O'REILLY"

Up & Running

AUTOMATING CONFIGURATION MANAGEMENT
AND DEPLOYMENT THE EASY WAY

Lorin Hochstein & René Moser

9

O'REILLY"

Ansible: Up & Running

Among the many configuration management tools available, Ansible
has some distinct advantages—it's minimal in nature, you don't need to
install anything on your nodes, and it has an easy learning curve. With this
updated second edition, you'll learn how to be productive with this tool
quickly, whether you're a developer deploying code to production or a
system administrator looking for a better automation solution.

Authors Lorin Hochstein and René Moser show you how to write playbooks
(Ansible’s configuration management scripts), manage remote servers, and
explore the tool's real power: built-in declarative modules. You'll discover
that Ansible has the functionality you need—and the simplicity you desire.

m Understand how Ansible differs from other configuration
management systems

m Use the YAML file format to write your own playbooks

m Work with a complete example to deploy a non-trivial
application

m Manage Windows machines, and automate network device
configuration

m Deploy applications to Amazon EC2 and other cloud platforms
m Create Docker images and deploy Docker containers with Ansible

This book is best read start to finish, with later chapters building on earlier
ones. Because it's written in a tutorial style, you can follow along on your
own machine. Most examples focus on web applications.

Lorin Hochstein is a Senior Software Engineer on the Chaos team at Netflix.
He was a Senior Software Engineer at SendGrid Labs, served as Lead Architect
for Cloud Services at Nimbis Services, and was a Computer Scientist at the
University of Southern California's Information Sciences Institute.

René Moser is a Swiss system engineer, an ASF CloudStack Committer, the
author of the CloudStack integration in Ansible, and an Ansible Community Core
Member since 20716.

“[devoured the manuscript
for the first edition of this
book within a few hours.
Lorin did an amazing job
describing all of Ansible’s
facets, and I was excited
to hear he'd joined forces
with René for a second
edition. The two authors
have done an outstanding
job of showing us how to
put an incredibly useful
utility to good use, and I
cannot think of anything
they haven't covered in
depth.”

—Jan-Piet Mens
consultant

US $44.99 CAN $59.99
ISBN: 978-1-491-97980-8

MINIMEAONIN i
Tanaan TR

979808

8

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Ansible: Up and Running

I devoured the manuscript for the first edition of Ansible: Up and Running within a few
hours: Lorin did an amazing job describing all of Ansible’s facets, and I was excited to
hear hed joined forces with René for a second edition. In this, the two authors have done
an outstanding job of showing us how to put an incredibly useful utility to good use, and I
cannot think of anything they haven’t covered in depth.

—Jan-Piet Mens, consultant

Impressive coverage of Ansible. It’s not only great for getting started, but also for
understanding how to use the more advanced features. Fantastic resource for
leveling up your Ansible skills.

—Matt Jaynes, Chief Engineer, High Velocity Ops

The nice thing about Ansible is that you can start by doing, and that it lends itself for
easy prototyping, which is great to make quick progress and get things done.
However, over time this tends to lead to gaps in knowledge and understanding,
which is hard to come by.

Ansible: Up and Running is a very useful resource because it can fill those gaps, as it
explains Ansible from the very basics up to the complexities of working with YAML and
Jinja2. And because it is packed with many off-the-shelf examples to learn from and build
on, it gives insight into how others are automating their environments.

During training sessions and hands-on missions over the past few years, I always
recommend this book to colleagues and customers.

—Dag Wieers, freelance Linux system engineet,
long-time Ansible contributor and consultant

This book gives everyone an easy start, but also a deep dive into Ansible configuration
management. There are a lot of hints and how-tos and it covers a wide range of use cases
like AWS, Windows, and Docker.

—Ingo Jochim, Manager Cloud Implementation,
itelligence GMS/CIS

Lorin and René did an amazing job by writing this book. The authors take the user by the
hand and lead him/her through all the important steps of creating and managing a
properly designed Ansible project. The book is much more than a simple Ansible
reference, as it covers several important conceptual topics missing from the official docs.
It is an excellent resource for Ansible beginners, but it also includes many practical
concepts and tricks for existing Ansiblers.

—Dominique Barton, DevOps engineer at confirm IT solutions

SECOND EDITION

Ansible: Up and Running

Automating Configuration Management and
Deployment the Easy Way

Lorin Hochstein and René Moser

Bejng - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Ansible: Up and Running

by Lorin Hochstein and René Moser

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Indexer: Ellen Troutman-Zaig
Production Editor: Kristen Brown Interior Designer: David Futato
Copyeditor: Sharon Wilkey Cover Designer: Karen Montgomery
Proofreader: James Fraleigh lllustrator: Rebecca Demarest

December 2014: First Edition
August 2017: Second Edition

Revision History for the Second Edition
2017-07-20: First Release

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Ansible: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-97980-8
[LSI]

http://oreilly.com/safari

Table of Contents

Foreword.oooiiiiiiii Xv
Preface to the Second Edition.coooiiiiiiiiiiiiii, Xvii
Preface to the First Edition.coooiiiiiiiiiiiiiiii Xix
1o INtroduction. ..o 1
A Note About Versions 2
Ansible: What Is It Good For? 2
How Ansible Works 3
What's So Great About Ansible? 5
Easy-to-Read Syntax 5
Nothing to Install on the Remote Hosts 5
Push Based 5
Ansible Scales Down 6
Built-in Modules 6
Very Thin Layer of Abstraction 7

Is Ansible Too Simple? 8
What Do I Need to Know? 9
What Isn’t Covered 10
Installing Ansible 10
Setting Up a Server for Testing 11
Using Vagrant to Set Up a Test Server 11
Telling Ansible About Your Test Server 14
Simplifying with the ansible.cfg File 16
Moving Forward 19

2. Playbooks: A Beginning

Some Preliminaries
A Very Simple Playbook
Specifying an Nginx Config File
Creating a Custom Home Page
Creating a Webservers Group
Running the Playbook
Playbooks Are YAML
Start of File
Comments
Strings
Booleans
Lists
Dictionaries
Line Folding
Anatomy of a Playbook
Plays
Tasks
Modules
Putting It All Together
Did Anything Change? Tracking Host State
Getting Fancier: TLS Support
Generating a TLS Certificate
Variables
Generating the Nginx Configuration Template
Handlers
Running the Playbook

Inventory: Describing Your Servers..........covvviiiiiniinnnnn.

The Inventory File
Preliminaries: Multiple Vagrant Machines
Behavioral Inventory Parameters
ansible_connection
ansible_shell_type
ansible_python_interpreter
ansible_*_interpreter
Changing Behavioral Parameter Defaults
Groups and Groups and Groups
Example: Deploying a Django App
Aliases and Ports
Groups of Groups
Numbered Hosts (Pets versus Cattle)

21
22
24
25
26
26
28
28
28
28
28
29
29
30
30
32
33
34
35
35
36
37
37
39
41
42

45
45
46
49
49
50
50
50
50
51
52
54
55
55

vi

| Table of Contents

Hosts and Group Variables: Inside the Inventory 56

Host and Group Variables: In Their Own Files 57
Dynamic Inventory 59
The Interface for a Dynamic Inventory Script 60
Writing a Dynamic Inventory Script 61
Preexisting Inventory Scripts 64
Breaking the Inventory into Multiple Files 65
Adding Entries at Runtime with add_host and group_by 65
add_host 65
group_by 67

. Variablesand Facts.cooeeiiiiiiiiiii 69
Defining Variables in Playbooks 69
Viewing the Values of Variables 70
Registering Variables 70
Facts 74
Viewing All Facts Associated with a Server 75
Viewing a Subset of Facts 75
Any Module Can Return Facts 76
Local Facts 77
Using set_fact to Define a New Variable 78
Built-in Variables 79
hostvars 79
inventory_hostname 80
Groups 80
Setting Variables on the Command Line 81
Precedence 82
. Introducing Mezzanine: Qur Test Application.ccoovviiiiiiiinnnnnnnn 85
Why Deploying to Production Is Complicated 85
PostgreSQL: The Database 89
Gunicorn: The Application Server 89
Nginx: The Web Server 90
Supervisor: The Process Manager 91

. Deploying Mezzanine with Ansible............ccoviiiiiiiiiiiiiiiiiiii i, 93
Listing Tasks in a Playbook 93
Organization of Deployed Files 94
Variables and Secret Variables 95
Using Iteration (with_items) to Install Multiple Packages 96
Adding the Become Clause to a Task 98
Updating the Apt Cache 98

Table of Contents | vii

Checking Out the Project by Using Git
Installing Mezzanine and Other Packages into a virtualenv
Complex Arguments in Tasks: A Brief Digression
Configuring the Database
Generating the local_settings.py File from a Template
Running django-manage Commands
Running Custom Python Scripts in the Context of the Application
Setting Service Configuration Files
Enabling the Nginx Configuration
Installing TLS Certificates
Installing Twitter Cron Job
The Full Playbook
Running the Playbook Against a Vagrant Machine
Troubleshooting
Cannot Check Out Git Repository
Cannot Reach 192.168.33.10.xip.io
Bad Request (400)
Deploying Mezzanine on Multiple Machines

Roles: Scaling Up Your Playbooks.covviuiiiiiiiiiiiiiiieninnnnnens

Basic Structure of a Role
Example: Database and Mezzanine Roles
Using Roles in Your Playbooks
Pre-Tasks and Post-Tasks
A database Role for Deploying the Database
A mezzanine Role for Deploying Mezzanine
Creating Role Files and Directories with ansible-galaxy
Dependent Roles
Ansible Galaxy

Web Interface

Command-Line Interface

Contributing Your Own Role

. ComplexPlaybooks.covuiiiniiiiiiiiii i

Dealing with Badly Behaved Commands: changed_when and failed_when
Filters

The Default Filter

Filters for Registered Variables

Filters That Apply to File Paths

Writing Your Own Filter
Lookups

file

100
102
105
107
108
111
112
115
118
118
119
120
124
124
124
125
125
125

127
127
128
128
130
130
133
138
138
139
140
140
141

143
143
147
147
147
148
149
150
151

viii

| Table of Contents

pipe

env

password

template

csvfile

dnstxt

redis_kv

eted

Writing Your Own Lookup Plugin
More Complicated Loops

with_lines

with_fileglob

with_dict

Looping Constructs as Lookup Plugins
Loop Controls

Setting the Variable Name

Labeling the Output
Includes

Dynamic Includes

Role Includes
Blocks
Error Handling with Blocks
Encrypting Sensitive Data with Vault

. Customizing Hosts, Runs,andHandlers................ccooiiiiiiiiiinen..

Patterns for Specifying Hosts
Limiting Which Hosts Run
Running a Task on the Control Machine
Running a Task on a Machine Other Than the Host
Running on One Host at a Time
Running on a Batch of Hosts at a Time
Running Only Once
Running Strategies

Linear

Free
Advanced Handlers

Handlers in Pre and Post Tasks

Flush Handlers

Handlers Listen
Manually Gathering Facts
Retrieving the IP Address from the Host

152
152
152
153
153
154
155
156
157
157
158
158
158
159
160
160
161
162
164
164
165
166
169

17
171
172
172
173
174
175
176
176
177
178
180
180
181
183
189
190

Table of Contents

ix

10. Callback Plugins.ovvrniniiriiit ittt ittt iie e eaeenneas 193

Stdout Plugins 193
actionable 194
debug 194
dense 195
json 195
minimal 196
oneline 196
selective 197
skippy 197

Other Plugins 197
foreman 198
hipchat 198
jabber 198
junit 199
log_plays 200
logentries 200
logstash 200
mail 201
0sx_say 201
profile_tasks 201
slack 202
timer 202

11. Making Ansible Go EvenFaster..........ccovvviiiiiiiiiiiiiiiiiiiiiiniinnnns 203

SSH Multiplexing and ControlPersist 203
Manually Enabling SSH Multiplexing 204
SSH Multiplexing Options in Ansible 205

Pipelining 207
Enabling Pipelining 207
Configuring Hosts for Pipelining 207

Fact Caching 209
JSON File Fact-Caching Backend 210
Redis Fact-Caching Backend 211
Memcached Fact-Caching Backend 212

Parallelism 212

Concurrent Tasks with Async 213

12. CustomModules.........oooiiiiiiii i 215

Example: Checking That We Can Reach a Remote Server 215

Using the Script Module Instead of Writing Your Own 216

can_reach as a Module 216

X | Tableof Contents

13.

14.

Where to Put Custom Modules
How Ansible Invokes Modules
Generate a Standalone Python Script with the Arguments (Python Only)
Copy the Module to the Host
Create an Arguments File on the Host (Non-Python Only)
Invoke the Module
Expected Outputs
Output Variables that Ansible Expects
Implementing Modules in Python
Parsing Arguments
Accessing Parameters
Importing the AnsibleModule Helper Class
Argument Options
AnsibleModule Initializer Parameters
Returning Success or Failure
Invoking External Commands
Check Mode (Dry Run)
Documenting Your Module
Debugging Your Module
Implementing the Module in Bash
Specifying an Alternative Location for Bash
Example Modules

Vagrant. ... e e
Convenient Vagrant Configuration Options
Port Forwarding and Private IP Addresses
Enabling Agent Forwarding
The Ansible Provisioner
When the Provisioner Runs
Inventory Generated by Vagrant
Provisioning in Parallel
Specifying Groups
Ansible Local Provisioner

AMazoNEQ2.
Terminology

Instance

Amazon Machine Image

Tags
Specifying Credentials

Environment Variables

Configuration Files

217
217
217
217
217
218
218
219
220
221
222
222
223
225
229
229
230
231
233
234
235
236

237
237
238
239
239
240
240
241
242
243

245
247
247
247
248
248
249
249

Table of Contents

| xi

15.

Prerequisite: Boto Python Library
Dynamic Inventory
Inventory Caching
Other Configuration Options
Autogenerated Groups
Defining Dynamic Groups with Tags
Applying Tags to Existing Resources
Nicer Group Names
EC2 Virtual Private Cloud and EC2 Classic
Configuring ansible.cfg for Use with ec2
Launching New Instances
EC2 Key Pairs
Creating a New Key
Uploading an Existing Key
Security Groups
Permitted IP Addresses
Security Group Ports
Getting the Latest AMI
Adding a New Instance to a Group
Waiting for the Server to Come Up
Creating Instances the Idempotent Way
Putting It All Together
Specifying a Virtual Private Cloud
Dynamic Inventory and VPC
Building AMIs
With the ec2_ami Module
With Packer
Other Modules

11T = A

The Case for Pairing Docker with Ansible
Docker Application Life Cycle
Example Application: Ghost
Connecting to the Docker Daemon
Running a Container on Our Local Machine
Building an Image from a Dockerfile
Orchestrating Multiple Containers on Our Local Machine
Pushing Our Image to the Docker Registry
Querying Local Images
Deploying the Dockerized Application
Backend: Postgres
Frontend

250
250
252
253
253
254
254
255
256
257
257
259
259
260
261
262
263
263
264
266
268
268
270
275
275
276
276
280

281
282
283
284
284
285
285
287
288
290
292
292
293

Xii

| Table of Contents

16.

17.

18.

Frontend: Ghost

Frontend: Nginx

Cleaning Out Containers

Connecting Directly to Containers
Ansible Container

The Conductor

Creating Docker Images

Running Locally

Publishing Images to Registries

Deploying Containers to Production

Debugging Ansible Playbooks.

Humane Error Messages
Debugging SSH Issues
The Debug Module
Playbook Debugger
The Assert Module
Checking Your Playbook Before Execution

Syntax Check

List Hosts

List Tasks

Check Mode

Diff (Show File Changes)
Limiting Which Tasks Run

Step

Start-at-Task

Tags

Managing Windows Hosts...................c.oeeeee

Connection to Windows
PowerShell

Windows Modules

Our First Playbook
Updating Windows
Adding Local Users
Conclusion

Ansible for Network Devices.........covvvveninennn..

Status of Network Modules

List of Network Vendors Supported

Preparing Our Network Device
Enable SSH Authentication

294
294
295
295
297
297
298
301
303
304

....................... 305

305
306
308
308
310
312
312
312
312
313
313
314
314
314
314

....................... 317

317
318
321
321
322
324
327

....................... 329

330
330
330
331

Table of Contents | xiii

19.

How the Modules Work
Our First Playbook
Inventory and Variables for Network Modules
Local Connection
Host Connection
Authentication Variables
Save the Config
Use Configs from a File
Templates, Templates, Templates
Gathering Facts
Conclusion

Ansible Tower: Ansible for the Enterprise.......................

Subscription Models
Try Ansible Tower
What Ansible Tower Solves
Access Control
Projects
Inventory Management
Run Jobs by Job Templates
RESTful API
Ansible Tower CLI
Installation
Create a User
Launch a Job
Onward

334
334
336
337
337
338
339
340
344
346
347

349
350
350
351
351
352
353
355
357
358
358
359
360
362

Xiv

| Table of Contents

Foreword

Ansible started as a simple side project in February of 2012, and its rapid growth has
been a pleasant surprise. It is now the work product of about a thousand people (and
the ideas of many more than that), and it is widely deployed in almost every country.
It's not unusual in a computer meet-up to find a handful (at least) of people who
use it.

Ansible is exciting perhaps because it really isn’t. Ansible doesn’t attempt to break
new ground, but rather to distill a lot of existing ideas that other smart folks had
already figured out and make them more accessible.

In creating Ansible, I sought a middle ground between somewhat computer-sciencey
IT automation approaches (themselves a reaction to tedious large commercial suites)
and hack-and-slash scripting that just gets things done. I also wondered, how can we
replace a configuration management system, a deployment project, an orchestration
project, and our library of arbitrary but important shell scripts with a single system?
That was the idea.

Could we remove major architectural components from the IT automation stack?
Eliminating management daemons and relying instead on OpenSSH meant the sys-
tem could start managing a computer fleet immediately, without having to set up
anything on the managed machines. Further, the system was apt to be more reliable
and secure.

I had noticed that in trying to automate systems previously, things that should be
simple were often hard, and that writing automation content could often create a
time-sucking force that kept me from things I wanted to spend more time doing. And
I didn’t want the system to require months to learn, either.

In particular, I personally enjoyed writing new software, but piloting automation sys-
tems, a bit less. In short, I wanted to make automation quicker and leave more time
for the things I cared about. Ansible was not something you were meant to use all day

XV

long, but to get in, get out, and get back to doing the things you care about. I hope
you will like Ansible for many of the same reasons.

Although I spent a lot of time making sure Ansible’s docs were comprehensive, there’s
always a strong advantage to seeing material presented in a variety of ways, and often
in seeing actual practice applied alongside the reference material. In Ansible: Up and
Running, Lorin presents Ansible in a very idiomatic way, in exactly the right order in
which you might wish to explore it. Lorin has been around Ansible since almost the
very beginning, and I'm grateful for his contributions and input.

I’'m also immensely thankful for everyone who has been a part of this project to date,
and everyone who will be in the future. Enjoy the book, and enjoy managing your
computer fleet! And remember to install cowsay!

— Michael DeHaan

Creator of Ansible (software)

Former CTO of Ansible, Inc. (company)
April 2015

xvi | Foreword

Preface to the Second Edition

In the time since the first edition of the book was written (back in 2014), there have
been big changes in the world of Ansible. The Ansible project completed a major
release, hitting 2.0. Big changes happened outside the project as well: Ansible, Inc.,
the company that backs the Ansible project, was acquired by Red Hat. Red Hat’s
acquisition hasn't slowed the Ansible project at all: it’s still in active development and
gaining users.

We've made multiple changes in this edition. The most significant change is the addi-
tion of five new chapters. The book now covers callback plugins, Windows hosts, net-
work hardware, and Ansible Tower. We added so much content to the “Complex
Playbooks” chapter that we expanded to a second chapter called “Customizing Hosts,
Runs and Handlers” We also rewrote the “Docker” chapter to cover the new Docker
modules.

We've updated all of the example code for compatibility with Ansible 2.3. In particu-
lar, the deprecated sudo clause has been replaced everywhere with become. We also
removed references to deprecated modules such as docker, ec2_vpc, and
ec2_ami_search and replaced them with examples that use newer modules. The
“Vagrant” chapter now covers the Ansible local provisioner, the “Amazon EC2” chap-
ter now covers the Packer Ansible remote provisioner, the “Making Ansible Go Even
Faster” chapter now covers asynchronous tasks, and the “Debugging Ansible Play-
books” chapter now covers the debugger that was introduced in version 2.1.

There are also minor changes. For example, OpenSSH switched from using
hexadecimal-encoded MD5 fingerprints to base64-encoded SHA256 fingerprints, and
we updated examples accordingly. Finally, we fixed errata submitted by readers.

Xvii

A Note About Language

The first edition of the book had a single author, and often used the first-person sin-
gular I. Since this edition has two authors, the use of first-person singular might seem
odd in some places. However, we decided to keep it because it is typically used to
express the opinion of one of the authors.

Acknowledgments

From Lorin

Thanks to Jan-Piet Mens, Matt Jaynes, and John Jarvis for reviewing drafts of the
book and providing feedback. Thanks to Isaac Saldana and Mike Rowan at SendGrid
for being so supportive of this endeavor. Thanks to Michael DeHaan for creating
Ansible and shepherding the community that sprang up around it, as well as for pro-
viding feedback on the book, including an explanation of why he chose to use the
name Ansible. Thanks to my editor, Brian Anderson, for his endless patience in work-
ing with me.

Thanks to Mom and Dad for their unfailing support; my brother Eric, the actual
writer in the family; and my two sons, Benjamin and Julian. Finally, thanks to my
wife, Stacy, for everything.

From René

Thanks to my family, my wife Simone for the support and love, my three children,
Gil, Sarina and Léanne, for the joy they brought into my life; to all those people con-
tributing to Ansible, thank you for your work; and a special thanks to Matthias Blaser
who introduced Ansible to me.

xvii | Preface to the Second Edition

Preface to the First Edition

Why | Wrote This Book

When I was writing my first web application, using Django, the popular Python-
based framework, I remember the sense of accomplishment when the app was finally
working on my desktop. I would run django manage.py runserver, point my
browser to http://localhost:8000, and there was my web application in all its glory.

Then I discovered there were all of these...things I had to do, just to get the darned
app to run on the Linux server. In addition to installing Django and my app onto the
server, I had to install Apache and the mod_python module so that Apache could run
Django apps. Then I had to figure out the right Apache configuration file incantation
so that it would run my application and serve up the static assets properly.

None of it was hard; it was just a pain to get all of those details right. I didn’t want to
muck about with configuration files; I just wanted my app to run. Once I got it work-
ing, everything was fine...until, several months later, I had to do it again, on a differ-
ent server, at which point I had to start the process all over again.

Eventually, I discovered that this process was Doing It Wrong. The right way to do
this sort of thing has a name, and that name is configuration management. The great
thing about using configuration management is that it’s a way to capture knowledge
that always stays up-to-date. No more hunting for the right doc page or searching
through your old notes.

Recently, a colleague at work was interested in trying out Ansible for deploying a new
project, and he asked me for a reference on how to apply the Ansible concepts in
practice, beyond what was available in the official docs. I didn’t know what else to rec-
ommend, so I decided to write something to fill the gap—and here it is. Alas, this
book comes too late for him, but I hope you’ll find it useful.

Xix

Who Should Read This Book

This book is for anyone who needs to deal with Linux or Unix-like servers. If you've
ever used the terms systems administration, operations, deployment, configuration
management, or (sigh) DevOps, then you should find some value here.

Although I have managed my share of Linux servers, my background is in software
engineering. This means that the examples in this book tend toward the deployment
end of the spectrum, although I'm in agreement with Andrew Clay Shafer that the
distinction between deployment and configuration is unresolved.

Navigating This Book

I’'m not a big fan of book outlines: Chapter 1 covers so and so, Chapter 2 covers such
and such, that sort of thing. I strongly suspect that nobody ever reads them (I never
do), and the table of contents is much easier to scan.

This book is written to be read start to finish, with later chapters building on the ear-
lier ones. It’s written largely in a tutorial style, so you should be able to follow along
on your own machine. Most of the examples are focused on web applications.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a general note.

xx | Preface to the First Edition

This icon signifies a tip or suggestion.

This icon indicates a warning or caution.

N

Online Resources

Code samples from this book are available at this book’s GitHub page. There is ample
official Ansible documentation available for reference.

I maintain a few Ansible quick reference pages on GitHub as well.

The Ansible code is on GitHub. It was previously spread out across three repositories,
but as of Ansible 2.3, all of the code is maintained in a single repository.

Bookmark the Ansible module index; you'll be referring to it constantly as you use
Ansible. Ansible Galaxy is a repository of Ansible roles contributed by the commu-
nity. The Ansible Project Google Group is the place to go if you have any questions
about Ansible.

If youre interested in contributing to Ansible development, check out the Ansible
Development Google Group.

For real-time help with Ansible, there’s an active #ansible IRC channel on irc.free-
node.net.

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ansiblebook/ansiblebook.

This book is here to help you get your job done. In general, you may use the example
code offered with this book in your programs and documentation. You do not need
to contact us for permission unless youre reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Ansible: Up and Running by Lorin

Preface to the First Edition | xxi

http://github.com/ansiblebook/ansiblebook
http://docs.ansible.com
https://github.com/lorin/ansible-quickref
https://github.com/ansible/ansible
http://bit.ly/1Dt75tg
https://galaxy.ansible.com
http://bit.ly/1Dt79ZT
http://bit.ly/1Dt79ZT
http://bit.ly/1Dt79ZT
https://github.com/ansiblebook/ansiblebook

Hochstein and René Moser (O'Reilly). Copyright 2017 O’Reilly Media, Inc.,
978-1-491-97980-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
4 ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xxii | Preface to the First Edition

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface to the First Edition | xxiii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER1
Introduction

It’s an interesting time to be working in the IT industry. We don’t deliver software to
our customers by installing a program on a single machine and calling it a day.!
Instead, we are all slowly turning into system engineers.

We now deploy software applications by stringing together services that run on a
distributed set of computing resources and communicate over different networking
protocols. A typical application can include web servers, application servers,
memory-based caching systems, task queues, message queues, SQL databases, NoSQL
datastores, and load balancers.

We also need to make sure we have the appropriate redundancies in place, so that
when failures happen (and they will), our software systems will handle these failures
gracefully. Then there are the secondary services that we also need to deploy and
maintain, such as logging, monitoring, and analytics, as well as third-party services
we need to interact with, such as infrastructure-as-a-service (IaaS) endpoints for
managing virtual machine instances.”

You can wire up these services by hand: spinning up the servers you need, SSHing to
each one, installing packages, editing config files, and so forth, but it’s a pain. It’s
time-consuming, error-prone, and just plain dull to do this kind of work manually,
especially around the third or fourth time. And for more complex tasks, like standing
up an OpenStack cloud inside your application, doing it by hand is madness. There’s
a better way.

1 OK, nobody ever really delivered software like that.

2 Check out The Practice of Cloud System Administration and Designing Data-Intensive Applications for excellent
books on building and maintaining these types of distributed systems.

If you're reading this, you're probably already sold on the idea of configuration man-
agement and considering adopting Ansible as your configuration management tool.
Whether youre a developer deploying your code to production, or youre a systems
administrator looking for a better way to automate, I think you’ll find Ansible to be
an excellent solution to your problem.

A Note About Versions

The example code in this book was tested against version 2.3.0.0 of Ansible, which is
the most recent release as of this writing. As backward compatibility is a major goal of
the Ansible project, these examples should work unmodified in future versions of
Ansible.

What's with the Name Ansible?

It’s a science-fiction reference. An ansible is a fictional communication device that can
transfer information faster than the speed of light. Ursula K. Le Guin invented the
concept in her book Rocannon’s World, and other sci-fi authors have since borrowed
the idea from Le Guin.

More specifically, Michael DeHaan took the name Ansible from the book Ender’s
Game by Orson Scott Card. In that book, the ansible was used to control many
remote ships at once, over vast distances. Think of it as a metaphor for controlling
remote servers.

Ansible: What Is It Good For?

Ansible is often described as a configuration management tool, and is typically men-
tioned in the same breath as Chef, Puppet, and Salt. When we talk about configura-
tion management, we are typically talking about writing some kind of state
description for our servers, and then using a tool to enforce that the servers are,
indeed, in that state: the right packages are installed, configuration files contain the
expected values and have the expected permissions, the right services are running,
and so on. Like other configuration management tools, Ansible exposes a domain-
specific language (DSL) that you use to describe the state of your servers.

These tools can be used for deployment as well. When people talk about deployment,
they are usually referring to the process of taking software that was written in-house,
generating binaries or static assets (if necessary), copying the required files to the
server(s), and then starting up the services. Capistrano and Fabric are two examples
of open source deployment tools. Ansible is a great tool for deployment as well as
configuration management. Using a single tool for both configuration management
and deployment makes life simpler for the folks responsible for operations.

2 | Chapter1:Introduction

Some people talk about the need for orchestration of deployment. This is where multi-
ple remote servers are involved, and things have to happen in a specific order. For
example, you need to bring up the database before bringing up the web servers, or
you need to take web servers out of the load balancer one at a time in order to
upgrade them without downtime. Ansible is good at this as well, and is designed from
the ground up for performing actions on multiple servers. Ansible has a refreshingly
simple model for controlling the order in which actions happen.

Finally, you'll hear people talk about provisioning new servers. In the context of public
clouds such as Amazon EC2, this refers to spinning up a new virtual machine
instance. Ansible has got you covered here, with a number of modules for talking to
clouds, including EC2, Azure, Digital Ocean, Google Compute Engine, Linode, and
Rackspace, as well as any clouds that support the OpenStack APIs.

Confusingly, the Vagrant tool, covered later in this chapter, uses the
term provisioner to refer to a tool that does the configuration man-
agement. So, Vagrant refers to Ansible as a kind of provisioner,
whereas I think of Vagrant as a provisioner, since Vagrant is
responsible for starting up virtual machines.

How Ansible Works

Figure 1-1 shows a sample use case of Ansible in action. A user well call Stacy is
using Ansible to configure three Ubuntu-based web servers to run Nginx. She has
written an Ansible script called webservers.yml. In Ansible, a script is called a play-
book. A playbook describes which hosts (what Ansible calls remote servers) to config-
ure, and an ordered list of tasks to perform on those hosts. In this example, the hosts
are webl, web2, and web3, and the tasks are things such as these:

o Install Nginx
+ Generate an Nginx configuration file
» Copy over the security certificate

o Start the Nginx service

In the next chapter, we'll discuss what’s in this playbook. Stacy executes the playbook
by using the ansible-playbook command. In the example, the playbook is named
webservers.yml, and is executed by typing the following:

$ ansible-playbook webservers.yml

Ansible will make SSH connections in parallel to webl, web2, and web3. It will exe-
cute the first task on the list on all three hosts simultaneously. In this example, the
first task is installing the Nginx apt package (since Ubuntu uses the apt package man-
ager), so the task in the playbook would look something like this:

How Ansible Works | 3

- name: Install nginx
apt: name=nginx

Ansible will do the following:

1. Generate a Python script that installs the Nginx package
2. Copy the script to webl, web2, and web3

3. Execute the script on web1, web2, and web3

4

. Wait for the script to complete execution on all hosts

Ansible will then move to the next task in the list, and go through these same four
steps. It's important to note the following:

o Ansible runs each task in parallel across all hosts.

o Ansible waits until all hosts have completed a task before moving to the next task.

o Ansible runs the tasks in the order that you specify them.

webservers.yml

- name: Configure webservers
hosts: webservers
tasks:
- name: Install nginx
apt: name=n§inx
- name: install config file
template: src=nginx.conf.j2
dest=/etc/n$inx/ngingx‘onf
notify: restart nginx
handlers:
- name: notify nginx
service: name=nginx

state=restarted
web1
»| web2
Stacy
$ ansible-playbook webservers.yml LI

Figure 1-1. Running an Ansible playbook to configure three web servers

4 | Chapter 1: Introduction

What's So Great About Ansible?

There are several open source configuration management tools out there to choose
from. Here are some of the things that drew me to Ansible.

Easy-to-Read Syntax

Recall that Ansible configuration management scripts are called playbooks. Ansible’s
playbook syntax is built on top of YAML, which is a data format language that was
designed to be easy for humans to read and write. In a way, YAML is to JSON what
Markdown is to HTML.

I like to think of Ansible playbooks as executable documentation. It's like the
README file that describes the commands you had to type out to deploy your soft-
ware, except that the instructions will never go out-of-date because they are also the
code that gets executed directly.

Nothing to Install on the Remote Hosts

To manage a server with Ansible, the server needs to have SSH and Python 2.5 or
later installed, or Python 2.4 with the Python simplejson library installed. There’s no
need to preinstall an agent or any other software on the host.

The control machine (the one that you use to control remote machines) needs to have
Python 2.6 or later installed.

Some modules might require Python 2.5 or later, and some might
have additional prerequisites. Check the documentation for each
module to see whether it has specific requirements.

Push Based

Some configuration management systems that use agents, such as Chef and Puppet,
are pull based by default. Agents installed on the servers periodically check in with a
central service and pull down configuration information from the service. Making
configuration management changes to servers goes something like this:

You: make a change to a configuration management script.
You: push the change up to a configuration management central service.

1.
2.
3. Agent on server: wakes up after periodic timer fires.
4.

Agent on server: connects to configuration management central service.

What's So Great About Ansible? | 5

5. Agent on server: downloads new configuration management scripts.

6. Agent on server: executes configuration management scripts locally that change
server state.

In contrast, Ansible is push based by default. Making a change looks like this:

1. You: make a change to a playbook.
2. You: run the new playbook.

3. Ansible: connects to servers and executes modules, which changes server state.

As soon as you run the ansible-playbook command, Ansible connects to the remote
server and does its thing.

The push-based approach has a significant advantage: you control when the changes
happen to the servers. You don’t need to wait around for a timer to expire. Advocates
of the pull-based approach claim that pull is superior for scaling to large numbers of
servers and for dealing with new servers that can come online anytime. However, as
we'll discuss later in the book, Ansible has been used successfully in production with
thousands of nodes, and has excellent support for environments where servers are
dynamically added and removed.

If you really prefer using a pull-based model, Ansible has official support for pull
mode, using a tool it ships with called ansible-pull. I don’t cover pull mode in this
book, but you can read more about it in the official documentation.

Ansible Scales Down

Yes, Ansible can be used to manage hundreds or even thousands of nodes. But what
got me hooked is how it scales down. Using Ansible to configure a single node is easy;
you simply write a single playbook. Ansible obeys Alan Kay’s maxim: “Simple things
should be simple; complex things should be possible”

Built-in Modules

You can use Ansible to execute arbitrary shell commands on your remote servers, but
Ansibles real power comes from the collection of modules it ships with. You use
modules to perform tasks such as installing a package, restarting a service, or copying
a configuration file.

As you'll see later, Ansible modules are declarative; you use them to describe the state
you want the server to be in. For example, you would invoke the user module like this
to ensure there was an account named deploy in the web group:

user: name=deploy group=web

6 | Chapter1:Introduction

http://docs.ansible.com/playbooks_intro.html#ansible-pull

Modules are also idempotent. If the deploy user doesn’t exist, Ansible will create it. If
it does exist, Ansible won’t do anything. Idempotence is a nice property because it
means that it’s safe to run an Ansible playbook multiple times against a server. This is
a big improvement over the homegrown shell script approach, where running the
shell script a second time might have a different (and likely unintended) effect.

What About Convergence?

Books on configuration management often mention the concept of convergence. Con-
vergence in configuration management is most closely associated with Mark Burgess
and the CFEngine configuration management system he authored. If a configuration
management system is convergent, the system may run multiple times to put a server
into its desired state, with each run bringing the server closer to that state.

This idea of convergence doesn't really apply to Ansible, as Ansible doesn’t have a
notion of running multiple times to configure servers. Instead, Ansible modules are
implemented in such a way that running an Ansible playbook a single time should
put each server into the desired state.

If you're interested in what Ansible’s author thinks of the idea of convergence, see
Michael DeHaan’s post in the Ansible Project newsgroup, titled “Idempotence, con-
vergence, and other silly fancy words we use too often”

Very Thin Layer of Abstraction

Some configuration management tools provide a layer of abstraction so that you can
use the same configuration management scripts to manage servers running different
operating systems. For example, instead of having to deal with a specific package
manager like yum or apt, the configuration management tool exposes a “package”
abstraction that you use instead.

Ansible isn't like that. You have to use the apt module to install packages on apt-based
systems and the yum module to install packages on yum-based systems.

Although this might sound like a disadvantage, in practice I've found that it makes
Ansible easier to work with. Ansible doesn’t require that I learn a new set of abstrac-
tions that hide the differences between operating systems. This makes Ansible’s sur-
face area smaller; there’s less you need to know before you can start writing
playbooks.

If you really want to, you can write your Ansible playbooks to take different actions,
depending on the operating system of the remote server. But I try to avoid that when
I can, and instead I focus on writing playbooks that are designed to run on a specific
operating system, such as Ubuntu.

What's So Great About Ansible? | 7

http://bit.ly/1InGh1A

The primary unit of reuse in the Ansible community is the module. Because the
scope of a module is small and can be operating-system specific, it’s straightforward
to implement well-defined, shareable modules. The Ansible project is very open to
accepting modules contributed by the community. I know because I've contributed a
few.

Ansible playbooks aren't really intended to be reused across different contexts. In
Chapter 7, we'll discuss roles, which is a way of collecting playbooks together so they
are more reusable, as well as Ansible Galaxy, which is an online repository of these
roles.

In practice, though, every organization sets up its servers a little bit differently, and
youre best off writing playbooks for your organization rather than trying to reuse
generic playbooks. I believe the primary value of looking at other people’s playbooks
is for examples to see how things are done.

What Is Ansible, Inc.’s Relationship to Ansible?

The name Ansible refers to both the software and the company that runs the open
source project. Michael DeHaan, the creator of Ansible the software, is the former
CTO of Ansible the company. To avoid confusion, I refer to the software as Ansible
and to the company as Ansible, Inc.

Ansible, Inc. sells training and consulting services for Ansible, as well as a proprietary
web-based management tool called Ansible Tower, which is covered in Chapter 19. In
October 2015, Red Hat acquired Ansible, Inc.

Is Ansible Too Simple?

When I was working on this book, my editor mentioned to me that “some folks who
use the XYZ configuration management tool call Ansible a for-loop over SSH scripts”
If youre considering switching over from another config management tool, you
might be concerned at this point about whether Ansible is powerful enough to meet
your needs.

As you’ll soon learn, Ansible provides a lot more functionality than shell scripts. As I
mentioned, Ansible’s modules provide idempotence, and Ansible has excellent sup-
port for templating, as well as defining variables at different scopes. Anybody who
thinks Ansible is equivalent to working with shell scripts has never had to maintain a
nontrivial program written in shell. I'll always choose Ansible over shell scripts for
config management tasks if given a choice.

8 | Chapter1:Introduction

And if youre worried about the scalability of SSH? As we'll discuss in Chapter 12,
Ansible uses SSH multiplexing to optimize performance, and there are folks out there
who are managing thousands of nodes with Ansible.

I'm not familiar enough with the other tools to describe their dif-
ferences in detail. If you're looking for a head-to-head comparison
of config management tools, check out Taste Test: Puppet, Chef,
Salt, Ansible by Matt Jaynes. As it happens, Matt prefers Ansible.

What Do | Need to Know?

To be productive with Ansible, you need to be familiar with basic Linux system
administration tasks. Ansible makes it easy to automate your tasks, but it’s not the
kind of tool that “automagically” does things that you otherwise wouldn’t know how
to do.

For this book, I assumed my readers would be familiar with at least one Linux distri-
bution (e.g., Ubuntu, RHEL/CentOS, SUSE), and that they would know how to

« Connect to a remote machine using SSH

o Interact with the Bash command-line shell (pipes and redirection)
o Install packages

o Use the sudo command

o Check and set file permissions

o Start and stop services

o Set environment variables

 Write scripts (any language)

If these concepts are all familiar to you, you're good to go with Ansible.

I won't assume you have knowledge of any particular programming language. For
instance, you don’t need to know Python to use Ansible unless you want to write your
own module.

Ansible uses the YAML file format and the Jinja2 templating languages, so you’ll need
to learn some YAML and Jinja2 to use Ansible, but both technologies are easy to pick

up.

3 For example, see “Using Ansible at Scale to Manage a Public Cloud” by Jesse Keating, formerly of Rackspace.

What Do | Need to Know? | 9

http://www.slideshare.net/JesseKeating/ansiblefest-rax

What Isn’t Covered

This book isn’t an exhaustive treatment of Ansible. It’s designed to get you productive
in Ansible as quickly as possible and describes how to perform certain tasks that
aren’t obvious from glancing over the official documentation.

I don’t cover the official Ansible modules in detail. There are over 200 of these, and
the official Ansible reference documentation on the modules is quite good.

I cover only the basic features of the templating engine that Ansible uses, Jinja2, pri-
marily because I find that I generally need to use only those basic features when I use
Ansible. If you need to use more advanced Jinja2 features in your templates, I recom-
mend you check out the official Jinja2 documentation.

I don't go into detail about some features of Ansible that are mainly useful when you
are running Ansible on an older version of Linux. This includes features such as the
Paramiko SSH client and accelerated mode.

Finally, there are several features of Ansible I don't cover simply to keep the book a
manageable length. These features include pull mode, logging, connecting to hosts
using protocols other than SSH, and prompting the user for passwords or input. I
encourage you to check out the official docs to find out more about these features.

Installing Ansible

If you're running on a Linux machine, all of the major Linux distributions package
Ansible these days, so you should be able to install it using your native package man-
ager, although this might be an older version of Ansible. If youre running on macOS,
I recommend you use the excellent Homebrew package manager to install Ansible.

If all else fails, you can install it using pip, Python’s package manager. You can install it
as root by running the following:

$ sudo pip install ansible

If you don’t want to install Ansible as root, you can safely install it into a Python vir-
tualenv. If youre not familiar with virtualenvs, you can use a newer tool called pipsi
that will automatically install Ansible into a virtualenv for you:

$ wget https://raw.githubusercontent.com/mitsuhiko/pipsi/master/get-pipsi.py

$ python get-pipsi.py

$ pipsi install ansible
If you go the pipsi route, you need to update your PATH environment variable to
include ~/.local/bin. Some Ansible plugins and modules might require additional
Python libraries. If you've installed with pipsi, and you want to install docker-py
(needed by the Ansible Docker modules) and boto (needed by the Ansible EC2 mod-
ules), you do it like this:

10 | Chapter 1: Introduction

http://jinja.pocoo.org/docs/dev/

$ cd ~/.local/venvs/ansible
$ source bin/activate
$ pip install docker-py boto

If you're feeling adventurous and want to use the bleeding-edge version of Ansible,
you can grab the development branch from GitHub:

$ git clone https://github.com/ansible/ansible.git --recursive

If youre running Ansible from the development branch, you need to run these com-
mands each time to set up your environment variables, including your PATH variable
so that your shell knows where the ansible and ansible-playbooks programs are:

$ cd ./ansible
$ source ./hacking/env-setup

For more details on installation see these resources:

« Official Ansible install docs
« Pip
o Virtualenv

o Pipsi

Setting Up a Server for Testing

You need to have SSH access and root privileges on a Linux server to follow along
with the examples in this book. Fortunately, these days it’s easy to get low-cost access
to a Linux virtual machine through a public cloud service such as Amazon EC2, Goo-
gle Compute Engine, Microsoft Azure,* Digital Ocean, Linode...you get the idea.

Using Vagrant to Set Up a Test Server

If you prefer not to spend the money on a public cloud, I recommend you install
Vagrant on your machine. Vagrant is an excellent open source tool for managing vir-
tual machines. You can use Vagrant to boot a Linux virtual machine inside your lap-
top, and you can use that as a test server.

Vagrant has built-in support for provisioning virtual machines with Ansible, but we'll
talk about that in detail in Chapter 3. For now, we'll just manage a Vagrant virtual
machine as if it were a regular Linux server.

Vagrant needs the VirtualBox virtualizer to be installed on your machine. Download
VirtualBox and then download Vagrant.

4 Yes, Azure supports Linux servers.

Setting Up a Server for Testing | 11

http://docs.ansible.com/intro_installation.html
http://pip.readthedocs.org/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/mitsuhiko/pipsi
http://www.virtualbox.org
http://www.vagrantup.com

I recommend you create a directory for your Ansible playbooks and related files. In
the following example, I've named mine playbooks.

Run the following commands to create a Vagrant configuration file (Vagrantfile) for
an Ubuntu 14.04 (Trusty Tahr) 64-bit virtual machine image,” and boot it:

$ mkdir playbooks

$ cd playbooks

$ vagrant init ubuntu/trusty64
$ vagrant up

The first time you use vagrant up, it will download the virtual
machine image file, which might take a while, depending on your
internet connection.

If all goes well, the output should look like this:

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/trustyé4'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'ubuntu/trusty64' is up to date...
==> default: Setting the name of the VM: playbooks_default_1474348723697_56934
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
default: Adapter 1: nat
==> default: Forwarding ports...
default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
default: SSH address: 127.0.0.1:2222
default: SSH username: vagrant
default: SSH auth method: private key
default: Warning: Remote connection disconnect. Retrying...
default: Warning: Remote connection disconnect. Retrying...
default:
default: Vagrant insecure key detected. Vagrant will automatically replace
default: this with a newly generated keypair for better security.
default:
default: Inserting generated public key within guest...
default: Removing insecure key from the guest if it's present...
default: Key inserted! Disconnecting and reconnecting using new SSH key...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
default: The guest additions on this VM do not match the installed version
default: of VirtualBox! In most cases this is fine, but in rare cases it can

5 Vagrant uses the term machine to refer to a virtual machine and box to refer to a virtual machine image.

12 | Chapter 1: Introduction

default: prevent things such as shared folders from working properly. If you
default: see shared folder errors, please make sure the guest additions
default: within the virtual machine match the version of VirtualBox you have
default: installed on your host and reload your VM.
default:
default: Guest Additions Version: 4.3.36
default: VirtualBox Version: 5.0

==> default: Mounting shared folders...
default: /vagrant => /Users/lorin/dev/ansiblebook/ch@1/playbooks

You should be able to SSH into your new Ubuntu 14.04 virtual machine by running
the following:

$ vagrant ssh
If this works, you should see a login screen like this:

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-96-generic x86_64)
* Documentation: https://help.ubuntu.com/

System information as of Fri Sep 23 05:13:05 UTC 2016

System load: 0.76 Processes: 80
Usage of /: 3.5% of 39.34GB Users logged in: 0
Memory usage: 25% IP address for eth0: 10.0.2.15

Swap usage: 0%

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Type exit to quit the SSH session.

This approach lets us interact with the shell, but Ansible needs to connect to the vir-
tual machine by using the regular SSH client, not the vagrant ssh command.

Tell Vagrant to output the SSH connection details by typing the following:
$ vagrant ssh-config
On my machine, the output looks like this:

Host default
HostName 127.0.0.1
User vagrant

Setting Up a Server for Testing | 13

Port 2222

UserKnownHostsFile /dev/null

StrictHostKeyChecking no

PasswordAuthentication no

IdentityFile /Users/lorin/dev/ansiblebook/ch01/playbooks/.vagrant/
machines/default/virtualbox/private_key

IdentitiesOnly yes

LogLevel FATAL

The important lines are shown here:

HostName 127.0.0.1

User vagrant

Port 2222

IdentityFile /Users/lorin/dev/ansiblebook/ch01/playbooks/.vagrant/
machines/default/virtualbox/private_key

Vagrant 1.7 changed how it handled private SSH keys. Starting with
1.7, Vagrant generates a new private key for each machine. Earlier
versions used the same key, which was in the default location of
~/.vagrant.d/insecure_private_key. The examples in this book use
Vagrant 1.7.

In your case, every field should likely be the same except for the path of the identity
file.

Confirm that you can start an SSH session from the command line by using this
information. In my case, the SSH command is as follows:

$ ssh vagrant@127.0.0.1 -p 2222 -i /Users/lorin/dev/ansiblebook/ch01/
playbooks/.vagrant/machines/default/virtualbox/private_key

You should see the Ubuntu login screen. Type exit to quit the SSH session.

Telling Ansible About Your Test Server

Ansible can manage only the servers it explicitly knows about. You provide Ansible
with information about servers by specifying them in an inventory file.

Each server needs a name that Ansible will use to identify it. You can use the host-
name of the server, or you can give it an alias and pass additional arguments to tell
Ansible how to connect to it. We'll give our Vagrant server the alias of testserver.

Create a file called hosts in the playbooks directory. This file will serve as the inventory
file. If you're using a Vagrant machine as your test server, your hosts file should look
like Example 1-1. I've broken up the file content across multiple lines so that it fits on
the page, but it should be all on one line in your file, without any backslashes.

14 | Chapter 1: Introduction

Example 1-1. playbooks/hosts

testserver ansible_host=127.0.0.1 ansible_port=2222 \
ansible_user=vagrant \
ansible_private_key_file=.vagrant/machines/default/virtualbox/private_key

Here we see one of the drawbacks of using Vagrant: we have to explicitly pass in extra
arguments to tell Ansible how to connect. In most cases, we won't need this extra
data.

Later in this chapter, you’ll see how to use the ansible.cfg file to avoid having to be so
verbose in the inventory file. In later chapters, you’ll see how to use Ansible variables
to similar effect.

If you have an Ubuntu machine on Amazon EC2 with a hostname like
ec2-203-0-113-120.compute-1.amazonaws.com, then your inventory file will look
something like this (all on one line):

testserver ansible_host=ec2-203-0-113-120.compute-1.amazonaws.com \
ansible_user=ubuntu ansible_private_key_ file=/path/to/keyfile.pem

Ansible supports the ssh-agent program, so you don’t need to
explicitly specify SSH key files in your inventory files. See “SSH
Agent” on page 363 for more details if you haven’'t used ssh-agent
before.

We'll use the ansible command-line tool to verify that we can use Ansible to connect
to the server. You won’t use the ansible command often; it's mostly used for ad hoc,
one-off things.

Let’s tell Ansible to connect to the server named testserver described in the inven-
tory file named hosts and invoke the ping module:
$ ansible testserver -i hosts -m ping

If your local SSH client has host-key verification enabled, you might see something
that looks like this the first time Ansible tries to connect to the server:

The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)"' \

can't be established.

RSA key fingerprint is e8:0d:7d:ef:57:07:81:98:40:31:19:53:a8:d0:76:21.
Are you sure you want to continue connecting (yes/no)?

You can just type yes.

If it succeeded, output will look like this:

Setting Up a Server for Testing | 15

testserver | success >> {
"changed": false,
"ping": "pong"

If Ansible did not succeed, add the -vvvv flag to see more details
about the error:

$ ansible testserver -i hosts -m ping -vvvv

We can see that the module succeeded. The "changed": false part of the output tells
us that executing the module did not change the state of the server. The "ping":
"pong" text is output that is specific to the ping module.

The ping module doesn't do anything other than check that Ansible can start an SSH
session with the servers. It’s a useful tool for testing that Ansible can connect to the
server.

Simplifying with the ansible.cfq File

We had to type a lot of text in the inventory file to tell Ansible about our test server.
Fortunately, Ansible has ways to specify these sorts of variables so we don’t have to
put them all in one place. Right now, we’ll use one such mechanism, the ansible.cfg
file, to set some defaults so we don't need to type as much.

Where Should | Put My ansible.cfq File?

Ansible looks for an ansible.cfg file in the following places, in this order:

1. File specified by the ANSIBLE_CONFIG environment variable
2. ./ansible.cfg (ansible.cfg in the current directory)

3. ~/.ansible.cfg (.ansible.cfg in your home directory)

4. /etc/ansible/ansible.cfg

I typically put ansible.cfg in the current directory, alongside my playbooks. That way, I
can check it into the same version-control repository that my playbooks are in.

Example 1-2 shows an ansible.cfg file that specifies the location of the inventory file
(inventory), the user to SSH (remote_user), and the SSH private key (private_
key_file). This assumes youre using Vagrant. If youre using your own server, you'll
need to set the remote_user and private_key_file values accordingly.

16 | Chapter 1: Introduction

Our example configuration also disables SSH host-key checking. This is convenient
when dealing with Vagrant machines; otherwise, we need to edit our ~/.ssh/
known_hosts file every time we destroy and re-create a Vagrant machine. However,
disabling host-key checking can be a security risk when connecting to other servers
over the network. If youre not familiar with host keys, they are covered in detail in
Appendix A.

Example 1-2. ansible.cfg

[defaults]

inventory = hosts

remote_user = vagrant

private_key_file = .vagrant/machines/default/virtualbox/private_key
host_key_checking = False

Ansible and Version Control

Ansible uses /etc/ansible/hosts as the default location for the inventory file. However, I
never use this because I like to keep my inventory files version-controlled alongside
my playbooks.

Although we don’t cover the topic of version control in this book, I strongly recom-
mend you use a version-control system such as Git for maintaining all of your play-
books. If youre a developer, you're already familiar with version-control systems. If
youre a systems administrator and aren’t using version control yet, this is a perfect
opportunity to get started.

With our default values set, we no longer need to specify the SSH user or key file in
our hosts file. Instead, it simplifies to the following:

testserver ansible_host=127.0.0.1 ansible_port=2222
We can also invoke Ansible without passing the -1 hostname arguments, like so:
$ ansible testserver -m ping

I like to use the ansible command-line tool to run arbitrary commands on remote
machines, like parallel SSH. You can execute arbitrary commands with the command
module. When invoking this module, you also need to pass an argument to the mod-
ule with the -a flag, which is the command to run.

For example, to check the uptime of our server, we can use this:

$ ansible testserver -m command -a uptime

Output should look like this:

Setting Up a Server for Testing | 17

testserver | success | rc=0 >>
17:14:07 up 1:16, 1 user, load average: 0.16, 0.05, 0.04

The command module is so commonly used that it's the default module, so we can
omit it:

$ ansible testserver -a uptime

If our command contains spaces, we need to quote it so that the shell passes the entire
string as a single argument to Ansible. For example, to view the last several lines of
the /var/log/dmesg logfile:

$ ansible testserver -a "tail /var/log/dmesg"

The output from my Vagrant machine looks like this:

testserver | success | rc=0 >>

[5.170544] type=1400 audit(1409500641.335:9): apparmor="STATUS" operation=
"profile_replace" profile="unconfined" name="/usr/lib/NetworkManager/nm-dhcp-c
lient.act on" pid=888 comm="apparmor_parser"

[5.170547] type=1400 audit(1409500641.335:10): apparmor="STATUS" operation=
"profile_replace" profile="unconfined" name="/usr/lib/connman/scripts/dhclient-
script" pid=888 comm="apparmor_parser"

5.222366] vboxvideo: Unknown symbol drm_open (err 0)

5.222370] vboxvideo: Unknown symbol drm_poll (err 0)

.222372] vboxvideo: Unknown symbol drm_pci_init (err 0)

.222375] vboxvideo: Unknown symbol drm_ioctl (err 0)

.222376] vboxvideo: Unknown symbol drm_vblank_init (err 0)

.222378] vboxvideo: Unknown symbol drm_mmap (err 0)

5.222380] vboxvideo: Unknown symbol drm_pci_exit (err 0)

5.222381] vboxvideo: Unknown symbol drm_release (err 0)

R e R W W W W |
(V2B BV RV, |

If we need root access, we pass in the -b flag to tell Ansible to become the root user.
For example, accessing /var/log/syslog requires root access:

$ ansible testserver -b -a "tail /var/log/syslog"

The output looks something like this:

testserver | success | rc=0 >>

Aug 31 15:57:49 vagrant-ubuntu-trusty-64 ntpdate[1465]: /

adjust time server 91.189

94.4 offset -0.003191 sec

Aug 31 16:17:01 vagrant-ubuntu-trusty-64 CRON[1480]: (root) CMD («cd /

&& run-p

rts --report /etc/cron.hourly)

Aug 31 17:04:18 vagrant-ubuntu-trusty-64 ansible-ping: Invoked with data=None

Aug 31 17:12:33 vagrant-ubuntu-trusty-64 ansible-ping: Invoked with data=None

Aug 31 17:14:07 vagrant-ubuntu-trusty-64 ansible-command: Invoked with executable
None shell=False args=uptime removes=None creates=None chdir=None

Aug 31 17:16:01 vagrant-ubuntu-trusty-64 ansible-command: Invoked with executable
None shell=False args=tail /var/log/messages removes=None creates=None chdir=None
Aug 31 17:17:01 vagrant-ubuntu-trusty-64 CRON[2091]: (root) CMD (cd /

&& run-pa

18

| Chapter 1: Introduction

rts --report /etc/cron.hourly)

Aug 31 17:17:09 vagrant-ubuntu-trusty-64 ansible-command: Invoked with /
executable=

N one shell=False args=tail /var/log/dmesg removes=None creates=None chdir=None
Aug 31 17:19:01 vagrant-ubuntu-trusty-64 ansible-command: Invoked with /
executable=

None shell=False args=tail /var/log/messages removes=None creates=None chdir=None
Aug 31 17:22:32 vagrant-ubuntu-trusty-64 ansible-command: Invoked with /
executable=

one shell=False args=tail /var/log/syslog removes=None creates=None chdir=None

We can see from this output that Ansible writes to the syslog as it runs.

You aren't just restricted to the ping and command modules when using the ansible
command-line tool: you can use any module that you like. For example, you can
install Nginx on Ubuntu by using the following command:

$ ansible testserver -b -m apt -a name=nginx

If installing Nginx fails for you, you might need to update the pack-
age lists. To tell Ansible to do the equivalent of apt-get update
before installing the package, change the argument from
name=nginx to "name=nginx update_cache=yes".

You can restart Nginx as follows:

$ ansible testserver -b -m service -a "name=nginx \
state=restarted"

We need the -b argument to become the root user because only root can install the
Nginx package and restart services.

Moving Forward

To recap, this introductory chapter covered the basic concepts of Ansible at a high
level, including how it communicates with remote servers and how it differs from
other configuration management tools. You've also seen how to use the ansible
command-line tool to perform simple tasks on a single host.

However, using ansible to run commands against single hosts isn’t terribly interest-
ing. The next chapter covers playbooks, where the real action is.

Moving Forward | 19

CHAPTER 2

Playbooks: A Beginning

Most of your time in Ansible will be spent writing playbooks. A playbook is the term
that Ansible uses for a configuration management script. Let’s look at an example:
installing the Nginx web server and configuring it for secure communication.

If you're following along in this chapter, you should end up with the files listed here:

o playbooks/ansible.cfg

o playbooks/hosts

o playbooks/Vagrantfile

o playbooks/web-notls.yml

o playbooks/web-tls.yml

o playbooks/files/nginx.key

o playbooks/files/nginx.crt

o playbooks/files/nginx.conf

o playbooks/templates/index.html.j2
o playbooks/templates/nginx.conf.j2

Some Preliminaries

Before we can run this playbook against our Vagrant machine, we need to expose
ports 80 and 443, so we can access them. As shown in Figure 2-1, we are going to
configure Vagrant so that requests to ports 8080 and 8443 on our local machine are
forwarded to ports 80 and 443 on the Vagrant machine. This will allow us to access

21

the web server running inside Vagrant at http://localhost:8080 and https://localhost:
8443.

Control Machine

-oeeee-f]

1

: Vagrant
: Machine
:

1

GET http://localhost:8080 1
8080 |- SRR
P 8443 |- --------
GET https://localhost:8443

Browser

- 3

Figure 2-1. Exposing ports on Vagrant machine

Modify your Vagrantfile so it looks like this:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config]|
config.vm.box = "ubuntu/trusty64"
config.vm.network "forwarded_port", guest: 80, host: 8080
config.vm.network "forwarded_port", guest: 443, host: 8443
end

This maps port 8080 on your local machine to port 80 of the Vagrant machine, and
port 8443 on your local machine to port 443 on the Vagrant machine. After you make
the changes, tell Vagrant to have them go into effect by running this command:

$ vagrant reload
You should see output that includes the following:

==> default: Forwarding ports...
default: 80 => 8080 (adapter 1)
default: 443 => 8443 (adapter 1)
default: 22 => 2222 (adapter 1)

A Very Simple Playbook

For our first example playbook, we'll configure a host to run an Nginx web server. For
this example, we won’t configure the web server to support TLS encryption. This will
make setting up the web server simpler. However, a proper website should have
Transport Layer Security (TLS) encryption enabled, and well cover how to do that
later in this chapter.

22 | Chapter2: Playbooks: A Beginning

http://localhost:8080
https://localhost:8443
https://localhost:8443

TLS versus SSL

You might be familiar with the term SSL rather than TLS in the context of secure web
servers. SSL is an older protocol that was used to secure communications between
browsers and web servers, and it has been superseded by a newer protocol named
TLS. Although many continue to use the term SSL to refer to the current secure pro-
tocol, in this book, I use the more accurate TLS.

First,

we'll see what happens when we run the playbook in Example 2-1, and then

we'll go over the contents of the playbook in detail.

Example 2-1. web-notls.yml

- name: Configure webserver with nginx
hosts: webservers
become: True
tasks:

name: install nginx
apt: name=nginx update_cache=yes

name: copy nginx config file
copy: src=files/nginx.conf dest=/etc/nginx/sites-available/default

name: enable configuration

file: >
dest=/etc/nginx/sites-enabled/default
src=/etc/nginx/sites-available/default
state=1ink

name: copy index.html
template: src=templates/index.html.j2 dest=/usr/share/nginx/html/index.html
mode=0644

name: restart nginx
service: name=nginx state=restarted

Why Do You Use True in One Place and Yes in Another?

Sharp-eyed readers might have noticed that Example 2-1 uses True in one spot in the
playbook (to enable sudo) and yes in another spot in the playbook (to update the apt
cache).

Ansible is pretty flexible in how you represent truthy and falsey values in playbooks.
Strictly speaking, module arguments (for example, update_cache=yes) are treated
differently from values elsewhere in playbooks (for example, sudo: True). Values

AVery Simple Playbook | 23

elsewhere are handled by the YAML parser and so use the YAML conventions of tru-
thiness:

YAML truthy
true, True, TRUE, yes, Yes, YES, on, On, ON, y, Y

YAML falsey
false, False, FALSE, no, No, NO, of f, Off, OFF, n, N

Module arguments are passed as strings and use Ansible’s internal conventions:

module arg truthy
yes, on, 1, true

module arg falsey
no, off, 0, false

I tend to follow the examples in the official Ansible documentation. These typically
use yes and no when passing arguments to modules (since that’s consistent with the
module documentation), and True and False elsewhere in playbooks.

Specifying an Nginx Config File

This playbook requires two additional files before we can run it. First, we need to
define an Nginx configuration file.

Nginx ships with a configuration file that works out of the box if you just want to
serve static files. But you'll almost always need to customize this, so we'll overwrite
the default configuration file with our own as part of this playbook. As you’ll see later,
we'll need to modify this configuration file to support TLS. Example 2-2 shows a
basic Nginx config file. Put it in playbooks/files/nginx.conf.*

An Ansible convention is to keep files in a subdirectory named
files, and Jinja2 templates in a subdirectory named templates. 1 fol-
low this convention throughout the book.

Example 2-2. files/nginx.conf

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

1 Note that while we call this file nginx.conf, it replaces the sites-enabled/default Nginx server block config file,
not the main /etc/nginx.conf config file.

24 | Chapter2: Playbooks: A Beginning

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost;

location / {
try_files Suri Suri/ =404;

}
}

Creating a Custom Home Page

Let’s add a custom home page. We're going to use Ansible’s template functionality so
that Ansible will generate the file from a template. Put the content shown in
Example 2-3 in playbooks/templates/index.html.j2.

Example 2-3. playbooks/templates/index.html.j2

<html>
<head>
<title>Welcome to ansible</title>
</head>
<body>
<hi>nginx, configured by Ansible</h1>
<p>If you can see this, Ansible successfully installed nginx.</p>

<p>{{ ansible_managed }}</p>
</body>
</html>

This template references a special Ansible variable named ansible_managed. When
Ansible renders this template, it will replace this variable with information about
when the template file was generated. Figure 2-2 shows a web browser displaying the
generated HTML.

® ® Welcome to ansible x Personal

A,
W
][]

€« C fi [localhost:8080 ~

nginx, configured by Ansible

If you can see this, Ansible successfully installed nginx.

Ansible managed:
/Users/lorinhochstein/dev/ansiblebook/ch02/playbooks/templates/index .html .j2 modified on

2015-02-15 14:46:35 by lorinhochstein on laptop

Figure 2-2. Rendered HTML

AVery Simple Playbook | 25

Creating a Webservers Group

Let’s create a webservers group in our inventory file so that we can refer to this group
in our playbook. For now, this group will contain our test server.

Inventory files are in the .ini file format. We'll go into this format in detail later in the
book. Edit your playbooks/hosts file to put a [webservers] line above the testserver
line, as shown in Example 2-4. This indicates that testserver is in the webservers

group.

Example 2-4. playbooks/hosts

[webservers]
testserver ansible_host=127.0.0.1 ansible_port=2222

You should now be able to ping the webservers group by using the ansible
command-line tool:

$ ansible webservers -m ping
The output should look like this:

testserver | success >> {
"changed": false,
"ping": "pong"

}

Running the Playbook

The ansible-playbook command executes playbooks. To run the playbook, use this
command:

$ ansible-playbook web-notls.yml
Example 2-5 shows what the output should look like.

Example 2-5. Output of ansible-playbook

PLAY [Configure Webserver With nginx] kkhkkkhkkhhkhkhkhkhkhkhkkhhkhkhkkkhkhkhkkkk

GATHERING FACTS hhkkhkhkhkkhhhkhhhhhhkhkhhkhkhkhkhhhkhkhhkhhkhkhhhhkhhkhkhhkhkhkhkkhhhkhkhkhkhkhkhkx*

ok: [testserver]

TASK . [-'Lnstall ng'i.nX] Bk ko Rk Rk kR Rk kR R R R R R Rk Rk R R R R R R R Rk

changed: [testserver]

TASK: [Copy nginx config file] kkhkhkkkkhhkhkhkhhkhhkhkhhkhkhkhkhhkhkhhhhhkhkhkkhkhkhkhkkkhkhkkkx

changed: [testserver]

TASK: [enable Configu rat-'l_on] Lk kS Rk Rk Rk Rk Rk R Rk Rk R Rk R Rk Rk Rk Rk Rk ok Rk Rk Rk

26 | Chapter2: Playbooks: A Beginning

ok: [testserver]

TASK: [copy indeX.html] kkhkhkhkkkhhhkhhhhhkhkhhhhhkhhhhhhhkhhhhhhkhhhhhkhkhhkhhkhhhkhhkhkhkx*

changed: [testserver]

TASK: [restart nginx] kkkkkhkhkkkkhkhkhkkhhkhkhkkkhhkhkkhhhkhkkkhkhkhkkkhkhkkkkhkhkhkkkhkhkkkkkk

changed: [testserver]

PLAY RECAP kkkkkhkhkkhhkhkhhhhhkhkhhhhkhkhhkhhkhkhhhhhkhkhhhhhkhhkhhkhkhhhhhkhkhhhhkhkhkhkkhkhkhhkkkk

testserver . ok=6 changed=4 unreachable=0 failed=0

Cowsay

If you have the cowsay program installed on your local machine, Ansible output will
look like this instead:

< PLAY [Configure webserver with nginx] >

\ l_l\
\ (oo)_______
(N N/

[1--emw |

If you dont want to see the cows, you can disable cowsay by setting the
ANSIBLE_NOCOWS environment variable like this:

$ export ANSIBLE_NOCOWS=1
You can also disable cowsay by adding the following to your ansible.cfg file:

[defaults]
nocows = 1

If you didn't get any errors,? you should be able to point your browser to http://local
host:8080 and see the custom HTML page, as shown in Figure 2-2.

If your playbook file is marked as executable and starts with a line
that looks like this:?

#!/usr/bin/env ansible-playbook
then you can execute it by invoking it directly, like this:

$./web-notls.yml

2 If you encountered an error, you might want to skip to Chapter 16 for assistance on debugging.

3 Colloquially referred to as a shebang.

Running the Playbook | 27

http://localhost:8080
http://localhost:8080

Playbooks Are YAML

Ansible playbooks are written in YAML syntax. YAML is a file format similar in intent
to JSON, but generally easier for humans to read and write. Before we go over the
playbook, let’s cover the concepts of YAML that are most important for writing play-
books.

Start of File

YAML files are supposed to start with three dashes to indicate the beginning of the
document:

However, if you forget to put those three dashes at the top of your playbook files,
Ansible won't complain.

Comments

Comments start with a number sign and apply to the end of the line, the same as in
shell scripts, Python, and Ruby:

This is a YAML comment

Strings

In general, YAML strings don’t have to be quoted, although you can quote them if
you prefer. Even if there are spaces, you don’t need to quote them. For example, this is
a string in YAML:

this is a lovely sentence
The JSON equivalent is as follows:
"this is a lovely sentence"

In some scenarios in Ansible, you will need to quote strings. These typically involve
the use of {{ braces }} for variable substitution. We'll get to those later.

Booleans

YAML has a native Boolean type, and provides you with a wide variety of strings that
can be interpreted as true or false, which we covered in “Why Do You Use True in
One Place and Yes in Another?” on page 23. Personally, I always use True and False
in my Ansible playbooks.

For example, this is a Boolean in YAML:

True

28 | Chapter2: Playbooks: A Beginning

The JSON equivalent is this:

true

Lists

YAML lists are like arrays in JSON and Ruby, or lists in Python. Technically, these are
called sequences in YAML, but I call them lists here to be consistent with the official
Ansible documentation.

They are delimited with hyphens, like this:

- My Fair Lady
- Oklahoma
- The Pirates of Penzance

The JSON equivalent is shown here:

[
"My Fair Lady",
"Oklahoma",
"The Pirates of Penzance"
1

(Note again that we don’t have to quote the strings in YAML, even though they have
spaces in them.)

YAML also supports an inline format for lists, which looks like this:

[My Fair Lady, Oklahoma, The Pirates of Penzance]

Dictionaries

YAML dictionaries are like objects in JSON, dictionaries in Python, or hashes in Ruby.
Technically, these are called mappings in YAML, but I call them dictionaries here to be
consistent with the official Ansible documentation.

They look like this:

address: 742 Evergreen Terrace
city: Springfield
state: North Takoma

The JSON equivalent is shown here:
{

"address": "742 Evergreen Terrace",
"city": "Springfield",
"state": "North Takoma"

}

YAML also supports an inline format for dictionaries, which looks like this:

{address: 742 Evergreen Terrace, city: Springfield, state: North Takoma}

Playbooks Are YAML | 29

Line Folding

When writing playbooks, you'll often encounter situations where youre passing
many arguments to a module. For aesthetics, you might want to break this up across
multiple lines in your file, but you want Ansible to treat the string as if it were a single
line.

You can do this with YAML by using line folding with the greater than (>) character.
The YAML parser will replace line breaks with spaces. For example:

address: >
Department of Computer Science,
A.V. Williams Building,
University of Maryland

city: College Park

state: Maryland

The JSON equivalent is as follows:
{

"address": "Department of Computer Science, A.V. Williams Building,
University of Maryland",

"city": "College Park",

"state": "Maryland"

}

Anatomy of a Playbook

Let’s take a look at our playbook from the perspective of a YAML file. Here it is again,
in Example 2-6.

Example 2-6. web-notls.yml

- name: Configure webserver with nginx
hosts: webservers
become: True
tasks:
- name: install nginx
apt: name=nginx update_cache=yes

- name: copy nginx config file
copy: src=files/nginx.conf dest=/etc/nginx/sites-available/default

- name: enable configuration
file: >
dest=/etc/nginx/sites-enabled/default
src=/etc/nginx/sites-available/default
state=1ink

- name: copy index.html

30 | Chapter2: Playbooks: A Beginning

template: src=templates/index.html.j2 dest=/usr/share/nginx/html/index.html
mode=0644

- name: restart nginx
service: name=nginx state=restarted

In Example 2-7, we see the JSON equivalent of this file.

Example 2-7. JSON equivalent of web-notls.yml

[
{
"name": "Configure webserver with nginx",
"hosts": "webservers",
"become": true,
"tasks": [
{
"name": "Install nginx",
"apt": "name=nginx update_cache=yes"
}J
{
"name": "copy nginx config file",
"template": "src=files/nginx.conf dest=/etc/nginx/
sites-available/default"”
}s
{
"name": "enable configuration",

"file": "dest=/etc/nginx/sites-enabled/default src=/etc/nginx/sites-available
/default state=1link"
}J
{
"name": "copy index.html",
"template" : "src=templates/index.html.j2 dest=/usr/share/nginx/html/
index.html mode=0644"
1,
{
"pame": "restart nginx",
"service": "name=nginx state=restarted"
}
1
}
1

A valid JSON file is also a valid YAML file. This is because YAML
allows strings to be quoted, considers true and false to be valid
Booleans, and has inline lists and dictionary syntaxes that are the
same as JSON arrays and objects. But don’t write your playbooks as
JSON—the whole point of YAML is that it’s easier for people to
read.

Anatomy of a Playbook | 31

Plays

Looking at either the YAML or JSON representation, it should be clear that a play-
book is a list of dictionaries. Specifically, a playbook is a list of plays.

Here’s the play* from our example:

- name: Configure webserver with nginx
hosts: webservers
become: True
tasks:
- name: install nginx
apt: name=nginx update_cache=yes

- name: copy nginx config file
copy: src=files/nginx.conf dest=/etc/nginx/sites-available/default

- name: enable configuration
file: >
dest=/etc/nginx/sites-enabled/default
src=/etc/nginx/sites-available/default
state=1ink

- name: copy index.html
template: src=templates/index.html.j2
dest=/usr/share/nginx/html/index.html mode=0644

- name: restart nginx
service: name=nginx state=restarted

Every play must contain the following:

o A set of hosts to configure

o A list of tasks to be executed on those hosts

Think of a play as the thing that connects hosts to tasks.

In addition to specifying hosts and tasks, plays also support optional settings. We'll
get into those later, but here are three common ones:

name
A comment that describes what the play is about. Ansible prints this out when
the play starts to run.

4 Actually, it’s a list that contains a single play.

32 | Chapter2:Playbooks: A Beginning

become
If true, Ansible will run every task by becoming (by default) the root user. This is
useful when managing Ubuntu servers, since by default you cannot SSH as the
root user.

vars
A list of variables and values. You'll see this in action later in this chapter.

Tasks

Our example playbook contains one play that has five tasks. Here’s the first task of
that play:

- name: install nginx
apt: name=nginx update_cache=yes

The name is optional, so it’s perfectly valid to write a task like this:
- apt: name=nginx update_cache=yes

Even though names are optional, I recommend you use them because they serve as
good reminders for the intent of the task. (Names will be very useful when somebody
else is trying to understand your playbook, including yourself in six months.) As
you've seen, Ansible will print out the name of a task when it runs. Finally, as you’ll
see in Chapter 16, you can use the --start-at-task <task name> flag to tell
ansible-playbook to start a playbook in the middle of a play, but you need to refer-
ence the task by name.

Every task must contain a key with the name of a module and a value with the argu-
ments to that module. In the preceding example, the module name is apt and the
arguments are name=nginx update_cache=yes.

These arguments tell the apt module to install the package named nginx and to
update the package cache (the equivalent of doing an apt-get update) before instal-
ling the package.

It’s important to understand that, from the point of the view of the YAML parser used
by the Ansible frontend, the arguments are treated as a string, not as a dictionary.
This means that if you want to break arguments into multiple lines, you need to use
the YAML folding syntax, like this:

- name: install nginx
apt: >
name=nginx
update_cache=yes

Ansible also supports a task syntax that will let you specify module arguments as a
YAML dictionary, which is helpful when using modules that support complex

Anatomy of a Playbook | 33

arguments. We'll cover that in “Complex Arguments in Tasks: A Brief Digression” on
page 105.

Ansible also supports an older syntax that uses action as the key and puts the name
of the module in the value. The preceding example also can be written as follows:

- name: install nginx
action: apt name=nginx update_cache=yes

Modules

Modules are scripts that come packaged with Ansible and perform some kind of
action on a host.> Admittedly, that’s a pretty generic description, but there’s enormous
variety across Ansible modules. The modules we use in this chapter are as follows:

apt
Installs or removes packages by using the apt package manager

copy
Copies a file from local machine to the hosts

file
Sets the attribute of a file, symlink, or directory

service
Starts, stops, or restarts a service

template
Generates a file from a template and copies it to the hosts

Viewing Ansible Module Documentation

Ansible ships with the ansible-doc command-line tool, which shows documentation
about modules. Think of it as man pages for Ansible modules. For example, to show
the documentation for the service module, run this:

$ ansible-doc service

If you use macOS, there’s a wonderful documentation viewer called Dash that has
support for Ansible. Dash indexes all of the Ansible module documentation. It’s a
commercial tool ($24.99 as of this writing), but I find it invaluable.

5 The modules that ship with Ansible all are written in Python, but modules can be written in any language.

34 | Chapter2: Playbooks: A Beginning

http://kapeli.com/dash

Recall from the first chapter that Ansible executes a task on a host by generating a
custom script based on the module name and arguments, and then copies this script
to the host and runs it.

More than 200 modules ship with Ansible, and this number grows with every release.
You can also find third-party Ansible modules out there, or write your own.

Putting It All Together

To sum up, a playbook contains one or more plays. A play associates an unordered set
of hosts with an ordered list of tasks. Each task is associated with exactly one module.

Figure 2-3 is an entity-relationship diagram that depicts this relationship between
playbooks, plays, hosts, tasks, and modules.

Playbook < Play < Host

Task Module

Figure 2-3. Entity-relationship diagram

Did Anything Change? Tracking Host State

When you run ansible-playbook, Ansible outputs status information for each task it
executes in the play.

Looking back at Example 2-5, notice that the status for some of the tasks is changed,
and the status for some others is ok. For example, the install nginx task has status
changed, which appears as yellow on my terminal:

TASK: [install nginx] hhkkhhhhhhhhhhhhhhhhhhhhdhhhhhdhhddhhdrrhhhrdrhddhdrdhddrrrds

changed: [testserver]

The enable configuration, on the other hand, has status ok, which appears as green
on my terminal:

TASK: [enable Configuration] hhkkkhkhkhkkkhhkhkhhkhkhkhkhhkhkhkkhhhkhkhhkhkhkhkkhkhkhkkkhkhkkx*®

ok: [testserver]

Any Ansible task that runs has the potential to change the state of the host in some
way. Ansible modules will first check to see whether the state of the host needs to be

Did Anything Change? Tracking Host State | 35

changed before taking any action. If the state of the host matches the arguments of
the module, Ansible takes no action on the host and responds with a state of ok.

On the other hand, if there is a difference between the state of the host and the argu-
ments to the module, Ansible will change the state of the host and return changed.

In the example output just shown, the install nginx task was changed, which
meant that before I ran the playbook, the nginx package had not previously been
installed on the host. The enable configuration task was unchanged, which meant
that there was already a configuration file on the server that was identical to the file I
was copying over. The reason for this is that the nginx.conf file I used in my playbook
is the same as the nginx.conf file that gets installed by the nginx package on Ubuntu.

As you'll see later in this chapter, Ansible’s detection of state change can be used to
trigger additional actions through the use of handlers. But, even without using han-
dlers, it is still a useful form of feedback to see whether your hosts are changing state
as the playbook runs.

Getting Fancier: TLS Support

Let’s move on to a more complex example: were going to modify the previous play-
book so that our web servers support TLS. The new features here are as follows:

o Variables
o Handlers

Example 2-8 shows what our playbook looks like with TLS support.

Example 2-8. web-tls.yml

- name: Configure webserver with nginx and tls
hosts: webservers
become: True
vars:
key_file: /etc/nginx/ssl/nginx.key
cert_file: /etc/nginx/ssl/nginx.crt
conf_file: /etc/nginx/sites-available/default
server_name: localhost
tasks:
- name: Install nginx
apt: name=nginx update_cache=yes cache_valid_time=3600

- name: create directories for ssl certificates
file: path=/etc/nginx/ssl state=directory

- name: copy TLS key
copy: src=files/nginx.key dest={{ key_file }} owner=root mode=0600

36 | Chapter2: Playbooks: A Beginning

notify: restart nginx

- name: copy TLS certificate
copy: src=files/nginx.crt dest={{ cert_file }}
notify: restart nginx

- name: copy nginx config file
template: src=templates/nginx.conf.j2 dest={{ conf_file }}
notify: restart nginx

- name: enable configuration
file: dest=/etc/nginx/sites-enabled/default src={{ conf_file }} state=1link
notify: restart nginx

- name: copy index.html
template: src=templates/index.html.j2 dest=/usr/share/nginx/html/index.html
mode=0644

handlers:
- name: restart nginx
service: name=nginx state=restarted

Generating a TLS Certificate

We need to manually generate a TLS certificate. In a production environment, youd
purchase your TLS certificate from a certificate authority, or use a free service such as
Let’s Encrypt, which Ansible supports via the letsencrypt module. We'll use a self-
signed certificate, since we can generate those for free.

Create a files subdirectory of your playbooks directory, and then generate the TLS cer-
tificate and key:

$ mkdir files

$ openssl req -x509 -nodes -days 3650 -newkey rsa:2048 \
-subj /CN=localhost \
-keyout files/nginx.key -out files/nginx.crt

This should generate the files nginx.key and nginx.crt in the files directory. The certifi-
cate has an expiration date of 10 years (3,650 days) from the day you created it.

Variables
The play in our playbook now has a section called vars:

vars:
key_file: /etc/nginx/ssl/nginx.key
cert_file: /etc/nginx/ssl/nginx.crt
conf_file: /etc/nginx/sites-available/default
server_name: localhost

This section defines four variables and assigns a value to each variable.

Getting Fancier: TLS Support | 37

In our example, each value is a string (e.g., /etc/nginx/ssl/nginx.key), but any
valid YAML can be used as the value of a variable. You can use lists and dictionaries
in addition to strings and Booleans.

Variables can be used in tasks, as well as in template files. You reference variables by
using the {{ braces }} notation. Ansible replaces these braces with the value of the
variable.

Consider this task in the playbook:

- name: copy TLS key
copy: src=files/nginx.key dest={{ key_file }} owner=root mode=0600

Ansible will substitute {{ key_file }} with /etc/nginx/ssl/nginx.key when it
executes this task.

When Quoting Is Necessary

If you reference a variable right after specifying the module, the YAML parser will
misinterpret the variable reference as the beginning of an inline dictionary. Consider
the following example:

- name: perform some task
command: {{ myapp }} -a foo

Ansible will try to parse the first part of {{ myapp }} -a foo as a dictionary instead
of a string, and will return an error. In this case, you must quote the arguments:

- name: perform some task
command: "{{ myapp }} -a foo"

A similar problem arises if your argument contains a colon. For example:

- name: show a debug message
debug: msg="The debug module will print a message: neat, eh?"

The colon in the msg argument trips up the YAML parser. To get around this, you
need to quote the entire argument string.

Unfortunately, just quoting the argument string won’t resolve the problem, either:

- name: show a debug message
debug: "msg=The debug module will print a message: neat, eh?"

This will make the YAML parser happy, but the output isn't what you expect:

TASK: [show a debug message] khkkkkhkhkkhhkhkhkkhhkhkhkhhhkhkhkkhkhkhkhkkhkhkhkhkkkhkhkhkkkkkkkx

ok: [localhost] => {
"msg": "The"

}

38 | Chapter2: Playbooks: A Beginning

The debug module’s msg argument requires a quoted string to capture the spaces. In
this particular case, we need to quote both the whole argument string and the msg
argument. Ansible supports alternating single and double quotes, so you can do this:

- name: show a debug message
debug: "msg='The debug module will print a message: neat, eh?'"

This yields the expected output:

TASK: [ShOW a debug message] dhkkhhhkdkhkhhhhhhhhhhhhdhhhhrhddhdrhddhrrhdhrrrddid

ok: [localhost] => {

msg": "The debug module will print a message: neat, eh?"

}

Ansible is pretty good at generating meaningful error messages if you forget to put
quotes in the right places and end up with invalid YAML.

Generating the Nginx Configuration Template

If you've done web programming, you've likely used a template system to generate
HTML. In case you haven't, a template is just a text file that has special syntax for
specifying variables that should be replaced by values. If you've ever received an auto-
mated email from a company, its probably using an email template, as shown in
Example 2-9.

Example 2-9. An email template
Dear {{ name }},
You have {{ num_comments }} new comments on your blog: {{ blog_name }}.

Ansible’s use case is’'t HTML pages or emails—it’s configuration files. You don’t want
to hand-edit configuration files if you can avoid it. This is especially true if you have
to reuse the same bits of configuration data (say, the IP address of your queue server
or your database credentials) across multiple configuration files. It's much better to
take the info that’s specific to your deployment, record it in one location, and then
generate all of the files that need this information from templates.

Ansible uses the Jinja2 template engine to implement templating. If you've ever used a
templating library such as Mustache, ERB, or the Django template system, Jinja2 will
feel very familiar.

Nginx’s configuration file needs information about where to find the TLS key and
certificate. We're going to use Ansible’s templating functionality to define this config-
uration file so that we can avoid hardcoding values that might change.

In your playbooks directory, create a templates subdirectory and create the file tem-
plates/nginx.conf.j2, as shown in Example 2-10.

Getting Fancier: TLS Support | 39

Example 2-10. templates/nginx.conf.j2

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

listen 443 ssl;

root /usr/share/nginx/html;
index index.html index.htm;

server_name {{ server_name }};
ssl_certificate {{ cert_file }};
ssl_certificate_key {{ key_file }};

location / {
try_files Suri Suri/ =404;
}
}

We use the . j2 extension to indicate that the file is a Jinja2 template. However, you
can use a different extension if you like; Ansible doesn’t care.

In our template, we reference three variables:

server_name
The hostname of the web server (e.g., www.example. com)

cert_file
The path to the TLS certificate

key_file
The path to the TLS private key

We define these variables in the playbook.

Ansible also uses the Jinja2 template engine to evaluate variables in playbooks. Recall
that we saw the {{ conf_file }} syntax in the playbook itself.

Early versions of Ansible used a dollar sign ($) to do variable inter-
polation in playbooks instead of the braces. You used to derefer-
ence the variable foo by writing $foo, whereas now you write
{{ foo }}. The dollar sign syntax has been deprecated; if you
encounter it in an example playbook you find on the internet, then
you're looking at older Ansible code.

You can use all of the Jinja2 features in your templates, but we won’t cover them in
detail here. Check out the Jinja2 Template Designer Documentation for more details.
You probably won't need to use those advanced templating features, though. One

40 | Chapter2: Playbooks: A Beginning

http://jinja.pocoo.org/docs/dev/templates/

Jinja2 feature you probably will use with Ansible is filters; we'll cover those in a later
chapter.

Handlers

Looking back at our web-tls.yml playbook, note that there are two new playbook ele-
ments we haven’t discussed yet. There’s a handlers section that looks like this:

handlers:
- name: restart nginx
service: name=nginx state=restarted

In addition, several of the tasks contain a notify key. For example:

- name: copy TLS key
copy: src=files/nginx.key dest={{ key_file }} owner=root mode=0600
notify: restart nginx
Handlers are one of the conditional forms that Ansible supports. A handler is similar
to a task, but it runs only if it has been notified by a task. A task will fire the notifica-
tion if Ansible recognizes that the task has changed the state of the system.

A task notifies a handler by passing the handler’s name as the argument. In the pre-
ceding example, the handler’s name is restart nginx. For an Nginx server, wed need
to restart it if any of the following happens:*

o The TLS key changes.
o The TLS certificate changes.
o The configuration file changes.

o The contents of the sites-enabled directory change.

We put a notify statement on each of the tasks to ensure that Ansible restarts Nginx
if any of these conditions are met.

A few things to keep in mind about handlers

Handlers usually run after all of the tasks are run at the end of the play. They run only
once, even if they are notified multiple times. If a play contains multiple handlers, the
handlers always run in the order that they are defined in the handlers section, not
the notification order.

The official Ansible docs mention that the only common uses for handlers are for
restarting services and for reboots. Personally, I've always used them only for restart-
ing services. Even then, its a pretty small optimization, since we can always just

6 Alternatively, we could reload the configuration file by using state=reloaded instead of restarting the service.

Getting Fancier: TLS Support | 41

unconditionally restart the service at the end of the playbook instead of notifying it
on change, and restarting a service doesn’t usually take very long.

Another pitfall with handlers that I've encountered is that they can be troublesome
when debugging a playbook. It goes something like this:

I run a playbook.

One of my tasks with a notify on it changes state.

An error occurs on a subsequent task, stopping Ansible.
I fix the error in my playbook.

I run Ansible again.

AN A o

None of the tasks report a state change the second time around, so Ansible
doesn’t run the handler.

Read more about advanced handler usages and applications in “Advanced Handlers”
on page 180.

Running the Playbook
As before, we use the ansible-playbook command to run the playbook:
$ ansible-playbook web-tls.yml
The output should look something like this:
PLAY [Configure webserver with nginx and tls] *##*xksiksaidsirdsiddirdnirstidns

GATHERING FACTS kkkkhkkkhkhkhkkkhkhkhkhkhhkhkhkhhkhkhkhkkhhkhkhkkhkhkhkkhkhkhkhkkhkhkhkhkkkkhkhkkkkkkkx

ok: [testserver]

TASK: [Install nginx] hhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhdhhhhrdhddrdrdd

changed: [testserver]

TASK: [create directories for tls certificates] *¥**kkkkkkkkkkhkkkhkhrkkhrhhhhrk
changed: [testserver]

TASK: [copy TLS key] dhkkkhhhhhhhhhhhhhhhhdhhdhhdhhhhhhdhhddhddhddrhddhrdrdddrrdrddsrdr

changed: [testserver]

TASK: [CODy TLS Certificate] hkkkhkhkhkkkhkhkkhhkhkhkhkkhkhkhkhkkkhkhkhkkkhkhkhkhkkhkhkhkhkkhkhkhkx*x

changed: [testserver]

TASK: [Copy nginx config file] dhkhkhhkhhhhhhkhhhhhhhhhhhdrdhddhdrhdhhdrddhdhrrdrddird

changed: [testserver]

TASK: [enable configuration] hkkkhkhkhkkkhhkkhhhhkhkkhkhkhkhkkkhhkhhkkhkhkhkhkkhkhkhkhkkhkhkhkx*x

ok: [testserver]

42 | Chapter 2: Playbooks: A Beginning

NOTIFIED: [restart nginx] EE R S e S e e s SRR SR RS SRR SRR LT
changed: [testserver]

PLAY RECAP kkkkkhkhkkkkkhkhkhkkhhkhkhkkkhhkhkkkhkhkhkkhhhkhkkhhkhkkkhhkhkkkhkhkhkkkhkhkkkkhkhkhkkkxkk

testserver : ok=8 changed=6 unreachable=0 failed=0

Point your browser to https://localhost:8443 (don’t forget the s on https). If you're
using Chrome, as I am, you’ll get a ghastly message that says something like, “Your
connection is not private” (see Figure 2-4).

8 00 /[Privacy error * L4

&« C' i (X https://localhost:8443 7%

Your connection is not private

Attackers might be trying to steal your information from
localhost (for example, passwords, messages, or credit cards).

Advanced Back to safety

Figure 2-4. Browsers such as Chrome don't trust self-signed TLS certificates

Don’t worry, though; that error is expected, as we generated a self-signed TLS certifi-
cate, and web browsers such as Chrome trust only certificates that have been issued
from a proper authority.

We covered a lot of the what of Ansible in this chapter, describing what Ansible will
do to your hosts. The handlers we discussed here are just one form of control flow
that Ansible supports. In a later chapter, we'll see iteration and conditionally running
tasks based on the values of variables. In the next chapter, we'll talk about the who; in
other words, how to describe the hosts that your playbooks will run against.

Getting Fancier: TLS Support | 43

CHAPTER 3
Inventory: Describing Your Servers

So far, we've been working with only one server (or host, as Ansible calls it). In reality,
youre going to be managing multiple hosts. The collection of hosts that Ansible
knows about is called the inventory. In this chapter, you will learn how to describe a
set of hosts as an Ansible inventory.

The Inventory File

The default way to describe your hosts in Ansible is to list them in text files, called
inventory files. A very simple inventory file might contain only a list of hostnames, as
shown in Example 3-1.

Example 3-1. A very simple inventory file

ontario.example.com
newhampshire.example.com
maryland.example.com
virginia.example.com
newyork.example.com
quebec.example.com
rhodeisland.example.com

Ansible uses your local SSH client by default, which means that it
will understand any aliases that you set up in your SSH config file.
This does not hold true if you configure Ansible to use the Para-
miko connection plugin instead of the default SSH plugin.

45

Ansible automatically adds one host to the inventory by default: localhost. Ansible
understands that localhost refers to your local machine, so it will interact with it
directly rather than connecting by SSH.

Although Ansible adds localhost to your inventory automatically,
you have to have at least one other host in your inventory file;
\ otherwise, ansible-playbook will terminate with an error:

ERROR: provided hosts list is empty

If you have no other hosts in your inventory file, you can explicitly
add an entry for localhost like this:

localhost ansible_connection=1local

Preliminaries: Multiple Vagrant Machines

To talk about inventory, we need to interact with multiple hosts. Let’s configure
Vagrant to bring up three hosts. We'll unimaginatively call them vagrant1, vagrant2,
and vagrant3.

Before you modify your existing Vagrantfile, make sure you destroy your existing vir-
tual machine by running the following:

$ vagrant destroy --force

If you don't include the - - force option, Vagrant will prompt you to confirm that you
want to destroy the virtual machine.

Next, edit your Vagrantfile so it looks like Example 3-2.

Example 3-2. Vagrantfile with three servers
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Use the same key for each machine
config.ssh.insert_key = false

config.vm.define "vagrantl" do |vagrantil|
vagrantl.vm.box = "ubuntu/trusty64"
vagrantl.vm.network "forwarded_port", guest: 80, host: 8080
vagrantl.vm.network "forwarded_port", guest: 443, host: 8443

end

config.vm.define "vagrant2" do |vagrant2|
vagrant2.vm.box = "ubuntu/trusty64"
vagrant2.vm.network "forwarded_port", guest: 80, host: 8081
vagrant2.vm.network "forwarded_port", guest: 443, host: 8444

end

config.vm.define "vagrant3" do |vagrant3|

46 | Chapter 3:Inventory: Describing Your Servers

vagrant3.vm.box = "ubuntu/trusty64"
vagrant3.vm.network "forwarded_port", guest: 80, host: 8082
vagrant3.vm.network "forwarded_port", guest: 443, host: 8445
end
end

Vagrant 1.7+ defaults to using a different SSH key for each host. Example 3-2 con-
tains the line to revert to the earlier behavior of using the same SSH key for each host:

config.ssh.insert_key = false

Using the same key on each host simplifies our Ansible setup because we can specify
a single SSH key in the ansible.cfg file. You'll need to edit the host_key_checking
value in your ansible.cfg. Your file should look like Example 3-3.

Example 3-3. ansible.cfg

[defaults]

inventory = inventory

remote_user = vagrant

private_key file = ~/.vagrant.d/insecure_private_key
host_key_checking = False

For now, we'll assume that each of these servers can potentially be a web server, so
Example 3-2 maps ports 80 and 443 inside each Vagrant machine to a port on the
local machine.

You should be able to bring up the virtual machines by running the following:

$ vagrant up
If all went well, the output should look something like this:

Bringing machine 'vagrantl' up with 'virtualbox' provider...
Bringing machine 'vagrant2' up with 'virtualbox' provider...
Bringing machine 'vagrant3' up with 'virtualbox' provider...

vagrant3: 80 => 8082 (adapter 1)
vagrant3: 443 => 8445 (adapter 1)
vagrant3: 22 => 2201 (adapter 1)
==> vagrant3: Booting VM...
==> vagrant3: Waiting for machine to boot. This may take a few minutes...
vagrant3: SSH address: 127.0.0.1:2201
vagrant3: SSH username: vagrant
vagrant3: SSH auth method: private key
vagrant3: Warning: Connection timeout. Retrying...
==> vagrant3: Machine booted and ready!
==> vagrant3: Checking for guest additions in VM...
==> vagrant3: Mounting shared folders...
vagrant3: /vagrant => /Users/lorin/dev/oreilly-ansible/playbooks

Let’s create an inventory file that contains these three machines.

Preliminaries: Multiple Vagrant Machines | 47

First, we need to know what ports on the local machine map to the SSH port (22)
inside each VM. Recall that we can get that information by running the following:

$ vagrant ssh-config
The output should look something like this:

Host vagrantl
HostName 127.0.0.1
User vagrant
Port 2222
UserKnownHostsFile /dev/null
StrictHostKeyChecking no
PasswordAuthentication no
IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LogLevel FATAL

Host vagrant2
HostName 127.0.0.1
User vagrant
Port 2200
UserKnownHostsFile /dev/null
StrictHostKeyChecking no
PasswordAuthentication no
IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LogLevel FATAL

Host vagrant3
HostName 127.0.0.1
User vagrant
Port 2201
UserKnownHostsFile /dev/null
StrictHostKeyChecking no
PasswordAuthentication no
IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LoglLevel FATAL

We can see that vagrantl uses port 2222, vagrant2 uses port 2200, and vagrant3
uses port 2201.

Modify your hosts file so it looks like this:

vagrantl ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

Now, make sure that you can access these machines. For example, to get information
about the network interface for vagrant2, run the following:

$ ansible vagrant2 -a "ip addr show dev eth@"

48 | Chapter 3: Inventory: Describing Your Servers

On my machine, the output looks like this:

vagrant2 | success | rc=0 >>
2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default glen 1000
link/ether 08:00:27:fe:1e:4d brd ff:ff:ff:ff:ff:ff
inet 10.0.2.15/24 brd 10.0.2.255 scope global etho
valid_1ft forever preferred_lft forever
inet6 fe80::a00:27ff:fefe:1e4d/64 scope link
valid_1ft forever preferred_lft forever

Behavioral Inventory Parameters

To describe our Vagrant machines in the Ansible inventory file, we had to explicitly
specify the hostname (127.0.0.1) and port (2222, 2200, or 2201) that Ansible’s SSH cli-
ent should connect to. Ansible calls these variables behavioral inventory parameters,
and there are several of them you can use when you need to override the Ansible
defaults for a host (see Table 3-1).

Table 3-1. Behavioral inventory parameters

Name Default Description

ansible_host Name of host Hostname or IP address to SSH to

ansible_port 22 Port to SSH to

ansible_user Root User to SSH as

ansible_password (None) Password to use for SSH authentication

ansible_connection smart How Ansible will connect to host (see the following section)

ansible_private_key_file (None) SSH private key to use for SSH authentication

ansible_shell_type sh Shell to use for commands (see the following section)

ansible_python_interpreter /usr/bin/ Python interpreter on host (see the following section)
python

ansible_*_interpreter (None) Like ansible_python_interpreter for other languages (see the following

section)

For some of these options, the meaning is obvious from the name, but others require
additional explanation.

ansible connection

Ansible supports multiple transports, which are mechanisms that Ansible uses to con-
nect to the host. The default transport, smart, will check whether the locally installed
SSH client supports a feature called ControlPersist. If the SSH client supports Control-
Persist, Ansible will use the local SSH client. If the SSH client doesn’t support
ControlPersist, the smart transport will fall back to using a Python-based SSH client
library called Paramiko.

Behavioral Inventory Parameters | 49

ansible_shell_type

Ansible works by making SSH connections to remote machines and then invoking
scripts. By default, Ansible assumes that the remote shell is the Bourne shell located
at /bin/sh, and will generate the appropriate command-line parameters that work
with Bourne shell.

Ansible also accepts csh, fish, and (on Windows) powershell as valid values for this
parameter. I've never encountered a need for changing the shell type.

ansible_python_interpreter

Because the modules that ship with Ansible are implemented in Python 2, Ansible
needs to know the location of the Python interpreter on the remote machine. You
might need to change this if your remote host does not have a Python 2 interpreter
at /usr/bin/python. For example, if you are managing hosts that run Arch Linux, you
will need to change this to /usr/bin/python2, because Arch Linux installs Python 3
at /usr/bin/python, and Ansible modules are not (yet) compatible with Python 3.

ansible_*_interpreter

If you are using a custom module that is not written in Python, you can use this
parameter to specify the location of the interpreter (e.g., /usr/bin/ruby). We'll cover
this in Chapter 12.

Changing Behavioral Parameter Defaults

You can override some of the behavioral parameter default values in the defaults
section of the ansible.cfg file (Table 3-2). Recall that we used this previously to change
the default SSH user.

Table 3-2. Defaults that can be overridden in ansible.cfg

Behavioral inventory parameter ansible.cfg option

ansible_port remote_port

ansible_user remote_user

ansible_private_key_file private_key_file

ansible_shell_type executable (see the following paragraph)

The ansible.cfg executable config option is not exactly the same as the ansi
ble_shell_type behavioral inventory parameter. Instead, the executable specifies the
full path of the shell to use on the remote machine (e.g., /usr/local/bin/fish). Ansible
will look at the name of the base name of this path (in the case of /ust/local/bin/fish,
the base name is fish) and use that as the default value for ansible_shell_type.

50 | Chapter3:Inventory: Describing Your Servers

Groups and Groups and Groups

When performing configuration tasks, we typically want to perform actions on
groups of hosts, rather than on an individual host. Ansible automatically defines a
group called all (or *), which includes all of the hosts in the inventory. For example,
we can check whether the clocks on the machines are roughly synchronized by run-
ning the following:

$ ansible all -a "date"
or
$ ansible '*' -a "date"
The output on my system looks like this:

vagrant3 | success | rc=0 >>
Sun Sep 7 02:56:46 UTC 2014

vagrant2 | success | rc=0 >>
Sun Sep 7 03:03:46 UTC 2014

vagrantl | success | rc=0 >>
Sun Sep 7 02:56:47 UTC 2014

We can define our own groups in the inventory file. Ansible uses the .ini file format
for inventory files. In the .ini format, configuration values are grouped together into
sections.

Here’s how to specify that our vagrant hosts are in a group called vagrant, along with
the other example hosts we mentioned at the beginning of the chapter:

ontario.example.com
newhampshire.example.com
maryland.example.com
virginia.example.com
newyork.example.com
quebec.example.com
rhodeisland.example.com

[vagrant]

vagrantl ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

We could have also listed the Vagrant hosts at the top, and then also in a group, like
this:

maryland.example.com
newhampshire.example.com
newyork.example.com
ontario.example.com
quebec.example.com

Groups and Groups and Groups | 51

rhodeisland.example.com

vagrantl ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201
virginia.example.com

[vagrant]
vagrantil
vagrant2
vagrant3

Example: Deploying a Django App

Imagine youre responsible for deploying a Django-based web application that pro-
cesses long-running jobs. The app needs to support the following services:

o The actual Django web app itself, run by a Gunicorn HTTP server

« An Nginx web server, which will sit in front of Gunicorn and serve static assets

+ A Celery task queue that will execute long-running jobs on behalf of the web app
+ A RabbitMQ message queue that serves as the backend for Celery

« A Postgres database that serves as the persistent store

In later chapters, we will work through a detailed example of
deploying this kind of Django-based application, although our
example won't use Celery or RabbitMQ.

We need to deploy this application into different types of environments: production
(the real thing), staging (for testing on hosts that our team has shared access to), and
Vagrant (for local testing).

When we deploy to production, we want the entire system to respond quickly and be
reliable, so we do the following:
 Run the web application on multiple hosts for better performance and put a load
balancer in front of them.
 Run task queue servers on multiple hosts for better performance.
« Put Gunicorn, Celery, RabbitMQ, and Postgres all on separate servers.

+ Use two Postgres hosts, a primary and a replica.

Assuming we have one load balancer, three web servers, three task queues, one Rab-
bitMQ server, and two database servers, that’s 10 hosts we need to deal with.

52 | Chapter3:Inventory: Describing Your Servers

For our staging environment, imagine that we want to use fewer hosts than we do in
production in order to save costs, especially since the staging environment is going to
see a lot less activity than production. Let’s say we decide to use only two hosts for
staging; we'll put the web server and task queue on one staging host, and RabbitMQ
and Postgres on the other.

For our local Vagrant environment, we decide to use three servers: one for the web
app, one for a task queue, and one that will contain RabbitMQ and Postgres.

Example 3-4 shows a possible inventory file that groups our servers by environment
(production, staging, Vagrant) and by function (web server, task queue, etc.).

Example 3-4. Inventory file for deploying a Django app

[production]
delaware.example.com
georgia.example.com
maryland.example.com
newhampshire.example.com
newjersey.example.com
newyork.example.com
northcarolina.example.com
pennsylvania.example.com
rhodeisland.example.com
virginia.example.com

[staging]
ontario.example.com
quebec.example.com

[vagrant]

vagrantl ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

[lb]
delaware.example.com

[web]
georgia.example.com
newhampshire.example.com
newjersey.example.com
ontario.example.com
vagrantl

[task]
newyork.example.com
northcarolina.example.com
maryland.example.com
ontario.example.com

Groups and Groups and Groups | 53

vagrant2

[rabbitmq]
pennsylvania.example.com
quebec.example.com
vagrant3

[db]
rhodeisland.example.com
virginia.example.com
quebec.example.com
vagrant3

We could have first listed all of the servers at the top of the inventory file, without
specifying a group, but that isn't necessary, and that would’'ve made this file even
longer.

Note that we needed to specify the behavioral inventory parameters for the Vagrant
instances only once.

Aliases and Ports
We described our Vagrant hosts like this:

[vagrant]

vagrantl ansible_host=127.0.0.1 ansible_port=2222

vagrant2 ansible_host=127.0.0.1 ansible_port=2200

vagrant3 ansible_host=127.0.0.1 ansible_port=2201
The names vagranti, vagrant2, and vagrant3 here are aliases. They are not the real
hostnames, but instead are useful names for referring to these hosts.

Ansible supports using <hostname>:<port> syntax when specifying hosts, so we
could replace the line that contains vagrantl with 127.0.0.1:2222. However, we
can’t actually run what you see in Example 3-5.

Example 3-5. This doesn’t work

[vagrant]

127.0.0.1:2222
127.0.0.1:2200
127.0.0.1:2201

The reason is that Ansible’s inventory can associate only a single host with 127.0.0.1,
so the Vagrant group would contain only one host instead of three.

54 | Chapter3: Inventory: Describing Your Servers

Groups of Groups

Ansible also allows you to define groups that are made up of other groups. For exam-
ple, both the web servers and the task queue servers will need to have Django and its
dependencies. We might find it useful to define a django group that contains both of
these two groups. You would add this to the inventory file:

[django:children]

web
task

Note that the syntax changes when you are specifying a group of groups, as opposed
to a group of hosts. Thats so Ansible knows to interpret web and task as groups and
not as hosts.

Numbered Hosts (Pets versus Cattle)

The inventory file shown in Example 3-4 looks complex. In reality, it describes only
15 hosts, which doesn’t sound like a large number in this cloudy scale-out world.
However, even dealing with 15 hosts in the inventory file can be cumbersome,
because each host has a completely different hostname.

Bill Baker of Microsoft came up with the distinction between treating servers as pets
versus treating them like cattle.! We give pets distinctive names, and we treat and care
for them as individuals. On the other hand, when we discuss cattle, we refer to them
by identification number.

The cattle approach is much more scalable, and Ansible supports it well by support-
ing numeric patterns. For example, if your 20 servers are named webl.example.com,
web2.example.com, and so on, then you can specify them in the inventory file like
this:

[web]

web[1:20].example.com
If you prefer to have a leading zero (e.g., web0l.example.com), then specify a leading
zero in the range, like this:

[web]

web[01:20].example.com
Ansible also supports using alphabetic characters to specify ranges. If you want to use
the convention web-a.example.com, web-b.example.com, and so on, for your 20
servers, then you can do this:

1 This term has been popularized by Randy Bias of Cloudscaling.

Groups and Groups and Groups | 55

http://bit.ly/1P3nHB2

[web]
web-[a-t].example.com

Hosts and Group Variables: Inside the Inventory

Recall how we specified behavioral inventory parameters for Vagrant hosts:

vagrantl ansible_host=127.0.0.1 ansible_port=2222

vagrant2 ansible_host=127.0.0.1 ansible_port=2200

vagrant3 ansible_host=127.0.0.1 ansible_port=2201
Those parameters are variables that have special meaning to Ansible. We can also
define arbitrary variable names and associated values on hosts. For example, we could
define a variable named color and set it to a value for each server:

newhampshire.example.com color=red
maryland.example.com color=green
ontario.example.com color=blue
quebec.example.com color=purple

This variable can then be used in a playbook, just like any other variable.

Personally, I don't often attach variables to specific hosts. On the other hand, I often
associate variables with groups.

Circling back to our Django example, the web application and task queue service
need to communicate with RabbitMQ and Postgres. We'll assume that access to the
Postgres database is secured both at the network layer (so only the web application
and the task queue can reach the database) as well as by username and password,
whereas RabbitMQ is secured only by the network layer.

To set everything up, we need to do the following:

» Configure the web servers with the hostname, port, username, password of the
primary Postgres server, and name of the database.

 Configure the task queues with the hostname, port, username, password of the
primary Postgres server, and the name of the database.

« Configure the web servers with the hostname and port of the RabbitMQ server.
o Configure the task queues with the hostname and port of the RabbitMQ server.

« Configure the primary Postgres server with the hostname, port, and username
and password of the replica Postgres server (production only).

This configuration info varies by environment, so it makes sense to define these as
group variables on the production, staging, and Vagrant groups. Example 3-6 shows
one way to specify this information as group variables in the inventory file.

56 | Chapter3: Inventory: Describing Your Servers

Example 3-6. Specifying group variables in inventory

[all:vars]
ntp_server=ntp.ubuntu.com

[production:vars]
db_primary_host=rhodeisland.example.com
db_primary_port=5432
db_replica_host=virginia.example.com
db_name=widget_production
db_user=widgetuser
db_password=pFmMxcyD;Fc6)6
rabbitmg_host=pennsylvania.example.com
rabbitmg_port=5672

[staging:vars]
db_primary_host=quebec.example.com
db_primary_port=5432
db_name=widget_staging
db_user=widgetuser
db_password=L@4Ryz8cRUXedj
rabbitmg_host=quebec.example.com
rabbitmg_port=5672

[vagrant:vars]
db_primary_host=vagrant3
db_primary_port=5432
db_name=widget_vagrant
db_user=widgetuser
db_password=password
rabbitmg_host=vagrant3
rabbitmg_port=5672

Note how group variables are organized into sections named [<group name>:vars].
Also note how we took advantage of the all group that Ansible creates automatically
to specify variables that don’t change across hosts.

Host and Group Variables: In Their Own Files

The inventory file is a reasonable place to put host and group variables if you don't
have too many hosts. But as your inventory gets larger, it gets more difficult to man-
age variables this way.

Additionally, though Ansible variables can hold Booleans, strings, lists, and dictionar-
ies, in an inventory file, you can specify only Booleans and strings.

Ansible offers a more scalable approach to keep track of host and group variables:
you can create a separate variable file for each host and each group. Ansible expects
these variable files to be in YAML format.

Host and Group Variables: In Their Own Files | 57

Ansible looks for host variable files in a directory called host_vars and group variable
files in a directory called group_vars. Ansible expects these directories to be either in
the directory that contains your playbooks or in the directory adjacent to your inven-
tory file. In our case, those two directories are the same.

For example, if I had a directory containing my playbooks at /home/lorin/playbooks/
with an inventory file at /home/lorin/playbooks/hosts, then I would put variables for
the quebec.example.com host in the file /home/lorin/playbooks/host_vars/quebec.exam-
ple.com, and I would put variables for the production group in the file /home/lorin/
playbooks/group_vars/production.

Example 3-7 shows what the /home/lorin/playbooks/group_vars/production file would
look like.

Example 3-7. group_vars/production

db_primary_host: rhodeisland.example.com
db_primary_port=5432

db_replica_host: virginia.example.com
db_name: widget_production

db_user: widgetuser

db_password: pFmMxcyD;Fc6)6
rabbitmg_host:pennsylvania.example.com
rabbitmg_port=5672

Note that we could also use YAML dictionaries to represent these values, as shown in
Example 3-8.

Example 3-8. group_vars/production, with dictionaries

db:

user: widgetuser

password: pFmMxcyD;Fc6)6

name: widget_production

primary:
host: rhodeisland.example.com
port: 5432

replica:
host: virginia.example.com
port: 5432

rabbitmqg:
host: pennsylvania.example.com

port: 5672

If we choose YAML dictionaries, that changes the way we access the variables:

{{ db_primary_host }}

58 | Chapter3: Inventory: Describing Your Servers

versus:
{{ db.primary.host }}

If you want to break things out even further, Ansible will allow you to define
group_vars/production as a directory instead of a file, and let you place multiple
YAML files that contain variable definitions. For example, we could put the database-
related variables in one file and the RabbitMQ-related variables in another file, as
shown in Examples 3-9 and 3-10.

Example 3-9. group_vars/production/db

db:

user: widgetuser

password: pFmMxcyD;Fc6)6

name: widget_production

primary:
host: rhodeisland.example.com
port: 5432

replica:
host: virginia.example.com
port: 5432

Example 3-10. group_vars/production/rabbitmq

rabbitmq:
host: pennsylvania.example.com
port: 6379

In general, I find it’s better to keep things simple rather than split variables out across
too many files.

Dynamic Inventory

Up until this point, we've been explicitly specifying all of our hosts in our hosts inven-
tory file. However, you might have a system external to Ansible that keeps track of
your hosts. For example, if your hosts run on Amazon EC2, then EC2 tracks informa-
tion about your hosts for you, and you can retrieve this information through EC2’s
web interface, its Query API, or through command-line tools such as awscli. Other
cloud providers have similar interfaces. Or, if youre managing your own servers and
are using an automated provisioning system such as Cobbler or Ubuntu Metal as a
Service (MAAS), then your provisioning system is already keeping track of your
servers. Or, maybe you have one of those fancy configuration management databases
(CMDBs) where all of this information lives.

You don’t want to manually duplicate this information in your hosts file, because
eventually that file will not jibe with your external system, which is the true source of

Dynamic Inventory | 59

information about your hosts. Ansible supports a feature called dynamic inventory
that allows you to avoid this duplication.

If the inventory file is marked executable, Ansible will assume it is a dynamic inven-
tory script and will execute the file instead of reading it.

To mark a file as executable, use the chmod +x command. For
example:

$ chmod +x dynamic.py

The Interface for a Dynamic Inventory Script

An Ansible dynamic inventory script must support two command-line flags:

o --host=<hostname> for showing host details

o --list for listing groups

Showing host details
To get the details of the individual host, Ansible will call the inventory script like this:
$./dynamic.py --host=vagrant2

The output should contain any host-specific variables, including behavioral parame-
ters, like this:

{ "ansible_host": "127.0.0.1", "ansible_port": 2200,
"ansible_user": "vagrant"}

The output is a single JSON object; the names are variable names, and the values are
the variable values.

Listing groups

Dynamic inventory scripts need to be able to list all of the groups, and details about
the individual hosts. For example, if our script is called dynamic.py, Ansible will call it
like this to get a list of all of the groups:

$./dynamic.py --list
The output should look something like this:

{"production": ["delaware.example.com", "georgia.example.com",
"maryland.example.com", "newhampshire.example.com",
"newjersey.example.com", "newyork.example.com",
"northcarolina.example.com", "pennsylvania.example.com",
"rhodeisland.example.com", "virginia.example.com"],

"staging": ["ontario.example.com", "quebec.example.com"],

60 | Chapter3: Inventory: Describing Your Servers

"vagrant": ["vagrantl", "vagrant2", "vagrant3"],

"lb": ["delaware.example.com"],

"web": ["georgia.example.com", "newhampshire.example.com",
"newjersey.example.com", "ontario.example.com", "vagranti"]

"task": ["newyork.example.com", "northcarolina.example.com",
"ontario.example.com", "vagrant2"],

"rabbitmq": ["pennsylvania.example.com", "quebec.example.com", "vagrant3"],

"db": ["rhodeisland.example.com", "virginia.example.com", "vagrant3"]

}

The output is a single JSON object; the names are Ansible group names, and the val-
ues are arrays of hostnames.

As an optimization, the - -1ist command can contain the values of the host variables
for all of the hosts, which saves Ansible the trouble of making a separate - -host invo-
cation to retrieve the variables for the individual hosts.

To take advantage of this optimization, the --1ist command should return a key
named _meta that contains the variables for each host, in this form:

_meta" :
{ "hostvars" :
"vagrantl" : { "ansible_host": "127.0.0.1", "ansible_port": 2222,

"ansible_user": "vagrant"},
"vagrant2": { "ansible_host": "127.0.0.1", "ansible_port": 2200,
"ansible_user": "vagrant"},

}

Writing a Dynamic Inventory Script

One of the handy features of Vagrant is that you can see which machines are cur-
rently running by using the vagrant status command. Assuming we have a Vagrant
file that looks like Example 3-2, if we run vagrant status, the output would look like
Example 3-11.

Example 3-11. Output of vagrant status

$ vagrant status
Current machine states:

vagrantil running (virtualbox)
vagrant2 running (virtualbox)
vagrant3 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run ‘vagrant status NAME'.

Dynamic Inventory | 61

Because Vagrant already keeps track of machines for us, there’s no need for us to
write a list of the Vagrant machines in an Ansible inventory file. Instead, we can write
a dynamic inventory script that queries Vagrant about which machines are running.
Once we've set up a dynamic inventory script for Vagrant, even if we alter our
Vagrantfile to run different numbers of Vagrant machines, we won't need to edit an
Ansible inventory file.

Let’s work through an example of creating a dynamic inventory script that retrieves
the details about hosts from Vagrant.? Our dynamic inventory script is going to need
to invoke the vagrant status command. The output shown in Example 3-11 is
designed for humans to read, rather than for machines to parse. We can get a list of
running hosts in a format that is easier to parse with the --machine-readable flag,
like so:

$ vagrant status --machine-readable
The output looks like this:

1474694768 ,vagrantl,metadata,provider,virtualbox

1474694768 ,vagrant2,metadata,provider,virtualbox

1474694768 ,vagrant3,metadata,provider,virtualbox
1410577818,vagrantl,state,running

1410577818,vagrantl,state-human-short,running
1410577818,vagrantl,state-human-long,The VM is running. To stop this VM%!(VAGRANT
_COMMA) you can run ‘vagrant halt® to\nshut it down forcefully%!(VAGRANT_COMMA)
or you can run ‘vagrant suspend’ to simply\nsuspend the virtual machine. In
either case%!(VAGRANT_COMMA) to restart it again%!(VAGRANT_COMMA)\nsimply run
‘vagrant up'.

1410577818,vagrant2,state, running

1410577818,vagrant2,state-human-short,running
1410577818,vagrant2,state-human-long,The VM is running. To stop this VM%!(VAGRANT
_COMMA) you can run ‘vagrant halt® to\nshut it down forcefully%!(VAGRANT_COMMA)
or you can run ‘vagrant suspend’ to simply\nsuspend the virtual machine. In
either case%!(VAGRANT_COMMA) to restart it again%!(VAGRANT_COMMA)\nsimply run
‘vagrant up”.

1410577818,vagrant3,state,running

1410577818,vagrant3,state-human-short,running
1410577818,vagrant3,state-human-long,The VM is running. To stop this VM%!(VAGRANT
_COMMA) you can run ‘vagrant halt® to\nshut it down forcefully%!(VAGRANT_COMMA)
or you can run ‘vagrant suspend’ to simply\nsuspend the virtual machine. In
either case%!(VAGRANT_COMMA) to restart it again%!(VAGRANT_COMMA)\nsimply

run ‘vagrant up’.

To get details about a particular Vagrant machine, say, vagrant2, we would run this:

$ vagrant ssh-config vagrant2

2 Yes, there’s a Vagrant dynamic inventory script included with Ansible already, but it’s helpful to go through
the exercise.

62 | Chapter3: Inventory: Describing Your Servers

The output looks like this:

Host vagrant2
HostName 127.0.0.1
User vagrant
Port 2200
UserKnownHostsFile /dev/null
StrictHostKeyChecking no
PasswordAuthentication no
IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LogLevel FATAL

Our dynamic inventory script will need to call these commands, parse the outputs,
and output the appropriate JSON. We can use the Paramiko library to parse the out-
put of vagrant ssh-config. Here’s an interactive Python session that shows how to
use the Paramiko library to do this:

>>> import subprocess

>>> import paramiko

>>> cmd = "vagrant ssh-config vagrant2"

>>> p = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)

>>> config = paramiko.SSHConfig()

>>> config.parse(p.stdout)

>>> config.lookup("vagrant2")

{'identityfile': ['/Users/lorin/.vagrant.d/insecure_private_key'],
'loglevel': 'FATAL', 'hostname': '127.0.0.1', 'passwordauthentication': 'no',
'identitiesonly': 'yes', 'userknownhostsfile': '/dev/null', 'user': 'vagrant',
'stricthostkeychecking': 'no', 'port': '2200'}

You need to install the Python Paramiko library in order to use this
script. You can do this with pip:

$ sudo pip install paramiko

Example 3-12 shows our complete vagrant.py script.

Example 3-12. vagrant.py

#!/usr/bin/env python

Adapted from Mark Mandel's implementation

https://github.com/ansible/ansible/blob/stable-2.1/contrib/inventory/vagrant.py
License: GNU General Public License, Version 3 <http://www.gnu.org/licenses/>
import argparse

import json

import paramiko

import subprocess

import sys

Dynamic Inventory | 63

def parse_args():
parser = argparse.ArgumentParser(description="Vagrant inventory script")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--1list', action='store_true')
group.add_argument('--host")
return parser.parse_args()

def list_running_hosts():

cmd = "vagrant status --machine-readable"”
status = subprocess.check_output(cmd.split()).rstrip()
hosts = []

for line in status.split('\n'):
(_, host, key, value) = line.split(',"')[:4]
if key == 'state' and value == 'running':
hosts.append(host)
return hosts

def get_host_details(host):

cmd = "vagrant ssh-config {}".format(host)

p = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)

config = paramiko.SSHConfig()

config.parse(p.stdout)

c = config.lookup(host)

return {'ansible_host': c['hostname'],
'ansible_port': c['port'],
'ansible_user': c['user'],
'ansible_private_key_file': c['identityfile'][0]}

def main():
args = parse_args()
if args.list:
hosts = list_running_hosts()
json.dump({'vagrant': hosts}, sys.stdout)
else:
details = get_host_details(args.host)
json.dump(details, sys.stdout)
if __pame__ == '__main__
main()

Preexisting Inventory Scripts

Ansible ships with several dynamic inventory scripts that you can use. I can never fig-
ure out where my package manager installs these files, so I just grab the ones I need
directly off GitHub. You can grab these by going to the Ansible GitHub repo and
browsing to the contrib/inventory directory.

64 | Chapter3:Inventory: Describing Your Servers

https://github.com/ansible/ansible

Many of these inventory scripts have an accompanying configuration file. In Chap-
ter 14, we'll discuss the Amazon EC2 inventory script in more detail.

Breaking the Inventory into Multiple Files

If you want to have both a regular inventory file and a dynamic inventory script (or,
really, any combination of static and dynamic inventory files), just put them all in the
same directory and configure Ansible to use that directory as the inventory. You can
do this either via the inventory parameter in ansible.cfg or by using the -1 flag on the
command line. Ansible will process all of the files and merge the results into a single
inventory.

For example, our directory structure could look like this: inventory/hosts and inven-
tory/vagrant.py.

Our ansible.cfg file would contain these lines:
[defaults]

inventory = inventory

Adding Entries at Runtime with add_host and group_by

Ansible will let you add hosts and groups to the inventory during the execution of a
playbook.

add_host

The add_host module adds a host to the inventory. This module is useful if youre
using Ansible to provision new virtual machine instances inside an infrastructure-as-
a-service cloud.

Why Do | Need add_host if 'm Using Dynamic Inventory?

Even if you're using dynamic inventory scripts, the add_host module is useful for sce-
narios where you start up new virtual machine instances and configure those instan-
ces in the same playbook.

If a new host comes online while a playbook is executing, the dynamic inventory
script will not pick up this new host. This is because the dynamic inventory script is
executed at the beginning of the playbook, so if any new hosts are added while the
playbook is executing, Ansible won’t see them.

WEe'll cover a cloud computing example that uses the add_host module in Chapter 14.

Invoking the module looks like this:

Breaking the Inventory into Multiple Files | 65

add_host name=hostname groups=web,staging myvar=myval
Specifying the list of groups and additional variables is optional.

Here’s the add_host command in action, bringing up a new Vagrant machine and
then configuring the machine:

- name: Provision a vagrant machine
hosts: localhost
vars:
box: trusty64
tasks:
- name: create a Vagrantfile
command: vagrant init {{ box }} creates=Vagrantfile

- name: Bring up a vagrant machine
command: vagrant up

- name: add the vagrant machine to the inventory
add_host: >

name=vagrant
ansible_host=127.0.0.1
ansible_port=2222
ansible_user=vagrant
ansible_private_key_file=/Users/lorin/.vagrant.d/
insecure_private_key

- name: Do something to the vagrant machine
hosts: vagrant
become: yes
tasks:
The list of tasks would go here

The add_host module adds the host only for the duration of the
execution of the playbook. It does not modify your inventory file.

When I do provisioning inside my playbooks, I like to split it into two plays. The first
play runs against localhost and provisions the hosts, and the second play configures
the hosts.

Note that we use the creates=Vagrantfile parameter in this task:

- name: create a Vagrantfile
command: vagrant init {{ box }} creates=Vagrantfile

This tells Ansible that if the Vagrantfile file is present, the host is already in the cor-
rect state, and there is no need to run the command again. It’s a way of achieving

66 | Chapter3: Inventory: Describing Your Servers

idempotence in a playbook that invokes the command module, by ensuring that the
(potentially nonidempotent) command is run only once.

group_hy

Ansible also allows you to create new groups during execution of a playbook, using
the group_by module. This lets you create a group based on the value of a variable
that has been set on each host, which Ansible refers to as a fact.’

If Ansible fact gathering is enabled, Ansible will associate a set of variables with a
host. For example, the ansible_machine variable will be 1386 for 32-bit x86
machines and x86_64 for 64-bit x86 machines. If Ansible is interacting with a mix of
such hosts, we can create 1386 and x86_64 groups with the task.

Or, if we want to group our hosts by Linux distribution (e.g., Ubuntu, CentOS), we
can use the ansible_distribution fact:

- name: create groups based on Linux distribution
group_by: key={{ ansible_distribution }}

In Example 3-13, we use group_by to create separate groups for our Ubuntu hosts
and our CentOS hosts, and then we use the apt module to install packages onto
Ubuntu and the yum module to install packages into CentOS.

Example 3-13. Creating ad hoc groups based on Linux distribution

- name: group hosts by distribution
hosts: myhosts
gather_facts: True
tasks:
- name: create groups based on distro
group_by: key={{ ansible_distribution }}

- name: do something to Ubuntu hosts
hosts: Ubuntu
tasks:
- name: install htop
apt: name=htop
...

- name: do something else to CentOS hosts
hosts: Cent0S
tasks:
- name: install htop
yum: name=htop
...

w

We cover facts in more detail in Chapter 4.

Adding Entries at Runtime with add_host and group_by | 67

Although using group_by is one way to achieve conditional behavior in Ansible, I've
never found much use for it. In Chapter 6, you’ll see an example of how to use the
when task parameter to take different actions based on variables.

That about does it for Ansible’s inventory. The next chapter covers how to use vari-
ables. See Chapter 11 for more details about ControlPersist, also known as SSH multi-
plexing.

68 | Chapter3: Inventory: Describing Your Servers

CHAPTER 4
Variables and Facts

Ansible is not a full-fledged programming language, but it does have several pro-
gramming language features, and one of the most important of these is variable sub-
stitution. This chapter presents Ansible’s support for variables in more detail,
including a certain type of variable that Ansible calls a fact.

Defining Variables in Playbooks

The simplest way to define variables is to put a vars section in your playbook with
the names and values of variables. Recall from Example 2-8 that we used this
approach to define several configuration-related variables, like this:

vars:
key_file: /etc/nginx/ssl/nginx.key
cert_file: /etc/nginx/ssl/nginx.crt
conf_file: /etc/nginx/sites-available/default
server_name: localhost

Ansible also allows you to put variables into one or more files, using a section called
vars_files. Let’s say we want to take the preceding example and put the variables in
a file named nginx.yml instead of putting them right in the playbook. We would
replace the vars section with a vars_f1iles that looks like this:

vars_files:
- nginx.yml

The nginx.yml file would look like Example 4-1.

69

Example 4-1. nginx.yml

key_file: /etc/nginx/ssl/nginx.key

cert_file: /etc/nginx/ssl/nginx.crt
conf_file: /etc/nginx/sites-available/default
server_name: localhost

You’ll see an example of vars_files in action in Chapter 6 when we use it to separate
out the variables that contain sensitive information.

As we discussed in Chapter 3, Ansible also lets you define variables associated with
hosts or groups in the inventory file or in separate files that live alongside the inven-
tory file.

Viewing the Values of Variables

For debugging, it’s often handy to be able to view the output of a variable. You saw in
Chapter 2 how to use the debug module to print out an arbitrary message. We can
also use it to output the value of the variable. It works like this:

- debug: var=myvarname

We'll be using this form of the debug module several times in this chapter.

Registering Variables

Often, you'll find that you need to set the value of a variable based on the result of a
task. To do so, we create a registered variable using the register clause when invok-
ing a module. Example 4-2 shows how to capture the output of the whoami command
to a variable named login.

Example 4-2. Capturing the output of a command to a variable

- name: capture output of whoami command
command: whoami
register: login

In order to use the login variable later, we need to know the type of value to expect.
The value of a variable set using the register clause is always a dictionary, but the
specific keys of the dictionary are different, depending on the module that was
invoked.

Unfortunately, the official Ansible module documentation doesn’t contain informa-
tion about what the return values look like for each module. The module docs do
often contain examples that use the register clause, which can be helpful. I've found

70 | Chapter4:Variables and Facts

the simplest way to find out what a module returns is to register a variable and then
output that variable with the debug module.

Let’s say we run the playbook shown in Example 4-3.

Example 4-3. whoami.yml

- name: show return value of command module
hosts: serveril
tasks:
- name: capture output of id command
command: id -un
register: login
- debug: var=login

The output of the debug module looks like this:

TASK: [debug Var:login] EE
ok: [serverl] => {
"login": {
" " 1)
changed": true,
"emd": [(2]
"id",

1,
"delta": "0:00:00.002180",

"end": "2015-01-11 15:57:19.193699",
"{nvocation": {

"module_args": "id -un",
"module_name": "command"
1,
"rc": 0, (3]

"start": "2015-01-11 15:57:19.191519",
"stderr": "", (4]
"stdout": "vagrant", (5)
"stdout_lines": [(6]

"vagrant"

1

"warnings": []
}

©® The changed key is present in the return value of all Ansible modules, and Ansi-
ble uses it to determine whether a state change has occurred. For the command
and shell module, this will always be set to true unless overridden with the
changed_when clause, which we cover in Chapter 8.

® The cmd key contains the invoked command as a list of strings.

Registering Variables | 71

©® Therc key contains the return code. If it is nonzero, Ansible will assume the task
failed to execute.

O The stderr key contains any text written to standard error, as a single string.
© The stdout key contains any text written to standard out, as a single string.

O The stdout_lines key contains any text written to split by newline. It is a list,
and each element of the list is a line of output.

If you're using the register clause with the command module, you'll likely want access
to the stdout key, as shown in Example 4-4.

Example 4-4. Using the output of a command in a task

- name: capture output of id command
command: id -un
register: login
- debug: msg="Logged in as user {{ login.stdout }}"

Sometimes it’s useful to do something with the output of a failed task. However, if
the task fails, Ansible will stop executing tasks for the failed host. We can use the
ignore_errors clause, as shown in Example 4-5, so Ansible does not stop on the
error.

Example 4-5. Ignoring when a module returns an error

- name: Run myprog
command: /opt/myprog
register: result
ignore_errors: True

- debug: var=result

The shell module has the same output structure as the command module, but other
modules contain different keys. Example 4-6 shows the output of the apt module
when installing a package that wasn’t present before.

Example 4-6. Output of apt module when installing a new package

ok: [server1l] => {
"result": {
"changed": true,
"{nvocation": {
"module_args": "name=nginx",
"module_name": "apt"

1

72 | Chapter4: Variables and Facts

"stderr":
"stdout": "Reading package lists...\nBuilding dependency tree...",
"stdout_lines": [

"Reading package lists...",

"Building dependency tree...",

"Reading state information...",

"Preparing to unpack .../nginx-common_1.4.6-1ubuntu3.1_all.deb ...",
"Setting up nginx-core (1.4.6-1ubuntu3.1) ...",

"Setting up nginx (1.4.6-1ubuntu3.1) ...",

"Processing triggers for libc-bin (2.19-Oubuntu6.3) ..."

Accessing Dictionary Keys in a Variable

If a variable contains a dictionary, you can access the keys of the dictionary by using
either a dot (.) or a subscript ([]). Example 4-4 has a variable reference that uses dot
notation:

{{ login.stdout }}
We could have used subscript notation instead:
{{ login['stdout'] }}
This rule applies to multiple dereferences, so all of the following are equivalent:

ansible_eth1['ipv4']['address']
ansible_eth1['ipv4'].address
ansible_eth1.ipv4['address']
ansible_eth1l.ipv4.address

I generally prefer dot notation, unless the key is a string that contains a character
that’s not allowed as a variable name, such as a dot, space, or hyphen.

Ansible uses Jinja2 to implement variable dereferencing, so for more details on this
topic, see the Jinja2 documentation on variables.

Example 4-7 shows the output of the apt module when the package is already present
on the host.

Example 4-7. Output of apt module when package already present

ok: [serverl] => {
"result": {
"changed": false,
"{invocation": {
"module_args": "name=nginx",

Registering Variables | 73

http://jinja.pocoo.org/docs/dev/templates/#variables

"module_name": "apt"

}

Note that the stdout, stderr, and stdout_lines keys are present in the output only
when the package was not previously installed.

If your playbooks use registered variables, make sure you know the
content of those variables, both for cases where the module
changes the host’s state and for when the module doesn't change

\ the host’s state. Otherwise, your playbook might fail when it tries to
access a key in a registered variable that doesn't exist.

Facts

As you've already seen, when Ansible runs a playbook, before the first task runs, this
happens:

GATHERING FACTS kkkkhkkkhkhkhkhkkhhkhkhhhhhkhkkhkhkhkhkkhhkhkhkkhkhkhkkhkhkhkhkkkkk

ok: [servername]

When Ansible gathers facts, it connects to the host and queries it for all kinds of
details about the host: CPU architecture, operating system, IP addresses, memory
info, disk info, and more. This information is stored in variables that are called facts,
and they behave just like any other variable.

Here’s a simple playbook that prints out the operating system of each server:

- name: print out operating system
hosts: all
gather_facts: True
tasks:
- debug: var=ansible_distribution

Here’s what the output looks like for servers running Ubuntu and CentOS:

PLAY [print Out Operating System] dhhkhhhhkhhhhhhhhhhdhhhhhdrhhhhddrhhhhdrdhdhrrrdd

GATHERING FACTS dhhkhhhkkhhhhhhhhhhhhhhhhhhhdhdrhhdhhrhdhhrhddhrrhddrrdrdddhrrddird

ok: [serveri]
ok: [server2]

TASK: [debug var=ansible_distribution] ###*%xsskskkmoddkthdhdhkdhddthhhdrsshdnss
ok: [serverl] => {
"ansible_distribution": "Ubuntu"
}
ok: [server2] => {
"ansible_distribution": "Cent0S"

}

74 | Chapter4:Variables and Facts

pLAY RECAP R o o o L o o o o
serverl . ok=2 changed=0 unreachable=0 failed=0
server2 . ok=2 changed=0 unreachable=0 failed=0
You can consult the official Ansible documentation for a list of some of the available
facts. I maintain a more comprehensive list of facts on GitHub.

Viewing All Facts Associated with a Server

Ansible implements fact collecting through the use of a special module called the
setup module. You don’t need to call this module in your playbooks because Ansible
does that automatically when it gathers facts. However, if you invoke it manually with
the ansible command-line tool, like this:

$ ansible serverl -m setup

then Ansible will output all of the facts, as shown in Example 4-8.

Example 4-8. Output of setup module

serverl | success >> {
"ansible_facts": {
"ansible_all_ipv4_addresses": [
"10.0.2.15",
"192.168.4.10"
]J

"ansible_all_ipv6_addresses": [
"fe80::a00:27ff:fefe:1e4d",
"fe80::a200:27ff:fe67:bbf3"

]J

(many more facts)

Note that the returned value is a dictionary whose key is ansible_facts and whose
value is a dictionary that contains the name and value of the actual facts.

Viewing a Subset of Facts

Because Ansible collects many facts, the setup module supports a filter parameter
that lets you filter by fact name by specifying a glob.! For example:

$ ansible web -m setup -a 'filter=ansible_eth*'
The output looks like this:

web | success >> {
"ansible_facts": {

1 A glob is what shells use to match file patterns (e.g., *. txt).

Facts | 75

http://bit.ly/1G9pVfx
http://bit.ly/1G9pX7a

"ansible_eth0": {
"active": true,
"device": "etho",
"{pva": {
"address": "10.0.2.15",
"netmask": "255.255.255.0",
"network": "10.0.2.0"

1,
"{pve": [
{
"address": "fe80::a00:27ff:fefe:1e4d",
"prefix": "64",
"scope": "link"
}
1,

"macaddress": "08:00:27:fe:1e:4d",
"module": "e1000",
"mtu": 1500,
"promisc": false,
"type": "ether"
1,
"ansible_eth1": {
"active": true,
"device": "eth1",
"{pv4": {
"address": "192.168.33.10",
"netmask": "255.255.255.0",
"network": "192.168.33.0"

1,
"i{pve": [
{
"address": "fe80::a00:27ff:fe23:ae8e",
"prefix": "64",
"scope": "link"
}
]

"macaddress": "08:00:27:23:ae:8e",
"module": "e1000",
"mtu": 1500,
"promisc": false,
"type": "ether"
}
1,

"changed": false

}

Any Module Can Return Facts

If you look closely at Example 4-8, you’ll see that the output is a dictionary whose key
is ansible_facts. The use of ansible_facts in the return value is an Ansible idiom.
If a module returns a dictionary that contains ansible_facts as a key, Ansible will

76 | Chapter4:Variables and Facts

create variable names in the environment with those values and associate them with
the active host.

For modules that return facts, there’s no need to register variables, since Ansible cre-
ates these variables for you automatically. For example, the following tasks use the
ec2_facts module to retrieve Amazon EC2?* facts about a server and then print out
the instance ID:

- name: get ec2 facts
ec2_facts:

- debug: var=ansible_ec2_instance_id
The output looks like this.

TASK: [debug Var:ansible ecz -'Lnstance -'Ld] khkkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkkhkkhkkkkkx
ok: [myserver] => {
"ansible_ec2_instance_id": "i-a3a2f866"

}

Note that we do not need to use the register keyword when invoking ec2_facts,
since the returned values are facts. Several modules ship with Ansible that return
facts. You'll see another one of them, the docker module, in Chapter 15.

Local Facts

Ansible provides an additional mechanism for associating facts with a host. You can
place one or more files on the remote host machine in the /etc/ansible/facts.d direc-
tory. Ansible will recognize the file if it’s any of the following:

« In .ini format
o In JSON format

 An executable that takes no arguments and outputs JSON on standard out

These facts are available as keys of a special variable named ansible_local.

For instance, Example 4-9 shows a fact file in .ini format.

Example 4-9. /etc/ansible/facts.d/example.fact

[book]

title=Ansible: Up and Running
author=Lorin Hochstein
publisher=0'Reilly Media

2 We'll cover Amazon EC2 in more detail in Chapter 14.

Fats | 77

If we copy this file to /etc/ansible/facts.d/example.fact on the remote host, we can
access the contents of the ansible_local variable in a playbook:

- name: print ansible_local
debug: var=ansible_local
- name: print book title
debug: msg="The title of the book is {{ ansible_local.example.book.title }}"

The output of these tasks looks like this:

TASK: [print ansible_local] #¥wxxksksssddddddihkthhmhmdohdhddddhntthssmddhdhk
ok: [serverl] => {
"ansible_local": {
"example": {
"book": {
"author": "Lorin Hochstein",
"publisher": "O'Reilly Media",
"title": "Ansible: Up and Running"

}

TASK: [print book title] kkkkkhkhkkkkhkhkhkkkhkhkhkkkhhkhkkhhhkhkkhkhkhkhkkhkhkhkhkkkhkhkhkkkkkkkx

ok: [serverl] => {

msg": "The title of the book is Ansible: Up and Running"
}
Note the structure of value in the ansible_local variable. Because the fact file is
named example.fact, the ansible_local variable is a dictionary that contains a key
named example.

Using set_fact to Define a New Variable

Ansible also allows you to set a fact (effectively the same as defining a new variable)
in a task by using the set_fact module. I often like to use set_fact immediately
after register to make it simpler to refer to a variable. Example 4-10 demonstrates
how to use set_fact so that a variable can be referred to as snap instead of
snap_result.stdout.

Example 4-10. Using set_fact to simplify variable reference

- name: get snapshot id
shell: >
aws ec2 describe-snapshots --filters
Name=tag:Name,Values=my-snapshot
| jg --raw-output ".Snapshots[].SnapshotId"
register: snap_result

- set_fact: snap={{ snap_result.stdout }}

78 | Chapter4: Variables and Facts

- name: delete old snapshot
command: aws ec2 delete-snapshot --snapshot-id "{{ snap }}"

Built-in Variables

Ansible defines several variables that are always available in a playbook; some of these
variables are shown in Table 4-1.

Table 4-1. Built-in variables

Parameter Description

hostvars A dict whose keys are Ansible hostnames and values are dicts that map variable names to
values

inventory_hostname Fully qualified domain name of the current host as known by Ansible (e.g., myhost.exam
ple.com)

inventory_hostname_short Name of the current host as known by Ansible, without the domain name (e.g., myhost)
group_names Alist of all groups that the current host is a member of

groups A dict whose keys are Ansible group names and values are a list of hostnames that are members
of the group. Includes a1l and ungrouped groups: {"all": [..], "web": [..],
"ungrouped": [..]}

ansible_check_mode A boolean that is true when running in check mode (see “Check Mode” on page 313)

ansible_play_batch A list of the inventory hostnames that are active in the current batch (see “Running on a Batch
of Hosts at a Time” on page 175)

ansible_play_hosts Alist of all of the inventory hostnames that are active in the current play

ansible_version A dict with Ansible version info: {"full": 2.3.1.0", "major": 2, "minor":
3, "revision": 1, "string": "2.3.1.0"}

The hostvars, inventory_hostname, and groups variables merit some additional dis-
cussion.

hostvars

In Ansible, variables are scoped by host. It only makes sense to talk about the value of
a variable relative to a given host.

The idea that variables are relative to a given host might sound confusing, since Ansi-
ble allows you to define variables on a group of hosts. For example, if you define a
variable in the vars section of a play, you are defining the variable for the set of hosts
in the play. But what Ansible is really doing is creating a copy of that variable for each
host in the group.

Sometimes, a task that’s running on one host needs the value of a variable defined on
another host. Say you need to create a configuration file on web servers that contains
the IP address of the ethl interface of the database server, and you dont know in

Built-in Variables | 79

advance what this IP address is. This IP address is available as the ansi-
ble_ethl.ipv4.address fact for the database server.

The solution is to use the hostvars variable. This is a dictionary that contains all of
the variables defined on all of the hosts, keyed by the hostname as known to Ansible.
If Ansible has not yet gathered facts on a host, you will not be able to access its facts
by using the hostvars variable, unless fact caching is enabled.?

Continuing our example, if our database server is db.example.com, then we could put
the following in a configuration template:

{{ hostvars['db.example.com'].ansible_eth1.ipv4.address }}

This evaluates to the ansible_ethl.ipv4.address fact associated with the host named
db.example.com.

inventory_hostname

The inventory_hostname is the hostname of the current host, as known by Ansible.
If you have defined an alias for a host, this is the alias name. For example, if your
inventory contains a line like this:

serverl ansible_host=192.168.4.10
then inventory_hostname would be serveri.

You can output all of the variables associated with the current host with the help of
the hostvars and inventory_hostname variables:

- debug: var=hostvars[inventory_hostname]

Groups

The groups variable can be useful when you need to access variables for a group of
hosts. Let’s say we are configuring a load-balancing host, and our configuration file
needs the IP addresses of all of the servers in our web group. Our configuration file
contains a fragment that looks like this:

backend web-backend
{% for host in groups.web %}

server {{ hostvars[host].inventory_hostname }} \

{{ hostvars[host].ansible_default_ipv4.address }}:80
{% endfor %}

3 See Chapter 11 for information about fact caching.

80 | Chapter4: Variables and Facts

The generated file looks like this:

backend web-backend
server georgia.example.com 203.0.113.15:80
server newhampshire.example.com 203.0.113.25:80
server newjersey.example.com 203.0.113.38:80

Setting Variables on the Command Line

Variables set by passing -e var=value to ansible-playbook have the highest prece-
dence, which means you can use this to override variables that are already defined.
Example 4-11 shows how to set the variable named token to the value 12345.

Example 4-11. Setting a variable from the command line
$ ansible-playbook example.yml -e token=12345

Use the ansible-playbook -e var=value method when you want to use a playbook
as you would a shell script that takes a command-line argument. The -e flag effec-
tively allows you to pass variables as arguments.

Example 4-12 shows a very simple playbook that outputs a message specified by a
variable.

Example 4-12. greet.yml

- name: pass a message on the command line
hosts: localhost
vars:
greeting: "you didn't specify a message"
tasks:
- name: output a message
debug: msg="{{ greeting }}"

If we invoke it like this:
$ ansible-playbook greet.yml -e greeting=hiya
then the output looks like this:
PLAY [pass a message on the command Line] ikttt khhdobkdohkhhdohkdkktir

TASK: [output a message] hhkkhkhkhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhkhhhhhhkhhkhhkhhhkkkkkx

ok: [localhost] => {
n n h.'Lya n

msg":

}

pLAY RECAP khkkkkhkhkkkkhkhhkkkhkhkhkkkhhkhkkhhhkhkkhhkhkhkkhkhkhkhkhkhkhkhkkhhkhkhkkkhkhkhkkkkhkhkkk*

localhost . ok=1 changed=0 unreachable=0 failed=0

Setting Variables on the Command Line | 81

If you want to put a space in the variable, you need to use quotes like this:
$ ansible-playbook greet.yml -e 'greeting="hi there"'

You have to put single quotes around the entire 'greeting="hi there"' so that the
shell interprets that as a single argument to pass to Ansible, and you have to put dou-
ble quotes around "hi there" so that Ansible treats that message as a single string.

Ansible also allows you to pass a file containing the variables instead of passing them
directly on the command line by passing @filename.yml as the argument to -e; for
example, say we have a file that looks like Example 4-13.

Example 4-13. greetvars.yml
greeting: hiya

Then we can pass this file to the command line like this:

$ ansible-playbook greet.yml -e @greetvars.yml

Precedence

We've covered several ways of defining variables, and it can happen that you define
the same variable multiple times for a host, using different values. Avoid this when
you can, but if you can't, then keep in mind Ansible’s precedence rules. When the
same variable is defined in multiple ways, the precedence rules determine which
value wins.

The basic rules of precedence are as follows:

(Highest) ansible-playbook -e var=value
Task variables

Block variables

Role and include variables

set_fact

Registered variables

. vars_files

. vars_prompt

© 2 N v A W N e

. Play variables

. Host facts

—_—
= O

. host_vars set on a playbook

—
[\

. group_vars set on a playbook

82 | (Chapter4: Variables and Facts

13. host_vars set in the inventory
14. group_vars set in the inventory
15. Inventory variables

16. In defaults/main.yml of a role*

In this chapter, we covered various ways to define and access variables and facts. The
next chapter focuses on a realistic example of deploying an application.

4 We'll discuss roles in Chapter 7.

Precedence | 83

CHAPTER 5

Introducing Mezzanine:
Our Test Application

Chapter 2 covered the basics of writing playbooks. But real life is always messier than
introductory chapters of programming books, so in this chapter we're going to work
through a complete example of deploying a nontrivial application.

Our example application is an open source content management system (CMS) called
Mezzanine, which is similar in spirit to WordPress. Mezzanine is built on top of
Django, the free Python-based framework for writing web applications.

Why Deploying to Production Is Complicated

Let’s take a little detour and talk about the differences between running software in
development mode on your laptop versus running the software in production. Mez-
zanine is a great example of an application that is much easier to run in development
mode than it is to deploy. Example 5-1 shows all you need to do to get Mezzanine
running on your laptop.!

Example 5-1. Running Mezzanine in development mode

$ virtualenv venv

$ source venv/bin/activate

$ pip install mezzanine

$ mezzanine-project myproject
$ cd myproject

1 This installs the Python packages into a virtualenv. We cover virtualenvs in “Installing Mezzanine and Other
Packages into a virtualenv” on page 102.

85

http://mezzanine.jupo.org

$ sed -i.bak 's/ALLOWED_HOSTS = \[\]/ALLOWED_HOSTS = ["127.0.0.1"]/' myproject\
/settings.py

$ python manage.py createdb

$ python manage.py runserver

You'll be prompted to answer several questions. I answered “yes” to each yes/no ques-
tion, and accepted the default answer whenever one was available. This was what my
interaction looked like:

Operations to perform:
Apply all migrations: admin, auth, blog, conf, contenttypes, core,
django_comments, forms, galleries, generic, pages, redirects, sessions, sites,
twitter

Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_1initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... 0K
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... 0K
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying sites.0001_initial... OK
Applying blog.0001_initial... OK
Applying blog.0002_auto_20150527_1555... OK
Applying conf.0001_initial... OK
Applying core.0001_initial... OK
Applying core.0002_auto_20150414_2140... OK
Applying django_comments.0001_initial... OK
Applying django_comments.0002_update_user_email_field_length... 0K
Applying django_comments.0003_add_submit_date_index... OK
Applying pages.0001_initial... OK
Applying forms.0001_initial... OK
Applying forms.0002_auto_20141227_0224... OK
Applying forms.0003_emailfield... OK
Applying forms.0004_auto_20150517_0510... OK
Applying forms.0005_auto_20151026_1600... OK
Applying galleries.0001_1initial... OK
Applying galleries.0002_auto_20141227_0224... OK
Applying generic.0001_initial... OK
Applying generic.0002_auto_20141227_0224... OK
Applying pages.0002_auto_20141227_0224... OK
Applying pages.0003_auto_20150527_1555... OK
Applying redirects.0001_1initial... OK
Applying sessions.0001_initial... OK
Applying sites.0002_alter_domain_unique... OK
Applying twitter.0001_1initial... OK

86 | Chapter5:Introducing Mezzanine: Our Test Application

A site record is required.

Please enter the domain and optional port in the format 'domain:port'.
For example 'localhost:8000' or 'www.example.com'.

Hit enter to use the default (127.0.0.1:8000):

Creating default site record: 127.0.0.1:8000 ...

Creating default account ...

Username (leave blank to use 'lorin'):
Email address: lorin@ansiblebook.com
Password:

Password (again):

Superuser created successfully.
Installed 2 object(s) from 1 fixture(s)

Would you like to install some initial demo pages?
Eg: About us, Contact form, Gallery. (yes/no): yes

You should eventually see output on the terminal that looks like this:

dl\/\/\/\l\/\/\l\/\b
.d"' *'b.
.p' q.
.d' 'b.
.d' ‘b. * Mezzanine 4.2.2
HE HE * Django 1.10.2
MEZZANINE :: * Python 3.5.2
H * SQLite 3.14.1
p .q' * Darwin 16.0.0
P .q'
b. .d'
q.. p'
ANQevivnnnn pA

Performing system checks...

System check identified no issues (0 silenced).

October 04, 2016 - 04:57:44

Django version 1.10.2, using settings 'myproject.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

If you point your browser to http://127.0.0.1:8000/, you should see a web page that
looks like Figure 5-1.

Why Deploying to Production Is Complicated | 87

http://127.0.0.1:8000/

o0 ® < Em] 127.0.0.1 ¢ th [ul o |Jr

Mezzanine Home About~ Blog Gallery Gontact ~ Everything | % | Go

Home

Home

Congratulations!

Welcome to your new Mezzanine powered website. Here are some quick links to get
Team you started:

About

History » Log in to the admin interface
« Creating custom page types

Blog « Modifying HTML templates
Gallery « Changing this homepage

s Other frequently asked questions
Contact « Full list of settings

= Deploying to a production server
Legals Ying

About Blog Gallery Contact
Team Legals
History

Powered by Mezzanine and Django Theme by Bootstrap

Figure 5-1. Mezzanine after a fresh install

Deploying this application to production is another matter. When you run the
mezzanine-project command, Mezzanine will generate a Fabric deployment script
at myproject/fabfile.py that you can use to deploy your project to a production server.
(Fabric is a Python-based tool that helps automate running tasks via SSH.) The script
is almost 700 lines long, and that’s not counting the included configuration files that
are also involved in deployment. Why is deploying to production so much more
complex? I'm glad you asked.

When run in development, Mezzanine provides the following simplifications (see
Figure 5-2):

o The system uses SQLite as the backend database, and will create the database file
if it doesn’t exist.

o The development HTTP server serves up both the static content (images, .css
files, JavaScript) as well as the dynamically generated HTML.

o The development HTTP server uses the (insecure) HTTP, not (secure) HTTPS.

88 | Chapter5:Introducing Mezzanine: Our Test Application

http://www.fabfile.org

o The development HTTP server process runs in the foreground, taking over your
terminal window.

« The hostname for the HTTP server is always 127.0.0.1 (Localhost).

1. GET http://localhost:8000/foo
2. GET http://localhost:8000/static/style.css Django
»| development
server

sqlite
database

/home/myname/dev/myapp/static/style.css

Browser

Figure 5-2. Django app in development mode

Now, let’s look at what happens when you deploy to production.

PostgreSQL: The Database

SQLite is a serverless database. In production, we want to run a server-based data-
base, because those have better support for multiple, concurrent requests, and server-
based databases allow us to run multiple HTTP servers for load balancing. This
means we need to deploy a database management system such as MySQL or Post-
greSQL (aka Postgres). Setting up one of these database servers requires more work.
We need to do the following:

1. Install the database software.

2. Ensure the database service is running.

3. Create the database inside the database management system.
4

. Create a database user who has the appropriate permissions for the database
system.

5. Configure our Mezzanine application with the database user credentials and con-
nection information.

Gunicorn: The Application Server

Because Mezzanine is a Django-based application, you can run Mezzanine using
Djangos HTTP server, referred as the development server in the Django documenta-
tion. Here’s what the Django 1.10 docs have to say about the development server.

Why Deploying to Production Is Complicated | 89

http://bit.ly/2cPe8X8

[D]on’t use this server in anything resembling a production environment. It’s intended
only for use while developing. (We're in the business of making Web frameworks, not
Web servers.)

Django implements the standard Web Server Gateway Interface (WSGI),” so any
Python HTTP server that supports WSGI is suitable for running a Django application
such as Mezzanine. We'll use Gunicorn, one of the most popular HTTP WSGI
servers, which is what the Mezzanine deploy script uses.

Nginx: The Web Server

Gunicorn will execute our Django application, just like the development server does.
However, Gunicorn won't serve any of the static assets associated with the applica-
tion. Static assets are files such as images, .css files, and JavaScript files. They are called
static because they never change, in contrast with the dynamically generated web
pages that Gunicorn serves up.

Although Gunicorn can handle TLS encryption, it's common to configure Nginx to
handle the encryption.?

We're going to use Nginx as our web server for serving static assets and for handling
the TLS encryption, as shown in Figure 5-3.

1. GET http://localhost:8000/foo

2. GET http://localhost:8000/static/style.css . GET http://localhost:8000/foo
» nginx >

Gunicorn

Browser /home/deploy/myapp/static/style.css

Postgres
database

Figure 5-3. Nginx as a reverse proxy

We need to configure Nginx as a reverse proxy for Gunicorn. If the request is for a
static asset, such as a .css file, Nginx will serve that file directly from the local filesys-
tem. Otherwise, Nginx will proxy the request to Gunicorn, by making an HTTP
request against the Gunicorn service that is running on the local machine. Nginx uses
the URL to determine whether to serve a local file or proxy the request to Gunicorn.

2 The WSGI protocol is documented in Python Enhancement Proposal (PEP) 3333.

3 Gunicorn 0.17 added support for TLS encryption. Before that, you had to use a separate application such as
Nginx to handle the encryption.

90 | Chapter5:Introducing Mezzanine: Our Test Application

https://www.python.org/dev/peps/pep-3333

Note that requests to Nginx will be (encrypted) HTTPS, and all requests that Nginx
proxies to Gunicorn will be (unencrypted) HTTP.

Supervisor: The Process Manager

When we run in development mode, we run the application server in the foreground
of our terminal. If we were to close our terminal, the program would terminate. For a
server application, we need it to run as a background process so it doesn’t terminate,
even if we close the terminal session we used to start the process.

The colloquial terms for such a process are daemon or service. We need to run Guni-
corn as a daemon, and wed like to be able to easily stop it and restart it. Numerous
service managers can do this job. Were going to use Supervisor, because that’s what
the Mezzanine deployment scripts use.

At this point, you should have a sense of the steps involved in deploying a web appli-
cation to production. We'll go over how to implement this deployment with Ansible
in Chapter 6.

Why Deploying to Production Is Complicated | 91

CHAPTER 6
Deploying Mezzanine with Ansible

Its time to write an Ansible playbook to deploy Mezzanine to a server. We'll go
through it step by step, but if you're the type of person who starts off by reading the
last page of a book to see how it ends,' you can find the full playbook at the end of
this chapter as Example 6-28. It’s also available on GitHub. Check out the README
file before trying to run it directly.

I've tried to hew as closely as possible to the original Fabric scripts that Mezzanine
author Stephen McDonald wrote.

Listing Tasks in a Playbook

Before we dive into the guts of our playbook, let’s get a high-level view. The ansible-
playbook command-line tool supports a flag called --1list-tasks. This flag prints
out the names of all the tasks in a playbook. It's a handy way to summarize what a
playbook is going to do. Here’s how you use it:

$ ansible-playbook --list-tasks mezzanine.yml

Example 6-1 shows the output for the mezzanine.yml playbook in Example 6-28.

1 My wife, Stacy, is notorious for doing this.

2 You can find the Fabric scripts that ship with Mezzanine on GitHub.

93

http://bit.ly/19P0T73
http://bit.ly/19P0OAj
http://bit.ly/1Onko4u
http://bit.ly/1Onko4u

Example 6-1. List of tasks in Mezzanine playbook

playbook: mezzanine.yml

play #1 (web): Deploy mezzanine TAGS: []
tasks:

install apt packages TAGS: []
create project path TAGS: []
create a logs directory TAGS: []
check out the repository on the host TAGS: []
install Python requirements globally via pip TAGS: []
create project locale TAGS: []
create a DB user TAGS: []
create the database TAGS: []

ensure config path exists TAGS: []
create tls certificates TAGS: []

remove the default nginx config file TAGS: []
set the nginx config file TAGS: []

enable the nginx config file TAGS: []

set the supervisor config file TAGS: []

install poll twitter cron job TAGS: []

set the gunicorn config file TAGS: []
generate the settings file TAGS: []

install requirements.txt TAGS: []

install required python packages TAGS: []

apply migrations to create the database, collect static content TAGS: []
set the site i1d TAGS: []

set the admin password TAGS: []

Organization of Deployed Files

As we discussed earlier, Mezzanine is built atop Django. In Django, a web app is
called a project. We get to choose what to name our project, and I've chosen to name
it mezzanine_example.

Our playbook deploys into a Vagrant machine, and will deploy the files into the home
directory of the Vagrant user’s account.

Example 6-2 shows the relevant directories underneath /home/vagrant:

o /home/vagrant/mezzanine/mezzanine-example will contain the source code that
will be cloned from a source code repository on GitHub.

o /home/vagrant/.virtualenvs/mezzanine_example is the virtualenv directory, which
means that we're going to install all of the Python packages into that directory.

o /home/vagrant/logs will contain log files generated by Mezzanine.

94 | Chapter6: Deploying Mezzanine with Ansible

Example 6-2. Directory structure under /home/vagrant

— logs
}— mezzanine
| L— mezzanine_example
L— _virtualenvs
L— mezzanine_example

Variables and Secret Variables

As you can see in Example 6-3, this playbook defines quite a few variables.

Example 6-3. Defining the variables

vars:
user: "{{ ansible_user }}"
proj_app: mezzanine_example
proj_name: "{{ proj_app }}"
venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
venv_path: "{{ venv_home }}/{{ proj_name }}"
proj_path: "{{ ansible_env.HOME }}/mezzanine/{{ proj_name }}
settings_path: "{{ proj_path }}/{{ proj_name }}"
regs_path: requirements.txt
manage: "{{ python }} {{ proj_path }}/manage.py"
1live_hostname: 192.168.33.10.xip.10
domains:
- 192.168.33.10.xip.10
- www.192.168.33.10.x1ip.10
repo_url: git@github.com:ansiblebook/mezzanine_example.git
locale: en_US.UTF-8
Variables below don't appear in Mezzanine's fabfile.py
but I've added them for convenience
conf_path: /etc/nginx/conf
tls_enabled: True
python: "{{ venv_path }}/bin/python"
database_name: "{{ proj_name }}"
database_user: "{{ proj_name }}"
database_host: localhost
database_port: 5432
gunicorn_procname: gunicorn_mezzanine
num_workers: "multiprocessing.cpu_count() * 2 + 1"
vars_files:
- secrets.yml

I've tried for the most part to use the same variable names that the Mezzanine Fabric
script uses. I've also added some extra variables to make things a little clearer. For
example, the Fabric scripts directly use proj_name as the database name and database

Variables and Secret Variables

95

username. I prefer to define intermediate variables named database_name and data
base_user and define these in terms of proj_name.

It's worth noting a few things here. First off, we can define one variable in terms of
another. For example, we define venv_path in terms of venv_home and proj_name.

Also, note how we can reference Ansible facts in these variables. For example,
venv_home is defined in terms of the ansible_env fact collected from each host.

Finally, note that we have specified some of our variables in a separate file, called
secrets.yml, by doing this:

vars_files:
- secrets.yml

This file contains credentials such as passwords and tokens that need to remain pri-
vate. The repository on GitHub does not actually contain this file. Instead, it contains
a file called secrets.yml.example that looks like this:

db_pass: e79¢9761d0b54698a83ff3f93769e309

admin_pass: 46041386be534591ad24902bf72071B

secret_key: b495a05c396843b6b47ac944a72c92ed

nevercache_key: b5d87bb4e17c483093296fa321056bdc

You need to create a Twitter application at https://dev.twitter.com
in order to get the credentials required for Mezzanine's

twitter integration.

#

See http://mezzanine. jupo.org/docs/twitter-integration.html
for details on Twitter integration
twitter_access_token_key: 80b557a3a8d14cb7a2b91d60398fb8ce
twitter_access_token_secret: 1974cf8419114bdd9d4ea3db7a210d90
twitter_consumer_key: 1f1c627530b34bb58701ac81ac3fad51
twitter_consumer_secret: 36515c2b60ee4ffb9d33d972a7ec350a

To use this repo, you need to copy secrets.yml.example to secrets.yml and edit it so that
it contains the credentials specific to your site. Also note that secrets.yml is included
in the .gitignore file in the Git repository to prevent someone from accidentally com-
mitting these credentials.

Its best to avoid committing unencrypted credentials into your version-control
repository because of the security risks involved. This is just one possible strategy for
maintaining secret credentials. We also could have passed them as environment vari-
ables. Another option, which we will describe in Chapter 8, is to commit an encryp-
ted version of the secrets.ymil file by using Ansible’s vault functionality.

Using Iteration (with_items) to Install Multiple Packages

We're going to need two types of packages for our Mezzanine deployment. We need
to install some system-level packages, and because we're going to deploy on Ubuntu,

96 | Chapter6: Deploying Mezzanine with Ansible

we use apt as our package manager for the system packages. We also need to install
some Python packages, and we'll use pip to install the Python packages.

System-level packages are generally easier to deal with than Python packages, because
system-level packages are designed specifically to work with the operating system.
However, the system package repositories often don’t have the newest versions of the
Python libraries we need, so we turn to the Python packages to install those. It’s a
trade-off between stability and running the latest and greatest.

Example 6-4 shows the task we'll use to install the system packages.

Example 6-4. Installing system packages

- name: install apt packages
apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
become: True
with_1items:

- git

- libjpeg-dev

- libpg-dev

- memcached

- nginx

- postgresql

- python-dev

- python-pip

- python-psycopg2

- python-setuptools
- python-virtualenv
- supervisor

Because we're installing multiple packages, we use Ansible’s iteration functionality,
the with_items clause. We could have installed the packages one at a time, like this:

- name: install git
apt: pkg=git

- name: install libjpeg-dev
apt: pkg=libjpeg-dev

However, it’s easier to write the playbook if we group the packages in a list. When we
invoke the apt module, we pass it {{ item }}. This is a placeholder variable that will
be populated by each of the elements in the list of the with_items clause.

By default, Ansible uses item as the name of the loop iteration vari-
able. In Chapter 8, we'll show how to change this variable name.

Using Iteration (with_items) to Install Multiple Packages | 97

In addition, the apt module contains an optimization making it more efficient to
install multiple packages by using the with_items clause. Ansible will pass the entire
list of packages to the apt module, and the module will invoke the apt program only
once, passing it the entire list of packages to be installed. Some modules, like apt,
have been designed to handle lists intelligently like this. If a module doesn’t have
native support for lists, Ansible will simply invoke the module multiple times, once
for each element of the list.

You can tell that the apt module is intelligent enough to handle multiple packages at
once, because the output looks like this:

TASK: [install apt packages] sk hhbhodododdehddddhnhonhbhbdododdoh
ok: [web] => (item=[u'git', u'libjpeg-dev', u'libpg-dev', u'memcached',
u'nginx', u'postgresql', u'python-dev', u'python-pip', u'python-psycopg2',
u'python-setuptools', u'python-virtualenv', u'supervisor'])
On the other hand, the pip module does not handle lists intelligently, so Ansible must
invoke it once for each element of the list, and the output looks like this:

TASK [install required python packages] Kkkkkkkhkkhkhkkhkhhkhhkhhrhhrhkrhrrhrhdx
ok: [web] => (item=gunicorn)

ok: [web] => (item=setproctitle)

ok: [web] => (item=psycopg2)

ok: [web] => (item=django-compressor)

ok: [web] => (item=python-memcached)

Adding the Become Clause to a Task

In the playbook examples of Chapter 2, we wanted the whole playbook to run as root,
so we added the become: True clause to the play. When we deploy Mezzanine, most
of the tasks will be run as the user who is SSHing to the host, rather than root. There-
fore, we don’t want to run as root for the entire play, only for select tasks.

We can accomplish this by adding become: True to the tasks that do need to run as
root, such as Example 6-4.

Updating the Apt Cache

All of the example commands in this subsection are run on the
(Ubuntu) remote host, not the control machine.

98 | Chapter6: Deploying Mezzanine with Ansible

Ubuntu maintains a cache with the names of all of the apt packages that are available
in the Ubuntu package archive. Lets say you try to install the package named libssl-
dev. We can use the apt-cache program to query the local cache to see what version
it knows about:

$ apt-cache policy libssl-dev

The output is shown in Example 6-5.

Example 6-5. apt-cache output

libssl-dev:
Installed: (none)
Candidate: 1.0.1f-1ubuntu2.21
Version table:
1.0.1f-1ubuntu2.21 0
500 http://archive.ubuntu.com/ubuntu/ trusty-updates/main amd64 Packages
500 http://security.ubuntu.com/ubuntu/ trusty-security/main amd64 Packages
1.0.1f-1ubuntu2 0
500 http://archive.ubuntu.com/ubuntu/ trusty/main amdé64 Packages

As we can see, this package is not installed locally. According to the local cache, the
latest version is 1.0.1f-1ubuntu2.21. We also see some information about the location
of the package archive.

In some cases, when the Ubuntu project releases a new version of a package, it
removes the old version from the package archive. If the local apt cache of an Ubuntu
server hasn’t been updated, then it will attempt to install a package that doesn’t exist
in the package archive.

To continue with our example, let’s say we attempt to install the libssl-dev package:
$ apt-get install libssl-dev

If version 1.0.1f-1ubuntu2.21 is no longer available in the package archive, we'll see
the following error:

Err http://archive.ubuntu.com/ubuntu/ trusty-updates/main libssl-dev amd64
1.0.1f-1ubuntu2.21

404 Not Found [IP: 91.189.88.153 80]
Err http://security.ubuntu.com/ubuntu/ trusty-security/main libssl-dev amd64
1.0.1f-1ubuntu2.21

404 Not Found [IP: 91.189.88.149 80]
Err http://security.ubuntu.com/ubuntu/ trusty-security/main libssl-doc all
1.0.1f-1ubuntu2.21

404 Not Found [IP: 91.189.88.149 80]
E: Failed to fetch
http://security.ubuntu.com/ubuntu/pool/main/o/openssl/1libssl-dev_1.0.1f-1ubuntu2.
21_amd64.deb
404 Not Found [IP: 91.189.88.149 80]

Updating the Apt Cache | 99

E: Failed to fetch
http://security.ubuntu.com/ubuntu/pool/main/o/openssl/libssl-doc_1.0.1f-1ubuntu2.
21_all.deb

404 Not Found [IP: 91.189.88.149 80]

E: Unable to fetch some archives, maybe run apt-get update or try with
--fix-missing?
On the command line, the way to bring the local apt cache up-to-date is to run apt-
get update. When using the apt Ansible module, the way to bring the local apt
cache up-to-date is to pass the update_cache=yes argument when invoking the mod-
ule, as shown in Example 6-4.

Because updating the cache takes additional time, and because we might be running a
playbook multiple times in quick succession in order to debug it, we can avoid paying
the cache update penalty by using the cache_valid_time argument to the module.
This instructs to update the cache only if its older than a certain threshold. The
example in Example 6-4 uses cache_valid_time=3600, which updates the cache only
if it’s older than 3,600 seconds (1 hour).

Checking Out the Project by Using Git

Although Mezzanine can be used without writing any custom code, one of its
strengths is that it is written on top of the Django platform, and Django is a great web
application platform if you know Python. If you just wanted a CMS, youd likely just
use something like WordPress. But if youre writing a custom application that incor-
porates CMS functionality, Mezzanine is a good way to go.

As part of the deployment, you need to check out the Git repository that contains
your Django applications. In Django terminology, this repository must contain a
project. I've created a repository on GitHub that contains a Django project with the
expected files. That’s the project that gets deployed in this playbook.

I created these files using the mezzanine-project program that ships with Mezza-
nine, like this:

$ mezzanine-project mezzanine_example
$ chmod +x mezzanine_example/manage.py

Note that I don’t have any custom Django applications in my repository, just the files
that are required for the project. In a real Django deployment, this repository would
contain subdirectories that contain additional Django applications.

Example 6-6 shows how we use the git module to check out a Git repository onto a
remote host.

100 | Chapter 6: Deploying Mezzanine with Ansible

https://github.com/ansiblebook/mezzanine_example

Example 6-6. Checking out the Git repository

- name: check out the repository on the host
git: repo={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

I've made the project repository public so that readers can access it, but in general,
you’ll be checking out private Git repositories over SSH. For this reason, I've set the
repo_url variable to use the scheme that will clone the repository over SSH:

repo_url: git@github.com:ansiblebook/mezzanine_example.git

If you're following along at home, to run this playbook you must have the following:

« A GitHub account

o A public SSH key associated with your GitHub account

 An SSH agent running on your control machine, with agent forwarding enabled
 Your SSH key added to your SSH agent

Once your SSH agent is running, add your key:
$ ssh-add

If successful, the following command will output the public key of the SSH you just
added:

$ ssh-add -1
The output should look like something this:

2048 SHA256:07H/I9rRZupXHJ7InD110RhSzeAKY1RVrlHIL/JFtfA /Users/lorin/.ssh/id_rsa
To enable agent forwarding, add the following to your ansible.cfg:

[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=60s -o ForwardAgent=yes

You can verify that agent forwarding is working by using Ansible to list the known
keys:

$ ansible web -a "ssh-add -1"
You should see the same output as when you run ssh-add -1 on your local machine.
Another useful check is to verify that you can reach GitHub’s SSH server:

$ ansible web -a "ssh -T git@github.com"
If successful, the output should look like this:

web | FAILED | rc=1 >>
Hi lorin! You've successfully authenticated, but GitHub does not provide shell
access.

Checking Out the Project by Using Git | 101

Even though the word FAILED appears in the output, if the message from GitHub
appears, then it was successful.

In addition to specifying the repository URL with the repo parameter and the desti-
nation path of the repository as the dest parameter, we also pass an additional
parameter, accept_hostkey, which is related to host-key checking. We discuss SSH
agent forwarding and host-key checking in more detail in Appendix A.

Installing Mezzanine and Other Packages into a
virtualenv

As mentioned earlier in this chapter, we're going to install some of the packages as
Python packages because we can get more recent versions of those than if we installed
the equivalent apt package.

We can install Python packages systemwide as the root user, but it’s better practice to
install these packages in an isolated environment to avoid polluting the system-level
Python packages. In Python, these types of isolated package environments are called
virtualenvs. A user can create multiple virtualenvs, and can install Python packages
into a virtualenv without needing root access.

Ansible’s pip module has support for installing packages into a virtualenv and for cre-
ating the virtualenv if it is not available.

Example 6-7 shows how to use pip to install several packages globally. Note that this
requires become: True.

Example 6-7. Install Python requirements

- name: install Python requirements globally via pip
pip: name={{ item }} state=latest
with_1items:
- pip
- virtualenv
- virtualenvwrapper
become: True

Example 6-8 shows the two tasks that we use to install Python packages into the vir-
tualenv, both of which use the pip module, although in different ways.
Example 6-8. Install Python packages

- name: install requirements.txt
pip: requirements={{ proj_path }}/{{ reqs_path }} virtualenv={{ venv_path }}

- name: install required python packages

102 | Chapter 6: Deploying Mezzanine with Ansible

pip: name={{ item }} virtualenv={{ venv_path }}
with_1items:

- gunicorn

- setproctitle

- psycopg?2

- django-compressor

- python-memcached

A common pattern in Python projects is to specify the package dependencies in a file
called requirements.txt. And, indeed, the repository in our Mezzanine example con-
tains a requirements.txt file. It looks like Example 6-9.

Example 6-9. requirements.txt
Mezzanine==4.2.2

The requirements.txt file is missing several other Python packages that we need for
the deployment, so we explicitly specify these as a separate task.

Note that the Mezzanine Python package in requirements.txt is pinned to a specific
version (4.2.2), whereas the other packages aren’t pinned; we just grab the latest ver-
sions of those. If we did not want to pin Mezzanine, we simply could have added
Mezzanine to the list of packages, like this:

- name: install python packages
pip: name={{ item }} virtualenv={{ venv_path }}
with_1items:
- mezzanine
- gunicorn
- setproctitle
- south
- psycopg?2
- django-compressor
- python-memcached

Alternately, if we wanted to pin all of the packages, we have several options. We could
have specified all the packages in the requirements.txt file. This file contains informa-

tion about the packages and the dependencies. An example file looks like
Example 6-10.

Example 6-10. Example requirements.txt

beautifulsoup4==4.5.3
bleach==1.5.0

chardet==2.3.0

Django==1.10.4
django-appconf==1.0.2
django-compressor==2.1
django-contrib-comments==1.7.3

Installing Mezzanine and Other Packages into a virtualenv | 103

filebrowser-safe==0.4.6
future==0.16.0
grappelli-safe==0.4.5
gunicorn==19.6.0
html51ib==0.9999999
Mezzanine==4.2.2
oauthlib==2.0.1
olefile==0.43
Pillow==4.0.0
psycopg2==2.6.2
python-memcached==1.58
pytz==2016.10
rcssmin==1.0.6
requests==2.12.4
requests-oauthlib==0.7.0
rjsmin==1.0.12
setproctitle==1.1.10
six==1.10.0
tzlocal==1.3

If you have an existing virtualenv with the packages installed, you can use the pip
freeze command to print out a list of installed packages. For example, if your virtua-
lenv is in ~/mezzanine_example, you can activate your virtualenv and print out the
packages in the virtualenv like this:

$ source ~/mezzanine_example/bin/activate
$ pip freeze > requirements.txt

Example 6-11 shows how we could have installed all the packages by using a require-
ments.txt file.

Example 6-11. Installing from requirements.txt

- name: copy requirements.txt file
copy: src=files/requirements.txt dest=~/requirements.txt
- name: install packages
pip: requirements=~/requirements.txt virtualenv={{ venv_path }}

Alternatively, we could have specified both the package names and their versions in
the list, as shown in Example 6-12. We pass a list of dictionaries, and dereference the
elements with i1tem.name and item.version.

Example 6-12. Specifying package names and version

- name: python packages
pip: name={{ item.name }} version={{ item.version }} virtualenv={{ venv_path }}
with_1items:
- {name: mezzanine, version: 4.2.2 }
- {name: gunicorn, version: 19.6.0 }
- {name: setproctitle, version: 1.1.10 }

104 | Chapter 6: Deploying Mezzanine with Ansible

- {name: psycopg2, version: 2.6.2 }
- {name: django-compressor, version: 2.1 }
- {name: python-memcached, version: 1.58 }

Complex Arguments in Tasks: A Brief Digression

Up until this point in the book, every time we have invoked a module, we have passed
the argument as a string. Taking the pip example from Example 6-12, we passed the
pip module a string as an argument:

- name: install package with pip
pip: name={{ item.name }} version={{ item.version }} virtualenv={{ venv_path }}
If we don’t like long lines in our files, we could break up the argument string across
multiple lines by using YAMLs line folding, which we originally wrote about in “Line
Folding” on page 30:
- name: install package with pip
pip: >
name={{ item.name }}

version={{ item.version }}
virtualenv={{ venv_path }}

Ansible also provides another option for breaking up a module invocation across
multiple lines. Instead of passing a string, we can pass a dictionary in which the keys
are the variable names. This means we can invoke Example 6-12 like this instead:

- name: install package with pip
pip:
name: "{{ item.name }}"
version: "{{ item.version }}"
virtualenv: "{{ venv_path }}"

The dictionary-based approach to passing arguments is also useful when invoking
modules that take complex arguments. A complex argument is an argument to a mod-
ule that is a list or a dictionary. The ec2 module, which creates new servers on Ama-
zon EC2, is a good example of a module that takes complex arguments. Example 6-13
shows how to call a module that takes a list as an argument for the group parameter,
and a dictionary as an argument to the instance_tags parameter. We'll cover this
module in more detail in Chapter 14.

Example 6-13. Calling a module with complex arguments

- name: create an ec2 instance
ec2:
image: ami-8caalce4
instance_type: m3.medium
key_name: mykey
group:

Complex Arguments in Tasks: A Brief Digression | 105

- web

- ssh
instance_tags:

type: web

env: production

You can even mix it up by passing some arguments as a string and others as a dictio-
nary, by using the args clause to specify some of the variables as a dictionary. We
could rewrite our preceding example as follows:

- name: create an ec2 instance
ec2: image=ami-8caalce4 instance_type=m3.medium key_name=mykey
args:
group:
- web
- ssh
instance_tags:
type: web
env: production

If youre using the local_action clause (we'll cover this in more detail in Chapter 9),
the syntax for complex args changes slightly. You need to add module: <modulename>
as shown here:

- name: create an ec2 instance
local_action:
module: ec2
image: ami-8caalce4
instance_type: m3.medium
key_name: mykey
group:
- web
- ssh
instance_tags:
type: web
env: production

You can also mix simple arguments and complex arguments when using
local_action:

- name: create an ec2 instance
local_action: ec2 image=ami-8caalce4 instance_type=m3.medium key_name=mykey
args:

image: ami-8caalce4
instance_type: m3.medium
key_name: mykey
group:

- web

- ssh
instance_tags:

type: web

env: production

106 | Chapter 6: Deploying Mezzanine with Ansible

Ansible allows you to specify file permissions, which are used by
several modules, including file, copy, and template. If you are
specifying an octal value as a complex argument, it must either
start the value with a @ or quote it as a string.

For example, note how the mode argument starts with a 0:

- name: copy index.html
copy:

src: files/index.html

dest: /usr/share/nginx/html/index.html

mode: "0644"
If you do not start the mode argument with a @ or quote it as a
string, Ansible will interpret the value as a decimal number instead
of an octal, and will not set the file permissions the way you expect.
For details, see GitHub.

If you want to break your arguments across multiple lines, and you aren’t passing
complex arguments, which form you choose is a matter of taste. I generally prefer
dictionaries to multiline strings, but in this book I use both forms.

Configuring the Database

When Django runs in development mode, it uses the SQLite backend. This backend
will create the database file if the file does not exist.

When using a database management system such as Postgres, we need to first create
the database inside Postgres and then create the user account that owns the database.
Later, we will configure Mezzanine with the credentials of this user.

Ansible ships with the postgresql_user and postgresql_db modules for creating
users and databases inside Postgres. Example 6-14 shows how we invoke these mod-
ules in our playbook.

When creating the database, we specify locale information through the lc_ctype and
lc_collate parameters. We use the locale_gen module to ensure that the locale we
are using is installed in the operating system.

Example 6-14. Creating the database and database user

- name: create project locale
locale_gen: name={{ locale }}
become: True

- name: create a DB user
postgresql_user:
name: "{{ database_user }}"
password: "{{ db_pass }}"

Configuring the Database | 107

http://bit.ly/1GASfbl

become: True
become_user: postgres

- name: create the database

postgresql_db:
name: "{{ database_name }}"
owner: "{{ database_user }}"
encoding: UTF8
lc_ctype: "{{ locale }}"
lc_collate: "{{ locale }}"
template: template0®

become: True

become_user: postgres

Note the use of become: True and become_user: postgres on the last two tasks.
When you install Postgres on Ubuntu, the installation process creates a user named
postgres that has administrative privileges for the Postgres installation. Note that the
root account does not have administrative privileges in Postgres by default, so in the
playbook, we need to become the Postgres user in order to perform administrative
tasks, such as creating users and databases.

When we create the database, we set the encoding (UTF8) and locale categories
(LC_CTYPE, LC_COLLATE) associated with the database. Because we are setting locale
information, we use template0 as the template.’

Generating the local_settings.py File from a Template

Django expects to find project-specific settings in a file called settings.py. Mezzanine
follows the common Django idiom of breaking these settings into two groups:

o Settings that are the same for all deployments (settings.py)
o Settings that vary by deployment (local_settings.py)

We define the settings that are the same for all deployments in the settings.py file in
our project repository. You can find that file on GitHub.

The settings.py file contains a Python snippet that loads a local_settings.py file that
contains deployment-specific settings. The .gitignore file is configured to ignore the
local_settings.py file, since developers will commonly create this file and configure it
for local development.

As part of our deployment, we need to create a local_settings.py file and upload it to
the remote host. Example 6-15 shows the Jinja2 template that we use.

3 See the Postgres documentation for more details about template databases.

108 | Chapter 6: Deploying Mezzanine with Ansible

http://bit.ly/1F5AYpN
http://bit.ly/2jaw4zf

Example 6-15. local_settings.py.j2

from _ future_

import unicode_literals

SECRET_KEY = "{{ secret_key }}"
NEVERCACHE_KEY = "{{ nevercache_key }}"
ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

DATABASES = {
"default": {
Ends with "postgresql_psycopg2", "mysql", "sqlite3" or "oracle".
"ENGINE": "django.db.backends.postgresql_psycopg2",
DB name or path to database file if using sqlite3.
"NAME": "{{ proj_name }}",
Not used with sqlite3.
"USER": "{{ proj_name }}",
Not used with sqlite3.
"PASSWORD": "{{ db_pass }}",
Set to empty string for localhost. Not used with sqlite3.
"HOST": "127.0.0.1",
Set to empty string for default. Not used with sqlite3.
"PORT": "",

}
SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTOCOL", "https")
CACHE_MIDDLEWARE_SECONDS = 60
CACHE_MIDDLEWARE_KEY_PREFIX = "{{ proj_name }}"
CACHES = {
"default": {
"BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
"LOCATION": "127.0.0.1:11211",
}

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Most of this template is straightforward; it uses the {{ variable }} syntax to insert
the values of variables such as secret_key, nevercache_key, proj_name, and
db_pass. The only nontrivial bit of logic is the line shown in Example 6-16.

Example 6-16. Using a for loop in a Jinja2 template
ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

If we look back at our variable definition, we have a variable called domains that’s
defined like this:

Generating the local_settings.py File from a Template | 109

domains:
- 192.168.33.10.xip.10
- www.192.168.33.10.x1ip.10

Our Mezzanine app is going to respond only to requests that are for one of the host-
names listed in the domains variable: http://192.168.33.10.xip.io or http://www.
192.168.33.10.xip.io in our case. If a request reaches Mezzanine but the host header is
something other than those two domains, the site will return “Bad Request (400).”

We want this line in the generated file to look like this:
ALLOWED_HOSTS = ["192.168.33.10.xip.10", "www.192.168.33.10.xip.10"]

We can achieve this by using a for loop, as shown in Example 6-16. Note that it
doesn’t do exactly what we want. Instead, it will have a trailing comma, like this:

ALLOWED_HOSTS = ["192.168.33.10.xip.10", "www.192.168.33.10.xip.10",]

However, Python is perfectly happy with trailing commas in lists, so we can leave it
like this.

What's xip.io?
You might have noticed that the domains we are using look a little strange:

192.168.33.10.xip.io and www.192.168.33.10.xip.io. They are domain names, but they
have the IP address embedded within them.

When you access a website, you pretty much always point your browser to a domain
name such as http://www.ansiblebook.com, instead of an IP address such as http://
151.101.192.133. When we write our playbook to deploy Mezzanine to Vagrant, we
want to configure the application with the domain name or names that it should be
accessible by.

The problem is that we don’t have a DNS record that maps to the IP address of our
Vagrant box. In this case, that's 192.168.33.10. There’s nothing stopping us from set-
ting up a DNS entry for this. For example, I could create a DNS entry from
mezzanine-internal.ansiblebook.com that points to 192.168.33.10.

However, if we want to create a DNS name that resolves to a particular IP address,
there’s a convenient service called xip.io, provided free of charge by Basecamp, that we
can use so that we don't have to avoid creating our own DNS records. If
AAA.BBB.CCC.DDD is an IP address, the DNS entry AAA.BBB.CCC.DDD.xip.io will
resolve to AAA.BBB.CCC.DDD. For example, 192.168.33.10.xip.io resolves to
192.168.33.10. In addition, www.192.168.33.10.xip.io also resolves to 192.168.33.10.

I find xip.io to be a great tool when I'm deploying web applications to private IP
addresses for testing purposes. Alternatively, you can simply add entries to the /etc/
hosts file on your local machine, which also works when you're offline.

110 | Chapter 6: Deploying Mezzanine with Ansible

Let’s examine the Jinja2 for loop syntax. To make things a little easier to read, we'll
break it up across multiple lines, like this:
ALLOWED_HOSTS = [
{% for domain in domains %}
"{{ domain }}",
{% endfor %}
1

The generated config file looks like this, which is still valid Python.

ALLOWED_HOSTS = [
"192.168.33.10.xip.10",
"www.192.168.33.10.xip.10",

1

Note that the for loop has to be terminated by an {% endfor %} statement. Also note
that the for statement and the endfor statement are surrounded by {% %} delimiters,
which are different from the {{ }} delimiters that we use for variable substitution.

All variables and facts that have been defined in a playbook are available inside Jinja2
templates, so we never need to explicitly pass variables to templates.

Running django-manage Commands

Django applications use a special script called manage.py that performs administra-
tive actions for Django applications such as the following:

o Creating database tables

« Applying database migrations

+ Loading fixtures from files into the database
« Dumping fixtures from the database to files

« Copying static assets to the appropriate directory

In addition to the built-in commands that manage.py supports, Django applications
can add custom commands. Mezzanine adds a custom command called createdb
that is used to initialize the database and copy the static assets to the appropriate
place. The ofticial Fabric scripts do the equivalent of this:

$ manage.py createdb --noinput --nodata

Ansible ships with a django_manage module that invokes manage.py commands. We
could invoke it like this:
- name: initialize the database

django_manage:
command: createdb --noinput --nodata

Running django-manage Commands | 111

http://bit.ly/2iica5a

app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"

Unfortunately, the custom createdb command that Mezzanine adds isn’t idempotent.
If invoked a second time, it will fail like this:

TASK: [-Ln-'Lt-Lal-Lze the database] dhkhkhkhhkhkhkdhkdhhhkdhkdhdhdhdhdhdhdrdrdrdrdhdrdrdhkx
failed: [web] => {"cmd": "python manage.py createdb --noinput --nodata", "failed"
. true, "path": "/home/vagrant/mezzanine_example/bin:/usr/local/sbin:/usr/local/b
in:/usr/sbin: /usr/bin:/sbin:/bin:/usr/games:/usr/local/games", "state": "absent"
, "syspath": ["", "/usr/lib/python2.7", "/usr/lib/python2.7/plat-x86_64-1inux-gnu
", "Jusr/lib/python2.7/1ib-tk", "/usr/lib/python2.7/1lib-old", "/usr/lib/python2.7
/1lib-dynload", "/usr/local/lib/python2.7/dist-packages", "/usr/lib/python2.7/dist
-packages"]}

msg:

:stderr: CommandError: Database already created, you probably want the syncdb or
migrate command

Fortunately, the custom createdb command is effectively equivalent to two idempo-
tent built-in manage. py commands:

migrate
Create and update database tables for Django models

collectstatic
Copy the static assets to the appropriate directories

By invoking these commands, we get an idempotent task:

- name: apply migrations to create the database, collect static content
django_manage:
command: "{{ item }}"
app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"
with_1items:
- syncdb
- collectstatic

Running Custom Python Scripts in the Context of the
Application

To initialize our application, we need to make two changes to our database:

o We need to create a Site model object that contains the domain name of our site
(in our case, that’s 192.168.33.10.xip.io).
» We need to set the administrator username and password.

Although we could make these changes with raw SQL commands or Django data
migrations, the Mezzanine Fabric scripts use Python scripts, so that's how we'll do it.

112 | Chapter 6: Deploying Mezzanine with Ansible

http://bit.ly/2hYWztG

There are two tricky parts here. The Python scripts need to run in the context of the
virtualenv that we’ve created, and the Python environment needs to be set up prop-
erly so that the script will import the settings.py file that’s in ~/mezzanine/mezza-
nine_example/mezzanine_example.

In most cases, if we needed some custom Python code, I'd write a custom Ansible
module. However, as far as I know, Ansible doesn’t let you execute a module in the
context of a virtualenv, so that’s out.

I used the script module instead. This will copy over a custom script and execute it.
I wrote two scripts, one to set the Site record, and the other to set the admin user-
name and password.

You can pass command-line arguments to script modules and parse them out, but I
decided to pass the arguments as environment variables instead. I didn’t want to pass
passwords via command-line argument (those show up in the process list when you
run the ps command), and it’s easier to parse out environment variables in the scripts
than it is to parse command-line arguments.

You can set environment variables with an environment clause on a
task, passing it a dictionary that contains the environment variable
names and values. You can add an environment clause to any task;
it doesn’t have to be a script.

In order to run these scripts in the context of the virtualenv, I also needed to set the
path variable so that the first Python executable in the path would be the one inside
the virtualenv. Example 6-17 shows how I invoked the two scripts.

Example 6-17. Using the script module to invoke custom Python code

- name: set the site id
script: scripts/setsite.py
environment:
PATH: "{{ venv_path }}/bin"
PROJECT_DIR: "{{ proj_path }}"
PROJECT_APP: "{{ proj_app }}"
WEBSITE_DOMAIN: "{{ live_hostname }}"

- name: set the admin password
script: scripts/setadmin.py
environment:
PATH: "{{ venv_path }}/bin"
PROJECT_DIR: "{{ proj_path }}"
PROJECT_APP: "{{ proj_app }}"
ADMIN_PASSWORD: "{{ admin_pass }}"

Running Custom Python Scripts in the Context of the Application | 113

The scripts themselves are shown in Examples 6-18 and 6-19. I put these in a scripts
subdirectory.

Example 6-18. scripts/setsite.py

#!/usr/bin/env python

A script to set the site domain

Assumes two environment variables

#

WEBSITE_DOMAIN: the domain of the site (e.g., www.example.com)
PROJECT_DIR: root directory of the project

PROJECT_APP: name of the project app

import os

import sys

Add the project directory to system path
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP']

os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
import django

django.setup()

from django.conf import settings

from django.contrib.sites.models import Site

domain = os.environ['WEBSITE_DOMAIN']
Site.objects.filter(id=settings.SITE_ID).update(domain=domain)
Site.objects.get_or_create(domain=domain)

Example 6-19. scripts/setadmin.py

#!/usr/bin/env python

A script to set the admin credentials

Assumes two environment variables

#

PROJECT_DIR: the project directory (e.g., ~/projname)
PROJECT_APP: name of the project app

ADMIN_PASSWORD: admin user's password

import os
import sys

Add the project directory to system path
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP']

os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
import django

django.setup()

from django.contrib.auth import get_user_model

114 | Chapter 6: Deploying Mezzanine with Ansible

User = get_user_model()

u, _ = User.objects.get_or_create(username="'admin")
u.is_staff = u.is_superuser = True
u.set_password(os.environ['ADMIN_PASSWORD'])

u.save()

Setting Service Configuration Files

Next, we set the configuration file for Gunicorn (our application server), Nginx (our
web server), and Supervisor (our process manager), as shown in Example 6-20. The
template for the Gunicorn configuration file is shown in Example 6-22, and the tem-
plate for the Supervisor configuration file is shown in Example 6-23.

Example 6-20. Setting configuration files

- name: set the gunicorn config file
template:
src: templates/gunicorn.conf.py.j2
dest: "{{ proj_path }}/gunicorn.conf.py"

- name: set the supervisor config file
template:
src: templates/supervisor.conf.j2
dest: /[etc/supervisor/conf.d/mezzanine.conf
become: True
notify: restart supervisor

- name: set the nginx config file
template:
src: templates/nginx.conf.j2
dest: /etc/nginx/sites-available/mezzanine.conf
notify: restart nginx
become: True

In all three cases, we generate the config files by using templates. The Supervisor and
Nginx processes are started by root (although they drop down to nonroot users when
running), so we need to sudo so that we have the appropriate permissions to write
their configuration files.

If the Supervisor config file changes, Ansible will fire the restart supervisor han-
dler. If the Nginx config file changes, Ansible will fire the restart nginx handler, as
shown in Example 6-21.

Example 6-21. Handlers

handlers:
- name: restart supervisor
supervisorctl: name=gunicorn_mezzanine state=restarted

Running Custom Python Scripts in the Context of the Application | 115

sudo: True

- name: restart nginx
service: name=nginx state=restarted
sudo: True

Example 6-22. templates/gunicorn.conf.py.j2

from import unicode_literals
import

bind = "127.0.0.1:{{ gunicorn_port }}"
workers = multiprocessing.cpu_count() * 2 + 1
loglevel = "error"

proc_name = "{{ proj_name }}"

Example 6-23. templates/supervisor.conf.j2

[program:{{ gunicorn_procname }}]

command={{ venv_path }}/bin/gunicorn -c gunicorn.conf.py -p gunicorn.pid \
{{ proj_app }}.wsgi:application

directory={{ proj_path }}

user={{ user }}

autostart=true

stdout_logfile = /home/{{ user }}/logs/{{ proj_name }}_supervisor

autorestart=true

redirect_stderr=true

environment=LANG="{{ locale }}",LC_ALL="{{ locale }}",LC_LANG="{{ locale }}"

The only template that has any template logic (other than variable substitution) is
Example 6-24. It has conditional logic to enable TLS if the t1s_enabled variable is set
to true. You'll see some if statements scattered about the templates that look like
this:

{% if tls_enabled %}
t%.endif %}
It also uses the join Jinja2 filter here:
server_name {{ domains|join(", ") }};

This code snippet expects the variable domains to be a list. It will generate a string
with the elements of domains connected together, separated by commas. Recall that in
our case, the domatins list is defined as follows:

domains:

- 192.168.33.10.xip.10
- www.192.168.33.10.xip.10

116 | Chapter 6: Deploying Mezzanine with Ansible

When the template renders, the line looks like this:

server_name 192.168.33.10.xip.10, www.192.168.33.10.x1ip.10;

Example 6-24. templates/nginx.conf.j2

upstream {{ proj_name }} {
server unix:{{ proj_path }}/gunicorn.sock fail_timeout=0;

}
server {
listen 80;

{% if tls_enabled %}

listen 443 ssl;

{% endif %}

server_name {{ domains|join(", ") }};
client_max_body_size 10M;
keepalive_timeout 15;

{% if tls_enabled %}

ssl_certificate conf/{{ proj_name }}.crt;
ssl_certificate_key conf/{{ proj_name }}.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

ssl_ciphers entry is too long to show in this book
See https://github.com/ansiblebook/ansiblebook

ch06/playbooks/templates/nginx.conf.j2
ssl_prefer_server_ciphers on;

{% endif %}

location / {

proxy_redirect of f;
proxy_set_header Host $Shost;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Protocol $scheme;
proxy_pass http://{{ proj_name }};

}

location /static/ {
root {{ proj_path }};
access_log of f;
log_not_found off;

}

location /robots.txt {
root {{ proj_path }}/static;
access_log of f;

log_not_found off;

Running Custom Python Scripts in the Context of the Application | 117

location /favicon.ico {
root {{ proj_path }}/static/img;
access_log of f;
log_not_found off;

}

Enabling the Nginx Configuration

The convention with Nginx configuration files is to put your configuration files
in /etc/nginx/sites-available and enable them by symlinking them into /etc/nginx/sites-
enabled.

The Mezzanine Fabric scripts just copy the configuration file directly into sites-
enabled, but 'm going to deviate from how Mezzanine does it because it gives me an
excuse to use the file module to create a symlink. We also need to remove the
default configuration file that the Nginx package sets up in /etc/nginx/sites-enabled/
default.

As shown in Example 6-25, we use the file module to create the symlink and to
remove the default config file. This module is useful for creating directories, sym-
links, and empty files; deleting files, directories, and symlinks; and setting properties
such as permissions and ownership.

Example 6-25. Enabling Nginx configuration

- name: enable the nginx config file
file:
src: /etc/nginx/sites-available/mezzanine.conf
dest: /etc/nginx/sites-enabled/mezzanine.conf
state: link
become: True

- name: remove the default nginx config file
file: path=/etc/nginx/sites-enabled/default state=absent
notify: restart nginx
become: True

Installing TLS Certificates

Our playbook defines a variable named tls_enabled. If this variable is set to true,
the playbook will install TLS certificates. In our example, we use self-signed certifi-
cates, so the playbook will create the certificate if it doesn’t exist.

In a production deployment, you would copy an existing TLS certificate that you
obtained from a certificate authority.

118 | Chapter 6: Deploying Mezzanine with Ansible

Example 6-26 shows the two tasks involved in configuring for TLS certificates. We
use the file module to ensure that the directory that will house the TLS certificates
exists.

Example 6-26. Installing TLS certificates

- name: ensure config path exists
file: path={{ conf_path }} state=directory
sudo: True
when: tls_enabled

- name: create tls certificates

command: >
openssl req -new -x509 -nodes -out {{ proj_name }}.crt
-keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 3650
chdir={{ conf_path }}
creates={{ conf_path }}/{{ proj_name }}.crt

sudo: True

when: tls_enabled

notify: restart nginx

Note that both tasks contain this clause:
when: tls_enabled
If t1s_enabled evaluates to false, Ansible will skip the task.

Ansible doesn’t ship with modules for creating TLS certificates, so we need to use the
command module to invoke the openssl command in order to create the self-signed
certificate. Since the command is very long, we use YAML line-folding syntax (see
“Line Folding” on page 30) so that we can break the command across multiple lines.

These two lines at the end of the command are additional parameters that are passed
to the module; they are not passed to the command line:

chdir={{ conf_path }}

creates={{ conf_path }}/{{ proj_name }}.crt
The chdir parameter changes the directory before running the command. The cre
ates parameter implements idempotence: Ansible will first check whether the file

{{ conf_path }}/{{ proj_name }}.crt exists on the host. If it already exists, Ansi-
ble will skip this task.

Installing Twitter Cron Job

If you run manage.py poll_twitter, Mezzanine will retrieve tweets associated with
the configured accounts and show them on the home page. The Fabric scripts that
ship with Mezzanine keep these tweets up-to-date by installing a cron job that runs
every five minutes.

Installing Twitter CronJob | 119

If we followed the Fabric scripts exactly, wed copy a cron script into the /etc/cron.d
directory that had the cron job. We could use the template module to do this. How-
ever, Ansible ships with a cron module that allows us to create or delete cron jobs,
which I find more elegant. Example 6-27 shows the task that installs the cron job.

Example 6-27. Installing cron job for polling Twitter

- name: install poll twitter cron job
cron: name="poll twitter" minute="*/5" user={{ user }} job="{{ manage }} \
poll_twitter"

If you manually SSH to the box, you can see the cron job that gets installed by using
crontab -1 to list the jobs. Here’s what it looks like for me when I deploy as the
Vagrant user:

#Ansible: poll twitter
*/5 * * * * [home/vagrant/.virtualenvs/mezzanine_example/bin/python \
/home/vagrant/mezzanine/mezzanine_example/manage.py poll_twitter

Notice the comment at the first line. That's how the Ansible module supports deleting
cron jobs by name. If you were to do this:

- name: remove cron job
cron: name="poll twitter" state=absent

the cron module would look for the comment line that matches the name and delete
the job associated with that comment.

The Full Playbook

Example 6-28 shows the complete playbook in all its glory.

Example 6-28. mezzanine.yml: the complete playbook

- name: Deploy mezzanine

hosts: web

vars:
user: "{{ ansible_user }}"
proj_app: mezzanine_example
proj_name: "{{ proj_app }}"
venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
venv_path: "{{ venv_home }}/{{ proj_name }}"
proj_path: "{{ ansible_env.HOME }}/mezzanine/{{ proj_name }}"
settings_path: "{{ proj_path }}/{{ proj_name }}"
reqs_path: requirements.txt
manage: "{{ python }} {{ proj_path }}/manage.py"
live_hostname: 192.168.33.10.xip.1i0
domains:

120 | Chapter 6: Deploying Mezzanine with Ansible

- 192.168.33.10.xip.10
- www.192.168.33.10.xip.10
repo_url: git@github.com:ansiblebook/mezzanine_example.git
locale: en_US.UTF-8
Variables below don't appear in Mezannine's fabfile.py
but I've added them for convenience
conf_path: /etc/nginx/conf
tls_enabled: True
python: "{{ venv_path }}/bin/python"
database_name: "{{ proj_name }}"
database_user: "{{ proj_name }}"
database_host: localhost
database_port: 5432
gunicorn_procname: gunicorn_mezzanine
num_workers: "multiprocessing.cpu_count() * 2 + 1"
vars_files:
- secrets.yml
tasks:
- name: install apt packages
apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
become: True
with_1items:
- git
- libjpeg-dev
- libpg-dev
- memcached
- nginx
- postgresql
- python-dev
- python-pip
- python-psycopg2
- python-setuptools
- python-virtualenv
- supervisor
- name: create project path
file: path={{ proj_path }} state=directory
- name: create a logs directory
file:
path: "{{ ansible_env.HOME }}/logs"
state: directory
- name: check out the repository on the host
git: repo={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes
- name: install Python requirements globally via pip
pip: name={{ item }} state=latest
with_1items:
- pip
- virtualenv
- virtualenvwrapper
become: True
- name: create project locale
locale_gen: name={{ locale }}
become: True

The Full Playbook

- name: create a DB user
postgresql_user:
name: "{{ database_user }}"
password: "{{ db_pass }}"
become: True
become_user: postgres
- name: create the database
postgresql_db:
name: "{{ database_name }}"
owner: "{{ database_user }}"
encoding: UTF8
lc_ctype: "{{ locale }}"
lc_collate: "{{ locale }}"
template: template0®
become: True
become_user: postgres
- name: ensure config path exists
file: path={{ conf_path }} state=directory
become: True
- name: create tls certificates
command: >
openssl req -new -x509 -nodes -out {{ proj_name }}.crt
-keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 3650
chdir={{ conf_path }}
creates={{ conf_path }}/{{ proj_name }}.crt
become: True
when: tls_enabled
notify: restart nginx
- name: remove the default nginx config file
file: path=/etc/nginx/sites-enabled/default state=absent
notify: restart nginx
become: True
- name: set the nginx config file
template:
src=templates/nginx.conf.j2
dest=/etc/nginx/sites-available/mezzanine.conf
notify: restart nginx
become: True
- name: enable the nginx config file
file:
src: /etc/nginx/sites-available/mezzanine.conf
dest: /etc/nginx/sites-enabled/mezzanine.conf
state: link
become: True
notify: restart nginx
- name: set the supervisor config file
template:
src=templates/supervisor.conf.j2
dest=/etc/supervisor/conf.d/mezzanine.conf
become: True
notify: restart supervisor
- name: install poll twitter cron job

122 | Chapter 6: Deploying Mezzanine with Ansible

cron:
name="poll twitter"
minute="*/5"
user={{ user }}
job="{{ manage }} poll_twitter"
- name: set the gunicorn config file
template:
src=templates/gunicorn.conf.py.j2
dest={{ proj_path }}/gunicorn.conf.py
- name: generate the settings file
template:
src=templates/local_settings.py.j2
dest={{ settings_path }}/local_settings.py
- name: install requirements.txt
pip: requirements={{ proj_path }}/{{ reqs_path }} virtualenv={{ venv_path }}
- name: install required python packages
pip: name={{ item }} virtualenv={{ venv_path }}
with_1items:
- gunicorn
- setproctitle
- psycopg?2
- django-compressor
- python-memcached
- name: apply migrations to create the database, collect static content
django_manage:
command: "{{ item }}"
app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"
with_1items:
- migrate
- collectstatic
- name: set the site id
script: scripts/setsite.py
environment:
PATH: "{{ venv_path }}/bin"
PROJECT_DIR: "{{ proj_path }}"
PROJECT_APP: "{{ proj_app }}"
WEBSITE_DOMAIN: "{{ live_hostname }}"
- name: set the admin password
script: scripts/setadmin.py
environment:
PATH: "{{ venv_path }}/bin"
PROJECT_DIR: "{{ proj_path }}"
PROJECT_APP: "{{ proj_app }}"
ADMIN_PASSWORD: "{{ admin_pass }}"
handlers:
- name: restart supervisor
supervisorctl: "name={{ gunicorn_procname }} state=restarted"
become: True
- name: restart nginx
service: name=nginx state=restarted
become: True

The Full Playbook | 123

Running the Playbook Against a Vagrant Machine

The live_hostname and domains variables in our playbook assume that the host we
are going to deploy to is accessible at 192.168.33.10. The Vagrantfile shown in
Example 6-29 configures a Vagrant machine with that IP address.

Example 6-29. Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.box = "ubuntu/trusty64"
config.vm.network "private_network", ip: "192.168.33.10"
end

Deploy Mezzanine into the Vagrant machine:
$ ansible-playbook mezzanine.yml

You can then reach your newly deployed Mezzanine site at any of the following URLs:

o http://192.168.33.10.xip.io
o hitps://192.168.33.10.xip.io
o hitp://www.192.168.33.10.xip.io
o https://www.192.168.33.10.xip.io

Troubleshooting

You might hit a few speed bumps when trying to run this playbook on your local
machine. This section describes how to overcome some common obstacles.

Cannot Check Out Git Repository

You may see the task named “check out the repository on the host” fail with this
error:

fatal: Could not read from remote repository.

A likely fix is to remove a preexisting entry for 192.168.33.10 in your ~/.ssh/
known_hosts file. See “A Bad Host Key Can Cause Problems, Even with Key Checking
Disabled” on page 371 for more details.

124 | Chapter 6: Deploying Mezzanine with Ansible

http://192.168.33.10.xip.io
https://192.168.33.10.xip.io
http://www.192.168.33.10.xip.io
https://www.192.168.33.10.xip.io

Cannot Reach 192.168.33.10.xip.io

Some WiFi routers ship with DNS servers that won't resolve the hostname
192.168.33.10.xip.io. You can check whether yours does by typing on the command
line:

dig +short 192.168.33.10.xip.10
The output should be as follows:
192.168.33.10

If the output is blank, your DNS server is refusing to resolve xip.io hostnames. If this
is the case, a workaround is to add the following to your /etc/hosts file:

192.168.33.10 192.168.33.10.x1p.10

Bad Request (400)

If your browser returns the error “Bad Request (400),” it is likely that you are trying
to reach the Mezzanine site by using a hostname or IP address that is not in the
ALLOWED_HOSTS list in the Mezzanine configuration file. This list is populated using
the domains Ansible variable in the playbook:

domains:
- 192.168.33.10.xip.10
- www.192.168.33.10.xip.10

Deploying Mezzanine on Multiple Machines

In this scenario, we've deployed Mezzanine entirely on a single machine. However, it’s
common to deploy the database service on a separate host from the web service. In
Chapter 7, we'll show a playbook that deploys across the database and web services on
separate hosts.

You've now seen what it’s like to deploy a real application with Mezzanine. The next
chapter covers some more advanced features of Ansible that didn’t come up in our
example.

Deploying Mezzanine on Multiple Machines | 125

CHAPTER7
Roles: Scaling Up Your Playbooks

One of the things I like about Ansible is how it scales both up and down. I'm not
referring to the number of hosts youre managing, but rather the complexity of the
jobs you're trying to automate.

Ansible scales down well because simple tasks are easy to implement. It scales up well
because it provides mechanisms for decomposing complex jobs into smaller pieces.

In Ansible, the role is the primary mechanism for breaking a playbook into multiple
files. This simplifies writing complex playbooks, and it makes them easier to reuse.
Think of a role as something you assign to one or more hosts. For example, youd
assign a database role to the hosts that will act as database servers.

Basic Structure of a Role

An Ansible role has a name, such as database. Files associated with the database role
go in the roles/database directory, which contains the following files and directories:

roles/database/tasks/main.yml
Tasks

roles/database/files/
Holds files to be uploaded to hosts

roles/database/templates/
Holds Jinja2 template files

roles/database/handlers/main.yml
Handlers

roles/database/vars/main.yml
Variables that shouldn’t be overridden

127

roles/database/defaults/main.yml
Default variables that can be overridden

roles/database/meta/main.yml
Dependency information about a role

Each individual file is optional; if your role doesn’t have any handlers, there’s no need
to have an empty handlers/main.yml file.

Where Does Ansible Look for My Roles?

Ansible looks for roles in the roles directory alongside your playbooks. It also looks
for systemwide roles in /etc/ansible/roles. You can customize the systemwide location
of roles by setting the roles_path setting in the defaults section of your ansible.cfg
file, as shown in Example 7-1.

Example 7-1. ansible.cfg: overriding default roles path

[defaults]
roles_path = ~/ansible_roles

You can also override this by setting the ANSIBLE_ROLES_PATH environment variable.

Example: Database and Mezzanine Roles

Lets take our Mezzanine playbook and implement it with Ansible roles. We could
create a single role called mezzanine, but instead I'm going to break out the deploy-
ment of the Postgres database into a separate role called database. This will make it
easier to eventually deploy the database on a host separate from the Mezzanine
application.

Using Roles in Your Playbooks

Before we get into the details of how to define roles, let’s go over how to assign roles
to hosts in a playbook. Example 7-2 shows what our playbook looks like for deploying
Mezzanine onto a single host, once we have database and Mezzanine roles defined.

Example 7-2. mezzanine-single-host.yml
- name: deploy mezzanine on vagrant
hosts: web
vars_files:

- secrets.yml

roles:

128 | Chapter7: Roles: Scaling Up Your Playbooks

- role: database
database_name: "{{ mezzanine_proj_name }}"
database_user: "{{ mezzanine_proj_name }}"

- role: mezzanine
live_hostname: 192.168.33.10.xip.10
domains:
- 192.168.33.10.x1ip.10
- www.192.168.33.10.x1ip.10

When we use roles, we have a roles section in our playbook. This section expects a
list of roles. In our example, our list contains two roles: database and mezzantine.

Note that we can pass in variables when invoking the roles. In our example, we pass
the database_name and database_user variables for the database role. If these vari-
ables have already been defined in the role (either in vars/main.yml or defaults/
main.yml), then the values will be overridden with the variables that were passed in.

If you aren’t passing in variables to roles, you can simply specify the names of the
roles, like this:

roles:
- database
- mezzanine

With database and mezzanine roles defined, writing a playbook that deploys the web
application and database services to multiple hosts becomes much simpler.
Example 7-3 shows a playbook that deploys the database on the db host and the web
service on the web host. Note that this playbook contains two separate plays.

Example 7-3. mezzanine-across-hosts.yml

- name: deploy postgres on vagrant
hosts: db
vars_files:
- secrets.yml
roles:
- role: database
database_name: "{{ mezzanine_proj_name }}"
database_user: "{{ mezzanine_proj_name }}"

- name: deploy mezzanine on vagrant
hosts: web
vars_files:
- secrets.yml
roles:
- role: mezzanine
database_host: "{{ hostvars.db.ansible_eth1.ipv4.address }}"
live_hostname: 192.168.33.10.x1ip.10
domains:

Using Roles in Your Playbooks | 129

- 192.168.33.10.xip.10
- www.192.168.33.10.xip.10

Pre-Tasks and Post-Tasks

Sometimes you want to run tasks before or after you invoke your roles. Let’s say you
want to update the apt cache before you deploy Mezzanine, and you want to send a
notification to a Slack channel after you deploy.

Ansible allows you to define a list of tasks that execute before the roles with a
pre_tasks section, and a list of tasks that execute after the roles with a post_tasks
section. Example 7-4 shows an example of these in action.

Example 7-4. Using pre-tasks and post-tasks

- name: deploy mezzanine on vagrant
hosts: web
vars_files:
- secrets.yml
pre_tasks:
- name: update the apt cache
apt: update_cache=yes
roles:
- role: mezzanine
database_host: "{{ hostvars.db.ansible_eth1.ipv4.address }}"
live_hostname: 192.168.33.10.xip.10
domains:
- 192.168.33.10.xip.10
- www.192.168.33.10.x1ip.10
post_tasks:
- name: notify Slack that the servers have been updated
local_action: >
slack
domain=acme.slack.com
token={{ slack_token }}
msg="web server {{ inventory_hostname }} configured"

But enough about using roles; let’s talk about writing them.

A database Role for Deploying the Database

The job of our database role will be to install Postgres and create the required data-
base and database user.

Our database role comprises the following files:

o roles/database/tasks/main.yml

o roles/database/defaults/main.yml

130 | Chapter7:Roles: Scaling Up Your Playbooks

o roles/database/handlers/main.yml
o roles/database/files/pg_hba.conf
o roles/database/files/postgresql.conf

This role includes two customized Postgres configuration files:

postgresgl.conf
Modifies the default 1isten_addresses configuration option so that Postgres will
accept connections on any network interface. The default for Postgres is to accept
connections only from localhost, which doesn’t work for us if we want our data-
base to run on a separate host from our web application.

pg_hba.conf
Configures Postgres to authenticate connections over the network by using a
username and password.

These files aren’t shown here because they are quite large. You can
find them in the code samples on GitHub in the ch08 directory.

Example 7-5 shows the tasks involved in deploying Postgres.

Example 7-5. roles/database/tasks/main.yml

- name: install apt packages
apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
become: True
with_items:
- libpg-dev
- postgresql
- python-psycopg2

- name: copy configuration file
copy: >
src=postgresql.conf dest=/etc/postgresql/9.3/main/postgresql.conf
owner=postgres group=postgres mode=0644
become: True
notify: restart postgres

- name: copy client authentication configuration file
copy: >
src=pg_hba.conf dest=/etc/postgresql/9.3/main/pg_hba.conf
owner=postgres group=postgres mode=0640
become: True
notify: restart postgres

A database Role for Deploying the Database | 131

https://github.com/ansiblebook/ansiblebook

- name: create project locale
locale_gen: name={{ locale }}
become: True

- name: create a user
postgresql_user:
name: "{{ database_user }}"
password: "{{ db_pass }}"
become: True
become_user: postgres

- name: create the database

postgresql_db:
name: "{{ database_name }}"
owner: "{{ database_user }}"
encoding: UTF8
lc_ctype: "{{ locale }}"
lc_collate: "{{ locale }}"
template: template0®

become: True

become_user: postgres

Example 7-6 shows the handlers file.

Example 7-6. roles/database/handlers/main.yml

- name: restart postgres
service: name=postgresql state=restarted
become: True

The only default variable we are going to specify is the database port, shown in
Example 7-7.

Example 7-7. roles/database/defaults/main.yml

database_port: 5432

Note that our list of tasks refers to several variables that we haven’t defined anywhere
in the role:

o database_name

o database_user

e db_pass

e locale

132 | Chapter7:Roles: Scaling Up Your Playbooks

In Examples 7-2 and 7-3, we pass in database_name and database_user when we
invoke the role. I'm assuming that db_pass is defined in the secrets.yml file, which is
included in the vars_files section. The locale variable is likely something that
would be the same for every host, and might be used by multiple roles or playbooks,
so I defined it in the group_vars/all file in the code samples that accompany this book.

Why Are There Two Ways to Define Variables in Roles?

When Ansible first introduced support for roles, there was only one place to define
role variables, in vars/main.yml. Variables defined in this location have a higher
precedence than those defined in the vars section of a play, which meant you couldn’t
override the variable unless you explicitly passed it as an argument to the role.

Ansible later introduced the notion of default role variables that go in defaults/
main.yml. This type of variable is defined in a role, but has a low precedence, so it will
be overridden if another variable with the same name is defined in the playbook.

If you think you might want to change the value of a variable in a role, use a default
varijable. If you don’t want it to change, use a regular variable.

A mezzanine Role for Deploying Mezzanine

The job of our mezzanine role will be to install Mezzanine. This includes installing
Nginx as the reverse proxy and Supervisor as the process monitor.

Here are the files that the role comprises:

o roles/mezzanine/defaults/main.yml

o roles/mezzanine/handlers/main.yml

o roles/mezzanine/tasks/django.yml

o roles/mezzanine/tasks/main.yml

o roles/mezzanine/tasks/nginx.yml

o roles/mezzanine/templates/gunicorn.conf.py.j2

o roles/mezzanine/templates/local_settings.py.filters.j2
o roles/mezzanine/templates/local_settings.py.j2

o roles/mezzanine/templates/nginx.conf.j2

o roles/mezzanine/templates/supervisor.conf.j2

o roles/mezzanine/vars/main.yml

A mezzanine Role for Deploying Mezzanine | 133

Example 7-8 shows the variables we've defined for this role. Note that we've changed
the name of the variables so that they all start with mezzanine. It's good practice to do
this with role variables because Ansible doesn’t have any notion of namespace across
roles. This means that variables that are defined in other roles, or elsewhere in a play-
book, will be accessible everywhere. This can cause some unexpected behavior if you
accidentally use the same variable name in two different roles.

Example 7-8. roles/mezzanine/vars/main.yml

vars file for mezzanine

mezzanine_user: "{{ ansible_user }}"

mezzanine_venv_home: "{{ ansible_env.HOME }}"

mezzanine_venv_path: "{{ mezzanine_venv_home }}/{{ mezzanine_proj_name }}"
mezzanine_repo_url: git@github.com:lorin/mezzanine-example.git
mezzanine_proj_dirname: project

mezzanine_proj_path: "{{ mezzanine_venv_path }}/{{ mezzanine_proj_dirname }}"
mezzanine_regs_path: requirements.txt

mezzanine_conf_path: /etc/nginx/conf

mezzanine_python: "{{ mezzanine_venv_path }}/bin/python"

mezzanine_manage: "{{ mezzanine_python }} {{ mezzanine_proj_path }}/manage.py"
mezzanine_gunicorn_port: 8000

Example 7-9 shows the default variables defined in our mezzanine role. In this case,
we have only a single variable. When I write default variables, I'm less likely to prefix
them because I might intentionally want to override them elsewhere.

Example 7-9. roles/mezzanine/defaults/main.yml
tls_enabled: True

Because the task list is pretty long, I've decided to break it up across several files.
Example 7-10 shows the top-level task file for the mezzanine role. It installs the apt
packages, and then it uses include statements to invoke two other task files that are
in the same directory, shown in Examples 7-11 and 7-12.

Example 7-10. roles/mezzanine/tasks/main.yml

- name: install apt packages
apt: pkg={{ item }} update_cache=yes cache_valid_time=3600
become: True
with_1items:
- git
- libjpeg-dev
- libpg-dev
- memcached
- nginx
- python-dev

134 | Chapter7:Roles: Scaling Up Your Playbooks

- python-pip

- python-psycopg2

- python-setuptools
- python-virtualenv
- supervisor

- include: django.yml

- include: nginx.yml

Example 7-11. roles/mezzanine/tasks/django.yml

- name: create a logs directory
file: path="{{ ansible_env.HOME }}/logs" state=directory

- name: check out the repository on the host
git:
repo: "{{ mezzanine_repo_url }}"
dest: "{{ mezzanine_proj_path }}"
accept_hostkey: yes

- name: install Python requirements globally via pip
pip: name={{ item }} state=latest
with_1items:
- pip
- virtualenv
- virtualenvwrapper

- name: install required python packages
pip: name={{ item }} virtualenv={{ mezzanine_venv_path }}
with_items:
- gunicorn
- setproctitle
- psycopg2
- django-compressor
- python-memcached

- name: install requirements.txt
pip: >
requirements={{ mezzanine_proj_path }}/{{ mezzanine_reqs_path }}
virtualenv={{ mezzanine_venv_path }}

- name: generate the settings file
template: src=local_settings.py.j2 dest={{ mezzanine_proj_path }}/local_settings.py

- name: apply migrations to create the database, collect static content
django_manage:
command: "{{ item }}"
app_path: "{{ mezzanine_proj_path }}"
virtualenv: "{{ mezzanine_venv_path }}"
with_items:
- migrate

A mezzanine Role for Deploying Mezzanine | 135

- collectstatic

- name: set the site id
script: scripts/setsite.py
environment:
PATH: "{{ mezzanine_venv_path }}/bin"
PROJECT_DIR: "{{ mezzanine_proj_path }}"
PROJECT_APP: "{{ mezzanine_proj_app }}"
WEBSITE_DOMAIN: "{{ live_hostname }}"

- name: set the admin password
script: scripts/setadmin.py
environment:
PATH: "{{ mezzanine_venv_path }}/bin"
PROJECT_DIR: "{{ mezzanine_proj_path }}"
PROJECT_APP: "{{ mezzanine_proj_app }}"
ADMIN_PASSWORD: "{{ admin_pass }}"

- name: set the gunicorn config file
template: src=gunicorn.conf.py.j2 dest={{ mezzanine_proj_path }}/gunicorn.conf.py

- name: set the supervisor config file
template: src=supervisor.conf.j2 dest=/etc/supervisor/conf.d/mezzanine.conf
become: True
notify: restart supervisor

- name: ensure config path exists
file: path={{ mezzanine_conf_path }} state=directory
become: True
when: tls_enabled

- name: install poll twitter cron job
cron: >
name="poll twitter" minute="*/5" user={{ mezzanine_user }}
job="{{ mezzanine_manage }} poll_twitter"

Example 7-12. roles/mezzanine/tasks/nginx.yml

- name: set the nginx config file
template: src=nginx.conf.j2 dest=/etc/nginx/sites-available/mezzanine.conf
notify: restart nginx
become: True

- name: enable the nginx config file
file:
src: /etc/nginx/sites-available/mezzanine.conf
dest: /etc/nginx/sites-enabled/mezzanine.conf
state: link
notify: restart nginx
become: True

- name: remove the default nginx config file

136 | Chapter7: Roles: Scaling Up Your Playbooks

file: path=/etc/nginx/sites-enabled/default state=absent
notify: restart nginx
become: True

- name: create tls certificates

command: >
openssl req -new -x509 -nodes -out {{ mezzanine_proj_name }}.crt
-keyout {{ mezzanine_proj_name }}.key -subj '/CN={{ domains[@] }}' -days 3650
chdir={{ mezzanine_conf_path }}
creates={{ mezzanine_conf_path }}/{{ mezzanine_proj_name }}.crt

become: True

when: tls_enabled

notify: restart nginx

There’s one important difference between tasks defined in a role and tasks defined in
a regular playbook, and that’s when using the copy or template modules.

When invoking copy in a task defined in a role, Ansible will first check the rolename/
files/ directory for the location of the file to copy. Similarly, when invoking template
in a task defined in a role, Ansible will first check the rolename/templates directory
for the location of the template to use.

This means that a task that used to look like this in a playbook:

- name: set the nginx config file
template: src=templates/nginx.conf.j2 \
dest=/etc/nginx/sites-available/mezzanine.conf

now looks like this when invoked from inside the role (note the change of the src
parameter):

- name: set the nginx config file
template: src=nginx.conf.j2 dest=/etc/nginx/sites-available/mezzanine.conf
notify: restart nginx

Example 7-13 shows the handlers file.

Example 7-13. roles/mezzanine/handlers/main.yml

- name: restart supervisor
supervisorctl: name=gunicorn_mezzanine state=restarted
become: True

- name: restart nginx
service: name=nginx state=restarted
become: True

I won’t show the template files here, since they’re basically the same as in the previous
chapter, although some of the variable names have changed. Check out the accompa-
nying code samples for details.

A mezzanine Role for Deploying Mezzanine | 137

http://github.com/ansiblebook/ansiblebook

Creating Role Files and Directories with ansible-galaxy

Ansible ships with another command-line tool we haven't talked about yet, ansible-
galaxy. Its primary purpose is to download roles that have been shared by the Ansi-
ble community (more on that later in the chapter). But it can also be used to generate
scaffolding, an initial set of files and directories involved in a role:

$ ansible-galaxy init -p playbooks/roles web

The -p flag tells ansible-galaxy where your roles directory is. If you don't specify it,
the role files will be created in your current directory.

Running the command creates the following files and directories:

playbooks
L— roles
L— web
}— README.md
— defaults
| — matn.yml
— files
— handlers
| Y main.yml
— meta
| Y main.yml
}— tasks
| Y main.yml
}— templates
— tests
| | inventory
| L— test.yml
L— vars
L— main.yml
Dependent Roles

Imagine that we have two roles, web and database, that both require an NTP' server
to be installed on the host. We could specify the installation of the NTP server in both
the web and database roles, but that would result in duplication. We could create a
separate ntp role, but then we would have to remember that whenever we apply the
web or database role to a host, we have to apply the ntp role as well. This would avoid
the duplication, but it's error-prone because we might forget to specify the ntp role.
What we really want is to have an ntp role that is always applied to a host whenever
we apply the web role or the database role.

1 NTP stands for Network Time Protocol, used for synchronizing clocks.

138 | Chapter7:Roles: Scaling Up Your Playbooks

Ansible supports a feature called dependent roles to deal with this scenario. When you
define a role, you can specify that it depends on one or more other roles. Ansible will
ensure that roles that are specified as dependencies are executed first.

Continuing with our example, let’s say that we create an ntp role that configures a
host to synchronize its time with an NTP server. Ansible allows us to pass parameters
to dependent roles, so let’s also assume that we can pass the NTP server as a parame-
ter to that role.

We specify that the web role depends on the ntp role by creating a roles/web/meta/
main.yml file and listing ntp as a role, with a parameter, as shown in Example 7-14.

Example 7-14. roles/web/meta/main.yml

dependencies:
- { role: ntp, ntp_server=ntp.ubuntu.com }

We can also specify multiple dependent roles. For example, if we have a django role
for setting up a Django web server, and we want to specify nginx and memcached as
dependent roles, then the role metadata file might look like Example 7-15.

Example 7-15. roles/django/meta/main.yml

dependencies:
- { role: web }
- { role: memcached }

For details on how Ansible evaluates the role dependencies, check out the official
Ansible documentation on role dependencies.

Ansible Galaxy

If you need to deploy an open source software system onto your hosts, chances are
somebody has already written an Ansible role to do it. Although Ansible does make it
easier to write scripts for deploying software, some systems are just plain tricky to
deploy.

Whether you want to reuse a role somebody has already written, or you just want to
see how someone else solved the problem you’re working on, Ansible Galaxy can help
you out. Ansible Galaxy is an open source repository of Ansible roles contributed by
the Ansible community. The roles themselves are stored on GitHub.

Ansible Galaxy | 139

http://bit.ly/1F6tH9a
http://bit.ly/1F6tH9a

Web Interface

You can explore the available roles on the Ansible Galaxy site. Galaxy supports free-
text searching and browsing by category or contributor.

Command-Line Interface

The ansible-galaxy command-line tool allows you to download roles from Ansible
Galaxy.

Installing a role

Let’s say I want to install the role named ntp, written by GitHub user bennojoy. This is
a role that will configure a host to synchronize its clock with an NTP server.

Install the role with the install command:
$ ansible-galaxy install -p ./roles bennojoy.ntp

The ansible-galaxy program will install roles to your systemwide location by
default (see “Where Does Ansible Look for My Roles?” on page 128), which we over-
rode in the preceding example with the -p flag.

The output should look like this:

downloading role 'ntp', owned by bennojoy

no version specified, installing master

- downloading role from https://github.com/bennojoy/ntp/archive/master.tar.gz
- extracting bennojoy.ntp to ./roles/bennojoy.ntp
write_galaxy_install_info!
bennojoy.ntp was installed successfully

The ansible-galaxy tool will install the role files to roles/bennojoy.ntp.

Ansible will install some metadata about the installation to the ./roles/bennojoy.ntp/
meta/.galaxy_install_info file. On my machine, that file contains the following:

{install_date: 'Sat Oct 4 20:12:58 2014', version: master}
The bennojoy.ntp role does not have a specific version number, so

the version is simply listed as master. Some roles will have a spe-
cific version number, such as 1.2.

Listing installed roles
You can list installed roles as follows:

$ ansible-galaxy list

140 | Chapter7: Roles: Scaling Up Your Playbooks

http://galaxy.ansible.com

Output should look like this:

bennojoy.ntp, master

Uninstalling a role
Remove a role with the remove command:

$ ansible-galaxy remove bennojoy.ntp

Contributing Your Own Role

See “How To Share Roles You've Written” on the Ansible Galaxy website for details on
how to contribute a role to the community. Because the roles are hosted on GitHub,
you need to have a GitHub account to contribute.

At this point, you should have an understanding of how to use roles, how to write
your own roles, and how to download roles written by others. Roles are a great way to
organize your playbooks. I use them all the time, and I highly recommend them.

Ansible Galaxy | 141

https://galaxy.ansible.com/intro

CHAPTER 8
Complex Playbooks

In the preceding chapter, we went over a fully functional Ansible playbook for
deploying the Mezzanine CMS. That example used some common Ansible features,
but it didn’'t cover all of them. This chapter touches on those additional features,
which makes it a bit of a grab bag.

Dealing with Badly Behaved Commands: changed_when
and failed_when

Recall that in Chapter 6, we avoided invoking the custom createdb manage.py com-
mand, shown in Example 8-1, because the call wasn’t idempotent.

Example 8-1. Calling django manage.py createdb

- name: initialize the database
django_manage:
command: createdb --noinput --nodata

app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"

We got around this problem by invoking several django manage.py commands that
were idempotent, and that did the equivalent of createdb. But what if we didn’t have
a module that could invoke equivalent commands? The answer is to use
changed_when and fatiled_when clauses to change how Ansible identifies that a task
has changed state or failed.

First, we need to understand the output of this command the first time it’s run, and
the output when it’s run the second time.

143

Recall from Chapter 4 that to capture the output of a failed task, you add a register
clause to save the output to a variable and a failed_when: False clause so that the
execution doesn’t stop even if the module returns failure. Then add a debug task to
print out the variable, and finally a fail clause so that the playbook stops executing,
as shown in Example 8-2.

Example 8-2. Viewing the output of a task

- name: initilalize the database
django_manage:
command: createdb --noinput --nodata
app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"
failed_when: False
register: result

- debug: var=result
- fail:

The output of the playbook when invoked the second time is shown in Example 8-3.

Example 8-3. Returned values when database has already been created

TASK: [debug Var:result] khkkkkhkhkkhhkhkhkkhhkhkhhhhhhkhkhhhkhkhkhhkhkhkhhhkhkhkkhkhkhkhkkhkhkkrkx

ok: [default] => {
"result": {

"emd": "python manage.py createdb --noinput --nodata",

"failed": false,

"failed_when_result": false,

"{nvocation": {

"module_args": '',
"module_name": "django_manage"

1,

"msg": "\n:stderr: CommandError: Database already created, you probably
want the syncdb or migrate command\n",

"path":
"/home/vagrant/mezzanine_example/bin:/usr/local/sbin:/usr/local/bin:
fusr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games",

"state": "absent",

"syspath": [

"Jusr/1ib/python2.7",
"Jusr/1lib/python2.7/plat-x86_64-1linux-gnu",
"Jusr/1lib/python2.7/1ib-tk",
"Jusr/1lib/python2.7/1ib-old",
"Jusr/1ib/python2.7/1ib-dynload",
"Jusr/local/lib/python2.7/dist-packages",
"Jusr/1lib/python2.7/dist-packages"

144 | Chapter 8: Complex Playbooks

This is what happens when the task has been run multiple times. To see what happens
the first time, delete the database and then have the playbook re-create it. The sim-
plest way to do that is to run an Ansible ad hoc task that deletes the database:

$ ansible default --become --become-user postgres -m postgresql_db -a \
"name=mezzanine_example state=absent"

Now when I run the playbook again, I get the output in Example 8-4.

Example 8-4. Returned values when invoked the first time

ASK: [debug Var=resu1t] kkkkhkkkkkkhkhkhkkhkhkhkhkkhhkhkhkkkhkhkkkkhkhhkkkhkhkhkkkhkhkhhkkkkkhkxx

ok: [default] => {

"result": {
"app_path": "/home/vagrant/mezzanine_example/project"”,
"changed": false,
"emd": "python manage.py createdb --noinput --nodata",

"failed": false,

"failed_when_result": false,

"{invocation": {

"module_args": '',
"module_name": "django_manage"

1,

"out": "Creating tables ...\nCreating table auth_permission\nCreating
table auth_group_permissions\nCreating table auth_group\nCreating table
auth_user_groups\nCreating table auth_user_user_permissions\nCreating table
auth_user\nCreating table django_content_type\nCreating table
django_redirect\nCreating table django_session\nCreating table
django_site\nCreating table conf_setting\nCreating table
core_sitepermission_sites\nCreating table core_sitepermission\nCreating table
generic_threadedcomment\nCreating table generic_keyword\nCreating table
generic_assignedkeyword\nCreating table generic_rating\nCreating table
blog_blogpost_related_posts\nCreating table blog_blogpost_categories\nCreating
table blog_blogpost\nCreating table blog_blogcategory\nCreating table
forms_form\nCreating table forms_field\nCreating table forms_formentry\nCreating
table forms_fieldentry\nCreating table pages_page\nCreating table
pages_richtextpage\nCreating table pages_link\nCreating table
galleries_gallery\nCreating table galleries_galleryimage\nCreating table
twitter_query\nCreating table twitter_tweet\nCreating table
south_migrationhistory\nCreating table django_admin_log\nCreating table
django_comments\nCreating table django_comment_flags\n\nCreating default site
record: vagrant-ubuntu-trusty-64 ... \n\nInstalled 2 object(s) from 1
fixture(s)\nInstalling custom SQL ...\nInstalling indexes ...\nInstalled 0
object(s) from 0 fixture(s)\n\nFaking initial migrations ...\n\n",

"pythonpath": null,

"settings": null,

"virtualenv": "/home/vagrant/mezzanine_example"

Dealing with Badly Behaved Commands: changed_when and failed_when | 145

Note that changed is set to false even though it did, indeed, change the state of the
database. That’s because the django_manage module always returns changed=false
when it runs commands that the module doesn’t know about.

We can add a changed_when clause that looks for "Creating tables" in the out
return value, as shown in Example 8-5.

Example 8-5. First attempt at adding changed_when

- name: initialize the database
django_manage:
command: createdb --noinput --nodata

app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"
register: result
changed_when: '"Creating tables" in result.out'

The problem with this approach is that, if we look back at Example 8-3, we see that
there is no out variable. Instead, there’s a msg variable. If we executed the playbook,
wed get the following (not terribly helpful) error the second time:
TASK: [lnitlallze the database] e o R
fatal: [default] => error while evaluating conditional: "Creating tables" in
result.out

Instead, we need to ensure that Ansible evaluates result.out only if that variable is
defined. One way is to explicitly check whether the variable is defined:

changed_when: result.out is defined and "Creating tables" in result.out

Alternatively, we could provide a default value for result.out if it doesn’t exist by
using the Jinja2 default filter:

changed_when: '"Creating tables" in result.out|default("")'

The final idempotent task is shown in Example 8-6.

Example 8-6. Idempotent manage.py createdb

- name: initialize the database
django_manage:
command: createdb --noinput --nodata
app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"
register: result
changed_when: '"Creating tables" in result.out|default("")'

146 | Chapter 8: Complex Playbooks

Filters

Filters are a feature of the Jinja2 templating engine. Since Ansible uses Jinja2 for eval-
uating variables, as well as for templates, you can use filters inside {{ braces }} in
your playbooks, as well as inside your template files. Using filters resembles using
Unix pipes, whereby a variable is piped through a filter. Jinja2 ships with a set of
built-in filters. In addition, Ansible ships with its own filters to augment the Jinja2
filters.

We'll cover a few sample filters here, but check out the official Jinja2 and Ansible docs
for a complete list of the available filters.

The Default Filter

The default filter is a useful one. Here’s an example of this filter in action:
"HOST": "{{ database_host | default('localhost') }}",

If the variable database_host is defined, the braces will evaluate to the value of that
variable. If the variable database_host is not defined, the braces will evaluate to the
string localhost. Some filters take arguments, and some don't.

Filters for Registered Variables

Let’s say we want to run a task and print out its output, even if the task fails. However,
if the task does fail, we want Ansible to fail for that host after printing the output.
Example 8-7 shows how to use the failed filter in the argument to the failed_when
clause.

Example 8-7. Using the failed filter

- name: Run myprog
command: /opt/myprog
register: result
ignore_errors: True

- debug: var=result
- debug: msg="Stop running the playbook if myprog failed"
failed_when: result|failed

more tasks here

Table 8-1 shows a list of filters you can use on registered variables to check the status.

Filters | 147

http://bit.ly/1FvOGzI
http://bit.ly/1FvOIrj
http://bit.ly/1FvOIrj

Table 8-1. Task return value filters

Name Description

failed True if a registered value is a task that failed
changed True if a registered value is a task that changed
success True if a registered value is a task that succeeded
skipped True if a registered value is a task that was skipped

Filters That Apply to File Paths

Table 8-2 shows filters that are useful when a variable contains the path to a file on
the control machine’s filesystem.

Table 8-2. File path filters

Name Description

basename Base name of file path
dirname Directory of file path
expanduser File path with ~ replaced by home directory

realpath Canonical path of file path, resolves symbolic links

Consider this playbook fragment:

vars:

homepage: /usr/share/nginx/html/index.html
tasks:
- name: copy home page

copy: src=files/index.html dest={{ homepage }}

Note that it references index.html twice: once in the definition of the homepage vari-
able, and a second time to specify the path to the file on the control machine.

The basename filter will let us extract the index.html part of the filename from the full
path, allowing us to write the playbook without repeating the filename:

vars:
homepage: /usr/share/nginx/html/index.html
tasks:
- name: copy home page
copy: src=files/{{ homepage | basename }} dest={{ homepage }}

1 Thanks to John Jarvis for this tip.

148 | Chapter 8: Complex Playbooks

Writing Your Own Filter

Recall that in our Mezzanine example, we generated the local_settings.py file from a
template, and a line in the generated file looks like Example 8-8.

Example 8-8. Line from local_settings.py generated by template
ALLOWED_HOSTS = ["www.example.com", "example.com"]

We had a variable named domains that contained a list of the hostnames. We origi-
nally used a for loop in our template to generate this line, but a filter would be an
even more elegant approach.

There is a built-in Jinja2 filter called join that will join a list of strings with a delim-
iter such as a comma. Unfortunately, it doesn’t quite give us what we want. If we did
this in the template:

ALLOWED_HOSTS = [{{ domains|join(", ") }}]

then we would end up with the strings unquoted in our file, as shown in Example 8-9.

Example 8-9. Strings incorrectly unquoted

ALLOWED_HOSTS = [www.example.com, example.com]

If we had a Jinja2 filter that quoted the strings in the list, as shown in Example 8-10,
then the template would generate the output depicted in Example 8-8.

Example 8-10. Using a filter to quote the strings in the list

ALLOWED_HOSTS = [{{ domains|surround_by quote|join(", ") }}]

Unfortunately, there’s no existing surround_by_quote filter that does what we want.
However, we can write it ourselves. (In fact, Hanfei Sun on Stack Overflow covered
this very topic.)

Ansible will look for custom filters in the filter_plugins directory, relative to the direc-
tory containing your playbooks.

Example 8-11 shows what the filter implementation looks like.

Example 8-11. filter_plugins/surround_by_quotes.py
From http://stackoverflow.com/a/15515929/742

def surround_by_quote(a_list):
return ['"%s"' % an_element for an_element in a_list]

Filters | 149

http://stackoverflow.com/questions/15514365/

class FilterModule(object):
def filters(self):
return {'surround_by_quote': surround_by_quote}

The surround_by_quote function defines the Jinja2 filter. The FilterModule class
defines a filters method that returns a dictionary with the name of the filter func-
tion and the function itself. The FilterModule class is Ansible-specific code that
makes the Jinja2 filter available to Ansible.

You can also place filter plugins in the ~/.ansible/plugins/filter directory, or the /usr/
share/ansible/plugins/filter directory, or you can specify the directory by setting the
ANSIBLE_FILTER_PLUGINS environment variable to the directory where your plugins
are located.

Lookups

In an ideal world, all of your configuration information would be stored as Ansible
variables, in the various places that Ansible lets you define variables (e.g., the vars
section of your playbooks, files loaded by vars_files, files in the host_vars or
group_vars directory that we discussed in Chapter 3).

Alas, the world is a messy place, and sometimes a piece of configuration data you
need lives somewhere else. Maybe it’s in a text file or a .csv file, and you don’t want to
just copy the data into an Ansible variable file because now you have to maintain two
copies of the same data, and you believe in the DRY? principle. Or maybe the data
isn’t maintained as a file at all; it’s maintained in a key-value storage service such as
etcd.’ Ansible has a feature called lookups that allows you to read in configuration data
from various sources and then use that data in your playbooks and template.

Ansible supports a collection of lookups for retrieving data from different sources.
Some of the lookups are shown in Table 8-3.

Table 8-3. Lookups

Name Description

file Contents of a file
password Randomly generate a password
pipe Output of locally executed command

env Environment variable

2 Don’t Repeat Yourself, a term popularized by The Pragmatic Programmer: From Journeyman to Master, which
is a fantastic book.

3 etcd is a distributed key-value store maintained by the CoreOS project.

150 | Chapter 8: Complex Playbooks

https://coreos.com/docs/etcd/

Name Description

template Jinja2 template after evaluation
csvfile Entry in a.csvfile

dnstxt DNS TXT record

redis_kv Redis key lookup

etcd eted key lookup

You invoke lookups by calling the lookup function with two arguments. The first is a
string with the name of the lookup, and the second is a string that contains one or
more arguments to pass to the lookup. For example, we call the file lookup like this:

lookup('file', '/path/to/file.txt')

You can invoke lookups in your playbooks between {{ braces }}, or you can put
them in templates.

In this section, I provided only a brief overview of lookups that are available. The
Ansible documentation provides more details on available lookups and how to use
them.

All Ansible lookup plugins execute on the control machine, not the
remote host.

file

Let’s say you have a text file on your control machine that contains a public SSH key
that you want to copy to a remote server. Example 8-12 shows how to use the file
lookup to read the contents of a file and pass that as a parameter to a module.

Example 8-12. Using the file lookup

- name: Add my public key as an EC2 key
ec2_key: name=mykey key_material="{{ lookup('file', \
'/Users/lorin/.ssh/id_rsa.pub') }}"

You can invoke lookups in templates as well. If we want to use the same technique to
create an authorized_keys file that contains the contents of a public-key file, we could
create a Jinja2 template that invokes the lookup, as shown in Example 8-13, and then
call the template module in our playbook, as shown in Example 8-14.

Lookups | 151

http://docs.ansible.com/playbooks_lookups.html

Example 8-13. authorized_keys.j2

{{ lookup('file', '/Users/lorin/.ssh/id_rsa.pub') }}

Example 8-14. Task to generate authorized_keys

- name: copy authorized_host file
template: src=authorized_keys.j2 dest=/home/deploy/.ssh/authorized_keys

pipe

The pipe lookup invokes an external program on the control machine and evaluates
to the program’s output on standard out.

For example, if our playbooks are version controlled using git, and we want to get

the SHA-1 value of the most recent git commit,* we could use the pipe lookup:

- name: get SHA of most recent commit
debug: msg="{{ lookup('pipe', 'git rev-parse HEAD') }}"

The output looks something like this:

TASK: [get the sha of the Current commit] dhkkkhkkhkhhkhhkhhkhhkdhkdhkddkdhdhdrdhdrdrdx
ok: [myserver] => {

"msg": "e7748af0f040d58d61de1917980a210df419eae9"
}

env

The env lookup retrieves the value of an environment variable set on the control
machine. For example, we could use the lookup like this:

- name: get the current shell
debug: msg="{{ lookup('env', 'SHELL') }}"

Since I use Zsh as my shell, the output looks like this when I run it:

TASK: [get the Current Shell] EE R S ST S s RS S T SR L
ok: [myserver] => {

"msg": "/bin/zsh"
}

password

The password lookup evaluates to a random password, and it will also write the pass-
word to a file specified in the argument. For example, if we want to create a Postgres

4 If this sounds like gibberish, don’t worry about it; it’s just an example of running a command.

152 | Chapter8: Complex Playbooks

user named deploy with a random password and write that password to deploy-
password.txt on the control machine, we can do this:

- name: create deploy postgres user
postgresql_user:
name: deploy
password: "{{ lookup('password', 'deploy-password.txt') }}"

template

The template lookup lets you specify a Jinja2 template file, and then returns the
result of evaluating the template. Say we have a template that looks like Example 8-15.

Example 8-15. message.j2
This host runs {{ ansible_distribution }}

If we define a task like this:

- name: output message from template
debug: msg="{{ lookup('template', 'message.j2') }}"

then we'll see output that looks like this:

TASK: [output message from template] B R R
ok: [myserver] => {
"msg": "This host runs Ubuntu\n"

}

csvfile

The csvfile lookup reads an entry from a .csv file. Assume we have a .csv file that
looks like Example 8-16.

Example 8-16. users.csv

username,ematil

lorin, lorin@ansiblebook.com
john, john@example.com
sue,sue@example.org

If we want to extract Sue’s email address by using the csvfile lookup plugin, we
would invoke the lookup plugin like this:

lookup('csvfile', 'sue file=users.csv delimiter=, col=1')

The csvfile lookup is a good example of a lookup that takes multiple arguments.
Here, four arguments are being passed to the plugin:

Lookups | 153

e Sue
o file=users.csv
o delimiter=,

e col=1

You don't specify a name for the first argument to a lookup plugin, but you do specify
names for the additional arguments. In the case of csvfile, the first argument is an
entry that must appear exactly once in column 0 (the first column, 0-indexed) of the
table.

The other arguments specify the name of the .csv file, the delimiter, and which col-
umn should be returned. In our example, we want to look in the file named users.csv
and locate where the fields are delimited by commas, look up the row where the value
in the first column is sue, and return the value in the second column (column 1,
indexed by 0). This evaluates to sue@example.org.

If the username we want to look up is stored in a variable named username, we could
construct the argument string by using the + sign to concatenate the username string
with the rest of the argument string:

lookup('csvfile', username + ' file=users.csv delimiter=, col=1'")

dnstxt

The dnstxt module requires that you install the dnspython Python
package on the control machine.

If youre reading this book, youre probably aware of what the Domain Name System
(DNS) does, but just in case you aren’t, DNS is the service that translates hostnames
such as ansiblebook.com to IP addresses such as 64.99.80.30.

DNS works by associating one or more records with a hostname. The most com-
monly used types of DNS records are A records and CNAME records, which associate
a hostname with an IP address (A record) or specify that a hostname is an alias for
another hostname (CNAME record).

The DNS protocol supports another type of record that you can associate with a host-
name, called a TXT record. A TXT record is just an arbitrary string that you can
attach to a hostname. Once you've associated a TXT record with a hostname, any-
body can retrieve the text by using a DNS client.

154 | Chapter 8: Complex Playbooks

For example, I own the ansiblebook.com domain, so I can create TXT records associ-
ated with any hostnames in that domain.’ I associated a TXT record with the ansible-
book.com hostname that contains the ISBN number for this book. You can look up
the TXT record by using the dig command-line tool, as shown in Example 8-17.

Example 8-17. Using the dig tool to look up a TXT record

$ dig +short ansiblebook.com TXT
"1sbn=978-1491979808"

The dnstxt lookup queries the DNS server for the TXT record associated with the
host. If we create a task like this in a playbook:

- name: look up TXT record
debug: msg="{{ lookup('dnstxt', 'ansiblebook.com') }}"

the output will look like this:

TASK: ['Look Up TXT record] kkkkhkkkkkhhkhkkhkhhkhkkhhkhkhkkhhkhkkhkhkhkhkkkhkhkhkkkkhkhkkkkkkkx

ok: [myserver] => {
"msg": "isbn=978-1491979808"
}

If multiple TXT records are associated with a host, the module will concatenate them
together, and it might do this in a different order each time it is called. For example, if
there were a second TXT record on ansiblebook.com with this text:

author=lorin

then the dnstxt lookup would randomly return one of the two:

e 1sbn=978-1491979808author=1orin
e author=lorinisbn=978-1491979808

redis_kv

The redis_kv module requires that you install the redis Python
package on the control machine.

5 DNS service providers typically have web interfaces to let you perform DNS-related tasks such as creating
TXT records.

Lookups | 155

Redis is a popular key-value store, commonly used as a cache, as well as a data store
for job queue services such as Sidekiq. You can use the redis_kv lookup to retrieve
the value of a key. The key must be a string, as the module does the equivalent of call-
ing the Redis GET command.

For example, let’s say that we have a Redis server running on our control machine,
and we set the key weather to the value sunny, by doing something like this:

$ redis-cli SET weather sunny
If we define a task in our playbook that invokes the Redis lookup:

- name: look up value in Redis
debug: msg="{{ lookup('redis_kv', 'redis://localhost:6379,weather') }}"

the output will look like this:

TASK: [look up Value in Redis] khkkhkkkhkhkhkhkhkhhhkhkhkhhkhkhkhhkhkkhkkhkkhkkhkkhkkhkkkk
ok: [myserver] => {
"msg": "sunny"
}
The module will default to redis://localhost:6379 if the URL isn't specified, so we could
invoke the module like this instead (note the comma before the key):

lookup('redis_kv', ',weather')

etcd

Etcd is a distributed key-value store, commonly used for keeping configuration data
and for implementing service discovery. You can use the etcd lookup to retrieve the
value of a key.

For example, let’s say that we have an etcd server running on our control machine,
and we set the key weather to the value cloudy by doing something like this:

$ curl -L http://127.0.0.1:4001/v2/keys/weather -XPUT -d value=cloudy
If we define a task in our playbook that invokes the etcd plugin:

- name: look up value in etcd
debug: msg="{{ lookup('etcd', 'weather') }}"

The output looks like this:

TASK: [look Up Value in etcd] kkkhkkkhhkhkhhhhhkhhhkhhkhkhhhhhkhkhkhhhkhkhkkhkhkhkhkkhkhkkx*

ok: [localhost] => {
n "C‘LOUdy"

msg :
}

By default, the etcd lookup looks for the etcd server at http://127.0.0.1:4001, but you

can change this by setting the ANSIBLE_ETCD_URL environment variable before invok-

ing ansible-playbook.

156 | Chapter 8: Complex Playbooks

Writing Your Own Lookup Plugin

You can also write your own lookup plugin if you need functionality not provided by
the existing plugins. Writing a custom lookup plugin is out of scope for this book, but
if you're really interested, I suggest that you take a look at the source code for the
lookup plugins that ship with Ansible.

Once you've written your lookup plugin, place it in one of the following directories:

o The lookup_plugins directory next to your playbook

o ~/.ansible/plugins/lookup

o /usr/share/ansible/plugins/lookup

o The directory specified in your ANSIBLE_LOOKUP_PLUGINS environment variable

More Complicated Loops

Up until this point, whenever we've written a task that iterates over a list of items,
we've used the with_items clause to specify a list of items. Although this is the most
common way to do loops, Ansible supports other mechanisms for iteration. Table 8-4
provides a summary of the constructs that are available.

Table 8-4. Looping constructs

Name Input Looping strategy
with_items List Loop over list elements
with_lines Command to execute Loop over lines in command output
with_fileglob Glob Loop over filenames
with_first_found List of paths First file in input that exists
with_dict Dictionary Loop over dictionary elements
with_flattened List of lists Loop over flattened list
with_indexed_items List Single iteration

with_nested List Nested loop
with_random__choice List Single iteration
with_sequence Sequence of integers Loop over sequence
with_subelements List of dictionaries Nested loop

with_together List of lists

with_inventory_hostnames Host pattern

Loop over zipped list
Loop over matching hosts

The official documentation covers these quite thoroughly, so I'll show examples from
just a few of them to give you a sense of how they work.

More Complicated Loops | 157

https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/lookup
http://bit.ly/1F6kfCP

with_lines

The with_lines looping construct lets you run an arbitrary command on your con-
trol machine and iterate over the output, one line at a time.

Imagine you have a file that contains a list of names, and you want to send a Slack
message for each name, something like this:

Leslie Lamport
Silvio Micali
Shafi Goldwasser
Judea Pearl

Example 8-18 shows how to use with_lines to read a file and iterate over its contents
line by line.

Example 8-18. Using with_lines as a loop

- name: Send out a slack message
slack:
domain: example.slack.com
token: "{{ slack_token }}"
msg: "{{ item }} was in the list"
with_lines:
- cat files/turing.txt

with_fileglob

The with_fileglob construct is useful for iterating over a set of files on the control
machine.

Example 8-19 shows how to iterate over files that end in .pub in the /var/keys direc-
tory, as well as a keys directory next to your playbook. It then uses the file lookup
plugin to extract the contents of the file, which are passed to the authorized_key
module.

Example 8-19. Using with_fileglob to add keys

- name: add public keys to account
authorized_key: user=deploy key="{{ lookup('file', item) }}"
with_fileglob:
- /var/keys/*.pub
- keys/*.pub

with_dict

The with_dict construct lets you iterate over a dictionary instead of a list. When you
use this looping construct, the item loop variable is a dictionary with two keys:

158 | Chapter 8: Complex Playbooks

key
One of the keys in the dictionary

value
The value in the dictionary that corresponds to key

For example, if your host has an eth@ interface, there will be an Ansible fact named
ansible_eth, with a key named ipv4 that contains a dictionary that looks some-
thing like this:

{

"address": "10.0.2.15",

"netmask": "255.255.255.0",

"network": "10.0.2.0"
}

We could iterate over this dictionary and print out the entries one at a time:

- name: iterate over ansible_eth®
debug: msg={{ item.key }}={{ item.value }}
with_dict: "{{ ansible_eth0.ipv4 }}"

The output looks like this:

TASK: [-'Lterate over ansible_etho] KRR IAIIIIKR KA I I I IR IddhFhhdddddhhhddddhhhhddddxsx
ok: [myserver] => (item={'key': u'netmask', 'value': u'255.255.255.0'}) => {

"item": {
"key": "netmask",
"value": "255.255.255.0"
1,
"msg": "netmask=255.255.255.0"
}
ok: [myserver] => (item={'key': u'network', 'value': u'10.0.2.0'}) => {
"{tem": {
"key": "network",
"value": "10.0.2.0"
}J
"msg": "network=10.0.2.0"
}
ok: [myserver] => (item={'key': u'address', 'value': u'10.0.2.15'}) => {
"item": {
"key": "address",
"value": "10.0.2.15"
1,
"msg": "address=10.0.2.15"
}

Looping Constructs as Lookup Plugins

Ansible implements looping constructs as lookup plugins. You just slap a with at the
beginning of a lookup plugin to use it in its loop form. For example, we can rewrite
Example 8-12 by using the with_file form in Example 8-20.

More Complicated Loops | 159

Example 8-20. Using the file lookup as a loop
- name: Add my public key as an EC2 key
ec2_key: name=mykey key_material="{{ item }}"

with_file: /Users/lorin/.ssh/id_rsa.pub

Typically, you use a lookup plugin as a looping construct only if it returns a list,
which is how I was able to separate out the plugins into Table 8-3 (return strings) and
Table 8-4 (return lists).

Loop Controls

With version 2.1, Ansible provides users with more control over loop handling.

Setting the Variable Name

The loop_var control allows us to give the iteration variable a different name than
the default name, item, as shown in Example 8-21.

Example 8-21. Use user as loop variable

- user:
name: "{{ user.name }}"
with_items:

- { name: gil }

- { name: sarina }

- { name: leanne }
loop_control:

loop_var: user

Although in Example 8-21 loop_var provides only a cosmetic improvement, it can be
essential for more advanced loops.

In Example 8-22, we would like to loop over multiple tasks at once. One way to ach-
ieve that is to use include with with_1items.

However, the vhosts.yml file that is going to be included may also contain with_items
in some tasks. This would produce a conflict, as the default loop_var item is used for
both loops at the same time.

To prevent a naming collision, we specify a different name for loop_var in the outer
loop.
Example 8-22. Use vhost as loop variable

- name: run a set of tasks in one loop
include: vhosts.yml

160 | Chapter 8: Complex Playbooks

with_items:
- { domain: wwwl.example.com }
- { domain: www2.example.com }
- { domain: www3.example.com }
loop_control:
loop_var: vhost (1)

© Change the loop variable name for outer loops to prevent name collisions.

In the included task file vhosts.yml you see in Example 8-23, we are now able to use
the default loop_var name item as we used to do.

Example 8-23. Included file can contain a loop

- name: create nginx directories
file:
path: /var/www/html/{{ vhost.domain }}/{{ item }} (1)
state: directory
with_items:
- logs
- public_http
- public_https
- includes

- name: create nginx vhost config
template:
src: "{{ vhost.domain }}.j2"
dest: /etc/nginx/conf.d/{{ vhost.domain }}.conf

© We keep the default loop variable in the inner loop.

Labeling the Qutput

The label control was added in Ansible 2.2 and provides some control over how the
loop output will be shown to the user during execution.

The following example contains an ordinary list of dictionaries:

- name: create nginx vhost configs
template:
src: "{{ item.domain }}.conf.j2"
dest: "/etc/nginx/conf.d/{{ item.domain }}.conf
with_1items:
- { domain: wwwl.example.com, ssl_enabled: yes }
- { domain: www2.example.com }
- { domain: www3.example.com,
aliases: [edge2.www.example.com, eu.www.example.com] }

Loop Controls | 161

By default, Ansible prints the entire dictionary in the output. For larger dictionaries,
the output can be difficult to read without a loop_control clause that specifies a
label:

TASK [create nginx Vhost Configs] KA KK IIAI I I I A A A I I I I A A A I hdd A dd o hhddddhhddddddd
ok: [localhost] => (item={u'domain': u'wwwl.example.com', u'ssl_enabled': True})
ok: [localhost] => (item={u'domain': u'www2.example.com'})

ok: [localhost] => (item={u'domain': u'www3.example.com', u'aliases':
[u'edge2.www.example.com', u'eu.www.example.com']})

Since we are interested only in the domain names, we can simply add a label in the
loop_control clause describing what should be printed when we iterate over the
items:

- name: create nginx vhost configs

template:

src: "{{ item.domain }}.conf.j2"

dest: "/etc/nginx/conf.d/{{ item.domain }}.conf"
with_1items:

- { domain: wwwl.example.com, ssl_enabled: yes }

- { domain: www2.example.com }

- { domain: www3.example.com,

aliases: [edge2.www.example.com, eu.www.example.com] }

loop_control:

label: "for domain {{ item.domain }}" @

O Adding a custom label
This results in much more readable output:

TASK [Create nginx Vhost Configs] khkhkkhkkhkhkhkhhhhhhhdhhhhhdhhrdhhrhhhrhrdhhrhdd
ok: [localhost] => (item=for domain wwwl.example.com)
ok: [localhost] => (item=for domain www2.example.com)
ok: [localhost] => (item=for domain www3.example.com)

Keep in mind that running in verbose mode -v will show the full
dictionary; don’t use it to hide your passwords! Set no_log: true
\ on the task instead.

Includes

The include feature allows you to include tasks or even whole playbooks, depending
on where you define an include. It is often used in roles to separate or even group
tasks and task arguments to each task in the included file.

Let’s consider an example. Example 8-24 contains two tasks of a play that share an
identical tag, a when condition, and a become argument.

162 | Chapter 8: Complex Playbooks

Example 8-24. Identical arguments

- name: install nginx
package:
name: nginx
tags: nginx (1]
become: yes
when: ansible_os_family == 'RedHat' (3]

- name: ensure nginx is running
service:
name: nginx
state: started
enabled: yes
tags: nginx (1]
become: yes
when: ansible_os_family == 'RedHat'’ (3]

O Identical tags
® Identical become
©® Identical condition

When we separate these two tasks in a file as in Example 8-25 and use include as in
Example 8-26, we can simplify the play by adding the task arguments only to the
include task.

Example 8-25. Separate tasks into a different file

- name: install nginx
package:
name: nginx

- name: ensure nginx is running
service:
name: nginx
state: started
enabled: yes

Example 8-26. Using an include for the tasks file applying the arguments in common

- include: nginx_include.yml
tags: nginx
become: yes
when: ansible_os_family == 'RedHat'

Includes | 163

Dynamic Includes

A common pattern in roles is to define tasks specific to a particular operating system
into separate task files. Depending on the number of operating systems supported by
the role, this can lead to a lot of boilerplate for the include tasks.

- include: Redhat.yml
when: ansible_os_family == 'Redhat'’

- include: Debian.yml
when: ansible_os_family == 'Debian'’
Since version 2.0, Ansible allows us to dynamically include a file by using variable
substitution:

- include: "{{ ansible_os_family }}.yml"
static: no
However, there is a drawback to using dynamic includes: ansible-playbook --list-
tasks might not list the tasks from a dynamic include if Ansible does not have
enough information to populate the variables that determine which file will be
included. For example, fact variables (see Chapter 4) are not populated when the
--list-tasks argument is used.

Role Includes

A special include is the include_role clause. In contrast with the role clause, which
will use all parts of the role, the include_role not only allows us to selectively choose
what parts of a role will be included and used, but also where in the play.

Similarly to the include clause, the mode can be static or dynamic, and Ansible does
a best guess as to what is needed. However, we can always append static to enforce
the desired mode.

- name: install nginx
yum:
pkg: nginx

- name: install php
include_role:
name: php (1]

- name: configure nginx
template:
src: nginx.conf.j2
dest: /etc/nginx/nginx.conf

@ Include and run main.yml from the php role.

164 | Chapter 8: Complex Playbooks

The include_role clause makes the handlers available as well.

The include_role clause can also help to avoid the hassle of parts of roles depending
on each other. Imagine that in the role dependency, which runs before the main role,
a file task changes the owner of a file. But the system user used as the owner does not
yet exist at that point. It will be created later in the main role during a package
installation.

- name: install nginx
yum:
pkg: nginx

- name: install php
include_role:
name: php
tasks_from: install (1]

- name: configure nginx
template:
src: nginx.conf.j2
dest: /etc/nginx/nginx.conf

- name: configure php
include_role:
name: php
tasks_from: configure (2]

Include and run install.yml from the php role.

Include and run configure.yml from the php role.

At the time of writing, the include_role clause is still labeled as
preview, which means there is no guarantee of a backward-
compatible interface.

Blocks

Much like the include clause, the block clause provides a mechanism for grouping
tasks. The block clause allows you to set conditions or arguments for all tasks within
a block at once:

Blocks | 165

- block:
- name: install nginx
package:
name: nginx
- name: ensure nginx is running
service:
name: nginx
state: started
enabled: yes
become: yes
when: "ansible_os_family == 'RedHat"'"

Unlike an include clause, looping over a block clause is currently
not supported.

The block clause has an even more interesting application: error handling.

Error Handling with Blocks

Dealing with error scenarios has always been a challenge. Historically, Ansible has
been error agnostic in the sense that errors and failures may occur on a host. Ansible’s
default error-handling behavior is to take a host out of the play if a task fails and con-
tinue as long as there are hosts remaining that haven't encountered errors.

In combination with the serial and max_fail_percentage clause, Ansible gives you
some control over when a play has to be declared as failed.

With the blocks clause as shown in Example 8-27, Ansible advances error handling a
bit further and lets us automate recovery and rollback of tasks in case of a failure.

Example 8-27. app-upgrade.yml

- block: @
- debug: msg="You will see a failed tasks right after this"
- command: /bin/false
- debug: "You won't see this message"
rescue: @
- debug: "You only see this message in case of an failure in the block"
always: (3)
- debug: "This will be always executed"

@ Start of the block clause

® Tasks to be executed in case of a failure in block clause

166 | Chapter 8: Complex Playbooks

© Tasks to always be executed

If you have some programming experience, the way error handling is implemented
may remind you of the try-catch-finally paradigm, and it works much the same way.

To demonstrate how this can work, we start with a daily business job: upgrading an
application. The application is distributed in a cluster of virtual machines (VMs) and
deployed on an IaaS$ cloud (Apache CloudStack). Furthermore, the cloud provides the
functionality to snapshot a VM. The simplified playbook looks like the following:
Take VM out of the load balancer.

Create a VM snapshot before the app upgrade.

Upgrade the application.

Run smoke tests.

Roll back when something goes wrong.

Move VM back to the load balancer.

Clean up and remove the VM snapshot.

NG e »he

Let’s put these tasks into a playbook, still simplified and not yet runnable, as shown in
Example 8-28.

Example 8-28. app-upgrade.yml

- hosts: app-servers
serial: 1
tasks:
- name: Take VM out of the load balancer
- name: Create a VM snapshot before the app upgrade

- block:
- name: Upgrade the application
- name: Run smoke tests

rescue:
- name: Revert a VM to the snapshot after a failed upgrade

always:
- name: Re-add webserver to the loadbalancer
- name: Remove a VM snapshot

In this playbook, we will most certainly end up with a running VM being a member
of a load balancer cluster, even if the upgrade fails.

Error Handling with Blocks | 167

http://cloudstack.apache.org

The tasks under the always clause will be executed even if an error
occurred in the rescue clause! Be careful what you put in the
always clause.

In case we want to get only upgraded VMs back to the load balancer cluster, the play
would look a bit different, as shown in Example 8-29.

Example 8-29. app-upgrade.yml

- hosts: app-servers
serial: 1
tasks:
- name: Take VM out of the load balancer
- name: Create a VM snapshot before the app upgrade

- block:
- name: Upgrade the application
- name: Run smoke tests

rescue:
- name: Revert a VM to the snapshot after a failed upgrade

- name: Re-add webserver to the loadbalancer
- name: Remove a VM snapshot

We removed the always clause and put the two tasks at the end of the play. This
ensures that the two tasks will be executed only if the rescue went through. As a
result, we get only upgraded VMs back to the load balancer.

The final playbook looks like Example 8-30.

Example 8-30. Error-agnostic application-upgrade playbook

- hosts: app-servers
serial: 1
tasks:
- name: Take app server out of the load balancer
local_action:
module: cs_loadbalancer_rule_member
name: balance_http
vm: "{{ inventory_hostname_short }}"
state: absent
- name: Create a VM snapshot before an upgrade
local_action:
module: cs_vmsnapshot
name: Snapshot before upgrade

168 | Chapter 8: Complex Playbooks

vm: "{{ inventory_hostname_short }}
snapshot_memory: yes

- block:
- name: Upgrade the application
script: upgrade-app.sh
- name: Run smoke tests
script: smoke-tests.sh

rescue:
- name: Revert the VM to a snapshot after a failed upgrade
local_action:
module: cs_vmsnapshot
name: Snapshot before upgrade
vm: "{{ inventory_hostname_short }}"
state: revert

- name: Re-add app server to the loadbalancer
local_action:
module: cs_loadbalancer_rule_member
name: balance_http
vm: "{{ inventory_hostname_short }}"
state: present
- name: Remove a VM snapshot after successful upgrade or successful rollback
local_action:
module: cs_vmsnapshot
name: Snapshot before upgrade
vm: "{{ inventory_hostname_short }}"
state: absent

Encrypting Sensitive Data with Vault

Our Mezzanine playbook requires access to sensitive information, such as database
and administrator passwords. We dealt with this in Chapter 6 by putting all of the
sensitive information in a separate file called secrets.yml and making sure that we
didn’t check this file into our version-control repository.

Ansible provides an alternative solution: instead of keeping the secrets.yml file out of
version control, we can commit an encrypted version. That way, even if our version-
control repository were compromised, the attacker would not have access to the con-
tents of the secrets.yml file unless he also had the password used for the encryption.

The ansible-vault command-line tool allows you to create and edit an encrypted
file that ansible-playbook will recognize and decrypt automatically, given the
password.

We can encrypt an existing file like this:
$ ansible-vault encrypt secrets.yml

Alternately, we can create a new encrypted secrets.yml file:

Encrypting Sensitive Data with Vault | 169

$ ansible-vault create secrets.yml

You will be prompted for a password, and then ansible-vault will launch a text edi-
tor so that you can populate the file. It launches the editor specified in the SEDITOR
environment variable. If that variable is not defined, it defaults to vim.

Example 8-31 shows an example of the contents of a file encrypted using ansible-
vault.

Example 8-31. Contents of file encrypted with ansible-vault

SANSIBLE_VAULT;1.1;AES256

34306434353230663665633539363736353836333936383931316434343030316366653331363262
6630633366383135386266333030393634303664613662350a623837663462393031626233376232
31613735376632333231626661663766626239333738356532393162303863393033303666383530

62346633343464313330383832646531623338633438336465323166626335623639383363643438
64636665366538343038383031656461613665663265633066396438333165653436

You can use the vars_files section of a play to reference a file encrypted with
ansible-vault the same way you would access a regular file: we would not need to
modify Example 6-28 at all if we encrypted the secrets.yml file.

We do need to tell ansible-playbook to prompt us for the password of the encrypted
file, or it will simply error out. Do so by using the - -ask-vault-pass argument:

$ ansible-playbook mezzanine.yml --ask-vault-pass

You can also store the password in a text file and tell ansible-playbook the location
of this password file by using the - -vault-password-file flag:

$ ansible-playbook mezzanine --vault-password-file ~/password.txt

If the argument to --vault-password-file has the executable bit set, Ansible will
execute it and use the contents of standard out as the vault password. This allows
you to use a script to provide the password to Ansible.

Table 8-5 shows the available ansible-vault commands.

Table 8-5. ansible-vault commands

Command Description

ansible-vault encrypt file.ym/ Encrypt the plain-text file.yml file

ansible-vault decrypt file.yml Decrypt the encrypted file.yml file

ansible-vault view file.ym/ Print the contents of the encrypted file.ym/ file
ansible-vault create file.ym/ Create a new encrypted file.yml file

ansible-vault edit file.ym/ Edit an encrypted file.ym/ file

ansible-vault rekey fileym/ Change the password on an encrypted file.yml file

170 | Chapter 8: Complex Playbooks

CHAPTER9
Customizing Hosts, Runs, and Handlers

Sometimes Ansible’s default behaviors don’t quite fit your use case. In this chapter, we
cover Ansible features that provide customization by controlling which hosts to run
against, how tasks are run, and how handlers are run.

Patterns for Specifying Hosts

So far, the host parameter in our plays has specified a single host or group, like this:
hosts: web

Instead of specifying a single host or group, you can specify a pattern. You've already
seen the all pattern, which will run a play against all known hosts:

hosts: all

You can specify a union of two groups with a colon. You specify all dev and staging
machines as follows:

hosts: dev:staging

You can specify an intersection by using a colon and ampersand. For example, to
specity all of the database servers in your staging environment, you might do this:

hosts: staging:&database

Table 9-1 shows the patterns that Ansible supports. Note that the regular expression
pattern always starts with a tilde.

7m

Table 9-1. Supported patterns

Action Example usage

All hosts all

All hosts *

Union dev:staging
Intersection staging:&database
Exclusion dev:!queue

Wildcard * example.com

Range of numbered servers web[5:10]

Regular expression ~web\d+\.example\.(com|org)

Ansible supports multiple combinations of patterns—for example:

hosts: dev:staging:&database: !queue

Limiting Which Hosts Run

Use the -1 hosts or --limit hosts flag to tell Ansible to limit the hosts to run the
playbook against the specified list of hosts, as shown in Example 9-1.

Example 9-1. Limiting which hosts run

$ ansible-playbook -1 hosts playbook.yml
$ ansible-playbook --limit hosts playbook.yml

You can use the pattern syntax just described to specify arbitrary combinations of
hosts. For example:

$ ansible-playbook -1 'staging:&database' playbook.yml

Running a Task on the Control Machine

Sometimes you want to run a particular task on the control machine instead of on the
remote host. Ansible provides the local_action clause for tasks to support this.

Imagine that the server we want to install Mezzanine onto has just booted, so that if
we run our playbook too soon, it will error out because the server hasn’t fully started
up yet. We could start off our playbook by invoking the wait_for module to wait
until the SSH server is ready to accept connections before we execute the rest of the
playbook. In this case, we want this module to execute on our laptop, not on the
remote host.

The first task of our playbook has to start off like this:

172 | Chapter 9: Customizing Hosts, Runs, and Handlers

- name: wait for ssh server to be running
local_action: wait_for port=22 host="{{ inventory_hostname }}"
search_regex=0penSSH
Note that we're referencing inventory_hostname in this task, which evaluates to the
name of the remote host, not localhost. That’s because the scope of these variables is
still the remote host, even though the task is executing locally.

If your play involves multiple hosts, and you use local_action, the
task will be executed multiple times, one for each host. You can
restrict this by using run_once, as described in “Running on One
Host at a Time” on page 174.

Running a Task on a Machine Other Than the Host

Sometimes you want to run a task thats associated with a host, but you want to exe-
cute the task on a different server. You can use the delegate_to clause to run the task
on a different host.

Two common use cases are as follows:

« Enabling host-based alerts with an alerting system such as Nagios

« Adding a host to a load balancer such as HAProxy

For example, imagine we want to enable Nagios alerts for all of the hosts in our web
group. Assume we have an entry in our inventory named nagios.example.com that is
running Nagios. Example 9-2 shows an example that uses delegate_to.

Example 9-2. Using delegate_to with Nagios

- name: enable alerts for web servers
hosts: web
tasks:
- name: enable alerts
nagios: action=enable_alerts service=web host={{ inventory_hostname }}
delegate_to: nagios.example.com

In this example, Ansible would execute the nagios task on nagios.example.com, but
the inventory_hostname variable referenced in the play would evaluate to the web
host.

For a more detailed example that uses delegate_to, see the lamp_haproxy/roll-
ing_update.yml example in the Ansible project’s examples GitHub repo.

Running a Task on a Machine Other Thanthe Host | 173

https://github.com/ansible/ansible-examples

Running on One Host at a Time

By default, Ansible runs each task in parallel across all hosts. Sometimes you want to
run your task on one host at a time. The canonical example is when upgrading appli-
cation servers that are behind a load balancer. Typically, you take the application
server out of the load balancer, upgrade it, and put it back. But you don’t want to take
all of your application servers out of the load balancer, or your service will become
unavailable.

You can use the serial clause on a play to tell Ansible to restrict the number of hosts
that a play runs on. Example 9-3 shows an example that removes hosts one at a time
from an Amazon EC2 elastic load balancer, upgrades the system packages, and then
puts them back into the load balancer. (We cover Amazon EC2 in more detail in
Chapter 14.)

Example 9-3. Removing hosts from load balancer and upgrading packages

- name: upgrade packages on servers behind load balancer
hosts: myhosts
serial: 1
tasks:

- name: get the ec2 instance id and elastic load balancer id
ec2_facts:

- name: take the host out of the elastic load balancer
local_action: ec2_elb
args:
instance_id: "{{ ansible_ec2_instance_id }}"
state: absent

- name: upgrade packages
apt: update_cache=yes upgrade=yes

- name: put the host back in the elastic load balancer
local_action: ec2_elb
args:
instance_id: "{{ ansible_ec2_instance_id }}"
state: present
ec2_elbs: "{{ item }}"
with_items: ec2_elbs

In our example, we pass 1 as the argument to the serial clause, telling Ansible to run
on only one host at a time. If we had passed 2, Ansible would have run two hosts at a
time.

Normally, when a task fails, Ansible stops running tasks against the host that fails, but
continues to run against other hosts. In the load-balancing scenario, you might want

174 | Chapter 9: Customizing Hosts, Runs, and Handlers

Ansible to fail the entire play before all hosts have failed a task. Otherwise, you might
end up with the situation where you have taken each host out of the load balancer,
and have it fail, leaving no hosts left inside your load balancer.

You can use a max_fail_percentage clause along with the serial clause to specify
the maximum percentage of failed hosts before Ansible fails the entire play. For
example, assume that we specify a maximum fail percentage of 25%, as shown here:

- name: upgrade packages on servers behind load balancer
hosts: myhosts
serial: 1
max_fail_percentage: 25
tasks:
tasks go here

If we have four hosts behind the load balancer, and one of the hosts fail a task, then
Ansible will keep executing the play, because this doesn’t exceed the 25% threshold.
However, if a second host fails a task, Ansible will fail the entire play, because then
50% of the hosts will have failed a task, exceeding the 25% threshold. If you want
Ansible to fail if any of the hosts fail a task, set the max_fail_percentage to 0.

Running on a Batch of Hosts at a Time

You can also pass serial a percentage value instead of a fixed number. Ansible will
apply this percentage to the total number of hosts per play to determine the number
of hosts per batch, as shown in Example 9-4.

Example 9-4. Using a percentage value as a serial

- name: upgrade 50% of web servers
hosts: myhosts
serial: 50%
tasks:
tasks go here

We can get even more sophisticated. For example, you might want to run the play on
one host first, to verify that the play works as expected, and then run the play on a
larger number of hosts in subsequent runs. A possible use case would be managing a
large logical cluster of independent hosts; for example, 30 hosts of a content delivery
network (CDN).

Since version 2.2, Ansible lets you specify a list of serials to achieve this behavior. The
list of serial items can be either a number or a percentage, as shown in Example 9-5.

Running on a Batch of HostsataTime | 175

Example 9-5. Using a list of serials

- name: configure (DN servers
hosts: cdn
serial:
-1
- 30%
tasks:
tasks go here

Ansible will restrict the number of hosts on each run to the next available serial
item unless the end of the list has been reached or there are no hosts left. This means
that the last serial will be kept and applied to each batch run as long as there are
hosts left in the play.

In the preceding play with 30 CDN hosts, on the first batch run Ansible would run
against one host, and on each subsequent batch run it would run against at most 30%
of the hosts (e.g., 1, 10, 10, 9).

Running Only Once

Sometimes you might want a task to run only once, even if there are multiple hosts.
For example, perhaps you have multiple application servers running behind the load
balancer, and you want to run a database migration, but you need to run the migra-
tion on only one application server.

You can use the run_once clause to tell Ansible to run the command only once:

- name: run the database migrations
command: /opt/run_migrations
run_once: true

Using run_once can be particularly useful when using local_action if your playbook
involves multiple hosts, and you want to run the local task only once:

- name: run the task locally, only once
local_action: command /opt/my-custom-command
run_once: true

Running Strategies

The strategy clause on a play level gives you additional control over how Ansible
behaves per task for all hosts.

The default behavior we are already familiar with is the linear strategy. This is the
strategy in which Ansible executes one task on all hosts and waits until the task has
completed (of failed) on all hosts before it executes the next task on all hosts. As a
result, a task takes as much time as the slowest host takes to complete the task.

176 | Chapter 9: Customizing Hosts, Runs, and Handlers

Let’s create a playbook, shown in Example 9-7, to demonstrate the strategy feature.
We create a minimalistic hosts file, shown in Example 9-6, which contains three
hosts, each having a variable sleep_seconds with a different value in seconds.

Example 9-6. Host file with three hosts having a different value for sleep_seconds
one sleep_seconds=1

two sleep_seconds=6
three sleep_seconds=10

Linear

The playbook in Example 9-7, which we execute locally by using connection: local,
has a play with three identical tasks. In each task, we execute sleep with the time
specified in sleep_seconds.

Example 9-7. Playbook in linear strategy

- hosts: all
connection: local
tasks:
- name: first task
shell: sleep "{{ sleep_seconds }}"

- name: second task
shell: sleep "{{ sleep_seconds }}"

- name: third task
shell: sleep "{{ sleep_seconds }}"

Running the playbook in the default strategy as linear results in the output shown
in Example 9-8.

Example 9-8. Result of the linear strategy run

$ ansible-playbook strategy.yml -i hosts

PLAY [all] dkkkkhkhkkhhkhkhkkkkhhkhkkhkhhkhkkhhhkhkkkhhkhkkhhhkhkkhhkhkhkkhkhkhkhkkkhkhkhkkkhkhkhkhkkkkk

TASK [Setup] hhkkkkhkhkhkkkhkhkhkkkhhkhkkhkhkhkhkkhhkhkhkkhhkhkhkkkhhhkkkhkhkhkkkhkhkhkkkkhkhkkkkkkkx

ok: [two]
ok: [three]
ok: [one]

TASK [first task] hhkkkkkkhhkhhhhhhkhhhhhhhhhhhkhhhhhhkhkhhhhhhkhhkhkhkhhhkhkhkhhhkhkhkhkhkkkk

changed: [one]
changed: [two]

Running Strategies | 177

changed: [three]

TASK [Second task] hhkkhkhkhhhhhhkhkhhkhhhhhhhkhhhhhhkhhhhhkhkhhhhkhkhhhhhkhkhhkhkhkhkhkkhkhkhkk*

changed: [one]
changed: [two]
changed: [three]

TASK [third task] kkkkkhkhkkkkhhkhkhkkhhkhkkkhhhkkkhkhkhkhkkkhkhkhkhkkhkhkhkkhkhkhkhkkkhkhkhkkkkhkhkkk*x

changed: [one]
changed: [two]
changed: [three]

PLAY RECAP khkkkhkhkhkkhhhkhhkhhhkhkhhhhhkhkhkhhhkhhhhhhkhhhhhhkhhkhhkhkhhkhhhkhkhhhhkhkhkhhkhkhkhkkkkk

one . ok=4 changed=3 unreachable=0 failed=0
three : ok=4 changed=3 unreachable=0 failed=0
two . ok=4 changed=3 unreachable=0 failed=0

We get the ordered output we are familiar with. Note the identical order of task
results, as host one is always the quickest (as it sleeps the least amount of time) and
host three is the slowest (as it sleeps the greatest amount of time).

Free

Another strategy available in Ansible is the free strategy. In contrast to l1inear, Ansi-
ble will not wait for results of the task to execute on all hosts. Instead, if a host com-
pletes one task, Ansible will execute the next task on that host.

Depending on the hardware resources and network latency, one host may have exe-
cuted the tasks faster than other hosts located at the end of the world. As a result,
some hosts will already be configured, while others are still in the middle of the play.

If we change the playbook to the free strategy, the output changes as shown in
Example 9-9.

Example 9-9. Playbook in free strategy

- hosts: all
connection: local
strategy: free
tasks:
- name: first task
shell: sleep "{{ sleep_seconds }}"

- name: second task
shell: sleep "{{ sleep_seconds }}"

- name: third task
shell: sleep "{{ sleep_seconds }}"

178 | Chapter9: Customizing Hosts, Runs, and Handlers

© We changed the strategy to free.

As we see in the output in Example 9-10, host one is already finished before host
three has even finished its first task.
Example 9-10. Results of running the playbook with the free strategy

$ ansible-playbook strategy.yml -i hosts

PLAY [all] hkkkkhkhkkhhkhkhhkhhhkhkhhhhhhkhkhhhkhhhhhhkhhhhhhkhkhhkhkhkhhkhhkhkhhhhkhkhkhhkhkhkhkkkkk

TASK [Setup] khkkkhkhkkhkhkhkhhhhhkhhhhhhkhhhhhkhkhhhhhkhkhhhhhkhkhhhhkhkhhhhhkhkhhkhhkhkhkhkhkhkhkhkkkkk

ok: [one]
ok: [two]
ok: [three]

TASK [first task] dkkkkhkhkkkkhkhkhkkkhkhkhkkhhhkkkhhkhkhkkkhhkhkhkkhhkhkkhkhkhkhkkhhkhkhkkkhkhkkkx*x

changed: [one]

TASK [Second task] hhkkhkhkhhhhhhkhkhhkhhkhhhhkhkhhhhhhkhhhhkhkhhhhhhkhhhhhkhkhkhhkhkhkhkkhkhkhkk*

changed: [one]

TASK [third task] kkkkkhkhkkkkhkhkhkkkhkhkhkkkhhhkkkhhkhkhkkhkhkhkhkkkhkhkhkkhkhkhkhkkkhkhkhkkkkhkhkkkx*x

changed: [one]

TASK [first task] hhkkkkhkhkkhhkhhhkhhkhkhhhhhhhhhhkhkhkhhhhhkhkhhhhhkhkhhhhkhkhkhkhhkhkhhhkhkhkhkk*

changed: [two]
changed: [three]

TASK [Second task] hhkhhkhkhhhhhhkhhhhkhhkhkhhkhkhhhhhhhhhhkhkhhhhhhkhhhhhkhkhkhhkhkhkhkkhkhkhkk*

changed: [two]

TASK [third task] dkkkkhkhkkkkhkhkhkkkhhkkkhhhkkkhhkhkhkkhkhkhkhkkkhkhkhkkkkhkhkhkkkhkhkhkkkkhkhkkx*x

changed: [two]

TASK [Second task] hhkhhkhkhhhhhhkhkhhkhhkhkhhkhkhhhhhkhkhhhhkhkhkhhhhhkhhhhhkhkhhkhkhkhkhkkhkhkhkk*

changed: [three]

TASK [third task] kkkkkhkhkkkkhkhkhkkkhhkkkhhhkkkhkhkhkhkkkhkhkhkhkkkhhkhkkhkhkhkhkkkhkhkhkkkkhkhkkkx*x

changed: [three]

PLAY RECAP khkkkhkhkhkkhhkhhhkhhhkhkhhhhhhkhkhhkhkhhhhhhkhhhhhhkhhhhhkhkhhkhhkhkhhhhkhkhkkhkhkhkhkkkkk

one . ok=4 changed=3 unreachable=0 failed=0
three : ok=4 changed=3 unreachable=0 failed=0
two . ok=4 changed=3 unreachable=0 failed=0

Running Strategies | 179

In this case, the play will execute in the same amount of time in
both strategies. Under certain conditions, a play in strategy free
may take less time to finish.

Like many core parts in Ansible, strategy is implemented as a new type of plugin.

Advanced Handlers

Sometimes you’ll find that Ansible’s default behavior for handlers doesn’t quite fit
your particular use case. This subsection describes how you can gain tighter control
over when your handlers fire.

Handlers in Pre and Post Tasks

When we covered handlers, you learned that they are usually executed after all tasks,
once, and only when they get notified. But keep in mind there are not only tasks, but
pre_tasks, tasks, and post_tasks.

Each tasks section in a playbook is handled separately; any handler notified in
pre_tasks, tasks, or post_tasks is executed at the end of each section. As a result, it
is possible to execute one handler several times in one play:

- hosts: localhost
pre_tasks:
- command: echo Pre Tasks
notify: print message

tasks:
- command: echo Tasks
notify: print message

post_tasks:
- command: echo Post Tasks
notify: print message

handlers:
- name: print message
command: echo handler executed

When we run the playbook, we see the following results:

$ ansible-playbook pre_post_tasks_handlers.yml

PLAY [localhost] dkhkkkkkhhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhkhkhhhhhkhkhhhkkhkhkhkkkk

TASK [setup] kkhkhkhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhkhhhkkhkhkhkkkk

ok: [Llocalhost]

180 | Chapter9: Customizing Hosts, Runs, and Handlers

TASK [command] hhkkhkhkhhhhhkhkhkhhhhkhkhhkhkhhhhhhkhhhhhkhkhhhhhkhkhhhhkhkhhkhkhkhkhkkhkhkhkhkkkkkk

changed: [localhost]

RUNNING HANDLER [print message] kkkkkhkhkkkkhhkhkkkhhkhkkkhhkhkkkhhhkkkhkhkhkkkhkhkhkkkkkkx

changed: [localhost]

TASK [command] hhkkhkhkhhhhhkhkhkhhhkhkhhhhkhkhhhhhhhhhhhkhkhhhhhkhkhhhhhkhhhhhkhkhhkhkhkhkkkkkkk

changed: [localhost]

RUNNING HANDLER [print message] kkkkkhkhkkkkhkhkkkhkhhkkkhkhkhkkkhhhkhkkhkhkhkhkkkhkhkhkkkkkkkx

changed: [localhost]

TASK [command] hhkkhkhkhhhhhkhkhkhhhkhkhhhhkhkhhhhhhkhhhhkhkhkhhhhkhkhkhhhhkhkhhhhkhkhkhkkhkhkhkhkkkkkk

changed: [localhost]

RUNNING HANDLER [print message] kkkkkhkhkkkkhhkhkkkhkhkhkkkhkhkhkkkhhkhkhkkhkhkhkhkkkhkhkhkhkkkkkx

changed: [localhost]

PLAY RECAP hhkkkhkhhhhhhhhkhhkhhhhhhkhkhkhhhhkhhkhhkhkhhhhhkhhhhhkhkhhhhkhkhkhkkhhkhkhhkkhkhkhkkkkk

localhost . ok=7 changed=6 unreachable=0 failed=0

Flush Handlers

You may be wondering why I wrote usually executed after all tasks. Usually, because
this is the default. However, Ansible lets us control the execution point of the han-
dlers with the help of a special module, meta.

In Example 9-12, we see a part of an nginx role in which we use meta with flush_han
dlers in the middle of the tasks.

We do this for two reasons:
1. We would like to clean up some old Nginx vhost data, which we can remove only

if no process is using it anymore (e.g., after the service restart).

2. We want to run some smoke tests and validate a health check URL returning OK
if the application is in a healthy state. But validating the healthy state before the
restart of the services would not make that much sense.

Example 9-11 shows the configuration of the nginx role: the host and port of the
health check, a list of vhosts with a name and a template, and some deprecated vhosts
that we want to ensure have been removed:

Example 9-11. Configuration for the nginx role

nginx_healthcheck_host: health.example.com
nginx_healthcheck_port: 8080

vhosts:

Advanced Handlers | 181

- name: www.example.com
template: default.conf.j2

absent_vhosts:
- obsolete.example.com
- www2.example.com

In the tasks file of the role roles/nginx/tasks/main.yml as in Example 9-12, we put the
meta tasks with the corresponding argument flush_handlers between our normal
tasks, but just where we want it to be: before the health check task and the cleanup
task.

Example 9-12. Clean up and validate health checks after the service restart

- name: install nginx
yum:
pkg: nginx
notify: restart nginx

- name: configure nginx vhosts
template:
src: conf.d/{{ item.template | default(item.name) }}.conf.j2
dest: /etc/nginx/conf.d/{{ item.name }}.conf
with_items: "{{ vhosts }}"
when: item.name not in vhosts_absent
notify: restart nginx

- name: removed unused nginx vhosts
file:
path: /etc/nginx/conf.d/{{ item }}.conf
state: absent
with_items: "{{ vhosts_absent }}"
notify: restart nginx

- name: validate nginx config @
command: nginx -t
changed_when: false
check_mode: false

- name: flush the handlers
meta: flush_handlers (2]

- name: remove unused vhost directory
file:
path: /srv/www/{{ item }} state=absent
when: item not in vhosts
with_items: "{{ vhosts_absent }}"

- name: check healthcheck ©
local_action:

182 | Chapter9: Customizing Hosts, Runs, and Handlers

module: uri
url: http://{{ nginx_healthcheck_host }}:{{ nginx_healthcheck_port }}/healthcheck
return_content: true

retries: 10

delay: 5

register: webpage

- fail:
msg: "fail if healthcheck is not ok"
when: not webpage|skipped and webpage|success and "ok" not in webpage.content

© Validating the configuration just before flushing the handlers
© Flushing handlers between tasks

© Running smoke tests to see if all went well. Note this could be a dynamic page
validating that an application has access to a database.

Handlers Listen

Before Ansible 2.2, there was only one way to notify a handler: by calling notify on
the handler’s name. This is simple and works well for most use cases.

Before we go into details about how the handlers listen feature can simplify your
playbooks and roles, let’s see a quick example of handlers listen:

- hosts: mailservers
tasks:
- copy:
src: main.conf
dest: /etc/postfix/main.cnf
notify: postfix config changed

handlers:
- name: restart postfix
service: name=postfix state=restarted
listen: postfix config changed (1]

© You notify like an event on which you listen to on one or more handlers.

The listen clause defines what well call an event, on which one or more handlers
can listen. This decouples the task notification key from the handler’s name. To notify
more handlers to the same event, we just let these additional handlers listen on the
same event, and they will also get notified.

Advanced Handlers | 183

The scope of all handlers is on the play level. We cannot notify
across plays, with or without handlers listen.

Handlers listen: The SSL case

The real benefit of handlers listen is related to role and role dependencies. One of the
most obvious use cases I have come across is managing SSL certificates for different
services.

Because we use SSL heavily in our hosts and across projects, it makes sense to make
an SSL role. It is a simple role whose only purpose is to copy our SSL certificates and
keys to the remote host. It does this in a few tasks, as in roles/ssl/tasks/main.yml in
Example 9-13, and it is prepared to run on Red Hat-based Linux operating systems
because it has the appropriate paths set in the variables file roles/ssl/vars/RedHat.yml
in Example 9-14.

Example 9-13. Role tasks in the SSL role

- name: include 0S specific variables
include_vars: "{{ ansible_os_family }}.yml"

- name: copy SSL certs

copy:
src: "{{ item }}"
dest: {{ ssl_certs_path }}/
owner: root
group: root
mode: 0644

with_items: "{{ ssl_certs }}"

- name: copy SSL keys
copy:
src: "{{ item }}"
dest: "{{ ssl_keys_path }}/"
owner: root
group: root
mode: 0644
with_items: "{{ ssl_keys }}"
no_log: true

Example 9-14. Variables for Red Hat-based systems

ssl_certs_path: /etc/pki/tls/certs
ssl_keys_path: /etc/pki/tls/private

184 | Chapter9: Customizing Hosts, Runs, and Handlers

In the definition of the role defaults in Example 9-15, we have empty lists of SSL cer-
tificates and keys, so no certificates and keys will be handled. We have options for
overwriting these defaults to make the role copy the files.

Example 9-15. Defaults of the SSL role
ssl_certs: []
ssl_keys: []

At this point, we can use the SSL role in other roles as a dependency, just as we do in
Example 9-16 for an nginx role by modifying the file roles/nginx/meta/main.ymi.
Every role dependency will run before the parent role. This means in our case that the
SSL role tasks will be executed before the nginx role tasks. As a result, the SSL certifi-
cates and keys are already in place and usable within the nginx role (e.g., in the vhost
config).

Example 9-16. The nginx role depends on SSL

dependencies:
- role: ssl

Logically, the dependency would be one way: the nginx role depends on the ssl role,

as shown in Figure 9-1.

Figure 9-1. One-way dependency

Our nginx role would, of course, handle all aspects of the web server nginx. This role
has tasks in roles/nginx/tasks/main.yml as in Example 9-17 for templating the nginx
config and restarting the nginx service by notifying the appropriate handler by its
name.

Advanced Handlers | 185

Example 9-17. Tasks in the nginx role

- name: configure nginx
template:
src: nginx.conf.j2
dest: /etc/nginx/nginx.conf
notify: restart nginx

O Notify the handler for restarting the nginx service.

As you would expect, the corresponding handler for the nginx role in roles/nginx/
handlers/main.yml looks like Example 9-18.

Example 9-18. Handlers in the nginx role

- name: restart nginx (1)
service:
name: nginx
state: restarted

© Restart nginx restarts the Nginx service.

That’s it, right? Not quite. The SSL certificates need to be replaced once in a while.
And when they get replaced, every service consuming an SSL certificate must be
restarted to make use of the new certificate.

So how should we do that? Notify to restart nginx in the SSL role, I hear you say?
OK, let’s try.

We edit roles/ssl/tasks/main.yml of our SSL role to append the notify clause for
restarting Nginx to the tasks of copying the certificates and keys, as in Example 9-19.

Example 9-19. Append notify to the tasks to restart Nginx

- name: include 0S specific variables
include_vars: "{{ ansible_os_family }}.yml"

- name: copy SSL certs
copy:
src: "{{ item }}"
dest: {{ ssl_certs_path }}/
owner: root
group: root
mode: 0644

186 | Chapter9: Customizing Hosts, Runs, and Handlers

with_items: "{{ ssl_certs }}"
notify: restart nginx

- name: copy SSL keys
copy:
src: "{{ item }}"
dest: "{{ ssl_keys_path }}/"
owner: root
group: root
mode: 0644
with_items: "{{ ssl_keys }}"
no_log: true
notify: restart nginx (1]

@ Notify the handler in the nginx role.

Great, that works! But wait, we just added a new dependency to our SSL role: the

nginx role, as shown in Figure 9-2.

Figure 9-2. The nginx role depends on the SSL role, and the SSL role depends on the
nginx role

What are the consequences of this? If we use the SSL role for other roles as a depend-
ency, the way we use it for nginx (e.g., for postfix, dovecot, or ldap, to name just a
few possibilities), Ansible will complain about notifying an undefined handler,
because restart nginx will not be defined within these roles.

Ansible in version 1.9 complained about notifying undefined han-
dlers. This behavior was reimplemented in Ansible version 2.2 as it
was seen as a regression bug. However, this behavior can be config-
ured in ansible.cfg with error_on_missing_handler. The default is
error_on_missing_handler = True.

Further, we would need to add more handler names to be notified for every addi-
tional role where we use the SSL role as a dependency. This simply wouldn’t scale
well.

Advanced Handlers | 187

This is the point where handlers listen comes into the game! Instead of notifying a
handler’s name in the SSL role, we notify an event—for example, ss1_certs_changed,
as in Example 9-20.

Example 9-20. Notify an event to listen in handlers

- name: include 0S specific variables
include_vars: "{{ ansible_os_family }}.yml"

- name: copy SSL certs
copy:
src: "{{ item }}"
dest: "{{ ssl_certs_path }}/"
owner: root
group: root
mode: 0644
with_items: "{{ ssl_certs }}"
notify: ssl_certs_changed (1]

- name: copy SSL keys
copy:
src: "{{ item }}"
dest: "{{ ssl_keys_path }}/"
owner: root
group: root
mode: 0644
with_items: "{{ ssl_keys }}"
no_log: true
notify: ssl_certs_changed (1]

© Notify the event ss1_certs_changed

As mentioned, Ansible will still complain about notifying an undefined handler but
making Ansible happy again is as simple as adding a no-op handler to the SSL role, as
shown in Example 9-21.

Example 9-21. Add a no-op handler to the SSL role to listen to the event

- name: SSL certs changed
debug:
msg: SSL changed event triggered
listen: ssl_certs_changed (1]

@ Listens to the event ss1_certs_changed

188 | Chapter9: Customizing Hosts, Runs, and Handlers

Back to our nginx role, where we want to react to the ss1_certs_changed event and
restart the Nginx service when a certificate has been replaced. Because we already
have an appropriate handler that does the job, we simply append the listen clause to
the corresponding handler, as in Example 9-22.

Example 9-22. Append the listen clause to the existing handler in the nginx role

- name: restart nginx
service:
name: nginx
state: restarted
listen: ssl_certs_changed (1]

O Append the listen clause to the existing handler.

When we look back to our dependency graph, things looks a bit different, as shown
in Figure 9-3. We restored the one-way dependency and are able to reuse the ssl role
in other roles just as we use it in the nginx role.

Figure 9-3. Use the ssl role in other roles

One last note for role creators having roles on Ansible Galaxy: consider adding han-
dlers listen and event notification to your Ansible roles where it makes sense.

Manually Gathering Facts

If it’s possible that the SSH server wasn’t yet running when we started our playbook,
we need to turn off explicit fact gathering; otherwise, Ansible will try to SSH to the
host to gather facts before running the first tasks. Because we still need access to facts
(recall that we use the ansible_env fact in our playbook), we can explicitly invoke the
setup module to get Ansible to gather our facts, as shown in Example 9-23.

Example 9-23. Waiting for SSH server to come up

- name: Deploy mezzanine
hosts: web
gather_facts: False

Manually Gathering Facts | 189

vars & vars_files section not shown here
tasks:
- name: wailt for ssh server to be running
local_action: wait_for port=22 host="{{ inventory_hostname }}"
search_regex=0penSSH

- name: gather facts
setup:
The rest of the tasks go here

Retrieving the IP Address from the Host

In our playbook, several of the hostnames we use are derived from the IP address of
the web server:

live_hostname: 192.168.33.10.xip.10
domains:

- 192.168.33.10.xip.10

- www.192.168.33.10.x1ip.10

What if we want to use the same scheme but not hardcode the IP addresses into the

variables? That way, if the IP address of the web server changes, we don't have to
modify our playbook.

Ansible retrieves the IP address of each host and stores it as a fact. Each network
interface has an associated Ansible fact. For example, details about network interface
eth@ are stored in the ansible_eth® fact, an example of which is shown in
Example 9-24.

Example 9-24. ansible_eth0 fact

"ansible_eth0": {
"active": true,
"device": "etho",
"ipv4": {
"address": "10.0.2.15",
"netmask": "255.255.255.0",
"network": "10.0.2.0"

1,
"'i.pV6": [
{
"address": "fe80::a00:27ff:fefe:1e4d",
llpref.-LXu: "64" s
"scope": "link"
}
1,

"macaddress": "08:00:27:fe:le:4d",
"module": "el000",

"mtu": 1500,

"promisc": false,

190 | Chapter9: Customizing Hosts, Runs, and Handlers

"type" . "ether"
}

Our Vagrant box has two interfaces, eth® and eth1. The etho interface is a private
interface whose IP address (10.0.2.15) we cannot reach. The eth1 interface is the one
that has the IP address we've assigned in our Vagrantfile (192.168.33.10).

We can define our variables like this:

live_hostname: "{{ ansible_ethi1.ipv4.address }}.xip.i0"
domains:

- "{{ ansible_eth1.ipv4.address }}.xip.1i0"

- "www.{{ ansible_eth1.ipv4.address }}.xip.10"

Retrieving the IP Address from the Host | 191

CHAPTER 10
Callback Plugins

Ansible supports a feature called callback plugins that can perform custom actions in
response to Ansible events such as a play starting or a task completing on a host. You
can use a callback plugin to do things such as send a Slack message or write an entry
to a remote logging server. In fact, the output you see in your terminal when you exe-
cute an Ansible playbook is implemented as a callback plugin.

Ansible supports two kinds of callback plugins:

o Stdout plugins affect the output displayed to the terminal
o Other plugins do things other than change displayed output.

Technically, there are three types of callback plugins, not two:

« Stdout

« Notification

o Aggregate

However, since Ansible’s implementation makes no distinction
between notification and aggregate plugins, we combine notifica-
tion and aggregate plugins into a single category called other plu-
gins.

Stdout Plugins

A stdout plugin controls the format of the output displayed to the terminal. Only a
single stdout plugin can be active at a time.

193

You specify a stdout callback by setting the stdout_callback parameter in the
defaults section of ansible.cfg. For example, to select the actionable plugin:

[defaults]
stdout_callback = actionable

Ansible supports the stdout plugins in Table 10-1.

Table 10-1. Stdout plugins

Name Description

actionable Show only changed or failed

debug Human-readable stderr and stdout

default Show default output

dense Overwrite output instead of scrolling

json

JSON output

minimal Show task results with minimal formatting

oneline Like minimal, but on a single line

selective Show only output for tagged tasks

skippy Suppress output for skipped hosts

actionable

The actionable plugin shows output when a task runs against a host only if the task
changes the state of the host or fails. This makes the output less noisy.

debug

The debug plugin makes it easier to read stdout and stderr returned by tasks, which
can be helpful for debugging. The default plugin can make it difficult to read the
output:

TASK [check out the repository on the host] *¥#skdkkmakdthkihdthhkdddthdhdnshddhtss
fatal: [web]: FAILED! => {"changed": false, "cmd": "/usr/bin/git clone --origin o
rigin '' /home/vagrant/mezzanine/mezzanine_example", "failed": true, "msg": "Clon
ing into '/home/vagrant/mezzanine/mezzanine_example'...\nPermission denied (publi
ckey).\r\nfatal: Could not read from remote repository.\n\nPlease make sure you h
ave the correct access rights\nand the repository exists.", "rc": 128, "stderr":
"Cloning into '/home/vagrant/mezzanine/mezzanine_example'...\nPermission denied (
publickey).\r\nfatal: Could not read from remote repository.\n\nPlease make sure
you have the correct access rights\nand the repository exists.\n", "stderr_lines"
: ["Cloning into '/home/vagrant/mezzanine/mezzanine_example'...", "Permission den
ied (publickey).", "fatal: Could not read from remote repository.", "", "Please m
ake sure you have the correct access rights", "and the repository exists."], "std
out": "", "stdout_lines": []}

With the debug plugin, the formatting is much easier to read:

194

| Chapter 10: Callback Plugins

TASK [check out the repository on the host] *¥¥xxwksmsmsdddddkddkkkshshmdddhdhkrrs
fatal: [web]: FAILED! => {
"changed": false,
"cmd": "/usr/bin/git clone --origin origin
ne_example",
"failed": true,
"rc": 128

[

' /home/vagrant/mezzanine/mezzani

}

STDERR:

Cloning into '/home/vagrant/mezzanine/mezzanine_example'...
Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

MSG:

Cloning into '/home/vagrant/mezzanine/mezzanine_example'...
Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

dense

The dense plugin (new in Ansible 2.3) always shows only two lines of output. It over-
writes the existing lines rather than scrolling:

PLAY 1: CONFIGURE WEBSERVER WITH NGINX
task 6: testserver

json

The json plugin generates machine-readable JSON as output. This is useful if you
want to process the Ansible output by using a script. Note that this callback will not
generate output until the entire playbook has finished executing.

The JSON output is too verbose to show here, but here is a partial example:

{
uplaysu: [
"play": {
"1d": "a45e60df-95f9-5a33-6619-000000000002"
"name": "Configure webserver with nginx",
}s
"tasks": [

StdoutPlugins | 195

{

"task": {

"name": "install nginx",

"1d": "a45e60df-95f9-5a33-6619-000000000004"
}

"hosts": {

"testserver": {
"changed": false,
"invocation": {

"module_args": { ... }

}

}
}
1
1
}
minimal

The minimal plugin does very little processing of the result returned from Ansible
from an event. For example, whereas the default plugin formats a task like this:

TASK [Create a 1095 directory] khkkkhkhkkkhhkhkhhkhhkhkhkhhhkhkhkkhhkhkhhhkhkhkhkkhkhkhkhkkkkkk

ok: [web]
the minimal plugin outputs this:

web | SUCCESS => {
"changed": false,

"gid": 1000,
"group": "vagrant",
"mode": "Q775",
"owner": "vagrant",
"path": "/home/vagrant/logs",
"size": 4096,
"state": "directory",
"uid": 1000
}
oneline

The oneline plugin is similar to minimal, but prints output on a single line (shown
here on multiple lines because the text doesn’t fit on one line in the book):

web | SUCCESS => {"changed": false, "gid": 1000, "group": "vagrant", "mode":
"@775", "owner": "vagrant", "path": "/home/vagrant/logs", "size": 4096, "state":
"directory", "uid": 1000}

196 | Chapter10: Callback Plugins

selective

The selective plugin shows output only for successful tasks that have the
print_action tag. It always shows output for failed tasks.

skippy

The skippy plugin does not show any output for hosts that are skipped. Whereas the
default plugin shows skipping: [hostname] when a host is skipped for a task, the
skippy plugin suppresses that output.

Other Plugins

The other plugins perform a variety of actions, such as recording execution time or
sending a Slack notification. Table 10-2 lists these other plugins.

Unlike with stdout plugins, you can have multiple other plugins enabled at the same
time. Enable the other plugins you want in ansible.cfg by setting callback_whitelist
to a comma-separated list; for example:

[defaults]
callback_whitelist = mail, slack

Many of these plugins have configuration options, which are set via environment
variables.

Table 10-2. Other plugins

Name Description

foreman Send notifications to Foreman
hipchat Send notifications to HipChat
jabber Send notifications to Jabber
junit Write JUnit-formatted XML file

log_plays Log playbook results per hosts
logentries Send notifications to Logentries

logstash Send results to Logstash
mail Send email when tasks fail
0SX_say Speak notifications on mac0S

profile_tasks Report execution time for each task
slack Send notifications to Slack
timer Report total execution time

Other Plugins | 197

foreman

The foreman plugin sends notifications to Foreman. Table 10-3 lists the environment
variables used to configure this plugin.

Table 10-3. foreman plugin environment variables

Environment var Description Default

FOREMAN_URL URL to the Foreman server http://localhost:
3000

FOREMAN_SSL_CERT X509 certificate to authenticate to Foreman if HTTPS is used /etc/foreman/
client_cert.pem

FOREMAN_SSL_KEY The corresponding private key /etc/foreman/

client_key.pem

FOREMAN_SSL_VERIFY Whether to verify the Foreman certificate. It can be set to 1to verify 1
SSL certificates using the installed CAs or to a path pointing to a CA
bundle. Set to 0 to disable certificate checking.

hipchat

The hipchat plugin sends notifications to HipChat. Table 10-4 lists the plugin’s envi-
ronment variables used for configuration.

Table 10-4. hipchat plugin environment variables

Environment var Description Default
HIPCHAT_TOKEN HipChat API token (None)
HIPCHAT_ROOM HipChat room to post in ansible
HIPCHAT_NAME HipChat name to post as ansible

HIPCHAT_NOTIFY Add notify flag to important messages true

You must install the Python prettytable library to use the hipchat
plugin:

pip install prettytable

jabber

The jabber plugin sends notifications to Jabber. Note that there are no default values
for any of the configuration options for the jabber plugin. These options are listed in
Table 10-5.

198 | Chapter10: Callback Plugins

http://theforeman.org
http://hipchat.com
http://jabber.org

Table 10-5. jabber plugin environment variables

Environment var Description

JABBER_SERV Hostname of Jabber server
JABBER_USER Jabber username for auth
JABBER_PASS Jabber password auth

JABBER_TO Jabber user to send the notification to

You must install the Python xmpp library to use the jabber plugin:
pip install git+https://github.com/ArchipelProject/xmpppy

junit
The junit plugin writes the results of a playbook execution to an XML file in JUnit

format. It is configured by using the environment variables listed in Table 10-6. The
plugin uses the conventions in Table 10-7 for generating the XML report.

Table 10-6. junit plugin environment variables

Environmentvar Description Default
JUNIT_OUTPUT_DIR Destination directory for files ~/.ansible.log
JUNIT_TASK_CLASS Configure output: one class per YAMLfile false

Table 10-7. junit report

ok pass
failed with EXPECTED FAILURE in the task name pass
failed due to an exception error
failed for other reasons failure
skipped skipped

You must install the junit_xml library to use the junit plugin:

pip install junit_xml

Other Plugins | 199

log_plays
The log_plays plugin logs the results to log files in /var/log/ansible/hosts, one log file
per host. The path is not configurable.

Instead of using the log_plays plugin, you can set the log_path
configuration option in ansible.cfg. For example:

[defaults]
log_path = /var/log/ansible.log

This approach generates a single logfile for all hosts, whereas the
plugin generates a separate logfile for each host.

logentries

The logentries plugin sends the results to Logentries. The plugins environment
variables are listed in Table 10-8.

Table 10-8. logentries plugin environment variables

Environment var Description Default
LOGENTRIES_ANSIBLE_TOKEN Logentries token (None)

LOGENTRIES_API Hostname of Logentries endpoint data.logentries.com
LOGENTRIES_PORT Logentries port 80

LOGENTRIES_TLS_PORT Logentries TLS port 443

LOGENTRIES_USE_TLS Use TLS with Logentries false
LOGENTRIES_FLATTEN Flatten results false

You must install the Python certifi and flctdict libraries to use the
logentries plugin:

pip install certifi flatdict

logstash

The logstash plugin writes results to Logstash. It is configured with the environment
variables listed in Table 10-9.

200 | Chapter 10: Callback Plugins

http://logentries.com
https://www.elastic.co/products/logstash

Table 10-9. logstash plugin environment variables

Environmentvar Description Default
LOGSTASH_SERVER Logstash server hostname localhost
LOGSTASH_PORT Logstash server port 5000
LOGSTASH_TYPE Message type ansible

You must install the Python python-logstash library to use the log
stash plugin:
pip install python-logstash

mail

The mail plugin sends an email whenever a task fails on a host. Table 10-10 lists the
environment variables for this plugin.

Table 10-10. Mail plugin environment variables

Environment var Description Default

SMTPHOST SMTP server hostname localhost

0sX_say

The osx_say plugin uses the say program to speak notifications on macOS. It has no
configuration options.

profile_tasks

The profile_tasks plugin generates a summary of the execution time of individual
tasks and total execution time for the playbook:

Saturday 22 April 2017 20:05:51 -0700 (0:00:01.465) 0:01:02.732 **kkkkkk
ANStAll NGiINX == - - m o mm i m i m e m e 57.82s
Gathering Facts ---------cmmmm e 1.90s
restart NGLNX === - - - o m s e e 1.47s
copy nginx config file -------mmmmmmmmm i 0.69s
€opy INdeX. REML === mm e e 0.44s
enable configuration ---------mmmmmmmmmm s 0.35s

The plugin also outputs execution time info as the tasks are running, displaying the
following:

Other Plugins | 201

o Date and time that the task started
« Execution time of previous task, shown in parentheses

« Cumulative execution time for this play

Here’s an example of that output:

TASK [-'Lnstall ng-‘Lnx] dhkkhhkhhhhhhhhhhhhhdhhhdrhddhhhhdhdrhddhhrhdhdhrrrdhrrrdds

Saturday 22 April 2017 20:09:31 -0700 (0:00:01.983) 0:00:02.030 **x*%*
ok: [testserver]

Table 10-11 lists the environment variables used for configuration.

Table 10-11. profile-tasks plugin environment variables

Environment var Description Default
PROFILE_TASKS_SORT_ORDER Sort output (ascending, none) none
PROFILE_TASKS_TASK_OUTPUT_LIMIT Number of tasks to show, orall 20

slack

The slack plugin sends notifications to Slack. Table 10-12 lists the environmental
variables used for configuration.

Table 10-12. slack plugin environment variables

Environment var Description Default
SLACK_WEBHOOK_URL Slack webhook URL (None)
SLACK_CHANNEL Slack room to post in #ansible
SLACK_USERNAME Username to post as ansible

SLACK_INVOCATION Show command-line invocation details false

You must install the Python prettytable library to use the slack
plugin.

timer
The timer plugin outputs the total execution time of the playbook; for example:
Playbook run took 0 days, @ hours, 2 minutes, 16 seconds

You're generally better off using the profile_tasks plugin instead, which also shows
execution time per task.

202 | Chapter 10: Callback Plugins

http://slack.com

CHAPTER 11
Making Ansible Go Even Faster

Once you start using Ansible on a regular basis, you'll often find yourself wishing that
your playbooks could run more quickly. This chapter presents strategies for reducing
the time it takes Ansible to execute playbooks.

SSH Multiplexing and ControlPersist

If you've made it this far in the book, you know that Ansible uses SSH as its primary
transport mechanism for communicating with servers. In particular, Ansible uses the
system SSH program by default.

Because the SSH protocol runs on top of the TCP protocol, when you make a con-
nection to a remote machine with SSH, you need to make a new TCP connection.
The client and server have to negotiate this connection before you can actually start
doing useful work. The negotiation takes a small amount of time.

When Ansible runs a playbook, it makes many SSH connections, in order to do
things such as copy over files and run commands. Each time Ansible makes a new
SSH connection to a host, it has to pay this negotiation penalty.

OpenSSH is the most common implementation of SSH and is almost certainly the
SSH client you have installed on your local machine if you are on Linux or macOS.
OpenSSH supports an optimization called SSH multiplexing, which is also referred to
as ControlPersist. When you use SSH multiplexing, multiple SSH sessions to the same
host will share the same TCP connection, so the TCP connection negotiation hap-
pens only the first time.

203

When you enable multiplexing:

« The first time you try to SSH to a host, OpenSSH starts a master connection.

» OpenSSH creates a Unix domain socket (known as the control socket) that is asso-
ciated with the remote host.

 The next time you try to SSH to a host, OpenSSH will use the control socket to
communicate with the host instead of making a new TCP connection.

The master connection stays open for a user-configurable amount of time, and then
the SSH client will terminate the connection. Ansible uses a default of 60 seconds.

Manually Enabling SSH Multiplexing

Ansible automatically enables SSH multiplexing, but to give you a sense of what’s
going on behind the scenes, let’s work through the steps of manually enabling SSH
multiplexing and using it to SSH to a remote machine.

Example 11-1 shows an entry in the ~/.ssh/config file for myserver.example.com, which
is configured to use SSH multiplexing.

Example 11-1. ssh/config for enabling ssh multiplexing

Host myserver.example.com
ControlMaster auto
ControlPath /tmp/%r@%h:%p
ControlPersist 10m

The ControlMaster auto line enables SSH multiplexing, and it tells SSH to create the
master connection and the control socket if it does not exist yet.

The ControlPath /tmp/%r@%h:%p line tells SSH where to put the control Unix
domain socket file on the filesystem. %h is the target hostname, %r is the remote login
username, and %p is the port. If we SSH as the Ubuntu user:

$ ssh ubuntu@myserver.example.com

then SSH will create the control socket at /tmp/ubuntu@myserver.example.com:22 the
first time you SSH to the server.

The ControlPersist 10m line tells SSH to close the master connection if there have
been no SSH connections for 10 minutes.

You can check whether a master connection is open by using the -0 check flag:

$ ssh -0 check ubuntu@myserver.example.com

204 | Chapter 11: Making Ansible Go Even Faster

It will return output like this if the control master is running:
Master running (pid=4388)
Here’s what the control master process looks like if you use ps 4388:

PID TT STAT TIME COMMAND
4388 ?? Ss 0:00.00 ssh: /tmp/ubuntu@myserver.example.com:22 [mux]

You can also terminate the master connection by using the -0 exit flag, like this:
$ ssh -0 exit ubuntu@myserver.example.com

You can see more details about these settings on the ssh_config man page.

I tested out the speed of making an SSH connection like this:
$ time ssh ubuntu@myserver.example.com /bin/true

This times how long it takes to initiate an SSH connection to the server and run
the /bin/true program, which simply exits with a 0 return code.

The first time I ran it, the timing part of the output looked like this:'
0.01s user 0.01s system 2% cpu 0.913 total

The time we really care about is the total time: 0.913 total. This tells us it took
0.913 seconds to execute the whole command. (Total time is also sometimes called
wall-clock time, since its how much time elapsed if we were measuring the time on
the clock on the wall.)

The second time, the output looked like this:
0.00s user 0.00s system 8% cpu 0.063 total

The total time went down to 0.063s, for a savings of about 0.85s for each SSH connec-
tion after the first one. Recall that Ansible uses at least two SSH sessions to execute
each task: one session to copy the module file to the host, and another session to exe-
cute the module file.> This means that SSH multiplexing should save you on the order
of one or two seconds for each task that runs in your playbook.

SSH Multiplexing Options in Ansible

Ansible uses the options for SSH multiplexing shown in Table 11-1.

1 The output format may look different, depending on your shell and OS. I'm running Zsh on macOS.

2 One of these steps can be optimized away by using pipelining, described later in this chapter.

SSH Multiplexing and ControlPersist | 205

Table 11-1. Ansible’s SSH multiplexing options

Option Value

ControlMaster auto
ControlPath SHOME/.ansible/cp/ansible-ssh-%h-%p-%r
ControlPersist 60s

I've never needed to change Ansible’s default ControlMaster or ControlPersist val-
ues. However, I have needed to change the value for the ControlPath option. That’s
because the operating system sets a maximum length on the path of a Unix domain
socket, and if the ControlPath string is too long, then multiplexing won’t work.
Unfortunately, Ansible won't tell you if the ControlPath string is too long; it will sim-
ply run without using SSH multiplexing.

You can test it out on your control machine by manually trying to SSH by using the
same ControlPath that Ansible would use:

$ CP=~/.ansible/cp/ansible-ssh-%h-%p-%r

$ ssh -o ControlMaster=auto -o ControlPersist=60s \
-0 ControlPath=$CP \
ubuntu@ec2-203-0-113-12.compute-1.amazonaws.com \
/bin/true

If the ControlPath is too long, you'll see an error that looks like Example 11-2.

Example 11-2. ControlPath too long

ControlPath
"/Users/lorin/.ansible/cp/ansible-ssh-ec2-203-0-113-12.compute-1.amazonaws.
com-22-ubuntu.KIWEKESRzCKFABch"

too long for Unix domain socket

This is a common occurrence when connecting to Amazon EC2 instances, because
EC2 uses long hostnames.

The workaround is to configure Ansible to use a shorter ControlPath. The official
documentation recommends setting this option in your ansible.cfg file:

[ssh_connection]
control_path = %(directory)s/%%h-%%r

Ansible sets %(directory)s to $HOME/.ansible/cp, and the double percent signs (%%)
are needed to escape these characters because percent signs are special characters for
files in .ini format.

206 | Chapter 11: Making Ansible Go Even Faster

http://bit.ly/2kKpsJI
http://bit.ly/2kKpsJI

If you have SSH multiplexing enabled, and you change a configura-

tion of your SSH connection, say by modifying the ssh_args con-

figuration option, this change won't take effect if the control socket
\ is still open from a previous connection.

Pipelining
Recall how Ansible executes a task:

1. It generates a Python script based on the module being invoked.
2. It copies the Python script to the host.
3. It executes the Python script.
Ansible supports an optimization called pipelining, whereby it will execute the Python

script by piping it to the SSH session instead of copying it. This saves time because it
tells Ansible to use one SSH session instead of two.

Enabling Pipelining

Pipelining is off by default because it can require some configuration on your remote
hosts, but I like to enable it because it speeds up execution. To enable it, modify your
ansible.cfg file as shown in Example 11-3.

Example 11-3. ansible.cfg Enable pipelining

[defaults]
pipelining = True

Configuring Hosts for Pipelining

For pipelining to work, you need to make sure that requiretty is not enabled in
your /etc/sudoers file on your hosts. Otherwise, you'll get errors that look like
Example 11-4 when you run your playbook.

Example 11-4. Error when requiretty is enabled

failed: [vagrantl] => {"failled": true, "parsed": false}
invalid output was: sudo: sorry, you must have a tty to run sudo

If sudo on your hosts is configured to read files from the /etc/sudoers.d, then the sim-
plest way to resolve this is to add a sudoers config file that disables the requiretty
restriction for the user you use SSH with.

Pipelining | 207

If the /etc/sudoers.d directory is present, your hosts should support adding sudoers
config files in that directory. You can use the ansible command-line tool to check if
the directory there:

$ ansible vagrant -a "file /etc/sudoers.d"
If the directory is present, the output will look like this:

vagrantl | success | rc=0 >>
/etc/sudoers.d: directory

vagrant3 | success | rc=0 >>
/etc/sudoers.d: directory

vagrant2 | success | rc=0 >>
/etc/sudoers.d: directory

If the directory is not present, the output will look like this:

vagrant3 | FAILED | rc=1 >>
J/etc/sudoers.d: ERROR: cannot open ‘/etc/sudoers.d' (No such file or
directory)

vagrant2 | FAILED | rc=1 >>
J/etc/sudoers.d: ERROR: cannot open ‘/etc/sudoers.d' (No such file or
directory)

vagrantl | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open ‘/etc/sudoers.d' (No such file or
directory)

If the directory is present, create a template file that looks like Example 11-5.

Example 11-5. templates/disable-requiretty.j2
Defaults:{{ ansible_user }} !requiretty

Then run the playbook shown in Example 11-6, replacing myhosts with your hosts.
Don't forget to disable pipelining before you do this, or the playbook will fail with an
error.

Example 11-6. disable-requiretty.yml

- name: do not require tty for ssh-ing user
hosts: myhosts
sudo: True
tasks:
- name: Set a sudoers file to disable tty
template: >
src=templates/disable-requiretty.j2
dest=/etc/sudoers.d/disable-requiretty

208 | Chapter 11: Making Ansible Go Even Faster

owner=root group=root mode=0440
validate="visudo -cf %s"

Note the use of validate="visudo -cf %s". See “Validating Files” on page 367 for a
discussion of why it’s a good idea to use validation when modifying sudoers files.

Fact Caching

If your play doesn’t reference any Ansible facts, you can turn off fact gathering for
that play. Recall that you can disable fact gathering with the gather_facts clause in a
play; for example:

- name: an example play that doesn't need facts
hosts: myhosts
gather_facts: False
tasks:
tasks go here:

You can disable fact gathering by default by adding the following to your ansible.cfg
file:

[defaults]

gathering = explicit
If you write plays that do reference facts, you can use fact caching so that Ansible
gathers facts for a host only once, even if you rerun the playbook or run a different
playbook that connects to the same host.

If fact caching is enabled, Ansible will store facts in a cache the first time it connects
to hosts. For subsequent playbook runs, Ansible will look up the facts in the cache
instead of fetching them from the remote host, until the cache expires.

Example 11-7 shows the lines you must add to your ansible.cfg file to enable fact cach-
ing. The fact_caching_timeout value is in seconds, and the example uses a 24-hour
(86,400 second) timeout.

As with all caching-based solutions, there’s always the danger of the
cached data becoming stale. Some facts, such as the CPU architec-
ture (stored in the ansible_architecture fact), are unlikely to
\ change often. Others, such as the date and time reported by the
machine (stored in the ansible_date_time fact), are guaranteed to
change often.

If you decide to enable fact caching, make sure you know how
quickly the facts used in your playbook are likely to change, and set
an appropriate fact-caching timeout value. If you want to clear the
fact cache before running a playbook, pass the - -flush-cache flag
to ansible-playbook.

FactCaching | 209

Example 11-7. ansible.cfg enable fact caching

[defaults]

gathering = smart

24-hour timeout, adjust if needed
fact_caching_timeout = 86400

You must specify a fact caching implementation
fact_caching = ...

Setting the gathering configuration option to smart in ansible.cfg tells Ansible to use
smart gathering. This means that Ansible will gather facts only if they are not present
in the cache or if the cache has expired.

If you want to use fact caching, make sure your playbooks do not
explicitly specify gather_facts: True or gather_facts: False
With smart gathering enabled in the configuration file, Ansible will
gather facts only if they are not present in the cache.

You must explicitly specify a fact_caching implementation in ansible.cfg, or Ansible
will not cache facts between playbook runs. As of this writing, there are three fact-
caching implementations:

+ JSON files

o Redis

e Memcached

JSON File Fact-Caching Backend

With the JSON file fact-caching backend, Ansible will write the facts it gathers to files
on your control machine. If the files are present on your system, it will use those files
instead of connecting to the host and gathering facts.

To enable the JSON file fact-caching backend, add the settings in Example 11-8 to
your ansible.cfg file.
Example 11-8. ansible.cfg with JSON fact caching

[defaults]
gathering = smart

24-hour timeout, adjust i1f needed
fact_caching_timeout = 86400

210 | Chapter 11: Making Ansible Go Even Faster

JSON file implementation
fact_caching = jsonfile
fact_caching_connection = /tmp/ansible_fact_cache

Use the fact_caching_connection configuration option to specify a directory where
Ansible should write the JSON files that contain the facts. If the directory does not
exist, Ansible will create it.

Ansible uses the file modification time to determine whether the fact-caching time-
out has occurred yet.

Redis Fact-Caching Backend
Redis is a popular key-value data store that is often used as a cache. To enable fact
caching by using the Redis backend, you need to do the following:

1. Install Redis on your control machine.

2. Ensure that the Redis service is running on the control machine.

3. Install the Python Redis package.

4. Modify ansible.cfg to enable fact caching with Redis.

Example 11-9 shows how to configure ansible.cfg to use Redis as the cache backend.

Example 11-9. ansible.cfg with Redis fact caching

[defaults]
gathering = smart

24-hour timeout, adjust i1f needed
fact_caching_timeout = 86400

fact_caching = redis
Ansible needs the Python Redis package on the control machine, which you can
install using pip:*

$ pip install redis

You must also install Redis and ensure that it is running on your control machine. If
you are using macOS, you can install Redis by using Homebrew. If you are using
Linux, install Redis by using your native package manager.

3 You may need to sudo or activate a virtualenv, depending on how you installed Ansible on your control
machine.

FactCaching | 211

Memcached Fact-Caching Backend
Memcached is another popular key-value data store that is often used as a cache. To
enable fact caching by using the Memcached backend, you need to do the following:
1. Install Memcached on your control machine.
2. Ensure that the Memcached service is running on the control machine.
3. Install the Python Memcached Python package.
4. Modity ansible.cfg to enable fact caching with Memcached.

Example 11-10 shows how to configure ansible.cfg to use Memcached as the cache
backend.

Example 11-10. ansible.cfg with Memcached fact caching

[defaults]
gathering = smart

24-hour timeout, adjust i1f needed
fact_caching_timeout = 86400

fact_caching = memcached

Ansible needs the Python Memcached package on the control machine, which you
can install using pip. You might need to sudo or activate a virtualenv, depending on
how you installed Ansible on your control machine.

$ pip install python-memcached

You must also install Memcached and ensure that it is running on your control
machine. If you are using macOS, you can install Memcached by using Homebrew. If
you are using Linux, install Memcached by using your native package manager.

For more information on fact caching, check out the official documentation.

Parallelism

For each task, Ansible will connect to the hosts in parallel to execute the tasks. But
Ansible doesn’t necessarily connect to all of the hosts in parallel. Instead, the level of
parallelism is controlled by a parameter, which defaults to 5. You can change this
default parameter in one of two ways.

You can set the ANSIBLE_FORKS environment variable, as shown in Example 11-11.

212 | Chapter 11: Making Ansible Go Even Faster

http://bit.ly/1F6BHap

Example 11-11. Setting ANSIBLE_FORKS

$ export ANSIBLE_FORKS=20
$ ansible-playbook playbook.yml

You also can modify the Ansible configuration file (ansible.cfg) by setting a forks
option in the defaults section, as shown in Example 11-12.

Example 11-12. ansible.cfg configuring number of forks

[defaults]
forks = 20

Concurrent Tasks with Async

Ansible introduced support for asynchronous actions with the async clause to work
around the problem of SSH timeouts. If the execution time for a task exceeds the SSH
timeout, Ansible will lose its connection to the host and report an error. Marking a
long-running task with the async clause eliminates the risk of an SSH timeout.

However, asynchronous actions can also be used for a different purpose: to start a
second task before the first task has completed. This can be useful if you have two
tasks that both take a long time to execute and are independent (i.e., you don't need
the first to complete to execute the second).

Example 11-13 shows a list of tasks that use the async clause to clone a large Git
repository. Because the task is marked as async, Ansible will not wait until the Git
clone is complete before it begins to install the operating system packages.

Example 11-13. Using async to overlap tasks

- name: install git
apt: name=git update_cache=yes
become: yes
- name: clone Linus's git repo
git:
repo: git://git.kernel.org/pub/scm/1linux/kernel/git/torvalds/linux.git
dest: /home/vagrant/linux
async: 3600
poll: 0 (2]
register: linux_clone (3]
- name: install several packages

apt:
name: "{{ item }}"
with_items:

- apt-transport-https
- ca-certificates
- linux-image-extra-virtual

Concurrent Tasks with Async | 213

- software-properties-common
- python-pip

become: yes
- name: wait for linux clone to complete
async_status: (4]

jid: "{{ linux_clone.ansible_job_id }}" (5)

register: result
until: result.finished @
retries: 3600

We specify that this is an async task that should take less than 3,600 seconds. If
the execution time exceeds this value, Ansible will automatically terminate the
process associated with the task.

We specity a poll argument of 0 to tell Ansible that it should immediately move
on to the next task after it spawns this task asynchronously. If we had specified a
nonzero value instead, Ansible would not move on to the next task. Instead, it
would periodically poll the status of the async task to check whether it was com-
plete, sleeping between checks for the amount of time in seconds specified by the
poll argument.

When we run async, we must use the register clause to capture the async
result. The result object contains an ansible_job_id value that we will use later
to poll for the job status.

We use the async_status module to poll for the status of the async job we
started earlier.

We must specify a jid value that identifies the async job.
The async_status module polls only a single time. We need to specify an until

clause so that it will keep polling until the job completes, or until we exhaust the
specified number of retries.

You should now know how to configure SSH multiplexing, pipelining, fact caching,
parallelism, and async in order to get your playbooks to run more quickly. Next, we'll
discuss writing your own Ansible modules.

214

| Chapter 11: Making Ansible Go Even Faster

CHAPTER 12
Custom Modules

Sometimes you want to perform a task that is too complex for the command or shell
modules, and there is no existing module that does what you want. In that case, you
might want to write your own module.

In the past, I've written custom modules to retrieve my public IP address when I'm
behind a network address translation (NAT) getaway, and to initialize the databases
in an OpenStack deployment. I've thought about writing a custom module for gener-
ating self-signed TLS certificates, though I've never gotten around to it.

Another common use for custom modules is interacting with a third-party service
over a REST API. For example, GitHub offers what it calls Releases, which let you
attach binary assets to repositories, and these are exposed via GitHub’s API. If your
deployment requires you to download a binary asset attached to a private GitHub
repository, this would be a good candidate for implementing inside a custom module.

Example: Checking That We Can Reach a Remote Server

Let’s say we want to check that we can connect to a remote server on a particular port.
If we can’'t, we want Ansible to treat that as an error and stop running the play.

The custom module we will develop in this chapter is basically a
simpler version of the wait_for module.

215

Using the Script Module Instead of Writing Your Own

Recall in Example 6-17 how we used the script module to execute custom scripts on
remote hosts. Sometimes it’s simpler to just use the script module rather than write
a full-blown Ansible module.

I like putting these types of scripts in a scripts folder along with my playbooks. For
example, we could create a script file called playbooks/scripts/can_reach.sh that
accepts as arguments the name of a host, the port to connect to, and how long it
should try to connect before timing out:

can_reach.sh www.example.com 80 1

We can create a script as shown in Example 12-1.

Example 12-1. can_reach.sh

#!/bin/bash
host=$1
port=$2
timeout=$3

nc -z -w Stimeout $host Sport

We can then invoke this:

- name: run my custom script
script: scripts/can_reach.sh www.example.com 80 1

Keep in mind that your script will execute on the remote hosts, just like Ansible mod-
ules do. Therefore, any programs your script requires must have been installed previ-
ously on the remote hosts. For example, you can write your script in Ruby, as long as
Ruby has been installed on the remote hosts, and the first line of the script invokes
the Ruby interpreter, such as the following:

#!/usr/bin/ruby

can_reach as a Module

Next, let’s implement can_reach as a proper Ansible module, which we will be able to
invoke like this:

- name: check if host can reach the database server
can_reach: host=db.example.com port=5432 timeout=1

This checks whether the host can make a TCP connection to db.example.com on port
5432. It will time out after one second if it fails to make a connection.

We'll use this example throughout the rest of this chapter.

216 | Chapter 12: Custom Modules

Where to Put Custom Modules

Ansible will look in the library directory relative to the playbook. In our example, we
put our playbooks in the playbooks directory, so we will put our custom module at
playbooks/library/can_reach.

How Ansible Invokes Modules

Before we implement the module, let’s go over how Ansible invokes them. Ansible
will do the following:

. Generate a standalone Python script with the arguments (Python modules only)

. Copy the module to the host

1

2

3. Create an arguments file on the host (non-Python modules only)

4. Invoke the module on the host, passing the arguments file as an argument
5

. Parse the standard output of the module

Let’s look at each of these steps in more detail.

Generate a Standalone Python Script with the Arguments
(Python Only)

If the module is written in Python and uses the helper code that Ansible provides
(described later), then Ansible will generate a self-contained Python script that injects
helper code, as well as the module arguments.

Copy the Module to the Host

Ansible will copy the generated Python script (for Python-based modules) or the
local file playbooks/library/can_reach (for non-Python-based modules) to a tempo-
rary directory on the remote host. If you are accessing the remote host as the ubuntu
user, Ansible will copy the file to a path that looks like the following:

/home/ubuntu/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/can_reach

Create an Arguments File on the Host (Non-Python Only)

If the module is not written in Python, Ansible will create a file on the remote host
with a name like this:

/home/ubuntu/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/arguments

Where to Put Custom Modules | 217

If we invoke the module like this:

- name: check if host can reach the database server
can_reach: host=db.example.com port=5432 timeout=1

then the arguments file will have the following content:
host=db.example.com port=5432 timeout=1

We can tell Ansible to generate the arguments file for the module as JSON, by adding
the following line to playbooks/library/can_reach:

WANT_JSON
If our module is configured for JSON input, the arguments file will look like this:

{"host": "www.example.com", "port": "80", "timeout": "1"}

Invoke the Module

Ansible will call the module and pass the arguments file as arguments. If it's a Python-
based module, Ansible executes the equivalent of the following (with /path/to/
replaced by the actual path):

/path/to/can_reach

If it’s a non-Python-based module, Ansible will look at the first line of the module to
determine the interpreter and execute the equivalent of this:

/path/to/interpreter /path/to/can_reach /path/to/arguments

Assuming the can_reach module is implemented as a Bash script and starts with this:
#!/bin/bash

then Ansible will do something like this:
/bin/bash /path/to/can_reach /path/to/arguments

But even this isn’t strictly true. What Ansible actually does is the following:

/bin/sh -c 'LANG=en_US.UTF-8 LC_CTYPE=en_US.UTF-8 /bin/bash /path/to/can_reach \
/path/to/arguments; rm -rf /path/to/ >/dev/null 2>&1'

You can see the exact command that Ansible invokes by passing -vvv to ansible-
playbook.

Expected Qutputs

Ansible expects modules to output JSON. For example:

{'changed': false, 'failed': true, 'msg': 'could not reach the host'}

218 | Chapter 12: Custom Modules

Prior to version 1.8, Ansible supported a shorthand output format,
also known as baby JSON, that looked like key=value. Ansible
dropped support for this format in 1.8. As you'll see later, if you
write your modules in Python, Ansible provides helper methods
that make it easy to generate JSON output.

Output Variables that Ansible Expects

Your module can return whatever variables you like, but Ansible has special treat-
ment for certain returned variables.

changed

All Ansible modules should return a changed variable. The changed variable is a
Boolean that indicates whether the module execution caused the host to change state.
When Ansible runs, it will show in the output whether a state change has happened.
If a task has a notify clause to notify a handler, the notification will fire only if
changed is true.

failed

If the module fails to complete, it should return failed=true. Ansible will treat this
task execution as a failure and will not run any further tasks against the host that
failed, unless the task has an ignore_errors or failed_when clause.

If the module succeeds, you can either return failed=false or you can simply leave
out the variable.

msg

Use the msg variable to add a descriptive message that describes the reason that a
module failed.

If a task fails, and the module returns a msg variable, then Ansible will output that
variable slightly differently than it does the other variables. For example, if a module
returns the following:

{"failed": true, "msg": "could not reach www.example.com:81"}
then Ansible will output the following lines when executing this task:

failed: [vagrantl] => {"failed": true}
msg: could not reach www.example.com:81

Expected Outputs | 219

Implementing Modules in Python

If you implement your custom module in Python, Ansible provides the AnsibleMod
ule Python class that makes it easier to do the following:

o Parse the inputs
 Return outputs in JSON format

« Invoke external programs

In fact, when writing a Python module, Ansible will inject the arguments directly into
the generated Python file rather than require you to parse a separate arguments file.
We'll discuss how that works later in this chapter.

We'll create our module in Python by creating a can_reach file. I'll start with the
implementation and then break it down (see Example 12-2).

Example 12-2. can_reach

#! /usr/bin/python
from import AnsibleModule (1]

def can_reach(module, host, port, timeout):
nc_path = module.get_bin_path('nc', required=True) (2]
args = [nc_path, "-z", "-w", str(timeout),
host, str(port)]
(rc, stdout, stderr) = module.run_command(args) (3]

return rc == 0

def main():
module = AnsibleModule((4]
argument_spec=dict((5]
host=dict(required=True), (6]
port=dict(required=True, type='int'),
timeout=dict(required=False, type='int', default=3) (7]
)s
supports_check_mode=True (&)

)

In check mode, we take no action
Since this module never changes system state, we just
return changed=False
if module.check_mode:
module.exit_json(changed=False) @

host = module.params['host'] (11)
port = module.params['port']
timeout = module.params['timeout']

220 | Chapter 12: Custom Modules

if can_reach(module, host, port, timeout):
module.exit_json(changed=False)
else:
msg = "Could not reach %s:%s" % (host, port)
module.fail_json(msg=msg) ®
if __name__ == "_main__
main()

Imports the AnsibleModule helper class

Gets the path of an external program

Invokes an external program

Instantiates the AnsibleModule helper class
Specifies the permitted set of arguments

A required argument

An optional argument with a default value

Specifies that this module supports check mode
Tests whether the module is running in check mode
Exits successfully, passing a return value

Extracts an argument

® 6 &6 6 06 ©¢ 6 6 6 o o ©

Exits with failure, passing an error message

Parsing Arguments

It’s easier to understand the way AnsibleModule handles argument parsing by looking
at an example. Recall that our module is invoked like this:

- name: check if host can reach the database server
can_reach: host=db.example.com port=5432 timeout=1

Lets assume that the host and port parameters are required, and timeout is an
optional parameter with a default value of 3 seconds.

You instantiate an AnsibleModule object by passing it an argument_spec, which is a
dictionary in which the keys are parameter names and the values are dictionaries that
contain information about the parameters.

Implementing Modulesin Python | 221

module = AnsibleModule(
argument_spec=dict(

In our example, we declare a required argument named host. Ansible will report an
error if this argument isn’t passed to the module when we use it in a task:

host=dict(required=True),

The variable named timeout is optional. Ansible assumes that arguments are strings
unless specified otherwise. Our timeout variable is an integer, so we specify the type
as int so that Ansible will automatically convert it into a Python number. If timeout
is not specified, the module will assume it has a value of 3:

timeout=dict(required=False, type='int', default=3)

The AnsibleModule constructor takes arguments other than argument_spec. In the
preceding example, we added this argument:

supports_check_mode = True

This indicates that our module supports check mode. We'll explain that a little later in
this chapter.

Accessing Parameters

Once you've declared an AnsibleModule object, you can access the values of the argu-
ments through the params dictionary, like this:

module = AnsibleModule(...)

host = module.params["host"]
port = module.params["port"]
timeout = module.params["timeout"]

Importing the AnsibleModule Helper Class

Starting with Ansible 2.1.0, Ansible deploys a module to the host by sending a ZIP
file containing the module file along with the imported helper files. One consequence
of this it that you can now explicitly import classes, such as the following:

from import AnsibleModule

Prior to Ansible 2.1.0, the import statement in an Ansible module was really a pseudo
import statement. In these earlier versions, Ansible copied only a single Python file to
the remote host to execute it. Ansible simulated the behavior of a traditional Python
import by including the imported code directly into the generated Python file (simi-
lar to how an #include statement works in C or C+\+). Because these did not behave
like a traditional Python import, if you explicitly imported a class, the Ansible
module debugging scripts would not work properly. You had to use a wildcard

222 | Chapter 12: Custom Modules

import, and put the import at the end of the file, just before invoking the main func-
tion:

from import *

if __pame__ == "__main__":
main()
Argument Options

For each argument to an Ansible module, you can specify several options, as listed in
Table 12-1.

Table 12-1. Argument options

Option Description

required I true, argument is required

default Default value if argument is not required

choices A list of possible values for the argument

aliases Other names you can use as an alias for this argument

type Argument type. Allowed values: 'str', 'list', 'dict', 'bool’, 'int', 'float'

required

The required option is the only option that you should always specify. If it is true,
Ansible will return an error if the user fails to specify the argument.

In our can_reach module example, host and port are required, and timeout is not
required.

default

For arguments that have required=False set, you should generally specify a default
value for that option. In our example:

timeout=dict(required=False, type='int', default=3)
If the user invokes the module like this:
can_reach: host=www.example.com port=443

then module.params["timeout"] will contain the value 3.

Implementing Modules in Python | 223

choices

The choices option allows you to restrict the allowed arguments to a predefined list.

Consider the distros argument in the following example:
distro=dict(required=True, choices=['ubuntu', 'centos', 'fedora'])

If the user were to pass an argument that was not in the list—for example:
distro=suse

this would cause Ansible to throw an error.

aliases

The aliases option allows you to use different names to refer to the same argument.
For example, consider the package argument in the apt module:

module = AnsibleModule(
argument_spec=dict(

package = dict(default=None, aliases=['pkg', 'name'], type='list'),

)

Since pkg and name are aliases for the package argument, these invocations are all
equivalent:

- apt: package=vim

- apt: name=vim

- apt: pkg=vim
type
The type option enables you to specify the type of an argument. By default, Ansible
assumes all arguments are strings.

However, you can specify a type for the argument, and Ansible will convert the argu-
ment to the desired type. The types supported are as follows:

o str

o list

o dict

e bool

e int

« float

224 | Chapter 12: Custom Modules

In our example, we specified the port argument as int:
port=dict(required=True, type='int'),

When we access it from the params dictionary, like this:
port = module.params['port']

the value of the port variable will be an integer. If we had not specified the type as int
when declaring the port variable, the module.params['port'] value would have
been a string instead of an integer.

Lists are comma-delimited. For example, if you have a module named foo with a list
parameter named colors:

colors=dict(required=True, type='list')
then you pass a list like this:
foo: colors=red,green,blue

For dictionaries, you can either use key=value pairs, delimited by commas, or you
can use JSON inline.

For example, if you have a module named bar, with a dict parameter named tags:
tags=dict(required=False, type='dict', default={})

then you can pass the argument like this:
- bar: tags=env=staging,function=web

Or you can pass the argument like this:
- bar: tags={"env": "staging", "function": "web"}

The official Ansible documentation uses the term complex args to refer to lists and
dictionaries that are passed to modules as arguments. See “Complex Arguments in
Tasks: A Brief Digression” on page 105 for how to pass these types of arguments in
playbooks.

AnsibleModule Initializer Parameters

The AnsibleModule initializer method takes various arguments, listed in Table 12-2.
The only required argument is argument_spec.

Table 12-2. AnsibleModule initializer arguments

argument_spec (None) Dictionary that contains information about arguments
bypass_checks False Iftrue, don’t check any of the parameter constraints
no_log False If true, don't log the behavior of this module

Implementing Modules in Python | 225

Parameter Default Description
check_invalid_arguments True If true, return error if user passed an unknown argument

mutually_exclusive (None) List of mutually exclusive arguments
required_together (None) List of arguments that must appear together
required_one_of (None) List of arguments where at least one must be present

add_file_common_args False Supports the arguments of the file module
supports_check_mode False If true, indicates module supports check mode

argument_spec

This is a dictionary that contains the descriptions of the allowed arguments for the
module, as described in the previous section.

no_log

When Ansible executes a module on a host, the module will log output to the syslog,
which on Ubuntu is at /var/log/syslog.

The logging output looks like this:

Sep 28 02:31:47 vagrant-ubuntu-trusty-64 ansible-ping: Invoked with data=None
Sep 28 02:32:18 vagrant-ubuntu-trusty-64 ansible-apt: Invoked with dpkg_options=
force-confdef,force-confold upgrade=None force=False name=nginx package=['nginx'
] purge=False state=installed update_cache=True default_release=None install_rec
ommends=True deb=None cache_valid_time=None Sep 28 02:33:01 vagrant-ubuntu-trust
y-64 ansible-file: Invoked with src=None

original_basename=None directory_mode=None force=False remote_src=None selevel=N
one seuser=None recurse=False serole=None content=None delimiter=None state=dire
ctory diff_peek=None mode=None regexp=None owner=None group=None path=/etc/nginx
/ssl backup=None validate=None setype=None

Sep 28 02:33:01 vagrant-ubuntu-trusty-64 ansible-copy: Invoked with src=/home/va
grant/.ansible/tmp/ansible-tmp-1411871581.19-43362494744716/source directory_mod
e=None force=True remote_src=None dest=/etc/nginx/ssl/nginx.key selevel=None seu
ser=None serole=None group=None content=NOT_LOGGING_PARAMETER setype=None origin
al_basename=nginx.key delimiter=None mode=0600 owner=root regexp=None validate=N
one backup=False

Sep 28 02:33:01 vagrant-ubuntu-trusty-64 ansible-copy: Invoked with src=/home/va
grant/.ansible/tmp/ansible-tmp-1411871581.31-95111161791436/source directory_mod
e=None force=True remote_src=None dest=/etc/nginx/ssl/nginx.crt selevel=None seu
ser=None serole=None group=None content=NOT_LOGGING_PARAMETER setype=None origin
al_basename=nginx.crt delimiter=None mode=None owner=None regexp=None validate=N
one backup=False

If a module accepts sensitive information as an argument, you might want to disable
this logging. To configure a module so that it does not write to syslog, pass the
no_log=True parameter to the AnsibleModule initializer.

226 | Chapter 12: Custom Modules

check_invalid_arguments

By default, Ansible will verify that all of the arguments that a user passed to a module
are legal arguments. You can disable this check by passing the check_invalid_
arguments=False parameter to the AnsibleModule initializer.

mutually_exclusive

The mutually_exclusive parameter is a list of arguments that cannot be specified
during the same module invocation. For example, the lineinfile module allows you
to add a line to a file. You can use the insertbefore argument to specify which line it
should appear before, or the insertafter argument to specify which line it should
appear after, but you can’t specify both.

Therefore, this module specifies that the two arguments are mutually exclusive, like
this:

mutually_exclusive=[['insertbefore', 'insertafter']]

required_one_of

The required_one_of parameter expects a list of arguments with at least one that
must be passed to the module. For example, the pip module, which is used for instal-
ling Python packages, can take either the name of a package or the name of a require-
ments file that contains a list of packages. The module specifies that one of these
arguments is required like this:

required_one_of=[['name', 'requirements']]

add_file_common_args

Many modules create or modify a file. A user will often want to set some attributes on
the resulting file, such as the owner, group, and file permissions.

You could invoke the file module to set these parameters, like this:

- name: download a file
get_url: url=http://www.example.com/myfile.dat dest=/tmp/myfile.dat

- name: set the permissions
file: path=/tmp/myfile.dat owner=ubuntu mode=0600
As a shortcut, Ansible allows you to specify that a module will accept all of the same
arguments as the file module, so you can simply set the file attributes by passing the
relevant arguments to the module that created or modified the file. For example:

- name: download a file
get_url: url=http://www.example.com/myfile.dat dest=/tmp/myfile.dat \
owner=ubuntu mode=0600

Implementing Modules in Python | 227

To specify that a module should support these arguments:
add_file_common_args=True

The AnsibleModule module provides helper methods for working with these argu-
ments.

The load_file_common_arguments method takes the parameters dictionary as an
argument and returns a parameters dictionary that contains all of the arguments that
relate to setting file attributes.

The set_fs_attributes_if_different method takes a file parameters dictionary
and a Boolean indicating whether a host state change has occurred yet. The method
sets the file attributes as a side effect and returns true if there was a host state change
(either the initial argument was true, or it made a change to the file as part of the side
effect).

If you are using the common file arguments, do not specify the arguments explicitly.
To get access to these attributes in your code, use the helper methods to extract the
arguments and set the file attributes, like this:

module = AnsibleModule(
argument_spec=dict(
dest=dict(required=True),

)s

add_file_common_args=True

)

"changed" is True if module caused host to change state
changed = do_module_stuff(param)

file_args = module.load_file_common_arguments(module.params)

changed = module.set_fs_attributes_if_different(file_args, changed)
module.exit_json(changed=changed, ...)

Ansible assumes your module has an argument named path or
dest, which contains the path to the file.

bypass_checks

Before an Ansible module executes, it first checks that all of the argument constraints
are satisfied, and returns an error if they aren’t. These include the following:

228 | Chapter 12: Custom Modules

+ No mutually exclusive arguments are present.

o Arguments marked with the required option are present.

o Arguments restricted by the choices option have the expected values.

o Arguments that specify a type have values that are consistent with the type.
 Arguments marked as required_together appear together.

o Atleast one argument in the list of required_one_of is present.

You can disable all of these checks by setting bypass_checks=True.

Returning Success or Failure

Use the exit_json method to return success. You should always return changed as an
argument, and it’s good practice to return msg with a meaningful message:

module = AnsibleModule(...)

module.exit_json(changed=False, msg="meaningful message goes here")

Use the fail_json method to indicate failure. You should always return a msg param-
eter to explain to the user the reason for the failure:

module = AnsibleModule(...)
module.fail_json(msg="Out of disk space")

Invoking External Commands

The AnsibleModule class provides the run_command convenience method for calling
an external program, which wraps the native Python subprocess module. It accepts
the arguments listed in Table 12-3.

Table 12-3. run_command arguments

Argument Type Default Description
args (default) String or list of (None) The command to be executed (see the following section)
strings
check_rc Boolean False If true, will call fail_json if command returns a nonzero value
close_fds Boolean True Passes as close_fds argument to subprocess.Popen
executable String (path to (None) Passes as executable argument to subprocess.Popen
program)
data String (None) Send to stdin if child process
binary_data Boolean False If false and data is present, Ansible will send a newline to stdin

after sending data

Implementing Modules in Python | 229

Argument Type Default Description

path_prefix String (list of paths) ~ (None) Colon-delimited list of paths to prepend to PATH environment
variable
cwd String (directory (None) If specified, Ansible will change to this directory before executing
path)
use_unsafe_shell Boolean False See the following section

If args is passed as a list, as shown in Example 12-3, then Ansible will invoke
subprocess.Popen with shell=False.

Example 12-3. Passing args as a list

module = AnsibleModule(...)

module.run_command(['/usr/local/bin/myprog', '-i', 'myarg'])

If args is passed as a string, as shown in Example 12-4, then the behavior depends on
the value of use_unsafe_shell. If use_unsafe_shell is false, Ansible will split args
into a list and invoke subprocess.Popen with shell=False. If use_unsafe_shell is
true, Ansible will pass args as a string to subprocess.Popen with shell=True.!

Example 12-4. Passing args as a string
module = AnsibleModule(...)

module.run_command(' /usr/local/bin/myprog -i myarg')

Check Mode (Dry Run)

Ansible supports something called check mode, which is enabled when passing the -C
or --check flag to ansible-playbook. It is similar to the dry run mode supported by
many other tools.

When Ansible runs a playbook in check mode, it will not make any changes to the
hosts when it runs. Instead, it will simply report whether each task would have
changed the host, returned successfully without making a change, or returned an
error.

1 For more on the Python standard library subprocess.Popen class, see its online documentation.

230 | Chapter 12: Custom Modules

http://bit.ly/1F72tiU

Modules must be explicitly configured to support check mode. If
you’re going to write your own module, I recommend you support
check mode so that your module is a good Ansible citizen.

To tell Ansible that your module supports check mode, set supports_check_mode to
true in the AnsibleModule initializer method, as shown in Example 12-5.

Example 12-5. Telling Ansible the module supports check mode

module = AnsibleModule(
argument_spec=dict(...),
supports_check_mode=True)

Your module should check that check mode has been enabled by checking the value
of the check_mode? attribute of the AnsibleModule object, as shown in Example 12-6.
Call the exit_json or fail_json methods as you would normally.

Example 12-6. Checking whether check mode is enabled
module = AnsibleModule(...)

if module.check_mode:
check if this module would make any changes
would_change = would_executing_this_module_change_something()
module.exit_json(changed=would_change)

It is up to you, the module author, to ensure that your module does not modify the
state of the host when running in check mode.

Documenting Your Module

You should document your modules according to the Ansible project standards so
that HTML documentation for your module will be correctly generated and the
ansible-doc program will display documentation for your module. Ansible uses a spe-
cial YAML-based syntax for documenting modules.

Near the top of your module, define a string variable called DOCUMENTATION that con-
tains the documentation, and a string variable called EXAMPLES that contains example
usage.

2 Phew! That was a lot of checks.

Documenting Your Module | 231

Example 12-7 shows an example for the documentation section for our can_reach
module.

Example 12-7. Example of module documentation

DOCUMENTATION = ""'
module: can_reach
short_description: Checks server reachability
description:
- Checks if a remote server can be reached
version_added: "1.8"
options:
host:
description:
- A DNS hostname or IP address
required: true
port:
description:
- The TCP port number
required: true
timeout:
description:
- The amount of time trying to connect before giving up, in seconds
required: false

default: 3
flavor:
description:

- This is a made-up option to show how to specify choices.
required: false
choices: ["chocolate", "vanilla", "strawberry"]
aliases: ["flavor"]
default: chocolate
requirements: [netcat]
author: Lorin Hochstein
notes:
- This 1s just an example to demonstrate how to write a module.
- You probably want to use the native M(wait_for) module instead.

EXAMPLES = '"'
Check that ssh is running, with the default timeout
- can_reach: host=myhost.example.com port=22

Check if postgres is running, with a timeout
- can_reach: host=db.example.com port=5432 timeout=1

232 | Chapter 12: Custom Modules

Ansible supports limited markup in the documentation. Table 12-4 shows the
markup syntax supported by the Ansible documentation tool, with recommendations
about when you should use this markup.

Table 12-4. Documentation markup

Type Syntax with example When to use

URL U(http://www.example.com) ~URLs

Module M(apt) Module names

Italics I(port) Parameter names
Constant-width C(/bin/bash) File and option names

The existing Ansible modules are a great source of examples for documentation.

Debugging Your Module

The Ansible repository in GitHub contains a couple of scripts that allow you to
invoke your module directly on your local machine, without having to run it by using
the ansible or ansible-playbook commands.

Clone the Ansible repo:
$ git clone https://github.com/ansible/ansible.git --recursive
Set up your environment variables so that you can invoke the module:
$ source ansible/hacking/env-setup
Invoke your module:

$ ansible/hacking/test-module -m /path/to/can_reach -a "host=example.com port=81"

You might get an import error, such as these:

ImportError: No module named yaml
ImportError: No module named jinja2.exceptions

If so, you'll need to install these missing dependencies:

pip install pyYAML jinja2

Since example.com doesn’t have a service that listens on port 81, our module should
fail with a meaningful error message. And it does:

* including generated source, if any, saving to:
/Users/lorin/.ansible_module_generated

* ansiballz module detected; extracted module source to:
/Users/lorin/debug_dir

dhkkhkkhkhhhhhhhhhhhhhhhhdhdhhhhhhdhid

RAW OUTPUT

Debugging Your Module | 233

{"msg": "Could not reach example.com:81", "failed": true, "invocation":
{"module_args": {"host": "example.com", "port": 81, "timeout": 3}}}

dkkkkhkkkhhkhkkkkhkhkhkkkhkhkhkhkkkhkhkhkkkkkhkx

PARSED OUTPUT

{
"failed": true,
"{invocation": {
"module_args": {
"host": "example.com",
"port": 81,
"timeout": 3
}
1,
"msg": "Could not reach example.com:81"
}

As the output suggests, when you run this test-module, Ansible will generate a
Python script and copy it to ~/.ansible_module_generated. This is a standalone
Python script that you can execute directly if you like.

Starting with Ansible 2.1.0, this Python script contains a base64-encoded ZIP file
with the actual source code from your module, as well as code to expand the ZIP file
and execute the source code within it.

This file does not take any arguments; rather, Ansible inserts the arguments directly
into the file in the ANSIBALLZ_PARAMS variable:

ANSIBALLZ_PARAMS = '{"ANSIBLE_MODULE_ARGS": {"host": "example.com", \
"_ansible_selinux_special_fs": ["fuse", "nfs", "vboxsf", "ramfs"], \
|lp0rtlI: ll81ll}}l

Implementing the Module in Bash

If youre going to write an Ansible module, I recommend writing it in Python
because, as you saw earlier in this chapter, Ansible provides helper classes for writing
your modules in Python. However, you can write modules in other languages as well.
Perhaps you need to write in another language because your module depends on a
third-party library that’s not implemented in Python. Or maybe the module is so sim-
ple that it’s easiest to write it in Bash. Or maybe you just prefer writing your scripts in
Ruby.

In this section, we'll work through an example of implementing the module as a Bash
script. It’s going to look quite similar to the implementation in Example 12-1. The
main difference is parsing the input arguments and generating the outputs that Ansi-
ble expects.

234 | Chapter 12: Custom Modules

I'm going to use the JSON format for input and use a tool called jq for parsing out
JSON on the command line. This means that you'll need to install jq on the host
before invoking this module. Example 12-8 shows the complete Bash implementation
of our module.

Example 12-8. can_reach module in Bash

#!/bin/bash
WANT_JSON

Read the variables from the file
host="jq -r .host < $1°

port="jq -r .port < $1°
timeout="jq -r .timeout < $1°

Default timeout=3

if [[Stimeout = null]]; then
timeout=3

fi

Check if we can reach the host
nc -z -w Stimeout $Shost Sport

Output based on success or failure
if [$? -eq 0]; then
echo '{"changed": false}'
else
echo "{\"failed\": true, \"msg\": \"could not reach $host:$port\"}"
fi

We added WANT_JSON in a comment to tell Ansible that we want the input to be in
JSON syntax.

Bash Modules with Shorthand Input

It’s possible to implement Bash modules by using the shorthand notation for input. I
don’t recommend doing it this way, since the simplest approach involves using the
source built-in, which is a potential security risk. However, if youre really deter-
mined, check out the blog post “Shell scripts as Ansible modules” by Jan-Piet Mens.

Specifying an Alternative Location for Bash

Note that our module assumes that Bash is located at /bin/bash. However, not all sys-
tems will have the Bash executable in that location. You can tell Ansible to look
elsewhere for the Bash interpreter by setting the ansible_bash_interpreter variable
on hosts that install it elsewhere.

Specifying an Alternative Location forBash | 235

http://stedolan.github.io/jq/
http://bit.ly/1F789tb

For example, let’s say you have a FreeBSD host named fileserver.example.com that has
Bash installed in /ust/local/bin/bash. You can create a host variable by creating the file
host_vars/fileserver.example.com that contains the following:

ansible_bash_1interpreter: /usr/local/bin/bash

Then, when Ansible invokes this module on the FreeBSD host, it will use /usr/
local/bin/bash instead of /bin/bash.

Ansible determines which interpreter to use by looking for the shebang (!) and then
looking at the base name of the first element. In our example, Ansible will see this
line:

#!/bin/bash

Ansible will then look for the base name of /bin/bash, which is bash. It will then use
the ansible_bash_interpreter if the user specified one.

Because of how Ansible looks for the interpreter, if your shebang
calls /usr/bin/env, for example:
#!/usr/bin/env bash
——~~ Ansible will mistakenly identify the interpreter as env because it
will call basename on /usr/bin/env to identify the interpreter.
The takeaway is: don't invoke env in shebang. Instead, explicitly

specify the location of the interpreter and override with ansi
ble_bash_interpreter (or equivalent) when needed.

Example Modules

The best way to learn how to write Ansible modules is to read the source code for the
modules that ship with Ansible. Check them out on GitHub.

In this chapter, we covered how to write modules in Python, as well as other lan-
guages, and how to avoid writing your own full-blown modules by using the script
module. If you do write a module, I encourage you to propose it for inclusion in the
main Ansible project.

236 | Chapter 12: Custom Modules

https://github.com/ansible/ansible/tree/devel/lib/ansible/modules

CHAPTER 13
Vagrant

Vagrant is a great environment for testing Ansible playbooks, which is why I've been
using it all along in this book, and why I often use Vagrant for testing my own Ansi-
ble playbooks. Vagrant isn’t just for testing configuration management scripts; it was
originally designed to create repeatable development environments. If you've ever
joined a new software team and spent a couple of days discovering what software you
had to install on your laptop so you could run a development version of an internal
product, you've felt the pain that Vagrant was built to alleviate. Ansible playbooks are
a great way to specify how to configure a Vagrant machine so newcomers on your
team can get up and running on day one.

Vagrant has some built-in support for Ansible that we haven't been taking advantage
of. This chapter covers Vagrant’s support for using Ansible to configure Vagrant
machines.

A full treatment of Vagrant is beyond the scope of this book. For
more information, check out Vagrant: Up and Running, authored
by Mitchell Hashimoto, the creator of Vagrant.

Convenient Vagrant Configuration Options

Vagrant exposes many configuration options for virtual machines, but there are two
that I find particularly useful when using Vagrant for testing: setting a specific IP
address and enabling agent forwarding.

237

Port Forwarding and Private IP Addresses

When you create a new Vagrantfile by using the vagrant init command, the default
networking configuration allows you to reach the Vagrant box only via an SSH port
that is forwarded from localhost. For the first Vagrant machine that you start, that’s
port 2222, and each subsequent Vagrant machine that you bring up will forward a
different port. As a consequence, the only way to access your Vagrant machine in the
default configuration is to SSH to localhost on port 2222. Vagrant forwards this to
port 22 on the Vagrant machine.

This default configuration isn’t very useful for testing web-based applications, since
the web application will be listening on a port that we can’t access.

There are two ways around this. One way is to tell Vagrant to set up another forwar-
ded port. For example, if your web application listens on port 80 inside your Vagrant
machine, you can configure Vagrant to forward port 8000 on your local machine to
port 80 on the Vagrant machine. Example 13-1 shows how to configure port forward-
ing by editing the Vagrantfile.

Example 13-1. Forwarding local port 8000 to Vagrant machine port 80

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Other config options not shown

config.vm.network :forwarded_port, host: 8000, guest: 80
end

Port forwarding works, but I find it more useful to assign the Vagrant machine its
own IP address. That way, interacting with it is more like interacting with a real
remote server: I can connect directly to port 80 on the machine’s IP rather than con-
necting to port 8000 on localhost.

A simpler approach is to assign the machine a private IP. Example 13-2 shows how to
assign the IP address 192.168.33.10 to the machine by editing the Vagrantfile.

Example 13-2. Assign a private IP to a Vagrant machine

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Other config options not shown

config.vm.network "private_network", ip: "192.168.33.10"

end

238 | Chapter 13:Vagrant

If we run a web server on port 80 of our Vagrant machine, we can access it at http://
192.168.33.10.

This configuration uses a Vagrant private network. The machine will be accessible
only from the machine that runs Vagrant. You won't be able to connect to this IP
address from another physical machine, even if it's on the same network as the
machine running Vagrant. However, different Vagrant machines can connect to each
other.

Check out the Vagrant documentation for more details on the different networking
configuration options.
Enabling Agent Forwarding

If you are checking out a remote Git repository over SSH, and you need to use agent
forwarding, then you must configure your Vagrant machine so that Vagrant enables
agent forwarding when it connects to the agent via SSH. See Example 13-3 for how to
enable this. For more on agent forwarding, see Appendix A.

Example 13-3. Enabling agent forwarding

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Other config options not shown

config.ssh.forward_agent = true

end

The Ansible Provisioner

Vagrant has a notion of provisioners. A provisioner is an external tool that Vagrant
uses to configure a virtual machine after it has started up. In addition to Ansible,
Vagrant can also provision with shell scripts, Chef, Puppet, Salt, CFEngine, and even
Docker.

Example 13-4 shows a Vagrantfile that has been configured to use Ansible as a provi-
sioner, specifically using the playbook.yml playbook.

Example 13-4. Vagrantfile

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.box = "ubuntu/trusty64"

The Ansible Provisioner | 239

http://192.168.33.10
http://192.168.33.10

config.vm.provision "ansible" do |ansible]|
ansible.playbook = "playbook.yml"
end
end

When the Provisioner Runs

The first time you run vagrant up, Vagrant will execute the provisioner and will
record that the provisioner was run. If you halt the virtual machine and then start it
up, Vagrant remembers that it has already run the provisioner and will not run it a
second time.

You can force Vagrant to run the provisioner against a running virtual machine as
follows:

$ vagrant provision
You can reboot a virtual machine and run the provisioner after reboot:
$ vagrant reload --provision

Similarly, you can start up a halted virtual machine and have Vagrant run the provi-
sioner:

$ vagrant up --provision

Inventory Generated by Vagrant

When Vagrant runs, it generates an Ansible inventory file named .vagrant/provision-
ers/ansible/inventory/vagrant_ansible_inventory. Example 13-5 shows what this file
looks like for our example.

Example 13-5. vagrant_ansible_inventory

Generated by Vagrant
default ansible_host=127.0.0.1 ansible_port=2202

Note that it uses default as the inventory hostname. When writing playbooks for the
Vagrant provisioner, specify hosts: default or hosts: all.

More interesting is the case where you have a multimachine Vagrant environment,
where the Vagrantfile specifies multiple virtual machines. For example, see
Example 13-6.

240 | Chapter 13:Vagrant

Example 13-6. Vagrantfile (multimachine)
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.define "vagrantl" do |vagrantl|
vagrantl.vm.box = "ubuntu/trusty64"
vagrantl.vm.provision "ansible" do |ansible|
ansible.playbook = "playbook.yml"
end
end
config.vm.define "vagrant2" do |vagrant2|
vagrant2.vm.box = "ubuntu/trusty64"
vagrant2.vm.provision "ansible" do |ansible|
ansible.playbook = "playbook.yml"
end
end
config.vm.define "vagrant3" do |vagrant3|
vagrant3.vm.box = "ubuntu/trusty64"
vagrant3.vm.provision "ansible" do |ansible|
ansible.playbook = "playbook.yml"
end
end
end

The generated inventory file will look like Example 13-7. Note that the Ansible aliases
(vagrantl, vagrant2, vagrant3) match the names assigned to the machines in the
Vagrantfile.

Example 13-7. vagrant_ansible_inventory (multimachine)
Generated by Vagrant

vagrantl ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

Provisioning in Parallel

In Example 13-6, Vagrant is shown running ansible-playbook once for each virtual
machine, and it uses the --limit flag so that the provisioner runs against only a sin-
gle virtual machine at a time.

Alas, running Ansible this way doesn't take advantage of Ansible’s capability to exe-
cute tasks in parallel across the hosts. We can work around this by configuring our
Vagrantfile to run the provisioner only when the last virtual machine is brought up,
and to tell Vagrant not to pass the --limit flag to Ansible. See Example 13-8 for the
modified playbook.

Provisioning in Parallel | 241

Example 13-8. Vagrantfile (multimachine with parallel provisioning)
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Use the same key for each machine
config.ssh.insert_key = false

config.vm.define "vagrantl" do |vagrantil|
vagrantl.vm.box = "ubuntu/trusty64"
end
config.vm.define "vagrant2" do |vagrant2|
vagrant2.vm.box = "ubuntu/trusty64"
end
config.vm.define "vagrant3" do |vagrant3|
vagrant3.vm.box = "ubuntu/trusty64"
vagrant3.vm.provision "ansible" do |ansible|
ansible.limit = 'all'
ansible.playbook = "playbook.yml"
end
end
end

Now, when you run vagrant up the first time, it will run the Ansible provisioner only
after all three virtual machines have started up.

From Vagrant’s perspective, only the last virtual machine, vagrant3, has a provi-
sioner, so using vagrant provision vagrantl or vagrant provision vagrant2 will
have no effect.

As we discussed in “Preliminaries: Multiple Vagrant Machines” on page 46, Vagrant
1.7+ defaults to using a different SSH key for each host. If we want to provision in
parallel, we need to configure the Vagrant machines so that they all use the same SSH
key, which is why Example 13-8 includes this line:

config.ssh.insert_key = false

Specifying Groups

It can be useful to assign groups to Vagrant virtual machines, especially if you are
reusing playbooks that reference existing groups. Example 13-9 shows how to assign
vagrant1 to the web group, vagrant2 to the task group, and vagrant3 to the redis

group.
Example 13-9. Vagrantfile (multimachine with groups)
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

242 | Chapter 13:Vagrant

Use the same key for each machine
config.ssh.insert_key = false

config.vm.define "vagrantl" do |vagranti|
vagrantl.vm.box = "ubuntu/trusty64"
end
config.vm.define "vagrant2" do |vagrant2|
vagrant2.vm.box = "ubuntu/trusty64"
end
config.vm.define "vagrant3" do |vagrant3|
vagrant3.vm.box = "ubuntu/trusty64"
vagrant3.vm.provision "ansible" do |ansible]|
ansible.limit = 'all’'
ansible.playbook = "playbook.yml"
ansible.groups = {
"web" => ["vagranti"],
"task" => ["vagrant2"],
"redis" => ["vagrant3"]
}
end
end
end

Example 13-10 shows the resulting inventory file generated by Vagrant.

Example 13-10. vagrant_ansible_inventory (multimachine, with groups)
Generated by Vagrant

vagrantl ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

[web]
vagrantl

[task]
vagrant2

[redis]
vagrant3

Ansible Local Provisioner

Starting from version 1.8, Vagrant can also be configured to run Ansible from the
guest instead of the host. This mode is useful if you don’t want to install Ansible on
the host machine. If Ansible is not installed on the guest, Vagrant will attempt to
install using pip, although this behavior is configurable.

Ansible Local Provisioner | 243

Vagrant looks in the guest’s /vagrant directory for playbooks. The default behavior of
Vagrant is to mount the directory on the host that contains the Vagrantfile
to /vagrant, so Vagrant effectively looks in the same place as when you use the ordi-
nary Ansible provisioner.

To use the Ansible local provisioner, specify ansible_local as the provisioner, as
shown in Example 13-11.

Example 13-11. Vagrantfile (Ansible local provisioner)

Vagrant.configure("2") do |config]
config.vm.box = "ubuntu/trusty64"
config.vm.provision "ansible_local" do |ansible]
ansible.playbook = "playbook.yml"
end
end

This chapter was a quick—but I hope useful—overview on how to get the most out of
combining Vagrant and Ansible. Vagrant’s Ansible provisioner supports many other
options to Ansible that aren’t covered in this chapter. For more details, see the official
Vagrant documentation on the Ansible provisioner.

244 | Chapter 13:Vagrant

http://bit.ly/1F7ekxp
http://bit.ly/1F7ekxp

CHAPTER 14
Amazon EQ2

Ansible has several features that make working with infrastructure-as-a-service (IaaS)
clouds much easier. This chapter focuses on Amazon Elastic Compute Cloud (EC2)
because it’s the most popular IaaS cloud and the one I know best. However, many of
the concepts should transfer to other clouds supported by Ansible.

Ansible supports EC2 in two ways:
« A dynamic inventory plugin for automatically populating your Ansible inventory
instead of manually specifying your servers

+ Modules that perform actions on EC2 such as creating new servers

This chapter covers both the EC2 dynamic inventory plugin and the EC2 modules.

As of this writing, Ansible has nearly one hundred modules that
relate to EC2 as well as other features offered by Amazon Web
Services (AWS). We have space to cover only a few of them here, so
we focus on the basics.

245

What Is an laaS Cloud?

You've probably heard so many references to the cloud in the technical press that
youre suffering from buzzword overload.! I'll be precise about what I mean by an
infrastructure-as-a-service (IaaS) cloud.

To start, here’s a typical user interaction with an Iaa$ cloud:

User
I want five new servers, each one with two CPUs, 4 GB of memory, and 100 GB
of storage, running Ubuntu 16.04.

Service
Request received. Your request number is 432789.

User
What's the current status of request 432789?

Service
Your servers are ready to go, at IP addresses 203.0.113.5, 203.0.113.13,
203.0.113.49, 203.0.113.124, 203.0.113.209.

User
I'm done with the servers associated with request 432789.

Service
Request received. The servers will be terminated.

An JaaS cloud is a service that enables a user to provision (create) new servers. All IaaS
clouds are self-serve, meaning that the user interacts directly with a software service
rather than, say, filing a ticket with the IT department. Most IaaS clouds offer three
types of interfaces to allow users to interact with the system:

o Web interface
« Command-line interface
« REST API

In the case of EC2, the web interface is called the AWS Management Console, and the
command-line interface is called (unimaginatively) the AWS Command-Line Inter-
face. The REST API is documented at Amazon.

Taa$S clouds typically use virtual machines to implement the servers, although you can
build an IaaS cloud by using bare-metal servers (i.e., users run directly on the
hardware rather than inside a virtual machine) or containers. For example, SoftLayer

—

The National Institute of Standards and Technology (NIST) has a pretty good definition of cloud computing
in The NIST Definition of Cloud Computing.

246 | Chapter 14: Amazon EC2

https://console.aws.amazon.com
http://aws.amazon.com/cli/
http://aws.amazon.com/cli/
http://amzn.to/1F7g6yA

and Rackspace have bare-metal offerings, and Amazon EC2, Google Compute
Engine, and Azure clouds offer containers.

Most Iaa$S clouds let you do more than just start up and tear down servers. In particu-
lar, they typically let you provision storage so you can attach and detach disks to your
servers. This type of storage is commonly referred to as block storage. They also pro-
vide networking features, so you can define network topologies that describe how
your servers are interconnected, and you can define firewall rules that restrict net-
working access to your servers.

Amazon EC2 is the most popular public IaaS cloud provider, but there are other IaaS
clouds out there. In addition to EC2, Ansible ships with modules for many other
clouds, including Microsoft Azure, Digital Ocean, Google Compute Engine, Soft-
Layer, and Rackspace, as well as clouds built using oVirt, OpenStack, CloudStack and
VMWare vSphere.

Terminology

EC2 exposes many concepts. I'll explain these concepts as they come up in this chap-
ter, but there are three terms I'd like to cover up front.

Instance

EC2’s documentation uses the term instance to refer to a virtual machine, and I use
that terminology in this chapter. Keep in mind that an EC2 instance is a host from
Ansible’s perspective.

EC2 documentation interchangeably uses the terms creating instances, launching
instances, and running instances to describe the process of bringing up a new instance.
However, starting instances means something different—starting up an instance that
had previously been put in the stopped state.

Amazon Machine Image

An Amazon Machine Image (AMI) is a virtual machine image, which contains a file-
system with an installed operating system on it. When you create an instance on EC2,
you choose which operating system you want your instance to run by specifying the
AMI that EC2 will use to create the instance.

Each AMI has an associated identifier string, called an AMI ID, which starts with
ami- and then contains eight hexadecimal characters; for example, ami-12345abc.

Terminology | 247

http://amzn.to/1Fw5S8l

Tags

EC2 lets you annotate your instances® with custom metadata that it calls tags. Tags are
just key-value pairs of strings. For example, we could annotate an instance with the
following tags:

Name=Staging database

env=staging

type=database
If you've ever given your EC2 instance a name in the AWS Management Console,
you've used tags without even knowing it. EC2 implements instance names as tags;
the key is Name, and the value is whatever name you gave the instance. Other than
that, there’s nothing special about the Name tag, and you can configure the manage-
ment console to show the value of other tags in addition to the Name tag.

Tags don’t have to be unique, so you can have 100 instances that all have the same tag.
Because Ansible’s EC2 modules often use tags to identify resources and implement
idempotence, they will come up several times in this chapter.

It's good practice to add meaningful tags to all of your EC2 resour-
ces, since they act as a form of documentation.

Specifying Credentials

When you make requests against Amazon EC2, you need to specify credentials. If
you've used the Amazon web console, you've used your username and password to
log in. However, all the bits of Ansible that interact with EC2 talk to the EC2 API. The
API does not use a username and password for credentials. Instead, it uses two
strings: an access key ID and a secret access key.

These strings typically look like this:

. Sample EC2 access key ID: AKIAIOSFODNN7EXAMPLE
o Sample EC2 secret access key: wJalrXUtnFEMI/K7MDENG/bPxRf1CYEXAMPLEKEY

You can obtain these credentials through the Identity and Access Management (IAM)
service. Using this service, you can create different IAM users with different permis-
sions. Once you have created an IAM user, you can generate the access key ID and
secret access key for that user.

2 You can add tags to entities other than instances, such as AMIs, volumes, and security groups.

248 | Chapter 14: Amazon EC2

When you are calling EC2-related modules, you can pass these strings as module
arguments. For the dynamic inventory plugin, you can specify the credentials in the
ec2.ini file (discussed in the next section). However, both the EC2 modules and the
dynamic inventory plugin also allow you to specify these credentials as environment
variables. You can also use something called IAM roles if your control machine is
itself an Amazon EC2 instance, which is covered in Appendix B.

Environment Variables

Although Ansible does allow you to pass credentials explicitly as arguments to mod-
ules, it also supports setting EC2 credentials as environment variables. Example 14-1
shows how to set these environment variables.

Example 14-1. Setting EC2 environment variables

Don't forget to replace these values with your actual credentials!
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

While you can set your default AWS region by environment vari-
able, I reccommend that you always explicitly pass the EC2 region as
an argument when invoking your modules. All of the examples in
this chapter explicitly pass the region as an argument.

I recommend wusing environment variables for AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY because this allows you to use EC2-related modules and
inventory plugins without putting your credentials in any of your Ansible-related
files. I put these in a dotfile that runs when my session starts. I use Zsh, so in my case
that file is ~/.zshrc. If you're running Bash, you might want to put it in your ~/.profile
file.> If youre using a shell other than Bash or Zsh, youre probably knowledgeable
enough to know which dotfile to modify to set these environment variables.

Once you have set these credentials in your environment variables, you can invoke
the Ansible EC2 modules on your control machine, as well as use the dynamic inven-
tory.

Configuration Files

An alternative to using environment variables is to place your EC2 credentials in a
configuration file. As discussed in the next section, Ansible uses the Python Boto
library, so it supports Boto’s conventions for maintaining credentials in a Boto config-

3 Or maybe it’s ~/.bashrc? I've never figured out the difference between the various Bash dotfiles.

Specifying Credentials | 249

uration file. I don’t cover the format here; for more information, check out the Boto
config documentation.

Prerequisite: Boto Python Library

All of the Ansible EC2 functionality requires you to install the Python Boto library as
a Python system package on the control machine. To do so, use this command:*

$ pip install boto

If you already have instances running on EC2, you can verify that Boto is installed
properly and that your credentials are correct by interacting with the Python com-
mand line, as shown in Example 14-2.

Example 14-2. Testing out Boto and credentials

$ python

Python 2.7.12 (default, Nov 6 2016, 20:41:56)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto.ec2

>>> conn = boto.ec2.connect_to_region("us-east-1")

>>> statuses = conn.get_all_1instance_status()

>>> statuses

(]

Dynamic Inventory

If your servers live on EC2, you don't want to keep a separate copy of these servers in
an Ansible inventory file, because that file is going to go stale as you spin up new
servers and tear down old ones. It's much simpler to track your EC2 servers by taking
advantage of Ansible’s support for dynamic inventory to pull information about hosts
directly from EC2. Ansible ships with a dynamic inventory script for EC2, although I
recommend you just grab the latest one from the Ansible GitHub repository.®

You need two files:

ec2.py
The actual inventory script

ec2.ini
The configuration file for the inventory script

4 You might need to use sudo or activate a virtualenv to install this package, depending on how you installed
Ansible.

5 And, to be honest, I have no idea where the package managers install this file.

250 | Chapter 14: Amazon EC2

http://bit.ly/1Fw66MM
http://bit.ly/1Fw66MM
http://bit.ly/2lAsfV8
http://bit.ly/2l168KP

Previously, we had a playbooks/hosts file, which served as our inventory. Now, were
going to use a playbooks/inventory directory. We'll place ec2.py and ec2.ini into that
directory, and set ec2.py as executable. Example 14-3 shows one way to do that.

Example 14-3. Installing the EC2 dynamic inventory script

$ cd playbooks/inventory

$ wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory\
/ec2.py

$ wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory\
Jec2.ini

$ chmod +x ec2.py

If you are running Ansible on a Linux distribution that uses Python
3.x as the default Python (e.g., Arch Linux), then ec2.py will not
work unmodified because it is a Python 2.x script.

\

Make sure your system has Python 2.x installed and then modify
the first line of ec2.py from this:

#!/usr/bin/env python
to this:
#!/usr/bin/env python2

If you've set up your environment variables as described in the previous section, you
should be able to confirm that the script is working by running the following:

$./ec2.py --list

The script should output information about your various EC2 instances. The struc-
ture should look something like this:

{

_meta": {
"hostvars": {
"ec2-203-0-113-75.compute-1.amazonaws.com": {
"ec2_1d": "1-1234567890abcdef0",
"ec2_1instance_type": "c3.large",

"ec2": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

]J
"us-east-1": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

]J

Dynamic Inventory | 251

"us-east-1a": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

1,
"{-12345678": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

1,
"key_mysshkeyname": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

1,
"security_group_ssh": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

1,
"tag_Name_my_cool_server": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

1,
"type_c3_large": [
"ec2-203-0-113-75.compute-1.amazonaws.com",

If you have not explicitly enabled both RDS and ElastiCache on
your AWS account, the ec2.py script will fail with an error. To
enable RDS and ElastiCache, you must log in to the Relational
Database Service (RDS) and ElastiCache services via the AWS con-
sole, and then wait for Amazon to activate these services for you.

If you are not using these services, edit your ec2.ini to prevent the
inventory script from trying to connect to them:

[ec2]
rds = False
elasticache = False

Those lines are present but commented out by default, so make
sure to uncomment them!

Inventory Caching

When Ansible executes the EC2 dynamic inventory script, the script has to make
requests against one or more EC2 endpoints to retrieve this information. Because this
can take time, the script will cache the information the first time it is invoked by writ-
ing to the following files:

252 | Chapter 14: Amazon EC2

o $HOME/.ansible/tmp/ansible-ec2.cache

o $HOME/.ansible/tmp/ansible-ec2.index
On subsequent calls, the dynamic inventory script will use the cached information
until the cache expires.

You can modify the behavior by editing the cache_max_age configuration option in
the ec2.ini configuration file. It defaults to 300 seconds (5 minutes). If you don’t want
caching at all, you can set it to 0:

[ec2]
cache_max_age = 0

You can also force the inventory script to refresh the cache by invoking it with the
--refresh-cache flag:

$./ec2.py --refresh-cache

If you create or destroy instances, the EC2 dynamic inventory
script will not reflect these changes unless the cache expires, or you
manually refresh the cache.

Other Configuration Options

The ec2.ini file includes configuration options that control the behavior of the
dynamic inventory script. Because the file itself is well-documented with comments, I
won’t cover those options in detail here.

Autogenerated Groups
The EC2 dynamic inventory script will create the groups listed in Table 14-1.

Table 14-1. Generated EC2 groups

Type Example Ansible group name
Instance i-1234567890abcdef0 i-1234567890abcdef0
AMI ami-79df8219 ami_79df8219
Instance type c1.medium type_c1_medium
Security group ssh security_group_ssh
Key pair foo key_foo

Region us-east-1 us-east-1

Tag env=staging tag_env_staging
Availability zone us-east-1b us-east-1b

Dynamic Inventory | 253

Type Example Ansible group name
VPC vpc-14dd1b70 vpc_id_vpc-14dd1b70
All ec2 instances N/A ec2

The only legal characters in a group name are alphanumeric, hyphen, and under-
score. The dynamic inventory script will convert any other character into underscore.

For example, say you have an instance with a tag:
Name=My cool server!

Ansible will generate the group name tag_Name_my_cool_server_.

Defining Dynamic Groups with Tags

Recall that the dynamic inventory script automatically creates groups based on things
such as instance type, security group, key pair, and tags. EC2 tags are the most conve-
nient way of creating Ansible groups because you can define them however you like.

For example, you could tag all of your web servers with this:
type=web

Ansible will automatically create a group called tag_type_web that contains all of the
servers tagged with a name of type and a value of web.

EC2 allows you to apply multiple tags to an instance. For example, if you have sepa-

rate staging and production environments, you can tag your production web servers
like this:

env=production

type=web
Now you can refer to production machines as tag_env_production and your web-
servers as tag_type_web. If you want to refer to your production web servers, use the
Ansible intersection syntax, like this:

hosts: tag_env_production:&tag_type_web

Applying Tags to Existing Resources

Ideally, you tag your EC2 instances as soon as you create them. However, if youre
using Ansible to manage existing EC2 instances, you will likely already have instances
running that you need to tag. Ansible has an ec2_tag module that allows you to add
tags to your instances.

For example, if you want to tag an instance with env=production and type=web, you
could do it in a simple playbook as shown in Example 14-4.

254 | Chapter 14: Amazon EC2

Example 14-4. Adding EC2 tags to instances

- name: Add tags to existing instances
hosts: localhost
vars:
web_production:
- 1-1234567890abcdef0®
- 1-1234567890abcdef1
web_staging:
- 1-abcdef01234567890
- 1-33333333333333333
tasks:

- name: Tag production webservers
ec2_tag: resource={{ item }} region=us-west-1
args:

tags: { type: web, env: production }
with_items: "{{ web_production }}"

- name: Tag staging webservers
ec2_tag: resource={{ item }} region=us-west-1
args:
tags: { type: web, env: staging }
with_items: "{{ web_staging }}"

This example uses the inline syntax for YAML dictionaries when specifying the tags
({ type: web, env: production}) in order to make the playbook more compact,
but the regular YAML dictionary syntax would work as well:

tags:

type: web
env: production

Nicer Group Names

Personally, I don't like the name tag_type_web for a group. I prefer to just call it web.
To do this, we need to add a new file to the playbooks/inventory directory that will
have information about groups. This is just a traditional Ansible inventory file, which
we'll call playbooks/inventory/hosts (see Example 14-5).

Example 14-5. playbooks/inventory/hosts

[web:children]
tag_type_web

[tag_type_web]

Once you do this, you can refer to web as a group in your Ansible plays.

Defining Dynamic Groups with Tags | 255

If you don’t define the empty tag_type_web group in your static
inventory file, and the group doesn't exist in the dynamic inventory
script, Ansible will fail with an error:

\

ERROR! Attempted to read "/Users/lorin/dev/ansiblebook
/ch12/playbooks/inventory/hosts" as YAML:
'AnsibleUnicode' object has no attribute 'keys'
Attempted to read "/Users/lorin/dev/ansiblebook
/ch12/playbooks/inventory/hosts" as ini file:
/Users/lorin/dev/ansiblebook/ch12
/playbooks/inventory/hosts:4:

Section [web:children] includes undefined group:
tag_type_web

EC2 Virtual Private Cloud and EC2 Classic

When Amazon first launched EC2 back in 2006, all of the EC2 instances were effec-
tively connected to the same flat network.® Every EC2 instance had a private IP
address and a public IP address.

In 2009, Amazon introduced a new feature called Virtual Private Cloud (VPC). VPC
allows users to control how their instances are networked together, and whether they
will be publicly accessible from the internet or isolated. Amazon uses the term VPC to
describe the virtual networks that users can create inside EC2. Amazon uses the term
EC2-VPC to refer to instances that are launched inside VPCs, and EC2-Classic to
refer to instances that are not launched inside VPCs.

Amazon actively encourages users to use EC2-VPC. For example, some instance
types, such as t2.micro, are available only on EC2-VPC. Depending on when your
AWS account was created and which EC2 regions you've previously launched instan-
ces in, you might not have access to EC2-Classic at all. Table 14-2 describes which
accounts have access to EC2-Classic.”

Table 14-2. Do I have access to EC2-Classic?

My account was created Access to EC2-Classic

Before March 18, 2013 Yes, but only in regions you've used before
Between March 18, 2013, and December 4, 2013 Maybe, but only in regions you've used before
After December 4, 2013 No

6 Amazon’s internal network is divided into subnets, but users do not have any control over how instances are
allocated to subnets.

7 Go to Amazon for more details on VPC and whether you have access to EC2-Classic in a region.

256 | Chapter 14: Amazon EC2

http://amzn.to/1Fw6v1D
http://amzn.to/1Fw6w5M

The main difference between having support for EC2-Classic versus having access to
only EC2-VPC is what happens when you create a new EC2 instance and do not
explicitly associate a VPC ID with that instance. If your account has EC2-Classic
enabled, the new instance is not associated with a VPC. If your account does not have
EC2-Classic enabled, the new instance is associated with the default VPC.

Here’s one reason that you should care about the distinction: in EC2-Classic, all
instances are permitted to make outbound network connections to any host on the
internet. In EC2-VPC, instances are not permitted to make outbound network con-
nections by default. If a VPC instance needs to make outbound connections, it must
be associated with a security group that permits outbound connections.

For the purposes of this chapter, I'm going to assume EC2-VPC only, so I will asso-
ciate instances with a security group that enables outbound connections.

Configuring ansible.cfq for Use with ec2

When I'm using Ansible to configure EC2 instances, I add the following lines in my
ansible.cfg:

[defaults]

remote_user = ubuntu

host_key_checking = False
I always use Ubuntu images, and on those images you are supposed to SSH as the
ubuntu user. I also turn off host-key checking, since I don't know in advance what the
host keys are for new instances.®

Launching New Instances

The ec2 module allows you to launch new instances on EC2. It’s one of the most
complex Ansible modules because it supports so many arguments.

Example 14-6 shows a simple playbook for launching an Ubuntu 16.04 EC2 instance.

Example 14-6. Simple playbook for creating an EC2 instance

- name: Create an ubuntu instance on Amazon EC2
hosts: localhost
tasks:
- name: start the instance
ec2:

8 It’s possible to retrieve the host key by querying EC2 for the instance console output, but I must admit that I
never bother to doing this because I've never gotten around to writing a proper script that parses out the host
key from the console output.

Configuring ansible.cfg for Use withec2 | 257

image: ami-79df8219

region: us-west-1

instance_type: m3.medium

key_name: mykey

group: [web, ssh, outbound]

instance_tags: { Name: ansiblebook, type: web, env: production }

Let’s go over what these parameters mean.

The image parameter refers to the AMI ID, which you must always specify. As
described earlier in the chapter, an image is basically a filesystem that contains an
installed operating system. The example just used, ami-79df8219, refers to an image
that has the 64-bit version of Ubuntu 16.04 installed on it.

The region parameter specifies the geographical region where the instance will be
launched.’

The instance_type parameter describes the number of CPU cores and the amount
of memory and storage your instance will have. EC2 doesn't let you choose arbitrary
combinations of cores, memory, and storage. Instead, Amazon defines a collection of
instance types.'® Example 14-6 uses the m3.medium instance type. This is a 64-bit
instance type with one core, 3.75 GB of RAM, and 4 GB of SSD-based storage.

Not all images are compatible with all instance types. I haven’t
actually tested whether ami-8caalce4 works with m3.medium.
Caveat lector!

The key_name parameter refers to an SSH key pair. Amazon uses SSH key pairs to
provide users with access to their servers. Before you start your first server, you must
either create a new SSH key pair, or upload the public key of a key pair that you have
previously created. Regardless of whether you create a new key pair or you upload an
existing one, you must give a name to your SSH key pair.

The group parameter refers to a list of security groups associated with an instance.
These groups determine the kinds of inbound and outbound network connections
that are permitted.

The instance_tags parameter associates metadata with the instance in the form of
EC2 tags, which are key-value pairs. In the preceding example, we set the following
tags:

9 Visit Amazon for a list of supported regions.

10 There’s also a handy (unofficial) website that provides a single table with all of the available EC2 instance
types.

258 | Chapter 14: Amazon EC2

http://amzn.to/1Fw6OcE
http://www.ec2instances.info

Name=ansiblebook
type=web
env=production

Invoking the ec2 module from the command line is a simple way
to terminate an instance, assuming you know the instance ID:

$ ansible localhost -m ec2 -a \
'instance_1d=1-01176c6682556a360 \
state=absent'

EC2 Key Pairs

In Example 14-6, we assumed that Amazon already knew about an SSH key pair
named mykey. Let’s see how we can use Ansible to create new key pairs.

Creating a New Key

When you create a new key pair, Amazon generates a private key and the correspond-
ing public key; then it sends you the private key. Amazon does not keep a copy of the
private key, so you need to make sure that you save it after you generate it.
Example 14-7 shows how to create a new key with Ansible.

Example 14-7. Create a new SSH key pair

- name: create a new keypair
hosts: localhost
tasks:
- name: create mykey
ec2_key: name=mykey region=us-west-1
register: keypair

- name: write the key to a file
copy:
dest: files/mykey.pem
content: "{{ keypair.key.private_key }}"
mode: 0600
when: keypair.changed

In Example 14-7, we invoke the ec2_key to create a new key pair. We then use the
copy module with the content parameter in order to save the SSH private key to a
file.

If the module creates a new key pair, the variable keypatir that is registered will con-
tain a value that looks like this:

EC2Key Pairs | 259

"keypair": {
"changed": true,
"key": {
"fingerprint": "c5:33:74:84:63:2b:01:29:6f:14:36:1c:7b:27:65:69:61:f0:e8:b9",
"name": "mykey",
"private_key": "----- BEGIN RSA PRIVATE KEY----- \NMIIEowIBAAKCAQEAjAIpvhY3QGKh

OPkCRP18ZHKtShKESISG3WC\n-- - - - END RSA PRIVATE KEY----- "

}
}

If the key pair already exists, the variable keypair that is registered will contain a
value that looks like this:
"keypair": {
"changed": false,
"key": {
"fingerprint": "c5:33:74:84:63:2b:01:29:6f:14:a6:1c:7b:27:65:69:61:f0:e8:b9",
"name": umykeyu
3
}

Because the private_key value will not be present if the key already exists, we need

to add a when clause to the copy invocation to make sure that we write a private key
file to disk only if there is a private-key file to write.

We add this line:

when: keypair.changed

to write the file to disk only if there was a change of state when ec2_key was invoked
(i.e., that a new key was created). Another way we could have done it is to check for
the existence of the private_key value, like this:

- name: write the key to a file
copy:
dest: files/mykey.pem
content: "{{ keypair.key.private_key }}"
mode: 0600
when: keypair.key.private_key is defined

We use the Jinja2 defined test" to check whether private_key is present.

Uploading an Existing Key

If you already have an SSH public key, you can upload that to Amazon and associate
it with a key pair:

11 For more information on Jinja2 tests, see the Jinja2 documentation page on built-in tests.

260 | Chapter 14: Amazon EC2

http://bit.ly/1Fw77nO

- name: create a keypair based on my ssh key
hosts: localhost
tasks:
- name: upload public key
ec2_key: name=mykey key_material="{{ item }}"
with_file: ~/.ssh/id_rsa.pub

Security Groups

Example 14-6 assumes that the web, ssh, and outbound security groups already exist.
We can use the ec2_group module to ensure that these security groups have been cre-
ated before we use them.

Security groups are similar to firewall rules: you specify rules about who is allowed to
connect to the machine and how.

In Example 14-8, we specify the web group as allowing anybody on the internet to
connect to ports 80 and 443. For the ssh group, we allow anybody on the internet to
connect on port 22. For the outbound group, we allow outbound connections to any-
where on the internet. We need outbound connections enabled in order to download
packages from the internet.

Example 14-8. Security groups

- name: web security group
ec2_group:
name: web
description: allow http and https access
region: "{{ region }}"
rules:

- proto: tcp
from_port: 80
to_port: 80
cidr_ip: 0.0.0.0/0

- proto: tcp
from_port: 443
to_port: 443
cidr_ip: 0.0.0.0/0

- name: ssh security group
ec2_group:
name: ssh
description: allow ssh access
region: "{{ region }}"
rules:
- proto: tcp
from_port: 22
to_port: 22
cidr_ip: 0.0.0.0/0

Security Groups | 261

- name: outbound group
ec2_group:

name: outbound
description: allow outbound connections to the internet
region: "{{ region }}"
rules_egress:

- proto: all

cidr_1ip: 0.0.0.0/0

If you are using EC2-Classic, you don’t need to specify the out
bound group, since EC2-Classic does not restrict outbound connec-
tions on instances.

If you haven’t used security groups before, the parameters to the rules dictionary bear
some explanation. Table 14-3 provides a quick summary of the parameters for secu-
rity group connection rules.

Table 14-3. Security group rule parameters

Parameter Description

proto IP protocol (tcp, udp, icmp) or all to allow all protocols and ports
cidr_ip Subnet of IP addresses that are allowed to connect, using CIDR notation
from_port The first port in the range of permitted ports

to_port The last port in the range of permitted ports

Permitted IP Addresses

Security groups allow you to restrict which IP addresses are permitted to connect to
an instance. You specify a subnet by using classless interdomain routing (CIDR)
notation. An example of a subnet specified with CIDR notation is 203.0.113.0/24,"*
which means that the first 24 bits of the IP address must match the first 24 bits of
203.0.113.0. People sometimes just say “/24” to refer to the size of a CIDR that ends
in /24.

A /24 is a nice value because it corresponds to the first three octets of the address,
namely 203.0.113."* What this means is that any IP address that starts with 203.0.113
is in the subnet, meaning any IP address in the range 203.0.113.0 to 203.0.113.255.

12 This example happens to correspond to a special IP address range named TEST-NET-3, which is reserved for
examples. It’s the example.com of IP subnets.

13 Subnets that are /8, /16, and /24 make great examples because the math is much easier than, say, /17 or /23.

262 | Chapter 14: Amazon EC2

If you specify 0.0.0.0/0, any IP address is permitted to connect.

Security Group Ports

One of the things that I find confusing about EC2 security groups is the from port
and to port notation. EC2 allows you to specify a range of ports that you are allowed
to access. For example, you could indicate that you are allowing TCP connections on
any port from 5900 to 5999 by specifying the following:

- proto: tcp

from_port: 5900

to_port: 5999

cidr_ip: 0.0.0.0/0
However, I often find the from/to notation confusing, because I almost never specify
a range of ports." Instead, I usually want to enable nonconsecutive ports, such as 80
and 443. Therefore, in almost every case, the from_port and to_port parameters are
going to be the same.

The ec2_group module has other parameters, including specifying inbound rules by
using security group IDs, as well as specifying outbound connection rules. Check out
the module’s documentation for more details.

Getting the Latest AMI

In Example 14-6, we explicitly specified the AMI like this:
image: ami-79df8219

However, if you want to launch the latest Ubuntu 16.04 image, you don’t want to
hardcode the AMI like this. That's because Canonical” frequently makes minor
updates to Ubuntu, and every time it makes a minor update, it generates a new AMI.
Just because ami-79df8219 corresponds to the latest release of Ubuntu 16.04 yester-
day doesn’t mean it will correspond to the latest release of Ubuntu 16.04 tomorrow.

Ansible ships with a module called ec2_ami_find that will retrieve a list of AMIs
based on search criteria, such as the name of the image or by tags. Example 14-9
shows how to use this to launch an AMI for the latest version of 64-bit Ubuntu Xenial
Xerus 16.04 running for an EBS-backed instance that uses SSDs.

14 Astute observers might have noticed that ports 5900-5999 are commonly used by the VNC remote desktop
protocol, one of the few applications where specifying a range of ports makes sense.

15 Canonical is the company that runs the Ubuntu project.

Getting the Latest AMI | 263

Example 14-9. Retrieving the latest Ubuntu AMI

- name: Create an ubuntu instance on Amazon EC2
hosts: localhost
tasks:
- name: Get the ubuntu xenial ebs ssd AMI
ec2_ami_find:
name: "ubuntu/images/ebs-ssd/ubuntu-xenial-16.04-amd64-server-*"
region: "{{ region }}"
sort: name
sort_order: descending
sort_end: 1
no_result_action: fail
register: ubuntu_image

- name: start the instance
ec2:

region: "{{ region }}"
image: "{{ ubuntu_image.results[0].ami_id }}"
instance_type: m3.medium
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { type: web, env: production }

Here we needed to know the naming convention that Ubuntu uses for their images.
In Ubuntus case, the image name always ends with a date stamp, for example:
ubuntu/images/ebs-ssd/ubuntu-xenial-16.04-amd64-server-20170202.

The name option for the ec2_ami_find module permits specifying * as a glob, so the
way we get the most recent image is to sort, descending by name, and limit our search
to just one item.

By default, the ec2_ami_find module will return success even if no AMIs match the
search. Since this is almost never what you want, I recommend adding the
no_result_action: fail option in order to force the module to fail if the AMI
search yields no results.

Each distribution uses its own naming strategy for AMIs, so if you
want to deploy an AMI from a distribution other than Ubuntu,
you’'ll need to do some research to figure out the appropriate search
string.

Adding a New Instance to a Group

Sometimes I like to write a single playbook that launches an instance and then runs a
playbook against that instance.

264 | Chapter 14: Amazon EC2

Unfortunately, before you’ve run the playbook, the host doesn't exist yet. Disabling
caching on the dynamic inventory script won't help here, because Ansible invokes the
dynamic inventory script only at the beginning of playbook execution, which is
before the host exists.

You can add a task that uses the add_host module to add the instance to a group, as
shown in Example 14-10.

Example 14-10. Adding an instance to groups

- name: Create an ubuntu instance on Amazon EC2
hosts: localhost
tasks:
- name: start the instance
ec2:
image: ami-8caalced
instance_type: m3.medium
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { type: web, env: production }
register: ec2

- name: add the instance to web and production groups
add_host: hostname={{ item.public_dns_name }} groups=web,production
with_items: "{{ ec2.instances }}"

- name: do something to production webservers
hosts: web:&production
tasks:

Return Type of the ec2 Module

The ec2 module returns a dictionary with three fields, shown in Table 14-4.

Table 14-4. Return value of ec2 module

Parameter Description
instance_ids List of instance IDs
instances List of instance dicts

tagged_instances List of instance dicts

If the user passes the exact_count parameter to the ec2 module, the module might
not create new instances, as described in “Creating Instances the Idempotent Way” on
page 268. In this case, the instance_1ids and instances fields will be populated only
if the module creates new instances. However, the tagged_instances field will

Adding a New Instancetoa Group | 265

contain instance dicts for all of the instances that match the tags, whether they were
just created or already existed.

An instance dict contains the fields shown in Table 14-5.

Table 14-5. Contents of instance dicts

Parameter Description

id Instance ID
ami_launch_index Instance index within a reservation (between 0 and N — 1) if N launched

private_ip Internal IP address (not routable outside EC2)
private_dns_name Internal DNS name (not routable outside EC2)
public_ip Public IP address

public_dns_name Public DNS name

state_code Reason code for the state change
architecture (CPU architecture

image_id AMI

key_name Key pair name

placement Location where the instance was launched
kernel AKI (Amazon kernel image)

ramdisk ARI (Amazon ramdisk image)

launch_time Time instance was launched

instance_type Instance type

root_device_type Type of root device (ephemeral, EBS)
root_device_name Name of root device

state State of instance

hypervisor Hypervisor type

For more details on what these fields mean, check out the Boto documentation for the
boto.ec2.instance.Instance class or the documentation for the output of the run-
instances command of Amazon’s command-line tool.

Waiting for the Server to Come Up

While TaaS clouds like EC2 are remarkable feats of technology, they still require a
finite amount of time to create new instances. You can't run a playbook against an
EC2 instance immediately after you've submitted a request to create it. Instead, you
need to wait for the EC2 instance to come up.

266 | Chapter 14: Amazon EC2

http://bit.ly/1Fw7HSO
http://amzn.to/1Fw7Jd9

The ec2 module supports a wait parameter. If it’s set to yes, the ec2 task will not
return until the instance has transitioned to the running state:

- name: start the instance
ec2:
image: ami-8caalce4
instance_type: m3.medium
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { type: web, env: production }
wait: yes
register: ec2
Unfortunately, waiting for the instance to be in the running state isn't enough to
ensure that you can execute a playbook against a host. You still need to wait until the
instance has advanced far enough in the boot process that the SSH server has started

and is accepting incoming connections.

The wait_for module is designed for this kind of scenario. Here’s how you would use
the ec2 and wait_for modules in concert to start an instance and then wait until the
instance is ready to receive SSH connections:

- name: start the instance

ec2:
image: ami-8caalce4
instance_type: m3.medium
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { type: web, env: production }
wait: yes

register: ec2

- name: wailt for ssh server to be running
wailt_for: host={{ item.public_dns_name }} port=22 search_regex=0penSSH
with_1items: "{{ ec2.instances }}"

This invocation of wait_for uses the search_regex argument to look for the string
OpenSSH after connecting to the host. This regex takes advantage of the fact that a
fully functioning SSH server will return a string that looks something like
Example 14-11 when an SSH client first connects.

Example 14-11. Initial response of an SSH server running on Ubuntu
SSH-2.0-0penSSH_5.9p1 Debian-5ubuntul.4

We could invoke the wait_for module to just check if port 22 is listening for incom-
ing connections. However, sometimes an SSH server has gotten far enough along in
the startup process that it is listening on port 22, but is not fully functional yet.

Waiting for the Serverto Come Up | 267

Waiting for the initial response ensures that the wait_for module will return only
when the SSH server has fully started up.

Creating Instances the Idempotent Way

Playbooks that invoke the ec2 module are not generally idempotent. If you were to
execute Example 14-6 multiple times, EC2 would create multiple instances.

You can write idempotent playbooks with the ec2 module by using the count_tag
and exact_count parameters. Let’s say we want to write a playbook that starts three
instances. We want this playbook to be idempotent, so if three instances are already

running, we want the playbook to do nothing. Example 14-12 shows what it would
look like.

Example 14-12. Idempotent instance creation

- name: start the instance
ec2:

image: ami-8caalce4
instance_type: m3.medium
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { type: web, env: production }
exact_count: 3
count_tag: { type: web }

The exact_count: 3 parameter tells Ansible to ensure that exactly three instances
are running that match the tags specified in count_tag. In our example, I specified
only one tag for count_tag, but it does support multiple tags.

When running this playbook for the first time, Ansible will check how many instan-
ces are currently running that are tagged with type=web. Assuming there are no such
instances, Ansible will create three new instances and tag them with type=web and
env=production.

When running this playbook the next time, Ansible will check how many instances
are currently running that are tagged with type=web. It will see that there are three
instances running and will not start any new instances.

Putting It All Together

Example 14-13 shows the playbook that creates three EC2 instances and configures
them as web servers. The playbook is idempotent, so you can safely run it multiple
times, and it will create new instances only if they haven’t been created yet.

268 | Chapter 14: Amazon EC2

Note that we use the tagged_1instances return value of the ec2 module, instead of
the instances return value, for reasons described in “Return Type of the ec2 Module”
on page 265. This example uses the Ubuntu Xenial AMI, which doesn’t come pre-
installed with Python 2. Therefore, we install Python 2.7 by using the pre_tasks
clause.

Example 14-13. ec2-example.yml: complete EC2 playbook

- name: launch webservers
hosts: localhost
vars:
region: us-west-1
instance_type: t2.micro
count: 1
tasks:
- name: ec2 keypair
ec2_key: "name=mykey key material={{ item }} region={{ region }}
with_file: ~/.ssh/id_rsa.pub
- name: web security group
ec2_group:
name: web
description: allow http and https access
region: "{{ region }}"
rules:
- proto: tcp
from_port: 80
to_port: 80
cidr_ip: 0.0.0.0/0
proto: tcp
from_port: 443
to_port: 443
cidr_ip: 0.0.0.0/0
- name: ssh security group
ec2_group:
name: ssh
description: allow ssh access
region: "{{ region }}"
rules:
- proto: tcp
from_port: 22
to_port: 22
cidr_ip: 0.0.0.0/0
- name: outbound security group
ec2_group:
name: outbound
description: allow outbound connections to the internet
region: "{{ region }}"
rules_egress:
- proto: all

Putting It All Together | 269

cidr_ip: 0.0.0.0/0
- name: Get the ubuntu xenial ebs ssd AMI
ec2_ami_find:
name: "ubuntu/images/hvm-ssd/ubuntu-xenial-16.04-amd64-server-*"
region: "{{ region }}"
sort: name
sort_order: descending
sort_end: 1
no_result_action: fail
register: ubuntu_image
- set_fact: "ami={{ ubuntu_1image.results[0].ami_id }}"
- name: start the instances
ec2:
region: "{{ region }}"
image: "{{ ami }}"
instance_type: "{{ instance_type }}"
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { Name: ansiblebook, type: web, env: production }
exact_count: "{{ count }}"
count_tag: { type: web }
wait: yes
register: ec2
name: add the instance to web and production groups
add_host: hostname={{ item.public_dns_name }} groups=web,production
with_1items: "{{ ec2.tagged_instances }}"
when: item.public_dns_name is defined
- name: wait for ssh server to be running
wait_for: host={{ item.public_dns_name }} port=22 search_regex=0penSSH
with_items: "{{ ec2.tagged_instances }}"
when: item.public_dns_name is defined

- name: configure webservers

hosts: web:&production
become: True
gather_facts: False
pre_tasks:

- name: install python

raw: apt-get install -y python-minimal

roles:

- web

Specifying a Virtual Private Cloud

So far, we've been launching our instances into the default Virtual Private Cloud
(VPCQ). Ansible also allows us to create new VPCs and launch instances into them.

270 | Chapter 14: Amazon EC2

Whatlsa VPC?

Think of a VPC as an isolated network. When you create a VPC, you specify an IP
address range. It must be a subset of one of the private address ranges (10.0.0.0/8,
172.16.0.0/12, or 192.168.0.0/16).

You carve your VPC into subnets, which have IP ranges that are subsets of the IP
range of your entire VPC. In Example 14-14, the VPC has the IP range 10.0.0.0/16,
and we associate two subnets: 10.0.0.0/24 and 10.0.10/24.

When you launch an instance, you assign it to a subnet in a VPC. You can configure
your subnets so that your instances get either public or private IP addresses. EC2 also
allows you to define routing tables for routing traffic between your subnets and to
create internet gateways for routing traffic from your subnets to the internet.

Configuring networking is a complex topic that’s (way) outside the scope of this book.
For more info, check out Amazon’s EC2 documentation on VPC.

Example 14-14 shows how to create a VPC with an internet gateway, two subnets, and
a routing table that routes outbound connections using the internet gateway.

Example 14-14. create-vpc.yml: creating a VPC

- name: create a vpc
ec2_vpc_net:
region: "{{ region }}"
name: "Book example"
cidr_block: 10.0.0.0/16
tags:
env: production
register: result
- set_fact: "vpc_id={{ result.vpc.id }}"
- name: add gateway
ec2_vpc_igw:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
- name: create web subnet
ec2_vpc_subnet:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
cidr: 10.0.0.0/24

tags:
env: production
tier: web

- name: create db subnet
ec2_vpc_subnet:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"

Specifying a Virtual Private Cloud | 271

http://amzn.to/1Fw89Af

cidr: 10.0.1.0/24

tags:
env: production
tier: db

- name: set routes
ec2_vpc_route_table:

region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
tags:

purpose: permit-outbound
subnets:

- 10.0.0.0/24

- 10.0.1.0/24
routes:

- dest: 0.0.0.0/0

gateway_id: igw

Each of these commands is idempotent, but the idempotence-checking mechanism
differs slightly per module, as shown in Table 14-6.

Table 14-6. Idempotence-checking logic for some VPC modules

Module Idempotence check
ec2_vpc_net Name and CIDR options
ec2_vpc_igw An internet gateway exists
ec2_vpc_subnet vpc_id and CIDR options
ec2_vpc_route_table vpc_id and tags ®

2 If the Lookup option is set to id, the route_table_id option will be used instead of tags for idempotence check

If multiple entities match the idempotent check, Ansible will fail the module.

If you don't specify tags to the ec2_vpc_route_table, it will create
a new route table each time you execute the module.

\

Admittedly, Example 14-14 is a simple example from a networking perspective, as
we've just defined two subnets that both can connect out to the internet. A more real-
istic example would have one subnet that’s routable to the internet, and another sub-
net that’s not routable to the internet, and wed have some rules for routing traffic
between the two subnets.

Example 14-15 shows a complete example of creating a VPC and launching instances
into it.

272 | (Chapter 14: Amazon EC2

Example 14-15. ec2-vpc-example.yml: complete EC2 playbook that specifies a VPC

- name: launch webservers into a specific vpc
hosts: localhost
vars:
region: us-west-1
instance_type: t2.micro
count: 1
cidrs:
web: 10.0.0.0/24
db: 10.0.1.0/24
tasks:
- name: create a vpc
ec2_vpc_net:
region: "{{ region }}"
name: book
cidr_block: 10.0.0.0/16
tags: {env: production }
register: result
- set_fact: "vpc_id={{ result.vpc.id }}"
- name: add gateway
ec2_vpc_igw:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
- name: create web subnet
ec2_vpc_subnet:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
cidr: "{{ cidrs.web }}"
tags: { env: production, tier: web}
register: web_subnet
- set_fact: "web_subnet_id={{ web_subnet.subnet.id }}"
- name: create db subnet
ec2_vpc_subnet:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
cidr: "{{ cidrs.db }}"
tags: { env: production, tier: db}
- name: add routing table
ec2_vpc_route_table:
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
tags:
purpose: permit-outbound
subnets:
- "{{ cidrs.web }}"
- "{{ cidrs.db }}"
routes:
- dest: 0.0.0.0/0
gateway_1id: igw
- name: set ec2 keypair

Specifying a Virtual Private Cloud | 273

ec2_key: "name=mykey key material={{ item }}"
with_file: ~/.ssh/id_rsa.pub
- name: web security group
ec2_group:
name: web
region: "{{ region }}"
description: allow http and https access
vpc_id: "{{ vpc_id }}"
rules:
- proto: tcp
from_port: 80
to_port: 80
cidr_ip: 0.0.0.0/0
- proto: tcp
from_port: 443
to_port: 443
cidr_ip: 0.0.0.0/0
- name: ssh security group
ec2_group:
name: ssh
region: "{{ region }}"
description: allow ssh access
vpc_id: "{{ vpc_id }}"
rules:
- proto: tcp
from_port: 22
to_port: 22
cidr_ip: 0.0.0.0/0
- name: outbound security group
ec2_group:
name: outbound
description: allow outbound connections to the internet
region: "{{ region }}"
vpc_id: "{{ vpc_id }}"
rules_egress:
- proto: all
cidr_ip: 0.0.0.0/0
- name: Get the ubuntu xenial ebs ssd AMI
ec2_ami_find:
name: "ubuntu/images/hvm-ssd/ubuntu-xenial-16.04-amd64-server-*"
region: "{{ region }}"
sort: name
sort_order: descending
sort_end: 1
no_result_action: fail
register: ubuntu_image
- set_fact: "ami={{ ubuntu_image.results[0].ami_id }}"
- name: start the instances
ec2:
image: "{{ ami }}"
region: "{{ region }}"
instance_type: "{{ instance_type }}"

274 | Chapter 14: Amazon EC2

assign_public_1ip: True
key_name: mykey
group: [web, ssh, outbound]
instance_tags: { Name: book, type: web, env: production }
exact_count: "{{ count }}"
count_tag: { type: web }
vpc_subnet_id: "{{ web_subnet_1id }}"
wait: yes
register: ec2
- name: add the instance to web and production groups
add_host: hostname={{ item.public_dns_name }} groups=web,production
with_items: "{{ ec2.tagged_instances }}"
when: item.public_dns_name is defined
- name: wait for ssh server to be running
wait_for: host={{ item.public_dns_name }} port=22 search_regex=0penSSH
with_items: "{{ ec2.tagged_instances }}"
when: item.public_dns_name is defined

- name: configure webservers

hosts: web:&production
become: True
gather_facts: False
pre_tasks:

- name: install python

raw: apt-get install -y python-minimal

roles:

- web

Dynamic Inventory and VPC

When using a VPC, you often will place some instances inside a private subnet that is
not routable from the internet. When you do this, no public IP address is associated
with the instance.

In this case, you might want to run Ansible from an instance inside your VPC. The
Ansible dynamic inventory script is smart enough that it will return internal IP
addresses for VPC instances that don’t have public IP addresses.

See Appendix B for details on how to use IAM roles to run Ansible inside a VPC
without needing to copy EC2 credentials to the instance.

Building AMIs

There are two approaches you can take to creating custom Amazon Machine Images
(AMIs) with Ansible. You can use the ec2_ami module, or you can use a third-party
tool called Packer that has support for Ansible.

Building AMIs | 275

With the ec2_ami Module

The ec2_ami module will take a running instance and snapshot it into an AMI.
Example 14-16 shows this module in action.

Example 14-16. Creating an AMI with the ec2_ami module

- name: create an AMI
hosts: localhost
vars:
instance_id: i-e5bfc266641f1b918
tasks:
- name: create the AMI
ec2_ami:
name: web-nginx
description: Ubuntu 16.04 with nginx installed
instance_id: "{{ instance_id }}"
wait: yes
register: ami

- name: output AMI details
debug: var=ami

With Packer

The ec2_ami module works just fine, but you have to write additional code to create
and terminate the instance. There’s an open source tool called Packer that will auto-
mate the creation and termination of an instance for you. Packer also happens to be
written by Mitchell Hashimoto, the creator of Vagrant.

Packer can create different types of images and works with different configuration
management tools. This section focuses on using Packer to create AMIs using Ansi-
ble, but you can also use Packer to create images for other IaaS clouds, such as Google
Compute Engine, DigitalOcean, or OpenStack. It can even be used to create Vagrant
boxes and Docker containers. It also supports other configuration management tools,
such as Chef, Puppet, and Salt.

To use Packer, you create a configuration file in JSON format (called a template) and

then use the packer command-line tool to create the image using the configuration
file.

Packer provides two mechanisms (called provisioners) for using Ansible to create an
AMI: the newer Ansible Remote provisioner (called ansible) and the older Ansible
Local provisioner (called ansible-local). To understand the difference, you first
need to understand how Packer works.

When you use Packer to build an AMI, Packer executes the following steps:

276 | Chapter 14: Amazon EC2

https://www.packer.io

1. Launches a new EC2 instance based on the AMI specified in your template

2. Creates a temporary key pair and security group

bt

Uses SSH to log into the new instance and executes any provisioners specified in
the template

Stops the instance
Creates a new AMI
Deletes the instance, security group, and key pair

Outputs the AMI ID to the terminal

N

Ansible Remote Provisioner

When using the Ansible Remote provisioner, Packer will run Ansible on your local
machine. When using the Ansible Local provisioner, Packer will copy the playbook
files over to the instance and run Ansible from the instance. I prefer the Ansible
Remote provisioner because the template is simpler, as you'll see.

We'll start with the Ansible Remote provisioner. Example 14-17 shows the web-
ami.yml playbook we will use for configuring the instance that will be used to create
the image. Its a simple playbook that applies the web role to a machine named
default. Packer creates the default alias by, well, default. If you like, you can change
the alias name by specifying a host_alias parameter in the Ansible section of the
Packer template.

Example 14-17. web-ami.yml

- name: configure a webserver as an ami
hosts: default
become: True
roles:
- web

Example 14-18 shows a sample Packer template that uses the Ansible Remote provi-
sioner to create an AMI using our playbook.

Example 14-18. web.json using Remote Ansible provisioner

{
"builders": [
{
"type": "amazon-ebs",
"region": "us-west-1",
"source_ami": "ami-79df8219",
"instance_type": "t2.micro",

Building AMIs | 277

"ssh_username": "ubuntu",

"ami_name": "web-nginx-{{timestamp}}",
"tags": {
"Name": "web-nginx"
}
}
1,
"provisioners": [
{
"type": "shell",
"inline": [
"sleep 30",
"sudo apt-get update",
"sudo apt-get install -y python-minimal"
]
1,
{
"type": "ansible",
"playbook_file": "web-ami.yml"
}

1
}

Use the packer build command to create the AMI:

$ packer build web.json
The output looks like this:

==> amazon-ebs: Prevalidating AMI Name...

amazon-ebs: Found Image ID: ami-79df8219
==> amazon-ebs: Creating temporary keypair:
packer_58a0d118-b798-62ca-50d3-18d0e270e423
==> amazon-ebs: Creating temporary security group for this instance...
==> amazon-ebs: Authorizing access to port 22 the temporary security group...
==> amazon-ebs: Launching a source AWS instance...

amazon-ebs: Instance ID: 1-0f4b09dc0cd806248
==> amazon-ebs: Wailting for instance (1-0f4b09dc06cd806248) to become ready...
==> amazon-ebs: Adding tags to source instance
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Provisioning with shell script: /var/folders/g_/523vq6g1037d1
0231mmbx1780000gp/T/packer-shell574734910

==> amazon-ebs: Stopping the source instance...

==> amazon-ebs: Waiting for the instance to stop...

==> amazon-ebs: Creating the AMI: web-nginx-1486934296
amazon-ebs: AMI: ami-42ffa322

==> amazon-ebs: Wailting for AMI to become ready...

==> amazon-ebs: Adding tags to AMI (ami-42ffa322)...

==> amazon-ebs: Tagging snapshot: snap-01b570285183a1d35

==> amazon-ebs: Creating AMI tags

278 | Chapter 14: Amazon EC2

==> amazon-ebs: Creating snapshot tags

==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Cleaning up any extra volumes...

==> amazon-ebs: No volumes to clean up, skipping

==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...

Build 'amazon-ebs' finished.

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:

us-west-1: ami-42ffa322

Example 14-18 has two sections: builders and provisioners. The builders section
refers to the type of image being created. In our case, we are creating an Elastic Block
Store-backed (EBS) AMI, so we use the amazon-ebs builder.

Because Packer needs to start a new instance to create an AMI, you need to configure
Packer with all of the information typically needed when creating an instance: EC2
region, AMI, and instance type. Packer doesn’t need to be configured with a security
group because, as mentioned earlier, it will create a temporary security group auto-
matically, and then delete that security group when it is finished. Like Ansible, Packer
needs to be able to SSH to the created instance. Therefore, you need to specify the
SSH username in the Packer configuration file.

You also need to tell Packer what to name your instance, as well as any tags you want
to apply to your instance. Because AMI names must be unique, we use the
{{timestamp}} function to insert a Unix timestamp. A Unix timestamp encodes the
date and time as the number of seconds since Jan. 1, 1970, UTC. See the Packer docu-
mentation for more information about the functions that Packer supports.

Because Packer needs to interact with EC2 to create the AMI, it needs access to your
EC2 credentials. Like Ansible, Packer can read your EC2 credentials from environ-
ment variables, so you don't need to specify them explicitly in the configuration file,
although you can if you prefer.

The provisioners section refers to the tools used to configure the instance before it
is captured as an image. Packer supports a shell provisioner that lets you run arbi-
trary commands on the instance. Example 14-18 uses this provisioner to install
Python 2. To avoid a race situation with trying to install packages before the operat-
ing system is fully booted up, the shell provisioner in our example is configured to
wait for 30 seconds before installing Ansible.

Ansible Local Provisioner

Using the Ansible Local Provisioner is similar to using the remote version, but there
are some differences to be aware of.

Building AMIs | 279

http://bit.ly/1Fw9hEc
http://bit.ly/1Fw9hEc

By default, the Ansible local provisioner copies only the playbook file itself to the
remote host: any files that the playbook depends on are not automatically copied. To
address the need for accessing multiple files, Packer allows you to specify a directory
to be recursively copied into a staging directory on the instance, using the play
book_dir option. Here’s an example of section of a Packer template that specifies a
directory:

{
"type": "ansible-local",
"playbook_file": "web-ami-local.yml",
"playbook_dir": "../playbooks"
}
If all of the files to be copied up are part of roles, you can explicitly specify a list of

role directories, using the role_paths option:

{
"type": "ansible-local",
"playbook_file": "web-ami-local.yml",
"role_paths": [
"../playbooks/roles/web"
1
}
Another important difference is that you need to use localhost instead of default in

the hosts clause of your playbook.

Packer has a lot more functionality than we can cover here, including numerous
options for both types of Ansible provisioners. Check out its documentation for more
details.

Other Modules

Ansible supports even more of EC2, as well as other AWS services. For example, you
can use Ansible to launch CloudFormation stacks with the cloudformation module,
put files into S3 with the s3 module, modify DNS records with the route53 module,
create autoscaling groups with the ec2_asg module, create autoscaling configuration
with the ec2_1c module, and much more.

Using Ansible with EC2 is a large enough topic that you could write a whole book
about it. In fact, Yan Kurniawan wrote a book on Ansible and AWS. After digesting
this chapter, you should have enough knowledge under your belt to pick up these
additional modules without difficulty.

280 | Chapter 14: Amazon EC2

https://www.packer.io/docs/

CHAPTER 15
Docker

The Docker project has taken the IT world by storm. I can’t think of another technol-
ogy that was so quickly embraced by the community. This chapter covers how to use
Ansible to create Docker images and deploy Docker containers.

What Is a Container?

A container is a form of virtualization. When you use virtualization to run processes
in a guest operating system, these guest processes have no visibility into the host
operating system that runs on the physical hardware. In particular, processes running
in the guest are not able to directly access physical resources, even if these guest pro-
cesses are provided with the illusion that they have root access.

Containers are sometimes referred to as operating system virtualization to distinguish
them from hardware virtualization technologies. In hardware virtualization, a pro-
gram called the hypervisor virtualizes an entire physical machine, including a virtual-
ized CPU, memory, and devices such as disks and network interfaces. Because the
entire machine is virtualized, hardware virtualization is flexible. In particular, you can
run an entirely different operating system in the guest than in the host (e.g., running a
Windows Server 2012 guest inside a Red Hat Enterprise Linux host), and you can sus-
pend and resume a virtual machine just as you can a physical machine. This flexibility
brings with it additional overhead needed to virtualize the hardware.

With operating system virtualization (containers), the guest processes are isolated
from the host by the operating system. The guest processes run on the same kernel as
the host. The host operating system is responsible for ensuring that the guest pro-
cesses are fully isolated from the host. When running a Linux-based container pro-
gram such as Docker, the guest processes also must be Linux programs. However, the
overhead is much lower than that of hardware virtualization, because you are running

281

only a single operating system. In particular, processes start up much more quickly
inside containers than inside virtual machines.

Docker is more than just containers. Think of Docker as being a platform where con-
tainers are a building block. To use an analogy, containers are to Docker what virtual
machines are to IaaS clouds. The other two major pieces that make up Docker are its
image format and the Docker APIL.

You can think of Docker images as similar to virtual machine images. A Docker
image contains a filesystem with an installed operating system, along with some
metadata. One important difference is that Docker images are layered. You create a
new Docker image by taking an existing Docker image and customizing it by adding,
modifying, and deleting files. The representation for the new Docker image contains
a reference to the original Docker image, as well as the filesystem differences between
the original Docker image and the new Docker image. As an example, the official
Nginx docker image is built as layers on top of the official Debian Jessie image. The
layered approach means that Docker images are smaller than traditional virtual
machine images, so it’s faster to transfer Docker images over the internet than it
would be to transfer a traditional virtual machine image. The Docker project main-
tains a registry of publicly available images.

Docker also supports a remote API, which enables third-party tools to interact with
it. In particular, Ansible’s docker module uses the Docker remote AP

The Case for Pairing Docker with Ansible

Docker containers make it easier to package your application into a single image
that’s easy to deploy in different places, which is why the Docker project has
embraced the metaphor of the shipping container. Docker’s remote API simplifies the
automation of software systems that run on top of Docker.

Ansible simplifies working with Docker in two areas. One is in the orchestration of
Docker containers. When you deploy a “Dockerized” software app, youre typically
creating multiple Docker containers that contain different services. These services
need to communicate with each other, so you need to connect the appropriate con-
tainers correctly and ensure they start up in the right order. Initially, the Docker
project did not provide orchestration tools, so third-party tools emerged to fill in the
gap. Ansible was built for doing orchestration, so it’s a natural fit for deploying your
Docker-based application.

The other area is the creation of Docker images. The official way to create your own
Docker images is by writing special text files called Dockerfiles, which resemble shell
scripts. For simpler images, Dockerfiles work just fine. However, when you start to

282 | Chapter 15: Docker

http://bit.ly/2ktXbqS
https://registry.hub.docker.com

create more-complex images, you'll quickly miss the power that Ansible provides.
Fortunately, you can use Ansible to create playbooks.

A new project called Ansible Container is the official approach for
using Ansible playbooks to build Docker container images. At the
time this book was written, the latest release of Ansible Container
is 0.2. On January 29, 2017, the project maintainers announced on
the Ansible Container mailing list that the next release of the
project, dubbed Ansible Container Mk. II, will be substantially
different.

Because Ansible Container is still in flux, we chose not to cover it
here. However, we do recommend that you take a look at this
project once it has stabilized.

Docker Application Life Cycle

Here’s what the typical life cycle of a Docker-based application looks like:

1. Create Docker images on your local machine.

2. Push Docker images up from your local machine to the registry.
3. Pull Docker images down to your remote hosts from the registry.
4

. Start up Docker containers on the remote hosts, passing in any configuration
information to the containers on startup.

You typically create your Docker image on your local machine, or on a continuous
integration system that supports creating Docker images, such as Jenkins or CircleCI.
Once you've created your image, you need to store it somewhere that will be conve-
nient for downloading onto your remote hosts.

Docker images typically reside in a repository called a registry. The Docker project
runs a registry called Docker Hub, which can host both public and private Docker
images, and where the Docker command-line tools have built-in support for pushing
images up to a registry and for pulling images down from a registry.

Once your Docker image is in the registry, you connect to a remote host, pull down
the container image, and then run the container. Note that if you try to run a con-
tainer whose image isn’t on the host, Docker will automatically pull down the image
from the registry, so you do not need to explicitly issue a command to download an
image from the registry.

When you use Ansible to create the Docker images and start the containers on the
remote hosts, the application life cycle looks like this:

Docker Application Life Cyde | 283

Write Ansible playbooks for creating Docker images.
Run the playbooks to create Docker images on your local machine.

Push Docker images up from your local machine to the registry.

Ll

Write Ansible playbooks to pull Docker images down to remote hosts and start
up Docker containers on remote hosts, passing in configuration information.

5. Run Ansible playbooks to start up the containers.

Example Application: Ghost

In this chapter, we're going to switch from Mezzanine to Ghost as our example appli-
cation. Ghost is an open source blogging platform, similar to WordPress. The Ghost
project has an official Docker container that we’ll be using.

What we'll cover in this chapter:

« Running a Ghost container on your local machine
+ Running a Ghost container fronted by an Nginx container with SSL configured
« Pushing a custom Nginx image to a registry

+ Deploying our Ghost and Nginx containers to a remote machine

Connecting to the Docker Daemon

All of the Ansible Docker modules communicate with the Docker daemon. If you are
running on Linux, or if you are running on macOS using Docker for Mac, all of the
modules should just work without passing additional arguments.

If you are running on macOS using Boot2Docker or Docker Machine, or for other
cases where the machine that executes the module is not the same as the machine that
is running the Docker daemon, you may need to pass extra information to the
Docker modules so they can reach the Docker daemon. Table 15-1 lists these options,
which can be passed as either module arguments or environment variables. See the
docker_container module documentation for more details about what these options

do.

Table 15-1. Docker connection options

Module argument Environment variable Default

docker_host DOCKER_HOST unix://var/run/docker.sock
tls_hostname DOCKER_TLS_HOSTNAME localhost
api_version DOCKER_API_VERSION auto

284 | Chapter 15: Docker

Module argument Environment variable Default

cert_path DOCKER_CERT_PATH (None)
ssl_version DOCKER_SSL_VERSION (None)

tls DOCKER_TLS no
tls_verify DOCKER_TLS_VERIFY no

timeout DOCKER_TIMEOUT 60 (seconds)

Running a Container on Qur Local Machine

The docker_container module starts and stops Docker containers, implementing
some of the functionality of the docker command-line tool such as the run, kill, and
rm commands.

Assuming you have Docker installed locally, the following invocation will download
the ghost image from the Docker registry and execute it locally. It will map port 2368
inside the container to 8000 on your machine, so you can access Ghost at http://local-
host:8000.

$ ansible localhost -m docker_container -a "name=test-ghost image=ghost \
ports=8000:2368"

The first time you run this, it may take some time for Docker to download the image.
If it succeeds, the docker ps command will show the running container:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
48e69da90023 ghost "/entrypoint.sh np..." 37 seconds ago

STATUS PORTS NAMES
Up 36 seconds 0.0.0.0:8000->2368/tcp test-ghost

To stop and remove the container:
$ ansible localhost -m docker_container -a "name=test-ghost state=absent"

The docker_container module supports many options: if you can pass an argument
by using the docker command-line tool, you're likely to find an equivalent option on
the module.

Building an Image from a Dockerfile

The stock Ghost image works great on its own, but if we want to ensure that access is
secure, we'll need to front it with a web server configured for TLS.

The Nginx project puts out a stock Nginx image, but we'll need to configure it to act
as a frontend for Ghost and to enable TLS, similar to the way we did it in Chapter 6
for Mezzanine. Example 15-1 shows the Dockerfile for this.

Running a Container on Our Local Machine | 285

Example 15-1. Dockerfile

FROM nginx
RUN rm /etc/nginx/conf.d/default.conf
COPY ghost.conf /etc/nginx/conf.d/ghost.conf

Example 15-2 shows the Nginx configuration for being a frontend for Ghost. The
main difference between this one and the one for Mezzanine is that in this case Nginx
is communicating with Ghost by using a TCP socket (port 2368), whereas in the Mez-
zanine case the communication was over a Unix domain socket.

The other difference is that the path containing the TLS files is /certs.

Example 15-2. ghost.conf

upstream ghost {
server ghost:2368;

}
server {
listen 80;
listen 443 ssl;
client_max_body_size 10M;
keepalive_timeout 15;
ssl_certificate /certs/nginx.crt;
ssl_certificate_key /certs/nginx.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;
ssl_ciphers entry is too long to show in this book
ssl_prefer_server_ciphers on;
location / {
proxy_redirect of f;
proxy_set_header Host Shost;
proxy_set_header X-Real-IP Sremote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Protocol $scheme;
proxy_pass http://ghost;
}
}

This configuration assumes that Nginx can reach the Ghost server via the hostname
ghost. When we deploy these containers, we must ensure that this is the case; other-
wise, the Nginx container will not be able to reach the Ghost container.

286 | Chapter 15: Docker

Assuming we put the Dockerfile and nginx.conf file in a directory named nginx, this
task will create an image named lorin/nginx-ghost. We use the prefix ansiblebook/
since this will eventually be pushed to the ansiblebook/nginx-ghost Docker Hub
repository:
- name: create Nginx image
docker_image:

name: ansiblebook/nginx-ghost
path: nginx

We can confirm this with the docker images command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
ansiblebook/nginx-ghost latest 23fd848947a7 37 seconds ago
ghost latest 066a22d980f4 3 days ago
nginx latest cc1b61406712 11 days ago

SIZE

182 MB

326 MB

182 MB

Note that invoking the docker_image module to build an image will have no effect if
an image with that name already exists, even if you've made changes to the Docker-
file. If you've made changes to the Dockerfile and want to rebuild, you need to add
the force: yes option.

In general, though, its a good idea to add a tag option with a version number, and
increment this each time you do a new build. The docker_image module would then
build the new image without needing to be forced.

Orchestrating Multiple Containers on Our Local Machine

Its common to run multiple Docker containers and wire them up together. During
development, you typically run all of these containers together on your local
machine. In production, these containers are commonly hosted on different
machines.

For local development where all of the containers are running on the same machine,
the Docker project has a tool called Docker Compose that makes it simpler to bring
the containers up and wire them together. The docker_service module can be used
to control Docker Compose to bring the services up or down.

Example 15-3 shows a docker-compose.yml file that will start up Nginx and Ghost.
The file assumes there’s a ./certs directory that contains the TLS certificate files.

Orchestrating Multiple Containers on Our Local Machine | 287

Example 15-3. docker-compose.yml

version: '2'
services:
nginx:
image: ansiblebook/nginx-ghost
ports:
- "8000:80"
- "8443:443"
volumes:
- ${PWD}/certs:/certs
links:
- ghost
ghost:
image: ghost

Example 15-4 shows a playback that creates the custom Nginx image file, creates self-
signed certificates, and then starts up the services specified by Example 15-3.

Example 15-4. ghost.yml

- name: Run Ghost locally
hosts: localhost
gather_facts: False
tasks:
- name: create Nginx image
docker_image:
name: ansiblebook/nginx-ghost
path: nginx
- name: create certs
command: >
openssl req -new -x509 -nodes
-out certs/nginx.crt -keyout certs/nginx.key
-subj '/CN=localhost' -days 3650
creates=certs/nginx.crt
- name: bring up services
docker_service:
project_src: .
state: present

Pushing Our Image to the Docker Registry

We'll use a separate playbook to publish our image to Docker Hub; it’s shown as
Example 15-5. Note that the docker_login module must be invoked first to log in to
the registry before the image is to be pushed. The docker_login and docker_image
modules both default to Docker Hub as the registry.

288 | Chapter 15: Docker

Example 15-5. publish.yml

- name: publish images to docker hub
hosts: localhost
gather_facts: False
vars_prompt:
- name: username
prompt: Enter Docker Registry username
- name: email
prompt: Enter Docker Registry email
- name: password
prompt: Enter Docker Registry password
private: yes
tasks:
- name: authenticate with repository
docker_login:
username: "{{ username }}"
email: "{{ email }}"
password: "{{ password }}"
- name: push image up
docker_image:
name: ansiblebook/nginx-ghost
push: yes

If you wish to use a different registry, specify a registry_url option to docker_login
and prefix the image name with the hostname and port (if not using the standard
HTTP/HTTPS port) of the registry. Example 15-6 shows how the tasks would change
when using a registry at http://reg.example.com. The playbook for creating the image
would also need to change to reflect the new name of the image: reg.example.com/
ansiblebook/nginx-ghost.

Example 15-6. publish.yml with custom registry

tasks:
- name: authenticate with repository
docker_login:
username: "{{ username }}"
email: "{{ email }}"
password: "{{ password }}"
registry_url: http://reg.example.com
- name: push image up
docker_image:
name: reg.example.com/ansiblebook/nginx-ghost
push: yes

We can test pushing to Docker registries by using a local registry. Example 15-7 starts
a registry inside a Docker container, tags the ansiblebook/nginx-ghost image as local-
host:5000/ansiblebook/nginx-ghost, and pushes it to the registry. Note that the local

Pushing Our Image to the Docker Registry | 289

registry doesn’t require authentication by default, so there’s no task that involves
docker_logtin in this playbook.

Example 15-7. publish.yml with a local registry

- name: publish images to local docker registry
hosts: localhost
gather_facts: False
vars:
repo_port: 5000
repo: "localhost:{{repo_port}}"
image: ansiblebook/nginx-ghost
tasks:
- name: start a registry locally
docker_container:
name: registry
image: registry:2
ports: "{{ repo_port }}:5000"
- debug:
msg: name={{ image }} repo={{ repo }}/{{ image }}
- name: tag the nginx-ghost image to the repository
docker_image:
name: "{{ image }}"
repository: "{{ repo }}/{{ image }}"
push: yes

We can verify the upload worked by downloading the manifest:

$ curl http://localhost:5000/v2/ansiblebook/nginx-ghost/manifests/latest
{

"schemaVersion": 1,
"name": "ansiblebook/nginx-ghost",
"tag": "latest",

}

Querying Local Images

The docker_image_facts module allows you to query the metadata on a locally
stored image. Example 15-8 shows an example of a playbook that uses this module to
query the ghost image for the exposed port and volumes.

Example 15-8. image-facts.yml

- name: get exposed ports and volumes
hosts: localhost
gather_facts: False
vars:

290 | Chapter 15: Docker

image: ghost
tasks:
- name: get image info
docker_image_facts: name=ghost
register: ghost
- name: extract ports
set_fact:
ports: "{{ ghost.images[0].Config.ExposedPorts.keys() }}
- name: we expect only one port to be exposed
assert:
that: "ports|length == 1"
- name: output exposed port
debug:
msg: "Exposed port: {{ ports[0] }}"
- name: extract volumes
set_fact:
volumes: "{{ ghost.images[0].Config.Volumes.keys() }}"
- name: output volumes
debug:
msg: "Volume: {{ item }}"
with_items: "{{ volumes }}"

The output looks like this:

$ ansible-playbook image-facts.yml

PLAY [get exposed ports and Volumes] dhhkhhhkkkhhhhhhhhhhdhhhhhhhhhhdhdhhhrrhdhrrx

TASK [get image info] hhkkhhhhhhhhhhhhhhhhhhhhhdhhhhhhrhhdhdrhddhrrhddrrrddhrrrdd

ok: [localhost]

TASK [extract ports] khkkkkhkhkkhhkhkhkkhhkhkhkhhhhkhkhhkhkhkhkhhkhkhhhhhkhkhkkhkhkhkhkkhkhkhkkkkkkx

ok: [localhost]

TASK [We expect Only one port to be exposed] KhAI I I I AR Iddddddhdhddddddhdhdddddhhhhddd
ok: [localhost] => {

"changed": false,

"msg": "All assertions passed"

}

TASK [Output exposed port] KA A A IR KA IA I I AR I I A A A AR I I A A A A KA I A I A A ddddddddrddddddddd
ok: [localhost] => {

"msg": "Exposed port: 2368/tcp"
}

TASK [extract volumes] kkkhkhkkkhkhkhkhkkhkhkhkhkhhkhkhkhhkhkhkhkkhkhkhkhkhhhkhkkhkhkhkhkkhkhkhkkkkkkk

ok: [localhost]

TASK [Output Volumes] KA AR AR I A A A IR I I I A A A RA I I A A A AR I A A A A AR I I A I A A A I ddddddrddddddhddd
ok: [localhost] => (item=/var/lib/ghost) => {

"{tem": "/var/lib/ghost",

"msg": "Volume: /var/lib/ghost"

Querying Local Images | 291

PLAY RECAP kkkkkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkhhkhkhkkhhkhkkkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkkkhkhkkkk*

localhost : ok=6 changed=0 unreachable=0 failed=0

Deploying the Dockerized Application

By default, Ghost uses SQLite as its database backend. For deployment, we're going to
use Postgres as the database backend, for the reasons we discussed in Chapter 5.

We're going to deploy onto two separate machines. One machine (ghost) will run the
Ghost container and the Nginx container. The other machine (postgres) will run a
Postgres container that will serve as a persistent store for the Ghost data.

This example assumes the following variables are defined somewhere such as
group_vars/all, where they are in scope for the frontend and backend machines:

« database_name
o database_user

« database_password

Backend: Postgres

To configure the Postgres container, we need to pass the database user, database pass-
word, and database name as environment variables that the container expects. We
also want to mount a directory from a host machine as a volume for storing the per-
sistent data, because we don’t want our persistent data to disappear if the container
stops and gets removed.

Example 15-9 shows the playbook for deploying the Postgres container. It has only
two tasks: one to create the directory that will hold the data, and the other to start the
Postgres container. Note that this playbook assumes that Docker Engine is already

installed on the postgres host.

Example 15-9. postgres.yml

- name: deploy postgres
hosts: postgres
become: True
gather_facts: False

vars:
data_dir: /data/pgdata
tasks:
- name: create data dir with correct ownership
file:

path: "{{ data_dir }}"

292 | Chapter 15: Docker

state: directory
- name: start postgres container
docker_container:

name: postgres_ghost

image: postgres:9.6

ports:
- "0.0.0.0:5432:5432"

volumes:
- "{{ data_dir }}:/var/lib/postgresql/data"

env:
POSTGRES_USER: "{{ database_user }}"
POSTGRES_PASSWORD: "{{ database_password }}"
POSTGRES_DB: "{{ database_name }}"

Frontend

The frontend deployment is more complex, since we have two containers to deploy:
Ghost and Nginx. We also need to wire them up, and we need to pass configuration
information to the Ghost container so it can access the Postgres database.

We're going to use Docker networks to enable the Nginx container to connect to the
Ghost container. Networks replace the legacy links functionality that was previously
used for connecting containers. Using Docker networks, you create a custom Docker
network, attach containers to that network, and the containers can access each other
by using the container names as hostnames.

Creating a Docker network is simple:

- name: create network
docker_network: name=ghostnet

It makes more sense to use a variable for the network name, since we’ll need to refer-
ence it for each container we bring up. This is how our playbook will start:

- name: deploy ghost

hosts: ghost

become: True

gather_facts: False

vars:
url: "https://{{ ansible_host }}"
database_host: "{{ groups['postgres'][0] }}"
data_dir: /data/ghostdata
certs_dir: /data/certs
net_name: ghostnet

tasks:
- name: create network

docker_network: "name={{ net_name }}"

Note that this playbook assumes there’s a group named postgres that contains a sin-
gle host; it uses this information to populate the database_host variable.

Deploying the Dockerized Application | 293

Frontend: Ghost

We need to configure Ghost to connect to the Postgres database, as well as to run in
production mode by passing the - -production flag to the npm start command.

We also want to ensure that the persistent files that it generates are written to a vol-
ume mount.

Here’s the part of the playbook that creates the directory that will hold the persistent
data, generates a Ghost config file from a template, and starts up the container, con-
nected to the ghostnet network:

- name: create ghostdata directory
file:
path: "{{ data_dir }}"
state: directory
- name: generate the config file
template: src=templates/config.js.j2 dest={{ data_dir }}/config.js
- name: start ghost container
docker_contatiner:
name: ghost
image: ghost
command: npm start --production
volumes:
- "{{ data_dir }}:/var/lib/ghost"
networks:
- name: "{{ net_name }}"

Note that we don't need to publish any ports here, since only the Nginx container will
communicate with the Ghost container.

Frontend: Nginx

The Nginx container had its configuration hardwired into it when we created the
ansiblebook/nginx-ghost image: it is configured to connect to ghost:2368.

However, we do need to copy the TLS certificates. As in previous examples, we'll just
generate self-signed certificates:

- name: create certs directory
file:
path: "{{ certs_dir }}"
state: directory
- name: generate tls certs
command: >
openssl req -new -x509 -nodes
-out "{{ certs_dir }}/nginx.crt" -keyout "{{ certs_dir }}/nginx.key"
-subj "/CN={{ ansible_host}}" -days 3650
creates=certs/nginx.crt
- name: start nginx container
docker_container:

294 | Chapter 15: Docker

name: nginx_ghost
image: ansiblebook/nginx-ghost
pull: yes
networks:

- name: "{{ net_name }}"
ports:

- "0.0.0.0:80:80"

- "0.0.0.0:443:443"
volumes:

- "{{ certs_dir }}:/certs"

Cleaning Out Containers

Ansible makes it easy to stop and remove containers, which is useful when you’re
developing and testing deployment scripts. Here is a playbook that cleans up the
ghost host.

- name: remove all ghost containers and networks
hosts: ghost
become: True
gather_facts: False
tasks:
- name: remove containers
docker_container:
name: "{{ item }}"
state: absent
with_1items:
- nginx_ghost
- ghost
- name: remove network
docker_network:
name: ghostnet
state: absent

Connecting Directly to Containers

Ansible has support for interacting directly with running containers. Ansibles
Docker inventory plugin will automatically generate an inventory of accessible run-
ning hosts, and its Docker connection plugin does the equivalent of docker exec to
execute processes in the context of a running container.

The Docker inventory plugin is available in the GitHub ansible/ansible repo at con-
trib/inventory/docker.py. By default, this plugin accesses the Docker daemon running
on your local machine. It can be configured to connect to Docker daemons on
remote machines using Docker’s REST API, or to connect to running Docker con-
tainers that have an SSH server running inside them. Both of these require additional
setup work. To access the Docker API remotely, the host running Docker must be
configured to bind to a TCP port. To connect to a container via SSH, the container
must be configured to start up an SSH server. We don’t cover those scenarios here,

Deploying the Dockerized Application | 295

but you can check out the example configuration file in the repo at contrib/inventory/
docker.yml.

Assuming we have the following containers running locally:

CONTAINER ID IMAGE NAMES
63b6767de77f ansiblebook/nginx-ghost ch14_nginx_1
057d72395016 ghost ch14_ghost_1

the docker.py inventory script creates a host per name. In this case:

e ch14_nginx_1

e ch14_ghost_1
It also creates groups for short ID, long ID, Docker image, and a group for all running
containers. Continuing on with our example, the created groups are as follows:

e 63b6767de77fe (ch14_nginx_1)

e 63b6767de77fe013a6d840dd897329766bbd3dc60409001cc36e900f8d501d6d
(ch14_nginx_1)

e 057d72a950163 (ch14_ghost_1)

e 057d72a950163769c2bcclecc81ba377d03c39b1d19f8f4a9f0c748230b42c5¢C
(ch14_ghost_1)

« image_ansiblebook/nginx-ghost (ch14_nginx_1)
« image_ghost (ch14_ghost_1)
o running (ch14_nginx_1, ch14_ghost_1)
Here’s how we combine the Docker dynamic inventory script with the Docker con-

nection plugin (enabled by passing -c docker as an argument) to list all of the pro-
cesses running inside each container:

$ ansible -c docker running -m raw -a 'ps aux'

ch14_ghost_1 | SUCCESS | rc=0 >>

USER PID %CPU %MEM VSz RSS TTY STAT START TIME COMMAND

user 1 0.0 2.2 1077892 45040 ? Ssl 05:19 0:00 npm

user 34 0.0 0.0 4340 804 ? S 05:19 0:00 sh -c node ind
user 35 0.0 5.9 1255292 121728 ? ST 05:19 0:02 node index
root 108 0.0 0.0 4336 724 ? Ss 06:20 0:00 /bin/sh -c ps
root 114 0.0 0.1 17500 2076 ? R 06:20 0:00 ps aux

ch14_nginx_1 | SUCCESS | rc=0 >>

USER PID %CPU %MEM VSz RSS TTY STAT START TIME COMMAND
root 1 0.0 0.2 46320 5668 ? Ss 05:19 0:00 nginx: master
nginx 6 0.0 0.1 46736 3020 ? S 05:19 0:00 nginx: worker

296 | Chapter 15: Docker

root 71 0.0 0.0 4336 752 ? Ss 06:20 0:00 /bin/sh -c ps
root 77 0.0 0.0 17500 2028 ? R 06:20 0:00 ps aux
Ansible Container

Coinciding with the release of Ansible 2.1, the Ansible project released a new tool
called Ansible Container to simplify working with Docker images and containers. We
cover Ansible Container 0.9, which coincided with the release of Ansible 2.3.

Ansible Container does quite a few things. In particular, you can use it to do the
following:

o Create new images (replaces Dockerfiles)
o Publish Docker images to registries (replaces docker push)
o Run Docker containers in development mode (replaces Docker Compose)

 Deploy to a production cloud (alternative to Docker Swarm)

As of this writing, Ansible Container supports deploying to Kubernetes and Open-
Shift, although this list is likely to grow. If you don’t run on one of these environ-
ments, don’t worry: you can write a playbook by using the docker_container module
(described later in this chapter) to pull down and start your containers on whatever
production environment you like.

The Conductor

Ansible Container enables you to configure Docker images by using Ansible roles
instead of Dockerfiles. When using Ansible to configure hosts, Python must be
installed on the host. However, this requirement is generally considered undesirable
for Docker containers because users typically want minimal containers; users don't
want to have Python installed in a container if that container won't actually need
Python.

Ansible Container eliminates the need to have Python installed inside the container
by using a special container called the Conductor, and taking advantage of Docker’s
ability to mount volumes from one container to another.

When you run Ansible Container, it creates a local directory named ansible-
deployment, copies all the files that the Conductor needs, and mounts the directory
from your local machine into the Conductor.

Ansible Container mounts directories containing the Python runtime and any needed
library dependencies from the Conductor container into the containers that are being
configured. It does this by mounting /usr from the Conductor container instance
to /_usr inside the container being configured, and configures Ansible to use the
Python interpreter under /_usr. For this to work properly, the Linux distribution of

Ansible Container | 297

the Docker container you use for the Conductor should match the Linux distribution
of the base image of the Docker containers that you are configuring.

If your Conductor base image is an official image from one of the supported Linux
distributions, Ansible Container will automatically add some required packages to
the container. As of 0.9.0, the supported distributions are Fedora, CentOS, Debian,
Ubuntu, and Alpine. You can use an unsupported base image, but you must ensure
that it has the required packages installed.

See the container/docker/templates/conductor-dockerfilej2 file in the Ansible Con-
tainer GitHub repository for information on which packages are installed into the
Conductor image.

If you don’t want Ansible Container to mount the runtime from the Conductor into
the container being configured, you can disable this behavior by passing the - -use-
local-python flag to the ansible-container command. Ansible Container will then
use the native Python interpreter of the container image being configured.

Creating Docker Images

Let’s use Ansible Container to build that simple Nginx image from Example 15-1.

Creating the initial files
The first thing we must do is run the initialize command:
$ ansible-container init

This command creates a set of files in the current directory:

}— ansible-requirements.txt
}— ansible.cfg
}— container.yml

— meta.yml
L— requirements.yml

Creating the roles

Next, we need a role that will configure our container. We'll call our role ghost-
nginx, since it configures an Nginx image for fronting Ghost.

This role will be very simple; it just needs the ghost.conf configuration file from
Example 15-2 and a task file that implements the functionality of Example 15-1.
Here’s the directory structure for the role:

298 | Chapter 15: Docker

https://github.com/ansible/ansible-container
https://github.com/ansible/ansible-container

L— roles
L— ghost-nginx
— files
| — ghost.conf
L— tasks
L— main.yml

Here's the tasks/main.yml file:

- name: remove default config
file:
path: /etc/nginx/conf.d/default.conf
state: absent
- name: add ghost config
copy:
src: ghost.conf
dest: /etc/nginx/conf.d/ghost.conf

Configuring container.yml

Next, we'll configure container.yml to use our role to build the container, as shown in
Example 15-10. This file is similar to a Docker Compose file, with additional fields
that are Ansible-specific, and support for Jinja2-style variable substitution and filters.

Example 15-10. container.yml

version: "2" @
settings:
conductor_base: debian:jessie (2]
services: ©
ac-nginx: (4]
from: nginx (5]
command: [nginx, -g, daemon off;] (6]
roles:
- ghost-nginx (7]
registries: {} (8]

© This tells Ansible Container to support Docker Compose version 2 schemas. The
default is version 1, but you probably always want version 2.

©® We are using debian:jessie as the base image for our Conductor container,
because we will be customizing the official Nginx image, which uses debian: jes
sie as its base image.

© The services field is a map whose keys are the names of the containers we are
going to create. In this example, there is only a single container.

Ansible Container | 299

We call the container we are going to create ac-nginx for Ansible Conductor
Nginx.

We specify nginx as the base image.
We need to specify the command that will be run when the container starts up.

We specity the roles to be used to configure this image. For this case, there’s only
one role, ghost-nginx.

The registries field is used to specify the external registries we will push our
containers to. We haven’t configured this yet, so it’s blank.

Ansible Container does not automatically pull base images to your
local machine. You must do that yourself before building the con-
tainers. For example, before you run Example 15-10, you would

\ need to pull the nginx base image that is required to build
ac-nginx:

$ docker pull nginx

Building the containers

Finally, we're ready to build:

$ ansible-container build

The output should look like this:

Building Docker Engine context...

Starting Docker build of Ansible Container Conductor image (please be patient)...
Parsing conductor CLI args.

Docker™ daemon integration engine loaded. Build starting. project=ans-con
Building service... project=ans-con service=ac-nginx

PLAY [ac_nginx] kkkhkhkkkkhkhkhkkkhhkhkhkkhhkhkkkkhhhkkhhkhkhkkkhkhkhkkkhhkhkhkkkkhkhkhkhkkkhkhkhkkkkkkx

TASK [Gathering Facts] kkkhkhkkkkhhkhkkkhkhkhkkkhhkhkkhkhkhkhkkhkhkhkhkkhhkhkkkhkhkhkhkkkhkhkhkkkkkkkx

ok: [ac-nginx]

TASK [ghost.nginx : remove default Config] hhhkkkkkhhhhhhhhddhhhhhdddhhhddddrhhddd
changed: [ac-nginx]

TASK [ghost_nginx : add ghost Config] *hkkhkhkhhhkhdhhrdhdhhhdhhrdhhrdrdrhrdrhrhdd
changed: [ac-nginx]

PLAY RECAP hhkkkhkhkhkhhkhkhhkhhkhkhhhhhhkhhhhhhkhhkhhkhkhhhhhkhkhhhhhkhkhkhkhkhkhhhhhkhkhhkkhkhkhkhkkkk

ac-nginx . ok=3 changed=2 unreachable=0 failed=0

Applied role to service role=ghost-nginx service=ac-nginx

300

| Chapter 15: Docker

Committed layer as image image=sha256:5eb75981fc5117b3fca3207b194f3fa6c9ccb85

7718f91d674ec53d86323ffe3 service=ac-nginx

Build complete. service=ac-nginx

All images successfully built.

Conductor terminated. Cleaning up. command_rc=0 conductor_id=8c68ca4720beae5d9c

7cal10ed70a3c08b207cd3f68868b3670dcc853abf9b62b save_container=False
Ansible Container uses a {project}-{service} convention for naming Docker
images; the project name is determined by the directory where you run ansible-
container intit.In my case, the directory is named ans-con, so the image that will be
created will be named ans-con-ac-nginx.

Ansible will also always create a conductor image, named {project}-conductor.

If you don’t want Ansible Container to use the directory name as the project name,
you can specify a custom project name by passing the - -project-name flag.

If we run the following:
$ docker images

we'll see the following new container images:

REPOSITORY TAG IMAGE ID CREATED SIZE

ans-con-ac-nginx 20170424035545 5eb75981fc51 2 minutes ago 182 MB
ans-con-ac-nginx latest 5eb75981fc51 2 minutes ago 182 MB
ans-con-conductor latest 742cf2e046a3 2 minutes ago 622 MB

Troubleshooting builds

If the build command fails with an error, you can learn more by viewing the logs gen-
erated by the Conductor container. There are two ways to see the log.

One way is to use the - -debug flag when invoking ansible-contatiner.

If you don’t want to rerun with the --debug flag, you can get the log output from
Docker. To get it, you need to get the ID of the Conductor container. Because the
container will no longer be running, use the ps -a Docker command to find the ID
of the exited container:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
78e78b9a1863 0c238eaf1819 "/bin/sh -c 'cd /_..." 21 minutes ago Exited (1)

Once you have the ID, you can view the log output like this:

$ docker logs 78e78b9a1863

Running Locally

Ansible Container allows you to run multiple containers locally, just like Docker
Compose. The container.yml file is similar to the format of docker-compose.yml. We'll

Ansible Container | 301

extend our container.yml so that it behaves the same way as Example 15-3. This is
shown in Example 15-11.

Example 15-11. container.yml, configured for local execution

version: "2"
settings:
conductor_base: debian:jessie
services:
ac-nginx:
from: nginx
command: [nginx, -g, daemon off;]
roles:
- ghost-nginx
ports:
- "8443:443"
- "8000:80"
dev_overrides: (1)
volumes:
- $PWD/certs:/certs
links:
- ghost
ghost: (2]
from: ghost
dev_overrides:
volumes:
- SPWD/ghostdata:/var/lib/ghost
registries: {}

Note the changes from Example 15-10 to Example 15-11:

@ We've added a dev_overrides section to the ac-nginx service that contains data
that is specific for running locally (i.e., not used for creating images or for
deploying to production). For this service, that involves mounting the TLS certif-
icates from the local filesystem and linking the container to the ghost container.

©® Weve added a ghost service that contains the Ghost app. We didn’t need this pre-
viously because we aren't creating a custom Ghost container; we’re just running
the official one unmodified.

Note that while the syntax is similar to Docker Compose, it isn’t identical. For exam-
ple, Ansible Container uses from, whereas Docker Compose uses image, and Docker
Compose does not have a dev_overrides section.

You can start the containers on your local machine by doing this:

$ ansible-container run

302 | Chapter 15: Docker

You can stop them as follows:
$ ansible-container stop

If you want to stop all containers and delete all images that you've created, use the
following:

$ ansible-container destroy

Publishing Images to Registries

Once you are satisfied with your images, you’ll want to publish them to a registry so
that you can deploy them.

You'll need to configure the registries section of Example 15-10 to specify a registry.
For example, Example 15-12 shows how to configure container.yml to push images to
the ansiblebook organization in the Docker registry.

Example 15-12. registries section of container.yml

registries:
docker:
url: https://index.docker.io/v1/
namespace: ansiblebook

Authenticating

The first time you push your image, you need to pass your username as a command-
line argument:

$ ansible-container push --username $YOUR_USERNAME

You'll be prompted to enter your password. The first time you push an image, Ansible
Container stores your credentials in ~/.docker/config.json, and on subsequent pushes
you don’t need to specify a username or password anymore.

The output looks like this:

Parsing conductor CLI args.

Engine integration loaded. Preparing push. engine=Docker™ daemon

Tagging ansiblebook/ans-con-ac-nginx

Pushing ansiblebook/ans-con-ac-nginx:20170430055647...

The push refers to a repository [docker.io/ansiblebook/ans-con-ac-nginx]
Preparing

Pushing

Mounted from library/nginx

Pushed

20170430055647: digest: sha256:50507495a9538e9865fe3038d56793a1620b9b372482667a
Conductor terminated. Cleaning up. command_rc=0 conductor_id=1d4cfa04a055c1040

Ansible Container | 303

Multiple registries

Ansible Container allows you to specify multiple registries. For example, here is a
registries section that has two registries, Docker Hub and Quay:

registries:
docker:
namespace: ansiblebook
url: https://index.docker.io/v1/
quay:
namespace: ansiblebook
url: https://quay.io
To push images to only one of the registries, use the - -push-to flag. For example, this
pushes to the Quay registry:

$ ansible-container push --push-to quay

Deploying Containers to Production

Although we don’t cover it here, Ansible Container also has support for deploying
your containers to a production environment, using the ansible-container deploy
command. As of this writing, Ansible Container has support for deploying to two
container management platforms: OpenShift and Kubernetes.

If you are looking for an Ansible Container-supported public cloud for running your
containers, Red Hat operates an OpenShift-based cloud platform called OpenShift
Online, and Google provides Kubernetes as part of its Google Compute Engine cloud
platform. Both platforms are also open source, so if you manage your own hardware,
you can deploy either OpenShift or Kubernetes on them for free. If you want to
deploy on another platform (e.g., EC2 Container Service or Azure Container Service),
you won't be able to use Ansible Container for the deployment.

Docker as a technology has clearly demonstrated that it has staying power. In this
chapter, we covered how to manage Docker images, containers, and networks. While
we weren't able to cover the creation of Docker images with Ansible playbooks, by the
time you read this, you'll likely be able to use Ansible playbooks for creating images
as well.

304 | Chapter15: Docker

CHAPTER 16
Debugging Ansible Playbooks

Lets face it: mistakes happen. Whether it’s a bug in a playbook, or a config file on
your control machine with the wrong configuration value, eventually something’s
going to go wrong. In this chapter, I'll review some techniques you can use to help
track down those errors.

Humane Error Messages

When an Ansible task fails, the output format isn’t very friendly to any human reader
trying to debug the problem. Here’s an example of an error message generated while
working on this book:

TASK [check out the repository on the host] **¥xxxwksmsmsdddddkkddikksshshmdddhdhkrrs
fatal: [web]: FAILED! => {"changed": false, "cmd": "/usr/bin/git clone --origin o
rigin '' /home/vagrant/mezzanine/mezzanine_example", "failed": true, "msg": "Clon
ing into '/home/vagrant/mezzanine/mezzanine_example'...\nPermission denied (publi
ckey).\r\nfatal: Could not read from remote repository.\n\nPlease make sure you h
ave the correct access rights\nand the repository exists.", "rc": 128, "stderr":
"Cloning into '/home/vagrant/mezzanine/mezzanine_example'...\nPermission denied (
publickey).\r\nfatal: Could not read from remote repository.\n\nPlease make sure
you have the correct access rights\nand the repository exists.\n", "stderr_lines"
: ["Cloning into '/home/vagrant/mezzanine/mezzanine_example'...", "Permission den
ied (publickey).", "fatal: Could not read from remote repository.", "", "Please m
ake sure you have the correct access rights", "and the repository exists."], "std
out": "", "stdout_lines": []}

As mentioned in Chapter 10, the debug callback plugin makes this output much eas-
ier for a human to read:

305

TASK [check out the repository on the host] *¥¥xxwksmsmsdddddkddkkkshshmdddhdhkrrs
fatal: [web]: FAILED! => {
"changed": false,
"cmd": "/usr/bin/git clone --origin origin
ne_example",
"failed": true,
"rc": 128

[

' /home/vagrant/mezzanine/mezzani

}

STDERR:

Cloning into '/home/vagrant/mezzanine/mezzanine_example'...
Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

MSG:

Cloning into '/home/vagrant/mezzanine/mezzanine_example'...
Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

Enable the plugin by adding the following to the defaults section of ansible.cfg:

[defaults]
stdout_callback = debug

Debugging SSH Issues

Sometimes Ansible fails to make a successful SSH connection with the host. When
this happens, it'’s helpful to see exactly what arguments Ansible is passing to the
underlying SSH client so you can reproduce the problem manually on the command
line.

If you invoke ansible-playbook with the -vvv argument, you can see the exact SSH
commands that Ansible invokes. This can be handy for debugging.

Example 16-1 shows some sample Ansible output for executing a module that copies
a file.

306 | Chapter 16: Debugging Ansible Playbooks

Example 16-1. Example output when verbose flags are enabled

TASK: [copy TLS key] dhhkhhhhhhhhhhhhhhhhhhhhdhdhdhhdrdhddhdrhddhdrhdhhrdhddhrrhddrs

task path: /Users/lorin/dev/ansiblebook/ch15/playbooks/playbook.yml:5

Using module file /usr/local/lib/python2.7/site-packages/ansible/modules/core/
files/stat.py

<127.0.0.1> SSH: EXEC ssh -C -o ControlMaster=auto -o ControlPersist=60s -o
StrictHostKeyChecking=no -o Port=2222 -o 'IdentityFile=".vagrant/machines/default/
virtualbox/private_key"' -o KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 -o ControlPath=
/Users/lorin/.ansible/cp/ansible-ssh-%h-%p-%r 127.0.0.1 '/bin/sh -c '"'"'(umask
77 && mkdir -p "' echo ~/.ansible/tmp/ansible-tmp-1487128449.23-168248620529755 "
&& echo ansible-tmp-1487128449.23-168248620529755="" echo ~/.ansible/tmp/ansible-
tmp-1487128449.23-168248620529755 ") && sleep 0'"'""!'

<127.0.0.1> PUT /var/folders/g_/523vq691037d10231mmbx1780000gp/T/tmpyOXLAA TO
/home/vagrant/.ansible/tmp/ansible-tmp-1487128449.23-168248620529755/stat.py
<127.0.0.1> SSH: EXEC sftp -b - -C -o ControlMaster=auto -o ControlPersist=60s -o
StrictHostKeyChecking=no -o Port=2222 -o 'IdentityFile=".vagrant/machines/default/
virtualbox/private_key"' -o KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 -o ControlPath=
/Users/lorin/.ansible/cp/ansible-ssh-%h-%p-%r '[127.0.0.1]"'

Sometimes you might need to use -vvvv when debugging a connection issue, in order
to see an error message that the SSH client is throwing. For example, if the host
doesn't have SSH running, you’ll see an error that looks like this:

testserver | FAILED => SSH encountered an unknown error. The output was:
OpenSSH_6.2p2, 0SSLShim 0.9.8r 8 Dec 2011

debugl: Reading configuration data /etc/ssh_config

debugl: /etc/ssh_config line 20: Applying options for *

debugl: /etc/ssh_config line 102: Applying options for *

debugl: auto-mux: Trying existing master

debugl: Control socket "/Users/lorin/.ansible/cp/ansible-ssh-127.0.0.1-
2222-vagrant" does not exist

debug2: ssh_connect: needpriv 0

debugl: Connecting to 127.0.0.1 [127.0.0.1] port 2222.

debug2: fd 3 setting O_NONBLOCK

debugl: connect to address 127.0.0.1 port 2222: Connection refused

ssh: connect to host 127.0.0.1 port 2222: Connection refused

If you have host-key verification enabled, and the host key in ~/.ssh/known_hosts

doesn’t match the host key of the server, then using -vvvv will output an error that
looks like this:

(00QCCRERRRAREAAACCACLACCCREREREREACACCCLALCACARRRACRECAALRARERERAEA

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
(0QQCCRERREAREACACCACLACCCRRREREREACACLCLCLACCCARRRRERECAALRARERERARA

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.

Debugging SSH Issues | 307

The fingerprint for the RSA key sent by the remote host is
C3:99:c2:8f:18:ef:68:fe:ca:86:a9:f5:95:9e:a7:23.

Please contact your system administrator.

Add correct host key in /Users/lorin/.ssh/known_hosts to get rid of this
message.

0ffending RSA key in /Users/lorin/.ssh/known_hosts:1

RSA host key for [127.0.0.1]:2222 has changed and you have requested strict
checking.

Host key verification failed.

If that’s the case, you should delete the offending entry from your ~/.ssh/known_hosts
file.

The Debug Module

We've used the debug module several times in this book. It's Ansible’s version of a
print statement. As shown in Example 16-2, you can use it to print out either the
value of a variable or an arbitrary string.

Example 16-2. The debug module in action

- debug: var=myvariable
- debug: msg="The value of myvariable is {{ var }}"

As we discussed in Chapter 4, you can print out the values of all the variables associ-
ated with the current host by invoking the following:

- debug: var=hostvars[inventory_hostname]

Playbook Debugger

Ansible 2.1 added support for an interactive debugger. To enable debugging, add
strategy: debug to your play; for example:

- name: an example play
strategy: debug
tasks:

If debugging is enabled, Ansible drops into the debugger when a task fails:

TASK [try to apt install a package] khkhkkhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkkkkk*x
fatal: [localhost]: FAILED! => {"changed": false, "cmd": "apt-get update",

"failed": true, "msg": "[Errno 2] No such file or directory", "rc": 2}
Debugger invoked
(debug)

Table 16-1 shows the commands supported by the debugger.

308 | Chapter 16: Debugging Ansible Playbooks

Table 16-1. Debugger commands

Command Description

p var Print out the value of a supported variable

task.args[key]=value Modify an argument for the failed task

vars[key]=value Modify the value of a variable

r Rerun the failed task

d Continue executing the play

q Abort the play and execute the debugger
help Show help message

Table 16-2 shows the variables supported by the debugger.

Table 16-2. Variables supported by the debugger

Command Description

p task The name of the task that failed

p task.args The module arguments

p result The result returned by the failed task
p vars Value of all known variables

p vars[key] Value of one variable

Here’s an example interaction with the debugger:

(debug) p task
TASK: try to apt install a package
(debug) p task.args
{u'name': u'foo'}
(debug) p result
{'_ansible_no_log': False,
'_ansible_parsed': True,
'changed': False,
u'cmd': u'apt-get update',
u'failed': True,
'invocation': {u'module_args': {u'allow_unauthenticated': False,
u'autoremove': False,
u'cache_valid_time': 0,
u'deb': None,
u'default_release': None,
u'dpkg_options': u'force-confdef,force-confold’',
u'force': False,
u'install_recommends': None,
u'name': u'foo',
u'only_upgrade': False,
u'package': [u'foo'],
u'purge': False,
u'state': u'present’,

Playhook Debugger | 309

u'update_cache': False,
u'upgrade': None},
'module_name': u'apt'},

u'msg': u'[Errno 2] No such file or directory',

u'rc': 2}

(debug) p vars['inventory_hostname']

u'localhost'

(debug) p vars

{u'ansible_all_ipv4_addresses': [u'192.168.86.113'],

u'ansible_all_ipv6_addresses': [u'fe80::f89b:ffff:fe32:5e5%awdl0"',
u'fe80::3e60:8f83:34b5:fc17%utund’,
u'fe80::9679:241b:e93:8b7f%utun2'],

u'ansible_architecture': u'x86_64",

While you’'ll probably find printing out variables to be the most useful feature of the
debugger, you can also use it to modify variables and modify arguments to the failed
task. See the Ansible playbook debugger docs for more details.

The Assert Module

The assert module will fail with an error if a specified condition is not met. For
example, to fail the playbook if there’s no eth1 interface:

- name: assert that ethl interface exists
assert:
that: ansible_ethl is defined

When debugging a playbook, it can be helpful to insert assertions so that a failure
happens as soon as any assumption youve made has been violated.

Keep in mind that the code in an assert statement is Jinja2, not
Python. For example, if you want to assert the length of a list, you
might be tempted to do this:

Invalid Jinja2, this won't work!

assert:

that: "len(ports) == 1"

Unfortunately, Jinja2 does not support Python’s built-in len func-
tion. Instead, you need to use the Jinja2 length filter:

assert:
that: "ports]|length == 1"

If you want to check on the status of a file on the host’s filesystem, it’s useful to call the
stat module first and make an assertion based on the return value of that module:
- name: stat /opt/foo

stat: path=/opt/foo
register: st

310 | Chapter 16: Debugging Ansible Playbooks

http://bit.ly/2lvAm8B

- name: assert that /opt/foo is a directory
assert:
that: st.stat.isdir

The stat module collects information about the state of a file path. It returns a dictio-
nary that contains a stat field with the values shown in Table 16-3.

Table 16-3. stat module return values

Field Description

atime Last access time of path, in Unix timestamp format
ctime Creation time of path, in Unix timestamp format
dev Numerical ID of the device that the inode resides on
exists True if path exists

gid Numerical group ID of path owner

inode Inode number

isblk True if path is block special device file

ischr True if path is character special device file

isdir True if path is a directory

isfifo True if path is a FIFO (named pipe)

isgid True if set-group-ID bit is set on file

isink True if path is a symbolic link

isreg True if path is a regular file

issock True if path is a Unix domain socket

isuid True if set-user-ID bit is set on file

mode File mode as a string, in octal (e.g., “1777")

mtime Last modification time of path, in Unix timestamp format
nlink Number of hard links to the file

pw_name Login name of file owner

rgrp True if group read permission enabled
roth True if other read permission enabled
rusr True if user read permission enabled

size File size in bytes, if reqular file

uid Numerical user ID of path owner

wgrp True if group write permission enabled
woth True if other write permission enabled
wusr True if user write permission enabled
Xgrp True if group execute permission enabled
xoth True if other execute permission enabled
Xusr True if user execute permission enabled

The Assert Module | 311

Checking Your Playbook Before Execution

The ansible-playbook command supports several flags that allow you to sanity
check your playbook before you execute it.

Syntax Check

The - -syntax-check flag, shown in Example 16-3, checks that your playbook’s syntax
is valid, but it does not execute it.

Example 16-3. syntax check
$ ansible-playbook --syntax-check playbook.yml

List Hosts

The --1ist-hosts flag, shown in Example 16-4, outputs the hosts that the playbook
will run against, but it does not execute the playbook.

Example 16-4. list hosts
$ ansible-playbook --list-hosts playbook.yml

Sometimes you get the dreaded error:

ERROR: provided hosts list is empty

There must be one host explicitly specified in your inventory, or
you’ll get this error, even if your playbook runs against only the
localhost. If your inventory is initially empty (perhaps because
youre using a dynamic inventory script and haven’t launched any
hosts yet), you can work around this by explicitly adding the fol-
lowing line to your inventory:

localhost ansible_connection=1local

List Tasks

The --1ist-tasks flag, shown in Example 16-5, outputs the tasks that the playbook
will run against. It does not execute the playbook.

Example 16-5. list tasks
$ ansible-playbook --list-tasks playbook.yml

Recall that we used this flag in Example 6-1 to list the tasks in our first Mezzanine
playbook.

312 | Chapter 16: Debugging Ansible Playbooks

Check Mode

The -C and - -check flags run Ansible in check mode (sometimes known as dry-run),
which tells you whether each task in the playbook will modify the host, but does not
make any changes to the server.

$ ansible-playbook -C playbook.yml

$ ansible-playbook --check playbook.yml
One of the challenges with using check mode is that later parts of a playbook might
succeed only if earlier parts of the playbook were executed. Running check mode on

Example 6-28 yields the error shown in Example 16-6 because the task depended on
an earlier task (installing the Git program on the host).

Example 16-6. Check mode failing on a correct playbook

PLAY [Deploy mezzanine] dhhhkhkhhhhhhhhhhhdhhdhhhhhdhddhddhrdhrdhddrdhdhdhdrddhdrrxrsd

GATHERING FACTS khkhhkkhhhhhhhdhhhkhhhhhhhdhhhhhhdhhdhhdhdhddhhddhddhdhdhdrdhddhrrhddrsx

ok: [web]

TASK: [install apt packages] *hkhkhkhkhhkhhkhhhhkhhhhdhdhdhdhdhdhdhdrdhdhdrkdrdrdrd
changed: [web] => (item=git,libjpeg-dev,libpqg-dev,memcached,nginx,postgresql,py
thon-dev,python-pip,python-psycopg2,python-setuptools,python-virtualenv,supervi
sor)

TASK: [Check Out the repository on the host] kkhkkhkkkhkkkhkkkhkkhkkhkkhhkhkkhkkhkkhkkhhkhkkhkkhkk
failed: [web] => {"failled": true}
msg: Failed to find required executable git

FATAL: all hosts have already failed -- aborting

See Chapter 12 for more details on how modules implement check mode.

Diff (Show File Changes)

The -D and -diff flags output differences for any files that are changed on the remote
machine. It’s a helpful option to use in conjunction with - -check to show how Ansi-
ble would change the file if it were run normally:

$ ansible-playbook -D --check playbook.yml
$ ansible-playbook --diff --check playbook.yml

If Ansible would modify any files (e.g., using modules such as copy, template, and
lineinfile), it will show the changes in .diff format, like this:

TASK: [set the gUn'LCOI"n COﬂf'Lg flle] hhkkhkhhkhkhhhhdhhhdhhhdhhdhddhhddhhddhdddhrdxd
--- before: /home/vagrant/mezzanine-example/project/gunicorn.conf.py

+++ after: /Users/lorin/dev/ansiblebook/ch06/playbooks/templates/gunicor
n.conf.py.j2

Checking Your Playbook Before Execution | 313

@@ '1:7 +1:7 @@
from __future__ import unicode_literals
import multiprocessing

bind = "127.0.0.1:8000"
workers = multiprocessing.cpu_count() * 2 + 1

-loglevel = "error"
+loglevel = "warning"
proc_name = "mezzanine-example"

Limiting Which Tasks Run

Sometimes you don’t want Ansible to run every single task in your playbook, particu-
larly when you're first writing and debugging the playbook. Ansible provides several
command-line options that let you control which tasks run.

Step

The --step flag, shown in Example 16-7, has Ansible prompt you before running
each task, like this:

Perform task: install packages (y/n/c):

You can choose to execute the task (y), skip it (n), or tell Ansible to continue running
the rest of the playbook without prompting you (c).

Example 16-7. step

$ ansible-playbook --step playbook.yml

Start-at-Task

The --start-at-task taskname flag, shown in Example 16-8, tells Ansible to start
running the playbook at the specified task, instead of at the beginning. This can be
handy if one of your tasks failed because there was a bug in one of your tasks, and you
want to rerun your playbook starting at the task you just fixed.

Example 16-8. start-at-task
$ ansible-playbook --start-at-task="install packages" playbook.yml

Tags

Ansible allows you to add one or more tags to a task or a play. For example, here’s a
play that’s tagged with foo and a task that’s tagged with bar and quux:

314 | Chapter 16: Debugging Ansible Playbooks

- hosts: myservers
tags:

- foo

tasks:

- name: install editors
apt: name={{ item }}
with_items:

- vim
- emacs
- nano

- name: run arbitrary command
command: /opt/myprog
tags:
- bar
- quux

Use the -t tagnames or --tags tagnames flag to tell Ansible to run only plays and
tasks that have certain tags. Use the - -skip-tags tagnames flag to tell Ansible to skip
plays and tasks that have certain tags. See Example 16-9.

Example 16-9. Running or skipping tags

$ ansible-playbook -t foo,bar playbook.yml
$ ansible-playbook --tags=foo,bar playbook.yml
$ ansible-playbook --skip-tags=baz,quux playbook.yml

Limiting Which TasksRun | 315

CHAPTER 17
Managing Windows Hosts

Ansible is also known as SSH configuration management on steroids. Historically,
Ansible has had a strong association with Unix and Linux, and we often see evidence
of this in things like variable naming (e.g., ansible_ssh_host, ansible_ssh_connec
tion, and sudo). However, Ansible has had built-in support for various connection
mechanisms since the early days of the project.

Supporting an alien in terms of operating systems—as Windows is to Linux—was not
only a matter of figuring out how to connect to Windows, but also making internal
naming more operating-system generic (e.g., renaming variables ansible_ssh_host
to ansible_host, and sudo to become).

Ansible introduced beta support of Microsoft Windows in version
1.7, but support has been out of beta only since version 2.1. In
addition, the only way to run Ansible from a Windows host (i.e., to
use a Windows-based control machine) is to run Ansible within
the Windows Subsystem for Linux (WSL).

In terms of module contributions, Windows module contributions have been lagging
behind a bit compared to the Linux community contributions.

Connection to Windows

To add Windows support, Ansible did not depart from its path by adding an agent on
Windows—and in my opinion, this was a great decision. Ansible uses the integrated
Windows Remote Management (WinRM) functionality, a SOAP-based protocol.

WinRM is our first dependency, and we need to get it covered in Python by installing
the appropriate package on the managing host:

317

$ sudo pip install pywinrm

By default, Ansible will try to connect by SSH to a remote machine, which is why we
have to tell Ansible in advance to change the connection mechanism. Usually, it is a
good idea to put all of our Windows hosts into an inventory group. The particular
group name you choose doesn’t matter, but we will use the same group name later in
our playbooks for referencing the hosts:

[windows]
winO1.example.com
win02.example.com

After this, we add the connection configuration into group_var/windows so all hosts
of this group will inherit this configuration.

In 2015, Microsoft announced in its blog work on native Secure
Shell (SSH) integration. This means that Ansible most certainly
won't need a different connection configuration for Windows hosts
in the future.

As mentioned earlier, the protocol is SOAP based and relies on HTTP in this case. By
default, Ansible attempts to establish a secured HTTP (HTTPS) connection on port
5986 unless the ansible_port is configured to 5985.

ansible_user: Administrator

ansible_password: 2XLL43hDpQ1z
ansible_connection: winrm

To use a custom port, for HTTPS or HTTP, configure the port and the scheme to use:

ansible_winrm_scheme: https
ansible_port: 5999

PowerShell

PowerShell on Microsoft Windows is a powerful command-line interface and script-
ing language built on top of the NET framework and provides full management
access not only from the local environment but also by using remote access.

Ansible modules for Windows are all written in PowerShell as PowerShell scripts.

In 2016, Microsoft open sourced PowerShell under the MIT
license. The source and binary packages for recent versions of
macOS, Ubuntu, and CentOS can be found on GitHub. At the time
of writing, the stable version of PowerShell is 5.1.

318 | Chapter 17: Managing Windows Hosts

https://blogs.msdn.microsoft.com/powershell/2015/06/03/looking-forward-microsoft-support-for-secure-shell-ssh/
https://github.com/PowerShell/PowerShell

Ansible expects at least PowerShell version 3 to be installed on the remote machine.
PowerShell 3 is available for Microsoft Windows 7 SP1, Microsoft Windows Server
2008 SP1, and later.

There is no requirement on the control machine, the machine we
run Ansible from, to have PowerShell installed!

However, there were bugs in version 3, and it is necessary to use the latest patches
from Microsoft if you have to stick with version 3 for any reason.

To simplify the process of installation, upgrade, setup, and configuring PowerShell
and Windows, Ansible provides a script.

To get started quickly, run the few shell commands as in Example 17-1, and you are
ready to go. The script does not break anything if we run it multiple times.
Example 17-1. Setting up Windows for Ansible

wget http://bit.ly/1rHMn7b -OutFile .\ansible-setup.psil
.\ansible-setup.psi

wget is an alias for Invoke-WebRequest, which is a built-in of Pow-
erShell.

To see the version of PowerShell installed, run the following command in a Power-
Shell console:

$PSVersionTable

You should see the output as in Figure 17-1.

PowerShell | 319

https://github.com/ansible/ansible/blob/devel/examples/scripts/ConfigureRemotingForAnsible.ps1

X Administrator: Windows PowerShell

indows Fowershe
Copyright (C) 2013 Microsoft Corporation. All rights reserved.

PS C:\lUsers™fidninistrator> $PSVersionTable

PSUersion
ISManStacklersion
SerializationVersion
CLRVersion

BuildUersion
PSCompatibleVersions
PSRemotingProtocelUersion

PS C:\lUsers‘fidministrator> _

< m >

Figure 17-1. PowerShell version determination

We have made the connection configuration, so let’s get started with a simple ping via
win_ping to our Windows host. Similar to the ping on GNU/Linux or Unix, this is
not an ICMP ping; it is a test for establishing a connection by Ansible:

$ ansible windows -1 hosts -m win_ping

If we get an error like the following in Example 17-2, we must either get a valid public
TLS/SSL certificate or add a trust chain for an existing internal certificate authority
(CA).

Example 17-2. Error resulting from an invalid certificate

$ ansible -m win_ping -1 hosts windows
win01.example.com | UNREACHABLE! => {

"changed": false,

"msg": "ssl: (\"bad handshake: Error([('SSL routines', 'tls_process_server_certi
ficate', 'certificate verify failed')],)\",)",

"unreachable": true

}

To disable TLS/SSL certificate validation at our own risk:

ansible_winrm_server_cert_validation: ignore

320 | Chapter 17: Managing Windows Hosts

If we see output similar to Example 17-3, we have successfully tested the connection.

Example 17-3. Result of a working connection

$ ansible -m win_ping -1 hosts windows
winO1l.example.com | SUCCESS => {
"changed": false,
"bing": "pong"
}

Windows Modules

Ansible modules for Windows are prefixed with win_. At the time of writing, there
are over 40 Windows modules, of which 19 are core modules. The online documenta-
tion has an overview of all available Windows modules.

One exception regarding the module naming: to get Ansible facts
from Windows, the module must not be run as win_setup but as
setup: ansible -m setup -i hosts windows.

Our First Playbook

Now that we have a new Windows host, we should add it to our monitoring system.
Let’s create a playbook in which we will use some Windows modules.

Our monitoring of choice is the well-known open source Zabbix monitoring soft-
ware, for which we need to install zabbix-agentd on our Windows host.

Let’s create a simple playbook, as in Example 17-4, in which we install the Zabbix
Agent.

Example 17-4. Playbook for installing Zabbix Agent on Windows

- hosts: windows
gather_facts: yes
tasks:
- name: install zabbix-agent
win_chocolatey: (1)
name: zabbix-agent

- name: configure zabbix-agent
win_template:
src: zabbix_agentd.conf.j2
dest: "C:\ProgramData\zabbix\zabbix_agentd.conf"

Windows Modules | 321

http://docs.ansible.com/ansible/list_of_windows_modules.html
http://docs.ansible.com/ansible/list_of_windows_modules.html
http://www.zabbix.com

notify: zabbix-agent restart

- name: zabbix-agent restart
win_service:
name: Zabbix Agent
state: started
handlers:
- name: zabbix-agent restart
win_service:
name: Zabbix Agent
state: restarted

© win_chocolatey uses chocolatey, an open source package manager for Windows
under the Apache License 2.0.

The corresponding playbook in Example 17-4 doesn’t look much different from what
we would have implemented for Linux, except the modules used.

For installing the software, we used the chocolatey package. As an alternative module,
win_package, could have been used.] For configuration, we used the win_template
module, in which we were able to use the facts gathered (e.g., ansible_hostname) for
configuration.

Of course, zabbix_agentd.conf must be copied from a Windows host in advance,
before we can create a template of it. The template language is identical to the tem
plate module: Jinja2.

The last module used, win_service, does not require further explanation.

Updating Windows

One of an administrator’s daily hassles is to install software security updates. It is one
of these tasks no administrator really likes, mainly because it is boring even though it
is important and necessary, but also because it can cause a lot of trouble if the update
goes wrong. This is why it can make sense to disable automated installation of secu-
rity updates in our operating system settings and test the updates before we run the
updates in production environments.

Ansible helps to automate software installation with one simple playbook, shown in
Example 17-5. The playbook not only installs security updates but also reboots the
machine afterward if necessary. Last but not least, it informs all users to log out
before the system goes down.

322 | Chapter 17: Managing Windows Hosts

https://chocolatey.org/

Example 17-5. Playbook for installing security updates

- hosts: windows
gather_facts: yes
serial: 1 @
tasks:
- name: install software security updates
win_updates:
category_names:
- SecurityUpdates
- CriticalUpdates
register: update_result

- name: reboot windows if needed
win_reboot:
shutdown_timeout_sec: 1200 (2]

msg: "Due to security updates this host will be rebooted in 20 minutes." (3]

when: update_result.reboot_required

@ Use serial for a rolling update.
@ Allow some time to let the OS install all updates properly.

© Inform users on the system that it will be rebooted.

Let’s give it a shot, as shown in Example 17-6.

Example 17-6. Playbook for installing security updates

$ ansible-playbook security-updates.yml -1 hosts -v
No config file found; using defaults

PLAY [W'i.ndOWS] EE R R R R R R R R R R R R R R

TASK [Gathering Facts] khkkkkkhkhkhhkhkhhkhkhkhhhhhkhdhhhhhkhkhdhhhhhkhkhdhhhhhkhkhdkhkhkhkkhddkkkkkx*%x

ok: [win@1.example.com]

TASK [-'Lnsta'l_l Software Security updates] Fhhkhkhhhhrrhhhdddrdhdddddhhdddrddhdddds
ok: [winOl1l.example.com] => {"changed": false, "found_update_count": 0, "install
ed_update_count": 0, "reboot_required": false, "updates": {}} (1]

TASK [reboot windows if needed] hhkhkhhhhhhhhhhhhhhhhhdhhhhddhrdhddhrdkddhrrdrddrr

skipping: [winO1l.example.com] => {"changed": false, "skip_reason": "Conditional
result was False", "skipped": true} (2]

PLAY RECAP dkkkkhkhkkkhhkhkhkkkkhhkhkkhhkhkhkkhhkhkhkkhhkhkkhhhkhkkkhkhkhkkkhkhkkkkhkhkhkkkhkhkhkkkkk

win@1.example.com : ok=2 changed=0 unreachable=0 failed=0

Updating Windows

323

©® win_updates returns false for reboot_required.

©® Tasks are skipped because the condition when: update_result
.reboot_required returns false.

That worked! Unfortunately, for once we do not have any pending security updates,
and as a result the reboot task was skipped.

Adding Local Users

In this part of the chapter, we are going to create users and groups on Windows. You
might think that this is a solved problem: just use Microsoft Active Directory. How-
ever, being able to run Windows anywhere in the cloud and not rely on a directory
service can be advantageous for some use cases.

In Example 17-7, we are going to create two user groups and two users based on a list
of dictionaries. In a more production-like Ansible project, the user dictionary would
be defined in group_vars or host_vars, but for better readability we keep it in the
playbook.

Example 17-7. Manage local groups and users on Windows

- hosts: windows
gather_facts: no
tasks:
- name: create user groups
win_group:
name: "{{ item }}"
with_1items:
- application
- deployments

- name: create users
win_user:
name: "{{ item.name }}"
password: "{{ item.password }}"
groups: "{{ item.groups }}"
password_expired: "{{ item.password _expired | default(false) }}" (1)
groups_action: "{{ item.groups_action | default('add') }}" (2]
with_1items:
- name: gil
password: t31Cj1hu2Tnr
groups:
- Users
- deployments
- name: sarina
password: S3cr3t!
password_expired: true (3]

324 | Chapter 17: Managing Windows Hosts

groups:
- Users
- application

© The optional password expiration is defaulted to unexpired if not set in the user
dictionary.

® The win_user’s default behavior of groups is replace: the user will be removed
from any other group they are already a member of. We change the default to add
to prevent any removal. However, we can overwrite the behavior per user.

© We expire Sarina’s password. She needs to define a new password next time she
logs on.

Let’s run it:
$ ansible-playbook users.yml -i hosts

pLAY [WindOWS] kkkkhkhkkkkhkhkkkhkhkhkkkhhkhkkkhhkhkkhkhhkhkkhhkhkhkkhhkhkkkkhkhkhkkkkhkhkhkkkkk

TASK [Create user groups] e R
changed: [win0@1.example.com] => (item=application)
changed: [win®@1.example.com] => (item=deployments)

TASK [Create USEFS] khkhkkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhdhhhhhbhhhhhhrrhdrhhdrhhrrd
changed: [win0@1.example.com] => (item={u'password': u't31Cj1hU2Tnr', u'name':
u'gil', u'groups': [u'Users', u'deployments']})

changed: [win0@1l.example.com] => (item={u'password_expired': True, u'password':
u'S3cr3t!', u'name': u'sarina', u'groups': [u'Users', u'application']})

pLAY RECAP kkkkkhkhkkkkhhkhkhkkkhkhkhkkkkhhkhkkhhkhkhkkhhkhkhkkhhkhkkkhkhkhkkkhkhkhkkkkhkhkkkkhkhkhkkkkk

win@1.example.com : ok=2 changed=2 unreachable=0 failed=0
OK, that seems to have worked, but let’s verify it.

As we can see in Figure 17-2, the groups are there. Great!

Adding Local Users | 325

File Action \View Help
L2

Computer Management

& Computer Management (Local
4k Syster Tools
I '.E-" Task Scheduler
b [4] Event Wiewer
I> 2| Shared Falders
a4 B Local Users and Groups
| Users
| Groups
) Perfarmance

=y Device Manager
4 3 Storage
b 4l indows Server Backup
= Disk Managernent

b Fh Services and Applications

Mame
#elaccess Cantral Assist..,
#e Administrators
$Backup Operators

Pl Certificate Service DC...
¥ Cryptographic Operat...
#/Distributed COM Users
$eBvent Log Readers

& Guests

#e/Hyper-v Administrators
ENs_IusRs

PeINetwork Configuratio,..
#IPerfarmance Log Users
#ePerformance Monitor ..,
PP ower Users

#elprint Operators

$IRDS Endpoint Servers
$IRDS Management Ser..,
28RS Rernote Access S..
#e/Remote Desktop Users
P Rernote Management. .
&Replicator
sers

$elapplication
Pl deployments
nRMRemote\!

Description

Mernbers of this group can remot..,
Adrministratars have complete an...
Backup Operators can override se..
Mernbers of this group are allowe...
Mermbers are authorized to perfor...
Mermbers are allowed to launch, a..,
Members of this group can read e..,
Guests have the sarme access as m..
hembers of this group have com..,
Built-in group used by Internet Inf..,
Mernbers in this group can have 5.,
Wembers of this graup may sche...
Members of this group can acces.,
Power Users are included for back...

er5 in this group are grante,..
ers of this group can acces..,
upparts file replication in 3 darm...

sers are prevented from making ..

embers of this group can acces...

Actions
Groups =
Mare Ackions 4

Figure 17-2. New groups have been created

Lets check the users as well, and whether all settings have been applied. In
Figure 17-3, we see that Ansible has created our users, and sarina has to change her
password at next logon—perfect!

326

| Chapter 17: Managing Windows Hosts

23 Computer Management = =] =
File Action View Help
YRR TEEN
A& Computer Management (Local | Name Full Name Description Actions
PR Systemn Tools Aledministrator Built-in account for administering... Mselrs "
b (5) Task Scheduler o 5il
b {8 Event Viewer P4 Guest Built-in account for guest access t. Mare Actians 4
b @] Shared Folders & sarina sarina na -
4 % Local Users and Groups sarina Properties 7
S Users More Actions »
| Graups Femote contol | Remote Desktop Services Profle | Diakin |
b () Performanc, Generdl | MemberOf | Profle | Envionment | Sessione |
& Device Ger
4 23 Storage k sarina
b i wis Server Backu] _
127 5k Management
b F Services and Bpplications Full name [arine |
Desciption:
T
£ & User must change password at nesxt lagon
| [User cannat change password
[Account is disabled
Account is locked out
- = 5 o< || caeel || sy [Hep

Figure 17-3. New users have been created

Conclusion

Ansible makes managing Microsoft Windows hosts almost as simple as with Linux
and Unix.

Microsoft's WinRM works well, even though the execution speed is not as fast as with
SSH. It will be interesting to see how the execution time will improve with native SSH
support for Windows and PowerShell.

The Ansible modules for Windows are usable even though the community around
them is still small. Nevertheless, Ansible is already the simplest tool for orchestrating
IT across operating system borders.

Conclusion | 327

CHAPTER 18
Ansible for Network Devices

Managing and configuring network devices always makes me feel nostalgic. Log in to
a console by telnet, type some commands, save the configuration to startup config,
and youre done. This workflow hasn't changed much since the introduction of these
devices. OK, to be fair, there were some changes, such as supporting SSH.

For a long time, we basically had two types of management strategies for network
devices:

« Buy an expensive proprietary software that configures your devices.

o Develop minimal tooling around your configuration files: back up your configs
locally, make some changes by editing them, and copy the result back onto the
devices through the console.

However, in the last few years, we have seen some movement in this space. The first
thing I noticed was that network device vendors have started to create or open their
APIs for everyone. The second thing is that the so-called DevOps movement did not
stop going lower down the stack, to the core: hardware servers, load-balancer appli-
ances, firewall appliances, network devices, and even routers.

In my opinion, Ansible for network devices is the one of the most promising solu-
tions to manage network devices, for three reasons:

« Ansible supports network devices with console-only access through SSH, and is
not limited to vendor APIs.

+ Any network operator can get productive in hours or less, as the way the modules
are written is similar to what a network operator is used to doing.

« Ansible is open source software. We can use it here and now!

329

Status of Network Modules

Before we get our hands dirty, some words of warning: the implementation of net-
work modules is pretty new, still in development, and marked as preview by Ansible.
Things may change (and improve) over time. But this should not hold us back; we
can already take advantage of what’s there.

List of Network Vendors Supported

The first question you’ll probably ask is, is my preferred vendor or network operating
system supported? Here is the incomplete but already impressive list of supported
network vendors and operating systems:

« Cisco ASA, 10S, IOS XR, NX-OS
o Juniper Junos OS
o Dell Networking OS 6, 9, and 10
o Cumulus
o A10 Networks
« F5 Networks
o Arista EOS
« VyOS
If your vendor is not on this list, please check the documentation for the latest list

because development is proceeding quickly! At the time of writing, Ansible contains
about 200 modules related to network devices.

Preparing Our Network Device

Before we can start playing with the network modules, we obviously need a network
device.

I asked for a network device, and all I got was this, well, not lousy, but most likely
outdated, or let’s say old and noisy Cisco Catalyst 2960G Series Layer 2 switch run-
ning IOS. The device is End-of-Life since 2013. While the device might not be that
remarkable, it is remarkable that this old thing is still manageable through Ansible!

First things first: before we can configure the switch by using Ansible, we must be
able to connect to it. And here comes our first obstacle, as the device listens to telnet
only when configured with the factory settings. We must bring it to the point that it
listens for SSH connections. We really should not be using the telnet protocol for pro-
duction work.

330 | Chapter 18: Ansible for Network Devices

Ansible is not able to connect to network devices via telnet.

I am sure some of you may already have configured your switches and routers to lis-
ten to SSH. That said, I wouldn’t call myself a typical network engineer; it took a
while to figure out how to enable SSH on my Catalyst.

Enable SSH Authentication

For enabling SSH, we need to carry out a few steps. The commands we are going to
use should work on most IOS devices, but they can vary a bit. However, this is noth-
ing to worry about, as we can always get the options available on the console by typ-
ing a question mark (?).

Our Cisco switch is factory reset, and I put it into Express Setup mode. As I am on
Linux, logging into the device by telnet is just one command away; see Example 18-1.

Example 18-1. Log in by telnet

$ telnet 10.0.0.1

Trying 10.0.0.1...
Connected to 10.0.0.1.
Escape character is '~]'.
Switch#

To configure the device, we need to get into configuration mode, just as in
Example 18-2. Sounds obvious, doesn't it?

Example 18-2. Switch to configuration mode

switchl#configure

Configuring from terminal, memory, or network [terminal]? terminal

Enter configuration commands, one per line. End with CNTL/Z.

The first configuration is to give it an IP, as shown in Example 18-3, so we will be able
to log in afterward when all is configured.

Example 18-3. Configure a static IP

switchi(config)#interface vlan 1
switchl(config-if)#ip address 10.0.0.10 255.255.255.0

In order to generate an RSA key, we need to give it a hostname and a domain name,
as shown in Example 18-4.

Preparing Our Network Device | 331

Example 18-4. Set a hostname and domain

Switch(config)#hostname switchil
switchl(config)#ip domain-name example.net
switchi(config)#

Once this is done, we are able generate the crypto key as shown in Example 18-5. At
the time of this writing, the documentation recommends that we should not generate
RSA keys with a size smaller than 2,048 bits.

Example 18-5. Generate RSA bits—this can take a while

switchl(config)#crypto key generate rsa

The name for the keys will be: switchl.example.net

Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 4096
% Generating 4096 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 164 seconds)

switchi(config)#

You may notice that we are connected to the device by telnet without any authentica-
tion. SSH, on the other hand, will ask for a username and password.

The next step, as shown in Example 18-6, is to add a new user with a username and
password. Additionally, we grant it privilege level 15 (highest level).

You can set the password in two ways, as secret or as password.
The password will store it in plain text, while secret will store it as
\ a hash sum, depending on your device and firmware version.

Example 18-6. Add a new user admin
switchl(config)#username admin privilege 15 secret s3cr3t

The last step, as shown in Example 18-7, is to configure the authentication model.
Our switch is running in the old model per default. In this mode, it will prompt only
for the password.

However, we want to be prompted not only for password, but also for the username;
this is called the new model of authentication, authorization, and accounting (aaa).

332 | Chapter 18: Ansible for Network Devices

Example 18-7. Configure the authentication model
switchl(config)#aaa new-model

In addition, we are also going to set a password for enable in Example 18-8 just to
demonstrate that Ansible can handle this as well.

Example 18-8. Set a password for enable
switchl(config)#enable secret 3n4bl3s3cr3t

Once this all is done, there is no need to run this insecure plain-text telnet protocol
anymore, so let’s disable it, as we do in Example 18-9, on any of our 16 virtual
terminals.

Example 18-9. Disable telnet on the device

switchi(config)#line vty 0 15
switchl(config-line)#transport input ?
all All protocols
none No protocols
ssh TCP/IP SSH protocol
telnet TCP/IP Telnet protocol

switchil(config-1line)#transport input ssh
switchl(config-line)#exit

That’s it. Let’s end the config and save the config as shown in Example 18-10. Note
that after this step, you may lose your existing connection, but this is not a problem.
Example 18-10. Save to config to be used as startup config

switchl#copy running-config startup-config
Destination filename [startup-config]?

It is time to verify that SSH is set up and telnet is disabled, as shown in
Example 18-11.

Example 18-11. Log in by SSH

$ telnet 10.0.0.10

Trying 10.0.0.10...

telnet: Unable to connect to remote host: Connection refused
$ ssh admin@10.0.0.10

Password:

switcho1>

Preparing Our Network Device | 333

Great, it works!

How the Modules Work

Before we get to our first playbook, let’s step back and talk a bit about Ansible mod-
ules. A simplified view of how Ansible works when running a playbook is that the
module used in the task gets copied to the target machine and executed there.

When we look back to the network modules, this procedure would not work for a
network device. They usually don't have a Python interpreter installed, or at least it is
not usable for us. That is why network modules work a bit differently than ordinary
Ansible modules.

We can compare them with modules dealing with HTTP APIs. Ansible modules
using HTTP APIs are usually executed locally, as they run the Python code locally in
which they talk by HTTP to the API. Network modules work pretty much the same
way, except they do not talk HT'TP but with a console!

Our First Playbook

In our first playbook, I plan to keep it simple, changing the hostname.

Because our network device is running the Cisco IOS operating system, we are going
to use the tos_config module, which manages Cisco IOS configuration sections.

Let’s create the first task, ios_config, in our playbook, as shown in Example 18-12.

Example 18-12. Set the hostname on Cisco Catalyst

- hosts: localhost
gather_facts: no
connection: local @
tasks:

- name: set a hostname
ios_config:
lines: hostname swil
provider:
host: 10.0.0.10 @
username: admin ©
password: s3cr3t (4)
authorize: true ©
auth_pass: 3n4bl3s3cr3t (6]

© Set the connection to local, so every task is handled by Ansible, just like a local
action.

334 | Chapter 18: Ansible for Network Devices

© 6 606 o ©

The domain name or IP address that our network device is reachable at

The username to log in by SSH into the device

Password user for login into the device

With authorize, we tell the module to execute the command in privilege mode.

And also pass the module the password to get into privilege mode

Instead of passing the module arguments username, password,
authorize, and auth_pass with each task, the following environ-
ment variables can be defined and will be used as a replacement:
ANSIBLE_NET_USERNAME, ANSIBLE_NET_PASSWORD, ANSIBLE_NET_
AUTHORIZE, and ANSIBLE_NET_AUTH_PASS.

These can help to reduce the boilerplate on each task. Keep in mind
that these environment variables will be read for several network
modules. However, each variable can always be overwritten by
explicitly passing the module arguments, just as we did.

Is this it? Indeed, it is. Let’s run this playbook:

$ ansible-playbook playbook.yml -v
No config file found; using defaults
[WARNING]: Host file not found: /etc/ansible/hosts

[WARNING]: provided hosts list is empty, only localhost is available

PLAY [localhost] dkhkhkkkkkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhhhkhkhhkhkhkhkhkkkk

TASK [Set a hostname] hhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhkhhhhhkhkhhkhkhkhkhkkkk

changed: [localhost] => {"changed": true, "updates": ["hostname sw1"],
"warnings": []}

PLAY RECAP hhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhkhhhhhkhkhhhhhkhhkhhkhkhkhkkkk

localhost . ok=1 changed=1 unreachable=0 failed=0

Looks like it worked, but to verify, we log in to the device and double-check:

$ ssh admin@10.0.0.10
Password:

swil>

Well, that did indeed work! We successfully executed our first playbook for our Cisco
Catalyst.

Our First Playbook | 335

Network modules are written to support idempotency. We can exe-
cute our playbook as many times as we want without changing and
breaking anything!

Inventory and Variables for Network Modules

You may notice that the host target in our last playbook was defined as localhost. If
we own a farm of Cisco Catalyst switches, creating a playbook for each with target
localhost would not scale well and wouldn't be flexible enough, since we probably
need different configurations and as a result different Ansible variables for each net-
work device.

Let’s go ahead the way we are familiar with and put the network devices into a static
inventory file in Example 18-13 and save it as ./network_hosts.

Example 18-13. Hosts file containing our switches

[1os_switches]
swl.example.com

We are now able to change the playbook target to ios_switches just the way we do in
Example 18-14.

Example 18-14. Set the hostname on Cisco Catalyst

- hosts: ios_switches (1)
gather_facts: no
connection: local
tasks:

- name: set a hostname
ios_config:
lines: hostname swil
provider:
host: 10.0.0.10
username: admin
password: s3cr3t
authorize: true
auth_pass: 3n4bl3s3cr3t

© Use ios_switches as target

Further, since we now have an inventory, we are able to use some internal Ansible
variables. The variable inventory_hostname_short contains the host-part inventory

336 | Chapter 18: Ansible for Network Devices

item (e.g., swl in swl.example.com). As a result, we are able to simplify our playbook
as in Example 18-15.

Example 18-15. Use inventory_hostname_short for configuration

- hosts: ios_switches
gather_facts: no
connection: local
tasks:
- name: set a hostname
ios_config:
lines: hostname {{ inventory_hostname_short }} (1)
provider:
host: 10.0.0.10
username: admin
password: s3cr3t
authorize: true
auth_pass: 3n4bl3s3cr3t

©® We make use of inventory_hostname_short.

Local Connection

It is a general pattern for network devices that playbooks always need to be executed
with a local connection.

We take this setting away from the playbook and put it in a group_vars/ios_switches
file as shown in Example 18-16.

Example 18-16. Group variable file for ios_switches

ansible_connection: local

Host Connection

When we look again at our playbook Example 18-15, we should also remove the con-
figuration parameters of ios_config, which are likely different on each network
device (e.g., the connection address host).

Much as we did for the hostname, we use an internal variable; this time it’s inven
tory_hostname. In our case, inventory_hostname corresponds to the fully qualified
domain name (FQDN) swl.example.com. When this domain is resolvable by our
name servers, this would be all we need. However, while we are still developing our
setup, this might not be the case.

Inventory and Variables for Network Modules | 337

To not rely on the DNS entry, we make it a bit more flexible and create a variable
net_host that is used for the connection. As a fallback, inventory_hostname should
be used in case net_host is not defined.

This may sound a bit complicated, but the implementation is pretty simple. Have a
look at Example 18-17.

Example 18-17. Use variable for the connection

- hosts: ios_switches
gather_facts: no
tasks:
- name: set a hostname
ios_config:
lines: hostname {{ inventory_hostname_short }}
provider:
host: "{{ net_host | default(inventory_hostname) }}" (1)
username: admin
password: s3cr3t
authorize: true
auth_pass: 3n4bl3s3cr3t

@ Use net_host variable and fall back to inventory_hostname variable for the
connection.
Usually, it is a good practice to put host variables into hosts_vars.

Because this setting is somewhat related to connection, it is probably appropriate to
put it into the inventory file ./network_hosts as an inventory variable, just like
Example 18-18.

Example 18-18. Add net_host to corresponding hosts entry

[los_switches]
swl.example.com net_host=10.0.0.10

Authentication Variables

As a final step, we use variables for all authentication-related configurations. This
provides the most flexibility.

The authentication configurations can be placed in group_vars in case all network
devices in that group share the same configuration, and this is what we are going to
do in Example 18-19.

338 | Chapter 18: Ansible for Network Devices

Example 18-19. Group variable file for ios_switches

ansible_connection: local
net_username: admin
net_password: s3cr3t
net_authorize: true
net_auth_pass: 3n4b13s3cr3t

Even when a few network devices have a different authentication configuration, these
can be overwritten on the hosts_vars level.

Save the Config

It is time to save the configuration and make sure it will be used next time the device
is rebooted. Luckily, the only thing to be added to our ios_config task is the parame-
ter save with the value true.

For those of us who like to store backups, Ansible handles that as well. The Boolean
parameter backup indicates that the running config should be backed up before
applying any changes.

The backup will be downloaded into a file to the local directory backup beside your
playbooks on the control host, where we run Ansible from. In case the directory
backup has not yet been created, Ansible will create it for us:

$ 1s backup/
switchl_config.2017-02-19@17:14:00

The backup will contain the running config, not the startup config.

Our version of our playbook has now changed to Example 18-20.

Example 18-20. Final version of playbook, set hostname on Catalyst

- hosts: ios_switches
gather_facts: no
tasks:
- name: set a hostname
ios_config:
lines: hostname {{ inventory_hostname_short }}
provider:
host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}" (1]

Inventory and Variables for Network Modules | 339

password: "{{ net_password | default(omit) }}" (1]
authorize: "{{ net_authorize | default(omit) }}" (1)
auth_pass: "{{ net_auth_pass | default(omit) }}" (1)
backup: true (2]
save: true ©

All these variables can be set on group_vars or host_vars level.
Back up the running config into ./backup.

Saves running-config to startup-config on the device.

The parameters backup and save are handled like actions. These
actions get executed even if no changes have been applied. I also
noticed that the backup action does not report changed=True and
that existing backups are automatically deleted before creating new
ones.

Use Configs from a File

Working with the lines parameter is great for a few config tweaks. However, the way
I am used to managing devices is to have a full copy of the config saved locally as a
file. I make my modifications in the file, and copy it back into the device.

Fortunately, tos_config has another parameter for config files to the device: the src
parameter. This parameter allows us to have large static configuration parts as the file
ios_init_template.conf, as we see in Example 18-21.

Example 18-21. Example of a static IOS config as file

no service pad

service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
boot-start-marker

boot-end-marker

aaa new-model

|

clock timezone CET 1 0

clock summer-time CEST recurring last Sun Mar 2:00 last Sun Oct 3:00
|

system mtu routing 1500

|

vtp mode transparent

|

ip dhcp snooping vlan 10-20

ip dhcp snooping

340 | Chapter 18: Ansible for Network Devices

no ip domain-lookup

1

1

spanning-tree mode rapid-pvst
spanning-tree extend system-id
1
vlan internal allocation policy ascending
1

interface Vlani

no ip address

no ip route-cache

shutdown

|

ip default-gateway 10.0.0.1

no ip http server

no ip http secure-server

|

snmp-server community private
snmp-server community public RO
snmp-server location earth
snmp-server contact admin@example.com
1

ntp server 10.123.0.5

ntp server 10.100.222.12
!

No worries—I won't go through all these configurations. Instead, let's come back to
our playbook of the previous section and extend it as in Example 18-22, including
adding the task for using our static config from a file.

We now have two tasks configuring our network device. Using backup at each task
would cause the device to make too many intermediate backups. We want only one
backup of the running config, the one before any modification.

That is why we created an additional task just for the backup task at the beginning of
the playbook. For the same reason, we added a handler for the save to run it only
once and when something has changed.

Example 18-22. Use src with a static config file

- hosts: ios_switches
gather_facts: no
tasks:
- name: backup the running config
ios_config:
backup: true
provider:
host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}"

Use Configs fromaFile | 341

password: "{{ net_password | default(omit) }}"
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"

- name: init the static config
ios_config:
src: files/ios_init_config.conf (1]
provider:
host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}"
password: "{{ net_password | default(omit) }}"
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"
notify: save the running config

- name: set a hostname
ios_config:
lines: hostname {{ inventory_hostname_short }}
provider:
host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}"
password: "{{ net_password | default(omit) }}"
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"
notify: save the running config (2]

handlers:
- name: save the running config
ios_config:
save: true
provider:
host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}"
password: "{{ net_password | default(omit) }}"
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"

© Read an IOS config from a file located in files/ios_init_config.conf.

® Notify a handler to save the config.

At this point, we are already able to mix static and dynamic configs. Of course, we
can extend the playbook for additional dynamic configs in the same way. However,
we can even get even more advanced.

But before that, you may have noticed that there are a few large blocks of duplicate
configs for the provider information. We should optimize that a bit, as shown in
Example 18-23.

342 | Chapter 18: Ansible for Network Devices

Example 18-23. Use src with a static config file

- hosts: ios_switches
gather_facts: no
vars:
provider: (1]

host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}"
password: "{{ net_password | default(omit) }}"
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"

tasks:
- name: init the static config with backup before
ios_config:

backup: true (2]

src: files/ios_init_config.conf

provider: "{{ provider }}" (3]
notify: save the running config

- name: set a hostname
ios_config:
lines: hostname {{ inventory_hostname_short }}
provider: "{{ provider }}" (3]
notify: save the running config

handlers:
- name: save the running config
ios_config:
save: true
provider: "{{ provider }}" (3]

Use a vars clause with variable provider for the configuration in common.

Because we have only one single task touching the config, we move the backup
parameter to this task.

©® Reuse the provider variable where needed.

We can use ios_config with nothing other than the backup
parameter to get a config template to start with.

OK, that looks good for the moment.

Use ConfigsfromaFile | 343

Templates, Templates, Templates

We have seen that the src parameter in tos_config can be used for static configs. But

what about Jinja2 templates? Fortunately, 1os_config has template support built in,
as shown in Example 18-24.

Example 18-24. Use src for static config files and templates

- hosts: ios_switches
gather_facts: no
vars:
provider:

host: "{{ net_host | default(inventory_hostname) }}"
username: "{{ net_username | default(omit) }}"
password: "{{ net_password | default(omit) }}"
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"

tasks:
- name: copy the static config
ios_config:

backup: true
src: files/ios_init_config.conf.j2 (1]
provider: "{{ provider }}"

notify: save the running config

handlers:
- name: save the running config
ios_config:
save: true
provider: "{{ provider }}"

© We created a template from the previous static config file and saved it as files/
ios_init_config.conf.j2 by convention.

We have turned our playbook into an adaptive Ansible IOS network device configu-
ration playbook. All network device configurations, static and dynamic ones, can be
handled within the template, as in Example 18-25.

Example 18-25. 10S config template, including dynamic configs for VLANs and
interfaces

hostname {{ inventory_hostname_short }}
no service pad

service timestamps debug datetime msec
service timestamps log datetime msec

344 | Chapter 18: Ansible for Network Devices

service password-encryption

boot-start-marker
boot-end-marker

clock timezone CET 1 0
clock summer-time CEST recurring last Sun Mar 2:00 last Sun Oct 3:00

ip dhcp snooping
no ip domain-lookup

spanning-tree mode rapid-pvst
spanning-tree extend system-id

vlan internal allocation policy ascending

{% if vlans is defined %} (1]
{% for vlan in vlans %}
vlan {{ vlan.id }}
name {{ vlan.name }}
1
{% endfor %}
{% endif %}

{% if 1ifaces is defined %} (1)
{% for iface in ifaces %}
interface {{ iface.name}}
description {{ iface.descr }}
{% if 1iface.vlans is defined %}
{% endif %}

switchport access vlan {{ iface.vlans | join(',"') }}
spanning-tree portfast

|

{% endfor %}

{% endif %}

no ip http server
no ip http secure-server

snmp-server community public RO
snmp-server location earth
snmp-server contact admin@example.com
! add more configs here...

© Example of how to use a dynamic config within the template file

Since this is just a template, all aspects of the Jinja2 template engine can be used,
including template inheritance and macros. At the time of writing, - -diff does not
return a diff output.

Let’s run the playbook:

Templates, Templates, Templates | 345

$ ansible-playbook playbook.yml -i network_hosts

PLAY [ios_switches] kkhkhkkkkhhhkhhhhhkhkhhhhhkhkhhhhhkhkhhhhhhkhkhhkhkhhhhhhkhkhhhkhkhkkhkhkhkk*x

TASK [copy the Static Config] kkhkhkkkhkhkhkhhhhhkhkhhhhhkhkhhhhhkhkhhhhkhkhhkhhkhkhhkkhkhkhkkkkk

changed: [switch1]

RUNNING HANDLER [Save the running Config] dhkkkhkhhkdhkhkhkdhkdkhkhkhdhkdhkdhkhhdhkdhkdrhhhrhid
changed: [switchi]

PLAY RECAP hhkkkhkhhkhhhhhkhhkhkhhhhhkhkhhhhhhkhhhhhkhkhhhhhkhhhhhhkhhkhkhkhkhhkhhkhkhhkkhkhkhkkkkk

switchl . ok=2 changed=2 unreachable=0 failed=0

That was easy, wasn't it?

Gathering Facts

Collecting facts for network modules is implemented by use of a separate facts mod-
ule—in our case, ios_facts.

Use gather_facts: false in your play for network device
playbooks.

Since we have already prepared all connection configurations in the previous section,
we are ready to jump into the playbook in Example 18-26.

The ios_facts module has only one optional parameter: gather_subset. This
parameter is used to limit wanted or filter unwanted facts by adding an explanation
point (!). The default is ! config, which corresponds to all but config.

Example 18-26. Collecting facts of an IOS device

- hosts: ios_switches
gather_facts: no

tasks:
- name: gathering IOS facts
ios_facts:

gather_subset: hardware (1)

host: "{{ net_host | default(inventory_hostname) }}"

provider:
username: "{{ net_username | default(omit) }}"
password: "{{ net_password | default(omit) }}">
authorize: "{{ net_authorize | default(omit) }}"
auth_pass: "{{ net_auth_pass | default(omit) }}"

- name: print out the IOS version

346 | Chapter 18: Ansible for Network Devices

debug:
var: ansible_net_version (2]

© Selecting hardware facts only

© All network facts start with the prefix ansible_net_

Facts are injected to the Ansible host variables and do not need to
be registered (e.g., register: result) on the task level.

Let’s run the playbook:

$ ansible-playbook facts.yml -i network_hosts -v
No config file found; using defaults

PLAY [ios_switches] kkhkhkkkkhhhkhkhhhkhkhhhkhhkhkhhhhhkhkhhhhhhkhkhhkhkhhhhhhkhhhhhkhkhkrhkhkhkk*x

TASK [get some facts] R S S S s e e SR S R R
ok: [switch1l] => {"ansible_facts": {"ansible_net_filesystems": ["flash:"], "ansi
ble_net_gather_subset": ["hardware", "default"], "ansible_net_hostname": "sw1",
"ansible_net_image": "flash:c2960-1lanbasek9-mz.150-1.SE/c2960-1lanbasek9-mz.150-1
.SE.bin", "ansible_net_memfree_mb": 17292, "ansible_net_memtotal_mb": 20841,
"ansible_net_model": null, "ansible_net_serialnum": "FOC1132Z0ZA", "ansible_net_
version": "15.0(1)SE"}, "changed": false, "failed_commands": []}

TASK [print out the IOS version] khkkhkkkhkhkhkhhhhhkhhhhhhkhhhhkhkhkhhhhhkhhhhhkhkhkkhkhkhkk*x

ok: [switch1l] => {
"ansible_net_version": "15.0(1)SE"

}
PLAY RECAP Khhhkhkhkhhhhhhhhdhhhdhhdddhhddhhddhhddhhddhhdddhdddhdhddhddddhddhhdrddrdxdd
switchl : ok=2 changed=0 unreachable=0 failed=0

Now you have a first impression about how to orchestrate and configure network
devices and get facts with Ansible. The ios_config, as well as the ios_facts module,
are common modules that exist with an identical feature set for different network
operation systems, (e.g., for Dell EMC Networking OS10—delloslo_config, or
Arista EOS—eos_config).

But depending on the operation system and the interface the network device pro-
vides, the amount and variety of the modules may differ quite a bit. I encourage you
to keep an eye on the docs to find out more about other modules.

Conclusion | 347

http://bit.ly/2uvBe2f

CHAPTER 19
Ansible Tower: Ansible for the Enterprise

Ansible Tower is a commercial software product originally created by Ansible, Inc.
and now offered by Red Hat. Ansible Tower is implemented as a classical on-premises
web service on top of Ansible. It provides a more granular user- and role-based access
policy management combined with a web user interface, shown in Figure 19-1, and a
RESTful APL

QTOWU? PROJECTS INVENTORIES TEMPLATES JoBS @ admin o) = & [0)
DASHBOARD
T T ENTORY SYNC FA T T
JOB STATUS PASTMONTH | JOBTYP! v v
1
8
3
0428
O SUCCESSFUL 0
O FAILED 0
K
oanz o415 0417 0419 021 o423 o425 o427 04129 05/13
TIvE
RECENTLY USED JOB TEMPLATES RECENTLY RUN JOBS
No job templates were recently used No jobs were recently run.
You can create a job template here.

Figure 19-1. Ansible Tower dashboard

349

Subscription Models

Red Hat offers support as an annual subscription model with three subscription
types, each with different service-level agreements (SLAs):

o Self-Support (no support and SLA)
o Standard (support and SLA: 8 x 5)
 Premium (support and SLA: 24 x 7)

All subscription levels include regular updates and releases of Ansible Tower. The
Self-Support subscription model is limited to a maximum of 250 managed hosts and
does not include the following features:

« Custom rebranding for login
« SAML, RADIUS, and LDAP authentication
+ Multiorganization support

o Activity streams and system tracking

After Red Hat acquired Ansible, Inc. in 2015, Red Hat committed
to working on an open source version of Ansible Tower. At the
time of writing, no further details and no specific timeline have
been announced.

Try Ansible Tower

Red Hat provides a free trial license with the feature set of the Self-Support subscrip-
tion model for up to 10 managed hosts without expiration.

For a quick evaluation setup using Vagrant:

$ vagrant init ansible/tower
$ vagrant up --provider virtualbox
$ vagrant ssh

After we log in via SSH, we see a welcome screen similar to Example 19-1, where we
can find the URL of the web interface, username, and password.

350 | Chapter 19: Ansible Tower: Ansible for the Enterprise

https://access.redhat.com/support/offerings/production/sla
http://ansible.com/license

Example 19-1. Welcome screen
Welcome to Ansible Tower!
Log into the web interface here:
https://10.42.0.42/

Username: admin
Password: JSKYmEBJATFn

The documentation for Ansible Tower is available here:
http://www.ansible.com/tower/
For help, visit http://support.ansible.com/

After login on the web interface, we are prompted for the license file, which we obtain
by filling out a form and retrieving the license file by email.

If the Vagrant machine is not reachable at 10.42.0.42, you may need
to run the following command inside the Vagrant machine to bring
up the network interface associated with that IP address:

$ sudo systemctl restart network.service

What Ansible Tower Solves

Ansible Tower is not just a web user interface on top of Ansible. Ansible Tower
extends Ansible’s functionality in certain ways. Let’s take a closer look in this section.

Access Control

In large organizations with many teams, Ansible Tower helps manage automation by
organizing teams and employees into roles and giving each of them as much control
of the managed hosts and devices as they need to fulfill their daily jobs.

Ansible Tower acts as a gatekeeper to hosts. When using Ansible Tower, no team or
employee is required to have direct access to the managed hosts. This reduces com-
plexity and increases security. Figure 19-2 shows Ansible Tower’s web interface for
user access.

Connecting Ansible Tower with existing authentication systems such as LDAP direc-
tories can reduce administrative cost per user.

What Ansible Tower Solves | 351

service Desk | Add Users

1 Please select Users from the list below.

USERNAME FIRSTNAME & LASTNAME &

admin

meyerto

ITEMS 1-20F2

2 Please assign roles to the selected users/teams

Tom Meyer st

CANCEL

Figure 19-2. Web interface for user access

Projects

A project in Ansible Tower terminology is nothing more than a bucket containing
logically related playbooks and roles.

In classic Ansible projects, we often see that static inventories are kept along with the
playbooks and roles. Ansible Tower handles inventories separately. Anything related
to inventories and inventory variables kept in projects, such as group variables and
host variables, will not be accessible later on.

The target (e.g., hosts: <target>) in these playbooks is essential.
Choose wisely by using a common name across playbooks. This
allows you to use the playbooks with different inventories. We will
discuss this further later in the chapter.

As it is a best practice, we keep our projects containing our playbooks in revision
control on a source code management (SCM) system. The project management in
Ansible Tower can be configured to download these projects from our SCM servers
and supports major open source SCM systems such as Git, Mercurial, and
Subversion.

As a fallback, even a static path can be set, where the project is stored locally on the
Ansible Tower server, in case we do not want to use an SCM.

As most of our projects evolve over time, the projects on Ansible Tower server must
be updated to be in sync with the SCM. But, no worries—Ansible Tower has multiple
solutions for keeping projects up-to-date.

352 | Chapter19: Ansible Tower: Ansible for the Enterprise

We can ensure that Ansible Tower has the latest state of our project by enabling
“Update on Launch,” as shown in Figure 19-3 on the project. Additionally, you can set
a scheduled update job on each project to regularly update the project. Finally, you
can manually update projects if you wish to maintain control of when updates

Q TOWER PROJECTS INVENTORIES TEMPLATES JoBs @ admin & = & [0}
PROJECTS / Demo Project
Demo Project
*Navie DESCRIPTION * ORGANIZATION
Demo Project Q Default
*sc TveE
ait
SOURCE DETAILS
*ScM URL SCM BRANCH SCM CREDENTIAL
https://gitiffb.com/ansible/ansible-tower-samples Q
SCM UPDATE OPTIONS
(J clean SCM UPDATE
[Delete on Update
(¥ Update on Launch
CACHE TIMEOUT (SECONDS)
0
e | (N

PROJECTS @D

Figure 19-3. Ansible Tower project SCM update options

Inventory Management

Ansible Tower allows you to manage inventories as dedicated resources. This also
includes managing the access control for these inventories. A common pattern is to
put the production, staging, and testing hosts into separate inventories.

Within these inventories, we will be able to add default variables and manually add
groups and hosts. In addition, as shown in Figure 19-4, Ansible Tower allows you to
query hosts dynamically from a source (e.g., from a VMware vCenter), and put these

hosts in a group.

What Ansible Tower Solves |

353

QTOWER PROJECTS INVENTORIES TEMPLATES JoBs @ admin & = & [O)
INVENTORIES / Production / CREATE GROUP
CREATE GROUP
*Navie DESCRIPTION souRce
Amazon EC2 1
Choose a source
CLOUD CREDENTIAL REGIONS
Manual
Q
Rackspace Cloud Servers
ONLY GROUP BY UPDATE OPTIONS ST
() overwrite Google Compute Engine
(] Overwrite Variables
() Update on Launch Microsoft Azure Classic (deprecated)
vaRABLES © @ YAML (OJSON

SOURCEVARIABLES @ @YAML (OJSON

Figure 19-4. Ansible Tower inventory source

Group and host variables can be added in form fields that will overwrite defaults.

Hosts can even be temporarily disabled by clicking a button as in Figure 19-5, so they
will be excluded from any job run.

QTOWER PROJECTS INVENTORIES TEMPLATES JoBs @ admin &

& o

INVENTORIES / Production

GrRours @B + ADD GROUP HOSTS + ADD HOST

Search Q KEY
HOSTS + ACTIONS
o cdn1.example.com DISABLED @ & o
(m] cdn2.example.com @ & W
O cdn3.example.com [a w
TEMS 1-30F3

Figure 19-5. Ansible Tower inventory excluded hosts

354 | Chapter 19: Ansible Tower: Ansible for the Enterprise

Run Jobs by Job Templates

Job templates, as shown in Figure 19-6, connect projects with inventories. They
define how users are allowed to execute a playbook from a project to specific targets
from a selected inventory.

~
°

i)
@
(e

0 TOWER PROJECTS NVENTORIES TEMPLATES JoBs admin o)

TEMPLATES / Demo Job Template

Demo Job Template

DETAILS.

Demo Job Template Run

Q. Demo Inventory Q| Demo Project hello_world.yml

Q' Demo Credential Q Q
() Prompt

o ’ 0 (Normal)

") Enable Privilege Escalation
() Allow Provisioning Callbacks
() Enable Concurrent jobs

Figure 19-6. Ansible Tower job templates

Refinements on a playbook level, such as additional parameters and tags, can be
applied. Further, you can specify in what mode the playbook will run (e.g., some users
may be allowed to execute a playbook only in check mode, while others may be
allowed to run the playbook only on a subset of hosts but in live mode).

On the target level, an inventory can be selected and optionally limited to some hosts
or a group.

An executed job template creates a new so-called job entry, as shown in Figure 19-7.

What Ansible Tower Solves | 355

0 TOWER PROJECTS INVENTORIES TEMPLATES

JoBs

D $ NAME # TYE 4
2 Demo Job Template Playbook Run
3 Demo Project SCM Update

1 Demo Project SCM Update

Q

FINISHED + LABELS

5/14/2017 5:40:57 PM

5/14/2017 5:36:58 PM

\
°

m

Y
® ® 0

L]

ACTIONS

Figure 19-7. Ansible Tower job entries

In the detail view of each job entry, shown in Figure 19-8, we find information not
only about whether the job was successful but also at what date and time the job has

been executed, when it finished, and who started it with which parameters.

We can even filter by play to see all the tasks and their results. All of this information
is stored and kept in the database, which allows you to audit this information at any

time.

356 | Chapter 19: Ansible Tower: Ansible for the Enterprise

Q TOWER PROJECTS INVENTORIES TEMPLATES JoBs @ admin & = & [0}
JOBS / 2 - Demo job Template
DETAILS £ @ Demo Job Template PLAYS @ TASKS HOsTs @ ELAPSED X
STATUS ® successful
STARTED 5/14/2017 5:40:58 PM
Search Q KEY
FINISHED 5/14/2017 5:41:10 PM
TEMPLATE Demo Job Template ©
JOB TYPE Run
PLAY [HEL1o World Sample] *++%+%&+sxttsssstsssssssusssssussssrssssrsssssrsnseses
LAUNCHED BY admin .
INVENTORY Demo Inventory
TASK [GREREring FacEs] ***#++ttsssss uusstsuusns busss srussssrsss rrssssrsnseses
PROJECT @ Demo Project -
REVISION 347e44fead36c94d5760e544de0d [Localll
6453ee5c71ad
AYBOOK nello_worldyml TASK [HELLo MesSage] *+%*%#++istsssss s uussssusss s susss uussssrsnssrsssssrsnseses
MACHINE Demo Credential
CREDENTIAL
FORKS 0
0 (Normal)
s © PLAY RECAP *% #4448 %80auassssesestststsssessssssstsssssssssssesesestatasasesesss
changed=6 unreachable=e failed=0
Copyright Red Hat, In

Figure 19-8. Ansible Tower job detail view

RESTful API

The Ansible Tower server exposes a Representational State Transfer (REST) API that

lets us integrate with existing build and deploy pipelines or continuous deployment
systems.

As the API is browsable, we can inspect the whole API in our favorite browser by
opening the URL http://<tower_server>/api:

$ firefox https://10.42.0.42/apl

At the time of writing, the latest API version is v1. By clicking the appropriate link or

just extend the URL to http://<tower_server>/api/v1, we get all the available resources
as in Figure 19-9.

RESTful APl | 357

6 TOWER REST API 0 0

REST APl / Version 1

Version 1 OPTIONS GET -

GET /api/vi

HTTP 200 OK

Allow: GET, HEAD, OPTIONS
content-Type: application/json
vary: Accept

X-API-Time: 0.010s

Figure 19-9. Ansible Tower API version 1

The latest API documentation can be found online.

Ansible Tower CLI

So, how do we create a new user in Ansible Tower or launch a job by using nothing
but the API? Of course, we could use the all-time favorite command-line (CLI)
HTTP tool cURL, but Ansible has made an even more user-friendly CLI tool for us:
tower-cli.

Unlike the Ansible Tower application, Ansible Tower CLI is open
source software published on GitHub under the Apache 2.0 license.

Installation
To install tower -cl1, we use the Python package manager pip.

The tower-cli can be installed systemwide with the appropriate root permissions or,
as we do, just for our local Linux user:

$ pip install ansible-tower-cli

If we choose to install on the user level, it will be installed into the path ~/.local/bin/.
Please make sure ~/.local/bin is in our PATH.

$ echo 'export PATH=$PATH:$HOME/.local/bin' >> SHOME/.profile
$ source SHOME/.profile

358 | Chapter 19: Ansible Tower: Ansible for the Enterprise

http://docs.ansible.com/ansible-tower/
https://github.com/ansible/tower-cli/

Before we can access the API, we have to configure the credentials:

$ tower-cli config host 10.42.0.42

$ tower-cli config username admin

$ tower-cli config password JSKYmEBJATFn
Since Ansible Tower uses a self-signed SSL/TLS certificate preconfigured, we just skip
the verification:

$ tower-cli config verify_ssl false

The default output called human provides just enough information. If we like more
verbose output as a default, we probably want to change it to the yaml format. How-
ever, we can always append - -format [human]|json|yaml] to any command to over-
write the default:

$ tower-cli config format yaml
To verify, we simply run this:

$ tower-cli config

Create a User

Lets create a new user by using the tower-cli user command, as shown in
Example 19-2. If we type this command without any further action, we will see a help
output listing all actions available.

Example 19-2. Ansible Tower CLI user actions

$ tower-cli user
Usage: tower-cli user [OPTIONS] COMMAND [ARGS]...

Manage users within Ansible Tower.

Options:
--help Show this message and exit.

Commands:
create Create a user.
delete Remove the given user.
get Return one and exactly one user.
list Return a list of users.
modify Modify an already existing user.

As it is a RESTful API, the actions (as in Example 19-2) are more or less consistent
across the API, with a few exceptions. What differs per resource are the parameters
and options for the resource. By running tower-cli user create --help, we will be
shown all available parameters and options.

To create a user, only a few parameters are required:

Ansible Tower CLI | 359

$ tower-cli user create \
--username guy \

--password 's3cr3t$' \
--email 'guy@example.com' \
--first-name Guybrush \
--last-name Threepwood

The tower-cli has some logic built in, and in the default configuration, we can run
the command multiple times without getting an error message. tower-cli queries
the resource based on the key fields and will present the user we already created, as in
Example 19-3.

Example 19-3. tower-cli output after creating or updating a user

changed: true

id: 2

type: user

url: /api/vl/users/2/

related:
admin_of_organizations: /api/vl/users/2/admin_of_organizations/
organizations: /api/vl/users/2/organizations/
roles: /api/vl/users/2/roles/
access_list: /api/vl/users/2/access_list/
teams: /api/vl/users/2/teams/
credentials: /api/vl/users/2/credentials/
activity_stream: /api/vl/users/2/activity_stream/
projects: /api/vil/users/2/projects/

created: '2017-02-05T11:15:37.275Z'

username: guy

first_name: Guybrush

last_name: Threepwood

email: guy@example.com

is_superuser: false

is_system_auditor: false

ldap_dn: ''

external_account: null

auth: []

However, tower-cli will not update the record if we change, for example, the email
address. To achieve an update, we have two possibilities: appending - -force-on-
exists or explicitly using the action modify instead of create.

LaunchaJob

One of the things we probably want to automate is running a job from a job template
after a successful build on a continuous integration server.

360 | Chapter 19: Ansible Tower: Ansible for the Enterprise

The tower -cli makes this pretty straightforward. All we need to know is the name or
ID of the job template we want to launch. Let’s use the 1ist action to list all available
job templates:

$ tower-cli job_template list --format human

id name inventory project playbook
5 Demo Job Template 1 4 hello_world.yml
7 Deploy App .. 1 5 app.yml

We have only two job templates available, and our choice is pretty easy. In a larger
production-like setup, we probably see a larger set of job templates, and it would be
much harder to find the wanted template. tower_cli has a few options to filter the
output (e.g., by project, - -project <id>; or by inventory, - - inventory).

A more advanced way to filter a large set of job templates (e.g., “give me all job tem-
plates having this case-insensitive keyword in the name”) would be to use the
- -query option.

A --query with the two arguments name__1icontains and deploy would result in the
following API URL:

https://10.42.0.42/api/v1/job_templates/?name__icontains=deploy

All available filters can be found in the API documentation.

Running the list action with the wanted filter yields the expected result:

$ tower-cli job_template list --query name__icontains deploy --format human

id name inventory project playbook

7 Deploy App xy 1 4 hello_world.yml

Since we found the job template, we run it as in Example 19-4, with the action job
launch and the argument - - job-template, and the name or ID of the job template
we selected.

Ansible Tower CLI | 361

http://docs.ansible.com/ansible-tower/latest/html/towerapi/filtering.html

Example 19-4. Launch job with tower-cli

$ tower-cli job launch --job-template 'Deploy App xy' --format human
Resource changed.

id job_template created status elapsed

11 7 2017-02-05T14:08:05.022Z pending

To monitor the job while it’s running, the tower-cli job provides an action monitor
with the job ID as argument. This command will run and wait until the job has fin-
ished.

tower-cli job monitor 11 --format human
Resource changed.

id job_template created status elapsed

11 5 2017-02-05T13:57:30.504Z successful 6.486

Using a bit of command-line magic and jg, we can even combine the launching and
the monitoring in one line:

tower-cli job monitor $(tower-cli job launch --job-template 5 --format json | jq '.id'")

Onward

As this chapter ends, so does our journey together. And yet, your journey with Ansi-
ble is just beginning. We hope that you'll come to enjoy working with it as much as
we do, and that the next time you encounter colleagues in clear need of an automa-
tion tool, you'll show them how Ansible can make their lives easier.

362 | Chapter 19: Ansible Tower: Ansible for the Enterprise

https://stedolan.github.io/jq/

APPENDIX A
SSH

Because Ansible uses SSH as its transport mechanism, you’ll need to understand
some of SSH’s features to take advantage of them with Ansible.

Native SSH

By default, Ansible uses the native SSH client installed on your operating system.
Ansible can take advantage of all the typical SSH features, including Kerberos and
jump hosts. If you have an ~/.ssh/config file with custom configurations for your SSH
setup, Ansible will respect these settings.

SSH Agent

A handy program called ssh-agent simplifies working with SSH private keys.

When ssh-agent is running on your machine, you can add private keys to it by using
the ssh-add command:

$ ssh-add /path/to/keyfile.pem

The SSH_AUTH_SOCK environment variable must be set, or the ssh-
add command will not be able to communicate with ssh-agent.
See “Starting Up ssh-agent” on page 365.

You can use the -1 or L flag with the ssh_add program to see which keys have been
added to your agent, as shown in Example A-1. This example shows that there are
two keys in the agent.

363

Example A-1. Listing the keys in the agent

$ ssh-add -1
2048 SHA256:07H/I9rRZupXHJ7InD110RhSzeAKY1RVr1HIL/JFtfA /Users/lorin/.ssh/id_rsa
2048 SHA256:xLTmHqvHHDIdcrHiHdtoOXxq5sm9DOEVi+/jn0ObkKKM insecure_private_key

$ ssh-add -L

ssh-rsa AAAAB3NzaC1lyc2EAAAADAQABAAABAQDWAfog5tz4W9bPVbPDINC8HWMfhiTgKOhpSZYI+clc
e3/pz5vigsHDQIjzSImoVzIOTVOtOIfE8qMkqEYk71gESccCy0zNIVNDEETFYVKEX1C+xqkCtZTEVUQN
d+4qy0222EAVKHM6bAhgyoA9INtIUMIWFOOO45yHZL2D09Z7KXTS4x0qeGF5vv7SiuKesLjORPcWeYqC
fYdrdUdRD9dFq7zFKmpCPJgNwDQDrXbgaTOe+H6cu2f4RrILp88WY8voB3zJ7avv68e0gah82dovSgw
hcsZp4SycZSTy+WgZQhzLogaifvtdgdzaooxNtsm+qRvQIyHkwdoXR6nJgt /Users/lorin/.ssh/i
d_rsa

ssh-rsa AAAAB3NzaC1lyc2EAAAABIWAAAQEA6NF81allvQVp22WDkTkyrtvp9eWW6A8YVr+kz4TjGYe7
gHzIw+niNTtGEFHzD8+v1I2YJ60Xevct1lYeSO09HZYN1Q9qgCgzUFtdOKLv6IedplqoPkcmFOaYet2P
KEDO3M1TBckFXPITAMzF8dJISIFo9D8HfdOVOIAdx407PtixWKn5y2hMNGOzQPyUecp4pzCokivAIhyf
H1LFR61RGL+GPXQ2MWZWFYbAGjyi1YInAmCP3NOTdOjMZENDkbUvXhMmBYSAETk1rRgm+R4L0zFUGaHq
HDFIPKcF96hrucXzcWyLbIbEgGE980OHINVYCzRAK8jlgm8tehUc9c9WhQ== insecure_private_key

When you try to make a connection to a remote host, and you have ssh-agent run-
ning, the SSH client will try to use the keys stored in ssh-agent to authenticate with
the host.

Using an SSH agent has several advantages:

o The SSH agent makes it easier to work with encrypted SSH private keys. If you

use an encrypted SSH private key, the private key file is protected with a pass-
word. When you use this key to make an SSH connection to a host, you will be
prompted to type in the password. With an encrypted private key, even if some-
body got access to your private SSH key, they wouldn’t be able to use it without
the password. If you use an encrypted SSH private key, and you aren't using an
SSH agent, then you have to type in the encryption password each time you use
the private key. If you are using an SSH agent, you have to type the private-key
password only when you add the key to the agent.

If you are using Ansible to manage hosts that use different SSH keys, using an
SSH agent simplifies your Ansible configuration files; you don’t have to explicitly
specify the ansible_private_key_file on your hosts as we did back in
Example 1-1.

If you need to make an SSH connection from your remote host to a different host
(e.g., cloning a private Git repository over SSH), you can take advantage of agent
forwarding so that you don't have to copy private SSH keys over to the remote
host. We explain agent forwarding next.

364

| Appendix A: SSH

Starting Up ssh-agent

How you start up the SSH agent varies depending on which operating system you’re
running.

mac0S

macOS comes preconfigured to run ssh-agent, so there’s nothing you need to do.

Linux

If you're running on Linux, youw’ll need to start up ssh-agent yourself and ensure that
its environment variables are set correctly. If you invoke ssh-agent directly, it will
output the environment variables you'll need to set. For example:

$ ssh-agent

SSH_AUTH_SOCK=/tmp/ssh-YI7PBGlkOteo/agent.2547; export SSH_AUTH_SOCK;

SSH_AGENT_PID=2548; export SSH_AGENT_PID;

echo Agent pid 2548;
You can automatically export these environment variables by invoking ssh-agent like
this:

$ eval $(ssh-agent)

You'll also want to ensure that you have only one instance of ssh-agent running at a
time. There are various helper tools on Linux, such as Keychain and Gnome Keyring,
for managing ssh-agent startup for you, or you can modify your .profile file to
ensure that ssh-agent starts up exactly once in each login shell. Configuring your
account for ssh-agent is beyond the scope of this book, so I recommend you consult
your Linux distribution’s documentation for more details on how to set this up.

Agent Forwarding

If you are cloning a Git repository over SSH, you'll need to use an SSH private key
recognized by your Git server. I like to avoid copying private SSH keys to my hosts, in
order to limit the damage in case a host ever gets compromised.

One way to avoid copying SSH private keys around is to use the ssh-agent program
on your local machine, with agent forwarding. If you SSH from your laptop to host A,
and you have agent forwarding enabled, then agent forwarding allows you to SSH
from host A to host B by using the private key that resides on your laptop.

Figure A-1 shows an example of agent forwarding in action. Let’s say you want to
check out a private repository from GitHub, using SSH. You have ssh-agent running
on your laptop, and you've added your private key by using the ssh-add command.

SSH | 365

ssh from laptop
to app server

server authenticates
o with key in ssh-agent

A 4

ssh from app
o server to github

A 4

ssh-
agent server asks app
9 o server to authenticate
app server forwards auth
o request to ssh-agent
Laptop App Server github.com

Figure A-1. Agent forwarding in action

If you were manually SSHing to the app server, you would call the ssh command with
the -A flag, which enables agent forwarding:

$ ssh -A myuser@myappserver.example.com
On the app server, you check out a Git repository by using an SSH URL:

$ git clone git@github.com:lorin/mezzanine-example.git

Git connects via SSH to GitHub. The GitHub SSH server tries to authenticate against
the SSH client on the app server. The app server doesn't know your private key. How-
ever, because you enabled agent forwarding, the SSH client on the app server con-
nects back to ssh-agent running on your laptop, which handles the authentication.

There are a couple of issues you need to keep in mind in using agent forwarding with
Ansible.

First, you need to tell Ansible to enable agent forwarding when it connects to remote
machines, because SSH does not enable agent forwarding by default. You can enable
agent forwarding for all nodes you SSH to by adding the following lines to your
~/.ssh/config file on your control machine:

Host *
ForwardAgent yes

Or, if you want to enable agent forwarding for only a specific server, add this:

Host appserver.example.com
ForwardAgent yes

366 | Appendix A: SSH

If, instead, you want to enable agent forwarding only for Ansible, you can edit your
ansible.cfg file by adding it to the ssh_args parameter in the ssh_connection section:
[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=60s -o ForwardAgent=yes

Here, I used the more verbose -0 ForwardAgent=yes flag instead of the shorter -A
flag, but it does the same thing.

The ControlMaster and ControlPersist settings are needed for a performance opti-
mization called SSH multiplexing. They are on by default, but if you override the
ssh_args variable, then you need to explicitly specify them or you will disable this
performance boost. We discuss SSH multiplexing in Chapter 11.

Sudo and Agent Forwarding

When you enable agent forwarding, the remote machine sets the SSH_AUTH_SOCK
environment variable, which contains a path to a Unix-domain socket (e.g., /tmp/ssh-
FShDVu5924/agent.5924). However, if you use sudo, the SSH_AUTH_SOCK environment
variable won’t carry over unless you explicitly configure sudo to allow this behavior.

To allow the SSH_AUTH_SOCK variable to carry over via sudo to the root user, we can
add the following line either to the /etc/sudoers file or (on Debian-based distributions
like Ubuntu) to its own file in the /etc/sudoers.d directory:

Defaults>root env_keep+=SSH_AUTH_SOCK

Let’s call this file 99-keep-ssh-auth-sock-env and put it in the files directory on our
local machine.

Validating Files

The copy and template modules support a validate clause. This clause lets you spec-
ify a program to run against the file that Ansible will generate. Use %s as a placeholder
for the filename. For example:

validate: visudo -cf %s

When the validate clause is present, Ansible will copy the file to a temporary direc-
tory first and then run the specified validation program. If the validation program
returns success (0), Ansible will copy the file from the temporary location to the
proper destination. If the validation program returns a nonzero return code, Ansible
will return an error that looks like this:

SSH | 367

failed: [myhost] => {"checksum": "ac32f572f0a670c3579ac2864cc3069ee8a19588",
"failed": true}
msg: failed to validate: rc:1 error:

FATAL: all hosts have already failed -- aborting

Since a bad sudoers file on a host can prevent us from accessing the host as root, it’s
always a good idea to validate a sudoers file by using the visudo program. For a cau-
tionary tale about invalid sudoers files, see Ansible contributor Jan-Piet Mens’s blog
post, “Don’t try this at the office: /etc/sudoers”.

- name: copy the sudoers file so we can do agent forwarding
copy:
src: files/99-keep-ssh-auth-sock-env
dest: /etc/sudoers.d/99-keep-ssh-auth-sock-env
owner: root group=root mode=0440
validate: visudo -cf %s

Unfortunately, it's not currently possible to sudo as a nonroot user and use agent for-
warding. For example, let’s say you want to sudo from the ubuntu user to a deploy
user. The problem is that the Unix-domain socket pointed to the SSH_AUTH_SOCK is
owned by the ubuntu user and won't be readable or writeable by the deploy user.

As a workaround, you can always invoke the Git module as root and then change the
permissions with the file module, as shown in Example A-2.

Example A-2. Cloning as root and changing permissions

- name: verify the config is valid sudoers file
local_action: command visudo -cf files/99-keep-ssh-auth-sock-env
sudo: True

- name: copy the sudoers file so we can do agent forwarding
copy:
src: files/99-keep-ssh-auth-sock-env
dest: /etc/sudoers.d/99-keep-ssh-auth-sock-env
owner: root
group: root
mode: "0440"
validate: 'visudo -cf %s'
sudo: True

- name: check out my private git repository
git:
repo: git@github.com:lorin/mezzanine-example.git
dest: "{{ proj_path }}"
sudo: True

- name: set file ownership

368 | AppendixA: SSH

http://bit.ly/1DfeQY7

file:
path: "{{ proj_path }}"
state: directory
recurse: yes
owner: "{{ user }}"

group: "{{ user }}"
sudo: True

Host Keys

Every host that runs an SSH server has an associated host key. The host key acts like a
signature that uniquely identifies the host. Host keys exist to prevent man-in-the-
middle attacks. If youre cloning a Git repository over SSH from GitHub, you don't
know whether the server that claims to be github.com is really GitHub’s server, or is an
impostor that used DNS spoofing to pretend to be github.com. Host keys allow you to
check that the server claiming to be github.com really is github.com. This means that
you need to have the host key (a copy of what the signature should look like) before
you try to connect to the host.

Ansible will check the host key by default, although you can disable this behavior in
ansible.cfg, like this:

[defaults]
host_key_checking = False

Host-key checking also comes into play with the git module. Recall in Chapter 6 how
the git module took an accept_hostkey parameter:

- name: check out the repository on the host
git: repo={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes
The git module can hang when cloning a Git repository by using the SSH protocol if
host-key checking is enabled on the host and the Git server’s SSH host key is not
known to the host.

The simplest approach is to use the accept_hostkey parameter to tell Git to automat-
ically accept the host key if it isn't known, which is the approach we use in
Example 6-6.

Many people simply accept the host key and don’t worry about these types of man-in-
the-middle attacks. That's what we did in our playbook, by specifying accept_host
key=yes as an argument when invoking the git module. However, if you are more
security conscious and don’t want to automatically accept the host key, you can man-
ually retrieve and verify GitHubs host key, and then add it to the system-
wide /etc/ssh/known_hosts file or, for a specific user, to the user’s ~/.ssh/known_hosts
file.

SSH | 369

To manually verify GitHub’s SSH host key, you’ll need to get the SSH host-key finger-
print from the Git server by using some kind of out-of-band channel. If you're using
GitHub as your Git server, you can look up its SSH key fingerprint on the GitHub
website.

As of this writing, GitHub’s base64-formatted SHA256 RSA fingerprint (newer for-
mat)' is SHA256:nThbg6kXUpIWGL7E1IGOCSpRomTxdCARLViKW6ESSYS, and its hex-
encoded MD5 RSA fingerprint (older format) is 16:27:ac:a5:76:28:2d:36:63:1b:
56:4d:eb:df:a6:48, but don’t take our word for it—go check the website.

Next, you need to retrieve the full SSH host key. You can use the ssh-keyscan pro-
gram to retrieve the host key associated with the host with hostname github.com. 1
like to put files that Ansible will deal with in the files directory, so let’s do that:

$ mkdir files
$ ssh-keyscan github.com > files/known_hosts

The output looks like this:

github.com ssh-rsa
AAAAB3NzaC1yc2EAAAABIWAAAQEAQ2A7hRGmdnm9tUDbO9IDSWBK6TbQa+PXYPCPy6rbTrTtw7PHkccK
rppOyVhp5SHAEIcKr6pL1VDBfOLX9QUsyCOVOWzfFIINIGEYsd1LIizHhbn2mUjvSAHQQZETYP81eFzLQ
NnPHt4EVVUh7VfDESU84KezmD5QLWpXLmvU31/yMf+Se8xhHTVKSCZIFImWwoG6émbUoWf9nzpIloaSjB+
weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0e0zQgqlIL3RKrTIvds jE3JEAVGq31GHSZXy28G3skua2Sm
Vi/w4yCE6gbODgNTW1g7+wC604ydGXA8VI1S5ap43IX1UFFAaQ==

For the more paranoid, the ssh-keyscan command supports an -H flag so that the
hostname won't show up in the known_hosts file. Even if somebody gets access to
your known hosts file, they can’t tell what the hostnames are. When using this flag,
the output looks like this:

| 1|BI+Z8H3hzbcmTWna9R4orrwrNrg=|wCxJf50pTQ83IFzyXG4aNLxEmzc= ssh-rsa AAAAB3NzaCly
C2EAAAABIWAAAQEAQ2A7hRGMdnm9tUDbO9IDSWBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp@yVhp5SHAET
cKrépL1VDBfOLX9QUsyCOVOwzfJIINLGEYsd1LI1zHhbn2mUjvSAHQQZETYP81eFzLQNNPHt4EVVUh7VE
DESU84KezmD5QlWpXLmvU31/yMf+Se8xhHTVKSCZIFImWwoG6mbUoWfInzpIoaSjB+weqqUUmpaaasXVa
1723+UX2B+2RPW3RcT0e0zQgqlIL3RKrTIvds jE3JEAVGq31GHSZXy28G3skua2SmVi/wdyCE6gb0ODgnT
Wlg7+wC604ydGXA8VI1S5ap43IX1UFFAaQ==

You then need to verify that the host key in the files/known_hosts file matches the fin-

gerprint you found on GitHub. You can check with the ssh-keygen program:
$ ssh-keygen -1f files/known_hosts
The output should match the RSA fingerprint advertised on the website, like this:

2048 SHA256:nThbg6kXUpJIWGL7E1IGOCspRomTxdCARLViKW6ESSY8 github.com (RSA)

1 OpenSSH 6.8 changed the default fingerprint format from hex MD5 to base64 SHA256.

370 | Appendix A: SSH

http://bit.ly/1DffcxK

Now that you are confident that you have the correct host key for your Git server, you
can use the copy module to copy it to /etc/ssh/known_hosts.

- name: copy system-wide known hosts
copy: src=files/known_hosts dest=/etc/ssh/known_hosts owner=root group=root
mode=0644

Alternatively, you can copy it to a specific user’s ~/.ssh/known_hosts. Example A-3
shows how to copy the known hosts file from the control machine to the remote
hosts.

Example A-3. Adding known host

- name: ensure the ~/.ssh directory exists
file: path=~/.ssh state=directory
- name: copy known hosts file
copy: src=files/known_hosts dest=~/.ssh/known_hosts mode=0600

A Bad Host Key Can Cause Problems, Even with Key Checking Disabled

If you have disabled host-key checking in Ansible by setting host_key_checking to
false in your ansible.cfg file, and the host key for the host that Ansible is trying to
connect to does not match the key entry in your ~/.ssh/known_hosts file, then agent
forwarding won’t work. Trying to clone a Git repository will then result in an error
that looks like this:

TASK: [check out the repository on the host] #¥¥ikkukkdddikddhkidodhnkddsxk
failed: [web] => {"cmd": "/usr/bin/git ls-remote git@github.com:lorin/
mezzanine- example.git -h refs/heads/HEAD", "failed": true, "rc": 128}
stderr: Permission denied (publickey).

fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

msg: Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

FATAL: all hosts have already failed -- aborting

This can happen if youre using Vagrant, and you destroy a Vagrant machine and then
create a new one, because the host key changes every time you create a new Vagrant
machine. You can check whether agent forwarding is working by doing this:

$ ansible web -a "ssh-add -1"

SSH | 371

If it's working, you'll see output like this:

web | success | rc=0 >>
2048 SHA256:ScSt41+elNdOYkvRXW2nGapX6AZ8MP1J1UNg/qalBUs /Users/lorin/.ssh
/id_rsa (RSA)

If it’s not working, you’ll see output like this:

web | FAILED | rc=2 >>
Could not open a connection to your authentication agent.

If this happens to you, delete the appropriate entry from your ~/.ssh/known_host:s file.

Note that because of SSH multiplexing, Ansible maintains an open SSH connection to
the host for 60 seconds, and you need to wait for this connection to expire, or you
won't see the effect of modifying the known_hosts file.

Clearly, a lot more work is involved in verifying an SSH host key than blindly accept-
ing it. As is often the case, there’s a trade-off between security and convenience.

372 | Appendix A: SSH

APPENDIX B
Using IAM Roles for EC2 Credentials

If youre going to run Ansible inside a VPC, you can take advantage of Amazon’s
Identity and Access Management (IAM) roles so that you do not even need to set
environment variables to pass your EC2 credentials to the instance. Amazons IAM
roles let you define users and groups and control what those users and groups are
permitted to do with EC2 (e.g., get information about your running instances, create
instances, create images). You can also assign IAM roles to running instances, so you
can effectively say, “This instance is allowed to start other instances”

When you make requests against EC2 by using a client program that supports IAM
roles, and an instance is granted permissions by an IAM role, the client will fetch the
credentials from the EC2 instance metadata service and use those to make requests
against the EC2 service end point.

You can create an IAM role through the Amazon Web Services (AWS) Management
Console, or at the command line by using the AWS Command-Line Interface tool
(AWS CLI).

AWS Management Console

Here’s how to use the AWS Management Console to create an IAM role that has
Power User Access, meaning that it is permitted to do pretty much anything with
AWS except modify IAM users and groups:

. Log in to the AWS Management Console.
. Search for and then click IAM.

1

2

3. Click “Roles at the left.

4. Click the Create New Role button.

373

http://amzn.to/1Cu0fTl
http://aws.amazon.com/cli/
https://console.aws.amazon.com

5. Give your role a name and then click Next Step. I like to use ansible as the name
for the role for my instance that will run Ansible.

6. Under AWS Service Roles, select Amazon EC2.
7. Search for and select PowerUserAccess, and then click Next Step.
8. Click Create Role.

Once the role is created, if you select it and click Show Policy, you should see a JSON
document that looks like Example B-1.

Example B-1. IAM power user policy document
{

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"NotAction": ["iam:*", "organizations:*"],
"Resource": "*"

1{
"Effect": "Allow",
"Action": "organizations:DescribeOrganization",
"Resource": "*"

}

1
}

When you create a role through the web interface, AWS also automatically creates an
instance profile with the same name as the role (e.g., ansible), and associates the role
with the instance profile name. When you create an instance with the ec2 module, if
you pass the instance profile name as the instance_profile_name parameter, then
the created instance will have the permissions of that role.

Command-Line

You can also create the role and the instance profile by using the AWS CLI tool, but
it’s a bit more work. You need to do the following:

1. Create a role, specifying the trust policy. The trust policy describes the entities
that can assume the role and the access conditions for the role.

2. Create a policy that describes what the role is permitted to do. In our case, we
want to create the equivalent of the power user, where the role can perform any
AWS-related action except manipulate IAM roles and groups.

3. Create an instance profile.

374 | Appendix B: Using IAM Roles for EC2 Credentials

4. Associate the role with the instance profile.

You'll need to create two IAM policy files first, which are in JSON format. The trust
policy is shown in Example B-2. This is the same trust policy that AWS automatically
generates when you create the role via the web interface.

The role policy that describes what the role is allowed to do is shown in Example B-3.

Example B-2. trust-policy.json

{
"Version": "2012-10-17",
"Statement": [
{
"sid": "',
"Effect": "Allow",
"Principal”: {
"Service": "ec2.amazonaws.com"
}J
"Action": "sts:AssumeRole"
}
1
}

Example B-3. power-user.json

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"NotAction": "iam:*",
"Resource": "*"
}
1
}

Example B-4 shows how to create an instance profile on the command line, after
you've created the files shown in Examples B-2 and B-3.

Example B-4. Creating an instance profile at the command line

Make sure that trust-policy.json and power-user.json are in the
current directory, or change the file:// arguments to include the
complete path

$ aws iam create-role --role-name ansible --assume-role-policy-document \
file://trust-policy.json
$ aws iam put-role-policy --role-name ansible --policy-name \

Using IAM Roles for EC2 Credentials | 375

PowerUserAccess-ansible-20170214 --policy-document file://power-user.json
aws iam create-instance-profile --instance-profile-name ansible

aws iam add-role-to-instance-profile --instance-profile-name ansible \
--role-name ansible

nr n

As you can see, it's much simpler to do this via the web interface, but if you want to
automate this, then you can use the command line instead. Check out the AWS Iden-
tity and Access Management User Guide for more details on IJAM.

Once you've created the instance profile, you can then launch an EC2 instance with
that instance profile. You can do this with the ec2 module by using the instance_pro
file_name parameter:

- name: launch an instance with iam role
ec2:
instance_profile_name: ansible
Other parameters not shown

If you SSH into this instance, you can query the EC2 metadata service to confirm that

this instance is associated with the Ansible profile. The output should look something
like this:

$ curl http://169.254.169.254/1latest/meta-data/iam/info

{
"Code" : "Success",
"LastUpdated" : "2014-11-17T02:44:03Z",
"InstanceProfileArn" : "arn:aws:iam::549704298184:1instance-profile/ansible",
"InstanceProfileld" : "AIPAINM7F44YGDNIBHPYC"
}

You can also directly inspect the credentials, although it’s not something you need to
do. The Boto library will automatically retrieve these credentials when the Ansible
ec2 modules or dynamic inventory script executes:

$ curl http://169.254.169.254/1atest/meta-data/iam/security-credentials/ansible
{

"Code" : "Success",
"LastUpdated" : "2015-02-09T721:45:20Z",
"Type" : "AWS-HMAC",
"AccessKeyId" : "ASIAIYXCUETJPY42AC2Q",
"SecretAccessKey" : "ORp9gldiymIKH9+rFtWEX8BjGRteNTQSRnLNlmWqg",
"Token" : "AQoDYXdzEGcad4AMPC5W69pVtENPXjw790HS. . ",
"Expiration" : "2015-02-10T04:10:36Z"
}

These credentials are temporary, and Amazon will rotate them automatically for you.
You can now use this instance as your control machine, without needing to specify

your credentials via environment variables. The Ansible ec2 modules will automati-
cally retrieve the credentials from the metadata service.

376 | Appendix B: Using IAM Roles for EC2 Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide
http://docs.aws.amazon.com/IAM/latest/UserGuide

Alias
A name of a host in the inventory that is
different from the actual hostname of the

host.
AMI
Amazon Machine Image, a virtual
machine image in the Amazon Elastic
Compute Cloud, also known as EC2.
Ansible, Inc.
The company that manages the Ansible
project.
Ansible Galaxy

A repository of Ansible roles contributed
by the community.

Ansible Tower
A proprietary web-based dashboard and
REST interface for controlling Ansible,
sold by Ansible, Inc.

Check mode

An optional mode when running a play-
book. When check mode is enabled, and
when Ansible executes a playbook, it will
not make any changes to remote hosts.
Instead, it will simply report whether each
task would have changed the state of the
host. Sometimes referred to as dry run
mode.

CIDR
Classless interdomain routing, a notation
for specifying a range of IP addresses,

Glossary

used when defining Amazon EC2 security
groups.

Configuration management

A process for ensuring that servers are in
the proper state for doing their job. By
state, we mean things like the configura-
tion files for server applications have the
correct values, the proper files are present,
the correct services are running, the
expected user accounts are present, per-
missions are set correctly, and so on.

Convergence

A property of configuration management
systems whereby the system will execute
multiple times against a server in order to
get the server to reach the desired state,
with each execution bringing the server
closer to the desired state. Convergence is
most closely associated with the CFEngine
configuration management system. Con-
vergence doesn’t really apply to Ansible,
which puts servers into desired states after
a single execution.

Complex arguments
Arguments passed to modules that are of
type list or dictionary.

Container
A form of server virtualization in which
the virtualization is implemented at the
operating system level, so that the virtual
machine instance shares the same kernel

377

https://galaxy.ansible.com

Control machine

as the host. Docker is the most well-
known container technology.

Control machine
The computer that you run Ansible on
that is used to control the remote hosts.

Control socket
A Unix domain socket that SSH clients
use to connect to a remote host when SSH
multiplexing is enabled.

ControlPersist
A synonym for SSH multiplexing.

Declarative

A type of programming language in
which the programmer describes the
desired output, not the procedure for how
to compute the output. Ansible’s play-
books are declarative. SQL is another
example of a declarative language. Con-
trast with procedural languages, such as
Java and Python.

Deployment
The process of bringing software up onto
a live system.

DevOps
IT buzzword that gained popularity in the
mid-2010s.

Dry run
See Check mode.

DSL

Domain-specific language. In systems that
use DSLs, the user interacts with the sys-
tems by writing text files in the domain-
specific language and then runs those files
through the system. DSLs are not as pow-
erful as general-purpose programming
languages, but (if designed well) they are
easier to read and write than general-
purpose programming languages. Ansible
exposes a DSL that uses YAML syntax.

Dynamicinventory
Source that provides Ansible with infor-
mation about hosts and groups at play-
book execution time.

EBS
Elastic Block Store. On Amazon EC2, an
EBS refers to a persistent disk that can be
attached to instances.

Fact
A variable that contains information
about a specific host.

Glob
A pattern used by Unix shells to match
against filenames. For example, *.txt is a
glob that matches all files that end in . txt.

Group
A named collection of hosts.

Handler
Similar to a task, except that handlers exe-
cute only in response to a task that is con-
figured to notify the handler on change of
state.

Host
A remote server managed by Ansible.

1AM
Identity and Access Management, a fea-
ture of Amazon’s Elastic Compute Cloud
that allows you to manage user and group
permissions.

Idempotent
An action is idempotent if executing the
action multiple times has the same effect
as executing it once.

Instance
A virtual machine. The term is commonly
used to refer to a virtual machine running
inside an infrastructure-as-a-service
cloud, such as Amazon’s Elastic Cloud
Compute (EC2).

Inventory
The list of hosts and groups.

Lookups
Code that executes on the control
machine to obtain some configuration
data needed by Ansible while a playbook
is running.

378 | Glossary

Module
Ansible script that performs one specific
task. Examples include creating a user
account, installing a package, or starting a
service. Most Ansible modules are idem-
potent.

Orchestration
Performing a series of tasks in a well-
specified order on a collection of servers.
Orchestration is often needed for per-
forming deployments.

Pattern
Ansible syntax for describing which hosts
to run a play against.

Play
Associates a set of hosts with a list of tasks
to perform on that host.

Playbook
An Ansible script. It specifies a list of
plays and a collection of hosts to execute
the plays against.

Registered variable
A variable created by using the register
clause in a task.

Role
An Ansible mechanism for bundling
together a collection of tasks, handlers,
files, templates, and variables.

For example, an nginx role might contain
tasks for installing the Nginx package,
generating the Nginx configuration file,
copying TLS certificate files, and starting
the Nginx service.

SSH multiplexing
A feature of the OpenSSH SSH client that
can reduce the time it takes to make an
SSH connection when making multiple
SSH connections to the same machine.
Ansible uses SSH multiplexing by default
to improve performance.

VPC

Task
The unit of work in an Ansible play. A
task specifies a module and its arguments,
as well as an optional name and some
additional optional parameters.

TLS
Transport Layer Security, a protocol used
to secure communications between web
servers and browsers. TLS superseded an
earlier protocol called Secure Sockets Layer
(SSL). Many people refer to TLS incor-
rectly as SSL.

Transport
The protocol and implementation Ansible
uses to connect to the remote host. The
default transport is SSH.

Vault
A mechanism used by Ansible for
encrypting sensitive data on disk. Typi-
cally used to safely store secret data in a
version-control system.

Vagrant
A tool for managing virtual machines,
intended for use by developers to create
reproducible development environments.

Virtualenv
A mechanism for installing Python pack-
ages into an environment that can be acti-
vated and deactivated. Enables a user to
install Python packages without root
access and without polluting the global
Python package library on the machine.

VPC
Virtual Private Cloud. A term used by
Amazon EC2 to describe an isolated net-
work you can create for your EC2
instances.

Glossary | 379

Bibliography

Hashimoto, Mitchell. Vagrant: Up and Running. O'Reilly Media, 2013.

Hunt, Andrew; Thomas, David. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley, 1999.

Jaynes, Matt. Taste Test: Puppet, Chef, Salt, Ansible. Publisher, 2014.
Kleppmann, Martin. Designing Data-Intensive Applications. O’Reilly Media, 2015.
Kurniawan, Yan. Ansible for AWS. Leanpub, 2016.

Limoncelli, Thomas A.; Hogan, Christina J.; Chalup, Strata R. The Practice of Cloud
System Administration: Designing and Operating Large Distributed Systems.
Addison-Wesley Professional, 2014.

Mell, Peter; Grance, Timothy. The NIST Definition of Cloud Computing. NIST Special
Publication 800-145, 2011.

OpenSSH/Cookbook/Multiplexing, Wikibooks, http://bit.ly/1bpeV0y, October 28, 2014.

Shafer, Andrew Clay. Agile Infrastructure in Web Operations: Keeping the Data on
Time. O’Reilly Media, 2010.

381

http://bit.ly/1bpeV0y

Symbols

"' (double quotes), enclosing command text
containing spaces, 18

#! (shebang), lines beginning with, 27, 236

% (percent sign), special character in .ini files,
206

. (dot) notation, accessing dictionary keys in a
variable, 73

>, line folding in YAML, 30

[] (subscript) notation, 73

_meta key, 61

{% %]} delimiters, Jinja2 for loops, 111

{{ }} (braces notation)
filters in, 147
lookups in, 151
referencing variables, 38
variable substitution, 28

A
A records (DNS), 154
abstraction, thin layer of, 7
access control with Ansible Tower, 351
access key ID (Amazon EC2), 248
actionable plugin, 194
add_file_common_args, 227
add_host module, 65

task adding an instance to groups, 265
agent forwarding, 365-369

enabling, 239

sudo and, 367
aggregate plugins, 193
aliases (for hostnames), 54
aliases option, 224
all group, 51, 57

Index

alphabetic characters, specifying ranges with,
55
always clause, 168
Amazon EC2, 245-280
adding new instance to a group, 264-266
Boto Python library as prerequisite for, 250
building AMIs, 275-280
configuring ansible.cfg for use with, 257
ControlPath too long errors, 206
defining dynamic groups with tags, 254-256
dynamic inventory, 250-254
autogenerated groups, 253
inventory caching, 252
EC2 key pairs, 259-261
ec2_facts module, 77
elastic load balancer, removing one host at a
time from, 174
getting the latest AMI, 263
idempotent instance creation, 268
launching new instances, 257-259
other Ansible modules supporting, 280
playbook creating three instances and con-
figuring them as web servers, 268
security groups, 261-263
specifying credentials, 248-250
terminology, 247
Amazon machine image (AMI), 247
instance, 247
tags, 248
using IAM roles for EC2 credentials,
373-376
Virtual Private Cloud (VPC) and EC2 Clas-
sic, 256
waiting for SSH server to come up, 266-268

383

Amazon machine image (AMI), 247
building with ec2_ami module, 275
building with Packer, 276-280
getting the latest, 263

Amazon Web Services (AWS)

Ansible support for, 245
ElastiCache and RDS, enabling on AWS
account, 252

AMIID, 247, 258

ANSIBALLZ_PARAMS environment variable,
234

Ansible
advantages of, 5-8
how it works, 3
installing, 10
pairing with Docker, 282
prerequisites for, 9
support for Amazon EC2, 245
uses of, 2
versions, 2

ansible command, 15
-vvvv flag, 16
invoking command module, 17
using any module, 19

Ansible Container, 283, 297-304
Conductor, 297
creating Docker images, 298-301

building containers, 300

creating roles, 298

troubleshooting builds, 301
deploying containers to production, 304
publishing images to registries, 303

authenticating, 303

multiple registries, 304
running locally, 302-303

Ansible Galaxy, 139-141
command-line tool, 140
contributing your own role, 141
web interface, 140

Ansible local provisioner (ansible-local), 276
using, 279

Ansible remote provisioner (ansible), 276
using, 277-279

Ansible Tower, 8, 349-362
access control, 351
command-line interface, tower-cli, 358-362

creating a user, 359
installation, 358
launching a job, 360

inventory management, 353
projects, 352
REST API, 357
running jobs by job templates, 355-357
subscription models, 350
trying Ansible Tower, 350
Ansible, Inc., 8
ansible-container --use-local-python com-
mand, 298
ansible-container build command, 300
ansible-container init command, 298
ansible-doc command-line tool, 34, 231
-i flag, 65
documentation markup, 233
ansible-galaxy command-line tool, 140
ansible-galaxy install command, 140
ansible-galaxy list command, 140
ansible-galaxy remove command, 141
creating role files and directories with, 138
ansible-playbook --ask-vault-pass command,
170
ansible-playbook --diff --check command, 313
ansible-playbook --flush-cache command, 209
ansible-playbook --list-hosts command, 312
ansible-playbook --list-tasks command, 93, 312
dynamic includes and, 164
ansible-playbook --start-at-task command, 314
ansible-playbook --step command, 314
ansible-playbook --syntax-check command,
312
ansible-playbook -C or --check command, 230
ansible-playbook -D --check command, 313
ansible-playbook -e @filename.yml, 82
ansible-playbook -e var=value command, 81
ansible-playbook -vvv command, 218, 306
ansible-playbook command, 6, 26
ansible-pull tool, 6
ansible-vault command-line tool, 169-170
list of commands, 170
ansible.cfg file
configuring for use with EC2, 257
default behavioral inventory parameters,
overriding, 50
host_key_checking value, 47
inventory parameter, 65
roles_path setting, 128
AnsibleModule class, 220
exit_json method, 229
fail_json method, 229

384 | Index

importing, 222
initializer method parameters, 225-229
ansible_*_interpreter, 50
ansible_bash_interpreter variable, 235
ansible_connection, 49
ANSIBLE_ETCD_URL environment variable,
156
ansible_eth0 fact, 190
ansible_facts key, 75, 76
ANSIBLE_FORKS environment variable, 212
ansible_local variable, 77
using for provisioner, 244
ANSIBLE_LOOKUP_PLUGINS environment
variable, 157
ansible_managed variable, 25
ANSIBLE_NOCOWS environment variable, 27
ansible_python_interpreter, 50
ANSIBLE_ROLES_PATH environment vari-
able, 128
ansible_shell_type, 50
Apache CloudStack, 167
application server (Gunicorn), 89
apt module, 7
and arguments in a task, 33
installing multiple packages using
with_items, 97
output when a package is already present on
ahost, 73
output when installing a new package, 72
package argument, 224
updating the apt cache, 99-100
using with ansible command to install
Nginx on Ubuntu, 19
Arch Linux, hosts that run on, 50
args variable
passed as list, 230
passed as string, 230
arguments (module)
options for, 223-225
passing EC2 credential strings as, 249
arguments file (non-Python modules), 217
arguments script (Python modules), 217
arguments, complex, 105
argument_spec, 221, 226
assert module, 310-312
async clause, concurrent tasks with, 213
authentication
authentication variables for network mod-
ules, 338

management by Ansible Tower, 351
SSH, enabling on Cisco Catalyst switch,
331-334
AWS Command-Line Interface, 246
using to create IAM role and instance pro-
file, 374-376
AWS Management Console, 246
using to create IAM role with Power User
Access, 373-374
AWS_ACCESS_KEY_ID, 249
AWS_SECRET_ACCESS_KEY, 249
Azure cloud service, 247

B
baby JSON, 219
background process, server application running
in, 91
backup parameter, 339, 340
causing too many intermediate backups, 341
getting config template to start with, 343
basename filter, 148
Bash shell
dotfile containing Amazon EC2 credentials,
249
implementing custom module in, 234
specifying alternate location for, 235
become clause
adding to tasks, 98
with Postgres user, 108
become setting (in plays), 33
behavioral inventory parameters, 49-50
ansible_connection, 49
ansible_python_interpreter, 50
ansible_shell_type, 50
changing defaults, 50
/bin/bash directory, 235
block storage, 247
blocks, 165
error handling with, 166-169
bool type, 224
Boolean type in YAML, 28
Boto library, 10, 250
Instance class documentation, 266
bypass_checks parameter, 228

C

cache_max_age configuration option, 253
caching
fact caching, 209-212

Index | 385

inventory, 252
callback plugins, 193-202
other, 197-202
foreman, 198
hipchat, 198
jabber, 198
junit, 199
logentries, 200
logstash, 200
log_path, 200
mail, 201
osx_say, 201
profile_tasks, 201
slack, 202
timer, 202
stdout, 193-197
callback_whitelist setting, 197
can_reach script (example), 216
cattle versus pets, 55
certifi library, 200
certificates
directory containing TLS certificates, 287
generating a TLS certificate, 37
generating self-signed TLS certificates, 294
TLS/SSL, invalid certificate error on Win-
dows host, 320
changed variable, 219
returning as exit_json method argument,
229
changed_when clause, 143, 146
check mode, 230, 313
check_invalid_arguments, 227
chmod +x command, 60
chocolatey package, 322
choices option, 224
Chrome, and self-signed TLS certificates, 43
CIDR notation, 262
Cisco Catalyst 2960G Series Layer 2 switch run-
ning iOS, configuring with Ansible, 330-334
cloud, 245
(see also Amazon EC2)
Ansible Container-supported public clouds,
304
Ansible modules for talking to public cloud
services, 3
cloud services other than Amazon EC2, 247
low-cost access to Linux virtual machine, 11
cloudformation module, 280
CNAME records (DNS), 154

collectstatic command, 112
command module, 17
changed key, 71
invoking openssl command, 119
using output in a task, 72
command-line interface (CLI)
Ansible Tower, 358-362
AWS Command-Line Interface, 246
setting variables on, 81
using AWS CLI to create IAM role, 374-376
commands
external, invoking with custom module, 229
output of, capturing to a variable, 70
comments in YAML, 28
complex arguments, 105, 225
concurrent tasks with async, 213
Conductor, 297
configuration
options for callback plugins, 197
Vagrant configuration options, 237-239
configuration files
Amazon EC2 credentials in, 249
generating template for Nginx configura-
tion, 39
setting for Mezzanine app deployed with
Ansible, 115
configuration management, 2
configuration management tools, 2
configuration mode, 331
ConfigureRemotingForAnsible.psl script, 319
containers, 281
building in Ansible Container, 300
troubleshooting builds, 301
cleaning out Ghost containers, 295
configuring container.yml for Ansible Con-
tainer, 299
connecting directly to, using Docker inven-
tory plugin, 295
Docker versus, 282
Docker, orchestration with Ansible, 282
Docker, running on local machine, 285
enabling Nginx container to connect to
Ghost container, 293
orchestrating multiple Docker containers on
local machine, 287
control socket, 204
ControlMaster, 206
ControlPath, 206

386 | Index

setting control_path in ansible.config to
shorter time, 206
too long, error caused by, 206
ControlPersist, 49, 203-207
Ansible SSH multiplexing option, 206
convergence, 7
copy module
tasks defined in roles versus playbooks, 137
using to save SSH private key to file, 259
CoreOS project, etcd, 150
cowsay program, disabling, 27
createdb command, 111, 143
idempotent manage.py createdb, 146
credentials
configuring for tower-cli, 359
in Amazon EC2, 248-250
Packer access to, 279
placing in configuration file, 249
setting as environment variables, 249
keeping private, 96
cron job (Twitter), installing for Mezzanine
app, 119
csvfile lookup, 153
multiple arguments, 153
custom modules, 215-236
debugging, 233
documenting, 231-233
example, checking if can reach remote
server, 216
expected outputs, 218
output variables, 219
how Ansible invokes modules, 217-218
implementing in Bash, 234
implementing in Python, 220-231
accessing parameters, 222
AnsibleModule initializer method
parameters, 225-229
argument options, 223-225
check mode, 230
importing AnsibleModule helper class,
222
invoking external commands, 229
parsing arguments, 221
returning success or failure, 229
studying source code for modules shipping
with Ansible, 236
using script module instead of writing your
own, 216
where to store, 217

D
daemons, 91
Dash, 34
database role, 128
databases
creating and managing with django_man-
age commands, 111
creating PostgreSQL database and user, 107
database role for deploying the database,
130-133
debug module, 308
module registered as variable, outputting
returns, 71
msg argument, requiring quoted string, 39
outputting value of variables, 70
debug plugin, 194
enabling, 306
making error messages easier to read, 305
debugging
custom modules, 233
playbooks, 305-315
assert module, 310-312
checking playbooks before execution,
312-314
debug module, 308
humane error messages, 305
SSH issues, 306-308
using playbook debugger, 308
default filter, 147
default hostname, 240
default option, 223
default plugin, 194
skipping hosts, 197
task formatting, 196
default role variables, 133
defined for mezzanine role, 134
delegate_to clause, 173
dense plugin, 195
dependent roles, 138
include_role clause and, 165
SSL role, use case, 185
deployment, tools for, 2
dest argument, 228
development branch, running Ansible from, 11
development server, 89
DevOps movement, 329
dict type, 224
dictionaries
dict module parameter, 225

Index | 387

facts returned by setup module, 75
in variables, accessing dictionary keys, 73
instance dict for EC2 instances, 266
iteration over, using with_dict, 158
value of variables set using register, 70
YAML, 29
diff (show file changes), 313
dig tool, looking up DNS TXT records, 155
Digital Ocean, 247
distros argument, 224
Django
example, deploying a Django app, 52-54
manage.py script, 111
Mezzanine and, 94
project settings in settings.py file, 108
projects, 100
running an app in development mode, 89
django-manage commands, 111
createdb, 143
DNS, 154
domain name mapping to IP address, 110
servers not able to resolve
192.168.33.10.xip.io hostname, 125
dnstext lookup, 154
Docker, 281-304
Ansible Container, 297-304
creating Docker images, 298-301
deploying containers to production, 304
publishing images to registries, 303
running locally, 302-303
application life cycle, 283
building an image from a Dockerfile,
285-287
case for pairing with Ansible, 282
connecting to Docker daemon, 284
containers versus, 282
deploying Dockerized application, 292-304
cleaning out containers, 295
connecting directly to containers, 295
frontend, 293
frontend, Ghost, 294
frontend, Nginx, 294
docker-py for Ansible Docker modules, 10
example application, Ghost, 284
images, 282
orchestrating multiple containers on local
machine, 287
pushing our image to Docker registry,
288-290

querying local images, 290
remote API, 282
docker command-line tool, 285
Docker Compose tool, 287
Docker Hub, 283, 288
docker images command, 287
docker ps command, 285
Dockerfiles, 282
docker_container module, 284
starting and stopping containers, 285
support for many options, 285
docker_images module, 287
docker_login module, 288
docker_service module, 287
documentation
for Ansible modules, 34
for custom modules, 231-233
domain names, mapping to IP addresses, 110
Don't Repeat Yourself (DRY) principle, 150
dry run mode, 230, 313
dynamic includes, 164
dynamic inventory, 59-65
and Virtual Private Cloud (VPC), 275
for servers on Amazon EC2, 250-254
autogenerated groups, 253
inventory caching, 252
interface for dynamic inventory scripts, 60
listing groups, 60
showing host details, 60
preexisting inventory scripts, 64
writing a script, 61

E
EC2 (see Amazon EC2)
ec2 module
complex arguments in, 105
idempotent instance creation, 268
invoking from command line to terminate
an instance, 259
launching new instances on EC2, 257
using with wait_for module, 267
wait parameter, 267
EC2-Classic, 256
finding out if you have access to, 256
EC2-VPC, 256
VPCID, 257
ec2.ini configuration file, 250
cache_max_age option, modifying, 253

388 | Index

editing to disable ElistiCache and RDS serv-
ices, 252
other configuration options, 253
ec2.py inventory script, 250
--refresh-cache flag, 253
autogenerated groups, 253
installing, 251
output from, 251
ec2_ami module, 276
ec2_ami_find module, 263
ec2_asg module, 280
ec2_facts module, 77
ec2_key module, 259
ec2_lc module, 280
ec2_tag module, 254
ec2_vpc_net, 271
EDITOR environment variable, 170
Elastic Cloud Compute (EC2) (see Amazon
EC2)
ElastiCache, enabling on AWS account, 252
env lookup, 152
not invoking in shebang, 236
environment variables
Amazon EC2 credentials, 249
configuration options for callback plugins,
197
error handling with blocks, 166-169
errors
humane error messages, 305
ignoring for failed tasks, 72
provided hosts list is empty, 312
error_on_missing_handler, 187
etcd (key-value store), 150, 156
etcd lookup, 156
eth0 network interface, 190
ethl network interface, 191
events, handlers listening on, 183, 188
executable (config option), 50
executable, marking inventory file as, 60
execution time, reducing (see performance,
making Ansible faster)
exit_json method (AnsibleModule), 229
Express Setup mode, 331

F
Fabric deployment scripts, 88, 93
facts, 74-78
Ansible documentation for, 75
caching, 209-212

enabling, 209
fact_caching implementation, 210
JSON file fact-caching backend, 210
making sure data is not stale, 209
Memcached fact-caching backend, 212
Redis fact-caching backend, 211
gathering for network modules, 346
gathering manually, 189
local, 77
playbook printing out operating system of
each server, 74
referencing in variables, 96
return by any module, 76
using set_fact to define a new variable, 78
viewing a subset of, 75
viewing all facts associated with a server, 75
fact_caching connection option, 211
fact_caching_timeout value, 209
failed filter, 147
failed variable, 219
failed_when clause, 143, 147, 219
fail_json method (AnsibleModule), 229
file lookup, 151
with_file form, using, 159
file module, 227
using to create a symlink, 118
using to ensure directory for TLS certifi-
cates exists, 119
file paths, filters applying to, 148
file permissions, 107
files subdirectory, 24
filter parameter, setup module, 75
FilterModule class, filters method, 150
filters, 147-150
default, 147
for file paths, 148
for registered variables, 147
writing your own, 149
filter_plugins directory, 149
flctdict library, 200
float type, 224
flush_handlers, 181
foreman plugin, 198
forks option, 213
free strategy, 178-180
FreeBSD platforms, Bash on, 236

G

gathering configuration option

Index | 389

setting to explicit, 209
setting to smart, 210
gather_facts clause, 209
smart gathering and, 210
gather_subset parameter, 346
Ghost, 284
deploying Dockerized application, 292-304
cleaning out containers, 295
connecting directly to containers, 295
frontend, Ghost, 294
frontend, Nginx, 294
docker-compose file starting up, 287
downloading image from Docker container
and running locally, 285
Nginx configuration as frontend for, 285
git module, checking out Git repository with,
100
Git repository, cannot check out error, 124
GitHub repositories
Docker inventory plugin, 295
for Ansible dynamic inventory scripts, 64
full Mezzanine playbook, 93
list of facts, 75
mezzanine_example project, 100
Google Compute Engine, 247
groups, 51-56
aliases and ports, 54
assigning to Vagrant virtual machines, 242
autogenerated by EC2 dynamic inventory
script, 253
dynamic, defining with EC2 tags, 254-256
nicer group names, 255
example, deploying a Django app, 52-54
group parameter for EC2 instances, 258
group variable file for iOS switches, 338
group variables in their own files, 57
groups variable, 80
in EC2, adding new instance to, 264-266
listing in dynamic inventory scripts, 60
managing local groups on Windows, 324
of groups, 55
specifying group variables in inventory, 56
group_by module, 67
Gunicorn (application server), 89
setting configuration file for, 115

H
handlers, 36
advanced, 180-189

flush handlers, 181
in pre and post tasks, 180
listen feature, 183-189
for database role, 132
for mezzanine role, 137
for Nginx and Supervisor services in Mezza-
nine app, 115
for roles, 128
in playbook for Nginx TLS support, 41
uses for, 41
hardware virtualization, 281
hipchat plugin, 198
Homebrew package manager, 10
--host=<hostname> command-line flag, 60
host variable files, 58
host-key checking, 369-372
host-key verification (SSH), problems with, 307
hostnames, 54
inventory_hostname variable, 80
translation to IP addresses by DNS, 154
hosts, 3
adding to inventory at runtime with
add_host, 65
Amazon EC2 instances, 247
Ansible Tower inventory excluded hosts,
354
Ansible Tower inventory management, 353
configuring for pipelining, 207
in plays, 32
inventory, 45
(see also inventory)
limiting which hosts run, 172
listing hosts playbook will run against, 312
patterns for specifying, 171
provided hosts list is empty error, 312
retrieving IP address from, 190
running a batch of hosts at a time, 175
running on one host at a time, 174-175
tracking host state, 35
hostvars variable, 80
host_key_checking, 47
turning off for use with EC2, 257
hypervisors, 281

I

Taa$S clouds (see infrastructure-as-a-service
(TaaS) clouds)

idempotence
Ansible modules, 7

390 | Index

idempotent instance creation, 268
implementing with creates parameter of
openssl command, 119
logic for checking for VPC modules, 272
network modules' support for, 336
Identity and Access Management (IAM) ser-
vice, 248
using IAM roles for EC2 credentials,
373-376
creating IAM role with AWS CLI,
374-376
creating IAM role with AWS Manage-
ment Console, 373
ignore_errors clause, 72, 219
image parameter, 258
images (Docker), 282
building from a Dockerfile, 285-287
creating, 282
in registry, 283
publishing to registries using Ansible Con-
tainer, 303
pushing our image to Docker registry,
288-290
querying local images, 290-292
import statements, 222
includes, 162-165
dynamic, 164
role, 164
using include and with_items, 160
include_role clause, 164
infrastructure-as-a-service (IaaS) clouds, 245
(see also Amazon EC2)
about, 246
Apache CloudStack, 167
interfaces for user interaction, 246
.ini file format, 51
facts file in, 77
percent sign (%) as special character, 206
initializer method (AnsibleModule), parame-
ters, 225-229
supports_check_mode, 231
inline lists format (YAML), 29
instance profiles
creating on AWS command line, 375
creating with AWS Management Console,
374
instances (Amazon EC2), 247
adding new instance to a group, 264-266
adding tags to existing instances, 254

applying tags to, 254
idempotent creation of, 268
launching new, 257-259
waiting for instance to come up, 266
instance_tags parameter, 258
instance_type parameter, 258
int type, 224
internet gateway, VPC with, 271
interpreters, 50
inventory, 45-68
adding entries at runtime with add_host
and group_by, 65-68
add_host module, 65
group_by module, 67
behavioral inventory parameters, 49-50
breaking into multiple files, 65
directory with information about groups,
255
Docker inventory plugin, 295
dynamic, 59-65
and VPCs, 275
using for Amazon EC2 servers, 250-254
for network modules, 336-340
host connection, 338
hosts file for Cisco Catalyst switches, 336
inventory_hostname, 337
generated by Vagrant, 240
with groups, 243
groups, 51-56
deploying a Django app (example),
52-54
groups of groups, 55
numbered hosts (pets vs. cattle), 55
host and group variables in, 56
host and group variables in their own files,
57
inventory files, 45
inventory management with Ansible Tower,
353
multiple Vagrant machines, 46-49
inventory files, 45
inventory_hostname variable, 80, 173
iOS, Cisco Catalyst switch running, 330
configs from a file, 340-343
setting hostname on, 334
ios_config module, 334
template support, 344-346
ios_facts module, 346
IP addresses

Index | 391

assigning private IP address to Vagrant
machines, 238
permitted to connect to EC2 instances, 262
retrieving from hosts, 190
items, 97
iteration (with_items), installing multiple pack-
ages with, 96-98

J

,j2 file extension, 40
jabber plugin, 198
Jinja2 template engine, 9
assert statement code, 310
configuration files for Gunicorn, Supervisor,
and Nginx, 115
if statement and join filter in Nginx file,
116
filters, 147-150
generating local_settings.py file from a tem-
plate, 108-111
for loop syntax, 111
generating template for Nginx configura-
tion, 39
Template Designer Documentation, 40
template lookup, 153
templates for iOS device configuration,
344-346
variable dereferencing with, 73
job templates in Ansible Tower, 355-357
launching a job with tower-cli, 361
join filter in Jinja2, 149
jq tool, 235
JSON
arguments file for module, generating as,
218
expected module outputs, 218
fact-caching backend, 210
input format for custom module imple-
mented in Bash, 235
Packer configuration files, 276
valid file, 31
json plugin, 195
junit plugin, 199
junit_xml library, 199

K
key pairs (EC2), 259-261
key-value stores

etcd, 156

Redis, 156
keypair variable, 259
key_name parameter, 258
known_hosts file, 370, 372
Kubernetes, 297, 304

L
label control, 161
length filter (Jinja2), 310
Library directory, custom modules in, 217
line folding in YAML, 30
linear strategy, 176
Linux
Ansible's strong association with, 317
low-cost access through cloud to virtual
machine, 11
starting up ssh-agent, 365
Windows Subsystem for Linux (WSL), 317
Linux distributions, 9
Amazon Machine Image (AMI), 264
creating ad hoc groups based on, 67
using Python 3, 251
--list command-line flag, 60
listen clause (handlers), 183-189
SSL use case, 184-189
lists
in YAML, 29
list module parameter, 225
list type, 224
modules handling intelligently, 98
load balancers, 52
getting upgraded VMs back to, 168
removing one host at a time from, 174
taking a VM out of, 167
load_file_common_arguments method, 228
local facts, 77
locale categories (LC_CTYPE, LC_COLLATE),
107
locale_gen module, 107
localhost, 46
local_action clause, 172
complex arguments and, 106
using run_once with, 176
local_settings.py file, generating from a tem-
plate, 108-111
logentries plugin, 200
logging from module execution, disabling, 226
logstash plugin, 200
log_plays plugin, 200

392 | Index

lookup function, 151
lookups, 150-157
available in Ansible, 150
csvfile, 153
env, 152
eted, 156
file, 151
looping constructs as lookup plugins, 159
password, 152
pipe, 152
redis_kv, 156
template, 153
writing your own plugin, 157
loops
controls, 160-162
labeling output, 161
setting variable name, 160
more complicated, 157-160
available looping constructs in Ansible,
157
looping constructs as lookup plugins,
159
with_dict construct, 158
with_fileglob construct, 158
with_lines construct, 158
loop_var control, 160

M
macOS
Dash documentation viewer, 34
Docker connection options, 284
spoken notifications, osx_say plugin, 201
ssh-agent on, 365
mail plugin, 201
manage.py script (Django apps), 111
max_fail_percentage clause, 166
using with serial clause, 175
Memcached fact-caching backend, 212
meta module, using with flush_handlers, 181
metadata, associating with EC2 instances via
tags, 258
Mezzanine, 85
deploying to production
Gunicorn application server, 89
Nginx web server, 90
Supervisor process manager, 91
deploying with Ansible, 93-125
adding become clause to tasks, 98

checking out the project using Git,
100-102
complete playbook, 120
configuring the database, 107
enabling Nginx configuration, 118
generating local_settings.py file from
template, 108-111
installing Mezzanine and other packages
into virtualenv, 102-105
installing TLS certificates, 118
installing Twitter cron job, 119
listing tasks in a playbook, 93
organization of deployed files, 94
running custom Python scripts in app
virtualenv context, 112-118
running django_manage commands,
111
running playbook against a Vagrant
machine, 124
troubleshooting the playbook, 124-125
updating the apt cache, 99-100
using iteration to install multiple pack-
ages, 96-98
variables and secret variables, 95
Gunicorn application server, 89
mezzanine role for deploying Mezzanine,
133-137
running in development mode, 85
mezzanine role, 128
mezzanine-project program, 88, 100
Microsoft Azure, 247
migrate command, 112
minimal plugin, 196
modules, 34
built-in, with Ansible, 6
custom, 215
(see also custom modules)
where to store, 217
documentation for, 34
expected outputs, 218
output variables, 219
how Ansible invokes, 217-218
copying the module to the host, 217
creating arguments file on host for non-
Python modules, 217
generating Python script with module
arguments, 217
invoking the module, 218
how Ansible modules work, 334

Index | 393

name and arguments in tasks, 33
network, status of, 330
other modules supporting Amazon EC2,
280
primary unit of reuse in Ansible, 8
registered as variable, outputting returns
with debug, 71
returning facts, 76
source code for modules that ship with
Ansible, 236
Windows, prefixed by win_, 321
msg variable, 219
returning in fail_json method parameter,
229
mutually_exclusive parameter, 227

N

Nagios, using delegate_to with, 173
name setting (in plays), 32
Name tags (Amazon EC2), 248
names
name setting for tasks, 33
of roles, 127
network devices, Ansible for, 329-347
gathering facts, 346
how Ansible modules work, 334
inventory and variables for network mod-
ules, 336-340
authentication variables, 338
host connection, 337
local connections, 337
saving the config, 339
playbook setting hostname on Cisco Cata-
lyst, 334-336
preparing our network device, 330-334
reasons for using Ansible, 329
status of network modules, 330
supported network vendors, 330
templates, 344-346
using configs from a file, 340-343
network interface, getting information about
on Vagrant machines, 48
networking features (IaaS clouds), 247
networks (Docker), creating, 293
Nginx
configuration to be frontend for Ghost, 285
configuring host to run, 22-28
creating webservers group, 26
exposing ports on Vagrant machine, 21

specifying config file, 24
Docker image, 282
docker-compose file starting up, 287
enabling Nginx container to connect to
Ghost container, 293
frontend for Dockerized Ghost application,
294
installing on Ubuntu, 19
nginx role configuration with flush han-
dlers, 181
pulling base Nginx image for ac-nginx con-
tainer, 300
web server for Mezzanine application, 90
enabling configuration, 118
setting configuration file for, 115
notifications, plugins for, 193
notify clause
appending to tasks to restart Nginx, 186
calling on handlers, 183
notify key in tasks, 41
no_log argument, 226
numbered hosts, 55

0

octal values as complex arguments, 107
oneline plugin, 196
OpenS$hift, 297, 304
OpenSSH, 203

looking for string containing, 267
openssl command, 119
operating system virtualization, 281
orchestration of deployment, 3
osx_say plugin, 201
output variables

changed, 219

failed, 219

msg, 219

P

package argument, 224

Packer, 276-280

using to build AMIs

Ansible local provisioner, 279
Ansible remote provisioner, 277
steps in process, 276

packer build command, 278

parallel provisioning, 241

parallelism, 212

Paramiko, 49

394 | Index

installing with pip, 63
using to parse output of vagrant ssh-config,
63
params dictionary, 222, 225
password lookup, 152
PATH environment variable, 10
path variable, 113
paths
filters applying to file paths, 148
path argument, 228
roles_path setting, 128
patterns, 171
specifying arbitrary combinations of hosts,
172
supported by Ansible, 171
performance, making Ansible faster, 203-214
concurrent tasks with async, 213
fact caching, 209-212
parallelism, 212
pipelining, 207-209
SSH multiplexing and ControlPersist,
203-207
pets versus cattle, 55
ping module, invoking, 15
pinging webservers group, 26
pip freeze command, 104
pip module
installing global Python packages, 102
installing Python packages with, 98
pip, installing Ansible with, 10
pipe lookup, 152
pipelining, 207-209
configuring hosts for, 207
enabling in ansible.config file, 207
pipsi, installing Ansible with, 10
playbooks, 3, 21-43
accessing contents of ansible_local variable,
78
advanced features, 143-170
blocks, 165
dealing with badly behaved commands,
143-147
encrypting sensitive data with vault,
169-170
error handling with blocks, 166-169
filters, 147-150
includes, 162-165
lookups, 150-157
loop controls, 160-162

more complicated loops, 157-160
anatomy of, 30-36
modules, 34
plays, 32
summary of contents, 35
tasks, 33
creating for Windows hosts, 321
debugging, 305-315
assert module, 310-312
checking playbooks before execution,
312-314
debug module, 308
humane error messages, 305
playbook debugger, 308
SSH issues, 306-308
defining variables in, 69
easy-to-read syntax, 5
example, complete EC2 playbook, 268
example, EC2 playbook creating VPC and
launching instance into it, 272
for creating EC2 instance, 257
for network devices
final version, setting hostname for Cisco
Catalyst switch, 339
setting hostname on Cisco Catalyst, 334,
336
full Mezzanine playbook, 120
in Ansible Tower projects, 352
modifying simple example to add TLS sup-
port, 36-43
registered variables in, 74
reuse of, 8
running mezzanine.yml playbook against
Vagrant machine, 124
simple example, configuring host to run
Nginx, 22-28
creating custom home page, 25
creating webservers group, 26
specifying Nginx config file, 24
tracking host state, 35
troubleshooting completed Mezzanine play-
book, 124-125
Bad Request (400) error, 125
cannot check out Git repository, 124
Cannot Reach 192.168.33.10.xip.io, 125
using roles in, 128-130
Windows host, installing Zabbix Agent on,
321

Index | 395

Windows local users and groups, managing,
324
Windows updates playbook, 322
YAML syntax, 28-30
playbooks/inventory directory, 251
playbooks/library/, 217
plays, 32
adding tags to, 314
declaring as failed, 166
port forwarding (Vagrant), 238
ports
in hostnames, 54
specifying range of ports for security
groups, 263
PostgreSQL, 89
configuring database for Mezzanine app
deployment with Ansible, 107
creating deploy user, 152
database role for deploying the database,
130-133
to production, 89
postgresql_db module, 107
postgresql_user module, 107
post_tasks, 130
handlers in, 180
PowerShell, 318-321
checking version installed, 319
ConfigureRemotingForAnsible.ps1 script,
319
error resulting from invalid TLS/SSL certifi-
cates, 320
ping success, 321
precedence rules for variable values, 82
prettytable library, 198, 202
pre_tasks, 130
handlers in, 180
print_action, 197
private networks, 239
private_key variable, 260
production, deploying Django app to, 52
profile_tasks plugin, 201, 202
projects
in Ansible Tower, 352
in Django, 94
checking out from Git repository, 100
provisioners, 3, 239
Ansible local provisioner, using with
Vagrant, 243
in Packer, using Ansible to build AMIs, 276

running, 240
provisioning in parallel, 241
provisioning servers, 3, 246
pull based configuration management systems,
5
push based (Ansible), 6
Python
Ansible Container mounting runtime to
containers being configured, 297
Boto library, installing for Ansible EC2
functionality, 250
certifi and flctdict libraries, 200
custom scripts, running in app's virtualev
context, 112-118
ec2.py inventory script, Python versions
and, 251
implementing custom modules in, 220-231
installing packages using pip module, 98
interpreter, location on remote machine, 50
Memcached package, installing, 212
network modules and Python interpreter,
334
package dependencies in requirements.txt
file, 103
prettytable library, 198, 202
Python 2.5 or later, 5
redis package, 155, 211
script with module arguments, for Python
modules, 217
subprocess.Popen class, 230
virtualenv, 10
virtualenvs, 102
xmpp library, 199
python-logstash library, 201

Q

quotation marks
filter for quoting strings, 149
in message output passed in a variable, 82

R

Rackspace, 247

RDS (Relational Database Service), enabling on
AWS account, 252

Redis, 156
fact-caching backend, 211

redis_kv module, 155

regions (AWS), 249
region parameter, 258

396 | Index

register clause, 70
and modules with facts for returned values,
77
registry (Docker images), 283
publishing images to multiple registries, 304
pushing our image to, 288, 290
regular expressions, search_regex parameter,
267
remote servers, 3
repo_url variable, 101
required option, 223
required_one_of parameter, 227
requirements.txt file, 103
example file, 103
installing packages from, 104
requiretty option, disabling, 207
rescue clause, 168
REST API
Amazon EC2, 246
Ansible Tower, 357
reverse proxy, 90
roles, 8, 127-141
Ansible Galaxy, 139-141
basic structure, 127
creating role files and directories with
ansible-galaxy, 138
database role for deploying the database,
130-133
defining variables in, 133
dependent, 138
one-way dependency, 185
SSL role, 185
example, database and mezzanine roles, 128
ghost-nginx, creating for Dockerized appli-
cation, 298
in Ansible Tower projects, 352
include_role clause, 164
mezzanine role for deploying Mezzanine,
133-137
tasks executing before or after roles, 130
using in playbooks, 128-130
roles_path setting, 128
root user, 18, 33
adding become clause to selected tasks, 98
Postgres user, 108
route53 module, 280
routing table for a VPC, 271
RSA keys, generating, 331
run_command method arguments, 229

run_once clause, 176

S
save parameter, 339, 340
scaffolding, 138
scaling
Ansible's up and down scalability, 127
scaling down with Ansible, 6
script module, 113
using instead of writing your own module,
216
search_regex argument, 267
secret access key (Amazon EC2), 248
secret variables, 96
security groups, 261-263
associated with EC2 instances, 258
IP addresses permitted to connect to an
instance, 262
Packer and, 279
ports, 263
rule parameters, 262
security updates on Windows, playbook for,
322
selective plugin, 197
sequences in YAML, 29
serial clause, 166
list of serials, 175
passing a percentage to rather than a fixed
value, 175
using to restrict number of hosts, 174
using with max_fail_percentage, 175
servers
setting up a server for testing, 11-19
treating as pets versus cattle, 55
services, 91
settings.py file, 108
setup module, 75
facts output by, 75
invoking explicitly to gather facts, 189
set_fact module, 78
set_fs_attributes_if_different method, 228
shebang (!), 236
shebangs, 27
shell module
changed key, 71
output structure, 72
shells
ansible_shell_type parameter, 50

Index | 397

dotfile containing Amazon EC2 credentials,
249
skippy plugin, 197
slack plugin, 202
sleep_seconds, hosts with different values for,
177
smart gathering, 210
smart transport, 49
SOAP-based protocol (WinRM), 317
SoftLayer, 247
SQLite, 88-89
src parameter, 340
using for static config files and templates,
344
using with static config file, 342
SSH, 5, 363-372
accessing Ubuntu 14.04 virtual machine
with vagrant ssh, 13
agent forwarding, 239, 365-369
sudo and, 367
default local client, use by Ansible, 45
enabling SSH authentication on Cisco Cata-
lyst switch, 331-334
host-key checking, 369-372
host-key checking, disabling, 17
issues with, debugging, 306-308
local client support for ControlPersist, 49
mapping SSH port in Vagrant machines to
local machine, 48
native SSH, 363
private keys, 15
SSH key pairs, 258-261
ssh-agent, 363-364
starting up, 365
using same key for each host, 47
vagrant ssh-config command, 13
Windows work on native SSH, 318
ssh -O check command, 204
ssh -O exit command, 205
SSH multiplexing and ControlPersist, 203-207
manually enabling SSH multiplexing, 204
SSH multiplexing options in Ansible, 205
ssh-add command, 363
ssh-agent, 15
ssh_args configuration option, 207
SSH_AUTH_SOCK environment variable, 363
SSL (Secure Sockets Layer), 23
(see also TLS)

SSL certificates, managing using handlers lis-
ten, 184-189
staging environment, deploying Django app to,
53
start of file (YAML), 28
stat module, 310
static assets, 90
stderr key, in apt module output, 74
stdout key
in apt module output, 74
using register clause with command mod-
ule, 72
stdout plugins, 193-197
actionable, 194
debug, 194
dense, 195
json, 195
minimal, 196
oneline, 196
selective, 197
skippy, 197
supported by Ansible, 194
stdout_lines key in apt module output, 74
stdout_plugin parameter, 194
--step flag, 314
storage
for EC2 instances, 258
in IaaS$ cloud services, 247
strategies, 176-180
debug strategy, 308
free strategy, 178-180
strings
in YAML, 28
quoting in arguments, 38
quoting, writing a filter for, 149
str type, 224
subnets
in VPCs, 271
specifying with CIDR notation, 262
subprocess.Popen, 230
subscription models for Ansible Tower, 350
success or failure, returning from module exe-
cution, 229
sudo utility
agent forwarding and, 367
sudoers config file disabling requiretty
restriction, 207
Supervisor (service manager), 91
setting configuration file for, 115

398 | Index

supports_check_mode, 231
surround_by_quotes custom filter, 149
symlinks, 118

syntax check for playbooks, 312
system-level packages, installing, 97
systemwide roles, 128

T
tags
adding to tasks or plays, 314
Amazon EC2, 248
count_tag parameter, 268
instance_tags parameter, 258
tasks, 3
adding become clause to, 98
adding tags to, 314
changed status, 35
complex arguments in, 105-107
concurrent, using async clause, 213
failed, 72
capturing output of, 144
for mezzanine role, 134
from dynamic includes, listing with ansible-
playbook, 164
in example playbook, 33
in plays, 32
limiting which tasks run, 314
listing for a playbook, 312
listing in a playbook, 93
notify key, 41
ok status, 35
pre_tasks and post_tasks, 130
handlers in, 180
return value filters, 147
running on control machine, 172
running on machine other than the host,
173
running only once, 176
starting running of playbook at specified
task, 314
using command module output in, 72
variables in, 38
with identical arguments, with includes, 163
with identical arguments, without includes,
162
telnet
disabling on Cisco switch, 333
using for Cisco switch configuration, 330
template lookup, 153

template module
invoked on tasks defined in roles, 137
invoking lookups, 151
templates
generating for Nginx configuration, 39
home page, 25
job templates in Ansible Tower, 355-357
Packer configuration files in JSON, 276
template databases, 108
win_template module, 322
templates subdirectory, 24
test server for Ansible, 11-19
simplifying with ansible.cfg file, 16
telling Ansible about the server, 14
text editors, 170
timer plugin, 202
timing (performance), speed of making SSH
connection, 205
TLS (Transport Layer Security), 23, 36-43
certificates, 287
generating self-signed certificates, 294
generating a TLS certificate, 37
installing TLS certificates in Mezzanine app,
118
Nginx configuration for, 286
playbook with TLS support for Nginx, run-
ning, 42
TLS/SSL certificates
Ansible Tower, 359
invalid certificates on Windows host, 320
tls_enabled, 119
tower-cli, 358-362
creating a user, 359
installation, 358
launching a job, 360
transports, 49
truthy and falsey values in playbooks, 23
Twitter cron job, installing for Mezzanine app,
119
TXT records (DNS), 154
type option, 224

U
Ubuntu
cache of names of all apt packages available,
929
retrieving latest Ubuntu AMI, 263
Ubuntu 14.04 virtual machine, setting up,
12-14

Index | 399

users
creating with tower-cli, 359
local, adding to Windows, 324-327
use_unsafe_shell, 230

)
Vagrant, 237-244
Ansible local provisioner, 243
Ansible provisioner, 239
Ansible Tower evaluation setup, 350
configuring to bring up three hosts, 46-49
convenient configuration options, 237-239
enabling agent forwarding, 239
port forwarding and private IP
addresses, 238
deploying Django app to, 53
deploying Mezzanine example app to, 94
exposing ports on, 21
inventory generated by, 240
multiple virtual machines, 240
provisioning in parallel, 241
running mezzanine.yml playbook against
Vagrant machine, 124
running the provisioner, 240
setting up test server with, 11, 14
specifying groups for virtual machines, 242
vagrant destroy --force command, 46
vagrant init command, 238
vagrant provision command, 240
vagrant reload --provision command, 240
vagrant ssh command, 13
vagrant ssh-config command, 13, 48, 62
parsing output with Paramiko library, 63
vagrant status --machine-readable command,
62
vagrant status command, 61
vagrant up --provision command, 240
validation
file validation, 367
using when modifying sudoers files, 209
variable substitution, using for dynamic
includes, 164
variables, 69-83, 150
and secret variables in example mezzanine
playbook, 95
built-in, 79-81
groups, 80
hostvars, 79
inventory_hostname, 80

defined for mezzanine role, 134
defined in roles, 133
defining in playbooks, 69
defining using set_fact module, 78
dereferencing, 73
evaluating in playbooks with Jinja2, 40
facts, 74-78
for network modules, 336-340
authentication variables, 338
group variable file for ios_switches, 337
inventory_hostname_short, 336
net_host, 338
host and group variables in inventory, 56
host and group variables in their own files,
57
in playbook with TLS support, 37
loop, setting name of, 160
precedence rules for same variable defined
in multiple ways, 82
registered, filters for, 147
registering, 70-74
setting on the command line, 81
vars setting in plays, 33
viewing values of, 70
vars_files, 69
vault, encrypting sensitive data with, 169-170
virtual machines, 237
(see also Vagrant)
implementing servers in Iaa$ clouds, 246
Virtual Private Cloud (VPC), 256
creating and launching instances into,
270-275
dynamic inventory and, 275
VirtualBox virtualizer, 11
virtualenv
installing Ansible in, 10
installing Mezzanine and other packages
into, 102-105
virtualization, 281
visudo program, 368
VPC (see Virtual Private Cloud)

]

wait_for module, 172, 267

wall-clock time, 205

web applications (projects in Django), 94
web interface (Amazon EC2), 246

Web Server Gateway Interface (WSGI), 90
webservers group, creating, 26

400 | Index

whoami command, capturing output to a vari-
able, 70
Windows hosts, managing, 317-327
adding local users, 324-327
connection to Windows, 317
creating first playbook, 321
PowerShell, 318-321
updating Windows, 322-324
Windows modules, 321
Windows Remote Management (WinRM), 317
Windows Subsystem for Linux (WSL), 317
win_chocolatey module, 322
win_package module, 322
win_ping, 320
win_template module, 322
with_dict looping construct, 158
with_fileglob looping construct, 158
with_items clause
using to install multiple packages, 96-98
using with include, 160
with_lines looping construct, 158
WSGI (Web Server Gateway Interface), 90

X

xip.io, 110
DN server failing to resolve hostnames,
125

XML files, produced by junit plugin, 199
xmpp library, 199

Y
YAML, 5, 9, 28-30
Boolean type, 28
comments, 28
dictionaries, 29
dictionary syntax, using for EC2 tags, 255
line folding, 30
for module name and arguments in play-
book tasks, 33
lists (or sequences), 29
start of file, 28
strings, 28
using dictionaries to represent group vari-
ables, 58
valid file, JSON and, 31
yum module, 7

z

Zabbix Agent, installing on Windows, 321
Zabbix monitoring software, 321
Zsh shell, 152
dotfile containing Amazon EC2 credentials,
249

Index | 401

About the Authors

Lorin Hochstein was born and raised in Montreal, Quebec, though youd never guess
he was a Canadian by his accent, other than his occasional tendency to say “close the
light” He is a recovering academic, having spent two years on the tenure track as an
assistant professor of computer science and engineering at the University of
Nebraska-Lincoln, and another four years as a computer scientist at the University of
Southern California’s Information Sciences Institute. He earned his BEng in Com-
puter Engineering at McGill University, his MS in Electrical Engineering at Boston
University, and his PhD in Computer Science at the University of Maryland, College
Park. He is currently a Senior Software Engineer at Netflix, where he works on the
Chaos Engineering team.

René Moser lives in Switzerland with his wife and three kids, likes simple things that
work and scale, and earned an Advanced Diploma of Higher Education in IT. He has
been engaged in the open source community for more than 15 years, recently as an
Ansible Core Contributor and author of over 40 Ansible modules, as well as a mem-
ber of the Project Management Committee and Committer of Apache CloudStack.
He is currently a System Engineer at SWISS TXT.

Colophon

The animal on the cover of Ansible: Up and Running is a Holstein Friesian (Bos primi-
genius), often shortened to Holstein in North America and Friesian in Europe. This
breed of cattle originated in Europe in what is now the Netherlands, bred with the
goal of obtaining animals that could exclusively eat grass—the area’s most abundant
resource—resulting in a high-producing, black-and-white dairy cow. Holstein Friesi-
ans were introduced to the United States from 1621 to 1664, but American breeders
didn’t become interested in the breed until the 1830s.

Holsteins are known for their large size, distinct black-and-white markings, and high
production of milk. The black and white coloring is a result of artificial selection by
the breeders. Healthy calves weigh 90-100 pounds at birth; mature Holsteins can
weigh up to 1,280 pounds and stand at 58 inches tall. Heifers of this breed are typi-
cally bred by 13 to 15 months; their gestation period is 9% months.

This breed of cattle averages about 2,022 gallons of milk per year; pedigree animals
average 2,146 gallons per year, and can produce up to 6,898 gallons in a lifetime.

In September 2000, the Holstein became the center of controversy when one of its
own, Hanoverhill Starbuck, was cloned from frozen fibroblast cells recovered one
month before his death, birthing Starbuck II. The cloned calf was born 21 years and 5
months after the original Starbuck.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History, Vol. 2. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface to the Second Edition
	A Note About Language
	Acknowledgments
	From Lorin
	From René

	Preface to the First Edition
	Why I Wrote This Book
	Who Should Read This Book
	Navigating This Book
	Conventions Used in This Book
	Online Resources
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introduction
	A Note About Versions
	Ansible: What Is It Good For?
	How Ansible Works
	What’s So Great About Ansible?
	Easy-to-Read Syntax
	Nothing to Install on the Remote Hosts
	Push Based
	Ansible Scales Down
	Built-in Modules
	Very Thin Layer of Abstraction

	Is Ansible Too Simple?
	What Do I Need to Know?
	What Isn’t Covered
	Installing Ansible
	Setting Up a Server for Testing
	Using Vagrant to Set Up a Test Server
	Telling Ansible About Your Test Server
	Simplifying with the ansible.cfg File

	Moving Forward

	Chapter 2. Playbooks: A Beginning
	Some Preliminaries
	A Very Simple Playbook
	Specifying an Nginx Config File
	Creating a Custom Home Page
	Creating a Webservers Group

	Running the Playbook
	Playbooks Are YAML
	Start of File
	Comments
	Strings
	Booleans
	Lists
	Dictionaries
	Line Folding

	Anatomy of a Playbook
	Plays
	Tasks
	Modules
	Putting It All Together

	Did Anything Change? Tracking Host State
	Getting Fancier: TLS Support
	Generating a TLS Certificate
	Variables
	Generating the Nginx Configuration Template
	Handlers
	Running the Playbook

	Chapter 3. Inventory: Describing Your Servers
	The Inventory File
	Preliminaries: Multiple Vagrant Machines
	Behavioral Inventory Parameters
	ansible_connection
	ansible_shell_type
	ansible_python_interpreter
	ansible_*_interpreter
	Changing Behavioral Parameter Defaults

	Groups and Groups and Groups
	Example: Deploying a Django App
	Aliases and Ports
	Groups of Groups
	Numbered Hosts (Pets versus Cattle)

	Hosts and Group Variables: Inside the Inventory
	Host and Group Variables: In Their Own Files
	Dynamic Inventory
	The Interface for a Dynamic Inventory Script
	Writing a Dynamic Inventory Script
	Preexisting Inventory Scripts

	Breaking the Inventory into Multiple Files
	Adding Entries at Runtime with add_host and group_by
	add_host
	group_by

	Chapter 4. Variables and Facts
	Defining Variables in Playbooks
	Viewing the Values of Variables
	Registering Variables
	Facts
	Viewing All Facts Associated with a Server
	Viewing a Subset of Facts
	Any Module Can Return Facts
	Local Facts

	Using set_fact to Define a New Variable
	Built-in Variables
	hostvars
	inventory_hostname
	Groups

	Setting Variables on the Command Line
	Precedence

	Chapter 5. Introducing Mezzanine: Our Test Application
	Why Deploying to Production Is Complicated
	PostgreSQL: The Database
	Gunicorn: The Application Server
	Nginx: The Web Server
	Supervisor: The Process Manager

	Chapter 6. Deploying Mezzanine with Ansible
	Listing Tasks in a Playbook
	Organization of Deployed Files
	Variables and Secret Variables
	Using Iteration (with_items) to Install Multiple Packages
	Adding the Become Clause to a Task
	Updating the Apt Cache
	Checking Out the Project by Using Git
	Installing Mezzanine and Other Packages into a virtualenv
	Complex Arguments in Tasks: A Brief Digression
	Configuring the Database
	Generating the local_settings.py File from a Template
	Running django-manage Commands
	Running Custom Python Scripts in the Context of the Application
	Setting Service Configuration Files

	Enabling the Nginx Configuration
	Installing TLS Certificates
	Installing Twitter Cron Job
	The Full Playbook
	Running the Playbook Against a Vagrant Machine
	Troubleshooting
	Cannot Check Out Git Repository
	Cannot Reach 192.168.33.10.xip.io
	Bad Request (400)

	Deploying Mezzanine on Multiple Machines

	Chapter 7. Roles: Scaling Up Your Playbooks
	Basic Structure of a Role
	Example: Database and Mezzanine Roles
	Using Roles in Your Playbooks
	Pre-Tasks and Post-Tasks
	A database Role for Deploying the Database
	A mezzanine Role for Deploying Mezzanine
	Creating Role Files and Directories with ansible-galaxy
	Dependent Roles
	Ansible Galaxy
	Web Interface
	Command-Line Interface
	Contributing Your Own Role

	Chapter 8. Complex Playbooks
	Dealing with Badly Behaved Commands: changed_when and failed_when
	Filters
	The Default Filter
	Filters for Registered Variables
	Filters That Apply to File Paths
	Writing Your Own Filter

	Lookups
	file
	pipe
	env
	password
	template
	csvfile
	dnstxt
	redis_kv
	etcd
	Writing Your Own Lookup Plugin

	More Complicated Loops
	with_lines
	with_fileglob
	with_dict
	Looping Constructs as Lookup Plugins

	Loop Controls
	Setting the Variable Name
	Labeling the Output

	Includes
	Dynamic Includes
	Role Includes

	Blocks
	Error Handling with Blocks
	Encrypting Sensitive Data with Vault

	Chapter 9. Customizing Hosts, Runs, and Handlers
	Patterns for Specifying Hosts
	Limiting Which Hosts Run
	Running a Task on the Control Machine
	Running a Task on a Machine Other Than the Host
	Running on One Host at a Time
	Running on a Batch of Hosts at a Time
	Running Only Once
	Running Strategies
	Linear
	Free

	Advanced Handlers
	Handlers in Pre and Post Tasks
	Flush Handlers
	Handlers Listen

	Manually Gathering Facts
	Retrieving the IP Address from the Host

	Chapter 10. Callback Plugins
	Stdout Plugins
	actionable
	debug
	dense
	json
	minimal
	oneline
	selective
	skippy

	Other Plugins
	foreman
	hipchat
	jabber
	junit
	log_plays
	logentries
	logstash
	mail
	osx_say
	profile_tasks
	slack
	timer

	Chapter 11. Making Ansible Go Even Faster
	SSH Multiplexing and ControlPersist
	Manually Enabling SSH Multiplexing
	SSH Multiplexing Options in Ansible

	Pipelining
	Enabling Pipelining
	Configuring Hosts for Pipelining

	Fact Caching
	JSON File Fact-Caching Backend
	Redis Fact-Caching Backend
	Memcached Fact-Caching Backend

	Parallelism
	Concurrent Tasks with Async

	Chapter 12. Custom Modules
	Example: Checking That We Can Reach a Remote Server
	Using the Script Module Instead of Writing Your Own
	can_reach as a Module
	Where to Put Custom Modules
	How Ansible Invokes Modules
	Generate a Standalone Python Script with the Arguments (Python Only)
	Copy the Module to the Host
	Create an Arguments File on the Host (Non-Python Only)
	Invoke the Module

	Expected Outputs
	Output Variables that Ansible Expects

	Implementing Modules in Python
	Parsing Arguments
	Accessing Parameters
	Importing the AnsibleModule Helper Class
	Argument Options
	AnsibleModule Initializer Parameters
	Returning Success or Failure
	Invoking External Commands
	Check Mode (Dry Run)

	Documenting Your Module
	Debugging Your Module
	Implementing the Module in Bash
	Specifying an Alternative Location for Bash
	Example Modules

	Chapter 13. Vagrant
	Convenient Vagrant Configuration Options
	Port Forwarding and Private IP Addresses
	Enabling Agent Forwarding

	The Ansible Provisioner
	When the Provisioner Runs
	Inventory Generated by Vagrant
	Provisioning in Parallel
	Specifying Groups
	Ansible Local Provisioner

	Chapter 14. Amazon EC2
	Terminology
	Instance
	Amazon Machine Image
	Tags

	Specifying Credentials
	Environment Variables
	Configuration Files

	Prerequisite: Boto Python Library
	Dynamic Inventory
	Inventory Caching
	Other Configuration Options
	Autogenerated Groups

	Defining Dynamic Groups with Tags
	Applying Tags to Existing Resources
	Nicer Group Names

	EC2 Virtual Private Cloud and EC2 Classic
	Configuring ansible.cfg for Use with ec2
	Launching New Instances
	EC2 Key Pairs
	Creating a New Key
	Uploading an Existing Key

	Security Groups
	Permitted IP Addresses
	Security Group Ports

	Getting the Latest AMI
	Adding a New Instance to a Group
	Waiting for the Server to Come Up
	Creating Instances the Idempotent Way
	Putting It All Together
	Specifying a Virtual Private Cloud
	Dynamic Inventory and VPC

	Building AMIs
	With the ec2_ami Module
	With Packer

	Other Modules

	Chapter 15. Docker
	The Case for Pairing Docker with Ansible
	Docker Application Life Cycle
	Example Application: Ghost
	Connecting to the Docker Daemon
	Running a Container on Our Local Machine
	Building an Image from a Dockerfile
	Orchestrating Multiple Containers on Our Local Machine
	Pushing Our Image to the Docker Registry
	Querying Local Images
	Deploying the Dockerized Application
	Backend: Postgres
	Frontend
	Frontend: Ghost
	Frontend: Nginx
	Cleaning Out Containers
	Connecting Directly to Containers

	Ansible Container
	The Conductor
	Creating Docker Images
	Running Locally
	Publishing Images to Registries
	Deploying Containers to Production

	Chapter 16. Debugging Ansible Playbooks
	Humane Error Messages
	Debugging SSH Issues
	The Debug Module
	Playbook Debugger
	The Assert Module
	Checking Your Playbook Before Execution
	Syntax Check
	List Hosts
	List Tasks
	Check Mode
	Diff (Show File Changes)

	Limiting Which Tasks Run
	Step
	Start-at-Task
	Tags

	Chapter 17. Managing Windows Hosts
	Connection to Windows
	PowerShell
	Windows Modules
	Our First Playbook
	Updating Windows
	Adding Local Users
	Conclusion

	Chapter 18. Ansible for Network Devices
	Status of Network Modules
	List of Network Vendors Supported
	Preparing Our Network Device
	Enable SSH Authentication

	How the Modules Work
	Our First Playbook
	Inventory and Variables for Network Modules
	Local Connection
	Host Connection
	Authentication Variables
	Save the Config

	Use Configs from a File
	Templates, Templates, Templates
	Gathering Facts
	Conclusion

	Chapter 19. Ansible Tower: Ansible for the Enterprise
	Subscription Models
	Try Ansible Tower

	What Ansible Tower Solves
	Access Control
	Projects
	Inventory Management
	Run Jobs by Job Templates

	RESTful API
	Ansible Tower CLI
	Installation
	Create a User
	Launch a Job

	Onward

	Appendix A. SSH
	Native SSH
	SSH Agent
	Starting Up ssh-agent
	macOS
	Linux

	Agent Forwarding
	Sudo and Agent Forwarding

	Host Keys

	Appendix B. Using IAM Roles for EC2 Credentials
	AWS Management Console
	Command-Line

	Glossary
	Bibliography
	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

