

Practical Network Automation

Leverage the power of Python and Ansible to optimize your network

Abhishek Ratan

BIRMINGHAM - MUMBAI

 Practical Network Automation

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1141117

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78829-946-6

www.packtpub.com

 Credits

	
Author

Abhishek Ratan

	
Copy Editor

Safis Editing

	
Reviewer

Pradeeban Kathiravelu

	
Project Coordinator

Judie Jose

	
Commissioning Editor

Gebin George

	
Proofreader

Safis Editing

	
Acquisition Editor

Prateek Bharadwaj

	
Indexer

Pratik Shirodkar

	
Content Development Editor

Abhishek Jadhav

	
Graphics

Tanya Dutta

	
Technical Editor

Swathy Mohan

	
Production Coordinator

Melwyn Dsa

 About the Author

Abhishek Ratan has around 15 years of technical experience in networking, automation, and various ITIL processes, and has worked in various roles in different organizations. As a network engineer, security engineer, automation engineer, TAC engineer, tech lead, and content writer, he has gained a wealth of experience during the 15 years of his career. Abhishek also has a deep interest in strategy game playing, and if he is not working on technical stuff, he is busy spending time on his strategy games.

He is currently working as a Sr Automation Engineer at ServiceNow, learning, and expanding his automation skills in the ServiceNow platform. His earlier experience includes working for companies such as Microsoft, Symantec, and Navisite,which has given him exposure to various environments.

I would like to give special thanks to the entire editorial team that has helped me throughout this book, from correcting my typo mistakes to making me realize where the flow of content needs to be improved. I would also like to thank my family for being supportive and giving me ample time and support to make this book see the light of the day.

 About the Reviewer

Pradeeban Kathiravelu is an open source evangelist. He is a PhD researcher at INESC-ID Lisboa/Instituto Superior Técnico, Universidade de Lisboa, Portugal, and Université Catholique de Louvain, Belgium. He is a fellow of Erasmus Mundus Joint Degree in distributed computing (EMJD-DC), researching a software-defined approach to quality of service and data quality in multi-tenant clouds.

He holds a masters of science degree, Erasmus Mundus European Master in Distributed Computing (EMDC) from Instituto Superior Técnico, Portugal, and KTH Royal Institute of Technology, Sweden. He also holds a first class bachelor of science of engineering (Hons) degree, majoring in computer science and engineering from the University of Moratuwa, Sri Lanka.

His research interests include software-defined networking (SDN), distributed systems, cloud computing, web services, big data in biomedical informatics, and data mining.

He is very interested in free and open source software development and has been an active participant of the Google Summer of Code (GSoC) program since 2009, as a student and mentor.

He has authored Python Network Programming Cookbook - Second Edition and has also reviewed two Packt books on OpenDaylight.

I would like to thank Prof. Luís Veiga, my MSc and PhD advisor for his continuous guidance and encouragement throughout my time at Instituto Superior Técnico.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1788299469.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

 	
 Preface
 	
 What this book covers

	
 What you need for this book

	
 Who this book is for

	
 Conventions

	
 Reader feedback

	
 Customer support
 	
 Downloading the example code

	
 Downloading the color images of this book

	
 Errata

	
 Piracy

	
 Questions

	
 Fundamental Concepts
 	
 Network automation

	
 DevOps

	
 Software-defined networking

	
 OpenFlow

	
 Program concepts
 	
 Variables

	
 Data types

	
 Decision makers

	
 Loops

	
 Arrays

	
 Functions

	
 Best practices
 	
 Readability of a program

	
 Support information

	
 Indentation

	
 Sample best practice example

	
 Language choices (Python/PowerShell)
 	
 Writing your first program
 	
 PowerShell IDE

	
 Python IDE

	
 Representational State Transfer (REST) framework

	
 Summary

	
 Python for Network Engineers
 	
 Python interpreter and data types

	
 Conditions and loops
 	
 Nested and multiple conditions

	
 Loops
 	
 For next loop

	
 While loop

	
 Writing Python scripts

	
 Functions
 	
 Passing arguments from the command line

	
 Python modules and packages

	
 Multithreading for parallel processing

	
 Using Netmiko for SSH and network device interaction

	
 Network automation use case

	
 Summary

	
 Accessing and Mining Data from Network
 	
 Device configurations

	
 Multi-vendor environments

	
 IP configs/interface parsing

	
 Device OS upgrades

	
 IPv4 to IPv6 conversion

	
 Site rollouts

	
 Office/DC relocations

	
 Bring Your Own Device (BYOD) configs for switches

	
 Summary

	
 Web Framework for Automation Triggers
 	
 Why create web-based scripts/frameworks?

	
 Understanding and configuring IIS for web framework
 	
 Understanding IIS

	
 Configuring IIS for Python script support

	
 Creating web-specific scripts

	
 Accessing a script from dynamic HTML

	
 Creating the backend API in C#

	
 Consuming the API in Python

	
 Sample summary task

	
 Summary

	
 Ansible for Network Automation
 	
 Ansible overview and terminology
 	
 Basic requirements of Ansible

	
 Installation of Ansible

	
 Introduction to ad hoc commands

	
 Ansible playbooks
 	
 Working with Ansible facts

	
 Ansible conditions

	
 Ansible loops

	
 Python API with Ansible

	
 Creating network configuration templates

	
 Summary

	
 Continuous Integration for Network Engineers
 	
 Interaction with Splunk

	
 Automation examples on various technology domains
 	
 BGP and routing table

	
 Configuring Cisco switchport for access point

	
 Configuring Cisco switchport for IP Phone

	
 Wireless LAN (WLAN)

	
 Access of IP Address Management (IPAM)

	
 Example and use case
 	
 Create a web-based pre and post check tool for validations
 	
 Step 1 – Create the main HTML file

	
 Step 2 – Create the backend Python code

	
 Step 3 – Create web server based files for the tool

	
 Step 4 – Create server based files for pre and post files comparison

	
 Summary

	
 SDN Concepts in Network Automation
 	
 Managing cloud platforms

	
 Programmable network devices

	
 Controller-based network fabric

	
 Network automation tools

	
 Summary

 Preface

Network automation is the use of IT controls to supervise and carry out everyday network management functions. It plays a key role in network virtualization technologies and network functions.

This book starts by providing an introduction to network automation, SDN, and various applications of network automation, which include integrating DevOps tools to automate the network efficiently. It then guides you through different network automation tasks and covers various data digging and reporting methodologies, such as IPv6 migration, DC relocations, and interface parsing, all the while retaining security and improving data center robustness. The book then moves on to the use of Python and the management of SSH keys for machine-to-machine (M2M) communication, all followed by practical use cases. It also covers the importance of Ansible for network automation, including best practices in automation, ways to test automated networks using different tools, and other important techniques.

By the end of the book, you will be well acquainted with the various aspects of network automation.

 What this book covers

Chapter 1, Fundamental Concepts, introduces how to get started with automation.

Chapter 2, Python for Network Engineers, introduces to Python as a scripting language, and samples to explain usage of Python in accessing network devices and data parsing from the device outputs.

Chapter 3, Accessing and Mining Data from Network, introduces you to delivering on-demand, self-service capacity and resources while retaining security and improving data center robustness.

Chapter 4, Web Framework for Automation Triggers, discusses making scalable calls to automation framework and generating custom and dynamic HTML pages.

Chapter 5, Ansible for Network Automation, explains how to virtualize Oracle databases and scale dynamically to ensure service level are met.

Chapter 6, Continuous Integration for Network Engineers, gives an overview of integration principles for network engineers to manage rapid growth with high availability and rapid disaster recovery.

Chapter 7, SDN Concepts in Network Automation, talks about moving your enterprise Java applications to virtualized x86 platforms to better utilize resources with easier life cycle and scalability management.

 What you need for this book

The hardware and software requirements for this book are Python (3.5 onward), IIS, Windows, Linux, an Ansible installation, and GNS3 (for testing) or real routers.

You need an internet connection for downloading the Python libraries. Also, basic knowledge of Python, knowledge of networking, and basic familiarity with web servers like IIS are required.

 Who this book is for

If you are a network engineer looking for an extensive guide to help you automate and manage your network efficiently, then this book is for you.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning. Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "From the installation directory, we just need to invoke python.exe, which will invoke the Python interpreter."

A block of code is set as follows:

#PowerShell sample code
$myvalue=$args[0]
write-host ("Argument passed to Powershell is "+$myvalue)

Any command-line input or output is written as follows:

python checkargs.py 5 6

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply email feedback@packtpub.com, and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you. You can download the code files by following these steps:

	Log in or register to our website using your email address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Practical-Network-Automation. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/PracticalNetworkAutomation_ColorImages.pdf.

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title. To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the internet, please provide us with the location address or website name immediately so that we can pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected pirated material. We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 Fundamental Concepts

This chapter introduces the concept of network automation and familiarizes you with the keywords that are part of the automation framework. Before we dive into the details of network automation, it is important to understand why we need network automation and what we can achieve if we embrace the automation concepts and framework. This chapter also provides an insight into the traditional model of engineer and support operations, and shows how network automation can help bridge that gap for better efficiency and reliability.

Some of the topics covered in this chapter are as follows:

	What is network automation?

	DevOps

	Software-defined networking

	Basics of OpenFlow

	Basic programming concepts

	Programming language choices for automation

	Introduction to REST framework

 Network automation

Automation, as the word suggests, is a framework of automating a particular task by understanding, interpreting, and creating logic. This includes enhancing the current capabilities of the tasks that are done manually and reducing the error rate of those tasks while focusing on scaling the task with reduced effort.

As an example, imagine we need to upgrade the IOS image of a Cisco router. This can involve multiple tasks, such as loading the image on the router, validating the checksum of the image, offloading traffic (if it's a production router), modifying the boot variable, and finally, reloading the router with the new image.

All of this is feasible if we have only one router to upgrade. Now take a similar scenario and try to implement it for around 1,000 routers.

Let's say we take 30 minutes getting each router to perform the aforementioned tasks. It's an easy calculation of 1000*30=30,000 minutes of manual effort.

Also, if we are performing tasks on each router manually, think of the errors that can creep in.

Network automation would be helpful in this scenario, as it can take care of all the preceding aspects and perform the tasks in parallel. Hence, if it takes 30 minutes of manual effort for one router, and in the worst case scenario the same 30 minutes for automation to perform the same task, then parallel execution would result in all 1,000 routers being upgraded within the same 30 minutes.

Hence, final amount of time will be only 30 minutes, irrespective of the number of routers you throw at the automation framework. This also drastically reduces the need for manual work, and an engineer can focus on any failures in the 1,000 network devices.

In the upcoming sections, I will introduce you to some of the concepts, tools, and examples that will get you started with building automation frameworks and effectively using them in network scenarios to perform network-related activities.

This also assumes that you have an idea of network concepts and common terminology used in networking.

Some of the examples that I will provide assume familiarity with syslog, TACACS, basic router configs such as hostnames, iOS image loading, basic routing and switching concepts, and Simple Network Management Protocol (SNMP).

 DevOps

Historically, there have been two specific teams in every networking department. One of the teams is the engineering team, which is responsible for conceiving new ideas to improve the network and designing, deploying, and optimizing the current infrastructure. This team is primarily responsible for performing tasks such as configuration and cabling from scratch.

The other team is the support team. This team, also known as the operations team, ensures the current deployed infrastructure is up and running and focuses on performing day-to-day activities such as upgrades, quick fixes, and support to any consumers of that network infrastructure. In a traditional model, there are hand-offs and knowledge transfers from the engineering team to the operations team for support of the current deployed infrastructure. Because of the segregation of the two teams, the engineer team members do not focus on writing clear documentation, or sometimes do not even provide adequate information to operations team members, causing delays in troubleshooting and fixing issues. This could even lead to a simple solution scaling to a bigger problem because of the different approach that a engineering team member would take compared to an operations team member.

Nowadays, to solve this problem, the DevOps model was conceived, which brings the best from both teams. Rather than being a fancy designation, a DevOps model is a culture that needs to be created among the current teams. In a DevOps model, an engineer from any team is responsible for the complete life cycle of a specific project. This includes creating part of the infrastructure and supporting it by themselves. A big benefit of this model is that because a person has created a part of the system and supports it, they know all the aspects of that part and can work on it again to make it better by understanding the challenges that arise from customer or user experiences. A DevOps engineer should understand the engineering and operations for the part of the infrastructure that they have created. By adding an automation skill set to the DevOps experience, an engineer can manage complex tasks with ease and focus on reliability and scalability in a better manner than engineers who are distributed in different domains in the traditional model.

 Software-defined networking

As you may be aware, there have been multiple proprietary networking devices, such as firewalls, switches, and routers, that were made by different network vendors. However, owing to the proprietary information from each different vendor, multiple network devices might not exist in a single network infrastructure environment. Even if they exist together, network engineers have to focus their effort on ensuring that each vendor device can exist in a network path without any hiccups. There might be times when one routing protocol might not be compatible with all the network devices in a multi-vendor environment, and a lot of time is wasted ensuring either the removal of that protocol, or the removal of the vendor which that does not support that protocol. This can waste effort and time, which could be better spent improving the infrastructure.

To solve this type of issue, software-defined networking (SDN) has been introduced. In an SDN scenario, a packet flow is defined from a central controller that in turn interacts with multi-vendor equipment to create/define rules based upon the required packet flow. This shifts the focus of a network engineer entirely to how the traffic flows, which path the packet takes, to even responding to link down situations through automated routing of packets by configuring some rules or policies on the controllers. Another advantage of SDN is that the multi-vendor equipment is now not the center piece of infrastructure. The focus shifts to how optimally the routing and traffic shaping (the process to identify the optimal path of traffic flow) is occurring. As part of Software driven tasks, there are pieces of code that are specifically written to control a specific task or goal (similar to functions or methods in programming). This piece of code is triggered by controller decisions or rules, which in turn adds, modifies, or deletes configs on the multi-vendor device to ensure the rule set on the controller is adhered to. SDN even has the ability to completely isolate a failure domain, through the identification of a physical link down or even a total device failure without affecting the flow of traffic in real time. For example, a switch can issue a request to the controller if it gets a packet destined for a network that it does not know. This would be a packet drop or route not found in a traditional network model, but with SDN, it is the task of a controller to provide the destination or path information to the switches to correctly route the packet.

This ensures the troubleshooting becomes much easier, since a network engineer now has full control of each path/packet flow, irrespective of the vendor-specific protocol or technology support. Additionally, since now we are following a standard set of protocols, we can even lower our costs by removing more expensive proprietary network devices and replacing them with open standards network gear.

 OpenFlow

OpenFlow is a communication protocol that is used for communication between different vendor's equipment for the packet flow. This standard is maintained by a group called Open Network Foundation (ONF). OpenFlow, as the name suggests, is used to control the flow of packets in a network layer through a mix of Access Control Lists (ACLs) and routing protocols.

OpenFlow primarily has two components—controllers and switches. Controllers are used to take decisions in terms of creating a path for the packet to flow across the different connected devices, and switches (or network equipment) are dynamically configured from the controller based upon the path that a packet needs to take.

Going a little more in-depth, OpenFlow controllers control the routing of packets in OpenFlow switch forwarding tables through the modification, addition, or deletion of packet matching rules as decided by the controller.

As OpenFlow is another protocol, it runs over TCP and works on port 6653 on controllers. At the time of writing, OpenFlow standard 1.4 is currently active and being widely used in the SDN framework. OpenFlow is an additional service that proprietary network vendors run alongside their custom software. This, in general, ensures that the data forwarding or data packet handling is still part of proprietary switch, but the data flow or control plane tasks is now taken over by OpenFlow controllers. As part of SDN framework, if a participating switch receives a packet and does not know where to send it, it communicates with the OpenFlow controller for an answer. The controller, based upon its preconfigured logic, decides what action to take for that unknown packet and can get switches that it is controlling to create a separate or a specific path for that packet to flow across the network. Because of this behavior, this is the protocol that is currently being deployed across all deployments where SDN is being introduced.

 Program concepts

Now, as we start working upon our practical approach to automation, we need to understand the basics of what a program is and how to write one.

Simply explained, a program is a set of instructions that is passed to the system to perform a specific task. This set of instructions is based upon real-life challenges and tasks that need to be accomplished in an automated method. Small sets of programs can be combined to create an application that can be installed, deployed, and configured for individual or organizational requirements. Some of the key concepts and programming techniques that we will discuss from this point onward will be PowerShell and Python. These are the two most popular scripting languages that are used to create quick, effective, and result-oriented automation.

These are some of the key concepts that I would like to introduce while creating a program:

	Variables

	Data types

	Decision makers

	Loops

	Arrays

	Functions

	Best practices

 Variables

These are predefined, human-readable, and understandable words or letters that are used to store some values. At the very basis of writing a program we need a variable in which we will store the data or information, and based upon the variables, we can further enhance the programming logic. As we can see in the first line, an important part of creating a variable is that it should be human-readable and understandable.

Let us take an example: Suppose I want to store a number 2 in a variable. We can choose any name for a variable and define it:

Option 1: x=2
Option 2: number=2

The correct answer will be Option 2, as we know by the variable name (number) that this variable contains a specific number. As we can see in the preceding example, if we keep on using random ways of defining variables as we would when creating a big program, the complexity would be increased substantially because of the unclear meanings of the variables.

Different programming languages have different ways to define a variable, but the underlying concept of ensuring a variable is human-readable should be the top-most priority of the programmer or program author.

 Data types

As the name suggests, these are the classifications of the values that we pass on to the variable. A variable can be defined to store a specific type of value that can be declared based upon the data type.

There are multiple data types, but for our initial discussion there are primarily four data types that need to be understood:

	String: This is a catch-all data type. Any value defined as a string is as simple as saying the value is plain English with characters, alphabets, special characters, and so on. I have referred to it as a catch-all data type because nearly all other data types can be converted to string format keeping the same values intact during conversion to string.

Consider the following example:

number=2

This defines that a variable named number has a value of 2.

Similarly, if we declare:

string_value="2"

This is same as saying that a value of 2 has been now defined as string and stored in a variable named string_value.

	Integer: This specifies that any value that is a number needs to be defined with this data type. The key thing to note here is that an integer value will contain a whole number and not a decimal value:

Consider an example as follows:

integernumber=2

This defines that a variable named as integernumber has a value of the number 2.

An incorrect assignation here would be something like:

integernumber=2.4

This would give an error in some programming languages as an integer needs to be interpreted as a whole number and not a decimal value.

	Float: This data type removes the restriction that we saw earlier with integer. It simply means we can have a decimal number and can perform mathematical calculations and storage of decimal values in a float data type.

	Datetime: This is an extended data type found in a lot of modern scripting languages. This data type ensures that the values that are being stored or retrieved are in date format. This is typically useful if we need to create a program that uses some time or date calculations. As an example, perhaps we need to find out how many syslogs were generated from a router in the last seven days. The last seven days will be stored by this data type.

 Decision makers

These are one of the very critical components of a program and they can define the flow of the program. As the name suggests, a decision maker decides a certain action based upon a certain condition.

Simply put, if you wanted to buy an ice cream you would go to an ice-cream shop, but for a coffee you would go to a coffee shop. In this case, the condition was whether you wanted ice cream or coffee. The action was based upon the result of the condition: you went to that specific shop.

These decision makers, also called conditions, are defined in a different manner in different scripting languages, but the result of each of the conditions decides the future flow of the program.

Generally, in a condition, two or more values are compared and either a true or a false is returned. Depending on the value returned, a specific set of instructions are executed.

Consider the following example:

Condition:
if (2 is greater than 3), then
Proceed to perform Option 1
else
Proceed to perform Option 2

As we see in the preceding example, a condition is evaluated and if 2 is greater than 3, then the flow of program will be performed based upon Option 1, and in case of a false (which means 2 is not greater than 3), Option 2 would be chosen.

If we want a bit more complexity, we can add multiple decision-making statements or conditions to granulize the flow of a program.

Let us take an example:

if (Car is of red color), then
 if (Car is Automatic), then
 if (Car is a sedan), then
 Option 1 (Purchase the car)
 else (Option 2, ask for a sedan car from dealer)
 else (Option 3, ask for an Automatic car from dealer)
else (Option 4, ask for a red car from dealer)

As we can see in this complex condition, we can easily decide the flow of a program based upon additional checks. In this case, I only want to buy a Car that is red, Automatic, and a sedan. If any of those conditions are not met, then I ask the dealer to meet that specific condition.

Another thing to notice in the preceding example is that the conditions are nested within each other, hence they are shown as nested with spaces deciding the sub-conditions from its parent condition. This is usually depicted within brackets or with simple indentation based upon the scripting language used.

Sometimes, it is necessary to evaluate a value against multiple conditions and perform an action if it matches any of the conditions. This is called a switch case in programming.

Consider an example as follows:

Carcolor="Red" (Here we define a variable if the value of string as Red)
switch (Carcolor)
Case (Red) (Perform Option 1)
Case (Blue) (Perform Option 2)
Case (Green) (Perform Option 3)

Here we see that depending upon the variable's value, a certain type of action can be performed. In this case, option 1 will be performed. If we change the value of the Carcolor variable to Blue, then option 2 will be performed.

An important component of conditions are the comparison operators that we use to compare two values for the result. Some example operators are equal to, greater than, less than, and not equal to. Depending on which comparison operator we use, the results can vary.

Let us take an example:

greaternumber=5
lessernumber=6

if (greaternumber 'greater than' lessernumber)
Perform Option 1
else
Perform Option 2

We declare two variables named greaternumber and lessernumber and compare them in a condition. The conditional operator we use is greater than, which would result in option 1 if the condition is true (greaternumber is greater than lessernumber), or would result in option 2 if the condition is false (greaternumber is not greater than lessernumber).

Additionally, we also have operators that are called logical operators, such as AND, OR, or NOT. We can combine more than one condition by using these logical operators. They have a similar meaning in English, which means that if, for example, we use the AND operator, we want condition 1 AND condition 2 both to be true before we perform an action.

Consider an example: I want to buy a car only when the car is red, automatic, and a sedan:

if (car is 'red') AND (car is 'automatic') AND (car is 'sedan')
Perform action 'buy car'
else
Perform action 'do not buy'

This simply means I would evaluate all the three conditions and only if all of them are true, then I would perform the action buy car. In this case, if any of the conditions do not meet the values, such as the car is blue, then the do not buy action will be performed.

 Loops

A loop, as we know in common language, is circling the same path over and over again. In other words, if I am asked to fetch five ice creams from the ice cream store, and I can carry only one ice cream at a time, I will repeat the process of going to the ice cream shop to purchase ice cream five times. Correlating this with programming, if the same set of instructions need to be performed multiple times, then we put those instructions inside a loop.

A very basic loop is generally depicted as an iteration of a variable as many times as we want the instructions to be carried out.

Let's take an example:

Start the loop from one, until the loop has been repeated sixty times, adding a value of 1 to the loop:
Perform action

If you see the instructions being passed, there are three separate segments that are depicted in a loop:

	Start the loop from one: This means that the loop should start with a value of one.

	until the loop has been repeated sixty times: This means perform the same set of tasks until the loop has completed sixty turns of execution.

	adding a value of 1 to the loop: This means that we dictate that after completion of each round of loop, increment the loop count by 1.

The result will be the same action performed sixty times, until the loop count reaches sixty. Additionally, a loop can used to iterate through multiple values stored in a variable irrespective of whether it is an integer, string, or any other data type.

 Arrays

An array (or list in some scripting languages) is used to store a similar set of multiple values inside a single variable. This helps to ensure all data types with similar meanings are stored in a single variable, and also we can easily loop through these array objects to fetch the values stored in an array.

Consider the following example:

countries=["India","China","USA","UK"]
for specific country in countries
 Perform action

As we can see in the variable declaration, now we are declaring a similar data type with a similar context or meaning by grouping them together and assigning them into a single variable. In our example, it's the country names all assigned to an array variable named countries. In the next line, we are now iterating using the loop method, and for every specific country in the list or array of countries, we will perform the action. In this case, the loop will be executed to perform the action for each country, from the country name India to the end of the country name UK.

Each value stored in an array is referred to as an element of the array. Additionally, an array can be easily sorted, which means irrespective of the order of the elements in the array, we can get a sorted list or array by calling some additional programming tasks.

Let's consider an example:

countries=["India", "China", "USA","UK"]
Sort (countries)

The result will be as follows:

countries=["China","India","UK",USA"]

The sort functionality ensured that all the elements inside the array are sorted alphabetically and stored in the sorted order.

 Functions

Functions or methods are a pre-written small set of instructions that result in a specific task being performed when they are called. The functions can also be defined as a single name for a group of programming instructions written together to achieve a common task.

Taking an example, think of driving as a function. In driving, there are multiple things that need to be taken care of, such as understanding traffic signals, running a car, and driving the car in traffic and on the road.

All these tasks are grouped in a function named driving. Now, let's say we have two people, example 1 and example 2, who want to learn to drive. From a programming perspective, once we define a function, we need to call it whenever we want to perform the same set of tasks. Hence, we would call driving(example 1) and then driving (example 2), which would ensure that both people would become a driver after going through the set of instructions in the driving function.

Let us look at another example:

countries=["India","China","USA","UK"]

function hellocountry(countryname)
 Return "hello " countryname

for each country in countries:
 hellocountry(each country)

In the first line, we declare an array with country names as elements. Next, we define a function named hellocountry that accepts an input of countryname. In the function itself, we simply return the value of the countryname that was passed to the function as input, preceding by the work hello.

Now all that remains is to iterate through all the elements of countries and pass each countryname as input to the hellocountry function. As we can see, we called the same function for each element, and based upon the instructions declared inside the function, that specific task was now performed for each element in the array.

 Best practices

As we have now looked at the basics of some of the key components of a program, there is another important aspect of how to write a good program that we will consider.

From a machine's perspective, there is no understanding of how a program is written, as long as the instructions given in the program are in the right format or syntax and the machine is able to interpret each of the instructions correctly. For an end user, again the way the program is written might not be important as long as the end user gets the desired result. The person concerned with how a program is written is a programmer who is writing their own program, or a programmer or developer who needs to interpret another programmer's program.

There may be multiple reasons why a programmer might need to interpret a program that's not been written by them. It may be to support the program while the programmer who wrote the program is not available, or to enhance the program by adding their own piece of code or programming instructions. Another reason for code readability is fixing bugs. Any program or set of instructions may malfunction due to incorrect input or incorrect logic, which can result in unexpected behavior or unexpected results. This is called a bug, and bugs need to be fixed to ensure the program does what it was written for originally.

Every programmer has their own set of best practices, but some of the key aspects of a program are readability, support information, and indentation.

 Readability of a program

This is one of the most important aspects of writing a good program. A program needs to be written in such a way that even a layman or a first-time reader of the program should be able to interpret the basics of what is happening.

Variables need to be declared properly so that each variable makes it clear what it stores:

x="India"
y="France"

could have been written better like this:

asiancountry="India"
europecountry="France"

Here's another example:

x=5
y=2

It could be written like this:

biggernumber=5
smallernumber=2

As we can see in the preceding example, if we write a two- or three-line program, we can easily declare the variables in a random way, but things become much more complex, even for a programmer writing their own program, when these random variables are used in a longer program. Just imagine if you have declared the variables as a, b, c, and so on, and later, after using even 10 or 15 more variables, you need to go back to each line of the program to understand what value was declared in a, b, or c.

Another aspect of writing a good program is commenting. Different scripting languages provide different ways of commenting a program. Comments are necessary to ensure we break the flow of each program into sections, with each section having a comment explaining the use of that section. A very good example is if you declare a function. A function named Cooking, for example, and another function named CookingPractice might sound confusing because of their names. Now, if we add a comment to the Cooking method saying this function is to master the art of cooking when you have learned how to cook, and add a comment to CookingPractice saying this method is to learn cooking, this can make things very easy for someone reading through the program.

A programmer now can easily interpret that whenever he wants to learn to cook, he has to call CookingPractice and not the Cooking method. Comments don't have any special meaning in any programming language, and they are ignored when the machine is trying to convert the programming language to machine instructions. Hence, comments are only for programmers and to make readers aware of what is happening in a program. A comment should also be placed with every complex condition, loop, and so on, to clarify the usage of that specific condition or loop.

 Support information

This, as the name suggests, is additional information, preferably added as comments, containing details about the program and author. As a suggestion, at the minimum a program should have the author info (that is, the person who created the program), contact details such as phone number and email address, basic usage of the program or the purpose of the program, and the version of the program.

The version is specific such as starting from 1.0 and as and when we enhance the program or add new features, we can change it to version 1.1 (for minor changes) or a newer version such as version 2.0 (for major changes).

Consider an example:

Program start
Comment: Author: Myself
Comment: Contact: myemail@emailaddress.com
Comment: Phone: 12345
Comment: Version: 1.0
Comment: Purpose: This program is to demo the comments for support info
Comment: Execution method: Open the Command Prompt and run this program by calling this program.
Comment: Any extra additional info (if needed)

Program end

This approach ensures that everyone knows which is the latest version of the script and how to execute the program or script. Also, this has info about the contact details of the author, so if anything breaks in production, the author can be easily reached to rectify or fix the scripts in production.

 Indentation

This is similar to what we do when we write in plain English. Indenting a program is mandatory in some scripting languages, but as a best practice it should be followed for any program that we write in any programming language. Indentation improves the readability of a program because it helps the programmer or someone else reading the program to quickly understand the flow of the program.

Let's see an example where we have a nested condition in which we check if a Car is Red and if it is a Sedan and if it is Automatic.

A bad way of writing this would be as follows:

if (Car is 'Red')
if (Car is 'Sedan')
if (Car is 'Automatic')
do something

Now, think of adding multiple lines like this to a long program, and you will get easily confused by the flow of program as you read through it.

A better and recommended way to write this is as follows:

if (Car is 'Red')
 if (Car is 'Sedan')
 if (Car is 'Automatic')
 do something

This provides a clear flow of the program. Only check the other conditions if the Car is Red; otherwise, don't check for the other conditions. This is where we say we are nesting the conditions inside each other, which is also called nested conditions.

This also clears a lot of confusion while troubleshooting a complex program. We can easily identify the problematic code or instructions by quickly parsing through the program and understanding the flow for each segment of the program.

 Sample best practice example

This example summarizes the best practices using all the elements that we have learned so far, by creating a basic program.

Problem statement: Parse all the countries declared in an array and only print the names of those countries that contain the letter I or letter U in their names:

Program begin:

Comment: This is a sample program to explain best practice
Comment: Author name: Programmer
Comment: Email: Programmer@programming.com
Version: 1.0

Comment: The following section declares the list of countries in array countrylist
countrylist=['India','US','UK','France','China','Japan']

function validatecountryname(countryname)
 Comment: This function takes the input of countryname, checks if it contains I or U and returns value based upon the result.
 if ((countryname contains 'I') OR (countryname contains 'U')
 return "Countryname contains I or U"
 else
 return "Countryname does not contain I our U"

Comment: This is a loop that parses each countryname from the countrylist one by one and sends the variable 'countryname' as input to function validatecoutryname

foreach countryname in countrylist
 validatecountryname (countryname)

Comment: Program ends here

The program is self-explanatory, but it is worth noting the support comments such as author, email, and so on. The indentation ensures that any reader has a clear idea of the flow of program.

Additionally, another thing to observe is the use of names that clearly depict the usage of the variable or name. Each variable and function name clearly specifies what it is being used for. The additional comment lines in between add clarity on what each segment is doing and the purpose of the statement or function.

 Language choices (Python/PowerShell)

Moving ahead, armed with the knowledge of how to write a program and an understanding best practices, we will now look at some scripting languages that suffice for our automation scripts. A basic difference between a scripting language and a programming language (such as C and C++) is that a scripting language is not compiled but interpreted through the underlying environment in which it is executed (in other words, a converter is required to convert the commands written in human-readable format to machine format by parsing one line at a time), whereas the programming language is primarily compiled and hence can be executed in multiple environments without the use of any specific underlying environment or requirements.

What this means is if I write a script in Python, PowerShell, or even Perl, I need to install that specific language in order to run the program or script that I have written. C or C++ code can be compiled to make an executable file (.exe) , and can run independently without the installation of any language. Additionally, a scripting language is less code-intensive, which means that it can automatically interpret some of the code written in a program depending on how it is called.

Let's consider an example. Here's how we declare a variable in scripting language:

x=5

OR

x="author"

OR

x=3.5

Whereas in a programming language, the same type of declaration would be made like this:

integer x=5
String x="author"
Float x=3.5

This states that depending on the value we assign to the variable, the variable type is automatically identified in an scripting language, whereas in a programming language the declarations are tightly controlled. In this case, if we declare a variable as a String, this clearly means that we cannot declare any other type of value in that variable unless we explicitly change the data type of that variable.

We have primarily three types of scripting language that are popular for creating programs and are mainly used for automation scripting or programming. These are Perl, Python, and PowerShell.

With support for the oldest language, Perl, diminishing, the focus is now on Python because of its open source support and on PowerShell because of its Microsoft, or .NET environment. Comparing both languages is not ideal because it's up to the reader which programming language they use to write their programs. As we have more than 70% of computers running Windows, and with a growing market of Microsoft Azure as a cloud operating system from Microsoft, PowerShell is the preferred language owing to the underlying .NET environment. As we create a program in PowerShell, it is easy to port that program and execute it on another machine running Windows without any special settings.

Python, on the other hand, is growing in popularity because of its open source approach. There are thousands of developers who contribute to enhancing Python by adding special functions for specific tasks. For example, there is a function or sub-program, called Paramiko, that is used to log into network routers. Another one is Netmiko, which is an enhanced version of Paramiko that is used to log into network devices based upon network hardware vendor and operating systems (such as Cisco iOS or Cisco NXOS). Python needs to be installed before writing a Python program and successfully executing it.

Going forward, our focus will be on Python, with additional tips and tricks on how to perform the same tasks using PowerShell instead of Python.

 Writing your first program

Now, because we are starting from fresh, we need to understand how to write our first program and execute it. PowerShell comes pre-installed on a Windows machine. But we need to install Python by downloading it from the web (https://www.python.org) and choosing the right version for your operating system. Once downloaded, it can installed just like any other application that is installed on a Windows machine.

On a Linux machine, the same holds true, but because of the .NET requirement, PowerShell will not be supported on Linux or Unix environments. Hence, if we are using a Unix or Linux environment, Python or Perl remain our preferences for scripting.

There are multiple Integrated Development Environments (IDEs) for both Python and PowerShell, but the default ones that come with these languages are also pretty helpful.

There are multiple versions of PowerShell and Python being used. When writing programs in higher versions, generally the backwards support is not very good, so make sure you note the users and environment before choosing a version.

In our case, we will be using PowerShell 4 and Python 3 onwards for writing programs. Some commands might not run in older versions of PowerShell and Python, and some syntax or commands are different in older versions.

 PowerShell IDE

This can be invoked by clicking on the Start button and searching for Windows PowerShell ISE. Once invoked, the initial screen will look like this:

As we can see in the preceding screenshot, a PowerShell script is saved with a .ps1 extension. Once we write something in the IDE (or ISE, as it is called with PowerShell), it needs to be saved as somefilename.ps1 and then executed to see the result.

Let's take write a program called Hello World:

	As we can see in our first program, we write two lines to print Hello World. In the ISE, we pass the commands to declare a variable (a variable is denoted by a dollar sign, $, in front of the variable in PowerShell), assigning the value Hello World to it. The next line is simply printing that variable by calling a method or function called Write-host, which is used to print values onscreen in PowerShell.

	Once we write the program and save it, the next step is execution to see our result.

	The green button at the top of the ISE is used to execute the script, and the result of the script is shown at the bottom of the screen. In this case, it was a simple Hello World output.

PowerShell scripts can also be invoked directly by the command line. As PowerShell is a scripting language and needs to be installed on a machine, we can directly call PowerShell from the Windows Command Prompt and execute the scripts and individual scripting commands from the PowerShell console itself.

This is how we can find out the version of PowerShell:

As we can see in the preceding screenshot, PowerShell is invoked by calling powershell directly from the Command Prompt in Windows. When PowerShell is invoked, we see PS before the command line, which confirms that we are now inside the PowerShell console. To see the version, we call a system variable, $psversiontable, which shows the version of PowerShell.

We can see that this is version 2.x (as shown in CLRVersion). System variables are special variables that have predefined values based upon the installation types. These special variables can be called at any time in our script to fetch their values and perform actions based upon the returned values.

The following example shows that we are using a higher version of PowerShell:

As we can see, the same variable now returns a value of 4.0 for PSVersion, which confirms that this is version 4 of PowerShell.

PowerShell 4.0 is the default installation from Windows 8.1 onwards on client operating system, and Windows Server 2012 R2 in a Server environment.

 Python IDE

Similar to PowerShell, once Python is installed, it has its own IDE. It can be invoked by typing or calling IDLE (Python) from the Start menu:

The Python IDE, called IDLE, looks similar to the preceding screenshot when it is opened. The heading bar depicts the version of Python (which is 3.6.1 in this case) and the three greater than signs (>>>) show the command line, which is ready to accept Python commands and execute them. To write a program, we click on File | New File, which opens up a notepad in which we can write the program.

Lets see a similar hello world program in Python:

As we write a new program, the variable used is newvalue, and the value assigned to it is hello world. The next line is simply calling Python's print function to print the value inside the variable during the execution of the script.

Once we have written the program, we click on File | Save As in the window where we wrote the program, and save the script. The script is saved as filename.py, with the .py extension denoting a Python script. Once it is saved, we can press the F5 button on the keyboard or select Run | Run Module in the script window to run that specific script. The following window is the same window that was invoked when we first called the IDLE application from the Start menu, but now it has the output of that script that we wrote.

The output of hello world is now seen in the IDLE window. Once we are done with writing the script or Python commands, we can simply close the open command windows to close the application or Python interpreter.

Similar to PowerShell, we can also call python from the command line, as follows:

One additional thing to notice here is that to exit the Python interpreter, we call the exit() function. This tells Python to stop the execution and exit to the Command Prompt in Windows.

 Representational State Transfer (REST) framework

One of the most important aspects of network automation is to understand and leverage tools that are currently available for specific tasks. For example, this could be Splunk for data mining, SolarWinds for network monitoring, syslog servers, or even any custom applications to perform various tasks.

Another important aspect of writing an application is how we can utilize the same application for additional tasks without altering the application itself. In other words, let's say we buy a car for our personal use, but an enhancement of this would be using the same car as a taxi or in some other role.

This is we introduce the Application Program Interface (API). APIs are used to expose some aspect of an already written application to merge with the programs that we are writing so that we can easily call that specific task using a specific API. For example, as SolarWinds is a specialized application that is used for network monitoring and other purposes, we can call the API of SolarWinds to get the network device list in our script. Hence, we leave the specialized task of discovering the network devices on the network to SolarWinds, but we utilize its expertise in our script through the API of that application.

Getting a bit deeper, the API is nothing more than a function (similar to the functions that we write in our scripts); the only difference is what values those functions return. An API function generally returns the values in Extended Markup Language (XML) or JavaScript Object Notation (JSON) format, which are industry standards of cross-environment and cross-machine information exchange. Think of this as similar to how we communicate with each other using English as a common language. Although we may have been born in different cultures, in different countries, we can use English to communicate with each other effectively, since English is the industry standard of human interaction. Similarly, irrespective of how a program is written, in whatever language (such as C, C++, Java, VB, C#, and so on), each program can talk to another program by calling its APIs and the results come in either XML or JSON.

XML is a standard way of encoding results and sending them across to the requestor and, using the same standard, the requestor can decode the results. JSON is another way in which data interactions can happen across applications.

Here is sample XML:

<?xml version="1.0" encoding="UTF-8"?>
<note>
 <to>Readers</to>
 <from>JAuthor</from>
 <heading>Reminder</heading>
 <body>Read this for more knowledge</body>
 </note>

The first line in the preceding content depicts that whatever follows after that line is in XML format. The XML files are saved with extension of .xml.

Now as we can see, if we count the number of characters returned from an XML result, if we add the characters, such as <heading>Reminder</heading>, it returns results within the starting tag and ending tag of <heading>. This means that the size of an XML file is greatly increased owing to the overhead character counts of additional closing tags.

Here's the same example in JSON:

{
 "note": {
 "to": "Tove",
 "from": "Jani",
 "heading": "Reminder",
 "body": "Don't forget me this weekend!"
 }
 }

As we can see, we have got rid of those extra bulky opening and closing tags that we saw earlier in XML. What this means is if we are calling an API to return a huge amount of data in XML format, it would certainly take a longer time to fetch that data from the application and more consumption of resources such as memory and storage to temporarily or permanently store that data. To overcome this situation, the JSON format is now preferred to XML to exchange data through APIs. JSON is lightweight and less resource-intensive than XML because of differences in the way the data is returned. JSON files are saved with the extension .json.

This functionality of working with APIs, back end methods, and functions written in a particular programming language to be called APIs, and functions returning values in XML or JSON format, all of which is running over web protocols such as HTTP or HTTPS, is cumulatively called the REST framework. The REST framework is the same industry standard of interacting using XML or JSON that were referenced earlier, with the addition of GET, POST, and other interactions happening over the web protocols. The HTTP requests to APIs can be GET or POST requests that the REST framework recognizes and, similar to HTTP GET and POST requests, interacts with underlying applications to perform the requested actions.

Scripting languages rely heavily on API calls, and applications that need to provide the API's functionality adhere to REST framework requirements to ensure they extend their capabilities to the scripts that are called to fetch or save data in their choice of scripting language. A big benefit of this is that cross-platform communication is now happening with neither party (the caller of API or the application providing the API's functionality) knowing which language or environment the other are running. Hence, a Windows application can easily work with a Unix environment and vice versa using this approach, with HTTP being the standard communication language for calling APIs, and parsing the results with industry standard XML or JSON formats.

The sample API REST call in PowerShell is as follows:

As we can see in the preceding screenshot, we call the Invoke-RestMethod function in PowerShell, which is used to call the API method of the application with the default communication and interactions using JSON.

The application called is in a REST framework, with access to the API with the URL https://blogs.msdn.microsoft.com/powershell/feed/. This uses the HTTPS protocol to communicate with the application.

format-table is a function of PowerShell that specifies that however the result comes, display the title property of each record/result returned from the API call. If we had not used that command, the display would have shown all the properties returned for each record.

Here's an example REST call in Python:

In this example, we call a standard function called requests. The first line, import requests, means that we are referencing the requests function or library to call in our Python script. On the next line, we are calling the Google Map API with JSON using a requests.get method. In other words, we are ensuring a HTTP GET call to the Google API URL. Once we get the result, we call the json() method to store the value in the variable r.

Sometimes, when we call a custom function or library of Python using import, it may give an error stating that the module has not been found. This means that it does not come with the standard Python installation and needs to be installed separately. To fix this, we can install the module manually using the pip or easy_install commands, which we will see in detail in upcoming chapters.

 Summary

In this chapter, we covered the basics of various terminology that we will use while performing network automation. This chapter also introduced the readers to some basic aspects of programming to help build the logic of a program.

This chapter also explained why to write a good program and how to write one, along with some reference points for scripting languages. There was also a brief discussion about the current scripting languages, their basic usage, and writing a very basic program in two of the most popular scripting languages (Python and PowerShell).

Finally, we summed it all up by introducing the REST framework, which included a discussion about APIs, how to call them, and an explanation of XML and JSON as inter-platform data exchange languages.

The next chapter will go deeper into how to write scripts using Python, with relevant examples in PowerShell to ensure the reader becomes familiar with both Python and PowerShell. There will be tips and best practices as well.

 Python for Network Engineers

As we are now familiar with how to write a program using the concepts used in programming languages, as well as best practices, now let's dig deep into writing an actual Python program or script. Keeping the primary focus on how to write a program in Python, we will also see how to write the same program in PowerShell, since there might be times where we would need to use PowerShell to achieve the results that we are looking for. We will cover various aspects of creating a program with some explanations of each of the statements and provide some tips and tricks to get through those tricky situations.

In this chapter, we will cover the following topics:

	Python interpreter and data types

	Writing Python scripts using conditional loops

	Functions

	Installing new modules/libraries

	Passing arguments from command line for scripts

	Using Netmiko to interact with network devices

	Multithreading

 Python interpreter and data types

An interpreter, as the name suggests, is used to interpret instructions so that they are understandable by others. In our case, it is used to convert our Python language to a machine-understandable format that governs the flow of instructions that we gave to the machine.

It is also used to convert the set of values and messages given by a machine to a human-readable format in order to give us insights into how our program is being executed.

As mentioned in Chapter 1, Fundamental Concepts, the interpreter that we are focusing on is Python 3.6. I will be using it on the Windows platform, but the site has clear instructions on how to download and install the same on other OS like Unix or Linux machines. Once we install it by downloading it from the Python community which can be found at URL https://www.python.org/downloads, we can simply click on the setup file to install it. From the installation directory we just need to invoke python.exe, which will invoke the Python interpreter.

In order to call Python from anywhere in your Command Prompt, just add the Python installation folder in your PATH variable.

Here's an example: set path=%path%;C:\python36. This is going to add the Python36 path in the current path. Once this is done, python.exe can be called from anywhere in the Command Prompt.

Once we invoke the interpreter, the first step to take is to create a variable and assign a value to it.

Python, as with any other programming language, supports various data types for the variables. A data type typically defines the type of value that can be stored in a variable, but Python and PowerShell have the ability to auto-evaluate the type of variable based upon the value. Python supports a large number of data types, but typically in our daily usage we refer to native data types multiple times.

The Python data type supports:

	Numbers: These are integer types, such as 1, 2, 100, and 1,000.

	String: These are single or multiple characters and possibly every letter of ASCII, such as Python, network, age123, and India. Additionally, a string needs to be stored inside a double quote (") or a single quote (') to specify that a value is a string. Hence, 1 and '1' would be interpreted differently by Python.

	Boolean: This can be either a true or a false value.

	Byte: These are typically binary values.

	Lists: These are an ordered sequence of values.

	Tuples: These are similar to lists, but the values or length cannot be altered.

	Sets: These are similar to lists, but not ordered.

	Dictionary or hash values: These are key-value pairs, like a telephone directory in which one primary value (name) is attached with both phone numbers and addresses.

An example on data types is as follows:

As we can see in the preceding example, we declared the variables with various values, and based upon the value, Python automatically interprets the specific data type. If we just type the variable name again, it prints out the value stored in the variable based upon its data type.

Similarly, the following example specifies other native data types:

Additionally, to see the data type we can use the type() function, which returns the type of a variable based upon the value we gave. The variable is passed as an argument to the type() function to get the data type value:

A PowerShell example of the same Python code is as follows:

#PowerShell code
$value=5
$value="hello"
write-host $value
write-host $value.gettype()
#This is remark
#A variable in powershell is declared with '$' sign in front.
The gettype() function in powershell is used to get the type of variable.

There are operations, such as addition (+), for specific variables with particular data types. We have to be sure what types of variable we are adding. If we have an incompatible data type variable being added to another one, Python would throw an error stating the reason.

Here in the following code, we see the result of adding two string variables:

Similarly, observe the difference if we use the same addition on integer variables:

As mentioned, let's see what happens when we try to add a string and an integer variable together:

The error clearly specifies that we cannot add two different data types because the interpreter cannot recognize which data type needs to be assigned to the mixed value variable.

Sometimes, if necessary, we can convert the values from one data type to another by calling specific functions that convert the data type to another. For example, int("1") will convert the string value 1 to integer value 1, or str(1) will convert the integer value 1 to the string value 1.

We will be extensively using the various data types depending upon the logic and requirements of the scripts, and also, if necessary, converting one data type to another to achieve certain results.

 Conditions and loops

Conditions are checked using a left and right value comparison. The evaluation returns either true or false, and a specific action is performed depending on the result.

There are certain condition operators that are used to evaluate the left and right value comparisons:

	Operators
	Meaning

	==
	If both values are equal

	!=
	If both values are NOT equal

	>
	If the left value is greater than the right value

	<
	If the left value is smaller than the right value

	>=
	If the left value is greater than or equal to the right value

	<=
	If the left value is lesser than or equal to the right value

	in
	If the left value is part of the right value

An example of the condition evaluation is as follows:

As we can see, we are checking whether 2>3 (2 is greater that 3). Of course, this would result in false, so the action in the else section is executed. If we reverse the check, 3>2, then the output would have been left value is greater.

In the preceding example, we used the if condition block, which consists of the following:

if <condition>:
perform action
else:
perform action2

Notice the indentation, which is compulsory in Python. If we had not intended it, Python would not interpret what action to execute in which condition, and hence would have thrown an error of incorrect indentation.

 Nested and multiple conditions

Sometimes we need to check multiple conditions in a single if condition.

Let's see an example of this:

Here, we are checking the range of the marks. The flow of the program is as follows:

Assign a value of 85 to the marks variable. If marks is less than or equal to 45, print Grade C, else if marks is greater than 45 and less than equal to 75, print Grade B, else if marks is greater than 75, print Grade A, else if none of the preceding conditions match, then print Unable to determine.

The PowerShell sample code for the preceding Python task is as follows:

#PowerShell sample code:
$marks=85
if ($marks -le 45)
{
 write-host "Grade C"
}
elseif (($marks -gt 45) -and ($marks -le 75))
{
 write-host "Grade B"
}
elseif ($marks -gt 75)
{
 write-host "Grade A"
}
else
{
 write-host "Unable to determine"
}

Similarly, here is an example of a nested condition (note the indentation that differentiates it from the earlier example of multiple conditions):

As we can see in the condition, the internal conditions will only be executed if its parent condition evaluates to true. If there is a false, the corresponding else action will be taken. In the example, if the car_details variable contains Car, contains blue, and it contains sedan, only then will the action I will buy this car be performed. If any of those conditions are not met, the relevant else action will be performed.

 Loops

A loop is used to repeat a set of instructions until a specific condition is fulfilled. There are two common ways of creating a loop in Python, which are discussed as follows:

 For next loop

This type of loop checks for a condition and repeats the instructions inside the loop until the condition is met:

for <incremental variable> in final value:
 statements

Here's an example of printing numbers from 1 to 10 in a for loop:

As we can see, we use a built-in range(starting value, max value) function, which specifies the loop to repeat from the starting value until the incremental value reaches the maximum value. In this case, the variable x is incremented by 1 and in each loop, the value is printed out. This is repeated until the value of x reaches 10, where the for loop terminates.

In a similar way, we can also iterate through the items in a given list:

PowerShell sample for the preceding Python code is as follows:

#PowerShell sample code:
$countries="India","UK","USA","France"
foreach ($country in $countries)
{
 write-host ($country+" is good")
}

Here, we can see that the values are assigned to the countries variable as a list. The for loop now iterates through each item in the list, and the print statement adds the string value to another string value and prints the result. This loop is repeated until all the items in the list are printed.

There might be times when we do not want to parse through an entire for loop. To break from the loop while it is iterating, we use a break statement. Here's an example in which we want to stop printing after UK in the country list:

 for country in countries:
 if 'UK' in country:
 break
 else:
 print (country)

 While loop

While loop is different from for loop, as no new variable is needed in this loop, and any current variable can be used to perform the tasks inside the while loop. An example is as follows:

while True:
 perform instructions
 if condition():
 break

This is similar to for, but in this case the actions are performed first, and then the condition is checked. In the preceding example, the value of x is printed first, and we repeat the same set of instructions until the value of x reaches 10 or greater. Once the if condition is met, we break out of the loop. If we do not specify a break condition, we will go into an infinite loop with a increment of 1 for each x value.

 Writing Python scripts

We are now familiar with the basic concepts of Python. Now we will write an actual program or script in Python.

Ask for the input of a country name, and check whether the last character of the country is a vowel:

countryname=input("Enter country name:")
countryname=countryname.lower()
lastcharacter=countryname.strip()[-1]
if 'a' in lastcharacter:
 print ("Vowel found")
elif 'e' in lastcharacter:
 print ("Vowel found")
elif 'i' in lastcharacter:
 print ("Vowel found")
elif 'o' in lastcharacter:
 print ("Vowel found")
elif 'u' in lastcharacter:
 print ("Vowel found")
else:
 print ("No vowel found")

Output of the preceding code is as follows:

	We ask for the input of a country name. The input() method is used to get an input from the user. The value entered is in the string format, and in our case the countryname variable has been assigned the input value.

	In the next line, countryname.lower() specifies that the input that we receive needs to converted into all lowercase and stored in the same countryname variable. This effectively will have the same value that we entered earlier but in lowercase.

	In the next line, countryname.strip()[-1] specifies two actions in one statement:

	

	countryname.strip() ensures that the variable has all the leading and trailing extra values removed, such as new line or tab characters.

	Once we get the clean variable, remove the last character of the string, which in our case is the last character of the country name. The -1 denotes the character from right to left or end to start, whereas +1 would denote from left to right.

	Once we have the last character stored in the lastcharacter variable, all that is needed is a nested condition check and, based upon the result, print the value.

To save this program, we need to save this file as somename.py, which will specify that this program needs to be executed in Python:

The PowerShell sample code for the preceding Python task is as follows:

#PowerShell sample code
$countryname=read-host "Enter country name"
$countryname=$countryname.tolower()
$lastcharacter=$countryname[-1]
if ($lastcharacter -contains 'a')
{
 write-host "Vowel found"
}
elseif ($lastcharacter -contains 'e')
{
 write-host "Vowel found"
}
elseif ($lastcharacter -contains 'i')
{
 write-host "Vowel found"
}
elseif ($lastcharacter -contains '0')
{
 write-host "Vowel found"
}
elseif ($lastcharacter -contains 'u')
{
 write-host "Vowel found"
}
else
{
write-host "No vowel found"
}

Python is very strict in terms of indentation. As we can see in the example, if we change the indentations or tabs even by a space, Python will spit out an error stating the indentation is not correct and the compilation will fail. This will result in an error and unless the indentation is fixed, the execution will not be performed.

 Functions

For any recurring set of instructions, we can define a function. In other words, a function is a closed set of instructions to perform a specific logic or task. Depending upon the input provided, a function has the ability to return the results or parse the input with specific instructions to get results without any return values.

A function is defined by the def keyword, which specifies that we need to define a function and provide a set of instructions related to that function.

In this task we will print the greater of two input numbers:

def checkgreaternumber(number1,number2):
 if number1 > number2:
 print ("Greater number is ",number1)
 else:
 print ("Greater number is",number2)
checkgreaternumber(2,4)
checkgreaternumber(3,1)

As we can see in the preceding output, the first time we call the checkgreaternumber(2,4) function, the function prints the greater value as 4, and the second time we call the function with different numbers, the function prints the greater value as 3.

The PowerShell sample code for the preceding task is as follows:

#PowerShell sample code
function checkgreaternumber($number1,$number2)
{
 if ($number1 -gt $number2)
 {
 write-host ("Greater number is "+$number1)
 }
 else
 {
 write-host ("Greater number is "+$number2)
 }
}

checkgreaternumber 2 4
checkgreaternumber 3 1

We can rewrite the same function, but rather than printing the value inside the function, it should return the greater number:

def checkgreaternumber(number1,number2):
 if number1 > number2:
 return number1
 else:
 return number2

print ("My greater number in 2 and 4 is ",checkgreaternumber(2,4))
print ("My greater number in 3 and 1 is ",checkgreaternumber(3,1))

In this case, as we can see, the function returns the value, and the result is returned on the line where the function was called. In this case, as it was called inside the print function, it evaluates the input and returns the value, which also gets printed out inside the same print function.

#PowerShell sample code
function checkgreaternumber($number1,$number2)
{
 if ($number1 -gt $number2)
 {
 return $number1
 }
 else
 {
 return $number2
 }
}

write-host ("My greater number in 2 and 4 is ",(checkgreaternumber 2 4))
write-host ("My greater number in 3 and 1 is ",(checkgreaternumber 3 1))

Another important aspect of a function is the default values that we can provide in a function. Sometimes we need to write functions that might take multiple, say 4, 5, or more, values as inputs. Since it becomes hard to know what values we need and in which order for the function, we can ensure that the default value is taken into consideration if any value is not provided when calling that specific function:

def checkgreaternumber(number1,number2=5):
 if number1 > number2:
 return number1
 else:
 return number2
print ("Greater value is",checkgreaternumber(3))
print ("Greater value is",checkgreaternumber(6))
print ("Greater value is",checkgreaternumber(1,4))

The output of the code execution is given as:

	As we can see in the preceding output, we specified the default value of number2 as 5. Now, as we can see in the first call to the function, we only give the value 3. Now, as the function needs two inputs or parameters, but we provided only one, the second value for the function is taken from the default one, which is 5 in this case. Hence, a comparison will be done between 3 and 5 to get the greater number.

	In the second call to the function, a similar call is made with 6, and since no other value was provided, the comparison was between 6 and 5, and result returned was the greater value, which is 6.

	In the third call, we provide both values, which overrides any default value, so a comparison was done between 1 and 4. The result was evaluated and the output of 4 was returned.

Another important consideration is the localization of a variable in a function:

globalval=6

def checkglobalvalue():
 return globalval

def localvariablevalue():
 globalval=8
 return globalval

print ("This is global value",checkglobalvalue())
print ("This is global value",globalval)
print ("This is local value",localvariablevalue())
print ("This is global value",globalval)

The output of the preceding code is as follows:

	In the preceding output, we define a variable named as globalval with a value of 6. In the checkglobalvalue function, we just return the value of the globalvalvariable, which prints a value of 6 as we call the first print function.

	The second print function just prints the value of the same variable, which also prints 6.

	Now, in the third print function, localvariablevalue, we call the same globalval, but give it a value of 8 and return the value of globalval. In the print value of local, it prints the result as value 8. It is not assumed that the globalval variable has a value of 8 now. But, as we can see in the last print function, it still prints a value of 6, when we call the print function to print the value of globalval.

This clearly shows that any variable inside a function is locally effective, or is localized, but does not have any impact on any variables outside the function. We need to use the global command to reference the global variable and remove the localization impact of it.

Here is the same example before using the global command:

As can we see in the preceding output, if we change the value of the globalval global variable inside the localvariablevalue function, we see the effect on the global variable with a new value of 8.

 Passing arguments from the command line

Sometimes it is necessary to pass arguments to the script from the command line. This is generally needed when we need to perform some quick actions in our script, rather than the script asking us for the inputs.

Consider the following lines of code where we pass two numbers as arguments to scripts, and print the sum of them:

import sys
print ("Total output is ")
print (int(sys.argv[1])+int(sys.argv[2]))

When we run this script, say it's saved as checkargs.py, and execute it as follows:

python checkargs.py 5 6

The output returned is as follows:

Total output is
11

The key here is the import of the sys module, which is a predefined module in Python to handle any system-related tasks of Python. The values that we pass as arguments are stored in sys.argv[1] onwards, since sys.argv[0] is the name of actual script being run. In this case, sys.argv[0] will be checkargs.py, sys.argv[1] will be 5, and sys.argv[2] will be 6.

The PowerShell code for the preceding task is as follows:

#PowerShell sample code
$myvalue=$args[0]
write-host ("Argument passed to PowerShell is "+$myvalue)

The arguments passed in a Python script are in string format, so we need to explicitly convert them to the right type for the expected output. In the preceding script, if we had not converted it to the integer type by using the int() function, then the output would have been 56 instead of int(5) + int(6) = 11.

 Python modules and packages

Because Python is the most popular open source coding language, there are many developers who contribute their expertise by creating specific modules and sharing them for others to use. These modules are a specific set of functions or instructions that are used to perform specialized tasks and can be called easily in our programs. The modules can be easily called using the import command inside the scripts. Python has many built-in modules that are directly called using import, but for specialized modules, an external installation is needed. Luckily, Python provides a very easy way to download and install these modules.

As an example, let's install a module named Netmiko that can help us work on logging into network devices more efficiently. Python provides a well-documented reference for each of the modules, and for our module, the documentation can be found at https://pypi.python.org/pypi/netmiko. For installation, all we have to do is go into the folder from the command line where python.exe is installed or is present. There is a sub folder in that location called scripts.

Inside that folder, we have two options that can be used for installing modules, easy_install.exe or pip.exe.

Installing the library for Python, can be done in two ways:

	The syntax of easy_install is as follows:

easy_install <name of module>

For example:

easy_install netmiko

	The syntax of pip install is as follows:

pip install <name of module>

For example:

pip install netmiko

Once we install the required module, we need to restart Python by closing all open sessions and invoking IDLE again so the modules can be loaded. More information on modules can be gathered from https://docs.python.org/2/tutorial/modules.html.

 Multithreading for parallel processing

As we are now focusing on writing our scripts efficiently, a major aspect of this is how efficiently, quickly, and correctly we fetch the information. When we use the for loop, we parse through each item one by one, which is fine if we get results quickly.

Now, if each item in a for loop is a router from which we need to get the output of show version, and if each router takes around 10 seconds to log in, gather the output, and log out, and we have around 30 routers that we need to get this information from, we would need 10*30 = 300 seconds for the program to complete the execution. If we are looking for more advanced or complex calculations on each output, which might take up to a minute, then it will take 30 minutes for just 30 routers.

This starts becoming very inefficient when our complexity and scalability grows. To help with this, we need to add parallelism to our programs. What this simply means is, we log in simultaneously on all 30 routers, and perform the same task to fetch the output at the same time. Effectively, this means that we now get the output on all 30 routers in 10 seconds, because we have 30 parallel threads being called.

A thread is nothing but another instance of the same function being called, and calling it 30 times means we are invoking 30 threads at the same time to perform the same tasks.

Here's an example:

import datetime
from threading import Thread

def checksequential():
 for x in range(1,10):
 print (datetime.datetime.now().time())

def checkparallel():
 print (str(datetime.datetime.now().time())+"\n")

checksequential()
print ("\nNow printing parallel threads\n")
threads = []
for x in range(1,10):
 t = Thread(target=checkparallel)
 t.start()
 threads.append(t)

for t in threads:
 t.join()

The output of the multi-threading code is as follows:

	As we can see in the preceding example, we created two functions, named checksequential and checkparallel, to print the system's date time. The datetime module is used to get the system's date time in this case. In the for loop, a sequential run was done that shows the increment time in the output when the function was called.

	For the threading, we use a blank array named threads. Each of the instances that is created has a unique thread number or value, which is stored in this empty thread array each time the checkparallel method is spawned. This unique number or reference for each thread identifies each thread as and when its executed. The start() method is used to get the thread to perform the function called in the thread.

	The last loop is important in the thread. What it signifies is that the program will wait for all the threads to complete before moving forward. The join() method specifies that until all the threads are complete, the program will not proceed to the next step.

Now, as we can see in the output of the thread, some of the timestamps are the same, which means that all those instances were invoked and executed at the same time in parallel rather than sequentially.

The output in the program is not in order for parallel threads, because the moment any thread is completed, the output is printed, irrespective of the order. This is different to sequential execution, since parallel threads do not wait for any previous thread to complete before executing another. So, any thread that completes will print its value and end.

PowerShell sample code for the preceding task is as follows:

#PowerShell sample code
Get-Job #This get the current running threads or Jobs in PowerShell
Remove-Job -Force * # This commands closes forcible all the previous threads

$Scriptblock = {
 Param (
 [string]$ipaddress
)
 if (Test-Connection $ipaddress -quiet)
 {
 return ("Ping for "+$ipaddress+" is successful")
 }
 else
 {
 return ("Ping for "+$ipaddress+" FAILED")
 }
 }

$iplist="4.4.4.4","8.8.8.8","10.10.10.10","20.20.20.20","4.2.2.2"

foreach ($ip in $iplist)
{
 Start-Job -ScriptBlock $Scriptblock -ArgumentList $ip | Out-Null
 #The above command is used to invoke the $scriptblock in a multithread
}

#Following logic waits for all the threads or Jobs to get completed
While (@(Get-Job | Where { $_.State -eq "Running" }).Count -ne 0)
 { # Write-Host "Waiting for background jobs..."
 Start-Sleep -Seconds 1
 }

#Following logic is used to print all the values that are returned by each thread and then remove the thread # #or job from memory
ForEach ($Job in (Get-Job)) {
 Receive-Job $Job
 Remove-Job $Job
 }

 Using Netmiko for SSH and network device interaction

Netmiko (https://github.com/ktbyers/netmiko) is a library in Python that is used extensively an interaction with network devices. This is a multi-vendor library with support for Cisco IOS, NXOS, firewalls, and many other devices. The underlying library of this is Paramiko, which is again used extensively for SSH into various devices.

Netmiko extends the Paramiko ability of SSH to add enhancements, such as going into configuration mode in network routers, sending commands, receiving output based upon the commands, adding enhancements to wait for certain commands to finish executing, and also taking care of yes/no prompts during command execution.

Here's an example of a simple script to log in to the router and show the version:

from netmiko import ConnectHandler

device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249', username='cisco', password='cisco')
output = device.send_command("show version")
print (output)
device.disconnect()

The output of the execution of code against a router is as follows:

As we can see in the sample code, we call the ConnectHandler function from the Netmiko library, which takes four inputs (platform type, IP address of device, username, and password):

Netmiko works with a variety of vendors. Some of the supported platform types and their abbreviations to be called in Netmiko are:

'a10': A10SSH,

'accedian': AccedianSSH,

'alcatel_aos': AlcatelAosSSH,

'alcatel_sros': AlcatelSrosSSH,

'arista_eos': AristaSSH,

'aruba_os': ArubaSSH,

'avaya_ers': AvayaErsSSH,

'avaya_vsp': AvayaVspSSH,

'brocade_fastiron': BrocadeFastironSSH,

'brocade_netiron': BrocadeNetironSSH,

'brocade_nos': BrocadeNosSSH,

'brocade_vdx': BrocadeNosSSH,

'brocade_vyos': VyOSSSH,

'checkpoint_gaia': CheckPointGaiaSSH,

'ciena_saos': CienaSaosSSH,

'cisco_asa': CiscoAsaSSH,

'cisco_ios': CiscoIosBase,

'cisco_nxos': CiscoNxosSSH,

'cisco_s300': CiscoS300SSH,

'cisco_tp': CiscoTpTcCeSSH,

'cisco_wlc': CiscoWlcSSH,

'cisco_xe': CiscoIosBase,

'cisco_xr': CiscoXrSSH,

'dell_force10': DellForce10SSH,

'dell_powerconnect': DellPowerConnectSSH,

'eltex': EltexSSH,

'enterasys': EnterasysSSH,

'extreme': ExtremeSSH,

'extreme_wing': ExtremeWingSSH,

'f5_ltm': F5LtmSSH,

'fortinet': FortinetSSH,

'generic_termserver': TerminalServerSSH,

'hp_comware': HPComwareSSH,

'hp_procurve': HPProcurveSSH,

'huawei': HuaweiSSH,

'juniper': JuniperSSH,

'juniper_junos': JuniperSSH,

'linux': LinuxSSH,

'mellanox_ssh': MellanoxSSH,

'mrv_optiswitch': MrvOptiswitchSSH,

'ovs_linux': OvsLinuxSSH,

'paloalto_panos': PaloAltoPanosSSH,

'pluribus': PluribusSSH,

'quanta_mesh': QuantaMeshSSH,

'ubiquiti_edge': UbiquitiEdgeSSH,

'vyatta_vyos': VyOSSSH,

'vyos': VyOSSSH,

Depending upon the selection of the platform type, Netmiko can understand the returned prompt and the correct way to SSH to the specific device. Once the connection is made, we can send commands to the device using the send method.

Once we get the return value, the value stored in the output variable is displayed, which is the string output of the command that we sent to the device. The last line, which uses the disconnect function, ensures that the connection is terminated cleanly once we are done with our task.

For configuration (example: We need to provide a description to the router interface FastEthernet 0/0), we use Netmiko as shown in the following example:

from netmiko import ConnectHandler

print ("Before config push")
device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249', username='cisco', password='cisco')
output = device.send_command("show running-config interface fastEthernet 0/0")
print (output)

configcmds=["interface fastEthernet 0/0", "description my test"]
device.send_config_set(configcmds)

print ("After config push")
output = device.send_command("show running-config interface fastEthernet 0/0")
print (output)

device.disconnect()

The output of the execution of the preceding code is as follows:

	As we can see, for config push we do not have to perform any additional configs but just specify the commands in the same order as we will send them manually to the router in a list, and pass that list as an argument to the send_config_set function.

	The output in Before config push is a simple output of the FastEthernet0/0 interface, but the output under After config push is now with the description that we configured using the list of commands.

In a similar way, we can pass multiple commands to the router, and Netmiko will go into configuration mode, write those commands to the router, and exit config mode.

If we want to save the configuration, we use the following command after the send_config_set command:

device.send_command("write memory")

This ensures that the router writes the newly pushed config in memory.

 Network automation use case

As we have now interacted with multiple sections of Python and device interaction, let's create a use case to incorporate what we have learned so far. The use case is as follows:

Log into the router and fetch some information:

	task1(): Show the version, show the IP in brief, show the clock, and show the configured usernames on the router.

	task2(): Create another username on the test router with the password test and check whether we can log in successfully with the newly created username.

	task3(): Log in with the newly created username test, and delete all the other usernames from the running-config. Once this is done, return all the current usernames configured on the router to confirm whether only the test username is configured on the router.

Let's build a script to tackle these tasks one by one:

from netmiko import ConnectHandler

device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249', username='cisco', password='cisco')

def task1():
 output = device.send_command("show version")
 print (output)
 output= device.send_command("show ip int brief")
 print (output)
 output= device.send_command("show clock")
 print (output)
 output= device.send_command("show running-config | in username")
 output=output.splitlines()
 for item in output:
 if ("username" in item):
 item=item.split(" ")
 print ("username configured: ",item[1])

def task2():
 global device
 configcmds=["username test privilege 15 secret test"]
 device.send_config_set(configcmds)
 output= device.send_command("show running-config | in username")
 output=output.splitlines()
 for item in output:
 if ("username" in item):
 item=item.split(" ")
 print ("username configured: ",item[1])
 device.disconnect()
 try:
 device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249', username='test', password='test')
 print ("Authenticated successfully with username test")
 device.disconnect()
 except:
 print ("Unable to authenticate with username test")

def task3():
 device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249', username='test', password='test')
 output= device.send_command("show running-config | in username")
 output=output.splitlines()
 for item in output:
 if ("username" in item):
 if ("test" not in item):
 item=item.split(" ")
 cmd="no username "+item[1]
 outputnew=device.send_config_set(cmd)
 output= device.send_command("show running-config | in username")
 output=output.splitlines()
 for item in output:
 if ("username" in item):
 item=item.split(" ")
 print ("username configured: ",item[1])

 device.disconnect()

#Call task1 by writing task1()
#task1()
#Call task2 by writing task2()
#task2()
#Call task3 by writing task3()
#task3()

As we can see, the three tasks given are defined as three different functions:

	The first line indicates that we have imported the Netmiko library, and in the second line we are connecting to our test router with the Cisco credentials.

	In the task1() function, we are fetching the outputs of all show commands. Additionally, since we do not want to expose the passwords of the current usernames we have added an extra logic wherein the returned output for show running-config | in username will be parsed by each line for every username, and each line will be split by a space character " ". Also, since the Cisco device returns the actual username in the second position in the output (for example, username test privilege 15 secret 5), we print the value of the second item after we split the output string, which is our actual username.

Here's the output for the task1() method:

	In the task2() method, we are going to create a username test with the password test, and authenticate with the new username. We have added a try: exception block in this method, which checks for any errors/exceptions for all the statements in the try: section, and if there are any exceptions, rather than breaking the script, it runs the code that is given in the exception section (under the except: keyword). If there are no errors, it continues with the statements in the try: section.

Here's the output for task2():

We can see that we now have two usernames configured, and the router is also now successfully responding to authentication with the test username.

	In task3() function, this will first fetch all the usernames that are in running-config, and if there are any usernames that are not test, it will create a dynamic command with no username <username> and send it to the router. Once it is done with all the usernames, it will go ahead and recheck and list out all the usernames not on the router. A success criteria is only the configured username as test should be available on the router.

Here's the output of task3():

The result of task3() is the result of all configured usernames, which in this case is now only test.

 Summary

In this chapter, we learned some advanced techniques for writing scripts by using functions, conditions, and loops; we covered multi-threading our scripts for faster and parallel execution, we got familiar with using Netmiko to interact with network devices, and looked at a real-world example of achieving a certain set of tasks using a single script.

The next chapter will focus on automation tasks using web. We will also discuss how to call Python scripts from the web and perform tasks using web framework.

Additionally, there will be a basic introduction to creating your own API so that others can use it for specific tasks.

 Accessing and Mining Data from Network

Looking back, we now have a fair idea of the basics of writing Python scripts and how to get meaningful data out of information. We have covered how to write Python scripts, interact with network devices, and have also worked on the basics of PowerShell so that we can work with both PowerShell and Python scripts. Now we will move towards a deeper understanding of using Python by looking at various examples. In this chapter we will focus on working with various Network devices to dig or fetch relevant information from devices, working on that information to create new configurations and pushing it back to the devices for added or enhanced functionality.

We will work on some common scenarios that we may face and try to solve them with Python. These examples or scenarios can be extended depending on a programmer's needs, and can be used as a reference to achieve automation in complex tasks.

Some of the key concepts we will be covering are as follows:

	Device configuration

	Multi-vendor environments

	IPv4 to IPv6 conversion

	Office/DC relocations

	Site rollouts

	BYOD configs for switches

	Device OS upgrades

	IP configs/interface parsing

 Device configurations

We need to deploy three routers with a standard base configuration. The base configuration remains the same on each router, but as each router is different, we need to automate the generation of the three config files for each router. The assumption is that all the routers have a standard hardware configuration with the same types of ports:

As we can see in the diagram, routers R1, R2, and R3 have the following cabling:

	R1 f1/0 (FastEthernet1/0) connected R2 f1/0

	R1 f0/0 connected to R3 f0/0

	R2 f0/1 connected to R3 f0/1

The standard config or template is as follows:

 hostname <hname>
 ip domain-lookup
 ip name-server <nameserver>
 logging host <loghost>
 username cisco privilege 15 password cisco
 enable password cisco
 ip domain-name checkmetest.router
line vty 0 4
 exec-timeout 5

Adding some more complexity, we need to ensure the name-server is different for each router. If each router is going to be deployed in different networks, here is the mapping that we want:

	R1 -> hostname testindia

	R2 -> hostname testusa

	R3 -> hostname testUK

The logging host and name server will depend upon the region, so the mapping will be as follows:

	India router: logserver (1.1.1.1) and nameserver (1.1.1.2)

	USA router: logserver (2.1.1.1) and nameserver (2.1.1.2)

	UK router: logserver (3.1.1.1) and nameserver (3.1.1.2)

The code to perform the requested task is as follows:

ipdict={'india': '1.1.1.1,1.1.1.2', 'uk': '3.1.1.1,3.1.1.2', 'usa': '2.1.1.1,2.1.1.2'}

standardtemplate="""
hostname <hname>
ip domain-lookup
ip name-server <nameserver>
logging host <loghost>
username cisco privilege 15 password cisco
enable password cisco
ip domain-name checkmetest.router

line vty 0 4
 exec-timeout 5
"""

routerlist="R1,R2,R3"
routers=routerlist.split(",")
for router in routers:
print ("Now printing config for",router)
 if "R1" in router:
 hostname="testindia"
 getips=ipdict["india"]
 getips=getips.split(",")
 logserver=getips[0]
 nameserver=getips[1]
 if "R2" in router:
 hostname="testusa"
 getips=ipdict["usa"]
 getips=getips.split(",")
 logserver=getips[0]
 nameserver=getips[1]
 if "R3" in router:
 hostname="testUK"
 getips=ipdict["uk"]
 getips=getips.split(",")
 logserver=getips[0]
 nameserver=getips[1]
 generatedconfig=standardtemplate
 generatedconfig=generatedconfig.replace("<hname>",hostname)
 generatedconfig=generatedconfig.replace("<nameserver>",nameserver)
 generatedconfig=generatedconfig.replace("<loghost>",logserver)
 print (generatedconfig)

The first list is a dictionary that defines the logging host and nameserver config based upon the region. The standardtemplate variable is used to store the template. If we have a multi-line value that needs to be stored in a variable, we can use the three-quote format as we see in the preceding example.

Now, as we currently know the generic or default hostnames, we can just parse through each of the current hostnames, and, based upon the hostname values, generate the config. This output can be saved onto a file or can be directly generated from the script and pasted onto the router for the basic configuration. Similarly, we can enhance this by adding the IP addresses shown in the next example in the format <ipaddress> <subnet mask>:

	testindia f1/0: 10.0.0.1 255.0.0.0

	testusa f1/0: 10.0.0.2 255.0.0.0

	testindia f0/0: 11.0.0.1 255.0.0.0

	testUK f0/0: 11.0.0.2 255.0.0.0

	testusa f0/1: 12.0.0.1 255.0.0.0

	testUK f0/1: 12.0.0.2 255.0.0.0

The code to perform this task is as follows:

def getipaddressconfig(routername):
 intconfig=""
 sampletemplate="""
 interface f0/0
 ip address ipinfof0/0
 interface f1/0
 ip address ipinfof1/0
 interface f0/1
 ip address ipinfof0/1
 """
 if (routername == "testindia"):
 f0_0="11.0.0.1 255.0.0.0"
 f1_0="10.0.0.1 255.0.0.0"
 sampletemplate=sampletemplate.replace("ipinfof0/0",f0_0)
 sampletemplate=sampletemplate.replace("ipinfof1/0",f1_0)
 sampletemplate=sampletemplate.replace("interface f0/1\n","")
 sampletemplate=sampletemplate.replace("ip address ipinfof0/1\n","")
 if (routername == "testusa"):
 f0_0="11.0.0.1 255.0.0.0"
 f0_1="12.0.0.1 255.0.0.0"
 sampletemplate=sampletemplate.replace("ipinfof0/0",f0_0)
 sampletemplate=sampletemplate.replace("ipinfof0/1",f0_1)
 sampletemplate=sampletemplate.replace("interface f1/0\n","")
 sampletemplate=sampletemplate.replace("ip address ipinfof1/0\n","")
 if (routername == "testUK"):
 f0_0="11.0.0.2 255.0.0.0"
 f0_1="12.0.0.2 255.0.0.0"
 sampletemplate=sampletemplate.replace("ipinfof0/0",f0_0)
 sampletemplate=sampletemplate.replace("ipinfof0/1",f0_1)
 sampletemplate=sampletemplate.replace("interface f1/0\n","")
 sampletemplate=sampletemplate.replace("ip address ipinfof1/0\n","")
 return sampletemplate

#calling this function
myfinaloutput=getipaddressconfig("testUK") #for UK router
myfinaloutput=getipaddressconfig("testindia") #for USA router
myfinaloutput=getipaddressconfig("testusa") #for India router

In this case, we define a function that has a standard interface template. The template is now modified with the specific IP addresses and updated depending upon the calling value in the function (which is the router name). Also, we remove the unused lines by replacing them with a none value denoted by two double quotes "" without any spaces between them.

Once we have the generated config, we can use a simple file handling operation to save it:

#Suppose our final value is in myfinaloutput and file name is myrouterconfig.txt
fopen=open("C:\check\myrouterconfig.txt","w")
fopen.write(myfinaloutput)
fopen.close()

As we can see, the output for both the generic template and interface configuration can be concatenated or added to a variable named myfinaloutput, and that is now being saved in a file called myrouterconfig.txt in the C:\check folder.

Similarly, we can enhance the script by adding more functions for specific tasks such as Open Shortest Path First (OSPF) configs and Border Gateway Protocol (BGP) configs, create enhanced and complex configurations based upon specific router names, and store them in separate .txt files that would be ready for the final push to the network devices.

 Multi-vendor environments

Sometimes we have many vendors participating in a configuration change or even creating various templates from scratch. We have vendors such as Arista, Cisco (IOS, NXOS), and Juniper that participate in network design in different layers. While dealing with situations such as this we need to be clear which layer each of the vendors is working on and create dynamic templates for each type of vendor involved.

Taking a scenario in which we know the hardware platform and the role of the device (such as access layer, core layer, or top of rack (TOR) layer; we can generate configs quickly with very basic parameters.

If a device is in production, we can use the SNMP protocol to fetch information for that device and create dynamic values based upon the return type of devices.

As a basic idea, we can have a look at https://wiki.opennms.org/wiki/Hardware_Inventory_Entity_MIB.

This has the information on the current open standard Managed Information Base (MIB) that is used by SNMP to get basic device information.

Again following good practice, we should ensure we create a generic function that can return the device type. Additionally, SNMP Object Identifiers (OIDs) can go deep inside to fetch information such as the current number of interfaces, the state of the interfaces, and even which interfaces are operational so that we can quickly make intelligent decisions based upon a device's current health or information fetched from a device.

We will be installing and using the PySNMP library to query SNMP with device. To install it we will use the earlier method of pip install pysnmp.

Basic PySNMP documentation can be viewed at the following URL:

https://pynet.twb-tech.com/blog/snmp/python-snmp-intro.html

As an example, we will try to fetch the current version of a network device:

from pysnmp.hlapi import *

errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData('public', mpModel=0),
 UdpTransportTarget(('192.168.255.249', 161)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)

if errorIndication:
 print(errorIndication)
elif errorStatus:
 print('%s at %s' % (errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex) - 1][0] or '?'))
else:
 for varBind in varBinds:
 print(' = '.join([x.prettyPrint() for x in varBind]))

The sample output for the preceding code when queried against a network device is as follows:

On our test router, we enabled SNMP using the snmp-server community public RO command, and through executing the preceding Python code written, got the RO string public to read the sysDescr.0 value, which is in Cisco standards the truncated show version.

Using this method of fetching information using SNMP, we can discover what types of device there are and based on the output, we can make intelligent decisions such as generating device-specific configs without asking for device type inputs.

Additionally, here is an example using PySNMP to fetch the current interfaces on a router:

from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()

errorIndication, errorStatus, errorIndex, varBindTable = cmdGen.bulkCmd(
 cmdgen.CommunityData('public'),
 cmdgen.UdpTransportTarget(('192.168.255.249', 161)),
 0,25,
 '1.3.6.1.2.1.2.2.1.2'
)

Check for errors and print out results
if errorIndication:
 print(errorIndication)
else:
 if errorStatus:
 print('%s at %s' % (
 errorStatus.prettyPrint(),
 errorIndex and varBindTable[-1][int(errorIndex)-1] or '?'
)
)
 else:
 for varBindTableRow in varBindTable:
 for name, val in varBindTableRow:
 print('%s = %s' % (name.prettyPrint(), val.prettyPrint()))

The output when queried for interface info on our sample router is as follows:

As we can see, we use the bulkCmd method, which walks through all the SNMP values and returns the output for the interfaces.

The OID 1.3.6.1.2.1.2.2.1.2 is used as reference to fetch these values from the device.

In a similar way, we can utilize the available SNMP OIDs for different vendors to fetch the specific information from multiple devices and proceed with our expected tasks based upon the returned values.

 IP configs/interface parsing

There are many instances in which we need to parse interface configs to fetch useful information. For example, from a list of devices, find all the interfaces that are trunk. Another example could be to find all the interfaces that are admin-shutdown (shutdown on the router), or even fetch the IP address configurations from interfaces.

There might be instances wherein we need to find out whether particular IP addresses or subnets are configured on the router.

A good way to extract any information is using regex. Regex is term that is used to match a particular pattern and either fetch the matched pattern or validate whether a certain pattern is present in the parsed text.

Here are the most basic and important regexes that are used in Python:

	.
	Match any character except newline

	^
	Match the start of the string

	$
	Match the end of the string

	*
	Match 0 or more repetitions

	+
	Match 1 or more repetitions

	?
	Match 0 or 1 repetitions

	\A
	Match only at the start of the string

	\b
	Match an empty string, only at the beginning or end of a word

	\B
	Match an empty string, only when it is not at the beginning or end of a word

	\d
	Match digits (such as [0-9])

	\D
	Match any non digit (such as [^0-9])

	\Z
	Match only at the end of a string

	\
	Escape special characters

	[]
	Match a set of characters

	[a-z]
	Match any lowercase ASCII letter

	[^]
	Match characters NOT in a set

	A|B
	Match either A or B regular expressions (non-greedy)

	\s
	Match whitespace characters (such as [\t\n\r\f\v])

	\S
	Match non whitespace characters (such as [^ \t\n\r\f\v])

	\w
	Match unicode word characters (such as [a-zA-Z0-9_])

	\W
	Match any character not a Unicode word character (such as [^a-zA-Z0-9_])

From this string, My IP address is 10.10.10.20 and by subnet mask is 255.255.255.255, we need to get the IP address and subnet mask using regex:

import re
mystring='My ip address is 10.10.10.20 and by subnet mask is 255.255.255.255'

if (re.search("ip address",mystring)):
 ipaddregex=re.search("ip address is \d+.\d+.\d+.\d+",mystring)
 ipaddregex=ipaddregex.group(0)
 ipaddress=ipaddregex.replace("ip address is ","")
 print ("IP address is :",ipaddress)

if (re.search("subnet mask",mystring)):
 ipaddregex=re.search("subnet mask is \d+.\d+.\d+.\d+",mystring)
 ipaddregex=ipaddregex.group(0)
 ipaddress=ipaddregex.replace("subnet mask is ","")
 print ("Subnet mask is :",ipaddress)

The output when the preceding code is executed is as follows:

As we can see, the regex for the IP address that we used is \d+.\d+.\d+.\d+. The \d means a digit, and + means multiple repetitions, because we are looking for a value of multiple digits separated by three dots.

However, in our case we have this type of repetition in two places, one in the IP address and the other in the subnet mask, so we modify the regex to search for ip address is \d+.\d+.\d+.\d+ for the IP address and subnet mask is \d+.\d+.\d+.\d+ for the subnet mask. The command re.search inside both the if loops returns true if a match is found, and false if a match isn't found. In the example, once we find the pattern in the if condition we use re.search again and extract the value using .group(0), which now contains the matched regex pattern.

Since, we are only concerned with the IP address and the subnet mask, we replace the other string values with a blank or none value so we only get the specific IP address and subnet mask values.

Additionally, using the inbuilt socket library, there might be a reason to check whether the IP address (IPv4 or IPv6) is valid or not. Here is an example of this:

import socket

def validateipv4ip(address):
 try:
 socket.inet_aton(address)
 print ("Correct IPv4 IP")
 except socket.error:
 print ("wrong IPv4 IP")

def validateipv6ip(address):
 ### for IPv6 IP address validation
 try:
 socket.inet_pton(socket.AF_INET6,address)
 print ("Correct IPv6 IP")
 except socket.error:
 print ("wrong IPv6 IP")

#correct IPs:
validateipv4ip("2.2.2.1")
validateipv6ip("2001:0db8:85a3:0000:0000:8a2e:0370:7334")

#Wrong IPs:
validateipv4ip("2.2.2.500")
validateipv6ip("2001:0db8:85a3:0000:0000:8a2e")

The output for the preceding code is as follows:

Using the socket library, we validate the IPv4 and IPv6 IP addresses.

Another task, as we mentioned earlier, is finding the interfaces that have trunk enabled:

import re
sampletext="""
interface fa0/1
switchport mode trunk
no shut

interface fa0/0
no shut

interface fa1/0
switchport mode trunk
no shut

interface fa2/0
shut

interface fa2/1
switchport mode trunk
no shut

interface te3/1
switchport mode trunk
shut
"""

sampletext=sampletext.split("interface")
#check for interfaces that are in trunk mode
for chunk in sampletext:
 if ("mode trunk" in chunk):
 intname=re.search("(fa|te)\d+/\d+",chunk)
 print ("Trunk enabled on "+intname.group(0))

The output for the preceding code is given as:

Here, we need to find out the common config that separates each chunk of interface. As we see in every interface configuration, the word interface separates the configurations of each interface, so we split out the config in chunks on interface work using the split command.

Once we have each chunk, we use the (fa|te)\d+/\d+ re pattern to get the interface name on any chunk that contains the word trunk. The pattern says that any value that starts with fa or te, is followed by any number of digits with a \, and again is followed by any number of digits, will be a match.

Similarly in the same code, we only want to know which interfaces that are configured as trunk are in the active state (not shut). Here is the code:

import re
sampletext="""
interface fa0/1
switchport mode trunk
no shut

interface fa0/0
no shut

interface fa1/0
switchport mode trunk
no shut

interface fa2/0
shut

interface fa2/1
switchport mode trunk
no shut

interface te3/1
switchport mode trunk
shut
"""

sampletext=sampletext.split("interface")
#check for interfaces that are in trunk mode
for chunk in sampletext:
 if ("mode trunk" in chunk):
 if ("no shut" in chunk):
 intname=re.search("(fa|te)\d+/\d+",chunk)
 print ("Trunk enabled on "+intname.group(0))

The output for the preceding code is as follows:

We added an extra condition to proceed with only those chunks that have no shut in addition to trunk keywords. In this case, we only proceed with chunks that meet both conditions and in the preceding example, te3/1 is not in the list as it is in the shut state.

When validating any IP config, we can parse the config, fetch the IP addresses, validate each IP address (IPv4 or IPv6), and if there are any incorrect values, point out the incorrect values. This can help to ensure we are validating the IP addresses that might have crept in because of any manual copy or paste actions. Of course, this also means we will not see any production issues because the config will already be pre-validated for correctness using this logic.

The code to validate any given IPv4 or IPv6 address from a device config is as follows:

import socket
import re

def validateipv4ip(address):
 try:
 socket.inet_aton(address)
 except socket.error:
 print ("wrong IPv4 IP",address)

def validateipv6ip(address):
 ### for IPv6 IP address validation
 try:
 socket.inet_pton(socket.AF_INET6,address)
 except socket.error:
 print ("wrong IPv6 IP", address)

sampletext="""
ip tacacs server 10.10.10.10
int fa0/1
ip address 25.25.25.298 255.255.255.255
no shut
ip name-server 100.100.100.200
int fa0/0
ipv6 address 2001:0db8:85a3:0000:0000:8a2e:0370:7334
ip logging host 90.90.91.92
int te0/2
ipv6 address 2602:306:78c5:6a40:421e:6813:d55:ce7f
no shut
exit

"""

sampletext=sampletext.split("\n")
for line in sampletext:
 if ("ipv6" in line):
 ipaddress=re.search("(([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]))",line)
 validateipv6ip(ipaddress.group(0))
 elif(re.search("\d+.\d+.\d+.\d+",line)):
 ipaddress=re.search("\d+.\d+.\d+.\d+",line)
 validateipv4ip(ipaddress.group(0))

The output for the preceding code is as follows:

We take each line from sampletext and find out the IPv4 or IPv6 IPs from each line. Then we parse that information into our IP validation functions, and if there is an incorrect IP, it will print out the IP address that is not correct.

Similarly, we can validate other aspects of the config by creating specific functions and perform a full sanity and validation check on any given config.

 Device OS upgrades

Sometimes we need to upgrade devices such as routers, switches, and firewalls. It is easy to perform upgrades on one device, but we need automation to upgrade multiple routers. Different devices have different ways of upgrading IOS or OS images, and the automation or scripts are created with different methods depending on the device.

Taking an example of upgrading a Cisco IOS router; there are two basic steps or tasks that need to be performed:

	Copy the relevant OS or IOS image into flash: or bootflash:.

	Change the config to reload the router with the new image.

Task 1: Prerequisites (to copy relevant OS or IOS image):

	We need a FTP server that's accessible from the router and has the IOS image that we need on the router

	We need the image, the correct MD5 checksum, and the image size for validation

The sample code for task 1 is as follows:

from netmiko import ConnectHandler
import time

def pushimage(imagename,cmd,myip,imgsize,md5sum=None):
 uname="cisco"
 passwd="cisco"
 print ("Now working on IP address: ",myip)
 device = ConnectHandler(device_type='cisco_ios', ip=myip, username=uname, password=passwd)
 outputx=device.send_command("dir | in Directory")
 outputx=outputx.split(" ")
 outputx=outputx[-1]
 outputx=outputx.replace("/","")
 precmds="file prompt quiet"
 postcmds="file prompt"
 xcheck=device.send_config_set(precmds)
 output = device.send_command_timing(cmd)
 flag=True
 devicex = ConnectHandler(device_type='cisco_ios', ip=myip, username=uname, password=passwd)
 outputx=devicex.send_command("dir")
 print (outputx)
 while (flag):
 time.sleep(30)
 outputx=devicex.send_command("dir | in "+imagename)
 print (outputx)
 if imgsize in outputx:
 print("Image copied with given size. Now validating md5")
 flag=False
 else:
 print (outputx)
 if (flag == False):
 cmd="verify /md5 "+imagename
 outputmd5=devicex.send_command(cmd,delay_factor=50)
 if (md5sum not in outputmd5):
 globalflag=True
 print ("Image copied but Md5 validation failed on ",myip)
 else:
 print ("Image copied and validated on ",myip)
 devicex.send_config_set(postcmds)
 devicex.disconnect()
 device.disconnect()

ipaddress="192.168.255.249"
imgname="c3745-adventerprisek9-mz.124-15.T14.bin"
imgsize="46509636"
md5sum="a696619869a972ec3a27742d38031b6a"
cmd="copy ftp://ftpuser:ftpuser@192.168.255.250/c3745-adventerprisek9-mz.124-15.T14.bin flash:"
pushimage(imgname,cmd,ipaddress,imgsize,md5sum)

This code is going to push the IOS image into the router. The while loop will continue to monitor the progress of code copying until the specific image size is not met in the directory. The moment we have specified image size, the script will move to the next action, which is validating the MD5 checksum. Once the MD5 checksum is validated, it prints out a final confirmation that the IOS image is not copied and MD5 validated.

We can use this function on any router with just a couple of tweaks to the image name, size, and MD5 checksums for different sets of images.

An important thing to note here is the file prompt quiet command. This needs to be executed before we start copying the command, as it suppresses any confirmation prompts in the router. If we get these confirmation prompts, it is tough to deal with all the prompts, thus adding to the complexity of the code.

By adding this command, we suppress the confirmation and once we have the code copied, we enable it to its default state of file prompt.

Task 2: To change the bootvar of the router to a new OS image:

 This is where we set the bootvar in Cisco, to point to the new IOS image to be loaded:

from netmiko import ConnectHandler
import time

uname="cisco"
passwd="cisco"
device = ConnectHandler(device_type='cisco_ios', ip="192.168.255.249", username=uname, password=passwd)
output=device.send_command("show run | in boot")
print ("Current config:")
print (output)
cmd="boot system flash:c3745-adventerprisek9-mz.124-15.T14.bin"
device.send_config_set(cmd)
print ("New config:")
output=device.send_command("show run | in boot")
print (output)
device.send_command("wr mem")
device.disconnect()

The output for the preceding code is as follows:

As we can see, in this code we create a command with the new image and send it to the router using the send_config_set method. This method executes the command under config t. Once this is done, we validate from the new output fetched from running the show run | in boot command again, to confirm that the bootvar is now pointing to the new OS image.

If all is good, then we run wr mem to save this new config.

Once both the tasks are completed, we need to reload the router for the change to take affect. There are multiple scenarios that need to be taken care of before a reload. A direct reload can be performed as Task 3 using the reload command, but as a best practice we need to ensure no production or live traffic is currently on the router, as a reload will disrupt the current traffic flow. Also, it is advisable to be logged into the console to validate the reload progress and for faster recovery if there is a reload failure.

 IPv4 to IPv6 conversion

There are multiple ways to convert an IPv4 address to an IPv6 address. In Python 3, we have the inbuilt ipaddress module:

import ipaddress

def convertusingipaddress(ipv4address):
 print(ipaddress.IPv6Address('2002::' + ipv4address).compressed)

convertusingipaddress("10.10.10.10")
convertusingipaddress("192.168.100.1")

The output for the preceding code is as follows:

There are many different methods or functions in the ipaddress library that we can use for various purposes. The documentation and details can be found at https://docs.python.org/3/library/ipaddress.html.

 Site rollouts

As we continue to work with multi-vendor environments, there is a demand to quickly roll out devices and configs to get a particular site up and running. Multiple techniques can be deployed for site rollouts, which involves a standard set of devices connected to standard ports with a standard IOS or code image on each device ready to be racked and powered up. To determine the standard Stock Keeping Unit (SKU) for a specific site, we can segregate it as t-shirt sizes. At the planning stage we can create t-shirt sizes based upon certain parameters, such as usage, load, and redundancy.

At the lowest level, let's say extra small size (XS) can have a single router and a single switch with the router terminating at an internet link. The switch is connected to the FastEthernet 0/1 (for 100 Mbps) or Gi0/1(for 1000 Mbps) port on the router, and end users directly plug in to the switch to get access. Based upon this XS SKU (or t-shirt size), we can determine the hardware vendor, such as Cisco, DLink, or other network device providers, for each of the router and the switch. Next, when we have finalized the hardware providers, we work on generating the config template.

The config template is typically based on two criteria:

	Role of the device

	Hardware vendor

In the same XS size, let's say we have Cisco 3064 (Cisco Nexus running Cisco NXOS) as the router, and an Alcatel switch in the switch layer. As we have now finalized the hardware vendor and the role of each device, we can easily create template configs.

As mentioned earlier, once we have the standard hardware, we also need to ensure the ports are standard (for example, the uplink of switch will be connected from port Gi1/0 to the router's Gi1/1). This will help us by ensuring we create a near-complete template with the interface configuration also being taken into consideration.

A template contains a basic configuration with certain values being determined later on. It is a very generic layout that we can fill in with values from various inputs, such as identifying free IP addresses, the next hostname in the sequence, and which routing needs to be in place as a standard configuration:

As we see in the preceding figure, the central Python script is calling different functions (with the initial inputs being the vendor and the standard role-based template), and fetching specific information such as free IP addresses, next available hostname (such as rtr01 or rtr05) and routing information (such as Enhanced Interior Gateway Routing Protocol (EIGRP) with subnet 10.10.10.0/255 being advertised on the network). Each of these inputs and more (depending upon the requirements) are separate Python functions, with the template being changed depending upon the return values of the Python function.

As an example, we need to get the IP address from a SQL table where the IP address shows as unassigned using Python (we would be using MySQLdb library in Python for this):

import MySQLdb

def getfreeip():
 # Open database connection
 db = MySQLdb.connect("testserver","user","pwd","networktable")
 cursor = db.cursor()

 sql = "select top 1 from freeipaddress where isfree='true'"
 try:
 # Execute the SQL command
 cursor.execute(sql)
 # Fetch all the rows in a list of lists.
 results = cursor.fetchall()
 for eachrow in results:
 freeip=eachrow[0]
 return (freeip)
 except:
 print "Error: unable to fetch data"
 return "error in accessing table"
 db.close()

print (getfreeip())

This returns a free IP address from the SQL table that we can call into other functions to generate our configs. Of course, once this is given, we also need to update the table to ensure we set the isfree value in the record to false so that a new call to this function would ensure that we get the next free IP address in the SQL table.

Adding all of this together, we can fetch details from multiple tables and even call APIs for specific tools to get specialized information, and, taking the return values from all of these functions or methods as inputs, the template would be called with these return values replacing the variables specified in the template. Once the template values are filled in, the output will be the final generated config that is ready to be deployed on the router/network devices.

By creating this baseline automation based upon the t-shirt size specifications, the script can be called again with a new t-shirt size that can include a new set of devices, such as load balancers, multiple routers, and each of the different routers in different roles depending on the t-shirt size and complexity.

The next step after the generation of the final config templates is to apply the configs to the router. It is always advisable to perform this functionality using the console. Once we have the basic config in place to get SSH/Telnet access to the device, we can keep a session open with the console while performing the push of the remaining configs on the various devices. Netmiko can be used for this purpose, with the intention of pushing all the configs using the newly generated templates.

Assuming the cables are connected properly, as per the standards, the next step is to validate the traffic and configurations. To do this we again rely on Netmiko to fetch routes, logs, and even specific information such as interface counters and BGP router tables.

Additionally, we could also work on SNMP inputs to validate the current running health of each device. A device can sometime perform well in test conditions, but once production or live traffic is on its data plane, it can spike in hardware resources, causing latency or packet drops. The SNMP stats will give us a clear idea of the health of each device, such as CPU usage, memory usage, and even the current temperature of certain devices and its modules, to display the overall health of the SKU or the t-shirt size site rollout.

 Office/DC relocations

There are times when we need to relocate, shut down, or migrate a site to a different location. This involves a lot of pre-checks, pre-validations, and ensuring the same setup of network PoD is active in the other location.

In a multi-vendor environment, and with the increasing SKU size based upon t-shirt size, keeping a track of all active sessions, traffic flows, current interface status, and specific routes manually is difficult. Using Python, we can create an automated way to create a basic checklist and it can be ensured that after relocation the same checklist acts as a post validation checklist.

As an example, we create a basic script that asks if we need to perform a pre-check/post-check and save that in files named pre-check and post-check:

from netmiko import ConnectHandler
import time

def getoutput(cmd):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip="192.168.255.249", username=uname, password=passwd)
 output=device.send_command(cmd)
 return (output)

checkprepost=input("Do you want a pre or post check [pre|post]: ")
checkprepost=checkprepost.lower()
if ("pre" in checkprepost):
 fname="precheck.txt"
else:
 fname="postcheck.txt"

file=open(fname,"w")
file.write(getoutput("show ip route"))
file.write("\n")
file.write(getoutput("show clock"))
file.write("\n")
file.write(getoutput("show ip int brief"))
file.write("\n")

print ("File write completed",fname)

file.close()

The output for the preceding code is as follows:

Assume that the precheck.txt file was taken at the site for multiple devices before the migration or relocation, and postcheck.txt was taken at the site after relocation. Now let's write a quick script that compares both files and prints out the difference.

Python has a library called difflib to perform this task:

import difflib

file1 = "precheck.txt"
file2 = "postcheck.txt"

diff = difflib.ndiff(open(file1).readlines(),open(file2).readlines())
print (''.join(diff),)

The output for the preceding code is as follows:

As we can see in precheck.txt and postcheck.txt, the files are being compared line by line. Anything that is unchanged is displayed as it is, but anything that is different is shown by either a - or +. The - sign at start of the line specifies that the specific line is from first file (which is precheck.txt in our case), and a + sign depicts the same line has been output in the new file (which is postcheck.txt). Using this method, we can quickly validate the differences between precheck and postcheck and work on fixing the relevant issues after the migration or relocation.

There are times when we want to automatically run the script to take a backup of the current config of routers. In this case, let's assume that the relocation is planned for tomorrow. Before any activity starts we want to ensure we have a backup of the current device configs.

A simple script stated would do the trick:

from netmiko import ConnectHandler

def takebackup(cmd,rname):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=rname, username=uname, password=passwd)
 output=device.send_command(cmd)
 fname=rname+".txt"
 file=open(fname,"w")
 file.write(output)
 file.close()

assuming we have two routers in network
devices="rtr1,rtr2"
devices=devices.split(",")

for device in devices:
 takebackup("show run",device)

The script is going to parse each device in the devices list one by one, execute the show run command, and save it in the given filename (the filename is the same as the given device name or IP). However, the next question is how to ensure this runs at the scheduled time. In Linux we have cron job that we can set up for this, and there is also Windows Task Scheduler.

The following example shows the basic process of creating the task in Task Scheduler:

	Open Task Scheduler in Windows:

>

	Click on Create a Basic Task on the right side of the Task Scheduler:

	Click on Next and select the frequency of the task:

	Click Next, select the time, and again click Next. Move to Start a Program. At this point, you need to add the details shown in the following screenshot. We have to provide the full path of python.exe in the Program/script: window, and in the Add arguments (optional) section, the full path of the Python script (with the .py extension) enclosed in double quotes:

	On the final page, click on Finish to submit the changes and create the task:

Once this is done, you can run it manually by right-clicking on the created task and clicking on the Run option. If the task succeeds, it will return the same in the Task Scheduler window. If all is fine, the task will automatically run at the given time in the Task Scheduler.

This can also be run as a service and at regular intervals, such as daily and hourly, depending on how frequently we want to run the script in our environment.

These scheduled backups can sometimes be taken as baseline and can also act as last known good configuration scenarios.

 Bring Your Own Device (BYOD) configs for switches

As our network becomes more scalable, we need to broaden the current architecture designs of our network to incorporate better switches and routers to meet the demand. There may be times when we have a specialized demand and a specific set of hardware needs to be added to our network to meet those demands.

Another requirement may be to lower the cost while increasing the scalability. In this case we would need to add different vendor switches to meet the demand. There might also be a very specific demand for a certain office or a site. In this case, we need to add different vendor hardware to fulfill some specific requirements.

All of the scenarios that we have just observed have one thing in common. To meet demand or specific requirements, we cannot rely on a single vendor solution on the network. There would be a random collection of devices to ensure a particular set of requirements are met. This is where we introduce the term BYOD. BYOD is a new standard that embraces new designs, hardware, and architecture to gel with our current SKU or design. It can be as simple as adding a new mobile phone to our corporate network using wireless, or a bit more complex, such as adding specific vendor hardware to the network.

Architects need to ensure they have good way of forecasting the demand and knowing whether the current network design or hardware can meet those demands. In any case, there needs to be a requirement in the initial design to ensure that cross-vendor platforms are supported with the current technologies. There is a bit of conflict in this design methodology. For example, a certain vendor, such as Cisco, has the neighbor discovery protocol, Cisco-specific protocol (CDP), which discovers the correct Cisco devices as neighbors of the current device. However, to ensure the CDP is discovering and showing the correct information, every device needs to be Cisco. On the other hand we have Link Layer Discovery Protocol (LLDP), which is nearly the same as CDP but is open source, so lot of other vendors including Cisco also have the option to perform discovery using LLDP instead of CDP. Now, Cisco CDP is a Cisco-specific protocol; Cisco has ensured that certain parameters can only be exchanged or discovered using CDP, and for that matter, every device participating in CDP must be a Cisco device.

LLDP, being open source, is limited to parameters that are part of open standards or the Internet Engineering Task Force (IETF) framework, and all vendors supporting LLDP only adhere to those open standards for cross-platform and hardware compatibility. This also results in some participating vendors not sending or discovering specialized parameters that are meant specifically for that vendor (such as Cisco). Going back to the earlier point, in this case the architecture design from day one needs to ensure those standards that are multi-vendor or open source only need to be used in a baseline design or architecture. A similar example to LLDP would be using open standards such as OSPF or BGP instead of EIGRP, which is meant only for Cisco devices.

As mentioned earlier, we need to have specific roles defined and hardware or vendor templates that should be created based upon the device or hardware that we are introducing in the current design as a BYOD strategy. Keeping the open standard approach, we need to ensure that the templates being created are generic, and vendor-specific configs can later be introduced into the device.

SNMP is a powerful protocol that helps manage a lot of these cross-vendor or BYOD strategies seamlessly. With a basic configuration of enabling SNMP with a specific read-only community string, we can create quick scripts in Python to get basic information from BYOD devices. Taking an example, let's assume we have two devices that we need to know the type and vendor of:

from pysnmp.hlapi import *

def finddevices(ip):
 errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData('public', mpModel=0),
 UdpTransportTarget((ip, 161)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)

 if errorIndication:
 print(errorIndication)
 elif errorStatus:
 print('%s at %s' % (errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex) - 1][0] or '?'))
 else:
 for varBind in varBinds:
 print(' = '.join([x.prettyPrint() for x in varBind]))

ipaddress="192.168.255.248,192.168.255.249"
ipaddress=ipaddress.split(",")
for ip in ipaddress:
 print (ip)
 finddevices(ip)
 print ("\n")

The output for the previous code is as follows:

As we can see in the preceding output, now we just need to know the IP address and the open standard SNMP OID, SNMPv2-MIB. sysDescr will give the output for both devices. In this case, we can see that one is Cisco 3600 and the other is Cisco 3700. Based upon the information returned, we can proceed with the configuration.

There are various other tasks that need to be performed based upon the BYOD strategy. If there was a mobile phone that you wanted to connect to your network, the only thing needed is a connection to a corporate network and a policy that you could push to the devices to check for various compliance checks such as operating system and anti-virus. Based upon these results, the queried devices can be placed in another VLAN that can be called either a quarantine VLAN, which has very limited access, or a corporate VLAN, which has full access to corporate resources.

In a similar way, as part of the BYOD for switches strategy, we need to perform certain checks to ensure the device is suitable to be part of our network design. Yes, we need to keep an open policy for various types of device, but there needs to be a loosely coupled framework under which devices can qualify to be part of BYOD acceptance.

Let's look at an example that ensures that a device is compatible enough to be part of a BYOD framework. The core requirement is the switch from Cisco and it should have FastEthernet0/0 as one of the interfaces:

from pysnmp.hlapi import *
from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()

def validateinterface(ip):
 errorIndication, errorStatus, errorIndex, varBindTable = cmdGen.bulkCmd(
 cmdgen.CommunityData('public'),
 cmdgen.UdpTransportTarget((ip, 161)),
 0,25,
 '1.3.6.1.2.1.2.2.1.2',
 '1.3.6.1.2.1.2.2.1.7'
)
 flag=False
 # Check for errors and print out results
 if errorIndication:
 print(errorIndication)
 else:
 if errorStatus:
 print('%s at %s' % (
 errorStatus.prettyPrint(),
 errorIndex and varBindTable[-1][int(errorIndex)-1] or '?'
)
)
 else:
 for varBindTableRow in varBindTable:
 for name, val in varBindTableRow:
 if ("FastEthernet0/0" in val.prettyPrint()):
 flag=True
 if (flag):
 return True
 else:
 return False

def finddevice(ip):
 errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData('public', mpModel=0),
 UdpTransportTarget((ip, 161)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)

 if errorIndication:
 print(errorIndication)
 elif errorStatus:
 print('%s at %s' % (errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex) - 1][0] or '?'))
 else:
 for varBind in varBinds:
 if ("Cisco" in varBind.prettyPrint()):
 return True
 return False

mybyoddevices="192.168.255.249,192.168.255.248"
mybyoddevices=mybyoddevices.split(",")
for ip in mybyoddevices:
 getvendorvalidation=False
 getipvalidation=False
 print ("Validating IP",ip)
 getipvalidation=validateinterface(ip)
 print ("Interface has fastethernet0/0 :",getipvalidation)
 getvendorvalidation=finddevice(ip)
 print ("Device is of vendor Cisco:",getvendorvalidation)
 if getipvalidation and getvendorvalidation:
 print ("Device "+ip+" has passed all validations and eligible for BYOD")
 print ("\n\n")
 else:
 print ("Device "+ip+" has failed validations and NOT eligible for BYOD")
 print ("\n\n")

The output for the previous code is as follows:

We parse two devices and, using open source SNMP, get the vendor and interface info. Next, we validate, and based upon our conditions we return a True or False. A true condition for all checks results in acceptance of the device as BYOD.

Let's change the rule a bit. Let's say if any device has an Ethernet interface, then it is not eligible for BYOD:

from pysnmp.hlapi import *
from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()

def validateinterface(ip):
 errorIndication, errorStatus, errorIndex, varBindTable = cmdGen.bulkCmd(
 cmdgen.CommunityData('public'),
 cmdgen.UdpTransportTarget((ip, 161)),
 0,25,
 '1.3.6.1.2.1.2.2.1.2',
 '1.3.6.1.2.1.2.2.1.7'
)
 flag=False
 # Check for errors and print out results
 if errorIndication:
 print(errorIndication)
 else:
 if errorStatus:
 print('%s at %s' % (
 errorStatus.prettyPrint(),
 errorIndex and varBindTable[-1][int(errorIndex)-1] or '?'
)
)
 else:
 for varBindTableRow in varBindTable:
 for name, val in varBindTableRow:
 if ((val.prettyPrint()).startswith("Ethernet")):
 return False
 if ("FastEthernet0/0" in val.prettyPrint()):
 flag=True
 if (flag):
 return True
 else:
 return False

def finddevice(ip):
 errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData('public', mpModel=0),
 UdpTransportTarget((ip, 161)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)

 if errorIndication:
 print(errorIndication)
 elif errorStatus:
 print('%s at %s' % (errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex) - 1][0] or '?'))
 else:
 for varBind in varBinds:
 if ("Cisco" in varBind.prettyPrint()):
 return True
 return False

mybyoddevices="192.168.255.249,192.168.255.248"
mybyoddevices=mybyoddevices.split(",")
for ip in mybyoddevices:
 getvendorvalidation=False
 getipvalidation=False
 print ("Validating IP",ip)
 getipvalidation=validateinterface(ip)
 print ("Device has No Ethernet only Interface(s) :",getipvalidation)
 getvendorvalidation=finddevice(ip)
 print ("Device is of vendor Cisco:",getvendorvalidation)
 if getipvalidation and getvendorvalidation:
 print ("Device "+ip+" has passed all validations and eligible for BYOD")
 print ("\n\n")
 else:
 print ("Device "+ip+" has failed validations and NOT eligible for BYOD")
 print ("\n\n")

The output for the previous code is as follows:

As we can see in this example, we validated for any interface that starts with the Ethernet keyword. The string.startswith("given string") function is used to evaluate if any given string is at the start of the string that it is being compared with. In our case, the device with the IP 192.168.255.248 had an Ethernet-only interface, which returned the value True for validation the Ethernet-only interface. As this is considered a failure for our validation, a False was returned, and the script calls it out as a BYOD acceptance failure because this specific condition has failed.

In a similar way, we can validate and ensure multiple checks on on any number of devices, and ensure only those that pass the BYOD framework checks are accepted in the network.

 Summary

In this chapter, we looked at various complex scenarios to see how new site migrations and validations are performed. We also looked at the concepts of multi-vendor configurations, creating templates, and generating configs for devices, and also IPv4 to IPv6 migration techniques.

We focused on specialized extraction of particular data, such as an IP addresses, validations of that data, and conditions of failure or acceptance of the data. Additionally, site rollouts and BYOD strategies were discussed, along with best practices such as t-shirt size and validations of BYOD conditions.

In the next chapter, we will go deeper and introduce the web-enabled framework. This will help us create our own APIs and create browser-based Python scripts that can be executed from anywhere.

 Web Framework for Automation Triggers

As we move on and get better at understanding the coding techniques and Python, the next step is to ensure that scripts are executed without the end users actually running the code locally, and ensure a platform or OS independent approach in code execution. This chapter focuses on putting our scripts on a web platform. We will cover the following topics:

	Creating a web accessible script with examples

	Accessing the script from HTML/dynamic HTML

	Understanding and configuring the environment for the web framework using IIS

	The basics of APIs and creating a sample API using C#

	Using the API in Python

	Creating a task to understand the full end-to-end functionality of a web framework

 Why create web-based scripts/frameworks?

A web framework is a collection of scripts, hosted on a web platform such as Internet Information Services (IIS) (on Windows) or Apache (on Linux), and calling the same script using front-end web-based languages such as HTML.

There are times when people ask why we want to migrate our current scripts or create scripts on a web framework. The answer is very simple. A web framework ensures that our scripts are used by multiple end users using just the browser. This gives the programmer the independence to code the script on their preferred platform (such as Windows or Linux), and people can use the scripts on their choice of browser. They don't need to understand how you have written the code, or what you are calling or using in the back-end, and of course, this ensures that you prevent your code from being directly visible to end users.

Let's say you have written a script that calls four or five libraries for specific tasks. There are general libraries, but as we have seen in previous chapters, some specific libraries need to be installed for the tasks. In this case, if you want to ensure that end users can execute your script, they need to install the same libraries on their machines. Also, they need to be running a Python environment on their machines, without which the scripts would not run. So, to run a small script of let's say five lines, users need to customize their environment by installing Python, installing libraries, and so on.

This might not be feasible for a lot of users because of restrictions on their machines (such as installation not being allowed), so even though there is a requirement to run the scripts for those users, they would be unable to use the scripts, which would effectively lower efficiency. But the same users, if given the option, could easily open the browser of their choice and use those scripts like opening any other web page, which would ensure that our scripts bring greater efficiency to the tasks.

 Understanding and configuring IIS for web framework

Here we are going to focus on what IIS is and how to configure it, to ensure our Python scripts are executed by harnessing the power of a web server framework.

 Understanding IIS

IIS is a tool available on Windows that is used to host web services. In other words, if we install IIS we ensure that the machine on which it is installed is now acting as a web server. IIS is a fully functional program that is available from Add or Remove Programs in Windows. It supports the machine becoming a web server, an FTP server, and other things as well.

The following screenshot shows the first screen that appears after IIS is installed and opened using the IIS icon in Windows:

As we can see in the screenshot, the left side of the application indicates the server name, and the right side shows the properties that we can configure for different purposes.

It is important to select Common Gateway Interface (CGI) support when installing IIS from the Windows Add or Remove Programs. After selecting IIS, Windows gives us the option to select specific sub-items in IIS, from which CGI and CGI support is an option. If this option is not selected during installation, the Python scripts will fail to run from the web server.

 Configuring IIS for Python script support

Now, let us configure IIS to ensure it supports execution of Python scripts on the web server itself, and allows end users to directly run Python scripts by calling the web URLs from the web server. The following are the steps to do this:

	As we expand the properties on the left, we see the Default Web Site option. If you right-click on this, there is a section called Add Application. Click on it to see the following screenshot:

In this screen, we have to enter two specific values:

	

	Alias: This is a value that is part of our web URL. For example, http://<servername>/test will be the URL if our selected Alias is test.

	Physical Path: This is the the actual physical directory mapping on which our scripts will reside. For example, our script, testscript.py, has the following path. To call it from the URL we will type the following in our browser:

http://<server IP>/test/testscript.py

Once we have these values, we click on OK and our website reference is created.

	Now we need to map our Python scripts to use the Python interpreter while being executed. Once we create the website, we see an option called Handler Mappings in the right panel. Click on it and open the section as shown in the following screenshot. To add the Python reference, click on Add Script Map... as shown on the right-hand side of the screenshot:

In this section, we fill in three values:

	

	Request path: This is always *.py, because any script we call will have the extension .py.

	Executable: This is an important section where we reference the actual location of python.exe. The full path of python.exe is needed. In addition to the path, we need to add %s twice after the executable file path, because this is interpreted to take arguments passed from IIS. For example, if our path to Python is C:\Python, then we would add the following:

C:\Python:\python.exe %s %s

	

	Name: This is simple reference name for the current settings that we have configured. It can be any name of your choice.

	There is a button called Request Restrictions inside the Add Script Map section. We need to click on that button, and under Access, select the Execute option and click OK:

	Once we click OK, a prompt comes from IIS to allow the extension. We need to select Yes for the settings to be effective:

	As the final step, we select the newly created script map (Python in our case) and click on Edit Feature Permissions... on the right-hand side. In the dialog box, select the Execute option and click OK:

Once all of the preceding steps are followed, we have a running environment that supports the execution of Python scripts from a web browser.

Once the web server is running, you can test to ensure that it is configured correctly by invoking the default page on the web server itself. This is done using the http://localhost URL from the browser, which should show the Welcome IIS page. If this does not show up, then we need to go back and validate the web server installation because it means that web server is not up and running.

 Creating web-specific scripts

Now that we have a running environment that's ready to run our scripts, let's create a very basic script to take a look at how it works:

print('Content-Type: text/plain')
print('')
print('Hello, world!')

On IDLE, we type the preceding code and save it as a Python file (such as testscript.py). Now, as we discussed earlier, for our web reference we mapped a physical directory or location in IIS. The newly created testscript.py needs to be in that folder to be accessible from the web.

The output of the web based URL call for Python script is as follows:

	As we can see in the preceding screenshot, the script is now called from the browser using the localhost URL. The output is a simple Hello, world ! that was called to be printed in script code.

	Additionally, the value Content-Type: text/plain specifies that the return values from Python will be simple text that the browser will interpret as plain text rather than HTML.

Now let's look at an example of modifying it to HTML:

print('Content-Type: text/html')
print('')
print("Hello, world!")

The output of the URL with modified values is as follows:

As we can see, the first line of the code has been modified to Content-Type: text/html. This ensures that the text now being returned from the script is HTML, and hence the last print statement, with font color as red and world! in bold html tag is being interpreted correctly in the browser. In real-life scenarios, if we want to print a pass, fail, or any other specific message or output from our scripts, we should return the values in HTML color-coded and bold formats so that they are clearly readable in the browser.

Let's see an example of printing a table of 5 in a tabular format in HTML:

print('Content-Type: text/html')
print('')
value=5
xval=0
tval="<table border='1' style='border-collapse: collapse'><tr><th>Table for "+str(value)+"</th></tr>"
for xval in range(1,11):
 mval=value*xval
 tval=tval+"<tr><td>"+str(value)+"</td><td>*</td><td>"+str(xval)+"</td><td>=</td><td>"+str(mval)+"</td></tr>"

tval=tval+"</table>"

print(tval)

The output of the preceding code is as follows:

	As we can see, the first line indicates the return type as HTML. In the next few lines, we take a variable named value with a value of 5. Using a for loop, we create the HTML table and its values (for each row and cell) in a tval variable.

	The final statement returns the value of the tval variable to the browser where we called the script.

Getting deeper into this example, now let's create the same table, but the number needs to be provided by the web user in the URL. In other words, rather than sticking to the static value of 5 in our example, the table needs to be generated for the value that is entered by the user in the URL:

import cgi

form = cgi.FieldStorage()
value=int(form.getvalue('number'))

print('Content-Type: text/html')
print('')
xval=0
tval="<table border='1' style='border-collapse: collapse'><tr><th>Table for "+str(value)+"</th></tr>"
for xval in range(1,11):
 mval=value*xval
 tval=tval+"<tr><td>"+str(value)+"</td><td>*</td><td>"+str(xval)+"</td><td>=</td><td>"+str(mval)+"</td></tr>"

tval=tval+"</table>"

print(tval)

The output of the preceding code is as follows:

	As we can see in the change in the URL, we pass the number using the enhanced URL http://localhost/test/testscript.py?number=8. The value specified after the question mark, which is referenced as the value passed to the parameter number, is now taken as an input in the script. The code now imports a specific inbuilt library called cgi to read the parameters passed to itself from the browser.

	These are next two lines:

form = cgi.FieldStorage()
value=int(form.getvalue('number'))

They are used to take a reference of the form as returned from the browser, and from the form, the specific parameter named number. The parameter returned is always in string format, so we need to ensure it is converted to our specific datatype depending on our usage.

	The value variable now has the number that we passed from the browser, and the rest of the script is executed in the same manner given in previous examples.

As we can see in the preceding examples, the end user is now only calling the script with specific values based upon their needs, and is not concerned about the back-end logic or program. For the developer, if there is a bug identified in the script, the fix can be done on the main web server as soon as the end users start getting correct results. This also saves a lot of effort compared to users downloading the new fixed script from a specific location on their machines and then running it on their own. Sometimes, even calling the script from the browser with parameters becomes a bit tough. In this case, we use form tags in HTML to pass values to scripts to fetch outputs.

For example, ask the user for their name, the number for which the table needs to be generated, and output the generated table in a friendly manner with the caller's name in the output. Here's the HTML code:

<html>
<form action="testscript.py" method="get">
 Enter your name:

 <input type="text" name="name">

 Enter your number:

 <input type="text" name="number">

 <input type="submit" value="Submit">
</form>
</html>

Here's the Python code:

import cgi

form = cgi.FieldStorage()
value=int(form.getvalue('number'))
callername=form.getvalue('name')

print('Content-Type: text/html')
print('')
xval=0
tval="<h2>Hello "+callername+"<h2>
<h3>Your requested output is below:</h3>"
tval=tval+"<table border='1' style='border-collapse: collapse'><tr><th>Table for "+str(value)+"</th></tr>"
for xval in range(1,11):
 mval=value*xval
 tval=tval+"<tr><td>"+str(value)+"</td><td>*</td><td>"+str(xval)+"</td><td>=</td><td>"+str(mval)+"</td></tr>"

tval=tval+"</table>"

print(tval)

The output of the preceding code is as follows:

HTML Page

Using the HTML code, we create a form that takes the input needed for our script. In this case, it asks for a name and the number from which the table needs to be generated. Once the user enters this information, the Submit button needs to be clicked for the values to be passed to the script:

Script Output

As the user clicks on the Submit button, the values are passed to the script. In the code, we get the values using the same form.getvalue() method for each of the HTML elements. Once the script has the values fetched from the browser, the script logic takes care of what needs to be returned. In our case, as we can see in the example, the username has been displayed in the browser, along with the table that the user wanted to see as the output.

Let's take an example in which we type in the IP address of a device and the command that we want to see from the device, using the form and browser output. Here's the HTML code:

<html>
<form action="getweboutput.py" method="get">
 Enter device IP address:

 <input type="text" name="ipaddress">

 Enter command:

 <input type="text" name="cmd">

 <input type="submit" value="Submit">
</form>
</html>

In this code, the only difference is that now we are calling the getweboutput.py script, into which we are sending the parameters of the device IP address (for the device from which we want the output), and the actual command. Here's the Python code:

import cgi
from netmiko import ConnectHandler
import time

form = cgi.FieldStorage()
ipvalue=form.getvalue('ipaddress')
cmd=form.getvalue('cmd')

def getoutput(cmd):
 global ipvalue
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=ipvalue, username=uname, password=passwd)
 output=device.send_command(cmd)
 return (output)

print('Content-Type: text/plain')
print('')
print ("Device queried for ",ipvalue)
print ("\nCommand:",cmd)
print ("\nOutput:")
print (getoutput(cmd))

The Python code is now taking the input parameter of ipaddress for the device IP, and cmd for the actual command that needs to be sent to the router. It again uses Netmiko, as in Chapter 2, Python for Network Engineers, to fetch the information and return it using the getoutput() function:

Sample 1: We provide the IP address and the command show clock:

Landing page

Click on the Submit button:

Sample 2: For the same script with different parameters provided:

Landing Page

This is the output when the Submit button is clicked:

As we saw, we can create a web-based query tool to fetch information from devices with specified commands, which can act as a quick reference for device validations. Additionally, with this methodology we are also hiding our username and password (cisco:cisco in this case) without exposing the device credentials to end users. The end user is only providing inputs on the web page, and is unaware of the code that is being executed at the back-end, which has the device credentials.

We can even have additional checks to ensure that users can only run show commands and display appropriate messages depending on the various commands users will try to call on the web page.

 Accessing a script from dynamic HTML

There are times when we run a Python script to create dynamic HTML pages (which are based upon certain triggers that we put in the script). These pages can be enhanced to add additional URLs to invoke other scripts when we click on those pages.

As an example, let's say we need to find out how many models of devices are in our network. For this we create a script, schedule it to run every hour with the task scheduler, and after each run a dynamic HTML page is created to show the updated stats or inventory. In a BYOD scenario, this also plays an important role, because each hour we can monitor what devices are on our network, and if we click on any of the discovered devices, we can get additional information such as a detailed show version.

Here's the Python code to create the dynamic HTML:

from pysnmp.hlapi import *

print('Content-Type: text/html')
print('')

def finddevices(ip):
 errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData('public', mpModel=0),
 UdpTransportTarget((ip, 161)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)

 if errorIndication:
 print(errorIndication)
 elif errorStatus:
 print('%s at %s' % (errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex) - 1][0] or '?'))
 else:
 for varBind in varBinds:
 xval=(' = '.join([x.prettyPrint() for x in varBind]))
 xval=xval.replace("SNMPv2-MIB::sysDescr.0 = ","")
 xval=xval.split(",")
 return (xval[1])

ipaddress="192.168.255.248,192.168.255.249"
ipaddress=ipaddress.split(",")
tval="<table border='1'><tr><td>IP address</td><td>Model</td></tr>"
for ip in ipaddress:
 version=finddevices(ip)
 version=version.strip()
 ahref="http://localhost/test/showversion.py?ipaddress="+ip
 tval=tval+"<tr><td>"+ip+"</td>"

 tval=tval+"<td>"+version+"</td></tr>"

tval=tval+"</table>"
print (tval)

The output of the preceding code is as follows:

The preceding code creates the dynamic HTML shown in the previous screenshot. It queries the vendor from SNMP for the given IP addresses, and creates the table based upon the values. The blue color in the IP addresses denotes the hyperlink, which, when clicked, will result in the output as shown here:

Here's the Python code for the output of show version:

import cgi
from netmiko import ConnectHandler
import time

form = cgi.FieldStorage()
ipvalue=form.getvalue('ipaddress')

def getoutput(cmd):
 global ipvalue
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=ipvalue, username=uname, password=passwd)
 output=device.send_command(cmd)
 return (output)

print('Content-Type: text/plain')
print('')
print ("Device queried for ",ipvalue)
print ("\nOutput:")
print (getoutput("show version"))

As we can see in the URL, when the user clicked on the main dynamic HTML page, it invoked another script (the one that was listed earlier) that takes the input parameter of the IP address from the URL and, using Netmiko, fetches the version of the device.

Similarly, we can gather other stats, such as CPU, memory, a routing summary, and other tasks for each of the devices quickly using the web framework approach.

 Creating the backend API in C#

As we move ahead, there are times when as a developer we not only need to consume APIs, but create our own APIs for others to use. Even if we find recurring usage of some functions, keeping in mind web framework strategy, we need to ensure that instead of simply creating functions for that task, we need to convert them to APIs. A big advantage of that is that the usage of our function or task will then not be limited only to Python, but it can be used in any scripting language or web language.

Here we will see a very basic approach to creating a functional API to say Hello World in C#. As a prerequisite, we will need IIS to run the web services, and Visual Studio (Community edition is free to use) to create our own API. Later on, we will see how to consume that API in Python.

Additionally, we will ensure that the return value is in the JSON format, which is the industry standard for API communication, replacing XML.

	Invoke the C# Web project in Visual Studio:

	Select the Web API checkbox in the next screen shown as follows:

	Add the Controller (this is the main component that will ensure the API framework is active):

	Give a meaningful name to the controller. Note, the name must be followed by the word Controller (example testController), otherwise the controller will not function and the API framework will be broken:

	Once the controller is added, under the WebApiConfig.cs file add the new JsonMediaTypeFormatter() config, as shown in the next screenshot. This ensures that every output returned from the API will be in JSON format:

	In the main apitestController.cs program, return the value Hello World once the Get method is called:

	Once done, click on the Run button that is available in the Visual Studio application. A screen similar to the following screenshot will be opened, which ensures that the local IIS server is being invoked and the application is initialized for testing:

	Once the application is loaded, a URL similar to the following will confirm our API is working fine. Note that, at this point, the local IIS Express is being used and the API is still not published for external use:

	Once validated, now we need to publish this to our IIS. Similar to what we did earlier, we create a new application in IIS (named apitest in our case):

	Once the IIS mapping has been done, we use Visual Studio to publish our API project to this web folder:

	We create a web Publish profile, and publish it to the local folder that we mapped to our IIS:

	Our API is ready to be used. We can validate it by going to http://localhost on our browser:

 Consuming the API in Python

Now, as we have the API created, let us see how to consume the API in Python.

The code is as follows:

import requests
r = requests.get('http://localhost/apitest/api/apitest/5')
print (r.json())

The output for the preceding code is as follows:

For API interaction, we use the requests library in Python. When we perform a call to the API, the API returns the string in JSON format. The r.json() method converts the returned JSON to extract the text value and displays the output as Hello World.

In a similar way, we can use the requests library to fetch API results from various web-based API calls. The result is generally in XML or JSON format, with JSON being the preferred return method for the API calls.

Let us see another example to fetch some more JSON from GitHub:

import requests
r = requests.get('https://github.com/timeline.json')
jsonvalue=r.json()
print (jsonvalue)
print ("\nNow printing value of message"+"\n")
print (jsonvalue['message']+"\n")

The output for the preceding code is as follows:

As we now call the GitHub API, we get the JSON value as shown previously. As we can see, the return value is like a dictionary in the JSON return data of the API call, so we can explicitly get the text inside the message dictionary key. In the preceding output, the first output is the raw JSON return value, and the next output is the extracted text from the message key.

In addition to calling the standard APIs, there are times when we need to pass credentials to the API to fetch information. In other words, there needs to be an authentication in place for the APIs to respond with requested data. In our API, let us now enable basic authentication from IIS:

	In the IIS, select your website (apitest in our case), and under the Authentication section, select Basic Authentication:

This ensures that any request that calls this API needs to have basic authentication (a username and a password) to access the content. Additionally, we create a simple user testuser with a password testpassword in the Users application on a Windows machine.

	Since authentication is now enabled, let us see what we get if no credentials are passed:

import requests

r = requests.get('http://localhost/apitest/api/apitest/5')
print (r)

The output for the preceding code is as follows:

We get a Response [401], which means unauthorized access in a HTTP call. In other words, the API call is unauthorized and hence no output will be given back.

	Next, we see the same call, but this time with authentication:

import requests
from requests.auth import HTTPBasicAuth
r = requests.get('http://localhost/apitest/api/apitest/5', auth=('testuser', 'testpassword'))
print (r)
print (r.json())

The output for the preceding code is as follows:

In this case, we call the authentication method HTTPBasicAuth, and pass the username and password in the requests.get call. As we have provided the correct credentials, we get back a Response [200], which is OK in HTTP, and in the last line we print the output of the returned value, which in our case is Hello World.

 Sample summary task

As we are now familiar with the web framework, let us perform a task that covers all the aspects that we saw earlier:

	We write a HTML page that asks for the username and password from the user. Those values will be passed into a Python script which will call the API that we created earlier to authenticate. If the return value is authorized, then we display the IP addresses of the devices that we want to view the additional information for on another web page.

	Next, the user can click on any of the IP addresses to view the show ip int brief output. If the authorization fails, the script returns the message Not Authorized and will not display the IP addresses. For reference (valid set of username and password):

	Username: Abhishek

	Password: password

HTML Code is as follows:

<html>
<form action="validatecreds.py" method="post">
 Enter your name:

 <input type="text" name="name">

 Enter your password:

 <input type="password" name="password">

 <input type="submit" value="Submit">
</form>
</html>

We have used the POST method in this case, since the password will be shown in clear text on the browser URL if we use the default GET method. In the POST method, there is a separate connection made at the back-end, and the URL does not show the values that are being passed on to the script.

The Python code is as follows:

import cgi, cgitb
import requests
from requests.auth import HTTPBasicAuth

form = cgi.FieldStorage()
uname=form.getvalue('name')
password=form.getvalue('password')

r = requests.get('http://localhost/apitest/api/apitest/5', auth=(uname, password))

print('Content-Type: text/HTML')
print('')
print ("<h2>Hello "+uname+"</h2>")

htmlform="<form action='showoutput.py' method='post'>"
htmlform=htmlform+"
<input type='radio' name='ipaddress' value='192.168.255.248' /> 192.168.255.248"
htmlform=htmlform+"
<input type='radio' name='ipaddress' value='192.168.255.249' /> 192.168.255.249"
htmlform=htmlform+"
<input type='submit' value='Select IPaddress' /></form>"

if (r.status_code != 200):
 print ("<h3>Not Authorized. Try again!!!!</h3>")
else:
 print ("<h3>Authorized. Please select from list below:</h3>")
 print (htmlform)

	In case of incorrect credentials (credentials that are not valid, like dummy credentials) being provided:

When we click on Submit button, it will display the message as shown in the following screenshot:

	In case of correct credentials (that are correct and authenticated successfully at web server):

When we click on Submit button:

	Next, we see the IP addresses, which we can now use to get the output. We select the IP address that we want to use and click on Select IPaddress:

Once we click on Submit (or the Select IPaddress button), we get the following output:

Again, if we look at the preceding output URL, since we used the POST method for this selection, we only see the script but not the parameters that were passed in the URL. This ensures that people need to go from the landing page (in our case, main.html), and cannot directly call any URL with parameters that could have been given if we were using the GET method.

By doing this, we are also ensuring that end users executing this follow a step-by-step selection, and are not jumping from one URL to the other without performing the sequential steps.

In a similar manner, end users can create their own APIs to fetch information such as bulk device names and IP addresses, and can use that information in their script to create front-end, back-end, or web-enabled scenarios quickly accessible from any browser without the need for any end user installations.

 Summary

We have now understood the web framework and with relevant examples, the usage of APIs. This includes how to create an API, access APIs, and even work with authentication on APIs. Using this knowledge, we will now be able to develop web based tools for end users. The IIS functionality has also been introduced, which helps developers to customize various web-based settings such as authentications, authorizations, and creating websites.

Additionally, with a fully functional example of a given scenario, readers can quickly build web-based Python scripts, which remove the need for any end user installations of Python and customized libraries. This makes support and bug fixing much easier, owing to having a single machine to fix. A fix done on the server will ensure that all end users will now be using the fixed or enhanced functions of the script, rather than downloading a local copy on their machines to get the fixed or enhanced script.

In the next chapter, we will introduce the use of Ansible, which is a popular open source automation platform.

 Ansible for Network Automation

In this chapter, we will see the use of a popular network automation tool called Ansible. This chapter will guide you through the basics of Ansible, including installation and basic configurations, and will give examples of how to perform tasks related to network automation from Ansible.

This will cover various terminologies and concepts used in Ansible, examples, executions using Ansible, some use cases like using Ansible to create configurations for various devices based upon the templates, and how to fetch some information about the managed nodes from Ansible.

This chapter will introduce readers to:

	Overview and installation of Ansible

	Understanding programming concepts of Ansible

	Playbooks

	Use case scenarios for Ansible

 Ansible overview and terminology

Ansible is an automation tool or platform, which is available as open source, and used to configure devices such as routers, switches, and various types of servers. Ansible's primary purpose is to configure three main type of tasks:

	Configuration management: This is used to fetch and push configs on various devices that we call as inventory in Ansible. Based upon the type of inventory, Ansible is capable of pushing in bulk specific or full configs.

	Application deployment: In server scenarios, many a time we need to bulk deploy some specific applications or patches. Ansible takes care of that as well as bulk uploading patches or applications on the server, installing on them, and even configuring the applications of a particular task. Ansible can also take care of customizing settings based upon the devices in the inventory.

	Task automation: This is a feature of Ansible that performs a certain written task on a single device or a group of devices. The tasks can be written and Ansible can be configured to run those tasks once or on a periodic basis.

Another powerful feature of Ansible is IT or infrastructure orchestration. To explain this in detail, let us say we need to code upgrade certain routers or network devices. Ansible can perform sequential steps to isolate the particular router, push code, update code, and then move on to next router based upon the return values of the previous result or task.

 Basic requirements of Ansible

Ansible is very easy to install and set up. It works on a controller and managed nodes model. In this model, Ansible is installed on a controller, which is a Linux server, and has access to all the inventory or nodes that we want to manage. As we have seen, Ansible is supported on Linux (there is a beta version out there for the Windows controller but it's not yet fully supported), and it relies on the SSH protocol to communicate with nodes. So, apart from the configuration of the controller, we need to ensure the nodes that are going to be managed are SSH capable.

There is an additional requirement of Python being installed on the managed nodes, since multiple Ansible modules are written in Python and Ansible copies the module locally to the client and executes it from the node itself. In servers running Linux this is already met, however, in network devices such as Cisco IOS, this might not be a possibility as Python is not available on the Cisco node.

To overcome this limitation, there is something called a raw module that executes raw commands, like show version to fetch the output from the Cisco device. This might not help a lot, but there is another way in which Ansible can be made to run its modules on the server itself, rather than executing those modules on the client (or managed node). This ensures that modules use the resources of the Ansible server (including Python), and they can call the SSH or HTTP APIs of Cisco vendors to perform tasks that are configured locally on the server. Even SNMP can also be used for devices that don't have a good set of APIs (such as Cisco IOS), to perform our tasks.

As we have seen earlier, SNMP can be used in both read and write mode, so using Ansible and running the module locally, we can even configure old IOS devices with the assistance of the SNMP protocol.

 Installation of Ansible

An Ansible controller (the main component that manages the nodes), is supported on multiple flavors of Linux, but it cannot be installed on Windows.

For managed nodes, the core requirement is anything with Python 2.6 and above. Additionally, since Ansible uses SSH to communicate with managed nodes, the node must be able to be accessed from SSH. For any file transfers, the default is SSH File Transfer Protocol (SFTP), but there is always an option to use scp for the default file transfer protocol. This being said, as mentioned earlier, if Python installation is not possible, then we would be using the raw modules of Ansible running from the server itself.

Going back to controller machine installation, Python 2 (2.6 or above) needs to be installed. In our case, we are using Ubuntu as our OS, hence our focus would be on working with Ansible using Ubuntu as the underlying OS. A way of installing Ansible is to use the Advanced Packaging Tool (APT) in Ubuntu. The following commands will configure the Personal Package Archives (PPA) and install Ansible.

Here are the basic commands, in the same order they are needed for the installation of Ansible:

$ sudo apt-get update
$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install ansible

In our case Ansible is already installed. Here is a sample output that we get if we run the command sudo apt-get install ansible again. In this case if there is a new update available, Ansible will upgrade to the latest version, otherwise it would exit out of the command stating that we already have the newest version as shown in the following screenshot):

Another way of installing Ansible is by using our well known Python library installation command pip. The command for this will be:

pip install --user ansible

Once the installation is done, here is the information about the folder:

The hosts file is the inventory file where we add our managed nodes to be controlled by Ansible. ansible.cfg is the actual configuration file used to tweak Ansible parameters. Once the installation is done, we need to add some nodes in the hosts file. In our case as a fresh installation, we need to add our localhost (127.0.0.1). This node is accessible from SSH with the username abhishek and password abhishek.

Here is a sample output of our /etc/hosts file:

The line 127.0.0.1 ansible_connection=ssh ansible_user=abhishek ansible_ssh_pass=abhishek is where we specify the parameters that are needed to access this system.

We can use any text editor (in our case we are using nano or the vi editor) to add or modify the changes to these files. To modify the hosts file, we use the following command:

$ sudo nano /etc/ansible/hosts

The next step is to verify the accessibility/reachability of the nodes that we added into the hosts file, which can be done using the ansible all -m ping command as shown in the following screenshot:

As we can see in the previous screenshot, the command ansible all -m ping pings all the configured nodes in the hosts file and responds with a ping. Additionally, in the same output, if we use the command ansible all -m ping --ask-pass, this asks for a password to be accessed for that particular node. In our case, we give the password, and then we get the response back. Now, you might ask: I am performing a simple ping, so what is the need for SSH now in this case?

Let us add the global DNS server (4.2.2.2) in our hosts file and then test it as shown in the following screenshot. As mentioned earlier, we invoke the nano editor using sudo nano /etc/ansible/hosts:

Once done, we try to perform the same ping test again:

What do we see now? Even though I can easily ping 4.2.2.2 from my machine, Ansible returns the value of false, since Ansible first tries to log in to the device using SSH and then tries to ping the IP. In this case, 4.2.2.2 SSH is not open, and we get a failure message for that specific IP address from Ansible. Additionally, we can group the managed objects under a specific name, such as routers, switches, servers, or whatever name we like in the hosts file.

Consider the following example:

We group our current IPs (localhost and 4.2.2.2) under a new group, myrouters. We go back and modify the file /etc/ansible/hosts for this:

Notice the addition of the myrouters group in the file. Once we save it, let's now use the group to perform a ping task:

As we see now, instead of pinging all, we just ping the group myrouters, which in our case is the loopback IP and 4.2.2.2.

Of course, results will be the same as earlier, but now we have the added flexibility of ensuring that we perform our tasks based upon either individual nodes or a group of nodes under a specific name.

 Introduction to ad hoc commands

Ad hoc commands in Ansible are used to perform tasks or operations that are needed on an ad hoc basis or only once based upon the requirement. In other words, these are tasks that a user wants to be performed on the fly but doesn’t want to be saved for later use. A quick example of an use case for Ansible ad hoc commands could be to quickly fetch the version information of the group of managed nodes for some other use as a one time task. As this is a quick information need and does not need to be repeated, we would use an ad hoc task to perform this request.

As we proceed with the chapter, there will be some additional switches (extra options that we pass to Ansible commands), that would be introduced based upon the requirements. Invoking the ansible command only will produce all the values that can be passed as options or parameters:

Some examples of ad-hoc commands are as follows:

	 Let us say we need to ping the same set of devices, but now in parallel (the default is sequential but to make tasks faster, we would use parallelism in our approach):

ansible myrouters -m ping -f 5

	If we want use a separate username instead of the default configured one:

ansible myrouters -m ping -f 5 -u <username>

	If we want to enhance the session (or use sudo or root):

ansible myrouters -m ping -f 5 -u username --become -k (-k will ask for password)

For a separate username, we use the --become-user switch.

	For executing a specific command, we use the -a option (Let us say we want to fetch the show version of the routers in myrouters list in a parallel method):

ansible myrouters -a "show version" -f 5

The 5 is the default value for number of parallel threads, but to change this value again, we can modify it in the Ansible configuration file.

	Another example is to copy a file from source to destination. Let us say we need to copy a file from the current source to multiple servers that are under, let's say, the servers group:

ansible servers -m copy -a "src=/home/user1/myfile.txt dest=/tmp/myfile.txt"

	We want to start the httpd on the web servers:

ansible mywebservers -m service -a "name=httpd state=started"

In reverse, if we want to stop the httpd:

ansible mywebservers -m service -a "name=httpd state=stopped"

	As another important example to look at, let us say we want to run a long running command like show tech-support, but do not want to wait for it in the foreground. We can specify a timeout (600 seconds in our case) for this:

ansible servers -B 600 -m -a "show tech-support"

This would return a jobid that can be referred later on for the update. Once we have the jobid, we can check the status of that particular jobid using the command given as follows:

ansible servers -m async_status -a "jobid"

	There is an additional command that provides all the information about a particular node that Ansible can fetch and work upon:

ansible localhost -m setup |more

The output to view the facts on the local machine (localhost) is as follows:

	Another ad hoc command that is commonly used is the shell command. This is used to control the overall OS, or shell, or root scenarios. Let us see an example to reboot the managed nodes in the servers group:

ansible servers -m shell -a "reboot"

If we want to shut down the same set of servers instead of reboot:

ansible servers -m shell -a "shutdown"

This way, we can ensure that using the ad hoc task we can quickly perform basic tasks on individual or groups of managed nodes to quickly get results.

 Ansible playbooks

Playbooks are simply a set of instructions that we create for Ansible to configure, deploy, and manage the nodes. These act as guidelines, using Ansible to perform a certain set of tasks on individuals or groups. Think of Ansible as your drawing book, playbooks as your colors, and managed nodes as the picture. Taking that example, playbooks ensure what color needs to be added to which part of the picture, and the Ansible framework performs the task of executing the playbook for the managed nodes.

Playbooks are written in a basic text language referred to as YAML Ain't Markup Language (YAML). Playbooks consist of configurations to perform certain tasks on managed nodes. Additionally, playbooks are used to defined a workflow in which, based upon conditions (like different type of devices or different type of OS), specific tasks can be executed, and validations can be performed based upon the results retrieved from task executions. It also combines multiple tasks (and configuration steps in each task) and can execute those tasks sequentially, or in parallel against selective or all managed nodes.

Good information about YAML can be referenced here:

https://learn.getgrav.org/advanced/yaml

At a basic level a playbook consists of multiple plays in a list. Each play is written to perform certain Ansible tasks (or a collection of commands to be executed) on a certain group of managed nodes (for example myrouters, or servers).

From the Ansible website, here is a sample playbook:

- hosts: webservers
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: test connection
 ping:

In this example, there are certain sections that we need to understand:

	hosts: This lists the group or managed nodes (in this case webservers), or individual nodes separated by a space.

	vars: This is the declaration section where we can define variables, similar to how we define them in any other programming language. In this case http_port: 80 means the value of 80 is assigned to the http_port variable.

	tasks: This is the actual declaration section on what task needs to be performed on the group (or managed nodes) that was defined under the - hosts section.

	name: This denotes the remark line used to identify a particular task.

Using this example, let us create our playbook to ping our managed nodes in earlier examples:

- hosts: myrouters
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: test connection
 ping:

To create the config, we type:

nano checkme.yml

In the editor, we copy and paste the previous code, and save it. For execution , we can use the --check parameter. This ensures that on the remote systems, if there is a change intended to be performed in the playbook, it will be simulated locally and not actually executed on the remote systems:

ansible-playbook checkme.yml --check

The output for execution of the preceding given command is as follows:

As we see in the preceding output, a simulation of our playbook checkme.yml was performed and the results were displayed in the PLAY RECAP section.

Another example is if we want to call specific tasks based upon our initial results. In Ansible, we use handlers to perform that task. In a play, we create a task that can perform notify actions based upon any changes from that task. These actions are triggered after all the tasks are completed through a handler. In other words, after all the tasks in a play are completed, only then will the handlers condition be triggered (for example, rebooting a server if all the configuration tasks are completed).

Handlers are simply another type of tasks, but referenced by a globally unique name and executed only when called by notify:

- hosts: myrouters
tasks:
 - name: show uptime
 command: echo "this task will show uptime of all hosts"
 notify: "show device uptime"
handlers:
 - name: show variables
 shell: uptime
 listen: "show device uptime"

As we can see in the preceding example, the task is executed on myrouters, which calls notify to perform a handler task. The -name in handlers depicts the handler name that the task will be calling.

Ansible is case-sensitive (for example: two variables named x and X will be different).

Once the notified handler is called, the shell: uptime command will run the uptime command on the remote shell and fetch the output to be displayed. The listen command under a handlers section is also an alternate or a more generic way of calling the specific handler. In this case, the notify section can call the specific handler under handlers , which matches the listen declaration with the notify declaration (for example, in our case notify : "show device uptime" will call the specific handler that is listening to the command show device uptime, which in this case is defined by -name as show variables) , instead of calling the - name declaration under handlers that we currently see in config.

The Ansible playbook (showenv.yml in this case) needs to be invoked with a -v switch to see the verbose output where verbose output is an output where we can see all the activities as they are happening by execution rather than just displaying only the final result).

	The output without the -v command(verbose output is not enabled) is as follows:

	The output with the -v command (verbose output is enabled) is as follows:

In the preceding screenshot, notice the output of the uptime command in playbook execution (from the preceding screenshot, changed: [127.0.0.1] => {"changed": true, "cmd": "uptime", "delta":") . The verbose output states the output and the command that was executed (in this case uptime), with the values fetched for the managed nodes.

In many cases, if we have created multiple playbooks and want to run them in a master playbook, we can import the created playbooks:

#example
- import_playbook: myroutercheck.yml
- import_playbook: myserver.yml

If we explicitly import certain tasks from a .yml file:

mytask.yml

- name: uptime
 shell: uptime

Looking at the configuration inside main.yml:

tasks:
- import_tasks: mytask.yml
or
- include_tasks: mytask.yml

Similarly, we can call handlers from another .yml file:

extrahandler.yml

- name: show uptime
 shell: uptime

In the configuration of main.yml:

handlers:
- include_tasks: extrahandler.yml
or
- import_tasks: extrahandler.yml

Additionally when we define variables in Ansible, there are some considerations that we need to keep in mind. Variables cannot have special characters (except underscores) or spaces in between two characters or words and should not start with a number or special character.

For example:

	check_me and check123 are good variables

	check-me, check me, and check.me are invalid variables

In YAML, we can create dictionaries using the colon approach:

myname:
 name: checkme
 age: 30

To reference or retrieve any values from this dictionary created with the name myname, we would specify command like: myname['name'] or myname.name.

 Working with Ansible facts

As we saw earlier, we can gather facts about a managed node using the following command:

ansible <hostname> -m setup

For example:

ansible localhost -m setup

Now, as we get the values back (called facts), we can refer to those system variables. Each system variable will hold a unique value based upon each of the managed node that was called under the hosts section:

- hosts: myrouters
 vars:
 mypath: "{{ base_path }}/etc"

The system variables can be called using the {{variable name}}, but in a playbook, they need to be referenced with double quotes.

Let us see an example where we get the value of hostname in our playbook:

- hosts: myrouters
 tasks:
 - debug:
 msg: "System {{ inventory_hostname }} has hostname as {{ ansible_nodename }}"

The output of the playbook to fetch the hostname:

As we can see, in the playbook (in the preceding code), we referred to the {{inventory_hostname}} and {{ansible_nodename}} variables, which results in the output in the msg section: System 127.0.0.1 has host hostname as ubuntutest. Using the same playbook configuration , we can use all or any of the other facts that were retrieved by replacing the system variables in the configuration.

If we want to get additional information from inside the facts, we can refer to the specific values within square brackets:

{{ ansible_eth0.ipv4.address }} or {{ ansible_eth0["ipv4"]["address"] }}.

We can also pass the variable using the command line to the playbook, as in this example:

- hosts: "{{hosts}}"
 tasks:
 - debug:
 msg: "Hello {{user}}, System {{ inventory_hostname }} has hostname as {{ ansible_nodename }}"

The execution command to execute the playbook with passing variables:

ansible-playbook gethosts.yml --extra-vars "hosts=myrouters user=Abhishek"

The output of the command with variables provided during command line execution:

As we see, the value of myrouters was passed to hosts and the value of Abhishek was passed to the user variable. As we see in output of the playbook execution, the msg variable output contains the value of the user variable and the IP address of the host(s) configured in the myrouters group (In this case, the single host is part of this group with the IP address 127.0.0.1).

 Ansible conditions

There are times when we want to execute certain tasks based upon the conditions. when statement is used to determine those conditions and execute the specified task if the condition evaluates to true. Let us take an example to execute the uptime command, if we pass the parameter clock to the variable clock:

- hosts: myrouters
 tasks:
 - shell: uptime
 - debug:
 msg: "This is clock condition"
 when: clock == "clock"

 - debug:
 msg: "This is NOT a clock condition"
 when: clock != "clock"

Execution from command line: With and incorrect value clock123 being passed to clock variable):

ansible-playbook checkif.yml --extra-vars "clock=clock123"

The output of the execution with incorrect values provided:

As we see in preceding output, the message This is NOT a clock condition is executed based upon the value that we passed. Similarly, if we pass the clock variable shown as follows:

ansible-playbook checkif.yml --extra-vars "clock=clock"

The output with correct variable values passed from command line:

The message This is clock condition is now executed based upon the parameter passed. Looking at another example, in a similar way, we can ensure that based upon a certain fact, we can take some action:

- hosts: myrouters
 tasks:
 - shell: uptime
 - debug:
 msg: "This is clock condition on Ubuntu"
 when:
 - clock == "clock"
 - ansible_distribution == "Ubuntu"

 - debug:
 msg: "This is clock condition on Red HAT"
 when:
 - clock = "clock"
 - ansible_distribution == "Red Hat"

As we see, the condition is triggered on the ansible_distribution fact. If the response is Ubuntu, then the first condition is executed, otherwise, based upon Red Hat, the other condition is executed. Additionally, we are also validating if the clock value is clock, when the playbook is being called from command line with clock as the variable passed to the playbook. In the previous code, both the conditions need to be evaluated to true if we want to get that particular result.

 Ansible loops

We can loop for repetitive operations using with_items. Let us see an example where we parse the list and print the values:

- hosts : all
 vars:
 - test: Server
tasks:
 - debug:
 msg: "{{ test }} {{ item }}"
 with_items: [0, 2, 4, 6, 8, 10]

The output of the playbook execution using the preceding code:

As we can see in the preceding screenshot, the iteration prints the value of Server plus the item value in the list for each item in the list. Similarly, for an integer iteration we can perform a loop using the with_sequence command:

- hosts : all
 vars:
 - test: Server
tasks:
 - debug:
 msg: "{{ test }} {{ item }}"
 with_sequence: count=10

Additionally, let us say we want to print values skipping 2 (even numbers from 0 to 10), the same with_sequence command will be written as:

with_sequence: start=0 end=10 stride=2

Sometimes, we also need to pick any random value for performing specific task. The following sample code picks a random value from the 4 options available (in our case, Choice Random 1 till Choice Random 4) and displays it using msg variable:

- hosts : all
 vars:
 - test: Server
tasks:
 - debug:
 msg: "{{ test }} {{ item }}"
 with_random_choice:
 - "Choice Random 1"
 - "Choice Random 2"
 - "Choice Random 3"
 - "Choice Random 4"

This will pick any random value from the list from the given options under the with_random_choice declaration.

 Python API with Ansible

Ansible code can be called using Python, using the Ansible API. Ansible has released version 2.0 of its API for better integration with programming languages. One important aspect to note is that Ansible has extended its capability to support development using Python, but it also suggests on its website that, based upon its own discretion, it can also stop supporting the API (creating or even bug fixing its current API version) framework.

Let us see an example of creating a play with the task of seeing the username from our earlier inventory of myrouters:

#call libraries
import json
from collections import namedtuple
from ansible.parsing.dataloader import DataLoader
from ansible.vars.manager import VariableManager
from ansible.inventory.manager import InventoryManager
from ansible.playbook.play import Play
from ansible.executor.task_queue_manager import TaskQueueManager
from ansible.plugins.callback import CallbackBase

Options = namedtuple('Options', ['connection', 'module_path', 'forks', 'become', 'become_method', 'become_user', 'check', 'diff'])

initialize objects
loader = DataLoader()
options = Options(connection='local', module_path='', forks=100, become=None, become_method=None, become_user=None, check=False,
 diff=False)
passwords = dict(vault_pass='secret')

create inventory
inventory = InventoryManager(loader=loader, sources=['/etc/ansible/hosts'])
variable_manager = VariableManager(loader=loader, inventory=inventory)

create play with task
play_source = dict(
 name = "mypythoncheck",
 hosts = 'myrouters',
 gather_facts = 'no',
 tasks = [
 dict(action=dict(module='shell', args='hostname'), register='shell_out'),
 dict(action=dict(module='debug', args=dict(msg='{{shell_out.stdout}}')))
]
)
play = Play().load(play_source, variable_manager=variable_manager, loader=loader)

execution
task = None
try:
 task = TaskQueueManager(
 inventory=inventory,
 variable_manager=variable_manager,
 loader=loader,
 options=options,
 passwords=passwords,
 stdout_callback='default'
)
 result = task.run(play)
finally:
 if task is not None:
 task.cleanup()

In the preceding code for displaying the username from managed nodes:

	'#call libraries': These are used to initialize the available Ansible API libraries. Some of the important ones are:

	from ansible.parsing.dataloader import DataLoader: This is used for loading or parsing a YAML or JSON format file or value if called

	from ansible.vars import VariableManager: This is used for inventory file location

	from ansible.inventory.manager import InventoryManager: This is used for inventory initialization

	from ansible.playbook.play import Play: This is used for configuring a play

	from ansible.executor.task_queue_manager import TaskQueueManager: This is used for actual execution of the configured play

	# initialize objects: This section initializes the various components, such as the root user, become_user (if any) and other parameters required to run the play.

	# create inventory: This is where we specify the actual inventory location and initialize it.

	# create play with task: This is where we create the task in a similar way that we create the .yml file. In this case, it is to show the hostname for all nodes in the myrouters section of the inventory.

	# execution: This is the execution of the play that we created using the run() method of the task.

The output of the preceding code is as follows:

As we can see, after invoking the Python file, we got the hostname of the localhost defined under the myrouters inventory section in the hosts file (/etc/ansible/hosts).

 Creating network configuration templates

As we are now familiar with the basics of Ansible, let us look at an example in which we generate configs ready to be deployed for some routers. To start with, we need to understand roles in Ansible. Roles are used to create a file structure for Ansible playbooks. Based upon roles, we can group similar data. Sharing the roles with others would mean we share the entire defined file structure for a common set of content. A typical role file structure would contain the main folder and the content folder, and under the content folder, we would have templates, vars, and tasks folders.

In our case, the hierarchy is as follows:

	Main directory

	-Roles

	-Routers

	-Templates

	-Vars

	-Tasks

Under each of the templates, vars, or tasks folders, if we call that specific role, a file named main.yml is searched automatically and any configs in that file are taken into consideration for that particular role. Using the details of hierarchy as previously mentioned , in our test machine (running Ubuntu) here is how our file structure looks in the example:

As we see, under the rtrconfig folder, we have defined the folders as per Ansible standards. Once we create the folder hierarchy, the next step is to configure/create the files under each of the sections, based upon our requirements.

To start with, as we will be using a router template to generate the configs, we create a template and put it in the roles/routers/templates folder.

Router config template is as follows (used as a generic router template to generate router configs):

no service pad
 service tcp-keepalives-in
 service tcp-keepalives-out
 service password-encryption
 username test password test
 !
 hostname {{item.hostname}}
 logging server {{logging_server}}
 !
 logging buffered 32000
 no logging console
 !
 ip domain-lookup enable
 !
 exit

As we can see in the template, {{item.hostname}} and {{logging_server}} are two values that we would replace while creating the actual config. As this is a Jinja template, we would save this template as somename.j2 (in our case, routers.j2). The next step is to define the variable values.

As we saw earlier, we need to ensure that the logging_server variable has already been defined a value. This will be in the roles/routers/vars folder:

logging_server: 10.10.10.10

We save this file as main.yml in the vars folder, which will be picked by default while executing the playbook for the variable value declarations. Once we have the definitions and template in place, the next step is to define the actual task that needs to be performed.

This will be done in the roles/routers/tasks folder and again saved as main.yml for auto discovery during the execution of that specific role.

Let us see the config for this:

- name: Generate configuration files
 template: src=routers.j2 dest=/home/abhishek/{{item.hostname}}.txt
 with_items:
 - { hostname: myrouter1 }
 - { hostname: myrouter2 }

In the config for the task, we call the template that we created (in this case, routers.j2), and provide a destination folder where the config files will be saved (in this case, /home/abhishek/{{item.hostname}}.txt).

A specific point to note here is that {{item.hostname}} will resolve to each of the hostnames that we have provided using the with_items loop. As a result, the filename that will be generated will be each item defined in the with_items loop (in our case, myrouter1.txt and myrouter2.txt).

As mentioned previously, the with_items will loop with each value, with the hostname variable value being changed with each iteration. Once we have the template, vars, and task created, we will call the role in our main playbook and get it executed.

The main playbook config is as follows:

- name: Generate router configuration files
 hosts: localhost

 roles:
 - routers

Here we just call the hosts (which is localhost in our case since we want to get this executed locally), and call the role that needs to be executed in the playbook (in our case, routers). We save it as any name with a .yml extension (in our case, makeconfig.yml).

The final validation to ensure all .yml files are created in respective folders are as follows:

	 To recap, here is the detailed file structure, as we now see the files under the rtrconfig folder:

	To generate the config for routers , we execute the makeconfig.yml playbook:

	Once executed successfully, we should have two files (myrouter1.txt and myrouter2.txt) in the /home/abhishek folder with the generated config:

	Here is the content from one of the generated files:

	As we can see, now we have a generated config, using the template, with the values replaced for the hostname and logging _server section.

The config is now generated and ready to be pushed on those particular routers (which were part of main.yml under roles/routers/tasks), and in a similar way, we can generate configs with various roles and multiple devices in each role, such as switches, routers, load balancers, and so on with each role containing specific information, such as variables, templates, and tasks relevant to that role.

 Summary

In this chapter, we learned what Ansible is, its installation, and basic usage of Ansible. This chapter also introduced concepts and terminology used in Ansible, with reference to how to create playbooks, tasks, and other basic functions in Ansible. We also got familar with ad-hoc commands and understand the concept of facts and their usage in Ansible.

Finally, using Jinja templates we understood how to create a full configuration using templates with reference to device/role specific information using roles in Ansible.

In the next chapter, we will see how to call miscellaneous other aspects of automation, such as using Splunk for syslog collection and fetching information from Python, working with basic automation on BGP, UC integration examples, and other relevant examples that can be used for ready reference when creating automation scripts.

 Continuous Integration for Network Engineers

As we saw in previous chapters, now armed with knowledge or a fair understanding on creating automation using various techniques, working with Ansible, and understanding best practices, we continue our journey to understand how to work on the basics of planning an automation project.

In this chapter, we will see some of the tools that help us in working on planning our automation projects, and some examples to interact with some increasingly complex scenarios related to various devices or network technologies.

Some of the aspects that we will be working on are:

	Interaction with Splunk

	BGP and routing table

	Wireless client to AP to switchport

	Phone to switchport

	WLAN and IPAM

	Useful best practices and use cases

 Interaction with Splunk

Splunk is one of the most widely used data mining tools. With its data mining and digging capabilities, engineers can take actions based upon decisions. While it is useful in various aspects, here we will see an example of Splunk being used as a Syslog server, with our test router sending a message (as syslog) to this server, and how from automation we can query results from Splunk for these syslogs and take actions.

This is an important part of automation, since based upon certain events (alerts and syslogs), engineers need to perform automated tasks, like self healing, or even triggering emails or using third-party tools to create tickets for various teams to work on.

Here we will see the basic implementation and configuration of Splunk as a Syslog server:

	 After downloading and installing Splunk , it can be accessed from the URL http://localhost:8000/en-US/account/login?return_to=%2Fen-US%2F as we can see in the following screenshot:

	Once we login, we create a listener listed to syslogs (in our case we use the TCP protocol and keep the default port 514 open):

Once the configuration is done for TCP port 514 on Splunk (listening for syslog messages), ensure any local firewall on the server is allowing inbound packets to TCP port 514, and our machine is ready to access syslogs from network devices on TCP port 514).

	Configure the router to send syslogs. We apply the following commands on the router to enable logging (In our case the IP for the Syslog server is 192.168.255.250):

config t
logging host 192.168.255.250 transport tcp port 514
logging buffered informational
exit

This configures the router to send syslogs to the given IP address on TCP protocol over port 514. Additionally, we are also stating to log only information syslog messages on the router.

	Once done, for confirmation we can try to perform a shutdown and no shutdown of any interface (Loopback0 in our case), and see the log using the show logging command on the router:

R2#show logging
Syslog logging: enabled (11 messages dropped, 0 messages rate-limited,
 0 flushes, 0 overruns, xml disabled, filtering disabled)
 Console logging: level debugging, 26 messages logged, xml disabled,
 filtering disabled
 Monitor logging: level debugging, 0 messages logged, xml disabled,
 filtering disabled
 Buffer logging: level informational, 7 messages logged, xml disabled,
 filtering disabled
 Logging Exception size (4096 bytes)
 Count and timestamp logging messages: disabled
No active filter modules.
 Trap logging: level informational, 30 message lines logged
 Logging to 192.168.255.250(global) (tcp port 514,audit disabled, link up), 30 message lines logged, xml disabled,
 filtering disabled
Log Buffer (4096 bytes):
*Mar 1 01:02:04.223: %SYS-5-CONFIG_I: Configured from console by console
*Mar 1 01:02:10.275: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 192.168.255.250 started - reconnection
*Mar 1 01:02:32.179: %LINK-5-CHANGED: Interface Loopback0, changed state to administratively down
*Mar 1 01:02:33.179: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to down
*Mar 1 01:02:39.303: %SYS-5-CONFIG_I: Configured from console by console
*Mar 1 01:02:39.647: %LINK-3-UPDOWN: Interface Loopback0, changed state to up
*Mar 1 01:02:40.647: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up

An important aspect to confirm if the router is sending syslogs is the line tcp port 514, audit disabled, link up, which confirms that the router is sending syslog traffic to the Syslog server.

	Here is the raw output on Splunk for the syslog that is generated:

As we see in the New Search section we can write queries to fetch the exact data that we want. In our case we wanted to see only the log from our router with the Interface Loopback0 down messages, hence we wrote the query:

host="192.168.255.248" "Interface Loopback0, changed state to down"

	Now let us see the code from Python that we can write to fetch the same information using a script:

import requests
import json
from xml.dom import minidom

username="admin"
password="admin"

For generating the session key
url = 'https://localhost:8089/services/auth/login'
headers = {'Content-Type': 'application/json'}
data={"username":username,"password":password}
requests.packages.urllib3.disable_warnings()
r = requests.get(url, auth=(username, password), data=data, headers=headers,verify=False)
sessionkey = minidom.parseString(r.text).getElementsByTagName('sessionKey')[0].childNodes[0].nodeValue

For executing the query using the generated sessionkey
headers={"Authorization":"Splunk "+sessionkey}
data={"search":'search host="192.168.255.248" "Interface Loopback0, changed state to down"',"output_mode":"json"}
r=requests.post('https://localhost:8089/servicesNS/admin/search/search/jobs/export',data=data , headers=headers,verify=False);
print (r.text)

In the first section, we query the API of Splunk to fetch the authentication session key (or token) to run our queries and get results. Once we have the session key (extracted from the XML output), we create a header and using requests.post we execute our query. The data variable contains our query in the following format:

{"search":'search host="192.168.255.248" "Interface Loopback0, changed state to down"'}

In other words, if we take this in a variable (named Search) , and provide the result as a value to that variable, it would look like below:

Search='search host="192.168.255.248" "Interface Loopback0, changed state to down"'

Additionally we also send another option of output_mode as JSON , since we want the output in JSON (some other values can be CSV or XML).

Executing the same will get the following output:

As we see in the preceding output, we are now retrieving and displaying the value in JSON format.

We will stop our example here, but to enhance this script, this result can now become a trigger on which we can add additional methods or logic to decide on the trigger for further actions. By this logic, we can have self-healing scripts that find out the data (as a trigger), evaluate the trigger (identify it actionable), and take actions based upon further logic.

 Automation examples on various technology domains

With the familiarity and understanding of automation with the interaction of devices, APIs, controllers, let's see some examples of how to interact with other network domain devices and tackle some complex scenarios using automation frameworks.

Some of these examples will be a small project in themselves, but will help you understand additional ways of performing automation tasks in depth.

 BGP and routing table

Let's take an example in which we need to configure BGP, validate if a session is up, and report the details for the same. In our example, we would take two routers (as a prerequisite, both routers are able to ping each other) as follows:

As we see R2 and testrouter are able to ping each other using an IP address of the FastEthernet0/0 interface of each other.

The next step is a very basic configuration of BGP (in our case, we use the Autonomous System (AS) number 200). The code is as follows:

from netmiko import ConnectHandler
import time

def pushbgpconfig(routerip,remoteip,localas,remoteas,newconfig="false"):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds=""
 cmds="router bgp "+localas
 cmds=cmds+"\n neighbor "+remoteip+" remote-as "+remoteas
 xcheck=device.send_config_set(cmds)
 print (xcheck)
 outputx=device.send_command("wr mem")
 print (outputx)
 device.disconnect()

def validatebgp(routerip,remoteip):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show ip bgp neighbors "+remoteip+" | include BGP state"
 outputx=device.send_command(cmds)
 if ("Established" in outputx):
 print ("Remote IP "+remoteip+" on local router "+routerip+" is in ESTABLISHED state")
 else:
 print ("Remote IP "+remoteip+" on local router "+routerip+" is NOT IN ESTABLISHED state")
 device.disconnect()

pushbgpconfig("192.168.255.249","192.168.255.248","200","200")
we give some time for bgp to establish
print ("Now sleeping for 5 seconds....")
time.sleep(5) # 5 seconds
validatebgp("192.168.255.249","192.168.255.248")

The output is as follows:

As we see, we push the neighbor config (BGP config) to the router. Once the config is pushed, the script waits for 5 seconds and validates the state of BGP if it is in the ESTABLISHED state. This validation confirms that the config that we pushed has all the sessions that are newly configured as established.

Let's push an incorrect config as follows:

from netmiko import ConnectHandler
import time
def pushbgpconfig(routerip,remoteip,localas,remoteas,newconfig="false"):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds=""
 cmds="router bgp "+localas
 cmds=cmds+"\n neighbor "+remoteip+" remote-as "+remoteas
 xcheck=device.send_config_set(cmds)
 print (xcheck)
 outputx=device.send_command("wr mem")
 print (outputx)
 device.disconnect()
def validatebgp(routerip,remoteip):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show ip bgp neighbors "+remoteip+" | include BGP state"
 outputx=device.send_command(cmds)
 if ("Established" in outputx):
 print ("Remote IP "+remoteip+" on local router "+routerip+" is in ESTABLISHED state")
 else:
 print ("Remote IP "+remoteip+" on local router "+routerip+" is NOT IN ESTABLISHED state")
 device.disconnect()

pushbgpconfig("192.168.255.249","192.168.255.248","200","400")
we give some time for bgp to establish
print ("Now sleeping for 5 seconds....")
time.sleep(5) # 5 seconds
validatebgp("192.168.255.249","192.168.255.248")

The output of the preceding code is as follows:

As we see in the preceding output, now we are pushing the config with an incorrect remote (400 in this case). Of course, since the config is not correct, we get a non-established message, which confirms that the config that we pushed was not correct. In a similar way, we can push the bulk of the configs by calling the methods as many times as we want for each of the remote neighbors to be configured. Additionally, sometimes we need to get specific information under certain config sections from a running config.

As an example, the following code will give out a list for each section of the running config:

from netmiko import ConnectHandler
import itertools

class linecheck:
 def __init__(self):
 self.state = 0
 def __call__(self, line):
 if line and not line[0].isspace():
 self.state += 1
 return self.state

def getbgpipaddress(routerip):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show running-config"
 outputx=device.send_command(cmds)
 device.disconnect()
 for _, group in itertools.groupby(outputx.splitlines(), key=linecheck()):
 templist=list(group)
 if (len(templist) == 1):
 if "!" in str(templist):
 continue
 print(templist)

getbgpipaddress("192.168.255.249")

The output is as follows:

As we see in the preceding output, we got all the sections of the running config, except the exclamation mark ! that we see in a running config (executing the router command show running-config on router). The focus of this output is that we have a config that is now parsed for each section in running config grouped in a single list, or in other words, a specific set of configs meant for a specific section (such as an interface or BGP) is grouped in a single list.

Lets enhance this code. As an example, we only want to see what BGP remote IPs are configured in our router:

from netmiko import ConnectHandler
import itertools
import re

class linecheck:
 def __init__(self):
 self.state = 0
 def __call__(self, line):
 if line and not line[0].isspace():
 self.state += 1
 return self.state

def getbgpipaddress(routerip):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show running-config"
 outputx=device.send_command(cmds)
 device.disconnect()
 for _, group in itertools.groupby(outputx.splitlines(), key=linecheck()):
 templist=list(group)
 if (len(templist) == 1):
 if "!" in str(templist):
 continue
 if "router bgp" in str(templist):
 for line in templist:
 if ("neighbor " in line):
 remoteip=re.search("\d+.\d+.\d+.\d+",line)
 print ("Remote ip: "+remoteip.group(0))

getbgpipaddress("192.168.255.249")

The output is as follows:

In this case, first we parse the running config and focus on the section which has the router bgp config. Once we get to that particular list, we parse the list and fetch the remote IP using the regex on the specific command that contains the string neighbor. The result values would be the remote IPs under the BGP section.

As we are working with BGP, the AS numbers, being an integral part of BGP, need to be parsed or validated. Using the preceding strategies, we can get the AS numbers for BGP routes/prefixes, but in addition to that, there is a Python library pyasn that can easily find out AS number information for a given public IP address.

Again, as mentioned earlier, we need to install the following library before we can call it in the code, by using:

pip install cymruwhois

The code is as follows:

import socket

def getfromhostname(hostname):
 print ("AS info for hostname :"+hostname)
 ip = socket.gethostbyname(hostname)
 from cymruwhois import Client
 c=Client()
 r=c.lookup(ip)
 print (r.asn)
 print (r.owner)

def getfromip(ip):
 print ("AS info for IP : "+ip)
 from cymruwhois import Client
 c=Client()
 r=c.lookup(ip)
 print (r.asn)
 print (r.owner)

getfromhostname("google.com")
getfromip("107.155.8.0")

The output is as follows:

As we see, the first method getfromhostname is used to fetch information for a given hostname. The other method getfromip is used to fetch the same information by using an IP address instead of any hostname.

 Configuring Cisco switchport for access point

When working with a multi-device environment, along with routers and switches we need to interact with other network gear(s) like wireless devices. This example will show how to configure a switch with specific ports to be connected to Access Point (AP) as trunk.

In our test case, assuming the VLANs configured on AP are vlan 100 and vlan 200 for users, and the native VLAN is vlan 10, and the code is as follows:

from netmiko import ConnectHandler
import time

def apvlanpush(routerip,switchport):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="interface "+switchport
 cmds=cmds+"\nswitchport mode trunk\nswitchport trunk encapsulation dot1q\n"
 cmds=cmds+ "switchport trunk native vlan 10\nswitchport trunk allowed vlan add 10,100,200\nno shut\n"
 xcheck=device.send_config_set(cmds)
 print (xcheck)
 device.disconnect()

def validateswitchport(routerip,switchport):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show interface "+switchport+" switchport "
 outputx=device.send_command(cmds)
 print (outputx)
 device.disconnect()

apvlanpush("192.168.255.245","FastEthernet2/0")
time.sleep(5) # 5 seconds
validateswitchport("192.168.255.245","FastEthernet2/0")

The output is as follows:

As we see, the AP needs to be connected to our switchport, which needs to be a trunk, with certain access VLANs to be allowed; hence we create two methods, the first of which passes router/switch name and the interfaces that needs to be configured.

Once the configuration is successfully pushed on the switch, we execute the validateswitchport method to validate if the same port is now in trunk mode. The output of the validateswitchport method spills out the output of the command, on which we can further introduce the regex and splits to get any specific information we want from that output (such as the Administrative Mode or Operational Mode).

As an enhancement, we can also use the outputs from the validation method to call other methods that would perform some additional configs (if required), based on the result that we got earlier. (For example, changing the Trunking Native Mode VLAN to 20).

Let's see the new code with the additional enhancement of changing the native VLAN to 20. The code is as follows:

from netmiko import ConnectHandler
import time

def apvlanpush(routerip,switchport):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="interface "+switchport
 cmds=cmds+"\nswitchport mode trunk\nswitchport trunk encapsulation dot1q\n"
 cmds=cmds+ "switchport trunk native vlan 10\nswitchport trunk allowed vlan add 10,100,200\nno shut\n"
 xcheck=device.send_config_set(cmds)
 print (xcheck)
 device.disconnect()

def validateswitchport(routerip,switchport):
 print ("\nValidating switchport...."+switchport)
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show interface "+switchport+" switchport "
 outputx=device.send_command(cmds)
 print (outputx)
 outputx=outputx.split("\n")
 for line in outputx:
 if ("Trunking Native Mode VLAN: 10" in line):
 changenativevlan(routerip,switchport,"20")
 device.disconnect()

def changenativevlan(routerip,switchport,nativevlan):
 print ("\nNow changing native VLAN on switchport",switchport)
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="interface "+switchport
 cmds=cmds+"\nswitchport trunk native vlan "+nativevlan+"\n"
 xcheck=device.send_config_set(cmds)
 print (xcheck)
 validateswitchport(routerip,switchport)
 device.disconnect()

apvlanpush("192.168.255.245","FastEthernet2/0")
time.sleep(5) # 5 seconds
validateswitchport("192.168.255.245","FastEthernet2/0")

The output is explained in two sections as follows:

	Validating and changing the native VLAN to 20:

	Revalidating with the new native VLAN number:

As we see in the final validation, now we have a native VLAN 20, instead of the earlier 10. This is also a good troubleshooting technique as in multiple scenarios there are requirements of a what if analysis (to take decisions based upon the evaluation of a certain condition) in which we need to take some actions based on the dynamic results received. Since, here in our code we validated that the native VLAN needs to be 20, hence we performed another action to correct that earlier config.

 Configuring Cisco switchport for IP Phone

Similar to the earlier scenario, where we want a switchport as a trunk port for AP, we can configure the switchport to work with IP Phones. An additional task for configuring a port to be used as IP Phone is that another end machine or data machine can be connected to the IP Phone for data transfer. In other words, a single switchport of a Cisco router can act as both a voice and data port when used with IP Phone.

Let's see an example of configuring a switchport to act as an IP Phone port:

from netmiko import ConnectHandler
import time

def ipphoneconfig(routerip,switchport):
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="interface "+switchport
 cmds=cmds+"\nswitchport mode access\nswitchport access vlan 100\n"
 cmds=cmds+ "switchport voice vlan 200\nspanning-tree portfast\nno shut\n"
 xcheck=device.send_config_set(cmds)
 print (xcheck)
 device.disconnect()

def validateswitchport(routerip,switchport):
 print ("\nValidating switchport...."+switchport)
 uname="cisco"
 passwd="cisco"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip, username=uname, password=passwd)
 cmds="show interface "+switchport+" switchport "
 outputx=device.send_command(cmds)
 print (outputx)
 outputx=outputx.split("\n")
 for line in outputx:
 if ("Trunking Native Mode VLAN: 10" in line):
 changenativevlan(routerip,switchport,"20")
 device.disconnect()

ipphoneconfig("192.168.255.245","FastEthernet2/5")
time.sleep(5) # 5 seconds
validateswitchport("192.168.255.245","FastEthernet2/5")

The output is as follows:

As we see now, the port configured (FastEthernet 2/5) has been assigned a Voice VLAN of 200 and a data/access VLAN of 100 (from the preceding output, notice the line Access Mode VLAN: 100 (VLAN0100). Any IP Phone connecting to this port will have access to both the VLANs for its voice and data usage. Again, going by previous examples, we can perform additional validations and checks on the ports and trigger some actions in case of any incorrect or missing configs.

 Wireless LAN (WLAN)

There are many vendors that have backend APIs that can be controlled or called using Python to perform certain wireless tasks. A commonly used vendor in wireless is Netgear. Python has a library pynetgear that helps us achieve some of the automation to control our locally connected devices.

Let's see an example of fetching the current network devices connected to the local wireless Netgear router in our network:

>>> from pynetgear import Netgear, Device
>>> netgear = Netgear("myrouterpassword", "192.168.100.1","admin","80")
>>> for i in netgear.get_attached_devices():
 print (i)

The Netgear method accepts four arguments in the following order (routerpassword, routerip, routerusername, and routerport). As we see in the current example, the router is reachable using http://192.168.100.1 with the username admin and password as myrouterpassword. Hence, we call the method with these parameters.

The output is shown as follows:

>>> netgear.get_attached_devices()
[Device(signal=3, ip='192.168.100.4', name='ANDROID-12345', mac='xx:xx:xx:xx:xx:xx', type='wireless', link_rate=72), Device(signal=None, ip='192.168.100.55', name='ANDROID-678910', mac='yy:yy:yy:yy:yy:yy', type='wireless', link_rate=72), Device(signal=None, ip='192.168.100.10', name='mylaptop', mac='zz:zz:zz:zz:zz:zz', type='wireless', link_rate=520)]

As we see, the method get_attached_devices() returned a list of all the IPs, their MAC addresses (hidden in this example), signal (or wireless band being used), and the link rate for the connection in Mbps.

We can use similar type of methods to manipulate bandwidth, block any user, or perform other tasks that are exposed by the APIs of the specific hardware manufacturer.

 Access of IP Address Management (IPAM)

Another requirement in networking is to use the IPAM database for IPAM. It is provided by different vendors, and as an example here, we would refer to SolarWind's IPAM. SolarWinds is again an industry standard tool for monitoring and performing various functionalities on a network, and it has a good set of APIs to interact with using its ORION SDK toolkit.

In Python, we can install the library orionsdk to achieve interaction with SolarWinds. Let's see an example in which we fetch the next available IP address from the IPAM module in SolarWinds:

from orionsdk import SwisClient

npm_server = 'mysolarwindsserver'
username = "test"
password = "test"

verify = False
if not verify:
 from requests.packages.urllib3.exceptions import InsecureRequestWarning
 requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

swis = SwisClient(npm_server, username, password)

print("My IPAM test:")
results=swis.query("SELECT TOP 1 Status, DisplayName FROM IPAM.IPNode WHERE Status=2")
print (results)

for a formatted printing
for row in results['results']:
 print("Avaliable: {DisplayName}".format(**row))

The output is as follows:

As we see in the preceding code, we use the orionsdk library to call the API for SolarWinds from the mysolarwindsserver server. The username and password needed for the SolarWinds are passed in script, and we use a simple SQL query (which is understandable by SolarWinds) which is as follows:

 SELECT TOP 1 Status, DisplayName FROM IPAM.IPNode WHERE Status=2

This query fetches the next available IP address (denoted by Status=2 in SolarWinds) and prints it. The first print is the raw print and the one in for loop; it prints out the value in a better understandable format as shown in the preceding output.

 Example and use case

Here, we will see a detailed example that is common to most network engineers, and how to automate it using Python. Also, we will create it as a web based tool, enabling it to run from any environment or machine, using only a browser.

 Create a web-based pre and post check tool for validations

In the following example, we will see how we can perform a pre and post check on any network maintenance that we do. This is generally required by every network engineer while performing activities on production devices to ensure that once the maintenance activity is complete, an engineer has not missed out anything that could cause an issue later on. It is also required to validate if our changes and maintenance have been completed successfully, or if we need to perform additional fixes and rollbacks in case of validations that have failed.

The following are the steps to create and execute the tool:

 Step 1 – Create the main HTML file

We will design a web-based form to select certain show commands that we will call for performing checks. These commands, when executed, will act as a precheck; once our maintenance activity is complete, we will act again as a postcheck.

Any difference between the same command outputs in precheck or postcheck scenarios will be highlighted and the engineer will be in a good position to make decisions on calling the maintenance a success or failure, based on the outputs.

The HTML code (prepostcheck.html) is as follows:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <script>
 function checkme() {
 var a=document.forms["search"]["cmds"].value;
 var b=document.forms["search"]["searchbox"].value;
 var c=document.forms["search"]["prepost"].value;
 var d=document.forms["search"]["changeid"].value;
 if (a==null || a=="")
 {
 alert("Please Fill All Fields");
 return false;
 }
 if (b==null || b=="")
 {
 alert("Please Fill All Fields");
 return false;
 }
 if (c==null || c=="")
 {
 alert("Please Fill All Fields");
 return false;
 }
 if (d==null || d=="")
 {
 alert("Please Fill All Fields");
 return false;
 }
 document.getElementById("mypoint").style.display = "inline";
 }
</script>
</head>
<body>
<h2> Pre/Post check selection </h2>
<form name="search" action="checks.py" method="post" onsubmit="return checkme()">
Host IP: (Multiple IPs seperated by comma)
<input type="text" name="searchbox" size='80' required>
<p></p>
Commands (Select):

<select name="cmds" multiple style="width:200px;height:200px;" required>
 <option value="show version">show version</option>
 <option value="show ip int brief">show ip int brief</option>
 <option value="show interface description">show interface description</option>
 <option value="show clock">show clock</option>
 <option value="show log">show log (last 100)</option>
 <option value="show run">show run</option>
 <option value="show ip bgp summary">show ip bgp summary</option>
 <option value="show ip route">show ip route</option>
 <option value="show ip route summary">show ip route summary</option>
 <option value="show ip ospf">show ip ospf</option>
 <option value="show interfaces status">show interfaces status</option>

</select>
<p></p>
Mantainence ID: <input type="text" name="changeid" required>
<p></p>
Pre/Post:

<input type="radio" name="prepost" value="pre" checked> Precheck

<input type="radio" name="prepost" value="post"> Postcheck

<p></p>
<input type="submit" value="Submit">

</form>
<p><label id="mypoint" style="display: none;background-color: yellow;">Please be Patient.... Gathering results!!!</label></p>
</body>
</html>

This will create the main page on which we select our initial options (set of commands and if we need to perform a precheck or a postcheck). The output is as follows:

Main page

An additional JavaScript code in HTML ensures that the Submit button will not send any data until all the selections are made. There is no point sending data which is not completed; for example, if we do not fill out entire fields the Submit option will not proceed, giving out the message that we see in the following screenshot:

Unless all the fields are not filled, hitting the Submit button will spill out this message and the code will not continue. Additionally, as we see in the code, the Submit button is tied to the Python script, with checks.py as a POST method. In other words, the selections we will make will be sent to checks.py as a POST method.

 Step 2 – Create the backend Python code

Now, let's see the back end Python code (checks.py) that will accept these inputs from HTML form and perform its task. The code is as follows:

#!/usr/bin/env python
import cgi
import paramiko
import time
import re
import sys
import os
import requests
import urllib
import datetime
from datetime import datetime
from threading import Thread
from random import randrange

form = cgi.FieldStorage()
searchterm = form.getvalue('searchbox')
cmds = form.getvalue('cmds')
changeid = form.getvalue('changeid')
prepost=form.getvalue('prepost')
searchterm=searchterm.split(",")
xval=""
xval=datetime.now().strftime("%Y-%m-%d_%H_%M_%S")

returns = {}
def getoutput(devip,cmd):
 try:
 output=""
 mpath="C:/iistest/logs/"
 fname=changeid+"_"+devip+"_"+prepost+"_"+xval+".txt"
 fopen=open(mpath+fname,"w")
 remote_conn_pre = paramiko.SSHClient()
 remote_conn_pre.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 remote_conn_pre.connect(devip, username='cisco', password='cisco', look_for_keys=False, allow_agent=False)
 remote_conn = remote_conn_pre.invoke_shell()
 remote_conn.settimeout(60)
 command=cmd
 remote_conn.send(command+"\n")
 time.sleep(15)
 output=(remote_conn.recv(250000)).decode()
 fopen.write(output)
 remote_conn.close()
 fopen.close()
 returns[devip]=("Success: "+fname +" Created")
 except:
 returns[devip]="Error. Unable to fetch details"

try:
 xtmp=""
 cmdval="terminal length 0\n"
 if (str(cmds).count("show") > 1):
 for cmdvalue in cmds:
 if ("show" in cmdvalue):
 if ("show log" in cmdvalue):
 cmdvalue="terminal shell\nshow log | tail 100"
 cmdval=cmdval+cmdvalue+"\n\n"
 else:
 if ("show" in cmds):
 if ("show log" in cmds):
 cmds="terminal shell\nshow log | tail 100"
 cmdval=cmdval+cmds+"\n\n"
 threads_imagex= []
 for devip in searchterm:
 devip=devip.strip()
 t = Thread(target=getoutput, args=(devip,cmdval,))
 t.start()
 time.sleep(randrange(1,2,1)/20)
 threads_imagex.append(t)

 for t in threads_imagex:
 t.join()

 print("Content-type: text/html")
 print()
 xval=""
 for key in returns:
 print (""+key+":"+returns[key]+"
")

 print ("
Next step: Click here to compare files ")
 print ("
Next step: Click here to perform pre/post check ")

except:
 print("Content-type: text/html")
 print()
 print("Error fetching details. Need manual validation")
 print ("
Next step: Click here to compare files ")
 print ("
Next step: Click here to perform pre/post check ")

This code accepts input from a web page using the CGI parameter. Various values from the web page are parsed into the variables using the following code snippet:

form = cgi.FieldStorage()
searchterm = form.getvalue('searchbox')
cmds = form.getvalue('cmds')
changeid = form.getvalue('changeid')
prepost=form.getvalue('prepost')

Once we have these values, the additional logic is to log in into the given device(s) using the paramiko library, fetch the output of the show commands, and save it in a file under the logs folder with the output. An important aspect to note here is the way we are constructing the filename:

#xval=datetime.now().strftime("%Y-%m-%d_%H_%M_%S")
#and
#fname=changeid+"_"+devip+"_"+prepost+"_"+xval+".txt"

The fname is the filename into which we would write the output, but the filename is built dynamically with the inputs provided by the maintenance ID, device IP, pre/post status, and the time the file was created. This is to ensure that we know the device for which we are performing a pre or a post check, and at what time the file was created, to ensure we have a correct pre and post check combination.

The function getoutput() is invoked from a thread (in a multi-threaded function call) to fetch the output and store it in the newly created file. A multi-threading process is called, because if we want to perform pre or post checks in multiple devices, we can provide a comma separated IP address list in web, and Python script will in parallel invoke the show commands on all devices and create multiple pre or post check files, based on hostnames.

Let's create a precheck file for some commands in our example, where we fill in some values and click on the Submit button:

While the gathering of data is in progress, the yellow message will be displayed to confirm that the back end work is going on.

Once the task is completed, this is what we see (as returned from the Python code):

As we see, the code returns a success, which means that it was able to fetch the output of the commands that we want to validate. The filename is dynamically created, based on our selection on the main page.

A click on the .txt filename that is generated as a clickable URL (which can be used to reconfirm if we got the correct output of commands we selected earlier), shows the following output:

Now, let's perform the same steps and create a postcheck file.

We go back to the main page, and keeping the other values the same, we just select the radio button to Postcheck instead of Precheck. Do ensure that we select the same set of commands, since a pre and post check only make sense if we have the same data to work with:

In a similar way, once the backend execution completes, we have a postcheck file created as follows:

Notice the filename, the timestamp, and the post word changes based on our selection.

 Step 3 – Create web server based files for the tool

Now with the both pre and post check files created, let's create a web framework to perform web-based pre/post check for the files. We need to create a web page in which our current log files are visible as pre and post files, and we can select the precheck file and its relevant postcheck file for comparison. As we know that we cannot use HTML or browser languages to fetch information about any files from the server, we need to use some backed web language to perform this function for us. We take advantage of ASP and VB.NET to create the web page to display the already created log files for selection and comparison.

The backend code for selectfiles.aspx is as follows (this is to display the files from the log directory on a browser):

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="selectfiles.aspx.vb" Inherits="selectfiles" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" method="post" action="comparefiles.aspx" >
 <div>
 <%response.write(xmystring.tostring())%>
 </div>
 <input type="submit" value="Submit">
 </form>

</body>
</html>

The VB.NET backend code, to fill in the values on the preceding .aspx page selectfiles.aspx.vb, is as follows:

Imports System.IO
Partial Class selectfiles
 Inherits System.Web.UI.Page
 Public xmystring As New StringBuilder()
 Public tableval As New Hashtable
 Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim precheck As New List(Of String)
 Dim postcheck As New List(Of String)
 Dim prename = New SortedList
 Dim postname = New SortedList
 Dim infoReader As System.IO.FileInfo
 Dim rval as Integer
 rval=0

 xmystring.Clear()
 Dim xval As String
 Dim di As New DirectoryInfo("C:\iistest\logs\")
 Dim lFiles As FileInfo() = di.GetFiles("*.txt")
 Dim fi As System.IO.FileSystemInfo
 Dim files() As String = IO.Directory.GetFiles("C:\iistest\logs\", "*.txt", SearchOption.TopDirectoryOnly)
 xmystring.Append("<head><style type='text/css'>a:hover{background:blue;color:yellow;}</style></head>")
 xmystring.Append("<fieldset style='float: left;width: 49%;display: inline-block;box-sizing: border-box;'>")
 xmystring.Append("<legend>Pre check files (Sorted by Last Modified Date)</legend>")

 For Each fi In lFiles
 rval=rval+1
 tableval.add(fi.LastWriteTime.ToString()+rval.tostring(),fi.Name)
 'infoReader = My.Computer.FileSystem.GetFileInfo(file)
 If (fi.Name.Contains("pre")) Then
 precheck.Add(fi.LastWriteTime.ToString()+rval.tostring())
 Else
 postcheck.Add(fi.LastWriteTime.ToString()+rval.tostring())
 End If
 Next
 precheck.Sort()
 postcheck.Sort()

 xval = ""
 Dim prekey As ICollection = prename.Keys
 Dim postkey As ICollection = postname.Keys
 Dim dev As String
 Dim fnameval as String
 For Each dev In precheck
 infoReader = My.Computer.FileSystem.GetFileInfo(tableval(dev))
 fnameval="http://localhost/test/logs/"+Path.GetFileName(tableval(dev))
 xval = "<input type = 'radio' name='prechecklist' value='C:\iistest\logs\" + tableval(dev) + "' required>" & tableval(dev) & " (" & dev.Substring(0,dev.LastIndexOf("M")).Trim() + "M)
"

 xmystring.Append(xval)
 Next
 xmystring.Append("</fieldset>")
 xmystring.Append("<fieldset style='float: right;width: 49%;display: inline-block;box-sizing: border-box;'>")
 xmystring.Append("<legend>Post check files (Sorted by Last Modified Date)</legend>")
 For Each dev In postcheck
 fnameval="http://localhost/test/logs/"+tableval(dev)
 xval = "<input type = 'radio' name='postchecklist' value='C:\iistest\logs\" + tableval(dev) + "' required>" & tableval(dev) & " (" & dev.Substring(0,dev.LastIndexOf("M")).Trim() + "M)
"
 xmystring.Append(xval)
 Next
 xmystring.Append("</fieldset>")

 End Sub
End Class

This code is used to fetch the files from the log directory, and based on their filenames, they are divided into either precheck files or postcheck files. Also, the files are ordered in chronological order for easy selection during the comparison process.

Let's see the output of this page now:

 Step 4 – Create server based files for pre and post files comparison

The final step is to create a web page that retrieves the text from these files and also provides frontend (or a web-based tool) for easy comparison. For our purpose, we use a JScript library called diffview . To call this dependency, we need to download diffview.js, difflib.js, and diffview.css which available here: https://github.com/cemerick/jsdifflib, and copy the files into our web server folder. Once done, in the similar way as accessing the files, we would again create a .aspx page to get the content of the selected files and display it for comparison.

The following is the code of the main page comparefiles.aspx:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="comparefiles.aspx.vb" Inherits="comparefiles" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta charset="utf-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1"/>
 <link rel="stylesheet" type="text/css" href="diffview.css"/>
 <script type="text/javascript" src="diffview.js"></script>
 <script type="text/javascript" src="difflib.js"></script>
<style type="text/css">
body {
 font-size: 12px;
 font-family: Sans-Serif;
}
h2 {
 margin: 0.5em 0 0.1em;
 text-align: center;
}
.top {
 text-align: center;
}
.textInput {
 display: block;
 width: 49%;
 float: left;
}
textarea {
 width:100%;
 height:300px;
}
label:hover {
 text-decoration: underline;
 cursor: pointer;
}
.spacer {
 margin-left: 10px;
}
.viewType {
 font-size: 16px;
 clear: both;
 text-align: center;
 padding: 1em;
}
#diffoutput {
 width: 100%;
}
</style>

<script type="text/javascript">

function diffUsingJS(viewType) {
 "use strict";
 var byId = function (id) { return document.getElementById(id); },
 base = difflib.stringAsLines(byId("baseText").value),
 newtxt = difflib.stringAsLines(byId("newText").value),
 sm = new difflib.SequenceMatcher(base, newtxt),
 opcodes = sm.get_opcodes(),
 diffoutputdiv = byId("diffoutput"),
 contextSize = byId("contextSize").value;

 diffoutputdiv.innerHTML = "";
 contextSize = contextSize || null;

 diffoutputdiv.appendChild(diffview.buildView({
 baseTextLines: base,
 newTextLines: newtxt,
 opcodes: opcodes,
 baseTextName: "Base Text",
 newTextName: "New Text",
 contextSize: contextSize,
 viewType: viewType
 }));
}

</script>
</head>
<body>
 <div class="top">
 Context size (optional): <input type="text" id="contextSize" value="" />
 </div>
 <div class="textInput">
 <h2>Pre check</h2>
 <textarea id="baseText" runat="server" readonly></textarea>
 </div>
 <div class="textInput spacer">
 <h2>Post check</h2>
 <textarea id="newText" runat="server" readonly></textarea>
 </div>
 <% Response.Write(xmystring.ToString()) %>
 <div class="viewType">
 <input type="radio" name="_viewtype" id="sidebyside" onclick="diffUsingJS(0);" /> <label for="sidebyside">Side by Side Diff</label>
 &amp;amp;nbsp;
 <input type="radio" name="_viewtype" id="inline" onclick="diffUsingJS(1);" /> <label for="inline">Inline Diff</label>
 </div>
 <div id="diffoutput"> </div>

</body>
</html>

The backend code for the main page, to get the contents of the file (comparefiles.aspx.vb), is as follows:

Imports System.IO

Partial Class comparefiles
 Inherits System.Web.UI.Page
 Public xmystring As New StringBuilder()

 Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim fp As StreamReader
 Dim precheck As New List(Of String)
 Dim postcheck As New List(Of String)
 xmystring.Clear()
 Dim prefile As String
 Dim postfile As String
 prefile = Request.Form("prechecklist")
 postfile = Request.Form("postchecklist")
 fp = File.OpenText(prefile)
 baseText.InnerText = fp.ReadToEnd()
 fp = File.OpenText(postfile)
 newText.InnerText = fp.ReadToEnd()
 fp.Close()

 End Sub

End Class

With this ready, let's compare the files and see the results. We select the pre and post check files and click on Submit:

The next page takes us to the content and comparison:

As we see in the preceding screenshot, on the left, we have the precheck file, and on the right, we have the postcheck file. Both can be read on the page itself through slides on both windows. The bottom window appears when we select either Side by Side Diff or Inline Diff.

On a Side by Side Diff, anything that is different will be highlighted. In our case it was uptime that was different. For everything else in common, no color highlighting will be in place and an engineer can safely assume the same states for non highlighted colors.

Let's see the same example with a Inline Diff comparison selection:

It is the same result; different lines are highlighted in different colors to confirm the pre and post check differences. With this tool now, an engineer can quickly parse through the entire log files, and based on the highlighted differences (a mismatch between precheck file content and postcheck file content), can make the decision to call the task a success or a failure.

 Summary

In this chapter, we saw various concepts related to the usage of automation in daily network scenarios. We got familiar with examples of performing various tasks related to additional devices such as wireless AP and IP Phones. Additionally, we also got introduced to IPAM of SolarWinds and how to work on the API using Python.

We also saw a real-world example of creating a pre and post validation tool to help engineers make quick maintenance validation decisions, and also ported to the web so that the tool can be used from anywhere, instead of running from individual machines with Python installed as a prerequisite.

Finally, in our concluding chapter, we will look at some additional aspects of SDN to understand better usage and how and where to automate, with respect to SDN scenarios.

 SDN Concepts in Network Automation

As we have seen on our journey so far, there are numerous scenarios where we can automate a network, from daily or routine tasks, to managing infrastructure from a single controller-based architecture. Building upon those concepts, we will now gain some additional insights for working in software-defined networks (SDNs) and look at some examples of working with cloud platforms.

Some of the key components we are going to cover are:

	Cloud platform automation

	Network automation tools

	Controller-based network fabric

	Programmable network devices

 Managing cloud platforms

We can use network automation techniques through Python to work on various cloud providers. From working on cloud instances, to spinning up new VMs, controlling full access like ACLs, and creating specific network layer tasks like VPNs, and network configurations of each instance, we can automate just about anything using available connectors or APIs in Python. Let's see some basic configuration and connections on the most popular cloud platform, Amazon Web Services (AWS) using Python.

AWS provides an extensive API through its SDK called Boto 3. Boto 3 provides two types of APIs to be used, a low-level API set that is used to interact with direct AWS services, and a high-layer Python friendly API set for quick interactions with AWS. Along with Boto 3, we also would need to have the AWS CLI that is used as a command-line interface (CLI) to interact with AWS from the local machine. Think of this as a CLI based tool that is equally like DOS is to Windows from a CLI perspective.

The installation of both the AWS CLI and Boto 3 is done using pip:

	To install from AWS CLI, use the following command:

pip install awscli

	To install from Boto 3, use the following command:

pip install boto3

Once installed, the packages are ready to use. However, we need to configure an access key in the AWS Web Management Console which will have a certain level of restrictions (that we will define while creating the access key).

Let's quickly set up a new access key to manage the AWS in Python from our local machine:

	Log in to the AWS web console and select IAM as the option:

	Click on Add user to create a username and password pair shown as follows:

	Select username and ensure to check Programmatic access to get the access ID and secret key to be used in our Python calls:

	We also need the user to be part of a certain group (for security restrictions). In our case we make it part of the admin group which has full rights on the AWS instance:

	If we made our selections correctly, a user is created with the username we selected (booktest) with an access key and a secret access key:

	Once we have this key, we go back to our Python installation and on the Command Prompt, call the AWS CLI command aws configure:

	As per the questions asked, we fetch the values from the AWS web console and paste them in the CLI. The final question of Default output format can be text or json. However, for our purpose of automation and working with Python, we would select json instead of text.

Once we are done with this backend configuration, we are ready to test our scripts by calling the Boto 3 API in Python.

Let's see an example of getting all running instances on the current AWS account for which we have the key:

import boto3
ec2 = boto3.resource('ec2')
for instance in ec2.instances.all():
 print (instance)
 print (instance.id, instance.state)

Since we have already configured the backend credentials and key with the aws configure CLI command, we do not need to specify any credentials in our scripts.

The output of the preceding code is as follows:

As we see in the preceding output, we get back two instances which are EC2 instances with their instance IDs. Additionally, we also get some other parameters for the currently configured instances. In some cases, if we do not want to use the current preconfigured keys, we can call the Python program by passing the values directly into Boto 3 functions as follows:

import boto3

aws_access_key_id = 'accesskey'
aws_secret_access_key = 'secretaccesskey'
region_name = 'us-east-2'

ec2 = boto3.client('ec2',aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key,region_name=region_name)

Let's see another example of fetching the private IP address and instance ID for each of the instances:

import boto3

ec2 = boto3.client('ec2')
response = ec2.describe_instances()
for item in response['Reservations']:
 for eachinstance in item['Instances']:
 print (eachinstance['InstanceId'],eachinstance['PrivateIpAddress'])

The preceding code gives the following output:

Using the Boto 3 API, we can also spin up new instances in our subscription. Let's see a final example of spinning up a new Virtual Machine(VM) with EC2 using Boto 3.

Before we call the Python to spin a new VM, we need to select which Amazon Machine Image (AMI) image to use for the instance. To find out the AMI image value, we need to open AMI in the AWS web console shown as follows:

Once we have finalized the AMI, we call the easy part, spinning the new VM:

import boto3
ec2 = boto3.resource('ec2')
ec2.create_instances(ImageId='amid-imageid', MinCount=1, MaxCount=5)

It will take some time for the script to execute, and the result value would be the instance with all its configured parameters based upon the AMI image ID selected. Similarly, we can spin up various type of instances or even new security filters using Boto 3 and ensure we have cloud controlling automation in place.

 Programmable network devices

Looking back at historic implementations, we had a fixed set of hardware or networks geared for catering services to the end users. End users also had a limited set of connection options to access a limited set of networks or connected resources. As the number of users increased, a simple solution was to add additional hardware or network gear. However, with the surge of different end user devices, such as mobile phones, and high data demand and up time requirements for end users, managing the increasing amount of hardware and additional connections becomes a complex task.

A simple device failure or cable failure might impact the entire set of connected hardware or network gears, which would create a widespread downtime for end users, resulting in a loss of man hours both in terms of productivity and trust. Think of a large internet service provider (ISP) with recurring outages, with each outage affecting a large set of both enterprise and home users. If a new ISP were to enter the market with reliability as its unique selling point, people would not think twice before jumping to the new provider. Effectively, this could result in a loss of business and ultimately, a closure situation for the earlier provider because of the decreasing reliability and trust among its current set of users.

To handle this type of situation, one solution that has emerged is the usability of the same set of devices or network hardware to perform different functions using the same hardware platform. This has been made possible through a combination of SDN and programmable networks (PNs).

SDN takes care of control plane configurations for data to automatically reroute to a path that is the best available for a specific source to the destination. For example, let's say we need to reach destination D from source A. The best path to reach D is A -> C -> D.

Now, in the case of legacy traffic flow, unless C is down or practically shut, the traffic will not flow from A -> B -> D (unless special complex configurations are done on each network gear/device). In an SDN environment, using OpenFlow as the underlying protocol, the controller will detect any issues in the path of A -> C -> D, and based upon certain issues (like packet drop or congestion in the path), would make an intelligent decision to ensure there is a new path for the data to flow from A -> B -> D.

As we see in this case, even with no physical issues on C, SDN already takes care of identifying the best path for the data to flow on, which effectively results in the best achievable performance for end users with reliability.

PN is an addition which is a collection of hardware devices in the network layer that can be programmed to behave in a different way based upon the requirements. Think of a switch acting as a router by changing its functionality through a written piece of code. Let's say we get an influx of new end users and we need to have a high switching capacity in the network layer. Some of the devices can now act as a switch rather than a router. This ensures a two-fold benefit:

	Using the same set of hardware based upon the demand and requirements, the hardware can be reused to handle new scenarios without introducing more complexity into the network by adding an additional set of hardware.

	Better control over the flow of traffic with the additional capability of securing traffic through the same set of devices. This is introduced by adding ACLs for traffic to flow from a certain set of devices, and even ensuring that a device handles only a particular type of traffic and sends the remaining traffic to other devices that are specifically programmed to handle that particular traffic. Think of it, as video with voice traffic going from a different set of devices to ensure optimal performance and load on specific devices using the same set of hardware that we currently have.

A major component of PNs (the collective name for programmable network devices), is the use of APIs that are provided by various network vendors like Cisco, Arista, and Juniper. By calling these APIs we can ensure that each of the devices from specific vendors can easily talk to each other (exchange information is a unified format), and can change the behavior of a specific hardware based upon the API calls. One example that is common in today's market is Cisco Nexus 9000 series devices. These are modular or fixed switches (with different variations), and by using OpenFlow gives us the ability to programmatically alter their behavior based upon dynamic requirements.

Taking this switch as an example, direct access to application-specific integrated circuit (ASIC) chip-level programming is also exposed, which ensures that the ASICs can also be programmed based upon the requirement along with the software-level variations. With SDN in place, controllers can take advantage of OpenFlow and the APIs exposed on these switches to control the role of these switches.

Cisco also provides a Power on Auto Provisioning (PoAP) feature to multiple devices (primarily on the Nexus platform) that helps achieve auto provisioning and commissioning as soon as a new device boots. A basic overview of this process is, if a Nexus device with the PoAP feature enabled boots and is unable to find any startup config, it locates a Dynamic Host Configuration Protocol (DHCP) server in the network and bootstraps using the IP address and DNS information obtained from that DHCP server. It also fetches a customized script that is executed on the device that has instructions to download and install the relevant software image files and specific configurations for that device.

A big advantage of this type of feature is that we can spin up new devices within one to two minutes by just powering it up and connecting it to a network which has DHCP functionality to fetch relevant information to new devices in the network. Think of the legacy way of bringing a router live with multiple hours of human intervention versus the current way of booting up a router, and the router taking care of itself without any human intervention.

Similarly, using the APIs (NX-API is the underlying terminology used for Nexus API), better visibility in terms of packet flow and monitoring is also being exposed from Cisco, and, using simple scripts written in any language (like Python), the path and flow of traffic can be modified based upon the results returned back through the call of those APIs.

Taking another example, we have network device vendor Arista. Arista has introduced Arista Extensible Operating System (EOS), which is a highly modular and Linux-based network OS. Using Arista EOS, managing multiple devices becomes easy as it has the ability to provide extensive APIs (Linux kernel-based and additional ones related to Arista), and call APIs for various vendors to configure and deploy numerous end nodes. A feature introduced by Arista called Smart System Upgrade (SSU), ensures that as we perform OS upgrades on Arista devices, it restarts its services with the upgraded OS versions but without rebooting to ensure minimal traffic interruption during upgrades. These features ensure that we have resiliency and up time even when we have new patches and OS upgrades rolled out on the data centers or multiple devices at once.

Arista EOS provides extended functionality for the devices to be managed through APIs by providing a set of APIs call eAPI. eAPI can be used to configure Arista devices by calling the eAPI framework from any scripting or programmable language. Let's see a very basic example of how to manage an Arista switch using eAPI.

We need to configure eAPI on the Arista switch:

Arista> enable
Arista# configure terminal
Arista(config)# management api http-commands
Arista(config-mgmt-api-http-cmds)# no shutdown
Arista(config-mgmt-api-http-cmds)# protocol http
Arista(config-mgmt-api-http-cmds)#end

This ensures that the Arista eAPI functionality is enabled on the router, and we can use HTTP protocol to interact with the API. We can also switch between the options of eAPI available over HTTPS, by using the command protocol https.

To verify if our configuration is correct, we use the command show management api http-commands, as follows:

Arista# show management api http-commands
Enabled: Yes
HTTPS server: shutdown, set to use port 443
HTTP server: running, set to use port 80

We can check if the eAPI framework is now accessible using the browser command http://<ip of router>.

A couple of examples from Arista depict the output that we get using the URL (in this case we have HTTPS enabled instead of HTTP):

Here we see a set of commands passed (show version and show hostname), and the response from the API confirms the result set. Additionally, the Command Response Documentation tab shows us the available APIs that can be used for reference:

Let's see how to call the same in Python:

As a prerequisite we need to install jsonrpclib, which can be found at URL https://pypi.python.org/pypi/jsonrpclib. This is used to parse the remote procedure call (RPC) in JSON format. Once done, the following code will result in the same set of values that we got using the browser:

from jsonrpclib import Server
switch = Server("https://admin:admin@172.16.130.16/command-api")
response = switch.runCmds(1, ["show hostname"])
print ("Hello, my name is: ", response[0]["hostname"])
response = switch.runCmds(1, ["show version"])
print ("My MAC address is: ", response[0]["systemMacAddress"])
print ("My version is: ", response[0]["version"])

The preceding code gives the following output:

Hello, my name is: Arista
My MAC address is: 08:00:27:0e:bf:31
My version is: 4.14.5F

In a similar way, Arista has also introduced a library for Python that can be used as an alternate to jsonrpclib. The library pyeapi, which can be found at URL https://pypi.python.org/pypi/pyeapi, is a Python wrapper for the Arista EOS eAPI. Going by the example, here is how we can access the same set of devices using pyeapi.

From the developer page, here is an example that depicts how we can use pyeapi for API handling on Arista:

>>> from pprint import pprint as pp
>>> node = pyeapi.connect(transport='https', host='veos03', username='eapi', password='secret', return_node=True)
>>> pp(node.enable('show version'))
[{'command': 'show version',
 'encoding': 'json',
 'result': {u'architecture': u'i386',
 u'bootupTimestamp': 1421765066.11,
 u'hardwareRevision': u'',
 u'internalBuildId': u'f590eed4-1e66-43c6-8943-cee0390fbafe',
 u'internalVersion': u'4.14.5F-2209869.4145F',
 u'memFree': 115496,
 u'memTotal': 2028008,
 u'modelName': u'vEOS',
 u'serialNumber': u'',
 u'systemMacAddress': u'00:0c:29:f5:d2:7d',
 u'version': u'4.14.5F'}}]

Looking at both Cisco and Arista (which are two major players in the cloud and SDN marketplace), we can combine both Arista eAPI and Cisco NX-API to manage our entire data center inventory, and work on some tasks like the provisioning of new devices or upgrading of current devices with no or minimal impact, which in turn ensures scalability, reliability, and uptime in the business processes.

 Controller-based network fabric

As we come out of the legacy hardware era in which each physical path was connected and designed to take traffic from one point to another, and where a packet had limited availability to reach from one device to another, SDN is ensuring that we have a network fabric for our data to reach between different sources and destinations.

A network fabric is a collection of different network devices connected to each other by a common controller ensuring that each component in the network is optimized to send traffic among each of the nodes. The underlying switch fabric, which is a physical switchboard with ports (like Ethernet, ATM, and DSL), is also controlled and programmed by a controller which can ensure (by creating a path or specific port(s)) that a particular type of data can traverse through to reach its destinations.

In a typical network design we have Layer 2 (or switching domains) and Layer 3 (or routing domains). If we do not have a controller-based approach, each network component can learn the behavior of traffic from its next connected component (like Spanning Tree Protocol (STP) for Layer 2) or some routing protocol (like OSPF for Layer 3). In this case, each device acts as its own controller and only has limited visibility to devices that it is directly connected to (also termed neighbor devices). There is no single view of the entire network on any device, and additionally, each component (or individual controller) acts as a single point of failure for its neighbor devices. A failure on any component would result in its neighbor devices re converging or even getting isolated owing to the failure of their connected component.

Comparing that to a controller-based environment, theoretically each device has as many connections as it has number of ports connected. Hence, if we think of even three devices connected in a controller-based environment, we have multiple connections between each device owing to their physical connectivity to each other. In case of the failure of a component (or device), the controller can quickly make an intelligent decision to reconfigure a new path and alter the behavior of the other two network devices to ensure minimal disruption to traffic, keeping the same throughput and distributed load on all the other available links. A controller in theory eliminates the control plane behavior of each device and ensures an optimized forwarding table (to forward data to specific destinations) is updated on each device the controller is managing. This is because the controller starts acting as the main component which has the visibility of every device, with every entry and exit point of each device and the granularity of the data type that is flowing from each managed network device.

Going by the vendors, major players such as Cisco (with its open network environment), Juniper (with its QFabric switch), and Avaya (with its VENA switch), have provided the ability to act as controllers or be configured to be managed by a controller. Additionally, with the introduction of controller-to-manager network components, each network device can now virtually become a dump client with the controller making all the intelligent decisions, from learning to forwarding tables.

A controller acts as an abstraction layer between multi-vendor network devices and network tasks. As an end user, someone can configure specific tasks to be performed by the controller, and, using the underlying API model from different vendors (using JSON or XML), the controller can convert those specific tasks into various vendor-specific API calls, and devices can be configured by sending those specific instructions using those APIs to each of the vendor devices. The Application Policy Infrastructure Controller (APIC) component is responsible for controlling and programming the fabric on each network device component.

Let's see an example of Cisco APIC and some basics on how we can use it. Cisco APIC is used to manage, automate, monitor, and program Application Centric Infrastructure (ACI). ACI is a collection of objects with each object representing a tenant. A tenant can be called a group of specific customers, groups, or business units based upon the business classifications. As an example, a single organization may covert its entire infrastructure into a single tenant, whereas an organization can separate out its tenants based upon its functions like HR and Finance. Tenants can further be divided into contexts, with each context as a separate forwarding plane, hence the same set of IP addresses can be used in each context as each set of IP addresses will be treated differently in each context.

Contexts contain Endpoints (EPs) and Endpoint Groups (EPGs). These EPs are physical components like hardware NICs, and EPGs are collections of items like DNSs, IP addresses, and so on, that dictate a similar functionality for a specific application (like a web application).

For programming with APIC, the major components required are as follows:

	APIC Rest Python Adaptor (ARYA)

This is a tool created by Cisco to convert the APIC object returned in XML or JSON to direct Python code. Underlying, this leverages the COBRA SDK to perform this task. This can be installed in Python using pip install arya.

	ACI SDK

This is the SDK that contains the API to directly call the APIs of the controller. We need to install acicobra, which can be found at https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/api/python/install/b_Install_Cisco_APIC_Python_SDK_Standalone.html, from Cisco to be able to call it into Python.

Once we have this installed, here are some examples from Cisco which can be found at the URL https://github.com/CiscoDevNet/python_code_samples_network/blob/master/acitoolkit_show_tenants/aci-show-tenants.py. This can help us understand creating an object:

#!/usr/bin/env python
"""
Simple application that logs on to the APIC and displays all
of the Tenants.
Leverages the DevNet Sandbox - APIC Simulator Always On
 Information at https://developer.cisco.com/site/devnet/sandbox/available-labs/data-center/index.gsp

Code sample based off the ACI-Toolkit Code sample
https://github.com/datacenter/acitoolkit/blob/master/samples/aci-show-tenants.py
"""

import sys
import acitoolkit.acitoolkit as ACI

Credentials and information for the DevNet ACI Simulator Always-On Sandbox
APIC_URL = "https://sandboxapicdc.cisco.com/"
APIC_USER = "admin"
APIC_PASSWORD = "C1sco12345"

def main():
 """
 Main execution routine
 :return: None
 """

 # Login to APIC
 session = ACI.Session(APIC_URL, APIC_USER, APIC_PASSWORD)
 resp = session.login()
 if not resp.ok:
 print('%% Could not login to APIC')
 sys.exit(0)

 # Download all of the tenants
 print("TENANT")
 print("------")
 tenants = ACI.Tenant.get(session)
 for tenant in tenants:
 print(tenant.name)

if __name__ == '__main__':
 main()

Looking at the preceding concepts, we can enhance and ensure that our managed nodes in the controller can be controlled based on the application requirements rather than hardware limitations. This also ensures that the infrastructure is now tweaked as per application, and not vice versa, with the application performance restricted by hardware.

 Network automation tools

As we have seen throughout the previous chapters, we have multiple choices regarding automating a network. From a basic configuration for any device using Netmiko to deploying and creating configurations across various devices in a network using Ansible, there are many options for engineers to automate networks based upon various needs.

Python is extensively used in creating automation scenarios, owing to its open community support for various vendors and protocols. Nearly every major player in the industry has support for Python programming, tweaking their own tools or any supporting technology that they have. Another major aspect of network automation are the custom-based solutions that could be made for organization requirements. The self-service API model is a good start to ensuring that some of the tasks that are done manually can be converted to APIs, which can then be leveraged into any language based upon the automation needs.

Let's see an example that can be used as a basic guide to understand the advantage of self or custom-created automation tools. The output of show ip bgp summary in Cisco is the same as show bgp summary in Juniper. Now, as an engineer who needs to validate the BGP on both the vendors, I need to understand both the commands and interpret the output.

Think of this situation by adding more vendors which have their own unique way of fetching BGP output. This becomes complex and a network engineer needs to be trained on a multi-vendor environment to be able to fetch the same type of output from each vendor.

Now, let's say we create an API (for example, getbgpstatus), which takes the input as some hostname. The API at the backend is intelligent enough to fetch the vendor model using SNMP, and based upon the vendor sends a specific command (like show ip bgp summary for Cisco or show ip summary for Juniper), and parses that output to a human-readable format, like only the IP address and status of that BGP neighbor.

For example, instead of printing the raw output of show ip bgp summary or show bgp summary, it parses the output like this:

IPaddress1 : Status is UP
IPaddress2 : Status is Down (Active)

This output can be returned as a JSON value back to the call of the API.

Hence, let's say we can call the API as http://localhost/networkdevices/getbgpstatus?device=devicex and the API from the backend will identify if devicex is Juniper or Cisco or any other vendor, and based upon this the vendor will fetch and parse the output relevant to that vendor. A return of that API call will be JSON text as we saw in the preceding example, that we can parse in our automation language.

Let us see a basic example of another popular tool, SolarWinds. There are many aspects of SolarWinds; it can auto-discover a device (based upon MIBs and SNMP), identify the vendor, and fetch relevant information from the device.

Let's see some of the following screenshots for basic SolarWinds device management. SolarWinds is freely available as a trial download.

The prerequisite for SolarWinds device management is as follows:

	We need to add a device in SolarWinds, shown as below:

As we can see, SolarWinds has the ability to discover devices (using network discovery), or we can add a specific IP address/hostname with the correct SNMP string for SolarWinds to detect the device.

	Once the device is detected it will show as the monitored node, as in the below screenshot:

Notice the green dot next to the IP address (or hostname). This signifies that the node is alive (reachable) and SolarWinds can interact with the node correctly.

Additional task(s) that can be performed post device discovery is as follows:

Once we have the node available or detected in SolarWinds, here are some of the additional tasks that can be performed in SolarWinds (as shown in screenshot below):

We have selected the CONFIGS menu, under which we can perform config management for the devices. Additionally, as we can see in the following screenshot, we have the ability to create small scripts, (like we did here to show running config), which we can use to execute against a certain set of devices from SolarWinds itself (as in screenshot below):

The result is retrieved and can be stored as a text file, or can even be sent as a report back to any email client if configured. Similarly, there are certain tasks (called jobs in SolarWinds), that can be done on a scheduled basis, as we can see in the following screenshot:

As we can see in the preceding screenshot, we can Download Configs from Devices, and then select all or certain devices in the next step and schedule the job. This is very useful in terms of fetching a config from a previous date or in case a rollback is needed to a last known good config scenario. Also, there are times when auditing needs to be performed regarding who changed what and what was changed in configurations, and SolarWinds can extend this ability by sending reports and alerts. Programmatically, we have the additional ability to call the SolarWinds API to fetch the results from Python.

It is assumed that OrionSDK is already installed in Python. If not, we can install it using pip install orionsdk.

Consider the following example:

from orionsdk import SwisClient
import requests

npm_server = 'myserver'
username = "username"
password = "password"

verify = False
if not verify:
 from requests.packages.urllib3.exceptions import InsecureRequestWarning
 requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

swis = SwisClient(npm_server, username, password)

results = swis.query("SELECT NodeID, DisplayName FROM Orion.Nodes Where Vendor= 'Cisco'")

for row in results['results']:
 print("{NodeID:<5}: {DisplayName}".format(**row))

Since SolarWinds supports a direct SQL query, we use the query:

SELECT NodeID, DisplayName FROM Orion.Nodes Where Vendor= 'Cisco'

We are trying to fetch the NodeID and DisplayName (or the device name) for all the devices which have the vendor Cisco. Once we have the result, we print the result in a formatted way. In our case, the output will be (let's assume our Cisco devices in SolarWinds are added as mytestrouter1 and mytestrouter2):

>>>
===================== RESTART: C:\a1\checksolarwinds.py =====================
101 : mytestrouter1
102 : mytestrouter2
>>>

Using some of these automation tools and APIs, we can ensure that our tasks are focused on actual work with some of the basic or core tasks (like fetching values from devices and so on) being offloaded to the tools or APIs to take care of.

Let's now create a basic automation tool from scratch that monitors the reachability of any node that is part of that monitoring tool, using a ping test. We can call it PingMesh or PingMatrix, as the tool will generate a web-based matrix to show the reachability of the routers.

The topology that we would be using is as follows:

Here, we would be using four routers (R1 to R4), and the Cloud1 as our monitoring source. Each of the routers will try to reach each other through ping, and will report back to the script running on Cloud1 which will interpret the results and display the web-based matrix through a web-based URL.

The explanation of the preceding topology is as follows:

	What we are trying to do is log in to each router (preferably in parallel), ping each destination from each source, and report back the reachability status of each destination.

	As an example, if we want to do the task manually, we would log in to R1 and try to ping R2, R3, and R4 from the source to check the reachability of each router from R1. The main script on Cloud1 (acting as the controller) will interpret the result and update the web matrix accordingly.

	In our case all the routers (and the controller) are residing in 192.168.255.x subnet, hence they are reachable to each other using a simple ping.

We are going to create two separate Python programs (one to be called as the library for invoking the commands on various nodes, fetching the results from the nodes, interpreting the results, and sending the parsed data to the main program). The main program will be responsible for calling the library, and will use the results we get back to create the HTML web matrix.

Let's create the library or the program to be called in the main program first (we called it getmeshvalues.py):

#!/usr/bin/env python
import re
import sys
import os
import time
from netmiko import ConnectHandler
from threading import Thread
from random import randrange
username="cisco"
password="cisco"

splitlist = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)]

returns = {}
resultoutput={}
devlist=[]
cmdlist=""

def fetchallvalues(sourceip,sourcelist,delay,cmddelay):
 print ("checking for....."+sourceip)
 cmdend=" repeat 10" # this is to ensure that we ping for 10 packets
 splitsublist=splitlist(sourcelist,6) # this is to ensure we open not more than 6 sessions on router at a time
 threads_imagex= []
 for item in splitsublist:
 t = Thread(target=fetchpingvalues, args=(sourceip,item,cmdend,delay,cmddelay,))
 t.start()
 time.sleep(randrange(1,2,1)/20)
 threads_imagex.append(t)

 for t in threads_imagex:
 t.join()

def fetchpingvalues(devip,destips,cmdend,delay,cmddelay):
 global resultoutput
 ttl="0"
 destip="none"
 command=""
 try:
 output=""
 device = ConnectHandler(device_type='cisco_ios', ip=devip, username=username, password=password, global_delay_factor=cmddelay)
 time.sleep(delay)
 device.clear_buffer()
 for destip in destips:
 command="ping "+destip+" source "+devip+cmdend
 output = device.send_command_timing(command,delay_factor=cmddelay)
 if ("round-trip" in output):
 resultoutput[devip+":"+destip]="True"
 elif ("Success rate is 0 percent" in output):
 resultoutput[devip+":"+destip]="False"
 device.disconnect()
 except:
 print ("Error connecting to ..."+devip)
 for destip in destips:
 resultoutput[devip+":"+destip]="False"

def getallvalues(allips):
 global resultoutput
 threads_imagex= []
 for item in allips:
 #print ("calling "+item)
 t = Thread(target=fetchallvalues, args=(item,allips,2,1,))
 t.start()
 time.sleep(randrange(1,2,1)/30)
 threads_imagex.append(t)
 for t in threads_imagex:
 t.join()
 dnew=sorted(resultoutput.items())
 return dnew

#print (getallvalues(["192.168.255.240","192.168.255.245","192.168.255.248","192.168.255.249","4.2.2.2"]))

In the preceding code, we have created three main functions that we call in a thread (for parallel execution). The getallvalues() contains the list of IP addresses that we want to get the data from. It then passes this information to fetchallvalues() with specific device information to fetch the ping values again in parallel execution. For executing the command on the router and fetching the results, we call the fetchpingvalues() function.

Let's see the result of this code (by removing the remark on the code that calls the function). We need to pass the device IPs that we want to validate as a list. In our case, we have all the valid routers in the 192.168.255.x range, and 4.2.2.2 is taken as an example of a non-reachable router:

print(getallvalues(["192.168.255.240","192.168.255.245","192.168.255.248","192.168.255.249","4.2.2.2"]))

The preceding code gives the following output:

As we can see in the result, we get the reachability in terms of True or False from each node to the other node.

For example, the first item in the list ('192.168.255.240:192.168.255.240','True') interprets that from the source 192.168.255.240 to destination 192.168.255.240 (which is the same self IP) is reachable. Similarly, the next item in the same list ('192.168.255.240:192.168.255.245','True') confirms that from source IP 192.168.255.240 the destination 192.168.255.245 we have reachability from ping. This information is required to create a matrix based upon the results. Next we see the main code where we fetch these results and create a web-based matrix page.

Next, we need to create the main file (we're calling it pingmesh.py):

import getmeshvalue
from getmeshvalue import getallvalues

getdevinformation={}
devicenamemapping={}
arraydeviceglobal=[]
pingmeshvalues={}

arraydeviceglobal=["192.168.255.240","192.168.255.245","192.168.255.248","192.168.255.249","4.2.2.2"]

devicenamemapping['192.168.255.240']="R1"
devicenamemapping['192.168.255.245']="R2"
devicenamemapping['192.168.255.248']="R3"
devicenamemapping['192.168.255.249']="R4"
devicenamemapping['4.2.2.2']="Random"

def getmeshvalues():
 global arraydeviceglobal
 global pingmeshvalues
 arraydeviceglobal=sorted(set(arraydeviceglobal))
 tval=getallvalues(arraydeviceglobal)
 pingmeshvalues = dict(tval)

getmeshvalues()

def createhtml():
 global arraydeviceglobal
 fopen=open("C:\pingmesh\pingmesh.html","w") ### this needs to be changed as web path of the html location

 head="""<html><head><meta http-equiv="refresh" content="60" ></head>"""
 head=head+"""<script type="text/javascript">
function updatetime() {
 var x = new Date(document.lastModified);
 document.getElementById("modified").innerHTML = "Last Modified: "+x+" ";
}
</script>"""+"<body onLoad='updatetime();'>"
 head=head+"<div style='display: inline-block;float: right;font-size: 80%'><h4><h4><p id='modified'></p></div>"
 head=head+"<div style='display: inline-block;float: left;font-size: 90%'></h4><center><h2>Network Health Dashboard<h2></div>"
 head=head+"
<div><table border='1' align='center'><caption>Ping Matrix</caption>"
 head=head+"<center>

"
 fopen.write(head)
 dval=""
 fopen.write("<tr><td>Devices</td>")
 for fromdevice in arraydeviceglobal:
 fopen.write("<td>"+devicenamemapping[fromdevice]+"</td>")
 fopen.write("</tr>")
 for fromdevice in arraydeviceglobal:
 fopen.write("<tr>")
 fopen.write("<td>"+devicenamemapping[fromdevice]+"</td>")
 for todevice in arraydeviceglobal:
 askvalue=fromdevice+":"+todevice
 if (askvalue in pingmeshvalues):
 getallvalues=pingmeshvalues.get(askvalue)
 bgcolor='lime'
 if (getallvalues == "False"):
 bgcolor='salmon'
 fopen.write("<td align='center' font size='2' height='2' width='2' bgcolor='"+bgcolor+"'title='"+askvalue+"'>"+""+getallvalues+"</td>")
 fopen.write("</tr>\n")
 fopen.write("</table></div>")
 fopen.close()

createhtml()

print("All done!!!!")

In this case, we have the following mappings in place:

devicenamemapping['192.168.255.240']="R1"
devicenamemapping['192.168.255.245']="R2"
devicenamemapping['192.168.255.248']="R3"
devicenamemapping['192.168.255.249']="R4"
devicenamemapping['4.2.2.2']="Random"

The last device named Random, is a test device which is not in our network and is non-reachable for test purposes. Once executed, it creates a file named pingmesh.html with standard HTML formats and a last-refreshed clock (from JavaScript) to confirm when the last refresh occurred. This is required if we want the script to be executed from the task scheduler (Let's say every five minutes), and anybody opening the HTML page will know when the probe occurred. The HTML file needs to be placed or saved in a folder which is mapped to a web folder so that it can be accessed using the URL http://<server>/pingmesh.html.

When executed, here is the output from the Python script:

The HTML file, when placed in the web-mapped URL and called, looks like this:

As we can see, in the PingMatrix there is an entire red row and column, which means that any connectivity between any router to the random router and from the random router to any router is not there. Green means that all the connectivity between all other routers is fine.

Additionally, we have also configured a tooltip on each cell, and hovering the mouse over that specific cell would also show the source and destination IP address mapping for that particular cell, as shown in the following screenshot:

Let's see another screenshot, in which we shut down R2 to make it unreachable:

Now, as we can see, the entire row and column of R2 is red, and hence the PingMatrix shows that R2 is now unreachable from everywhere else, and R2 also cannot reach anyone else in the network.

Let's see a final example, in which for test purposes we intentionally block the ping traffic from R2 to R4 (and vice versa) using an extended Cisco ACL, which in turn reports that R4 and R2 have reachability issues in the PingMatrix:

As we see can in the preceding screenshot, the Random router is still a red or false, since it is not in our network, but now it is showing red/false between R2 and R4 and also between R4 and R2. This gives us a quick view that even with multiple paths to reach each node with another node, we have a connectivity issue between the two nodes.

Going by the preceding examples, we can enhance the tool to easily monitor and understand any routing/reachability issues, or even link down connectivity problems using a holistic view of all of the connections in our network. PingMesh/Matrix can be extended to check latency, and even packet drops in each connection between various nodes. Additionally, using syslog or email functionality (specific Python libraries are available for sending syslog messages from Python or even emails from Python code), alerts or tickets can also be generated in case of failures detected or high latency observed from the Python script itself.

This tool can easily become a central monitoring tool in any organization, and based upon patterns (such as green or red, and other color codes if needed), engineers can make decisions on the actual issues and take proactive actions instead of reactive actions to ensure the high reliability and uptime of the network.

 Summary

In this chapter, we learned about the basic functionality of SDN controllers, programmable fabric, and some network automation tools. We have also seen how to work with cloud platforms and, with reference to a live example of managing AWS Cloud from Python, understood how we can control cloud operations using automation.

We gained a deep understanding about the role of controllers, and with some examples of Cisco controllers, went into details on how a controller can be programmed or called in programs/scripts to perform certain tasks. We also saw the basics of some popular network automation tools, such as SolarWinds, and created an in-house web-based automation tool for monitoring our network, called PingMatrix or PingMesh.

 cover.jpeg
|

Leverage the power of Pythcn and Ansible to optimize
your network

images/00171.jpeg
Ping Matrix

images/00170.jpeg
Ping Matrix

images/00165.jpeg

images/00164.jpeg
Create New Job
BT coeris

NewJob Details

Kame of o

ol Typs

i

I e - N

EvponCorras

P Reut & Dasbsse 312 Atia ke,
Upzsicnieny

Gerizin cont Cronga Feport

Gemeicio ok, Rero

e et omzs tom manase

Rottt Sk Dove

B0 roERrE N

St O iz

[

52 1200 |78 45 o G50 v 245, s HIA o

i

images/00167.jpeg
L Python 362 Siell
Lt thelebug Optons W

Trac oopvrighct, Moreditat ox Mlisensel)h for pore information.

EeTy gy

RESTANT: C:\pinaneshioinguash.py ————m—m——

Shecking for.....152.1¢8.235.21
Ghscking for.....162.1¢8.235.210
Erecs somnzoving o7 1..1.2.2.2

images/00166.jpeg
{4 Prtken 261 Snct =)@
fie Lt _Shell Debug Ostions Window_llep

Byhen 3.€.1 (v0.5.1:0350db3, Mar 21 2017, 17:54:21 [MSC ¥.1900 32 bav (Tnsel)] -

Typs Teopyrigatr, "eredita® sx "liccmas()" fer moze infommation.

e esmET: Cr\pingmesk\getmeshvalusl.py
chesking for.....192.150.233.240

eneminy tam L Ts in i sen

ohesking fox.....102.158.283.208

checking Tor.....182.158.253.2¢5

chesking foz.....4.2.2.2

Eorur couseoLiid oo ...4.2.2.2

Uik tex 2us xa0:102 ie ze 250t, izast), (‘AN 16w 235 380:197 36 2s 2ant
, 'Truet), (1152.168.235.210:102.1€5.255.218%, 'Txuet), (11€2.162.235.210:182.1€
£.252.249%, "Truer), ('152,182.235.290:4.2.2.2'. ‘False'i, ('132.163.233.245:152
.158.285.2601, 'Truet;, ('192.169.065,2451103,158.255. 23450, 'True'l, (1132.268.2
53.245:192.168.233.2487, "True'!, ('132.163.253.243:192.158.233.248°, 'True'), (
132 ibs 2is 24 2201, eaisar), (‘i ies ses 2am:ies e ges 24ct, virast)
(*192.1€0.25,240:192.160, 255,248, *Trac’), (*192.1C0,208.280:292.160.255.240
FTrma), (1197.168.755.248110. 168,758 2450, TTrnat), (1197.1¢8.255.75R14.7.5
.21, "False!), ('192.138.355.269:183.16€.256.240, 'True'), ['192.138.283.249:18
2.160.255.243, "True'), ('192.188.253.2¢9:182.168.235.243", 'Tewe'), ['192.188.
255.245:265 168 235 3497, ‘Treal), |162.150 255.24:4.2.2.0, "Ealsan), (4.2
il iccse.aae, mlsen), (1h.2.2iimic0 245, "False!
7.1em.o8m 2anr, tRAlaar), (+4.2.2.31193.178.755 Trarsen,
-27, 'Falea'i]

images/00161.jpeg
Configuration Manage:

images/00160.jpeg

images/00163.jpeg

images/00162.jpeg
HOME

NETWORK

APPLICATIONS

CONFIGS

1P ADDRESSES

VOIP & NETWORK QUALITY

WEB

NETFLOW

DEVICE TRACKER

CONFIGS

Config Summary

Config Change
Templates

Jobs

Firmware Upgrades

Configuration
Management

Reports.
Compliance

End of Support

images/00011.jpeg

images/00010.jpeg
L8 hellowcild py - Cygerive/bosk/nllowari. oy G.63)

fc Formst Rur Opfions Mindon el

EE=

pelit weavalue)

Lk Pylior 361 Shell

Fic Edt Shel Dcbuz Optons Windon Hlp

EEE

Pihon 3.6.1 (v3.6.1:63000b3, Mez 21 2017, 17:54:32) DNSC v,

on wandt
Type neopyrignet,

[RSE—

360 32 biL (Tueli] =

"craciza® or "license()" for zors information

BESTART: Ci/gdsive/Eook/hellovarld. By

images/00013.jpeg
[ST
B S e i v b

images/00169.jpeg
Ping Matrix

R1[R2 RS R4]
TR e True | Troe | True [Fabie |
IR T | True] True True [TFake]
[N e True]
Re [enimfszsess dsioiss 255248)
Renton [P [P PP

images/00012.jpeg
g
Farnat—rahle

uenihe 11 6op Raadnans G Baciaawts Canparih11icy, and Havet
Tir Ralehan T
Eanced With PruensShall Gove on Uindous, Hac. and Linix

147
5 Sy~ PuuerShell i Aeuge Gloud Shell
Fuuershe11 DSC

oucxdicll Coxe G Dota.i Releace
opendsil Securiey Testing Mick OLf

images/00168.jpeg
el

< 0 0@ EX)

NerworkTeath Daskboard. e ———

images/00015.jpeg
Fie Ede Shel Dk

Hep.

Eylon 3.6.1 (v3.€.1:63c003, Mar 21 2017, 17:34:32) [¥C v.190C 52 bab (Tated)] =

on wins?
| iype conymagner, teredmacan ox miicemss()® rex mere antormarion
575 liswelue - 11, 2, 3, 4, 51
55 Tistvalae
5, % 94 81
535 Thpymvatve =
22> vaplevalue
(rone?, towat

serrTIATAY, WS, TmeD)
555 sstvaus

[Tndial, 132!, T80

3> dictvaine = {iCovary': ‘insial, ‘Cazmeney'i ‘ipes', 'Uapitall

525 dicivelue
['Ceuncry?s 'India!, !Currency

iupee?, 'Copizalls 'Delnit)

e

images/00014.jpeg
| Pthen 261 hell [EEae]

Fie_Ed_She) Deby Owions Wincow Hep

Python 3.6.1 (v3.6.1:59c05, Max 21 2017, 17:5¢:52] [MSC v.1900 32 bic (Incall] +

Tyee "copyrianet, sredivs” ar "lisease()” for more infammavian
5> sntvala

2

>>> sozingualuestthis is 3 sast!
>3 arminguatne

‘eniz iz o tesc'

5> sosleanvaluesicic

>>> pyvavalu
>3 mymevanie
B*\x00\800\x00"

yees (3

images/00154.jpeg
Microsoft indows [Uersion 6.1.76011
Copyright (c) ZuBY Microsoft Corporation. ALL rights reserved.

C:\Users\abhishek.ratan>aus conf igure
AUS Rocass Key 1D [xememoomoooomoeGoan
AUS Secret Actess Key DeeeoomoonooooodnSnl:
Default region name [ug—east—21:

Default output Format Ljsonl:

Users\abhishek.ratan>

images/00153.jpeg
Aad user

J—
R s
s T oy

images/00156.jpeg
{8 Python 361 Shell
i —Edit—ShellDebug —Options ~ Window —Help

Bython 3.6.1 (v3.6.1:6900dbS, Mar 21 2017, 17:5
on win32

2) [MSC v.1900 32 b:

Type "copyright", "credits" or "license()" for more information.
>>>

RESTAR
1-036213d0022891480 172.31.47.84
1-04299720366£01090 172.31.33.197
>>>

C:\al\checkaws.py

images/00155.jpeg
& Python 361 Shell
il Edit—ShellDebug ~Options - Window ~ Help

Bython 3.6.1 (v3.6.1:69c0dbS, Mar 21 2017, 17:54:52) [MSC v.130
on win32

Type "copyright", "credits" or "license()" for more information
>>>

RESTART: C:\al\checkaws.py
ec2.Instance (1d="1-03621340022891480")
1-036213d0022891480 {*Code’: 16, 'Name': 'running’}
=c2.Instance (1d='1-04299720366£01020")
1-0499720366£01090 {*Code’: 16, 'Name': 'running’}

>>>

images/00150.jpeg
& © C (@ Sccure | hitps//censoleawsamazoncom/iam/home

aw: Services v Resource Groups v *
—
e
it Q Fina sers by isamame or access key
» Username ~ Groups
| users

Polcics

images/00152.jpeg
Set permissions for booktest

A

Copy pemissions fom Atzch exisiing paies

Add userto group. ol arecty

‘Add ierto an axistng group ar eroatc @ now one. Using arups k & best-praciice wiay o manege U

Greate group || & Refresn

Q 5zarch

Group ~ Attached ponicies

< adrin AcministratorAccess

images/00151.jpeg
Add user oﬁ

Detais

Set user details

D TR R —

Username | sooktest

© add anatrer user

Select AWS access typs

ekt now nese

15 Vil acCeSS AW, A25255 Koy 810 BUICGNeraied FRSS,CTUS a1 Peviced n e 3t step. Lear
Access typs* | Programmaic acsess.
Enzttes an access key ID 370 secrat accass key e AVS 45
AWS Manzgenient Consote sccess
Lnzoles a passwore nat 2 ows

o 3G to e AWS Lian

images/00158.jpeg
)
.
a B

S posT e i e

images/00157.jpeg
wot S A T Lt

Step 1 Groose an Amazon Vacting Image (\HI)

images/00159.jpeg
show boot-config

Command Response Documentation

BootConfig

images/00002.jpeg

images/00001.jpeg
Packh

]

images/00004.jpeg

images/00003.jpeg

images/00006.jpeg
File Edit View Debug Help
fsox oo rsm w8 Boo,

Write-host SFirstvariable

PS C:\Users\abhishek. ratan> C:\gdr ive\book\myf irstprog.psi
Hello World

images/00005.jpeg
Neldicaxrx/s9crauE|» a8Boog

UntitledLps1 X

images/00008.jpeg
Spoveroholl
indons. Poyprthe 11
opunight (63 2011 Micvocoft Gorperation. L1 righto resorvod.

e o> speveraiontahle

T
SHanSe apkyaneon
‘ovializat ionvensicn w1
Lhuare ion 501 azem
waLaveroion eua i

6. 20, 5.4, 2.0

images/00007.jpeg
opyright <G> 2089 Miovosoft Covporation. M1L righto rogerved.

2.0.50727 9669
8123600 %11

i Conpst hicersdons
alisacionleroton

images/00009.jpeg
Tle [dk Shel Debug Osticns Wirdon Iiel>

ython 5.6.1 (93.6.Levcaps, wam 21 2UL7, 1/ifisa| LA v.iS0C 51 sz intal] 4
cn wius?
opvrighe™, Toredive” cx "licemse(l” for more iaformavion.

images/00143.jpeg
) locelhostest/erepostch X _\

€ > X () [® localhost/test/preposicheckhtml

Pre/Post check selection

Host IP: (Multiple IPs seperated by comma)

[192 16 49

Commands (Select) -
show vorsion =
'show ip int brief.

Show interface descripticn

‘show clock

'show log (last 100)

'show run

'show ip bgp summary

<o ip mute

'show ip route summary

shouip oot

'show interfaces staius

images/00142.jpeg
crvirtare (o)

images/00145.jpeg

images/00144.jpeg
D locelhusVestid eckogy %

7 C (| @ localhost;

2cess: saybooktest]_191 165 235749 post 2017-10.30_11_01_46 txt Created

192.168.255.249':

Next siep Click hers te compare files
Nex srep: Click hers tc perform pre post chesic

images/00141.jpeg
1) lscrmontitsicheceny X
€ = € 0 [0 kchoecraspy

192168,

1149 Suscess. mybooktest] 182168255 259 pre_2011-19:30_10_53_4) s Created

MNeat step. Clich hie 1o compue Gl

Nextotep: Click e 10 cerfom pre post check:

images/00140.jpeg
J scahost/testjprepostch X

€ > X (0| ®oaahos

Khtml

Pre/Post check selection

Tlost IP: (Masltiple IPs seperated by corania)
[192.188.255 249

Comeands (Selest).
showvarsion
showip nt brisf

show intarface doscription
show cleck

show log (last 100)

show run

show ip ogp summary
showip cute

showip “cute summary
show ip sspf

Show intrfices slalus

Mantaineace ID: [rybocktesti
PrePost
® Drechesk

Posteliech

subrit

images/00031.jpeg
{4 Python 261 Skell F=irers]
Tie e Shel_Dcbug Ostons indow_Iic

PBylon 3.6.1 143.6.1:6300b5, Mar 21 2017, 17:39:32) [v.190 32 biL [Tatel)] +
on vinzt
Type mepyrivhT, Teredivs”

iceuse (" Loz mure afemauio

RESTART: C:/al/bovk/checkpesallel s

31732000
51.735000
31.737000
51.73%000
311652000
51.804000
311696000
51.607000
311608000

Now printing parallel threads

31.013000
51.814000
31ls14000
21.014000
31le15000

1:91.014000
1:31 815000

22:11:21.006000

images/00030.jpeg
L@ checkurction py - CAgdrve\bcokwrit ng' checkfunction py (16.1) EE=
Eci Fomst fun_Options Windox_Help

Flobelval-6

e7 checkalobalvalus()
siosal gloralval
esarn giratual

et dozasvarismievaiza():
Uiusel glaalual
Glopaivai-s
= giaraivar

Brinr (vIna 12 gioal valnet, checkgianaTaIne())
prine ("This is globel velae",alokalval]
Print (ims is lccas vaica, lecaivarissisvaisel))
pelal ("This ir ylolel veluer,lubalval)

L4 Prehon 51 Sl)
Fie_dr_Shell Dehig_Optens Wincew Help
Evehon 3.6.1 (v.6.1:59008%, Naz 21 2017, 1

Type “copyright?, “credits® ax "

2) [45C v.1500 32 bat (Tnvall] 4

mesi(® 2 mere informecica.

RESTART: C:\gdrivedLevinsibiua\cliechlunst Lo by
glopal vaiue 5
in giopal vaias 5
Ihis ix lscal value O
Thia is global vaius 3

2.

images/00033.jpeg
L bythor 16 shell
Cle it chel Dews Opticn: Window klp

[Suthon 3.6.1 [45.6.1:63000S, Nez 1 2017, 7:53:5%) DWSC v.1800 $2 Lt (Gauell] -
oo wansd
Tipe AoRETIGNT, "eredinan or Micense ()" fer mre nrammgin

RESTAR: ©2fa1/ pnecknesmkn. Dy

efore contic push

Building configar

Curzant configuravicn : 192 byves
interfase FastZehernes0/0

ip ardress 197.16.738.29% 755.755.755.957
cuples auvo

spase auco

Arver conriy pust
Suilsing centigarazion..

Cursarc configuravicn : 122 byses
iotesface FaseSehersesd/o

esmxipeaon ny tast

b acdress 192.163.235.242 255.25,225.252
Guplex auco

ond

images/00032.jpeg
Shal Dabug Opions Wnsw -t

Sython 3.6.1 (va.€.1:6900ds8, tar 21 2017, 17:E

Type "oapyrignct, credivs” or "licemse()" for more informavion

2) [MSC v.5300 32 bit (Tatel)]

o EESIART: Cifal/hechueluiku.py e

Ciose 105 Seftare, S700 Safture (52715 ACVENIENIRISERD), Vessien 12.1(18T21
eLease SorraAss (zez)

Tecnloal Supueros HLup:/ mewsCLacy. comfUeshisapos

Cepyrignt (o 193€-2610 by Cisco Systems, Ino.

FrPD11eT The 17-RNG-10 13155 ny Dren_vel reem

RCU: 3700 SuTuware (C3725-ADVENTSRPRISERS-M), Versiuu 12.4(131T24, RELEASE 20TTW
AE (£22)

Syssen resurmad sc A0M by umkmewn Teload cause - suspect boot dasa(SCOT COUNT] O

Syosen sHaze £le 1o Tofop://285.253.185.288 ankncwan

Teio praduct ceasains cryprographic feasusa ard 1o oubjeet to Uatved
Sraces and lonal conrry lwes QRIETRING TWDATS, SXPATT, Tranarer ana
ase. Delivery of Cisco sryotousaphic poadusts coes aot imply
Shird-parcy auchosizy to import, expers, disvribute or use encryption.
Tuguziers, exssers, disieibulire e usecs are sespousible for

noe witk 7.5, and 1ocal cosacry lows. By naing This pIoRct yau
agres o conpiy wita appiicabis laws and Taguiaticns. it you are tnasia
S GHpLY wlh U2, and lovel lawe, seuass Lhir product lmedietelv.

3 samary AT LS. Taus JoveTRing C1sen SrUOTAQrADIR DrMSATA may be To:
Bttp:/ famni. o150 con/wwl/ expore/ Evptef tool/ s3eTa. hael

I sou requize Tusiies sssistmice pleess contact us by sealing ensll Lo
cxportisiose. sn.

Cisoe 3745 (R700D) prossssar (revisicn 2.0 with 243036%/122008 byces of memory
Szosmsssr sesza ID FTXOSLSAONY

images/00035.jpeg
15 Pythan3a1 shet Sl |
bie tat_shel Usbug Cpton: dindew ety

Pychon 3.G.1 (v3.G.1:€550db3, Mar 2L 2017, 17:34:52) (MSC ¥.130C 32 bic {Imsel)] -

ek mopyriun®, Teredilet us "License()" for anre lafasnalion

RESTART: Ci\allchecwmermixo.ry
asczname ceafiguredi cisco

naernane renriguren: rest

Auchenticated successfully with ssermeme tesc

images/00147.jpeg

images/00034.jpeg
RO/ S1350 Cam/nL CRDOTS/ SRR /200L {2725 BTHL

s 3745 (27000] peoesas (sucivion 2.0 witk 2

images/00146.jpeg

images/00037.jpeg

images/00149.jpeg
P
Services
AWS services

images/00036.jpeg
Lk Pyiber 361 Shet Islie =
e it Stl_DebugCrtione WindHtp
bytnen 61 (e rescoms,
o minds
e e S

21 2030, 1ears2) (ST v.as00 52 mat (imreb)) 4

e fremaRT CralAonemmeTTTERLEY
soernems configared: test

images/00148.jpeg
.....

images/00028.jpeg
L checkturcton py - Sgdizatboskriing!checkicnction py 351) [EE=]
Fle Edt_Fomo ur_Opticws Window ey

3eT ChevkgreeLzinuber (uaber, mabes
e —

o)

scater value D3, Cleckuseaeruabes 3))
xint (WCzeater value is7,chackgreaeraumber (s))
Brint ("Greater value 1s,checkgreaernumber(l,d))

Zryensoina
Tie Gt She Deug - Oatrs Vindowicp

Fyhu 9,61 113.6.1:65005, Fa: 21 2047, 17:54r5D) DG v.1300 5% bav (Ganeii] -
o wno

e lasiaun: C:/garava/bookeriting) SaecErunztion.py
Greaies value is 5
Graszex valus iz 6

images/00027.jpeg
L6 checkfuncron y - gz hokiting/-her cunctionpy (] L= = (5=
Edt_Forot A Optons Windew Helo

ckarsecernuber jmunber, nunber2) ¢
5 nurbest > numbezd,

prin. ("Sreave: muber is ", uabesl)

et

prirr (“Greaer smher 137, mimnens)
checkezeatemuker (2, 4)

s Pt on 361 Sl alal]

bie o Shel Uebug Cptons Wrdow Help
Cytac 3.6.1 (v3.6.1:€000db5, Mar 21 2017, 17t

£52) (HSC v.2300 32 bit (Incel)]

Tyes "oopyriaht, "oredics” cx "lisense(!” Zor more iafommation

/aurive/scogricing/checkruncTion. By

FLE
R ————

images/00029.jpeg
| L3 cxctturctonsy - /aerverboskurtivgicheskfuncionpy 062)
il £80 et Optins - Vind- He

cneskaiozalalus
setan globalval

anasvaiseg:
evan globelual

sint (viaze s sical valust,oneckylobaivalis()
sint [vais 1s siche: valusr,glomsival)
Briny {T¥iGs la domm) swbasn; T veral i an Y
srins Globel value®,glcbalval)

L Python 361 Shell =1l =l
Fie Edit Shel Debuc Cptiors Wirdow Hlp

PUTANN 361 (AL tRSCOMmA, War 21 2017, 17354
cn wins?

i G v.1eea 37 bin (Tameni]

Typs "cosvrigne®, moredits® c:

“Licsnse()" for zore informasion

qazive/brommicing/cne

[E——
e te 3ona

Locel valus 8
Teis is zobal velue ©

images/00132.jpeg
i Prton361 Shel ———
Fie_Fdt_Srel Detvg Cptiow Mindur eln

Eyshon 3.€.1 [73.5.1:€900dbE, Mar 21 2017, 17:54:52) [MSC v.199C 32 bav (Iatel)] em
TyPe TCADUTIERLN, Maredtrar or *1icenss ()" for mere tnfarmasion

RESTIRT: C:/al/bapitois.py
25 tnre rer rosrnane sgocgie.cm

15105
GOOGLE - Googla Tac., US
293¢

IEVELS - Level 3 Conmenicaziens, Ins., US

images/00131.jpeg
L& Pyrendfd shell
Fle st She Debug ndou_op

Frthem 161 (1269, Ve 37 3013, 1750420 [N 51900 7 Ba (TaweT] om win
Tupe oY, Moredlolr be Lo ()7 Sk ie Sufosae do

RIS T jel/bmipsentia vy

images/00134.jpeg
% Pywn 361 Sl
e st Shl Seowy Upiors iz e

5.1 (v3.6.0:69.00%, NMas 31 2017, 17:5:5) (NEC v.1:
waancn, orediter or "licemon(i® for xers intozmiiio:

Ty

— A G a1/apvionsion.ty
R {runfig}d iutesfars FantELLainet2/C
#1con11a a1 fouaterpore txank natave viam 10

#s1contaa az)fnc onas

wt

Ao Yo LB O ((Tuactive))
Crumcn Heive Hedr Vid: 10 | (mazzivs)

25 {Lonlig disterfars FoutZtiine /0
#ioon11a a1 fowicorpore txink navave viam 20

images/00133.jpeg
L& Python 35 she'
Fle B St Dobug Ot Wincam M

Iipe neckrhignen. sremite

+ 1900 33 prv (1man)] en i
Sx *iacenoe)t Zex wore anzermstion

RESTRRT: Cfetjepriaspusis by

55 oanz10) $zntertacs rastazriractils

e

B3 {CamEi oA) i s ohimt i o
i e

e P
Rl lenmeigeif) e
Bsi

Vi 0 | iinaczava))
Narive Veds GTAR: 10 {ITaneive))

images/00130.jpeg
et s

images/00020.jpeg
| Python 251 snelt ElEE=]
e Ldt_Shell D
PYTon .1 V3.6 1seSrRANS, var 91 3017, 17:8958%) DR V.19 33 e mnenl -
on vinaz
Typs *aopyrightn, neredite” oz "licensa()”
eine ("lefs value 13 azesces®)

s Vindow ey

x wosa infomation

stent
prine (rigns vatse 1a greatern)

rrgnn vt 18 grester

images/00139.jpeg
U8 lombetestorepee x|

¢ - ¢t [Ochone

eckharal

<p

Pre/Post check selection

Tost [P: (Multple IPs scperatec by comma)

Commanch (elec)) ' Flezze fill out tis fsld.]

370w ip nt rief
‘70w ntoracs deserplion
snowcleck

e g (et 10)

37w ip ogp sumrery

c10wp oute

70w ip route summary

sxcu ip sspt

S s s sl s

e —

PrePont
® Practeck
Posteheck

Subm

images/00022.jpeg
L& nestedecnditior.oy Cyal/neszcdconiion by 351)
Fle i Fomet Run Otiom Winkow Hely
car_fesatia=etar 1o mine cotor ana = sman

I tpiaet T cax cevailst
5 taszzon o7 car devails

print ("L will bus Uils cac”

prine ("TRis s boL @ ssdas)

prin (This s nen A s

)

(e ae e car

{8 Pyt snet
bie tat shell Debuy Opuone wimdow Hep

L=l =]

Type "eopyrighet, "oredits” o

“licensel)”

I uill bay this

Tython 3.6.1 (v3.6.1:6950dbE, Max 21 2017, 17:51:52) [MSC 7.1900 32 bit (Int

I

RESTART: C:/a1/nes3adcondicion.py —mmmmmmmmmmmnmmmms

images/00021.jpeg
(& nestedeoniion py - Ciat/nestedeardior.py OE11

Fie St Femar R Opins Windns Hep

maka=es
5 nazks < 35
prine ["3zade C7)
prine [3zade D7)
pein, {"isade A7)
prine (vimame mo sererminer

Fle 4t Srell Debug Ooiors Window Help

Python 3.€.1 (v3.6.1:63c0d08, Mz 21 2017, 17:58:52)

DHEC v.1300 32 Bt (Tasall]

Tyee Meopyrightt, "sxedita" o "license()" fax mere infermatisn.

RESTERT: Ci/

St
ool

nessedoondicion sy

images/00024.jpeg
Lo
File_EditShell Debuy _CptionsWindow _Help
PyTRAT 361 (V3.A.1:A9GNTES, Var 31 2017, 17:5¢137) [MSC 91990 37 Win (Tarel)] -
en wnc2
Type “eapyTigIv. Tarenisan ar wiicense ([T Tr mare fnformation
>>> ccuncrico='Indzal, DY, 1DEA!, 'Franee']
s £ nrumsry 16 enoneries:
leounvry | " 15 goodn)

=T

maia 1s gooa
9 1s gosd
oA Lx gucd
Erance iz good

images/00136.jpeg
|4 #tran 361 thet

yenen 5.3 (73,4 3skscoces, tes 4 2057, TVieiia) WL v.e U so (ineen)] o i

Tipe ocpyiigrn, vereaive Gx miicencali® fox s infereasicn.

Sasiasr: Csfa1/srpnenpss ey
Koo g 4o eeence ns e

B2 lceati 1n)fousserpors mode acoecd

BS 1Ge AL A0) owi rebinos avomss o 130

e e e

B2 iceatay 10)fopanning “zce poreracs

B g
B ioearig-in) fene
B

Acvess Mude VLM 10O (VLANOIGO!

images/00023.jpeg
L@ Fythor 362 Shell EEE]
o Bl Do gptionsWinw_sen
Tyehon 3 6.1 vs b arevcoams, Mes 41 2017, L)ivarsi) LASC v 100 52 st (lvel)
o ause
Tupe Meopyzighsn, ereditsn or license()” fex mocs informasion
225 fr % i rawe(d,10)
peins (m)

images/00135.jpeg
Validating switchport....FastEthernet2/0
Name: Fa2/0

Switchporc: Enabled

Administrative Mode: trunk

Operational Mode: down

Aaministracive Trunking Encapsulation: dotlq
Negotiation of Trunking: Disabled

Access Mode VLAN: 0 ((Inactive))

Trunking Native Mode VLAN: 20 ((Inactive))
Trunking VIANs Enabled: ALL

Trunking VIANs Active: none

Priority for untagged frames: 0

Override vlan tag priority: FALSE

Voice VLAN: none

Appliance trust: none

>>>

images/00026.jpeg
| Fythen 360 Shetl. == (=]
Fle Tt Shel Dcbus Ootens Wincow lisp

PyTRm 36,1 (v3.6.116500ms, Mav 71 7017, 17156155 (A 91300 32 BiE (e -
g

Tupe respyrignte, "oreditar ax Wlisense()” for more infarmatisn

RESTRRT: T:/a1/Beck/checkvonel.py
Zocer councey nave:India

RESTERT: Gt
Enter councey nave:us
N vowel Zouud

a1/500k/eneskevousl.py

RESLRAE: S1iaa 000K/ enackvouel BY
Euter couniey nare;Osh
Vool muns

images/00138.jpeg
O wahoslietiepots X

€ C 0 |® okt

Pre/Post check selection

ost [P: (Mltiple IPs seperated by corama)

Commands (Salect):
show vers en %
showip int ier

show interface descristan

show clock.

shovlog (last 00}

show rin

show ip bap summary

showip roite

show ip routs summary

shiowip oepl

how inertaces status

Mantairence 1L

e Post:
Precheck
Postcheck

Enit]

images/00025.jpeg
1@ Pythen 261 Skl ==
ZinFitShed Dot _Options Wincmw_ e
aythan 4.6.1 (ve.b.3iedcucos, Maz 2L UMY, 10:haisi |SC 7.1 % Bat (1mtaii] 4
o wausz
Tupe eopyrightn, morsdizer ox lisensa()® for more infommasion.
35> while Tase:

Erant 0

gty

brcak

images/00137.jpeg
& Prhos 351 Snel
Fle S0t Shal Deus Outors Virdew el

Python 2.0.1 [v2.0.2:03c0d50, Yax 21 2017,
voe noobiiianth, roraaie cr *iicensel)

17:58:52) [45C v.1900 92 biv (Tavel)] on wimd?

‘tspraymanats 110113020011

images/00017.jpeg
18 Pytror 362 kel
fie

it Shel Debig Cption: Vindow Help

Pychon 3.6.1 (va.5.1:€900db5, Mar 21 2017, 17:34:52) (ST v.190 32 bic
Type "comyriancn, "oredics” or "licease()” for more informavion.

555 stringraisis

25 stelupval

G

253 arringvar

> sezinaralz

255 sLelugval3 —s.elagvelesisiugvald
555 atzingrals

(Tncel]

images/00016.jpeg
»>> type (lissvalue)
oass Lisis
57> ype (sevvalac)
52> spe (s

e (suptavalee
ass zapies
ey}

S

images/00019.jpeg
(il B Shel Debuy Optums Window ey

Pynon 2.6 (v3.A.1:Acades, var 5
Type mrrpyrignee,
35> ovringvalas
55> mixedvalue

fur

ingraluerincvalse
iracepack (most rasent cail

1e “epushelfarr, line
[P

Typemsees: mest be stz mer iat

Dis= v.190n 32 p1n (ToreTi)

images/00018.jpeg
4 Prhon 3.1 Shell

b tar Shel Dsbay Gption: Wimdaw Help
Pyckon 3.6.1 (v3.€.1:€90035, Var 21 2017, 17:54:52) [MSS v.19€0 52 biv [Taveli] 4
o wias2

Type Moopvright, oredize" o "lisemss()" for mee inforustion

>>> invelus-1

35> intvalss

=]

53> insvalusi-invaluclintvalacd
4

images/00121.jpeg
Pt ogbsaise S S H

5T sheRGuEurEEest TS 5 T W IERE
ot eer e e ha rost 250 0Ct 34 04136 myrouter:. tet
TSt IrI 1 Sbivianak root 230 oct 24 04:3C mrouterz. txt
25hTshakaukurtutest S

images/00120.jpeg
 sbhishokRubuntutest: /rtrconfiy 5

aFTshckEburEaEeser /e Conf TGS areThTe pTaybook makeeer TG T

PLY Lcererat router contiquration 1 es] meemens

] i e S S S S

Lt

LR S 3”2”'“‘3532:;35’:5;2&.‘;1‘“1 oy gy —————

e R = SEERARRI L ey
12700 okzr | chanqedes | unreachabiesd Failaded

bhisheke bt i<t e confgs

images/00123.jpeg

images/00122.jpeg
¥ abhishek@ubuntutest: ~ (53]

abhT5RekEUbUNTUTEST ~3 More myrouterL, txXt
no service pad

service tcp-keepalives-in

service tcp-keepalives-out

service password-encryption

username test password test

hostname myrouter1
Togging server 10.10.10.10

Tug?v\g buffered 32000
0gging console

SN —

exit

abhishekeubuntutest

images/00051.jpeg
[

images/00050.jpeg

images/00053.jpeg
18] s

Bt ok

CPonPython3E 32 pyronae
2kt agmantsptonal:

S n optienall

images/00129.jpeg
1500 %2 bre msennl an

BESTART: Ci/a/bapcontimusn.£

arvroumss santi frcuses na 200

[ostvewey

images/00052.jpeg
D] sk tngger

e de you matthe ascto star?

’_
osly

OreTme

N O weeky

25 © Moy
© Onetme

) Whentne comauser stz
© Wnen g en

) Whenssoecic rentis og3ed

images/00128.jpeg
Lek Pythor 36 Shell
Edt Shal Debue Oprons Wirdew el

Shon 3.6.3 (736158908t Yaz 32 2037, 1TSEAISE) BOC 1300 33 o (fmven)] on vinss
e e

oucer) § nesgupox 192,168,
ure

e

[

images/00055.jpeg
L& Fytaor 362 Shell

St _Shel_DewgOptonc Windew _Heln

Python 3.6.1 [v3.5.1:55005, Maz 21 2017, 1
o w2

Type Meopyrighst, Meredita ox "licenos()" for more infomasion.

=]

154152) [MSC v.1900 32 bit (Intel)] 4

EESTART: C:/al/checksmnpvendor.ev
192,168, 255.243

SHUP2HIB szysbesie.d = Sisce 103 Sl.serz, 5600 ufluare (C3560-BITREI-M), Ve:
bien 12.1113), NELEASZ SOFTWARE (fol)

TeaRAIEA SLPATT: RRop:f/uno1scn.con/TenranEpOTT

Copveighe (c) 1306-2000 by Cisce Systems, Inc.

Compiled F2i 23_Fan-03 33:47 £ prod ral tasm

SXUP72HID s evsbesse.d = Sisse 103 Sofswars, 3700 Goftware (C3740-AIVENTESERIZER
9-), Version 12.4(15)116, WELEASE SUFTAARE (rel

Teohiical SwpurLi Lo/ feun.GLeco. con/Lestsuport

Copyrighe (o) 1985-201C by Cisco Systems, In.

Cmpiien s ToEm-in

images/00054.jpeg
T}
18] sy

—
oo PO .]
s Sescipion Th sto s ythor occsion

st aprogram |

Tigge: Onefime AIHLLRM on9/1S/201T

Bcticn Stots sregrams CPythor Pk orC6-Rpyron ‘sl tesgythen by

1 03en th Properes dekg for i as when click 1,
sy e P

o Yok 1l b e W i

<o s | |

images/00057.jpeg
|2 Pytnon 351 Shell (== (=]

Fie it Shell Dibag Ostiors Vindow Help

Fyhun 9,61 119.6.1:630005, i 21 2617, 17i54rsD DG v.E300 5% Lav (Ganell] -

on win?
Tire "eapyTIgNTY, "aredtnan or *license()n fov Teve infermation

eSTAKE: Cifalfsrecknysa. By
Validavine IE 132.100.205.243

Davics nas ¥o Sinasnst caiy
Device iz of vewlo: Cisco: Tiae
Device 192.168.265.245 has pasced all validacions and sligib:

cetace(s! i Trus

oz 270D

Talidating T 132.169.255.2¢8
Davice has No I-kernet caly Intezface(s! : Talsa
Deviss 102.162.265.2¢2 kaa failed validarions and NOT cligibls for 29CD

images/00125.jpeg
 New Seach

images/00056.jpeg
L& Pytran36 shel =)= =]

File Ecic Shel Debug Options Window Help

Bvencn 3.6.1 (v3.C.1:69:0d5¢, Mex 21 2017, 17:34:32) PGS v.1300 32 bit (Invelll -

Type "olprelhlt, Tredits or "license()® for wore Lforua.ion.

RESTART: Ci/at fenenihyra.ry
Velicasing TP 192.130.255.243

intarzace nas rastazaeznern/o : Tris

Device s uf veadis Cissor Teue

Device 192.168.235.249 has passed all validsvions and eligible for EYOD

Valicasing TP 192.150.255.240
Incarface has fastashemnesd/0 : Trus

Device is of veadis Cissor Tese

Device 192.188.238.215 hes passed all validasions snd cligible fox EYOD

images/00124.jpeg

images/00059.jpeg
e ne | @ Pofuitwiosic some

A S el G e

g‘"wm»wm 3

S : ox W

| A=

O Fmer et

images/00127.jpeg

images/00058.jpeg

images/00126.jpeg

images/00049.jpeg
L ey dun 58 she

images/00110.jpeg
e B

e

images/00112.jpeg
¥ abhishek@ubumutest: - [
EL O T s ST P T e

PLAY Imyrouters? ¢
B Tt
Gk [137.0.0.1

ok [

ehu
0:0.1] >
0" "Systen 127.0.2.1 has hostnane as ubuntutest

127.0:0.1 Dok crangad-0 urreachableo fatled-o

ablris bk SuturiLuts L2

images/00111.jpeg

images/00040.jpeg
18 Fytror 362 Shell SE=]
- Sh e yeins Wt

Bythor 3,61 [78.5.1:55c0s, Hax 21 4917, 37164150) DASS v.39%0 53 bav (GaveD)] +
it

ot e

ighon, Meredito” ox Mlicenos() for more infomasion.

ELSTART: C:/al/chesime o
6 adirese is 1 20.10.10.20
Sibust nesk is @ 295.289.259.255

images/00042.jpeg
L8 Pychon 261 Shell
Fie ot Snel Debug Options Window elp

Rl

Pychon 3.5.1 (v3.6.%1650035, Mar 21 2017, 173

4:52) [MSC v.1900 32 biz (Iatel)] 4

Tyse Toopyzightt, Messdizat ox Wiicease()" for mexe infommavion.

RESTART: C:/a1/checksample. oy

Toank snabled e fai/0
Trank anabled en £a3/1
Towk suabled cu Led/1

images/00118.jpeg
'+ abhishek@ubuntutest: ~/rtrconfig [E]|

abhishekeubuntutest :~/rtrconfigs f1nd . ~type d

/roles

“/roles/routers
_/roles/routers/templates
“Jroles/routers/vars
_/roles/routers/tasks
abhishekeubuntutest :~/rtrconfigs

images/00041.jpeg
Lek Python 361 Shell
be b Shal setng vptcns Wandow_Hap

=]

Y I ss v.1909 52 Eav (Baeeniy -

Tyshon 2.6.1 (v2.5.1:5000dKS, Mar 21 2017,
Trpe Mocpyrighon, Mozsdisan or Mlicease

RESTART: Ci/a1/validaceipaddzeon.py
Cozzeor Ipve IO
wrang Tkve 10
wrong TrvE I0

" for moze informazien.

images/00117.jpeg
utesti ~ B
X fythar CRECER Y

PLAY [nypythrichack] 4% s wakomtit ki RRRHE KA LR E RANE AL EE R

| o abhishek@ul
BRI

| TASK [COMMANG] s #5488 R 044050 RS
changed: [127.0.0.1]
[Task _[risbug] seeeesnsssssesssnmennnisseeens s nenmmnnnse xS R TR E YA R

E R
Fezgi bbb

i
abhishakeuburtutest: - §

images/00044.jpeg
8Pyt 351 sich =l=]]
Fie o Shall Debug

Python 3.6.% (v3.6.1:69006b5, Mar 21 2017, T
o wis2

tions e ela

4:52) (MSC 7.190C 32 bac (Tmvel)] <

Tyre Meopyzigntt, Toredita® sx Tlicsmss()" fox mere Smfazmavion.

BESTIET: Ci/a1/parssconfiz.oy
witag Teva T2 23.23.28.29

images/00043.jpeg
L& Python35.L sell =1
Fle Eci Shel Debug Optiors Wndow Help

Dyshon 3.6.1 {72.6.1:62c0bS, Max 23 2017, 17:51
Tope "oopyrighse, “rediva® o Mlisenac()® for mers infcrmation.

2) [v.1900 32 bic (Tacel)]

RESTART: C:/al/cheskasmgle.py
Trank cncbled on Za1/0

images/00119.jpeg
abhishek@ubuntutest: ~/rtrconfig (5]

abhishek@ubuntutest i~ rtrconfigs Find -

© /makeconfig.yml
Jroles
‘/roles/routers
_/roles/routers /templates
_/roles/routers/templates/routers. j2
Jroles/routers vars
I/roles/routers vars /nain. ynl
_Jroles/routers /tasks
- /roles/routers /tasks/main.yml
abhishek@ubuntutest :~/rtrcantigs

images/00046.jpeg
@ Pytbon 3,61 Shel
Esi Sl Debuy Ootions Window Hep
(v3.6.11600035, Max 22 2017, 17:51:52) NS 7.190C 32 bat (Iawel)] -

oo T

Type "ocpvrianet, "sredivs” ox "licemse!)” far wors informasion.

RRSTERT: Ct/m1/1pvaraTnea by

images/00114.jpeg
¥ abhishck@ubuntutcst: - [
B e R e

AT e TR TR

[l o e I oA S
ok: [12/.0.0. A
T) v — - "

skipping: 127.3.0.1

e 1
ok [12,
asg

o)

- €
s s a @

urreachable-o farledes

PLey sEcap <ovves:
BN

abrisheksubututast g

images/00045.jpeg
18 2ytor 361 Shet [E=N RoR R3]
fie Debu_Options Windew lisp
Fyenor 5.5.3 (va.s.itescans, Max 21 2047, 17ise1sn) [eST

1500 32 pav (@mean] ~

o st

Tyoe "copyriahe”, "eredits® o "license()” for more infommation

LesaRE: Ui /21/enscayrostar py

bose-startmaske

Bost cad marecr

e contiz

Bost svstex Flashis3745-advencerpriseks-nz.124-17. 18540
Bost cas

images/00113.jpeg
¥ abhishekifubuntutest: ~ [f§|

R e e e
s R R R R Y

SRS e ek

s oo R R T P T T TR

W

A CATA] 1 e

L
e hal R)
557 SR shitshes, ysren 197.0.5.1 has basrome % uhwrrumesr

ey it changedco | nreacnatiess | fatladeo

s shesupurries

images/00048.jpeg
LA Python 251 Shell | =

Lot shel Debug Uptirz Wincow He)

2yllin 3.6.1 (v3.6.1:69:00L3, Mar 21 2017, 17:54:32) INST v.1360 32 biL (TwsD)] -
en uinz
rupe "

opyrigan, "eremtst ox

soense()v tor mers intomation

SISTART: Cilal\checknyrouter.py
¢ yeu vant a pre o= post cheok [pralposti: pre
Ti1e urine mrmpiered presecc.Tr

SESTART: Ci\al\ehcokmyronter.py
e yos vant @ prs ox post casck (preipest: past
Ti1e urine sempierea posrrren.xn

images/00116.jpeg
| eateiatinak - -
SO She AU TEAEGSE -3 S TBTE TaBoak chacKToop T

I A S SA————————

| TAEK [GathCring Facts] & ¥k xik ks i ki ik ob ¥ ik 44848 Kbk 0K 00 ¥bE 44880 KAE SR
ok: [127.0.0.1.

ok 1427.9:0 5115 ooy - 1
0.

s S 00
b .00 11 = Gter) - {
ren't

0] - (iter$) - €
&

Sérver 4

.0,1] = (iter=6) - {
Server 6"

.0,1] = (iter-8) - {

Server 8"

.0.1] - (iter) = {

"Sefver 10"

LAY RLCAP *4948 K8 408 4k 0808 8 48K 0848 SRK 558 K88 S KRS S0 S0E S8 58S THH S8 KES RS0

157.0.0.1 ck-2 changedC unreachadle-0 failsc-d

o TN 1

images/00047.jpeg
Sl ofird e SCL (to gettho noxt notwork (or o 50
1P address) availabe nostname) propagared in
natvork)
i
\erdor
Pymen scrpt
Role based
Tempiate l

Final Geraratad
Confie

images/00115.jpeg
| ¥ abhishek@ubuntutest: ~ |

SERTEhekeubuntucest S arsTo a-pTaybock chedkTF .yl ——extra-vars "Cleciclock

1 A Loyt -] 940460 0 0 AR

P —
1370017

T PSS ———

changec: [127.0.0.1]

20.0.0.2]

R fok-s changed-l wreacravied failed-o

abhvishekgabunn ut et 55

images/00039.jpeg
L8 Python 241 501

T ST

File Edk Shcll Dcbug Options Wincow Hzp
Pyl 3.6.1 (v3.6.1:65c0Mb3, Mar 21 2017, 17:54:32) [M3 v.1300 52 biL (Taiel)]
on vins
Lyps vsopyrignte, "czeciis® or “iizenss()" cr mere infematien
- ESTART: Si\allsheckonmp.gy
SHMEv2-OMI:inab-2.2.2.2.2.2 - Fasttherses0/C

3b-2.21211.2.3 = Ssxis10/0
HMEv2OMI:i3ab-2.2.2.1.2.6 = Nalld

images/00038.jpeg
L o351 Shel

bie tak Sral Dehug Uptone Vindow cela
Exshon 3.C.1 v3.5.1:€9c0db8, Yax 21 2017, £7:54:52) [MSC v.1306 92 bav (Tavel)] -
on wins

1vpe “copyrigas

, meredits® or "iicenss()” for mere informatien.

RECTART: C:/al/checksnre oy
SHMEV2NIE::ayaliesce.C = Cisoo 108 Sctswars, STDC Scfsware (C3745-IDVENTERSRISER
M), Versinr 13.5(13)TI4, RETRASY SOFTRARF (fe7)

Teckaical Sappors: hote:/wr.cisco.com/SechsupReTS

Copyrighs [o) 1685 2310 kv Ciseo Systems, Inc.

Corp:isa the 1y-Ang-it 12:sr by prod rer team

images/00101.jpeg
abh shek2ubuntutest: /etc/ans1bles more /etc/ansible/hosts

ShTe T the defauis mnaihie tosrer Fin
T+ shonld Tive dn ferc/ansthe hasrs

= Comunts Segin with Ui '8 characier
2Tanc ncs are 1grorad

= Zroops of Tustls sbe ds imited by [leader] slamenis

= Vou'tan ecter hoStranss ot ip addre

= n’hostnanc/ip can be 3 member of miltiple groups

bk ok bk

Lx 13 ungrouped hosts, spactfy befora any roup headars.

qreen. axange. con
% Blue seraple: con
P e e

% 79926310010
*Hlocainost

2R

1 ansible_connection-ssn ansible_user—

557 pass-abrizhek

Ex 21 4 ol lection of Fo:

belonging to the “webservers® group

% alpna. axang’e.orq
% betneerpiesorn
% 15216310105
R

T you et il bt Tolloing el e yon can spee s
* Inah Tk Tes g & W

#4 0] 0011008 . examp . con

Ex 3 4 o lection of catabase server

[dbservers]
i
“

in the

aroup

b0t Antracer. nydonsin. net
% do0y. intranet. mydonzin. nat
% 1005005
10l

* Here’s anotrer cxample of host ranges. this time there are no
2 ity el

du-[99:101]rode. weanple. con

abh shekzubuncucess : /ecc/ans<bes

images/00100.jpeg
ARREGR Y YIRS RG:

+/ abhishek@ubuntutest: /etc/ansible

abhishekeubuntutest:/etc/ans1bTes Ts -1

total 32

—rw-r-—r-- 1 root root 19366 Sep 19 17:10 ansible.cfg
drvxr-xr-x 2 root root 4096 OCt 4 12:59 group_vars
~rw-r--r-- 1 root root 1131 oct 12 04:22 hosts
drvxr-xr-x 2 root root 4006 Sep 19 22:42 roles
abhishekeubuntutest : /etc/ansibles

images/00071.jpeg
& & C (| @ localhosttest/cetwaboutput.oyTipaddrass~192 168 255 2498w d-show-c cck

Device querisd for 192.168.255.319
Comand: shou clocc

Outputs
90:5:16.767 UTC e Has 1 2977

images/00070.jpeg
€ 5> C 0 |© localhosttest/getdeviceoutputhtml

Enter device IP address

192.168.255.249

images/00073.jpeg
€ C 0 @ ratosllalgstuebou oy pacdiss

Deriee o e for 292.066.255.09

ot
O e ranre, 1 e (68 SR RS, i 12 ATTOITA, SR (£
Coppriant) $oas-20io b Clica syseens, &

et R e i

ROt RGN EnJulion i
T S SeFrames [4rae SNSRI 1), oo ALY 1S, I BASK SE (Fer]
Systen ratu 725 To M by uricon rclood causs suspect bocs_dsta[300T_COUNT] S, BI0T_COUNT €, S00TDATA 10

use, Bellie-y of Cisco crypiog asthe products see ot tmply
conpitancs T 4.5, and lecal sauntry Zaus. 3y -eing thic preduct ou
T e e T e A

o e
[N AR D R

ki ey e

2 you requtes furthen asststoncs please contsce us by sendirg awotl to
RS

Ciaco 3745 (720 proceszer (~silston 2.0) vien ZHSTAOK/LSIEN ByEss o mency
nterracer
i i i e ity b

KhniFgastlons pugpindioes s il

images/00072.jpeg
€ 5> C 0 | @ localhost/test/getdeviceoutputhtml

Enter device IP address

192.168.255.249

Enter command:

[show version

images/00075.jpeg
ot

bevice susried Sor 102,268,

Chate Tos Softuars, 3790 Softnaes (C273S ADVENTERTAIZEG 1), Verston 12.4015)T1e, RELEASE SOFTAARE Cfcd)
SCel Buppares ~tea i iy, oo echatpgers

Copyrig (0} 29823915 by Ty Sy, T

Cor 1R W 15 g 10 13 By L red1rom

R Fai Erulition ticrocss
R 1 e ({1 A A1 1K), ersier 1 G, 11 (5

teszreuten wpeine 13 34 minutes
eien Tevurhed S 01 By s celond raiee - Suegact b daral 193 NI s, RN LI B, 1CH1 <18 5
Siman T £ Ul 25 295,255,355 unk”

s it contels Loy sl Temtures o L sttt Galted
T]

thire-garty authe-ity to orpo-t, spors, clitribuce cr te sncrygtinn

agrec <2 comly wit” applicabls laws and regulations. I jou ore udsle

& ey o 15 1o gerntng Ssen gt peeruets vy -e found ot
R A A BN

e B s e A i e
e o

Cisee 480 (AR “racessnr {-rvision 7.0) aith P/ K Fyses oF meeny
Rroge €y at 3serz, Tnploncntation 33, Rov 2.1, JSEKE LZ, SiE o2 Sache

L Seriel(ayne/asyi) Interfae

b T e o ity v

S22k oytes o AT Systen Comsactrisch (peadiirize)

images/00107.jpeg
—

ik e e s it thy Lo el e

T p——

[SE Ty mesege wd s

AT o

I 1 3 e SRR
B S 1 el Ty

"
et iy
ey

Ayt mioa

images/00074.jpeg
[P address JModel |

192.168.255 24§][3600 Software (C3660-A37K9S-M) |

93700 Software (C3745-ADVENTERPRISEK9-M)|

images/00106.jpeg
prassesiomeras M,

s > L
L ovmison s s o o A A

images/00077.jpeg

images/00109.jpeg
AR
e SheraubuETesTi-§ S The-pTavEaok Chackie T

P1AY myrauTers] Soesvesvesvebsamvasversosessaorvesesvesrebirisasys Ve OSea eE eV

|ASK [GETRGITAG FACTE] A4#A4%A44AFARRIARSERE AR NRANRSRAS RASRSRRSSRSRRRRRSS RER SRR RS
o2 [137.0.0.1

s Pricnscinritiettnpmssnsom mensmennmm s ssenstm e s e i e
ok [127.0.6.1]

D e e
15700 Skes cranged-b unrcachable=0 fail

o

22he shet@ubunt irest -

images/00076.jpeg
5 e
- —

images/00108.jpeg
blishek@ubuntutest

Sbhishakaubuntutest -8 ansible Tocalhost —n setup [more
127.0.0.1 | success — {
"aniible_facts': {
"ansTble_all_ipvi_aderesses™: [
"172031.33.197"

Ans e al1_1pvs_adcr esses’
805582855111 : [k ;606"

9
nsible_asparnor”: {
status © “enabled

"x86_64”
02/16/3017",
25" amazhn”,

Bocoe oensrecnun
‘ansible bios care”:
Anaihla_bins_version”:
‘ansible_cndlire’: {
/boot/umlinuz-4.4.0-1035-aws",

Tryse”,
0010-32135562-d28d-407b-bcc6-97160eaf eoel”

f
2017-10-10"
i 10"
epoch” s, "130/6110837,
hour ”: b4’

15086017 “3017-10-10704:51:232"

1508601 basic": "20171010T045223181202'

1508601 basic short”: "2017100T045123'
i "2017-10-10704:51:23 18127627,

"tz_offser”] "+000D"
weskday: "Tuescay
weekday_unber

weeknunber~: 41",
year™: "20L7

dnsible_detauit_ipvd”:
adiress”; "172.31.33.197",
alias

images/00079.jpeg

images/00103.jpeg

images/00078.jpeg

images/00102.jpeg
¥ abhishek@uountutest: fetc/arsible

SBFishelubuntuzast /ctc/arsibTes ansible all m ping
127.0.0.1 | SUCCESS o> {

il

ablishekeubuntuzest: fetc/ansibles

abhishek@ubuntuzest /etc/arsibles

abiishektsubuntuzest: fetc/arsibles ansibla all -m ping --ask-pass

s pessword

127.0.0.1 | success = [
hinged": false,

“faiigd"; faise,
“ping”; “pong”
abhishekuubuntuzest: /etc/ansibles,

images/00105.jpeg
 abhishek@ubuntutest: - &

75 15 the defaule ansiole Thosts TiTe:
¢ should Tive 7n /etc/ansible/hosts

Comments begin with the '#' character
BTark 19nes ara ignorac

Groups of hosts afa dalinitec by [Feadar] elamerts
Vo €an erer anstnanes or if addrecaes.
AbisChane/ p Lan be @ menber of wiLiple yroups

B

4 Ex 1 Ungrouped hosts, specify before any aroup heacers.

creen. cxanple, con
4 Ella, ewanpia, con
%6 192.168.100.1

%% 142 108 10010
“rccainnst

[oyrouters]
127.0.0.1 ansible_comnection=ssh ars<ble_user=athishek ansikle_ssh_pas:
12202

#Dx 21 & collect<on of hosts belorg“ng to the ‘webservers' grouo

4+ [uabsarvars]
2 Soha:exanple.or
2% Eeta ounmpiroarg
% 197168 1100
4k 18216811 110

2f you Fave wiltiple hosts follawing a pas
£ Hren i Tz ¢ W
s g]

rr you can spectfy

images/00104.jpeg
e

images/00060.jpeg
& v m i

images/00062.jpeg
Add Script Map

Do you want to allow this ISAP| extension? Click "Yes" to add the
extension with an "Allowed” entry to the [SAP| and CGI Restrictions list
orto update an existing extension entry to "Allowed” in the ISAP| and
CGl Restrictions st

Yes No Cancel

images/00061.jpeg
Request Restrictions

Mapping Verbs ~ Access

Specify the access required by the handler:

O Nene
O Read
O Wiite

O saript
® beate

oK

Cancel

images/00064.jpeg
o

images/00063.jpeg
Harder Maopings

images/00066.jpeg
< C (0 | @ localhost/test/testscript.py

[Table for 5

Gls

s

S ol O R e

EIREEE

images/00065.jpeg
€ 0 (@b

images/00068.jpeg
€ C 0 | @ locakhost/test/testhtml.html

Enter your name

Enter your number.

images/00067.jpeg
<« C O | @ locathost/test/testscript.py?number=5

Table for S
g AL
g 2
g 3
g &
g 5
g 3
g 7
g 8
g "o
g Rl

images/00069.jpeg
¢ C 0| ® locaknost

testscript.py?name=python+user8inumber=10

Hello python user

Your requested output is below:

[Table for 10
10
10
10
10
10
10
10
10
10
10

86~ o8 [0 [[03 T3 [

images/00091.jpeg
& Python 6.1 Shell
File " Edit_Shell_DebugOptions WindowHelp

Python 3.6.1 (v3.6.1:69c0dbS, Mar 21 2017, 17:54:52) [MSC v.1300 3
on win32

Type "copyright", "credits" or "license()" for more information.
>>>

RESTART: C:\al\parsejson.py
<Response [401]>

>>>

images/00090.jpeg

images/00093.jpeg
€ > C 0| © localhost/test/main.htmi

Enter your name

wronguser

Enter your password:

images/00092.jpeg
| Python 361 Shell
il Edit_Shell Debug —Options Window ~Help
(v3.6.1:69c0dbS, Mar 21 2017, 17:5:

2) [(MSC v.1900

Pychon 3.6.1

on win32
Type "copyright", "credits" or "license()" for more information.
>>>

RESTART: C:\al\parsejson.py

<Response [200]>
Hello World
>>>

images/00095.jpeg
€ > C) | @ localhost/test/main.htm!

Enter your name:

Abhishek

Enter your password:

Submit

images/00094.jpeg
€ C 0} | ® localhost

Hello wronguser

Not Authorized. Try again

images/00097.jpeg
Hello Abhishek

Authorized. Please select from list below:

Select IPaddress

images/00096.jpeg
<«
Hello Abhishek

Authorized. Please select from list below:

Select IPaddress

images/00099.jpeg
AVARERER APIRRS:

SR shekGUbUNEUTest =5 Suds apE-get TratalT arstble

Rading package 1isis. .. Dore
STy depeteency Uik
Reading’stale o nal fon. .. oue

arsible 1s already (e newesL version (2.4.0.C-Ippémxenidl).
5 upgraded, 0 rewly installed, 0 To remove anc o7 no: upgraded.
akhishekaubuncurest i~5

images/00098.jpeg
&>C o

Bevice queries for 192.163.275.243

st Lest/shuw

autput
Intertace 0 addrzs O vesnod Stomus Protozal
FastEthoractoo 152,168,255, 249 YEE WA w5 w
Serialoie unaszigred e adminzsratively down down
Fastethernetuyt unaszigred W adminictraticely down down

rastecharasti/o Unsiigred VA WK sministratively e doun

images/00080.jpeg

images/00082.jpeg
ot

[Ea———

images/00081.jpeg

images/00084.jpeg
@ Default Web Site Home

w
Gt Complaton Pag

R &

s ecion e SITP T

B
& W

APl Loggrg WML |

Masagement

St Do Vi S
b

e Acplestin ot

it | [puestpzont Sae.

tomele ks

Prcripar

[Cucprat

Pess mo.h athen: stion

Comssn. | | rensangs

] i rclead

images/00083.jpeg
= st %

€ - C O rm e

“hetla ot

images/00086.jpeg
bl

& raion

s s [

images/00085.jpeg
=) WebApplication2 Microsoft Visual Studio
Fie Eit View Projec | Buld | Debug Team Toos Test Analyze Window
@- o2 B uidSolition CrlxShift+R
- Rebuild Solution
WenpiConfig.c< E
I WebsAoplcation2 Sl iutn
S Run Code Ansheizor Saluton ot

Buid Weohpplcaior?
Rebuild WebAppiiction?

Clean Webpplcaion

Publih ebApplication?

i Gl Ay o Wabkppheaton?
Transform All T4 Terplates
BatchBuld

Contiguraticn Manager.
I B il

1
]

Feturn new stringl] { “veluel’, "value® 1

1/ GET: spi/apitestss
public string Cet(int id)

Help

b

ool

images/00088.jpeg
L) Pythan 241 Sheil
Fle Edk_ Sl Debug Gpions Window Hep

Eyon 3.5.1 (v3.€.1:695CdLS, Mar 21 2017, 17:54:52) [
on vinz2
ivpe nacpyagace, rersatst ox ¢

C V1800 €2 it Gaebl -

RSSTART: C:/a1/pazseison.py

images/00087.jpeg
[localhost/apitest/api/ap X

& = C 0 [© localhost/spitest/api/apitest/s

images/00089.jpeg
L& Python 351 Shell
Fle o snat o

=

ug_Ustine Wircew Hep
Evenon 3.8.1 [v3.6.1:85c0m%,

Mar 21 2017, 17:54:52) [MSC v.1500 32 BiT (Tncel)]
or wini2

Tyre Toopyzight?, Mexedizan cr "licemes(!7 fex mers informatics.

SESTRRT: Civariparsezson.py
'Ealls there, meyfasicg

crangar. If youze zeading this them you pr
© didn't sss oux bloy peet a couple of vesrs pack amncuncing hat this AEI
would go eway: heep://giz.ic/17AR0g e

ot, you should be sble to get what yeu
neea Zrom the sniny new Everts APT instea.’, 'doSUNEnTasion Url'i HUTDS://3eV
= 1CpeT.IRTR . GO/ ACKIVITY/ evenTa/E |1 STopn 1 o-svent }

Helln tasre, wayTaTIng asrarger. IT yau' e Teading TAIS TRen you promAniy min't
sce our blcg post a couple cf years back anrouncing That Shis APT would go auay
E5tpi//git. 0/17AI0g Feax mot, you should ke ablz Tc ges whav you mecd Zraw th

= suiny uee Eveas BPT Lasiead

\
o princing valus of messace

