admin-state-down
Set admin state up to false.
--shared
Set the network as shared.

Example 6-2 Neutron Subnet API Options

Click here to view code image

stack@control-server:/home/localadmin/devstack$ neutron subnet-
create –-help
usage: neutron subnet-create [-h] [-f {shell,table,value}] [-c
COLUMN]
                             [--max-width <integer>] [--variable
VARIABLE]
                             [--prefix PREFIX] [--request-format
{json,xml}]
                             [--tenant-id TENANT_ID] [--name
NAME]
                             [--gateway GATEWAY_IP] [--no-
gateway]
                             [--allocation-pool
start=IP_ADDR,end=IP_ADDR]
                             [--host-route
destination=CIDR,nexthop=IP_ADDR]
                             [--dns-nameserver DNS_NAMESERVER]
                             [--disable-dhcp] [--enable-dhcp]
                             [--ipv6-ra-mode {dhcpv6-
stateful,dhcpv6-
  stateless,slaac}]
                             [--ipv6-address-mode {dhcpv6-
stateful,dhcpv6-
  stateless,slaac}]
                             [--ip-version {4,6}]
                             NETWORK CIDR
Create a subnet for a given tenant.
Positional arguments

221



NETWORK
Network ID or name this subnet belongs to.
CIDR
CIDR of subnet to create.
Optional arguments
-h, --help
show this help message and exit
--request-format {json,xml}
The XML or JSON request format.
--tenant-id TENANT_ID
The owner tenant ID.
--name NAME
Name of this subnet.
--gateway GATEWAY_IP
Gateway IP of this subnet.
--no-gateway
No distribution of gateway.
--allocation-pool
start=IP_ADDR,end=IP_ADDR Allocation pool IP addresses for this
subnet (This option
  can be repeated).
--host-route
destination=CIDR,nexthop=IP_ADDR Additional route (This option
can be repeated).
--dns-nameserver DNS_NAMESERVER
DNS name server for this subnet (This option can be repeated).
--disable-dhcp
Disable DHCP for this subnet.
--enable-dhcp
Enable DHCP for this subnet.
--ipv6-ra-mode {dhcpv6-stateful,dhcpv6-stateless,slaac}
IPv6 RA (Router Advertisement) mode.
--ipv6-address-mode {dhcpv6-stateful,dhcpv6-stateless,slaac}
IPv6 address mode.
--ip-version {4,6} IP
version to use, default is 4.

Note
For information about all Neutron commands, visit the reference guide:
http://docs.openstack.org/cli-
reference/content/neutronclient_commands.html

Neutron provides the capability of advanced services via service plug-ins. Here are

222

http://docs.openstack.org/cli-reference/content/neutronclient_commands.html


the four most common Neutron services used:
 Layer 3: This service enables the creation of a router for connecting and
attaching Layer 2 tenant networks that require Layer 3 connectivity. It requires
the creation of a floating IP for associating a VM private IP address to a public
IP address. It allows the configuration of an external gateway for forwarding
traffic outside of tenant networks.
 LoadBalancer: This service requires the creation of a load-balancer pool with
members for a tenant. It enables the creation of a virtual IP (VIP) that, when
accessed through the LoadBalancer, directs the request to one of the pool
members. It allows the configuration of Health Monitor Checks for the pool
members.
 VPN: This service is specific to a tenant and a router. The VPN connection
represents the IPsec tunnel established between two sites for the tenant. It
requires the creation of a the following elements: VPN, IKE, IPsec, and
Connection.
 Firewall: This service provides perimeter firewall functionalities on a Neutron
logical router for a tenant. It requires the creation of Firewall, Policy, and Rules.

When deploying Neutron, in addition to the neutron-server service, several agents are
needed depending on the configuration: L3 agent, DHCP, and Plugin. The agents can
be deployed on the controller node or on a separate network node, as depicted in
Figure 6-2.

223



Figure 6-2 Neutron Agents

Swift
The storage element of OpenStack is provided by Swift and Cinder. Swift is a
distributed object storage system designed to scale from a single machine to thousands
of servers. It’s optimized for multi-tenancy and high concurrency. It is useful for
backups, and unstructured data capable to grow without bounds. Swift provides a
REST-based API.

Cinder
Cinder is the storage project for block storage. It provides the capability to create and
centrally manage a service that provisions storage in the form of block devices known
as cinder volumes. The most common scenario is to provide persistent storage to
virtual machines. Cinder allows, for example, virtual machine mobility, snapshot, and
cloning. These functions can be enhanced by the vendor-specific, third-party driver
plug-ins added to Cinder. The physical storage attached behind Cinder can be
centralized or distributed using various protocols: iSCSI, NFS, and Fibre Channel.

224



Horizon
The GUI element Horizon is the OpenStack dashboard project. This presents a web-
based GUI to access, provision, and automate the OpenStack resources such as
Neutron, Nova, Swift, and Cinder. Its design facilitates the integration with third-party
products and services such as billing, monitoring, and alarms. Horizon started as a
single application to manage the OpenStack Nova project. Originally, the requirements
consisted only of a set of views, templates, and API calls. It then expanded to support
multiple OpenStack projects and APIs that became arranged into a dashboard and
system panel group. Horizon currently has two central dashboards: project and user.
These dashboards cover the core OpenStack applications. There is a set of API
abstractions for the core OpenStack project to provide a consistent, reusable set of
methods for development and interaction. With these API abstractions, developers
don’t need to be familiar with the API of each OpenStack project.

Heat
Heat is the OpenStack orchestration program. It creates a human- and machine-
accessible service for managing the entire lifecycle of infrastructure and applications
within OpenStack clouds. Heat has an orchestration engine used to launch multiple
composite cloud applications based on templates in the form of text files that can be
treated like code. A native Heat template format is evolving, but Heat also provides
compatibility with the AWS CloudFormation template format, allowing the many
existing CloudFormation templates to be launched on OpenStack. Heat offers both an
OpenStack-native REST API and a CloudFormation-compatible Query API.

Ironic
Ironic is the OpenStack project that provides Bare Metal Services. It enables users to
manage and provision physical machines. Ironic includes the following components,
as displayed in Figure 6-3:

 Ironic API: A RESTful API that processes application requests by sending them
to the ironic-conductor over RPC.
 Ironic Conductor: Adds, edits, and deletes nodes; powers on/off nodes with
IPMI or SSH; provisions, deploys, and decommissions bare-metal nodes.
 Ironic client: A CLI for interacting with the Bare Metal Service.

225



Figure 6-3 Ironic Logical Architecture
Additionally, the Ironic Bare Metal Service has certain external dependencies, which
are very similar to other OpenStack services:

 A database to store hardware information and state: You can set the
database back-end type and location. Use the same database back end as the
Compute Service. Employ a separate database back end to further isolate bare-
metal resources (and associated metadata) from users.
 A queue: A central hub for passing messages.

Triple0 is another project, meant to run OpenStack on OpenStack. It brings up bare-
metal servers that can be set up to use OpenStack.

226



OpenStack Deployments in the Enterprise
The OpenStack components are connected to the top-of-rack (ToR) switches. The
network architecture in the existing data center remains the same when deploying an
OpenStack environment. OpenStack covers the compute, storage, orchestration, and
management tiers. The apps are mainly unchanged when deployed in an OpenStack
environment. Additional compute nodes are added for

 OpenStack controller nodes (at least two for redundancy, could be
active/active)
 OpenStack support nodes

Note that certain users prefer to deploy these additional nodes as virtual machines for
a homogenous deployment with the remaining hosts of the infrastructure which are
virtual as well.
A typical ToR topology is depicted in Figure 6-4.

Figure 6-4 OpenStack Deployment Typical Design

A typical deployment often consists of a 200-node deployment with a Canonical or
Red Hat operating system distribution. The deployment is configured either manually
or fully automated with Puppet, Juju, or Turnkey.

227



When planning an OpenStack deployment, high-level considerations include
 Whether OpenStack deployment will be in an existing pod or a new one.
 Performing hardware inventory: all rack servers, all blade servers, hardware,
and VMs.
 Which app(s) to run in the new deployment.
 Whether or not to use multi-tenancy. This is a functional and business topic as
much as a technical one—always deploy with multi-tenancy in mind.
 IP address planning: NAT inside OpenStack? No NAT? Overlapping IPs?
 Automation choices.
 Whether to use a “pure” OpenStack (only OpenStack projects) deployment or a
hybrid deployment where you use some of what OpenStack offers and leverage
third-party application, management, and monitoring services.
 Knowing the limitations of current high-availability/disaster-recovery (HA/DR)
models with OpenStack.

Regarding the network considerations, there are a few choices, such as:
 Private networks with per-tenant routers
 Provider routers
 Provider network extensions with VLANs (no NAT)

Most enterprises use the VLAN model when there is no need for NAT within the
OpenStack system. Most of the NAT takes place on the edge, such as via the firewall,
server load balancing (SLB), proxy, or routers. However, large enterprise
deployments run into VLAN numbering limitations when the system is deployed in a
brownfield design (sharing VLANs with other pods).

Benefits of Cisco ACI and OpenStack
The data center infrastructure is quickly transitioning from an environment that
supports relatively static workloads confined to specific infrastructure silos to a
highly dynamic cloud environment in which any workload can be provisioned
anywhere and can scale on demand according to application needs. This transition
places new requirements on the computing, storage, and network infrastructure.
Cisco ACI and OpenStack were both designed to help IT administrators navigate the
transition to a cloud architecture. Cisco ACI offers a new approach to managing
infrastructure designed to increase flexibility, scalability, and performance through a
centralized policy-based framework. For example, normalizing at the leaf (no
gateways on servers), improves the scalability. The solution was designed to span
both physical and virtual infrastructure while still providing deep visibility and real-

228



time telemetry. Additionally, Cisco ACI was built for open APIs to allow integration
with both new and existing infrastructure components.
Cisco has developed an open source plug-in for OpenStack Neutron that allows
OpenStack tenants to transparently configure and manage a network based on Cisco
ACI. This plug-in for the Cisco APIC automatically translates OpenStack Neutron API
commands for networks, subnets, routers, and so on into an application network
profile.
The Cisco APIC plug-in is available as an open source project component and
supports major distributions of OpenStack from the Ice House release, including
Canonical, Red Hat, and Mirantis distributions.
The Cisco ACI network fabric used in correlation with an OpenStack environment
offers various benefits. Some of them are depicted in Figure 6-5.

Figure 6-5 Five Key Benefits of Cisco ACI and OpenStack

229



Cisco ACI Policy Model
In a Cisco ACI network fabric, the applications running on the network are coupled
with a policy that defines communication between application components and the
outside world. This workflow is achieved through an abstract application-centric
policy language, which can be translated into concrete network requirements such as
VLANs, subnets, and access control lists (ACL). By introducing this concept of
policy, Cisco ACI enables application developers to describe their network
requirements, with these requirements transparently mapped to network hardware.
This process enables both network and application developers to use a common
requirements language and ultimately accelerate application deployment.

Physical and Virtual Integration
Cisco ACI was designed to bring together physical and virtual networking to offer an
end-to-end solution. For example, Cisco ACI provides transparent support for a
mission-critical physical database workload working in conjunction with virtualized
web servers and applications. This feature allows operators to support multiple
hypervisors, including Citrix Xen, Linux Kernel-based Virtual Machine (KVM),
VMware hypervisors, and Microsoft Hyper-V, and connect physical servers on the
same Cisco ACI network fabric. As open projects such as OpenStack Ironic continue
to evolve, the capability to span these different environments will become an essential
element of any cloud. The Cisco ACI network fabric allows OpenStack Neutron
networks to transparently span physical and multi-hypervisor virtual environments.

Fabric Tunnels
Cisco ACI was also designed to offer a hardware-based tunneling environment that
does not need to be configured device by device. Tunnels are automatically
established within the network fabric, and any form of encapsulation (VXLAN,
network virtualization generic routing encapsulation [NVGRE], or VLAN) can be
passed in as input. The Cisco ACI network fabric is a normalization gateway capable
of understanding the different overlay encapsulations and establishing communication
between them. The result is very simple administration without the need to
compromise performance, scalability, or flexibility.

230



Service Chaining
The Cisco ACI fabric offers a native service-chaining capability that allows a user to
transparently insert or remove services between two endpoints. Furthermore, the
Cisco ACI fabric can be configured in real time using the API of the service layer
appliance, such as a firewall, load balancer, application delivery controller (ADC),
and so forth. This capability allows both tenants and administrators to deploy complex
applications and security policies in a fully automated manner across best-in-class
infrastructure. This capability is available through the Cisco APIC and accessible
through OpenStack API extensions currently in development. Because the Cisco ACI
fabric is designed to span physical and virtual infrastructure, the service-chaining
function can be applied to physical network service devices as well as virtualized
devices running on any supported hypervisor.

Telemetry
Cisco ACI is designed to offer a combination of software and hardware that can
provide real-time hop-by-hop visibility and telemetry. The Cisco APIC presents
detailed information about the performance of individual endpoint groups and tenants
in the network. This data includes details about latency, packet drops, and traffic paths
and is available to see at the group or tenant level. Telemetry information is useful for
a wide range of troubleshooting and debugging tasks, allowing an operator to quickly
identify the source of a tenant problem across physical and virtual infrastructure.

OpenStack APIC Driver Architecture and Operations
The Cisco OpenStack plug-in is based on the OpenStack Neutron multivendor
framework Modular Layer 2 (ML2) plug-in. ML2 allows an administrator to specify a
set of drivers to manage portions of the network. Type drivers specify a particular type
of tagging or encapsulation, and mechanism drivers are designed to interact with
specific devices within the network. In particular, Cisco created a Cisco APIC driver
that communicates using the open REST APIs exposed by Cisco APIC, as shown in
Figure 6-6.

231



Figure 6-6 Modular Layer 2 Plug-in Components Used by Cisco ACI (in Red)
This integration is supported initially on OpenStack Icehouse distributions from a
number of vendors, including Red Hat, Canonical, and Mirantis. Additionally, Cisco
is working closely with a number of other partners such as Big Switch Networks,
IBM, Juniper, Midokura, Nuage, One Convergence, and Red Hat to drive the Group
Policy API project within the OpenStack community.

How Integration Works
OpenStack integration uses two separate ML2 drivers to integrate with different
portions of the network, as shown in Figure 6-7:

 Open vSwitch (OVS) driver: Cisco ACI integration is performed on an
unmodified version of the OVS driver and supports the OVS driver that ships
with most major OpenStack distributions. An OVS driver in Neutron here is
used to select a VLAN tag for a network and configure it on an OVS port on a
hypervisor as different virtual machines are instantiated. This tag serves as an
identifier for the Cisco ACI fabric. Cisco ACI does not require modifications to
either the OVS driver or the OVS itself for this integration.
 Cisco APIC driver: The Cisco APIC driver is a new component created by
Cisco. It transparently maps Neutron resources to the application network
profile configuration in the Cisco APIC. The specific mappings are described in

232



Table 6-1. The driver also dynamically adds endpoint group (EPG) mappings as
each virtual machine is instantiated on a network.

Figure 6-7 Architecture

233



Table 6-1 Plug-in Mappings

Deployment Example
This section provides an example of how to deploy OpenStack and the Cisco plug-in.

Note
The OpenStack documentation contains instructions and guidelines for
deploying OpenStack:
http://docs.openstack.org/trunk/install-
guide/install/apt/content/index.html

A typical OpenStack deployment contains the following three types of nodes, as shown
in Figure 6-8:

234

http://docs.openstack.org/trunk/install-guide/install/apt/content/index.html


 Controller node: Runs core OpenStack services for computing and networking.
It may be run redundantly for high-availability purposes depending on your
OpenStack configuration.
 Network node: Runs the Domain Host Configuration Protocol (DHCP) agent
and other networking services. Note that for the Cisco APIC driver, the Layer 3
agent is not used. You can run the network node and the controller node on the
same physical server.
 Compute node: Runs hypervisors and tenant virtual machines. Each compute
node contains an Open vSwitch as well.

Figure 6-8 Typical OpenStack Deployment Contains Three Types of Nodes

OpenStack must be deployed behind a leaf-spine topology built from Cisco Nexus
9000 Series Switches configured to run in Cisco ACI mode. The Cisco APIC and
OpenStack controller and network nodes are deployed redundantly behind leaf
switches (using either in-band or out-of-band management). In many common
deployments, the network node is located on the same server as the controller node.
Additionally, computing nodes running virtual machines must be deployed behind leaf
switches as well and will scale with the needs of the cloud deployment.

Installation of Icehouse
The Cisco APIC driver can be installed on top of OpenStack Neutron.

235



Note
Although deployment options vary depending on the tools used, one of the
best guides for deployment can be found at
http://docs.openstack.org/icehouse/install-guide/install/apt/content.

The instructions in the following steps are intended as a guide for installing the Cisco
APIC driver on top of an existing ML2 plug-in deployment in Neutron. They assume
that the controller and network node run on the same physical server.

Step 1. Set up apt-get and get packages:
 On both the Neutron controller and Nova computing nodes
 On the Neutron controller, there are more packages to install

Note
More detailed installation information can be found at
http://www.cisco.com/go/aci.

Step 2. Create the configuration for Cisco APIC in /etc/neutron/plugins/ml2/
ml2_conf_cisco.ini:

[ml2_cisco_apic]
apic_hosts=192.168.1.3
apic_username=admin
apic_password=secret

Be sure that the Neutron server initialization includes this configuration file
as one of the --config-file options.

Step 3. Update the Neutron configuration to use ML2 as the core plug-in. Also
configure the Cisco APIC to provide routing services by updating
/etc/neutron/neutron.conf to include:

 service_plugins:
Click here to view code image

neutron.services.l3_router.l3_apic.ApicL3ServicePlugin

 core_plugin:
Click here to view code image

 neutron.plugins.ml2.plugin.Ml2Plugin

236

http://docs.openstack.org/icehouse/install-guide/install/apt/content
http://www.cisco.com/go/aci


Also, update the ML2 mechanism driver list to include the following two
drivers (for example, if you are using /etc/neutron/plugins/ml2/ml2_conf.ini
for the ML2 configuration, update it):

 mechanism_drivers:

openvswitch,cisco_apic

Step 4. Update ML2 for the VLAN segments. For instance, if you are using VLANs
100 to 200 on physnet1, configure ML2 as follows:

Click here to view code image

tenant_network_types = vlan
type_drivers = local,flat,vlan,gre,vxlan
mechanism_drivers = openvswitch,cisco_apic

[ml2_type_vlan]
network_vlan_ranges = physnet1:100:200

[ovs]
bridge_mappings = physnet1:br-eth1

Configuration of the Cisco APIC Driver
To activate the Cisco APIC driver, it must be placed in the ML2 directory used by
Neutron. This placement occurs automatically during any supported installation
process through an OpenStack distribution. If you experience problems, verify that you
have all the files for the Cisco APIC driver, listed in Table 6-2.

237



Table 6-2 Cisco APIC Driver Files
In Table 6-2, <neutron> is the neutron base directory, as shown in this configuration:
Click here to view code image

    /usr/lib/python2.7/dist-packages/neutron

Neutron.conf File
Enable the ML2 plug-in in your neutron.conf file and specify the Cisco APIC Layer 3
service plug-in:

 service_plugins:
Click here to view code image

neutron.services.l3_router.l3_apic.ApicL3ServicePlugin

 core_plugin:
Click here to view code image

238



neutron.plugins.ml2.plugin.Ml2Plugin

ML2_conf.ini File
Your ml2.conf file should activate the two appropriate mechanism drivers for the OVS
and the Cisco APIC. It also must specify a VLAN range to be used between the
servers and the fabric leaf switches as well as the mapping between the Linux
interface and OVS bridge. It should resemble Example 6-3. The ML2_conf.ini file
parameters are explained in the upcoming “Configuration Parameters” section.

Example 6-3 ML2_conf.ini Parameters to Configure

Click here to view code image

tenant_network_types = vlan
type_drivers = local,flat,vlan,gre,vxlan
mechanism_drivers = openvswitch,cisco_apic

[ml2_type_vlan]
network_vlan_ranges = physnet1:100:200

[ovs]
bridge_mappings = physnet1:br-eth1

ML2_cisco_conf.ini File
You must include an additional configuration file for the Cisco APIC driver in the
same directory. It should resemble Example 6-4.

Example 6-4 ML2_cisco_conf.ini Parameters to Configure

Click here to view code image

[DEFAULT]
apic_system_id=openstack

[ml2_cisco_apic]
apic_hosts=10.1.1.10
apic_username=admin
apic_password=password
apic_name_mapping=use_name
apic_vpc_pairs=201:202,203:204

[apic_external_network:ext]

239



switch=203
port=1/34
cidr_exposed=192.168.0.2/24
gateway_ip=192.168.0.1

#note: optional and needed only for manual configuration
[apic_switch:201]
compute11,compute21=1/10
compute12=1/11

[apic_switch:202]
compute11,compute21=1/20
compute12=1/21

Configuration Parameters
Table 6-3 lists the configuration parameters you can specify in the ML2_conf.ini file.

Table 6-3 Configuration Parameters

240



Host-Port Connectivity
The Cisco APIC driver must understand which ports are connected to each hypervisor.
This is accomplished through two mechanisms. By default, the plug-in uses LLDP to
automatically discover neighbor information, so this section is optional. This feature
provides automatic discovery of the computing nodes on the switch port and allows
physical port mobility across leaf switches in the Cisco ACI fabric. The other
mechanism is to manually define what ports are connected to which hypervisor.
However, for troubleshooting purposes, a user may want to override this behavior or
configure it manually to rule out an LLDP issue. This configuration also is required if,
for instance, you are using dual-homed servers connected through PortChannels. In this
case, add configuration blocks for each computing node in the OpenStack environment.
The format is as follows:
Click here to view code image

[apic_switch:node-id]
compute-host1,compute-host2=module-id.node-id

External Networks
Connections to external Layer 3 networks are configured automatically through the
plug-in. To activate this feature, provide the information listed in Table 6-4.

Table 6-4 Connecting to External Networks

PortChannel Configuration
For redundancy, it is common to configure multiple uplinks from a host to a switch.
This feature is supported by the Cisco APIC plug-in and can be configured by
enumerating virtual PortChannel (vPC) pairs:
Click here to view code image

apic_vpc_pairs=switch-a-id:switch-b-id,switch-c-id:switch-d-id

241



Troubleshooting
If you believe the plug-in is properly installed, but it is not functioning properly, begin
troubleshooting by verifying the proxy settings and physical host interface:

 Proxy settings: Many lab environments require proxy settings to reach external
IP addresses. Note that OpenStack also relies on internal communications, so
local HTTP/HTTPS traffic must not be sent through the same proxy. For
example, on Ubuntu, the proxy settings might look like the following in
/etc/environment:

Click here to view code image

http_proxy="http://1.2.3.4:80/"
https_proxy="http://1.2.3.4:8080/"
HTTP_PROXY="http://proxy.yourco.com:80/"
HTTPS_PROXY="http://proxy.yourco.com:8080/"
FTP_PROXY="http://proxy.yourco.com:80/"
NO_PROXY="localhost,127.0.0.1,172.21.128.131,10.29.198.17,172.21.128.98,local
address,.localdomain.com" [->
The IP addresses listed here are the IP addresses of the NIC
of the server
for OpenStack computing and controller nodes, so they don't go
to proxy when
they try to reach each other.]
no_proxy="localhost,127.0.0.1,172.21.128.131,10.29.198.17,172.21.128.98,local
address,.localdomain.com"

 Host interface: Verify that the physical host interface attached to the leaf switch
is up and attached to the OVS bridge. This interface is typically configured as
part of the OVS installation process. To verify that an interface (for example,
eth1) is present on an OVS bridge, run this command:

Click here to view code image

$> sudo ovs-vctl show

abd0fa05-6c95-4581-a906-46634db74d91
    Bridge "br-eth1"
        Port "phy-br-eth1"
            Interface "phy-br-eth1"
        Port "br-eth1"
            Interface "br-eth1"
                type: internal
        Port "eth1"
            Interface "eth1"
    Bridge br-int

242



        Port "int-br-eth1"
            Interface "int-br-eth1"
        Port br-int
            Interface br-int
                type: internal
    ovs_version: "1.4.6

Note
The installation, configuration, and troubleshooting methods might change
from release to release of OpenStack. Please refer to the latest
documentation on http://www.cisco.com/go/aci for the OpenStack
installation guide.

The Group Based Policy Project at OpenStack
Group Based Policy is an OpenStack community project available from Juno
OpenStack release onwards. Group Based Policy runs on top of existing OpenStack
and can work with existing Neutron or vendor drivers. The idea of Group Based
Policy is to enable Neutron to be configured in a policy fashion with EPGs, contracts,
and so on. This simplifies the current Neutron method of configuration and enables
easier application-oriented interfaces than with the current Neutron API model. The
goal of the Group Based Policy API extensions is to allow easier consumption of the
networking resources by separate organizations and management systems.
Group Based Policy is a generic API designed to be used with a broad range of
network back ends. It is backward compatible with the existing Neutron plug-ins but
also can be used natively with Cisco ACI to expose a policy API. The architecture of
Group Based Policy is depicted in Figure 6-9.

243

http://www.cisco.com/go/aci


Figure 6-9 Group Based Policy Architecture.
Group Based Policy benefits from the same approach as the concepts elaborated in
Chapter 3, “The Policy Data Center.” The combination of the OpenStack workflow
along with the ACI workflow is detailed in Figure 6-10.

244



Figure 6-10 Group Based Policy Workflow
With Group Based Policy, ACI can be used in conjunction, making the configuration
the same on both ends. It is also possible to use Group Based Policy without ACI,
with other network devices that are compatible with Neutron ML2 extensions.

Note
For additional information, visit:
https://blueprints.launchpad.net/group-based-policy/+spec/group-based-
policy-abstraction
https://wiki.openstack.org/wiki/GroupBasedPolicy

Summary
This chapter detailed OpenStack and its relation to Cisco ACI. ACI learns any
changes made on OpenStack and configures the whole fabric to be able to service the
new workloads and networks created in OpenStack. Table 6-5 summarizes the features
and capabilities of the OpenStack ML2 APIC driver for OpenStack Neutron. Group
Based Policy is a new project within the OpenStack community with the goal to bring
the policy data center networking abstraction to OpenStack.

245

https://blueprints.launchpad.net/group-based-policy/+spec/group-based-policy-abstraction
https://wiki.openstack.org/wiki/GroupBasedPolicy


Table 6-5 Summary of OpenStack APIC Driver Features and Capabilities

246



Chapter 7. ACI Fabric Design Methodology

The goal of this chapter is to explain the Cisco ACI fabric design methodology. Cisco
ACI fabric consists of discrete components that operate as routers and switches but
are provisioned and monitored as a single entity. Thus, the fabric operates like a
single switch and router that provides the following advanced traffic optimization
features:

 Security
 Telemetry functions
 Stitching together of virtual and physical workloads

The main benefits of using a Cisco ACI fabric are
 Single point of provisioning, either via GUI or via REST API
 Connectivity for physical and virtual workloads with complete visibility of
virtual and physical machine traffic
 Hypervisor compatibility and integration without the need to add software to the
hypervisor
 Simplicity of automation
 Multitenancy (network slicing)
 Hardware-based security
 Elimination of flooding from the fabric
 Ease of mapping application architectures into the networking configuration
 Capability to insert and automate firewalls, load balancers, and other Layer 4
through 7 services

Summary of ACI Fabric Key Functionalities
This section describes the key functionalities of the ACI fabric so that you can better
understand how to design and configure the ACI fabric.

ACI Forwarding Behavior
The forwarding in ACI changes the existing network forwarding paradigm by
introducing new key concepts such as the following:

 Classification of workloads independent of the transport VLAN, VXLAN, or
subnet. The classification is based on security zones, called endpoint groups
(EPG), and it is not a one-to-one mapping with subnets or VLANs as in

247



traditional networking.
 Although both Layer 2 and Layer 3 networks are fully supported, packets are
transported across the fabric using Layer 3 routing.
 Flooding in bridge domains is not necessary.
 Traffic forwarding is similar to host-based routing; within the fabric the IP is an
endpoint or a tunnel endpoint identifier.

If you are familiar with the concepts of Cisco TrustSec, and in particular with the
Security Group Tag (SGT), you may find the concept of the EPG to be similar to that
of the SGT. If you are acquainted with Cisco Locator/ID Separation Protocol (LISP),
you may find similarities in terms of the use of the IP as an identifier of the host. With
Cisco FabricPath, you will find similarities in the way that the fabric handles
multicast, with the capability to do equal-cost multipathing for Layer 2 traffic. In other
words, ACI forwarding is a superset of all these existing technologies, and more.

Prescriptive Topology
With Cisco ACI the topology is prescriptive and automatically enforced with auto-
discovery, zero-touch provisioning, and a built-in cable plan. The Cisco ACI topology
consists of a set of leaf devices connected to a set of spine devices in a full bipartite
graph, or Clos architecture using 40-Gigabit Ethernet links.
All leaf devices are connected to all spine devices, all spine devices are connected to
all leaf devices, and links between spines devices or between leaf devices are
disabled if present.
Leaf devices can connect to any network device or host and are the place at which
policies are enforced. Leaf devices also provide the capability to route and bridge to
external network infrastructures such as:

 Campus
 WAN
 Multiprotocol Label Switching (MPLS)
 Virtual private network (VPN) cloud

In this case they are sometimes referred to as border leaf devices. At the time of
writing, the ACI fabric does not implement VPN or MPLS, so an external device for
this purpose needs to be connected to the fabric, such as a Cisco ASR 9000.
The following endpoints can be connected to leaf devices:

 Virtualized servers
 Bare-metal servers
 Mainframes

248



 Layer 4 through 7 services nodes
 IP storage devices
 Switches
 Routers

Spine devices constitute the backbone of the fabric and provide the mapping database
function.
Figure 7-1 describes how to implement an ACI fabric.

Figure 7-1 Cisco ACI Fabric

Overlay Frame Format
Existing data center networks suffer from a shortage of VLAN segments. ACI
addresses this problem by using Virtual Extensible LAN (VXLAN), a Layer 2 overlay
scheme over a Layer 3 network. A 24-bit VXLAN Segment ID or VXLAN Network
Identifier (VNI) is included in the encapsulation to provide up to 16 million VXLAN
segments for traffic isolation and segmentation, in contrast to the 4000 segments
achievable with VLANs. Each of these segments represents a unique Layer 2
broadcast domain or a Layer 3 context depending on whether bridging or routing is
used, and can be administered in such a way to uniquely identify a given tenant’s
address space or subnet. VXLAN encapsulates Ethernet frames in an IP packet using
UDP as the encapsulating protocol.

249



ACI forwarding is based on the VXLAN encapsulation, with some differences from
the original VXLAN protocol. Regular VXLAN leverages multicast in the transport
network to simulate flooding behavior for broadcast, unknown unicast, and multicast
in the Layer 2 segment. Unlike traditional VXLAN networks, the ACI preferred mode
of operations does not rely on multicast for learning and discovery but on a mapping
database that is populated upon discovery of endpoints in a way that is more similar to
LISP. It does rely on multicast for multicast and broadcast if they need to be supported.
An ACI VXLAN (VXLAN) header provides a tagging mechanism to identify
properties associated with frames forwarded through an ACI-capable fabric. It is an
extension of the Layer 2 LISP protocol (draft-smith-lisp-layer2-01) with the addition
of a policy group, load and path metrics, counter and ingress ports, and encapsulation
information. The VXLAN header is not associated with a specific Layer 2 segment or
Layer 3 domain but instead provides a multifunction tagging mechanism used in the
ACI application-defined networking (ADN) enabled fabric.
Figure 7-2 shows the frame format used by the ACI fabric. Part a shows the original
Ethernet frame as generated by an endpoint, part b shows the original frame
encapsulated into UDP via VXLAN, part c shows the format of VXLAN headers, and
part d shows the mapping of the ACI VXLAN packet format onto regular VXLAN.

250



Figure 7-2 Cisco ACI VXLAN Frame Format

VXLAN Forwarding
The ACI fabric decouples the tenant endpoint address, its “identifier,” from the
location of that endpoint, which is defined by its “locator” or VXLAN tunnel endpoint
(VTEP) address. As illustrated in Figure 7-3, forwarding within the fabric is between
VTEPs and leverages an extended VXLAN header format referred to as the ACI
VXLAN policy header. The mapping of the internal tenant MAC or IP address to
location is performed by the VTEP using a distributed mapping database.

251



Figure 7-3 Cisco ACI VXLAN Forwarding
With Cisco ACI, all workloads are equal, regardless of whether they are virtual or
physical workloads. Traffic from physical servers, virtualized servers, or other
network devices attached to leaves can be tagged with network virtualization generic
routing encapsulation (NVGRE), VXLAN, or VLAN headers and then is remapped to
the ACI VXLAN. Also, the communication between virtual and physical workloads
doesn’t go through a gateway bottleneck, but directly along the shortest path to where
the workload is. Figure 7-4 displays the VLANs and VXLANs being normalized at the
leaf switch layer.

Figure 7-4 VLAN and VXLANs Are Normalized at the Edge

252



Pervasive Gateway
With ACI you don’t have to configure Hot Standby Router Protocol (HSRP) or Virtual
Router Redundancy Protocol (VRRP) addresses. The ACI fabric uses the concept of a
pervasive gateway, which is an anycast gateway. The subnet default gateway
addresses are programmed in all leaves with endpoints present for the specific tenant
subnet. The benefit is a simple communication where each top-of-rack device takes
the role of a default gateway, instead of sending this traffic all across the fabric to a
specific default gateway.

Outside Versus Inside
ACI distinguishes between workloads and networks that are connected directly to the
fabric and workloads and networks that are external to the fabric. “External”
connectivity refers to connecting the fabric to a WAN router, or simply to the rest of
the campus network. Leaves that provide this connectivity are often referred to as
border leaves, even if they are not dedicated to this role. Any ACI leaf can be a
border leaf. There is no limitation in terms of number of leaves that can be used for the
border leaf role. The border leaf can also be used to connect to compute, IP storage,
and service appliances.
In ACI, inside networks are associated with a particular bridge domain of a tenant
network. In other words, all workloads that have been discovered in a given tenant
belong to an inside network. Outside networks are learned via a border leaf. An
exception is made for Layer 2 extension. L2 extension maps to a bridge domain but is
“external.” All devices that are not connected via Layer 2 or Layer 3 extension are
“internal.”
At the time of writing, the fabric can learn about external network connectivity in the
following way:

 Static routing with or without VRF-lite (Virtual Routing and Forwarding lite is
the simplest form of VRF implementation. In this implementation, each router
within the network participates in the virtual routing environment in a peer-
based fashion.)
 Open Shortest Path First (OSPF)
 Internal Border Gateway Protocol (iBGP)
 Layer 2 connectivity by extending the bridge domain

ACI uses multiprotocol BGP (MP-BGP) between leaf and spine switches to propagate
external routes. The BGP route reflector technology is deployed to support a large
number of leaf switches within a single fabric. All the leaf and spine switches are in a
single BGP autonomous system (AS). After a border leaf learns the external routes, it
then redistributes the external routes of a given VRF instance to MP-BGP address

253



family VPNv4 (or VPNv6 when using IPv6) to the other leaf switches. With address
VPNv4, MP-BGP maintains a separate BGP routing table for each VRF instance.
Within MP-BGP, the border leaf advertises routes to a spine switch, which is a BGP
route reflector. The routes are then propagated to all the leaves where the VRFs (or
Private Networks in APIC GUI terminology) are instantiated. Figure 7-5 shows the
concept.

Figure 7-5 Outside Networks Are Advertised via MP-BGP
The subnet configuration within each bridge domain allows you to control which
subnets from the fabric should be advertised to the outside.
From a policy perspective, external traffic is classified into an EPG just like an inside
network. Policies are then defined between internal and external EPGs. Figure 7-6
illustrates the concept. There can be multiple outside EPGs for each external network.

254



Figure 7-6 Applying Policies from Internal to External EPGs

Packet Walk
Forwarding within the fabric is between VTEPs and uses some additional bits in the
existing VXLAN header to carry policy information. The mapping of the internal
tenant MAC or IP address to a location is performed by the VTEP using a distributed
mapping database. Cisco ACI supports full Layer 2 and Layer 3 forwarding semantics;
no changes are required to applications or endpoint IP stacks. The default gateway for
each bridge domain is a pervasive switch virtual interface (SVI) configured on top-of-
rack (ToR) switches wherever the bridge domain of a tenant is present. The pervasive
SVI has an anycast gateway per subnet, which is global across the fabric.
Figure 7-7 illustrates the forwarding of unicast frames in ACI from one hypervisor to
another.

255



Figure 7-7 Packet Walk for ACI Forwarding
As Figure 7-7 illustrates, the default gateway for the virtual machine is the pervasive
gateway on the leaf. The leaf normalizes the encapsulation and it performs a lookup on
the destination IP. If it does not find the endpoint address it is looking for, it
encapsulates the packet to the proxy function residing in the spine switch and forwards
it as unicast. The spine switch, upon receiving a packet addressed to its proxy
function, looks up the destination identifier address in its forwarding tables, which
contain the entire mapping database. On the basis of the result, the spine switch
encapsulates the packet using the correct destination locator while retaining the
original ingress source locator address in the VXLAN encapsulation. This packet is in
turn forwarded as a unicast packet to the intended destination. Address Resolution
Protocol (ARP) flooding is eliminated by using this same mechanism. But instead of
encapsulating and forwarding based on the Layer 2 destination broadcast address of
the ARP packet, the target IP address in the payload of the ARP packet is used. The
described mechanism is then employed. If the target IP address is not found in the
forwarding table of the leaf, the packet is unicast encapsulated and sent to the proxy. If
the target IP address is found in the forwarding table of the leaf, the packet is
forwarded accordingly.
The fabric routes if the destination MAC address is a router MAC address; otherwise,
it bridges. Classical bridging semantics are preserved for bridged traffic (with
exceptions, as described shortly)—no time-to-live (TTL) decrement, no MAC address
header rewrite, and so forth—and routing semantics are preserved for routed traffic.

256



Non-IP packets are always forwarded using the MAC address, while IP packets are
either bridged or routed depending upon whether or not they are addressed to the
default gateway at Layer 2. The fabric learns the MAC address for non-IP packets and
learns the MAC and IP addresses for all other packets.
For bridged traffic, the default behavior is to use the spine proxy function for unknown
unicast packets, to eliminate Layer 2 flooding. This enhances network behavior to
avoid sending these packets to endpoints they are not intended for. However, you can
disable this default behavior and use classical flooding, if required. Our
recommendation is to leave the default behavior unchanged.
When the packet is sent to anycast VTEP on the spine and there is no entry present
(traffic miss) for that destination in the mapping database in the spine, the packet is
handled differently for bridged versus routed traffic. For bridged traffic miss, the
packet is dropped. For routed traffic miss, the spine communicates with the leaves to
initiate an ARP request for the destination address. The ARP request is initiated by all
the leaves that have the destination subnet. After the destination host responds to the
ARP request, the local database in the leaf and the mapping database in the spine are
updated. This mechanism is required for silent hosts.

Segmentation with Endpoint Groups
You can think of the Cisco ACI fabric logically as a distributed switch/router that also
indicates application connectivity relationships according to the policy model. ACI
provides the following layers of segmentation:

 Segmentation using bridge domains
 Segmentation among different tenants of the same fabric
 Segmentation among endpoints of the same tenant

Segmentation is achieved by leveraging the VNID field of the VXLAN header and the
ACI extensions for the EPG. Traditionally, segmentation was performed with VLANs
that incidentally were also broadcast and flooding domains. With Cisco ACI the two
concepts are decoupled. Bridge domains are the elements that provide a flooding and
broadcast domain when required. When flooding is not required, bridge domains
simply act as a container for one or more subnets. Also, when routing is turned off on
a bridge domain, the bridge domain also provides segmentation just like a classical
VLAN. EPGs, which are like port groups or port profiles, provide segmentation
among workloads. EPGs contain one or more virtual and physical servers that require
similar policy and connectivity. Examples of this are application tiers, development
stages, or security zones.
The Cisco ACI fabric allows you to define the communication path among EPGs, just
as you do by stitching virtual lines between VLANs using IP routing and access

257



control lists (ACL). Segmentation extends from the fabric to the virtualized servers so
that the Cisco ACI fabric provides meaningful services (such as traffic load balancing,
segmentation, filtering, traffic insertion, and monitoring) to workloads.
Figure 7-8 shows that the fabric provides a distributed policy consisting of two EPGs
connected by a firewall.

Figure 7-8 Cisco ACI Fabric Provides Distributed Policy
Each EPG in Figure 7-8 can belong to one or more subnets. Virtual workloads are
connected into port groups that are synchronized with the EPGs and send traffic tagged
with VLAN IDs or VXLAN VNIDs to the leaf devices. VLANs and VXLANs are
dynamically generated and are not maintained by the user. They have local
significance to the leaf switch and VMM domain, and they serve the purpose of
segmenting traffic on the link between the server and the leaf. They are also used to
signal the EPG membership of the source traffic. (The VMM domain is covered later
in the chapter in the section “Virtual Machine Mobility Domains.”)
The policy enforcement consists of inserting workloads into the correct EPG and into
binding sources to the appropriate EPGs and also destinations into their appropriate
EPGs, security, QoS, logging, and so on. The policy enforcement is performed at the
leaf. The policy is then enforced on the combination of source and destination EPG
and information from the packet.

258



Management Model
Among its many innovations, Cisco ACI is changing network management from a
traditional feature-by-feature, link-by-link approach to a declarative model, in which
the controller relies on each node to render the declared desired end state. The user
configures policies on the Cisco APIC and it propagates the policy configuration
through the OpFlex protocol to all the leaf devices in the fabric, as shown in Figure 7-
9.

Figure 7-9 Cisco ACI Propagates Policies to All the Leaf Devices in the Fabric
If the server and the software switching on the server support OpFlex, the policy can
also be applied within the server. Each networking element (physical or virtual) then
renders the policies according to the local capabilities, as shown in Figure 7-10.

259



Figure 7-10 Each Networking Element Renders Policies According to Local
Capabilities

You can define configurations on the Cisco APIC controller in several ways, as
described next and displayed in Figure 7-11:

 Using the easy-to-use GUI running on the same appliance that provides the
controller function
 Using Representational state transfer (REST) calls with intuitive XML- or
JSON-formatted payloads that are sent to the Cisco APIC; these can be sent in
many ways, using tools such as Google’s POSTMAN or Python scripts that send
REST calls
 Using a custom-built GUI that sends REST calls
 Using the command-line interface (CLI) to navigate the object model from the

260



Cisco APIC
 Using Python scripts that use the associated Cisco ACI libraries
 Via integration with third-party orchestration such as OpenStack

Figure 7-11 Users Can Define Configurations on the Cisco APIC in Several Ways

Even if spine and leaf devices are receiving the policy configurations from the
controller, you can still connect to each device through the console or the management
(mgmt0) port and use the well-known Cisco Nexus Software CLI to monitor how
policies are rendered. However, when connecting directly to a leaf or spine, only read
operations are allowed to prevent state synchronization issues with the APIC
controller.
Each tool has its areas of strength and weaknesses. This is how different teams will
most likely use the tools:

 GUI: Mostly for the infrastructure administration and for monitoring and
troubleshooting purposes. It is also used to generate templates.
 CLI on Cisco APIC: Mainly to create shell scripts and for troubleshooting
 POSTMAN and other REST tools: Mostly to test and define configurations to
be automated. The scripts are based on XML, JSON, or REST calls with simple
scripts for the operator. A scripting language can be used, such as Python, or it
can be directly done via POSTMAN.

261



 Python scripts: Mainly to create comprehensive provisioning. The SDK
provided with Cisco ACI performs this.
 PHP and web pages with embedded REST calls: Mostly to create simple user
interfaces for operators or IT customers.
 Advanced orchestration tools like OpenStack or Cisco Intelligent
Automation for Cloud (IAC) or Cisco UCS Director: Mainly for end-to-end
provisioning of compute and network

Hardware and Software
The topologies described in this chapter are based on the following components:

 Spine switches: The spine provides the mapping database function and
connectivity among leaf switches. At the time of this writing, spine switches are
either the Cisco Nexus N9K-C9508 switch equipped with N9K-X9736PQ line
cards or fixed form-factor switches such as the Cisco Nexus N9K-C9336PQ
ACI spine switch. Spine switches provide high-density 40-Gigabit Ethernet
connectivity between leaf switches. The Cisco Nexus 9336PQ form factor is
well suited for smaller deployments because it provides 36 ports of 40-Gigabit
Ethernet. The Cisco Nexus 9508 provides 288 40-Gigabit Ethernet ports.
 Leaf switches: The leaf provides physical server connectivity, virtual server
connectivity, and policy enforcement. At the time of this writing, leaf switches
are fixed form-factor switches with either SFP+, 10GBASE-T, or QSFP+ front-
panel ports such as the Cisco Nexus N9K-9372-PX, N9K-9372TX, N9K-
9332PQ, N9K-C9396PX, N9K-C9396TX, and N9K-C93128TX switches. The
choice of leaf switches provides the option to use 10GBASE-T or Enhanced
Small Form-Factor Pluggable (SFP+) connectivity to the servers. Leaf switches
are used in two modes: as standalone Cisco Nexus devices, or as devices that
are part of the Cisco ACI fabric (with an ACI version of the Nexus software).
 Cisco APIC: The controller is the point of configuration of policies and the
place where statistics are archived and processed to provide visibility,
telemetry, application health information, and overall management of the fabric.
The Cisco APIC is a physical server appliance like a UCS C220 M3 rack server
with two 10-Gigabit Ethernet interfaces that are meant to be connected to the
leaf switches and with Gigabit Ethernet interfaces for out-of-band management.
Two controller models are available: Cisco APIC-M and APIC-L.
 40-Gigabit Ethernet cabling: Leaf and spine switches can connect at 40 Gbps
with multimode fiber by using the new Cisco 40-Gbps short-reach (SR)
bidirectional (BiDi) Quad SFP (QSFP) optics modules, which do not require

262



new cabling. With these optics modules, you can connect equipment at distances
up to 100 meters on OM3 cabling and up to 125 meters or more on OM4
cabling. Other QSFP options are also available for 40-Gbps links.

Note
For more information about 40-Gbps cabling options, visit:
http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-
9000-series-switches/white-paper-c11-729384.pdf
or:
http://www.cisco.com/c/en/us/td/docs/interfaces_modules/transceiver_modules/compatibility/matrix/OL_24900.html

 Classic 10-Gigabit Ethernet cabling: Cabling to the server with 10-Gigabit
Ethernet is implemented with SFP+ fiber or copper or with 10GBASE-T
technology.

Cisco Nexus 9000 series switches can be deployed in two modes:
 Standalone mode: The switch provides functionalities that are similar to those
of the other Cisco Nexus switches with the addition of programmability, Linux
containers, Python shell, and so on. This chapter is not based on the use of
standalone mode.
 Fabric mode: The switch operates as part of a fabric. This chapter is based on
the use of the Nexus 9000 series switches in ACI mode.

Note
The Cisco NX-OS software that you use for ACI mode deployments is
not the same image that you load on Cisco Nexus 9000 Series switches
used in standalone mode. If you have an existing Cisco Nexus 9300
platform deployed as a regular Layer 3 switch, you need to install the
Cisco NX-OS software for ACI mode operations.

263

http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729384.pdf
http://www.cisco.com/c/en/us/td/docs/interfaces_modules/transceiver_modules/compatibility/matrix/OL_24900.html


Physical Topology
Cisco ACI uses a spine-and-leaf topology. All leaf nodes connect to all spine nodes,
but a full mesh is not required. Spine nodes don’t connect to each other, and leaf nodes
don’t connect to each other. As Figure 7-12 shows, a simple topology can consist of a
pair of spine switches (such as the Cisco Nexus 9336PQ switches) with leaf devices
dual-connected at 40-Gigabit Ethernet to each spine device. Servers can be connected
to two leaf devices, potentially in a PortChannel or virtual PortChannel (vPC). Any
leaf switch can also be a border leaf switch for outside connectivity from each tenant.
All devices can be connected through the mgmt0 port to an out-of-band management
network. You can connect the out-of-band management network to the mgmt0 port of
the switches as well as the REST API of the APIC.

Figure 7-12 Simple Physical Topology
The cabling can be fully meshed between spine and leaf devices, but this is not
mandatory. You can also have a setup in which some leaf devices are in the transit
path between two separated physical areas, in which case the spine devices in one
area likely won’t be attached to all of the leaf devices in the other room, as shown in
Figure 7-13. Topology such as this is suboptimal but it might be convenient for a
fabric split between different rooms or nearby buildings.

264



Figure 7-13 Leaf and Spine Devices in Different Rooms

Cisco APIC Design Considerations
Cisco APIC contains the database for the policies that govern the fabric. The
controller automatically archives the following data:

 Policies (are also replicated)
 Statistics
 Endpoint database (which is also replicated)

Because of this design, the Cisco APIC database is based on these principles:
 High-performance computing (HPC)-type clustering with all active nodes
 High availability (three controllers are recommended, although the fabric can be
managed with just one)
 Low latency
 Incremental scalability
 Consistency
 Partition tolerance

The fabric continues to forward traffic even in the absence of the controller. New
servers or VMs can be added and VMs can move in the fabric in the absence of the
controller. The only thing that cannot be done in the absence of the controller is change

265



the policy.
The Cisco APIC controller should be dual-attached to two leaf devices. No
configuration is required to build the NIC teaming interface; the 10-Gigabit Ethernet
ports of the Cisco APIC appliance are preconfigured for NIC teaming.
The fabric needs at least one Cisco APIC server to provide switch bootup, policy
management, and fault and statistics correlation. Three controllers are recommended
for redundancy, although you can still provision and configure policies for the fabric
with a single controller. Three controllers provide optimal redundancy and support
both Cisco APIC software upgrades and failure scenarios. More than three controllers
can be used for geographical redundancy and in cases in which you need additional
transactional scale (high transaction rate for the API for policy creation or monitoring
of the network).
The members of the Cisco APIC cluster do not need to form a full cluster prior to
switch node bootstrapping. The controller cluster is designed to operate in split-brain
mode, which occurs on bootup and during a partitioning network failure (large-scale
failure).
Connectivity between Cisco APIC cluster members takes place through the
management port and infrastructure VRF, so an out-of-band management network is not
needed for the cluster to form. But the cluster does not have to form before each
individual node can initiate the fabric and switch.
When you define the Cisco APIC cluster, you are asked how many members you want
to be present at steady state. This number tells the cluster how many other nodes to
expect so that each node can track bootup scenarios (only the first node has been
attached), partitioned fabrics, and other cases in which only a subset of the total target
number of Cisco APIC nodes is active.
When all nodes are active, the distributed management information tree (DMIT) for
the Cisco APIC cluster has the database shards (containers for the managed objects
representing the system and policy) replicated across the servers and assigns one of
the shard copies as the primary, with transactions performed against that copy. If three
servers are defined in a cluster, when all three are active, each supports transactions
against one-third of the DMIT. If only two servers are active, each has half of the
shards marked as primary, and the system load is shared across the two active Cisco
APIC nodes.

Spine Design Considerations
The main function of the spine is to provide the mapping database in case a leaf hasn’t
learned yet about the mapping of an endpoint and to forward traffic among leaf
switches.

266



The mapping database is maintained by the fabric that contains the mapping for each
endpoint attached to the network (identifier) and the address of the tunnel endpoint that
it sits behind (locator). The endpoint address is both the MAC address and the IP
address of the endpoint plus the logical network that it resides in (VRF or bridge
domain instance). The mapping database in the spine is replicated for redundancy and
is synchronized across all spines. The entries in the mapping database don’t expire
(age out) by themselves. They only expire after they have expired from the leaf first.
Once a mapping entry has expired on a leaf, the leaf instructs the spine to remove its
entry.
The mapping database is stored in a redundant fashion within each spine. It is
replicated among spine switches so that if a spine disappears, traffic forwarding
continues.
Modular spine switches have greater mapping database storage capacity than fixed
form-factor spines. In fact, the mapping database is sharded across fabric cards, so the
more fabric cards, the more endpoint mappings that can be stored. The use of added
fabric cards also depends on the forwarding capacity that you want to give to line
cards.
Each entry in the mapping database is stored in at least two fabric cards for
redundancy. The two fabric cards are programmed in such a way that there is no
hotspot for a heavy destination. In case of a fabric card failure, the traffic is sent to the
next spine. This feature is called spine chaining. Essentially, a chain of spines is
configured internally, where one spine acts as the backup for the other spine. The
chain is managed internally by Cisco APIC. No direct link is allowed or required
between the spine switches.

Leaf Design Considerations
Leaf switches provide physical and virtual server connectivity. They terminate
VLANs and VXLANs and encapsulate the traffic in a normalized VXLAN header, and
they are the enforcement point for policies. The Cisco ACI fabric decouples the tenant
endpoint address, its identifier, from the location of that endpoint, which is defined by
its locator, or VXLAN termination endpoint address. Typically, you want to look at
leaf switches in pairs, because of the likelihood that you are going to connect servers
with PortChannels in vPC mode to the leaf switches. Cisco ACI leaf switches support
vPC interfaces similar to the Cisco Nexus family of switches (IEEE 802.3ad
PortChannels with links split across two devices). However, with Cisco ACI a peer
link is not necessary to connect the leaf switches. It’s easy to define pairs of leaf
switches using switch profiles.
Leaf switches can be the attachment point simultaneously for workloads and for the

267



border leaf to provide connectivity to the WAN connecting to an external router with
IP.
For policy propagation to the leaf, choose among these three modes, depending on the
trade-off you want to make between scalability and immediacy:

 Policy preconfiguration: Cisco APIC pushes all policies to all leaf switches in
a VMM domain, and policies are immediately programmed into the hardware or
software data path. (VMM domains are defined in the section “Virtual Machine
Mobility Domains” later in the chapter.)
 No policy prepopulation: Policy is requested from Cisco APIC when a
notification is received or data-path detection occurs for a new endpoint.
Packets are dropped until the policy programming is complete.
 Policy prepopulation with on-demand configuration (default): Cisco APIC
pushes all policies to all leaf switches in a VMM domain. The policy is
programmed when the VMM is notified or the data plane learns of a new
endpoint. During the configuration stage, the packets are forwarded and the
policy is applied on the egress leaf.

Unknown Unicast and Broadcast
Traffic forwarding in Cisco ACI operates as follows:

 Cisco ACI routes traffic destined for the router MAC address.
 Cisco ACI bridges traffic that is not destined for the router MAC address.

In both cases, the traffic traverses the fabric encapsulated in VXLAN to the VTEP
destination IP address of the endpoint.
Cisco ACI doesn’t use flooding by default, but this behavior is configurable. The
mode of operation whereby ACI discovers endpoints and populates the mapping
database is called hardware proxy. With this mode of operation, unknown unicast
packets are never flooded. Furthermore, ACI offers the ability to transform ARP
requests into unicast. All these options are configurable, as shown in Figure 7-14.
Notice that the bridge domain must be associated with a router instance for the subnets
to be instantiated. The other fields control the way in which unknown unicast traffic
and multicast traffic are forwarded.

268



Figure 7-14 Forwarding Options
These are the options for Layer 2 unknown unicast frames:

 Flood: If the flood option is enabled in a bridge domain, the packet is flooded in
the bridge domain by using a multicast tree rooted in the spine that is scoped to
the bridge domain.
 No-flood (default): The packet is looked up in the spine, and if it is not found in
the spine, it is dropped. This mode of operation is called hardware proxy.

These are the options for unknown multicast frames (frames destined to a group for
which the fabric didn’t receive an IGMP join):

 Flood (default): Flood in the bridge domain.
 Optimized Flood: Send the frame only to the router ports.

These are the forwarding options for ARP:
 Flood: Use traditional ARP flooding.
 Unicast forwarding based on target IP (default): Send ARP to the destination
endpoint using unicast mechanisms.

The Unicast Routing field controls whether this is a pure Layer 2 bridge domain or

269



provides a pervasive default gateway:
 If unicast routing is disabled, ACI only learns MAC addresses.
 If unicast routing is enabled, ACI learns the MAC address with Layer 2 traffic
and learns the MAC and IP addresses with Layer 3 traffic.

With hardware proxy, the assumption is that devices answer to probes, and once the IP
and MAC addresses are known, they are maintained in the mapping database. If
unicast routing is enabled and an entry ages out, ACI sends an ARP request for this
entry to update the mapping database. In the case of pure Layer 2 forwarding behavior
(that is, if unicast routing is disabled), the MAC address entries expire just like in
regular Layer 2 switching.
The entries in the mapping database can expire. The default timer is 900 seconds.
After 75 percent of this value is reached, three ARP requests are sent as unicast in a
staggered fashion (with a time delta between the requests) as a probe to the MAC
address of the endpoint to check for the endpoint’s existence. If there is no ARP
response, then the endpoint is removed from the local table.

Use of VLANs as a Segmentation Mechanism
In Cisco ACI the VLANs used between a server and a leaf have switch local
significance and are used exclusively to segment traffic coming from the servers.
Cisco ACI has been designed so that when you are using virtualized workloads, you
don’t have to enter VLAN numbers manually per each endpoint group. Whenever
possible, leverage the dynamic negotiation of VLANs between the virtualized server
and the Cisco ACI fabric.
Figure 7-15 shows how a virtualized server tags traffic with a VLAN or a VXLAN
and sends it to the leaf. The tenant configuration defines the VLAN or VXLAN that
belongs to the EPG.

Figure 7-15 Use of VLANs for Segmentation

270



In the case of physical workloads, use VLANs to map traffic coming from a trunk into
the correct EPG.
EPG configurations are performed within a tenant space. ACI distinguishes between
administrator roles as either tenant administrators or infrastructure administrators.
This provides a way for the infrastructure administrator to limit what each individual
tenant can do, and scope for instance which VLAN can be used on which ports. A
tenant administrator can associate an EPG to a leaf, port, and VLAN. This
configuration becomes active only if the infrastructure administrator associates the
leaf and port with a VLAN namespace (via physical domain via attach entity profile
(AEP)) that the VLAN is part of.

VLANs and VXLANs Namespaces
A single fabric may have multiple virtualized server domains, each consuming 4000
VLANs (EPGs), so sometimes you may want to reuse a VLAN range multiple times.
The same pool of VLANs can be reused as long as it is associated with a different set
of leaf switches and a different VMM domain. Alternatively, if you use VXLANs
between the virtualized server and the Cisco ACI network, there is less need for reuse
because the addressing space is larger.
In spanning-tree networks, you specify which VLANs belong to which ports by using
the switchport trunk allowed vlan command. In Cisco ACI, you specify a domain
(physical or virtual), and associate the domain with a range of ports. Unlike traditional
Cisco standalone operations, in Cisco ACI the VLANs used for port groups on
virtualized servers are dynamically negotiated, as shown in Figure 7-16.

271



Figure 7-16 Reusing VLANs with Dynamic Negotiation
There are two types of pools of VLANs:

 Static VLAN pools: These are used for static binding, static association of an
EPG with a particular port and VLAN.
 Dynamic VLAN pools: VLANs from these pools are allocated dynamically
between the fabric and the Virtual Machine Manager.

Concept of Domain
Depending on whether you connect physical servers or virtual servers to the Cisco
ACI fabric, you define either a physical domain or a virtual domain. Virtual domains
reference a particular virtual machine manager (for example, VMware vCenter 1 or
data center ABC) and a particular pool of VLANs or VXLANs to be used. A physical
domain is similar to a virtual domain except that there’s no virtual machine manager
associated with it.
The person who administers the VLAN or VXLAN space is the infrastructure
administrator. The person who consumes the domain is the tenant administrator. The
infrastructure administrator associates domains with a set of ports that are entitled or
expected to be connected to virtualized servers or physical servers through an attach
entity profile (AEP). You don’t need to understand the details of the AEP except that it

272



encapsulates the domain. The AEP can include boot policies for the virtualized server
to boot from the network, and you can include multiple domains under the same AEP
and authorize virtualized servers of different kinds. Example 7-1 shows an AEP that
specifies that Cisco ACI should expect a VMware ESX server managed by VMware
vCenter 1 on port 1/3 on leaf 101. Normally you would specify a greater range of
ports (for example, the VMware vMotion domain).

Example 7-1 Mapping Virtualized Servers Mobility Domain to the Fabric

Click here to view code image

<infraInfra dn="uni/infra">
<!-- attachable entity, i.e. Domain information  -->
   <infraAttEntityP name="Entity_vCenter1_Domain">
      <infraRsDomP tDn="uni/vmmp-VMware/dom-vCenter1" />
   </infraAttEntityP>
<!-- Policy Group, i.e. a bunch of configuration bundled together
-->
   <infraFuncP>
         <infraAccPortGrp name="vCenter1_Domain_Connectivity">
            <infraRsAttEntP tDn="uni/infra/attentp-
Entity_vCenter1_Domain" />
         </infraAccPortGrp>
   </infraFuncP>
   <infraAccPortP name=" Leaf101esxports ">
      <infraHPortS name="line1" type="range">
         <infraPortBlk name="block0" fromPort="3" toPort="3" />
         <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-
vCenter1_Domain_
Connectivity" />
      </infraHPortS>
   </infraAccPortP>
   <infraNodeP name="Leaf101">
      <infraLeafS name="line1" type="range">
         <infraNodeBlk name="block0" from_="101" to_="101" />
      </infraLeafS>
      <infraRsAccPortP tDn="uni/infra/accportprof-Leaf101esxports
" />
   </infraNodeP>
</infraInfra>

Using the AEP, if you simply need to add ports to the configuration, edit the interface
profile infraAccPortP and add lines such as <infraHPortS name="line2"

273



type="range"> with new interface ranges.

Concept of Attach Entity Profile
The ACI fabric provides multiple attachment points that connect through leaf ports to
various external entities such as bare-metal servers, hypervisors, Layer 2 switches
such as the Cisco UCS Fabric Interconnect, and Layer 3 routers such as Cisco Nexus
7000 Series switches. These attachment points can be physical ports, port channels, or
a vPC on the leaf switches.
An AEP represents a group of external entities with similar infrastructure policy
requirements. The infrastructure policies consist of physical interface policies such
as:

 Cisco Discovery Protocol (CDP)
 Link Layer Discovery Protocol (LLDP)
 Maximum transmission unit (MTU)
 Link Aggregation Control Protocol (LACP)

An AEP is required to deploy any VLAN pools on the leaf switches. It is possible to
reuse the encapsulation pools such as VLAN pools across different leaf switches. An
AEP implicitly provides the scope of the VLAN pool (associated to the VMM
domain) to the physical infrastructure.
An AEP provisions the VLAN pool (and associated VLANs) on the leaf. The VLANs
are not actually enabled on the port. No traffic flows unless an EPG is deployed on the
port.
Without VLAN pool deployment using an AEP, a VLAN is not enabled on the leaf port
even if an EPG is provisioned. A particular VLAN is provisioned or enabled on the
leaf port based on EPG events either statically binding on a leaf port or based on VM
events from external controllers such as VMware vCenter.

Multi-tenancy Considerations
The Cisco ACI fabric has been designed for multi-tenancy. To create a tenant, you use
a REST call as shown in Example 7-2.

Example 7-2 Tenant Creation

Click here to view code image

http://10.51.66.236/api/mo/uni.xml
<polUni>
    <!-- Tenant Customer1 -->

274



    <fvTenant dn="uni/tn-Customer1" name="Customer1">
       <fvCtx name="customer1-router"/>
       <!-- bridge domain -->
       <fvBD name="BD1">
          <fvRsCtx tnFvCtxName="customer1-router" />
          <fvSubnet ip="10.0.0.1/24" scope="public"/>
          <fvSubnet ip="20.0.0.1/24" scope="private"/>
          <fvSubnet ip="30.0.0.1/24" scope="private"/>
        </fvBD>
       <!-- Security -->
       <aaaDomainRef dn="uni/tn-Customer1/domain-customer1"
name="customer1"/>
    </fvTenant>
</polUni>

Example 7-2 shows a REST call used to create a tenant named Customer1, to
associate a VRF instance named customer1-router and a bridge domain named BD1,
and to create three subnets: 10.0.0.0/24, 20.0.0.0/24, and 30.0.0.0/24. These subnets
contain the default gateways for the tenant located on the leaf switches with respective
IP addresses 10.0.0.1, 20.0.0.1, and 30.0.0.1
The tenant administrator cannot see the full fabric. This administrator can use some
resources, such as physical ports and VLANs, to exit the fabric or connect to the
outside world and can extend the definition of EPGs to virtualized servers.
The infrastructure administrator manages the entire fabric and can control and scope
the domains of VLAN and VXLAN namespaces that a given tenant can use.
Resources in the fabric may be dedicated to a given tenant, and other resources may be
shared. An example of a dedicated resource is a nonvirtualized server. Examples of
shared resources are virtualized servers and ports to connect outside the fabric.
To simplify the task of associating these resources with tenants, Cisco suggests the
following:

 Create one physical domain per tenant for nonvirtualized servers: A
physical domain is a VLAN namespace. The VLAN namespace is used to further
divide servers into EPGs. The physical domain is then associated with a set of
ports that a tenant is eligible to use.
 Create one physical domain per tenant for external connectivity: This
approach defines a set of VLANs that can be used to stitch the virtual data center
with an MPLS VPN cloud or across data centers. Multiple physical domains are
then grouped into a single AEP because the ports used to connect to the outside
are shared across multiple tenants.

Creation of one single VMM domain per tenant is theoretically possible, but this

275



approach is not feasible because administrators will want to share the VMM across
multiple tenants. In this case, the best way to aggregate VMM domains is to associate
the same VMM domain with all the leaf ports that can be connected to virtualized
servers in the same mobility domain.

Initial Configuration Steps
The infrastructure administrator manages the initial configuration of Cisco ACI. The
fabric is self-discovered when the Cisco APIC is attached to a leaf, and the
administrator validates the legitimate nodes from the GUI or with scripts.
Before configuring the infrastructure, verify that you have the following in place:

 Clock synchronization/NTP server. If the clocks on the nodes and the controller
are configured with times and dates that are too far apart, discovery may not
occur.
 Out-of-band management, to connect to the Cisco APIC and potentially to the
mgmt0 ports of the leaf and spine switches (at the time of this writing, Gigabit
Ethernet is required for out-of-band management).

Note
Cisco APIC does not require out-of-band management; in-band can be
used.

 A Dynamic Host Configuration Protocol (DHCP) server for servers and
potentially for network equipment
 A Preboot Execution Environment (PXE) server for servers and potentially for
network equipment

Zero-Touch Provisioning
When using Cisco ACI, you don’t need to do the following:

 Configure addressing and subnetting to establish communication
 Configure the routing for the infrastructure
 Specify the subnets to advertise in an Interior Gateway Protocol (IGP) area
unless routing is needed
 Specify loopback addresses for IGP announcements
 Specify the interfaces on which to peer
 Tune the routing timers
 Verify cabling and neighbors

276



 Remove VLANs from trunks
All of these configurations are set automatically when you connect leaf and spine
nodes together.
The Cisco ACI fabric is designed to provide a zero-touch operation experience with

 A logically central but physically distributed controller for policy, bootstrap,
and image management
 Easy startup with topology auto-discovery, automated configuration, and
infrastructure addressing using industry-standard protocols: Intermediate
System-to-Intermediate System (IS-IS), LLDP, and DHCP
 A simple and automated policy-based upgrade process and automated image
management

The Cisco APIC is a physically distributed but logically centralized controller that
provides DHCP, bootstrap configuration, and image management to the fabric for
automated startup and upgrades. After LLDP discovery, the Cisco APIC learns all
neighboring connections dynamically. These connections are validated against a loose
specification rule that the user provides through REST calls or through the GUI. If a
rule mismatch occurs, a fault occurs, and the connection is blocked. In addition, an
alarm is created indicating that the connection needs attention.
The Cisco ACI fabric operator has the option of importing the names and serial
numbers of all the fabric nodes from a simple text file into the Cisco APIC, or
discovering the serial numbers automatically and assigning names from the Cisco
APIC GUI, CLI, or API. The fabric activation is automatic, but the administrator needs
to give an ID to each node as the controller discovers it. The spine switches should be
given a number in the top range of the IDs or in the very lowest range (101 to 109), so
that all leaf switches are numbered with a continuous range, to make range
configurations more readable.
When the switches boot up, they send LLDP packets and a DHCP request. The Cisco
APIC operates as the TFTP and DHCP server for the switches and provides the
switches with a TEP address, switch image, and global configuration. The
infrastructure administrator sees the leaf and spine switches as they are discovered,
validates their serial numbers, and decides whether to accept them into the fabric.

Network Management
The Cisco APIC automatically configures an Infrastructure VRF instance that is used
for in-band communication between the Cisco APIC and the switch node
communication, and it is nonroutable outside the fabric.
The Cisco APIC serves as DHCP and TFTP server for the fabric. The Cisco APIC

277



assigns the TEP addresses for each switch. Core links are unnumbered.
The Cisco APIC allocates three types of IP addresses from private address space:

 Switch TEP IP address: Switches inside a pod share a common prefix.
 Cisco APIC IP address: The management IP address of the Cisco APIC
appliance.
 VXLAN tunnel endpoint (VTEP) IP address: VTEPs behind a leaf share a
common prefix.

In addition, you can attach to the Cisco ACI fabric a management station that can talk
to the fabric nodes or to the Cisco APIC in-band on the tenant called “mgmt.”
The in-band management configuration lets you define the IP addresses for APIC
controllers, leaves, and spines so that they can share a bridge domain for management
purposes. The configuration includes the definition of a VLAN, which is used to
enable communication between the controller and the fabric. This VLAN must be
configured on the mgmt tenant and also enabled on the port that connects to the
controller from the infrastructure configuration. The configuration of the mgmt tenant is
shown in Example 7-3.

Example 7-3 Tenant mgmt Configuration for In-band Management

Click here to view code image

POST http://192.168.10.1/api/policymgr/mo/.xml
<!-- api/policymgr/mo/.xml -->
<polUni>
   <fvTenant name="mgmt">
     <!-- Addresses for APIC in-band management network -->
     <fvnsAddrInst name="apic1Inb" addr="192.168.1.254/24">
       <fvnsUcastAddrBlk from="192.168.1.1" to="192.168.1.1"/>
     </fvnsAddrInst>
     <!-- Addresses for switch in-band management network -->
     <fvnsAddrInst name="leaf101Inb" addr="192.168.1.254/24">
       <fvnsUcastAddrBlk from="192.168.1.101"
to="192.168.1.101"/>
     </fvnsAddrInst>
   </fvTenant>
 </polUni>
[...]
<!-- Management node group for APICs -->
     <mgmtNodeGrp name="apic1">
       <infraNodeBlk name="line1" from_="1" to_="1"/>
       <mgmtRsGrp tDn="uni/infra/funcprof/grp-apic1"/>

278



     </mgmtNodeGrp>
     <!-- Management node group for switches-->
     <mgmtNodeGrp name="leaf101">
       <infraNodeBlk name="line1" from_="101" to_="101"/>
       <mgmtRsGrp tDn="uni/infra/funcprof/grp-leaf101"/>
     </mgmtNodeGrp>
[...]
<infraFuncP>
       <!-- Management group for APICs -->
       <mgmtGrp name="apic1">
         <!-- In-band management zone -->
         <mgmtInBZone name="apic1">
           <mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-
default"/>
           <mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-apic1Inb"/>
         </mgmtInBZone>
       </mgmtGrp>
[...]
<!-- Management group for switches -->
       <mgmtGrp name="leaf101">
         <!-- In-band management zone -->
         <mgmtInBZone name="leaf101">
           <mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-
default"/>
           <mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-
leaf101Inb"/>
         </mgmtInBZone>
       </mgmtGrp>
     </infraFuncP>
   </infraInfra>
 </polUni>
 [...]
<!-- api/policymgr/mo/.xml -->
 <polUni>
   <fvTenant name="mgmt">
     <fvBD name="inb">
       <fvRsCtx tnFvCtxName="inb"/>
       <fvSubnet ip="192.168.111.254/24"/>
     </fvBD>
     <mgmtMgmtP name="default">
       <!-- Configure the encap on which APICs will communicate
on the in-band
 network -->
       <mgmtInB name="default" encap="vlan-10">
         <fvRsProv tnVzBrCPName="default"/>
       </mgmtInB>

279



     </mgmtMgmtP>
   </fvTenant>
 </polUni>

The configuration of the infrastructure requires the following steps:
Step 1. Choose a VLAN pool (for example VLAN 10)
Step 2. Define the physical domain (pointing to the VLAN pool)
Step 3. Define a policy group with AEP
Step 4. Configure the AEP pointing to the physical domain
Step 5. Map the node selector and port selectors selecting the port that the APIC is

associated with

Policy-based Configuration of Access Ports
The infrastructure administrator configures ports in the fabric for speed, LACP mode,
LLDP, CDP, and so forth. In Cisco ACI, the configuration of physical ports is designed
to be extremely simple for both small- and large-scale data centers. The infrastructure
administrator prepares a template of configurations for servers based on their
connectivity characteristics. For instance, the administrator categorizes servers
connected with active-standby teaming, PortChannels, and vPCs and bundles all the
settings for the ports into a policy group. The administrator then creates objects that
select interfaces of the fabric in ranges that share the same policy-group configuration.
Figure 7-17 defines the connection of servers to the fabric.

280



Figure 7-17 Defining the Connection of Servers to the Fabric
The logic is better understood by following an example of configuration. In the fabric
access policy, under the switch profiles, you define one profile per switch: leaf101,
leaf102, and so on, as shown in Figure 7-18.

281



Figure 7-18 Defining One Profile per Switch
You have now created objects that represent each leaf device. You can also create an
object that represents two leaf devices, and then create profiles that categorize ports
into different groups and later add these to the switch.
If you highlight the object that represents the leaf of interest, you can then add interface
profiles to it by adding entries to the field Associated Interface Selector Profiles.
The interface profile consists of a range of interfaces with similar configurations. For
example, the range kvmportsonleaf101 may select ports 1 through 10.
The configuration of the ports is based on the policy group, as shown in Figure 7-19.
The policy group is a template of configurations such as speed, CDP, LLDP, Spanning
Tree Protocol, LACP, and so on.

282



Figure 7-19 Policy Groups
To associate the configuration with interfaces on the leaf switches, create an interface
profile. For instance, assume that port 1/15 on leaf 101 is attached to a physical
server. You can create an interface profile object called physicalserversonleaf101
and add port 1/15 to it. You can add more ports later to apply the same configuration
to all ports connected to the physical servers, as shown in Figure 7-20.

283



Figure 7-20 Creating an Interface Profile
For this selection of ports to be carved out of leaf 101, add it to the switch profile that
identifies leaf101.
Figure 7-21 shows the relationship between leaf switches, ports, AEP, domains, and
VLAN pools. It illustrates the following points:

 The infrastructure administrator can create a range of VLANs.
 The VLAN range is associated with a physical domain.
 The association is encapsulated in an AEP (which is configured in the Global
Policy area of the GUI).
 The left portion of the figure shows how the AEP is associated with an interface.
 The interface profile selects an interface number.
 The switch profile selects a switch number.
 The policy group is basically the interface configuration, which may include an
AEP (and, as a result of the various links, also includes the set of VLANs).

284



Figure 7-21 Relationships Between Leaf Switches, Ports, AEP, Domains, and VLAN
Pools

This configuration is achieved with a single REST call.
The advantage of this approach is that you effectively apply configurations in a more
logical manner. For instance, if you want to add one port to the set of physical servers,
you just need to add an interface to the interface profile. If you want to change the
physical port settings, you can make that change in the policy group. If you want to add
a VLAN to the range, you just modify the physical domain.
Furthermore, you can create policies that apply not to just one switch at a time but to
multiple switches, which is very useful for the configuration of vPCs.

Configuring Switch Profiles for Each Leaf
After bringing up the fabric, the administrator can create switch profiles. As an
example, the administrator may want to create two types of switch profiles, one for
single-homed server ports or active-standby ports, and another one for devices that
connect with vPCs as follows:

 One switch profile per leaf switch: For example, switch101, switch102, and
switch103 have switch profiles that select leaf 101, leaf 102, and leaf 103.
 One switch profile per pair of leaf switches: For example, leaf 101 and leaf
102 are selected by switch profile switch101and102, and leaf 103 and leaf 104
are selected by switch profile switch103and104.

285



When you need to add a range of ports to a leaf, add it to the profile that you have
already defined. Similarly, when you need to add to a vPC, simply add the interface
profile to the pair of leaf switches that you have predefined.

Configuring Interface Policies
Interface policies control the configuration of features such as LLDP and Cisco
Discovery Protocol. For example, create one object with LLDP enabled and another
with LLDP disabled. Create one object with Cisco Discovery Protocol enabled and
one with Cisco Discovery Protocol disabled, and so on. The advantage of this
approach is that later, when you configure interfaces, you can simply select a
predefined status of LLDP or Cisco Discovery Protocol and so on.
Under Interface Policies, under Link Level, you can preconfigure Fast Ethernet links
or Gigabit Ethernet links. Under Cisco Discovery Protocol Interface (CDP Interface),
you can specify the configuration for the protocol enabled and for the protocol
disabled. Under LACP, you can specify the configuration for LACP active (and define
the other options that you want for this configuration: maximum and minimum number
of links and so on).

Interface Policy Groups and PortChannels
PortChannels and virtual PortChannels are configured via policy groups.

Interface Policy Groups
Policy groups can be used as the following:

 Templates of configurations for the interfaces: the collection of features that
should be applied to a given interface; these features are a list of pointers to the
interface profiles that you defined in the previous section
 Templates of channel groups (when using PortChannel or vPC policy groups)

The most meaningful way to define policy groups is to consider the server types you
are planning to connect and then create categories. For instance, you might create
categories such as the following:

 Linux Kernel-based Virtual Machine (KVM) servers connected at 1-Gigabit
Ethernet without teaming
 Linux KVM servers connected at 1-Gigabit Ethernet with PortChannels
 Microsoft Hyper-V servers connected at 10-Gigabit Ethernet
 Microsoft Hyper-V servers connected at 10-Gigabit Ethernet with PortChannels

For each category of devices, define the policy group.
Policy groups also include references to the AEP (you don’t have to add the AEP right

286



away; you can add it or change it later). Policy groups can be associated with
interfaces and with switches by using the interface profiles and the switch profiles.

PortChannels
You can create PortChannels in Cisco ACI more quickly and easily than on a regular
switch. The reason is that with the policy model, you just need to create a selection of
interfaces and associate that with the same policy group. Each policy group of type
PortChannel is a different channel group.
The LACP active or passive configuration is managed through the interface policy
configuration (which is referenced by the policy group).
Figure 7-22 shows how to create the PortChannel group.

Figure 7-22 Creating the LACP Configuration

Configure everything in a single REST call as shown in Example 7-4.

Example 7-4 Configuration of a PortChannel

Click here to view code image

http://10.51.66.236/api/mo/uni.xml
<infraInfra>

<infraNodeP name="leafs101">

287



   <infraLeafS name="leafsforpc" type="range">
     <infraNodeBlk name="line1" from_="101" to_="101" />
   </infraLeafS>
   <infraRsAccPortP tDn="uni/infra/accportprof-ports22and23" />
</infraNodeP>

<infraAccPortP name="ports22and23">
 <infraHPortS name="line1" type="range">
    <infraPortBlk name="blk"fromCard="1" toCard="1" fromPort="22"
toPort="23" />
    <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-channel-
group-1"/>
 </infraHPortS>
</infraAccPortP>

<infraFuncP>
  <infraAccBndlGrp name="channel-group-1" lagT="link">
  </infraAccBndlGrp>
</infraFuncP>

</infraInfra>

Note
A bundle group defined with the setting lagT="link" indicates that this
configuration is for a PortChannel. If the setting instead were
lagT="node", it would be a configuration for a vPC.

Virtual PortChannels
Creating vPCs in Cisco ACI is also simpler than creating them in regular Cisco
standalone configurations because there are fewer possibilities for mistakes and you
can use switch selectors to configure ports on multiple switches simultaneously.
Configuring vPCs with Cisco ACI is different than configuring them in other Cisco
standalone NX-OS platforms because of the following:

 There is no need for a vPC peer link.
 There is no need for a vPC peer keepalive.

In order to create a vPC with a pair of leaf switches, one needs to create a vPC
protection policy, then pair the leaf switches in the same way as you paired them in the
switch profiles: that is, create vpcdomain1, vpcdomain2, etc., where vpcdomain1
selects leaf switches 101 and 102, vpcdomain2 selects leaf switches 103 and 104, and
so on.

288



With this policy in place, create one policy group of type vPC per channel group and
reference it from the interface profile.
You also may want to create a switch profile that encompasses the two leaf switches
that form the vPC domain, to add all the interface configurations under the same switch
profile object.
All of this configuration is accomplished with multiple REST calls or with a single
REST call with all the pieces together. The configuration in Example 7-5 creates the
vPC domain.

Example 7-5 Configuration of the vPC Protection Group

Click here to view code image

POST to api/mo/uni/fabric.xml
<polUni>
  <fabricInst>
     <fabricProtPol name="FabricPolicy">
     <fabricExplicitGEp name="VpcGrpPT" id="101">
        <fabricNodePEp id="103"/>
        <fabricNodePEp id="105/>
     </fabricExplicitGEp>
     </fabricProtPol>
  </fabricInst>
</polUni>

The configuration in Example 7-6 creates the vPC channel group; the keyword
lagT="node" indicates that this is a vPC.

Example 7-6 Configuration of a vPC Channel Group

Click here to view code image

POST to api/mo/uni.xml
 <polUni>
   <infraInfra dn="uni/infra">
     <infraFuncP>
       <infraAccBndlGrp name="vpcgroup1" lagT="node">
       </infraAccBndlGrp>
     </infraFuncP>
 </infraInfra>
 </polUni>

289



The configuration in Example 7-7 associates ports and switches with the policy.

Example 7-7 Association of Ports with the vPC Channel Group

Click here to view code image

POST to api/mo/uni.xml
<polUni>
  <infraInfra dn="uni/infra">
   <infraAccPortP name="interface7">
      <infraHPortS name="ports-selection" type="range">
        <infraPortBlk name="line1"
  fromCard="1" toCard="1" fromPort="7" toPort="7">
        </infraPortBlk>
        <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-
vpcgroup1" />
      </infraHPortS>
    </infraAccPortP>
<infraNodeP name="leaf103andleaf105">
       <infraLeafS name="leafs103and105" type="range">
         <infraNodeBlk name="line1" from_="103" to_="103"/>
         <infraNodeBlk name="line2" from_="105" to_="105"/>
       </infraLeafS>
       <infraRsAccPortP tDn="uni/infra/accportprof-interface7" />
    </infraNodeP>
  </infraInfra>
</polUni>

Virtual Machine Manager (VMM) Domains
Cisco APIC is designed to provide full visibility into virtualized servers and
connectivity for virtual machines.
Multiple tenants share virtual machines on the same set of virtualized servers. The
VLAN allocation to segment these virtual machines must be dynamic: the virtual
machine managers and Cisco APIC negotiate the VLAN tagging that is used.
VMM domains are mobility domains and are not associated with a particular tenant.
Instead, you may want to group VMM domains into a single AEP that identifies a
common mobility domain for a set of virtual machine managers. For example, one
mobility domain may span leaf101 through leaf 110, so the AEP with the VMM
domain for VMware vCenter, Linux KVM, and Microsoft System Center Virtual
Machine Manager (SCVMM) is applied to all the ports across these leaf switches.
The AEP for the VMM domain must then be attached to the set of interfaces at which

290



virtualized hosts will connect. This attachment is achieved by defining a policy group,
an interface profile, and a switch profile.

VMM Domain
A VMM domain is defined as a virtual machine manager and the pool of VLANs and
VXLANs that this virtual machine manager is going to use for the purpose of sending
traffic to the leaf switches. The VMM domain is associated with an AEP and a policy
group and the interfaces at which it is attached to define where virtual machines can
move.
In the virtual machine networking view, you can create multiple virtual machine
provider domains, which define the virtual machine manager and the data center with
which the Cisco APIC interfaces, and the VLAN pool that this VMM domain is
entitled to use.
The VLAN pool should be dynamic, to allow the virtual machine manager and Cisco
APIC to allocate VLANs as needed for the port groups that are going to be used.
For each VMM domain, Cisco APIC creates a virtual switch in the hypervisor. For
example, in VMware vCenter, if the user configures two VMM domains, which in the
example are associated with the same VMware vCenter but with different data
centers, the Cisco APIC creates two Virtual Distributed Switches (VDS) in the
hypervisor, as depicted in Figure 7-23.

291



Figure 7-23 For Each VMM Domain, Cisco APIC Creates a Virtual Switch in the
Hypervisor

AEP for Virtualized Servers Connectivity
For practical reasons, you may want to bundle multiple VMM domains of different
types in the same AEP. For instance, your application will likely consist of a mix of
workloads: Linux KVM, Microsoft Hyper-V, and VMware vCenter. Each defines a
VMM domain, but together these domains are present on the same leaf. Therefore, you
may want to create an AEP named VMM1, which includes:

 VMM domain vCenter Datacenter1
 VMM domain Hyper-V
 VMM domain KVM

Their VLAN ranges are nonoverlapping.
Then, you might organize your VLAN pools as follows:

 vlan-pool-HyperV1
 vlan-pool-KVM1
 vlan-pool-vCenter1
 vlan-pool-HyperV2

292



 vlan-pool-KVM2
 vlan-pool-vCenter2

Again, vlan-pool-HyperV1, vlan-pool-KVM1, vlan-pool-vCenter1, etc. are
nonoverlapping.
You now have three different VMM domains for the respective virtual machine
managers:

 VMM domain HyperV1
 VMM domain vCenter1
 VMM domain KVM1

Then bundle the three hypervisor types for an application into the same AEP, so you
end with a configuration with these AEPs:

 VMMdomain1 (which consists of VMM domain HyperV1, vCenter1, and
KVM1)
 VMMdomain2 (which consists of VMM domain HyperV2, vCenter2, and
KVM2)

The AEP provides the domain–to–physical infrastructure connectivity information. It
provides the span of the VLAN pool (which is associated with the VMM and physical
domains) on the leaf switches and ports. The AEP just deploys the VLAN namespace
(and associated VLANs) on the leaf. The VLANs are not actually provisioned or
enabled on the port, so no traffic will flow without EPG provisioning. A particular
VLAN is provisioned and enabled on the leaf port based on EPG events: either static
EPG binding on a leaf port or LLDP discovery in the case of the VMM domain.
Besides enabling the VLAN namespace, the AEP provides the following functions: a
VMM domain automatically derives all the policies for the physical interfaces, such
as the MTU, LLDP, CDP, and LACP, from the interface policy groups associated with
the AEP.

Configuring a Virtual Topology
Figure 7-24 shows a simple network topology.

293



Figure 7-24 Simple Network Topology
The topology consists of an inside network with one bridge domain divided into
EPGs: EPG A and EPG B. It also includes an extended Layer 2 network that includes
local and remote workloads, further divided in EPGs—EPG C and EPG D—and
connectivity to the outside through multiple Layer 3 hops with a Layer 3 interface.
Figure 7-25 illustrates an example of a relationship between the network switching
and routing functionalities and how they map to the network, bridge domain, EPG, and
application network profiles that can span across the EPGs. The bridge domain and
EPG are explained in the following two sections.

294



Figure 7-25 Relationship Between Network Components and the ACI Fabric
Terminologies

Bridge Domain
The bridge domain can be compared to a giant distributed switch. Cisco ACI
preserves the Layer 2 forwarding semantics even if the traffic is routed on the fabric.
The TTL is not decremented for Layer 2 traffic, and the MAC addresses of the source
and destination endpoints are preserved.
The XML configuration to create the bridge domain is <fvBD name="Tenant1-
BD"/>.

Hardware Proxy
By default, Layer 2 unknown unicast traffic is sent to the spine proxy. This behavior is
controlled by the hardware proxy option associated with a bridge domain. If the
destination is not known, send the packet to the spine proxy. If the spine proxy also
does not know the address, discard the packet (default mode). The implicit
configuration is as follows:
Click here to view code image

<fvBD arpFlood="no" name="tenant1-BD" unicastRoute="yes"
unkMacUcastAct="proxy"

295



unkMcastFlood="yes"/>

The advantage of the hardware proxy mode is that no flooding occurs in the fabric.
The potential disadvantage is that the fabric has to learn all the endpoint addresses.
With Cisco ACI, however, this is not a concern for virtual and physical servers that
are part of the fabric: the database is built for scalability to millions of endpoints.
However, if the fabric had to learn all the IP addresses coming from the Internet, it
would clearly not scale.

Flooding Mode
Alternatively, you can enable flooding mode: if the destination MAC address is not
known, flood in the bridge domain. By default, ARP traffic is not flooded but sent to
the destination endpoint. By enabling ARP flooding, ARP traffic is also flooded:
Click here to view code image

<fvBD arpFlood="yes" name="VLAN100" unicastRoute="no"
unkMacUcastAct="flood"
unkMcastFlood="yes"/>

This mode of operation is equivalent to that of a regular Layer 2 switch, except that in
Cisco ACI this traffic is transported in the fabric as a Layer 3 frame with all the
benefits of Layer 2 multipathing, fast convergence, and so on.
Hardware proxy and unknown unicast and ARP flooding are two opposite modes of
operation. With hardware proxy disabled and without unicast and ARP flooding, Layer
2 switching does not work.
The advantage of disabling hardware-based proxy and using flooding for unknown
hosts and ARP is that the fabric does not need to learn millions of source IP addresses
coming from a given port.

fvCtx
In addition to the bridge domain, a tenant normally also is configured with a VRF
instance for routing. ACI calls this VRF a private network. You need to configure
more router instances if more overlapping IP addresses are required:

<fvCtx name="Tenant1-router"/>

Endpoint Connectivity
Endpoint connectivity in the virtual network is defined by carving the bridge domain
into EPGs and associating these EPGs with either a virtual machine manager or a
physical server (static binding).

296



For the EPG configuration to work—that is, for endpoints to be discovered and EPG
to be propagated to the virtual machine manager—remember to do the following:

 Associate the EPG with the bridge domain.
 Create a router in the tenant.
 Associate the bridge domain with the router.
 Enable unicast routing (if you want traffic to be routed; that is, if you want a
pervasive gateway).

Connecting a Physical Server
As noted previously, the <fvCtx name="Tenant1-router"/> configuration defines
connectivity for a physical server to an EPG. EPGs are always part of an application
network profile <fvAp>, which in Example 7-8 is called "test". Here, fvRsPathAtt
indicates that the physical server connected to port 1/33 on leaf101 can send traffic
untagged (mode="native"), and on leaf 101 the traffic from this server is tagged as
vlan-10 (which has local significance). All the traffic from this server is associated
with the bridge domain "Tenant1-BD".

Example 7-8 Configuration of Connectivity to a Physical Server

Click here to view code image

Method: POST
http://10.51.66.243/api/mo/uni.xml
<polUni>
  <fvTenant dn="uni/tn-Tenant1" name="Tenant1">
    <fvAp name="test">
       <fvAEPg name="EPG-A">
         <fvRsBd tnFvBDName="Tenant1-BD" />
         <fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-
[eth1/33]"
  encap="vlan-10"  mode="native"/>
         </fvAEPg>
     </fvAp>
  </fvTenant>
</polUni>

If hardware proxy is enabled for the bridge domain, as it is by default, the endpoints
are discovered when they send the first frame, and they appear in the operational view
under Client Endpoints.

297



Connecting a Virtual Server
Example 7-9 shows the configuration that provides connectivity for a virtual server to
an EPG. EPGs are always part of an application network profile <fvAp>, which in
this case is called "test". The EPG called "EPG-A" appears on the virtualized server
as a port group named Tenant1|test|EPG-A. The virtual server administrator then
associates the virtual machine with the port group.

Example 7-9 Configuration of Connectivity to a Virtualized Server

Click here to view code image

Method: POST
http://10.51.66.243/api/mo/uni.xml
<polUni>
  <fvTenant dn="uni/tn-Tenant1" name="Tenant1">
    <fvAp name="test">
       <fvAEPg name="EPG-A">
         <fvRsBd tnFvBDName="Tenant1-BD" />
         <fvRsDomAtt tDn="uni/vmmp-VMware/dom-vCenter1"/>
       </fvAEPg>
     </fvAp>
  </fvTenant>
</polUni>

The virtual machines associated with the EPG show in the Operational view under
Client-Endpoints. You also find on which virtualized servers they are located.

External Connectivity
The Cisco ACI fabric distinguishes internal endpoints from external routes. Every
endpoint that is internal to the fabric is known by means of discovery of the endpoint
itself. The external routes are known by peering with Open Shortest Path First (OSPF)
or Border Gateway Protocol (BGP) with neighboring routers or by configuring static
routes.
The configuration of Layer 3 connectivity requires identification of the leaf that will
be the border leaf for this specific tenant, the interfaces that will be used, the IP
addresses that should be used, and the routing instance of the tenant with which the
routes should be associated. An example is depicted in Example 7-10 below.

Example 7-10 Configuration of External Connectivity

298



Click here to view code image

<fvTenant name="Tenant1">
   <l3extOut name="Internet-access-configuration">
     <l3extInstP name="outsideEPGforTenant1">
       <fvRsCons tnVzBrCPName="ALL"/>
       <l3extSubnet ip="0.0.0.0" />
     </l3extInstP>
     <l3extLNodeP name="BorderLeafConfig">
      <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101">
         <ipRouteP ip="0.0.0.0">
           <ipNexthopP nhAddr="172.18.255.254"/>
         </ipRouteP>
      </l3extRsNodeL3OutAtt>
      <l3extLIfP name="L3If">
        <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-
101/pathep-[eth1/16]"
   ifInstT="l3-port" addr="172.18.66.1/16"/>
      </l3extLIfP>
      </l3extLNodeP>
     <l3extRsEctx tnFvCtxName="Tenant1-router"/>
   </l3extOut>
</fvTenant>

Example 7-10 shows the following:
 l3InstP is an EPG for the traffic coming from the outside.
 l3extSubnet is a filter in case the user wants to categorize external traffic into
multiple EPGs.
 fvRsCons defines the contract that is consumed by this EPG, and as a result it
establishes the communication path to internal EPGs.
 l3extLNodeP is the location where you put the configuration for the border leaf
(for example, for static routes).
 l3extRsNodeL3OutAtt identifies a particular leaf that you select as the border
leaf for the tenant.
 l3extLIfP is the location where you can configure the ports and subinterfaces of
the border leaf with IP addresses and so on.
 l3extRsEctx is the location where you associate the configuration with the
routing instance for the tenant.

299



Summary
This chapter described the topology of an ACI fabric and how to configure it as an
infrastructure administrator and as tenant administrator. It covered the configuration of
physical interfaces, PortChannels, virtual PortChannels, and VLAN namespaces as
part of the infrastructure configurations. This chapter also explained the topics of
segmentation, multitenancy, connectivity to physical and virtual servers, and external
connectivity as part of the tenant configuration.

300



Chapter 8. Service Insertion with ACI

Cisco Application Centric Infrastructure (ACI) technology provides the capability to
insert Layer 4 through Layer 7 functions using an approach called a service graph.
The industry normally refers to the capability to add Layer 4 through Layer 7 devices
in the path between endpoints as service insertion. The Cisco ACI service graph
technology is considered a superset of service insertion. The goal of this chapter is to
describe the service graph concept and how to design service insertion with the
service graph.
As Figure 8-1 shows, Layer 4 through Layer 7 services can be physically located
anywhere in the fabric, and the services can be running as physical or virtual
appliances.

Figure 8-1 ACI Fabric with Layer 4 Through Layer 7 Services

Overview of ACI Design with Layer 4 Through Layer 7
Services
The main purpose of a data center fabric is to move traffic from physical and
virtualized servers and forward it to its destination, and while doing so apply Layer 4
through Layer 7 services such as:

 Traffic inspection

301



 SSL offloading
 Application acceleration
 Load balancing

Benefits
The main benefits of using a Cisco ACI fabric to provision Layer 4 through Layer 7
services are as follows:

 Single point of provisioning through the GUI, the Representational state transfer
(REST) API, or Python scripts
 Scripting and programming environment with a Python software development kit
(SDK)
 Capability to provision complex topologies instantaneously
 Capability to add and remove workloads from the load balancers or firewall
configurations without human intervention
 Capability to create a logical flow of functions instead of just a sequence of
Layer 4 through Layer 7 devices
 Multitenancy (network slicing) on the fabric and on the service devices
 Capability to create portable configuration templates

Cisco ACI enables you to concatenate functions offered by individual Layer 4 through
Layer 7 devices instead of simply connecting discrete boxes in sequence.
Appliances don’t need to be placed in any particular place in the fabric. They can run
as physical appliances connected to any leaf, or as virtual appliances running on any
virtualized server. They can be connected on any leaf port of the ACI fabric. Physical
appliances can run with multiple virtual contexts as well. Cisco ACI models this
concept in the construction of the policy.

Connecting Endpoint Groups with a Service Graph
A service graph is a variation of the contract concept. In the Cisco ACI policy model,
a contract connects two endpoint groups (EPG). A contract also offers functions such
as traffic filtering, traffic load balancing, and SSL offloading. Cisco ACI locates the
devices that provide such functions and inserts them into the path as defined by the
service graph policy. As Figure 8-2 shows, a sequence of Layer 4 through Layer 7
functions can be used to connect two EPGs. A contract could also specify a redirect
action and steer only a subset of the traffic to the service graph.

302



Figure 8-2 Cisco ACI with Service Graphs

Extension to Virtualized Servers
Virtual appliances are automatically inserted into the Cisco ACI fabric by the Cisco
Application Policy Infrastructure Controller (APIC).
Cisco ACI locates the virtual network interface card (vNIC) of the virtual firewalls
and virtual load balancers and automatically connects them to the correct EPG.

Management Model
The user can define configurations on the Cisco APIC in multiple ways, as shown in
Figure 8-3. These configurations can include the definition of the service graph. The
Cisco APIC communicates with the load balancers and firewalls to allocate the
necessary network path to create the desired service graph path.

303



Figure 8-3 Cisco APIC Provides the Capability to Configure Services with REST,
Scripts, or a GUI

You can define the service graph configuration using the following options:
 The GUI running on the same appliance that provides the controller function
 REST calls with XML- or JSON-formatted payloads that are sent to the Cisco
APIC; these can be sent in many ways, using tools such as POSTMAN or Python
scripts that send REST calls
 Custom-built GUI that sends REST calls
 Command-line interface (CLI) to navigate the object model from the Cisco
APIC
 Python scripts that use the associated Cisco ACI libraries

304



Service Graphs, Functions, and Rendering
The concept of the service graph is different from simply doing service insertion. A
service graph is a concatenation of functions (and not of network devices). The
service graph specifies that the path from one EPG to another EPG must pass through
certain functions. The Cisco APIC translates the definition of the service graph into a
path through firewalls and load balancers, called rendering.
As Figure 8-4 shows, the Cisco APIC is aware of the pool of load balancers and
firewalls (concrete devices) and translates the user intentions expressed in the service
graph by using the available pool of resources.

Figure 8-4 Concept of a Service Graph

Therefore, the service graph is more like a template, which can be ported to different
data centers and rendered with locally available resources. The rendering involves the
following:

 Allocation of the necessary bridge domains
 Configuration of IP addresses on the firewall and load balancer interfaces
 Creation of the VLAN on these devices to create the path for the functions

305



 Performance of all the work necessary to make sure that the path between EPGs
is the path defined in the service graph

Hardware and Software Support
The Cisco APIC communicates with the firewalls or load balancers to render the
graph defined by the user. For Cisco ACI to be able to talk to firewalls or load
balancers, it needs to speak to their APIs. The administrator must install plug-ins on
the Cisco APIC that enable this communication. A plug-in is referred to as a device
package, and the vendor of a firewall and load balancer must provide the plug-in so
that the Cisco APIC can communicate with it.
As shown in Figure 8-5, the device package includes a description of the device and
lists the parameters it is exposing for Cisco APIC configuration and the scripts that
allow Cisco ACI to talk to this device.

Figure 8-5 Device Package

306



Before you perform any configuration based on service graphs, install the plug-in on
the Cisco APIC to enable communication between the Cisco APIC and the device.
Figure 8-6 illustrates how to import the device package in Cisco APIC.

Figure 8-6 Using the GUI to Import the Device Package

Cisco ACI Modeling of Service Insertion
This section describes how to define workload connectivity with services in Cisco
ACI. To understand the concept of the service graph, you must be familiar with the
overall goal of Cisco ACI. ACI intends to create portable configuration templates—
abstracted configurations that can be applied in multiple fabrics (data centers). The
goal of ACI is to enable the network administrator to define connectivity a single time
and copy the template multiple times. The template of configuration is then adapted to
the IP addressing scheme, VLANs, and so forth of the fabric where it is applied. The
service graph concept is part of this goal.
Instead of specifying which exact firewall or load balancer needs to be concatenated,
the service graph defines a sequence of functions from metadevices. For instance, the
service graph doesn’t say that firewall ASA with IP address a.b.c.d must be connected
to load balancer Citrix with IP address. a.b.c.e. Instead, the service graph says that
traffic filtering from a Cisco Adaptive Security Appliance (ASA) device of a given
software version must be concatenated with traffic load balancing from a load
balancer of type Citrix, with a certain version. The service graph definition must then
be translated into a sequence of “concrete devices” (or, in other words, the devices
connected to the fabric) and the bridge domains and VLANs that connect them. This
translation is the rendering of the service graph with the networking devices that are
configured and known by the APIC controller in a particular fabric.

307



Service Graph Definition
The service graph is a sequence of functions. You can define these functions either
using XML format or using the GUI. The GUI allows you to choose the functions
exported with the device package and to concatenate them.
You can pick functions individually and stitch them together through the GUI, as shown
in Figure 8-7. Note that the function or device that is inserted is a metadevice; that is,
it is not a specific load balancer or firewall, but instead is simply a load balancer or
firewall of a certain type. The association of the metadevice (such as a function from a
load balancer of type Citrix or F5 or from a firewall of type Cisco ASA) with an
actual device connected to the fabric is performed in the rendering stage.

Figure 8-7 Using Load Balancer Functions to Create a Service Graph

The service graph also defines the virtual services and server pools that you want
Cisco ACI to program on the load balancer or firewall when the graph is instantiated.
Figure 8-8 shows the optional parameters that you can add to the load balancer used in
this example.

Figure 8-8 Parameters to Be Configured on the Service Devices Upon Rendering

Not all parameters need to be hard-coded IP addresses. You can also define
parameters that are populated by the appearance of a new endpoint in a particular
EPG in the fabric. The graph is rendered when it is associated with a contract. When
the graph is rendered, configurations appear in the device that is part of the graph. For
instance, in the case of an F5 BIG-IP load balancer, you may see Self IP appear in the
interface and a server pool being programmed.

308



Concrete Devices and Logical Devices
Service graphs are composed of abstract nodes, which are metadevices. The Cisco
APIC translates the intention expressed by the user in the abstract graph into a
sequence of concrete devices that are actually connected in the fabric.
Firewalls and load balancers are never deployed as single devices. Instead, they
normally are deployed as clusters of active-standby pairs. Cisco ACI provides an
abstraction to represent these clusters. Cisco ACI calls this abstraction a device
cluster or a logical device. You must help Cisco ACI perform the mapping between
the service graph and the clusters of firewalls and load balancers. It is necessary to
inform Cisco ACI as to which pairs of concrete devices constitute a cluster.
The GUI also asks you to configure logical interfaces. A logical interface defines a
naming convention for the building block of the cluster and its mapping to the concrete
device and to the metadevice. For instance, the metadevice of an F5 load balancer
defines an external and an internal interface. The cluster model in Cisco ACI defines
two interfaces and lets you choose the name (logical interface [LIf]). Each interface
maps to a metadevice interface and also to a physical (concrete) device interface. This
process allows Cisco ACI to correctly render the graph.
The interface naming process may seem complicated at first. Cisco ACI allows you to
model concrete devices into clusters of devices and then to select these clusters of
devices to render the service graph policy. In addition, the interfaces have different
names on the service device itself. For instance, in the case of F5 the interfaces are
numbered as 1.1, 1.2, etc. In the case of Cisco ASA, they are numbered Gig0/0,
Gig0/2, etc. Cisco ACI allows you to reference these interfaces using the character
“_” as a replacement for the “/” and “.” characters. For example, F5 interfaces are
referred to as 1_1 and 1_2, and Cisco ASA interfaces are referred to as Gig0_0 and
Gig0_1.

Logical Device Selector (or Context)
To help Cisco ACI render the service graph, you need to indicate which cluster of
devices (logical devices) can be used for which purposes. This configuration is called
the logical device context or cluster device selector. The device cluster selector lets
you indicate which interface should be associated with which bridge domain and the
mapping of the connector in the graph with the logical interface.

Splitting Bridge Domains
For traffic to flow through service devices correctly, you need to make sure that bridge
domains and Virtual Routing and Forwarding (VRF) instances are correctly
provisioned.

309



Cisco ACI categorizes service devices into two types:
 GoThrough devices: Devices operating in bridge mode; also called transparent
devices
 GoTo devices: Devices operating in routed mode

If the service node is a GoThrough device (Layer 2 device), these configurations are
required:

 Split the bridge domain (and create an EPG shadow).
 Disable IP-based forwarding on the bridge domain.
 Enable MAC address–based forwarding.
 Enable flood-and-learn semantics.

If there is a routed hop (routed fabric, GoTo service, GoTo IP, and Layer 3 external
connectivity domain router) between the two ends of the service chain, then the
following configurations are required:

 Create a VRF split and a bridge domain split.
 Create shadow EPGs.
 IP-based forwarding is OK, unless the next bridge domain leads to a GoThrough
service.

Cisco ACI adds the static routes on the service device and on the VRF instances in the
Cisco ACI fabric.

Configuration Steps
Configuring service insertion equates to configuring a service graph and providing the
configurations for ACI to render it with the devices that are connected to the fabric.
The following steps are necessary to provision the service devices so that they can be
used to render a graph:

Step 1. Configure the management IP address for the pair of load balancers or
firewalls.

Step 2. Connect the management interface to a management EPG that you configure,
or use out-of-band connectivity.

Step 3. Configure the service devices in active-standby or active-active mode.
Step 4. Connect the devices to a leaf node
Step 5. Alternatively, install the virtual appliance on a virtualized server and make

sure that the management vNIC is connected to a network that can be reached
by the Cisco APIC.

310



Step 6. Make sure the device package is installed on the Cisco APIC.
Then model the devices using the ACI policy model as shown in the following steps:

Step 1. Configure the logical device vnsLDevVip. This is the representation of the
cluster of active and standby devices.

Step 2. Configure the concrete device vnsCDev under vnsLDevVip. This is the
information about the individual devices that constitute the cluster of
devices.

Step 3. Create the logical interface vnsLIf vnsLDevVip.
If a service device is dedicated to a tenant, perform the configuration steps within the
tenant context. If a service device is shared across multiple tenants, configure it in the
management (mgmt) tenant and then export it to the desired tenant.
If the concrete devices are virtual appliances, provide the name of the virtual machine,
the vNIC name (with the exact spelling and capitalization of the network adapter, with
spaces: for instance, Network adapter 2), and the name of the VMware vCenter
configuration (as defined in the Cisco APIC).
Depending on whether the devices are GoTo or GoThrough, split the bridge domain as
needed and associate subnets with it to help ensure that the forwarding path is ready
for the deployment.
Within a tenant context, you should then perform the following steps:

Step 1. Create a service graph (vnsAbsGraph).
Step 2. Create selection criteria (logical device context, vnsLDevCtx) to render

the service graph.
Step 3. Associate the service graph with a contract.

You can also achieve the previous configurations by using REST calls following the
XML model.

Definition of a Service Graph
The key to understanding how to configure the graph consists of understanding which
interface is called what and how different interfaces are pointing to each other.

Defining the Boundaries of the Service Graph
The following is a sample configuration of a service graph in XML format:

 The service graph is contained within an abstract container.
 The service graph container starts with AbsTermNodeProv-<name-of-your-
choice>/AbsTConn.

311



 The service graph container ends with AbsTermNodeCon-<name-of-your-
choice>/AbsTConn.

Example 8-1 shows the elements that give a name to the boundaries of the abstract
container.

Example 8-1 Definition of the Boundary of the Service Graph

Click here to view code image

<vnsAbsGraph name = "WebGraph">
[...]
<vnsAbsTermNodeCon name = "Consumer">
  <vnsAbsTermConn name = "consumerside">
  </vnsAbsTermConn>
</vnsAbsTermNodeCon>

<vnsAbsTermNodeProv name = "Provider">
  <vnsAbsTermConn name = "providerside" >
  </vnsAbsTermConn>
</vnsAbsTermNodeProv>
[...]
</vnsAbsGraph>

These names are necessary to define how the sequence of functions (such as firewall
and load balancing) is connected to each other and specifically to the abstract
container. The direction of the graph-to-EPG attachment depends on which EPG is a
provider of the contract and which is the consumer of the contract. This determines
which EPG connects to the vnsAbsTermNodeProv and which EPG connects to the
vnsAbsTermNodeCon.
Example 8-2 illustrates how the service graph is associated with a contract, and
Figure 8-9 illustrates the data path between two EPGs with the service graph in
between.

Example 8-2 Contract that Connects Two EPGs Has a Reference to a Graph

Click here to view code image

<polUni>
<fvTenant name="Customer1">
   <vzBrCP name="webCtrct">
    <vzSubj name="http">
     <vzRsSubjGraphAtt graphName="WebGraph"/>

312



    </vzSubj>
  </vzBrCP>
</fvTenant>
</polUni>

Figure 8-9 Association of Service Graph with Contract

The Metadevice
Metadevices are functions or devices defined by the device packages. When you
install a device package, you can find via the GUI which interfaces are defined on this
service appliance. Figure 8-10 shows a metadevice that provides a load-balancing
function. For the purpose of building the service graph, you need to know which label
this metadevice uses to connect. In this example, the two labels are "external" and
"internal".

313



Figure 8-10 Metadevice
You could have a metadevice that provides firewalling function as a Cisco ASA of a
certain version, or a metadevice that provides load balancing as a Citrix appliance of
a certain version or as an F5 of a certain version.

Defining an Abstract Node’s Functions
A service graph is a sequence of abstract nodes (vnsAbsNode). The abstract node
provides functions defined in a metadevice. For instance, if the node is a firewall, the
abstract node capabilities are defined by a metadevice of type ASA of a given
version.
Each abstract node is a device of type GoTo or GoThrough depending on whether it is
operating in routed mode or bridged mode. Each node provides a specific abstract
function, such as a virtual server or firewalling. This is specified by a relations
configuration such as <vnsRsNodeToMFunc tDn="uni/infra/mDev-ABC-
1.0/mFunc-Firewall"/>, which indicates that this particular abstract node is providing
the firewall function as defined by the ABC metadevice. A visual example is provided
in Figure 8-11.

314



Figure 8-11 Service Graph Is a Sequence of Abstract Nodes
Each abstract node provides the functions defined by the relation that was previously
indicated and it provides configurations to be rendered on the device. These
configurations are delimited by the XML tags: <vnsAbsDevCfg> and

315



<vnsAbsFuncCfg>. Within these XML boundaries you find things like the IP
addresses to give to the firewall or load balancer interfaces, the load balancing
configurations, access control lists and so on.
Example 8-3 illustrates a load-balancing configuration that is defined in the context of
a graph.

Example 8-3 Example of Load-Balancing Configuration

Click here to view code image

 <vnsAbsFuncCfg>
   <vnsAbsFolder key="Listener" name="webListener">
     <vnsAbsParam key="DestinationIPAddress" name="destIP1"
                         value="10.0.0.10"/>
      <vnsAbsParam key="DestinationPort" name="port1"
                         value="80"/>
      <vnsAbsParam key="DestinationNetmask" name="Netmask1"
                         value="255.255.255.255"/>
      <vnsAbsParam key="Protocol" name="protoTCP"
                         value="TCP"/>
      </vnsAbsFolder>
 </vnsAbsFuncCfg>

Defining an Abstract Node’s Connectors
Each node in the graph has connectors, as shown in Figure 8-12.

Figure 8-12 Abstract Node Connectors
Example 8-4 shows how to name the connectors.

316



Example 8-4 Definition of the Connectors of the Abstract Node

Click here to view code image

<vnsAbsNode name = "firewallnode1" funcType="GoThrough" >
   <vnsAbsFuncConn name = "node1outside">
   </vnsAbsFuncConn>
   <vnsAbsFuncConn name = "node1outside">
  </vnsAbsFuncConn>
</vnsAbsNode >

These connectors must be mapped to something more precise that is related to the
device that they are going to be rendered onto. The metadevice has interfaces that are
defined in the device package. Example 8-5 shows that the connector node1inside is
mapped to the “internal” interface of the metadevice, and node1outside is mapped to
the “external” interface of the metadevice.

Example 8-5 Another Definition of the Connectors of the Abstract Node

Click here to view code image

<vnsAbsFuncConn name = "node1inside">
   <vnsRsMConnAtt
      tDn="uni/infra/mDev-ABC-1.0/mFunc-Firewall/mConn-internal"
/>
</vnsAbsFuncConn>

<vnsAbsFuncConn name = "node1outside">
   <vnsRsMConnAtt
     tDn="uni/infra/mDev-ABC-1.0/mFunc-Firewall/mConn-external"
/>
</vnsAbsFuncConn>

Abstract Node Elements Summary
In summary, within the abstract node you have the following elements:

 The arbitrary name that you give to the abstract node
 Whether the abstract node is a GoTo or GoThrough device (funcType)
 Which abstract function the abstract node is going to implement
(vnsRsNodeToMFunc)
 The configurations to be installed on the service device (vnsAbsDevCfg and

317



vnsAbsDevCfg)
 The name of the abstract function connector (vnsAbsFuncConn)
 Which interface the vnsAbsFuncConn maps to with reference (Rs) to the meta-
device interface definition (vnsRsMConnAtt)

Connecting Abstract Nodes to Create the Graph
The goal of the service graph is to define a sequence of functions within abstract
nodes that are connected to each other to form a sequence of firewall, load balancing,
SSL offloading, and so on. Figure 8-13 illustrates how to create the graph.

Figure 8-13 Service Graph Example

For each vnsAbsNode, you defined two vnsAbsFuncConn elements in Examples 8-4
and 8-5 with a name. The glue between the vnsAbsFuncConn from each vnsAbsNode
is called a vnsAbsConnection.
The vnsAbsConnection configuration creates an object with an arbitrary name chosen
by the user. This object has the two entities that need to be stitched together to create a
connection, as shown in Example 8-6.

Example 8-6 Connecting Two vnsAbsNodes Together

Click here to view code image

<vnsAbsConnection name = "1to2" adjType="L3">
   <vnsRsAbsConnectionConns tDn="uni/tn-<name-of-
tenant>/AbsGraph-<name-of-
graph>/AbsNode-<name-of-node>/AbsFConn-<name-of-connector>" />
   <vnsRsAbsConnectionConns tDn="uni/tn-<name-of-
tenant>/AbsGraph-<name-of-
graph>/AbsNode-<name-of-node>/AbsFConn-<name-of-connector>" />

318



</vnsAbsConnection>

A specific case of connection is the linking of the abstract node to the provider or
consumer end of the graph, as shown in Example 8-7.

Example 8-7 Connecting the Node to the Boundary of the Graph

Click here to view code image

<vnsAbsConnection name = "Pto1"
<vnsRsAbsConnectionConns tDn="uni/tn-<name-of-tenant>/AbsGraph-
<name-of-
graph>/AbsTermNodeProv-<name-of-boundary>/AbsTConn" />
<vnsRsAbsConnectionConns tDn="uni/tn-<name-of-tenant>/AbsGraph-
<name-of-
graph>/AbsNode-<name-of-node>/AbsFConn-<name-of-connector>" />
 </vnsAbsConnection>

Example 8-8 illustrates a complete graph with a single node.

Example 8-8 Example of Service Graph

Click here to view code image

<polUni>
    <fvTenant name="Sales">
    <vnsAbsGraph name = "WebGraph">

    <vnsAbsTermNodeCon name = "Consumer">
        <vnsAbsTermConn name = "consumerside">
        </vnsAbsTermConn>
    </vnsAbsTermNodeCon>

      <!-- Node1 Provides Virtual-Server functionality -->
      <vnsAbsNode name = "firewallnode1" funcType="GoTo">
        <vnsAbsFuncConn name = "node1inside">
          <vnsRsMConnAtt tDn="uni/infra/mDev-ABC-1.0/mFunc-
Firewall/mConn-internal" />
        </vnsAbsFuncConn>

        <vnsAbsFuncConn name = "node1outside">
          <vnsRsMConnAtt tDn="uni/infra/mDev-ABC-1.0/mFunc-
Firewall/mConn-external" />

319



        </vnsAbsFuncConn>

        <vnsRsNodeToMFunc tDn="uni/infra/mDev-ABC-1.0/mFunc-
Firewall "/>
        <vnsAbsDevCfg>

</vnsAbsNode>

    <vnsAbsTermNodeProv name = "Provider">
         <vnsAbsTermConn name = "providerside" >
         </vnsAbsTermConn>
    </vnsAbsTermNodeProv>

    <vnsAbsConnection name = "Cto1" adjType="L3">
        <vnsRsAbsConnectionConns tDn="uni/tn-Sales/AbsGraph-
WebGraph/AbsTermNodeCon-Consumer/AbsTConn" />
        <vnsRsAbsConnectionConns tDn="uni/tn-Sales/AbsGraph-
WebGraph/AbsNode-firewallnode1/AbsFConn-node1outside" />
    </vnsAbsConnection>

    <vnsAbsConnection name = "1toP">
        <vnsRsAbsConnectionConns tDn="uni/tn-Sales/AbsGraph-
WebGraph/AbsNode-firewallnode1/AbsFConn-node1inside" />
        <vnsRsAbsConnectionConns tDn="uni/tn-Sales/AbsGraph-
WebGraph/AbsTermNodeProv-Provider/AbsTConn" />
    </vnsAbsConnection>

    </vnsAbsGraph>
  </fvTenant>
</polUni>

Definition of Concrete Devices and Cluster of Concrete
Devices
The previous section described how to define the sequence of firewalling, load-
balancing functions, and so on. The abstract graph is a model that needs to be rendered
based on the resources that are connected to the fabric. This section shows how to
model the virtual appliances or physical appliances that are connected to the fabric so
that ACI can render an abstract graph when it is associated with a contract.
Figure 8-14 illustrates the service insertion configuration. The top shows the service
graph definition, while the bottom shows the available elements that can be used to
render the graph.

320



Figure 8-14 Service Graph Mapping to the Fabric Service Devices
At the top of Figure 8-14, notice the sequence of vnsAbsNodes: vnsAbsNode1 and
vnsAbsNode2. Each one has a reference to a metadevice: vnsAbsNode1 points to a
meta firewall, while vnsAbsNode2 points to a meta load balancer.
The bottom of Figure 8-14 shows what is available on the fabric. The fabric has
bridge domains, BD1, BD2, and BD3, and a collection of logical devices (LDev),
which are clusters of active/standby service devices. One logical device is a cluster
of firewalls; the other two logical devices are clusters of load balancers. This means
that for the rendering of vnsAbsNode2, ACI can choose from two options.
Figure 8-14 illustrates what is inside an LDev: two concrete devices (Cdevs) whose
interfaces (vnsCIf) are mapped to the LDev interfaces (LIf). Each LIf also points to
the definition of the interface according to the metadevice definition (mIfLbl).

Configuration of the Logical Device and Concrete Device
Example 8-9 assumes a cluster of two firewalls: Firewall 1 is active and Firewall 2
is standby. It shows a logical device within the context of a tenant called Sales. The
logical device has the name firewallcluster1 and is a cluster of virtual appliances.

Example 8-9 Definition of a Logical Device

321



Click here to view code image

<polUni>
  <fvTenant dn="uni/tn-Sales" name="Sales">
      <vnsLDevVip name="firewallcluster1" devtype="VIRTUAL">
         <vnsRsMDevAtt tDn="uni/infra/mDev-ABC-1.0"/>
         <vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-datacenter"/>
         <vnsCMgmt name="devMgmt" host="172.18.66.149"
port="443"/>
         <vnsCCred name="username" value="admin"/>
         <vnsCCredSecret name="password" value="password"/>

         <vnsLIf name="fwclstr1inside">
           <vnsRsMetaIf tDn="uni/infra/mDev-ABC-1.0/mIfLbl-
internal"/>
           <vnsRsCIfAtt tDn="uni/tn-Sales/lDevVip-F5Virtual/cDev-
FW-1/cIf-1_2"/>
         </vnsLIf>

        <vnsLIf name="fwclstr1outside">
           <vnsRsMetaIf tDn="uni/infra/mDev-ABC-1.0/mIfLbl-
external"/>
           <vnsRsCIfAtt tDn="uni/tn-Sales/lDevVip-
firewallcluster1/cDev-FW-1/cIf-1_1"/>
        </vnsLIf>

    </vnsLDevVip>
  </fvTenant>
</polUni>

The IP address for management (vnsCMgmt) indicates how to connect to the logical
device. This is the floating IP of an active/standby pair of firewalls; in other words,
the management IP for the device that is active.
The vnsLIf configuration under LDevVip defines the association of the cluster
interface with the interface of each concrete device. It also specifies the type of
interface according to the package. The logical interface definition (vnsLIf) defines
two interfaces that Example 8-9 calls fwclstr1inside and fwclstr1outside. They map
to the concrete device interfaces called 1_1 and 1_2, regardless of which firewall is
currently active or standby.
This means that both concrete devices that define the currently active firewall and the
currently standby firewall must call the interfaces with the same name 1_1 and 1_2 so
that no matter which device is active or standby, the logical device mapping still holds

322



true.
Notice that there is no direct mapping from the definition of the logical device to the
interfaces defined in the graph. Instead, there is a relation to the metadevice definition
of the interface.
The definition of the concrete device looks like Example 8-10 (virtual appliance) and
Example 8-11 (physical appliance). In both examples, two vnsCDev devices make the
logical device. For each vnsCDev, the configuration specifies the management IP
address and credential.
The configuration also indicates which interface is which. The vnsRsCIfPathAtt
configuration points to a specific port on the fabric or to the name of the vNIC. For
instance, vnsCIf 1_1 is mapped to a particular vNIC in the case of the virtual
appliance definition, and it is mapped to a particular physical port on the fabric for the
physical appliance. This way, when the logical device is being rendered, it knows
how to render the interface 1_1 by looking at the definition in the concrete device.

Example 8-10 Configuration of Concrete Device that Is a Virtual Appliance

Click here to view code image

<polUni>
  <fvTenant dn="uni/tn-Sales" name="Sales">
    <<vnsLDevVip name="firewallcluster1" devtype="VIRTUAL">

      <vnsCDev name="ASA-1" vcenterName="vcsa" vmName="vASA-1">
            <vnsCIf name="1_1" vnicName="Network adapter 2"/>
            <vnsCIf name="1_2" vnicName="Network adapter 3"/>

        <vnsCMgmt name="devMgmt" host=<mgmtIP> port="443"/>
        [...]

      <vnsCDev name="ASA-2" vcenterName="vcsa" vmName="vASA-1">
            <vnsCIf name="1_1" vnicName="Network adapter 2"/>
            <vnsCIf name="1_2" vnicName="Network adapter 3"/>

        <vnsCMgmt name="FW-2" host=<mgmt. IP> port="443"/>
        [...]

   </vnsCDev>

   </vnsLDevVip>
  </fvTenant>
</polUni>

323



Example 8-11 Configuration of Concrete Device that Is a Physical Appliance

Click here to view code image

<polUni>
  <fvTenant dn="uni/tn-Sales" name="Sales">
    <<vnsLDevVip name="firewallcluster1" devtype="PHYSICAL">

      <vnsCDev name="ASA-1">
        <vnsCIf name="1_1">
          <vnsRsCIfPathAtt tDn="topology/pod-1/paths-103/pathep-
[eth1/19]"/>
        </vnsCIf>
        <vnsCIf name="1_2">
          <vnsRsCIfPathAtt tDn="topology/pod-1/paths-103/pathep-
[eth1/20]"/>
        </vnsCIf>

        <vnsCMgmt name="devMgmt" host=<mgmtIP> port="443"/>
        [...]

      <vnsCDev name="ASA-2">
        <vnsCIf name="1_1">
          <vnsRsCIfPathAtt tDn="topology/pod-1/paths-103/pathep-
[eth1/21]"/>
        </vnsCIf>
        <vnsCIf name="1_2">
          <vnsRsCIfPathAtt tDn="topology/pod-1/paths-103/pathep-
[eth1/22]"/>
        </vnsCIf>
        <vnsCMgmt name="FW-2" host=<mgmt. IP> port="443"/>
        [...]

   </vnsCDev>

   </vnsLDevVip>
  </fvTenant>
</polUni>

324



Configuration of the Logical Device Context (Cluster Device Selector)
The selection of which logical device renders which vnsAbsNode from the graph is
based on the definition of a context, which is a set of metatags used to create a
mapping between the logical definition of the graph and the concrete rendering of the
graph. The metatags are contract name, graph name, and node label. The logical
device context not only defines which logical device to use to render a particular
graph, but also defines which bridge domains should be used for which interface.
Example 8-12 illustrates how to configure this mapping.

Example 8-12 Logical Device Context Base Configuration

Click here to view code image

 <vnsLDevCtx
 ctrctNameOrLbl=<name of the contract>
  graphNameOrLbl=<name of the graph>
  nodeNameOrLbl=<name of the node in the graph, e.g. N1>
 />

The configuration in Example 8-13 specifies that the cluster of firewalls called
firewallcluster1 can render the node firewallnode1 in the service graph WebGraph
when it is used by the contract webCtrct. This configuration also specifies that the
connector that has a label of 1toP in the graph can be rendered by the firewallcluster1
interface called fwclstr1inside.

Example 8-13 Example Configuration of Logical Device Context

Click here to view code image

<vnsLDevCtx ctrctNameOrLbl="webCtrct" graphNameOrLbl="WebGraph"
  nodeNameOrLbl="firewallnode1">
  <vnsRsLDevCtxToLDev tDn="uni/tn-Sales/lDevVip-
firewallcluster1"/>
  <vnsLIfCtx connNameOrLbl="1toP">
   <vnsRsLIfCtxToLIf tDn="uni/tn-Sales/lDevVip-
firewallcluster1/lIf-fwclstr1inside"/>
   <vnsRsLIfCtxToBD tDn="uni/tn-Sales/BD-SalesBDApp"/>
  </vnsLIfCtx>
  <vnsLIfCtx connNameOrLbl="Cto1">
     <vnsRsLIfCtxToLIf tDn="uni/tn-Sales/lDevVip-
firewallcluster1/lIf-fwclstr1outside "/>
     <vnsRsLIfCtxToBD tDn="uni/tn-Sales/BD-SalesBDWeb"/>

325



  </vnsLIfCtx>
</vnsLDevCtx>

Naming Summary
This section summarizes the key terms that you must be familiar with to configure a
service graph successfully.
Figure 8-15 shows the name of the XML tags that define each configuration object.
The name value assigned by the administrator is displayed with quotes.

Figure 8-15 Naming of the Building Blocks of a Service Graph

For mapping assistance, refer to Table 8-1.

326



Table 8-1 Naming Conventions for Interface Used in the Service Graph Building
Blocks

Summary
Cisco ACI provides an advanced data center networking methodology that abstracts
networking constructs from application deployments. In addition, it offers a set of
network telemetry, security, and Layer 4 through Layer 7 automation functions.
The service graph is a concept that allows the definition of a sequence of functions
such as load balancing, traffic filtering, and so forth in a way that can be abstracted
from the concrete implementation in a given data center.
Cisco APIC communicates with the service devices to render the service graph by
using the resources that are available in the fabric. These functions are implemented
using the GUI or programmatically in Python and are automated using the REST API.

327



Chapter 9. Advanced Telemetry

The growth of network devices in a fabric increases the difficulty of troubleshooting
and correlating events. Additionally, the workload being distributed and mobile within
the network fabric adds another degree of complexity. Finally, the desire for service-
level agreement (SLA) monitoring in a shared environment is increasing. ACI offers
several new technologies to address these requirements:

 Atomic counters
 Latency metrics
 Health scores and health monitoring

The new telemetry tools provide a comprehensive troubleshooting methodology that
enables the network administrator to quickly identify, isolate, and remediate a network
issue on the network fabric.

Atomic Counters
This section explains the principle of atomic counters and provides an example of
how they integrate with the Cisco APIC.

The Principle
The ACI fabric atomic counters are packet and byte counters that are read atomically
across the entire ACI fabric. Atomic means that the values in the counters are
consistent regardless of where they are in the fabric or the amount of latency or
distance that exists between them.
For instance, suppose a set of atomic counters is configured to count the number of
FTP packets sent from a given host, and that host sends 10,005 FTP packets across the
fabric from leaf switch L1 through the spine switches to leaf switch L2. When the
counters are read, the counter at L1 has the exact same value as the counter at switch
L2, assuming that there are no packet drops between the two switches. Furthermore,
the values are identical no matter when they are read. For example. they may be read
while the FTP traffic is in transit and some value between 0 and 10,005 is read. But no
matter when it is read, the same value is found at both the ingress leaf and the egress
leaf. It is as if the counters were read simultaneously and all packets traverse the
network in zero time. This is accomplished not by attempting to read the counters
atomically, but rather by updating them (incrementing the packet count and adding
packet length to byte count) atomically with respect to the packet, not with respect to
time. In other words, all of the counters across the network that a given packet updates

328



are revised before the counters are read. Once all of the counters have been updated,
the fabric stops revising them until they have all been read.
To avoid missing some counts (updates), two sets of counters are kept. While one set
is being read, the other set is being updated, and vice versa. These sets are called the
even set and the odd set. The two sets make a counter pair. There is a marker bit set in
the packet header that distinguishes the counters that need to be updated for each
packet. When the bit is clear, the even counters are updated, and when the bit is set,
the odd counters are updated. To make the feature much more useful, there is a filter
applied to each packet to determine which of N counters are updated. The header
fields from the packet are applied to a TCAM (Ternary content-addressable
memory is a specialized type of high-speed memory that searches its entire contents in
a single clock cycle), and the result of the TCAM tells the hardware which counter
pair to update. The marker bit in the packet header then informs the hardware which of
the two counters in the pair to update. This allows the system to be configured to count
multiple kinds of traffic simultaneously. For example, you can count FTP traffic and
web traffic simultaneously. To make it all work seamlessly across an entire ACI
fabric, the following must occur:

 Global coordination of setting the marker bit at each leaf switch
 Waiting for in-flight packets to propagate out of the fabric
 Reading all of the counters before repeating

Further Explanation and Example
The implementation occurs in the VXLAN header, by adding a tag on the M bit. This
bit indicates which bank of atomic counters the fabric should use for this packet: 0 for
the odd set and 1 for the even set, as shown in Figure 9-1.

329



Figure 9-1 Atomic Counters in the VXLAN Header
As mentioned in the previous section, by the laws of physics, it is not feasible to check
counters at exactly the same time on multiple nodes as packets are moving, and some
can be dropped. The leverage of the odd and even bank of counters with the choice of
marking a packet odd or even ensures the consistency in the counting. The counters are
atomic to the packet and not the time.
In the example depicted by Figure 9-2, traffic is sent between two workloads; one
workload is attached on Leaf 2 and the other on Leaf 5. The packets are able to take
four different paths because there are four spine switches and Leaf 2 and Leaf 5 are
connected to all of them. Notice that for path 1, Leaf 5 received fewer packets (two)
from Leaf 2 than Leaf 2 sent to Leaf 5. This means that there are still two packets in
flight. With the atomic counters, it’s possible to quickly identify any packet issue in the
fabric—whether it be dropped packets or replicated packets—and where in the fabric
this occurs.

330



Figure 9-2 Example of Atomic Counter Implementation

Atomic Counters and the APIC
The atomic counters come together when mapped and correlated by the APIC. There is
a second bank of counters that is used for on-demand type of monitoring; this is useful
for troubleshooting purposes. The counters are incremented if a programmed TCAM
entry is matched and at the same time the odd or even bit is set. The TCAM matching
criteria is programmed on the switches via a policy that resides on the APIC. This
allows the policy to be distributed to all the nodes. The matching criteria is applied
against an EPG, an IP address, a TCP/UDP port number, a tenant VRF, or a bridge
domain. Then the APIC extracts and correlates the observed counters. This is
illustrated in Figure 9-3.

331



Figure 9-3 APIC Role in Correlating Counters to Bridge Domain, Tenant, EPG, and
Hosts

The end user has complete flexibility in terms of deciding what to monitor. For
example, the user could choose to monitor the counters between two endpoints; or
between an endpoint and a whole subset of devices in a given application network
profile, or between an EP in an EPG and a tenant. This provides the proper tools for a
high-level visibility or a drill down to the host level.

Latency Metrics
The ACI fabric offers sub-microsecond type of latency for forwarding and for
troubleshooting per leaf or per spine. The ACI fabric switches are equipped with a
pulse per second (PPS) hardware input port. This allows the switch to be connected to
an external clock source that has nanosecond type of accuracy and to use the source
clock to set its own time. The PPS port is displayed in Figure 9-4.

Figure 9-4 PTP Capabilities in ACI Fabric

332



The PPS port synchronization is not mandatory for the Precision Time Protocol (PTP)
feature. However, it provides better accuracy to the fabric time synchronization
because it avoids the multiple hops of the IEEE 1588 protocol to be transmitted. After
the switches have the time synchronized, via the support of PTP as defined in IEEE
1588, they serve as a boundary PTP clock source to the remaining switches in the ACI
fabric. Note that the leaf switches can also serve as a PTP time source for the server
and application; however, this is not specifically related to the latency feature of the
ACI fabric. With PTP, the time synchronizes across switches, and packets are tagged
with a PTP timestamp. With PTP, the timestamp is enforced on all fabric switches.
This monitors hardware-level latency performance of the ACI fabric, where each
switch reads and tags with a PTP timestamp the traffic traversing it. It provides an
end-to-end hardware latency real-time knowledge of the traffic going through the ACI
fabric. The data is useful for understanding the baseline end-to-end latency
performance. It also helps to identify where there could be delays of latency
introduced in the fabric due to such things as buffering. With the ACI API model, it is
possible to build real-time tools to monitor the latency at any given place of the ACI
fabric.
Three types of latency measurements are tracked in the ACI fabric:

 Average, Maximum, Accumulated latency and jitter per port, up to 576 nodes
 99% of all packets have recorded latency per port, up to 576 nodes
 Bucket histogram, showing the latency dispersion with a 48-bucket-capable
histogram, for up to 576 nodes

ACI Health Monitoring
Cisco ACI health monitoring has four main activities to observe the ACI fabric, as
shown in Figure 9-5:

 Collecting statistics
 Collecting faults and events
 Collecting logs, diagnostics, and forensics
 Computing health score results

333



Figure 9-5 ACI Health Monitoring Capabilities
The ACI health monitoring capabilities apply to the whole fabric. This includes all
switches and controllers. ACI is also able to receive input about the health of end
systems using the fabric with services such as load balancers and firewalls, but also
end nodes such as hypervisors and virtual machines.

Statistics
The ACI health monitoring agent monitors various statistics, such as:

 Physical port information: Packet counters, interface counters, bandwidth
utilization, drops, errors
 Control plane resources: Memory available, CPU usage, latency, disk size, etc.
 Environmental information: Temperature, fan speed, power
 Network resources: Table usage
 EPG monitoring: Packet counters for endpoints for unicast and multicast for
ingress and egress, security group violations, etc.

The agent organizes the statistics into three functional categories:
 Infrastructure statistics: Selects a target group for the physical statistics, such
as a switch number, line card number, or all the way down to the port number,
and collects the statistics for them.

334



 Tenant statistics: Collects information about the data in each tenant. This
includes the application network profile, the EPG, and the endpoint.
 Path statistics: Provides information about a specific EGP, including the
selection of spine and leaf switches for source and destination.

This multidimensional statistics approach enables the ACI end user to receive real-
time information for a multitude of systems and isolate specific talkers or nodes of
interest, instead of having to manually collect statistics with dedicated tools or
compute the values to make sense of what is happening in the fabric. This statistical
approach allows narrowing of information about the application and the fabric
infrastructure very quickly. The statistics are archived continuously for the whole
fabric. The user can find information by searching for hours, days, weeks before the
event he is interested in, and because the information is collected for the whole fabric,
it is possible to correlate the data and faster isolate a root cause.
All the processes described in the following sections can be viewed and also
acknowledged on the GUI or on the API level of the APIC.
There are four levels of fabric troubleshooting. The first two levels are ongoing, and
the next two, more detailed levels are on demand. Figure 9-6 depicts the four levels of
fabric troubleshooting.

Figure 9-6 ACI Fabric Troubleshooting Levels

335



Faults
Faults that occur in the ACI fabric are monitored by the fault agent. They have explicit
representation as managed objects such as policies, ports, etc. Faults have properties
such as severity, ID, and description. They are stateful and mutable and their lifecycle
is controlled by the system. Finally, faults, like any other ACI health category, are
queried using standard APIs.
Faults are originally detected by the switch operating system (NX-OS). The NX-OS
process notifies the fault manager on the switch. The fault manager then processes the
notification according to the fault rules configured. The fault manager creates a fault
instance in the ACI object information model and manages the lifecycle according to
the fault policy. Finally, the fault manager notifies the controller of state transitions and
can also trigger further actions such as a syslog message, SNMP trap, call home, and
so forth. Figure 9-7 depicts faults and events.

Figure 9-7 Fault Management Flow

The APIC maintains a comprehensive, up-to-date, run-time representation of the
administrative and operational state of the ACI fabric system in a collection of
managed objects (MO). In this model, a fault is represented as a mutable, stateful, and
persistent MO. When a specific condition occurs, such as a component failure or an
alarm, the system creates a fault MO as a child object to the MO that is primarily
associated with the fault.

336



For a fault object class, the fault conditions are defined by the fault rules of the parent
object class. In most cases, a fault MO is automatically created, escalated, de-
escalated, and deleted by the system as specific conditions are detected. If the same
condition is detected multiple times while the corresponding fault MO is active, no
additional instances of the fault MO are created. A fault MO remains in the system
until the fault condition is cleared. The fault MO is deleted according to the settings in
the fault collection and fault retention policies. A fault MO is read-only unless it is in
the cleared and retained state, when it can be deleted by the user by acknowledging it.
The creation of a fault MO is triggered by internal processes such as finite state
machine (FSM) transitions, detected component failures, or conditions specified by
various fault policies, some of which are user configurable. For instance, you can set
fault thresholds on statistical measurements such as health scores, data traffic, or
temperatures.
Packages in the Management Information Model are a collection of related classes and
objects. In the Cisco APIC Management Information Model Reference, the fault
package contains the fault-related object classes. There are fault objects, fault records,
and fault logs.
A fault object is represented by one of the following two classes:

 fault:Inst: When a fault occurs in an MO, a fault instance MO is created under
the MO that experienced the fault condition.
 fault:Delegate: To improve the visibility of a fault that might otherwise go
unnoticed, some faults generate a corresponding fault delegate MO in a more
visible logical MO in the APIC. The identity of the MO that experienced the
fault condition is stored in the fault:Delegate:affected property of the fault
delegate MO.

For instance, if the system attempts to deploy the configuration for an endpoint group
to multiple nodes and encounters issues on one of the nodes, the system raises a fault
on the node object affected by the issue. It also raises a corresponding fault delegate
on the object that represents the EGP. The fault delegate allows the user to see all the
faults related to the EGP in a single place, regardless of where they were triggered.
For every fault, a fault record object (fault:Record) is created in the fault log. A fault
record is an immutable object that records a state transition for a fault instance object.
Record creation is triggered by fault instance MO creation or deletion or by
modification of key properties such as severity, lifecycle, or acknowledgment of the
fault instance object. Although a fault instance object is mutable, the fault record
object is not. All properties of the record are set at the time the record object is
created.
A record object contains a complete snapshot of the fault instance object and is

337



logically organized as a flat list under a single container. The record object contains
properties from the corresponding instance object (fault:Inst) such as severity
(original, highest, and previous), acknowledgment, occurrence, and lifecycle, as well
as inherited properties that provide a snapshot of the fault instance and the nature and
time of its change. The record is meant to be queried using time-based filters or
property filters for severity, affected DN, or other criteria.
When a fault record object is created, it is added to the fault log. The object creation
can also trigger the export of record details to an external destination by syslog,
SNMP trap, or other methods.
Finally, the fault log collects and retains fault records. Records are purged only when
the maximum capacity of the log is reached and space is needed for new fault records.
Depending on the log space availability, a fault record can be retained in the fault log
long after the fault object itself has been deleted. The retention and purge behavior is
specified in the fault record retention policy (fault:ARetP) object.
Table 9-1 displays the list of fault types along with their respective descriptions.

Table 9-1 Fault Types

The fault monitoring has a lifecycle. APIC fault MOs are stateful. They are faults
raised by the APIC when there are transitions through more than one state during its
lifecycle. In addition, the severity of a fault might change due to its persistence over
time, so modification in the state may also cause a change in severity. Each change of
state causes the creation of a fault record and, if external reporting is configured, can
generate a syslog or other external report. Only one instance of a given fault MO can
exist on each parent MO. If the same fault occurs again while the fault MO is active,

338



the APIC increments the number of occurrences. The lifecycle is shown in Figure 9-8.

Figure 9-8 Fault Lifecycle

The characteristics of each state are as follows:
 Soaking: A fault MO is created when a fault condition is detected. The initial
state is Soaking, and the initial severity is specified by the fault policy for the
fault class. Because some faults are important only if they persist over a period
of time, a soaking interval begins, as specified by the fault policy. During the
soaking interval, the system observes whether the fault condition persists or
whether it is alleviated and reoccurs one or more times. When the soaking
interval expires, the next state depends on whether the fault condition remains.
 Soaking-Clearing: If the fault condition is alleviated during the soaking
interval, the fault MO enters the Soaking-Clearing state, retaining its initial
severity. A clearing interval begins. If the fault condition returns during the
clearing interval, the fault MO returns to the Soaking state. If the fault condition
does not return during the clearing interval, the fault MO enters the Retaining
state.
 Raised: If the fault condition persists when the soaking interval expires, the
fault MO enters the Raised state. Because a persistent fault might be more
serious than a transient fault, the fault is assigned a new severity, the target
severity. The target severity is specified by the fault policy for the fault class.

339



The fault remains in the Raised state at the target severity until the fault
condition is alleviated.
 Raised-Clearing: When the fault condition of a raised fault is alleviated, the
fault MO enters the Raised-Clearing state. The severity remains at the target
severity, and a clearing interval begins. If the fault condition returns during the
clearing interval, the fault MO returns to the Raised state.
 Retaining: When the fault condition is absent for the duration of the clearing
interval in either the Raised-Clearing or Soaking-Clearing state, the fault MO
enters the Retaining state with the severity level cleared. A retention interval
begins, during which the fault MO is retained for the length of time that is
specified in the fault policy. This interval ensures that the fault reaches the
attention of an administrator even if the condition that caused the fault has been
alleviated, and that the fault is not deleted prematurely. If the fault condition
reoccurs during the retention interval, a new fault MO is created in the Soaking
state. If the fault condition has not returned before the retention interval expires,
or if the fault is acknowledged by the user, the fault MO is deleted.

The soaking, clearing, and retention intervals are specified in the fault lifecycle
profile (fault:LcP) object.

Events, Logs, Diagnostics
Events occurring in the ACI fabric are monitored by this agent. The faults have
explicit representation as managed objects such as policies, ports, and so forth. They
have properties such as severity, ID, and description. They are stateful and mutable,
and their lifecycle is controlled by the system. Finally, the faults, just as any other ACI
health category, can be queried using standard APIs.
The APIC maintains a comprehensive, up-to-date, run-time representation of the
administrative and operational state of the ACI fabric system in a collection of MOs.
Any configuration or state change in any MO is considered an event. Most events are
part of the normal workflow and there is no need to record their occurrence or to bring
them to the attention of the user unless they meet one of the following criteria:

 The event is defined in the model as requiring notification.
 The event follows a user action that is required to be auditable.

In the Cisco APIC Management Information Model Reference, the event package
contains general event-related object classes, although some event types are found in
other packages.
A loggable event is represented by an event record object, which is an immutable,
stateless, and persistent MO created by the system to record the occurrence of a

340



specific set of conditions at a given point in time. Although an event record MO is
usually triggered by situations in another MO, it is not contained by that MO but is
contained in an event log.
Each new event record MO is added to one of three separate event logs, depending on
the cause of the event:

 Audit log: Holds objects that are records of user-initiated events such as logins
and logouts (aaa:SessionLR) or configuration changes (aaa:ModLR) that are
required to be auditable
 Health score log: Holds records of changes in the health score (health:Record)
of the system or components
 Event log: Holds records of other system-generated events (event:Record) such
as link state transitions

Each log collects and retains event records. An event MO remains in the log until it is
purged when the log reaches capacity and space is needed for new event records. The
retention and purge behavior for each log is specified in a record retention policy
(event:ARetP) object associated with each log.
The creation of an event record object can also trigger the export of record details to
an external destination by syslog, SNMP trap, or other methods.
APIC event MOs are stateless. An event MO created by the APIC is never modified or
cleared; it is deleted by the rotation of the event log as newer events are added and log
space is needed.

Health Score
The health score is a number between 0 and 100. It reflects the following:

 Weighted information from the state of the system
 Drops
 Remaining capacity
 Latency
 Remaining objects that depend on the ACI fabric health statistics

The health score is a number that is displayed for the whole fabric, for each individual
node, and also for EPGs or even endpoints or services integrated into the ACI fabric
such as load balancers, firewalls, and so on. This capability provides the end user the
benefit of monitoring globally the health score of the fabric and then drilling down
specifically to the identified problematic issue to be diagnosed. It is important to note
that for the services integrated into the ACI fabric, the health score is provided
directly by the service appliance’s software to the ACI fabric; the fabric does not

341



compute the services health score. The concept of health score is depicted in Figure 9-
9.

Figure 9-9 Health Score Concept

There is a hierarchical relationship used in the health score and this is naturally used
to compute the health score value. For example, the health score of the whole fabric
depends on the tenants, which depends on the EPGs in each tenant. Furthermore, for a
given EPG health score, the number depends on the number of switches in the EPG,
the number of switch ports associated to the EPG, and the EPG’s health score on the
individual system. The hierarchical relationship enables the end user to quickly
visualize a health issue in the fabric and drill down to the specific problem(s). Finally,
the health score takes into consideration the acknowledged faults provided. For
example, if there is a fan failure and the user acknowledges the fan failure, the health
number improves. However, naturally it will not go back to full health unless the fan is
replaced.

342



The Centralized show tech-support ACI Approach
The ACI fabric provides a centralized approach to capture comprehensive show-tech
information for all the fabric. The show-tech output contains the majority of
information used for troubleshooting purposes by Cisco TAC. The implementation of
the show-tech is centralized with a process that consists of a periodic collection of all
switches’ show-tech output and also the correlation of the information model data
points, fault manager, health scores, and data from all the APICs. This information is
consolidated by the APIC and can be stored on external storage, as displayed in
Figure 9-10. ACI simplifies the troubleshooting steps and data collection, which
allows for a faster time to isolate and root cause a network issue.

Figure 9-10 Show Tech Centralized Process

343



Summary
Cisco ACI and the policy model bring a centralized approach for diagnostics and
provide aggregated metrics for the health of the system by leveraging monitoring
technology on each node such as atomic counters, latency monitoring, and fault and
diagnostic information. To troubleshoot the ACI fabric, take a fabric-wide approach:
examine the global fabric statistics, faults, and diagnostics provided for all elements
of the fabric. When thresholds are reached, the health score and faults reflect the
changes and globally alert the administrator. At that point, drilling down on particular
nodes, looking at the atomic counters or on-demand diagnostics such as show tech-
support, provide the relevant information to the administrator, as illustrated in Figure
9-11.

Figure 9-11 Approach to ACI Fabric Troubleshooting

344



Chapter 10. Data Center Switch Architecture

The goal of this chapter is to provide explanations of architectural characteristics of
switches used in data centers. It is divided into three sections:

 The hardware switch architecture, explaining the separation of the forwarding
plane with the management and control plane, allowing nondisruptive operation
of a production data center even during software upgrades.
 The fundamental principles of switching based on the switch hardware
architecture.
 Quality of Service within the data center. This section places in context the
switching architecture and the reasoning behind the implementation of switching
functionalities.

Data, Control, and Management Planes
This section explains how data, control, and management planes interact with each
other while still maintaining the separation of roles. The isolation among these
elements is necessary in order to support functions such as Cisco In-Service Software
Upgrade (ISSU). The isolation enables the system to shut down altogether in case of
failure of the data plane or control plane, avoiding traffic black holing. The control
plane is protected from attacks or high activity from protocols competing for CPU
resource utilization by Cisco Control Plane Policing (CoPP).

Separation Between Data, Control, and Management Planes
You can imagine the operations that a network device performs as the combination of
three different elements: data, control, and management planes.
The control plane is the component to a switch that focuses on how this individual
device interacts with its neighbors. It is related to the device itself and not the
switched data, allowing the switch to decide what to do when a packet arrives; for
instance, providing and receiving spanning-tree messages (bridge protocol data units),
participating in routing protocols, and so on. Certain control plane protocol activities
can be offloaded on the data plane to provide better performance, such as, for
example, Link Aggregation Control Protocol (LACP) activities or Bidirectional
Forwarding Detection (BFD).
The management plane of a network device includes all the activities related to the
management of the device itself, such as Secure Shell (SSH), Telnet, Simple Network
Management Protocol (SNMP), syslog, and so forth. A dedicated CPU module called

345



a supervisor module hosts the control and management plane activities. Although both
control and management planes exist simultaneously on the supervisor, they are
distinct and separate entities.
The data plane of a networking device represents the packet forwarding activity
(switching, routing, security, NAT, and so on) or, more simply put, where a packet is
moved from the entry port of the device to the exit port. The data plane capabilities
are hardware based, enabled by purpose-built silicon called application-specific
integrated circuits (ASIC).
The decoupling of the three planes has these benefits, as shown in Figure 10-1:

 Protection between data, control, and management plane activities.
 Line-rate data forwarding capabilities regardless of control plane or
management activity (high CPU due to SNMP, for example).
 Capability to upgrade the switch software in a nondisruptive fashion so that the
CPU can reload while the data plane continues forwarding packets. Then the
CPU can start with the upgraded software and firmware, from the same previous
machine level state, which was backed up prior to the upgrade. This capability
is also known as In-Service Software Upgrade (ISSU).

Figure 10-1 Example of Switch Architecture for Nexus 5000 Switch

346



Interaction Between Control, Data, and Management
Planes
This section details the control and management interfaces and functions. The control
plane interacts with the data plane and is connected by one or multiple interfaces to
the ASIC(s), depending on the model of Cisco Nexus switch series that is used.
The Cisco Nexus 9000, 6000, 5000, and 3000 series switches have three types of
Ethernet interfaces servicing the functionalities of control and management planes:

 Eth0: The mgmt0 port of the switch. This is the out-of-band management
network, which is connected directly to the control plane.
 Eth3: An in-band interface on the control plane, handling traffic from the data
ports of the switch. It handles low-priority control packets destined for the
switch CPU, such as Internet Group Management Protocol (IGMP), TCP, User
Datagram Protocol (UDP), IP, and Address Resolution Protocol (ARP) traffic. It
is defined as inbound-low, processing data traffic of lower priority.
 Eth4: Also an in-band interface on the control plane, handing traffic from the
data ports of the switch. It handles high-priority control packets destined for the
switch CPU, such as Spanning Tree Protocol (STP), LACP, Cisco Discovery
Protocol (CDP), Data Center Bridging Exchange (DCBX), Fibre Channel, and
Fibre Channel over Ethernet (FCoE) traffic. It is also defined as inbound-hi,
processing data traffic of highest priority.

The Cisco Nexus 7000 Series has two types of internal Ethernet interfaces to carry
traffic for the control and management planes:

 Eth1: The mgmt0 port of the switch. This is the out-of-band management
network, which is connected directly to the control plane.
 Eth0: An in-band interface handling traffic from the data ports of the switch. It
manages all control packets destined for the switch CPU, such as IGMP, TCP,
UDP, IP, ARP, STP, LACP, CDP, DCBX, Fibre Channel, and FCoE.

Additionally, the Cisco Nexus 9500 Series has system controllers, which offload
further control plane functions by taking charge of, for example, the power supply/fan
tray access from the supervisor engine, the intra-system communications between line
cards and fabric, and so forth.

347



Protection of the Control Plane with CoPP
Control Plane Policing (CoPP) protects the CPU from one type of traffic monopolizing
the CPU cycles, restricting other traffic. For example, during a broadcast storm attack,
CoPP limits the number of ARP packets per second that are able to reach the CPU,
allowing the other types of packets to still reach the CPU module without being
dropped. This concept is not data center specific; it applies to any Cisco networking
device. It is an important part of the control plane. The data center–specific
implementation is explained later in this section.
CoPP applies to the in-band interface (or inbound-hi and inbound-low on some
platforms). It is used specifically for all the control plane traffic.

Note
CoPP does not apply to the management traffic on the out-of-band
management interface connected to the control plane. To limit the packets
for that specific management interface, access-control lists (ACLs) can
be applied to the interface directly.

Control Plane Packet Types
The packets traveling in the control plane can be categorized into four types:

 Receive packets: Packets that have the destination address of a router. The
destination address can be a Layer 2 address (such as a router MAC address) or
a Layer 3 address (such as the IP address of a router interface). These packets
include router updates and keepalive messages. This category also includes
multicast packets, which are packets that are sent to multicast addresses used by
a router; for example, multicast addresses in the reserved 224.0.0.x range.
 Exception packets: Packets that need special handling by the supervisor
module. For example, if a destination address is not present in the Forwarding
Information Base (FIB) and results in a forwarding lookup miss, then the
supervisor module sends an ICMP unreachable packet back to the sender.
Another example is a packet with IP options set.
 Redirected packets: Packets that are redirected to the supervisor module.
Features such as Dynamic Host Configuration Protocol (DHCP) snooping or
dynamic ARP inspection redirect some packets to the supervisor module.
 Glean packets: If a Layer 2 MAC address for a destination IP address is not
present in the adjacency table, the supervisor module receives the packet and
sends an ARP request to the host.

348



All of these different packets could be maliciously used to attack the control plane and
overwhelm the Cisco NX-OS device. CoPP process assigns these packets to different
classes and provides a mechanism to individually control the rate at which the
supervisor module receives these packets.
The CPU has both the management plane and control plane and is critical to the
operation of the network. Any disruption or attacks to the CPU module result in
serious network outages. For example, excessive traffic to the CPU module could
overload and slow down the performance of the entire Cisco NX-OS device. There
are various types of attacks on the supervisor module, such as denial of service (DoS)
that generate IP traffic streams to the control plane at a very high rate. These attacks
force the control plane to spend a large amount of time handling these packets and
prevent the processing of genuine traffic.
Examples of DoS attacks are as follows:

 Internet Control Message Protocol (ICMP) echo requests
 IP fragments
 TCP SYN flooding
 Time To Live (TTL) expiry behavior attack

These attacks can impact the device performance and have the following negative
effects:

 Reduced service quality (such as poor voice, video, or critical applications
traffic)
 High CPU processor utilization
 Route flaps due to loss of routing protocol updates or keepalives
 Unstable Layer 2 topology
 Slow or unresponsive interactive sessions with the CLI
 Processor resource exhaustion, such as the memory and buffers
 Indiscriminate drops of incoming packets

For example, a TTL attack occurs when packets with a TTL=0 are sent to the switch.
The switch, per RFC 5082, needs to drop the TTL=0 messages. A TTL attack sends a
high volume of TTL=0 messages to the switch, usually causing high CPU processor
utilization. Two behaviors are implemented with CoPP to prevent this from happening.
First, up to 20 ICMP response messages per second are sent back when a TTL=0 is
received, as this is useful for troubleshooting purposes. Second, when the number of
messages received is above 20, and usually in the million count, with CoPP, the
switch drops silently in hardware packets, protecting the CPU from rising.

349



CoPP Classification
For effective protection, the Cisco NX-OS devices classify packets that reach
supervisor modules, allowing administrators to apply different rate-controlling
policies based on the type of the packet. For example, restrictions might be lower for
a protocol packet such as Hello messages but stricter with a packet that is sent to the
supervisor module because the IP option is set. Modular QoS CLI (MQC) is used with
class maps and policy maps to configure the packet classification and rate-controlling
policies for CoPP.

CoPP Rate-Controlling Mechanisms
After the packets are classified, the Cisco NX-OS device has two different
mechanisms to control the rate at which packets arrive at the supervisor module. One
is called policing and the other is called rate limiting or shaping.
You can use hardware policers to define separate actions for traffic that conforms to
or violates certain conditions. The actions include transmitting the packet, marking
down the packet, or dropping the packet. Policing is implemented on the Cisco Nexus
switches with either of the following approaches:

 Packets per second (PPS): Number of packets per second allowed to the CPU
for a specific type of packets
 CIR and BC:

 Committed information rate (CIR): Desired bandwidth, specified as a bit
rate
 Committed burst (BC): The size of a traffic burst that can exceed the CIR
within a given unit of time and not impact scheduling

Depending on the data center switches, CoPP is defined by using either PPS or a
combination of CIR and BC.
For instance, the Cisco Nexus 7000, 6000, and 5000 series switches use the CIR and
BC configuration mechanism for CoPP, whereas the Cisco Nexus 3000 series switches
use the PPS concept. Using either implementation provides the same result. The
configuration with PPS is easier to perform.
Recommended practice is to leave the default CoPP settings and follow the proper
setup prompt when configuring the switch for the first time. CoPP settings are
automatically applied depending on the switch use: Layer 2 only, Layer 3 only, or
Layer 2 and Layer 3.
Monitoring CoPP continuously is also recommended. If drops occur, determine if
CoPP dropped traffic unintentionally or in response to a malfunction or attack. In
either event, analyze the situation and evaluate the need to use a different CoPP policy

350



or modify the customized CoPP policy.

Data Center Switch Architecture
This section explains the key switch architecture concepts used in data center
switching: cut-through, crossbar, and SoC switch architectures. It examines their
specific enhancements, such as superframing, overspeed, and queuing models, along
with the important concepts of head-of-line blocking (HOLB) and virtual output
queuing (VoQ). It covers switching architecture and the various Cisco data center
products.
To understand the switching architecture decisions, it is important to specify the key
requirements for a data center switch fabric, such as:

 Provide a no-drop fabric infrastructure that allows flow control of the input port
that is causing the congestion
 Achieve 100 percent throughput at high speed
 Provide low to ultra-low latency
 Prevent head-of-line blocking

The typical switch architectures are bus, mesh, two-tier, crossbar, and centralized
shared memory often called SoC. The switch ASIC(s) called SoC, or System on Chip
or Switch on Chip refers to the all-in-one, feature-rich characteristics of the ASIC. In
the data center, the two main switch architectures used are the crossbar and the SoC.
The data center switch can be a mix of these two types; for example, SoC with
crossbar, SoC with SoC fabric, and so on. The queuing mechanism for crossbar can be
input or output, whereas for the SoC it is a shared memory, as depicted in Figure 10-2.

Figure 10-2 Summary of the Switch Architectures

351



Cut-through Switching: Performance for the Data Center
A switch makes time-critical forwarding decisions based on the destination address
present in each received frame. In Ethernet, the first field following the start-of-frame
delimiter is the destination address entry. Therefore, at the beginning of the lookup
information, the switch knows which egress port the frame needs to be sent to. There
is no need to wait for the entire frame to arrive before making this forwarding
decision to the egress port. This allows the switch to start forwarding the frame
immediately, before the rest of the frame has been received. This mechanism is called
cut-through switching. It is different from store-and-forward switching, where the
entire frame is stored first before a lookup-and-forwarding decision is made.
Consequently, the cut-through mechanism reduces the latency of the lookup-and-
forwarding decision operation and is a major performance improvement for switches.
Figure 10-3 shows the constant ultra-low latency (ULL) of a cut-through switch
compared to a store-and-forward switch, where the latency increases with packet size.
Cut-through switches process frames with a first bit in, first bit out method.

352



Figure 10-3 Network Latency Consequence from the Switch Type
The first Ethernet switch on the market was a cut-through switch developed by
Kalpana Corporation and acquired by Cisco. Grand Junction Systems, a Kalpana
competitor and also acquired by Cisco, provided store-and-forward switching. A
major motivation for store-and-forward switches is the capability to inspect the whole

353



frame first, before forwarding. This ensures the following:
 Collision detection: The packet is stored in its entirety, making it possible to
determine if it is a frame resulting from a collision.
 No packets with errors are propagated: The CRC checksum is checked prior
to forwarding.

Store-and-forward switches are the most popular type of switches on the market. Yet,
in the past five years, cut-through switches have made a comeback in data center
environments, lead by Cisco and followed by other silicon switch manufacturers. This
is primarily due to the latency performance gains, optimization of the fabric utilization,
and the benefit of the improved physical layer products, creating less CRC errors on
the wire.
The store-and-forward benefit mechanisms have been implemented in cut-through
switches to include

 A mechanism to signal a malformed packet that fails the CRC checksum by
adding a CRC stomp at the end of the packet. This is the only possible
mechanism, because the beginning of the packet is already sent on the wire and
there is no time machine to revert this action.
 A fragment-free mechanism. To ensure that collision fragments are not
forwarded, switching is delayed until the end of the first 64 bytes of the packet.
Cut-through switching therefore starts at 64 bytes’ packet size. Usually, this
delay is needed anyway to perform the table lookup.

Cut-through type switching is principally used in data center networks. There are key
benefits to this switch method such as ultra-low and predictable latency, which results
in smaller buffer requirements as well as optimized fabric replication for multicast
traffic. This switching type also provides an architectural advantage in an environment
where sending the data as fast as possible is key to providing a better application and
storage performance.
A cut-through or store-and-forward switch can use any of the following: a crossbar
fabric, a multistage crossbar fabric, an SoC, or a multistage SoC with either,
respectively, a crossbar or SoC fabric. These capabilities are explained in the
following sections about the data center switch architecture. Table 10-1 shows the
forwarding mode the various models are capable of: cut-through or store-and-forward
across the data center switch products.

354



Table 10-1 Forwarding Type per Switch Model
The outlier that represents a cut-through switch mechanism is only possible when the
speed of the receiving port is higher or equal to the speed of the egress port and the
fabric in between, in case of a fabric in the architecture. For example, Table 10-2
shows the cut-through behavior for the Cisco Nexus 6000 and 5000 series switches.
One outlier in the table is the 1 GE to 1 GE speed, which is also store-and-forward.
This is the result of a crossbar fabric operating at 10 or 40 GE, introducing a speed
mismatch from 1 GE to a higher fabric speed.

Table 10-2 Cut-through Nexus 6000 and 5000 Series Switches Forwarding Mode

355



Crossbar Switch Fabric Architecture
Crossbar switches are the building blocks for the switching fabrics. Crossbar switch
fabric architecture provides multiple conflict-free paths, higher bandwidth capacity, a
nonblocking architecture, and larger port counts.
In a crossbar switch, every input is uniquely connected to every output through what is
called a crosspoint. A crosspoint is the smallest unit of the switching function, which
can be built using a variety of electronic components such as transistors, AND gates,
and photodiodes. Figure 10-4 shows a visual of a crossbar grid structure mechanism.

Figure 10-4 Crossbar Grid

Because a crosspoint exists for every connection, the crossbar fabric of the switch is
considered strictly nonblocking. Blocking occurs only when multiple packets are sent
to the same output at the same time. The complexity of a crossbar switch lies in the
high number of crosspoints. For example, for an n by n crossbar (n input, n output
ports), the complexity of the number of crosspoints needed is n^2. Arbitration and
scheduling are used to avoid the blocking scenario in the crossbar fabric. Figure 10-5
illustrates the crossbar grid with the crosspoints concept at each input-output crossing.

356



Figure 10-5 Crossbar Displayed with Crosspoints
The advantages of crossbar architectures are as follows:

 Highly scalability, allowing high port density and port speed in one physical
device
 Nonblocking architecture, allowing network designs with predictable behavior
 Ability to provide lossless transport and therefore carry loss-sensitive traffic
such as Fibre Channel frames. This ability is provided by a flow control model
mechanism. This flow control mechanism is easier to implement, as the
congestion is created at ingress.

357



Unicast Switching over Crossbar Fabrics
The traffic is balanced in the crossbar fabric: each port has access to all the output
ports. When there is a unicast traffic stream, traffic arriving at a given ingress port
takes the crossbar fabric on the crosspoint path connecting to the specific egress port
where the unicast traffic is to be sent. Multiple traffic streams can be sent
simultaneously in the same fabric. Figure 10-6 shows the parallel forwarding of
unicast packets between different pairs of source and receiving ports.

Figure 10-6 Unicast Switching Across Crossbar

Multicast Switching over Crossbar Fabrics
When multicast traffic is sent to the crossbar fabric, replication occurs at the fabric.
This results in creating numerous multicast streams at the crosspoint in which the
multicast frames arrive. An advantage is that the source line card or port ASIC does
not have to replicate for packets going to another line card or port ASIC destination.

358



Overspeed in Crossbar Fabrics
The crossbar fabric is clocked several times faster than the physical port interface to
the fabric speed. This is called overspeed. Overspeed is needed to achieve 100
percent throughput capacity for each port, also called line rate. When there is a
contention for an outgoing port that has to receive traffic from multiple ingress ports,
the scheduler arbitrates the order in which the packets can be sent to that outgoing
port. This takes time and slows down the packets that have to wait, incurring an idle
time and interpacket gap. This idle time is where the packet waits until a grant is given
from the scheduler for the packets to cross the fabric. Therefore, it’s not possible to
achieve line rate, because the arbitration process creates a natural idle-time delay. To
remediate this slowdown effect, or latency added by the scheduler, the crossbar fabric
functions with overspeed. Figure 10-7 shows the overspeed concept in a crossbar
fabric, and Figure 10-8 shows the overspeed for the crossbar switches.

Figure 10-7 Overspeed Concept in the Crossbar

359



Figure 10-8 Overspeed in the Cut-through Crossbar Switch

Superframing in the Crossbar Fabric
Superframing refers to bundling packets in a larger-sized frame when they are sent to
the crossbar fabric. This occurs per transaction, or grant. A superframe is used only
during the transit of frames in the crossbar. It is removed when the packets leave the
crossbar to reach the outgoing interface. Therefore, it is transparent to the traffic going
through the switch.
When frames are sent to the crossbar fabric, there is a delay added by two factors: an
interpacket gap due to scheduling activity, and an extra overhead header being added
during the transit in the fabric for signalization purposes. This overhead has a fixed
size. Therefore, when it’s added to small packets along with the interpacket gap, it
represents a significant addition to the packet size. This reduces the overall possible
throughput of data traffic at a given smaller packet size. Superframing allows
throughput rate to remain unaffected by the packet size by bundling the packets together
when needed. Figure 10-9 displays the superframing concept.

360



Figure 10-9 Superframing
Superframing is an inherent mechanism that can be part of the crossbar fabric and is
typically not configurable. There is no fixed superframe size. Also, it does not add
latency to the switch, because there is no waiting to fill up the superframe. For
example, if there is only one 64-byte packet in the queue, and the outgoing port is free,
the scheduler grants fabric access to this packet immediately.
Figure 10-10 shows the performance without superframing. It proves that superframing
is a building block of the crossbar fabric architecture allowing line rate throughout.
Line rate without superframing is achieved only from a packet size of 4096 bytes or
greater. With superframing, line rate throughout is attained from the smallest packet
size possible to send on the wire: 64 bytes. Figure 10-11 shows the same throughput
test on the Cisco Nexus 5000 series with superframing enabled.

361



Figure 10-10 Example of Throughput Without Superframing Enabled on a Cut-
through Switch

Figure 10-11 Example of Throughput with Superframing Enabled on a Cut-through
Switch

Note
The Cisco switches do not allow a user to disable the superframing
capability. Figures 10-10 and 10-11 are meant to illustrate the efficiency
of superframing.

362



The Scheduler
The role of the scheduler, also called arbiter, is to service frames across the fabric.
The scheduler is a key building block of a switch fabric. It not only has to prevent
head-of-line blocking and provide efficient buffer utilization, but must also have the
capability to isolate congested sources or congested output ports. The scheduler also
has a weighting mechanism to ensure priority traffic and lossless capability is
serviced before bulk traffic. During load, the scheduler must be able to maximize the
throughput.
Two models are used in the Cisco Nexus series switches to schedule communication
between the fabric and the ports:

 Credit model: Based on a token credit exchange, where the scheduler provides
credits to traffic desiring to cross the switch. The credit is returned to the
scheduler after it is used by the superframe. Frames may have to wait in the
queue until credit is received. The location of the wait depends on the queuing
mechanism: input, output, or centralized. This is the most common scheduling
model found in the Cisco Nexus 9000, 7000, 5000, 3000, and 2000 series
switches.
 Collision model: Two messages are exchanged between the ports and the fabric
scheduler: ACK/NACK. In this model, there is no need to wait for a credit. One
or multiple input ports compete for an output. The input ports that receive an
ACK from the scheduler proceed to send traffic to the crossbar fabric. Other
input ports can receive a NACK, which is a denial of fabric utilization. Then
they retry another fabric path until an ACK is received. This model has been
implemented on the Cisco Nexus 6000 series switches, and provides in this
architecture latency reduction to cross the fabric, versus the Nexus 5000 credit-
based scheduler.

To achieve line rate throughput, a combination of fabric overspeed, superframing, and
an efficient scheduler is used. A good scheduler ensures line rate under most traffic
flow conditions, providing a very low latency hit at line rate versus very small traffic
load. Typically, the latency added by a scheduler servicing frames at line rate will
increase up to 10 percent from the total switch latency.

363



Crossbar Cut-through Architecture Summary
Crossbar switch architecture combined with cut-through switching permits line rate
switching with a constant low to ultra-low latency regardless of packet size. This
allows for possible storage networking with lossless Ethernet and ULL and big
data/supercompute environments with a predictable latency. The fabric has more
crosspoints than the minimum needed, virtual output queues, overspeed, and
superframing. Cut-through switching provides the best and predictable performance
across packet sizes, and this technique is used with the Cisco Nexus 9000, 6000,
5000, 3000, and 2000 series switches. The Nexus 6000 and 5000 series are cut-
through with a crossbar, and the Cisco Nexus 9000 and 3000 series are centralized
memory based. The Cisco Nexus 7000 series has a store-and-forward crossbar
switching mechanism incorporating the crossbar benefits of overspeed, superframing,
and so forth. The following sections describe each of the queuing models for crossbar.
Centralized memory (applicable to SoC) is covered in the section “Centralized Shared
Memory (SoC),” later in this chapter.

Output Queuing (Classic Crossbar)
When designing a high-bandwidth switch, one of the central concerns is the limited
memory bandwidth. The memory is a building block of the queuing mechanism the
switch has; therefore, a limiting factor for the switch speed is how fast this memory
can operate. A switch that uses the memory bandwidth efficiently can run faster than
other switches. Depending on the switch architecture, the queuing can take place at the
input, at the output, at both input and output, or at a centralized location. There are
three queuing techniques: output queuing, input queuing, and centralized shared
memory. Output and or input queuing are used in a crossbar switch architecture. This
section explains the output queuing model, as shown in Figure 10-12.

364



Figure 10-12 Output Queuing
In output queuing switches, all queues are placed at the output part of the switch. An
output queuing switch has the capability to provide high throughput and guaranteed
quality of service (QoS). The lack of queues at the ingress means all arriving frames
must immediately be delivered to their outputs. From a QoS and throughput standpoint,
this is an advantage, because the frames appear immediately at the output and QoS is
guaranteed. A disadvantage is when too many frames arrive simultaneously; the output
then is required to have a lot more internal bandwidth and memory bandwidth. For
example, to be able to receive X frames at the same time, the output queuing memory
needs to support X write accesses for each frame, as the frames arrive to the memory.
The switch then needs to support a memory speedup of X+1 times the speed to
accommodate this scenario.
Two categories of switch family use output queuing in the Cisco data center portfolio:
Catalyst 6500–based modular switches (not discussed in this book, just used as a
comparison) and the Cisco Nexus 7000 series modular switches with M-series line
cards. These switches have a large output queuing memory or egress buffer. They are
store-and-forward crossbar architectures. Because they offer large memory, they
provide large table size space for MAC learning, routing, access lists, and so on.
However, the density of ports and speed is less in the other category of switches.

365



Input Queuing (Ingress Crossbar)
Input queuing, unlike output queuing, has no speedup requirement for the memory.
Queues are at the input and don’t have to send or receive more than one frame at the
same time. Therefore, the memory is required to operate at only twice the line rate,
making input queuing a key to building high-bandwidth switches. However, input
queuing does have an issue with the head-of-line blocking (HOLB). This can be
eliminated by simply using virtual output queuing (VoQ). HOLB is discussed in the
next section. Figure 10-13 illustrates input queuing.

Figure 10-13 Input Queuing Model
This input queuing model, also referred to as ingress queuing or ingress buffering, is
used in Cisco Nexus 7000 F-series line card switches and Nexus 5500 and Nexus
5000 switches. These switches benefit from the following enhancements:

 A tightly coupled scheduler and crosspoints, providing 20 percent speedup
 Dedicated unicast and multicast schedulers
 VoQ to prevent HOLB
 Three times fabric overspeed
 Three times more crosspoints than needed to better handle many-to-one
congestion scenarios and superframing

The combination of all these features enables the switch to provide the same latency
and performance for any load up to line rate, for any packet size, and with any feature
turned on (ACL and so on).

366



Understanding HOLB
When frames for different output ports arrive on the same ingress port, a frame
destined to a free output port can be blocked by the frame just in front of it, which is
destined to a congested output port. Therefore, the frame destined to a free output port
has to wait in queue to be processed until the other output port is no longer congested.
This creates backpressure called HOLB and unnecessarily penalizes other traffic,
which should remain unaffected. This backpressure creates out-of-order frames and
degrades the communication. Also, the throughput is affected by HOLB. Research has
shown that, under certain conditions, throughput in presence of HOLB can be limited
to 58.6 percent. Figure 10-14 illustrates HOLB.

Figure 10-14 Switch HOLB Phenomenon

Overcoming HOLB with VoQ
Input queuing has been avoided in the switch industry for a long time due to the HOLB
issue it creates. Recently this problem has been overcome with VoQ. In a VoQ switch,
all input maintains a simple queue structure consisting of multiple first-in, first-out
(FIFO) queues, one for each output. With this mechanism, all the frames in each FIFO
queue are destined to the same output queue. Therefore, frames cannot be blocked by a
frame in front that is destined to a different output port: with VoQ there is no longer
HOLB. Although VoQ can appear complicated, the memory bandwidth implementation
for a VoQ ingress queuing is the same as a single FIFO ingress queuing structure
because at most one frame can arrive and depart from each input at a time. With
pointers, all queues at an input can share the same physical memory. With VoQ, the
scheduler is more advanced, as it needs to be able to service a lot more queues than a
single FIFO input queuing structure. Please note that VoQ and buffering functions are
performed at the input switch ASIC where the scheduler resides, not on the crossbar
fabric module itself. Figure 10-15 illustrates VoQ.

367



Figure 10-15 VoQ Illustration

Multistage Crossbar
Certain architectures implement a multiple-stage crossbar fabric approach to achieve
even higher fabric capacity scale. For example, the Nexus 7000 has a three-stage
fabric crossbar. The first and last stages of the fabric are implemented on the I/O
modules, whereas the second stage is implemented on the fabric module cards. This
approach enables the end user to control the fabric oversubscription ratio to provide
up to line rate forwarding on the Nexus 7000 chassis, for example. This is achieved by
deciding on the number of stage 2 fabrics the switch will have, from one fabric
module up to five fabric modules. All the crossbar concepts previously explained
continue to apply to a multistage crossbar fabric. The multistage crossbar achieves the
same principle of scaling out as a data center spine-and-leaf fabric network
architecture (covered earlier in the book), allowing it to support more bandwidth than
with a single switch. The techniques are different with spine-leaf, which is usually
flow based; crossbar is packet based. Figure 10-16 illustrates an example of
multistage crossbar fabric.

368



Figure 10-16 Multistage Crossbar Fabric
In crossbar switch architecture, the fabric executes the replication of multicast traffic.
The scheduling occurs prior to or after the fabric module, respectively, for input or
output queuing. The crossbar fabric can have multiple stages in the example of the
Nexus 7000.

Centralized Shared Memory (SoC)
Centralized shared memory is another data center switch architecture, typically used
in lower-bandwidth switches. The memory is shared by all inputs and all outputs.
Each input and output port can access the switch memory one at a time. The memory is
portioned into multiple queues, one for each output. The memory portioning can be
static or dynamic. This queuing technique provides the same behavior for the frames
as output queuing: logically a shared memory scheme can be viewed as an output
queuing mechanism with all queues moved to a central memory location. Another
benefit is lower frame loss or drop probability: because the memory is shared, unused
buffers can be given to ports under load. One of the challenges of shared memory
architectures is the internal speedup requirement for the memory, and the output
queuing model, needing to function 2xN times faster than the line rate, N being the
number of ports. Figure 10-17 shows the SoC queuing model.

369



Figure 10-17 Centralized Memory: SoC
SoC has become more popular in the past few years with the evolution of
nanotechnology and clocking speed that has the ability to place a large number of
transistors (over 1 billion) in a compact form factor that directly maps all the
switching Ethernet ports to this SoC. This removes the need to have a crossbar
solution for the port density supported by an SoC: typically from 48 to 128 10-GE
ports at the time of writing. It is still quite less than the scale achieved by crossbar
fabrics, which allow for a much higher scale.
SoC includes the switch-on-chip single ASIC switches, such as the top-of-rack Nexus
3000, 3100, 3500, and 9000 series family switches. Cisco Nexus SoCs used in these
top-of-racks are cut-through, providing the same latency across packet size,
throughput, and features.
Recently Cisco has developed a hybrid approach of the three queuing methods: the
Nexus 6000 product line. This product has ingress queuing for unicast traffic and
output queuing for multicast traffic (reducing the amount of fabric replication), with
the ingress and egress sharing a common centralized memory for each three physical
40-GE ports. This hybrid approach enables the Nexus 6000 cut-through crossbar
switch to provide ULL with the same 1-microsecond latency across all ports, packet
sizes, any load and any L2/L3 features turned on with a large queuing memory capacity
(buffering) up to 25 MB for each three 40-GE ports.

370



Multistage SoC
With the SoC type of switch architecture, it is possible to combine multiple SoCs to
achieve larger scale. There are two approaches: crossbar fabric with SoC, and SoC
fabric with SoC.

Crossbar Fabric with SoC
This type of architecture consists of using the SoC to perform all the switching and
queueing operations and using a fabric to interconnect the various SoC. For the SoC
models that can be programmed for different operations when located ingress or
egress of the crossbar fabric, this architecture is then similar to the input or output
queuing crossbar architecture.
For example, the Nexus 7000 series line card uses an SoC and a crossbar fabric to
interconnect all the SoCs. This model is an input queuing crossbar model, where the
SoC at ingress has a forwarding engine, ingress queuing with VoQ, and then sends the
traffic to the crossbar fabric, as depicted in Figures 10-18 and 10-19. Notice the
presence of output queuing (egress buffer). This is used to accommodate statically
frames that have already passed the input queuing stage and, while in flight in the
crossbar fabric, have encountered congestion at the destination egress port they are
going to. Because the fabric is a non-drop element, the frames must be buffered on the
egress for this specific scenario. Figure 10-18 and Figure 10-19 show the crossbar
and SoC architecture of the Cisco Nexus F series line card and the functionalities
inside the SoC of this same line card.

Figure 10-18 SoC and Crossbar Architecture on the Cisco Nexus F2 Series Line
Card

371



Figure 10-19 View of the SoC Functionalities of the Cisco Nexus F2 Series Line
Card

SoC Fabric
This architecture consists of building a nonblocking switching architecture with the
same type of SoC, avoiding the need to use a different ASIC type for the crossbar
fabric to interconnect the SoC. However, this can potentially introduce more
complexity for the communication between SoCs and an overall much higher density
of SoCs needed to build the end product. For example, a mechanism to synchronize all
the switching and routing entry tables across all SoCs needs to be implemented;
otherwise, issues such as flooding or lack of MAC learning can occur. Newer SoCs
provide dedicated, faster inter-SoC communication links, sometimes called a high-gig
port. This model has a control and communication mechanism between SoCs, which
avoids the concerns illustrated in Figure 10-20. From a port-count perspective, with
an SoC of 64 nonblocking ports, to build a switch with 128 nonblocking ports, a total
of six 64-port SoCs are needed, as Figure 10-20 illustrates. Four are used for the port
side and two for the nonblocking fabric. This concept allows a very high scale in
terms of port density, comparable to a crossbar, and is capable of scaling higher than
certain crossbars. The Cisco Nexus 9000 switch family uses this SoC fabric concept
and provides, at the time of writing, the densest modular switch platform available on
the market.

372



Figure 10-20 Fabric SoC Architecture

QoS Fundamentals
Quality of Service requirements in the data center are different than the ones in the
campus. The use of Quality of Service in the data center is important to prioritize
correct latency-sensitive applications over elephant flows, to make storage traffic
work correctly and other specific requirements described in this section.

Data Center QoS Requirements
The starting point is to look at QoS requirements from a traffic, application, and SLA
perspective—for example, voice and video. Today, Voice over IP (VoIP) and video
are mainstream technologies. Building network equipment to provide reliable and
high-quality VoIP and video streaming over the network is well documented and well
understood. It is critical to understand the per-hop, end-to-end behavior of voice and
video over digital media For example, with voice traffic, a codec takes an analog
stream and generates binary data with a 20-ms sample, as shown in Figure 10-21. To
ensure that the voice traffic is not interrupted, the latency cannot exceed the human ear
perception gap of 150 ms after decoding the signal between the sender and the
receiver. To meet this requirement, the network equipment has a priority queue.
Therefore, when the traffic arrives at the end of the networks, it looks the same as
when it left. Video adds a different set of requirements: the data rate is not as
consistent. For example, if the video is streaming, the data can be buffered, but it
should not be buffered if the video is live. Compared to voice, video is less resilient
to loss, has a higher volume of data, and the codec samples every 33 ms.

373



Figure 10-21 Voice and Video Sampling at the Packet Level
The enterprise and campus specialization for voice- and video-embedded QoS in the
hardware network equipment has created a set of RFCs providing guidance and best
practice on how to map the applications to a QoS model. This is the case with
medianet: RFC 4594 is shown in Table 10-3: Understanding QoS resulted into
building Cisco network equipment that answered specific requirements.

374



Table 10-3 Medianet RFC 4594

375



Data Center Requirements
Similar to the traditional campus specializations, there is an emerging data center
specialization in activities such as compute storage, virtualization, cloud computing,
and more. Specialization in this area requires understanding how to handle protocol
convergence in the fabric, including storage protocols such as FCoE, iSCSI, NFS, and
how to facilitate interprocess and computer communication (such as vMotion). These
requirements are different from voice and video QoS and campus-based QoS. The
goal of a data center design is to optimize the balance of end-to-end fabric latency
with the ability to absorb traffic peaks and prevent any associated traffic loss. A
balanced fabric is a function of maximum throughput and minimal loss (also known as
goodput), as illustrated in Figure 10-22. There are also different protocols and
mechanisms to consider, such as 802.1Qbb, 802.1az, and ECN, all of which are
covered in the following sections.

Figure 10-22 Goodput

Type of QoS Used in Different Data Center Use Cases
The data center designs have to account for many different traffic types such as:

 No-drop storage traffic
 High-performance compute workload
 Storage
 vMotion

The different trends from a QoS requirement perspective are as follows:
 Ultra-low latency networking: The design is network QoS free, where queuing
is performed as little as possible to avoid creating delay in the network for the
applications.
 High-performance compute and big data workloads: The traffic is bursty,
with an east-west direction, soliciting throughput and buffering from incast
(many-to-one conversations) and speed mismatch.
 Massively scalable data centers: A requirement is to optimize the throughput

376



of TCP by avoiding to drop traffic. This is described by the use of ECN and
DCTP.
 Virtualized data center: QoS can be useful to prioritize various traffic types
that are common in non-virtualized data centers as well as traffic types that are
specific to virtualized servers, such as vMotion traffic.

Trust, Classification, and Marking Boundaries
A key consideration for QoS is to understand where to classify and mark traffic. In the
campus environment the trust boundary starts at the first cable going to the access
network device. By default, the assumption is to not trust what is outside of the
network, as depicted in Figure 10-23. In the data center, it is common to trust by
default. Therefore, the default QoS settings are different.

Figure 10-23 Trust Boundary

In the data center, the QoS trust boundary is where the virtual machine connects to a
virtual switch. The access boundary is moved within the server and is trusted by
default. Layer 2 QoS (COS based) is performed on any network equipment up from the
host until the Layer 3 boundary. Layer 3 QoS (DSCP based) is performed on the
network equipment going to the outside.
Figure 10-24 depicts the trust boundary and where to classify and mark. With the
default behavior of trust, the data center Nexus switches trust by default any marking
arriving onto the switches: COS or DSCP. It is possible to change this default
behavior to untrusted, if needed. The traffic leaving a VM usually is not marked.
Therefore, the virtual switch needs to be configured to mark with CoS values traffic

377



for different VMs.

Figure 10-24 CoS and DSCP Boundaries in a Data Center Network Topology

The data center QoS model is a four-, six-, or eight-class model. The number of
classes available depends on the hardware used and also on the place in the data
center fabric the hardware is deployed. There is a strong requirement for Layer 2 QoS
or COS-based QoS for the data center because there is IP and non-IP traffic to be
considered (FCoE). Therefore, the common denominator is to use COS-based QoS.
In a multi-tenant network, as shown in Table 10-4, FCoE uses a CoS of 3 and, in Table
10-3 voice bearer control traffic uses CoS 3. There is a potential for overlap and
conflict. In this scenario, a case-per-case approach is used for the overall design and
the choice of what CoS values to use to remark one of these traffics classes. Typically

378



voice and FCoE do not exist at the same place, and they can coexist, each one using a
value of CoS 3. In that case, a remapping is performed on the switches where type of
traffic merge together.

Table 10-4 CoS Suggestions for Traffic Type

Data Center QoS Capabilities
This section’s coverage of QoS capabilities starts by explaining the fundamental
switching concepts of buffering and the buffer bloat. They apply to any platform, and
are not data center specific. Next, the data center–specific capabilities implemented in
the Cisco Nexus product portfolio are detailed, including the handling of storage
traffic and priority traffic, and new emerging concepts such as data center TCP and
flowlet switching.

Understanding Buffer Utilization
Understanding buffering is key to understanding the QoS capabilities, switch
architecture, and more generally how to design a data center fabric. This section
explains when buffering is used and the consequences on a spine-leaf data center
design in terms of making buffering size choices for spine switches and leaf switches.
Buffers on data center switches are used under the following four conditions:

 Oversubscription caused by many-to-one conversations: This is also called
incast or many-to-one conversations and is shown in Figure 10-25. In this
scenario, multiple input ports are sending traffic going out of a specific output
port. While the scheduler services a frame for a given virtual output queue, other
frames that arrived while the scheduler was busy have to wait for their turn. The
waiting delay is a factor of the scheduler latency, which for Nexus switches is in
the order of magnitude of nanoseconds. During this wait time, the frames are

379



buffered ingress until they are serviced. A common scenario for this in the data
center is servers sending traffic to the Internet via the switch uplinks or writing
to a remote storage device.

Figure 10-25 Incast

 Speed mismatch: This is also called uplink speed mismatch and is shown in
Figure 10-26. When the speed of the receiving port is different from the speed of
the outgoing port, buffering occurs. There are two scenarios: lower to faster
speed, and faster to lower speed. In the lower to faster speed scenario, the value
of the serialization delay of the outgoing port being lower compared to the other
port makes that enough frames need to be stored in order to be sent faster on the
outgoing port, incurring in buffering memory. In the other scenario, faster to
slower, frames can arrive faster than the serialization delay of the output port,
and buffering occurs as well.

Figure 10-26 Speed Mismatch

380



 Burst: This occurs when a burst of packets is sent on the wire and it constitutes
a value above the number of packets per second the switch can treat for line
rate. For example, above 10 GE on a 10-GE interface, the switch buffers
packets from the burst. This is observed in high-frequency trading (HFT)
environments, where there is a multicast burst of packets for a very short
duration. This is also called microburst. It is also observed in data center
benchmarking, when a switch is tested for throughput. If the tester sends 100
percent of throughput on a port, it can actually be faster than what the switch
treats as 100 percent of throughput on the same port speed. To avoid this
scenario, it is recommended to send 99.98 percent of throughput traffic to the
switch under test to compensate for the standard deviation rules.
 Storage: Buffer-to-buffer credit, in order to provide lossless storage transport
across the Ethernet network, is translated in a statically carved buffer on the data
center switches. The buffer allocated is a function of the speed for the Fibre
Channel traffic and the distance between two switches or a switch and the target
or the initiator.

It is important to understand which data center switch to use for spine buffering and
for leaf buffering. Buffer pressure at a leaf switch uplink port and the spine switch
ports is about the same, so the buffer size between the leaf and the spine needs to be in
the same order of magnitude. The congestion and buffering due to oversubscription is
more important at the leaf than at the spine switch. Increasing leaf buffering is more
effective at the leaf layer, where there is a speed mismatch along with the incast,
versus the spine layer, where there is no speed mismatch.

The Buffer Bloat
Hardware switching provides performance, scalability, and reliability. Only so much
logic can be embedded on a switch ASIC, however. It is bound to the size of the
ASIC, the frequency of the ASIC, and the number of gates the ASIC can hold. The
larger the ASIC, the larger the possible failure rate of the silicon.
In the hardware, the following categories are bound to the logic space available:

 The buffer size
 The table size (Layer 2, Layer 3, unicast, and multicast)
 The number of hardware features (forwarding, ACLs, NAT, etc.)

The Cisco Nexus switches are designed to be deployed in specific places in the data
center design, and the buffer size is optimized to that purpose. There is mainly a need
to have more buffering capability usually at the leaf layer than at the spine layer, and
the order of magnitude of spine and leaf need to be in proportion. With the switches
capable of handling faster and faster speeds (10 GE, 40 GE, and 100 GE), the amount

381



of buffering for the same amount of traffic to transit the switch is obviously less.
Figure 10-27 shows the network view for a Hadoop terasort job of 1 TB of data
transferred in an east-west network. The buffer utilization is measured for two
scenarios for the same job and loaded on the network. The first case consists of 1-GE
NICs and switch ports, and the second is with 10-GE speed. Because the job
completes faster with the 10-GE NICs, the main difference observed is the buffer
utilization. There are fewer buffers used on the switches when the speed is 10 GE
versus when it’s 1 GE. The faster the speed, the lower the buffer used for the exact
same application job. Figure 10-27 displays the results from the tests.

Figure 10-27 Buffer Utilization on an SoC Switch Used at 10 GE or 1 GE During
the Same Test

Priority Flow Control
Priority flow control (PFC) is a QoS technique used to provide a lossless transport
media capability for storage types of traffic. PFC is defined in the IEEE 802.1Qbb
documentation. The idea behind this technology is to use a PAUSE frame signal
messaging methodology: the switch and the other node, whether it is another switch, a
target, an initiator, etc., sends PAUSE with a specific COS field used for this class of
traffic as defined in IEEE 802.1p. This CoS field is the one assigned to the non-drop
class of traffic; in general, FCoE uses CoS 3. The remaining traffic in other classes
assigned with other CoS values continues to transmit and, on upper-layer protocols,
retransmit. Although this non-drop class for PFC is not intended only for FCoE,
currently it is mainly used for FCoE. Figure 10-28 illustrates PFC.

382



Figure 10-28 Priority Flow Control
For example, an uplink is congested on a switch. When the switch buffering starts to
fill up to a certain threshold, the switch creates a PAUSE and relays it downstream to
ask the sender of the traffic to pause. Vice versa, the Nexus switch is also compliant
and PAUSEs its traffic when requested; then, as its buffer fills up, it creates a PAUSE
and relays it. The other traffic assigned to other CoS values continues to transmit and
relies on upper-layer protocols for retransmission.

Note
Be very careful with iSCSI traffic. Do not use the non-drop queue for
iSCSI, because it can create HOLB when used in a multi-hop topology.
Only a very specific design scenario benefits from iSCSI being in a non-
drop class: when the target and initiator are on the same switch and there
is no multi-hop. Therefore, the recommendation is not to allocate iSCSI
to the non-drop queue in general.

Enhanced Transmission Selection
Enhanced Transmission Selection (ETS) is a QoS technique used for bandwidth
management. It is defined in IEEE 802.1Qaz. ETS is used to prevent a single class of
traffic from utilizing all the bandwidth and starving other classes. ETS is implemented
on all Nexus switches.
When a given class of traffic or queue does not fully employ its allocated bandwidth
percentage, it becomes available to other classes. This helps accommodate bursty
classes of traffic. Another way to describe ETS is from a scheduler point of view.
With ETS, which is the “bandwidth percentage” allocation to classes of traffic, it
provides a corresponding weight to the scheduler. When frames from different classes
are scheduled to go through the crossbar fabric or SoC, they have a weight
corresponding to their class, and the scheduler services frame volume according to
this weight. Figure 10-29 shows ETS configured for three classes of traffic: HPC,

383



storage, and LAN.

Figure 10-29 ETS Implemented for Three Queues

Data Center Bridging Exchange
Data Center Bridging Exchange (DCBX) is an extension to ETS incorporated in the
IEEE standard 802.1Qaz. DCBX negotiates the Ethernet capabilities with peer DCBX
potential. It includes negotiation for:

 PFC: The type of traffic in a particular queue
 ETS: The amount of bandwidth percentage allocated to each queue
 CoS: The CoS values used between Data Center Bridging peer devices

DCBX simplifies the management by allowing configuration and distribution of the
parameters from one node to another. DCBX is responsible for logical Link Up/Link
Down signaling of Ethernet and Fibre Channel. It can be seen as an equivalent of
LLDP with new TLV (Type-Length-Value) fields. The original, prestandard was called
CIN (Cisco, Intel, Nuova). DCBX added additional TLVs to CIN. When DCBX
negotiation fails, it results in per priority pause to not be enabled on CoS values; the
virtual Fibre Channel (vFC) interface does not come up when FCoE is used.
However, this can be manually configured when there is a peer connected to Nexus
that is not DCBX capable. DCBX can be summarized as a handshake taking care of the
data center QoS configuration (PFC, ETS, CoS). Cisco Nexus switches are all DCBX
capable and DCBX is enabled by default.

Note
TLV represents optional information that can be encoded as a type-length-
value or TLV element inside of the protocol. TLV is also known as tag-
length value. The type and length are fixed in size (typically 1 to 4
bytes), and the value field is of variable size.

vFC represents the Fibre Channel portion of FCoE. vFC is configured as a virtual

384



Fibre Channel interface.

ECN and DCTCP
Early Congestion Notification (ECN) and Data Center TCP (DCTCP) are mechanisms
to help TCP increase the data center goodput. They push the congestion events out of
the network and help avoid TCP dropping. When TCP drops, the window size half
drops for TCP packets and the throughput slowly increases over time, which is a
nonoptimal throughput. ECN and DCTCP are intended to prevent this TCP drop when
possible.
ECN is an extension to TCP that provides end-to-end congestion notification to avoid
dropping packets. Both the network infrastructure and the end must be capable of
supporting ECN for it to function properly. ECN uses the two least significant bits in
the DiffServ field in the IP header to encode four different values. During periods of
congestion, a router marks the DSCP header in the packet indicating congestion (0x11)
to the receiving host, who notifies the source host to reduce its transmission rate.
Nexus devices support ECN, which means that when ECN is also enabled on the
hosts, the Nexus devices are able to slow down when appropriate to avoid having
TCP drop—or, vice versa, when a host is getting congested, it is marked with ECN.
DCTCP is an enhancement of ECN. The goal of DCTCP is to react in proportion of the
extent of the congestion and not only to its presence. It reduces the variance in sending
rates, lowering the queuing requirements. The DCTCP marking is based on
instantaneous queue length. This allows fast feedback to better deal with burst,
knowing the packet size or congestion depth.
With different ECN marks, DCTCP reduces the window size with a variable value,
whereas with ECN it is a fixed value of 50 percent; Table 10-5 displays this
difference.

Table 10-5 DCTCP Benefits to TCP

Priority Queue
The priority queue concept on Nexus switches is different from the priority queue
concept on Catalyst switches. It’s important to understand the difference for data
center designs.
On Nexus switches, there is only one priority queue, and no shaping or rate limiting is
possible. The principle of the priority queue is that any traffic mapped to the priority

385



queue is always serviced first by the scheduler, and there is no limit in the bandwidth
this queue can take. This is irrespective of all traffic in other queues, including storage
traffic. Be very cautious when deciding to use the priority queue, as it can use up all
the bandwidth. Usually it is used for voice control traffic or for specific low-
bandwidth type of traffic, which needs priority. Another consequence when using the
priority queue is the bandwidth percentage allocated to all the remaining queues. They
receive a percentage of the available bandwidth once the priority queue is serviced.
The bandwidth percentages are applied only when there is congestion. If only one
class of traffic is going through the switch, it can take up all the bandwidth if it needs
to.
As an example, suppose three QoS queues are used: Priority, Bulk, and Scavenger.
Bulk has a bandwidth percentage allocated of 60 percent and Scavenger of 40 percent.
Priority has no percentage allocated in the configuration and usually displays a value
of 0. Assume there are 10 GE of traffic used on a link, and Priority represents at that
time 20 percent, or 2 GE. The remaining 80 percent, or 8 GE, is allocated to Bulk and
Scavenger. Bulk then has 60 percent of the 8 GE, representing 4.8 GE, and Scavenger
has 40 percent of the 8 GE, representing 3.2 GE.
The Nexus exception to having only one priority queue and not having shaping is the
Nexus 7000 with specific line cards. Usually this is the M series line card, which
provides a closer to Catalyst implementation for the enterprise core or aggregation for
traffic going out of the data center. The trend of moving to F line cards encourages the
adoption of this specific handling of the priority queue in the data center.

Flowlet Switching: Nexus 9000 Fabric Load Balancing
The Cisco Nexus 9000 product family implements in the hardware a new fabric load-
balancing capability called flowlet switching. The current state of the art, equal-cost
multipathing (ECMP), hashes flow with a 5-tuples-decision algorithm using different
uplink paths in a Layer 3 fabric. ECMP to date is not able to send multiple bursts of
the same flow on multiple paths, nor does it take into consideration the fabric
utilization.
In ACI, Equal Cost Multipathing can be replaced by flowlet load balancing in order to
reduce the chance of creating congestion hotspots. Flowlet load balancing does this by
distributing traffic more equally depending on the bandwidth available between the
originating and destination switches along all paths. Flowlet switching is based on
load balancing of individual bursts of a given flow (called flowlets) and the ability to
adapt the weight of the load balancing based on the congestion on the fabric.
With flowlet load balancing, the fabric tracks the congestion along the full path
between ingress and egress leaf switches via data plane hardware measurements. It
detects switch-to-switch port congestion or external wires and also internal SoC-to-

386



SoC congestion or internal wires. There is a dynamic shedding of active flows from
congested paths to less-congested paths. There is also no packet reordering with
flowlet load balancing. There is an algorithm calculating the distance taken for each
packet flow, and the interpacket gap must be higher than the time it takes each packet
from the same flow to traverse the fabric. Figure 10-30 illustrates flowlet load
balancing.

Figure 10-30 Flowlet Load Balancing Across the Fabric

ACI also provides the ability to prioritize smaller flows over larger flows (elephant
flows) with a feature called Dynamic Flow Prioritization. In a data center there is a
mix of frame sizes. Production traffic has large and small flows. Dynamic flow
prioritization consists in prioritizing smaller flows rather than the larger flows and
placing them in a priority queue. Priotizing a smaller flow against an elephant flow
has little effect on the completion time for the transmission of the elephant flow, but it
has a significant benefit to the completion of the transmission of the smaller flow. The
prioritization is depicted in Figure 10-31.

Figure 10-31 Flowlet Prioritization of Smaller Flows Versus Larger Flows

387



Figure 10-32 depicts the application performance improvements of the Cisco Nexus
9000 series flowlet switching compared to ECN/DCTCP. The picture shows the Flow
Completion Time for different levels of traffic load in normal conditions and in the
presence of link failures. Using flowlet load balancing with dynamic flow
prioritization and congestion detection, compared to Datacenter TCP, has the
following advantages: It doesn’t require changes on the host stack; it is independent of
the protocol (TCP versus UDP), and it provides faster detection time in case of
congestion.

Figure 10-32 Flowlet Switching Application Performance Improvements Versus
ECN/DCTCP

Note
More information can be found at the following reference from
SIGCOMM 2014: “CONGA: Distributed Congestion-Aware Load
Balancing for Datacenters” (available at
http://simula.stanford.edu/~alizade/publications.html).

Nexus QoS Implementation: The MQC Model
The QoS configuration model in the Nexus data center switches is consistent across
platforms. All models use the Modular QoS CLI (MQC) class-based model.
The Nexus switches support a set of QoS capabilities designed to provide per-system
class-based traffic control for:

388

http://simula.stanford.edu/~alizade/publications.html


 Lossless Ethernet: PFC (IEEE 802.1Qbb)
 Traffic protection: ETS (IEEE 802.1Qbb)
 Configuration: DCBX (IEEE 802.1Qaz)

These capabilities are added to, and managed by, the common Cisco MQC, which
defines a three-step configuration model:

Step 1. Define matching criteria via a class map.
Step 2. Associate action with each defined class via a policy map.
Step 3. Apply policy to the system or an interface via a service policy.

The Nexus 1000v/3000/5000/6000/7000/9000 leverage the MQC qos-group
capabilities to identify and define traffic in policy configuration, as displayed in detail
in Table 10-6.

Table 10-6 QoS Configuration Principles
QoS is enabled by default with one default class (NX-OS Default).
A Qos policy defines how the system classifies traffic, assigned to user-defined qos-
groups. The qos-group is mapped to a hardware queue with a number; for instance,
qos-group 1 refers to the first hardware queue. The Cisco Nexus 7000 family uses
predefined qos-group names, whereas the Cisco Nexus 6000, 5000, 3000 family uses
the qos-group number concept. The QoS policy can be applied either to an interface
or globally to the system.
A Network QoS policy defines system policies, such as which CoS values all ports
treat as drop versus no-drop, or MTU size for frames. It is only globally significant for

389



the whole system and the command is network-qos.
An ingress queuing policy defines how ingress port buffers ingress traffic for all
destinations over fabric. An egress queuing policy defines how an egress port
transmits traffic on wire. Conceptually, it controls how all ingress ports schedule
traffic toward the egress port over fabric (by controlling the manner in which
bandwidth availability is reported to the arbiter). The queuing policy can be applied
either to an interface or globally to the system.
For the type network-qos policies, it is important to apply policies consistently
across switches, as depicted in Figure 10-33:

 Define global queuing and scheduling parameters for all interfaces in the switch.
Identify the drop and no-drop classes, MTU, etc.
 One network-qos policy per system applied to all ports
 The recommendation is that in the data center network, the network-QoS policy
should be applied consistently network wide, especially when no drop end-to-
end consistency is mandatory

Figure 10-33 Consistency in the Network-QoS Policy

For example, a data center network has traffic that requires an MTU of 1500 bytes. It
also has storage traffic with an MTU of 9216 bytes. If both data center network traffic
and storage traffic need to cross the same spine switch, and have a common traffic
pattern, the MTU on all network devices can be set to the jumbo 9216 bytes. This
provides a consistent network-qos policy across the data center network.

390



Summary
This chapter described the difference between switch architectures based on crossbar
and architectures based on Switch on Chip fabric. One difference from legacy general-
purpose switching is the queuing mechanism. In data centers, the queuing is mainly
performed ingress instead of egress, which allows better performance. The crossbar
historically provides the capability to scale to larger port densities. Crossbar switch
architectures combined with cut-through switching allows line rate switching with a
constant low to ultra-low latency regardless of packet size. These architectures
support the capability to perform storage networking with lossless Ethernet, ultra-low
latency, and big data  environments with a predictable latency. The optimizations that
support this are the use of a cut-through switching mechanism and a crossbar fabric,
where the fabric has more crosspoints than the minimum needed, virtual output queues,
overspeed, and superframing. There is a newer trend with building multistage SoC
architectures using an SoC fabric. Table 10-7 summarizes the architectures per switch
model.

Table 10-7 Switch Architectures per Model
In the data center, the switches have the requirements to accommodate various
applications along with storage. Different application patterns exist depending on the
environment: ULL, HPC, big data, virtualized data center, MSDC. The storage also

391



can be either Fibre Channel or IP based. These requirements drive the switch
architecture to accommodate specific QoS functionalities developed for the data
center environment: PFC, ETS, and DCBX. With the need for higher 40-GE and 100-
GE port density, newer switches offer denser crossbar fabric architectures with a
nonblocking multistage SoC fabric architecture such as the Cisco Nexus 9000 series—
providing the capability to scale up to 1 million routes at ULL cut-through switching.
This chapter also described the latest developments in terms of traffic distribution on
equal cost uplinks, congestion detection, and prioritization of smaller flows. These
newer techniques provide significant enhancements to goodput, reduce the chance for
congestion hotspots, and improve application completion times in case of loss of
links.

392



Conclusion

As the authors of this book, we hope to have thoroughly explained and clarified the
changes happening in the data center and, more precisely, how to build a modern data
center with Cisco ACI. We believe that networking is at the verge of a significant
change that is driven by the need for speed of application deployment and by a more
cost-effective methodology for data center operations.
Networking is adopting a model of operations that has already been proven in the
realm of server management. As you can conclude from reading this book, the future of
the data center is characterized by several changes, which include

 The use of policies to define connectivity of workloads instead of (or in
conjunction with) the classic use of subnets, VLAN stitching, and ACLs
 The shift toward host-based routing with a mapping database for traffic routing
to the endpoint
 The adoption of scripting, and in particular of Python as one of the most widely
used languages
 The adoption of automation tools and self-service catalogs for developers to
start and stop their own carving of the network
 The emergence of technology that helps operate small and large infrastructures
more easily from a unified entry point (the controller)
 The emergence of new troubleshooting tools that make it easier to correlate
potential performance issues on “applications” with networking

This book explained the following:
 The policy-driven data center concept and the operational model involved
 How to use Cisco ACI to build networks with these concepts
 The methodology to design an ACI solution
 How to integrate the network with services
 How to integrate hypervisors, and how to integrate OpenStack

Our goal in writing this book was to explain the new data center concepts and
methodology and to present the Cisco ACI architecture, implementation design, and
overall technology.

393



Index

Numbers
10-Gigabit Ethernet cabling, 208
40-Gigabit Ethernet cabling, 208

A
AaaS (Application as a Service), 38
abstract nodes

connecting, 258-260
connector definition, 257-258
elements, 258
function definition, 255-257

access control for APIC policy model, 88-89
access credentials, 41
access ports, configuring, 223-228
ACI (Application Centric Infrastructure). See also APIC (Application Policy
Infrastructure Controller) model

in cloud computing, network requirements, 39-41
design, 59-61

benefits, 193
configuring, 219-235
forwarding, 194-202
hardware and software requirements, 207-208
management model, 204-207
multitenancy, 218-219
physical topology, 208-218
segmentation with endpoint groups, 202-204
virtual topology configuration, 235-241

goals of, 248-249
health monitoring, 272-281

events and logs, 279-280
faults, 274-279
health score, 280-281

394



statistics, 273-274
OpenStack and

benefits, 177-180
features and capabilities, 191
integration, 180-181

operational model, 91
additional resources, 124
APIC interfaces, 106-108
Git/GitHub, 103-106
JSON, 94-95
network management options, 92-93
object tree, 108-114
Python, 96-103
Python SDK for ACI, 122-124
REST calls, 114-122
REST protocol, 93-94
XML, 94
YAML, 95-96

service insertion, 243
benefits, 244
concrete and logical devices, 250-251
configuring, 252-266
connecting EPGs with service graph, 244-245
defining service graph, 249-250
hardware and software requirements, 247-248
logical device selectors, 251
management model, 245
rendering service graph, 246-249
splitting bridge domains, 251
for virtualized servers, 245

telemetry. See telemetry
virtual server connectivity, 160-165

endpoint discovery, 162
Hyper-V integration, 162-163
KVM integration, 163-164
overlay normalization, 160-161

395



policy resolution immediacy, 162
VMM domain, 161-162
VMware ESX/ESXi integration, 164-165

virtualized data centers, advantages of, 128
ACI Fabric OS, 79-80
actions (APIC model), 75
AEP (attach entity profile), 217-218, 234-235
Amazon Elastic Compute Cloud (EC2) services, 41-42
Amazon Machine Image (AMI), 41
Amazon Simple Storage Service (S3), 42
Amazon Virtual Private Cloud (VPC), 43
Amazon Web Services (AWS) model, 41-43
AMI (Amazon Machine Image), 41
ANPs (application network profiles), 70-71, 118
any-to-any policy, 121-122
APIC (Application Policy Infrastructure Controller) model, 57, 207

access control, 88-89
ACI Fabric OS, 79-80
ANPs (application network profiles), 70-71
atomic counters, 270
benefits, 178
component architecture, 80

Appliance Director, 83
Appliance Element, 84
Boot Director, 82-83
Event Manager, 83
Observer, 82
Policy Manager, 81
Topology Manager, 81-82
VMM Manager, 83

contracts, 71-79
design considerations, 210-211
EPGs (endpoint groups), 62-65
logical object model, 61-63
OpenStack driver, 181

396



configuring, 185-188
features and capabilities, 191
installing, 183-185

OpenStack integration, 180-181
policy enforcement

multicast, 69-70
unicast, 66-68

promise theory, 59-61
sharding, 84-87
subjects, 73
taboos, 74-75
user interface

CLI (command-line interface), 87
GUI (graphical user interface), 87
RESTful API, 88
strengths and weaknesses, 106-108

Appliance Director, 83
Appliance Element, 84
application and storage designs (data center architectures), 1-2

big data data centers, 7-13
high-performance compute data centers (HPC), 14-15
massively scalable data centers (MSDC), 21-25
ultra-low latency data centers (ULL), 16-20
virtualized data centers, 2-7

Application as a Service (AaaS), 38
Application Centric Infrastructure. See ACI (Application Centric Infrastructure)
application deployment in Policy Driven Data Center model, need for, 57-59
application network profiles (ANPs), 70-71, 118
Application Policy Infrastructure Controller (APIC). See APIC (Application
Policy Infrastructure Controller) model
atomic counters, 267-270
attach entity profile (AEP), 217-218, 234-235
attacks, preventing with CoPP (Control Plane Policing), 288-291
audit logs, 280
authentication for APIC policy model, 88-89

397



authorization for APIC policy model, 88-89
automating

policies,
server provisioning, 43

OS deployment, 44-47
PXE booting, 43-44

availability, big data data centers, 12
Availability Zones, 41
AWS (Amazon Web Services) model, 41-43

B
Bare Metal Service, 174-175
big data data centers, 7-13

cluster design, 10
components, 8
design requirements, 11-13

availability and resiliency, 12
burst handling and queue depth, 12-13
data node network speed, 13
network latency, 13
oversubscription ratio, 13

in enterprise data models, 8
network requirements, 9
QoS (quality of service), 312
storage requirements, 11

blacklist model (taboos), 74-75
Boot Director, 82-83
boot process, PXE booting, 43-44
brctl command, 142-143
bridge domain, 237-238, 251
bridging, Linux KVM, 142-143
broadcast traffic, forwarding, 213-214
buffer bloat, 317-318
buffer strategies

big data data centers, 12-13

398



QoS (quality of service), 315-317
bundles (APIC model), 78
burst handling, big data data centers, 12-13

C
centralized repositories, 104
centralized shared memory (SoC), 306-309
Chef, 45-46
CIAC (Cisco Intelligent Automation for Cloud), 52-54
Cinder, 173
Cisco ACI. See ACI (Application Centric Infrastructure)
Cisco APIC. See APIC (Application Policy Infrastructure Controller) model
Cisco Intelligent Automation for Cloud (CIAC), 52-54
Cisco Nexus switches

flowlet switching, 322-323
Nexus 1000V, 155-158
Nexus 9000 series, 208
QoS (quality of service) implementation, 324-326
switch architectures by model, 326

classes (ACI), 109-113
classification boundaries, 313-314
CLI (command-line interface)

for APIC policy model, 87
MQC (Modular QoS CLI) model, 324-326

cloud computing
Amazon Web Services (AWS) model, 41-43
automating server provisioning, 43

OS deployment, 44-47
PXE booting, 43-44

explained, 37-39
IaaS orchestrators, 47-56

Cisco Intelligent Automation for Cloud (CIAC), 52-54
comparison of models, 55-56
OpenStack, 48-51. See also OpenStack
UCS Director, 51-52

399



vCloud Director, 47
network requirements, 39-41
POD model, 26-28

cloud delivery model, 37
cloud orchestration, 128
cluster design, big data data centers, 10
code listings. See examples
CodeTalker, 101
collision model, 301
command-line interface (CLI)

for APIC policy model, 87
MQC (Modular QoS CLI) model, 324-326

commands, Git/GitHub, 105-106
concrete devices, 250-251, 260-266
configuring

APIC driver, 185-188
Cisco ACI fabric, 219-235

interface policy groups, 229
network management, 221-223
policy-based configuration of access ports, 223-228
PortChannels, 229-231
requirements, 219-220
virtual PortChannels (vPCs), 231-232
VMM domains, 233-235
zero-touch provisioning, 220-221

interface policies, 228
logical device selectors, 264-265
policy groups, 229
PortChannel, 188, 229-231
service insertion, 252-266

abstract node connectors, 257-258
abstract node elements, 258
abstract node functions, 255-257
concrete and logical device definition, 260-266
connecting abstract nodes, 258-260

400



metadevices, 254-255
naming conventions, 265-266
service graph boundaries, 253

switch profiles, 228
virtual topology, 235-241

bridge domain, 237-238
endpoint connectivity, 238-240
external connectivity, 240-241

vPCs (virtual PortChannels), 231-232
contexts (APIC model), 62-63
contracts (APIC model), 71-79, 120-121, 244-245
Control Plane Policing (CoPP), 288-291
control planes

CoPP (Control Plane Policing), 288-291
interaction between data and management planes, 287-288
packet classification, 290
packet types, 288-290
rate-controlling mechanisms, 290-291
separation between data and management planes, 286

control traffic, 155
Controlling Bridge, 158-160
CoPP (Control Plane Policing), 288-291
credit model, 301
crossbar switch fabric architecture, 295-306

benefits, 297
cut-through switching, 301-302
HOLB (head-of-line blocking), 304
input queuing, 303-304
multicast switching, 298
multistage crossbar fabrics, 305-306
output queuing, 302-303
overspeed, 298
scheduler, 301
with SoC, 306-309
superframing, 299-301

401



unicast switching, 297
VoQ (virtual output queuing), 304

cURL, 117
cut-through switching, 292-295, 301-302

D
data center architectures

application and storage designs, 1-2
big data data centers, 7-13
high-performance compute data centers (HPC), 14-15
massively scalable data centers (MSDC), 21-25
ultra-low latency data centers (ULL), 16-20
virtualized data centers, 2-7

cloud computing. See cloud computing
designs

end of row (EoR) model, 29-30
middle of row (MoR) model, 30
project requirements, 29
spine-leaf model, 33-35
top of rack (ToR) model, 30-32

FlexPod model, 28
POD model, 26-28
Policy Driven Data Center

need for, 57-59
switch architecture

centralized shared memory (SoC), 306-309
by Cisco Nexus model, 326
CoPP (Control Plane Policing), 288-291
crossbar switch fabric architecture, 295-306
cut-through switching, 292-295
data, control, management plane interaction, 287-288
data, control, management plane separation, 286
requirements, 291
summary of, 291

Data Center Bridging Exchange (DCBX), 320

402



Data Center TCP (DCTCP), 320-321
data node network speed, big data data centers, 13
data planes, 286-288
data structures, Python, 98-99
DCBX (Data Center Bridging Exchange), 320
DCTCP (Data Center TCP), 320-321
declarative management model in ACI fabric, 204-207
defining

abstract node connectors, 257-258
abstract node functions, 255-257
concrete devices, 260-266
logical devices, 260-266
service graph, 249-250
service graph boundaries, 253

denial of service (DoS) attacks, 289-290
dEPG (destination EPGs), 66
deployment, OpenStack, 176-177

configuring APIC driver, 185-188
example, 182-189
installing Icehouse, 183-185
troubleshooting, 188-189

design requirements
big data data centers, 11-13

availability and resiliency, 12
burst handling and queue depth, 12-13
data node network speed, 13
network latency, 13
oversubscription ratio, 13

high-performance compute data centers (HPC), 14-15
massively scalable data centers (MSDC), 24
ultra-low latency data centers (ULL), 18-19
virtualized data centers, 6

design topologies
high-performance compute data centers (HPC), 15
massively scalable data centers (MSDC), 25

403



summary of, 25
ultra-low latency data centers (ULL), 19-20

designs
ACI (Application Centric Infrastructure), 59-61. See also fabric design (ACI)
data center architectures

end of row (EoR) model, 29-30
middle of row (MoR) model, 30
project requirements, 29
spine-leaf model, 33-35
top of rack (ToR) model, 30-32

FlexPod model, 28
destination EPGs (dEPG), 66
dictionaries (Python), 98
distributed repositories, 104
distributed switching, 133
Distributed Virtual Switch, 149-151
domains, 216-217

bridge domain, 237-238, 251
VMM domains, 233-235

DoS (denial of service) attacks, 289-290
dvPort group, 149

E
easy_install, 101
EC2 (Amazon Elastic Compute Cloud) services, 41-42
ECN (Early Congestion Notification), 320-321
eggs (Python). See packages (Python)
egress leaf, policy enforcement, 68
elastic IP addresses, 41
end of row (EoR) model, 29-30
endpoint discovery, 162
Enhanced Transmission Selection (ETS), 319
enterprise data models, big data data centers in, 8
EoR (end of row) model, 29-30
EPGs (endpoint groups), 62-65, 160

404



adding, 118
any-to-any policy, 121-122
connecting with service graph, 244-245
contracts, 71-79, 120-121
endpoint connectivity, 238-240
segmentation with, 202-204
in server virtualization, 128, 133

errors in Python scripts, 101
ESX/ESXi, 149-154

ACI integration, 164-165
traffic requirements, 151-152
vCloud Director and vApp, 152-154
vSwitch and distributed virtual switches, 150-151

Eth0 interface, 287-288
Eth1 interface, 288
Eth3 interface, 287
Eth4 interface, 287
ETS (Enhanced Transmission Selection), 319
event logs, 280
Event Manager, 83
events, health monitoring, 279-280
examples

Association of Ports with the vPC Channel Group, 232
Configuration of a PortChannel, 230
Configuration of a vPC Channel Group, 232
Configuration of Concrete Device that Is a Physical Appliance, 263
Configuration of Concrete Device that Is a Virtual Appliance, 263
Configuration of Connectivity to a Physical Server, 239
Configuration of Connectivity to a Virtualized Server, 240
Configuration of External Connectivity, 240
Configuration of the vPC Protection Group, 231
Configuring an OVS Switch, 146
Connecting the Node to the Boundary of the Graph, 259
Connecting Two vnsAbsNodes Together, 259
Contract that Connects Two EPGs Has a Reference to a Graph, 254

405



Creating a Virtual Environment for Cobra, 123
cURL to Send REST Calls, 117
Defining a Function (Python), 97
Definition of a Contract, 121
Definition of a Logical Device, 262
Definition of an Any-to-Any Policy, 121
Definition of an EPG, 121
Definition of the Boundary of the Service Graph, 253
Definition of the Connectors of the Abstract Node, 257-258
Deleting Objects with REST Calls, 115
Fabric Discovery, 124
Importing a Module (Python), 98
JSON-Formatted Files, 100
List (Python), 98
Load-Balancing Configuration, 256
Logging In to the Fabric with the SDK, 123
Logical Device Context Base Configuration, 264-265
Mapping Virtualized Servers Mobility Domain to the Fabric, 217
ML2_cisco_conf.ini Parameters to Configure, 186
ML2_conf.ini Parameters to Configure, 186
Neutron Network API Options, 170
Neutron Subnet API Options, 170
Object NodeP in XML Format, 112
Port Profile in Cisco Nexus 1000V, 157
Python Script to Send REST Calls, 116
Querying with Cobra, 124
REST Call to Add an EPG, 118
REST Call to Create an Application Network Profile, 118
Service Graph Example, 259
Set (Python), 99
String (Python), 99
Tenant Configuration—Complete, 120
Tenant Configuration in Cisco ACI Formatted in JSON, 94
Tenant Configuration in Cisco ACI Formatted in XML, 94
Tenant Creation, 218
Tenant mgmt Configuration for In-band Management, 222

406



Uplink Port Profile in Nexus 1000V, 156
Virtual Environment Creation, 102
XML Format, 111
YAML Format for Configuration Files, 95
YAML Libraries, 100

exception packets, 288
external networks, connecting to, 188, 240-241

F
fabric design (ACI)

benefits, 193
configuring, 219-235

interface policy groups, 229
network management, 221-223
policy-based configuration of access ports, 223-228
PortChannels, 229-231
requirements, 219-220
virtual PortChannels (vPCs), 231-232
VMM domains, 233-235
zero-touch provisioning, 220-221

forwarding, 194-202
inside versus outside networks, 199-200
overlay frame format, 196
packet walk, 201-202
pervasive gateway, 198-199
prescriptive topology, 194-195
VXLAN forwarding, 197-198

hardware and software requirements, 207-208
management model, 204-207
multitenancy, 218-219
physical topology, 208-218

APIC design considerations, 210-211
leaf design considerations, 212-218
spine design considerations, 211-212

segmentation with endpoint groups, 202-204

407



virtual topology configuration, 235-241
bridge domain, 237-238
endpoint connectivity, 238-240
external connectivity, 240-241

faults, 274-279
feed replication, 19
filters (APIC model), 67, 75
FlexPod model

design, 28
Vblock model versus, 27

flooding mode, 238
flowlet switching, 322-323
40-Gigabit Ethernet cabling, 208
forwarding extension, 139
forwarding in ACI fabric, 194-202

inside versus outside networks, 199-200
overlay frame format, 196
packet walk, 201-202
pervasive gateway, 198-199
prescriptive topology, 194-195
unknown unicast and broadcast traffic, 213-214
VXLAN forwarding, 197-198

function definition, Python, 97-98
functions

abstract node functions, defining, 255-257
in service graph, 249-250

fvCtx (private networks), 238

G
Git/GitHub, 92, 103-106

additional resources, 124
centralized versus distributed repositories, 104
commands in, 105-106
installing, 105
operations in, 104-105

408



version control terminology, 103-104
glean packets, 289
goals of ACI (Application Centric Infrastructure), 248-249
goodput, 311
graphical user interface (GUI) for APIC policy model, 87
Group Based Policy, 190-191
GUI (graphical user interface) for APIC policy model, 87

H
Hadoop, 8

availability and resiliency, 12
burst handling and queue depth, 12-13
cluster design, 10

hardware proxy, 213, 237-238
hardware requirements

in ACI fabric, 207-208
service insertion, 247-248

head-of-line blocking (HOLB), 304
health monitoring, 272-281

events and logs, 279-280
faults, 274-279
health score, 280-281
statistics, 273-274

health score, 280-281
health score logs, 280
Heat, 174
HFT (high frequency trading) topologies, 20
HOLB (head-of-line blocking), 304
Homebrew, 101
Horizon, 174
horizontal partitioning, sharding versus, 84
host-port connectivity (APIC driver), 188
hot migration, 134
HPC (high-performance compute data centers), 14-15

design requirements, 14-15

409



design topologies, 15
network requirements, 14
QoS (quality of service), 312
storage requirements, 14

hybrid clouds, 38
Hyper-V, 137-141, 162-163
Hyper-V Switch, 138
hypervisors, 128

benefits, 179
Cisco Nexus 1000V, 155-158
Linux KVM, 141-149
Microsoft Hyper-V, 137-141
port extension with VN-TAG, 158-160
VMware ESX/ESXi, 149-154

I
IaaS (Infrastructure as a Service), 38

orchestrators, 47-56
Cisco Intelligent Automation for Cloud (CIAC), 52-54
comparison of models, 55-56
OpenStack, 48-51. See also OpenStack
UCS Director, 51-52
vCloud Director, 47

Icehouse, installing, 183-185
imperative control models, 59
importing modules, Python, 98
infrastructure statistics, 273
ingress leaf, policy enforcement, 67
input queuing in crossbar fabrics, 303-304
inside networks, outside networks versus, 199-200
installers, OpenStack, 49-50
installing

Git/GitHub, 105
Icehouse, 183-185
Python packages, 101

410



Python SDK for ACI, 122-123
instances (AWS), 41
interface policies, configuring, 228
interface policy groups, configuring, 229
interface profiles, creating, 226
investment protection,
Ironic, 174-175

J
JSON, 94-95, 100

K
KVM (Kernel-based Virtual Machine), 141-149

ACI integration, 163-164
bridging, 142-143
OVS (Open vSwitch), 143-149
server virtualization components, 128

L
labels (APIC model), 75, 78-79
latency

big data data centers, 13
metrics, 271-272
spine-leaf model, 35
ultra-low latency data centers (ULL), 16-20

Layer 3 networks, 61-62
Layer 4 through Layer 7 services. See service insertion
leaf switches, 207

Cisco Nexus switches,
configuring switch profiles, 228
design considerations, 212-218

libraries (Python), 102
libvirt, 141-142
lifecycle of fault monitoring, 277
Linux KVM (Kernel-based Virtual Machine), 141-149

411



ACI integration, 163-164
bridging, 142-143
OVS (Open vSwitch), 143-149
server virtualization components, 128

listings. See examples
lists (Python), 98
LND (Logical Network Definition), 140
logical device selectors, 251, 264-265
logical devices, 250-251, 260-266
logical interfaces, naming, 250-251
Logical Network Definition (LND), 140
logical networks, 140
logical switches, 140
logs, health monitoring, 279-280

M
main() function, Python, 97
management model

in ACI fabric, 204-207
for service insertion, 245

management planes, 286-288
marking boundaries, 313-314
massively scalable data centers (MSDC). See MSDC (massively scalable data
centers)
memory, centralized shared memory (SoC), 306-309
metadevices, 254-255
Microsoft

Hyper-V, 137-141, 162-163
server virtualization components, 128

middle of row (MoR) model, 30
ML2 (Modular Layer 2) plug-in, 180-181
ml2_cisco_conf.ini file, 186-187
ml2_conf.ini file, 186
modeling tenants in XML, 119-120
Modular Layer 2 (ML2) plug-in, 180-181

412



modules, importing, Python, 98
MoR (middle of row) model, 30
MQC (Modular QoS CLI) model, 324-326
MSDC (massively scalable data centers), 21-25

design requirements, 24
design topologies, 25
network requirements, 23-24
QoS (quality of service), 312
storage requirements, 24
system characteristics, 22

multicast, VXLANs without, 137
multicast policy enforcement, 69-70
multicast switching over crossbar fabrics, 298
multi-hypervisor support (OpenStack), 49
multistage crossbar fabrics, 305-306
multistage SoC (centralized shared memory), 306-309
multitenancy in ACI fabric, 218-219

N
namespaces, 215-216
naming conventions

ACI, 113
logical interfaces, 250-251
service insertion configuration, 265-266

NETCONF (Network Configuration Protocol), REST and SNMP versus, 92
network interface cards (NICs), virtual network adapters, 132
network latency, big data data centers, 13
network management options, 92-93, 221-223
network requirements

big data data centers, 9
cloud computing, 39-41
high-performance compute data centers (HPC), 14
massively scalable data centers (MSDC), 23-24
ultra-low latency data centers (ULL), 17-18
virtualized data centers, 6

413



network sites, 140
network virtualization, 5
Neutron, 169-172
neutron.conf file, 186
NIC teaming, 150
NICs (network interface cards), virtual network adapters, 132
NoSQL, 8-9
Nova, 168-169

O
object store (ACI), 114
object tree (ACI), 108-114

classes and relationships, 109-113
naming conventions, 113
object store, 114

Observer, 82
Open vSwitch Database (OVSDB), 149
Open vSwitch (OVS), 143-149

architecture, 143-145
example topology, 145-146
OpenFlow, 147-149
OpenStack, 146
OpenStack driver, 180
OVSDB (Open vSwitch Database), 149

OpenFlow, 147-149
OpenStack, 48-51

ACI (Application Centric Infrastructure) and
benefits, 177-180
features and capabilities, 191
integration, 180-181

ACI integration, 163-164
architecture models, 50-51
components, 167-168

Cinder, 173
Heat, 174

414



Horizon, 174
Ironic, 174-175
Neutron, 169-172
Nova, 168-169
Swift, 173

deployment, 176-177
configuring APIC driver, 185-188
example, 182-189
installing Icehouse, 183-185
troubleshooting, 188-189

Group Based Policy, 190-191
installers, 49-50
multi-hypervisor support, 49
networking considerations, 51
OVS (Open vSwitch), 146
projects and releases, 48-49

operating systems, ACI Fabric OS, 79-80
operational model (ACI), 91

additional resources, 124
APIC interfaces, 106-108
Git/GitHub, 103-106

centralized versus distributed repositories, 104
commands in, 105-106
installing, 105
operations in, 104-105
version control terminology, 103-104

JSON, 94-95
network management options, 92-93
object tree, 108-114

classes and relationships, 109-113
naming conventions, 113
object store, 114

Python, 96-103
characteristics of, 96-97
data structures, 98-99
function definition, 97-98

415



installing packages, 101
main() function, 97
online tutorial, 96
package requirements, 101-102
parsing files, 99-100
running, 101
verifying scripts, 101
virtual environments, 102-103

Python SDK for ACI, 122-124
developing Python scripts, 123-124
finding Python scripts, 124
installing, 122-123

REST calls, 114-122
any-to-any policy, 121-122
contracts, 120-121
modeling tenants in XML, 119-120
sending, 115-117
syntax, 117-119

REST protocol, 93-94
XML, 94
YAML, 95-96

orchestration, 5
orchestrators (IaaS), 47-56

Cisco Intelligent Automation for Cloud (CIAC), 52-54
comparison of models, 55-56
OpenStack, 48-51
UCS Director, 51-52
vCloud Director, 47

OS deployment, 44-47
output queuing in crossbar fabrics, 302-303
outside networks, inside networks versus, 199-200
overlay frame format in ACI fabric, 196
overlay normalization, 160-161
overspeed in crossbar fabrics, 298
oversubscription ratio, big data data centers, 13

416



OVS (Open vSwitch), 143-149
architecture, 143-145
example topology, 145-146
OpenFlow, 147-149
OpenStack, 146
OpenStack driver, 180
OVSDB (Open vSwitch Database), 149

OVSDB (Open vSwitch Database), 149

P
PaaS (Platform as a Service), 38
packages (Python)

for ACI SDK, installing, 122-123
installing, 101
requirements, 101-102

packet forwarding, VXLANs, 136-137
packet traffic, 155, 201-202
packets

classification, 290
rate-controlling mechanisms, 290-291
types of, 288-290

paravirtualization, 138
parsing files, Python, 99-100
partitioning, sharding versus, 84
path statistics, 273
performance, spine-leaf model, 35
pervasive gateway in ACI fabric, 198-199
PFC (priority flow control), 318-319
physical domains, 216
physical servers, connecting to, 239
physical topology

ACI as,
in ACI fabric, 208-218

APIC design considerations, 210-211
leaf design considerations, 212-218

417



spine design considerations, 211-212
pip, 101
Platform as a Service (PaaS), 38
POD model, 26-28
Policy Driven Data Center

need for, 57-59
promise theory, 59-61

policy groups, configuring, 229
Policy Manager, 81
policy models. See APIC (Application Policy Infrastructure Controller) model
policy resolution immediacy, 162
port extension with VN-TAG, 158-160
port profiles, 156-158
PortChannel, configuring, 188, 229-231
ports, configuring, 223-228
Postman, 94, 115
Precision Time Protocol (PTP), 271-272
prescriptive topology in ACI fabric, 194-195
preventing attacks, CoPP (Control Plane Policing), 288-291
priority flow control (PFC), 318-319
priority queues, 321-322
private clouds, 38
private Layer 3 networks, 61-62
project requirements, data center architecture designs, 29
projects (OpenStack), 48-49
promise theory, 59-61
PTP (Precision Time Protocol), 271-272
public clouds, 38
Puppet, 46-47
PXE booting, 43-44
Python, 92, 96-103

additional resources, 124
characteristics of, 96-97
data structures, 98-99

418



function definition, 97-98
installing packages, 101
main() function, 97
online tutorial, 96
package requirements, 101-102
parsing files, 99-100
running, 101
sending REST calls, 115-116
verifying scripts, 101
virtual environments, 102-103

Python SDK for ACI, 122-124
developing Python scripts, 123-124
finding Python scripts, 124
installing, 122-123

Q
qemu, 141
QoS (quality of service), 309

buffer bloat, 317-318
buffering, explained, 315-317
Data Center Bridging Exchange (DCBX), 320
Data Center TCP (DCTCP), 320-321
Early Congestion Notification (ECN), 320-321
Enhanced Transmission Selection (ETS), 319
flowlet switching, 322-323
implementation in Cisco Nexus switches, 324-326
priority flow control (PFC), 318-319
priority queues, 321-322
requirements, 309-314

Quantum. See Neutron
queue depth, big data data centers, 12-13

R
raised (fault monitoring lifecycle), 278
raised-clearing (fault monitoring lifecycle), 279

419



rate-controlling mechanisms for packets, 290-291
RBAC (role-based administrative control) for APIC policy model, 88-89
receive packets, 288
redirected packets, 289
redundancy, spine-leaf model, 34-35
regions (AWS), 41
relationships (ACI), 109-113
releases (OpenStack), 48-49
reliability

replication and, 84
sharding and, 85

rendering service graph, 246-249
replication, reliability and, 84
requirements

configuring Cisco ACI fabric, 219-220
design requirements

big data data centers, 11-13
high-performance compute data centers (HPC), 14-15
massively scalable data centers (MSDC), 24
ultra-low latency data centers (ULL), 18-19
virtualized data centers, 6

hardware and software requirements
in ACI fabric, 207-208
service insertion, 247-248

network requirements
big data data centers, 9
cloud computing, 39-41
high-performance compute data centers (HPC), 14
massively scalable data centers (MSDC), 23-24
ultra-low latency data centers (ULL), 17-18
virtualized data centers, 6

packages (Python), 101-102
project requirements, data center architecture designs, 29
QoS (quality of service), 309-314
storage requirements

420



big data data centers, 11
high-performance compute data centers (HPC), 14
massively scalable data centers (MSDC), 24
ultra-low latency data centers (ULL), 18
virtualized data centers, 7

switch architecture, 291
traffic requirements, VMware ESX/ESXi, 151-152

resiliency, big data data centers, 12
REST calls, 114-122

any-to-any policy, 121-122
contracts, 120-121
modeling tenants in XML, 119-120
sending, 115-117
syntax, 117-119

RESTful API
for APIC policy model, 88
defined, 92
implementation, 93-94
NETCONF and SNMP versus, 92

retaining (fault monitoring lifecycle), 279
RFC 3535, 91, 124
RFC 4594, 310
role-based administrative control (RBAC) for APIC policy model, 88-89
running Python, 101

S
S3 (Amazon Simple Storage Service), 42
SaaS (Software as a Service), 38
scalability, spine-leaf model, 35
scheduler in crossbar fabrics, 301
SCVMM (System Center Virtual Machine Manager), 138
SCVMM Server Console, 138
segmentation

with endpoint groups, 202-204
in virtualized data centers

421



VLANs, 134, 214-215
VXLANs, 134-137

sending REST calls, 115-117
sEPG (source EPGs), 66
servers

physical servers, connecting to, 239
provisioning, automating, 43

OS deployment, 44-47
PXE booting, 43-44

virtual servers, connecting to, 239-240
virtualization, 3

ACI (Application Centric Infrastructure) modeling of, 160-165
components, 128
distributed switching, 133
EPGs (endpoint groups), 133
hot migration, 134
service insertion, 245
virtual network adapters, 132
virtual software switches, 129-133

service chaining, 179
service delivery model, 37
service graph, 243

configuring, 252-266
abstract node connectors, 257-258
abstract node elements, 258
abstract node functions, 255-257
concrete and logical device definition, 260-266
connecting abstract nodes, 258-260
metadevices, 254-255
naming conventions, 265-266
service graph boundaries, 253

connecting EPGs with, 244-245
defining, 249-250
defining configuration, 245
rendering, 246-249

422



service insertion, 243
benefits, 244
concrete and logical devices, 250-251
configuring, 252-266

abstract node connectors, 257-258
abstract node elements, 258
abstract node functions, 255-257
concrete and logical device definition, 260-266
connecting abstract nodes, 258-260
metadevices, 254-255
naming conventions, 265-266
service graph boundaries, 253

connecting EPGs with service graph, 244-245
defining service graph, 249-250
hardware and software requirements, 247-248
logical device selectors, 251
management model, 245
rendering service graph, 246-249
splitting bridge domains, 251
for virtualized servers, 245

services virtualization, 5
sets (Python), 98-99
setup tools (Python), 101
sharding, 84-87

horizontal partitioning versus, 84
reliability and, 85
technology, 86-87

shared infrastructure, POD model, 26-28
show-tech output, 281
single-homed servers design, 32
SNMP (Simple Network Management Protocol), REST and NETCONF versus,
92
soaking (fault monitoring lifecycle), 278
soaking-clearing (fault monitoring lifecycle), 278
SoC (centralized shared memory), 306-309

423



Software as a Service (SaaS), 38
software requirements

in ACI fabric, 207-208
service insertion, 247-248

source EPGs (sEPG), 66
spine switches, 207

design considerations, 211-212
spine-leaf model, 33-35

in ACI fabric, 208-218
APIC design considerations, 210-211
leaf design considerations, 212-218
spine design considerations, 211-212

redundancy, 34-35
scalability and performance, 35

splitting bridge domains, 251
SQL database farm example (APIC model), 76-79
statistics, health monitoring, 273-274
storage requirements

big data data centers, 11
high-performance compute data centers (HPC), 14
massively scalable data centers (MSDC), 24
ultra-low latency data centers (ULL), 18
virtualized data centers, 7

storage virtualization, 4-5
store-and-forward switching, cut-through switching versus, 292-295
strings (Python), 98-99
subjects (APIC model), 73-75
superframing in crossbar fabrics, 299-301
Swift, 173
switch architecture

centralized shared memory (SoC), 306-309
by Cisco Nexus model, 326
CoPP (Control Plane Policing), 288-291
crossbar switch fabric architecture, 295-306

benefits, 297

424



cut-through switching, 301-302
HOLB (head-of-line blocking), 304
input queuing, 303-304
multicast switching, 298
multistage crossbar fabrics, 305-306
output queuing, 302-303
overspeed, 298
scheduler, 301
superframing, 299-301
unicast switching, 297
VoQ (virtual output queuing), 304

cut-through switching, 292-295
data, control, management planes

interaction, 287-288
separation, 286

requirements, 291
summary of, 291

switch profiles, configuring, 228
System Center Virtual Machine Manager (SCVMM), 138

T
taboos (APIC model), 74-75
TCAM (ternary content-addressable memory), 65
telemetry, 179-180, 267

atomic counters, 267-270
health monitoring, 272-281

events and logs, 279-280
faults, 274-279
health score, 280-281
statistics, 273-274

latency metrics, 271-272
show-tech output, 281

Tenant ID, 138
tenants (APIC model), 61-63

modeling in XML, 119-120

425



multitenancy, 218-219
statistics, 273

10-Gigabit Ethernet cabling, 208
ternary content-addressable memory (TCAM), 65
three-tier topology, 1-2
time to live (TTL) attacks, 289-290
top of rack (ToR) model, 30-32
topologies

high-performance compute data centers (HPC), 15
massively scalable data centers (MSDC), 25
physical topology in ACI fabric, 208-218
prescriptive topology in ACI fabric, 194-195
summary of, 25
ultra-low latency data centers (ULL), 19-20
virtual topology, configuring, 235-241

Topology Manager, 81-82
ToR (top of rack) model, 30-32
traffic requirements, VMware ESX/ESXi, 151-152
troubleshooting. See also telemetry

levels of, 274
OpenStack deployment, 188-189

trust boundaries, 313-314
TTL (time to live) attacks, 289-290
tunneling, 179
tuples (Python), 98

U
UCS Director, 51-52
ULL (ultra-low latency data centers), 16-20

design requirements, 18-19
design topologies, 19-20
network requirements, 17-18
QoS (quality of service), 312
storage requirements, 18

unicast policy enforcement, 66-68

426



unicast switching over crossbar fabrics, 297
unknown unicast traffic, forwarding, 213-214
user interface for APIC policy model

CLI (command-line interface), 87
GUI (graphical user interface), 87
RESTful API, 88
strengths and weaknesses, 106-108

V
vApp, 150-154
Vblock model, FlexPod model versus, 27
vCenter, 149
vCloud Director, 47, 149, 152-154
verifying Python scripts, 101
version control, Git/GitHub, 103-106

centralized versus distributed repositories, 104
commands in, 105-106
installing, 105
operations in, 104-105
version control terminology, 103-104

video, QoS (quality of service), 309-310
virt-install, 142
virt-manager, 142
virtual domains, 216-217
Virtual Env, 102-103
virtual environments, 102-103, 123
Virtual Machine Management Service (VMMS), 138
Virtual Machine Manager (VMM) domains, 161-162, 233-235
virtual machine managers, 128
virtual network adapters, 132
virtual output queuing (VoQ), 304
virtual PortChannels (vPCs), configuring, 231-232
virtual servers, connecting to, 239-240
virtual software switches, 128, 133

Cisco Nexus 1000V, 155-158

427



OVS (Open vSwitch), 143-149
reasons for, 129-131
vSwitch and distributed virtual switches, 150-151

Virtual Subnet Identifier (VSID), 138
virtual topology, configuring, 235-241

bridge domain, 237-238
endpoint connectivity, 238-240
external connectivity, 240-241

virtualized data centers, 2-7
challenges, 127
hypervisors

benefits, 179
Cisco Nexus 1000V, 155-158
Linux KVM, 141-149
Microsoft Hyper-V, 137-141
port extension with VN-TAG, 158-160
VMware ESX/ESXi, 149-154

integration approaches, 127
network and design requirements, 6
network virtualization, 5
orchestration, 5
QoS (quality of service), 312
segmentation

VLANs, 134
VXLANs, 134-137

server virtualization, 3
ACI (Application Centric Infrastructure) modeling of, 160-165
components, 128
distributed switching, 133
EPGs (endpoint groups), 133
hot migration, 134
service insertion, 245
virtual network adapters, 132
virtual software switches, 129-133

services virtualization, 5
storage requirements, 7

428



storage virtualization, 4-5
virt-viewer, 142
Visore, 108
VLANs

EPGs (endpoint groups) versus, 65
namespaces, 215-216
segmentation, 134, 214-215

VMM (Virtual Machine Manager) domains, 161-162, 233-235
VMM Manager, 83
VMMS (Virtual Machine Management Service), 138
VMware

ESX/ESXi, 149-154
ACI integration, 164-165
traffic requirements, 151-152
vCloud Director and vApp, 152-154
vSwitch and distributed virtual switches, 150-151

server virtualization components, 128
VN networks, 140
vNetwork Distributed Switch, 149
VN-TAG, 158-160
voice, QoS (quality of service), 309-310
VoQ (virtual output queuing), 304
VPC (Amazon Virtual Private Cloud), 43
vPCs (virtual PortChannels), configuring, 231-232
vShield Manager, 149-152
VSID (Virtual Subnet Identifier), 138
vSphere ESXi, 149
vSwitches, 150-151
VXLANs

forwarding, 197-198
namespaces, 215-216
overlay frame format, 196
packet format, 135
packet forwarding, 136-137
segmentation, 134-137

429



vShield Manager, 151-152
without multicast, 137

W
Websockets, 101
whitelist model (taboos), 75
Windows Azure Pack, 162-163
WMI (Windows Management Instrumentation), 138
WNV (Windows Network Virtualization), 138

X
Xcode, 101
XEN, 128
XML, 94, 119-120

Y
YAML, 95-96, 99-100

Z
zero-touch provisioning, 220-221

430



431



Code Snippets

432



433



434



435



436



437



438



439



440



441



442



443



444



445



446



447



448



449



450



451



452



453



454



455



456



457



458



459



460



461



462



463



464



465



466



467



468



469



470



471



472



473



474



475



476



477



478



479



480



481



482



483



484



485



486



487



488



489



490



491



492



493



494



495



496



497



498



499



500



501



502



503



504



505



506



507



508



509



510



511



512



513



514



515



516



517



518


	About This eBook
	Title Page
	Copyright Page
	About the Authors
	About the Technical Reviewers
	Dedications
	Acknowledgments
	Contents at a Glance
	Contents
	Command Syntax Conventions
	Foreword
	Introduction
	Industry Trends
	What Is an “Application”?
	The Need for Abstraction
	What Is Cisco ACI
	Cisco ACI Innovations
	Book Structure
	Terminology

	Chapter 1. Data Center Architecture Considerations
	Application and Storage
	Virtualized Data Center
	Introduction
	Definition and Virtualization Concepts
	Network and Design Requirements
	Storage Requirements

	Big Data
	Definition
	Network Requirements
	Cluster Design with the Hadoop Building Blocks: the POD
	Storage Requirements
	Design Considerations

	High-Performance Compute
	Definition
	Network Requirements
	Storage Requirements
	Design Considerations
	Design Topologies

	Ultra-Low Latency
	Definition
	Network Requirements
	Storage Requirements
	Design Considerations
	Design Topologies

	Massively Scalable Data Center
	Definition
	Network Requirements
	Storage Requirements
	Design Considerations
	Design Topologies

	Design Topologies Examples

	The POD-based Designs
	The POD Model or the Data Model for Shared Infrastructure and Cloud Computing
	The FlexPod Design

	Data Center Designs
	End of Row
	Middle of Row
	Top of Rack: The Modern Data Center Approach
	Single-Homed Servers Design

	Logical Data Center Design with the Spine-Leaf ACI Foundation Architecture

	Summary

	Chapter 2. Building Blocks for Cloud Architectures
	Introduction to Cloud Architectures
	Network Requirements of Clouds and the ACI Solution
	Amazon Web Services Model
	Automating Server Provisioning
	PXE Booting
	Deploying the OS with Chef, Puppet, CFengine, or Similar Tools
	Chef
	Puppet


	Orchestrators for Infrastructure as a Service
	vCloud Director
	OpenStack
	Project and Releases
	Multi-Hypervisor Support
	Installers
	Architecture Models
	Networking Considerations

	UCS Director
	Cisco Intelligent Automation for Cloud
	Conciliating Different Abstraction Models

	Summary

	Chapter 3. The Policy Data Center
	Why the Need for the Policy-Based Model?
	The Policy Theory
	Cisco APIC Policy Object Model
	Endpoint Groups
	Cisco APIC Policy Enforcement
	Unicast Policy Enforcement
	Multicast Policy Enforcement

	Application Network Profiles
	Contracts

	Understanding Cisco APIC
	Cisco ACI Operating System (Cisco ACI Fabric OS)
	Architecture: Components and Functions of the Cisco APIC
	Policy Manager
	Topology Manager
	Observer
	Boot Director
	Appliance Director
	VMM Manager
	Event Manager
	Appliance Element
	Architecture: Data Management with Sharding
	Effect of Replication on Reliability
	Effect of Sharding on Reliability
	Sharding Technology

	User Interface: Graphical User Interface
	User Interface: Command-Line Interface
	User Interface: RESTful API
	System Access: Authentication, Authorization, and RBAC

	Summary

	Chapter 4. Operational Model
	Introduction to Key Technologies and Tools for Modern Data Centers
	Network Management Options
	REST Protocol
	XML, JSON, and YAML
	Python
	Python Basics
	Where Is the main() Function?
	Functions Definition
	Useful Data Structures
	Parsing Files
	Verifying Python Scripts
	Where to Run Python
	Pip, EasyInstall, and Setup Tools
	Which Packages Do I Need?
	virtualenv

	Git and GitHub
	Basic Concepts of Version Control
	Centralized Versus Distributed
	Overview of Basic Operations with Git
	Installing/Setting Up Git
	Key Commands in Git


	Operations with the Cisco APIC
	Object Tree
	Classes, Objects, and Relations
	Naming Conventions
	Object Store

	Using REST to Program the Network
	Tools to Send REST Calls
	REST Syntax in Cisco ACI
	Modeling Tenants in XML
	Defining the Relationship Among EPGs (Providers and Consumers)
	A Simple Any-to-Any Policy

	ACI SDK
	ACI Python Egg
	How to Develop Python Scripts for ACI
	Where to Find Python Scripts for ACI


	For Additional Information
	Summary

	Chapter 5. Data Center Design with Hypervisors
	Virtualized Server Networking
	Why Have a Software Switching Component on the Server?
	Overview of Networking Components
	Virtual Network Adapters
	Virtual Switching
	Endpoint Groups
	Distributed Switching

	Hot Migration of Virtual Machines

	Segmentation Options
	VLANs
	VXLANs
	VXLAN Packet Format
	VXLAN Packet Forwarding
	VXLANs Without Multicast


	Microsoft Hyper-V Networking
	Linux KVM and Networking
	Linux Bridging
	Open vSwitch
	OVS Architecture
	Example Topology
	Open vSwitch with OpenStack
	OpenFlow


	VMware ESX/ESXi Networking
	VMware vSwitch and Distributed Virtual Switch
	VMware ESXi Server Traffic Requirements
	VXLAN Tagging with vShield

	vCloud Director and vApps
	vCloud Networks


	Cisco Nexus 1000V
	Port Extension with VN-TAG
	Cisco ACI Modeling of Virtual Server Connectivity
	Overlay Normalization
	VMM Domain
	Endpoint Discovery
	Policy Resolution Immediacy
	Cisco ACI Integration with Hyper-V
	Cisco ACI Integration with KVM
	Cisco ACI Integration with VMware ESX

	Summary

	Chapter 6. OpenStack
	What Is OpenStack?
	Nova
	Neutron
	Swift
	Cinder
	Horizon
	Heat
	Ironic

	OpenStack Deployments in the Enterprise
	Benefits of Cisco ACI and OpenStack
	Cisco ACI Policy Model
	Physical and Virtual Integration
	Fabric Tunnels
	Service Chaining
	Telemetry

	OpenStack APIC Driver Architecture and Operations
	How Integration Works

	Deployment Example
	Installation of Icehouse
	Configuration of the Cisco APIC Driver
	Neutron.conf File
	ML2_conf.ini File
	ML2_cisco_conf.ini File
	Configuration Parameters
	Host-Port Connectivity
	External Networks
	PortChannel Configuration

	Troubleshooting

	The Group Based Policy Project at OpenStack
	Summary

	Chapter 7. ACI Fabric Design Methodology
	Summary of ACI Fabric Key Functionalities
	ACI Forwarding Behavior
	Prescriptive Topology
	Overlay Frame Format
	VXLAN Forwarding
	Pervasive Gateway
	Outside Versus Inside
	Packet Walk

	Segmentation with Endpoint Groups
	Management Model

	Hardware and Software
	Physical Topology
	Cisco APIC Design Considerations
	Spine Design Considerations
	Leaf Design Considerations
	Unknown Unicast and Broadcast
	Use of VLANs as a Segmentation Mechanism
	VLANs and VXLANs Namespaces
	Concept of Domain
	Concept of Attach Entity Profile


	Multi-tenancy Considerations
	Initial Configuration Steps
	Zero-Touch Provisioning
	Network Management
	Policy-based Configuration of Access Ports
	Configuring Switch Profiles for Each Leaf
	Configuring Interface Policies

	Interface Policy Groups and PortChannels
	Interface Policy Groups
	PortChannels
	Virtual PortChannels

	Virtual Machine Manager (VMM) Domains
	VMM Domain
	AEP for Virtualized Servers Connectivity


	Configuring a Virtual Topology
	Bridge Domain
	Hardware Proxy
	Flooding Mode
	fvCtx

	Endpoint Connectivity
	Connecting a Physical Server
	Connecting a Virtual Server

	External Connectivity

	Summary

	Chapter 8. Service Insertion with ACI
	Overview of ACI Design with Layer 4 Through Layer 7 Services
	Benefits
	Connecting Endpoint Groups with a Service Graph
	Extension to Virtualized Servers
	Management Model
	Service Graphs, Functions, and Rendering

	Hardware and Software Support
	Cisco ACI Modeling of Service Insertion
	Service Graph Definition
	Concrete Devices and Logical Devices
	Logical Device Selector (or Context)
	Splitting Bridge Domains

	Configuration Steps
	Definition of a Service Graph
	Defining the Boundaries of the Service Graph
	The Metadevice
	Defining an Abstract Node’s Functions
	Defining an Abstract Node’s Connectors
	Abstract Node Elements Summary
	Connecting Abstract Nodes to Create the Graph

	Definition of Concrete Devices and Cluster of Concrete Devices
	Configuration of the Logical Device and Concrete Device
	Configuration of the Logical Device Context (Cluster Device Selector)
	Naming Summary


	Summary

	Chapter 9. Advanced Telemetry
	Atomic Counters
	The Principle
	Further Explanation and Example
	Atomic Counters and the APIC

	Latency Metrics
	ACI Health Monitoring
	Statistics
	Faults
	Events, Logs, Diagnostics
	Health Score

	The Centralized show tech-support ACI Approach
	Summary

	Chapter 10. Data Center Switch Architecture
	Data, Control, and Management Planes
	Separation Between Data, Control, and Management Planes
	Interaction Between Control, Data, and Management Planes
	Protection of the Control Plane with CoPP
	Control Plane Packet Types
	CoPP Classification
	CoPP Rate-Controlling Mechanisms


	Data Center Switch Architecture
	Cut-through Switching: Performance for the Data Center
	Crossbar Switch Fabric Architecture
	Unicast Switching over Crossbar Fabrics
	Multicast Switching over Crossbar Fabrics
	Overspeed in Crossbar Fabrics
	Superframing in the Crossbar Fabric
	The Scheduler
	Crossbar Cut-through Architecture Summary
	Output Queuing (Classic Crossbar)
	Input Queuing (Ingress Crossbar)
	Understanding HOLB
	Overcoming HOLB with VoQ
	Multistage Crossbar

	Centralized Shared Memory (SoC)
	Multistage SoC
	Crossbar Fabric with SoC
	SoC Fabric


	QoS Fundamentals
	Data Center QoS Requirements
	Data Center Requirements
	Type of QoS Used in Different Data Center Use Cases
	Trust, Classification, and Marking Boundaries

	Data Center QoS Capabilities
	Understanding Buffer Utilization
	The Buffer Bloat
	Priority Flow Control
	Enhanced Transmission Selection
	Data Center Bridging Exchange
	ECN and DCTCP
	Priority Queue
	Flowlet Switching: Nexus 9000 Fabric Load Balancing

	Nexus QoS Implementation: The MQC Model

	Summary

	Conclusion
	Index
	Code Snippets

