
Juniper Networking Technologies

This reprint from OpenContrail.org

provides an overview of OpenContrail,

the Juniper technology that sits at the

intersection of networking and open

source orchestration projects.

By Ankur Singla & Bruno Rijsman

DAY ONE: UNDERSTANDING
OPENCONTRAIL ARCHITECTURE

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE:
UNDERSTANDING OPENCONTRAIL ARCHITECTURE

OpenContrail is an Apache 2.0-licensed project that is built using standards-based pro-
tocols and provides all the necessary components for network virtualization – SDN con-
troller, virtual router, analytics engine, and published northbound APIs.

This Day One book reprints one of the key documents for OpenContrail, the overview of
its architecture. Network engineers can now understand how to leverage these emerging
technologies, and developers can begin creating flexible network applications.

The next decade begins here.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

Understand what OpenContrail is and how it operates.

Implement Network Virtualization.

Understand the role of OpenContrail in Cloud environments.

Understand the difference between the OpenContrail Controller and the
 OpenContrail vRouter.

Compare the similarities of the OpenContrail system to the architecture of
 MPLS VPNs.

“The Apache Cloudstack community has been a longtime proponent of the value of open

source software, and embraces the contribution of open source infrastructure solutions to the

broader industry. We welcome products such as Juniper’s OpenContrail giving users of Apache

CloudStack open options for the network layer of their cloud environment. We believe this re-

lease is a positive step for the industry.”

Chip Childers, Vice President, Apache Cloudstack Foundation

ISBN 978-1936779710

9 781936 779710

5 1 2 0 0

By Ankur Singla & Bruno Rijsman

Day One: Understanding OpenContrail
 Architecture

Chapter 1: Overview of OpenContrail . 9

Chapter 2: OpenContrail Architecture Details . 19

Chapter 3: The Data Model . 47

Chapter 4: OpenContrail Use Cases . 53

Chapter 5: Comparison of the OpenContrail System to MPLS VPNs 67

References . 69

Publisher's Note: This book is reprinted from the OpenContrail.org website.

It has been adapted to fit this Day One format.

http://www.OpenContrail.org

© 2013 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, Junos, Steel-Belted Radius,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo, the Junos logo,
and JunosE are trademarks of Juniper Networks, Inc. All
other trademarks, service marks, registered trademarks,
or registered service marks are the property of their
respective owners. Juniper Networks assumes no
responsibility for any inaccuracies in this document.
Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without
notice.

Published by Juniper Networks Books
Authors: Ankur Singla, Bruno Rijsman
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
J-Net Community Manager: Julie Wider

ISBN: 978-1-936779-71-0 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-936779-72-7 (ebook)

Version History: v1, November 2013
 2 3 4 5 6 7 8 9 10

This book is available in a variety of formats at:
http://www.juniper.net/dayone.

	 iv	

http://www.juniper.net/dayone

Welcome to OpenContrail

This Day One book is a reprint of the document that exists on Open-
Contrail.org. The content of the two documents is the same and has
been adapted to fit the Day One format.

Welcome to Day One

This book is part of a growing library of Day One books, produced and
published by Juniper Networks Books.

Day One books were conceived to help you get just the information that
you need on day one. The series covers Junos OS and Juniper Networks
networking essentials with straightforward explanations, step-by-step
instructions, and practical examples that are easy to follow.

The Day One library also includes a slightly larger and longer suite of
This Week books, whose concepts and test bed examples are more
similar to a weeklong seminar.

You can obtain either series, in multiple formats:

 � Download a free PDF edition at http://www.juniper.net/dayone.

 � Get the ebook edition for iPhones and iPads from the iTunes Store.
Search for Juniper Networks Books.

 � Get the ebook edition for any device that runs the Kindle app
(Android, Kindle, iPad, PC, or Mac) by opening your device's
Kindle app and going to the Kindle Store. Search for Juniper
Networks Books.

 � Purchase the paper edition at either Vervante Corporation (www.
vervante.com) or Amazon (amazon.com) for between $12-$28,
depending on page length.

 � Note that Nook, iPad, and various Android apps can also view
PDF files.

 � If your device or ebook app uses .epub files, but isn't an Apple
product, open iTunes and download the .epub file from the iTunes
Store. You can now drag and drop the file out of iTunes onto your
desktop and sync with your .epub device.

 v

http://www.opencontrail.org
http://www.opencontrail.org
http://www.juniper.net/dayone
http://www.vervante.com
http://www.vervante.com
http://www.amazon.com

 vi

About OpenContrail

OpenContrail is an Apache 2.0-licensed project that is built using
standards-based protocols and provides all the necessary components
for network virtualization–SDN controller, virtual router, analytics
engine, and published northbound APIs. It has an extensive REST API to
configure and gather operational and analytics data from the system.
Built for scale, OpenContrail can act as a fundamental network plat-
form for cloud infrastructure. The key aspects of the system are:

 � Network Virtualization: Virtual networks are the basic building
blocks of the OpenContrail approach. Access-control, services,
and connectivity are defined via high-level policies. By implment-
ing inter-network routing in the host, OpenContrail reduces
latency for traffic crossing virtual-networks. Eliminating interme-
diate gateways also improves resiliency and minimizes complexity.

 � Network Programmability and Automation: OpenContrail uses a
well-defined data model to describe the desired state of the net-
work. It then translates that information into configuration needed
by each control node and virtual router. By defining the configura-
tion of the network versus a specific device, OpenContrail simpli-
fies and automates network orchestration.

 � Big Data for Infrastructure: The analytics engine is designed for
very large scale ingestion and querying of structured and unstruc-
tured data. Real-time and historical data is available via a simple
REST API, providing visibility over a wide variety of information.

OpenContrail can forward traffic within and between virtual networks
without traversing a gateway. It supports features such as IP address
management; policy-based access control; NAT and traffic monitoring.
It interoperates directly with any network platform that supports the
existing BGP/MPLS L3VPN standard for network virtualization.

OpenContrail can use most standard router platforms as gateways to
external networks and can easily fit into legacy network environments.
OpenContrail is modular and integrates into open cloud orchestration
platforms such as OpenStack and Cloudstack, and is currently support-
ed across multiple Linux distributions and hypervisors.

Project Governance

OpenContrail is an open source project committed to fostering innova-
tion in networking and helping drive adoption of the Cloud. OpenCon-
trail gives developers and users access to a production-ready platform

 vii

built with proven, stable, open networking standards and network
programmability. The project governance model will evolve over time
according to the needs of the community. It is Juniper’s intent to
encourage meaningful participation from a wide range of participants,
including individuals as well as organizations.

OpenContrail sits at the intersection of networking and open source
orchestration projects. Networking engineering organizations such as
the IETF have traditionally placed a strong emphasis on individual
participation based on the merits of one’s contribution. The same can
be said of organizations such as OpenStack with which the Contrail
project has strong ties.

As of this moment, the OpenContrail project allows individuals to
submit code contributions through GitHub. These contributions will
be reviewed by core contributors and accepted based on technical
merit only. Over time we hope to expand the group of core contribu-
tors with commit privileges.

Getting Started with the Source Code

The OpenContrail source code is hosted across multiple software
repositories. The core functionality of the system is present in the
contrail-controller repository. The Git multiple repository tool can be
used to check out a tree and build the source code. Please follow the
instructions.

The controller software is licensed under the Apache License, Version
2.0. Contributors are required to sign a Contributors License Agree-
ment before submitting pull requests.

Developers are required to join the mailing list: dev@lists.opencontrail.
org (Join |View), and report bugs using the issue tracker.

Binary

OpenContrail powers the Juniper Networks Contrail product offering
that can be downloaded here. Note, this will require registering for an
account if you’re not already a Juniper.net user. It may take up to 24
hours for Juniper to respond to the new account request.

MORE? It’s highly recommended you read the Installation Guide and go
through the minimum requirements to get a sense of the installation
process before you jump in.

https://github.com/Juniper/contrail-controller
http://juniper.github.io/contrail-vnc/README.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://secure.echosign.com/public/hostedForm?formid=6G36BHPX974EXY
https://secure.echosign.com/public/hostedForm?formid=6G36BHPX974EXY
http://lists.opencontrail.org/mailman/listinfo/dev_lists.opencontrail.org
http://lists.opencontrail.org/pipermail/dev_lists.opencontrail.org/
https://github.com/Juniper/contrail-controller/issues
https://www.juniper.net/beta/contrail/index.html
http://www.juniper.net/techpubs/en_US/contrail1.0/information-products/pathway-pages/contrail-feature-guide-pwp.html#installation

 viii

AD Administrative Domain

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ARP Address Resolution Protocol

BGP Border Gateway Protocol

BNG Broadband Network Gateway

BSN Broadband Subscriber Network

BSS Business Support System

BUM Broadcast, Unknown unicast, Multicast

CE Customer Edge router

CLI Command Line Interface

COTS Common Off The Shelf

CPE Customer Premises Equipment

CSP Cloud Service Provider

CO Central Office

CPU Central Processing Unit

CUG Closed User Group

DAG Directed Acyclic Graph

DC Data Center

DCI Data Center Interconnect

DHCP Dynamic Host Configuration Protocol

DML Data Modeling Language

DNS Domain Name System

DPI Deep Packet Inspection

DWDM Dense Wavelength Division Multiplexing

EVPN Ethernet Virtual Private Network

FIB Forwarding Information Base

GLB Global Load Balancer

GRE Generic Route Encapsulation

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IaaS Infrastructure as a Service

IBGP Internal Border Gateway Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IF-MAP Interface for Metadata Access Points

IP Internet Protocol

IPS Intrusion Prevention System

IPVPN Internet Protocol Virtual Private Network

IRB Integrated Routing and Bridging

JIT Just In Time

KVM Kernel-Based Virtual Machines

LAN Local Area Network

L2VPN Layer 2 Virtual Private Network

LSP Label Switched Path

MAC Media Access Control

MAP Metadata Access Point

MDNS Multicast Domain Naming System

MPLS Multi-Protocol Label Switching

NAT Network Address Translation

Netconf Network Configuration

NFV Network Function Virtualization

NMS Network Management System

NVO3 Network Virtualization Overlays

OS Operating System

OSS Operations Support System

P Provider core router

PE Provider Edge router

PIM Protocol Independent Multicast

POP Point of Presence

QEMU Quick Emulator

REST Representational State Transfer

RI Routing Instance

RIB Routing Information Base

RSPAN Remote Switched Port Analyzer

(S,G) Source Group

SDH Synchronous Digital Hierarchy

SDN Software Defined Networking

SONET Synchronous Optical Network

SP Service Provider

SPAN Switched Port Analyzer

SQL Structured Query Language

SSL Secure Sockets Layer

TCG Trusted Computer Group

TE Traffic Engineering

TE-LSP Traffic Engineered Label Switched Path

TLS Transport Layer Security

TNC Trusted Network Connect

UDP Unicast Datagram Protocol

VAS Value Added Service

vCPE Virtual Customer Premises Equipment

VLAN Virtual Local Area Network

VM Virtual Machine

VN Virtual Network

VNI Virtual Network Identifier

VXLAN Virtual eXtensible Local Area Network

WAN Wide Area Network

XML Extensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

Acronyms Used

This chapter provides an overview of the OpenContrail System
– an extensible platform for Software Defined Networking (SDN).

All of the main concepts are briefly introduced in this chapter and
described in more detail in the remainder of this document.

Use Cases

OpenContrail is an extensible system that can be used for multiple
networking use cases but there are two primary drivers of the
architecture:

 � Cloud Networking – Private clouds for Enterprises or
Service Providers, Infrastructure as a Service (IaaS) and
Virtual Private Clouds (VPCs) for Cloud Service Providers.

 � Network Function Virtualization (NFV) in Service Provider
Network – This provides Value Added Services (VAS) for
Service Provider edge networks such as business edge
networks, broadband subscriber management edge net-
works, and mobile edge networks.

The Private Cloud, the Virtual Private Cloud (VPC), and the Infra-
structure as a Service (IaaS) use cases all involve a multi-tenant
virtualized data centers. In each of these use cases multiple tenants
in a data center share the same physical resources (physical
servers, physical storage, physical network). Each tenant is
assigned its own logical resources (virtual machines, virtual

Chapter 1

Overview of OpenContrail

 10 Day One: Understanding OpenContrail Architecture

storage, virtual networks). These logical resources are isolated from
each other, unless specifically allowed by security policies. The virtual
networks in the data center may also be interconnected to a physical IP
VPN or L2 VPN.

The Network Function Virtualization (NFV) use case involves orches-
tration and management of networking functions such as a Firewalls,
Intrusion Detection or Preventions Systems (IDS / IPS), Deep Packet
Inspection (DPI), caching, Wide Area Network (WAN) optimization,
etc. in virtual machines instead of on physical hardware appliances.
The main drivers for virtualization of the networking services in this
market are time to market and cost optimization.

OpenContrail Controller and the vRouter

The OpenContrail System consists of two main components: the
OpenContrail Controller and the OpenContrail vRouter.

The OpenContrail Controller is a logically centralized but physically
distributed Software Defined Networking (SDN) controller that is
responsible for providing the management, control, and analytics
functions of the virtualized network.

The OpenContrail vRouter is a forwarding plane (of a distributed
router) that runs in the hypervisor of a virtualized server. It extends the
network from the physical routers and switches in a data center into a
virtual overlay network hosted in the virtualized servers (the concept
of an overlay network is explained in more detail in section 1.4 below).
The OpenContrail vRouter is conceptually similar to existing commer-
cial and open source vSwitches such as for example the Open vSwitch
(OVS) but it also provides routing and higher layer services (hence
vRouter instead of vSwitch).

The OpenContrail Controller provides the logically centralized control
plane and management plane of the system and orchestrates the
vRouters.

Virtual Networks

Virtual Networks (VNs) are a key concept in the OpenContrail
System. Virtual networks are logical constructs implemented on top of
the physical networks. Virtual networks are used to replace VLAN-
based isolation and provide multi-tenancy in a virtualized data center.
Each tenant or an application can have one or more virtual networks.
Each virtual network is isolated from all the other virtual networks
unless explicitly allowed by security policy.

 Chapter 1: Overview of OpenContrail 11

Virtual networks can be connected to, and extended across physical
Multi-Protocol Label Switching (MPLS) Layer 3 Virtual Private Net-
works (L3VPNs) and Ethernet Virtual Private Networks (EVPNs)
networks using a datacenter edge router.

Virtual networks are also used to implement Network Function Virtual-
ization (NFV) and service chaining. How this is achieved using virtual
networks is explained in detail in Chapter 2.

Overlay Networking

Virtual networks can be implemented using a variety of mechanisms. For
example, each virtual network could be implemented as a Virtual Local
Area Network (VLAN), or as Virtual Private Networks (VPNs), etc.

Virtual networks can also be implemented using two networks – a
physical underlay network and a virtual overlay network. This overlay
networking technique has been widely deployed in the Wireless LAN
industry for more than a decade but its application to data-center
networks is relatively new. It is being standardized in various forums
such as the Internet Engineering Task Force (IETF) through the Network
Virtualization Overlays (NVO3) working group and has been imple-
mented in open source and commercial network virtualization products
from a variety of vendors.

The role of the physical underlay network is to provide an “IP fabric”
– its responsibility is to provide unicast IP connectivity from any physical
device (server, storage device, router, or switch) to any other physical
device. An ideal underlay network provides uniform low-latency,
non-blocking, high-bandwidth connectivity from any point in the
network to any other point in the network.

The vRouters running in the hypervisors of the virtualized servers create
a virtual overlay network on top of the physical underlay network using
a mesh of dynamic “tunnels” amongst themselves. In the case of Open-
Contrail these overlay tunnels can be MPLS over GRE/UDP tunnels, or
VXLAN tunnels.

The underlay physical routers and switches do not contain any per-ten-
ant state: they do not contain any Media Access Control (MAC) address-
es, IP address, or policies for virtual machines. The forwarding tables of
the underlay physical routers and switches only contain the IP prefixes or
MAC addresses of the physical servers. Gateway routers or switches that
connect a virtual network to a physical network are an exception – they
do need to contain tenant MAC or IP addresses.

 12 Day One: Understanding OpenContrail Architecture

The vRouters, on the other hand, do contain per tenant state. They
contain a separate forwarding table (a routing-instance) per virtual
network. That forwarding table contains the IP prefixes (in the case of
a Layer 3 overlays) or the MAC addresses (in the case of Layer 2
overlays) of the virtual machines. No single vRouter needs to contain
all IP prefixes or all MAC addresses for all virtual machines in the
entire Data Center. A given vRouter only needs to contain those
routing instances that are locally present on the server (i.e. which have
at least one virtual machine present on the server.)

Overlays Based on MPLS L3VPNs and EVPNs

Various control plane protocols and data plane protocols for overlay
networks have been proposed by vendors and standards organizations.

For example, the IETF VXLAN draft [draft-mahalingam-dutt-dcops-
vxlan] proposes a new data plane encapsulation and proposes a
control plane which is similar to the standard Ethernet “flood and
learn source address” behavior for filling the forwarding tables and
which requires one or more multicast groups in the underlay network
to implement the flooding.

The OpenContrail System is inspired by, and conceptually very similar
to, standard MPLS Layer 3VPNs (for Layer 3 overlays) and MPLS
EVPNs (for Layer 2 overlays).

In the data plane, OpenContrail supports MPLS over GRE, a data
plane encapsulation that is widely supported by existing routers from
all major vendors. OpenContrail also supports other data plane
encapsulation standards such as MPLS over UDP (better multi-pathing
and CPU utilization) and VXLAN. Additional encapsulation standards
such as NVGRE can easily be added in future releases.

The control plane protocol between the control plane nodes of the
OpenContrail system or a physical gateway router (or switch) is BGP
(and Netconf for management). This is the exact same control plane
protocol that is used for MPLS Layer 3VPNs and MPLS EVPNs.

The protocol between the OpenContrail controller and the OpenCon-
trail vRouters is based on XMPP [ietf-xmpp-wg]. The schema of the
messages exchanged over XMPP is described in an IETF draft [draft-
ietf-l3vpn-end-system] and this protocol, while syntactically different,
is semantically very similar to BGP.

The fact that the OpenContrail System uses control plane and data
plane protocols which are very similar to the protocols used for MPLS

https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/
http://datatracker.ietf.org/wg/xmpp/
https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/
https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/

 Chapter 1: Overview of OpenContrail 13

Layer 3VPNs and EVPNs has multiple advantages – these technologies
are mature and known to scale, they are widely deployed in production
networks, and supported in multi-vendor physical gear that allows for
seamless interoperability without the need for software gateways.

OpenContrail and Open Source

OpenContrail is designed to operate in an open source Cloud environ-
ment. In order to provide a fully integrated end-to-end solution:

 � The OpenContrail System is integrated with open source hyper-
visors such as Kernel-based Virtual Machines (KVM) and Xen.

 � The OpenContrail System is integrated with open source virtual-
ization orchestration systems such as OpenStack and Cloud-
Stack.

 � The OpenContrail System is integrated with open source physical
server management systems such as Chef, Puppet, Cobbler, and
Ganglia.

OpenContrail is available under the permissive Apache 2.0 license –
this essentially means that anyone can deploy and modify the Open-
Contrail System code without any obligation to publish or release the
code modifications.

Juniper Networks also provides a commercial version of the Open-
Contrail System. Commercial support for the entire open source stack
(not just the OpenContrail System, but also the other open source
components such as OpenStack) is available from Juniper Networks
and its partners.

The open source version of the OpenContrail System is not a teaser – it
provides the same full functionality as the commercial version both in
terms of features and in terms of scaling.

Scale-Out Architecture and High Availability

Earlier we mentioned that the OpenContrail Controller is logically
centralized but physically distributed.

Physically distributed means that the OpenContrail Controller consists
of multiple types of nodes, each of which can have multiple instances
for high availability and horizontal scaling. Those node instances can
be physical servers or virtual machines. For minimal deployments,
multiple node types can be combined into a single server. There are
three types of nodes:

 14 Day One: Understanding OpenContrail Architecture

 � Configuration nodes are responsible for the management layer.
The configuration nodes provide a north-bound Representation-
al State Transfer (REST) Application Programming Interface
(API) that can be used to configure the system or extract opera-
tional status of the system. The instantiated services are repre-
sented by objects in a horizontally scalable database that is
described by a formal service data model (more about data
models later on). The configuration nodes also contain a trans-
formation engine (sometimes referred to as a compiler) that
transforms the objects in the high-level service data model into
corresponding more lower-level objects in the technology data
model. Whereas the high-level service data model describes what
services need to be implemented, the low-level technology data
model describes how those services need to be implemented. The
configuration nodes publish the contents of the low-level technol-
ogy data model to the control nodes using the Interface for
Metadata Access Points (IF-MAP) protocol.

 � Control nodes implement the logically centralized portion of the
control plane. Not all control plane functions are logically
centralized – some control plane functions are still implemented
in a distributed fashion on the physical and virtual routers and
switches in the network. The control nodes use the IF-MAP
protocol to monitor the contents of the low-level technology data
model as computed by the configuration nodes that describes the
desired state of the network. The control nodes use a combina-
tion of south-bound protocols to “make it so,” i.e., to make the
actual state of the network equal to the desired state of the
network. In the initial version of the OpenContrail System these
south-bound protocols include Extensible Messaging and
Presence Protocol (XMPP) to control the OpenContrail vRouters
as well as a combination of the Border Gateway Protocol (BGP)
and the Network Configuration (Netconf) protocols to control
physical routers. The control nodes also use BGP for state
synchronization among each other when there are multiple
instances of the control node for scale-out and high-availability
reasons.

 � Analytics nodes are responsible for collecting, collating and
presenting analytics information for trouble shooting problems
and for understanding network usage. Each component of the
OpenContrail System generates detailed event records for every
significant event in the system. These event records are sent to
one of multiple instances (for scale-out) of the analytics node that
collate and store the information in a horizontally scalable

 Chapter 1: Overview of OpenContrail 15

database using a format that is optimized for time-series analysis
and queries. The analytics nodes have mechanism to automati-
cally trigger the collection of more detailed records when certain
event occur; the goal is to be able to get to the root cause of any
issue without having to reproduce it. The analytics nodes provide
a north-bound analytics query REST API.

The physically-distributed nature of the OpenContrail Controller is a
distinguishing feature. Because there can be multiple redundant
instances of any node, operating in an active-active mode (as opposed
to an active-standby mode), the system can continue to operate
without any interruption when any node fails. When a node becomes
overloaded, additional instances of that node type can be instantiated,
after which the load is automatically redistributed. This prevents any
single node from becoming a bottleneck and allows the system to
manage very large-scale systems – tens of thousands of servers.

Logically centralized means that OpenContrail Controller behaves as a
single logical unit, despite the fact that it is implemented as a cluster of
multiple nodes.

The Central Role of Data Models: SDN as a Compiler

Data models play a central role in the OpenContrail System. A data
model consists of a set of objects, their capabilities, and the relation-
ships between them.

The data model permits applications to express their intent in a
declarative rather than an imperative manner, which is critical in
achieving high programmer productivity. A fundamental aspect of
OpenContrail’s architecture is that data manipulated by the platform,
as well as by the applications, is maintained by the platform. Thus
applications can be treated as being virtually stateless. The most
important consequence of this design is that individual applications are
freed from having to worry about the complexities of high availability,
scale, and peering.

There are two types of data models: the high-level service data model
and the low-level technology data model. Both data models are
described using a formal data modeling language that is currently
based on an IF-MAP XML schema although YANG is also being
considered as a future possible modeling language.

The high-level service data model describes the desired state of the
network at a very high level of abstraction, using objects that map
directly to services provided to end-users – for example, a virtual
network, or a connectivity policy, or a security policy.

 16 Day One: Understanding OpenContrail Architecture

The low-level technology data model describes the desired state of the
network at a very low level of abstraction, using objects that map to
specific network protocol constructs such as a BGP route-target, or a
VXLAN network identifier.

The configuration nodes are responsible for transforming any change
in the high-level service data model to a corresponding set of changes
in the low-level technology data model. This is conceptually similar to
a Just In Time (JIT) compiler – hence the term “SDN as a compiler” is
sometimes used to describe the architecture of the OpenContrail
System.

The control nodes are responsible for realizing the desired state of the
network as described by the low-level technology data model using a
combination of southbound protocols including XMPP, BGP, and
Netconf.

Northbound Application Programming Interfaces

The configuration nodes in the OpenContrail Controller provide a
northbound Representational State Transfer (REST) Application
Programming Interface (API) to the provisioning or orchestration
system. This northbound REST API is automatically generated from
the formal high-level data model. This guarantees that the northbound
REST API is a “first class citizen” in the sense that any and every
service can be provisioned through the REST API.

This REST API is secure: it can use HTTPS for authentication and
encryption and it also provides role-based authorization. It is also
horizontally scalable because the API load can be spread over multiple
configuration node instances.

Graphical User Interface

The OpenContrail System also provides a Graphical User Interface
(GUI). This GUI is built entirely using the REST API described earlier
and this ensures that there is no lag in APIs. It is expected that large-
scale deployments or service provider OSS/BSS systems will be inte-
grated using the REST APIs.

NOTE Juniper is in the process of making changes to the UI code-base that
will make it available in the open-source.

 Chapter 1: Overview of OpenContrail 17

An Extensible Platform

The initial version of the OpenContrail System ships with a specific
high-level service data model, a specific low-level technology data
model, and a transformation engine to map the former to the latter.
Furthermore, the initial version of the OpenContrail System ships with
a specific set of southbound protocols.

The high-level service data model that ships with the initial version of
the OpenContrail System models service constructs such as tenants,
virtual networks, connectivity policies, and security policies. These
modeled objects were chosen to support initial target use cases, namely
cloud networking and NFV.

The low-level service data model that ships with the initial version of
the OpenContrail System is specifically geared towards implementing
the services using overlay networking.

The transformation engine in the configuration nodes contains the
“compiler” to transform this initial high-level service data model to the
initial low-level data model.

The initial set of south-bound protocols implemented in the control
nodes consists of XMPP, BGP, and Netconf.

The OpenContrail System is an extensible platform in the sense that
any of the above components can be extended to support additional
use cases and/or additional network technologies in future versions:

 � The high-level service data model can be extended with addition-
al objects to represent new services such as for example traffic
engineering and bandwidth calendaring in Service Provider core
networks.

 � The low-level service data model can also be extended for one of
two reasons: either the same high-level services are implemented
using a different technology, for example multi-tenancy could be
implemented using VLANs instead of overlays, or new high-level
services could be introduced which require new low-level
technologies, for example introducing traffic engineering or
bandwidth calendaring as a new high-level service could require
the introduction of a new low-level object such as a Traffic-Engi-
neered Label Switched Path (TE-LSP).

 � The transformation engine could be extended either to map
existing high-level service objects to new low-level technology
objects (i.e., a new way to implement an existing service) or to
map new high-level service objects to new or existing low-level
technology objects (i.e., implementing a new service).

 18 Day One: Understanding OpenContrail Architecture

New southbound protocols can be introduced into the control nodes.
This may be needed to support new types of physical or virtual devices
in the network that speak a different protocol, for example the Com-
mand Line Interface (CLI) for a particular network equipment vendor
could be introduced, or this may be needed because new objects are
introduced in the low-level technology data models that require new
protocols to be implemented.

The OpenContrail System consists of two parts: a logically
centralized but physically distributed controller, and a set of
vRouters that serve as software forwarding elements implemented
in the hypervisors of general purpose virtualized servers. These
are illustrated in Figure 1.

The controller provides northbound REST APIs used by applica-
tions. These APIs are used for integration with the cloud orches-
tration system, for example for integration with OpenStack via a
neutron (formerly known as quantum) plug-in. The REST APIs
can also be used by other applications and/or by the operator’s
OSS/BSS. Finally, the REST APIs are used to implement the
web-based GUI included in the OpenContrail System.

The OpenContrail System provides three interfaces: a set of
north-bound REST APIs that are used to talk to the Orchestration
System and the Applications, southbound interfaces that are used
to talk to virtual network elements (vRouters) or physical net-
work elements (gateway routers and switches), and an east-west
interface used to peer with other controllers. OpenStack and
CloudStack are the supported orchestrators, standard BGP is the
east-west interface, XMPP is the southbound interface for
vRouters, BGP and Netconf and the southbound interfaces for
gateway routers and switches.

Chapter 2

OpenContrail Architecture Details

 20 Day One: Understanding OpenContrail Architecture

Internally, the controller consists of three main components:

1. Configuration nodes, which are responsible for translating the
high-level data model into a lower level form suitable for inter-
acting with network elements;

2. Control nodes, which are responsible for propagating this low
level state to and from network elements and peer systems in an
eventually consistent way;

3. Analytics nodes, which are responsible for capturing real-time
data from network elements, abstracting it and presenting it in a
form suitable for applications to consume.

NOTE All of these nodes will be described in detail later in this chapter.

Figure 1 OpenContrail System Overview

 Chapter 2: OpenContrail Architecture Details 21

The vRouters should be thought of as network elements implemented
entirely in software. They are responsible for forwarding packets from
one virtual machine to other virtual machines via a set of server-to-
server tunnels. The tunnels form an overlay network sitting on top of a
physical IP-over-Ethernet network. Each vRouter consists of two parts:
a user space agent that implements the control plane and a kernel
module that implements the forwarding engine.

The OpenContrail System implements three basic building blocks:

1. Multi-tenancy, also known as network virtualization or network
slicing, is the ability to create Virtual Networks that provide
Closed User Groups (CUGs) to sets of VMs.

2. Gateway functions: this is the ability to connect virtual networks
to physical networks via a gateway router (e.g., the Internet), and
the ability to attach a non-virtualized server or networking
service to a virtual network via a gateway.

3. Service chaining, also known Network Function Virtualization
(NFV): this is the ability to steer flows of traffic through a
sequence of physical or virtual network services such as firewalls,
Deep Packet Inspection (DPI), or load balancers.

Nodes

We now turn to the internal structure of the system. As shown in Figure
2, the system is implemented as a cooperating set of nodes running on
general-purpose x86 servers. Each node may be implemented as a
separate physical server or it may be implemented as a Virtual Machine
(VM).

All nodes of a given type run in an active-active configuration so no
single node is a bottleneck. This scale out design provides both redun-
dancy and horizontal scalability.

 � Configuration nodes keep a persistent copy of the intended
configuration state and translate the high-level data model into
the lower level model suitable for interacting with network
elements. Both of these are kept in a NoSQL database.

 � Control nodes implement a logically centralized control plane
that is responsible for maintaining ephemeral network state.
Control nodes interact with each other and with network
elements to ensure that network state is eventually consistent.

 � Analytics nodes collect, store, correlate, and analyze information
from network elements, virtual or physical. This information
includes statistics, logs, events, and errors.

 22 Day One: Understanding OpenContrail Architecture

In addition to the node types, which are part of the OpenContrail
Controller, we also identify some additional nodes types for physical
servers and physical network elements performing particular roles in
the overall OpenContrail System:

 � Compute nodes are general-purpose virtualized servers, which
host VMs. These VMs may be tenant-running general applica-
tions, or these VMs may be service VMs running network
services such as a virtual load balancer or virtual firewall. Each
compute node contains a vRouter that implements the forward-
ing plane and the distributed part of the control plane.

 � Gateway nodes are physical gateway routers or switches that
connect the tenant virtual networks to physical networks such as
the Internet, a customer VPN, another Data Center, or to non-
virtualized servers.

 � Service nodes are physical network elements providing network
services such as Deep Packet Inspection (DPI), Intrusion Detec-
tion (IDP), Intrusion Prevention (IPS), WAN optimizers, and load
balancers. Service chains can contain a mixture of virtual services
(implemented as VMs on compute nodes) and physical services
(hosted on service nodes).

For clarity, Figure 2 does not show physical routers and switches that
form the underlay IP over Ethernet network. There is also an interface
from every node in the system to the analytics nodes. This interface is
not shown in Figure 2 to avoid clutter.

Compute Node

The compute node is a general-purpose x86 server that hosts VMs.
Those VMs can be tenant VMs running customer applications, such as
web servers, database servers, or enterprise applications, or those VMs
can be host virtualized services use to create service chains. The
standard configuration assumes Linux is the host OS and KVM or Xen
is the hypervisor. The vRouter forwarding plane sits in the Linux
Kernel; and the vRouter Agent is the local control plane. This structure
is shown in Figure 3.

Other host OSs and hypervisors such as VMware ESXi or Windows
Hyper-V may also be supported in future.

 Chapter 2: OpenContrail Architecture Details 23

Figure 2 OpenContrail System Implementation

 24 Day One: Understanding OpenContrail Architecture

Figure 3 Internal Structure of a Compute Node

Two of the building blocks in a compute node implement a vRouter:
the vRouter Agent, and the vRouter Forwarding Plane. These are
described in the following sections.

vRouter Agent

The vRouter agent is a user space process running inside Linux. It acts
as the local, lightweight control plane and is responsible for the
following functions:

 � Exchanging control state such as routes with the Control nodes
using XMPP.

 � Receiving low-level configuration state such as routing instances
and forwarding policy from the Control nodes using XMPP.

 � Reporting analytics state such as logs, statistics, and events to the
analytics nodes.

 � Installing forwarding state into the forwarding plane.

 � Discovering the existence and attributes of VMs in cooperation
with the Nova agent.

 Chapter 2: OpenContrail Architecture Details 25

 � Applying forwarding policy for the first packet of each new flow
and installing a flow entry in the flow table of the forwarding
plane.

 � Proxying DHCP, ARP, DNS, and MDNS. Additional proxies
may be added in the future.

Each vRouter agent is connected to at least two control nodes for
redundancy in an active-active redundancy model.

vRouter Forwarding Plane

The vRouter forwarding plane runs as a kernel loadable module in
Linux and is responsible for the following functions:

 � Encapsulating packets sent to the overlay network and decapsu-
lating packets received from the overlay network.

 � Assigning packets to a routing instance:

 � Packets received from the overlay network are assigned to a
routing instance based on the MPLS label or Virtual Network
Identifier (VNI).

 � Virtual interfaces to local virtual machines are bound to
routing instances.

 � Doing a lookup of the destination address in the Forwarding
Information Base (FIB) and forwarding the packet to the correct
destination. The routes may be layer-3 IP prefixes or layer-2
MAC addresses.

 � Optionally, applying forwarding policy using a flow table:

 � Match packets against the flow table and apply the flow
actions.

 � Optionally, punt the packets for which no flow rule is found
(i.e., the first packet of every flow) to the vRouter agent, which
then installs a rule in the flow table.

 � Punting certain packets, such as DHCP, ARP, and MDNS, to
the vRouter agent for proxying.

Figure 4 shows the internal structure of the vRouter Forwarding Plane.

 26 Day One: Understanding OpenContrail Architecture

Figure 4 vRouter Forwarding Plane

The forwarding plane supports MPLS over GRE/UDP and VXLAN
encapsulations in the overlay network. The forwarding plane supports
layer-3 forwarding by doing a Longest Prefix Match (LPM) of the
destination IP address, as well as layer-2 forwarding using the destina-
tion MAC address. The vRouter Forwarding Plane currently only
supports IPv4. Support for IPv6 will be added in the future.

See the section, Service Chaining, later in this chapter for more details.

Control Node

Figure 5 shows the internal structure of a control node. The control
nodes communicate with multiple other types of nodes:

 � The control nodes receive configuration state from the configura-
tion nodes using IF-MAP.

 � The control nodes exchange routes with other control nodes
using IBGP to ensure that all control nodes have the same
network state.

 � The control nodes exchange routes with the vRouter agents on
the compute nodes using XMPP. They also use XMPP to send
configuration state such as routing instances and forwarding
policy.

 � The control nodes also proxy certain kinds of traffic on behalf of
compute nodes. These proxy requests are also received over
XMPP.

 � The control nodes exchange routes with the gateway nodes
(routers and switches) using BGP. They also send configuration
state using Netconf.

 Chapter 2: OpenContrail Architecture Details 27

Figure 5 Internal Structure of a Control Node

Configuration Node

Figure 6 shows the internal structure of a configuration node. The
configuration node communicates with the Orchestration system via a
REST interface, with other configuration nodes via a distributed
synchronization mechanism, and with control nodes via IF-MAP.

Configuration nodes also provide a discovery service that the clients
can use to locate the service providers (i.e. other nodes providing a
particular service). For example, when the vRouter agent in a compute
node wants to connect to a control node (to be more precise: to an
active-active pair of Control VMs) it uses service discovery to discover
the IP address of the control node. The clients use local configuration,
DHCP, or DNS to locate the service discovery server.

Configuration nodes contain the following components:

 � A REST API Server that provides the north-bound interface to an
Orchestration System or other application. This interface is used
to install configuration state using the high-level data model.

 � A Redis [redis] message bus to facilitate communications among
internal components.

http://redis.io/

 28 Day One: Understanding OpenContrail Architecture

 � A Cassandra [cassandra] database for persistent storage of
configuration. Cassandra is a fault-tolerant and horizontally
scalable database.

 � A Schema transformer that learns about changes in the high level
data model over the Redis message bus and transforms (or
compiles) these changes in the high level data model into corre-
sponding changes in the low level data model.

 � An IF-MAP Server that provides a southbound interface to push
the computed low-level configuration down to the Control
nodes.

 � Zookeeper [zookeeper] (not shown in Figure 6) is used for
allocation of unique object identifiers and to implement transac-
tions.

Figure 6 Internal Structure of a Configuration Node

Analytics Node

Figure 7 shows the internal structure of an analytics node. An analytics
node communicates with applications using a north-bound REST API,
communicates with other analytics nodes using a distributed synchro-
nization mechanism, and communicates with components in control
and configuration nodes using an XML-based protocol called Sandesh,
designed specifically for handling high volumes of data.

http://cassandra.apache.org/
http://zookeeper.apache.org/

 Chapter 2: OpenContrail Architecture Details 29

The analytics nodes contain the following components:

 � A Collector that exchanges Sandesh messages (see this chapter’s
section, Control and Management Plane Protocols/Sangesh) with
components in control nodes and configuration nodes to collect
analytics information

 � A NoSQL database for storing this information

 � A rules engine to automatically collect operational state when
specific events occur

 � A REST API server that provides a northbound interface for
querying the analytics database and for retrieving operational
state.

 � A Query Engine for executing the queries received over the
northbound REST API. This engine provides the capability for
flexible access to potentially large amounts of analytics data.

Figure 7 Internal Structure of an Analytics Node

 30 Day One: Understanding OpenContrail Architecture

Sandesh carries two kinds of messages: asynchronous messages,
received by analytics nodes for the purpose of reporting logs, events,
and traces; and synchronous messages, whereby an analytics node can
send requests and receive responses to collect specific operational state.

All information gathered by the collector is persistently stored in the
NoSQL database. No filtering of messages is done by the information
source.

The analytics nodes provide a northbound REST API to allow client
applications to submit queries.

Analytics nodes provide scatter-gather logic called “aggregation.” A
single GET request (and a single corresponding CLI command in the
client application) can be mapped to multiple request messages whose
results are combined.

The query engine is implemented as a simple map-reduce engine. The
vast majority of OpenContrail queries are time series.

The OpenContrail Forwarding Plane

The forwarding plane is implemented using an overlay network. The
overlay network can be a layer-3 (IP) overlay network or a layer-2
(Ethernet) overlay network. For layer-3 overlays, initially only IPv4 is
supported; IPv6 support will be added in later releases. Layer-3 overlay
networks support both unicast and multicast. Proxies are used to avoid
flooding for DHCP, ARP, and certain other protocols.

Packet Encapsulations

The system supports multiple overlay encapsulations, each described
in detail below.

MPLS over GRE

Figure 8 shows the MPLS over GRE packet encapsulation format for
Layer 3 and Layer 2 overlays.

Figure 8 IP Over MPLS Over GRE Packet Format

 Chapter 2: OpenContrail Architecture Details 31

Figure 9 shows the MPLS over GRE packet encapsulation format for
Layer 2 overlays.

Figure 9 Ethernet Over MPLS Over GRE Packet Format

MPLS Layer 3VPNs [RFC4364] and EVPNs [draft-raggarwa-sajassi-
l2vpn-evpn] typically use MPLS over MPLS encapsulation, but they
can use MPLS over GRE encapsulation [RFC4023] as well if the core is
not MPLS enabled. OpenContrail uses the MPLS over GRE encapsula-
tion and not the MPLS over MPLS for several reasons: first, underlay
switches and routers in a Data Center often don’t support MPLS,
second, even if they did, the operator may not want the complexity of
running MPLS in the Data Center, and third, there is no need for traffic
engineering inside the Data Center because the bandwidth is overpro-
visioned.

VXLAN

For Layer 2 overlays, OpenContrail also supports VXLAN encapsula-
tion [draft-mahalingam-dutt-dcops-vxlan]. This is shown in Figure 10.

Figure 10 Ethernet Over VXLAN Packet Format

One of the main advantages of the VXLAN encapsulation is that it has
better support for multi-path in the underlay by virtue of putting
entropy (a hash of the inner header) in the source UDP port of the
outer header.

OpenContrail’s implementation of VXLAN differs from the VLAN
IETF draft in two significant ways. First, it only implements the packet
encapsulation part of the IETF draft; it does not implement the
flood-and-learn control plane, instead it uses the XMPP-based control

http://tools.ietf.org/html/rfc4364
https://datatracker.ietf.org/doc/draft-raggarwa-sajassi-l2vpn-evpn/
https://datatracker.ietf.org/doc/draft-raggarwa-sajassi-l2vpn-evpn/
http://tools.ietf.org/html/rfc4023
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/

 32 Day One: Understanding OpenContrail Architecture

plane described in this chapter, and as a result, it does not require
multicast groups in the underlay. Second, the Virtual Network Identi-
fier (VNI) in the VXLAN header is locally unique to the egress vRouter
instead of being globally unique.

MPLS Over UDP

OpenContrail supports a third encapsulation, namely MPLS over UDP.
It is a cross between the MPLS over GRE and the VXLAN encapsula-
tion; it supports both Layer 2 and Layer 3 overlays, and it uses an
“inner” MPLS header with a locally significant MPLS label to identify
the destination routing-instance (similar to MPLS over GRE), but it
uses an outer UDP header with entropy for efficient multi-pathing in
the underlay (like VLXAN).

Figure 11 shows the MPLS over UDP packet encapsulation format for
Layer 3 overlays.

Figure 11 IP Over MPLS Over UDP Packet Format

Figure 12 shows the MPLS over UDP packet encapsulation format for
Layer 2 overlays.

Figure 12 Ethernet Over MPLS Over UDP Packet Format

Layer 3 Unicast

A summary of the sequence of events for sending an IP packet from
VM 1a to VM 2a is given below. For a more detailed description see
[draft-ietf-l3vpn-end-system].

https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/

 Chapter 2: OpenContrail Architecture Details 33

Figure 13 Data Plane: Layer 3 Unicast Forwarding Plane

The following description assumes IPv4, but the steps for IPv6 are
similar.

1. An application in VM 1a sends an IP packet with destination IP
address VM 2a.

2. VM 1a has a default route pointing to a 169.254.x.x link-local
address in routing instance 1a.

3. VM 1a sends an ARP request for that link local address. The ARP
proxy in routing instance 1a responds to it.

4. VM 1a sends the IP packet to routing instance 1a.

5. IP FIB 1a on routing instance 1a contains a /32 route to each of the
other VMs in the same virtual network including VM 2a. This route
was installed by using the control node using XMPP. The next-hop of
the route does the following:

 � Imposes an MPLS label, which was allocated by vRouter 2 for
routing instance 2a.

 � Imposes a GRE header with the destination IP address of Com-
pute Node 2.

 34 Day One: Understanding OpenContrail Architecture

6. vRouter 1 does a lookup of the new destination IP address of the
encapsulated packet (Compute Node 2) in global IP FIB 1.

7. vRouter 1 sends the encapsulated packet to Compute Node 2. How
exactly this happens depends on whether the underlay network is a
Layer 2 switched network or a Layer 3 routed network. This is
described in detail below. For now we will skip this part and assume
the encapsulated packet makes it to Compute Node 2.

8. Compute Node 2 receives the encapsulated packet and does an IP
lookup in global IP FIB 2. Since the outer destination IP address is
local, it decapsulates the packet, i.e., it removes the GRE header which
exposes the MPLS header.

9. Compute Node 2 does a lookup of the MPLS label in the global
MPLS FIB 2 and finds an entry which points to routing instance 2a. It
decapsulates the packet, i.e., it removes the MPLS header and injects
the exposed IP packet into routing instance 2a.

10. Compute Node 2 does a lookup of the exposed inner destination
IP address in IP FIB 2a. It finds a route that points to the virtual
interface connected to VM 2a.

11. Compute Node 2 sends the packet to VM 2a.

Now let’s return to the part that was glossed over in step 7: How is the
encapsulated packet forwarded across the underlay network?

If the underlay network is a Layer 2 network then:

 � The outer source IP address (Compute Node 1) and the destina-
tion IP address (Compute Node 2) of the encapsulated packet are
on the same subnet.

 � Compute Node 1 sends an ARP request for IP address Compute
Node 2. Compute Node 2 sends an ARP reply with MAC address
Compute Node 2. Note that there is typically no ARP proxying
in the underlay.

 � The encapsulated packet is Layer 2 switched from Compute
Node 1 to Compute Node 2 based on the destination MAC
address.

If the underlay network is a Layer 3 network, then:

 � The outer source IP address (Compute Node 1) and the destina-
tion IP address (Compute Node 2) of the encapsulated packet are
on different subnets.

 � All routers in the underlay network, both the physical router (S1
and S2) and the virtual routers (vRouter 1 and vRouter 2),
participate in some routing protocol such as OSPF.

 Chapter 2: OpenContrail Architecture Details 35

 � The encapsulated packet is Layer 3 routed from Compute Node
1 to Compute Node 2 based on the destination IP address. Equal
Cost Multi Path (ECMP) allows multiple parallel paths to be
used. For this reason the VXLAN encapsulation includes entropy
in the source port of the UDP packet.

Layer 2 Unicast

Forwarding for Layer 2 overlays works exactly the same as forwarding
for Layer 3 overlays as described in the previous section, except that:

 � The forwarding tables in the routing instances contain MAC
addresses instead of IP prefixes.

 � ARP is not used in the overlay (but it is used in the underlay).

Figure 14 Data Plane: Layer 2 Unicast

Fallback Switching

OpenContrail supports a hybrid mode where a virtual network is both
a Layer 2 and a Layer 3 overlay simultaneously. In this case the routing
instances on the vRouters have both an IP FIB and a MAC FIB. For
every packet, the vRouter first does a lookup in the IP FIB. If the IP FIB
contains a matching route, it is used for forwarding the packet. If the
IP FIB does not contain a matching route, the vRouter does a lookup in
the MAC FIB – hence the name fallback switching.

 36 Day One: Understanding OpenContrail Architecture

NOTE The “route first and then bridge” behavior of fallback switching is the
opposite of the “bridge first and then route” behavior of Integrated
Routing and Bridging (IRB).

Layer 3 Multicast

OpenContrail supports IP multicast in Layer 3 overlays. The multicast
elaboration is performed using multicast trees in the overlay or using
multicast trees in the underlay. Either way, the trees can be shared
(*,G) trees or source specific (S,G) trees.

Overlay Multicast Trees

OpenContrail does multicast elaboration using multicast trees in the
overlay instead of the underlays. The details are described in [draft-
marques-l3vpn-mcast-edge]; here we only summarize the basic
concepts.

Figure 15 illustrates the general concept of creating multicast trees in
the overlay. The vRouter at the root of the tree sends N copies of the
traffic to N downstream vRouters. Those downstream vRouters send
the traffic to more N downstream vRouters, and so on, until all listener
vRouters are covered. In this example, N equals 2. The number N does
not have to be the same at each vRouter.

Figure 15 Multicast Tree in the Overlay (General Case)

https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/
https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/

 Chapter 2: OpenContrail Architecture Details 37

The system uses XMPP signaling to program the FIBs on each of the
vRouters to create the overlay multicast tree(s) for each virtual net-
work. The details of the protocol are too complicated to describe here;
see [draft-marques-l3vpn-mcast-edge] for details.

Ingress replication, shown in Figure 16, can be viewed as a special
degenerate case of general overlay multicast trees. In practice, however,
the signaling of ingress replication trees is much simpler than the
signaling of general overlay multicast trees.

Figure 16 Multicast Tree in the Overlay (Ingress Replication Special Case)

Underlay Multicast Trees

An alternative approach is to do multicast elaboration using multicast
trees in the underlay as shown in Figure 17.

Figure 17 Multicast Tree in the Underlay

https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/

 38 Day One: Understanding OpenContrail Architecture

This is the approach that is generally used to implement multicast in
MPLS Layer 3VPNs (see [RFC6513]). Also, the flood-and-learn
control plane for VXLAN described in [draft-mahalingam-dutt-dcops-
vxlan] relies on underlay multicast trees.

The underlay multicast tree is implemented as a GRE tunnel with a
multicast destination address. This implies that the underlay network
must support IP multicast, it must run some multicast routing protocol
typically Protocol Independent Multicast (PIM), and it must have one
multicast group per underlay multicast tree.

Comparison

Multicast trees in the underlay require IP multicast support on the
Data Center switches. In practice this can be a problem for a number
of reasons:

 � Even if the underlay network supports multicast, the operator
may not be willing to enable it due to the complexity of manage-
ment and troubleshooting.

 � Switches based on merchant silicon typically support only a
relatively small number of multicast groups in the forwarding
plane. For optimal multicast there needs to be one group in the
underlay for each group of each tenant in the overlay, which can
be a very large number of groups. The number of multicast
groups in the underlay can be reduced by using a single shared
tree per virtual network, or by sharing a single tree among
multiple virtual networks. This comes at the expense of reduced
optimality and increased complexity.

 � When running multicast in the underlay, the Data Center switch-
es must maintain control plane state about the listeners for each
group. The amount of control plane state can be extremely large.

 � Multicast control plane protocols can be very CPU intensive
because the multicast tree needs to be updated every time a
listener joins or leaves.

Overlay multicast trees, on the other hand, also suffer from their own
set of problems but

 � The first problem is that multiple copies of the same packet are
sent over the same physical link, in particular links close to the
source. This wastes bandwidth, however, in Data Center net-
works this is not as big a problem as in WANs because the Data
Center fabric is generally a Clos fabric which provides full
non-blocking any-to-any connectivity.

http://tools.ietf.org/html/rfc6513
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/

 Chapter 2: OpenContrail Architecture Details 39

 � The second problem is that overlay multicast trees put the burden
of doing multicast elaboration on the software vRouters which
can be CPU intensive. The underlay hardware switches typically
have hardware support for multicast elaboration. This problem
can be alleviated by spreading the burden over multiple vRouters
using cascaded elaboration as shown in Figure 15.

Layer 2 BUM Traffic

Layer 2 Broadcast, Unknown unicast, and Multicast traffic (BUM
traffic) needs to be flooded in a Layer 2 network. In OpenContrail,
unknown unicast traffic is dropped instead of being flooded because
the system does not rely on flood-and-learn to fill the MAC tables.
Instead, it uses a control plane protocol to fill the MAC tables and if
the destination is not known, there is some other malfunction in the
system. Layer 2 broadcasts are also avoided because most Layer 2
broadcasts are caused by a small set of protocols.

For any remaining Layer 2 broadcast and multicast, the system creates
one distribution tree per virtual network connecting all routing
instances for that virtual network. That tree can be constructed in
either the overlay or in the underlay, with the same pros and cons for
each approach.

Proxy Services

The vRouter proxies several types of traffic (from the VM) and avoids
flooding. The vRouter intercepts specific request packets and proxies
them to the control node using XMPP. The control node sends the
response back over XMPP.

Currently the system proxies the following types of traffic (additional
proxies will be added):

 � DHCP request. The Control Node provides the DHCP response
based on the configuration of the VM

 � ARP requests. The Control Node provides the IP to MAC
address mapping

 � DNS and MDNS requests. The Control Node provides the name
to IP address mapping

Forwarding Policies

The vRouter forwarding plane contains a flow table for multiple
different functionality – firewall policies, load balancing, statistics, etc.
The flow table contains flow entries that have a match criteria and

 40 Day One: Understanding OpenContrail Architecture

associated actions. The match criteria can be a N-tuple match on
received packets (wildcard fields are possible). The actions include
dropping the packet, allowing the packet, or redirecting it to another
routing instance. The flow entries are programmed in the forwarding
plane by the vRouter Agent.

The flow table is programmed to punt packets to the vRouter Agent
for which there is no entry in the flow table. This allows the vRouter
agent to see the first packet of every new flow. The vRouter agent will
install a flow entry for each new flow and then re-inject the packet into
the forwarding plane.

Service Chaining

OpenContrail supports a high-level policy language that allows virtual
networks to be connected, subject to policy constraints. This policy
language is similar to the Snort [snort] rules language [snort-rules-
intro] but that may change as the system is extended. The policy rule
looks similar to this:

allow any src-vn -> dst-vn svc-1, svc-2

This rule allows all traffic to flow from virtual network src-vn to
virtual network dst-vn and forces the traffic through a service chain
that consists of service svc-1 followed by service svc-2. In the above
example, the rule applies when any virtual machine in virtual network
src-vn sends traffic to any virtual machine in virtual network dst-vn.

The system is mostly concerned with traffic steering, i.e., injecting the
traffic flows into the right virtual machines using a virtual interface.
The virtual machines provide network services such as firewalls, DPI,
IDS, IPS, caching, etc.

The system creates additional routing instances for service virtual
machines in addition to the routing instances for tenant virtual ma-
chines. Traffic is steered:

 � By manipulating the route targets for routes to influence import-
ing and exporting routing from one routing instance to another
routing instance.

 � By manipulating the next-hops and/or the labels of the routes as
they are leaked from routing instance to routing instance to force
the traffic through the right sequence of routing instances and the
right sequence of corresponding virtual machines.

Figure 18 illustrates the general idea on routing instance manipulation
for service chaining.

http://www.snort.org/
http://www.secanalyst.org/2010/05/27/a-brief-introduction-to-snort-rules/
http://www.secanalyst.org/2010/05/27/a-brief-introduction-to-snort-rules/

 Chapter 2: OpenContrail Architecture Details 41

Figure 18 Service Chaining

In the above example:

 � The import and export route targets of the routing instances are
chosen in such a way that the routes are leaked from routing
instance ri-t2 to ri-s2, and then to ri-s1, and then to ri-t1.

 � When the service routing instances export the routes they do a
next-hop-self and they allocate a new label:

 � The next-hop-self steers the traffic to the server on which the
service is hosted.

 � The label steers the traffic to the service virtual machine on
that server.

The IETF draft [draft-rfernando-virt-topo-bgp-vpn] describes a similar
mechanism for service chaining.

Control and Management Plane Protocols

IF-MAP

The Interface for Metadata Access Points (IF-MAP) [if-map] is an open
standard client / server protocol developed by the Trusted Computer
Group (TCG) as one of the core protocols of the Trusted Network
Connect (TNC) open architecture.

https://datatracker.ietf.org/doc/draft-rfernando-virt-topo-bgp-vpn/
http://www.if-map.org/

 42 Day One: Understanding OpenContrail Architecture

The original application of IF-MAP was to provide a common inter-
face between the Metadata Access Point (MAP), a database server
acting as a clearinghouse for information about security events and
objects, and other elements of the TNC architecture.

IF-MAP provides an extensible mechanism for defining data models. It
also defines a protocol to publish, subscribe, and search the contents of
a data store.

OpenContrail uses the IF-MAP protocol to distribute configuration
information from the Configuration Nodes to the Control nodes.
Control nodes can use the subscribe mechanism to receive only the
subset of configuration in which they are interested. The system also
uses IF-MAP to define the high level and low level configuration data
models.

XMPP

The Extensible Messaging and Presence Protocol (XMPP) [xmpp] is a
communications protocol for message-oriented middleware based on
XML. XMPP was originally named Jabber and was used for instant
messaging, presence information, and contact list maintenance.
Designed to be extensible, the protocol has since evolved into a general
publish-subscribe message bus and is now used in many applications.

OpenContrail uses XMPP as a general-purpose message bus between
the compute nodes and the control node to exchange multiple types of
information including routes, configuration, operational state, statis-
tics, logs and events.

IETF drafts [draft-ietf-l3vpn-end-system] and [draft-marques-l3vpn-
mcast-edge] describe the XMPP message formats.

BGP

OpenContrail uses BGP [RFC4271] to exchange routing information
amongst the Control nodes. BGP can also be used to exchange routing
information between the Control nodes and the Gateway nodes
(routers and switches from major networking vendors)

Sandesh

Sandesh is a XML based protocol for reporting analytics information.
The structure of the XML messages is described in published schemas.
Each component on every node has a Sandesh connection to one of the
analytics nodes. Sandesh carries two kinds of messages:

http://xmpp.org/
https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/
https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/
https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/
http://www.ietf.org/rfc/rfc4271.txt

 Chapter 2: OpenContrail Architecture Details 43

 � All components in the system send asynchronous messages to the
analytics node to report logs, traces, events, etc.

 � The analytics node can send request messages and receive
response messages to collect a specific operational state.

OpenStack Integration

Figure 19 shows the integration between OpenStack, Nova, Neutron,
and OpenContrail.

Figure 19 OpenStack Integration

The Nova module in OpenStack instructs the Nova Agent in the
compute node to create the virtual machine. The Nova Agent commu-
nicates with the OpenContrail Neutron plug-in to retrieve the network
attributes of the new virtual machine (e.g. the IP address). Once the
virtual machine is created, the Nova Agent informs the vRouter agent,
who configures the virtual network for the newly created virtual
machine (e.g. new routes in the routing-instance).

Security

All control plane protocols run over Transport Layer Security (TLS)
and the Secure Sockets Layer (SSL) to provide authentication and
integrity. They can also be used to provide confidentiality although
there is typically no need for that in the confines of Data Center.

 44 Day One: Understanding OpenContrail Architecture

For the initial service discovery, certificates are used for authentication.
For all subsequent communications token-based authentication is used
for improved performance. The service discovery server issues the
tokens to both the servers and the clients over certificate-authenticated
TLS connections.

The distribution of the certificates is out of the scope of this document.
In practice this is typically handled by the server management system
such as Puppet or Chef.

All REST APIs in the system use role-based authorization. Servers
establish the identity of clients using TLS authentication and assigns
them one or more roles. The roles determine what operations the client
is allowed to perform over the interface (e.g., read-only versus read-
write) and which objects in the data model the client is allowed to
access.

Horizontal Scalability and High Availability

For high availability as well as for horizontal scaling there are multiple
instances of the control nodes, the configuration nodes, and the
analytics nodes. All nodes are active-active – OpenContrail does not
use the active-standby concept.

Control Nodes

Currently, each control node contains all operational states for the
entire the system. For example, all routes for all virtual machines in all
virtual networks. The total amount of control state is relatively small
to fit comfortably in the memory of each control node. As more
features are added, aggregation and sharding of control state across
the Control nodes may be introduced in the future using similar
principles as route target specific route reflectors in BGP.

Each vRouter agent connects to two or more control nodes where all
nodes are active-active. The vRouter agent receives all its state (routes,
routing instance configuration, etc.) from each of the control nodes.
The state received from the two or more nodes is guaranteed to be
eventually consistent but may be transiently inconsistent. It makes a
local decision about which copy of the control state to use. This is
similar to how a BGP PE router receives multiple copies of the same
route (one from each BGP neighbor) and makes a local best route
selection.

If a control node fails, the vRouter agent will notice that the connec-
tion to that control node is lost. The vRouter agent will flush all state
from the failed control node. It already has a redundant copy of all the

 Chapter 2: OpenContrail Architecture Details 45

state from the other control node. The vRouter can locally and imme-
diately switch over without any need for resynchronization. The
vRouter agent will contact the service discovery server again to
re-establish a connection with a new control node to replace the failed
control node.

Configuration Nodes

The configuration nodes store all configuration state in a fault tolerant
and highly available NoSQL database. This includes the contents of
the high-level data model, i.e., the configuration state that was explic-
itly installed by the provisioning system. And it also includes the
contents of the low-level data model, i.e., the configuration state that
the transformation module derived from the high-level data model.

The Control nodes use IF-MAP to subscribe to just the part of the
low-level data model that is needed for the control plane. The service
discovery server assigns each control node to a particular configuration
node. If that configuration server fails, the control Node re-contacts
the service discovery server and is assigned to a different configuration
server.

After the switch-over, the control node resynchronizes its state with the
new configuration node using the same “mark everything stale, full
replay, and flush remaining stale state” approach which is used for
graceful restart in routing protocols.

Analytics Nodes

The system provides complete high-availability functionality for all the
analytics components, similar to the configuration nodes. The analyt-
ics nodes are stateless, hence failure of the analytics components do not
cause the system to lose messages. When an analytics node goes down,
the system’s discovery services will transition the effected generators to
a functioning analytics node. And the upstream REST API clients can
also use discovery service to detect the failure of a node and transition
to a functioning node. The failed analytics node is taken out of the
pool of available nodes and one of the remaining analytics nodes takes
over the work of collecting data and handling queries.

OpenContrail provides complete high availability functionality across
the database components. The database cluster is set up in a multiple
replication manner, hence the data itself will be resilient to database
node failures. The cluster will be resilient to multiple database node
failures. Upon failure of a database node, the analytics nodes will
smoothly transition from the failed node to a functioning node. During

 46 Day One: Understanding OpenContrail Architecture

this process, we will queue up the data and hence during this transition
the data loss will be very minimal.

vRouter Agent

vRouter high availability is based on the graceful restart model used by
many routing protocols including BGP. If the vRouter agent restarts
for any reason (crash, upgrade) the vRouter forwarding plane contin-
ues to forward traffic using the forwarding state which was installed by
the vRouter agent prior to the restart.

When the vRouter agent goes down the vRouter forwarding plane is
running in a headless mode. All forwarding state is marked as stale.
When the vRouter agent restarts, it re-establishes connections to a pair
of redundant Control nodes. It re-learns all state from the Control
nodes and re-installs the fresh state in the forwarding plane replacing
the stale state.

When the vRouter agent finishes re-learning the state from the control
nodes and completes re-installing fresh state in the forwarding plane,
any remaining stale state in the forwarding plane is flushed.

vRouter Forwarding Plane

If the vRouter forwarding plane restarts for any reason (crashes,
upgrades) there will be an interruption in traffic processing for that
particular server.

This is unavoidable because there is only a single instance of the
vRouter forwarding plane on each router. It is important to keep the
vRouter forwarding plane as simple as possible to minimize the
probability of crashes or upgrades.

Underlying all states in the system, whether configuration,
operational or analytics, is a set of data models. Each data model
defines a set of objects, their semantics, and the relationships
between them. The system operates on these data models to
perform its tasks: creating and updating objects and relationships,
translating “high-level” objects into “low-level” objects, and
instantiating low-level objects in networking elements to create
the required connectivity and services. These data models offer
certain capabilities to the modules that manipulate them, and in
turn impose certain requirements on them. The main result of this
data model-based design is that the system is distributed, scalable,
highly available, easily upgradable, and elastic.

Data models are essentially annotated graphs with vertices that
represent objects and links that represent relationships between
objects, and the system uses a Data Modeling Language (DML) to
specify them. Some of the semantics of objects and the relation-
ships between them are captured directly in the data model, for
example, a vertex in the graph may represent an abstract or
concrete object, and a link may represent a parent-child relation-
ship or a dependency between a pair of objects. The remaining
semantics are captured in the annotations on vertices and links,
for example, a link that represents connectivity between a pair of
vertices may be annotated with the required bandwidth, or a link
between routing instances may be annotated with the desired
routing policy.

Chapter 3

The Data Model

 48 Day One: Understanding OpenContrail Architecture

Programming Model

The data model for configuration and operational state is defined using
IF-MAP, with the data itself being kept in a Cassandra database. This
database provides persistence, availability, and scale-out characteris-
tics. A “pub-sub” bus is overlaid on top using Redis as the in-memory
key-value store. Modules that interact with the database may choose
to subscribe to certain types of updates. When a module publishes an
update to an object, the update is sent to all other modules that
subscribe to that type of object.

All modifications to a data model must be backward compatible: in
other words, any program that references a data model must continue
to work as before without requiring modification. This means that all
changes to a data model may only extend existing objects, links and
annotations, but must never change the semantics of, or the relations
between, existing objects. Further, modifications must never deprecate
an object or link type. An example of how a relation between objects
can be made backward compatible is shown below. A further require-
ment is that modifications to a data model must be incremental to
allow changes to be pushed out to running modules without requiring
recompilation.

Access to a data model is via a RESTful API that is auto-generated
from the model’s specification. In addition, bindings for various
languages (Python, Java, etc.) are also generated, allowing program-
mers in these languages to manipulate data in the model.

Modules that operate on these data models must be event-driven. This
means two things: first, a module must listen for updates on the
pub-sub bus; and second, when it gets all the information it needs for a
particular action, it performs the action. The updates may come in any
order—the pub-sub bus does not guarantee the order updates or
manage dependencies—that is the responsibility of each module.
Furthermore, a module must be restart-able. If it crashes, or is forcibly
restarted (e.g., upgraded), it simply reconnects to the database,
reacquires its state and continues processing. To do this, a module
must keep all non-temporary state either in the database via data
models or “in the network”, in which case the module reacquires state
from its peers. Finally, modules must be elastic. That is, they must be
able to work in a distributed fashion; instances may be spawned or
terminated as determined by the current load. This is accomplished by
having a distributed database hold the data model, and by having a
service for coordination of distributed entities (e.g., for unique ID
allocation).

 Chapter 3: The Data Model 49

Configuration and Operational Data Model

This data model consists of an object hierarchy that is represented as a
rooted, annotated Directed Acyclic Graph (DAG). The vertices in the
DAG represent objects that may be administrative entities, or physical
or logical resources. Links in the DAG represent relationships between
objects. An object may have zero or more children, but only one parent
(except the root, which has no parents). Deleting an object implicitly
deletes the subtree below it. An object may refer to another object, in
which case a “reference count” is maintained. Deleting the referring
object decrements the reference count. Deleting an object that has
outstanding references is not allowed. “Weak references” to objects
that do not exist as yet are permitted. A weakly referred to object may
be deleted.

As shown in Figure 20, the root of the DAG represents the universe of
objects that the system is responsible for, i.e., an “administrative
domain” (AD). This might be a Data Center cluster, a Point Of Pres-
ence (POP), a Central Office (CO), or a Wide Area Network (WAN).
An AD has an overall administrator that is responsible for managing it.
An AD also has an associated namespace for all identifiers that may be
used within it. Examples of identifiers are IP addresses, domain names,
and routing instance IDs.

Figure 20 OpenContrail System High Level Data Model Definition

 50 Day One: Understanding OpenContrail Architecture

An AD contains one or more “tenants” or “domains.” For example,
tenants in a DC may be Coke and Pepsi; tenants in a POP or CO may
be the service departments for business customers and broadband.

A tenant may contain a number of projects, or a department within a
tenant, say Marketing is an example of a project. Projects contain
Virtual Networks (VNs). A VN in a DC may consist of virtual
machines in an application tier. A VN in a POP may represent a VPN
for a business customer, or a grouping of mobile subscribers that
have a similar profile, or a grouping of users in a Campus environ-
ment.

A project contains service instances, gateways, and policies. A project
also has Security Groups that administrators can use to assign
“roles” to endpoints and these roles may define further policies for
endpoints.

VNs contain endpoints. In the DC domain, these are virtual ma-
chines; for the business edge, these are customer sites (CEs), and for
wired/wireless edge they are subscribers. Endpoints that are part of a
Security Group have a reference to that Security Group.

Other objects in the data model are “routing instances” (RIs). A VN
is “compiled” into one or more RIs, and is implemented as such in
vRouters. Yet other objects are Route Targets, which are used to
control routing leaking between RIs.

This hierarchy was developed in the context of a Data Center, but it
appears to be sufficiently general to encompass other domains. In
some cases, certain levels in the hierarchy may be redundant. In this
case, a single instance can be used at that level to maintain the
hierarchy. For example, if the notion of tenant is not needed, then a
single tenant can be instantiated to retain the tenant level in the
hierarchy. If a new level is needed in the hierarchy, this needs to be
introduced in a backward compatible manner.

Figure 21 Data Model Extensibility

 Chapter 3: The Data Model 51

Suppose a new level in the hierarchy, department, is desired between
tenant and project. One can easily extend the data model to add this.
However, the requirement for backward compatibility means three
things:

1. Department must be an optional level in the hierarchy. That is, it
must be possible to create a project immediately under a tenant as well
as under a department.

2. A project that was created as a child of a tenant must remain as that
tenant’s child until it is deleted.

3. A new project can either be the child of a tenant or of a department,
but not both.

Also, an application that asks for children of a tenant must be prepared
to receive children of types other than project. It can simply ignore
them, but it must cause an error or otherwise fail.

Figure 21 above on the left shows the data model for tenant and
project with a parent-child relationship. The dotted object and links
represent a newly added level for department. The diagram on the
right shows an instance of the data model with a tenant t1 and a
project t1.p2 in orange; these follow the original data model. Also
shown is a department t1.d1 and another project t1.d1.p1; these
follow the modified data model. Note that each project has only one
parent: the orange project has t1 as its parent, and the other project has
t1.d1 as its parent.

High-level and Low-level Data Models

All the above objects and relations are in a common data model. There
is a loose distinction of objects into “high-level” and “low-level.”
Objects created by entities outside the system (the orchestration system
or an application) are considered configuration state, and are thus part
of the high-level data model. Examples include tenants and projects.
Objects generated by the modules are operational state, and are
considered part of the low-level data model because they are closer to
the abstractions used inside network elements; examples include
routing instances. Some objects may be either configured or generated,
blurring the line between high and low levels of the data model; an
example is a Route Target, which is typically generated, but may also
be configured so the system can talk to external BGP speakers.

In addition, some physical entities are represented in the data model.
For example, every instance of a vRouter on a server is represented.
Every BGP speaker of interest to the system (those in Control nodes, as
well as those to which OpenContrail peers, such as a DC gateway) is

 52 Day One: Understanding OpenContrail Architecture

also represented. Finally, physical and virtual service appliances are
also represented. These objects are used to track BGP or XMPP
peering sessions and the service connectivity between them.

Service Connectivity Data Model

A service “chain” is the specification of traffic flows between a pair of
VNs. Traffic from a VN may go through an arbitrary graph of service
nodes before reaching another VN. The traffic may take different paths
based on a service (for example, an IDS may redirect traffic to a DPI
engine), or be replicated for monitoring purposes, for example.
Although the term “service chain” does not cover these more general
cases, which should more correctly be called “service graphs,” service
chain will be used.

The specification of a service chain consists of two parts: the traffic
path from an ingress VN to a set of service elements to an egress VN,
and the service profile to apply within each service element. At present,
both of these specifications are annotations to objects. The former as
an annotation to a policy, and the latter as an annotation to a service
object. It might be beneficial to capture the former in an explicit data
model; this data model would be a graph whose vertices are services
and whose links are connections between services. This graph would
then be inserted between the pair in the system.

There are three immediate use-cases for OpenContrail: (a) Private
Cloud for the Enterprise, (b) Infrastructure as a Service and
Virtual Private Cloud for Service Providers, and (c) Network
Function Virtualization for Service Provider Networks. The goal
is not to provide an exhaustive list of use cases, but to provide an
illustrative sampling of use cases.

Data Center Domain Use Cases

Before diving into the specific use cases for the Data Center, it is
useful to first discuss the role of orchestration in the Data Center.

The Role of Orchestration in the Data Center

In the Data Center, the orchestrator (Openstack, CloudStack,
VMware, Microsoft System Center, etc.) manages many critical
aspects of the Data Center:

 � Compute (virtual machines)

 � Storage

 � Network

 � Applications

The Software Defined Networking (SDN) controller’s role is to
orchestrate the network and networking services like Load
Balancing and Security based on the needs of the application it’s
assigned compute and storage resources.

Chapter 4

OpenContrail Use Cases

 54 Day One: Understanding OpenContrail Architecture

The orchestrator uses the northbound interface of the SDN controller to
orchestrate the network at a very high level of abstraction, for example:

 � Create a virtual network for a tenant, within a Data Center or
across Data Centers.

 � Attach a VM to a tenant’s virtual network.

 � Connect a tenant’s virtual network to some external network, e.g.,
the Internet or a VPN.

 � Apply a security policy to a group of VMs or to the boundary of a
tenant’s network.

 � Deploy a network service (e.g. a load balancer) in a tenant’s virtual
network.

The SDN controller is responsible for translating these requests at a high
level of abstraction into concrete actions on the physical and virtual
network devices such as:

 � Physical switches, e.g., Top of Rack (ToR) switches, aggregation
switches, or single-tier switch fabrics.

 � Physical routers.

 � Physical service nodes such as firewalls and load balancers.

 � Virtual services such as virtual firewalls in a VM.

Virtualized Multi-tenant Data Center

The virtualized multi-tenant Data Center use case allows multiple
tenants to be hosted in a Data Center. Multi-tenancy means that tenants
share the same physical infrastructure (servers, network, storage) but are
logically separated from each other.

The concept of a tenant can mean different things in different circum-
stances:

 � In a service provider Data Center providing public cloud services it
means a customer or applications belonging to a customer.

 � In an enterprise Data Center implementing a private cloud, it could
mean a department or applications belonging to a customer.

The number of tenants is important because some architectural ap-
proaches (specifically native end-to-end VLANs) have a limit of 4096
tenants per Data Center.

 Chapter 4: OpenContrail Use Cases 55

Figure 22 The Role of Orchestration in the Data Center

 56 Day One: Understanding OpenContrail Architecture

Not all Data Centers are multi-tenant. Some large content providers
(e.g. Facebook) have private Data Centers that are only used for
internal applications and not yet for providing Cloud services. Even
those Data Centers that do support multi-tenancy do not all define
multi-tenancy in the same way. For example, the original Amazon Web
Services (AWS) [AWS] did support multi-tenancy but from a network-
ing point of view the tenants were not logically separated from each
other (all tenants were connected to the same Layer 3 network). Since
then Amazon has introduced a more advanced service called Virtual
Private Cloud (VPC) [AWS-VPC] which does allow each tenant to get
one or more private isolated networks.

Figure 23 shows the virtualization and multi-tenancy requirements for
various market segments.

Figure 23 Multi-Tenancy Requirements

Where virtualization is used, different market segments tend to use
different orchestrators and hypervisors:

 � For the enterprise market segment, commercial orchestration
systems are widely used. With the growing adoption of the Cloud
and movement towards software defined Data Center, there is a

http://aws.amazon.com/
http://aws.amazon.com/vpc/

 Chapter 4: OpenContrail Use Cases 57

desire to adopt an integrated open source stack such as Open-
Stack or CloudStack

 � In the Infrastructure as a Service (IaaS) and public cloud market,
open source orchestrators (e.g. OpenStack, CloudStack) and
hypervisors (e.g. KVM, Xen) are often used for customizability,
cost, and scalability reasons.

 � Very large content providers (e.g. Google and Facebook) often
build their own orchestration software and don’t use hypervisors
for performance and scale reasons.

Generally, each tenant corresponds to a set of virtual machines hosted
on servers running hypervisors as shown in Figure 24. The hypervisors
contain virtual switches (“vSwitches”) to connect the virtual machines
to the physical network and to each other. Applications may also run
“bare-metal” on the server (i.e. not in a virtual machine) as shown in
the green server (B) in the lower right corner of Figure 24.

Figure 24 Use Case for Multi-Tenant Virtualized Data Center (Multi-Tier Data Center
Network)

The Data Center network may be a multi-tier network as shown in
Figure 24, or the Data Center may be single-tier network (e.g. Fabric)
as shown in Figure 25.

 58 Day One: Understanding OpenContrail Architecture

Figure 25 Use Case for Multi-Tenant Virtualized Data Center (SINGLE-Tier Data Center
Network

The servers are interconnected using a physical Data Center network.
In Figure 25 the network is depicted as a two-tier (access, core)
network. It could also be a three-tier (access, aggregation, core)
network or a one-tier (e.g., Q-Fabric) network. For overlay solutions
the Data Center network is recommended to be a Layer 3 network (IP
or MPLS).

In the simplest scenario, shown in Figure 26, the cloud provider assigns
an IP address to each virtual machine. The virtual machines of a given
tenant are not on the same Level 2 network. All virtual machines
(whether from the same tenant or from different tenants) can commu-
nicate with each other over a routed IP network.

For example, in Amazon Web Services [AWS] the Elastic Compute
Cloud (EC2) [AWS-EC2] by default assigns each virtual machine one
private IP address (reachable from within the Amazon EC2 network)
and one public IP address (reachable from the Internet via NAT) [AWS-
EC2-INSTANCE-ADDRESSING]. Amazon dynamically allocates
both the private and the public IP address when the VM is instantiated.
The Amazon EC2 Elastic IP Address (EIP) feature [AWS-EC2-EIP]
assigns a limited (default five) number of static IP addresses (to a
tenant that can be assigned to VMs) that are reachable from the
Internet.

http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://aws.amazon.com/articles/1346

 Chapter 4: OpenContrail Use Cases 59

Figure 26 One Big Layer 3 Network (Not Part of the Multi-Tenant Use Case)

In order to isolate the tenants from each other in a network, each
tenant can be assigned a private Layer 2 network as shown in Figure
27. The tenant’s network allows each virtual machine to communicate
with all of the other virtual machines of the same tenant, subject to
policy restrictions. The tenant networks are isolated from each other: a
virtual machine of one tenant is not able to communicate with a virtual
machine of another tenant unless specifically allowed by policy. Also,
the virtual machines are not reachable from the Internet unless specifi-
cally allowed by policy.

Figure 27 Network Abstraction Presented to Tenants

The tenant private networks are generically called virtual networks; all
virtual machines on a given tenant network are on the same Layer 3
subnet. The tenant may be allowed to pick his own IP addresses for the
VMs or the cloud provider may assign the IP addresses. Either way, the
IP addresses may not be unique across tenants (i.e. the same IP address
may be used by two VMs of two different tenants).

A single tenant may have multiple virtual networks. Those virtual
networks may or may not be connected to each other using a Layer 3
router, a firewall, a NAT, a load balancer, or some other service.

 60 Day One: Understanding OpenContrail Architecture

Figure 28 Multiple Networks for a Tenant

As an example of isolated virtual tenant networks, the Amazon Virtual
Private Cloud (VPC) service [AWS-VPC] allows tenants to create one
or more subnets and to connect them to each other, or to the Internet,
or to a customer network using routers or services (e.g. NAT). [AWS-
VPC-SUBNETS]

The use case includes a logically centralized orchestration layer (not
shown in any of the diagrams above) for the management of tenant
networks:

 � adding and removing tenants,

 � adding and removing virtual machines to and from tenants,

 � specifying the bandwidth, quality of service, and security attri-
butes of a tenant network, etc.

This orchestration layer must cover all aspects of the Data Center
(compute, storage, network, and storage) and support a high rate of
change.

Connect Tenant to Internet / VPN

In this use case, tenants connect to the Internet or the Enterprise
network via a VPN as shown in Figure 29. The VPN can be a Layer
3VPN, Layer 2VPN, an SSL VPN, an IPsec VPN, etc.

http://aws.amazon.com/vpc/
http://docs.amazonwebservices.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
http://docs.amazonwebservices.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html

 Chapter 4: OpenContrail Use Cases 61

Figure 29 Use Case for Connect Tenant to Internet/VPN

The Data Center gateway function is responsible for connecting the
tenant networks to the Internet or the VPNs. The gateway function can
be implemented in software or in hardware (e.g. using a gateway router).

Data Center Interconnect (DCI)

In this use case multiple Data Centers are interconnected over a Wide
Area Network (WAN) as illustrated in Figure 30.

Data centers may be active/standby for disaster recovery, temporarily
active/active for disaster avoidance, or permanently active/active. In the
active/active case a tenant may have virtual machines in multiple Data
Centers. The Data Center Interconnect (DCI) puts all VMs of a given
tenant across all Data Centers on the same virtual tenant network.

DCI must address the following network requirements:

 � Storage replication.

 � Allow tenant networks to use overlapping IP address spaces across
Data Centers.

 � Global Load Balancing (GLB).

 � VM migration across Data Centers for disaster avoidance

 62 Day One: Understanding OpenContrail Architecture

Figure 30 Use Case for Center Interconnect (DCI)

Multiple transport options are available for DCI interconnect, includ-
ing dark fiber, SONET/SDH, DWDM, pseudo-wires, Layer 3 VPNs,
E-VPNs, etc. Unlike the Data Center network, bandwidth is a scarce
resource in the DCI WAN, so Traffic Engineering (TE) is often used to
use available resources efficiently.

Network Monitoring

In Data Center networks it is often necessary to make a copy of specific
flows of traffic at specific points in the network and send that copy of
the traffic to one or more monitoring devices for further analysis. This
is referred to as the network monitoring or tap use case.

The monitoring may be temporary, for example, for when debugging
network issues. Or the monitoring may be permanent, for example, for
regulatory compliance reasons.

Traditionally monitoring is implemented by manually configuring the
Switched Port Analyzer (SPAN) feature on the switches in the network
to send a copy of traffic flows to a specific port. Remote SPAN (RS-
PAN) is a more sophisticated version of the feature; it allows the
copied traffic flow to be sent into a GRE tunnel for remote analysis.

 Chapter 4: OpenContrail Use Cases 63

A centralized SDN system can be used to:

 � Create tunnels from the monitoring collection points (the “taps”)
in the network to the monitoring devices, which collect and
analyze the traffic.

 � Instruct the switches and routers in the network to steer particu-
lar flows of traffic into those tunnels for analysis.

Dynamic Virtualized Services

In this use-case, networking services such as firewalls, Intrusion
Detection Systems (IDS), Intrusion Prevention Systems (IPS), load
balancers, SSL off-loaders, caches, and WAN optimizers are deployed
in tenant networks.

These services are provided by Service Nodes that can be located in
various places as shown in Figure 31.

Figure 31 Service Node Locations

 64 Day One: Understanding OpenContrail Architecture

Services may be deployed in multiple locations:

 � In the hypervisor

 � In a virtual machine

 � In a physical device

 � Using Access Control Lists on the physical access switch or the
vSwitch

 � In-line services on a router or switch on a service card or natively
on the forwarding ASICs

Services may be associated with one or more VMs, for example as a
result of attaching a security policy to one or more VMs.

Alternatively, services may be associated with network boundaries, for
example by attaching a security policy to a network boundary or by
inserting a load balanced at a network boundary. As shown in Figure
32, this network boundary may be:

 � The boundary between a tenant network and an external net-
work (the Internet or the VPN to the enterprise network).

 � The boundary between the network of one tenant and the
network of another tenant.

 � The boundary between multiple networks of the same tenant.

Figure 32 Services at Network Boundaries

 Chapter 4: OpenContrail Use Cases 65

Network Functions Virtualization for SP Networks

Service Insertion

An edge router wants to apply some services (firewall, DPI, caching,
HTTP header enrichment, etc.) to traffic from subscribers. Those
services may be provided by a service card in the router, or by physical
service appliances, or by virtual service appliances in the Cloud.

The SDN system is used to create and manage virtualized or physical
services and create service chains to steer subscriber traffic through
these services. This can be done based on local configuration but it is
more typically done using a centralized policy servicer.

Service Example – Virtualized CPE (vCPE)

In Broadband Subscriber Networks (BSN) each subscriber is provided
with a Customer Premises Equipment (CPE) such as a multi-services
router. Operators need more functionality in these CPEs to compete
with Over The Top (OTT) services but are challenged to do so because:

 � CPE vendors are slow to add new features and truck rolls for
hardware feature additions or replacements are expensive.

 � Many different CPE devices are present in a network that leads to
inconsistent feature support.

In the Virtual CPE use case (also known as the Cloud CPE use case) the
operator addresses these problems by:

 � Using a simplified CPE device, which only implements basic
layer-2/layer-3 functionality.

 � Virtualizing the remaining functionality in a virtual machine or
container running on common x86 hardware that is centrally
orchestrated and provisioned.

The servers hosting the virtualized CPE functionality may be located in
different places:

 � Tethered to the Broadband Network Gateway (BNG)

 � On a service card in the BNG

 � In-line between the BNG and the CPE

 � In a Data Center

 � A combination of the above

 66 Day One: Understanding OpenContrail Architecture

The architecture of the OpenContrail System is in many respects similar
to the architecture of MPLS VPNs (Another analogy [with a different set
of imperfections] is to compare the Control VM to a routing engine and
to compare a vRouter to a line card) as shown in Figure 33.

The parallels between the two architectures include the following:

 � Underlay switches in the OpenContrail System correspond to P
routers in an MPLS VPN. Since the OpenContrail System uses
MPLS over GRE or VXLAN as the encapsulation protocol there is
no requirement that the underlay network support MPLS. The
only requirement is that it knows how to forward unicast IP
packets from one physical server to another.

 � vRouters in the OpenContrail System correspond to PE routers in
an MPLS VPN. They have multiple routing instances just like phys-
ical PE routers.

 � VMs in the OpenContrail System correspond to CE routers in an
MPLS VPN. In the OpenContrail System there is no need for a
PE-CE routing protocol because CE routes are discovered through
other mechanisms described later.

 � MPLS over GRE tunnels and VXLAN tunnels in the OpenContrail
System correspond to MPLS over MPLS in MPLS VPNs.

 � The XMPP protocol in the OpenContrail System combines the
functions of two different protocols in an MPLS VPN:

 � XMPP distributes routing information similar to what IBGP
does in MPLS VPNs.

 � XMPP pushes certain kinds of configuration (e.g. routing
instances) similar to what DMI does in MPLS VPNs.

Chapter 5

Comparison of the OpenContrail System to
MPLS VPNs

 68 Day One: Understanding OpenContrail Architecture

 � The OpenContrail System provides three separate pieces of
functionality:

1. Centralized control, similar to a BGP Route Reflector (RR)
in an MPLS VPN.

2. Management, which pushes down configuration state to
vRouters similar to a Network Management System (NMS) in
an MPLS VPN.

3. Analytics.

 � OpenContrail supports both Layer 3 overlays, which are the
equivalent of MPLS L3-VPNs and Layer 2 overlays, which are
the equivalent of MPLS EVPNs.

Figure 33 Comparison of the OpenContrail System to MPLS VPNs

NOTE This Day One book is reprinted from the online document,
OpenContrail Architecture Documentation, located at: http://
opencontrail.org/opencontrail-architecture-documentation/.

[AWS] Amazon Web Services. http://aws.amazon.com/

[AWS-EC2] Amazon Eleastic Compute Cloud (Amazon EC2)
http://aws.amazon.com/ec2/

[AWS-EC2-EIP] Amazon EC2 Elastic IP Address. http://aws.
amazon.com/articles/1346

[AWS-EC2-INSTANCE-ADDRESSING] Amazon EC2 Instance
IP Addressing. http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/using-instance-addressing.html

[AWS-VPC] Amazon Virtual Private Cloud (Amazon VPC).
http://aws.amazon.com/vpc/

[AWS-VPC-SUBNETS] Amazon Virtual Private Cloud Subnets.
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
VPC_Subnets.html

[cassandra] Apache Cassandra website. http://cassandra.apache.
org/

[draft-rfernando-virt-topo-bgp-vpn] “Virtual Service Topologies
in BGP VPNs.” IETF Internet Draft draft-rfernando-virt-topo-
bgp-vpn. https://datatracker.ietf.org/doc/draft-rfernando-virt-

References

http://opencontrail.org/opencontrail-architecture-documentation/
http://opencontrail.org/opencontrail-architecture-documentation/
http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/articles/1346
http://aws.amazon.com/articles/1346
http://aws.amazon.com/articles/1346
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://aws.amazon.com/vpc/
http://aws.amazon.com/vpc/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://datatracker.ietf.org/doc/draft-rfernando-virt-topo-bgp-vpn/
https://datatracker.ietf.org/doc/draft-rfernando-virt-topo-bgp-vpn/

 70 Day One: Understanding OpenContrail Architecture

topo-bgp-vpn/

[draft-mahalingam-dutt-dcops-vxlan] “VXLAN: A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks.”
IETF Internet Draft draft-mahalingam-dutt-dcops-vxlan. https://
datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/

[draft-marques-l3vpn-mcast-edge] “Edge Multicast Replication for
BGP IP VPNs.” IETF Internet Draft draft-marques-l3vpn-mcast-edge.
https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/

[draft-ietf-l3vpn-end-system] “BGP-signaled end-system IP/VPNs.”
IETF Internet Draft draft-ietf-l3vpn-end-system. https://datatracker.
ietf.org/doc/draft-ietf-l3vpn-end-system/

[draft-raggarwa-sajassi-l2vpn-evpn] “BGP MPLS Based Ethernet
VPN.” IETF Internet Draft draft-raggarwa-sajassi-l2vpn-evpn. https://
datatracker.ietf.org/doc/draft-raggarwa-sajassi-l2vpn-evpn/

[ietf-xmpp-wg] IETF XMPP working group. http://datatracker.ietf.
org/wg/xmpp/

[if-map] if-map.org website. http://www.if-map.org/

[juniper-why-overlay] “Proactive Overlay versus Reactive End-to-
End.” Juniper Networks. http://www.juniper.net/us/en/local/pdf/
whitepapers/2000515-en.pdf

[redis] Redis website. http://redis.io/

[RFC4023] “Encapsulating MPLS in IP or Generic Routing Encapsula-
tion.” IETF RFC4023. http://tools.ietf.org/html/rfc4023

[RFC4271] “A Border Gateway Protocol 4 (BGP-4).” IETF RFC4271.
http://www.ietf.org/rfc/rfc4271.txt

[RFC4364] “BGP/MPLS IP Virtual Private Networks (VPNs).” IETF
RFC4364. http://tools.ietf.org/html/rfc4364

[RFC6513] “Multicast in BGP/MPLS VPNs.” IETF RFC6513. http://
tools.ietf.org/html/rfc6513

[snort] Snort Website. http://www.snort.org/

[snort-rules-intro] “A Brief Introduction to Snort Rules.” The Security
Analysts. http://www.secanalyst.
org/2010/05/27/a-brief-introduction-to-snort-rules/

[xmpp] XMPP.org Website. http://xmpp.org/

[zookeeper] Apache Zookeeper website. http://zookeeper.apache.org/

https://datatracker.ietf.org/doc/draft-rfernando-virt-topo-bgp-vpn/
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/
https://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/
https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/
https://datatracker.ietf.org/doc/draft-marques-l3vpn-mcast-edge/
https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/
https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/
https://datatracker.ietf.org/doc/draft-ietf-l3vpn-end-system/
https://datatracker.ietf.org/doc/draft-raggarwa-sajassi-l2vpn-evpn/
https://datatracker.ietf.org/doc/draft-raggarwa-sajassi-l2vpn-evpn/
https://datatracker.ietf.org/doc/draft-raggarwa-sajassi-l2vpn-evpn/
http://datatracker.ietf.org/wg/xmpp/
http://datatracker.ietf.org/wg/xmpp/
http://datatracker.ietf.org/wg/xmpp/
http://www.if-map.org/
file:///C:/Users/jamesk/Documents/SDK%20Strategy%20Marketing/SDN-PortfolioMgmt/oc.org/arch/%20http:/www.if-map.org/
http://www.juniper.net/us/en/local/pdf/whitepapers/2000515-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000515-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000515-en.pdf
http://redis.io/
http://redis.io/
http://tools.ietf.org/html/rfc4023
http://tools.ietf.org/html/rfc4023
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt
http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/rfc6513
http://tools.ietf.org/html/rfc6513
http://tools.ietf.org/html/rfc6513
http://www.snort.org/
http://www.snort.org/
http://www.secanalyst.org/2010/05/27/a-brief-introduction-to-snort-rules/
http://www.secanalyst.org/2010/05/27/a-brief-introduction-to-snort-rules/
http://www.secanalyst.org/2010/05/27/a-brief-introduction-to-snort-rules/
http://xmpp.org/
http://xmpp.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/

	Front Cover
	Back Cover
	Table of Contents
	Copyright
	Welcome to OpenContrail
	Welcome to Day One
	About OpenContrail
	Project Governance
	Getting Started with the Source Code
	Acronyms Used

	Chapter 1: Overview of OpenContrail
	Use Cases
	OpenContrail Controller and the vRouter
	Virtual Networks
	Overlay Networking
	Overlays Based on MPLS L3VPNs and EVPNs
	OpenContrail and Open Source
	Scale-Out Architecture and High Availability
	The Central Role of Data Models: SDN as a Compiler
	Northbound Application Programming Interfaces
	Graphical User Interface
	An Extensible Platform

	Chapter 2: OpenContrail Architecture Details
	Nodes
	The OpenContrail Forwarding Plane
	Service Chaining
	Control and Management Plane Protocols
	OpenStack Integration
	Horizontal Scalability and High Availability

	Chapter 3: The Data Model
	Programming Model
	Configuration and Operational Data Model

	Chapter 4: OpenContrail Use Cases
	Data Center Domain Use Cases
	Virtualized Multi-tenant Data Center
	Connect Tenant to Internet / VPN
	Data Center Interconnect (DCI)
	Network Monitoring
	Dynamic Virtualized Services
	Network Functions Virtualization for SP Networks

	Chapter 5: Comparison of the OpenContrail System toMPLS VPNs
	References

