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“The empirical analysis of the cross section of stock returns is a monumental achieve-
ment of half a century of finance research. Both the established facts and the methods
used to discover them have subtle complexities that can mislead casual observers and
novice researchers. Bali, Engle, and Murray’s clear and careful guide to these issues
provides a firm foundation for future discoveries.”

John Campbell, Morton L. and Carole S. Olshan Professor of Economics, Harvard
University

“Bali, Engle, and Murray have produced a highly accessible introduction to the tech-
niques and evidence of modern empirical asset pricing. This book should be read and
absorbed by every serious student of the field, academic and professional.”

Eugene Fama, Robert R. McCormick Distinguished Service Professor of Finance,
University of Chicago

“Bali, Engle, and Murray provide clear and accessible descriptions of many of the most
important empirical techniques and results in asset pricing.”

Kenneth R. French, Roth Family Distinguished Professor of Finance, Tuck School of
Business, Dartmouth College

“This exciting new book presents a thorough review of what we know about the
cross section of stock returns. Given its comprehensive nature, systematic approach,
and easy-to-understand language, the book is a valuable resource for any introductory
PhD class in empirical asset pricing.”

Lubos Pastor, Charles P. McQuaid Professor of Finance, University of Chicago
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PREFACE

The objective of this book is to provide an overview of the empirical research on the
cross-section of expected stock returns. The book is intended for use in doctoral-level
empirical asset pricing classes and by investors who are looking for a review of the
most important predictors of future stock returns. A doctoral student reader should
come away with a solid understanding of the most fundamental results in the field
and a strong base upon which to pursue future research in empirical asset pricing. For
the reader whose intention is to apply the results presented in this book to practice,
our hope is that the book provides a basis upon which investment strategies can be
constructed as well as a strong understanding of the most prevalent patterns of risk
and returns in the cross-section of stocks.

It is assumed that the reader of this book has at least an MBA level understand-
ing of theoretical asset pricing and a solid grasp of basic econometric techniques.
Fantastic books on these topics have been written by Cochrane (2005), Campbell, Lo,
and MacKinlay (1996), and Elton, Gruber, Brown, and Goetzmann (2014).1 More
in-depth knowledge in either of these areas is obviously a benefit. While all of the
analyses in this book are statistical in nature, the book is not designed to be an econo-
metrics or statistics reference. Our discussions of statistical concepts, therefore, will

1Several other books have been written on related topics. Ang (2014) gives an in-depth insight into factor
investing. Factor analysis plays a large role in the empirical asset pricing literature and is used heavily
throughout this book. Karolyi (2015) gives a comprehensive exposition of risks associated with investing in
emerging markets. Pedersen (2015) provides a strong introduction into the trading strategies used by hedge
funds, many of which have their roots in the phenomena documented throughout this book. Campbell
(2015) provides a theoretical and empirical overview of empirical asset pricing research.
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xvi PREFACE

be primarily conceptual. For a more detailed discussion of the statistical theory under-
lying our methodologies, we suggest that the reader find an econometrics or statistics
text appropriate for the reader’s level of knowledge in this area.

This book is divided into two main parts. Part I is devoted to a discussion of the
most widely used statistical methodologies in empirical asset pricing research. The
objective of this section is to give readers a detailed understanding of how to conduct
such analyses and how to interpret the results. In addition, we discuss how the results
are summarized and presented in academic research articles. The techniques can, very
generally, be separated into two groups. Techniques in the first group are designed to
summarize the data upon which the research is based. Techniques in the second group
are designed to assess relations between the variables used in a study. These are the
tools used to investigate the cross-sectional relations between a set of variables and
future stock returns. Analysis of such relations is the primary objective of this book
and, more generally, the majority of empirical asset pricing research. That being said,
these techniques can be used for other purposes as well.

The second, and by far most important, part of this book discusses the major find-
ings in empirical asset pricing research. In presenting each of the findings, we begin
by discussing in detail the calculation of the main variables used to capture the charac-
teristic of the stock that is under investigation. We then apply the techniques discussed
in Part I, with the main objective being to understand the relation between the charac-
teristic being examined and expected stock returns. While there are literally hundreds
of different variables that have been shown to be related to future stock returns, we
focus on the most widely recognized and cited phenomena in the literature.

We would like to acknowledge substantial support from our colleagues at George-
town University, Georgia State University, and New York University. We would
like to specifically thank Viral Acharya, Vikas Agarwal, Yakov Amihud, Andrew
Ang, Gurdip Bakshi, Hank Bessembinder, Jacob Boudoukh, Brian Boyer, Stephen
Brown, Nusret Cakici, Fousseni Chabi-Yo, Peter Christoffersen, Martijn Cremers,
Ozgur Demirtas, Elroy Dimson, Rory Ernst, Wayne Ferson, Fangjian Fu, Thomas
Gilbert, Hui Guo, Umit Gurun, Cam Harvey, Bing Han, David Hirshleifer, Armen
Hovakimian, Kris Jacobs, Andrew Karolyi, Haim Kassa, Haim Levy, Jonathan
Lewellen, Lasse Pedersen, Lin Peng, Jeff Pontiff, Anna Scherbina, Rob Schoen,
Robert Stambaugh, Avanidhar Subrahmanyam, Yi Tang, Raman Uppal, Grigory
Vilkov, David Weinbaum, Robert Whitelaw, Liuren Wu, Yuhang Xing, Jianfeng Yu,
Lu Zhang, Xiaoyan Zhang, Guofu Zhou, and Hao Zhou for their valuable feedback
on both this book and on our previous research that has informed its writing.
Your input has substantially improved the quality of this book. We are especially
grateful to John Campbell, Gene Fama, Kenneth French, and Lubos Pastor for their
meticulous reading and detailed feedback, as well as for writing valuable reviews
of our book. The creation of this book would not have been possible without the
help of Sari Friedman, Jon Gurstelle, Saleem Hameed, and Steve Quigley at Wiley
and Sons, Inc. The efficiency and skill with which they executed all facets of the
production of this book far surpassed any reasonable expectations. Finally, we would
like to thank our wives and children, Marianne, Jordan, Lindsay, Mehtap, Kaan, and
Dara, for their unwavering support. Your love, encouragement, and tolerance played
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an integral role in our ability to produce Empirical Asset Pricing: The Cross Section
of Stock Returns.

Turan G. Bali, Robert F. Engle, and Scott Murray New York, 2016.

REFERENCES

Ang, A. Asset Management A Systematic Approach to Factor Investing. Oxford University
Press, Oxford, 2014.

Campbell, J. Y. Financial Decisions and Markets. Princeton University Press, Princeton, NJ,
2015, manuscript in preparation.

Campbell, J. Y., Lo, A. W., and MacKinlay, A. C. The Econometrics of Financial Markets.
Princeton University Press, Princeton, NJ, 1996.

Cochrane, J. H. Asset Pricing. Princeton University Press, Princeton, NJ, 2005.

Elton, E. J., Gruber, M. J., Brown, S. J., and Goetzmann, W. N. Modern Portfolio Theory and
Investment Analysis. John Wiley & Sons, Hoboken, NJ, 9th Edition, 2014.

Karolyi, G. A. Cracking the Emerging Markets Enigma. Oxford University Press, Oxford,
2015.

Pedersen, L. H. Effficiently Inefficient: How Smart Money Invests & Market Prices Are Deter-
mined. Princeton University Press, Princeton, NJ, 2015.



�

� �

�



�

� �

�

PART I

STATISTICAL METHODOLOGIES



�

� �

�



�

� �

�

1

PRELIMINARIES

In this chapter, we present a number of items that are essential components of the
methodologies presented in (Part I) of this book. We present these elements here for
several reasons. First, they are common to many of the different analyses that will
be discussed. Second, being that they are common to many of the methodologies,
there is no one logical alternative as to where to present this material. Thus, to avoid
repetition, we present these items here and will assume them to be understood for the
remainder of the book.

Specifically, in this chapter, we first introduce the type of sample, or data, required
for each of the analyses presented in this part. We then discuss winsorization, a
technique that is used to adjust data, in order to minimize the effect of outliers on sta-
tistical analyses. Finally, we explain Newey and West (1987)-adjusted standard errors,
t-statistics, and p-values, which are commonly used to avoid problems with statistical
inference associated with heteroscedasticity and autocorrelation in time-series data.

1.1 SAMPLE

Each of the statistical methodologies presented and used in this book is performed
on a panel of data. Each entry in the panel corresponds to a particular combination
of entity and time period. The entities are referred to using i and the time periods are
referenced using t. In most asset pricing studies, the entities correspond to stocks,

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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4 PRELIMINARIES

bonds, options, or firms. The time periods used in most studies are months, weeks,
quarters, years, and in some cases days. Frequently, the data corresponding to any
given time period are referred to as a cross section. Thus, for a fixed value of t, the set
of entities i for which data are available in the given time period t is the cross section
of entities in time t. In almost all cases, the sample is not a full panel, meaning that
the set of entities included in the sample varies from time period to time period. For
each entity and time period combination (i, t), the data include several variables. In
general, the variable X for entity i during period t will be referred to as Xi,t. It is
frequently the case that when the data contain more than one variable, for example,
X and Y , for a given observation i, t, the value of Xi,t is available but the value of Yi,t
is not available. When this is the case, analyses that require values of both X and Y
will not make use of the data point i, t. Most studies create their sample such that the
main sample includes all data points for which values of the focal variables of the
study are available. Analyses that use nonfocal or control variables will then use only
the subset of observations for which the necessary data exist. This approach allows
each analysis to be applied to the largest data set for which the required variables
are available. However, in some cases, researchers prefer to restrict the sample used
for all analyses to only those observations where valid values of each variable used
in the entire study are available. The downside of this approach is that frequently a
large number of observations are lost. The upside is that all analyses are performed
on an identical sample, thus negating concerns related to the use of different data sets
for each of the analyses.

In the remaining chapters of Part I, we will use a sample where each entity i cor-
responds to a stock and each time period t corresponds to a year. The sample covers
a period of 25 years from 1988 through 2012 inclusive. For each year t, the sample
includes all stocks i in the Center for Research in Security Prices (CRSP) database
that are listed as U.S.-based common stocks on December 31 of the year t. Exactly
how to determine which stocks are U.S.-based common stocks will be discussed later
in the book. At this point, it suffices to say that the sample for each year t consists of
U.S. common stocks that were traded on exchanges as of the end of the given year.
We will use this sample to exemplify each of the methodologies that are discussed in
the remainder of Part I. We use a short sample period and annual periodicity because
having a small number of periods in the sample will facilitate presentation of the
methodologies. We refer to this sample as the methodologies sample. In Part II of
this book, which is devoted to the presentation of the main results in the empirical
asset pricing literature, we use monthly data covering a much longer sample period.

For each observation in the methodologies sample, we calculate five variables.
We should remind the reader that in many cases, one or more of the variables may
be unavailable or missing for certain observations. This is one of the realities under
which empirical asset pricing research is conducted. Here, we briefly describe these
variables. Detailed discussions of exactly how these variables are calculated will be
presented in later chapters.

We calculate the beta (𝛽) of stock i in year t as the slope coefficient from a regres-
sion of the excess returns of the stock on the excess returns of the market portfolio
using daily stock return data from all days during year t. We require a minimum
of 200 days worth of valid daily return data to calculate 𝛽. Values of 𝛽 for which
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this criterion is not met are considered missing.1 We define the market capitalization
(MktCap) for stock i in year t as the number of shares outstanding times the price of
the stock at the end of year t divided by one million. Thus, MktCap is measured in
millions of dollars. We take Size to be the natural log of MktCap. As will be discussed
in Chapter 2, the distribution of MktCap is highly skewed; thus, most researchers use
Size instead of MktCap to measure the size of a firm.2 The book-to-market ratio (BM)
of a stock is calculated as the book value of the firm’s equity divided by the market
value of the firm’s equity (MktCap).3 Finally, the excess return of stock i in year t is
calculated as the return of stock i in year t minus the return of the risk-free security
in year t. All returns are recorded as percentages; thus, a value of 1.00 corresponds to
a 1% return. Stock return, price, and shares outstanding data come from CRSP. The
data used to calculate the book value of equity come from the Compustat database.
Risk-free security return data come from Kenneth French’s data library.4

1.2 WINSORIZATION AND TRUNCATION

Financial data are notoriously subject to outliers (extreme data points). In many sta-
tistical analyses, such data points may exert an undue influence on the results, making
the results unreliable. Thus, if these outliers are not adjusted or accounted for, it is pos-
sible that they may lead to a failure to detect a phenomenon that does exist (a type II
error), or even worse, results that indicate a phenomenon where no such phenomenon
is actually present (a type I error). While there are several statistical methods that are
designed to assess the effect of outliers or ameliorate their effect on results, empiri-
cal asset pricing researchers usually take a more ad hoc approach to dealing with the
effect of outliers.

There are two techniques that are commonly used in empirical asset pricing
research to deal with the effect of outliers. The first technique, known as winsoriza-
tion, simply sets the values of a given variable that are above or below a certain cutoff
to that cutoff. The second technique, known as truncation, simply takes values of a
given variable that are deemed extreme to be missing. We discuss each technique in
detail. In doing so, we assume that we are dealing with a variable X for which there
are n different observations, which we denote X1,X2,… ,Xn.

Winsorization is performed by setting the values of X that are in the top h percent
of all values of X to the 100-hth percentile of X. Similarly, values of X in the bottom l
percent of X values are set to the lth percentile of X. For example, assume that we want
to winsorize X on the high end at the 0.5% level (h = 0.5). We begin by calculating
the 99.5th percentile of the values of X. We denote this value Pctl99.5(X). Then, we
set all values of X that are higher than Pctl99.5(X) to Pctl99.5(X). Now, assume that
we want to winsorize X on the low end at the 1.0% level (l = 1.0). This is done by

1The details of the calculation of 𝛽 are discussed in Chapter 8.
2The details of the calculation of MktCap and Size are discussed in Chapter 9.
3The details of the calculation of BM are discussed in Chapter 10.
4Kenneth French’s data library is found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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calculating the first percentile value of X, Pctl1(X), and setting all values of X that are
lower than Pctl1%(X) to Pctl1(X). In most cases, the values of h and l are the same, and
common values at which researchers winsorize are 0.5% and 1.0%. Throughout this
book, we frequently say that we winsorize the data at the 0.5% level. What this means
is that both h and l are 0.5, and that winsorization takes place at both the high and low
ends of the variable. The level at which winsorization should be performed depends
largely on the noise in the variable being winsorized, with more noisy variables being
winsorized at higher levels.

Truncation is very similar to winsorization, except instead of setting the values of X
above Pctlh(X) to Pctlh(X), we set them to missing or unavailable. Similarly, values
of X that are less than Pctll(X) are taken to be missing. Thus, the main difference
between truncation and winsorization is that in truncation, observations with extreme
values of a certain variable are effectively removed from the sample for analyses that
use the variable X, whereas with winsorization, the extreme values of X are set to
more moderate levels.

There are a few ways that winsorization or truncation can be implemented. The
first is to winsorize or truncate using all values of the given variable X over all enti-
ties i and time periods t. The second is to winsorize or truncate X separately for each
time period t. Which approach to winsorization is taken depends on the type of sta-
tistical analysis that will be conducted. If a single analysis will be performed on the
entire panel of data, the first method of winsorization or truncation is most appropri-
ate. However, most of the methodologies used throughout this book are performed in
two stages. The first stage involves performing some analysis on each cross section
(time period) in the sample. The second stage analyzes the results of each of these
cross-sectional analyses. In this case, the second approach to winsorization or trun-
cation is usually preferable. Throughout this book, when we perform winsorization,
it is on a period-by-period basis (the second approach).

When to use winsorization or truncation is a difficult question to answer because
some outliers are legitimate while others are data errors. In addition, researchers
sometimes use simple functional forms that are not well suited for capturing out-
liers. In a statistical sense, one might argue that truncation should be used when the
data points to be truncated are believed to be generated by a different distribution than
the data points that are not to be truncated. Winsorization is perhaps preferable when
the extreme data points are believed to indicate that the true values of the given vari-
able for the entities whose values are to be winsorized are very high or very low, but
perhaps not quite as extreme as is indicated by the calculated values. Most empirical
asset pricing researchers choose to use winsorization instead of truncation. However,
if the results of an analysis are substantially impacted by this choice, they should be
viewed with skepticism.

1.3 NEWEY AND WEST (1987) ADJUSTMENT

As eluded to in Section 1.2, the methodologies presented in the remainder of Part I
and used throughout this book are executed in two steps: a cross-sectional step and
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a time-series step. In many cases, the values used during the time-series step may
exhibit autocorrelation and/or heteroscedasticity. If this is the case, the standard errors
and thus p-values and t-statistics used to test a null hypothesis may be inaccurate. To
account for these issues in a time-series analysis, empirical asset pricing researchers
frequently employ a methodology, developed by Newey and West (1987), that adjusts
the standard errors of estimated values to account for the impact of autocorrelation
and heteroscedasticity. In this section, we briefly describe implementation of this
technique. The details can be found by reading Newey and West (1987).

In most empirical asset pricing research, the Newey and West (1987) adjustment
is used when examining the time-series mean of a single variable. We refer to this
variable measured at time t as At. Notice here that there is no entity dimension to
A, as A represents a single time series. The basic idea is that if values of At are
autocorrelated or heteroscedastic, then using a simple t-test to examine whether the
mean of A is equal to some value specified by the null hypothesis (usually zero)
may result in incorrect inference, as the autocorrelation and heteroscedasticity may
deflate (or inflate) the standard error of the estimated mean. To adjust for this, instead
of using a simple t-test, the time-series values of At are regressed on a unit con-
stant. The result is that the estimated intercept coefficient is equal to the time-series
mean of A and the regression residuals capture the time-series variation in A and thus
A’s autocorrelation and heteroscedasticity. The standard error of the estimated mean
value of A is a function of these residuals. So far, this is not different from a stan-
dard t-test. Applying the Newey and West (1987) adjustment to the results of the
regression, however, produces a new standard error for the estimated mean that is
adjusted for autocorrelation and heteroscedasticity. The only input required for the
Newey and West (1987) adjustment is the number of lags to use when performing the
adjustment. As discussed in Newey and West (1994), the choice of lags is arbitrary.
Frequently, econometrics software sets the number of lags to 4(T∕100)a, where T
is the number of periods in the time series, a = 2∕9 when using the Bartlett kernel,
and a = 4∕25 when using the quadratic spectral kernel to calculate the autocorrela-
tion and heteroscedasticity-adjusted standard errors.5 A large proportion of empirical
asset pricing studies use monthly samples covering the period from 1963 through the
present (2012, or T = 600 months for the data used in this book). Plugging in the
value T = 600 and taking a to be either 2∕9 or 4∕25 results in a value between five
and six. Most studies, therefore, choose six as the number of lags. Once the Newey
and West (1987)-adjusted standard error has been calculated, t-statistics and p-values
can be adjusted to perform inference on the time-series mean of A. As is standard, the
new t-statistic is the difference between the coefficient on the constant (same as the
sample mean) and the null hypothesis mean divided by the adjusted standard error.
The p-value can then be calculated using the adjusted t-statistic and the same number
of degrees of freedom as would be used to calculate the unadjusted p-value.

The astute reader may have noticed that in the previous paragraph it was com-
pletely unnecessary to present the Newey and West (1987) adjustment within the

5See Newey and West (1987, 1994) and references therein for further discussion of the Bartlett and
quadratic spectral kernels.
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context of a regression, because regression on a unit constant simply produces an
estimated coefficient equal to the mean value and residuals that represent variation in
the time series of A. We present the Newey and West (1987) adjustment in this man-
ner for two reasons. First, in most statistical software, the Newey and West (1987)
adjustment is executed by appropriately setting a certain parameter or argument to
the regression function. The second is that the Newey and West (1987) adjustment
is actually much more general than described in the previous paragraph. In the gen-
eral case, the Newey and West (1987) adjustment can be applied to any time-series
regression. It is for this reason that statistical software implements the Newey and
West (1987) adjustment within the context of regression analysis.

In its general form, the Newey and West (1987) adjustment can be used to adjust
the standard errors on all estimated coefficients from a time-series regression for
autocorrelation and heteroscedasticity in the regression residuals. The procedure to
do so is exactly as described earlier, except that the time-series A is regressed on one
or more additional time series and, in most cases, a constant as well. The Newey
and West (1987) adjustment will then generate an adjusted variance–covariance
matrix of the estimated regression coefficients that accounts for autocorrelation
and heteroscedasticity in the residuals. The square roots of the diagonal entries
of this adjusted variance–covariance matrix then serve as the standard errors of
the estimated regression coefficients. These adjusted standard errors are used to
calculate adjusted t-statistics and p-values. As in the univariate case, the researcher
must determine the appropriate number of lags to use in the adjustment. While the
Newey and West (1987) adjustment may seem a bit abstract at this point, its use
will become much more clear in subsequent chapters. This nontrivial case of the
Newey and West (1987) adjustment is commonly employed in factor regressions of
portfolio excess returns on a set of common risk factors. This will be discussed in
more detail in Section 5.1.7.

1.4 SUMMARY

In this chapter, we have presented three elements that are common to most of the
empirical methodologies that will be discussed in the remainder of Part I and heavily
employed in the analyses of Part II. We have also described the sample that will be
used to exemplify the methodologies throughout the remainder of Part I, which we
refer to as the methodologies sample. The reason for presenting these items here is
to avoid repetition in the remaining chapters of Part I.

REFERENCES

Newey, W. K. and West, K. D. 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.

Newey, W. K. and West, K. D. 1994. Automatic lag selection in covariance matrix estimation.
Review of Economic Studies, 61(4), 631–653.



�

� �

�

2

SUMMARY STATISTICS

Perhaps one of the most important elements of conducting high-quality empirical
research is to have a strong understanding of the data that are being used in the study.
Similarly, for a reader of empirical research, to fully comprehend the results of the
study and assess the applicability of these results beyond the scope of the study, it is
important to have at least a cursory understanding of the data upon which the analyses
presented in the article were performed. For these reasons, most empirical research
papers present summaries of the data prior to discussing the main results. Frequently,
the first table of a research paper presents such a summary.

In this chapter, we present the most commonly used approach in the empirical asset
pricing literature to calculating and presenting summary statistics. Effective presen-
tation of summary statistics represents a trade-off between showing enough results
to give the reader a good sense of the important characteristics of the data and not
presenting so much that the reader is overwhelmed. The optimal approach to pre-
senting summary statistics depends greatly on the type of study being conducted.
The approach presented in this chapter is most appropriate when the objective of the
study is to understand a cross-sectional phenomenon of the entities (stocks, bonds,
firms, etc.) being studied. The procedure, therefore, is geared toward understanding
the cross-sectional distribution of the variables used in the study.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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2.1 IMPLEMENTATION

The summary statistics procedure consists of two steps. In the first step, for each time
period t, certain characteristics of the cross-sectional distribution of the given vari-
able, X, are calculated. In the second step, the time-series properties of the periodic
cross-sectional characteristics are calculated. In most cases, the time-series property
of interest is the mean, in which case the final results that are presented represent the
average cross section, where the average is taken over all periods t during the sample
period.

2.1.1 Periodic Cross-Sectional Summary Statistics

The details of the first step are as follows. For each time period t, we calculate the
cross-sectional mean, standard deviation, skewness, excess kurtosis, minimum value,
median value, maximum value, and selected additional percentiles of the distribution
of the values of X, where each of these statistics is calculated over all available values
of X in period t. We let Meant be the mean, SDt denote the sample standard deviation,
Ske𝑤t represent the sample skewness, Kurtt be the sample excess kurtosis, Mint be
the minimum value, Mediant denote the median value, and Maxt represent the max-
imum value of X in period t. In addition, we will record the fifth, 25th, 75th, and
95th percentiles of X in month t, which we denote P5t, P25t, P75t, and P95t, respec-
tively. Depending on the data and the objective of the study, it may be desirable to
include additional percentiles of the distribution. For example, if the study focuses on
extreme values of X, then it may be valuable to record the first, second, third, fourth,
96th, 97th, 98th, and 99th percentiles of the distribution as well. Alternatively, calcu-
lating the minimum, maximum, fifth percentile, and 95th percentile of the data may
not be necessary if the data are reasonably well behaved. Exactly which statistics to
record and present is a decision made by the researcher, who, presumably, has a much
deeper understanding of the data than could possibly be presented in a research arti-
cle. In addition to these statistics describing the time t cross-sectional distribution of
X, we also record the number of entities for which a valid value of X is available in
period t and denote this number nt.

In Table 2.1, we present the annual summary statistics for market beta (𝛽) from
our methodologies sample. The results show that, for example, in 1988, the average
𝛽 of the stocks in the sample is 0.46; the cross-sectional standard deviation of the
values of 𝛽 is 0.48; the sample skewness of 𝛽 is 0.17; and the sample excess kurtosis
of 𝛽 is 2.80. Furthermore, the minimum, fifth percentile, 25th percentile, median,
75th percentile, 95th percentile, and maximum values of 𝛽 in 1988 are −4.29, −0.20,
0.13, 0.40, 0.75, 1.31, and 3.28, respectively. Finally, there are 5690 stocks with a
valid value of 𝛽 in 1988.

Table 2.1 presents a detailed account of the cross-sectional distribution of 𝛽 on
a period-by-period basis. In this case, presenting the periodic summary statistics in
detail is possible because our sample consists of only 25 periods, and we only present
summary statistics for one variable, 𝛽. While it is certainly valuable to present all of
these statistics, in most empirical asset pricing studies, the sample has many more
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TABLE 2.1 Annual Summary Statistics for 𝜷

This table presents summary statistics for 𝛽 for each year during the sample period. For each
year t, we calculate the mean (Meant), standard deviation (SDt), skewness (Ske𝑤t), excess kur-
tosis (Kurtt), minimum (Mint), fifth percentile (P5t), 25th percentile (P25t), median (Mediant),
75th percentile (P75t), 95th percentile (P95t), and maximum (Maxt) values of the distribution
of 𝛽 across all stocks in the sample. The sample consists of all U.S.-based common stocks in
the Center for Research in Security Prices (CRSP) database as of the end of the given year t
and covers the years from 1988 through 2012. The column labeled nt indicates the number of
observations for which a value of 𝛽 is available in the given year.
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1988 0.46 0.48 0.17 2.80 −4.29 −0.20 0.13 0.40 0.75 1.31 3.28 5690
1989 0.46 0.53 0.15 1.88 −3.51 −0.27 0.11 0.40 0.79 1.38 3.63 5519
1990 0.58 0.59 0.23 1.14 −3.15 −0.24 0.16 0.51 0.96 1.61 3.66 5409
1991 0.57 0.61 0.23 1.96 −3.28 −0.29 0.17 0.52 0.95 1.62 5.29 5303
1992 0.65 0.83 0.34 6.10 −5.21 −0.50 0.17 0.59 1.09 2.05 9.90 5389
1993 0.62 0.77 −0.10 4.29 −4.70 −0.56 0.20 0.57 1.04 1.90 7.59 5670
1994 0.70 0.71 −0.17 6.59 −6.92 −0.32 0.27 0.67 1.07 1.89 6.50 6148
1995 0.64 0.84 0.30 5.17 −6.32 −0.49 0.19 0.56 1.02 2.15 8.77 6288
1996 0.67 0.64 0.46 1.97 −4.32 −0.20 0.26 0.59 1.01 1.89 3.98 6586
1997 0.53 0.48 0.39 1.46 −2.36 −0.13 0.21 0.48 0.80 1.38 3.20 6867
1998 0.71 0.51 0.49 0.95 −1.80 0.01 0.34 0.67 1.03 1.62 3.75 6608
1999 0.41 0.50 1.39 4.81 −2.21 −0.18 0.11 0.32 0.61 1.33 3.77 6097
2000 0.70 0.72 1.27 1.33 −1.10 −0.06 0.19 0.49 1.01 2.23 3.76 5901
2001 0.76 0.73 1.29 2.13 −1.48 −0.05 0.25 0.60 1.07 2.25 4.21 5508
2002 0.67 0.55 0.70 0.69 −1.19 −0.04 0.25 0.62 0.97 1.73 2.99 5099
2003 0.72 0.56 0.40 0.49 −2.17 −0.04 0.29 0.68 1.06 1.72 3.04 4737
2004 1.03 0.70 0.43 0.24 −1.75 0.01 0.53 0.99 1.46 2.30 4.02 4574
2005 0.95 0.64 0.00 −0.17 −1.60 −0.06 0.46 0.99 1.39 1.96 3.69 4495
2006 1.02 0.70 0.08 0.17 −3.71 −0.02 0.48 1.00 1.51 2.18 3.75 4453
2007 0.87 0.54 −0.04 −0.20 −1.50 0.01 0.45 0.91 1.26 1.72 3.06 4332
2008 0.87 0.53 0.17 0.06 −1.49 0.03 0.48 0.87 1.22 1.74 3.45 4264
2009 1.10 0.72 0.51 0.62 −1.74 0.09 0.55 1.03 1.57 2.36 5.31 3977
2010 1.04 0.54 −0.06 −0.15 −0.85 0.10 0.68 1.05 1.41 1.90 2.95 3805
2011 1.07 0.54 −0.14 −0.37 −0.62 0.14 0.70 1.13 1.45 1.93 3.03 3682
2012 1.04 0.57 0.04 0.48 −2.33 0.11 0.66 1.05 1.40 1.99 3.43 3545

periods than the 25 periods in the methodology sample. Presenting results such as
those in Table 2.1 when there are a large number of periods will not only make it
difficult to display the periodic summary statistics but will also make it difficult for
the reader to get a general understanding of the characteristics of the data. These
issues are magnified when, as in most studies, showing summary statistics for sev-
eral variables is desirable. Thus, while there are certainly interesting patterns to be
observed by presenting such a detailed account of each variable, doing so is usually
not necessary to inform a reader about the most salient characteristics of the data,
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and thus most articles present statistics that are substantially more summarized than
the results in Table 2.1. We proceed now to describe how to further summarize the
periodic cross-sectional summary statistics.

2.1.2 Average Cross-Sectional Summary Statistics

The second step in the summary statistics procedure is to calculate the time-series
averages of the periodic cross-sectional values. For example, the average cross-
sectional mean of the variable X, which we denote Mean (no subscript), is found by
taking the time-series average of the values of Meant over all periods t in the sample.
Similarly, we calculate the times-series means of the other cross-sectional summary
statistics.

For most studies, it is these time-series average values that are presented in the
research article. These values describe the average cross section in the sample. This
is appropriate when the objective of the study is to examine a cross-sectional phe-
nomenon, as is the case for the analyses in this book. Table 2.2 presents the time-series
averages of the annual cross-sectional summary statistics for 𝛽. The numbers in the
table, therefore, represent the cross-sectional distribution of 𝛽 for the average year in
the methodologies sample. As can be seen, in the average year, the mean value of 𝛽
is 0.75 and the median value of 𝛽 is 0.71. Consistent with the mean being slightly
greater than the median, in the average year, the skewness of the distribution of 𝛽
of 0.34 is slightly positive. The cross-sectional distribution of 𝛽, in the average year,
is leptokurtic because the average excess kurtosis of 1.78 is positive. The average
cross-sectional standard deviation of 𝛽 is 0.62. Finally, in the average year, there are
5198 stocks for which there is a valid value of 𝛽.

TABLE 2.2 Average Cross-Sectional Summary Statistics for 𝜷

This table presents the time-series averages of the annual cross-sectional summary statistics
for 𝛽. The table presents the average mean (Mean), standard deviation (SD), skewness (Ske𝑤),
excess kurtosis (Kurt), minimum (Min), fifth percentile (P5), 25th percentile (P25), median
(Median), 75th percentile (P75), 95th percentile (P95), and maximum (Max) values of the
distribution of 𝛽, where the average is taken across all years in the sample. The column labeled
n indicates the average number of observations for which a value of 𝛽 is available.

Mean SD Ske𝑤 Kurt Min P5 P25 Median P75 P95 Max n

0.75 0.62 0.34 1.78 −2.78 −0.13 0.33 0.71 1.12 1.85 4.40 5198

2.2 PRESENTATION AND INTERPRETATION

In most studies, there are many variables for which summary statistics should be
presented. It is usually optimal to present the summary statistics for all variables in a
single table. While each paper will present summary statistics in a slightly different
manner, the approach we take in this book is to compile a table in which each row
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(with the exception of the header row) presents summary statistics for one of the
variables.

Table 2.3 gives an example of how we present summary statistics throughout this
text. The first column indicates the variable whose summary statistics are presented
in the given row. The subsequent columns present the time-series averages of the
cross-sectional summary statistics.

The objectives in analyzing the summary statistics are twofold. First, the summary
statistics are intended to give a basic overview of the cross-sectional properties of the
variables that will be used in the study. This is useful for understanding the types
of entities that comprise the sample. Second, the summary statistics can be used to
identify any potential issues that may arise when using these variables in statistical
analyses. We exemplify how the summary statistics can be used for each of these
objectives in the following two paragraphs using the methodology sample and the
results in Table 2.3.

The mean column in Table 2.3 can roughly be interpreted as indicating that the
average stock in our sample has a 𝛽 of 0.75, a market capitalization of just over
$2 billion, and a book-to-market ratio of 0.71. More precisely, the table indicates
that in the average month, the cross-sectional means of the given variables are as
indicated in the table, but we frequently adopt the simpler language used in the previ-
ous sentence. The average value of Size, which is the natural log of MktCap, is 5.04,
and the average one-year-ahead excess return is 12.40%.

Table 2.3 shows that for 𝛽, the mean and the median are quite similar and, consis-
tent with this, the skewness is quite small in magnitude and values of 𝛽 are reasonably
symmetric about the mean. The distribution of 𝛽 is also slightly leptokurtic as the
excess kurtosis of its cross-sectional distribution in the average year is 1.78.

The results for MktCap show that the distribution of market capitalization is highly
positively skewed. This is driven by a small number of observations that have very
large values of MktCap. The summary statistics therefore indicate that the sample is
comprised predominantly of low-market capitalization stocks along with a few stocks
that have very high market capitalizations. The median stock in the sample has a
market capitalization of $188 million, which is much smaller than the mean of more
than $2 billion. It is also worth noting that the smallest value of MktCap of 0, which
means that the stock has market capitalization of less than $0.5 million, is less than
0.02 standard deviations from the median and less than 0.1 standard deviations from
the mean. This indicates that a very large portion of the variability of MktCap comes
from extremely large values, consistent with the high positive skewness. The distri-
bution of MktCap presents potential issues for statistical analyses, such as regression,
that rely on the magnitude of the variables used, as the data points corresponding to
the very large values may exert undesirably strong influence on the results of such
analyses. Therefore, most empirical studies use Size, defined as the natural log of
MktCap, in such analyses. Table 2.3 shows that the distribution of Size is much more
symmetric than that of MktCap, as the average skewness is only 0.32. Furthermore,
the excess kurtosis of −0.07 indicates that tails of the distribution of Size are, in the
average year, very similar to those of a normal distribution. Size, therefore, appears
much better suited for use in statistical analyses than MktCap.
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As for the book-to-market ratio (BM), Table 2.3 shows that while the vast majority
of the BM values fall between 0.05 (the fifth percentile) and 2.11 (the 95th per-
centile), the tails of the distribution are extremely long, as the kurtosis of BM is
greater than 1226. Interestingly, despite the fact that the mean is greater than the
median, in the average month, the distribution of BM is negatively skewed, as the
average cross-sectional skewness of BM is −9.49.

Finally, the table indicates that the average one-year-ahead excess return (rt+1)
of the stocks in the methodology sample is 12.40% per year. The cross-sectional
distribution of rt+1 is highly skewed and leptokurtic, with an average skewness of
5.94 and excess kurtosis of more than 125. This is driven by the fact that the minimum
possible return is −100%, whereas there is no upper bound on the value that rt+1 can
take. Table 2.3 shows that, in the average year, the maximum rt+1 is more than 1841%,
with more than 5% of stock realizing excess returns greater than 100%.

There is one more aspect of the return data that is worth mentioning because it
is not apparent in the presentation of the summary statistics. The latest data in the
version of the CRSP database used to construct the methodology sample are from
2012. However, when t corresponds to year 2012, then rt+1 corresponds to excess
returns from 2013. Unfortunately, return data for 2013 are not available. Thus, the
summary statistics for rt+1 reported in Table 2.3 actually cover returns for the 24 years
from 1989 through 2012, whereas the summary statistics for the other variables cover
the 25 years from 1988 through 2012. While this detail of the summary statistics is
not usually discussed in a research article because it rarely has a meaningful impact
on the interpretation of the results, it is something that should be clearly understood
by the researcher.

Although Table 2.3 is certainly expository, there are many characteristics of the
data that are not captured in the highly summarized results. The most important
drawback of summarizing the data in such a manner is that it does not indicate any
time-series variation in the variables used in the study. For example, referring back to
Table 2.1, it is evident that the mean and median values of 𝛽 increase quite substan-
tially over time. This feature of the data is not in any way captured in the summary
presented in Table 2.3. Additionally, given that the values of market capitalization
(MktCap) have not been adjusted for inflation, it is reasonable to assume that value
of MktCap will exhibit generally increasing pattern over time as well. This is con-
firmed in unreported results. Furthermore, values of MktCap are likely to drop when
the stock market experiences a large loss and increase as the stock market realizes
gains. The opposite would be true for the book-to-market ratio (BM) as the market
capitalization is the denominator of this variable, although in this case the increase
in values of BM may be delayed due to the timing of the calculation of BM, which is
discussed in detail in Chapter 10.

None of these characteristics of the data are captured in the summary statistics
as presented in Table 2.3. In most cases, these details are not very important when
interpreting and drawing conclusions from the results of subsequent analyses in the
article. However, as a researcher, it is important to be aware of such patterns and to
assess whether these patterns may have a significant impact on the main conclusions
of the study. In many cases, this is done by subsample analyses aimed at examining
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whether the main conclusions hold in both early periods of the study as well as in
late periods. Frequently, it is also worthwhile to investigate whether the main results
hold in periods of normal economic conditions as well as periods of deteriorating or
poor economic conditions. This is especially the case if the summary statistics for the
focal variables of the study are substantially different for these subperiods.

2.3 SUMMARY

In summary, the main objective of presenting summary statistics is to give the reader a
sufficient but succinct understanding of the data being used and the characteristics of
the entities that comprise the sample. In addition, the summary statistics can be used
to identify and remedy any potential issues with using statistical analysis on the data.
The approach that we have discussed presents the distribution of the given variables
in the average cross section. While the results presented in the summary statistics
table may be sufficient for a reader, they are likely not sufficient for the researcher. It
is difficult to conduct high-quality research without having an in-depth understanding
of the data. A good researcher will understand any potential issues with the data that
are not evident in the summary statistics and address these issues in the statistical
analyses presented in the research article.
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CORRELATION

Summary statistics, discussed in Chapter 2, provide an overview of the univariate
distributions of the variables used in a study. They do not, however, give any indi-
cation as to the relations between the variables. Understanding how the variables
relate to each other is usually more important than understanding the variables’ uni-
variate characteristics, as in almost all cases, it is the relations that are the focus
of the research. Therefore, in addition to presenting univariate summary statistics,
researchers frequently present correlations between the main variables. Correlations
provide a preliminary look at the bivariate relations between pairs of variables used
in the study.

This chapter introduces a widely used methodology for calculating and present-
ing correlations. As with the summary statistics procedure presented in Chapter 2,
the objective of the methodology discussed in this chapter is to understand the
cross-sectional properties of the variables. This technique is therefore most appro-
priate when the economic phenomenon under investigation is cross-sectional in
nature. While most studies present only Pearson product–moment correlations, here
and in the remainder of this book, we will present both the Pearson product–moment
correlations and the Spearman rank correlation.

The Pearson product–moment correlation is most applicable when the relation
between the two variables, which we denote X and Y , is thought to be linear. If this is
the case, the Pearson correlation can be roughly interpreted as the signed percentage
of variation in X that is related to variation in Y , with the sign being positive if X

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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tends to be high when Y is high, and the sign being negative when high values of
X tend to correspond to low values of Y . The Pearson correlation can take values
between −1 and 1, with −1 indicating a perfectly negative linear relation, 0 indicating
no linear relation between the variables, and 1 indicating a perfectly positive linear
relation.

The Spearman rank correlation is most applicable when the relation between the
variables is thought to be monotonic, but not necessarily linear. The rank correlation,
as the name implies, measures how closely related the ordering of X is to the ordering
of Y , with no regard to the actual values of the variables. As with the product–moment
correlation, the rank correlation can take on values between −1 and 1, with a Spear-
man correlation of 1 indicating that X and Y are perfectly monotonically increasing
functions of each other and a value of −1 indicating that X and Y are perfectly mono-
tonically decreasing functions of each other.

3.1 IMPLEMENTATION

Similar to the summary statistics procedure, the correlation procedure is executed in
two steps. The first step is to calculate the cross-sectional correlation between the
two variables in question, X and Y , for each period t. The second step is to take the
time-series average of these cross-sectional correlations.

3.1.1 Periodic Cross-Sectional Correlations

In step one, for each time period t, we calculate the Pearson product–moment
correlation and the Spearman rank correlation between X and Y . The Pearson
product–moment correlation between X and Y for period t is defined as

𝜌t(X,Y) =
∑nt

i=1(Xi,t − Xt)(Yi,t − Yt)√∑nt
i=1 (Xi,t − Xt)2

√∑nt
i=1 (Yi,t − Yt)2

(3.1)

where each of the summations is taken over all entities i in the sample for which
there are valid values of both X and Y in period t, and Xt and Yt are the sample
means of Xi,t and Yi,t, respectively, taken over the same set of entities. Here, nt is
the number of entities for which there are valid values of both X and Y in the given
period t. In many cases, the values of X and Y are winsorized prior to calculating
the Pearson product–moment correlation to minimize the effect of a small number of
extreme observations. Winsorization is performed on a period-by-period basis using
only entities for which valid values of both X and Y are available.

To calculate the Spearman rank correlation, one must first calculate the ranking
for each entity i on each of X and Y . We let xi,t be the rank of Xi,t calculated over
all entities that have valid values of both X and Y during period t. Thus, if entity i
has the lowest value of X, xi,t is 1. If entity i has the highest value of X, then xi,t is
nt. If there are multiple entities for which the value of X is the same, then each of
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these entities is assigned a ranking equal to the average position of these entities in
the ordered list of the entities when sorted on the variable X. The rankings for Y are
calculated analogously and are denoted yi,t. It should be noted that when calculating
the Spearman rank correlation, the data should not be winsorized. For each entity i,
the difference between the entity’s ranking on X and it’s ranking on Y is defined as
di,t = xi,t − yi,t. Finally, the Spearman rank correlation between X and Y for period t
is calculated as

𝜌

S
t (X,Y) = 1 −

6
∑nt

i=1 d2
i,t

nt(n2
t − 1)

. (3.2)

We exemplify the cross-sectional step of the correlation procedure by calculat-
ing both the Pearson product–moment correlation (𝜌t(X,Y)) and the Spearman rank
correlation (𝜌S

t (X,Y)) between each pair of the variables 𝛽 (beta), Size (log of mar-
ket capitalization in $millions), BM (book-to-market ratio), and rt+1 (one-year-ahead
excess return), for each year t during our sample period. Pearson product–moment
correlations are calculated after winsorizing both of the variables at the 0.5% level
using only data point for which both variables in the given calculation have valid
values.

In Table 3.1, we present the Pearson product–moment and Spearman rank
cross-sectional correlations between each pair of variables during each year t of
our sample. The table shows that, in all years, 𝛽 and Size are positively correlated,
regardless of which measure of correlation is used. 𝛽 and BM exhibit negative
correlation in all years except for 2009, when this correlation is positive but small
in magnitude. The relation between 𝛽 and rt+1 varies substantially over time. Size
and BM have a negative correlation in all time periods. This is not surprising given
that market capitalization is the denominator of the calculation of BM and Size is
the log of market capitalization. Thus, this effect is likely mechanical. The signs
of the correlation between Size and rt+1, as well as between BM and rt+1, vary
over time. Finally, it is worth noting that for year 2012 there are no correlations
for pairs of variables that include rt+1. This is because for t = 2012, rt+1 is the
excess return in 2013, which is not available in the version of the Center for
Research in Security Prices (CRSP) database used to generate the methodologies
sample.

3.1.2 Average Cross-Sectional Correlations

Step two in the correlation procedure is to calculate the time-series averages of the
periodic cross-sectional correlations between each pair of variables. These values
represent the correlations in the average period. The time-series average correlations
for each pair of variables used in the example are presented in Table 3.2. We denote
these time-series averages as 𝜌(X,Y) for the Pearson product–moment correlation and
𝜌

S(X,Y) for the Spearman rank correlation. We therefore have

𝜌(X,Y) =
∑N

t=1 𝜌t(X,Y)
N

(3.3)
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TABLE 3.1 Annual Correlations for 𝜷, Size, BM, and rt+1
This table presents the cross-sectional Pearson product–moment (𝜌t) and Spearman rank (𝜌S

t )
correlations between pairs of 𝛽, Size, BM, and rt+1. Each column presents either the Pearson
or Spearman correlation for one pair of variables, indicated in the column header. Each row
represents results from a different year, indicated in the column labeled t.
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1988 0.47 0.45 −0.10 −0.12 0.04 0.06 −0.15 −0.11 0.13 0.24 0.04 0.04
1989 0.44 0.45 −0.15 −0.16 0.02 0.02 −0.14 −0.11 0.07 0.17 0.01 0.05
1990 0.43 0.45 −0.17 −0.23 0.07 0.15 −0.19 −0.16 −0.07 0.10 −0.04 −0.05
1991 0.45 0.49 −0.09 −0.16 −0.09 −0.09 −0.23 −0.22 −0.15 −0.03 0.13 0.19
1992 0.34 0.37 −0.20 −0.29 −0.10 −0.10 −0.20 −0.17 −0.14 −0.04 0.10 0.20
1993 0.36 0.38 −0.18 −0.25 −0.01 −0.03 −0.19 −0.17 −0.00 0.07 0.11 0.16
1994 0.31 0.35 −0.18 −0.22 0.03 0.02 −0.17 −0.11 −0.00 0.11 0.01 0.06
1995 0.30 0.32 −0.16 −0.21 −0.06 −0.08 −0.21 −0.19 −0.01 0.09 0.10 0.14
1996 0.30 0.32 −0.26 −0.36 −0.17 −0.19 −0.21 −0.17 0.04 0.10 0.12 0.21
1997 0.42 0.43 −0.23 −0.29 0.03 −0.00 −0.20 −0.18 0.08 0.18 0.03 0.07
1998 0.38 0.40 −0.25 −0.33 0.15 0.11 −0.24 −0.25 −0.09 −0.04 −0.04 −0.03
1999 0.48 0.47 −0.24 −0.32 −0.11 −0.10 −0.34 −0.38 0.04 0.07 0.03 0.08
2000 0.23 0.27 −0.39 −0.54 −0.20 −0.27 −0.27 −0.26 −0.19 −0.14 0.08 0.17
2001 0.32 0.38 −0.20 −0.34 −0.38 −0.44 −0.32 −0.40 −0.13 −0.09 0.17 0.25
2002 0.46 0.55 −0.23 −0.30 0.01 0.04 −0.27 −0.29 −0.23 −0.15 0.05 0.04
2003 0.51 0.59 −0.13 −0.17 −0.14 −0.13 −0.24 −0.31 −0.08 0.03 0.11 0.10
2004 0.32 0.40 −0.26 −0.28 −0.09 −0.08 −0.17 −0.13 0.06 0.14 0.08 0.13
2005 0.45 0.50 −0.16 −0.15 −0.01 0.03 −0.13 −0.11 −0.01 0.08 0.07 0.12
2006 0.41 0.47 −0.20 −0.22 0.07 0.06 −0.17 −0.15 0.12 0.19 −0.02 −0.04
2007 0.47 0.52 −0.12 −0.14 −0.01 −0.01 −0.17 −0.17 0.09 0.16 −0.01 0.00
2008 0.44 0.48 −0.09 −0.13 0.03 0.09 −0.24 −0.23 −0.18 −0.04 0.08 −0.06
2009 0.31 0.37 0.02 0.01 0.11 0.13 −0.28 −0.34 −0.00 0.09 0.03 0.04
2010 0.39 0.39 −0.18 −0.15 −0.10 −0.12 −0.31 −0.28 0.14 0.18 −0.01 0.00
2011 0.37 0.36 −0.26 −0.22 −0.05 −0.02 −0.29 −0.27 −0.04 0.04 0.12 0.12
2012 0.35 0.35 −0.17 −0.17 −0.32 −0.32

and

𝜌

S(X,Y) =
∑N

t=1 𝜌
S
t (X,Y)

N
(3.4)

where N is the number of periods in the sample.

3.2 INTERPRETING CORRELATIONS

The correlations give preliminary indications of the nature of the cross-sectional
relations between each pair of variables. If two variables that are measured
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TABLE 3.2 Average Correlations for 𝜷, Size, BM, and rt+1
This table presents the time-series averages of the annual cross-sectional Pearson
product–moment (𝜌) and Spearman rank (𝜌S) correlations between pairs of 𝛽, Size, BM, and
rt+1. Each column presents either the Pearson or Spearman correlation for one pair of variables,
indicated in the column header.
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0.39 0.42 −0.18 −0.23 −0.04 −0.04 −0.23 −0.22 −0.02 0.06 0.06 0.08

contemporaneously exhibit correlations that are very high in magnitude, this indi-
cates that the information content of both variables is very similar and that the two
variables are likely capturing the same characteristic of the entity. If variables that
are not measured contemporaneously exhibit strong correlation, this is an indication
that one variable (the variable measured chronologically earlier) may be a predictor
of future values of the other variable. In making such a determination, it is important
to ensure that such predictive power is not mechanical. To do so usually requires an
in-depth understanding of exactly how the variables are calculated. If the correlation
between a pair of variables is close to zero, this indicates that the variables contain
completely different information regarding the underlying entities.

In addition to providing preliminary indications on the relations between the vari-
ables, correlation analysis can indicate potential issues associated with multivariate
statistical analyses. For example, if two variables are very highly correlated, either
positively or negatively, regression analyses that include both variables as indepen-
dent variables in a regression specification may have difficulty distinguishing between
the effect of one variable and the other on the dependent variable. This results in high
standard errors on the regression coefficients. If the Spearman rank correlation is
substantially larger in magnitude than the Pearson product–moment correlation, this
likely indicates that there is a monotonic, but not linear, relation between the variables.
This type of relation signals that linear regression analysis is a potentially problem-
atic statistical technique to apply to the given variables if one of the variables is used
as the dependent variable. If the Pearson product–moment correlation is substantially
larger in magnitude than the Spearman rank correlation, this may indicate that there
are a few extreme data points in one of the variables that are exerting a strong influ-
ence on the calculation of the Pearson product–moment correlation. In this case, it is
possible that winsorizing one or both of the variables at a higher level will alleviate
this issue. Finally, it is worth noting here that, because of the assumption of linearity
in the calculation of the Pearson product–moment correlation, this measure is usu-
ally more indicative of results that will be realized using regression techniques such
as Fama and MacBeth (1973) regression analysis (presented in Chapter 6). Because
the Spearman rank correlation is based on the ordering of the variables, Spearman
rank correlations are more likely indicative of the results of analyses that rely on
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the ranking, or ordering, of the variables, such as portfolio analysis (presented in
Chapter 5).

The average Pearson product–moment correlation of 0.39 between 𝛽 and Size indi-
cates that larger stocks tend to have higher betas. Stated alternatively, this correlation
indicates that stocks with high betas tend to be larger. That being said, the correla-
tion is not so high as to indicate that the two variables are capturing essentially the
same information. There is certainly a substantial component of 𝛽 that is orthogo-
nal to Size and a substantial component of Size that is orthogonal to 𝛽. Thus, while
there is an economically important relation between beta and size, they certainly
cannot be seen as the same. The average Spearman rank correlation between 𝛽 and
Size of 0.42 is quite similar to the Pearson product–moment correlation. The results
also indicate an economically important negative relation between 𝛽 and BM, since
the Pearson product–moment (Spearman rank) correlation between these variables is
−0.18 (−0.23). The magnitude of these correlations indicates once again that while
there is a substantial common component to these variables, there is also a very sub-
stantial component of each of these variables that is orthogonal to the other. The same
conclusions hold when examining the correlations between Size and BM. Once again,
the Pearson product–moment correlation of −0.23 and Spearman rank correlation of
−0.22 are very similar in magnitude and indicate a moderate negative cross-sectional
relation between Size and BM. Thus, while each of these pairs of variables exhibit
some cross-sectional correlation, the correlations are low enough to alleviate concerns
about potential statistical issues when several of these variables are included in multi-
variate statistical analyses. Furthermore, the Pearson product–moment and Spearman
rank measures are similar enough to alleviate any serious concerns about potential
data issues or severe lack of linearity in the relations between these variables. It is
important to realize that 𝛽, Size, and BM are all measured contemporaneously; thus,
in the analysis of these correlations, the primary objective is to assess the information
content of each of these variables. It is also important to realize that just because the
magnitudes of the pairwise correlations are not high enough to raise concern about
subsequent statistical analysis, it remains possible that some combination of two of
these variables is highly correlated with a third variable (multicollinearity). Correla-
tion analysis cannot detect such issues.

The one-year-ahead excess return (rt+1) is measured in the year subsequent to the
time at which each of the other variables (𝛽, Size, and BM) are calculated. Thus, cor-
relation between rt+1 and any of these variables is likely indicative of a predictive
relation. Furthermore, because each of 𝛽, BM, and Size are calculated using informa-
tion that is readily available in year t, and rt+1 is calculated using only information
that is generated during year t + 1, we are not concerned about a potential mechanical
effect between rt+1 and any of the other variables. The results in Table 3.2 indicate
a slightly negative average Pearson and Spearman correlations of −0.04 between 𝛽

and rt+1, indicating that, in the average year, high 𝛽 stocks may generate lower excess
returns than low 𝛽 stocks. While this result is inconsistent with the predictions of the
Capital Asset Pricing Model of Sharpe (1964), Lintner (1965), and Mossin (1966), we
will postpone in-depth economic analysis of this result until the chapter that studies
the relation between 𝛽 and future stock returns in depth (Chapter 8). The Pearson
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product–moment correlation between Size and rt+1 of −0.02 indicates almost no rela-
tion between Size and future excess stock returns, whereas the positive Spearman
rank correlation of 0.06 indicates a slightly positive relation. While it is a little bit
concerning that the two measures of correlation have, on average, the opposite sign,
the magnitudes of these correlations are small enough so that we are not overly wor-
ried about this result. Finally, the results indicate a positive relation between BM and
future stock returns, as the Pearson product–moment correlation of 0.06 and Spear-
man rank correlation of 0.08 are larger than any other correlation that includes rt+1.
It should be noted that, while the correlations between rt+1 and the other variables
are all quite small in magnitude, as will be seen throughout the remainder of this text,
what seems here to be only a minimal ability to predict future stock returns may be
indicative of a very strong and important economic phenomenon.

3.3 PRESENTING CORRELATIONS

The standard way to present correlations is in a correlation matrix. Each row cor-
responds to one variable, indicated in the first column of the table. Similarly, each
column corresponds to a variable, indicated in the first row of the table. The remain-
ing entries in the table present the average cross-sectional correlations between the
row and column variables. Diagonal entries, which represent the correlation between
a variable and itself (equal to 1.00 by definition), are either left blank or the num-
ber 1.00 is displayed. In this book, we will leave these entries blank, as we feel that
doing so makes for a cleaner presentation. If only the Pearson product–moment cor-
relation is used, frequently only the entries below the diagonal or the entries above
the diagonal entry are presented to avoid repetition. Here, and in the remainder of this
book, we present both the average Pearson product–moment correlations and average
Spearman rank correlations. The below-diagonal entries show the average Pearson
product–moment correlations and the above-diagonal entries present the Spearman
rank correlations. For the reasons discussed in the previous section, we feel it is
valuable to present both types of correlations. Table 3.3 presents the average pairwise
correlations between 𝛽, Size, BM, and rt+1 for our sample of stocks.

TABLE 3.3 Correlations Between 𝜷, Size, BM, and rt+1
This table presents the time-series averages of the annual
cross-sectional Pearson product–moment and Spearman
rank correlations between pairs of 𝛽, Size, BM, and
rt+1. Below-diagonal entries present the average Pear-
son product–moment correlations. Above-diagonal entries
present the average Spearman rank correlation.

𝛽 Size BM rt+1

𝛽 0.42 −0.23 −0.04
Size 0.39 −0.22 0.06
BM −0.18 −0.23 0.08
rt+1 −0.04 −0.02 0.06
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3.4 SUMMARY

In summary, correlation analysis gives us a first look at the relations between the vari-
ables used in a study. The procedure discussed in this chapter is designed to examine
the cross-sectional correlation between pairs of variables, and the results presented
are indicative of the relation between each pair of variables during the average period
in the sample. We use two different measures of correlation. The first is the Pearson
product–moment correlation, which is designed to indicate the strength of a linear
relation between the two variables. The second is the Spearman rank correlation,
which detects monotonicity in the relation between the two variables. Large differ-
ences between the two measures of correlation should be taken as indications that the
data need to be examined in more depth to assess the cause of this difference.
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PERSISTENCE ANALYSIS

Many of the variables in empirical asset pricing research are intended to capture per-
sistent characteristics of the entities in the sample. This means that the characteristic
of the entity that is captured by the given variable is assumed to remain reasonably
stable over time. Such variables are frequently estimated using historical data, and
the value calculated from the historical data is assumed to be a good estimate of the
given characteristic for the entity going forward. For example, the value of a stock’s
beta from the Capital Asset Pricing Model (Sharpe (1964), Lintner (1965), Mossin
(1966)) is generally assumed to be a persistent characteristic of the stock, and it is fre-
quently estimated from regressions of the stock’s returns on the returns of the market
portfolio using historical data. This is exactly how our variable 𝛽 is calculated.

In this chapter, we discuss a technique that we call persistence analysis. We use
persistence analysis to examine whether a given characteristic of the entities in our
sample is in fact persistent. Persistence analysis can also be used to examine the abil-
ity of the variable in question to capture the desired characteristic of the entity. The
basic approach is to examine the cross-sectional correlation between the given vari-
able measured at two different points in time. If this correlation is high, this indicates
that the variable is persistent, whereas low correlations indicate little or no persis-
tence. This technique is not as widely used in the empirical asset pricing literature
as the other techniques presented in Part I. We discuss it here and use it throughout
this text because one of the objectives of this book is to provide a thorough under-
standing of the variables most commonly used throughout the empirical asset pricing
literature.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



�

� �

�

26 PERSISTENCE ANALYSIS

4.1 IMPLEMENTATION

As with the other methodologies presented in this text, implementation of persis-
tence analysis is done in two steps. The first step involves calculating cross-sectional
correlations between the given variable X measured a certain number of periods
apart. The second step involves calculating the time-series average of each of these
cross-sectional correlations.

4.1.1 Periodic Cross-Sectional Persistence

The first step in persistence analysis is to calculate the cross-sectional correlation
between the variable under consideration, X, measured 𝜏 periods apart. This will be
done for each time period t where both the time period t and the time period t + 𝜏 fall
during the sample period. The entities used to calculate the cross-sectional correlation
will be all entities i for which a valid value of the variable X is available for both
period t and period t + 𝜏. For each time period t, we therefore define 𝜌t,t+𝜏 (X) as the
cross-sectional Pearson product–moment correlation between X measured at time t
and X measured at time t + 𝜏. Specifically, we have

𝜌t,t+𝜏 (X) =
∑nt

i=1[(Xi,t − Xt)(Xi,t+𝜏 − Xt+𝜏 )]√∑nt
i=1 (Xi,t − Xt)2

√∑nt
i=1 (Xi,t+𝜏 − Xt+𝜏 )2

(4.1)

where Xt is the mean value of Xi,t and the summations and means are taken over
all entities i for which a valid value of X is available in both periods t and t + 𝜏.
nt represents the number of such entities. Frequently, before the correlations are
calculated, the values of X from month t are winsorized to remove the effect of
outliers. The values of X from month t + 𝜏 are separately winsorized at the same
level.

We illustrate this using 𝛽 and values of 𝜏 between 1 and 5 inclusive. Our analysis
will therefore examine the persistence of 𝛽 measured one, two, three, four, and five
years apart. Prior to calculating the cross-sectional correlations for each period t, the
data are winsorized at the 0.5% level. To be perfectly clear, for each month t, we
first find all entities that have valid values of 𝛽 in both periods t and t + 𝜏. We then
winsorize the corresponding values of 𝛽 in each of the months t and t + 𝜏 separately.
The annual values for these cross-sectional correlations are presented in Table 4.1.
The year t is presented in the first column and the subsequent columns present the
values of 𝜌t,t+𝜏 (𝛽) for 𝜏 ∈ {1, 2, 3, 4, 5}.

The results in Table 4.1 indicate that values of 𝛽 measured one year apart (𝜌t,t+1(𝛽))
exhibit cross-sectional correlations between 0.39 (t = 1992) and 0.80 (t = 2008). As
might be expected, the correlations between 𝛽 measured at longer lags 𝜏 tend to be
lower than the correlations measured at shorter lags, although this is not always the
case. When measured five years apart (𝜌t,t+5(𝛽)), the table indicates that the cor-
relation between 𝛽 and its lagged counterpart is between 0.25 (t = 2000) and 0.56
(t = 2006). We withhold further interpretation of the results until later in the chapter.
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TABLE 4.1 Annual Persistence of 𝜷
This table presents the cross-sectional Pearson product–moment
correlations between 𝛽 measured in year t and 𝛽 measured in year
t + 𝜏 for 𝜏 ∈ {1, 2, 3, 4, 5}. The first column presents the year t.
The subsequent columns present the cross-sectional correlations
between 𝛽 measured at time t and 𝛽 measured at time t + 1, t + 2,
t + 3, t + 4, and t + 5.

t 𝜌
t,t
+

1
(𝛽
)

𝜌
t,t
+

2
(𝛽
)

𝜌
t,t
+

3
(𝛽
)

𝜌
t,t
+

4
(𝛽
)

𝜌
t,t
+

5
(𝛽
)

1988 0.50 0.48 0.47 0.39 0.34
1989 0.52 0.45 0.38 0.35 0.36
1990 0.55 0.45 0.42 0.40 0.37
1991 0.46 0.43 0.41 0.37 0.40
1992 0.39 0.37 0.36 0.41 0.38
1993 0.40 0.33 0.38 0.39 0.39
1994 0.38 0.39 0.38 0.37 0.33
1995 0.46 0.44 0.38 0.40 0.48
1996 0.53 0.48 0.43 0.52 0.53
1997 0.55 0.46 0.48 0.51 0.53
1998 0.51 0.50 0.53 0.53 0.50
1999 0.57 0.59 0.53 0.52 0.40
2000 0.79 0.58 0.56 0.58 0.25
2001 0.70 0.66 0.62 0.35 0.41
2002 0.79 0.64 0.50 0.49 0.38
2003 0.70 0.54 0.51 0.42 0.39
2004 0.62 0.60 0.45 0.38 0.34
2005 0.73 0.60 0.55 0.48 0.53
2006 0.67 0.56 0.50 0.56 0.56
2007 0.69 0.60 0.60 0.59 0.51
2008 0.80 0.69 0.64 0.60
2009 0.73 0.65 0.59
2010 0.76 0.70
2011 0.79

However, it is worth noting that for years t toward the end of the sample, in some
cases the persistence values are missing. The reason for this is that, for example, in
year 2009, to calculate the correlation between 𝛽 measured in 2009 and 𝛽 measured
four years in the future (𝜏 = 4), we would need data from year 2013. As these data
are not available in the version of the Center for Research in Security Prices (CRSP)
database used to construct the methodology sample, we are unable to calculate this
value. The reasons for the other missing entries are analogous.



�

� �

�

28 PERSISTENCE ANALYSIS

4.1.2 Average Cross-Sectional Persistence

Although periodic cross-sectional persistence values such as those presented in
Table 4.1 are quite informative, they are quite difficult to read and draw conclusions
from. We therefore want to summarize these periodic values more succinctly. As with
the other analyses we discuss, the main objective is to understand the persistence of
the variable X in the average cross section. We therefore summarize the results by
simply taking the time-series average of the periodic cross-sectional correlations. We
denote these average persistence values using 𝜌

𝜏

(X) where the subscript indicates
the number of lags. Specifically, we have

𝜌
𝜏

(X) =
∑N−𝜏

t=1 𝜌t,t+𝜏 (X)
N − 𝜏

(4.2)

where N is the number of periods in the sample. Throughout the remainder of this
book, we will refer to these values as the persistence of X at lag 𝜏.

In Table 4.2, we present the persistence of 𝛽 at lags of one, two, three, four, and
five years. The results indicate that, consistent with what was observed in the annual
persistence values presented in Table 4.1, the persistence of values of 𝛽 measured one
year apart, 0.62, is quite strong. The level of persistence drops off substantially as the
amount of time between the measurement periods increases. When measured at a lag
of 5 years, the average persistence of 𝛽 has decreased to 0.42.

4.2 INTERPRETING PERSISTENCE

Interpreting the results of the persistence analyses is fairly straightforward. In general,
a higher degree of time-lagged cross-sectional correlation in the given variable is
indicative of higher persistence, although there are several caveats to this that must
be understood to properly make use of this technique.

We begin our discussion of the interpretation of persistence analysis results by
discussing potential causes of low persistence. Exactly what qualifies as low persis-
tence is not perfectly well defined and depends on how long the lag is between the
times of measurement (𝜏), how persistent the actual characteristic being captured by
the variable is thought to be, and how accurately the variable is expected to capture
the actual characteristic. There are generally two reasons that a variable may exhibit
low or zero persistence. The first is that the characteristic being measured is in fact

TABLE 4.2 Average Persistence of 𝜷
This table presents the time-series averages of the cross-sectional
Pearson product–moment correlations between 𝛽 measured in year
t and 𝛽 measured in year t + 𝜏 for 𝜏 ∈ {1, 2, 3, 4, 5}.

𝜌1(𝛽) 𝜌2(𝛽) 𝜌3(𝛽) 𝜌4(𝛽) 𝜌5(𝛽)

0.61 0.53 0.48 0.46 0.42
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not persistent. The second is that the variable used to proxy for the given character-
istic does a poor job at measuring the characteristic under examination. In this case,
even if the given characteristic of the entities in the sample is highly cross-sectionally
persistent, the failure of the variable X to capture cross-sectional variation in this
characteristic will cause the persistence analysis to generate a low value of 𝜌

𝜏

(X).
In this sense, the persistence analysis suffers from a dual hypothesis problem, as
failure to find persistence does not necessarily indicate a lack of persistence in the
characteristic under investigation. Low values of 𝜌

𝜏

(X) may also indicate a failure
of X to capture that characteristic. Thus, we must be careful when concluding that a
certain characteristic of the entities in the sample is not cross-sectionally persistent
based on the results of the persistence analysis. To reach such a conclusion, we must
be highly confident that the variable X does in fact capture the characteristic under
examination. On the other hand, if one is extremely confident, for reasons beyond the
scope of the persistence analysis, that the characteristic in question is in fact highly
cross-sectionally persistent, low values of 𝜌t,t+𝜏 (X) likely indicate that the variable X
does a poor job at capturing cross-sectional variation in the characteristic. In the end,
however, regardless of the reason for the lack of persistence in X, if X is intended to
capture a persistent characteristic of a firm, but X does not exhibit persistence, then
X is not a good measure of the characteristic of interest.

When the persistence analysis produces high values of 𝜌
𝜏

(X), this very likely indi-
cates both that the characteristic in question is in fact persistent and that the variable
X does a good job at measuring the characteristic. There are two caveats with this
statement that must be addressed. The first is that it is possible that the variable X is
unintentionally capturing some persistent characteristic of the entities in the sample
that is different from the characteristic that X is designed to capture. Thus, perhaps a
more correct statement is that high values of 𝜌

𝜏

(X) indicate that whatever character-
istic is being captured by X is in fact persistent. If X does in fact capture the intended
characteristic, then we can conclude that the characteristic is in fact persistent. There-
fore, assuming sufficient effort has been devoted to designing the calculation of X
such that it can reasonably be expected to capture the intended characteristic, high
values of 𝜌

𝜏

(X) are interpreted as indicating that the given characteristic is in fact
persistent.

The second, and much more important, caveat associated with concluding that a
characteristic is persistent is that in many cases there is a mechanical reason related
to the calculation of X that would result in strong cross-sectional correlation between
Xt and Xt+𝜏 even if the characteristic in question is not persistent. In most cases, the
reason for such a mechanical effect is that some subset of the data used to calculate
X at times t and t + 𝜏 are the same. This is frequently the case when a variable is
calculated from historical data covering more than 𝜏 periods. For example, if Xt is
calculated using k periods of historical data up to and including period t, where k > 𝜏,
then Xt and Xt+𝜏 are calculated using some of the same data and are therefore likely
to be correlated in the cross section as a result. For this reason, when X is calculated
using k periods of historical data, persistence analysis is only effective when
𝜏 ≥ k.
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In addition to examining whether a given characteristic of the entities in the sample
is cross-sectionally persistent, persistence analysis can also be helpful in determin-
ing the optimal measurement period that should be used to calculate a given variable.
Many of the variables used throughout the empirical asset pricing literature are calcu-
lated based on historical data. When calculating these variables, researchers are faced
with the decision of how long a calculation period to use. Increasing the length of the
calculation period means that more data are used in the calculation of the variable,
which can increase the accuracy of the measurement. However, using longer calcu-
lation periods also means that when calculating the variable for time period t, data
from many periods prior to t are used, and this data may no longer be reflective of the
given characteristic of the entity at time t. For this reason, extending the calculation
period too long may result in decreasing accuracy of measurement. How to optimally
make this trade-off depends on the persistence of the characteristic being measured.
While certainly none of the variables studied in asset pricing research are perfectly
persistent, different variables exhibit different degrees of persistence.

To help determine the optimal calculation period for a variable calculated from
historical data, we can examine the patterns in the persistence of the variable mea-
sured using different calculation periods. The main concept behind this application
of persistence analysis is that the cross-sectional persistence of even the most persis-
tent characteristic is likely to decay over time. Therefore, let us assume we have two
variables X1 and X2 that measure the same characteristic using the same formula but
applied to different calculation periods of length 𝜏1 and 𝜏2, respectively, and without
loss of generality, let 𝜏1 > 𝜏2. Let us also make the assumption that X1 and X2 are
equally accurate measures of the given characteristic.

If X1 and X2 are equally accurate measures of the characteristic, then based on
the assumed decay in persistence as the value of 𝜏 increases, we would expect the
persistence of X1 measured at a lag of 𝜏 = 𝜏1 to be greater than the persistence of
X2 measured at lag 𝜏 = 𝜏2. Notice here that the lag at which the comparison of the
persistence is done is such that neither analysis has the overlapping data issue dis-
cussed earlier. If the persistence of X2 at lag 𝜏 = 𝜏2 is actually greater than that of
X1 at lag 𝜏 = 𝜏1, this is a contradiction of what would be expected if X1 and X2 were
equally accurate measures. This therefore indicates that using 𝜏2 periods of data to
calculate X provides a more accurate measure of the underlying characteristic than
using 𝜏1 periods, as the additional amount of data used in the calculation apparently
overcomes the decay in the persistence at longer lags 𝜏.

If the persistence of X2 at lag 𝜏 = 𝜏2 is less than that of X1 at lag 𝜏 = 𝜏1, the results
are a bit more challenging to interpret, but it can generally be taken to mean that
the decay in the persistence over a period of 𝜏2 − 𝜏1 periods is substantial enough
to overcome any additional benefit of using 𝜏2 periods of data, compared to 𝜏1, to
calculate X. If this is the case, it may also be an indication that using a full 𝜏2 periods
of data is too long a measurement period because the given characteristic of the firm
does in fact change substantially over periods of length 𝜏2.

There is a practical consideration that may have an effect on using persistence to
determine the optimal measurement period for the given variable X. This considera-
tion is that the sample changes over time. The calculation of the value of 𝜌t,t+𝜏 (X) is
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done using only those entities that are in the sample at both times t and t + 𝜏. In most
cases, the set of entities in the sample at both time t and time t + 𝜏1 is likely to be a
superset of the set of entities in the sample at both time t and time t + 𝜏2 (𝜏2 > 𝜏1).
Furthermore, in many cases, the set of entities that remain in the sample until time
t + 𝜏2 is likely to be more “well-behaved” than those that do not remain in the sample,
where well-behaved can be taken to mean that the calculation of the variable X is a
more accurate measure of the characteristic being examined for such entities than for
entities that are not well-behaved. If these not well-behaved entities are more likely
to enter and then drop out of the sample over a small number of periods, it is possible
that using persistence analysis to examine the quality of a variable as described in
this section may be misleading. That being said, for the analyses performed in this
text this is unlikely to be a substantial issue, as the number of entities (stocks in this
case) in each cross section is quite large relative to the number of stocks that drop out
of the sample each period.

4.3 PRESENTING PERSISTENCE

Throughout this book, we will present the results of persistence analyses by display-
ing the values of 𝜌

𝜏

(X). Each column in the tables that present the persistence analysis
results will correspond to a given variable, indicated in the first row of the column.
Each row will correspond to a given value of 𝜏.

The results of persistence analyses for each of 𝛽, Size, and BM using lags of one,
two, three, four, and five years are presented in Table 4.3. The results indicate that
all three variables are highly persistent. The persistence of 𝛽 measured at lag of one
year (𝜏 = 1) is 0.61 and that of Size is 0.96, and for BM the persistence at lag of one
year is 0.74. The results for each of these variables indicate fairly strong persistence
at lags of up to five years. Size is very highly persistent, as the average cross-sectional

TABLE 4.3 Persistence of 𝜷, Size, and BM
This table presents the results of persistence analyses of 𝛽,
Size, and BM. For each year t, the cross-sectional corre-
lation between the given variable measured at time t and
the same variable measured at time t + 𝜏 is calculated.
The table presents the time-series averages of the annual
cross-sectional correlations. The column labeled 𝜏 indicates
the lag at which the persistence is measured.

𝜏 𝛽 Size BM

1 0.61 0.96 0.74
2 0.53 0.92 0.59
3 0.48 0.90 0.50
4 0.46 0.89 0.46
5 0.42 0.88 0.43
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correlation between Size measured five years apart is 0.88, only slightly lower than
when the persistence is measured at a lag of one year. The decay in the persistence
of 𝛽 and BM is substantially more pronounced, but even after five years, 𝛽 and BM
continue to exhibit substantial persistence.

4.4 SUMMARY

In this chapter, we have presented a methodology for examining the persistence of
a given variable. The methodology has two primary applications. If we assume that
the variable accurately measures the characteristic that it is intended to capture, then
persistence analysis can be used to examine how persistent the given characteristic is
in the cross section of the entities in the sample. If we assume the characteristic that
the variable is intended to measure is in fact persistent, then we can use persistence
analysis to examine the accuracy with which the variable captures the given charac-
teristic and the optimal measurement period to use when calculating the variable. Of
course, no characteristic is perfectly persistent and no variable perfectly captures the
characteristic it is designed to measure. Despite these caveats, persistence analysis is
a useful tool that we will employ throughout this text.
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Portfolio analysis is one of the most commonly used statistical methodologies
in empirical asset pricing. Its objective is to examine the cross-sectional relation
between two or more variables. The most frequent application of portfolio analysis
is to examine the ability of one or more variables to predict future stock returns. The
general approach is to form portfolios of stocks, where the stocks in each portfolio
have different levels of the variable or variables posited to predict cross-sectional
variation in future returns and to examine the returns of these portfolios.

While the most common application of portfolio analysis is to examine future
return predictability, the portfolio methodology can also be employed to understand
cross-sectional relations between any set of variables. This is useful for understanding
variation in the characteristics of the entities (stocks) across the different portfolios.
Thus, in the very general sense, portfolio analysis is useful for understanding the
cross-sectional relation between one variable and combinations of other variables.

Perhaps the most important benefit of portfolio analysis is that it is a
nonparametric technique. This means that it does not make any assumptions
about the nature of the cross-sectional relations between the variables under
investigation. Many other methodologies rely on some assumptions regarding the
functional form of the relation between the variables being examined. For example,
linear regression analysis assumes that the relation between the dependent and
independent variables is linear. Portfolio analysis does not require this assumption.
In fact, portfolio analysis can be helpful in uncovering nonlinear relations between
variables that are quite difficult to detect using parametric techniques. Perhaps the

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
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main drawback of the technique is that it is difficult to control for a large number of
variables when examining the cross-sectional relation of interest. This compares to
regression analysis in which it is easy to control for a large number of independent
variables in the analysis.

In this chapter, we present and exemplify the details of implementing a portfolio
analysis and interpreting the results. There are several different variations of portfolio
analysis. While some researchers have implemented variations that are not covered in
this chapter, the vast majority of portfolio analyses in empirical asset pricing research
follow one of the approaches discussed herein.

Throughout this chapter, we use Y to denote the outcome variable of the portfolio
analysis. Y can be thought of as the variable of interest, similar to the dependent
variable in a regression analysis. We use X to denote the sort variable or variables.
X is analogous to the independent variable or variables in a regression. We refer
to Y and X the outcome and sort variables, respectively, to avoid confusion in our
presentation of independent and dependent sorts, discussed in Sections 5.2 and 5.3,
respectively. We demonstrate the portfolio methodology using the methodology sam-
ple described in Section 1.1.

5.1 UNIVARIATE PORTFOLIO ANALYSIS

We begin with the most basic type of portfolio analysis: univariate portfolio analysis.
A univariate portfolio analysis has only one sort variable X. The objective of the anal-
ysis is to assess the cross-sectional relation between X and the outcome variable Y .
A univariate portfolio analysis does not allow us to control for any other effects when
examining this relation.

The univariate portfolio analysis procedure has four steps. The first step is to calcu-
late the breakpoints that will be used to divide the sample into portfolios. The second
step is to use these breakpoints to form the portfolios. The third step is to calculate the
average value of the outcome variable Y within each portfolio for each period t. The
fourth step is to examine variation in these average values of Y across the different
portfolios.

5.1.1 Breakpoints

The first step in univariate portfolio analysis is to calculate the periodic breakpoints
that will be used to group the entities in the sample into portfolios based on values
of the sort variable X. Entities with values of X that are less than the first breakpoint
will be placed into the first portfolio. Entities with values of X that are between the
first and second breakpoints will comprise the second portfolio, etc. Finally, entities
with X values higher than the highest breakpoint will be placed in the last portfolio.
We denote the number of portfolios to be formed each time period as nP. The number
of breakpoints that need to be calculated each period is therefore nP − 1. The number
of portfolios to be formed and, thus, the number of breakpoints to be calculated is
the same for all time periods. The value of the kth breakpoint, however, will almost
certainly vary from time period to time period. We denote the kth breakpoint for
period t as Bk,t for k ∈ {1, 2, … , nP − 1}.
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The breakpoints for period t are determined by percentiles of the time t
cross-sectional distribution of the sort variable X. Specifically, letting pk be the
percentile that determines the kth breakpoint, the kth breakpoint for period t is
calculated as the pkth percentile of the values of X across all entities in the sample
for which X is available in period t. We therefore define the breakpoints as

Bk,t = Pctlpk
({Xt}) (5.1)

where Pctlp(Z) is the pth percentile of the set Z and {Xt} represents the set of
valid values of the sort variable X across all entities i in the sample in time
period t. The percentiles, and thus the breakpoints, increase as k increases, giving
0 < p1 < p2 < · · · < pnP−1 and B1,t ≤ B2,t ≤ · · · ≤ BnP−1,t for all periods t. While
the chosen percentiles (p1, p2, … , pnP−1) are required to be strictly increasing, this
does not necessarily mean that the actual breakpoints, calculated as the chosen
percentile values of X, are strictly increasing. In some cases, there may be a large
number of entities for which the values of X are the same, causing two or more of
the breakpoints to be the same. If the variable X is truly continuous, the probability
of this happening should be zero. However, there are examples of variables used in
asset pricing research that at first glance would appear to be continuous but actually
have many entities for which the value of the variable is the same.

It is worth mentioning here that, in some cases, breakpoints are calculated using
only a subset of the entities that are in the sample for the given period t. For example,
in research where the entities are stocks, sometimes researchers form breakpoints
using only stocks that trade on the New York Stock Exchange, and then use those
breakpoints to sort all stocks in the sample (including stocks that trade on other
exchanges) into portfolios. Thus, in the previous paragraph as well as for the remain-
der of Section 5.1.1, when we refer to the sample, what we actually mean is the subset
of the full sample that is being used to calculate the breakpoints. In most cases, this
subset is the entire sample, but there are many examples where a strict subset is used.
It is for this reason that we consider the calculation of breakpoints and the formation
of portfolios, two separate steps in the portfolio analysis procedure.

Choosing an appropriate number of portfolios and choosing appropriate per-
centiles for the breakpoints are important decisions in portfolio analysis. As the
entities in the sample will eventually be grouped into portfolios based on the
breakpoints, the decision is largely based on trading off the number of entities in
each portfolio against the dispersion of the sort variable among the portfolios. As the
number of portfolios increases, the number of entities in each portfolio decreases,
and vice versa. When the average value of the outcome variable Y for each portfolio
is eventually calculated (the average value of Y is the focal point of the portfolio
analysis and will be discussed in Section 5.1.3), a small number of entities in each
portfolio results in increased noise when using the sample mean value of Y as an
estimate of the true mean. Thus, having a large number of entities in each portfolio
increases the accuracy of our estimate of the true mean value for each portfolio and is
thus desirable. On the other hand, the more entities we group into each portfolio, the
smaller the number of portfolios and the smaller the dispersion in the sort variable
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X among the portfolios. Decreased dispersion in X across the portfolios can make it
more difficult to detect cross-sectional relations between X and Y , as the values of X
in the portfolios may not differ substantially if we have too few portfolios.

Most commonly, portfolios are formed using breakpoints that represent evenly
spaced percentiles of the cross-sectional distribution of the sort variable. This means
that the nP − 1 breakpoints are defined to be the k × (1∕nP) percentiles of X, where
k ∈ {1, … , nP − 1}. For example, if we want to split the sample into five portfo-
lios, we may use the 20th, 40th, 60th, and 80th percentiles of the sort variable as
the portfolio breakpoints. While the evenly spaced percentile approach to calculating
breakpoints is most common, other approaches have been used. For example, when
splitting the sample into only three portfolios, it is common to use the 30th and 70th
percentiles of the sort variable as the breakpoints.

In choosing the number of portfolios and breakpoint percentiles, it is important to
remember that new portfolios are formed for each time period t. Thus, when assess-
ing the number of entities that fall into each portfolio, it is important to look not only
at the average number of entities in the sample during the different time periods t but
also at the minimum number of entities in any time period. The number of entities
that will put into each portfolio is easily determined by the number of entities in the
sample and the percentiles used to calculate the breakpoints. When the breakpoints
are determined by equally spaced percentiles, the number of entities in each portfolio
for any given time period t will be the number of entities in the sample for that time
period divided by the number of portfolios. In the general sense, the minimum num-
ber of entities in any portfolio in a given time period t will be the number of entities
in the sample during time period t, which we denote nt, multiplied by the minimum
of the lowest percentile, the differences between successive percentiles, and one
minus the highest percentile. The exception to these cases is when the sample used
to calculate the breakpoints is a strict subset of the set of entities that will be placed
in the portfolios. In this case, the minimum number of entities in a portfolio will be
higher. Finally, almost all studies use between three and 20 portfolios, with most
researchers choosing either five or 10.

To exemplify the calculation of breakpoints in univariate portfolio analysis, we use
the methodology sample discussed in Section 1.1 and take 𝛽 to be the sort variable.
Our analysis uses seven portfolios (nP = 7) and thus six breakpoints will be calcu-
lated each year. The breakpoints will be the 10th, 20th, 40th, 60th, 80th, and 90th
percentiles of 𝛽. We choose uneven breakpoints simply to exemplify the flexibility
of the portfolio procedure. In some cases, researchers choose to make the distance
between the percentiles that determine the breakpoints smaller for the lowest and
highest portfolios because doing so can help us understand whether the relation under
investigation is stronger for entities with extreme (low or high) values of the sort vari-
ables X. It is not uncommon in the empirical finance literature for a cross-sectional
phenomenon to be driven by a small number of stocks with extreme values of one of
the variables under investigation.

The results of the calculation of the breakpoints are presented in Table 5.1. The
table shows that, for example, breakpoints one, two, three, four, five, and six for year
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TABLE 5.1 Univariate Breakpoints for 𝜷-Sorted Portfolios
This table presents breakpoints for 𝛽-sorted portfolios. Each year t, the first (B1,t), second
(B2,t), third (B3,t), fourth (B4,t), fifth (B5,t), and sixth (B6,t) breakpoints for portfolios sorted
on 𝛽 are calculated as the 10th, 20th, 40th, 60th, 80th, and 90th percentiles, respectively, of the
cross-sectional distribution of 𝛽. Each row in the table presents the breakpoints for the year
indicated in the first column. The subsequent columns present the values of the breakpoints
indicated in the first row.

t B1,t B2,t B3,t B4,t B5,t B6,t

1988 −0.05 0.07 0.29 0.51 0.86 1.11
1989 −0.11 0.05 0.29 0.54 0.89 1.17
1990 −0.06 0.10 0.37 0.68 1.07 1.37
1991 −0.09 0.09 0.38 0.67 1.05 1.33
1992 −0.22 0.08 0.42 0.77 1.23 1.66
1993 −0.21 0.10 0.44 0.73 1.18 1.55
1994 −0.05 0.19 0.52 0.81 1.19 1.56
1995 −0.17 0.10 0.42 0.71 1.16 1.65
1996 0.00 0.19 0.46 0.73 1.14 1.52
1997 −0.00 0.15 0.36 0.59 0.89 1.15
1998 0.13 0.28 0.54 0.79 1.13 1.38
1999 −0.06 0.06 0.24 0.42 0.70 0.99
2000 0.03 0.14 0.37 0.63 1.22 1.79
2001 0.05 0.18 0.46 0.76 1.23 1.75
2002 0.04 0.17 0.48 0.75 1.06 1.37
2003 0.05 0.22 0.54 0.83 1.16 1.46
2004 0.14 0.40 0.81 1.16 1.56 1.96
2005 0.09 0.33 0.80 1.14 1.49 1.74
2006 0.10 0.35 0.82 1.21 1.64 1.94
2007 0.13 0.33 0.75 1.04 1.33 1.54
2008 0.16 0.38 0.74 1.02 1.31 1.54
2009 0.24 0.45 0.84 1.23 1.70 2.06
2010 0.29 0.56 0.92 1.19 1.49 1.72
2011 0.26 0.56 0.99 1.25 1.52 1.73
2012 0.28 0.55 0.91 1.18 1.48 1.75

1988 are −0.05, 0.07, 0.29, 0.51, 0.86, and 1.11, respectively. These are the break-
points that will be used to sort stocks into portfolios at the end of year 1988. As
necessitated by the calculation, the breakpoints are increasing across the columns for
each year t.

5.1.2 Portfolio Formation

Having calculated the breakpoints, the next step in univariate portfolio analysis is
to group the entities in the sample into portfolios. Each time period t, all entities in
the sample with values of the sort variable X that are less than or equal to the first
breakpoint, B1,t, are put in portfolio one. Portfolio two holds entities with values of X
that are greater than or equal to the first breakpoint and less than or equal to the second
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breakpoint. Portfolio three holds entities with values of X greater than or equal to the
second breakpoint and less than or equal to the third breakpoint, and so on. Finally,
portfolio nP holds entities with values of X that are greater than or equal to BnP−1,t. In
general, portfolio k holds entities i with period t values of the sort variable, Xi,t, that
are greater than or equal to the k − 1st breakpoint Bk−1,t and less than or equal to the
jth breakpoint Bk,t for k ∈ {1, … , nP}, where we define B0,t = −∞ and BnP,t

= ∞.
Thus, letting Pk,t be the set of entities in the kth portfolio formed at the end of period
t, we have

Pk,t = {i|Bk−1,t ≤ Xi,t ≤ Bk,t} (5.2)

for k ∈ {1, 2, … , nP}. We refer to Pk,t as the kth portfolio or portfolio k for period t.
Forming portfolios as such puts all entities with the lowest values of the sort vari-

able Xi,t in portfolio one and all entities with the highest values of the Xi,t in the last
(nPth) portfolio, with values of Xi,t increasing as the portfolio number increases. As
discussed earlier, it is not necessary that the set of entities that is grouped into the
portfolios is the same as the set of entities that is used to calculate the breakpoints.
Once the breakpoints are calculated, they can be applied to any set of entities, whether
it is a superset, subset, or the same set as was used to calculate the breakpoints. We
should also point out that when forming the portfolios, if a given entity has a value
of X during time period t that is exactly equal to the kth breakpoint, Bk,t, then this
entity is included in both portfolio k and portfolio k + 1. We define the portfolios in
this manner for a good reason. The reason is that, as discussed previously, it is pos-
sible that two (or more) consecutive breakpoints have exactly the same value. This
occurs when there are a large number of entities with the same value of X in period t.
In such situations, if we had defined the portfolios using a strict inequality for either
the lower or upper values of X, then one or more of the portfolios would contain no
entities. For example, imagine that we are sorting stocks into decile portfolios (the
breakpoints are the 10th, 20th, 30th, … , 90th percentiles) based on past returns, but
the 30th and 40th percentile of past returns are both zero in the given period t, mean-
ing that breakpoints 3 and 4 would both be zero. If the stocks in the fourth portfolio
are those that have returns that are greater than the third breakpoint, which is zero,
and less than or equal to the fourth breakpoints, which is also zero, then there would
be no stocks in the fourth portfolio. To alleviate this issue, we define the portfolios to
be inclusive of entities with values of X that are equal to either the low breakpoint or
the high breakpoint that define the portfolio. The ramification of this is that, in this
situation, there will be some entities that are included in more than one portfolio. We
consider this issue to be minor compared to the issues that arise when a portfolio has
no entities. That being said, as a researcher, if such a situation arises in your analy-
sis, special attention should be paid to ensuring that this does not have an important
impact on any of the conclusions drawn from the portfolio analysis.

When the set of entities used to calculate the breakpoints is the same as the set of
entities that are grouped into portfolios, the number of entities in each of the portfolios
should be approximately dictated by the percentiles used to calculate the breakpoints
and the number of stocks in the sample during the given period t. We say “approxi-
mately” because, as mentioned earlier, if the value of X for a given entity i is exactly



�

� �

�

UNIVARIATE PORTFOLIO ANALYSIS 39

TABLE 5.2 Number of Stocks per Portfolio
This table presents the number of stocks in each of the portfolios formed in each year during
the sample period. The column labeled t indicates the year. The subsequent columns, labeled
nk,t for k ∈ {1, 2, … , 7} present the number of stocks in the kth portfolio.

t n1,t n2,t n3,t n4,t n5,t n6,t n7,t

1988 569 569 1138 1138 1138 569 569
1989 552 552 1104 1103 1104 552 552
1990 541 541 1082 1081 1082 541 541
1991 531 530 1060 1061 1061 529 531
1992 539 539 1078 1077 1078 539 539
1993 567 567 1134 1134 1134 567 567
1994 615 615 1229 1230 1229 615 615
1995 629 629 1257 1258 1257 629 629
1996 659 658 1317 1318 1316 659 659
1997 687 687 1373 1373 1373 687 687
1998 661 661 1321 1322 1321 661 661
1999 610 610 1219 1219 1219 610 610
2000 591 590 1180 1180 1180 589 591
2001 551 551 1101 1102 1101 551 551
2002 510 510 1020 1019 1020 510 510
2003 474 474 947 947 947 474 474
2004 458 457 915 914 915 457 458
2005 450 449 899 899 898 450 450
2006 446 445 890 891 890 445 446
2007 434 433 866 866 866 433 434
2008 427 426 853 853 852 426 427
2009 398 398 795 795 795 398 398
2010 381 380 761 761 761 380 381
2011 369 368 736 736 736 368 369
2012 355 354 709 709 709 354 355

equal to one of the breakpoints, then because the portfolios are constructed to be
inclusive of the breakpoints at both the low and high ends of X, the entity i will be
held in more than one portfolio.

Table 5.2 presents the number of stocks in each of the portfolios for each year t
in our example sample. As expected, as the 10th percentile is used to calculate the
first breakpoint, approximately 10% of the stocks. Similarly, the second, sixth, and
seventh portfolios each hold approximately 10% of the stocks in each cross section.
Portfolios three, four, and five each hold approximately 20% of the stocks in the
sample.

5.1.3 Average Portfolio Values

The third step in univariate portfolio analysis is to calculate the average value of the
outcome variable Y for each of the nP portfolios in each time period t. In many cases,
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instead of taking the simple average of the outcome variable values, it is desirable
to weight the entities within each portfolio according to some other variable Wi,t.
The most commonly used weight variable is market capitalization. In cases where
market capitalization is used as the weight variable, the average is referred to as the
value-weighted average.1 When a simple average is desired, the values of the Wi,t are
set to one (Wi,t = 1 ∀i, t). In this case, we refer to the portfolios as equal-weighted
portfolios. This is equivalent to giving a weight of 1∕nt to each entity. Thus, in its
general form, the average value of the outcome variable for portfolio k in period t is
defined as

Yk,t =

∑
i∈Pk,t

Wi,tYi,t∑
i∈Pk,t

Wi,t
(5.3)

for k ∈ {1, … , nP}. The summations in equation (5.3) are taken over all entities i in
the kth portfolio for time period t (Pk,t).

A few details are worthy of discussion. Given that the grouping of entities into port-
folios was performed without any consideration for whether a value of Y is available
for each of the entities in the portfolio, it is possible, and in practice quite common,
that there will be some entities i in any given portfolio Pk,t for which the value of Y
is not available. In this case, the set over which the average is taken should be the set
of entities i in Pk,t for which a value of Y is available. A similar consideration arises
when the portfolio weights are not equal but are determined by some other variable
W. In this case, the summation is taken over all entities i for which values of both W
and Y are available.

In addition to calculating the average value of the outcome variable (Y) for each
portfolio, we also calculate the difference in average values between portfolio nP and
portfolio one. For each period t, we define the difference in the average outcome
variable between the highest and lowest portfolios to be

YDiff ,t = YnP,t
− Y1,t. (5.4)

This value represents the difference in the average value of the outcome variable Y
for entities with high values of the sort variable compared to those with low val-
ues of the sort variable. This difference in averages is the primary value used to
detect a cross-sectional relation between the sort variable and the outcome variable,

1Value-weighting is most appropriate when the entities in the analysis are stocks. In such cases, the
results of equal-weighted analyses are indicative of phenomena for the average stock. The results of
value-weighted analyses account for the importance, from the point of view of the stock market as a whole,
of each individual stock relative to the other stocks in the given portfolio. When the outcome variables (Y)
is the future stock return, the results of value-weighted analyses are generally considered to be more indica-
tive of return that an investor would have realized by implementing the portfolio in question. The reason for
this is that value-weighted portfolios have large weights on stocks with large market capitalizations, which
tend to be highly liquid. The returns of equal-weighted portfolios are potentially driven by the low-market
capitalization stocks in the portfolio, which are more expensive to trade. The result is often that the average
return indicated by the portfolio analysis cannot be realized by an actual investor because of transaction
costs.
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which is the main objective of portfolio analysis. We frequently refer to the differ-
ence between the average value of the nPth portfolio and the average value of the first
portfolio as the average value of the difference portfolio.

Turning to our example, we use the one-year-ahead excess stock return (rt+1) as
our outcome variable. Because rt+1 represents the excess return of the stock in the
year after the calculation of 𝛽 (the sort variable), the average excess stock returns
represent the excess returns that would have been realized by an investor who, at the
end of year t, created the portfolios as described previously and held the portfolios
without further trading for the entirety of year t + 1. To be specific, the timing of
the portfolio formation is as follows. At the end of each year t, we calculate 𝛽 for
each stock and form seven different portfolios as described earlier. We then enter into
positions as indicated by these portfolios. The prices paid for each of the stocks are
the prices as of the close of the last trading day during year t. We hold the portfolios
unchanged until the end of year t + 1, at which point all portfolios are liquidated at
the closing prices on the last trading day of year t + 1. We repeat the procedure for
each year t. We refer to the year t as the portfolio formation period and the year t + 1
as the portfolio holding period. Because rt+1 is the excess stock return, we assume
that all positions are financed by borrowing at the risk-free rate.

Table 5.3 presents the average equal-weighted portfolio excess returns for each of
the seven portfolios as well as for the difference between portfolio seven and portfolio
one. To make the timing clear, in the table, we present both the portfolio formation
year (column labeled t) and the portfolio holding year (column labeled t + 1). As
can be seen from the table, the portfolio that holds stocks in the lowest decile of 𝛽
(portfolio 1) as of the end of 1988 generated an excess return of −0.97% during 1989.
Similarly, portfolios two through seven generated excess returns of 1.12%, 2.12%,
6.77%, 3.18%, 9.04%, and 8.96%. The difference in excess return between portfolios
seven and one is 9.93% (8.96% − [−0.97%]). The corresponding values for portfolios
formed at the end of (held during) year 1989 through 2011 (1990 through 2012) are
also presented. As the return data for year 2013 are not available in the version of
the Center for Research in Security Prices (CRSP) database used to construct the
methodology sample, we cannot determine the 2013 excess returns of the portfolios
that are formed at the end of year 2012.

We now repeat the analysis using value-weighted portfolios. Thus, the weights in
each of the portfolios are determined by the market capitalization (MktCap) measured
as of the end of the portfolio formation year t. Table 5.4 presents the average portfolio
excess returns for the value-weighted portfolios. As can be seen from the results, the
weighting scheme can have a substantial impact of the average portfolio returns. This
will become much more apparent in the analyses presented throughout Part II.

5.1.4 Summarizing the Results

The main objective of portfolio analysis is to determine whether there is a
cross-sectional relation between the sort variable X and the outcome variable Y . To
do so, we begin by calculating the time-series means of the period average values of
the outcome variable, Yk,t, for each of the nP portfolios as well as for the difference
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TABLE 5.3 Univariate Portfolio Equal-Weighted Excess Returns
This table presents the one-year-ahead excess returns of the equal-weighted portfolios formed
by sorting on 𝛽. The column labeled t indicates the portfolio formation year. The column
labeled t + 1 indicates the portfolio holding year. The columns labeled 1 through 7 show the
excess returns of the seven 𝛽-sorted portfolios. The column labeled 7-1 presents the difference
between the return of portfolio seven and that of portfolio one.

t t + 1 1 2 3 4 5 6 7 7-1

1988 1989 −0.97 1.12 2.12 6.77 3.18 9.04 8.96 9.93
1989 1990 −30.21 −29.09 −28.72 −29.81 −27.85 −26.85 −25.75 4.45
1990 1991 56.81 28.99 36.22 40.42 54.51 64.44 66.49 9.68
1991 1992 55.37 30.93 29.45 21.99 19.16 15.95 20.12 −35.26
1992 1993 36.07 27.60 22.98 24.03 19.78 15.39 7.86 −28.21
1993 1994 −4.51 −4.47 −5.55 −4.16 −5.88 −10.42 −4.74 −0.23
1994 1995 28.38 21.81 24.95 29.62 26.82 23.90 37.46 9.08
1995 1996 21.04 16.14 18.46 14.16 12.32 11.73 9.07 −11.97
1996 1997 22.72 39.12 28.28 20.44 18.00 6.13 −7.58 −30.30
1997 1998 −6.68 −9.02 −7.01 −10.42 −6.52 −6.60 0.13 6.81
1998 1999 14.69 10.32 19.71 23.15 38.11 61.77 93.44 78.74
1999 2000 −11.18 −4.54 −0.96 −1.23 −3.50 −10.26 −31.33 −20.16
2000 2001 37.64 28.96 27.08 28.23 22.53 −1.75 −22.09 −59.73
2001 2002 11.60 11.08 −0.27 −8.09 −22.56 −36.19 −53.83 −65.43
2002 2003 76.69 68.50 85.65 64.78 63.70 76.56 86.90 10.22
2003 2004 27.56 21.07 25.82 21.34 15.75 12.89 −0.10 −27.65
2004 2005 6.06 5.52 2.97 3.40 3.11 −3.15 −10.24 −16.31
2005 2006 8.85 17.13 13.32 10.62 6.87 12.98 12.26 3.41
2006 2007 −13.52 −13.06 −6.97 −7.65 −6.57 −2.60 −4.19 9.33
2007 2008 −42.54 −42.30 −41.36 −39.18 −40.75 −45.34 −44.46 −1.92
2008 2009 57.06 65.73 64.76 59.46 55.19 60.47 73.60 16.55
2009 2010 20.31 20.19 23.14 22.98 33.39 30.27 36.77 16.46
2010 2011 −3.87 −5.50 −1.04 −4.24 −7.11 −14.11 −16.48 −12.61
2011 2012 27.95 27.11 16.22 20.33 16.10 17.83 18.05 −9.89

portfolio. We define these average values as

Yk =
∑T

t=1 Yk,t

T
(5.5)

and

YDiff =
∑T

t=1 YDiff ,t

T
(5.6)

where t = 1 indicates the first period in the sample and T is the number of periods in
the sample.

The time-series means serve as estimates of the true average values of the outcome
variable for entities in each of the portfolios in the average time period. Similarly, the
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TABLE 5.4 Univariate Portfolio Value-Weighted Excess Returns
This table presents the one-year-ahead excess returns of the value-weighted portfolios formed
by sorting on 𝛽. The column labeled t indicates the portfolio formation year. The column
labeled t + 1 indicates the portfolio holding year. The columns labeled 1 through 7 show the
excess returns of the seven 𝛽-sorted portfolios. The column labeled 7-1 presents the difference
between the return of portfolio seven and that of portfolio one.

t t + 1 1 2 3 4 5 6 7 7-1

1988 1989 −2.98 11.14 9.04 16.29 20.25 29.16 18.21 21.19
1989 1990 −28.42 −33.78 −18.81 −19.12 −16.14 −11.51 −11.88 16.53
1990 1991 −0.45 18.50 12.28 17.79 22.08 31.14 51.51 51.96
1991 1992 −1.18 22.64 14.17 8.47 5.44 0.43 12.45 13.62
1992 1993 21.22 18.77 14.44 9.45 7.33 5.64 3.35 −17.87
1993 1994 −14.71 −7.26 −3.17 −4.07 −2.86 −9.35 1.52 16.23
1994 1995 17.44 21.81 25.41 32.54 31.73 28.45 29.02 11.57
1995 1996 5.38 17.64 18.34 14.51 13.71 18.02 29.65 24.27
1996 1997 3.37 34.35 26.16 21.17 27.71 27.54 22.22 18.85
1997 1998 −7.37 −6.09 −0.99 −0.63 12.21 16.51 31.82 39.20
1998 1999 −17.35 −17.55 −9.51 1.20 0.22 31.34 57.98 75.33
1999 2000 −23.95 −1.23 8.74 14.82 5.78 0.02 −26.46 −2.50
2000 2001 −11.02 3.53 −14.41 −9.48 −5.48 −2.79 −52.09 −41.08
2001 2002 −3.26 −14.06 −14.71 −13.39 −18.92 −31.44 −46.53 −43.27
2002 2003 61.15 41.66 22.03 23.18 23.98 28.01 55.03 −6.12
2003 2004 10.16 26.60 18.88 16.89 9.60 8.39 −4.06 −14.22
2004 2005 6.56 0.85 2.75 2.57 3.44 3.26 1.44 −5.12
2005 2006 4.83 15.65 13.43 9.53 7.75 11.26 11.11 6.28
2006 2007 −13.27 12.99 −1.88 −1.57 7.57 7.66 1.51 14.78
2007 2008 −36.55 −22.48 −24.84 −35.30 −40.15 −52.41 −60.52 −23.97
2008 2009 11.32 29.50 12.89 35.12 26.63 40.36 35.67 24.35
2009 2010 8.67 9.59 12.54 17.22 24.11 25.04 19.59 10.92
2010 2011 3.48 14.68 7.41 4.64 −8.02 −20.42 −20.61 −24.09
2011 2012 26.83 8.12 15.10 18.62 19.19 16.04 35.77 8.94

time-series mean of the difference portfolio estimates the difference, in the average
time period, of the average value of the outcome variable for entities in the nPth
portfolio compared to those in the first portfolio.

5.1.5 Interpreting the Results

In addition to calculating the time-series means for each of the portfolios, we fre-
quently want to test whether the time-series mean for each of the portfolios differs
from some null hypothesis mean value. That value is often zero. Most importantly,
we want to examine whether the time-series mean of the difference portfolio is sta-
tistically distinguishable from zero. A statistically nonzero mean for the difference
portfolio is evidence that, in the average time period, a cross-sectional relation exists
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between the sort variable and the outcome variable. To make such an assessment, for
each of the nP portfolios, as well as the difference portfolio, we calculate standard
errors, t-statistics, and p-values for the test with null hypothesis that the time-series
mean of the average portfolio outcome variable value is equal to zero. Because for
each portfolio the portfolio average values (Yk,t) represent a time series, the standard
errors are frequently adjusted following Newey and West (1987). The details of the
Newey and West (1987) adjustment are discussed in Section 1.3. Most researchers
use a 5% level of significance to determine whether a test rejects or fails to reject the
null hypothesis.2 Thus, t-statistics greater than 2.00 (approximately) in magnitude, or
p-values less than 0.05, result in rejection of the null hypothesis that the time-series
mean is equal to zero. In addition to examining whether the time-series mean for the
difference portfolio is statistically distinguishable from zero, researchers frequently
examine the average values of Y across the nP portfolios (Yk, k ∈ {1, 2, … , nP}) for
monotonicity. If a monotonic or near monotonic pattern arises, it is a strong indication
that the results of the difference portfolio are not spurious.3

The results for our example are presented in Table 5.5. The row labeled Average
shows the time-series average of the annual portfolio excess returns for portfolios
1 through 7 as well as for the difference portfolio (column labeled 7-1). The rows
labeled Standard error, t-statistic, and p-value present the standard error of the esti-
mated mean portfolio excess return, adjusted following Newey and West (1987) using
six lags, and the corresponding t-statistics and p-values, respectively.

The results indicate that the average excess returns for portfolios 1 through 7 are
16.47%, 13.89%, 14.55%, 12.79%, 11.99%, 10.92%, and 10.43%, respectively. Each
of these average returns is found to be highly statistically significant, as the cor-
responding t-statistics range from 3.43 for portfolio 7 to 6.73 for portfolio 4, and
all p-values are very close to zero. This indicates that in the average year, each of
these seven portfolios produces positive excess returns. This is not surprising because
stocks are known to generate average returns that are higher than the return on the
risk-free security. The average return of the difference portfolio, presented in the col-
umn labeled 7-1, is −6.04%. This difference is not statistically distinguishable from
zero as the t-statistic is −1.31 and the p-value is 0.20. Thus, our portfolio analysis
fails to detect a cross-sectional relation between 𝛽 and one-year-ahead excess stock
returns (rt+1).

We do not examine the results for the value-weighted portfolio analysis
here because the procedure for generating the results is identical to that for the
equal-weighted portfolios. However, for many of the analyses in Part II of this text,
both equal-weighted and value-weighted portfolio results will be investigated.

2Harvey, Liu, and Zhu (2015) argue that due to data mining and the large amount of research examining
the cross section of expected returns, a 5% level of significance is too low a threshold and argue in favor
of using much more stringent requirements for accepting empirical results as evident of true economic
phenomena.
3Patton and Timmermann (2010) develop a statistical test of monotonicity.
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TABLE 5.5 Univariate Portfolio Equal-Weighted Excess Returns Summary
This table presents the results of a univariate portfolio analysis of the relation between beta (𝛽)
and future stock returns (rt+1). The row labeled Average presents the equal-weighted average
annual return for each of the portfolios. The row labeled Standard error presents the standard
error of the estimated mean portfolio return. Standard errors are adjusted following Newey
and West (1987) using six lags. The row labeled t-statistic presents the t-statistic (in parenthe-
ses) for the test with null hypothesis that the average portfolio excess return is equal to zero.
The row labeled p-value presents the two-sided p-value for the test with null hypothesis that
the average portfolio excess return is equal to zero. The columns labeled 1 through 7 show
the excess returns of the seven 𝛽-sorted portfolios. The column labeled 7-1 presents the results
for the difference between the return of portfolio seven and that of portfolio one.

1 2 3 4 5 6 7 7-1

Average 16.47 13.89 14.55 12.79 11.99 10.92 10.43 −6.04
Standard error 3.62 2.42 2.50 1.90 1.83 1.80 3.04 4.61
t-statistic 4.55 5.74 5.83 6.73 6.57 6.06 3.43 −1.31
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

5.1.6 Presenting the Results

There are many different approaches to presenting the results of one or more portfolio
analyses. Exactly which approach is chosen depends on the objective of the analy-
sis. Here, we discuss some of the most common approaches to presenting portfolio
analysis results.

Single Portfolio Analysis

We begin with a presentation of the results analyzing the relation between 𝛽 and
rt+1 discussed throughout this chapter. While the results of this analysis are well
summarized by Table 5.5, several of the results in Table 5.5 are redundant, as the
standard error, t-statistic, and p-value all contain essentially the same information.
Thus, only one of these values, most commonly the t-statistic, is presented. Further-
more, t-statistics are frequently presented in parentheses to enhance the appearance
of the presentation. Thus, the results of the portfolio analysis may be presented as
in Table 5.6. Only the average excess return and the corresponding Newey and West
(1987) adjusted (six lags) t-statistics are displayed.

Multiple Analyses, Same Sort Variable, Different Outcome Variables

Frequently, we want to examine the cross-sectional relation between the sort vari-
able X and many different outcome variables Y . To do this, we repeat the univariate
portfolio analysis for each outcome variable Y . Notice that the breakpoints step does
not need to be repeated as the sort variable has not changed. We can then present
the results of all of these portfolio analyses in one table. Often, it is not of particular
interest to examine whether the average value of the outcome variable in any of the
nP portfolios is equal to zero. For example, we know that all stocks have a positive
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TABLE 5.6 𝜷-Sorted Portfolio Excess Returns
This table presents the results of a univariate portfolio analysis of the relation between beta (𝛽)
and future stock returns (rt+1). The table shows that average excess return for each of the seven
portfolios as well as for the long–short zero-cost portfolio, that is, long stocks in the seventh
portfolio and short stocks in the first portfolio. Newey and West (1987) t-statistics, adjusted
using six lags, testing the null hypothesis that the average portfolio excess return is equal to
zero, are shown in parentheses.

1 2 3 4 5 6 7 7-1

16.47 13.89 14.55 12.79 11.99 10.92 10.43 −6.04
(4.55) (5.74) (5.83) (6.73) (6.57) (6.06) (3.43) (−1.31)

market capitalization. Thus, testing whether the average market capitalization of a
certain set of stocks is not of interest. We may only be interested in whether the aver-
age value of the difference portfolio is equal to zero, as nonzero differences indicate
a cross-sectional relation between the sort variable X and the outcome variable Y .
Therefore, sometimes the only t-statistic presented is that of the difference portfolio.
The objective of such analyses is often to understand the complexion of each of the
portfolios formed by sorting on the variable X.

To exemplify this, Table 5.7 presents the results of a portfolio analysis using the
same 𝛽-sorted portfolios but taking each of 𝛽, MktCap, and BM to be the outcome
variable. In this analysis, it is worth noting that the values of the outcome variables 𝛽,
MktCap, and BM are measured contemporaneously with 𝛽. Thus, for each portfolio,
we have the full 25 years of average values of these variables instead of the 24 years
that we had when using future excess returns. Here, t-statistics for the difference port-
folio are reported in a separate column at the end of the table instead of in parentheses
under the average value.

Because the portfolios are formed by sorting on 𝛽, the average value of 𝛽 is mono-
tonically increasing across the seven portfolios and the time-series mean of the dif-
ferences in average 𝛽 between portfolios seven and one of 2.16 is highly statistically

TABLE 5.7 Univariate Portfolio Average Values of 𝜷, MktCap, and BM
This table presents the average values of 𝛽, MktCap, and BM for each of the 𝛽-sorted portfo-
lios. The first column of the table indicates the variable for which the average value is being
calculated. The columns labeled 1 through 7 present the time-series average of annual portfo-
lio mean values of the given variable. The column labeled 7-1 presents the average difference
between portfolios 7 and 1. The column labeled 7-1 t presents the t-statistic, adjusted follow-
ing Newey and West (1987) using six lags, testing the null hypothesis that the average of the
difference portfolio is equal to zero.

Outcome Variable 1 2 3 4 5 6 7 7-1 7-1 t-statistic

𝛽 −0.22 0.14 0.41 0.71 1.03 1.37 1.94 2.16 21.08
MktCap 153 1065 2307 2572 2529 2519 2523 2369 3.98
BM 0.94 0.96 0.77 0.71 0.64 0.53 0.51 −0.42 −3.69
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significant with a t-statistic of 21.08. The table indicates that stocks with low 𝛽 tend
to be small market capitalization stocks, as the average MktCap of stocks in the first
portfolio is only $153 million. The average market capitalization increases mono-
tonically through portfolio four, and the average market capitalization of portfolios
four through seven are very similar, each being a little higher than $2.5 billion. The
average difference in market capitalization between the stocks in portfolio seven and
those in portfolio one of more than $2.3 billion is highly statistically significant with
a t-statistic of 3.98. Finally, the portfolios exhibit a nearly monotonically decreasing
(the exception is portfolio one) pattern in average book-to-market ratio (BM). The
average difference between portfolio seven and portfolio one of −0.42 is highly sta-
tistically significant (t-statistic = −3.69). In summary, the portfolio analysis detects a
positive relation between 𝛽 and MktCap and a negative relation between 𝛽 and BM. It
is worth noting that the direction of the relations uncovered by the portfolio analyses
is consistent with the results of the correlation analysis presented in Table 3.2.

Multiple Analyses, Different Sort Variables, Same Outcome Variable

Sometimes, we want to present the results of portfolio analyses with different sort
variables X but with the same outcome variable Y . This is often the case when we are
examining the ability of many different variables to predict future stock returns.

Table 5.8 presents an example of how the results of such portfolio analyses can be
presented. The table shows the average excess returns and the associated t-statistics
for portfolios sorted on each of 𝛽, MktCap, and BM. The results for the portfolios
formed by sorting on 𝛽 are identical to those presented in Table 5.5. The results for the
portfolios sorted on MktCap indicate a strong negative relation between market cap-
italization and future stock returns as the average return of the difference portfolio is
−20.89% per year with a t-statistic of−4.80. The results also indicate a strong positive
relation between book-to-market ratio (BM) and future stock returns as the average
return of the difference portfolio is 17.59% per year (t-statistic = 8.28). In both the
MktCap and BM cases, the average excess returns are nearly monotonic across the
seven portfolios. These results, known as the size and value effects, respectively, will
be discussed in detail in Chapters 9 and 10, respectively.

In general, there is no one correct way to present the results of portfolio analyses.
The exact format of the presentation should be chosen to highlight the focal results
of the analysis. The above examples are indicative of some of the most common
presentation formats.

5.1.7 Analyzing Returns

When the entities in the sample are securities and the outcome variable Y measures
the returns of the securities, the average values Yk,t represent the returns of the port-
folios that hold long positions in each of the portfolio’s securities.4 In such cases, it
is usually desirable to perform some additional analyses that are intended to examine

4It is worth noting here that Asparouhova, Bessembinder, and Kalcheva (2013) find that deviations from
fundamental values can produce biases in the estimates of expected returns generated by portfolio analyses.
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TABLE 5.8 Average Returns of Portfolios Sorted on 𝜷, MktCap, and BM
This table presents the average excess returns of equal-weighted portfolios formed by sorting
on each of 𝛽, MktCap, and BM. The first column of the table indicates the sort variable. The
columns labeled 1 through 7 present the time-series average of annual one-year-ahead excess
portfolio returns. The column labeled 7-1 presents the average difference in return between
portfolios 7 and 1. t-statistics testing the null hypothesis that the average portfolio return is
equal to zero, adjusted following Newey and West (1987) using six lags, are presented in
parentheses.

Sort Variable 1 2 3 4 5 6 7 7-1

𝛽 16.47 13.89 14.55 12.79 11.99 10.92 10.43 −6.04
(4.55) (5.74) (5.83) (6.73) (6.57) (6.06) (3.43) (−1.31)

MktCap 29.08 16.85 12.16 10.12 8.47 9.25 8.19 −20.89
(7.00) (5.48) (4.55) (5.23) (5.97) (5.93) (4.32) (−4.80)

BM 7.61 6.65 11.06 13.55 13.74 17.50 25.21 17.59
(3.47) (4.21) (6.67) (7.43) (6.51) (6.37) (8.77) (8.28)

whether patterns in the average portfolio returns are driven by cross-sectional varia-
tion in portfolio sensitivities to systematic risk factors. Stated alternatively, we want
to examine whether after controlling for sensitivity of the portfolios to systematic risk
factors, the patterns in the average portfolio returns persist.5

There are three very common models of risk-adjustment that are used throughout
the finance literature. While the objective of this chapter is not to discuss these mod-
els in detail, we will provide a brief overview. The risk models will be discussed in
detail in Part II. The first model, based on the Capital Asset Pricing Model (CAPM)
of Sharpe (1964), Lintner (1965), and Mossin (1966) and known as the one-factor
market model, is designed to adjust the portfolio returns for the effect of the overall
stock market return. The specification of the one-factor market model is

rp,t = 𝛼 + 𝛽MKTMKTt + 𝜖t (5.7)

where rp,t is the excess return of the portfolio and MKTt is the excess return on the
market factor mimicking portfolio during the period t.

The second risk model, originally proposed by Fama and French (1993) and known
as the Fama and French (FF) three-factor model, uses two additional risk factors
that proxy for the returns associated with the size (see Chapter 9) and value (see
Chapter 10) effects.6 The size effect refers to the fact that stocks with small market
capitalizations have, on average and in the long run, outperformed stocks with large
market capitalizations. The time series of returns associated with taking one unit of
size factor risk are proxied by the returns of a zero-cost portfolio that is long small
capitalization stocks and short large capitalization stocks. This zero-cost portfolio and
its returns are referred to as SMB for “small minus big.” The value effect refers to the

5Ang (2014) provides a comprehensive overview of factor investing.
6A recent paper by Fama and French (2015) proposes a five-factor model that includes the FFC factors
along with factors based on profitability and investment. Another article, Hou, Xue, and Zhang (2015),
proposes a similar model that excludes the value (SMB) factor.
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fact that stocks with high book-to-market ratios (value stocks) have historically out-
performed stocks with low book-to-market ratios (growth stocks). The time series of
returns associated with taking one unit of value factor risk are proxied by the returns
of a zero-cost portfolio, that is, long high book-to-market ratio stocks and short low
book-to-market ratio stocks. The value portfolio and its returns are denoted HML for
“high minus low.” Therefore, the FF model is

rp,t = 𝛼 + 𝛽MKTMKTt + 𝛽SMBSMBt + 𝛽HMLHMLt + 𝜖t. (5.8)

where SMBt and HMLt are the returns of the size and value factor mimicking portfo-
lios, respectively, during time period t.

The third commonly used risk model augments the FF model with an additional
factor that accounts for the momentum phenomenon documented by Jegadeesh and
Titman (1993) and Carhart (1997). This model is known as the Fama, French, and
Carhart (FFC) four-factor model. The momentum factor, denoted MOM for “momen-
tum” (sometimes researchers refer to this factor using UMD for “up minus down”),
represents the returns of a portfolio that is long stocks with the highest recent per-
formance and short stocks with the lowest recent performance, where recent perfor-
mance is defined as the return of the stock over the 11-month period beginning 12
months ago and ending one month ago. The FFC model can be written as

rp,t = 𝛼 + 𝛽MKTMKTt + 𝛽SMBSMBt

+ 𝛽HMLHMLt + 𝛽MOMMOMt + 𝜖t. (5.9)

As each of the regressions used to risk-adjust the portfolio returns is a time-series
regression, the Newey and West (1987) adjustment is usually applied. The result of the
regression is a set of coefficients (intercept and slopes), as well as the corresponding
standard errors, t-statistics, and p-values. The intercept coefficient (𝛼) is interpreted
as the average excess return of the portfolio that is not due to sensitivity to any of the
factors included in the chosen factor model. This value is frequently referred to as
the portfolio’s alpha, Jensen (1968)’s alpha, or average abnormal return. To examine
whether the portfolio generates statistically significant average abnormal returns, we
use the t-statistic and/or p-value associated with the intercept coefficient.

Each slope coefficient is an estimate of the portfolio’s sensitivity to the corre-
sponding factor. The coefficients, as well as the associated inferential statistics, can
be used to determine which factor or factors are related to the returns of the portfolio
in question.

To exemplify the use of risk-adjustment in portfolio analysis, we adjust the returns
of the 𝛽-sorted portfolios used previously in this chapter. Table 5.9 presents the esti-
mated alphas (𝛼) and factor sensitivities (𝛽MKT , 𝛽SMB, 𝛽HML, and 𝛽MOM) for each of
the seven portfolios as well as for the difference portfolio.

The section of Table 5.9 corresponding to the excess return (Model = Excess
Return) replicates the results in Table 5.3. Notice that each of the seven portfolios
generates large and highly statistically significant average excess returns, as the
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TABLE 5.9 𝜷-Sorted Portfolio Risk-Adjusted Results
This table presents the risk-adjusted alphas and factor sensitivities for the 𝛽-sorted portfolios.
Each year t, all stocks in the sample are sorted into seven portfolios based on an ascending
sort of 𝛽 with breakpoints set to the 10th, 20th, 40th, 60th, 80th, and 90th percentiles of 𝛽 in
the given year. The equal-weighted average one-year-ahead excess portfolio returns are then
calculated. The table presents the average excess returns (Model = Excess return) for each of
the seven portfolios as well as for the zero-cost portfolio that is long the seventh portfolio and
short the first portfolio. Also presented are the alphas (Coefficient = 𝛼) and factor sensitiv-
ities (Coefficient = 𝛽MKT , 𝛽SMB, 𝛽HML, and 𝛽UMD) for each of the portfolios using the CAPM
(Model = CAPM), Fama and French (1993) three-factor model (Model = FF), and Fama
and French (1993) and Carhart (1997) four-factor model (Model = FFC). t-statistics, adjusted
following Newey and West (1987) using six lags, are presented in parentheses.

Model Coefficient 1 2 3 4 5 6 7 7-1

Excess Excess 16.47 13.89 14.55 12.79 11.99 10.92 10.43 −6.04
return return (4.55) (5.74) (5.83) (6.73) (6.57) (6.06) (3.43) (−1.31)

CAPM 𝛼 8.89 6.78 6.75 5.32 3.58 0.45 −2.49 −11.38
(1.41) (1.32) (1.33) (1.31) (1.13) (0.19) (−1.11) (−1.72)

𝛽MKT 1.02 0.96 1.05 1.01 1.13 1.41 1.74 0.72
(3.30) (3.05) (3.80) (3.75) (5.20) (7.63) (8.70) (1.89)

FF 𝛼 3.44 1.57 2.20 1.44 0.86 −0.77 −1.32 −4.76
(1.36) (1.01) (1.79) (1.39) (0.69) (−0.53) (−0.69) (−1.82)

𝛽MKT 1.12 1.08 1.13 1.06 1.12 1.31 1.50 0.38
(7.55) (6.11) (7.64) (7.72) (12.01) (11.55) (11.20) (1.83)

𝛽SMB 1.53 1.17 1.35 1.25 1.37 1.47 1.64 0.12
(8.98) (6.99) (7.55) (10.29) (29.78) (11.01) (9.86) (0.41)

𝛽HML 0.71 0.76 0.57 0.46 0.18 −0.16 −0.72 −1.43
(7.36) (13.40) (6.39) (5.19) (1.66) (−1.45) (−6.25) (−11.97)

FFC 𝛼 5.54 6.21 6.49 4.54 2.37 −0.01 −0.12 −5.66
(2.43) (4.91) (5.16) (5.53) (2.35) (−0.01) (−0.04) (−1.14)

𝛽MKT 1.06 0.95 1.00 0.97 1.07 1.29 1.47 0.41
(8.59) (9.30) (18.20) (13.77) (16.98) (15.76) (11.21) (1.62)

𝛽SMB 1.42 0.92 1.12 1.08 1.29 1.43 1.58 0.16
(6.57) (3.94) (5.47) (6.29) (13.85) (8.25) (7.61) (0.69)

𝛽HML 0.66 0.65 0.47 0.38 0.14 −0.18 −0.75 −1.41
(5.27) (9.15) (7.96) (7.38) (1.53) (−1.79) (−6.96) (−11.95)

𝛽MOM −0.16 −0.36 −0.33 −0.24 −0.12 −0.06 −0.09 0.07
(−1.91) (−3.38) (−5.83) (−2.90) (−2.05) (−0.51) (−0.44) (0.29)

t-statistics for each portfolio are positive and substantially greater than 2.00. This
indicates that on average, each of the portfolios generates positive excess returns.
This is not surprising because each of these portfolios is a portfolio of stocks. It is
well known that, on average, stocks generate returns that are higher than the return
of the risk-free security. Therefore, it is not surprising that portfolios comprised a
large number of stocks exhibit similar behavior. The average return of the difference
portfolio of −6.04% per year is statistically indistinguishable from zero.
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When the returns are adjusted for exposure to the market factor using the CAPM
risk model (Model = CAPM), the results indicate that none of the seven portfo-
lios generates abnormal returns that are statistically distinguishable from zero as all
t-statistics are substantially less than 2.00 in magnitude. This indicates that the excess
returns generated by the portfolios are a manifestation of the portfolios’ exposures to
the market factor. After controlling for this, the average abnormal return of each of the
portfolios is statistically insignificant. The table also presents the sensitivities of each
of the portfolios to the market factor. The results indicate that all portfolios have a
positive and statistically significant sensitivity to the market portfolio. Furthermore,
the sensitivities are nearly monotonically increasing from portfolios 1 to 7. This is
not surprising given that the portfolios were formed by sorting on 𝛽, which measures
stock-level sensitivity to the market portfolio. The abnormal return of the difference
portfolio remains statistically insignificant when using the CAPM risk model, and
the sensitivity of the difference portfolio to the market portfolio of 0.72 is marginally
statistically significant.

The remainder of Table 5.9 presents the results for the FF and FFC models. While
some of these results are interesting, the objective here is to discuss the implementa-
tion and interpretation of portfolio analysis, not to examine the economic implications
of these results. This will be done in Part II of this text.

In almost all cases, only a subset of the results in Table 5.9 are presented in a
research article. Unless the factor sensitivities are of particular interest, they are usu-
ally not reported. Furthermore, frequently only results from one of the risk models
are shown. The FFC model is the most common choice.

At this point, the reader may be wondering why, throughout this chapter, we
have used the excess stock return, which is equal to the return on the stock minus
the return on the risk-free security, instead of simply the stock return itself (without
subtracting the risk-free security return). The reason for this is that the excess return
represents the additional return that was realized by forgoing the certain return
associated with the risk-free security in favor of a risky return. Asset pricing theory
dictates that to be willing to take the risk associated with a given security, investors
demand that, on average, the return of that security is greater than the risk-free rate.
A major objective of empirical asset pricing research is to understand exactly which
risks investors care about and how much of an average return, in excess of the return
on the risk-free security, investors require to entice them to take such risk. It is for
this reason that the CAPM, FF, and FFC (as well as all other) risk factor models are
based on excess returns and not raw returns. Thus, when analyzing the time series of
the returns of the nP portfolios, it is important to make sure that the excess portfolio
returns, not the raw portfolio returns, are used as the dependent variable in the
factor regression. For this reason, it is advisable to use the excess stock return, not
the raw stock return, as the outcome variable Y . Regardless of whether the excess
return or the raw return is used as the outcome variable Y , the difference between
the (excess or raw) return of the nPth portfolio and the first portfolio should be
interpreted as an excess return. In fact, this difference will be the same regardless
of whether the excess or raw return is used. Despite the fact that this difference in
returns is interpreted as an excess return, it is commonly referred to as the return
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of the difference portfolio, the difference portfolio return, or the high minus low
portfolio return. We frequently adopt this terminology throughout this book.

5.2 BIVARIATE INDEPENDENT-SORT ANALYSIS

The previous section presented the simplest form of portfolio analysis, designed to
assess the cross-sectional relation between two variables without accounting for the
effects of any other variables. In this section, we present bivariate portfolio analysis.
Bivariate portfolio analysis is very similar to univariate portfolio analysis, except in
bivariate portfolio analysis there are two sort variables.

There are two types of sorting procedures, independent and dependent, that are
commonly employed in bivariate portfolio analysis. In the present section, we discuss
independent-sort analysis. In Section 5.3, we discuss dependent-sort analysis.

Bivariate independent-sort portfolio analysis is designed to assess the cross-
sectional relations between two sort variables, which we refer to as X1 and X2, and
an outcome variable Y .

5.2.1 Breakpoints

As the name implies, in bivariate independent-sort portfolio analysis, portfolios are
formed by sorting on two variables independently. Thus, in each period, two sets of
breakpoints will be calculated. The first set of breakpoints corresponds to values of
the first sort variable X1. The second set of breakpoints corresponds to values of the
second sort variable X2 and is calculated completely independently of the breakpoints
for X1. Thus, the name independent sort. The fact that the sorts are independent means
it makes no difference which sort variable is considered the first sort variable, and
which is considered the second. Switching the order will have no effect on the results
of the analysis.

The first step in a bivariate independent-sort portfolio analysis is to sort all entities
in the sample into groups according to each of the sort variables. We use the term
“groups” here to differentiate the groups that are formed by independent univariate
sorts of the entities from the eventual portfolios that are formed. The portfolios will
represent intersections of groups from sorts based on the first and second sort vari-
ables. Letting nP1 represent the number of groups that will be created based on the first
sort variable and nP2 be the number of groups that will be created based on the sec-
ond sort variable, the number of portfolios that will be formed is nP1 × nP2. There are
therefore nP1 and nP2 breakpoints for the first and second sort variables, respectively.

The breakpoints for each of the two sort variables are calculated in exactly the same
way as for a univariate portfolio analysis. The breakpoints (percentiles used to cal-
culate the breakpoints) used to form the groups for the first sort variable are denoted
B1j,t (p1j) for j ∈ {1, 2, … , nP1 − 1}, and the breakpoints (percentiles) for the sec-
ond sort variable are B2k,t (p2k) for k ∈ {1, 2, … , nP2 − 1}. The actual breakpoints
are calculated as

B1j,t = Pctlp1j
({X1t}) (5.10)
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and
B2k,t = Pctlp2k

({X2t}) (5.11)

where Pctlp(Z) is the pth percentile of the set Z and {X1t} and {X2t} are the set of
available values of X1 and X2, respectively, in period t. It should be noted that fre-
quently the set of entities in the sample for which values of X1 are available may
differ from those for which X2 is available. In this case, the researcher must decide
whether the breakpoints are formed using only entities for which valid values of both
variables are available or whether the breakpoints are formed using all available data
for each variable. In some cases, the set of entities used to calculate the breakpoints
for X1 may be different than the set of entities used to calculate the X2 breakpoints.
Furthermore, neither of these sets of entities is necessarily the same as the set of enti-
ties that will eventually be grouped into the portfolios. As in the univariate analysis,
breakpoints are calculated for each time period t. Throughout this text, in our bivari-
ate portfolio analyses, we use only entities for which valid values of both X1 and X2
are available when calculating breakpoints for bivariate (both independent-sort and
dependent-sort) portfolio analyses.

We exemplify the calculation of breakpoints for the bivariate independent-sort
portfolio analysis using beta (X1 = 𝛽) and market capitalization (X2 = MktCap) as
our sort variables. We divide the sample into three groups based on 𝛽 (nP1 = 3) and
four groups based on MktCap (nP2 = 4). We use the 30th and 70th percentiles to
calculate the 𝛽 breakpoints, and the 25th, 50th, and 75th percentiles to calculate the
MktCap breakpoints.

The annual breakpoints for this analysis are shown in Table 5.10. The table
shows that, in year 1988, the first 𝛽 breakpoint is 0.18 and the second 𝛽 breakpoint
is 0.66. The first, second, and third MktCap breakpoints are 9.65, 34.83, and 159.85,
respectively. The breakpoints for other years are presented in the subsequent rows
of the table.

As discussed in Section 5.1.1, the decision of how many groups to form based
on each of the sort variables, and therefore how many total portfolios to use, is
based on trade-offs between the number of stocks in each portfolio and dispersion
among the portfolios of the sort variables. In bivariate independent-sort portfolio
analysis, there is one additional criterion that may factor into the decision of how
many breakpoints to use, as well as what percentiles of each sort variable to use
as breakpoints. If the sort variables are highly positively correlated, then this may
result in a large number of entities being put into the portfolio that holds entities
with high values of both sort variables as well as the portfolio holding entities with
low values of both sort variables. Portfolios that hold entities with low values of
one sort variable and high values of the other will contain relatively fewer entities.
The situation is reversed when the sort variables are negatively correlated. The more
extreme the correlation between the two sort variables, the more exacerbated this
effect will be. The number of groups to form based on each sort variable, therefore,
should take this correlation into account and ensure that for each time period during
the sample, each of the nP1 × nP2 portfolios contains a sufficient number of entities.
This will become more clear shortly when we discuss portfolio formation. Apart
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TABLE 5.10 Bivariate Independent-Sort Breakpoints
This table presents the breakpoints for a bivariate independent-sort portfolio analy-
sis The first sort variable is 𝛽 and the second sort variable is MktCap. The sample
is split into three groups (and thus two breakpoints) based on the 30th and 70th per-
centiles of 𝛽, and four groups (and thus three breakpoints) based on the 25th, 50th,
and 75th percentiles of MktCap. The column labeled t indicates the year for which
the breakpoints are calculated. The columns labeled B11,t and B12,t present the first
and second 𝛽 breakpoints, respectively. The columns labeled B21,t, B22,t, and B33,t

present the first, second, and third MktCap breakpoints, respectively.

t B11,t B12,t B21,t B22,t B23,t

1988 0.18 0.66 9.65 34.83 159.85
1989 0.17 0.70 9.77 37.04 184.14
1990 0.23 0.86 6.53 25.90 149.54
1991 0.24 0.85 9.70 41.56 223.70
1992 0.26 0.97 16.21 62.88 284.60
1993 0.29 0.92 22.48 78.32 345.67
1994 0.36 0.97 20.72 72.17 304.26
1995 0.27 0.90 26.03 91.38 382.85
1996 0.32 0.90 28.54 102.21 438.55
1997 0.26 0.72 32.62 119.62 521.35
1998 0.41 0.94 28.78 106.66 509.71
1999 0.15 0.53 33.79 128.21 623.06
2000 0.25 0.85 24.36 102.25 610.68
2001 0.31 0.95 34.09 142.62 717.07
2002 0.33 0.89 33.28 130.81 635.43
2003 0.38 0.97 70.06 270.53 1054.81
2004 0.63 1.36 90.64 334.90 1308.59
2005 0.60 1.30 96.99 349.11 1410.58
2006 0.61 1.40 108.61 406.64 1592.96
2007 0.56 1.18 92.95 352.91 1513.62
2008 0.57 1.14 38.11 197.13 879.62
2009 0.65 1.45 68.54 307.83 1352.40
2010 0.76 1.33 95.47 420.44 1850.99
2011 0.82 1.38 80.78 393.16 1771.85
2012 0.76 1.31 105.41 485.94 2034.15

from the additional consideration relating to correlation among the sort variables,
the factors impacting the decision of how many groups to use for each variable (and
thus the number of portfolios), and the choice of breakpoint percentiles, are similar
in bivariate independent-sort portfolio analysis to those discussed in the univariate
analysis (Section 5.1.1). We do not repeat the discussion here.

5.2.2 Portfolio Formation

As with the univariate portfolio analysis, the next step in bivariate portfolio analysis
is to form the periodic portfolios. As mentioned earlier, if there are nP1 groups based
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on the first sort variable X1 and nP2 groups based on the second sort variable X2, then
there will be nP1 × nP2 portfolios each time period. The portfolios for period t are
denoted Pj,k,t, where the first subscript indicates the group of the first sort variable
and the second subscript indicates that of the second sort variable. In general, the
portfolios are defined as

Pj,k,t = {i|B1j−1,t ≤ X1i,t ≤ B1j,t} ∩ {i|B2k−1,t ≤ X2i,t ≤ B2k,t} (5.12)

for j ∈ {1, 2, … , nP1}, k ∈ {1, 2, … , nP2}, where B10,t = B20,t = −∞,
B1nP1,t

= B2nP2,t
= ∞, and ∩ is the intersection operator. Thus, for a given

entity i to be held in portfolio Pj,k,t, the entity must have a value of X1 in period t
that is between the j − 1st and jth (inclusive) period t breakpoints for the first sort
variable, and also have a period t value of X2 between the k − 1st and kth (inclusive)
period t breakpoints for the second sort variable.

In a bivariate independent-sort portfolio analysis, the percentage of entities held by
each of the portfolios will likely not reflect the percentiles used to calculate the break-
points. The reason is that the sort variables are likely to have nonzero correlation. As
each portfolio represents the intersection of sets formed based on the independent
sorts, positive correlation between X1 and X2 results in portfolios that contain enti-
ties with high (or low) values of both sort variables having a disproportionately large
number of entities, while those portfolios comprised entities with low values of one
sort variable and high values of the other contains fewer entities. The opposite is the
case when the sort variables are negatively correlated. As discussed in Section 5.1.2,
when the breakpoint sample and the full sample are not the same, in addition to the
correlation effect, the number of entities in each portfolio will also depend on how
the sort variables are distributed in the different samples. However, when the break-
point sample and the sample grouped into portfolios are the same, the total number of
entities in all portfolios (across all nP2 groups of X2) that correspond to the jth group
of X1 will reflect the percentiles used to calculate the breakpoints based on the first
sort variable X1. The same can be said for the total number of entities in the set of
portfolios corresponding to a particular group of the second sort variable X2.

The number of stocks in each annual portfolio for our example is presented in
Table 5.11. At this point, it is worth reminding ourselves that the correlation anal-
ysis presented in Table 3.3 as well as the portfolio analysis presented in Table 5.7
indicate a positive cross-sectional relation between 𝛽 and MktCap. This manifests in
portfolios that hold entities with high values of 𝛽 and high values of MktCap having
a large number of stocks. Similarly, portfolios comprised entities with low values of
both sort variables have a large number of stocks. On the other hand, portfolios that
hold entities with low values of one of the sort variables and high values of the other
contain relatively few stocks. For example, in 1988, the table shows that the portfo-
lio holding low 𝛽 (𝛽 1) and low MktCap (MktCap 1) stocks has 736 stocks and the
portfolio holding high 𝛽 (𝛽 3) and high MktCap (MktCap 4) stocks has 788 stocks.
On the other hand, the portfolio comprised high 𝛽 (𝛽 3) and low MktCap (MktCap 1)
stocks has only 217 such stocks, and the portfolio containing low 𝛽 (𝛽 1) and high
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TABLE 5.11 Bivariate Independent-Sort Number of Stocks per Portfolio
This table presents the number of stocks in each of the 12 portfolios formed by sorting inde-
pendently into three 𝛽 groups and four MktCap groups. The columns labeled t indicate the year
of portfolio formation. The columns labeled 𝛽 1, 𝛽 2, and 𝛽 3 indicate the 𝛽 group. The rows
labeled MktCap 1, MktCap 2, MktCap 3, and MktCap 4 indicate the MktCap groups.

t 𝛽 1 𝛽 2 𝛽 3 t 𝛽 1 𝛽 2 𝛽 3

1988 MktCap 1 736 468 217 1998 MktCap 1 842 557 252
MktCap 2 539 585 297 MktCap 2 622 667 361
MktCap 3 335 683 403 MktCap 3 368 709 574
MktCap 4 95 538 788 MktCap 4 149 708 794

1989 MktCap 1 736 419 224 1999 MktCap 1 785 484 253
MktCap 2 537 574 268 MktCap 2 635 608 279
MktCap 3 298 663 418 MktCap 3 338 729 455
MktCap 4 84 549 746 MktCap 4 69 613 840

1990 MktCap 1 725 439 187 2000 MktCap 1 609 522 342
MktCap 2 507 574 269 MktCap 2 663 455 354
MktCap 3 287 604 459 MktCap 3 290 640 542
MktCap 4 102 543 706 MktCap 4 205 738 530

1991 MktCap 1 763 393 169 2001 MktCap 1 686 465 225
MktCap 2 508 570 247 MktCap 2 612 459 305
MktCap 3 254 606 465 MktCap 3 190 647 539
MktCap 4 65 551 709 MktCap 4 163 631 582

1992 MktCap 1 681 428 237 2002 MktCap 1 759 387 126
MktCap 2 507 530 309 MktCap 2 649 397 225
MktCap 3 306 562 478 MktCap 3 93 641 537
MktCap 4 121 634 591 MktCap 4 25 609 638

1993 MktCap 1 738 409 270 2003 MktCap 1 835 275 73
MktCap 2 531 579 307 MktCap 2 488 454 241
MktCap 3 330 611 475 MktCap 3 51 587 545
MktCap 4 102 667 648 MktCap 4 46 577 560

1994 MktCap 1 767 437 333 2004 MktCap 1 772 265 106
MktCap 2 596 593 348 MktCap 2 405 390 348
MktCap 3 352 684 501 MktCap 3 55 485 603
MktCap 4 130 744 663 MktCap 4 140 688 315

1995 MktCap 1 784 430 358 2005 MktCap 1 834 231 58
MktCap 2 584 595 392 MktCap 2 400 434 289
MktCap 3 373 698 500 MktCap 3 33 429 662
MktCap 4 145 791 636 MktCap 4 81 704 339

1996 MktCap 1 792 518 336 2006 MktCap 1 816 251 46
MktCap 2 623 581 441 MktCap 2 357 427 329
MktCap 3 421 676 548 MktCap 3 19 467 626
MktCap 4 139 857 650 MktCap 4 144 635 334

1997 MktCap 1 865 571 280 2007 MktCap 1 808 236 39
MktCap 2 688 654 374 MktCap 2 390 351 341
MktCap 3 415 779 520 MktCap 3 28 451 604
MktCap 4 91 740 885 MktCap 4 74 693 316
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TABLE 5.11 (Continued)

t 𝛽 1 𝛽 2 𝛽 3 t 𝛽 1 𝛽 2 𝛽 3

2008 MktCap 1 742 247 77 2011 MktCap 1 721 152 48
MktCap 2 429 289 347 MktCap 2 155 337 428
MktCap 3 43 548 474 MktCap 3 49 460 411
MktCap 4 65 620 381 MktCap 4 180 523 218

2009 MktCap 1 690 219 85 2012 MktCap 1 662 151 74
MktCap 2 264 322 408 MktCap 2 135 396 355
MktCap 3 75 509 409 MktCap 3 85 444 356
MktCap 4 164 539 291 MktCap 4 182 426 279

2010 MktCap 1 715 184 52
MktCap 2 158 398 395
MktCap 3 69 472 410
MktCap 4 199 468 284

MktCap (MktCap 3) stocks contains only 95 stocks. Similar patterns are observed in
most years, although the patterns are not always as perfect as they are in 1988.

5.2.3 Average Portfolio Values

Having created the portfolios, the next step is to calculate, for each time period t,
the average value of the outcome variable Y for each of the nP1 × nP2 portfolios. As
was discussed in Section 5.1.3, the average values can be either equal-weighted or
weighted according to some weight field W, which is quite often market capitaliza-
tion (value-weighted). Thus, the average value of the outcome variable for portfolio
Pj,k,t is

Yj,k,t =

∑
i∈Pj,k,t

Wi,tYi,t∑
i∈Pj,k,t

Wi,t
(5.13)

for j ∈ {1, 2, … , nP1} and k ∈ {1, 2, … , nP2}, where the summations in both the
numerator and denominator are taken over all entities in portfolio Pj,k,t. If no weight-
ing field is used, then Wi,t = 1 for all i and t. This is exactly the same as in the
univariate case.

In addition to calculating the average values of Y for each of the portfolios, for
each of the nP1 groups of the first sort variable X1, we calculate the difference in
average Y value of the portfolio that holds the entities with the highest and lowest
values of the second sort variable X2. Thus, for each time period t, we have

Yj, Diff , t = Yj,nP2,t
− Yj,1,t (5.14)

for j ∈ {1, … , nP1}. Similarly, for each group of the second sort variable X2, we
calculate the difference in average Y value between the portfolio with the highest and
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lowest values of the first sort variable X1, giving

YDiff ,k,t = YnP1,k,t
− Y1,k,t (5.15)

for k ∈ {1, … , nP2}.
In addition to calculating differences, in bivariate independent-sort portfolio anal-

ysis, we can also calculate the average value of the outcome variables, across all
groups of one of the sort variables and within a given group of the other sort variable.
Thus, the average value of Y across all groups of sort variable X1 and within the kth
group of sort variable X2 is defined as

YA𝑣g,k,t =

∑nP1
j=1 Yj,k,t

nP1
(5.16)

This calculation can be performed not only for k ∈ {1, 2, … , nP2} but also for the
difference between the high and low sort variable two portfolios (k = Diff ). Similarly,
we calculate the average value of Y across all groups of the second sort variable X2
and within the jth group of the first sort variable X1, giving

Yj,A𝑣g,t =
∑nP2

k=1 Yj,k,t

nP2
. (5.17)

for j ∈ {1, 2, … , nP1,Diff }.
There are two more values that may be calculated each month. The first is the

average of the averages. There are many ways that this can be calculated. The first is
to take the average across the nP1 averages for groups formed on the first sort variable
(Yj,A𝑣g,t, j ∈ {1, 2, … , nP1}). The second is to take the average across the nP2 aver-

ages for groups formed on the second sort variable (YA𝑣g,k,t, k ∈ {1, 2, … , nP2}).
The third is to take the average of all nP1 × nP2 portfolio average values
(Yj,k,t, j ∈ {1, 2, … , nP1} and k ∈ {1, 2, … , nP2}). Each of these approaches
yields the same result. We therefore have

YA𝑣g,A𝑣g,t =

∑nP1
j=1 Yj,A𝑣g,t

nP1
=

∑nP2
k=1 YA𝑣g,k,t

nP2
=

∑nP1
j=1

∑nP2
k=1 Yj,k,t

nP1 × nP2
. (5.18)

Finally, we come to the difference in the differences. The difference in differences
can be used to examine how the average value of Y relates to X1 for high values
of X2 compared to how the average value of Y relates to X1 for low values of X2.
Alternatively, the difference in differences portfolio can be interpreted as indicating
how the average value of Y relates to X2 for high values of X1 compared to how
the average values of Y relates to X2 for low values of X1. This is most easily seen
graphically.

In Table 5.12, we illustrate the calculation of the difference in the differences
between the average values of Y . To simplify notation, we let A = Y1,1,t, B = YnP1,1,t

,
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TABLE 5.12 Average Value for the Difference in Difference Portfolio
This diagram describes how the difference in difference portfolio for a bivariate-sort
portfolio analysis is constructed.

X1 1 · · · X1 nP1 X1 Diff

X2 1 Y1,1,t · · · YnP1 ,1,t
YDiff ,1,t

A B B − A
⋮ ⋮ ⋱ ⋮ ⋮

X2 nP2 Y1,nP2 ,t
· · · YnP1 ,nP2 ,t

YDiff ,nP2 ,t

C D D − C

X2 Diff Y1,Diff ,t · · · YnP1 ,Diff ,t (D − C) − (B − A)
C − A D − B =

(D − B) − (C − A)
=

D − C − B + A

C = Y1,nP2,t
, and D = YnP1,nP2,t

. These values correspond to the interior values (within

the square) of Table 5.12. The difference in average Y values between entities with the
highest values of X1 (X1 nP1) and the lowest values of X1 (X1 1), in the group that cor-
responds to the lowest values of X2 (X2 1), is therefore B − A = YDiff ,1,t. Similarly, the

corresponding value for the group with the highest values of X2 is D − C = YDiff ,nP2,t
.

These values are indicated in the right-center portion of Table 5.12. Going in the other

direction, the difference in average Y between entities with high X2 and low X2 val-
ues among entities with low X1 values is C − A = Y1,Diff ,t, and the corresponding

value for entities with high values of X1 is D − B = YnP1,Diff ,t. These differences are

shown in the center-bottom part of the table. Thus, if we take the difference along the
X2 dimension in X1 differences, we get YDiff ,nP2,t

− YDiff ,1,t = (D − C) − (B − A) =
D − C − B + A. If we take the difference along the X1 dimension in X2 differences,

we get the same result. YnP1,Diff ,t − Y1,Diff ,t = (D − B) − (C − A) = D − C − B + A.

Putting all of this together, we get

YDiff ,Diff ,t = YnP1,nP2,t
− YnP1,1,t

− Y1,nP2,t
+ Y1,1,t

= YDiff ,nP2,t
− YDiff ,1,t

= YnP1,Diff ,t − Y1,Diff ,t. (5.19)

To help understand this difference in differences portfolio, consider the case when
Yj,k,t represents the return of the j, kth portfolio in time period t. Then, the difference
in difference portfolio can be thought of as the return associated with going long
portfolios D and A in equal dollar amounts and short portfolios C and D in the same
dollar amounts. In a more general sense, this value indicates how the relation between
X1 and Y changes across different levels of X2. Similarly, it indicates how the relation
between X2 and Y changes across different levels of X1.
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We exemplify calculation of the mean dependent variable using the one-year-ahead
stock excess return (rt+1) as the outcome variable. We use equal-weighted portfolios
in this analysis, thus Wi,t is one for all i and t. Table 5.13 presents the average
one-year-ahead stock excess returns for each of the nP1 × nP2 portfolios, as well as
for the difference and average portfolios. The table indicates the portfolio formation
year (t) as well as the portfolio holding year (t + 1). Taking the year t = 1988 and
t + 1 = 1989 as an example, the table shows that the portfolio comprised low-𝛽 (𝛽 1)
and low-MktCap (MktCap 1) stocks generated an excess return of 1.13%. The portfo-
lios comprised high-𝛽 and low-MktCap stocks generated an excess return of 1.69%.
The difference between the high-𝛽 and low-𝛽 portfolio returns for low-MktCap stocks
was therefore 0.56% (1.69% − 1.13%). The average of the low-MktCap portfolios
generated a return equal to 0.62%. This process can be repeated for all four MktCap
groups and performed analogously for the three 𝛽 groups. For the average market cap-
italization group (MktCap Avg), the difference in excess return between the high-𝛽
and low-𝛽 (𝛽 Diff) portfolio is 0.05% ((0.56% + (−8.47%) + 0.97% + 7.15%)∕4). For
the average 𝛽 group (𝛽 Avg), the difference in excess return between the high-MktCap
and low-MktCap (MktCap Diff) portfolio is 13.20% ((8.80%+15.40%+15.39%)/3).
Moving to the difference of the differences portfolio (𝛽 Diff, MktCap Diff), the
excess return of this portfolio is 6.59% (17.08% − 1.69% − 9.92% + 1.13% =
7.15% − 0.56% = 15.39% − 8.80%). Finally, the average of the average (𝛽 Avg,
MktCap Avg) portfolio generates an excess return of 3.57%.

5.2.4 Summarizing the Results

Having calculated, for each period t, the average values of Y for each of the portfolios
as well as for the difference and average portfolios, the final calculation required to
complete the bivariate dependent-sort portfolio analysis is the time-series means of
the periodic average values along with the corresponding standard errors, t-statistics,
and p-values for each of the portfolios. This is done in exactly the same manner as for
the univariate portfolio analysis. Usually, the standard errors, and therefore t-statistics
and p-values, are Newey and West (1987) adjusted.

Table 5.14 presents the time-series averages of the annual portfolio excess returns
for the 𝛽- and MktCap-sorted portfolios used in our example. As the periodic values
represent portfolio excess returns, we adjust the excess returns for risk using the FF
and FFC models. We choose to use only one risk model here to save space. We also
present only the average excess returns, alphas, and corresponding Newey and West
(1987) adjusted (six lags) t-statistics. We omit the standard errors, p-values, as well
as all of the sensitivity coefficients. The table shows that the average annual excess
return for the portfolio that holds low-MktCap (MktCap 1) and low-𝛽 (𝛽 1) stocks is
20.96%, with a t-statistic of 6.12. The FFC alpha of this portfolio is 11.96% per year
(t-statistic = 5.05). Within the low-𝛽 group (𝛽 1), the difference in average excess
return between the high-MktCap and low-MktCap portfolios is −14.51% per year
(t-statistic =−4.81) and the corresponding FFC alpha is −12.87% per year (t-statistic
= −3.83). The average excess return of the difference of the differences portfolio
(𝛽 Diff, MktCap Diff) is 1.95% per year (t-statistic = 0.60) and the alpha of this
portfolio is 1.56% per year (t-statistic = 0.43).
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TABLE 5.13 Bivariate Independent-Sort Portfolio Excess Returns
This table presents the equal-weighted excess returns for each of the 12 portfolios formed by
sorting independently into three 𝛽 groups and four MktCap groups, as well as for the difference
and average portfolios. The columns labeled t∕t + 1 indicate the year of portfolio formation (t)
and the portfolio holding period (t + 1). The columns labeled 𝛽 1, 𝛽 2, 𝛽 3, 𝛽 Diff, and 𝛽 Avg
indicate the 𝛽 groups. The rows labeled MktCap 1, MktCap 2, MktCap 3, MktCap 4, MktCap
Diff, and MktCap Avg indicate the MktCap groups.

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Diff 𝛽 Avg

1988/1989 MktCap 1 1.13 −0.96 1.69 0.56 0.62
MktCap 2 −2.02 −1.49 −10.49 −8.47 −4.67
MktCap 3 4.48 3.62 5.45 0.97 4.52
MktCap 4 9.92 14.45 17.08 7.15 13.82
MktCap Diff 8.80 15.40 15.39 6.59 13.20
MktCap Avg 3.38 3.90 3.43 0.05 3.57

1989/1990 MktCap 1 −27.14 −31.81 −15.01 12.14 −24.65
MktCap 2 −32.32 −37.25 −39.78 −7.46 −36.45
MktCap 3 −27.72 −31.88 −32.50 −4.78 −30.70
MktCap 4 −24.15 −20.04 −19.69 4.46 −21.29
MktCap Diff 2.99 11.77 −4.69 −7.68 3.36
MktCap Avg −27.83 −30.25 −26.75 1.09 −28.28

1990/1991 MktCap 1 54.21 64.97 106.14 51.92 75.11
MktCap 2 38.00 44.27 73.81 35.80 52.03
MktCap 3 22.96 41.38 53.57 30.60 39.30
MktCap 4 15.71 28.61 47.77 32.06 30.69
MktCap Diff −38.50 −36.37 −58.37 −19.86 −44.41
MktCap Avg 32.72 44.81 70.32 37.60 49.28

1991/1992 MktCap 1 56.71 41.73 64.00 7.30 54.15
MktCap 2 24.66 25.09 18.36 −6.30 22.71
MktCap 3 24.28 18.93 10.83 −13.45 18.01
MktCap 4 16.09 14.16 9.64 −6.45 13.29
MktCap Diff −40.62 −27.57 −54.37 −13.75 −40.85
MktCap Avg 30.43 24.98 25.71 −4.73 27.04

1992/1993 MktCap 1 42.33 46.82 35.10 −7.23 41.42
MktCap 2 21.13 25.05 13.77 −7.37 19.98
MktCap 3 18.02 15.32 5.55 −12.47 12.96
MktCap 4 15.89 11.82 11.96 −3.93 13.22
MktCap Diff −26.44 −35.00 −23.14 3.30 −28.19
MktCap Avg 24.34 24.75 16.59 −7.75 21.90

1993/1994 MktCap 1 −1.88 0.31 −7.36 −5.48 −2.98
MktCap 2 −8.69 −4.96 −8.41 0.28 −7.35
MktCap 3 −5.71 −4.23 −10.38 −4.68 −6.77
MktCap 4 −4.93 −6.19 −6.00 −1.07 −5.71
MktCap Diff −3.05 −6.50 1.36 4.41 −2.73
MktCap Avg −5.30 −3.77 −8.04 −2.74 −5.70

1994/1995 MktCap 1 28.18 29.95 26.75 −1.43 28.29
MktCap 2 25.19 34.46 35.39 10.20 31.68
MktCap 3 22.53 26.73 29.23 6.71 26.17
MktCap 4 19.72 23.67 24.42 4.70 22.60
MktCap Diff −8.46 −6.28 −2.33 6.13 −5.69
MktCap Avg 23.90 28.71 28.95 5.04 27.19

(continued)
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TABLE 5.13 (Continued)

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Diff 𝛽 Avg

1995/1996 MktCap 1 24.86 15.18 15.79 −9.07 18.61
MktCap 2 13.64 12.10 8.62 −5.01 11.45
MktCap 3 19.98 16.12 7.56 −12.42 14.56
MktCap 4 15.87 15.41 9.42 −6.45 13.57
MktCap Diff −8.98 0.23 −6.36 2.62 −5.04
MktCap Avg 18.59 14.70 10.35 −8.24 14.55

1996/1997 MktCap 1 27.39 15.21 0.38 −27.01 14.33
MktCap 2 34.26 21.36 0.33 −33.93 18.65
MktCap 3 33.10 24.20 −0.22 −33.32 19.02
MktCap 4 24.78 24.34 14.43 −10.35 21.18
MktCap Diff −2.62 9.14 14.05 16.66 6.86
MktCap Avg 29.88 21.28 3.73 −26.15 18.30

1997/1998 MktCap 1 −6.19 −7.08 −9.26 −3.07 −7.51
MktCap 2 −12.35 −13.48 −18.68 −6.32 −14.84
MktCap 3 −5.25 −9.09 −10.07 −4.82 −8.13
MktCap 4 −2.88 −2.48 5.52 8.40 0.05
MktCap Diff 3.31 4.59 14.79 11.47 7.56
MktCap Avg −6.67 −8.03 −8.12 −1.45 −7.61

1998/1999 MktCap 1 32.76 66.89 114.46 81.70 71.37
MktCap 2 9.58 38.21 79.21 69.63 42.33
MktCap 3 −8.57 17.84 56.12 64.69 21.80
MktCap 4 −14.56 −4.59 46.49 61.05 9.11
MktCap Diff −47.32 −71.48 −67.97 −20.65 −62.26
MktCap Avg 4.80 29.59 74.07 69.27 36.15

1999/2000 MktCap 1 −6.74 −14.10 −33.47 −26.74 −18.10
MktCap 2 −8.91 −10.52 −26.62 −17.71 −15.35
MktCap 3 −0.22 4.16 −13.24 −13.01 −3.10
MktCap 4 7.68 13.11 −8.71 −16.39 4.03
MktCap Diff 14.42 27.20 24.76 10.34 22.13
MktCap Avg −2.05 −1.84 −20.51 −18.46 −8.13

2000/2001 MktCap 1 44.30 53.06 20.51 −23.79 39.29
MktCap 2 29.88 43.64 0.82 −29.06 24.78
MktCap 3 31.84 22.49 0.29 −31.55 18.21
MktCap 4 −2.73 4.54 −20.47 −17.74 −6.22
MktCap Diff −47.03 −48.52 −40.98 6.05 −45.51
MktCap Avg 25.82 30.93 0.29 −25.53 19.01

2001/2002 MktCap 1 7.03 −6.41 −31.57 −38.60 −10.32
MktCap 2 14.58 −8.38 −41.64 −56.22 −11.82
MktCap 3 3.14 −10.19 −42.42 −45.56 −16.49
MktCap 4 −7.97 −8.65 −38.66 −30.69 −18.43
MktCap Diff −15.01 −2.24 −7.09 7.91 −8.11
MktCap Avg 4.19 −8.41 −38.57 −42.77 −14.26

2002/2003 MktCap 1 104.77 132.30 184.10 79.34 140.39
MktCap 2 56.30 100.00 108.86 52.56 88.39
MktCap 3 36.95 45.07 71.55 34.61 51.19
MktCap 4 23.00 30.87 49.36 26.36 34.41
MktCap Diff −81.76 −101.43 −134.74 −52.98 −105.98
MktCap Avg 55.25 77.06 103.47 48.22 78.59
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TABLE 5.13 (Continued)

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Diff 𝛽 Avg

2003/2004 MktCap 1 28.52 24.02 23.09 −5.44 25.21
MktCap 2 20.52 17.48 7.45 −13.07 15.15
MktCap 3 23.70 22.21 6.76 −16.94 17.56
MktCap 4 27.28 19.84 10.89 −16.39 19.34
MktCap Diff −1.24 −4.18 −12.19 −10.96 −5.87
MktCap Avg 25.01 20.89 12.05 −12.96 19.31

2004/2005 MktCap 1 2.77 3.03 −28.68 −31.45 −7.63
MktCap 2 4.73 −2.27 −7.45 −12.19 −1.66
MktCap 3 14.58 4.23 −0.63 −15.21 6.06
MktCap 4 3.06 7.56 4.59 1.53 5.07
MktCap Diff 0.29 4.53 33.27 32.98 12.70
MktCap Avg 6.28 3.14 −8.04 −14.33 0.46

2005/2006 MktCap 1 13.00 13.66 −5.47 −18.47 7.06
MktCap 2 14.45 13.71 11.06 −3.39 13.08
MktCap 3 11.97 9.42 11.62 −0.35 11.00
MktCap 4 9.24 9.24 8.07 −1.17 8.85
MktCap Diff −3.76 −4.41 13.54 17.30 1.79
MktCap Avg 12.17 11.51 6.32 −5.85 10.00

2006/2007 MktCap 1 −12.82 −10.28 −28.89 −16.07 −17.33
MktCap 2 −11.36 −12.18 −11.42 −0.06 −11.65
MktCap 3 −12.44 −9.85 −5.79 6.65 −9.36
MktCap 4 −0.45 −0.98 8.37 8.82 2.32
MktCap Diff 12.37 9.30 37.26 24.89 19.64
MktCap Avg −9.27 −8.32 −9.43 −0.16 −9.01

2007/2008 MktCap 1 −46.58 −49.30 −56.63 −10.05 −50.84
MktCap 2 −38.65 −48.25 −45.66 −7.01 −44.19
MktCap 3 −37.78 −34.51 −37.15 0.63 −36.48
MktCap 4 −32.35 −34.83 −50.83 −18.48 −39.34
MktCap Diff 14.22 14.47 5.79 −8.43 11.50
MktCap Avg −38.84 −41.72 −47.57 −8.73 −42.71

2008/2009 MktCap 1 94.97 156.50 150.77 55.80 134.08
MktCap 2 29.40 49.10 87.00 57.60 55.17
MktCap 3 15.41 37.43 51.26 35.85 34.70
MktCap 4 16.16 32.86 48.35 32.19 32.46
MktCap Diff −78.81 −123.64 −102.42 −23.61 −101.62
MktCap Avg 38.99 68.97 84.35 45.36 64.10

2009/2010 MktCap 1 22.10 34.09 30.45 8.36 28.88
MktCap 2 20.57 25.63 37.38 16.81 27.86
MktCap 3 13.03 24.95 34.39 21.36 24.12
MktCap 4 17.52 23.59 29.29 11.77 23.46
MktCap Diff −4.58 −10.50 −1.17 3.41 −5.41
MktCap Avg 18.30 27.07 32.88 14.57 26.08

2010/2011 MktCap 1 −8.37 −19.22 −39.11 −30.73 −22.23
MktCap 2 −5.42 −8.15 −15.23 −9.82 −9.60
MktCap 3 4.75 −0.11 −7.95 −12.70 −1.11
MktCap 4 10.67 1.62 −10.53 −21.20 0.59
MktCap Diff 19.04 20.84 28.58 9.54 22.82
MktCap Avg 0.41 −6.47 −18.21 −18.61 −8.09

(continued)
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TABLE 5.13 (Continued)

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Diff 𝛽 Avg

2011/2012 MktCap 1 27.77 9.70 −9.06 −36.83 9.47
MktCap 2 28.61 19.69 19.03 −9.59 22.44
MktCap 3 9.71 17.22 20.34 10.64 15.76
MktCap 4 12.35 17.85 16.67 4.32 15.62
MktCap Diff −15.42 8.16 25.73 41.15 6.15
MktCap Avg 19.61 16.11 11.74 −7.87 15.82

TABLE 5.14 Bivariate Independent-Sort Portfolio Excess and Abnormal Returns
This table presents the average excess returns (rows labeled Excess Return) and FFC alphas
(rows labeled FFC 𝛼) for portfolios formed by grouping all stocks into three 𝛽 groups and
four MktCap groups. The numbers in parentheses are t-statistics, adjusted following Newey
and West (1987) using six lags, testing the null hypothesis that the time-series average of the
portfolio’s excess return or FFC alpha is equal to zero.

Coefficient 𝛽 1 𝛽 2 𝛽 3 𝛽 Diff 𝛽 Avg
MktCap 1 Excess return 20.96 23.68 21.20 0.24 21.95

(6.12) (6.81) (3.62) (0.06) (5.66)
FFC 𝛼 11.96 18.63 9.90 −2.06 13.50

(5.05) (5.46) (1.31) (−0.38) (3.44)
MktCap 2 Excess return 11.07 13.45 11.49 0.41 12.00

(4.13) (4.03) (4.98) (0.13) (5.20)
FFC 𝛼 0.18 1.42 0.92 0.74 0.84

(0.08) (0.45) (0.43) (0.16) (0.65)
MktCap 3 Excess return 8.86 10.48 8.51 −0.36 9.28

(3.01) (5.50) (5.18) (−0.11) (5.52)
FFC 𝛼 −0.27 1.33 −1.14 −0.87 −0.02

(−0.09) (1.21) (−0.88) (−0.20) (−0.03)
MktCap 4 Excess return 6.45 8.99 8.64 2.19 8.03

(3.85) (6.74) (4.00) (1.17) (5.37)
FFC 𝛼 −0.91 1.78 −1.41 −0.50 −0.18

(−0.81) (3.23) (−0.94) (−0.24) (−0.25)
MktCap Diff Excess return −14.51 −14.69 −12.55 1.95 −13.92

(−4.81) (−4.37) (−2.16) (0.60) (−3.67)
FFC 𝛼 −12.87 −16.85 −11.31 1.56 −13.68

(−3.83) (−5.23) (−1.57) (0.43) (−3.29)
MktCap Avg Excess return 11.84 14.15 12.46 0.62 12.82

(4.90) (6.59) (5.14) (0.25) (6.29)
FFC 𝛼 2.74 5.79 2.07 −0.67 3.53

(1.72) (5.12) (0.84) (−0.19) (3.00)

5.2.5 Interpreting the Results

In most cases, the focal results of the portfolio analysis are the differences between
the portfolios that contain high and low values of a given variable. The differences
in average Y values between portfolios with high values of X1 and low values
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of X1 (X1 Diff portfolios) indicate whether a cross-sectional relation between X1
and Y exists after controlling for the effect of X2. The logic is reversed to examine
the cross-sectional relation between X2 and Y after controlling for X1 (X2 Diff
portfolios).

Turning to our example in Table 5.14, the results indicate that among low-𝛽
(𝛽 1) stocks, high-MktCap stocks have significantly lower average returns than
low-MktCap stocks, since the MktCap difference portfolio (MktCap Diff) generates
an average excess return of −14.51% (t-statistic = −4.81) and an FFC alpha of
−12.87% (t-statistic = −3.83) per year. Similar results are obtained for stocks with
moderate levels of 𝛽 (𝛽 2), as the MktCap Diff portfolio generates an average annual
excess return of −14.69% and FFC alpha of −16.85%, both of which are highly
statistically significant. For high-𝛽 stocks (𝛽 3), the average excess return of the
MktCap Diff portfolio of −12.55% (t-statistic = −2.16) is statistically significant, but
after adjusting for factor sensitivities using the FFC model, the abnormal return of
−11.31% is no longer statistically significant. Examination of the relation between
𝛽 and future stock returns presents no evidence of such a relation after controlling
for the effect of MktCap as, within each of the four MktCap groups, the average
return differences and FFC alphas between the portfolios comprised high-𝛽 stocks
and low-𝛽 stocks (𝛽 Diff) are economically small and statistically insignificant, as
all associated t-statistics are well below 2.00 in magnitude.

In some cases, looking at the X1 difference portfolio within the different groups of
X2 may give differing indications for different X2 groups. For example, in some cases,
there may be a statistically significant relation between X1 and Y among entities with
low values of X2, but this relation may not exist, or may even take the opposite sign,
for entities with high X2 values. For this reason, it is instructive to examine the X1
difference portfolio for the average X2 group. The results for this portfolio indicate
whether, for the average group of X2, there is a relation between X1 and Y . Further-
more, it is frequently of interest to examine whether any detected relation between
X1 and Y is driven by entities with low values of X1 or by entities with high values
of X1. To do this, we can examine the average X1 portfolio in the low X2 group and
the average X1 portfolio in the high X2 group. If the average X1 portfolio in the low
(high) X2 group generates statistically significant results but the average X1 portfolio
in the high (low) X2 group does not, this may indicate that the relation is being driven
by entities with low (high) values of X2. If the average X1 portfolio for both high and
low X2 groups are statistically significant but with opposite signs, it indicates that
the difference is driven by entities with both high and low values of X2. Obviously,
the roles of X1 and X2 can be reversed to examine the relation between X2 and Y .

Table 5.14 shows that, in our example, for the average 𝛽 group (𝛽 Avg), the
difference in annual returns between the high-MktCap portfolio and the low-MktCap
portfolio (MktCap Diff) is −13.92% with a corresponding t-statistic of −3.67. The
FFC alpha of this portfolio is −13.68% per year with a t-statistic of −3.29. However,
if we examine the alphas of portfolios with different levels of MktCap for the
average 𝛽 (𝛽 Avg) portfolio, we see that only entities with low-MktCap (MktCap 1)
generate statistically significant abnormal returns relative to the FFC model. The
FFC alpha of this portfolio is 13.50% per year with a corresponding t-statistic of
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3.44. The abnormal returns for the average 𝛽 group for stocks in MktCap groups two
through four of 0.84% (t-statistic = 0.65), −0.02% (t-statistic = −0.03), and −0.18%
(t-statistic = −0.25) per year, respectively, are all statistically indistinguishable from
zero. Similar patterns are also observed within each of the three 𝛽 groups. The results
therefore indicate that the negative abnormal returns of the portfolios that take long
positions in high-MktCap stocks and short positions in low-MktCap stocks are driven
by the low-MktCap stocks. A similar analysis examining the relation between 𝛽

and portfolio excess returns and alphas shows that for the average MktCap (MktCap
Avg) group, the difference in excess return and FFC alpha between the high-𝛽 (𝛽
3) and low-𝛽 (𝛽 1) portfolios are 0.62% and −0.67%, respectively, per year, both
of which are statistically insignificant. This is not surprising given that we failed to
detect a relation between 𝛽 and future returns in any of the MktCap groups.

In some cases, it may be of interest to researchers to examine the difference of
the differences portfolio. This portfolio indicates whether the relation between X1
and Y changes for the high and low X2 groups. It also indicates whether the relation
between X2 and Y changes for different groups of X1. A positive (negative) and
statistically significant result for the difference of the differences portfolio indicates
that the relation between X1 and Y is more positive (negative) for entities with high
levels of X2 than for entities with low levels of X2. The same can be said reversing
the roles of X1 and X2.

Examining our example results, we find no evidence that the relation between
MktCap and future returns is different for stocks with different levels of 𝛽, because
the 𝛽 Diff, MktCap Diff portfolio does not generate statistically significant excess or
abnormal returns. Similarly, the same result provides no evidence that the relation
between 𝛽 and future stock returns is different for stocks with high MktCap compared
to stocks with low MktCap.

Analysis of the results for the average of the averages portfolio is rarely, if
ever, undertaken in the empirical asset pricing literature. However, it can roughly
be interpreted as indicative of the average Y value if all categories of entities are
given equal weight, where a category corresponds to an intersection of the X1 and
X2 groups. When the Y variable is the excess return, this portfolio indicates the
returns associated with a long-only portfolio that gives higher weights to entities in
categories that have fewer entities. Thus, it may have application in assessing the
effects of different weighting schemes on portfolio returns.

5.2.6 Presenting the Results

There are many ways that the results of bivariate independent-sort portfolio analyses
can be presented. Here, we describe a few of these. As always, the optimal approach
depends largely on which elements of the analysis are to be emphasized.

Single Analysis

One common approach is to present only the average values (Y) for each of the
nP1 × nP2 portfolios, and to present both values of Y and the associated t-statistics
for the difference and average portfolios. Sometimes, results for the average portfo-
lios are not shown. When the outcome variable Y is a return variable, frequently the
alphas relative to a factor model are shown instead of the average returns or excess
returns.



�

� �

�

BIVARIATE INDEPENDENT-SORT ANALYSIS 67

TABLE 5.15 Bivariate Independent-Sort Portfolio Results
This table presents the average abnormal returns relative to the FFC model
for portfolios sorted independently into three 𝛽 groups and four MktCap.
The breakpoints for the 𝛽 portfolios are the 30th and 70th percentiles. The
breakpoints for the MktCap portfolios are the 25th, 50th, and 75th per-
centiles. Table values indicate the alpha relative to the FFC model with
corresponding t-statistics in parentheses.

𝛽 1 𝛽 2 𝛽 3 𝛽 3-1 𝛽 Avg
MktCap 1 11.96 18.63 9.90 −2.06 13.50

(−0.38) (3.44)
MktCap 2 0.18 1.42 0.92 0.74 0.84

(0.16) (0.65)
MktCap 3 −0.27 1.33 −1.14 −0.87 −0.02

(−0.20) (−0.03)
MktCap 4 −0.91 1.78 −1.41 −0.50 −0.18

(−0.24) (−0.25)
MktCap 4-1 −12.87 −16.85 −11.31 1.56 −13.68

(−3.83) (−5.23) (−1.57) (0.43) (−3.29)
MktCap Avg 2.74 5.79 2.07 −0.67

(1.72) (5.12) (0.84) (−0.19)

In Table 5.15, we present the results of our example bivariate independent-sort
portfolio analysis. We show only the FFC alpha for the 12 portfolios formed by sorting
on 𝛽 and MktCap. We also show the FFC alpha and the associated t-statistics for the
difference and average portfolios, although frequently researchers present the average
returns or excess returns and only present alphas for the difference portfolios. As it
is rarely if ever used by researchers, we will not show any results for the average of
the averages portfolio.

Multiple Analyses, Same Relation of Interest

Another common approach is to present only the results for the difference or average
portfolios. This is frequently the case when the objective of the analysis is to examine
the relation between one of the sort variables (say X2) and Y while controlling for the
other sort variable (X1), but we are not interested in the relation between X1 and Y
when controlling for X2. This presentation style also allows the researcher to present
results for more than one bivariate portfolio analysis while minimizing the amount of
space required to do so. In exemplifying each of these approaches to presenting the
results of bivariate portfolio analyses, we present not only the results for our analysis
using 𝛽 and MktCap as the sort variables, but also the results of a similar analysis
using BM and MktCap as the sort variables. In this second analysis, we once again
use the 30th and 70th percentiles of BM to calculate the BM breakpoints and the 25th,
50th, and 75th percentiles of MktCap for the MktCap breakpoints.

Table 5.16 gives an example of how the results of only the difference portfolios
may be presented. The column labeled Control indicates the first sort variable (X1)
used in the sorting procedure. Thus, the results for the analysis sorting on 𝛽 and
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TABLE 5.16 Bivariate Independent-Sort Portfolio Results—Differences
This table presents the average abnormal returns relative to the FFC model for
long–short zero-cost portfolios that are long stocks in the highest quartile of
MktCap and short stocks in the lowest quartile of MktCap. The portfolios are
formed by sorting all stocks independently into groups based on 𝛽 and MktCap.
The breakpoints used to form the 𝛽 groups are the 30th and 70th percentiles of 𝛽.
Table values indicate the alpha relative to the FFC model with the corresponding
t-statistics in parentheses.

Control Coefficient 1 2 3 Avg 3-1

𝛽 Excess return −14.51 −14.69 −12.55 −13.92 1.95
(−4.81) (−4.37) (−2.16) (−3.67) (0.60)

FFC 𝛼 −12.87 −16.85 −11.31 −13.68 1.56
(−3.83) (−5.23) (−1.57) (−3.29) (0.43)

BM Excess return −7.74 −13.31 −18.18 −13.08 −10.44
(−2.17) (−3.41) (−6.57) (−3.97) (−6.53)

FFC 𝛼 −6.19 −11.24 −22.04 −13.15 −15.85
(−2.23) (−3.00) (−8.32) (−4.73) (−7.75)

MktCap are presented in the rows where the control variable is 𝛽, and the results
for the analysis sorting on BM and MktCap are shown in the portion of the table
where the control variable is BM. The columns labeled 1, 2, 3, Avg, and 3-1 indicate
the control variable portfolio. Thus, for example, the column labeled 2 indicates the
results for portfolios in the middle group of the given control variable (𝛽 or BM). The
table presents the average excess returns and FFC alphas for the long–short zero-cost
portfolio that is long stocks in the fourth quartile of MktCap and short stocks in the
first MktCap quartile (MktCap Diff portfolio). The FFC alpha results when the con-
trol variable is 𝛽 are therefore identical to those in the row labeled MktCap 4-1 in
Table 5.15. In some cases, it is not necessary or important to present both the average
excess returns and FFC alphas. In fact, when the outcome variable is not a return,
the FFC alpha does not exist and therefore cannot be presented. We present both the
average excess returns and the FFC alphas here for completeness.

The results in Table 5.16 indicate that the negative relation between MktCap and
future stock returns persists after controlling for 𝛽 and after controlling for BM. Fur-
thermore, as mentioned previously, presenting the results for the MktCap difference
portfolio within each control variable group allows us to see that this result is robust
across all levels of both 𝛽 and BM because, within each group of each control vari-
able, this relation is detected. We should stress here that neither of these analyses
controls simultaneously for both 𝛽 and BM. Each analysis includes only one control
variable. The column labeled Avg shows that for the average 𝛽 group, the negative
relation between MktCap and future excess returns persists. This is not surprising
given that this relation exists within each of the individual 𝛽 groups. A similar result
holds when controlling for BM. Finally, the column labeled 3-1 presents the results
for the difference in differences portfolio. The results fail to detect any difference in
the relation between MktCap and future excess returns among stocks with low values
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of 𝛽 compared to stocks with high values of 𝛽. However, the results indicate a strong
difference in the relation between MktCap and future stock returns among stocks with
differing levels of BM, because the average excess return of −10.44% per year for the
difference in differences portfolio is highly statistically significant with a t-statistic
of −6.53. Adjusting the returns of this portfolio for risk only strengthens this result,
as the FFC alpha for this portfolio is −15.85% per year (t-statistic = −7.75). These
results indicate that the negative relation between MktCap and future stock returns is
much stronger for stocks with high values of BM than for low-BM stocks.

While Table 5.16 allows us to examine the relation between MktCap and future
excess returns among stocks with differing levels of 𝛽 or BM, it does not give us
an idea of whether it is the low-MktCap or high-MktCap stocks that are generating
the results. Another way of presenting the results is to show only the results that
correspond to the average X1 (𝛽 or BM in this example) portfolio for each level of
X2 (MktCap in this example). This allows the reader to get an understanding of how
the average value of Y varies with X2 after controlling for X1. This presentation style
is frequently desirable when a univariate sort portfolio analysis indicates a relation
between X2 and Y but the bivariate independent-sort portfolio analysis indicates that
after controlling for X1, this relation disappears. This is because by showing results
for each X2 group, it emphasizes the fact that there is no difference in average Y
values for high and low values of X2 (after controlling for X1). Alternatively, this
approach is useful when there is no univariate relation between X2 and Y but a relation
appears after controlling for X1. In our example, we find a negative univariate relation
between MktCap and future stock returns, but we do not find that controlling for 𝛽
or BM explains this relation. Nonetheless, we exemplify this presentation style in
Table 5.17.

Multiple Analyses, Different Relations of Interest

The results in Tables 5.16 and 5.17 examine the relation between MktCap and future
stock returns after controlling for each of 𝛽 and BM. Sometimes, however, we may

TABLE 5.17 Bivariate Independent-Sort Portfolio Results—Averages
This table presents the average abnormal returns relative to the FFC model for portfolios
formed by sorting independently on 𝛽 and MktCap. The table shows the portfolio FFC alphas
and the associated Newey and West (1987) adjusted t-statistics calculated using six lags (in
parentheses) for the average 𝛽 group within each group of MktCap.

Control Coefficient MktCap 1 MktCap 2 MktCap 3 MktCap 4 MktCap 4-1

𝛽 Excess return 21.95 12.00 9.28 8.03 −13.92
(5.66) (5.20) (5.52) (5.37) (−3.67)

FFC 𝛼 13.50 0.84 −0.02 −0.18 −13.68
(3.44) (0.65) (−0.03) (−0.25) (−3.29)

BM Excess return 22.04 11.78 9.27 8.97 −13.08
(6.48) (5.59) (6.70) (6.76) (−3.97)

FFC 𝛼 13.98 1.76 0.56 0.82 −13.15
(5.00) (1.31) (1.33) (1.21) (−4.73)
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TABLE 5.18 Bivariate Independent-Sort Portfolio Results—Differences
This table presents the average excess returns and FFC alphas for portfolios formed by sorting
independently on 𝛽 and a second sort variable, which is either MktCap or BM. The table shows
the average excess returns and FFC alphas, along with the associated Newey and West (1987)
adjusted t-statistics calculated using six lags (in parentheses), for the difference between the
portfolios with high and low values of the second sort variable (MktCap or BM). The first
column indicates the second sort variable. The remaining columns correspond to different 𝛽
groups, as indicated in the header.

Sort Variable Coefficient 𝛽 1 𝛽 2 𝛽 3 𝛽 Avg 𝛽 3-1

MktCap Excess return −14.51 −14.69 −12.55 −13.92 1.95
(−4.81) (−4.37) (−2.16) (−3.67) (0.60)

FFC 𝛼 −12.87 −16.85 −11.31 −13.68 1.56
(−3.83) (−5.23) (−1.57) (−3.29) (0.43)

BM Excess return 10.21 10.52 11.79 10.84 1.58
(3.74) (3.90) (4.34) (5.46) (0.55)

FFC 𝛼 8.93 8.97 7.72 8.54 −1.21
(3.91) (2.74) (2.71) (3.68) (−0.35)

want to examine the relation between several different variables, perhaps MktCap and
BM, after controlling for another variable, say 𝛽. In this case, we can generate tables
that look similar to Tables 5.16 and 5.17, except instead of the first column of the
table indicating the control variable, it will indicate the variable whose relation with
the outcome variable Y is of interest.

In Table 5.18, we present the results of two bivariate portfolio analyses. The first
is the same analysis that we have been using throughout this section that takes 𝛽 and
MktCap to be the sort variables. The second takes 𝛽 and BM to be the sort variables.
The relations of interest are those between future stock returns and each of MktCap
and BM. Table 5.18 presents the average excess returns and FFC alphas for the dif-
ference portfolios for each of the sort variables of interest (MktCap and BM) within
each of the 𝛽 groups.

The results indicate a negative relation between MktCap and future stock returns
after controlling for 𝛽. This is the same result as was presented in Tables 5.15 and 5.16.
The table also detects a strong positive relation between BM and future stock returns
after controlling for 𝛽. These results indicate that after controlling for 𝛽, the positive
relation between BM and future stock returns detected in the univariate analysis (see
Table 5.8) persists. The last column in the table indicates that this relation appears to
be quite similar among stocks with low and high values of 𝛽.

Finally, in Table 5.19, we present the results of the same two portfolio analyses as
were presented in Table 5.18. The only difference here is that, instead of presenting
the results for the difference portfolios, we present the results for the average portfo-
lios across each group of the control variable, X1 (𝛽 in this example), and within each
group of the sort variables of interest, X2 (MktCap and BM in this example). Thus,
the columns labeled 1 through 4 show results for the average (across the 𝛽 groups)
portfolio within the given group of the indicated sort variable (MktCap or BM). The
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TABLE 5.19 Bivariate Independent-Sort Portfolio Results—Averages
This table presents the average excess returns and FFC alphas for portfolios formed by sorting
independently on 𝛽 and a second sort variable, which is either MktCap or BM. The table shows
the average excess returns and FFC alphas, along with the associated Newey and West (1987)
adjusted t-statistics calculated using six lags (in parentheses), for the difference between the
portfolios with high and low values of the second sort variable (MktCap or BM). The first
column indicates the second sort variable. The remaining columns correspond to different 𝛽
groups, as indicated in the header.

Sort Variable Coefficient 1 2 3 4 4-1

MktCap Excess return 21.95 12.00 9.28 8.03 −13.92
(5.66) (5.20) (5.52) (5.37) (−3.67)

FFC 𝛼 13.50 0.84 −0.02 −0.18 −13.68
(3.44) (0.65) (−0.03) (−0.25) (−3.29)

BM Excess return 8.92 12.63 12.98 19.76 10.84
(4.92) (7.75) (6.35) (7.88) (5.46)

FFC 𝛼 1.41 4.37 4.28 9.95 8.54
(0.88) (3.90) (2.32) (5.41) (3.68)

column labeled 4-1 presents results for the difference in these averages (which is the
same as the average difference) between portfolios in the fourth and first groups of
the indicated sort variable.

5.3 BIVARIATE DEPENDENT-SORT ANALYSIS

Bivariate dependent-sort portfolio analysis is similar to its independent-sort coun-
terpart in that the portfolios are formed by sorting entities based on values of two
sort variables X1 and X2. The only difference between the dependent-sort and
independent-sort analyses is that in the dependent-sort analysis, breakpoints for
the second sort variable are formed within each group of the first sort variable. For
this reason, dependent-sort analysis is used when the objective is to understand the
relation between X2 and Y conditional on X1. The relation between X1 and Y is not
examined in dependent-sort analysis. X1 is used only as a control variable.

5.3.1 Breakpoints

Calculation of the breakpoints for the bivariate dependent-sort portfolio analysis
begins exactly the same way as in the independent-sort analysis. In the dependent-sort
analysis, however, it is extremely important to distinguish which independent vari-
able is the control variable, X1, and which variable is part of the relation of interest,
X2, as unlike independent-sort analysis, in the dependent-sort analysis, the order of
sorting is critically important.

The dependent-sort portfolio procedure begins by calculating breakpoints for the
first sort variable (X1, the control variable). Letting nP1 be the number of groups
based on X1, and p1j, j ∈ {1, … , nP1 − 1} be the percentiles used to calculate the
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breakpoints, the breakpoints for X1 are calculated exactly as described in Section 5.2
and equation (5.10). As always, breakpoints may be calculated using a different set
of entities than the set that will eventually be sorted into portfolios.

Having calculated the breakpoints for the first sort variable X1 for each time period
t, the entities are divided into nP1 groups based on the breakpoints B1j,t. The next
step is what differentiates dependent-sort portfolio analysis from independent-sort
portfolio analysis. In dependent-sort analysis, the second sort, based on values of X2,
is done separately for each of the nP1 groups of entities created by the breakpoints for
the first sort variable. Thus, the breakpoints that determine how the sample is divided
into portfolios based on the second independent variable X2 will be different for each
of the nP1 groups formed by sorting on the first sort variable. We therefore define the
breakpoints for the second sort variable as

B2j,k,t = Pctlp2k
({X2t|B1j−1,t ≤ X1t ≤ B1j,t}) (5.20)

where j ∈ {1, … , nP1}, k ∈ {1, … , nP2 − 1}, p2k is the percentile for the kth break-
point based on the second sort variable, nP2 is the number of groups to be formed
based on the second sort variable X2, B10,t = −∞, B1nP1,t

= ∞, and {X2t|B1j−1,t ≤

X1t ≤ B1j,t} is the set of values of X2 across all entities in the sample with values of X1
that are between B1j−1,t and B1j,t inclusive. Thus, for each of the nP1 groups of entities
formed on X1, there will be nP2 − 1 breakpoints for the second sort variable X2.

Before proceeding to an example, a brief discussion of the choice of the number
of groups to use for each of the sort variables is warranted. As always, the objec-
tive is to find a reasonable balance between the number of entities in each portfolio
and the number of portfolios. In dependent-sort portfolio analysis, there is one major
difference in choosing the number of groups compared to independent-sort portfolio
analysis. In dependent-sort analysis, because sorting based on the second sort variable
X2 is done within each group of entities formed by the first sort, correlation between
the sort variables does not play a role in determining an appropriate number of break-
points. As long as there are sufficient entities in each group formed by sorting on the
first sort variable X1 to form nP2 groups of entities when sorting based on the chosen
percentiles of X2, the dependent-sort analysis should provide an accurate assessment
of the relation between X2 and Y .

We exemplify the bivariate dependent-sort procedure by calculating breakpoints
for portfolios formed using 𝛽 as the control variable, X1, and MktCap as the sort
variable of interest, X2. As in previous analyses, the 𝛽 breakpoints are the 30th and
70th percentiles and the MktCap breakpoints are the 25th, 50th, and 75th percentiles.
Table 5.20 shows the breakpoints for each year during our sample period. The table
shows that in 1988, the 𝛽 breakpoints are 0.18 (column B11,t) and 0.66 (column B12,t).
These breakpoints are identical to the 𝛽 breakpoints used in the independent-sort
portfolio analysis (see Table 5.10). As 𝛽 is the first sort variable, these are the break-
points that are used to group the stocks according to 𝛽, regardless of the level of
MktCap. Within the set of stocks with the lowest values of 𝛽 (𝛽 ≤ 0.18), we see that
the first, second, and third MktCap breakpoints are 4.57, 12.36, and 35.38, respec-
tively. Thus, the portfolio P1,1, which holds low-𝛽 and low-MktCap stocks, comprised
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TABLE 5.20 Bivariate Dependent-Sort Breakpoints
This table presents the breakpoints for portfolios formed by sorting all stocks in the sample
into three groups based on the 30th and 70th percentiles of 𝛽, and then, within each 𝛽 group,
into four groups based on the 25th, 50th, and 75th percentiles of MktCap among only stocks in
the given 𝛽 groups. The columns labeled t indicates the year of the breakpoints. The columns
labeled B11,t and B12,t present the 𝛽 breakpoints. The columns labeled B21,k,t, B22,k,t, and B23,k,t

indicate the kth MktCap breakpoint for stocks in the first, second, and third 𝛽 group, respec-
tively, where k is indicated in the columns labeled k.

t k B21,k,t B11,t B22,k,t B12,t B23,k,t t k B21,k,t B11,t B22,k,t B12,t B23,k,t

1988 1 4.57 0.18 12.49 0.66 25.31 2001 1 16.71 0.31 45.87 0.95 91.00
2 12.36 39.76 126.79 2 44.75 231.86 350.97
3 35.38 142.60 796.57 3 113.32 886.00 1162.14

1989 1 4.29 0.17 14.05 0.70 26.72 2002 1 12.80 0.33 56.33 0.89 140.84
2 12.05 46.16 135.74 2 33.43 234.04 415.02
3 33.94 183.14 929.26 3 69.34 851.28 1455.45

1990 1 2.74 0.23 8.62 0.86 21.50 2003 1 26.39 0.38 151.58 0.97 302.73
2 8.40 30.99 98.69 2 57.59 415.27 714.81
3 24.50 151.58 583.68 3 110.03 1480.06 2090.83

1991 1 3.76 0.24 14.27 0.85 38.90 2004 1 34.44 0.63 203.14 1.36 250.79
2 10.60 55.37 169.80 2 75.35 702.06 562.28
3 31.59 242.53 909.57 3 151.62 2530.95 1211.46

1992 1 8.16 0.26 23.08 0.97 38.17 2005 1 34.51 0.60 211.76 1.30 344.26
2 22.05 79.97 140.75 2 72.25 748.77 680.42
3 67.79 384.71 681.30 3 135.07 3277.05 1414.81

1993 1 11.03 0.29 34.12 0.92 43.02 2006 1 37.80 0.61 226.34 1.40 382.07
2 28.81 101.77 180.90 2 82.29 778.31 734.76
3 79.28 480.49 789.78 3 161.21 2900.79 1588.50

1994 1 11.60 0.36 30.21 0.97 35.30 2007 1 33.25 0.56 208.68 1.18 316.60
2 26.86 105.28 144.17 2 67.62 848.39 607.85
3 76.27 439.81 694.79 3 127.17 3253.81 1474.95

1995 1 13.60 0.27 41.60 0.90 38.33 2008 1 12.40 0.57 136.70 1.14 137.59
2 34.46 145.19 152.81 2 31.09 475.72 356.81
3 105.74 611.37 739.47 3 63.84 1611.62 1122.37

1996 1 14.99 0.32 40.72 0.90 49.92 2009 1 22.53 0.65 180.11 1.45 185.19
2 41.62 163.43 177.91 2 54.22 632.27 427.60
3 120.22 692.85 769.25 3 149.12 2220.07 1311.04

1997 1 15.50 0.26 42.75 0.72 80.59 2010 1 26.98 0.76 219.47 1.33 263.99
2 44.11 155.84 346.42 2 61.05 721.38 609.64
3 116.47 603.98 1524.24 3 259.80 2455.43 1828.61

1998 1 14.04 0.41 37.38 0.94 74.16 2011 1 22.28 0.82 246.05 1.38 215.12
2 38.47 126.92 323.19 2 49.47 891.90 514.69
3 109.89 568.93 1175.07 3 123.80 3048.15 1281.89

1999 1 17.39 0.15 48.04 0.53 95.04 2012 1 28.27 0.76 254.37 1.31 245.38
2 43.43 165.40 477.36 2 64.96 797.94 680.17
3 109.53 626.78 2278.61 3 498.84 2779.50 2144.59

2000 1 15.66 0.25 29.98 0.85 39.78
2 42.57 203.66 192.66
3 117.48 915.58 908.20
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stocks with 𝛽 ≤ 0.18 and MktCap ≤ 4.57. The portfolio P1,2 contains stocks with
𝛽 ≤ 0.18 and 4.57 ≤ MktCap ≤ 12.36. Portfolio P1,3 holds stocks with 𝛽 ≤ 0.18 and
12.36 ≤ MktCap ≤ 35.38. Finally, the low-𝛽 and high-MktCap portfolio (P1,4) holds
stocks with 𝛽 ≤ 0.18 and MktCap ≥ 35.38.

Turning to the second 𝛽-based group of stocks, we see that this group contains
stocks with 0.18 ≤ 𝛽 ≤ 0.66. Within this group, the MktCap breakpoints are 12.49,
39.76, and 142.60. Thus, for example, the portfolio P2,3, which corresponds to
stocks with 𝛽s between the 30th and 70th 𝛽 percentiles and MktCaps between
the 50th and 75th MktCap percentiles, holds stocks with 0.18 ≤ 𝛽 ≤ 0.66 and
39.76 ≤ MktCap ≤ 142.60. Notice that the MktCap breakpoints are very different in
the second 𝛽 group than in the first 𝛽 group. This is the ramification of performing
a dependent sort. Finally, in the third 𝛽 group, the MktCap breakpoints are 25.31,
126.79, and 796.57. The increasing MktCap breakpoints across the different groups
of 𝛽 are a manifestation of the positive correlation between 𝛽 and MktCap.

5.3.2 Portfolio Formation

Portfolio formation for the dependent-sort analysis proceeds as one would expect
given the procedure for calculating the breakpoints. Each time period t, all entities in
the sample are first sorted into groups based on the breakpoints calculated using the
first sort variable X1. Each of those groups is then sorted into portfolios based on the
conditional breakpoints of the second sort variable, X2. In general, we can describe
the portfolio holding stocks in group j of the first sort variable X1 and group k of the
second sort variable X2 as

Pj,k,t = {i|B1j−1,t ≤ X1i,t < B1j,t} ∩ {i|B2j,k−1,t ≤ X2i,t < B2j,k,t} (5.21)

for j ∈ {1, 2, … , nP1}, k ∈ {1, 2, … , nP2}. As with the independent-sort analysis,
the result is that all entities in the sample for each period t are placed into one of
nP1 × nP2 portfolios. When the sample used to calculate the breakpoints is the same
as the sample that is sorted into portfolios, the percentage of entities in any given
portfolio is easily calculated from the percentiles used to calculate the breakpoints.
This does not hold when the breakpoints sample is not identical to the sample that is
used to form the portfolios.

Table 5.21 presents the number of stocks in each of the portfolio for each year t
during our sample period. Notice that for each year t and within each 𝛽 group, each
of the MktCap portfolios has approximately 25% of the stocks. This is because we
chose to use quartile breakpoints. There are two reasons that the number of stocks
in each portfolio is not exactly 25% of the number of stocks in the given 𝛽 group.
The first is that the number of stocks in the given 𝛽 group may not be divisible by
four. The second is that when a stock has a value of a certain variable that is exactly
equal to one of the breakpoints, it gets put in more than one portfolio. These issues
are very minor, however. If these issues have a substantial impact on the conclusions
drawn from the portfolio analysis, it means that the number of stocks (or entities in
the general sense) in each portfolio is too small and that either the breakpoints must
be adjusted or there are simply too few stocks (or entities) in the sample to effectively
conduct a bivariate portfolio analysis.
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TABLE 5.21 Bivariate Dependent-Sort Number of Stocks per Portfolio
This table presents the number of stocks in each of the 12 portfolios formed by sorting depen-
dently into three 𝛽 groups and then into four MktCap groups. The columns labeled t indicate
the year of portfolio formation. The columns labeled 𝛽 1, 𝛽 2, and 𝛽 3 indicate the 𝛽 group.
The rows labeled MktCap 1, MktCap 2, MktCap 3, and MktCap 4 indicate the MktCap groups.

t 𝛽 1 𝛽 2 𝛽 3 t 𝛽 1 𝛽 2 𝛽 3

1988 MktCap 1 426 568 426 1998 MktCap 1 496 661 495
MktCap 2 426 569 426 MktCap 2 496 660 496
MktCap 3 427 568 426 MktCap 3 496 660 495
MktCap 4 426 569 427 MktCap 4 496 661 495

1989 MktCap 1 414 551 414 1999 MktCap 1 457 609 457
MktCap 2 413 551 413 MktCap 2 457 608 456
MktCap 3 413 551 413 MktCap 3 456 608 457
MktCap 4 414 552 414 MktCap 4 457 609 457

1990 MktCap 1 406 540 406 2000 MktCap 1 442 589 442
MktCap 2 405 540 406 MktCap 2 441 589 442
MktCap 3 406 540 405 MktCap 3 442 589 441
MktCap 4 406 540 405 MktCap 4 442 589 442

1991 MktCap 1 398 530 398 2001 MktCap 1 413 551 413
MktCap 2 397 530 397 MktCap 2 413 550 412
MktCap 3 397 530 397 MktCap 3 413 550 413
MktCap 4 398 530 398 MktCap 4 413 551 413

1992 MktCap 1 404 538 404 2002 MktCap 1 382 509 382
MktCap 2 404 538 404 MktCap 2 381 508 381
MktCap 3 404 538 403 MktCap 3 381 508 381
MktCap 4 404 539 404 MktCap 4 382 509 382

1993 MktCap 1 425 567 425 2003 MktCap 1 355 473 355
MktCap 2 425 567 425 MktCap 2 355 472 355
MktCap 3 425 565 425 MktCap 3 355 473 355
MktCap 4 425 567 425 MktCap 4 355 474 354

1994 MktCap 1 461 615 462 2004 MktCap 1 343 457 343
MktCap 2 462 614 462 MktCap 2 343 457 343
MktCap 3 462 614 460 MktCap 3 343 457 343
MktCap 4 462 615 462 MktCap 4 343 457 343

1995 MktCap 1 472 629 472 2005 MktCap 1 337 450 337
MktCap 2 471 628 471 MktCap 2 337 449 337
MktCap 3 471 628 471 MktCap 3 337 448 337
MktCap 4 472 629 472 MktCap 4 337 450 337

1996 MktCap 1 494 658 494 2006 MktCap 1 334 444 334
MktCap 2 494 658 493 MktCap 2 334 445 333
MktCap 3 494 658 494 MktCap 3 334 446 334
MktCap 4 494 658 494 MktCap 4 334 446 334

1997 MktCap 1 514 686 515 2007 MktCap 1 325 432 325
MktCap 2 515 687 515 MktCap 2 325 434 325
MktCap 3 515 686 514 MktCap 3 325 432 325
MktCap 4 515 685 515 MktCap 4 325 434 325

(continued)
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TABLE 5.21 (Continued)

t 𝛽 1 𝛽 2 𝛽 3 t 𝛽 1 𝛽 2 𝛽 3

2008 MktCap 1 320 426 320 2011 MktCap 1 276 368 277
MktCap 2 320 426 319 MktCap 2 277 368 276
MktCap 3 319 426 320 MktCap 3 277 368 275
MktCap 4 320 426 320 MktCap 4 276 368 277

2009 MktCap 1 298 398 298 2012 MktCap 1 266 354 266
MktCap 2 299 396 298 MktCap 2 266 355 266
MktCap 3 298 398 298 MktCap 3 266 355 266
MktCap 4 299 397 299 MktCap 4 266 354 266

2010 MktCap 1 285 381 286
MktCap 2 285 380 285
MktCap 3 286 380 284
MktCap 4 286 381 286

5.3.3 Average Portfolio Values

After the portfolios have been created, the next step is to calculate, for each time
period t, the average value of the dependent variable Y for each of the portfolios.
For each of the nP1 × nP2 portfolios, the procedure for calculating the average depen-
dent variable value is identical to the procedure in the independent-sort analysis (see
equation (5.13)). Similarly, calculation of the difference in averages between group
nP2 and group one of the second sort variable, for each of the groups of the first sort
variable (Yj, Diff , t, equation (5.14)), as well as the calculation of the average port-

folio value for each X2 group across all X1 groups (YA𝑣g,k,t, equation (5.17)), for
k ∈ {1, 2, … , nP2,Diff }, remain unchanged.

The only difference between the dependent-sort analysis and the independent-sort
analysis is that, in dependent-sort analysis, we do not calculate the differences in
mean values between groups nP1 and group one of the first sort variable X1 (equation
(5.15)). The reason for this is that the dependent-sort analysis is only designed to
assess the relation between the second sort variable X2 and the outcome variable Y .
The conditional nature of the portfolio formation procedure leads to uncertain inter-
pretation of the difference in average Y values between portfolio nP1 and portfolio one
of the first sort variable X1 for a given group of X2. The one exception to this rule
is the difference in differences portfolio, which can be used to detect differences in
the relation between X2 and Y for entities with different levels of X1. We are also not
interested in the average portfolio within each of the groups of the first sort variable
(equation (5.16)).

The average one-year-ahead future excess returns for each of the portfolios in
our example bivariate dependent-sort analysis are presented in Table 5.22. While the
numbers are different from those of the independent-sort analysis, the discussion of
these results would be similar to the previous discussion in Section 5.2.3. Further
discussion is not necessary. We present these results so that the reader attempting to
replicate the analysis has a reference point.
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TABLE 5.22 Bivariate Dependent-Sort Mean Values
This table presents the equal-weighted excess returns for each of the 12 portfolios formed by
sorting all stocks in the sample into three 𝛽 groups and then, within each of the 𝛽 groups, into
four MktCap groups. The columns labeled t∕t + 1 indicate the year of portfolio formation (t)
and the portfolio holding period (t + 1). The columns labeled 𝛽 1, 𝛽 2, 𝛽 3, and 𝛽 Avg indicate
the 𝛽 groups. The rows labeled MktCap 1, MktCap 2, MktCap 3, MktCap 4, and MktCap Diff
indicate the MktCap groups.

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Avg

1988/1989 MktCap 1 −3.02 −0.24 −3.63 −2.29
MktCap 2 3.22 −1.67 1.44 1.00
MktCap 3 −0.91 3.96 12.38 5.14
MktCap 4 5.75 13.61 19.98 13.11
MktCap Diff 8.77 13.84 23.61 15.41

1989/1990 MktCap 1 −20.67 −32.48 −27.18 −26.78
MktCap 2 −34.95 −38.05 −33.72 −35.58
MktCap 3 −31.57 −30.87 −25.74 −29.39
MktCap 4 −27.67 −19.88 −15.97 −21.17
MktCap Diff −7.00 12.60 11.21 5.60

1990/1991 MktCap 1 75.86 57.12 86.67 73.22
MktCap 2 32.31 47.48 63.18 47.66
MktCap 3 35.88 41.68 51.85 43.14
MktCap 4 20.89 28.56 39.91 29.79
MktCap Diff −54.97 −28.57 −46.75 −43.43

1991/1992 MktCap 1 78.25 38.34 37.76 51.45
MktCap 2 31.13 23.22 10.40 21.58
MktCap 3 24.36 18.48 11.07 17.97
MktCap 4 24.93 14.20 8.67 15.94
MktCap Diff −53.31 −24.14 −29.09 −35.51

1992/1993 MktCap 1 45.88 42.00 25.77 37.89
MktCap 2 31.54 23.36 7.28 20.73
MktCap 3 21.03 15.09 9.93 15.35
MktCap 4 17.84 11.34 12.12 13.77
MktCap Diff −28.04 −30.67 −13.65 −24.12

1993/1994 MktCap 1 1.63 −1.48 −8.00 −2.62
MktCap 2 −6.68 −4.60 −10.08 −7.12
MktCap 3 −9.21 −4.70 −7.91 −7.28
MktCap 4 −5.38 −6.10 −5.52 −5.66
MktCap Diff −7.00 −4.62 2.49 −3.05

1994/1995 MktCap 1 28.15 27.40 30.11 28.55
MktCap 2 27.43 36.11 33.51 32.35
MktCap 3 24.75 24.16 22.22 23.71
MktCap 4 21.69 25.31 27.22 24.74
MktCap Diff −6.46 −2.09 −2.89 −3.82

1995/1996 MktCap 1 34.29 13.58 13.95 20.61
MktCap 2 13.10 12.84 10.80 12.25
MktCap 3 11.36 18.16 2.11 10.54
MktCap 4 20.16 14.54 12.97 15.89
MktCap Diff −14.13 0.96 −0.98 −4.72

(continued)
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TABLE 5.22 (Continued)

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Avg

1996/1997 MktCap 1 26.75 16.86 2.99 15.53
MktCap 2 31.27 21.71 −2.49 16.83
MktCap 3 33.86 25.86 1.50 20.40
MktCap 4 30.37 22.93 17.32 23.54
MktCap Diff 3.63 6.08 14.33 8.01

1997/1998 MktCap 1 −2.22 −8.19 −16.45 −8.95
MktCap 2 −12.88 −13.97 −6.83 −11.23
MktCap 3 −11.64 −6.85 −10.62 −9.71
MktCap 4 −4.84 −2.75 14.63 2.34
MktCap Diff −2.63 5.44 31.08 11.30

1998/1999 MktCap 1 43.73 59.50 93.85 65.69
MktCap 2 18.83 42.90 70.65 44.13
MktCap 3 4.90 11.46 53.39 23.25
MktCap 4 −10.56 −4.72 37.46 7.39
MktCap Diff −54.29 −64.21 −56.39 −58.30

1999/2000 MktCap 1 −4.05 −13.45 −31.33 −16.28
MktCap 2 −7.70 −8.89 −13.70 −10.10
MktCap 3 −11.01 5.20 −10.31 −5.37
MktCap 4 −0.19 13.59 −8.62 1.59
MktCap Diff 3.86 27.04 22.71 17.87

2000/2001 MktCap 1 42.66 49.62 16.59 36.29
MktCap 2 35.91 45.46 −3.51 25.95
MktCap 3 31.95 12.97 3.05 15.99
MktCap 4 14.93 2.80 −23.98 −2.08
MktCap Diff −27.73 −46.82 −40.57 −38.37

2001/2002 MktCap 1 7.86 −6.53 −34.32 −10.99
MktCap 2 7.17 −9.37 −44.22 −15.47
MktCap 3 16.93 −9.66 −42.12 −11.62
MktCap 4 −0.45 −8.74 −37.27 −15.49
MktCap Diff −8.31 −2.21 −2.95 −4.49

2002/2003 MktCap 1 126.16 126.13 130.07 127.45
MktCap 2 83.70 77.30 76.57 79.19
MktCap 3 60.81 38.73 56.68 52.08
MktCap 4 44.81 30.37 44.05 39.74
MktCap Diff −81.35 −95.76 −86.01 −87.71

2003/2004 MktCap 1 35.21 21.61 10.52 22.45
MktCap 2 25.11 17.13 7.53 16.59
MktCap 3 22.03 24.40 8.80 18.41
MktCap 4 20.05 19.33 10.48 16.62
MktCap Diff −15.15 −2.28 −0.05 −5.83
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TABLE 5.22 (Continued)

t∕t + 1 𝛽 1 𝛽 2 𝛽 3 𝛽 Avg

2004/2005 MktCap 1 3.31 0.26 −15.96 −4.13
MktCap 2 1.76 1.13 −0.99 0.64
MktCap 3 5.06 5.89 0.06 3.67
MktCap 4 5.28 8.37 3.59 5.75
MktCap Diff 1.97 8.12 19.55 9.88

2005/2006 MktCap 1 16.66 14.56 8.44 13.22
MktCap 2 11.25 8.20 12.91 10.79
MktCap 3 7.71 12.13 9.98 9.94
MktCap 4 17.20 8.79 8.22 11.40
MktCap Diff 0.53 −5.77 −0.22 −1.82

2006/2007 MktCap 1 −11.31 −11.33 −13.36 −12.00
MktCap 2 −12.62 −13.25 −9.96 −11.94
MktCap 3 −15.20 −4.46 −2.81 −7.49
MktCap 4 −5.24 −0.24 8.37 0.96
MktCap Diff 6.07 11.09 21.74 12.97

2007/2008 MktCap 1 −45.41 −51.23 −47.10 −47.91
MktCap 2 −46.82 −37.86 −37.19 −40.62
MktCap 3 −45.96 −33.62 −38.36 −39.31
MktCap 4 −34.59 −35.08 −50.46 −40.05
MktCap Diff 10.82 16.15 −3.36 7.87

2008/2009 MktCap 1 144.10 115.09 112.15 123.78
MktCap 2 66.00 39.84 52.92 52.92
MktCap 3 37.20 33.54 49.62 40.12
MktCap 4 18.80 31.57 48.88 33.09
MktCap Diff −125.30 −83.52 −63.27 −90.69

2009/2010 MktCap 1 21.77 31.15 38.62 30.51
MktCap 2 22.93 24.74 32.02 26.56
MktCap 3 20.63 25.66 36.43 27.58
MktCap 4 16.79 21.93 28.51 22.41
MktCap Diff −4.97 −9.22 −10.11 −8.10

2010/2011 MktCap 1 −10.16 −14.32 −19.46 −14.64
MktCap 2 −7.71 −4.01 −12.26 −7.99
MktCap 3 −5.92 0.35 −7.94 −4.50
MktCap 4 8.45 2.10 −10.49 0.02
MktCap Diff 18.61 16.42 8.97 14.67

2011/2012 MktCap 1 32.28 18.52 14.59 21.80
MktCap 2 23.86 13.74 18.93 18.85
MktCap 3 29.16 17.57 19.85 22.19
MktCap 4 13.06 19.13 18.04 16.74
MktCap Diff −19.22 0.62 3.44 −5.05
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5.3.4 Summarizing the Results

The procedure for summarizing the results for each of the time series of portfolio
average values in a bivariate dependent-sort portfolio analysis is identical to that
for univariate portfolio analysis and bivariate independent-sort portfolio analysis,
described in Sections 5.1.4 and 5.2.4, respectively. For each portfolio, the time-series
mean and inferential statistics are calculated. If the outcome variable Y is a return vari-
able, then risk-adjustment may be performed. The Newey and West (1987) adjustment
is usually employed.

The summarized results for our example are presented in Table 5.23. As with
the bivariate independent-sort analysis, we present results for only the average
one-year-ahead excess portfolio returns, risk-adjusted alphas using the FFC model,
and the corresponding t-statistics, which are adjusted following Newey and West
(1987) using six lags. For reasons discussed earlier, in a dependent-sort portfolio
analysis, results for the average MktCap portfolio, as well as the 𝛽 difference
portfolios, are not calculated.

5.3.5 Interpreting the Results

The main difference in the interpretation of the bivariate dependent-sort portfolio
analysis is that the only relation we are interested in understanding is the relation

TABLE 5.23 Bivariate Dependent-Sort Portfolio Results Risk-Adjusted Summary
This table presents the results of a bivariate dependent-sort portfolio analysis of the relation
between MktCap and future stock returns after controlling for 𝛽.

Coefficient 𝛽 1 𝛽 2 𝛽 3 𝛽 Avg
MktCap 1 Excess return 27.82 20.52 16.89 21.74

(7.29) (6.18) (5.56) (6.95)
FFC 𝛼 21.91 12.30 6.83 13.68

(7.49) (5.44) (2.09) (5.08)
MktCap 2 Excess return 14.05 12.65 9.30 12.00

(4.82) (4.05) (5.06) (5.34)
FFC 𝛼 4.39 0.73 −1.84 1.09

(2.45) (0.29) (−1.35) (0.91)
MktCap 3 Excess return 10.67 10.21 8.46 9.78

(3.62) (6.21) (4.87) (6.20)
FFC 𝛼 0.24 1.10 −0.54 0.27

(0.09) (1.75) (−0.37) (0.42)
MktCap 4 Excess return 8.84 8.79 8.67 8.77

(4.17) (6.55) (3.46) (5.62)
FFC 𝛼 0.31 1.51 −0.45 0.46

(0.17) (2.35) (−0.33) (1.33)
MktCap Diff Excess return −18.98 −11.73 −8.22 −12.98

(−6.08) (−3.74) (−2.66) (−4.50)
FFC 𝛼 −21.60 −10.79 −7.27 −13.22

(−5.74) (−4.26) (−3.00) (−4.87)
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between X2 and Y after controlling for X1. Interpretation of the results therefore will
focus on the difference portfolios for the second sort variable. Statistically significant
differences indicate a cross-sectional relation between X2 and Y after controlling for
X1. Otherwise, interpretation of the results of the bivariate dependent-sort portfolio
analysis is similar to that for the bivariate independent-sort portfolio analysis.

Examination of the results in Table 5.23 indicates that there is a strong negative
cross-sectional relation between MktCap and future portfolio returns, as within each 𝛽
group, the difference in returns between the portfolio comprised high-MktCap stocks
and that of low-MktCap stocks is negative, economically large, and highly statistically
significant. These results persist after adjusting for risk using the FFC risk model. The
abnormal returns relative to the FFC model are driven by the low-MktCap portfolios,
as the alphas of low-MktCap portfolio (MktCap 1) are statistically significant, but this
is not the case for the second, third, and fourth MktCap portfolios (with two excep-
tions). Thus, it can be seen that, in this case, the results of the bivariate dependent-sort
portfolio analysis are qualitatively the same as those of the independent-sort analysis
discussed in Section 5.2.4. While it is usually the case that both types of bivariate-sort
analyses produce similar results, this is not necessarily the case. Thus, it is standard
to check the robustness of any results using both sorting methodologies.

5.3.6 Presenting the Results

The presentation of the results of bivariate dependent-sort portfolio analysis is basi-
cally identical to that of the independent-sort analysis, except that results for the X1
difference portfolios and X2 average portfolios are not presented. The reason for this
is that, as discussed earlier, the objective of the dependent-sort analysis is to examine
the relation between X2 and Y after controlling for X1. The excluded portfolios are of
no use in assessing this relation. Due to the similarities between the presentation of the
results for bivariate independent-sort portfolio analyses and bivariate dependent-sort
analyses, we describe only briefly the different presentation styles for dependent-sort
results. For completeness, however, we present the results of analyses analogous to all
results presented in Section 5.2.6. Of course, in this section, the results are different
because they are generated by dependent-sort, not independent-sort, analyses.

In Table 5.24, we present the average return for each of the 12 portfolios formed
by sorting on 𝛽 and then MktCap, as well as for the average 𝛽 portfolio within each
MktCap group. At the bottom of the table, we present average excess returns and
FFC alphas for the MktCap difference portfolios, along with the associated Newey
and West (1987) adjusted t-statistics. The results indicate that the negative relation
between MktCap and future stock returns persists after controlling for 𝛽. The relation
is strong within each of the 𝛽 groups.

Notice that in Table 5.24, for MktCap groups one through four, we presented only
the average excess returns, not the FFC alphas, as was done in Table 5.15. Presenting
the excess returns for all portfolios and FFC alphas for only the difference portfolios
is a common approach. The reason for this is that, if the excess returns do not exhibit
a pattern across the different groups of X2 (MktCap in this case), then there is usually
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TABLE 5.24 Bivariate Dependent-Sort Portfolio Results
This table presents the average abnormal returns relative to the FFC model
for portfolios sorted dependently into three 𝛽 groups and then, within each
of the 𝛽 groups, into four MktCap groups. The breakpoints for the 𝛽 port-
folios are the 30th and 70th percentiles. The breakpoints for the MktCap
portfolios are the 25th, 50th, and 75th percentiles. Table values indicate
the alpha relative to the FFC model with the corresponding t-statistics in
parentheses.

𝛽 1 𝛽 2 𝛽 3 𝛽 Avg
MktCap 1 27.82 20.52 16.89 21.74
MktCap 2 14.05 12.65 9.30 12.00
MktCap 3 10.67 10.21 8.46 9.78
MktCap 4 8.84 8.79 8.67 8.77
MktCap 4-1 −18.98 −11.73 −8.22 −12.98

(−6.08) (−3.74) (−2.66) (−4.50)
FFC 𝛼 −21.60 −10.79 −7.27 −13.22

(−5.74) (−4.26) (−3.00) (−4.87)

little need to risk-adjust the returns. While it is possible that there is no significant
pattern in returns but a significant pattern emerges after adjusting for risk, this sort of
result is rare.

The results in Table 5.25 show the results of bivariate dependent-sort analyses of
the relation between MktCap and future stock returns after controlling for each of
𝛽 and BM. The table presents the average excess returns and FFC alphas for the
MktCap difference portfolio within each group of the control variable, which is
indicated in the first column of the table. The results indicate that the relation
between MktCap and future stock returns is strong after controlling for each of 𝛽
and BM. The results of the dependent-sort analyses are therefore similar, and lead to
the same conclusions, as the results of the corresponding independent-sort analyses
(see Table 5.16). The only exception to this is for the difference in differences
portfolios (column 3-1). The results indicate that the negative relation between
MktCap and future stock excess returns is much stronger for low-𝛽 stocks than for
high-𝛽 stocks as the average excess return of the difference in differences portfolio
is 10.77% per year with a corresponding t-statistic of 6.60. The FFC alpha for this
portfolio of 14.32% per year (t-statistic = 5.99) is even larger. On the other hand,
the negative relation between MktCap and future stock excess returns is stronger
in high-BM stocks than in low-BM stocks because the difference in differences
portfolio generates an average return of −15.18% per year (t-statistic = −8.17) and
alpha of −23.76% per year (t-statistic = −6.86).

In Table 5.26, we present the excess return and FFC alpha for average portfolio
across all groups of the control variable within each group of MktCap. These results
help show that the strong negative relation between MktCap and future stock returns
is driven mostly by stocks with low values of MktCap. The results are qualitatively
similar to those from the independent-sort analyses (Table 5.17).
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TABLE 5.25 Bivariate Dependent-Sort Portfolio Results—Differences
This table presents the average abnormal returns relative to the FFC model for long–short
zero-cost portfolios that are long stocks in the highest quartile of MktCap and short stocks in
the lowest quartile of MktCap. The portfolios are formed by sorting all stocks independently
into groups based on 𝛽 and MktCap. The breakpoints used to form the 𝛽 groups are the 30th
and 70th percentiles of 𝛽. Table values indicate the alpha relative to the FFC model with the
corresponding t-statistics in parentheses.

Control Coefficient 1 2 3 Avg 3-1

𝛽 Excess return −18.98 −11.73 −8.22 −12.98 10.77
(−6.08) (−3.74) (−2.66) (−4.50) (6.60)

FFC 𝛼 −21.60 −10.79 −7.27 −13.22 14.32
(−5.74) (−4.26) (−3.00) (−4.87) (5.99)

BM Excess return −6.79 −10.31 −21.98 −13.03 −15.18
(−2.01) (−3.10) (−7.04) (−4.19) (−8.17)

FFC 𝛼 −4.26 −9.05 −28.02 −13.77 −23.76
(−1.64) (−2.81) (−8.06) (−5.59) (−6.86)

TABLE 5.26 Bivariate Dependent-Sort Portfolio Results—Averages
This table presents the average abnormal returns relative to the FFC model for portfolios
formed by sorting independently on 𝛽 and MktCap. The table shows the portfolio FFC alphas
and the associated Newey and West (1987)-adjusted t-statistics calculated using six lags (in
parentheses) for the average 𝛽 group within each group of MktCap.

Control Coefficient MktCap 1 MktCap 2 MktCap 3 MktCap 4 MktCap 4-1

𝛽 Excess return 21.74 12.00 9.78 8.77 −12.98
(6.95) (5.34) (6.20) (5.62) (−4.50)

FFC 𝛼 13.68 1.09 0.27 0.46 −13.22
(5.08) (0.91) (0.42) (1.33) (−4.87)

BM Excess return 22.01 12.78 10.06 8.99 −13.03
(6.84) (6.27) (6.66) (6.62) (−4.19)

FFC 𝛼 14.64 3.48 0.54 0.87 −13.77
(5.45) (2.47) (1.29) (2.00) (−5.59)

In Table 5.27, we present results of bivariate dependent-sort portfolio analyses of
the relation between future stock returns and each of MktCap and BM after controlling
for 𝛽. The table shows the average excess returns and FFC alphas for the MktCap and
BM difference portfolios within each 𝛽 group. Consistent with the independent-sort
analyses (Table 5.18), the negative relation between MktCap and future stock returns
and the positive relation between BM and future stock returns are both strong when
using dependent-sort analyses. The strength of the positive relation between BM and
future stock returns appears to be quite similar for stocks with high and low 𝛽s because
the difference in differences portfolio (𝛽 3-1 column) generates statistically insignif-
icant average excess returns and alpha.
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TABLE 5.27 Bivariate Dependent-Sort Portfolio Results—Differences
This table presents the average excess returns and FFC alphas for portfolios formed by sort-
ing independently on 𝛽 and a second sort variable, which is either MktCap or BM. The table
shows the average excess returns and FFC alphas, along with the associated Newey and
West (1987)-adjusted t-statistics calculated using six lags (in parentheses), for the difference
between the portfolios with high and low values of the second sort variable (MktCap or BM).
The first column indicates the second sort variable. The remaining columns correspond to dif-
ferent 𝛽 groups, as indicated in the header.

Sort Variable Coefficient 𝛽 1 𝛽 2 𝛽 3 𝛽 Avg 𝛽 3-1

MktCap Excess return −18.98 −11.73 −8.22 −12.98 10.77
(−6.08) (−3.74) (−2.66) (−4.50) (6.60)

FFC 𝛼 −21.60 −10.79 −7.27 −13.22 14.32
(−5.74) (−4.26) (−3.00) (−4.87) (5.99)

BM Excess return 12.33 9.29 9.84 10.48 −2.49
(4.72) (3.21) (3.77) (5.27) (−1.09)

FFC 𝛼 12.38 6.82 7.38 8.86 −5.00
(5.54) (2.07) (2.25) (3.45) (−1.46)

TABLE 5.28 Bivariate Dependent-Sort Portfolio Results—Averages
This table presents the average excess returns and FFC alphas for portfolios formed by sort-
ing independently on 𝛽 and a second sort variable, which is either MktCap or BM. The table
shows the average excess returns and FFC alphas, along with the associated Newey and
West (1987)-adjusted t-statistics calculated using six lags (in parentheses), for the difference
between the portfolios with high and low values of the second sort variable (MktCap or BM).
The first column indicates the second sort variable. The remaining columns correspond to dif-
ferent 𝛽 groups, as indicated in the header.

Sort Variable Coefficient 1 2 3 4 4-1

MktCap Excess return 21.74 12.00 9.78 8.77 −12.98
(6.95) (5.34) (6.20) (5.62) (−4.50)

FFC 𝛼 13.68 1.09 0.27 0.46 −13.22
(5.08) (0.91) (0.42) (1.33) (−4.87)

BM Excess return 8.63 11.93 13.89 19.11 10.48
(4.98) (7.38) (8.09) (7.68) (5.27)

FFC 𝛼 0.97 3.80 4.85 9.83 8.86
(0.59) (3.23) (4.47) (5.34) (3.45)

Finally, in Table 5.28, we present the results of the same bivariate dependent-sort
portfolio analyses whose results were presented in Table 5.27. In Table 5.28, however,
we show the results for the average 𝛽 portfolio within each of the different groups of
MktCap and BM. The columns labeled 1, 2, 3, 4, and 4-1 indicate the MktCap or BM
group for which the average 𝛽 portfolio results are shown. The results in the column
labeled 4-1 demonstrate that the negative relation between MktCap and future stock
returns as well as the positive relation between BM and future stock returns, both
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persist after controlling for 𝛽. These results are qualitatively similar to those of the
independent-sort analyses (Table 5.19).

In summary, our examples show that the results of bivariate independent-sort and
dependent-sort portfolio analyses produce similar results. While this will usually be
the case, it is not necessarily so. It is therefore a good idea to perform both sets of
analyses. If the results of the independent-sort and dependent-sort analyses lead to
substantially different conclusions, then further investigation is warranted.

5.4 INDEPENDENT VERSUS DEPENDENT SORT

Having separately presented the bivariate independent-sort and dependent-sort port-
folio methodologies, we proceed to a comparison of the two sorting procedures.
While in most cases both sorting procedures produce qualitatively similar results,
this is not always the case, and when it is not the case, it is important to understand
what may be driving the difference. As mentioned previously, the most salient dif-
ference between the two types of bivariate portfolio analyses is that dependent-sort
analysis can only be used to examine the relation between the second sort variable,
X2, and the outcome variable, Y , after controlling for X1. Independent-sort analysis
permits examination of this relation, as well as the relation between X1 and Y , con-
trolling for X2. Our discussion therefore focuses on differences in the examination of
the relation between X2 and Y after controlling for X1, as investigation of this relation
is common to both types of sorts. We exemplify the differences between the sorting
procedures using the analyses that take 𝛽 to be the first sort variable and MktCap to
be the second sort variable.

When using the independent-sort procedure, each of the sorts is an unconditional
sort, meaning that the sort on X2 (MktCap in our example) is performed on all enti-
ties regardless of the value of X1 (𝛽 in our example). As a result, any given portfolio
Pj,k,t contains the set of entities that fall into the jth group based on sort variable X1
and the kth unconditional group based on sort variable X2. For example, stocks in the
low-𝛽 and low-MktCap portfolio represent stocks that have both unconditionally low
values of 𝛽 and, more importantly, unconditionally low values of MktCap. Similarly,
stocks in the low-𝛽 and high-MktCap portfolio have unconditionally low values of
𝛽 and, more importantly, unconditionally high values of MktCap. Thus, when tak-
ing the difference in returns between the high-MktCap portfolio and the low-MktCap
portfolio, we are comparing average returns for stocks with unconditionally high val-
ues of MktCap and stocks with unconditionally low values of MktCap, among only
stocks with low values of 𝛽. Similarly, when taking the difference in returns between
the high-MktCap and low-MktCap portfolios in the high-𝛽 group, the comparison is
once again between stocks with unconditionally high and low values of MktCap, this
time among only stocks with high values of 𝛽.

To see this, in Table 5.29 we present the average values of MktCap for each of the
12 portfolios generated by the bivariate independent-sort analysis. The results show
that, regardless of the level of 𝛽, the average values of MktCap within each MktCap
quartile are similar (a small exception may be found in the high-MktCap group).
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TABLE 5.29 Bivariate Independent-Sort Portfolio
Average MktCap
This table presents the average MktCap for portfolios
formed by sorting independently on 𝛽 and MktCap.

𝛽 1 𝛽 2 𝛽 3

MktCap 1 21 22 25
MktCap 2 85 110 117
MktCap 3 421 432 421
MktCap 4 8767 7427 6983

Thus, regardless of which 𝛽 group we are examining, the difference in average excess
returns between the high-MktCap and low-MktCap portfolios represents a difference
in average excess returns between stocks with unconditionally high values of MktCap
and unconditionally low values of MktCap. Despite the fact that we are, in some way,
controlling for the effect of 𝛽 (X1) when examining the relation between MktCap
(X2) and future stock returns (Y), the results of an independent-sort analysis must,
therefore, be interpreted as indicative of the unconditional relation between MktCap
(X2) and future excess stock returns (Y).

When using the dependent-sort methodology, the groupings on the second sort
variable are conditional on the values of the first sort variable. Thus, any given port-
folio Pj,k,t contains entities that fall into the jth group based on sort variable X1 and
the kth group based on sort variable X2 conditional on the entity having a value of
X1 that places it in the jth X1 group. To exemplify this, we begin by recalling that the
correlations presented in Table 3.3 and the portfolio analysis shown in Table 5.7 indi-
cate a strong positive cross-sectional relation between 𝛽 and MktCap. Thus, stocks
in the low-𝛽 group are likely to have low values of MktCap relative to the entire
sample. When performing the second sort within the low-𝛽 group, therefore, we are
effectively stratifying a group of stocks that are mostly low-MktCap stocks into condi-
tional levels of MktCap. Thus, the low-𝛽 and low-MktCap portfolio is likely to contain
stocks with very low values of MktCap. The low-𝛽 and high-MktCap portfolio con-
tains stocks with the highest values of MktCap among (conditional on) low-𝛽 stocks,
but these values of MktCap may actually be quite low relative to the entire sample
because the low-𝛽 group contains predominantly low MktCap stocks. Thus, when
we calculate the difference in average excess returns between the high-MktCap and
low-MktCap portfolios within the low-𝛽 group, we are effectively comparing stocks
with conditionally high values of MktCap to stocks with conditionally low values of
MktCap, with 𝛽 being the conditioning variable. The same can be said for any of the
groups of 𝛽 (X1).

In Table 5.30, we present the average values of MktCap for each of the portfo-
lios formed using the dependent-sort methodology. The results are exactly as would
be expected. Stocks in the low-𝛽 and high-MktCap portfolio have high values of
MktCap relative to other stocks with low values of 𝛽, but unconditionally, the aver-
age MktCap of these stocks is not as high as the average MktCap of stocks in the
high-MktCap portfolios within groups two and three of 𝛽 are much higher. Similarly,
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TABLE 5.30 Bivariate Dependent-Sort Portfolio
Average MktCap
This table presents the average MktCap for portfo-
lios formed by sorting dependently on 𝛽 and then on
MktCap.

𝛽 1 𝛽 2 𝛽 3

MktCap 1 10 44 76
MktCap 2 29 202 237
MktCap 3 69 726 689
MktCap 4 3974 9523 9008

the high-𝛽 and low-MktCap portfolio contains stocks with conditionally low values
of MktCap, but unconditionally, these stocks do not have low MktCap, especially
compared to the low-MktCap portfolios for the first and second 𝛽 groups. The results
of a dependent-sort analysis are therefore indicative of the relation between MktCap
(X2) and future stock excess returns (Y), conditional on 𝛽 (X1).

In summary, while both independent-sort and dependent-sort analyses control for
the effect of one sort variable (X1) while examining the relation between the other sort
variable (X2) and the outcome variable (Y), the method of controlling for the effect
of the first variable is different. Independent-sort analyses examine the unconditional
relation between X2 and Y , while dependent sorts examine the relation between X2
and Y conditional on X1.

5.5 TRIVARIATE-SORT ANALYSIS

While univariate-sort and bivariate-sort portfolio analyses are most common, some
researchers employ trivariate-sort portfolio analysis to assess the relations between
three sort variables and an outcome variable. As with the bivariate-sort analysis,
trivariate sorts can be independent or dependent in nature. In fact, it is possible
to make the second sort dependent on the first sort, but the third sort independent
of the second sort, or vice versa. The procedure for implementing a trivariate-sort
portfolio analysis can easily be inferred from the above discussions of bivariate
independent-sort and dependent-sort analyses, and thus will not be discussed in
detail here. Perhaps the main drawback of trivariate portfolio analyses is that, unless
the sample being used is very large or the number of breakpoints used in each sort
is low, the number of entities in each portfolio is likely to be quite small. This is
especially true when using independently sorted portfolios with sort variables that
exhibit substantial cross-sectional correlation.

5.6 SUMMARY

In summary, in this section, we have discussed the procedure for implementing
univariate-sort, bivariate dependent-sort, and bivariate independent-sort portfolio
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analyses. Univariate-sort analysis, as the name implies, examines the cross-sectional
relation between two variables. Bivariate-sort analyses examine the relation between
a given sort variable and the outcome variable after controlling for the effect of the
other sort variable. While the interpretation of the results of the different types of
bivariate-sort analyses differs slightly, in most cases, they lead to similar conclusions.
When the outcome variable represents a security return, then the average portfolio
values represent portfolio returns. In this case, it is usually appropriate to risk-adjust
the excess returns using a factor model.

REFERENCES

Ang, A. Asset Management: A Systematic Approach to Factor Investing. Oxford University
Press, Oxford, 2014.

Asparouhova, E., Bessembinder, H., and Kalcheva, I. 2013. Noisy prices and inference regard-
ing returns. Journal of Finance, 68(2), 665–714.

Carhart, M. M. 1997. On persistence in mutual fund performance. Journal of Finance, 52(1),
57–82.

Fama, E. F. and French, K. R. 1993. Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics, 33(1), 3–56.

Fama, E. F. and French, K. R. 2015. A five-factor asset pricing model. Journal of Financial
Economics, 116(1), 1–22.

Harvey, C. R., Liu, Y., and Zhu, H. 2015. … and the cross-section of expected returns. Review
of Financial Studies, forthcoming.

Hou, K., Xue, C., and Zhang, L. 2015. Digesting anomalies: an investment approach. Review
of Financial Studies, 28(3), 650–705.

Jegadeesh, N. and Titman, S. 1993. Returns to buying winners and selling losers: implications
for stock market efficiency. Journal of Finance, 48(1), 65–91.

Jensen, M. C. 1968. The performance of mutual funds in the period 1945–1964. Journal of
Finance, 23(2), 389–416.

Lintner, J. 1965. Security prices, risk, and maximal gains from diversification. Journal of
Finance, 20(4), 687–615.

Mossin, J. 1966. Equilibrium in a capital asset market. Econometrica, 34(4), 768–783.

Newey, W. K. and West, K. D. 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.

Patton, A. J. and Timmermann, A. 2010. Monotonicity in asset returns: new tests with applica-
tions to the term structure, the CAPM, and portfolio sorts. Journal of Financial Economics,
98(3), 605–625.

Sharpe, W. F. 1964. Capital asset prices: a theory of market equilibrium under conditions of
risk. Journal of Finance, 19(3), 425–442.



�

� �

�

6

FAMA AND MACBETH
REGRESSION ANALYSIS

In Chapter 5, we presented a technique, portfolio analysis, for examining the cross-
sectional relation between two variables. The major benefit of portfolio analysis is
that it is a nonparametric technique, meaning that it does not make any assumptions
about the nature of the relation between the variables under investigation. The draw-
back of portfolio analyses is that it is difficult to include a large set of controls when
examining the relation. (Fama and MacBeth 1973, FM hereafter) regression analysis
is an alternative statistical methodology designed to examine the relation between
pairs of variables. Unlike portfolio analysis, FM regression analysis allows us to con-
trol for a large set of other variables when examining the relation of interest. However,
doing so comes at a cost. The cost is that we must make assumptions about the nature
of the relation between the variables. In most cases, the assumption is that the rela-
tion of interest, as well as the relation between each control variable and the outcome
variable of interest, is linear.

In the remainder of this chapter, we present the FM regression technique and exem-
plify its implementation using the data from our methodology sample. Specifically,
we illustrate the FM regression technique using future excess stock returns (rt+1) as
the dependent variable, with the stock’s beta (𝛽), size (Size), and book-to-market ratio
(BM) as the independent variables. We use Size, which is the natural log of MktCap
(market capitalization in $millions), instead of MktCap, because the cross-sectional
distribution of MktCap makes it potentially problematic for use in regression analysis
(see Table 2.3 and the corresponding discussion in Section 2.2 for more details).

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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6.1 IMPLEMENTATION

FM regression analysis is implemented using a two-step procedure. The first step is to
run periodic cross-sectional regressions of the dependent variable of interest, which
we denote Y , on one or more independent variables X1, X2, etc., using data from each
time period t. Doing so produces slope coefficients, as well as an intercept coefficient
(assuming that a constant term was included in the regression specification), on each
independent variable for each period. The second step is to analyze the time series
of each of the regression coefficients to determine whether the average coefficient
differs from zero.1

6.1.1 Periodic Cross-Sectional Regressions

The first step in the FM regression technique is to run a cross-sectional regression of
the dependent variable Y on the independent variables X1, X2, etc. In most cases, the
cross-sectional regressions will include an intercept term. Thus, our cross-sectional
regression specification is

Yi,t = 𝛿0,t + 𝛿1,tX1i,t + 𝛿2,tX2i,t + · · · + 𝜖i,t. (6.1)

The independent variables are usually winsorized to ensure that a small number of
extreme independent variable values do not have a large effect on the results of the
regression. In some cases, the dependent variable is also winsorized. When the depen-
dent variable is a security return or excess return, this variable is usually not win-
sorized. In most other cases, it is common to winsorize the dependent variable.

The result is a time series of intercept and slope coefficients 𝛿0,t, 𝛿1,t, 𝛿2,t, etc. Each
time period will also produce regression statistics such as the R-squared, adjusted
R-squared, and number of observations used in the regression. We denote these values
from the cross-sectional regression for period t as R2

t , Adj. R2
t , and nt, respectively.

Before proceeding to an example, it is worth mentioning that the type of
cross-sectional regression used when implementing the FM regression procedure
need not be a standard ordinary-least-squares (OLS) regression. It is straightforward
to replace the OLS regression with a weighted-least-squares regression or even a
logistic regression or probit model if the dependent variable is binary.2 Multinomial
models are also possible. The procedure is therefore quite flexible and can be applied
to examine a wide array of economic phenomena.

1Pastor, Stambaugh, and Taylor (2015) show that for a univariate regression specification (one independent
variable), when the data being used form a balanced panel (same entities in each cross-section) and the
cross-sectional variance of the independent variable is constant across all time periods, the average slope
coefficient generated by FM regression analysis is identical to the slope coefficient generated by a panel
regression with time fixed effects.
2Asparouhova, Bessembinder, and Kalcheva (2010), Asparouhova, Bessembinder, and Kalcheva (2013)
demonstrate that microstructure issues can introduce bias into the results of OLS regression analyses when
the independent variables are cross-sectionally correlated with the amount of measurement noise and pro-
pose using weighted-least-squares to mollify this issue.
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We exemplify the FM regression technique using the methodology sample dis-
cussed in Section 1.1. We execute the methodology using four different regression
specifications. In all specifications, the dependent variable Y is the one-year-ahead
excess return of the given stock (rt+1). The first specification includes only beta (𝛽)
as an independent variable. The only independent variable in the second specifica-
tion is Size. The third specification takes BM as the lone independent variable. The
fourth specification includes all three variables, 𝛽, Size, and BM, as independent vari-
ables. Therefore, the full specification (the fourth specification) of our cross-sectional
regressions is

ri,t+1 = 𝛿0,t + 𝛿1,t𝛽i,t + 𝛿2,tSizei,t + 𝛿3,tBMi,t + 𝜖i,t+1. (6.2)

Table 6.1 presents the results of the annual cross-sectional regressions. Panel
A shows that for the specification using only 𝛽 as the independent variable, for
year t = 1988 (the year during which the independent variables are measured) and
t + 1 = 1989 (the year from which the excess return is calculated), the estimated inter-
cept coefficient (𝛿0,t) is 1.68 and the estimated slope on 𝛽 is 5.53 (𝛿1,t). The R-squared
from this regression is 0.17% (R2

t ) and the adjusted R-squared is 0.16% (Adj. R2
t ).

Finally, the number of observations used in this regression is 5646 (nt). Results of
the regressions using the first specification for each time period are presented in
Panel A. Results for specifications 2, 3, and 4 are shown in Panels B, C, and D,
respectively.

6.1.2 Average Cross-Sectional Regression Results

The second step of the FM regression procedure is to compute the time-series
averages of the periodic cross-sectional regression coefficients and other regression
results (R-squared, adjusted R-squared, and number of observations). When calcu-
lating the time-series averages of the regression coefficients, we want to examine
whether the average coefficient is statistically different than zero. Therefore, we
also calculate the standard errors and the associated t-statistics and p-values to test
the null hypothesis that the average coefficient is equal to zero. In most cases, the
standard errors are adjusted following Newey and West (1987).

The summarized results for our example regression specifications are presented in
Table 6.2. Standard errors, t-statistics, and p-values are calculated using the Newey
and West (1987) adjustment with six lags. The table shows that, for example, using
the specification that includes 𝛽, Size, and BM as independent variables (specifica-
tion (4)), the average value of the intercept coefficient (𝛿0) is 21.74 and its stan-
dard error is 4.58, giving a t-statistic of 4.75 and a p-value of very close to zero.
The average coefficient on 𝛽 (𝛿1) is 0.96 with a standard error of 1.68, t-statistic
of 0.57, and p-value of 0.57. For Size, the average coefficient (𝛿2) is −2.49 with a
standard error of 0.57, giving a t-statistic of −4.37 and a p-value close to zero. The
average coefficient on BM is 3.08 with a standard error, t-statistic, and p-value of
0.79, 3.89, and close to zero, respectively. The average R-squared (R2) and adjusted
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TABLE 6.1 Periodic FM Regression Results
This table presents the estimated intercept (𝛿0,t) and slope (𝛿1,t, 𝛿2,t, 𝛿3,t) coefficients, as well
as the values of R-squared (R2

t ), adjusted R-squared (Adj. R2
t ), and the number of observations

(nt) from annual cross-sectional regressions of one-year-ahead future stock excess return (rt+1)
on beta (𝛽), size (Size), and book-to-market ratio (BM). Panels A, B, and C present results for
univariate specifications using only 𝛽, Size, and BM, respectively, as the independent variable.
Panel D presents results from the multivariate specification using all three variables as indepen-
dent variables. All independent variables are winsorized at the 0.5% level on an annual basis
prior to running the regressions. The column labeled t∕t + 1 indicates the year during which
the independent variables were calculated (t) and the year from which the excess return, the
dependent variable, is taken (t + 1).

Panel A
ri,t+1 = 𝛿0,t + 𝛿1,t𝛽i,t + 𝜖i,t

t∕t + 1 𝛿0,t 𝛿1,t R2
t Adj. R2

t nt

1988/1989 1.68 5.53 0.002 0.002 5646
1989/1990 −29.52 2.28 0.001 0.000 5470
1990/1991 41.11 11.66 0.002 0.002 5360
1991/1992 36.36 −17.58 0.008 0.008 5265
1992/1993 28.09 −9.24 0.009 0.009 5353
1993/1994 −5.21 −0.52 0.000 −0.000 5634
1994/1995 25.42 2.87 0.001 0.000 6108
1995/1996 18.27 −5.41 0.004 0.004 6234
1996/1997 31.02 −17.29 0.024 0.024 6528
1997/1998 −9.34 4.41 0.001 0.001 6796
1998/1999 1.49 45.88 0.017 0.017 6520
1999/2000 −0.85 −14.61 0.010 0.010 6036
2000/2001 37.13 −24.58 0.028 0.028 5817
2001/2002 7.81 −27.26 0.114 0.114 5449
2002/2003 72.17 2.28 0.000 −0.000 5038
2003/2004 28.59 −13.70 0.018 0.018 4698
2004/2005 7.83 −5.93 0.008 0.008 4537
2005/2006 12.73 −1.54 0.000 0.000 4466
2006/2007 −12.06 4.39 0.004 0.004 4412
2007/2008 −41.07 −0.76 0.000 −0.000 4310
2008/2009 62.76 −1.42 0.000 −0.000 4229
2009/2010 18.21 7.70 0.008 0.008 3949
2010/2011 0.68 −6.91 0.009 0.009 3782
2011/2012 25.92 −5.87 0.003 0.003 3661

Panel B
ri,t+1 = 𝛿0,t + 𝛿1,tSizei,t + 𝜖i,t

t∕t + 1 𝛿0,t 𝛿2,t R2
t Adj. R2

t nt

1988/1989 −7.72 3.17 0.011 0.011 5999
1989/1990 −32.77 1.10 0.002 0.002 5803
1990/1991 66.78 −5.40 0.007 0.007 5669
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TABLE 6.1 (Continued)

Panel B
ri,t+1 = 𝛿0,t + 𝛿1,tSizei,t + 𝜖i,t

t∕t + 1 𝛿0,t 𝛿2,t R2
t Adj. R2

t nt

1991/1992 52.95 −7.16 0.020 0.019 5724
1992/1993 44.74 −5.43 0.021 0.020 5849
1993/1994 −3.69 −0.66 0.001 0.000 6387
1994/1995 30.69 −0.63 0.000 0.000 6682
1995/1996 18.45 −1.10 0.001 0.001 6902
1996/1997 14.79 0.57 0.000 0.000 7383
1997/1998 −17.49 2.12 0.004 0.004 7364
1998/1999 68.12 −6.88 0.007 0.007 6918
1999/2000 −16.07 1.07 0.001 0.001 6588
2000/2001 56.73 −8.08 0.030 0.030 6271
2001/2002 4.70 −3.48 0.017 0.017 5592
2002/2003 143.02 −13.83 0.047 0.047 5169
2003/2004 32.95 −2.45 0.007 0.007 4859
2004/2005 −3.72 1.00 0.001 0.001 4796
2005/2006 14.57 −0.57 0.001 0.000 4724
2006/2007 −24.23 2.76 0.011 0.011 4665
2007/2008 −51.14 1.50 0.006 0.005 4597
2008/2009 130.95 −13.13 0.020 0.019 4316
2009/2010 29.28 −0.56 0.000 0.000 4062
2010/2011 −21.58 2.36 0.015 0.014 3934
2011/2012 27.20 −1.33 0.003 0.002 3771

Panel C
ri,t+1 = 𝛿0,t + 𝛿2,tBMi,t + 𝜖i,t

t∕t + 1 𝛿0,t 𝛿3,t R2
t Adj. R2

t nt

1988/1989 2.94 3.52 0.002 0.002 4316
1989/1990 −24.94 −0.69 0.000 −0.000 4259
1990/1991 55.16 −6.58 0.001 0.001 4186
1991/1992 12.65 8.50 0.010 0.010 4180
1992/1993 16.30 5.82 0.006 0.006 4179
1993/1994 −11.08 7.61 0.011 0.011 4471
1994/1995 25.08 1.99 0.000 −0.000 4834
1995/1996 5.32 12.27 0.010 0.010 5023
1996/1997 6.09 13.13 0.013 0.012 5205
1997/1998 −9.61 5.11 0.002 0.002 5483
1998/1999 46.75 −10.65 0.001 0.001 5298
1999/2000 −10.46 2.97 0.001 0.001 4905
2000/2001 12.24 9.47 0.005 0.005 4630
2001/2002 −24.12 5.94 0.021 0.021 4454
2002/2003 74.51 7.04 0.002 0.002 4102
2003/2004 15.07 5.12 0.009 0.009 3843
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TABLE 6.1 (Continued)

Panel C
ri,t+1 = 𝛿0,t + 𝛿2,tBMi,t + 𝜖i,t

t∕t + 1 𝛿0,t 𝛿3,t R2
t Adj. R2

t nt

2004/2005 −1.71 7.32 0.006 0.006 3702
2005/2006 7.68 7.23 0.004 0.004 3902
2006/2007 −5.03 −2.51 0.001 0.000 3852
2007/2008 −40.50 −1.50 0.000 −0.000 3743
2008/2009 51.47 23.12 0.004 0.003 3702
2009/2010 25.33 1.76 0.003 0.003 3526
2010/2011 −5.84 −0.54 0.000 −0.000 3375
2011/2012 12.70 9.01 0.011 0.011 3299

Panel D
ri,t+1 = 𝛿0,t + 𝛿1,t𝛽i,t + 𝛿2,tSizei,t + 𝛿3,tBMi,t + 𝜖i,t

t∕t + 1 𝛿0,t 𝛿1,t 𝛿2,t 𝛿3,t R2
t Adj. R2

t nt

1988/1989 −11.10 −1.18 3.60 4.65 0.016 0.015 4301
1989/1990 −28.76 0.21 0.85 −0.34 0.002 0.001 4239
1990/1991 80.00 25.11 −10.50 −9.59 0.024 0.023 4176
1991/1992 42.12 −7.59 −5.53 6.15 0.025 0.025 4176
1992/1993 40.71 −3.83 −4.56 3.48 0.024 0.023 4166
1993/1994 −9.61 2.46 −0.70 7.93 0.013 0.012 4464
1994/1995 28.95 4.12 −1.53 1.92 0.002 0.001 4826
1995/1996 12.87 −4.09 −0.82 10.97 0.013 0.012 5009
1996/1997 6.39 −12.53 2.06 11.34 0.024 0.024 5203
1997/1998 −21.03 2.24 1.83 7.34 0.006 0.005 5475
1998/1999 69.93 61.01 −14.24 −9.63 0.036 0.035 5288
1999/2000 −31.70 −23.89 5.93 5.00 0.029 0.029 4885
2000/2001 70.83 −20.93 −6.95 −3.40 0.044 0.043 4617
2001/2002 −2.91 −22.14 −0.11 3.73 0.091 0.091 4444
2002/2003 152.96 30.13 −18.95 −0.46 0.062 0.061 4097
2003/2004 30.12 −15.71 −0.38 4.03 0.032 0.031 3831
2004/2005 −7.37 −7.93 2.52 6.35 0.022 0.022 3697
2005/2006 12.72 −0.50 −0.71 6.72 0.005 0.004 3893
2006/2007 −23.73 1.09 2.68 −0.24 0.013 0.013 3849
2007/2008 −49.72 −3.17 1.91 −0.42 0.007 0.007 3740
2008/2009 133.77 24.19 −17.69 8.21 0.029 0.029 3699
2009/2010 24.38 9.40 −1.49 1.17 0.014 0.013 3516
2010/2011 −15.02 −11.60 3.33 0.59 0.032 0.031 3372
2011/2012 16.92 −1.90 −0.28 8.33 0.012 0.011 3298
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TABLE 6.2 Summarized FM Regression Results
This table presents summarized results of FM regressions of future stock excess returns (rt+1)
on beta (𝛽), size (Size), and book-to-market ratio (BM). The columns labeled (1), (2), and (3)
present results for univariate specifications using only 𝛽, Size, and BM, respectively, as the
independent variable. The column labeled (4) presents results from the multivariate specifi-
cation using all three variables as independent variables. 𝛿0 is the intercept coefficient. 𝛿1 is
the coefficient on 𝛽. 𝛿2 is the coefficient on Size. 𝛿3 is the coefficient on BM. Standard errors,
t-statistics, and p-values are calculated using the Newey and West (1987) adjustment with six
lags.

Coefficient Value (1) (2) (3) (4)

𝛿0 Average 14.97 23.23 9.83 21.74
Standard error 2.70 4.36 1.65 4.58
t-statistic 5.55 5.32 5.94 4.75
p-value 0.00 0.00 0.00 0.00

𝛿1 Average −2.73 0.96
Standard error 1.86 1.68
t-statistic −1.47 0.57
p-value 0.16 0.57

𝛿2 Average −2.29 −2.49
Standard error 0.62 0.57
t-statistic −3.69 −4.37
p-value 0.00 0.00

𝛿3 Average 4.77 3.08
Standard error 0.73 0.79
t-statistic 6.51 3.89
p-value 0.00 0.00

R2 0.011 0.010 0.005 0.024
Adj. R2 0.011 0.009 0.005 0.023
n 5221 5584 4270 4261

R-squared (AR2) for the cross-sectional regressions are 0.024 and 0.023, respectively.
Finally, the average number of observations used in the cross-sectional regressions
is 4261. The summarized results for the regression using only 𝛽 (specification (1)),
only Size (specification (2)), and only BM (specification (3)) are also shown in the
table.

6.2 INTERPRETING FM REGRESSIONS

Interpretation of the results of FM regressions is fairly straightforward. A statistically
significant average slope coefficient indicates a cross-sectional relation between
the given independent variable X and the dependent variable Y in the average time
period. When the regression specification includes more than one independent
variable, statistical significance indicates that a relation between X and Y exists
after controlling for the effects of the other independent variables included in the
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regression specification.3 Most researchers require statistical significance at the 5%
level to reach such a conclusion.4 This means that the p-value must be less than 0.05
or, equivalently, the t-statistic must be greater than approximately 1.96. Usually, for
simplicity, researchers look for t-statistics greater than 2.00. Statistical significance at
the 10% level, which corresponds to a t-statistic of greater than 1.645 in magnitude,
is frequently referred to as marginal statistical significance. Researchers frequently
examine the results using many different regression specifications to test whether the
results of one analysis are robust to the inclusion of different sets of controls. If the
coefficient of interest is statistically significant in one specification but insignificant
when additional controls are added to the specification, then the relation between
X and Y appears to be explained by some linear combination of the added control
variables. Similarly, if a statistically significant relation appears after including
additional controls, this indicates that it is necessary to control for other effects
captured by the newly added control variables in order to detect the relation of
interest.

In addition to investigating whether a statistically significant relation exists, it is
usually important to understand the economic magnitude of the relation as well. In
cases where the economic importance of a change of one unit in X is easily under-
stood, the average magnitude of the coefficient itself is informative. In such situations,
no additional calculation is necessary to assess the economic importance of the rela-
tion. In the general case, however, the magnitudes of X may not be easily understood.
When this is the case, there are a few ways to assess the economic importance of the
relation between X and Y . The first is to assess the effect of a one standard devia-
tion change in X on the expected value of Y . To do this, we can simply multiply the
average slope coefficient on X by the cross-sectional standard deviation of X in the
average period, which is usually presented in the summary statistics (see Chapter 2).
Alternatively, instead of the cross-sectional standard deviation, it may be reasonable
to use the difference between two percentiles of the cross-sectional distribution of X.
For example, one may use the interquartile range, defined as the difference between
the third and first quartiles of X. One may also use the difference between the 95th
and fifth percentiles to assess the difference in expected Y value between entities with
high levels of X and low levels of X. Another similar approach is to refer to the results
of a portfolio analysis to find the difference in average X values between portfolios
comprised entities with high and low values of X (see Chapter 5). This difference can
then be multiplied by the average slope coefficient to assess the difference in expected

3It should be noted that in some cases, the standard error of the estimated average slope coefficient has
been shown to be biased downward, resulting in inflated statistical significance. Specifically, Shanken
(1992) shows that an error-in-variables problem can result in overestimation of the statistical significance
of risk-premia when standard statistical methodologies are used. Shanken and Zhou (2007) and Bai and
Zhou (2015) examine empirical issues such as bias and precision associated with FM regression analysis.
4Harvey, Liu, and Zhu (2015) argue that due to data mining and the large amount of research examining
the cross-section of expected returns, a 5% level of significance is too low a threshold and argue in favor
of using much more stringent requirements for accepting empirical results as evident of true economic
phenomena.
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value of Y between entities with high and low X values. In most cases, the difference
used is generated by a univariate portfolio analysis using X as the sort variable.

The average R-squared and adjusted R-squared can be used to determine the
amount of total variation in the dependent variable that is explained by the indepen-
dent variables in the average time period. Finally, the average number of observations
is self-explanatory.

Examination of the results of our FM regression analysis, shown in Table 6.2,
gives no indication of a relation between 𝛽 and future stock returns, as the average
coefficient on 𝛽 (𝛿1) is statistically indistinguishable from zero in all specifications
that include 𝛽 as an independent variable. In the specification that uses only 𝛽 as an
independent variable (specification (1)), the average coefficient is −2.73 with a cor-
responding t-statistic of −1.47. When Size and BM are also included as independent
variables (specification (4)), the average coefficient on 𝛽 is 0.96 with a t-statistic of
0.57.

Despite the fact that 𝛽 is not statistically related to future stock returns, we go
through the exercise of examining the economic importance of the relation between 𝛽

and future stock returns to exemplify how this is usually done. Given that 𝛽 measures
the sensitivity of the given stock to the return of the market portfolio, the average
coefficient on 𝛽 should be an estimate of the premium associated with taking one
unit of market risk. Using the full-specification results (specification (4)), the aver-
age coefficient of 0.96 indicates that one unit of market risk commands a premium
of 0.96% per year. This estimate is obviously much lower than we would expect.
Furthermore, when using the univariate specification (specification (1)), the result
indicates a negative market risk premium. This is certainly contradictory to what
we would expect. These results will be examined in more detail in Chapter 8. We
can also assess the economic importance of the relation between 𝛽 and future stock
returns by multiplying the average coefficient with the standard deviation of 𝛽 in the
average year. Referring back to Table 2.3, we see that the cross-sectional standard
deviation of 𝛽 in the average year is 0.62. Multiplying this by the average slope from
the full-specification regressions gives 0.59 (0.62 × 0.96). This indicates that a one
standard deviation difference in 𝛽 is associated with an increase in expected stock
returns of 0.59% per year. Once again, this seems quite low. Finally, we can examine
the economic importance of the relation between 𝛽 and future stock returns by mul-
tiplying the average coefficient of 0.96 with the difference in average 𝛽s between a
portfolio of high-𝛽 stocks and a portfolio of low-𝛽 stocks. This difference of 2.16 can
be found in Table 5.7. Multiplying by 0.96 indicates that the difference in expected
returns between stocks in the highest 𝛽 decile and stocks in the lowest 𝛽 decile is
2.07% (2.16 × 0.96) per year.

Our analysis indicates a strong negative relation between Size and future stock
returns, as univariate regressions (specification (2)) produce an average slope on Size
(𝛿2) of −2.29 with a corresponding t-statistic of −3.69. This relation is robust to the
inclusion of 𝛽 and BM as independent variables (specification (4)), as the average
coefficient in the full specification is −2.49 with corresponding t-statistic of −4.37.
Multiplying this average coefficient by the standard deviation of Size in the aver-
age year of 2.07 (see Table 2.3) indicates that a one standard deviation difference
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in Size is associated with a difference of 5.15% (2.07 × 2.49) in expected annual
returns.5 This difference is quite economically important. To assess the difference
in expected returns between stocks at the high and low ends of Size, we multiply
average coefficient of −2.49 with the difference between the 95th and fifth percentile
of the cross-sectional distribution of Size. This difference is 6.81 (8.70 − 1.89, see
Table 2.3). Doing so indicates that very large stocks generate expected returns that
are 16.96% lower, per year, than the expected returns of very small stocks.

Finally, we find a strong positive relation between BM and future stock returns.
In the univariate specification (specification (3)), the average coefficient on BM is
4.77 with a t-statistic of 6.51. When 𝛽 and Size are included in the regression model
(specification (4)), the average coefficient of 3.08 remains highly statistically signif-
icant with a t-statistic of 3.89. Multiplying this coefficient by the standard deviation
of BM in the average cross-section (0.71, see Table 2.3), we find that a one standard
deviation difference in BM is associated with an expected return difference of 8.93%
(2.90 × 3.08) per year, which is very economically important.

The average R-squared and adjusted R-squared values from the regressions that
include all three variables are 0.024 and 0.023, respectively, indicating that only a
little more than 2% of the total cross-sectional variation in future stock returns is
explained by 𝛽, Size, and BM. Low levels of R-squared such as these are quite com-
mon in research that examines the ability to predict future stock returns.

In summary, our analysis finds statistically and economically important relations
between expected returns and each of Size and BM, with Size being negatively related
to expected returns and BM being positively related. The results indicate no relation
between 𝛽 and expected stock returns. These results are consistent with the results
we found using portfolio analysis in Chapter 5.

6.3 PRESENTING FM REGRESSIONS

The results of FM regressions are usually presented in a manner very similar to
Table 6.2, with a few modifications. In most cases, only one inferential statistic is
presented. Thus, instead of presenting the standard errors, t-statistics, and p-values,
only one of these is presented. In most cases, researchers choose to present t-statistics,
and usually the t-statistics are presented in parentheses to alleviate the need for the
column labeled Value in Table 6.2. To alleviate the need to refer back to the regres-
sion specification to figure out which coefficient refers to which independent variable,
it is common to simply indicate the independent variable in the table instead of the
character used to denote the slope (e.g., 𝛽 instead of 𝛿1).

Table 6.3 illustrates how the results of FM regressions might be presented. This
is the presentation style that we will use throughout this book. The table provides all
information necessary to carry out each aspect of the interpretation of the results. As
the results are exactly the same as those above, further discussion is not necessary.

5In most cases, the difference in expected outcome associated with a one standard deviation change in the
independent variable is expressed as a positive value.
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TABLE 6.3 FM Regression Results
This table presents the results of FM regressions of future stock excess returns
(rt+1) on beta (𝛽), size (Size), and book-to-market ratio (BM). The columns
labeled (1), (2), and (3) present results for univariate specifications using only
𝛽, Size, and BM, respectively, as the independent variable. The column labeled
(4) presents results from the multivariate specification using all three variables
as independent variables. t-statistics, adjusted following Newey and West (1987)
using six lags, are presented in parentheses.

(1) (2) (3) (4)

Intercept 14.97 23.23 9.83 21.74
(5.55) (5.32) (5.94) (4.75)

𝛽 −2.73 0.96
(−1.47) (0.57)

Size −2.29 −2.49
(−3.69) (−4.37)

BM 4.77 3.08
(6.51) (3.89)

Adj. R2 0.011 0.009 0.005 0.023
n 5221 5584 4270 4261

6.4 SUMMARY

In this chapter, we have presented the implementation, interpretation, and presen-
tation of FM regression analysis. FM regression analysis is used to examine the
cross-sectional relation between a dependent variable and one or more independent
variables in the average time period. The main benefit of FM regression analysis
is that it allows us to control for a large set of potential explanations for the phe-
nomenon under investigation. The drawback is that it requires assumptions regarding
the nature of the relation between the dependent and independent variables. In
most cases, this relation is assumed to be linear, in which case OLS regression
(or potentially weighted-least-squares regression) is used to perform the periodic
cross-sectional analysis.
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THE CRSP SAMPLE AND
MARKET FACTOR

The main objective of Part II of this text is to identify and understand cross-sectional
patterns in expected stock returns. Before proceeding with this agenda in
Chapter 8, we present an overview of the U.S. stock market and of the sample
that will be used in the empirical analyses throughout the remainder of Part II. Our
reasons for doing so are simple. First, to effectively execute empirical asset pricing
research, it is important to have a deep understanding of the characteristics of the
sample and data being used. Second, as we will be using the same sample for the
majority of the analyses throughout this part of the book, we introduce this sample
here and alleviate the need to discuss it in subsequent chapters.

7.1 THE U.S. STOCK MARKET

In this section, we provide an overview of the universe of stocks most commonly used
in empirical asset pricing studies. This universe is comprised of U.S.-based common
stocks that are listed on the New York Stock Exchange (NYSE), the American Stock
Exchange (AMEX), or the National Association of Securities Dealers Automated
Quotations (NASDAQ) system. The primary resource for data on this universe of
stocks is the Center for Research in Security Prices (CRSP) database, which is main-
tained by the University of Chicago’s Booth School of Business. CRSP provides data
for NYSE-, AMEX-, and NASDAQ-listed securities for the period from December

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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31, 1925 through the present. In this book, as in almost all studies of the U.S. stock
market, we use the data from CRSP as our primary source for U.S. stock market data.

There are several methods to access the CRSP database. Perhaps the most
common method is through Wharton Research Data Services (WRDS), a system
implemented by the University of Pennsylvania’s Wharton School of Business that
provides a web-based interface for accessing many of the databases frequently used
for finance research. Another approach is to directly access the CRSP files stored
by WRDS. This method, which is used to obtain the CRSP data used throughout
this text, is accomplished by using an SSH client to log into the WRDS system
(wrds.wharton.upenn.edu). Once logged into the WRDS system, one can access SAS
files that contain the data. A third method to access the CRSP database is to obtain
the data directly from CRSP. While each of these approaches gives access to the
same data, the exact presentation of the data differs somewhat across these different
interfaces. Thus, the files and fields indicated throughout this text assume that access
to the data is gained by accessing the SAS files on wrds.wharton.upenn.edu. It is not
difficult to identify the corresponding field names using other methods of access.

7.1.1 The CRSP U.S.-Based Common Stock Sample

The sample used in Part II of this book as well as in a large number of empirical asset
pricing studies is a monthly sample that contains all U.S.-based common stocks in the
CRSP database. Therefore, for each month t, the sample is constructed by taking all
U.S.-based common stocks in the CRSP database as of the end of the given month.
These securities can be identified using CRSP’s monthly stock names (msenames)
file. The set of all securities that are available as of the end of a month t includes all
securities in the msenames file that have a start date (NAMEDT field) less than or
equal to the last day of the given month and an end date (NAMEENDT field) that
is greater than or equal to the last day of month t.1 U.S.-based common stocks are
identified as the subset of these securities that have a share code (SHRCD field in
the msenames file) value of either 10 or 11.2 We refer to this sample as the CRSP
U.S.-based common stock sample, or simply the CRSP sample.

At this point, the reader may be wondering why we construct the sample to include
only stocks that are in the CRSP database at the end of the given month t instead of
stocks that are in the database at any point during the month t. The reason is purely
notational. Most of the analyses in this text examine the ability of certain variables
to predict cross-sectional variation in future stock returns. The notation we employ

1Most securities in the CRSP database have many entries in the msenames file. However, the date range
for which a given entry applies, indicated by the NAMEDT and NAMEENDT fields, does not overlap the
date range covered by any other entries for the same security.
2The first digit of the SHRCD field indicates the type of security, with 1 indicating an ordinary common
share. The second digit further refines the security type. A second digit value of 0 corresponds to securities
that have not been further defined, and a second digit value of 1 corresponds to securities that do not need
to be further defined. Second digit values of 2 indicate companies incorporated outside of the United States
and are therefore not considered to be U.S.-based. For a full description of the meanings of the different
values of the SHRCD field, refer to the CRSP documentation.
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is that the predictive variables are calculated using only data that are available as
of the end of month t. These variables will then be used to predict stock returns in
month t + 1. Thus, from the point of view of an investor looking to make investment
decisions as of the end of month t, the set of common stocks available to such an
investor is captured by the CRSP sample.

7.1.2 Composition of the CRSP Sample

We now turn our attention to examining the composition of the CRSP sample. We
do so by decomposing the sample along two dimensions: stock exchange and sector.
Along each of these dimensions, we examine the number of securities included in the
sample as well as the total market capitalization of the stocks.

The month t market capitalization of stock i is calculated as the number of shares
outstanding times the price of the stock as of the end of the last trading day of month
t. The number of shares outstanding, in thousands, is given by the SHROUT field
in CRSP’s monthly stock (msf) file. The month-end price of the stock is taken from
the ALTPRC field from the same file.3 We therefore formally define our market cap-
italization variable, which we denote MktCap, as the absolute value of the product
of the SHROUT and ALTPRC fields, divided by 1000. We divide by 1000 so that
MktCap measures market capitalization in millions of dollars.4 We take the absolute
value because when there is no trading activity in a stock, CRSP reports the price
as the negative of the average of the most recent bid and ask prices. There are some
cases where either the SHROUT field or the ADJPRC field is missing in the CRSP
database. In such cases, MktCap is taken to be missing.

Stock Exchange Composition of CRSP Sample

Figure 7.1 plots the number of stocks that are included in the CRSP sample for each
month t from December 1925 through December 2012. The solid line presents the
total number of stocks. The remaining lines indicate the number of stocks traded
on a given exchange. The exchange on which a stock is traded is indicated in the
exchange code (EXCHCD) field in the monthly stock names (msenames) CRSP file
on WRDS. Stocks listed on the NYSE, AMEX, and NASDAQ are indicated with
values of 1 or 31, 2 or 32, and 3 or 33, respectively, in the EXCHCD field. The
short-dashed line shows the number of stocks listed on the NYSE. The number of
stocks that are AMEX-listed is shown by the dotted line. The dash–dotted line indi-
cates the number of stocks listed on the NASDAQ. The CRSP database also contains
a small number of stocks traded on alternative exchanges such as the Arca Stock

3We use the ALTPRC field instead of the PRC field because the PRC field is either missing or set to 0 if
there is no trading activity and no bid or ask prices available on the last trading day in the given month. The
ALTPRC field is set to the last traded price, or the negative of the average of the bid and ask prices from
the last trading day for which the necessary price or bid and ask data are available. When the PRC field is
available (nonzero and not missing), the ALTPRC field holds the same value as the PRC field. There are
many cases, however, where the PRC field is missing in the monthly stock file but the ALTPRC field is
available.
4CRSP reports the number of shares outstanding in thousands of shares.
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Figure 7.1 Number of Stocks in CRSP Sample by Exchange.
This figure shows the total number of stocks in the CRSP sample, as well as the number
of stocks listed on the New York Stock Exchange (NYSE), the American Stock Exchange
(AMEX), the NASDAQ, and other exchanges (Other) at the end of each month from December
1925 through December 2012

Market (EXCHCD = 4), the Boston Stock Exchange (EXCHCD = 10), the Chicago
Stock Exchange (EXCHCD = 13), the Pacific Stock Exchange (EXCHCD = 16),
the Philadelphia Stock Exchange (EXCHCD = 17), the Toronto Stock Exchange
(EXCHCD = 19), or in the over-the-counter market (EXCHCD = 20). Finally, an
exchange code of −2 indicates that trading in the stock has been halted by the NYSE
or AMEX, an exchange code of −1 indicates that the stock has been suspended by
the NYSE, AMEX, or NASDAQ, and an exchange code of 0 indicates that the stock
is not trading on the NYSE, NASDAQ, or AMEX, with no additional information
given. We put all non-NYSE, non-AMEX, and non-NASDAQ stocks into a group
that we call other. The number of stocks that are traded on these exchanges is shown
by the long-dashed line.

In December 1925 (the first month in the sample), the CRSP sample contains 499
stocks, all of which are listed on the NYSE. From then until June 1962, the total
number of stocks increases gradually, although not quite monotonically, to 1130, of
which 1121 are NYSE stocks with the remaining nine trading on Other (not AMEX
or NASDAQ) exchanges. In July 1962, 834 AMEX stocks are added to the sample,
causing the total number of stocks to jump from 1130 in June 1962 to 1963 (1125
NYSE, 834 AMEX, and 4 Other) in July 1962. The reason for this sudden increase is
that the CRSP database does not include AMEX stocks prior to July 1962. Because
of this, many studies restrict their sample to the period from 1963 through present. A
similar jump is observed in December 1972, when NASDAQ stocks are added to the
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CRSP database. In November 1972, the sample is comprised of 2666 stocks (1378
NYSE, 1133 AMEX, 102 NASDAQ, and 53 Other). In December 1972, the total
number of stocks in the market portfolio jumps to 5534 (1386 NYSE, 1135 AMEX,
2896 NASDAQ, and 117 Other). It is worth noting that while the vast majority
of NASDAQ stocks are added to the CRSP database in December 1972, there are
some NASDAQ stocks included in the sample for previous years. In fact, the first
NASDAQ stock appears in January 1969. The number of stocks in the sample
achieves its maximum in November 1997, at which point there are 7544 stocks
(1862 NYSE, 572 AMEX, 5029 NASDAQ, 81 Other) in the CRSP sample. By the
end of the sample period (December 2012), this number had been reduced by more
than half. In December 2012, the CRSP sample is comprised of 3675 stocks, of
which 1319 are listed on the NYSE, 226 are listed on the AMEX, and 2130 are listed
on the NASDAQ, and two are listed on other exchanges.

We continue our analysis of the composition of the CRSP sample by plotting the
total value of all stocks in the sample, measured in billions of U.S. dollars, as well
its decomposition by exchange. We adjust the market capitalization values for infla-
tion using the Consumer Price Index (CPI).5 The chart is shown in Figure 7.2. The
CPI-adjusted values represent market capitalizations in December 2012 dollars.
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Figure 7.2 Value of Stocks in CRSP Sample by Exchange.
This figure shows the total value of all stocks in the CRSP sample, as well as the total value
of stocks listed on the New York Stock Exchange (NYSE), the American Stock Exchange
(AMEX), the NASDAQ, and other exchanges (Other) at the end of each month from December
1925 through December 2012

5CPI data are downloaded from the Bureau of Labor Statistics website. The data are available at www.bls
.gov/cpi/data.htm. We use data for the All Urban Consumer series.

www.bls.gov/cpi/data.htm
www.bls.gov/cpi/data.htm
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The total CPI-adjusted value of all stocks in the CRSP sample as of the end of
December 1925 is $341 billion. For comparison sake, the total unadjusted market
capitalization of these stocks is less than $27 billion. In June 1962, the month
before the addition of AMEX stocks to the sample, the total CPI-adjusted market
capitalization of all stocks in the sample is more than $2.15 trillion, all of which
is from NYSE stocks. In July 1962, when AMEX stocks are added to the CRSP
database, the total CPI-adjusted market capitalization increases only to $2.45 trillion,
with approximately $2.3 billion of that being from NYSE stocks and the remaining
$145 million from AMEX stocks. Thus, while the addition of AMEX stocks to the
CRSP sample increased the number of stocks substantially, these stocks tended to
have very small market capitalizations, resulting in only a small increase in the total
market capitalization in all stocks in the sample. Similarly, when NASDAQ stocks
enter the sample in December 1972, only $669 billion or 12.6% of the $5.3 trillion in
total CPI-adjusted market capitalization comes from NASDAQ stocks. The sample
achieves its maximum total CPI-adjusted market capitalization of nearly $22.5 tril-
lion in March 2000. At this time, NASDAQ stocks make up nearly 36% of the total
value of the stocks in the sample. As can be seen from the chart, at no point in time do
AMEX stocks or stocks in the Other group comprise a substantial portion of the total
market capitalization. Finally, in December 2012, the total value of the market portfo-
lio is $15.7 trillion: $11.4 trillion of which comes from NYSE stocks with $4.3 trillion
coming from NASDAQ stocks. The total market capitalization of all AMEX stocks
at this time is less than $36 billion or 0.23% of the total market capitalization. In
summary, the majority of the value of the stocks in the CRSP sample has always been
derived from NYSE stocks. In months following their introduction into the sample in
December 1972, NASDAQ stocks comprised a substantial portion of the total value
of the sample, especially during the dot.com bubble of the late 1990s. The proportion
of the total value of the CRSP sample coming from AMEX stocks is always very low.

Industry Composition of CRSP Sample

Having examined the composition of the CRSP sample along the stock exchange
dimension, we proceed to examine the industry composition of the sample. We use
the standard industrial classification (SIC) codes to group the stocks into industries.6

SIC codes are numbers between one and 9999 that indicate the type of business activ-
ity conducted by a firm. The SIC code for each of the stocks in the CRSP sample
is taken from the SICCD field in CRSP’s monthly stock names (msenames) file.
Table 7.1 presents the primary divisions of SIC codes. We group stocks according
to these divisions for our analyses of the industry complexion of the CRSP sample.

The number of stocks in the CRSP sample in each of the SIC industries is plotted
in Figure 7.3. The legend for the chart shows the first word from the industry, as
listed in Table 7.1. The solid black line labeled “Missing” indicates the number

6SIC codes were created by the U.S. government in 1937. For more information on SIC codes, see the
SIC manual on the United States Department of Labor’s Occupational Safety and Health Administration
website: https://www.osha.gov/pls/imis/sic_manual.html.
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TABLE 7.1 SIC Industry Code Divisions
This table lists the industries corresponding to different SIC
industry codes.

SIC Codes Industries

1–999 Agriculture, forestry, and fishing
1000–1499 Mining
1500–1799 Construction
2000–3999 Manufacturing
4000–4999 Transportation, communications,

electric, gas, and sanitary services
5000–5199 Wholesale trade
5200–5999 Retail trade
6000–6799 Finance, insurance, and real estate
7000–8999 Services
9000–9999 Public administration
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Figure 7.3 Number of Stocks in CRSP Sample by Industry.
This figure shows the total number of stocks in the CRSP sample in each SIC code industry at
the end of each month from December 1925 through December 2012

of stocks with the value zero in the SICCD field.7 The chart indicates that at all
points in time, manufacturing firms make up the largest portion of the firms whose
stocks are in the CRSP database. In December 1925, a total of 305 of the 499

7Zero is not a valid SIC industry code.
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stocks in the CRSP sample are in the manufacturing industry. The proportion of
manufacturing firms in the sample reaches its maximum of more than 67% (583
out of 864 stocks) in June 1946. During the later sample periods, financial firms
and services firms make up a substantial portion of the firms in the sample, but
even these two industries combined have fewer firms than manufacturing in all
months except for the period from April 1999 through May 2006, during which
these industries combined to have slightly fewer firms than manufacturing.8 Finally,
in December 1972, the number of agriculture stocks in the sample jumps to 810
from only 87 in November 1972. Similarly, the number of financial firms increases
from 247 in November 1972 to 748 in December 1972. Both of these increases
are caused by the introduction of NASDAQ stocks into the CRSP database in
December 1972.

Finally, in Figure 7.4 we present the decomposition of total CRSP sample market
capitalization by industry. All plotted values are in billions of CPI-adjusted December
2012 dollars. The chart of industry-level total market capitalization is quite consistent
with that of the number of stocks. At all points in time, manufacturing firms comprise
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Figure 7.4 Value of Stocks in CRSP Sample by Industry.
This figure shows the total value of stocks in the CRSP sample in each SIC code industry at
the end of each month from December 1925 through December 2012

8There are a few exceptions to this. During the months from November 2004 through April 2005 and
August 2005, there were more manufacturing firms in the sample than financial and services firms com-
bined. In May 2006, the number of manufacturing firms is exactly the same as the total number of financial
and services firms.
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the largest portion of the value of the CRSP sample. Toward the end of the sample
period, financial firms begin to make up a substantial portion of the market portfolio
value. As the dot.com bubble grew, the transportation (this division includes commu-
nications) and services industries grew substantially in value, but this phenomenon
was reversed when the bubble burst.

7.2 STOCK RETURNS AND EXCESS RETURNS

We turn our attention now to calculation and examination of the returns of the stocks
in the CRSP sample. Monthly stock returns are the focal variable in the majority of the
analyses presented in this book and throughout the empirical asset pricing literature.
In fact, the entire objective of this book is to identify and explain patterns in stock
returns.

Monthly stock returns are found in the RET field in the monthly stock (msf) file
in the CRSP database. CRSP calculates the RET field to be the return realized by
holding the stock from its last trade in the previous month to its last trade in the current
month. For the vast majority of the observations in the CRSP sample, the monthly
return of a stock can simply be taken to be the value in the RET field in CRSP’s msf
file. The exceptions to this are the months when a stock delists from an exchange.
In these cases, the last traded price in the given month is not necessarily indicative
of the return an investor realizes by investing in a stock at the end of the previous
month and holding until the end of the next month. The reason is that, when the stock
delists, if the investor has not liquidated the position in the stock prior to the delisting,
the investor will be stuck holding a stock that is no longer traded on an exchange.
The value (or trade price) of that stock, therefore, may not be publicly observable,
complicating the calculation of the monthly return. It is usually not reasonable to
assume that an investor will liquidate the position prior to the delisting because, in
many cases, delistings are unexpected and there is insufficient warning for an investor
to trade out of the stock.

To deal with delistings, CRSP maintains a monthly delistings (msedelist) file. The
file includes, among other things, the date of the stock delisting (DLSTDT field), a
code indicating the reason for the delisting (DLSTCD field), and the return realized
by an investor who bought the stock at the last traded price in the previous month and
held the stock through the delisting (DLRET field). The DLRET field is known as
the delisting return. When possible, CRSP determines the price of the stock after the
delisting, calculates the return of the stock based on this price (adjusted for any dis-
tributions), and reports this value in the DLRET field. Unfortunately, in many cases,
CRSP is not able to determine a post-delisting value of the stock. In such cases, the
DLRET field is missing. To handle these situations, we adjust returns for delisting
using an approach suggested by Shumway (1997). Specifically, if a delisting return
is available in CRSP, we take the return of the stock to be the delisting return. If a
delisting return is unavailable, we rely on the reason for the delisting, as indicated by
the DLSTCD field, to determine the return. If the DLSTCD is 500, 520, between 551
and 573 inclusive, 574, 580, or 584, we take the stock’s return during the delisting
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month to be −30%.9 If the delisting return is not available and DLSTCD has any
value other than those mentioned in the previous sentence, we take the return of the
stock in the delisting month to be −100%.

To summarize, to calculate the return of a stock in any given month, we take either
the return indicated in CRSP’s monthly stock file or, if the stock is delisted during
that month, we take the delisting return. If the delisting return is unavailable in a
month during which as stock delists, we take the return to be either −30% or −100%
depending on the reason for delisting as indicated by the delisting code.

In many cases, it is optimal to examine excess stock returns instead of simply
the stock return. The excess return for a stock is defined as the difference between
the stock return and the return on the risk-free security over the same period. The
monthly risk-free security return data used throughout this book are taken from Ken
French’s data library.10 The risk-free rate data are available beginning in July 1926, so
excess returns for months prior to this are not available. Because the risk-free security
return is the same for all stocks in any given month, the cross-sectional patterns in
stock returns are identical to those in the excess returns. However, as discussed in
Section 5.1.7, when evaluating a time series of returns using a factor model, it is
important to use excess returns instead of returns in the analysis. The reason for this
is that, in the time series, the risk-free rate is not constant. Thus, time-series variation
in the risk-free rate may impact the results of time-series analyses, such as factor
regressions. In addition, in factor regressions, the intercept coefficient is frequently
an important part of the analysis. For these reasons, we use excess returns in the
analyses presented throughout this text.

We denote the return of stock i in month t as Ri,t and the excess return of stock i in
month t as ri,t, where both the return and excess return are calculated as discussed in
the previous paragraphs. We record both return measures in percent, meaning that a
value of 1.25 indicates a return of 1.25%, not 125%. At this point, a short word on the
notation is required. The focus of the analyses in this book is to examine the ability of
different variables to predict the cross section of future stock returns. The month of
the return, therefore, is subsequent to the month during which the predictive variables
are calculated. For the remainder of this text, we use t to denote the month during
which the predictive variables are calculated. The returns being predicted, therefore,
are from month t + 1. We refer to these returns as one-month-ahead returns or future
returns. When the distinction between excess returns and returns is inconsequential,

9DLSTCD 500 indicates reason unavailable. DLSTCD 520 indicates trading over-the-counter. DLSTCD
551 indicates insufficient number of shareholders. DLSTCD 552 indicates price fell below acceptable level.
DLSTCD 560 indicates insufficient capital, surplus, and/or equity. DLSTCD 561 indicates insufficient (or
noncompliance with rules of) float or assets. DLSTCD 570 indicates company request (no reason given).
DLSTCD 572 indicates company request, liquidation. DLSTCD 573 indicates company request, dereg-
istration (gone private). DLSTCD 574 indicates bankruptcy, declared insolvent. DLSTCD 580 indicates
delinquent in filing, nonpayment of fees. DLSTCD 584 indicates that the stock does not meet exchange’s
financial guidelines for continued listing. For more information on the meanings of different delisting
codes, see the CRSP documentation.
10The URL for Ken French’s data library is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&
uscore;library.html.

http://www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&uscore;library.html
http://www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&uscore;library.html
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we may simply use the term return when referring to excess return. However, all
analyses throughout this text, unless otherwise stated, will use excess returns.

In Table 7.2, we present summary statistics for the one-month-ahead excess returns
(rt+1) and returns (Rt+1). To give an idea of how large of an effect the adjustment
for delisting may have on statistical analyses, we also present the unadjusted excess
returns and returns, defined as the value in the RET field minus the risk-free security
return (denoted rett+1) and the value in the RET field (denoted RETt+1), respectively.
As the risk-free rate data are not available prior to July 1926, the first month
t (t + 1) used to calculate the summary statistics is June (July) 1926. Similarly,
because the last month for which returns are available in the CRSP database
is December 2012, the last month t (t + 1) covered in the summary statistics is
November (December) 2012. Thus, the summary statistics presented in the table are
for sample months t from June 1926 through November 2012, which correspond to
one-month-ahead returns for July 1926 through December 2012.

Table 7.2 shows that in the average month, the mean excess return (rt+1) is 0.96%
and the median excess return is −0.08%. Consistent with the mean being greater than
the median, the average cross-sectional skewness of excess returns of 2.38 is strongly
positive. This is in large part because stock returns are bounded below by −100%,
making the excess return bounded below by −100% minus the risk-free security
return, but there is no upper bound on the excess return a stock may realize. In the
average month, the minimum excess return is −65.20%, the fifth percentile excess
return is −16.44%, the 25th percentile excess return is −5.76%, the 75th percentile
excess return is 6.17%, the 95th percentile excess return is 21.13%, and the maximum
excess return is 208.10%. The cross-sectional standard deviation of monthly excess
returns is 13.64%. Finally, the excess kurtosis of the cross-sectional distribution of
monthly excess returns is 47.92, indicating that, in the average month, the distribution
of excess returns has tails that are substantially larger than those of a normal distri-
bution. The results for returns (Rt+1) are, by necessity, similar to those of the excess
returns. The values of the returns (Mean, Min, 5%, 25%, Median, 75%, 95%, and
Max) are all approximately 0.29% higher than the corresponding values for excess
returns (the true differences are exactly the same, the reported values are rounded),
indicating that in the average month, the risk-free security return is approximately
0.29%. The standard deviation, skewness, and excess kurtosis of returns are all neces-
sarily identical to those of the excess returns. Finally, there are on average 3112 stocks
per month that have valid values of excess returns (or returns) in the CRSP database.

Turning now to the summary statistics for the unadjusted excess returns (rett+1)
and returns (RETt+1), we see that the average values for these variables are slightly
higher than their delisting-adjusted counterparts. The reason for this is that including
delisting results in the inclusion of many returns that are either −30% or −100%. For
the same reason, the minimum values of the unadjusted variables are, in the average
month, not as negative as for the adjusted values. Interestingly, the maximum val-
ues of the unadjusted variables are a little bit lower than for the adjusted values. The
reason for this is that, in some cases, delisting returns are extremely high. Finally,
the standard deviation and excess kurtosis of the cross-sectional distribution of unad-
justed returns are slightly lower than their counterparts from the adjusted returns.
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For the most part, however, the cross-sectional distributions of unadjusted returns
look very similar to the distributions of delisting-adjusted returns. It is not surprising,
therefore, that the choice of whether to use the unadjusted or adjusted returns has
very little impact on the results of most empirical analyses. That being said, to more
accurately reflect the returns an investor would realize by making an investment at the
end of month t and holding until the end of month t + 1, we use the delisting-adjusted
future excess return (rt+1) as the focal return variable throughout this text.

7.2.1 CRSP Sample (1963–2012)

In the previous sections of this chapter, we have presented analyses of the stock mar-
ket covering the period from 1926 through 2012. Most empirical asset pricing studies,
however, use only the latter portion of this sample. Specifically, most researchers use a
sample that includes months t from June 1963 through November 2012, or whichever
year is the last available year in the version of the CRSP database being used. This
corresponds to months t + 1 (return months) from July 1963 through December 2012.
The reason for starting the sample in June 1963 is that, as discussed previously,
AMEX stocks are included in the CRSP database beginning in July 1962. Several of
the variables studied in the empirical asset pricing literature are calculated using one
year’s worth of historical data. Thus, the first month that such variables are available
for AMEX stocks is June 1963. Throughout this text, we follow this convention. The
sample used for the majority of the analyses in the remainder of the book, therefore,
will be for months t from June 1963 through November 2012.

To get a more exact understanding of the distribution of returns during the sample
period that will be the focus of the analyses in this text, in Table 7.3, we present
summary statistics for the returns during this sample period. We focus on the results
for the delisting-adjusted excess return (rt+1) because this is the primary measure of
return that will be used throughout this text. Summary statistics for the other measures
are presented for comparison.

Table 7.3 shows that in the average month, the average monthly excess return is
0.75% and the median excess return is−0.36%, consistent with a positive skewness of
3.18. The excess returns range from −82.42% to 302.74%, with the fifth, 25th, 75th,
and 95th percentile excess returns being −19.52%, −6.70%, 6.49%, and 23.77%,
respectively. In the average month, the standard deviation of the cross-sectional dis-
tribution of excess returns is 16.06%. Excess returns are highly leptokurtic because
in the average cross section the excess kurtosis of the excess returns is 73.46. Finally,
there are an average of 4782 stocks per month for which a valid excess return can be
calculated.

7.3 THE MARKET FACTOR

Having examined the excess returns of individual stocks, we now examine the excess
returns of the stock market as a whole. The market factor, defined as the excess return
of the market portfolio, plays a very important role in asset pricing. According to the
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Capital Asset Pricing Model (CAPM, Sharpe (1964), Lintner (1965), Mossin (1966)),
cross-sectional variation in expected asset returns is a function of the covariance
between the return of the asset and the return on the market portfolio. Theoretically,
the market portfolio contains the sum of all investments, including not just financial
securities such as stocks and bonds but also other investments such as real estate and
human capital. As the value of this portfolio is impossible to observe or calculate,
applications requiring knowledge of the value or returns of the market portfolio have
used more easily calculated proxies. The most conceptually appealing proxy is the
portfolio of all financial securities, but even this seemingly straightforward concept
is well beyond practicality, as this includes securities for which prices may be rarely,
if ever, observable. Thus, in practice, most empirical research takes the market port-
folio to be comprised of the set (or a subset) of securities traded on the U.S. stock
exchanges. The value and returns of such portfolios are easily calculated from widely
available security price data.

There are two main proxies for the market portfolio that are commonly used
in empirical asset pricing research. The first is the value-weighted portfolio of all
U.S.-based common stocks in the CRSP database. The daily and monthly excess
returns for this portfolio are available from Ken French’s website, as well as from
the Fama–French database on WRDS. We follow common convention by referring
to this portfolio and its excess returns as MKT , which stands for market minus
risk-free. The second portfolio commonly used as a proxy for the market portfolio
is the CRSP value-weighted portfolio, which contains all securities in the CRSP
database, not just common stocks, but excluding American Depository Receipts
(ADRs).11 Following CRSP, we denote this portfolio VWRETD. The main difference
between the VWRETD portfolio and the MKT portfolio is that the VWRETD portfolio
contains shares of firms that are not based in the United States, closed-end funds,
and other securities that are not common stocks. Daily and monthly returns for this
portfolio are available from CRSP.

The excess returns of the MKT and VWRETD portfolios are nearly identical.12 For
the period from July 1926 through December 2012, the average monthly excess return
of the MKT portfolio is 0.627% and that of the VWRETD portfolio is 0.624%. The
standard deviations of the excess returns of these portfolios are 5.43% and 5.44%,
respectively. Finally, the correlation between the excess returns of the two portfolios
is 0.9995. The returns of these two portfolios are, therefore, nearly exactly the same,
and which one to use in empirical analyses is purely a choice of the researcher. For
the remainder of this book, we use the MKT portfolio as our proxy for the market
portfolio. The excess returns of this portfolio will, therefore, proxy for the excess
returns of the market factor.

For the period from July 1926 through December 2012, the average monthly
excess return (log excess return) of the MKT portfolio is 0.627% (0.478%) per
month, and the standard deviation of the monthly excess returns (log excess returns)

11ADRs are those securities in the CRSP database with a share code (SHRCD) between 30 and 39 inclusive.
12The excess return of the VWRETD portfolio is calculated by taking the return of the VWRETD portfolio
from CRSP and subtracting the risk-free asset return.
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is 5.43% (5.44%), respectively.13 The annualized Sharpe ratio of the excess returns
(log excess returns) of the MKT portfolio is therefore 0.400 (0.304).14 The total
compounded excess return of the MKT portfolio during this period is 14,209%,
making the cumulative sum of log excess returns equal to 496%.

The cumulative excess returns realized by investing in the market portfolio from
July 1926 through December 2012 are plotted in Figure 7.5. The solid line represents
the compounded excess return. The scale for this line is shown on the left side of
the plot. The dashed line represents the cumulative sum of the log excess returns.
The scale for this series is displayed on the right side of the plot. The reason for
presenting both the compounded excess return and cumulative log excess returns is
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Figure 7.5 Cumulative Excess Returns of MKT .
This figure plots the cumulative returns of the MKT factor for the period from July 1926 through
December 2012. The compounded excess return for month t is calculated as 100 times the
cumulative product of one plus the monthly return up to and including the given month. The
cumulative log excess return is calculated as the sum of the monthly log excess returns up to
and including the given month

13The log excess return is defined as the natural log of one plus the excess return, where the excess return
is represented in decimal form.
14The annualized Sharpe ratio is taken to be the mean of the monthly returns or log returns divided by the

corresponding standard deviation, multiplied by
√

12. Multiplication by
√

12 is based on the assumption
that the monthly returns are independent, making the annual mean equal to 12 times the monthly mean,

and the annual standard deviation equal to
√

12 times the monthly standard deviation. Thus, the annu-

alized Sharpe ratio is 𝜇 × 12∕(𝜎 ×
√

12) = 𝜇

√
12∕𝜎, where 𝜇 and 𝜎 are the monthly mean and standard

deviation, respectively.
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that the compounded excess return gives an indication of how much money would
have been made, in excess of the amount earned on the risk-free investment, by an
investor who invested one dollar in the market portfolio at the end of June 1926.
The line representing this value is in some ways misleading, as a quick glance at the
solid line would seem to indicate that the returns of the market portfolio were much
more volatile toward the end of the sample period than at the beginning. This result is
simply due to the scale however, as the same percentage gain or loss is indicated by
a larger vertical distance on the chart for the more recent periods, as the cumulative
excess returns are larger toward the end of the sample period than at the beginning
of the sample period. The cumulative sum of log returns does not suffer from this
drawback, but the interpretation of the values on the sum of log excess returns scale
is not as simple as those on the compounded excess returns scale. This is especially
evident in the very early part of the sample where the dashed line representing the
cumulative log excess return takes a substantial dip, but the solid line representing
the compounded excess return does not seem to experience a substantial loss. This is
the period of the crash of 1929, when the market experienced its largest percentage
losses in history. Looking at the solid line representing the compounded excess return,
however, is quite misleading, as it is nearly impossible to notice any loss in this line,
when in fact, from high to low, the loss was nearly 85%.

Figure 7.5 illustrates both rewards and risks associated with investing in the mar-
ket portfolio. As can be seen by the chart, the long-run average excess return is very
strongly positive, but there are periods for which the portfolio realized substantial and
prolonged losses. For example, from the beginning of September 1929 through the
end of June 1932, the compounded excess return on the market portfolio was a loss
of nearly 85%. This includes a loss of more than 23% between October 28, 1929, and
October 29, 1929 inclusive. The compounded excess return did not obtain its previ-
ous maximum value again until the end of April 1945, more than 15 years and six
months after the previous high water mark. This drawdown represents the largest and
longest drawdown during our sample period. The second largest and longest draw-
down begins in December 1968. From that point until the end of September 1974,
the compounded excess return on market portfolio is −56%. The previous maximum
compounded excess return, realized at the end of November 1968, was not reached
again until the end of April 1983, 14 years and five months after the previous high.
The third largest and most prolonged drawdown began in April 2000. From then until
the end of February 2009, the market portfolio realized a compound excess return of
−54%. As of the end of 2012, the previous high watermark is not yet attained. As
can be seen in Figure 7.5, this drawdown covers two significant dips in the market.
The decline that began in the middle of March 2000 is commonly referred to as the
bursting of the dot.com bubble. Prior to this point, stocks of Internet-based compa-
nies had realized extremely large returns. Beginning in March 2000, prices of these
stocks crashed, bringing with them the market portfolio. By May 2007, the subse-
quent rebound had nearly achieved the highs (in compound excess returns) realized
prior to the bursting of the bubble. This rebound was cut short by the financial and sub-
prime mortgage crises that began in 2007 and included the collapse of Bear Stearns
investment bank on March 16, 2008, and the bankruptcy of another large investment
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bank, Lehman Brothers, on September 15, 2008. Finally, the fourth most pronounced
and longest drawdown occurred beginning in September 1987. In October 1987, the
excess return of the market was −23%. This month included the crash on October
19, 1987, known as Black Monday. On this one day, the market portfolio realized a
loss of almost 17.5%. The low point of this drawdown came at the end of November
1987, at which point the compounded excess return of the market portfolio was 31%
below its previous high, which was once again attained at the end of May 1991, less
than four years after the drawdown began.

7.4 THE CAPM RISK MODEL

The last topic we discuss in this chapter is the CAPM risk model. The CAPM risk
model is used to calculate the average abnormal return of a portfolio or a security
after accounting for exposure of the portfolio or security to the risks associated with
the market portfolio. The abnormal return, also known as the alpha, of any portfolio
(or security) is estimated as the intercept coefficient from a time-series regression of
the excess returns of the portfolio on the excess returns of the market portfolio. The
regression specification is

rp,t = 𝛼p + 𝛽pMKTt + 𝜖p,t (7.1)

where rp,t and MKTt are the excess returns of the portfolio being evaluated and the
market portfolio, respectively, during time period t. To determine whether the portfo-
lio generates abnormal returns relative to the CAPM risk model, we evaluate whether
the fitted intercept coefficient, which serves as the estimate of the average abnormal
return per period, is statistically distinguishable from zero. If the intercept coefficient
is shown to be non-zero, this is evidence that the portfolio generates non-zero average
excess returns that are not due to the sensitivity of the portfolio’s excess return to that
of the market portfolio.

The most common application of the CAPM risk model is in portfolio analy-
ses testing the ability of a given variable (any variable other than beta) to predict
future stock returns. Typically, the abnormal return of the difference portfolio is the
focal point of the analysis. Evidence that the difference portfolio generates abnormal
returns that are statistically distinguishable from zero is interpreted as evidence that
the variable in question has the ability to predict cross-sectional variation in future
stock returns. Risk-adjusting the portfolio returns using the CAPM model is simi-
lar to controlling for cross-sectional differences in sensitivity to the market factor
(beta). The assumption in doing so is that the beta of the portfolio (or security) under
investigation remains constant throughout the sample period.

7.5 SUMMARY

We began this chapter by examining the composition of the U.S. stock market. The
data for our analyses come from the CRSP database, the primary source for stock
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price and return data in empirical asset pricing research. From 1925 through June
1962, the CRSP database contains data for only NYSE-listed stocks. In July 1962,
AMEX stocks are added to the CRSP database, and in January 1973 NASDAQ stocks
are added. While in both cases the value of the newly added stocks is only a small
percentage of the total value of the market portfolio, the number of stocks in the port-
folio increases substantially with each of these additions. The majority of stocks in the
CRSP database, both by count and by total market capitalization, are NYSE-listed.
For the entire sample period from 1926 through 2012, the manufacturing sector has
both the most stocks and highest total market capitalization of any sector.

We then discussed the calculation of returns and excess returns and examined the
cross-sectional distribution of each. For the analyses presented in the remainder of this
book, we use the sample of stocks covering the period from 1963 through 2012. Dur-
ing this period, the average (median) monthly excess return for stocks in the sample is
0.75% (−0.36%). The summary statistics indicate that the cross-sectional distribution
of excess returns is highly positively skewed and leptokurtic.

Next, we examined the excess returns of the market portfolio, which we refer to
as the market factor. While the average excess return of the market factor is positive
in the long run, there are several periods during which the market realizes heavy
losses. The most pronounced and prolonged losses correspond to the crash of 1929;
the bursting of the dot.com bubble in 2001; the financial and subprime mortgage
crises of 2007 and 2008; and the crash in October 1987.

Finally, we introduced that CAPM risk model used to adjust portfolio or indi-
vidual security returns for sensitivity to the market factor. The CAPM risk model is
frequently used to examine whether the difference portfolio in a portfolio analysis
generates positive abnormal returns (alpha).
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According to the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner
(1965), and Mossin (1966), the expected return of any security is equal to the return
on the riskless security plus the security’s market beta multiplied by the market risk
premium. Expressed mathematically, the CAPM is

E[Ri,t] = Rf ,t + 𝛽i(E[Rm,t] − Rf ,t) (8.1)

where the security’s beta is given by

𝛽i =
Co𝑣(Ri,t,Rm,t)

Var(Rm,t)
. (8.2)

Ri,t, Rf ,t, and Rm,t are the return of security i, the riskless security, and the market
portfolio, respectively, in period t; E[⋅] is the expectation operator; E[Rm,t] − Rf ,t is
the market risk premium; Co𝑣(Ri,t,Rm,t) is the covariance between the period t return
of security i and the market return; and Var(Rm,t) is the variance of the period t market
return.

The CAPM has several empirically testable predictions, two of which we examine
in this chapter. First, the CAPM predicts that cross-sectional variation in the expected
returns of different securities is driven only by cross-sectional variation in the betas
of the securities. This hypothesis is perhaps the most researched, and one of the
most strongly refuted, hypotheses in all of empirical asset pricing. Empirical tests

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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of this prediction can be broken into two groups. The first group of tests examines
the cross-sectional ability of beta to predict the future excess returns. The results
of these empirical analyses have been mixed. Early analyses by Blume and Friend
(1973) and Fama and MacBeth (1973) find a positive relation between estimates of
beta and future stock returns, but more recent analyses fail to detect the predicted rela-
tion (Reinganum (1981), Lakonishok and Shapiro (1986), Fama and French (1992,
1993)). A large portion of this chapter is devoted to examining this relation. The
second group of tests examines the cross-sectional ability of other variables to pre-
dict future excess returns. The CAPM predicts that no variable other than market
beta should exhibit such predictive ability. Much to the chagrin of CAPM enthusi-
asts, several variables such as market capitalization (Banz (1981), Fama and French
(1992, 1993)), book-to-market ratio (Rosenberg, Reid, and Lanstein (1985), Fama
and French (1992, 1993)), momentum (Jegadeesh and Titman (1993)), and liquidity
(Amihud and Mendelson (1986), Amihud (2002)), to name a few, have been shown
to be related to future stock returns. Much of the remainder of this book is devoted to
investigations of these phenomena.

The second empirically testable prediction of the CAPM is that the average excess
returns, after accounting for the effect of beta, should be zero. To test this hypothesis,
researchers frequently examine the intercept term of cross-sectional regressions of
security excess returns on estimates of beta. The CAPM predicts that the intercept
of such regressions should be zero, but empirical analyses consistently find inter-
cept terms that are significantly positive (Friend and Blume 1970, Stambaugh 1982).
While the analyses in this chapter will focus on the cross-sectional relation between
beta and stock returns, they will also provide insight into empirical viability of this
prediction of the CAPM as well.

We proceed now to the two main objectives of this chapter. The first objective
of this chapter is to present several different approaches that researchers use to
estimate a stock’s beta and empirically examine these measures. The second
objective is to analyze the cross-sectional relation between market beta and stock
returns.

8.1 ESTIMATING BETA

In this section, we introduce several different ways of estimating beta, all of which are
based on regressions of a stock’s excess returns on the excess returns of the market
portfolio. The most commonly used approach to estimating a stock’s market beta is to
simply run a CAPM regression, also known as a one-factor market model regression.
The regression specification is

ri,t = 𝛼i + 𝛽iMKTt + 𝜖i,t (8.3)

where ri,t is the excess return of stock i during period t, MKTt is the excess return
of the market portfolio (the market factor) during period t, and 𝜖i,t is the regression
residual. If regression model (8.3) describes the returns of stock i and 𝛼i is zero, then
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taking expectations on both sides yields the CAPM. The stock’s market beta is then
taken to be the estimated slope coefficient (𝛽i) generated by the regression.

Researchers differ in the periodicity of the data used to estimate market beta, as
well as in length of the period used in the estimation. In most cases, market beta for
any given period t is estimated using only data from periods prior to and including
period t. A common approach is to estimate regression (8.3) using one year’s worth of
daily excess return data. Taking this approach, at the end of each month t, regression
model (8.3) is estimated using daily return data from the 12-month period covering
months t − 11 through t, inclusive. A minimum number of data points are usually
required to ensure the quality of the values estimated by the regression. In the case of
daily data over a one-year period, a reasonable requirement may be that the regression
be fit using at least 200 data points. While using one year’s worth of daily data to
calculate beta is common, other estimation period lengths and data frequencies are
also used. Another common approach is to use monthly excess return data from the
past five years.

We examine nine different combinations of estimation periods and data frequen-
cies, five using daily data and four using monthly data. For the daily data measures,
we use period lengths of one, three, six, 12, and 24 months and require 15, 50, 100,
200, and 450 days of valid return data, respectively, to perform the calculation. We
denote these estimates of market beta, calculated using daily excess return data, as
𝛽

kM , where k ∈ {1, 3, 6, 12, 24}. Thus, estimates of market beta calculated using daily
data are identified by a superscript that indicates the number of months used in the cal-
culation. The daily stock return data come from Center for Research in Security Prices
(CRSP’s) daily stock file (dsf). The daily MKT factor returns and daily risk-free secu-
rity returns (needed to calculate excess returns from the raw return data from CRSP)
come from Ken French’s data library.

We also calculate market beta using monthly excess return observations over the
past one, two, three, and five years, requiring 10, 20, 24, and 24 valid monthly excess
return observations, respectively. Our choice to require a maximum of 24 monthly
data points to calculate beta, even for the five-year measure, follows common practice
when using monthly data to estimate beta. To denote the estimates of market beta
calculated using monthly data, we use superscripts that indicate the number of years
of data used in the calculation. Thus, 𝛽kY , k ∈ {1, 2, 3, 5}, denote these measures of
market beta. The monthly stock return data are from CRSP’s monthly stock file (msf),
and the monthly MKT factor and risk-free security return data are from Ken French’s
data library.

In addition to examining these measures of market beta calculated using sim-
ple CAPM regressions, we introduce two additional measures of beta. Scholes and
Williams (1977) present evidence that nonsynchronous trading may affect empirical
estimates of beta using the standard CAPM model. To account for this nonsynchronic-
ity, they propose running the series of regressions

ri,t = ai + b−i MKTt−1 + e−i,t (8.4)

ri,t = ai + biMKTt + ei,t (8.5)
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ri,t = ai + b+i MKTt+1 + e+i,t (8.6)

and define beta as

𝛽

SW
i =

̂b−i + ̂bi + ̂b+i
1 + 2𝜌

(8.7)

where 𝜌 is the first-order serial correlation of the market portfolio’s excess return, and
̂b−i , ̂bi, and ̂b+i are the estimated slope coefficients from regression models (8.4)–(8.6),
respectively. The Scholes and Williams (1977) beta is best implemented using daily
stock return data, as monthly return data are less likely to suffer from the issues caused
by nonsynchronous trading. The length of the sample used to calculate the Scholes
and Williams (1977) beta is once again a choice of the researcher. For our inves-
tigation, we calculate 𝛽

SW for stock i at the end month t using daily data covering
the one-year period starting at the beginning of month t − 11 and ending at the end
of month t. We require 200 valid excess return observations during the estimation
period to calculate 𝛽

SW .
Our final measure of market beta comes from Dimson (1979), who shows that

when a stock is infrequently traded, estimates of beta using the CAPM model
(equation (8.3)) may be severely biased. To account for this, the Dimson (1979) beta
is defined as1

𝛽

D
i =

k=5∑
k=−5

̂bk
i (8.8)

where the ̂bk
i are the estimated slope coefficients from the regression model

ri,t = ai +
k=5∑

k=−5

bk
i MKTt+k + ei,t. (8.9)

While the beta of Dimson (1979) is designed to improve measurement of market
beta for stocks (or other securities) that are infrequently traded, implementing the
calculation on frequently traded stocks does not introduce unwanted bias, thus the
calculation is applicable to all stocks. As with our other measures of beta, we calculate
𝛽

D for stock i in month t using one year’s worth of daily return data for the period
covering months t − 11 through t, inclusive, and require a minimum of 200 data points
to perform the calculation.

While other methods for estimating market beta have been proposed, the
measures presented in the previous paragraphs are the most widely used. We
proceed now to empirical examination of these measures using the CRSP
U.S.-based common stock sample covering months t from June 1963 through
November 2012.

1The superscripts on the bk in equations (8.8) and (8.9) are not powers but are used to index the different
regression coefficients.
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8.2 SUMMARY STATISTICS

We begin our empirical analysis of beta by examining summary statistics for each of
the measures of beta. Table 8.1 presents summary statistics for each of the estimates
of beta described earlier. The summary statistics show that for the CAPM measures
of beta calculated using daily stock returns (𝛽1M , 𝛽3M , 𝛽6M , 𝛽12M , 𝛽24M), the mean
values of these measures of beta range from 0.74 to 0.79 and increase as the length of
the measurement period increases from one to 24 months.2 The median for each of
these variables is somewhat lower than the mean, with values ranging from 0.64 for
the one-month measure to 0.73 for the 24-month measure. The median, like the mean,
exhibits an increasing pattern as the measurement period length increases. Similarly,
each of the percentiles below the median (Min, 5%, 25%) exhibits an increasing pat-
tern as the measure period increases, and percentiles above the median (75%, 95%,
Max) exhibit decreasing patterns. These patterns are likely the result of two phenom-
ena. First, as the measurement period gets longer, the standard error of the estimated
beta gets smaller, meaning that the value generated by the regression is more likely
to be close to the true value of beta. Along the same lines, as the regression is esti-
mated using more and more data points, the effect of one outlier is diminished. Thus,
it would be expected that, as the period used to fit the regression increases, the most
extreme estimated values will get closer and closer to the median. For example, the
minimum estimated value of beta using one month of daily data (𝛽1M) is −14.32. This
value is likely the result of one or two outlier observations that have a large impact
on the regression when there are only between 15 and 23 observations used to fit
the regression and likely does not accurately reflect the actual beta of the stock. The
effect of these data points is reduced as the sample period is extended.

The second likely reason for this phenomenon is more mechanical. Given the data
requirements imposed in calculating our measures of beta, for a stock to have a valid
value of 24-month beta (𝛽24M), the stock must have been publicly traded and part
of the CRSP database for at least the past 450 business days, introducing a slight
bias toward larger and more established stocks, which are more likely to behave in
a manner similar to that of the median stock. As can be seen in the table, the aver-
age number of observations for which the minimum data requirements are satisfied
decreases from 4742 for 𝛽1M to 4019 for 𝛽24M , indicating that the data screens have
removed several stocks. The removed stocks are likely smaller stocks that have only
recently become publicly traded, potentially creating a bias toward more established
stocks in analyses that use the 24-month measure. The last observation worth noting
is that the differences in the distributions of the daily return-based measures of beta
get smaller as the length of the estimation period gets longer. Thus, the distribution
of the 𝛽24M is much more similar to that of the 𝛽12M beta than the distribution of 𝛽3M

is to the distribution of 𝛽1M . Thus, there appears to be more stability in the distribu-
tion of estimated values of beta as the estimation period is extended. This potentially

2We refer to 𝛽

1M , 𝛽3M , 𝛽6M , 𝛽12M , 𝛽24M , 𝛽1Y , 𝛽2Y , 𝛽3Y , and 𝛽

5Y as CAPM measures of beta because they
are calculated using a standard CAPM regression. We use the term CAPM to distinguish these measures
from 𝛽

SW and 𝛽

D, for which the calculation is not purely based on a CAPM regression.
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TABLE 8.1 Summary Statistics
This table presents summary statistics for variables measuring market beta calculated using the
CRSP sample for the months t from June 1963 through November 2012. Each month, the mean
(Mean), standard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min),
fifth percentile (5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th
percentile (95%), and maximum (Max) values of the cross-sectional distribution of each vari-
able are calculated. The table presents the time-series means for each cross-sectional value. The
column labeled n indicates that average number of stocks for which the given variable is avail-
able. 𝛽1M , 𝛽3M , 𝛽6M , 𝛽12M , and 𝛽

24M are calculated as the slope coefficient from a time-series
regression of the stock’s excess return on the excess return of the market portfolio using one,
three, six, 12, and 24 months of daily return data, respectively. 𝛽1Y , 𝛽2Y , 𝛽3Y , and 𝛽

5Y are cal-
culated similarly using one, two, three, and five years of monthly return data. 𝛽SW is calculated
following Scholes and Williams (1977) using 12 months of daily return data. 𝛽D is calculated
following Dimson (1979) using 12 months of daily return data.

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

𝛽

1M 0.74 1.39 0.18 23.63 −14.32 −1.14 0.05 0.64 1.38 2.90 15.44 4742
𝛽

3M 0.76 0.87 0.30 9.12 −6.34 −0.42 0.23 0.68 1.23 2.23 7.88 4697
𝛽

6M 0.77 0.71 0.41 3.87 −3.71 −0.19 0.30 0.70 1.18 2.02 5.46 4611
𝛽

12M 0.78 0.61 0.49 1.46 −2.16 −0.05 0.35 0.71 1.15 1.89 3.90 4440
𝛽

24M 0.79 0.54 0.55 0.57 −1.22 0.04 0.39 0.73 1.12 1.79 3.09 4019
𝛽

1Y 1.13 1.34 0.93 21.15 −9.48 −0.66 0.37 1.01 1.78 3.33 16.17 4423
𝛽

2Y 1.14 0.94 0.73 7.38 −4.74 −0.12 0.55 1.04 1.63 2.76 9.12 4072
𝛽

3Y 1.14 0.80 0.64 4.26 −3.43 0.06 0.62 1.05 1.57 2.56 7.12 3958
𝛽

5Y 1.14 0.72 0.50 6.68 −3.28 0.17 0.66 1.05 1.53 2.41 6.19 3992
𝛽

SW 0.88 0.68 0.41 1.67 −2.68 −0.07 0.42 0.82 1.29 2.08 4.73 4440
𝛽

D 1.06 1.01 0.52 10.64 −6.21 −0.34 0.44 0.97 1.60 2.76 9.22 4440

indicates that the longer measurement periods result in more accurately measured
values of beta. We examine this in more detail when we perform persistence analyses
of the measures of beta.

Turning our attention to the measures of beta calculated using monthly data (𝛽1Y ,
𝛽

2Y , 𝛽3Y , and 𝛽

5Y ), Table 8.1 shows that the mean values of these measures are all
between 1.13 and 1.14, substantially higher than the means of the daily return-based
CAPM measures discussed in the previous paragraphs. This is true of the median as
well, which has values that range from 1.01 to 1.05. Similar to the daily return-based
CAPM measures, the minimum and maximum values for the monthly return-based
measures are less extreme as the calculation period gets longer, with monthly average
minima (maxima) of −9.48 (16.17), −4.74 (9.12), −3.43 (7.12), and −3.28 (6.19) for
𝛽

1Y , 𝛽2Y , 𝛽3Y , and 𝛽

5Y , respectively.
Examination of the Scholes and Williams (1977) and Dimson (1979) betas (𝛽SW

and 𝛽

D, respectively) shows that 𝛽SW has a distribution that is similar to those of
the daily return-based CAPM measures of beta, while the distribution of 𝛽D is more
similar to those of the monthly return-based CAPM measures. The mean and median
values of Scholes and Williams (1977) beta in the average month are 0.88 and 0.82
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respectively, slightly higher than the corresponding values for the daily return-based
CAPM measures, but substantially lower than the values for the monthly return-based
CAPM measures. The mean and median values of 𝛽D are 1.06 and 0.97, more similar
to those of the monthly return-based measures than the daily return measures. The
cross-sectional standard deviation of 𝛽SW is 0.68, much smaller than that 𝛽D, which
is 1.01. Consistent with higher variation in values, the extreme values (Min and Max)
for 𝛽D are much larger in magnitude than those of 𝛽SW . Thus, while both the Scholes
and Williams (1977) and Dimson (1979) betas are calculated using daily return data,
the calculation proposed by Scholes and Williams (1977) does not have a substantial
effect on the distribution of estimated values of beta compared to those of the daily
return-based CAPM measures. The same cannot be said about the distribution of
Dimson (1979), which is substantially different than those of the daily return-based
measures, especially that of the 12-month measure (𝛽12M), which serves as the best
comparison because 𝛽D is also calculated using 12 months of daily data. The fact that
the distribution of 𝛽D is substantially different than that of all of the other estimates
of beta that use daily return data indicates that it potentially has some information
that is not contained in the other daily measures.

8.3 CORRELATIONS

Table 8.2 presents the time-series averages of the monthly cross-sectional correla-
tions between the different measures of market beta. Pearson product–moment cor-
relations are presented in the below-diagonal entries of the matrix, and Spearman
rank correlations are presented in the above-diagonal entries. Each of the measures
of beta is winsorized at the 0.5% level on a monthly basis prior to calculating the
Pearson product–moment correlations. We focus our conversation on the Pearson
product–moment correlation, as both measures of correlation lead to the same general
conclusions and are similar enough to not raise concerns about the data.

Looking first at the correlations among the CAPM measures of beta calculated
using daily returns, the results in Table 8.2 show that average correlations for
pairs of these measures range from 0.43 between 𝛽

1M and 𝛽

24M to a correlation of
0.89 between 𝛽

12M and 𝛽

24M . Correlations between the variables calculated using
similar estimation periods tend to be higher than those for which the estimation
periods differ substantially. A large part of this phenomenon, however, is likely to
be mechanical. Furthermore, correlations between pairs of measures that both use
longer estimation periods tend to be higher than the correlations between pairs of
measures that both use shorter estimation periods, potentially indicating that the
shorter calculation periods result in noisier measures. Similar patterns are present
in the correlations among the monthly return-based CAPM measures of beta, which
range from 0.58 for the correlation between 𝛽

1Y and 𝛽

5Y to 0.89 for the correlation
between 𝛽

3Y and 𝛽

5Y . Correlations between pairs of CAPM measures of beta that
both use daily return data, as well as pairs that both use monthly return data, tend to
be higher than the correlations between pairs where one measure uses daily data and
the other uses monthly data, as average correlations between the daily return-based
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TABLE 8.2 Correlations
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (below-diagonal entries) and Spearman rank (above-diagonal entries) correlations
between pairs of variables measuring market beta.

𝛽

1M
𝛽

3M
𝛽

6M
𝛽

12M
𝛽

24M
𝛽

1Y
𝛽

2Y
𝛽

3Y
𝛽

5Y
𝛽

SW
𝛽

D

𝛽

1M 0.67 0.57 0.51 0.47 0.22 0.25 0.26 0.26 0.43 0.29
𝛽

3M 0.67 0.83 0.72 0.65 0.34 0.37 0.38 0.38 0.62 0.42
𝛽

6M 0.56 0.83 0.87 0.77 0.40 0.44 0.45 0.45 0.73 0.51
𝛽

12M 0.48 0.72 0.87 0.89 0.45 0.50 0.51 0.51 0.83 0.57
𝛽

24M 0.43 0.64 0.77 0.89 0.43 0.55 0.57 0.57 0.77 0.54
𝛽

1Y 0.19 0.31 0.38 0.43 0.40 0.74 0.65 0.58 0.52 0.64
𝛽

2Y 0.22 0.35 0.42 0.48 0.53 0.75 0.87 0.77 0.54 0.58
𝛽

3Y 0.23 0.35 0.43 0.50 0.55 0.66 0.87 0.89 0.55 0.55
𝛽

5Y 0.23 0.35 0.43 0.49 0.56 0.58 0.78 0.89 0.54 0.52
𝛽

SW 0.40 0.60 0.73 0.83 0.76 0.50 0.53 0.53 0.52 0.66
𝛽

D 0.25 0.39 0.48 0.55 0.51 0.63 0.57 0.54 0.51 0.65

and monthly return-based CAPM measures range from 0.19 between 𝛽

1M and 𝛽

1Y to
0.56 between 𝛽

24M and 𝛽

5Y . Once again, correlations seem to increase as the length
of measurement period increases.

Consistent with observations from the summary statistics, 𝛽SW has higher corre-
lations with the daily return-based CAPM measures of beta (with the exception of
𝛽

1M) than with the monthly return-based measures, as the correlations between 𝛽

SW

and CAPM measures of beta using between three and 24 months of daily data range
from 0.60 to 0.76, while those of the monthly return-based measures range from 0.50
to 0.53. Also consistent with the summary statistics, correlations between 𝛽

D and the
daily return-based CAPM measures, which range from 0.25 to 0.51, are lower than
those for the monthly return-based measures, which range from 0.51 to 0.63. Finally,
the correlation between 𝛽

SW and 𝛽

D is 0.65.
In short, there is a substantial common component between all of the measures

of beta. The correlations between measures that use a longer measurement period
are higher than those based on short measurement periods, potentially indicating
that a longer measurement period provides stable and therefore more accurate
measurement. The Scholes and Williams (1977) beta is quite similar to the daily
return-based measure, while the Dimson (1979) beta is more like the monthly
return-based measures.

8.4 PERSISTENCE

If a measure of beta calculated using historical data is to be used as an estimate of
the stock’s beta in the future, as is our intent here and in most empirical asset pricing
research, it is important that beta be a persistent property of the stock. To examine
whether this is the case, in Table 8.3, we present the results of persistence analyses
for each of the different measures of beta. The table shows entries for measures of
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TABLE 8.3 Persistence
This table presents the results of persistence analyses of variables measuring market beta. Each
month t, the cross-sectional Pearson product–moment correlation between the month t and
month t + 𝜏 values of the given variable is calculated. The table presents the time-series aver-
ages of the monthly cross-sectional correlations. The column labeled 𝜏 indicates the lag at
which the persistence is measured.

𝜏 𝛽

1M
𝛽

3M
𝛽

6M
𝛽

12M
𝛽

24M
𝛽

SW
𝛽

D
𝛽

1Y
𝛽

2Y
𝛽

3Y
𝛽

5Y

1 0.23
3 0.20 0.41
6 0.19 0.39 0.54
12 0.18 0.36 0.49 0.63 0.53 0.30 0.20
24 0.16 0.31 0.43 0.55 0.68 0.45 0.26 0.18 0.31
36 0.15 0.29 0.40 0.50 0.61 0.41 0.24 0.16 0.29 0.37
48 0.13 0.26 0.37 0.47 0.57 0.38 0.22 0.15 0.27 0.34
60 0.12 0.25 0.34 0.44 0.53 0.36 0.21 0.14 0.25 0.32 0.41
120 0.10 0.20 0.28 0.35 0.43 0.30 0.17 0.11 0.20 0.26 0.33

persistence that are calculated using nonoverlapping data. Entries that correspond to
lags for which the measurement periods overlap are left blank to avoid examining
mechanical persistence. The table presents persistence for lags 𝜏 of one, three, six,
12, 24, 36, 48, 60, and 120 months. In calculating the persistence, each variable is
winsorized at the 0.5% level on a monthly basis.

Looking first at the CAPM measures of beta calculated using daily data, the results
are consistent with our conjecture from the summary statistics and correlations that
calculation of beta using short measurement periods is very noisy. The persistence of
𝛽

1M calculated one month apart is only 0.23. Using three months of daily data seems
to produce a better measure, as the persistence of 𝛽3M calculated three months apart
is 0.41. The table indicates that as the length of the measurement period increases, so
does the persistence of beta calculated from daily return data using a standard CAPM
regression, as the persistence of 𝛽6M , 𝛽12M , and 𝛽24M measured six, 12, and 24 months
apart is 0.54, 0.63, and 0.68, respectively. The persistence of 𝛽SW calculated 12 and 24
months apart is 0.53 and 0.45, respectively. For 𝛽D, the 12- and 24-month persistence
values are 0.30 and 0.26, respectively. Interestingly, despite the claims by Scholes
and Williams (1977) and Dimson (1979) that nonsynchronous or infrequent trading
may result in poor empirical estimates of beta, the simple CAPM measure of beta
calculated using 12 months of daily return data (𝛽12M) exhibits higher persistence at
lags of 12 and 24 months than either of these more complicated measures (𝛽SW and
𝛽

D). The results provide no evidence that applying the Scholes and Williams (1977)
or Dimson (1979) methodologies results in a more accurate measure of beta.

The measures of beta calculated using monthly data exhibit similar persistence pat-
terns to the daily return-based measures of beta. Table 8.3 shows that the persistence
of 𝛽1Y measured one year apart is only 0.20. But, for 𝛽2Y measured two years apart,
the persistence increases to 0.31; for 𝛽3Y measured three years apart, the persistence
is 0.37; and finally for 𝛽5Y measured five years apart, the persistence is 0.41.
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As would be expected, the persistence of each of the beta measures decays as the
time between estimation increases. However, regardless of the number of lags 𝜏 at
which the persistence is calculated, for each data frequency (daily and monthly) the
persistence of the measures calculated using longer measurement periods is higher
than the persistence of measures that use shorter measurement periods. The only
exception to this is 𝛽D, which exhibits substantially lower persistence at all lags than
any of the other daily return-based measures of beta except for 𝛽1M .

The fact that measures of beta calculated using longer measurement periods,
regardless of the data frequency, exhibit higher persistence is a strong indication that
longer measurement periods result in a more accurate measurement. Additionally,
the results indicate that beta is in fact highly persistent. If beta were not highly
persistent, then we would expect that for some measurement period this lack of
persistence would result in lower accuracy when measuring beta because long
measurement periods use data from a long time ago, which may not reflect the
current beta of the stock. Our analysis fails to detect this phenomenon even in the
measure that uses five years of monthly return data (𝛽5Y ). Thus, while a stock’s beta
is certainly not perfectly persistent, our results indicate that beta is highly persistent
for periods of up to at least five years.

A comparison of the daily return-based measures to the monthly return-based
measures indicates that for all lags, the daily return-based measures using 12 or 24
months of data (𝛽12M and 𝛽

24M) exhibit higher persistence than any of the monthly
return-based measures. Even for lags of 10 years (𝜏 = 120), the persistence of both
𝛽

12M (persistence = 0.35) and 𝛽

24M (persistence = 0.43) is higher than the 10-year
persistence of 𝛽5Y (persistence = 0.33).

In summary, the results indicate that the use of longer measurement periods results
in more accurate measures of beta. In addition, beta seems to be most accurately mea-
sured using daily return data.3 The methodologies of Scholes and Williams (1977)
and Dimson (1979) do not seem to improve the accuracy of the measurement of beta
relative to using a simple CAPM regression model.

8.5 BETA AND STOCK RETURNS

Having analyzed the measures of market beta in isolation, we proceed to examine
the relation between beta and future stock returns. The fundamental prediction of the
CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966) is that there is a positive
relation between market beta and expected stock returns, and the slope defining this
relation represents the market risk premium. Thus, we would expect to find a pos-
itive cross-sectional relation between beta future excess returns. As will be shown
shortly, contrary to this prediction, portfolio and regression analyses fail to detect
any strong relation between beta and future stock returns, and in some cases detect

3While our analyses provide evidence that beta is best estimated using daily return data, there are also argu-
ments that can be made to support estimating beta from returns measured at monthly or longer frequency
(see Gilbert, Hrdlicka, Kalodimos, and Siegel (2014)).
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a negative relation. Thus, the most fundamental prediction of theoretical asset pric-
ing has failed to gain substantial empirical support. This result is perhaps the most
persistent empirical anomaly in all of empirical asset pricing.

8.5.1 Portfolio Analysis

We begin our analysis of the relation between beta and future stock returns by per-
forming a univariate-sort portfolio analyses using each of the different measures of
beta as the sort variable.

Equal-Weighted Portfolios

Table 8.4 presents the average value of the given measure of beta, as well as the
average portfolio excess return and CAPM alpha for each of the equal-weighted
decile portfolios as well as for the difference between the 10th and first decile
portfolio.

We begin by examining the average values of beta in each of the decile portfo-
lios for each of the different beta measures. The results show that, for each measure,
the average values of beta are increasing monotonically across the decile portfolios.
This result is by construction as the portfolios are formed by sorting on beta. Consis-
tent with our finding from the summary statistics showing higher standard deviation
for measures of beta calculated using shorter measurement periods, and persistence
analyses indicating that measures of beta calculated using shorter measurement peri-
ods have more noise, the results indicate that for both the daily return-based and
monthly return-based measures of beta, the difference in average beta between the
10th decile portfolio and the first decile portfolio is smaller for measures that use a
longer measurement period.

The patterns in the average returns of the beta-sorted portfolios are very inter-
esting. Contrary to the theoretical prediction of a positive relation between beta and
expected stock returns, the results indicate that, regardless of the measure of beta used,
the difference in average returns between the 10th decile portfolio and the first decile
portfolio is negative for all measures of beta. For the measures of beta calculated
with a simple CAPM regression model using six months (𝛽6M), 12 months (𝛽12M),
and 24 months (𝛽24M) worth of daily return data, the average return of the differ-
ence portfolio is not only negative but statistically significant at the 5% level. For the
one-month measure (𝛽1M) and the Scholes and Williams (1977) measure (𝛽SW ), the
average return of the difference portfolio is negative and significant at the 10% level.
For all daily return-based measures of beta, the difference portfolio’s average return
is economically quite substantial, ranging from −0.33% per month for the 𝛽1M-sorted
portfolios to −0.54% per month for the 𝛽

24M-sorted portfolios.
The results for portfolios formed by sorting stocks on the monthly return-based

measures of beta are a bit different. Regardless of the measure of beta, the average
excess return of the difference portfolio is negative, but quite small in magnitude,
ranging from−0.13 for portfolio formed by sorting on 𝛽3Y to−0.08 for the 𝛽5Y -sorted
portfolios. In each case, the average return of the difference portfolio is statistically
indistinguishable from zero.
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While none of the portfolio analyses produce average portfolio returns that are
monotonic across the deciles of beta, the portfolio with the lowest average return is
always the 10th decile portfolio. This result is quite strange given that theory predicts
that the 10th decile portfolio should have the highest, not the lowest, average return.
Furthermore, for portfolios sorted on the daily return-based measures of beta, the drop
in average return between the ninth decile portfolio and the 10th decile portfolio is
quite large. For example, when sorting on 𝛽

12M , the ninth decile portfolio generates
an average monthly excess return of 0.60% while the average excess return of the
10th decile portfolio is only 0.38%. In fact, when sorting on 𝛽

12M , not only does the
10th decile portfolio generate the lowest average return but the first decile portfolio
generates the highest excess return (0.92% per month). While this is not the case for
all measures of beta, this fact is worth mentioning because 𝛽

12M is by far the most
commonly used measure of beta in empirical asset pricing research.

Examination of the CAPM alphas of the portfolios indicates that the alphas of
the difference portfolios are even more negative and much more statistically signif-
icant than the average returns. In fact, regardless of the measure of beta, the CAPM
alpha of the difference portfolio is negative and highly statistically significant, with
abnormal returns (alphas) ranging from −0.47% per month with a t-statistic of −2.05
for the 𝛽

1Y -sorted portfolios to −1.08% per month with a t-statistic of −4.47 for the
𝛽

24M-sorted portfolios. For each of the measures of beta, the 10th decile portfolio
generates the lowest CAPM alpha although the abnormal return of this portfolio is
only statistically significant at the 5% level for portfolios formed on 𝛽

12M (CAPM
alpha = −0.45% per month, t-statistic = −0.45) and at the 10% level for 𝛽6M-sorted
(CAPM alpha = −0.45% per month, t-statistic = −1.93) and 𝛽

24M-sorted (CAPM
alpha = −0.39% per month, t-statistic = −1.85) portfolios. When beta is calculated
using more than six months of data (with the exception of 𝛽D and 𝛽

1Y ), the first decile
portfolio generates positive and statistically significant average excess returns. Fur-
thermore, with the exception of the second 𝛽

1Y -sorted portfolio, the second, third,
fourth, fifth, and sixth decile portfolios for each of the measures of beta generate pos-
itive abnormal returns. These results seem to indicate that the CAPM risk model does
not do a great job at explaining the returns of the beta-sorted portfolios.

Given the results of the analysis of excess returns, it is actually not surprising that
adjusting the returns using the CAPM risk model results in negative alphas that are
larger in magnitude than the returns of the difference portfolio. The reason for this is
that risk-adjustment using the CAPM model adjusts the returns for sensitivity to the
MKT factor, which is the same factor used to calculate beta. Thus, stocks in the 10th
decile portfolio have high sensitivities, and stocks in the low decile portfolio have low
sensitivities. As a result, the difference portfolio, which has long positions in stocks
with high beta and short positions in stocks with low beta, has a high sensitivity to the
market portfolio. Because the MKT factor generates positive average returns in the
long run and the difference portfolio has a positive sensitivity to the market portfolio,
the effect of adjusting for this sensitivity is that the risk-adjusted returns are lower
than the unadjusted returns.



�

� �

�

BETA AND STOCK RETURNS 137

Value-Weighted Portfolios

We now repeat the portfolio analyses, this time using value-weighted portfolios. The
results of the value-weighted portfolio analyses, presented in Table 8.5, show that the
negative relation between beta and future stock returns detected using equal-weighted
portfolios is much weaker when using value-weighted portfolios. For each measure
of beta, the average return of the difference portfolio is economically small and sta-
tistically insignificant. These average returns range from −0.13% per month with a
t-statistic of −0.50 for portfolios sorted on 𝛽

1M to 0.31% per month with a t-statistic
of 0.97 for portfolios formed by sorting on 𝛽

1Y . In many cases, the 10th decile port-
folio generates the lowest or second lowest average excess return. Specifically, for
value-weighted portfolios sorted on 𝛽

1M , 𝛽12M , 𝛽SW , 𝛽D, and 𝛽

2Y , the portfolio com-
prised stocks with the highest betas generates the lowest average return. For portfolios
formed by sorting on 𝛽

3M , 𝛽6M , and 𝛽

24M , the 10th decile portfolio generates the sec-
ond lowest average excess returns. Interestingly, for portfolios sorted on 𝛽

3M , 𝛽6M ,
𝛽

1Y , 𝛽3Y , and 𝛽

5Y , the lowest average return comes from the first decile portfolio,
and for portfolios sorted on 𝛽

1M , 𝛽12M , 𝛽SW , 𝛽D, and 𝛽

2Y , the first decile portfo-
lio generates the second lowest average return. For seven (𝛽1M , 𝛽3M , 𝛽6M , 𝛽12M ,
𝛽

SW , 𝛽D, and 𝛽

2Y ) of the 11 measures of beta, the two portfolios that generate the
lowest average excess returns are the first and 10th decile portfolios. None of the
measures of beta generate a monotonic pattern in average returns across the decile
portfolios.

The average abnormal returns of the difference portfolios relative to the CAPM
risk model range from −0.64% per month (t-statistic = −2.34) for portfolios sorted
on 𝛽

D to −0.10% per month (t-statistic = −0.36) for the 𝛽

1Y -sorted portfolios. The
alpha of the difference portfolio is highly statistically significant for portfolios sorted
on 𝛽

12M , 𝛽24M , and 𝛽

SW , and marginally statistically significant for portfolios sorted
on 𝛽

1M , 𝛽2Y , and 𝛽

5Y . Thus, while the negative abnormal return of the difference
portfolio exists when sorting on a few of the measures of beta, this result is not quite
as strong in value-weighted portfolios as it is in equal-weighted portfolios. For all
measures of beta, the portfolio of high-beta stocks generates the lowest abnormal
return, and for each of the daily return-based measures as well as 𝛽

2Y , the CAPM
alpha of the 10th decile portfolio is negative and statistically significant. These results
are generally stronger than the results for the equal-weighted portfolios. None of
the value-weighted decile one portfolios generate statistically significant abnormal
returns.

In summary, the results of the portfolio analyses presented in this section pro-
vide evidence that strongly contradicts the predictions of the CAPM. According to
the CAPM, the average returns of the decile portfolios should increase monotonically
across the decile portfolios. Furthermore, the CAPM predicts that after risk-adjusting
the returns of the portfolios using the CAPM risk model, the average abnormal return
of each of the portfolios should be economically small and statistically indistinguish-
able from zero. As can be seen from Tables 8.4 and 8.5, not only do we fail to detect
a positive relation between beta and expected returns, but in several cases we actually
detect a negative relation.
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8.5.2 Fama–MacBeth Regression Analysis

We now investigate the relation between beta and stock returns using Fama and
MacBeth (1973) regression analysis. Each month, for each of the measures of beta,
we perform a cross-sectional regression of one-month-ahead future stock excess
return (rt+1) on the given measure. The independent variable in the regression (one
of the measures of beta) is winsorized at the 0.5% level on a monthly basis prior to
calculating the regression coefficients. Table 8.6 presents the time-series averages
of the monthly cross-sectional regression coefficients for regressions using each
of the measures of beta. The column names in the table indicate which measure of
beta is used as the independent variable. The average slopes on the given measure
of beta is presented in the row labeled 𝛽, and the average intercept coefficients are
presented in the row labeled Intercept. t-statistics testing the null hypothesis that
the average coefficient is equal to zero, adjusted following Newey and West (1987)
using six lags, are presented in parentheses. The rows labeled Adj. R2 and n present
the average adjusted R-squared values and average number of observations used in
the cross-sectional regressions, respectively.

The results in Table 8.6 indicate that for each of the daily return-based measures
of beta, the average coefficient on beta is negative. For 𝛽12M , the average coefficient
of −0.26 is statistically significant at the 5% level with a t-statistic of −1.96. The
regressions using 𝛽

24M give very similar results, with average coefficient of −0.30
and corresponding t-statistic of −1.97. The average slope on 𝛽

SW of −0.19 is not
statistically significant (t-statistic = −1.32). The same conclusion holds for the aver-
age coefficient on 𝛽

D of −0.01 (t-statistic = 0.19). The results for the regressions
using monthly return-based measures of beta detect no relation between beta and
one-month-ahead excess stock returns, with average coefficients that are very small in
magnitude, ranging from 0.01 to −0.04, and statistically indistinguishable from zero.
One interpretation of the results in Table 8.6 is that the negative relation between
beta and future stock returns detected when using 𝛽

12M and 𝛽

24 is not very robust
because this relation does not hold when using other measures of beta. An alterna-
tive interpretation of the results relies on the summary statistics, correlation analyses,
and persistence analyses, from which the general conclusion was that 𝛽12M and 𝛽

24M

are the most accurate measures of beta. Therefore, the failure of the other measures
to detect the negative relation found when using 𝛽

12M and 𝛽

24M may be due to the
fact that the other measures are noisier proxies for a stock’s true beta. Regardless of
the interpretation, the results clearly give no evidence supporting a positive relation
between beta and expected stock returns, the main prediction of the CAPM.

If we assume that the results from the regressions using 𝛽

12M and 𝛽

24M as the
independent variable are in fact indicative of a negative relation between beta and
expected stock returns, it is important to examine the economic magnitude of that
relation. We take several approaches to doing so. We use the results from the regres-
sions using 𝛽

12M in this analysis because 𝛽

12M is the most commonly used measure
of beta in the asset pricing literature.

The most straightforward method to interpret the economic importance of the rela-
tion between beta and expected stock returns is to simply take the average slope
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coefficient from the regressions of −0.26 as an indication of the additional expected
return corresponding to a one-unit increase in beta. The results therefore indicate
that a one-unit increase in beta results in a decrease in expected return of 0.26%
per month or approximately 3.12% per year. A second method to examine the eco-
nomic magnitude of the result is to calculate the change in expected return associated
with a one-standard-deviation move in beta. Using this approach, we take the aver-
age regression coefficient of −0.26 and multiply it by 0.61, the standard deviation
of the cross-sectional distribution of 𝛽12M in the average month (see Table 8.1) to
get −0.16. The regression analysis therefore indicates that a one-standard-deviation
increase in beta corresponds to a decrease in expected return of 0.16% per month or
approximately 1.92% per year. Finally, we can use the average slope coefficient to
examine the difference in expected return between stocks with very high values of
𝛽

12M and stocks with very low values of 𝛽12M . To do this, we multiply the regression
coefficient of −0.26 by the difference in average 𝛽

12M between stocks in the highest
and lowest deciles of 𝛽12M . Table 8.4 shows that this difference in average beta for
portfolios sorted on 𝛽

12M is 2.11. Multiplying by −0.26 gives −0.55. We therefore
assess that the difference in expected return between stocks in the highest and lowest
deciles of 𝛽12M is approximately −0.55% per month (−6.6% per year). It is worth
noting that the portfolio analysis found that the average monthly return of the differ-
ence portfolio is −0.53%, very close to the −0.55% found by multiplying the average
regression coefficient by the difference in average betas.

The second prediction of the CAPM that can be investigated using the regression
analyses in Table 8.6 is the prediction that after accounting for the effect of beta, the
average excess stock return should be zero. We empirically assess this prediction by
examining the average intercept coefficients from the regression analyses.

The results in Table 8.6 demonstrate that, regardless of the measure of beta used
in the regression analysis, the average intercept coefficient is positive and highly sta-
tistically significant. The average coefficients range from 0.74 with a t-statistic of
2.77 when 𝛽

1Y is the independent variable to 1.06 with a t-statistic of 4.33 when
𝛽

24M is the independent variable. Thus, once again in stark contrast to the prediction
of the CAPM, the results indicate that stocks earn very significant positive average
excess returns after accounting for the effect of beta. The 0.74 coefficient from the
𝛽

1Y regressions indicates that the average stock earns 0.74% per month (8.88% per
year) in excess return after accounting for the effect of beta. Taking the estimate from
the 𝛽

24M regressions, we get an average excess return of 1.06% per month (12.72%
per year) after accounting for the effects of beta.

Finally, it is worth noting that the average adjusted R-squared values presented in
Table 8.6 are very low, ranging from 0.01 to 0.02 for the different measures of beta.
Low R-squared values in cross-sectional regressions where the dependent variable is
the future stock return are common in empirical asset pricing research. As will be seen
throughout this book, regardless of the combination of independent variables used
in the regression specification, R-squared values remain abysmally low. The main
reason for this is that predicting future stock returns is a very difficult undertaking,
and realized stock returns are a very noisy proxy for expected stock returns (see Elton
(1999)).
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In summary, our empirical investigations fail to provide much support for the
predictions of the CAPM. There is no evidence of a positive relation between beta
and future stock returns, while some analyses actually detect a negative relation.
Estimates of the expected return of a stock with a beta of zero, taken to be the
average intercept coefficient from Fama and MacBeth (1973) regressions, indicate
that zero-beta stocks have an economically large and statistically significant average
excess return.

8.6 SUMMARY

We began this chapter by discussing the estimation of the beta of a security. The most
commonly used approach is to regress the historical excess returns of the stock on
the market factor and to take the slope coefficient as an estimate of the stock’s beta.
This method is usually implemented using either daily or monthly excess returns.
The most frequently used measure of a stock’s beta in the empirical asset pricing
literature is calculated by estimating this regression model using one year worth of
daily return data. For the remainder of this book, we refer to this measure, denoted
𝛽

12M throughout this chapter, simply as 𝛽. Alternative approaches to estimating beta,
designed to account for nonsynchronous and infrequent trading, have been proposed
by Scholes and Williams (1977) and Dimson (1979).

Summary statistics, correlation analysis, and persistence analysis demonstrate that
calculating beta using longer measurement periods results in more accurate measure-
ment. Additionally, the results indicate that using daily returns instead of monthly
returns in the regressions results in more accurate estimates of beta. The adjust-
ments proposed by Scholes and Williams (1977) and Dimson (1979) do not appear
to increase the accuracy of beta measurement.

Using several different estimates of stocks’ betas, we empirically examine the
cross-sectional relation between beta and expected stock returns. The CAPM pre-
dicts a positive relation between beta and expected returns. Specifically, the CAPM
stipulates that the relation between beta and expected excess returns is described by
a line with slope equal to the market risk premium and intercept of zero.

Empirical examination of these predictions fails to produce supporting evidence.
Univariate portfolio and Fama and MacBeth (1973) regression analysis detect either a
negative cross-sectional relation between beta and future excess returns or no relation.
The exact results differ depending on which measure of beta is used in the analy-
sis. For the most commonly used measure of beta, calculated using a regression of
excess stock returns on the market factor using one year of daily data (𝛽12M or, for
the rest of this book, 𝛽), the analyses generally indicate a negative relation. In addi-
tion to detecting a negative relation between beta and future stock returns, Fama and
MacBeth (1973) regression analyses produce very large intercept coefficients, con-
tradicting the second prediction of the CAPM that the expected excess return of a
security with a beta of zero is zero.

These empirical results are perhaps the most persistent and investigated anomalies
in all of empirical asset pricing research. The negative abnormal returns of a portfolio
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that is long high-beta stocks and short low-beta stocks was first documented by
Black, Jensen, and Scholes (1972). Several subsequent papers such as Blume and
Friend (1973), Fama and MacBeth (1973), Reinganum (1981), Lakonishok and
Shapiro (1986), and Fama and French (1992, 1993) reach similar conclusions.
Recently, several potential explanations for this puzzling result have been proposed.
Baker, Bradley, and Wurgler (2011) show that the effect is potentially driven by
benchmarking by institutional investors. Baker, Bradley, and Taliaferro (2014)
demonstrate that this anomaly consists of both micro and macro components. Frazz-
ini and Pedersen (2014) present theoretical and corroborating empirical evidence
that the phenomenon is driven by leverage-constrained investors who buy high-beta
stocks in an effort to increase the expected returns of their portfolios. In doing so,
they push the price of high-beta stocks up and therefore depress future returns. Bali,
Brown, Murray, and Tang (2014) find empirical evidence supporting their argument
that the negative relation between beta and future stock returns is driven by investors’
demand for lottery-like stocks, which also happen to be high-beta stocks. This lottery
demand results in high prices, and thus low future returns, for high-beta stocks.
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THE SIZE EFFECT

The size effect refers to the observation that stocks with large market capitalizations
(large stocks) tend to have lower returns than stocks with small market capitalizations
(small stocks). This result has become one of the cornerstone findings in empirical
examinations of stock return predictability. While Fama and French (1992, 1993) are
the most commonly cited papers related to the size effect, the phenomenon was doc-
umented at least a decade earlier by Banz (1981) and then again by Lakonishok and
Shapiro (1986). Fama and French (2012) find evidence of a size effect in international
equity markets.

The main size-related result of Fama and French (1992) is that market capitaliza-
tion has the ability to predict the cross section of future stock returns. Specifically,
stocks with small market capitalizations have historically realized significantly higher
average returns than large market capitalization stocks. Building upon this finding,
Fama and French (1993) create a portfolio designed to have returns that mimick the
returns associated with the size effect and propose using the returns of this portfolio
as a risk factor, known as SMB for small minus big. They find that their risk model,
known now as the Fama and French three-factor model, outperforms the Capital Asset
Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin (1966) in terms
of explaining portfolio returns.1

1The Fama and French three-factor model includes the market factor (MKT), the size factor (SMB), and
the value factor (HML), which is based on the ratio of the book value of equity to the market value of
equity, and will be discussed in Chapter 10.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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The objectives of this chapter are to discuss the calculation of variables that mea-
sure market capitalization, demonstrate the empirical ability of these variables to
predict future stock returns, and examine the properties of the SMB factor created
by Fama and French (1993).

9.1 CALCULATING MARKET CAPITALIZATION

The market capitalization of a stock is defined as the total value of all of the out-
standing shares of that stock. Market capitalization is therefore computed by taking
the total number of equity shares outstanding times the price of one share.

While the calculation of market capitalization seems simple enough, there are
a few implementation issues that are worthy of discussion. Most researchers take
the data necessary to compute market capitalization from the Center for Research in
Security Prices (CRSP) database. CRSP provides the number of shares outstanding in
the SHROUT field in both the daily stock file (dsf) and the monthly stock file (msf).
Values in the SHROUT field are recorded in thousands of shares. There are some
cases in both the daily and monthly stock files where the value of the SHROUT field
is zero. The interpretation of these values is unclear. We therefore take the number of
shares outstanding to be missing if the SHROUT field has a value of zero. In the daily
stock file, CRSP puts the price in the PRC field. The value in the PRC field indicates
the closing price of the stock, taken to be the price of the last trade on the given day.
If a closing price is unavailable, the most frequent reason for which is that there is
no trading in the stock on the given date, CRSP reports the negative of the average of
the last bid price and the last ask price for the stock. If neither a closing price nor the
average of the bid and ask is available (because either the bid or ask is not available),
then CRSP reports zero in the PRC field or leaves it blank.2 If the daily stock file
is used to calculate market capitalization, it is advisable to consider the price of the
stock to be missing if the value in the PRC field is zero. CRSP also provides price
data in the monthly stock file. In the monthly stock file, there are two price fields,
PRC and ALTPRC (for alternate price). The PRC field in the monthly stock file is
calculated in exactly the same manner as the PRC field in the daily stock file using
data from the last trading day of the given month. The ALTPRC field contains the last
non-missing price over all days during the given month. A non-missing price is taken
to be an actual closing price or the negative of the average of the bid and ask prices.
As with the PRC field, a negative value for the ALTPRC field indicates that the price
is calculated as the average of the bid and ask prices. Finally, the ALTPRC field is set
to zero or blank if no price is available for any trading day during the given month.
As with PRC, we consider the price to be missing when the value of ALTPRC is set
to zero.3

2The CRSP documentation on Wharton Research Data Services (WRDS) indicates that the PRC field will
be set to zero when no price is available. However, our investigation fails to find any such entries. There
are, however, many entries where the PRC field is not populated.
3As with the daily stock file, despite what is indicated in the CRSP documentation, we fail to find any
entries in the monthly stock file where the PRC field or the ALTPRC field is set to zero. There are, however,
many entries where these fields are not populated.
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In addition to the data issues described in the previous paragraph, there are
actually a few different ways that researchers commonly time the calculation of
market capitalization. The simplest approach is to take the share price and number
of shares outstanding as of the end of the period for which the market capitalization
is being measured. For example, if the study uses a monthly sample, as is the case
for the sample used in this book, market capitalization would be calculated using
stock price and shares outstanding data from last trading day during the given month.
Calculating market capitalization using this approach gives perhaps the most straight-
forward measure and has the benefit of using the most recent data available. Our
primary market capitalization variable, MktCap, therefore, is calculated for stock i in
month t as

MktCapi,t =
|SHROUTi,t × ALTPRCi,t|

1000
(9.1)

where SHROUTi,t is the number of shares outstanding at the end of month t, taken
from the SHROUT field in CRSP’s monthly stock file, and ALTPRCi,t is the price of
the stock, taken from the ALTPRC field in the same file on the same date. Because
the SHROUT field in CRSP is recorded in thousands of shares, the division by 1000
indicated in equation (9.1) results in MktCap measuring the market capitalization
of the stock in millions of dollars. The absolute value is taken to account for the
fact that CRSP reports a negative price when the reported value is calculated as the
average of a bid and ask price. When either the SHROUT or ALTPRC fields are
missing or set to zero, we take MktCap to be missing.

An alternative approach to calculating market capitalization is taken by Fama and
French (1992, 1993, FF hereafter), with several subsequent studies following their
approach. FF calculate market capitalization as of the last trading day of June in each
year y and hold the value constant for the months from June of that same year y until
May of year y + 1. In June of year y + 1, market capitalization is recalculated. The
benefit of this approach is that the market capitalization measure is not affected by
short-term movements in the stock price, which may cause the market capitalization
measure to exhibit unwanted time-series correlation with stock returns. To examine
the ramifications of using the alternatively timed calculation of market capitalization
proposed by Fama and French, we define this measure of market capitalization as

MktCapFF
i,t =

|SHROUTi, June × ALTPRCi, June|
1000

(9.2)

where SHROUTi, June and ALTPRCi, June are taken from the SHROUT and ALTPRC
fields, respectively, of CRSP’s monthly stock file on the most recent June that falls
prior to or contemporaneous with the month t. Using this approach, the market capi-
talization for each stock changes only once per calendar year, in June, and therefore
remains constant from any given June through the following May. As with the calcula-
tion of MktCap, when either the SHROUT or ALTPRC field is set to zero, MktCapFF

is taken to be missing.
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Most empirical asset pricing research uses market capitalization variables calcu-
lated using one of these two approaches. In almost all cases, which approach is used
has very little impact on the results of the empirical analysis, as the measures are very
highly correlated and very similar in magnitude.

While the timing of the market capitalization calculation has a negligible effect,
there is one issue with the measure that can have a substantial impact on empirical
analyses. As will be seen shortly in Table 9.1, the cross-sectional distribution of mar-
ket capitalization is very highly skewed. This phenomenon arises because there are
a small number of stocks whose market capitalizations are very large. The presence
of these large stocks can impair the ability of regression analyses or other analyses
that rely on the magnitude of the measure (instead of just the ordering, as in portfolio
analyses) to produce accurate parameter estimates. For this reason, researchers fre-
quently use the natural log of market capitalization, which we denote Size, to measure
market capitalization in regression analyses. We implement this for both MktCap and
MktCapFF , giving

Sizei,t = ln (MktCapi,t) (9.3)

and
SizeFF

i,t = ln (MktCapFF
i,t ). (9.4)

TABLE 9.1 Summary Statistics
This table presents summary statistics for variables measuring firm size calculated using the
CRSP sample for the months t from June 1963 through November 2012. Each month, the
mean (Mean), standard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt), minimum
(Min), fifth percentile (5%), 25th percentile (25%), median (Median), 75th percentile (75%),
95th percentile (95%), and maximum (Max) values of the cross-sectional distribution of each
variable are calculated. The table presents the time-series means for each cross-sectional value.
The column labeled n indicates the average number of stocks for which the given variable is
available. MktCap is calculated as the share price times the number of shares outstanding as
of the end of month t, measured in millions of dollars. Size is the natural log of MktCap.
MktCapCPI is MktCap adjusted using the consumer price index to reflect 2012 dollars and
SizeCPI is the natural log of MktCapCPI . MktCapFF is the share price times the number of shares
outstanding calculated as of the end of the most recent June, measured in millions of dollars.
SizeFF is the natural log of MktCapFF . MktCapFF,CPI is MktCapFF adjusted using the consumer
price index to reflect 2012 dollars, and SizeFF,CPI is the natural log of MktCapFF,CPI .

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

MktCap 1101 5568 17.71 459.09 0 6 29 107 446 4108 161,217 4794
Size 4.33 1.92 0.38 −0.08 −1.18 1.46 2.93 4.16 5.57 7.74 11.48 4794
MktCapCPI 1735 8834 17.71 459.09 2 13 55 188 751 6428 261,951 4794
SizeCPI 5.17 1.92 0.38 −0.08 −0.34 2.30 3.77 5.01 6.41 8.59 12.32 4794
MktCapFF 1099 5509 17.44 442.14 1 7 30 108 449 4128 157,490 4601
SizeFF 4.35 1.90 0.41 −0.08 −0.85 1.54 2.96 4.18 5.58 7.75 11.46 4601
MktCapFF,CPI 1733 8758 17.44 442.14 2 14 55 189 754 6446 256,799 4601
SizeFF,CPI 5.20 1.90 0.41 −0.08 −0.00 2.38 3.80 5.03 6.43 8.59 12.30 4601



�

� �

�

150 THE SIZE EFFECT

The final issue that arises in the calculation of market capitalization is that infla-
tion causes the interpretation of market capitalization to change over time. A market
capitalization of $500 million in 1963 is very different from a market capitalization
of $500 million in 2012. To make the results of statistical analyses for different time
periods comparable, it is therefore frequently desirable to adjust the measures of mar-
ket capitalization for inflation. To do so, we use the Consumer Price Index (CPI). CPI
data are taken from the Bureau of Labor Statistics (BLS) website.4 We then calculate
inflation-adjusted values of the market capitalization variables in 2012 dollars as

MktCapCPI
i,t = MktCapi,t ×

CPI12∕2012

CPIt
(9.5)

and

MktCapFF,CPI
i,t = MktCapFF

i,t ×
CPI12∕2012

CPIt
(9.6)

where CPI12,2012 and CPIt are the levels of the CPI index as of the end of December
2012 and the end of month t, respectively. We also calculate the corresponding size
(log-transformed) variables, which we define as

SizeCPI
i,t = ln (MktCapCPI

i,t ) (9.7)

and
SizeFF,CPI

i,t = ln (MktCapFF,CPI
i,t ). (9.8)

9.2 SUMMARY STATISTICS

We proceed now to present summary statistics for the different measures of stock
size for our sample of CRSP stocks covering the period from 1963 through 2012.
Table 9.1 presents summary statistics for all of the measures of market capitaliza-
tion. The results show that in the average month, the mean market capitalization
(MktCap) is over $1.1 billion while the median is only $107 million, indicating that
the cross-sectional distribution of market capitalization is highly right-skewed. Even
the 75th percentile market capitalization of $446 million is substantially less than half
of the mean. As demonstrated by the 95th percentile and maximum values of MktCap
of more than $4.1 billion and $161 billion, respectively, the stocks that comprise our
sample are characterized by a large number of small- to medium-sized stocks along
with a small number of very large stocks. Consistent with these characteristics, the
skewness of the cross-sectional distribution of MktCap in the average month of 17.17
is very high. The excess kurtosis of MktCap is also extremely large, with an average
monthly value of 459.09. The average cross-sectional standard deviation of MktCap
is more than $5.5 billion. Finally, the table demonstrates that in the average month,
there are 4794 stocks for which a valid value of MktCap is calculated.

4The data are available at www.bls.gov/cpi/data.htm. We use data for the All Urban Consumer series.
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Examining the Size variable, we see that taking natural logs of MktCap results
in a variable whose distribution is substantially less skewed, as the skewness of
Size in the average month is only 0.38. Furthermore, the largest values of Size are
not nearly as extreme as those for MktCap. To see this, note that the maximum
value of MktCap is almost 29 standard deviations above the median MktCap
value ((161, 217 − 107)∕5568), while that of Size is only 3.8 standard deviations
((11.48 − 4.16)∕1.92) from its median. Table 9.1, therefore, indicates that applying
the log transformation to market capitalization has the desired effect.

The result of adjusting the values of MktCap for inflation is that each of the sum-
mary statistics, with the exception of skewness and excess kurtosis, is larger for
MktCapCPI than for MktCap. The mean (median) MktCapCPI for a stock in the sample
is more than $1.7 billion ($188 million), compared to $1.1 billion ($107 million) for
the unadjusted values. By necessity, the skewness and kurtosis of MktCapCPI are iden-
tical to the corresponding values for MktCap, as MktCapCPI is, in the cross section,
simply a linearly transformed version of MktCap. The average cross-sectional stan-
dard deviation of MktCapCPI is greater than $8.8 billion. As for the log-transformed
inflation-adjusted measure, in the average month, SizeCPI has a mean (median) of
5.17 (5.01), standard deviation of 1.92 (by necessity), and the same skewness of 0.38
and excess kurtosis of −0.08 as Size.

As for the FF versions of the market capitalization measures (MktCapFF ,
MktCapFF,CPI , SizeFF , and SizeFF,CPI), the table indicates that these variables have
distributions that are very similar to the corresponding versions of the variables that
are calculated at the end of each month instead of annually at the end of June. In the
average month, there are only 4601 stocks for which valid values of the FF measures
are available. The reason for this is that, because the measurement of these variables
for any given month t requires data from up to 11 months ago (as is the case when
the month t corresponds to a May), calculation of these variables for stocks that
have recently entered the CRSP database may not be possible. Apart from this fact,
the distributions of the FF variables are similar enough to those of the variables
measured monthly to forgo further discussion.

We now further investigate the distribution of market capitalization (MktCap) by
examining the percentage of total market capitalization that comprised extremely
large stocks. Figure 9.1 plots the percentage of total stock market capitalization that is
captured by the largest 1%, 5%, 10%, and 25% of stocks for the time period covered
by our sample. The figure indicates that the largest 1% of stocks comprise at a min-
imum 31% and as much as 52% of the total market capitalization of all stocks. This
maximum of 52% is achieved in March 1999. To put this number in perspective, there
are 6838 stocks in our sample for that month. The result indicates that the combined
value of the largest 68 of those stocks is greater than the total value of the remaining
6770 stocks. The total market capitalization of the largest 5% of stocks is equal to
between 53% and 79% of total market capitalization. The corresponding values for
the largest 10% of stocks are 66% and 88%, and the total value of the largest 25% of
stocks is between 84% and 96% of the total stock market capitalization.

We devote substantial attention to examining the skewness of the distribution
of market capitalization because it manifests itself in many empirical asset pricing
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Figure 9.1 Percent of Total Market Value Held by Largest Stocks.
This figure plots the percentage of total market capitalization in the CRSP sample held by the
largest 1%, 5%, 10%, and 25% of stocks at the end of each month from June 1963 through
November 2011

analyses, especially portfolio analysis. It is therefore important for an empirical asset
pricing researcher to understand the effect this may have on the analysis at hand. The
effects that the distribution of market capitalization may have on empirical analyses
will be exemplified later in this chapter.

9.3 CORRELATIONS

Having analyzed the univariate distributions of the market capitalization variables,
we turn our attention now to correlations among these variables as well as the corre-
lations between these variables and market beta (𝛽). Table 9.2 presents the average
monthly cross-sectional correlations between pairs of variables. Entries below the
diagonal present Pearson product–moment correlations and above-diagonal entries
present Spearman rank correlations. Because the inflation-adjusted variables are per-
fectly linearly related to the unadjusted measures, we examine only the unadjusted
measures.

The Pearson correlation between MktCap and MktCapFF is 0.99. Similarly, Size
and SizeFF exhibit a Pearson correlation of 0.98. These extremely high correlations
are expected because the total market capitalization of a firm will, in most cases,
change very little over a period of one year (the maximum lag at which MktCapFF is
measured). The results indicate that there is barely any difference between these vari-
ables. It is therefore highly unlikely that the results of any statistical analysis using
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TABLE 9.2 Correlations
This table presents the time-series averages of the annual
cross-sectional Pearson product moment (below-diagonal
entries) and Spearman rank (above-diagonal entries) corre-
lations between pairs of variables measuring firm size.

M
kt

C
ap

Si
ze

M
kt

C
ap

F
F

Si
ze

F
F

𝛽

MktCap 1.00 0.98 0.98 0.33
Size 0.58 0.98 0.98 0.33
MktCapFF 0.99 0.57 1.00 0.34
SizeFF 0.58 0.98 0.58 0.34
𝛽 0.12 0.31 0.12 0.31

these measures will differ substantially when using one measure compared to the
other. The Spearman rank correlations of 0.98 between these two pairs of variables
lead to the same conclusion. The correlation between MktCap and Size is 0.58. In most
cases, a correlation of this magnitude would be considered quite high. However, in
this case, because Size is the log-transformed version of MktCap, meaning that the
two are functionally related and thus completely determined by one another, this cor-
relation is better interpreted as indicative of the effect of taking the log transform.
The average correlation indicates that, at least for the purposes of linear analyses
such as linear regression, the results from using Size may differ somewhat from those
generated using MktCap. This was probably apparent from the summary statistics
presented in Table 9.1. However, the correlation analysis allows us to more precisely
quantify how different the two measures are in a linear sense. The correlation between
the FF versions of these variables is also 0.58. By necessity, as the natural log func-
tion is a strictly monotonically increasing function, the Spearman rank correlation
between MktCap and Size, as well as between MktCapFF and SizeFF is 1.00.

Finally, we look at the correlations between the market capitalization variables
and market beta (𝛽). Table 9.2 shows that the Pearson correlation between MktCap
and 𝛽 is 0.12, and the Pearson correlation between Size and 𝛽 is 0.31. These results
indicate that larger stocks tend to have higher market betas. The effect is linearly much
stronger when Size is used as the measure of market capitalization instead of MktCap.
The Spearman correlation of 0.33 between MktCap and 𝛽, which is much higher than
the Pearson correlation of only 0.12 between these variables, may indicate that the
relation between these variables is not linear. The fact that the Spearman correlation
of 0.33 between Size and 𝛽 is very similar to the Pearson correlation of 0.31 indicates
that in linear regressions, including both Size and 𝛽 as independent variables may
generate substantially different results than specifications that use only one of the
variables. The fact that the Spearman correlation of 0.33 between MktCap and 𝛽 is
identical to the Spearman correlation between Size and 𝛽 is by necessity, as Size is
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a strictly increasing function of MktCap. The results using the FF versions of the
variables are similar and do not warrant further discussion.

9.4 PERSISTENCE

The final analysis of the market capitalization measures we perform before moving to
our investigation of the relation between size and future stock returns is a persistence
analysis. As with the correlation analysis, we examine only the measures of size that
are not adjusted for inflation. The inflation-adjusted measures, by necessity, produce
identical results.

Table 9.3 presents the results of the persistence analysis for the different mea-
sures of stock size. The results indicate that regardless of how market capitalization
is measured, it is highly persistent. Measured at a lag of one month (𝜏 = 1), the per-
sistence of MktCap of 0.998 and persistence of Size of 0.997 indicate nearly perfect
cross-sectional persistence. As would be expected, the persistence decays somewhat
over time. But, at lags of one year (𝜏 = 12), the persistence of MktCap and persis-
tence of Size are 0.980 and 0.967, respectively, still incredibly high. Even at extremely
long lags, these measures exhibit very high persistence. Measured five years apart
(𝜏 = 60), the persistence of MktCap is 0.909 and that of Size is 0.888. Even mea-
sured 10 years apart (𝜏 = 120), MktCap and Size have persistence of 0.842 and 0.844,
respectively. The results for the FF versions of the variables are very similar. Despite
the fact that for lags of less than one year there is a mechanical persistence of the
Fama and French variables (because these variables are only updated every June),

TABLE 9.3 Persistence
This table presents the results of persistence analyses of
MktCap, Size, MktCapFF , and SizeFF values. Each month
t, the cross-sectional Pearson product–moment correlation
between the month t and month t + 𝜏 values of the given
variable is calculated. The table presents the time-series aver-
ages of the monthly cross-sectional correlations. The col-
umn labeled 𝜏 indicates the lag at which the persistence is
measured.

𝜏 MktCap Size MktCapFF SizeFF

1 0.998 0.997 0.998 0.997
3 0.995 0.991 0.995 0.992
6 0.990 0.983 0.990 0.984

12 0.980 0.967 0.980 0.968
24 0.960 0.939 0.960 0.941
36 0.942 0.918 0.942 0.922
48 0.926 0.902 0.926 0.906
60 0.909 0.888 0.910 0.892

120 0.842 0.844 0.842 0.848
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empirically this has only very minimal impact, as the persistence of the monthly
updated variables (MktCap and Size) is already extremely high.

9.5 SIZE AND STOCK RETURNS

We turn our attention now to the cross-sectional relation between market capital-
ization and future stock returns. Several papers (Banz (1981) and Fama and French
(1992, 1993)) have investigated the ability of market capitalization to predict future
stock returns, and almost all conclude that small stocks, that is, those with lower mar-
ket capitalization, have higher average future returns. In this section, we present the
results of portfolio and regression analyses designed to investigate this relation.

9.5.1 Univariate Portfolio Analysis

Our investigation of the relation between market capitalization and future stock
returns begins with a monthly univariate portfolio analysis. There is a small twist in
our preliminary portfolio analysis that is different from most of the portfolio analyses
performed throughout this book. Instead of calculating the breakpoints using all
stocks in our CRSP common stock sample, the breakpoints are calculated using
only stocks that trade on the New York Stock Exchange (NYSE).5 This approach to
forming portfolios based on market capitalization, proposed by Fama and French
(1992, 1993), is commonly employed in empirical asset pricing research. The
reason for this is that, for a large portion of the sample period (1963–2012), NYSE
stocks tended to be much larger than stocks listed on the American Stock Exchange
(AMEX) or the NASDAQ. This fact was discussed previously in Section 7.1.2 and
Figures 9.1 and 9.2. Thus, if the breakpoints were calculated using all stocks in the
CRSP sample, the result would be that the breakpoints effectively serve to separate
the NYSE stocks from the AMEX and NASDAQ stocks. Calculating the breakpoints
using only NYSE stocks ensures that an equal number of NYSE stocks are in each
portfolio. It does not ensure equal distribution of the AMEX and NASDAQ stocks
among the different portfolios, however. As would be expected and will be seen
shortly, regardless of which set of stocks is used to form the breakpoints, a large
proportion of AMEX and NASDAQ stocks end up in portfolios comprised of low
market capitalization stocks.

In Table 9.4, we present the results of univariate portfolio analyses using break-
points calculated from only NYSE stocks, with all stocks in our sample sorted into
the portfolios. Each month, we form 10 decile portfolios. We perform the analysis
using each of MktCap and MktCapFF as the sort variable. As the log-transformed
variables (Size and SizeFF) and inflation-adjusted variables (MktCapCPI , SizeCPI ,
MktCapFF,CPI , and SizeFF,CPI) are each monotonically increasing functions of either
MktCap or MktCapFF , and portfolio analysis relies only on the ordering of the sort

5NYSE stocks are identified by a value of 1 in the EXCHCD field in CRSP.
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Figure 9.2 Cumulative Returns of SMB Portfolio.
This figure plots the cumulate returns of the SMB factor for the period from July 1926 through
December 2012. The compounded excess return for month t is calculated as 100 times the
cumulative product of one plus the monthly return up to and including the given month. The
cumulate log excess return is calculated as the sum of the monthly log excess returns up to and
including the given month

variables, the results for portfolios formed by sorting on the other variables (not
MktCap or MktCapFF) can be perfectly discerned from the table.

Panel A of Table 9.4 presents several characteristics of each of the portfolios.
The first two rows for each section present the average value of the sort variable
as well as the average inflation-adjusted sort variable value for each of the decile
portfolios. We focus on the portfolios formed by sorting on MktCap, as results for
the MktCapFF-sorted portfolios are very similar. The average market capitalization
(inflation-adjusted market capitalization) of stocks in each of the portfolios increases
from $32 million ($57 million) for decile portfolio one to nearly $20 billion
($30 billion) for decile portfolio 10. The third row, labeled % MktCap, shows
average percentage of total market capitalization that is held in each of the decile
portfolios. In the average month, portfolio one holds only 1.82% of the total value
of the market portfolio compared to 58.90% for portfolio 10. Thus, the highest
decile portfolio contains, in the average month, more than half of the total market
capitalization. In fact, portfolios one through five hold, on average, less than 11% of
the total market capitalization of all portfolios. The row labeled % NYSE presents
the percentage of stocks in the given portfolio that are listed on the NYSE. The
results indicate that for the small stock portfolio (decile one), 7.46% of such stocks
are NYSE-listed. This percentage monotonically increases to 92.89% for the large



�

� �

�

SIZE AND STOCK RETURNS 157

TABLE 9.4 Univariate Portfolio Analysis—NYSE Breakpoints
This table presents the results of univariate portfolio analyses of the relation between each of
measures of market capitalization and future stock returns. Monthly portfolios are formed by
sorting all stocks in the CRSP sample into portfolios using decile breakpoints calculated based
on the given sort variable using the subset of the stocks in the CRSP sample that are listed on the
New York Stock Exchange. Panel A shows the average market capitalization (in $millions),
CPI-adjusted (2012 dollars) market capitalization, percentage of total market capitalization,
percentage of stocks that are listed on the New York Stock Exchange, number of stocks, and
𝛽 for stocks in each decile portfolio. Panel B (Panel C) shows the average equal-weighted
(value-weighted) one-month-ahead excess return and CAPM alpha (in percent per month) for
each of the 10 decile portfolios as well as for the long–short zero-cost portfolio that is long the
10th decile portfolio and short the first decile portfolio. Newey and West (1987) t-statistics,
adjusted using six lags, testing the null hypothesis that the average portfolio excess return or
CAPM alpha is equal to zero, are shown in parentheses.

Panel A: Portfolio Characteristics

Sort Variable Value 1 2 3 4 5 6 7 8 9 10

MktCap MktCap 32 126 226 354 538 806 1225 2034 4078 19,987
MktCapCPI 57 211 365 565 854 1278 1953 3239 6288 29,989
% MktCap 1.82 1.64 1.85 2.32 2.96 3.73 5.18 7.95 13.65 58.90
% NYSE 7.46 28.75 41.95 50.81 59.61 69.84 77.05 82.38 88.81 92.89
n 2372 592 383 303 252 211 189 176 162 155
𝛽 0.60 0.91 0.96 0.97 0.97 0.96 0.97 0.98 0.99 1.03

MktCapFF MktCapFF 33 129 227 354 534 799 1212 2019 4040 19,676
MktCapFF,CPI 58 212 364 561 842 1259 1922 3195 6196 29,468
% MktCap 1.84 1.61 1.84 2.28 2.91 3.71 5.13 8.00 13.67 59.02
% NYSE 7.69 30.07 43.18 52.46 61.07 70.75 78.25 82.48 89.22 93.17
n 2275 555 367 289 242 206 183 173 159 152
𝛽 0.60 0.93 0.96 0.98 0.98 0.96 0.97 0.99 0.99 1.04

Panel B: Equal-Weighted Portfolio Returns

Sort
Variable Coefficient 1 2 3 4 5 6 7 8 9 10 10-1

MktCap Excess 0.91 0.63 0.73 0.71 0.71 0.66 0.62 0.61 0.51 0.42 −0.49
return (2.53) (2.13) (2.56) (2.69) (2.76) (2.69) (2.60) (2.73) (2.40) (2.18) (−1.92)
CAPM 𝛼 0.41 0.07 0.16 0.16 0.17 0.13 0.10 0.11 0.04 −0.03 −0.44

(1.85) (0.50) (1.22) (1.48) (1.69) (1.50) (1.40) (1.86) (0.79) (−0.82) (−1.79)

MktCapFF Excess 0.92 0.62 0.70 0.68 0.69 0.62 0.65 0.59 0.54 0.42 −0.50
return (2.62) (2.06) (2.53) (2.50) (2.64) (2.49) (2.66) (2.55) (2.45) (2.11) (−2.03)
CAPM 𝛼 0.44 0.05 0.14 0.12 0.15 0.09 0.13 0.08 0.06 −0.04 −0.47

(1.99) (0.33) (1.11) (1.03) (1.47) (0.98) (1.65) (1.14) (0.94) (−0.92) (−1.93)

MktCap Excess 0.65 0.63 0.73 0.71 0.71 0.65 0.62 0.62 0.51 0.39 −0.27
return (1.94) (2.13) (2.57) (2.68) (2.76) (2.67) (2.63) (2.77) (2.39) (2.09) (−1.09)
CAPM 𝛼 0.13 0.07 0.16 0.16 0.17 0.13 0.11 0.11 0.04 −0.03 −0.17

(0.69) (0.50) (1.24) (1.47) (1.69) (1.46) (1.51) (1.97) (0.77) (−0.79) (−0.73)

(continued)
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TABLE 9.4 (Continued)

Panel C: Value-Weighted Portfolio Returns

Sort
Variable Coefficient 1 2 3 4 5 6 7 8 9 10 10-1

MktCapFF Excess 0.74 0.60 0.70 0.68 0.70 0.62 0.66 0.60 0.53 0.40 −0.34
return (2.22) (2.02) (2.53) (2.50) (2.65) (2.50) (2.68) (2.59) (2.42) (2.11) (−1.38)
CAPM 𝛼 0.22 0.04 0.14 0.12 0.15 0.09 0.13 0.09 0.05 −0.03 −0.25

(1.12) (0.25) (1.11) (1.04) (1.52) (1.01) (1.70) (1.22) (0.87) (−0.64) (−1.07)

stock portfolio (decile 10). The row labeled n shows the average number of stocks in
each portfolio. Because the breakpoints are calculated using only NYSE stocks, but
then all stocks in the sample are sorted into the portfolios, the number of stocks in each
portfolio will not be the same. In fact, the number of stocks in each of the portfolios
differs quite dramatically. In the average month, portfolio one holds 2372 stocks.
This number decreases monotonically to 155 for portfolio 10. This result exemplifies
the skewed distribution of market capitalization among stocks in our sample. Despite
holding nearly half of the stocks in the sample, the total market capitalization of stocks
in portfolio one comprises only 7.46% of the total market capitalization. On the other
end, decile portfolio 10 holds, on average, 155 stocks, or slightly more than 3% of all
stocks. These stocks, however, comprise almost 59% of total market capitalization.
Finally, the row labeled 𝛽 presents the average market beta for stocks in each of the
decile portfolios. The results indicate that large stocks tend to have higher market
betas than small stocks, as the average value of 𝛽 for stocks in each of the portfolios
increases (almost monotonically) from 0.60 for decile portfolio one to 1.04 for decile
portfolio 10. It is worth noting that there is a large increase in average beta from
portfolio one (average 𝛽 is 0.60) to portfolio two (average 𝛽 of 0.91). The average
values of 𝛽 for deciles two through 10 are relatively similar in magnitude.

Panel B of Table 9.4 presents the analysis of the returns of equal-weighted market
capitalization-sorted portfolios. Focusing first on the difference portfolio, which is
long large stocks (the decile 10 portfolio) and short small stocks (the decile one port-
folio), the results indicate that this portfolio generates an economically large average
return of −0.49%, which is marginally statistically significant with a Newey and West
(1987) t-statistic of −1.92. The risk-adjusted abnormal return of this portfolio relative
to the CAPM risk model (CAPM 𝛼) of −0.44% (t-statistic =−1.79) per month is sim-
ilar in both magnitude and statistical significance to the unadjusted return. The results,
therefore, indicate an economically important and marginally statistically significant
relation between MktCap and future stock returns.

Examining the individual decile portfolio returns, we see that decile portfolio one
generates a substantially higher average excess return and CAPM alpha than any of
the other decile portfolios. The results indicate a large drop in performance between
decile portfolios one and two. For portfolios sorted on MktCap, the first decile port-
folio generates an average monthly excess return and alpha of 0.91% and 0.41%,
respectively, whereas portfolio two generates an excess return of only 0.63% per
month and monthly alpha of only 0.07%. The average excess returns and alphas of
portfolios two through 10 are relatively similar. The cross-sectional relation between
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MktCap and future stock returns, therefore, appears to be driven primarily by the
high abnormal returns of the smallest stocks in the sample. Similar patterns hold for
portfolios formed by sorting on MktCapFF .

Our next analyses employ value-weighted portfolios instead of equal-weighted
portfolios. The results of these analyses are presented in Panel C of Table 9.4. It
should be noted that, in these analyses, when MktCap is used as the sort variable, it
is also used as the measure of market capitalization when weighting the portfolios.
When MktCapFF is used as the sort variable, we also use MktCapFF to weight the
portfolios.

The table indicates that when value-weighted portfolios are used, the negative
relation between market capitalization and future stock returns is not detected. The
average return and CAPM alpha of the MktCap-sorted difference portfolio of−0.27%
(t-statistic = −1.09) and −0.17% (t-statistic = −0.73) per month, respectively, are
both statistically insignificant. Furthermore, the magnitudes of the average return
and alpha of the value-weighted 10-1 portfolio are substantially smaller than for
the equal-weighted portfolios. Examination of portfolios one through 10 indicates
that the main difference between the value-weighted and equal-weighted portfolios
comes from the first decile portfolio. The average excess return (CAPM alpha) of
the first value-weighted decile portfolio is 0.65% (0.13%) per month compared to
0.91% (0.41%) per month for the equal-weighted portfolio. For decile portfolios two
through 10, the excess returns and alphas are quite similar for equal-weighted and
value-weighted portfolios. The effect of value-weighting on the returns of the first
decile portfolio is particularly interesting because the portfolios are formed by sorting
on market capitalization. Thus, the first decile portfolio already contains only stocks
with low market capitalizations. The result therefore indicates that, even among the
stocks with low market capitalizations, stocks with the lowest market capitalizations,
meaning stocks with extremely low market capitalizations, are the stocks that gener-
ate high returns and are thus driving the equal-weighted portfolio results.

To examine in more depth the driver of the negative relation between market cap-
italization and future stock returns detected in the equal-weighted portfolio analyses
presented in Table 9.4, we now repeat the analyses, this time using all stocks in our
sample to calculate the breakpoints instead of using only NYSE stocks. As the CRSP
database contains stocks that are listed on the NYSE, AMEX, and NASDAQ, we refer
to these breakpoints as NYSE/AMEX/NASDAQ breakpoints.

Table 9.5 presents the results of the univariate portfolio analyses using
NYSE/AMEX/NASDAQ breakpoints. We begin our discussion by examining the
equal-weighted portfolio returns presented in Panel B and focus on the MktCap-sorted
portfolios, as the results for the MktCapFF-sorted portfolios are very similar. When
sorting using NYSE/AMEX/NASDAQ breakpoints, the equal-weighted portfolio
analysis detects an extremely strong negative relation between market capitalization
and future stock returns. The average return and CAPM alpha of the 10-1 portfolio
of −1.59% (t-statistic = −4.94) and −1.62% (t-statistic = −4.95), respectively, are
both economically very large and very highly statistically significant. The results
using NYSE/AMEX/NASDAQ breakpoints are much stronger than when using
NYSE breakpoints. Similar to the NYSE breakpoint results, however, the result
appears to be driven primarily by the first decile portfolio, which generates an
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TABLE 9.5 Univariate Portfolio Analysis—NYSE/AMEX/NASDAQ Breakpoints
This table presents the results of univariate portfolio analyses of the relation between each of
measures of market capitalization and future stock returns. Monthly portfolios are formed by
sorting all stocks in the CRSP sample into portfolios using decile breakpoints calculated based
on the given sort variable using all stocks in the CRSP sample. Panel A shows the average
market capitalization (in $millions), CPI-adjusted (2012 dollars) market capitalization, per-
centage of total market capitalization, percentage of stocks that are listed on the New York
Stock Exchange, number of stocks, and 𝛽 for stocks in each decile portfolio. Panel B (Panel
C) shows the average equal-weighted (value-weighted) one-month-ahead excess return and
CAPM alpha (in percent per month) for each of the 10 decile portfolios as well as for the
long–short zero-cost portfolio that is long the 10th decile portfolio and short the first decile
portfolio. Newey and West (1987) t-statistics, adjusted using six lags, testing the null hypoth-
esis that the average portfolio excess return or CAPM alpha is equal to zero, are shown in
parentheses.

Panel A: Portfolio Characteristics

Sort
Variable Value 1 2 3 4 5 6 7 8 9 10

MktCap MktCap 6 16 29 50 84 141 244 458 1049 8923
MktCapCPI 13 31 55 92 149 244 417 771 1759 13,810
% MktCap 0.08 0.19 0.33 0.55 0.88 1.43 2.42 4.51 10.49 79.12
% NYSE 1.07 3.17 7.46 13.70 21.77 31.28 41.90 54.27 70.45 87.09
n 480 479 479 479 479 479 479 479 479 480
𝛽 0.42 0.51 0.60 0.73 0.83 0.90 0.94 0.95 0.94 0.99

MktCapFF MktCapFF 7 16 30 51 85 142 247 461 1055 8891
MktCapFF,CPI 14 32 56 93 150 246 420 776 1769 13,767
% MktCap 0.09 0.20 0.34 0.56 0.89 1.45 2.45 4.56 10.60 78.86
% NYSE 1.00 3.09 7.56 14.38 23.06 32.84 43.71 56.18 71.91 87.72
n 461 460 460 460 460 460 460 460 460 461
𝛽 0.40 0.51 0.60 0.73 0.85 0.91 0.95 0.95 0.94 1.00

Panel B: Equal-Weighted Portfolio Returns

Sort
Variable Coefficient 1 2 3 4 5 6 7 8 9 10 10-1

MktCap Excess 2.08 0.64 0.53 0.56 0.59 0.64 0.66 0.67 0.63 0.49 −1.59
return (4.75) (1.70) (1.55) (1.68) (1.89) (2.23) (2.38) (2.60) (2.68) (2.38) (−4.94)
CAPM 𝛼 1.63 0.16 0.04 0.04 0.05 0.09 0.10 0.12 0.12 0.02 −1.62

(4.95) (0.65) (0.19) (0.19) (0.30) (0.64) (0.83) (1.29) (1.57) (0.47) (−4.95)

MktCapFF Excess 1.64 0.86 0.73 0.67 0.63 0.65 0.61 0.63 0.63 0.51 −1.13
return (3.98) (2.32) (2.08) (2.04) (2.05) (2.25) (2.20) (2.43) (2.58) (2.40) (−3.89)
CAPM 𝛼 1.23 0.40 0.23 0.15 0.09 0.10 0.06 0.08 0.11 0.03 −1.20

(4.01) (1.63) (1.08) (0.76) (0.53) (0.69) (0.47) (0.81) (1.31) (0.60) (−3.92)
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TABLE 9.5 (Continued)

Panel C: Value-Weighted Portfolio Returns

Sort
Variable Coefficient 1 2 3 4 5 6 7 8 9 10 10-1

MktCap Excess 1.53 0.63 0.54 0.56 0.59 0.65 0.66 0.67 0.63 0.42 −1.11
return (3.69) (1.67) (1.57) (1.70) (1.88) (2.25) (2.41) (2.59) (2.68) (2.20) (−3.47)
CAPM 𝛼 1.08 0.15 0.05 0.04 0.04 0.10 0.11 0.12 0.12 −0.02 −1.10

(3.61) (0.61) (0.22) (0.20) (0.26) (0.69) (0.90) (1.26) (1.63) (−0.85) (−3.47)

MktCapFF Excess 1.41 0.85 0.72 0.66 0.63 0.65 0.62 0.63 0.63 0.43 −0.98
return (3.55) (2.30) (2.05) (2.02) (2.06) (2.24) (2.23) (2.43) (2.60) (2.22) (−3.28)
CAPM 𝛼 1.01 0.39 0.22 0.14 0.09 0.10 0.06 0.08 0.11 −0.01 −1.02

(3.40) (1.60) (1.03) (0.72) (0.52) (0.68) (0.53) (0.85) (1.37) (−0.41) (−3.25)

average excess return (CAPM alpha) of 2.08% (1.63%) per month. Also similar
to the NYSE breakpoints, the results using NYSE/AMEX/NASDAQ breakpoints
indicate that the returns and alphas of portfolios two through 10 are similar. In fact,
when using NYSE/AMEX/NASDAQ breakpoints, the decile one portfolio, which is
comprised of small stocks, is the only decile portfolio that generates a statistically
significant CAPM alpha. The results using value-weighted portfolios, presented
in Panel C, indicate that when using NYSE/AMEX/NASDAQ breakpoints, even
value-weighted portfolios produce a strong negative difference portfolio return and
CAPM alpha, since the value-weighted 10-1 portfolio generates an economically
large and highly statistically significant average return (CAPM alpha) of −1.11%
(−1.10%) per month.

To understand this in more depth, we refer now to Panel A of Table 9.5, which
summarizes each of the decile portfolios. We focus on decile portfolio one because it
is this portfolio that appears to drive the negative relation between market capitaliza-
tion and future stock returns. Panel A indicates that the average market capitalization
(MktCap) of stocks in the first decile portfolio is only $6 million or $13 million when
inflation-adjusted to 2012 dollars. Even though 10% of all stocks are held in portfo-
lio one, these stocks only account for 0.08% of the total stock market capitalization.
Thus, the entire size effect (as the negative relation between market capitalization and
future stock returns is known) appears to be driven by a subset of stocks that comprise
less than one 10th of 1% of the entire stock market. Thus, while some may say that
the results in Panels B and C of Table 9.5 indicate that the size effect is quite strong,
others may claim that it is economically unimportant as it is driven by an extremely
small fraction of the total stock market capitalization. Furthermore, the stocks that
drive the phenomenon are likely to be highly illiquid, making implementation of a
trading strategy designed to capture the returns of a size-based strategy quite difficult,
if not impossible.

In summary, the results of the univariate portfolio analyses presented in this
section indicate a negative relation between market capitalization and future stock
returns. The result appears to be driven by the smallest stocks in the sample, and the
strength of the result varies substantially with different empirical implementations.
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The results are quite similar when using either MktCap, which is calculated monthly,
or MktCapFF , which is calculated each June, as the sort variable. For this reason, for
the remaining portfolio analyses presented in this chapter, we use only MktCap as
the measure of market capitalization. In the remaining chapters of this book, MktCap
and its log-transformed version Size will be used as our primary measures of market
capitalization.

9.5.2 Bivariate Portfolio Analysis

Having examined the relation between market capitalization and future stock returns
using univariate portfolio analysis, we proceed now to use bivariate portfolio anal-
yses to examine this relation. Specifically, we examine the relation between mar-
ket capitalization and future stock returns after controlling for the effect of market
beta (𝛽). We use both dependent-sort and independent-sort portfolios, as well as
equal-weighted and value-weighted analyses. In each analysis, we form five groups
based on each of the sort variables, with breakpoints calculated as the quintiles of
each of the sort variables. Finally, we perform all analyses using both NYSE and
NYSE/AMEX/NASDAQ breakpoints.

Theoretically, stocks with high market betas should have high expected returns.
Given that stocks with low market capitalization tend to have low betas, there is no
theoretical reason to expect that beta would explain the large returns of extremely
small stocks. However, in Chapter 8, we demonstrated that some empirical analy-
ses detect a negative relation between 𝛽 and future stock returns. This result would
indicate that it is possible that controlling for 𝛽 will explain the size effect.

Table 9.6 presents the results of a bivariate dependent-sort portfolio analysis sort-
ing first on 𝛽 and then, within each 𝛽 quintile, into MktCap quintiles. We use only
NYSE stocks to generate the breakpoints. All stocks in the sample are then sorted
into portfolios based on the NYSE breakpoints.

We focus first on the results for the average beta portfolio, indicated in the column
labeled 𝛽 Avg. The results for the equal-weighted portfolios, presented in Panel A,
indicate that after controlling for 𝛽, the average excess return of the MktCap 5-1
portfolio, which is long large stocks and short small stocks within each beta group,
generates a marginally statistically significant average monthly return of−0.37% with
a t-statistic of −1.76. However, subjecting the returns of this portfolio to the CAPM
risk model indicates that a substantial portion of the returns are due to sensitivity to
the market factor (MKT). The CAPM alpha of the MktCap difference portfolio of
−0.22% is not statistically distinguishable from zero since the associated t-statistic is
only −1.08. When value-weighted portfolios are used, Panel B shows that the results
are similar. The MktCap 5-1 portfolio for the average 𝛽 quintile generates−0.32% per
month with an associated t-statistic of −1.73, but the CAPM alpha of this portfolio
of −0.15% has a t-statistic of only −0.86.

Examination of the relation between MktCap and future stock returns within
each quintile of 𝛽 indicates that the size effect is actually quite strong among low-𝛽
stocks, as the average return and CAPM alpha of the MktCap 5-1 portfolio in the first
quintile of 𝛽 is statistically significant. This result holds in both equal-weighted and
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TABLE 9.6 Bivariate Dependent-Sort Portfolio Analysis—NYSE Breakpoints
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between MktCap and future stock returns after controlling for the effect of 𝛽. Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of 𝛽. Within
each 𝛽 group, all stocks are sorted into five portfolios based on an ascending sort of MktCap.
The quintile breakpoints used to create the portfolios are calculated using only stocks that
are listed on the New York Stock Exchange. The table presents the average one-month-ahead
excess return (in percent per month) for each of the 25 portfolios as well as for the average
𝛽 quintile portfolio within each quintile of MktCap. Also shown are the average return and
CAPM alpha of a long–short zero-cost portfolio that is long the fifth MktCap quintile portfolio
and short the first MktCap quintile portfolio in each 𝛽 quintile. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses. Panel A presents results for
equal-weighted portfolios. Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolio Returns
𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝛽 Avg

MktCap 1 1.06 0.98 0.96 0.83 0.45 0.85
MktCap 2 0.75 0.85 0.85 0.83 0.62 0.78
MktCap 3 0.72 0.71 0.79 0.84 0.70 0.75
MktCap 4 0.50 0.66 0.81 0.62 0.63 0.64
MktCap 5 0.41 0.50 0.49 0.53 0.50 0.48
MktCap 5-1 −0.65 −0.48 −0.47 −0.30 0.05 −0.37

(−3.46) (−2.32) (−2.06) (−1.23) (0.17) (−1.76)
MktCap 5-1 CAPM 𝛼 −0.56 −0.32 −0.29 −0.12 0.20 −0.22

(−3.03) (−1.61) (−1.34) (−0.53) (0.78) (−1.08)

Panel B: Value-Weighted Portfolio Returns
𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝛽 Avg

MktCap 1 0.77 0.83 0.86 0.77 0.40 0.73
MktCap 2 0.76 0.84 0.85 0.83 0.64 0.78
MktCap 3 0.71 0.70 0.79 0.81 0.72 0.74
MktCap 4 0.50 0.65 0.81 0.63 0.59 0.64
MktCap 5 0.34 0.46 0.38 0.47 0.38 0.41
MktCap 5-1 −0.43 −0.37 −0.48 −0.30 −0.02 −0.32

(−2.74) (−1.94) (−2.35) (−1.37) (−0.09) (−1.73)
MktCap 5-1 CAPM 𝛼 −0.34 −0.19 −0.30 −0.10 0.17 −0.15

(−2.20) (−1.07) (−1.54) (−0.48) (0.74) (−0.86)

value-weighted portfolios although it is a bit stronger when using equal-weighted
portfolios. The CAPM alpha of the MktCap 5-1 portfolio in quintiles two through
five of 𝛽, however, generate abnormal returns relative to the CAPM risk model that
are statistically indistinguishable from zero.

The results in Table 9.6 indicate that when portfolios are formed using breakpoints
calculated from only NYSE stocks, controlling for 𝛽 explains the size effect in the
average 𝛽 quintile, but the size effect still exists in stocks with low values of 𝛽. We
now repeat these analyses using breakpoints calculated from all stocks in the sample.
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The results of the bivariate dependent-sort portfolio analyses using
NYSE/AMEX/NASDAQ breakpoints are presented in Table 9.7. The results
indicate that when breakpoints are calculated using all stocks in the sample, for
the average 𝛽 quintile, the size effect is quite strong. Panel A shows that the
equal-weighted MktCap 5-1 portfolio for the average 𝛽 quintile generates an average
return of −0.80% per month, with a corresponding t-statistic of −3.07. The MKT
factor does little to explain this result, as the CAPM alpha of this portfolio is −0.68%
(t-statistic = −2.64). When value-weighted portfolios are used, however, Panel B

TABLE 9.7 Bivariate Dependent-Sort Portfolio Analysis –NYSE/AMEX/NASDAQ
Breakpoints
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between MktCap and future stock returns after controlling for the effect of 𝛽. Each month,
all stocks in the CRSP sample are sorted into five groups based on an ascending sort of 𝛽.
Within each 𝛽 group, all stocks are sorted into five portfolios based on an ascending sort of
MktCap. The quintile breakpoints used to create the portfolios are calculated using all stocks
in the CRSP sample. The table presents the average one-month-ahead excess return (in percent
per month) for each of the 25 portfolios as well as for the average 𝛽 quintile portfolio within
each quintile of MktCap. Also shown are the average return and CAPM alpha of a long–short
zero-cost portfolio that is long the fifth MktCap quintile portfolio and short the first MktCap
quintile portfolio in each 𝛽 quintile. t-statistics (in parentheses), adjusted following Newey and
West (1987) using six lags, testing the null hypothesis that the average return or alpha is equal
to zero, are shown in parentheses. Panel A presents results for equal-weighted portfolios. Panel
B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolio Returns
𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝛽 Avg

MktCap 1 2.08 1.48 1.43 0.98 0.70 1.33
MktCap 2 0.70 0.79 0.71 0.51 0.27 0.60
MktCap 3 0.56 0.79 0.84 0.72 0.48 0.68
MktCap 4 0.58 0.79 0.79 0.77 0.58 0.70
MktCap 5 0.56 0.55 0.57 0.58 0.43 0.54
MktCap 5-1 −1.53 −0.93 −0.86 −0.40 −0.27 −0.80

(−5.95) (−3.67) (−2.77) (−1.34) (−0.84) (−3.07)
MktCap 5-1 CAPM 𝛼 −1.40 −0.79 −0.78 −0.25 −0.17 −0.68

(−5.54) (−3.17) (−2.51) (−0.86) (−0.54) (−2.64)

Panel B: Value-Weighted Portfolio Returns
𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝛽 Avg

MktCap 1 1.53 1.07 0.97 0.63 0.34 0.91
MktCap 2 0.66 0.78 0.70 0.51 0.26 0.58
MktCap 3 0.57 0.79 0.82 0.73 0.48 0.68
MktCap 4 0.59 0.78 0.77 0.76 0.60 0.70
MktCap 5 0.45 0.40 0.47 0.43 0.34 0.42
MktCap 5-1 −1.08 −0.68 −0.50 −0.20 −0.00 −0.49

(−4.32) (−2.68) (−1.83) (−0.71) (−0.01) (−1.96)
MktCap 5-1 CAPM 𝛼 −0.95 −0.50 −0.31 −0.01 0.17 −0.32

(−3.86) (−2.06) (−1.16) (−0.04) (0.53) (−1.32)
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shows that, while the average return of the MktCap 5-1 portfolio for the average 𝛽

quintile of −0.49% per month remains significant (t-statistic = −1.96), the CAPM
alpha of −0.32% per month is statistically indistinguishable from zero (t-statistic of
−1.32).

Similar to the results for portfolios formed using NYSE breakpoints, the results
using NYSE/AMEX/NASDAQ breakpoints indicate that the size effect is stronger
in stocks that have low values of 𝛽. Within the lowest NYSE/AMEX/NASDAQ 𝛽

quintile, Panel A of Table 9.7 shows that the equal-weighted MktCap 5-1 portfolio
generates an average return and alpha of −1.53% per month (t-statistic = −5.95) and
−1.40% per month (t-statistic = −5.54), respectively. When using value-weighted
portfolios (Panel B), the average return and alpha are −1.08% per month (t-statistic =
−4.32) and −0.95% per month (t-statistic =−3.86), respectively. The average returns
and alphas of the MktCap 5-1 portfolios decrease in magnitude monotonically across
the quintiles of 𝛽. When equal-weighted portfolios are used, quintiles one through
three of 𝛽 produce economically large and statistically significant MktCap 5-1 returns
and alphas. For value-weighted portfolios, only the lowest two quintiles of 𝛽 generate
an economically important and statistically significant CAPM alpha.

We now repeat the portfolio analyses using independent sorts instead of dependent
sorts to calculate the portfolio breakpoints. The independent-sort analyses allow us
to examine not only the relation between MktCap and expected returns after control-
ling for 𝛽 but also the relation between 𝛽 and expected returns after controlling for
MktCap.

The results of the independent-sort portfolio analyses using only NYSE stocks
to determine the breakpoints are presented in Table 9.8. The results for both the
equal-weighted (Panel A) and the value-weighted (Panel B) portfolios are quite
similar to those of the dependent-sort analyses presented in Table 9.6. The size
effect exists only among stocks in the lowest 𝛽 quintile. Within quintile one of 𝛽,
the equal-weighted (value-weighted) MktCap 5-1 portfolio generates an average
return of −0.71% (−0.48%) per month with a t-statistic of −2.92 (−2.36). The
equal-weighted (value-weighted) CAPM alpha of −0.60% (−0.38%) produced by
this portfolio is also economically large and statistically significant. The CAPM
alpha of the MktCap 5-1 in each of the other quintiles of 𝛽, as well as in the average
𝛽 quintile, is statistically indistinguishable from zero.

As for the relation between 𝛽 and future stock returns after controlling for the effect
of MktCap, Table 9.8 shows that for the average MktCap quintile, the 𝛽 5-1 portfo-
lio generates economically substantial and statistically significant negative abnormal
returns relative to the CAPM risk model. This result holds in each of the lowest
three quintiles of MktCap, marginally in the fourth quintile of MktCap, but disappears
among stocks in the highest MktCap quintile.

Our final bivariate portfolio analyses use independently sorted portfolios with
breakpoints calculated from all stocks in the sample (NYSE/AMEX/NASDAQ
breakpoints). The results of these analyses are presented in Table 9.9. As with
the dependent-sort analysis using NYSE/AMEX/NASDAQ breakpoints, the
independent-sort analysis finds strong evidence of the size effect in equal-weighted
(Panel A) portfolios. The MktCap 5-1 portfolio for the average 𝛽 quintile generates
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an average return −0.84% per month (t-statistic = −2.69) and alpha of −0.75% per
month. With the exception of 𝛽 quintile 4, the returns and alphas of the MktCap
difference portfolio within each of the 𝛽 quintiles are economically large and highly
statistically significant. When value-weighted (Panel B) portfolios are used, how-
ever, none of the 𝛽 quintiles has a MktCap 5-1 portfolio that produces a statistically
significant alpha.6 This is true as well of the average 𝛽 quintile.

TABLE 9.8 Bivariate Independent-Sort Portfolio Analysis—NYSE Breakpoints
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between MktCap and future stock returns after controlling for the effect of 𝛽. Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of 𝛽. All
stocks are independently sorted into five groups based on an ascending sort of MktCap. The
quintile breakpoints used to create the groups are calculated using only stocks that are listed
on the New York Stock Exchange. The intersections of the 𝛽 and MktCap groups are used to
form 25 portfolios. The table presents the average one-month-ahead excess return (in percent
per month) for each of the 25 portfolios as well as for the average 𝛽 quintile portfolio within
each quintile of MktCap and the average MktCap quintile within each 𝛽 quintile. Also shown
are the average return and CAPM alpha of a long–short zero-cost portfolio that is long the
fifth MktCap (𝛽) quintile portfolio and short the first MktCap (𝛽) quintile portfolio in each
𝛽 (MktCap) quintile. t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average return or alpha is equal to zero, are
shown in parentheses. Panel A presents results for equal-weighted portfolios. Panel B presents
results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolios

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

𝛽
A

vg

𝛽
5-

1

𝛽
5-

1
C

A
PM

𝛼

MktCap 1 1.02 0.99 0.95 0.82 0.48 0.85 −0.54 −0.98
(−2.22) (−4.97)

MktCap 2 0.69 0.87 0.89 0.84 0.60 0.78 −0.09 −0.57
(−0.33) (−2.58)

MktCap 3 0.67 0.68 0.84 0.84 0.66 0.74 −0.01 −0.46
(−0.03) (−2.08)

MktCap 4 0.52 0.66 0.82 0.60 0.60 0.64 0.08 −0.36
(0.31) (−1.78)

MktCap 5 0.31 0.54 0.49 0.53 0.43 0.46 0.11 −0.29
(0.44) (−1.43)

MktCap Avg 0.64 0.75 0.80 0.72 0.55 −0.09 −0.53
(−0.36) (−2.84)

MktCap 5-1 −0.71 −0.45 −0.45 −0.30 −0.05 −0.39
(−2.92) (−1.64) (−1.71) (−1.07) (−0.20) (−1.56)

MktCap 5-1 CAPM 𝛼 −0.60 −0.26 −0.27 −0.13 0.08 −0.24
(−2.71) (−1.10) (−1.16) (−0.50) (0.33) (−1.05)

6The alpha for the MktCap 5-1 portfolio in the first quintile of 𝛽 of −0.43% per month is marginally
statistically significant with a t-statistic of −1.68.
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TABLE 9.8 (Continued)
Panel B: Value-Weighted Portfolios

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

𝛽
A

vg

𝛽
5-

1

𝛽
5-

1
C

A
PM

𝛼

MktCap 1 0.75 0.83 0.82 0.73 0.34 0.69 −0.41 −0.87
(−1.51) (−4.17)

MktCap 2 0.69 0.86 0.85 0.85 0.61 0.77 −0.08 −0.55
(−0.29) (−2.54)

MktCap 3 0.65 0.66 0.83 0.83 0.64 0.72 −0.01 −0.46
(−0.02) (−2.08)

MktCap 4 0.50 0.64 0.83 0.62 0.59 0.64 0.10 −0.35
(0.37) (−1.75)

MktCap 5 0.26 0.49 0.38 0.47 0.35 0.39 0.09 −0.29
(0.35) (−1.46)

MktCap Avg 0.57 0.70 0.74 0.70 0.51 −0.06 −0.50
(−0.25) (−2.74)

MktCap 5-1 −0.48 −0.34 −0.44 −0.26 0.01 −0.30
(−2.36) (−1.38) (−1.79) (−0.99) (0.05) (−1.32)

MktCap 5-1 CAPM 𝛼 −0.38 −0.14 −0.24 −0.06 0.20 −0.12
(−1.97) (−0.67) (−1.10) (−0.24) (0.78) (−0.61)

Regardless of whether equal-weighted or value-weighted portfolios are used, the
independent-sort portfolio analyses using NYSE/AMEX/NASDAQ breakpoints indi-
cate that portfolios consisting of long positions in high-𝛽 stocks and short positions
in low-𝛽 stocks generate negative abnormal returns relative to the CAPM risk model.
Within each quintile of MktCap, as well as for the average MktCap quintile, the
CAPM alpha of the 𝛽 5-1 portfolio is negative, large in magnitude, and highly statis-
tically significant.7

In summary, the results of the bivariate portfolio analyses lead to similar conclu-
sions as those reached using univariate portfolio analysis. The strength of the negative
relation between market capitalization and expected stock returns depends highly on
the methodology employed. Equal-weighted portfolio analyses indicate a strong rela-
tion than value-weighted portfolio analyses. Calculating portfolio breakpoints using
only NYSE-listed stocks produces weaker results than when all stocks in the sample
are used to determine the breakpoints. In fact, in the bivariate-sort analyses, only
equal-weighted portfolios formed from breakpoints calculated using all stocks in the
sample provide statistically significant evidence of the size effect in the average quin-
tile of beta. In all other bivariate portfolio analyses, the size effect is not detected.
Finally, the use of dependent versus independent sorts when calculating breakpoints
has little effect.

7In MktCap quintile five the alphas of the 𝛽 5-1 portfolios are only marginally statistically significant.
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9.5.3 Fama–MacBeth Regression Analysis

The portfolio analyses of Sections 9.5.1 and 9.5.2 provide preliminary evidence of
a negative relation between market capitalization and stock returns. In this section,
we examine that relation using (Fama and MacBeth (1973), FM hereafter) regression
analysis. Each month, we run a cross-sectional regression of one-month-ahead excess
stock returns on size (Size) or size and beta (𝛽). We stress that we use Size (the log of
market capitalization) instead of MktCap in the regression analysis. The reason for
this is that, as discussed previously, MktCap has a highly skewed distribution. As a

TABLE 9.9 Bivariate Independent-Sort Portfolio Analysis – NYSE/AMEX/NASDAQ
Breakpoints
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between MktCap and future stock returns after controlling for the effect of 𝛽. Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of 𝛽. All
stocks are independently sorted into five groups based on an ascending sort of MktCap. The
quintile breakpoints used to create the groups are calculated using all stocks in the CRSP sam-
ple. The intersections of the 𝛽 and MktCap groups are used to form 25 portfolios. The table
presents the average one-month-ahead excess return (in percent per month) for each of the 25
portfolios as well as for the average 𝛽 quintile portfolio within each quintile of MktCap and the
average MktCap quintile within each 𝛽 quintile. Also shown are the average return and CAPM
alpha of a long–short zero-cost portfolio that is long the fifth MktCap (𝛽) quintile portfolio and
short the first MktCap (𝛽) quintile portfolio in each 𝛽 (MktCap) quintile. t-statistics (in paren-
theses), adjusted following Newey and West (1987) using six lags, testing the null hypothesis
that the average return or alpha is equal to zero, are shown in parentheses. Panel A presents
results for equal-weighted portfolios. Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolios

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

𝛽
A

vg

𝛽
5-

1

𝛽
5-

1
C

A
PM

𝛼

MktCap 1 1.36 1.40 1.62 1.24 1.19 1.36 −0.17 −0.54
(−0.56) (−2.02)

MktCap 2 0.59 0.74 0.72 0.56 0.21 0.56 −0.38 −0.90
(−1.12) (−3.35)

MktCap 3 0.59 0.77 0.81 0.62 0.42 0.64 −0.18 −0.69
(−0.56) (−2.81)

MktCap 4 0.66 0.74 0.79 0.76 0.50 0.69 −0.16 −0.69
(−0.53) (−2.78)

MktCap 5 0.39 0.51 0.60 0.64 0.44 0.52 0.05 −0.42
(0.17) (−1.92)

MktCap Avg 0.72 0.83 0.91 0.76 0.55 −0.17 −0.65
(−0.61) (−3.07)

MktCap 5-1 −0.97 −0.89 −1.02 −0.60 −0.75 −0.84
(−3.34) (−2.87) (−2.62) (−1.54) (−2.00) (−2.69)

MktCap 5-1 CAPM 𝛼 −0.85 −0.74 −0.98 −0.46 −0.72 −0.75
(−3.20) (−2.67) (−2.23) (−1.27) (−2.01) (−2.54)
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TABLE 9.9 (Continued)
Panel B: Value-Weighted Portfolios

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

𝛽
A

vg

𝛽
5-

1

𝛽
5-

1
C

A
PM

𝛼

MktCap 1 0.89 1.01 1.15 0.77 0.67 0.90 −0.21 −0.63
(−0.65) (−2.20)

MktCap 2 0.61 0.75 0.73 0.58 0.18 0.57 −0.43 −0.95
(−1.27) (−3.56)

MktCap 3 0.60 0.76 0.82 0.64 0.42 0.65 −0.18 −0.69
(−0.58) (−2.86)

MktCap 4 0.63 0.74 0.78 0.75 0.53 0.68 −0.10 −0.62
(−0.34) (−2.49)

MktCap 5 0.35 0.38 0.48 0.44 0.33 0.40 −0.02 −0.41
(−0.06) (−1.87)

MktCap Avg 0.62 0.73 0.79 0.64 0.43 −0.19 −0.66
(−0.70) (−3.24)

MktCap 5-1 −0.54 −0.63 −0.67 −0.33 −0.34 −0.50
(−1.93) (−1.99) (−1.81) (−0.84) (−0.84) (−1.57)

MktCap 5-1 CAPM 𝛼 −0.43 −0.46 −0.50 −0.13 −0.22 −0.35
(−1.68) (−1.62) (−1.44) (−0.36) (−0.58) (−1.22)

result, if we used MktCap as an independent variable, it is possible that a few extreme
data points would have an undesirably large effect on the estimated regression coef-
ficients. For this reason, it is standard in the asset pricing literature to use the log of
market capitalization (Size) in regression analyses. We repeat the analyses using the
FF version of size, SizeFF .

Table 9.10 presents the results of the FM regression analyses. Model (1) shows that
when Size is the only independent variable in the regression specification, the aver-
age slope from the monthly cross-sectional regressions is −0.14 with a corresponding
Newey and West (1987)-adjusted t-statistic of −2.93, indicating a statistically signif-
icant negative relation between Size and future stock returns. Regression model (2)
demonstrates that after controlling for the effect of beta, the negative cross-sectional
relation between size and future stock returns persists, as the average slope on Size is
−0.15 with a t-statistic of −2.48. Consistent with the results in Chapter 8, the average
coefficient on 𝛽 remains statistically indistinguishable from zero. Regression mod-
els (3) and (4) repeat the regression analyses using SizeFF instead of Size to measure
market capitalization. The results are very similar. Specification (3), which uses on
SizeFF as the only independent variable, generates an average regression coefficient
of −0.12 with a t-statistic of −2.62. When 𝛽 is included as a control variable, the
average slope on Size is once again −0.12, this time with a t-statistic of −2.16. Thus,
regardless of the measure of market capitalization, the results of the FM regression
analyses indicate a statistically strong negative cross-sectional relation between size
and future stock returns.
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TABLE 9.10 Fama–MacBeth Regression Analysis
This table presents the results of Fama and MacBeth (1973) regres-
sion analyses of the relation between expected stock returns and
firm size. Each column in the table presents results for a differ-
ent cross-sectional regression specification. The dependent variable
in all specifications is the one-month-ahead excess stock return.
The independent variables are indicated in the first column. Inde-
pendent variables are winsorized at the 0.5% level on a monthly
basis. The table presents average slope and intercept coefficients
along with t-statistics (in parentheses), adjusted following Newey
and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and
n present the average adjusted R-squared and the number of data
points, respectively, for the cross-sectional regressions.

(1) (2) (3) (4)

Size −0.14 −0.15
(−2.93) (−2.48)

SizeFF −0.12 −0.12
(−2.62) (−2.16)

𝛽 −0.06 −0.11
(−0.34) (−0.63)

Intercept 1.31 1.42 1.23 1.35
(2.81) (3.33) (2.70) (3.23)

Adj. R2 0.01 0.03 0.01 0.03
n 4781 4426 4578 4420

To examine the economic significance of the relation between size and future stock
returns, we take the estimated average slope coefficient on Size from the regression
specification that includes 𝛽 as a control (specification (2)) of −0.15 and multiply
it by the average cross-sectional standard deviation of Size of 1.92 (see Table 9.1) to
get −0.29 (−0.15 × 1.92). This indicates that, all else equal, a one-standard-deviation
difference in Size is associated with a 0.29% per month difference in expected stock
returns. Similarly, we calculate the difference in expected returns between stocks
whose Size falls at the 25th and 75th percentiles. Doing so indicates that the difference
in expected returns of two such stocks is 0.40% per month (0.15% × (5.57 − 2.93),
see Table 9.1). Finally, we examine the difference in expected returns for very large
stocks compared to very small stocks by multiplying the average coefficient on Size
by the difference between the 95th and fifth percentiles of Size, giving an expected
return difference of 0.94% per month (0.15% × (7.74 − 1.46)). The results, therefore,
indicate that in addition to detecting a statistically significant relation between Size
and future stock returns, the relation is also highly economically important.

In summary, the results of the portfolio analyses and FM regression analyses pre-
sented in this section indicate a negative relation between market capitalization and
future stock returns. This phenomenon is commonly referred to as the size effect.
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Different variations of portfolio and FM regression analyses produce substantially
different results. The size effect appears strongest when using breakpoints calculated
using all stocks in the sample, but substantially weaker when only NYSE stocks
are used to calculate the portfolio breakpoints. Value-weighted portfolios generate
a somewhat weaker size effect than equal-weighted portfolios. Consistent with the
findings of Banz (1981) and Fama and French (1992, 1993), we show that the size
effect is driven by very large returns on stocks in the smallest decile of market capital-
ization. The size effect also appears to be concentrated among stocks with low market
betas. Consistent with the strongest portfolio results, FM regression analyses indicate
an economically and statistically important negative relation between size and future
stock returns. The relation persists after controlling for market beta, contradicting the
prediction of the (CAPM Sharpe (1964), Lintner (1965), Mossin (1966)) that market
beta is the only determinant of cross-sectional variation in expected returns.

Given the existence of a negative relation between market capitalization and abnor-
mal stock returns, an important question that arises is why such a relation exists. As
noted by Ball (1978), among others, the portfolio and regression analyses of Section
9.5 do not necessarily indicate market inefficiency. Another plausible explanation is
that market capitalization serves as a proxy for exposure to a risk that is not included
in the benchmark asset pricing model, in this case the CAPM risk model.

9.6 THE SIZE FACTOR

Taking the point of view that market capitalization proxies for a stock’s exposure
to a priced but previously undefined risk factor, Fama and French (1993) create a
long–short zero-cost portfolio designed to generate returns that approximate the
returns associated with taking one unit of risk of this unknown size factor with little
sensitivity to other factors. To create the size factor mimicking portfolio, Fama and
French (1993) form a portfolio that is long small stocks and short large stocks in
equal dollar amounts. They name this portfolio SMB, for small minus big.

In June of each year y, Fama and French (1993) divide all U.S.-based common
stocks in the CRSP database into two groups. Stocks with market capitalizations that
are lower than the median market capitalization among all NYSE stocks comprise
the group S (for small). The B (for big) group contains all stocks with market capital-
izations above the NYSE median. The entire universe of stocks is also independently
sorted into three groups based on the book-to-market ratio (BM). BM is calculated in
June of year y as the book value of common equity at the end of the fiscal year ending
in the previous calendar year (year y − 1) divided by the market capitalization of the
stock at the end of December of the previous calendar year (year y − 1, see Chapter
10 for more details on calculating BM). The H (for high) group contains all stocks
with BM above the 70th percentile of BM for NYSE stocks only. The M (for medium)
group holds stocks with BM values between the 30th and 70th NYSE percentiles, and
the L (for low) group contains stocks with BM values below the 30th percentile.

The two market capitalization groups and three book-to-market ratio groups are
then intersected to create six portfolios labeled S∕H, S∕M, S∕L, B∕H, B∕M, and B∕L.
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The S∕H portfolio contains stocks in the intersection of the small stock (S) group and
the high book-to-market ratio (H) group. Holdings in the other portfolios are anal-
ogous. The stocks in each of the six portfolios are value-weighted, with the market
capitalization as of the end of June of year y, previously defined as MktCapFF , used
as the weight field. Fama and French (1993) then calculate the monthly returns of
each of these six portfolios for the months from July of year y through June of year
y + 1, at which time the portfolios are reformed. Finally, the return of the size factor
mimicking portfolio (SMB) in any month m is taken to be the difference between the
simple average of the returns of the three small stock portfolios (S∕H, S∕M, and S∕L)
and that of the three large stock portfolios (B∕H, B∕M, and B∕L). The objective of
the portfolio design is to create a long–short portfolio whose returns are highly sen-
sitive to return differences between large and small stocks, and relatively insensitive
to differences in returns among stocks with high and low book-to-market ratios. The
monthly (and daily) returns of the SMB portfolio are available on Kenneth French’s
website.8

During the period from July 1926 through December 2012, the average monthly
return (log return) of the SMB portfolio is 0.23% (0.18%), with a sample standard
deviation of 3.26% (3.17%) per month. The annualized Sharpe ratio of the monthly
SMB returns (log returns) is therefore 0.24 (0.20). The compounded return of the SMB
portfolio over this entire period is 537%, and the cumulative log return is therefore
185%. The returns of the SMB portfolio also exhibit a substantial correlation of 0.34
with the market factor (MKT).

Figure 9.2 plots the cumulative returns realized from investing in the SMB portfo-
lio. The solid line shows the compounded return realized by investing in the monthly
SMB portfolio. The scale for this line is on the left side of the plot. The dashed line
plots the cumulative sum of the monthly log returns of the SMB portfolio, and its scale
is on the right side of the plot. The plot shows that, while in the long run the trading
strategy underlying the SMB portfolio is profitable, there are some very severe risks
involved with this strategy. For example, starting at the beginning of August 1983,
the SMB portfolio experiences a prolonged and substantial decline in value. The low
point of this drawdown comes at the end of March 1999, at which point the SMB port-
folio had lost almost 53% of its previous maximum value. The next time the value
of the portfolio reaches the previous high, established at the end of July 1983, is the
end of April 2010, more than 26 years after the previous high was achieved. While
this drawdown is both the longest and deepest drawdown experienced by the SMB
portfolio, it by no means represents the only period of deep or prolonged losses. The
second longest drawdown began at the beginning of June 1946, from which point
the SMB portfolio had a negative cumulative return until the end of September 1967,
more than 21 years later. At its low point during this period, the SMB lost almost 39%
of its value as of the end of May 1946. Finally, from the end of December 1968 until
the end of December 1974, the SMB portfolio lost more than 46% of its value. The

8The URL for Kenneth French’s data library is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data&uscore;library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&uscore;library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&uscore;library.html
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previous high was not recaptured until the end of August 1978, almost 10 years after
the drawdown began.

In addition to the prolonged periods of poor performance for the SMB factor, it
is worth noting that if we use the CAPM risk model to assess the abnormal returns
of the SMB portfolio by regressing the SMB monthly return on the monthly excess
return of the market (the market factor, MKT), we find that the risk-adjusted alpha
(the estimated intercept coefficient from the regression), while positive, is statistically
insignificant. Specifically, using the period from July 1926 through December 2012,
the SMB factor generates a CAPM alpha of only 0.10% per month with a Newey and
West (1987) t-statistic of only 1.12. Similarly, for the period from July 1963 through
December 2012 (the period for which we examine returns throughout this book), the
CAPM alpha of the SMB portfolio is 0.15% per month with a corresponding t-statistic
of 1.25. These results seem to indicate that the excess returns of the SMB portfolio
can be explained by the sensitivity of the SMB portfolio to the market portfolio, as
predicted by the CAPM. In fact, even without adjusting the returns of the SMB factor
to account for sensitivity to the market factor, the average monthly return of the SMB
factor from July 1963 through December 2012 is an economically small 0.13% per
month with a corresponding t-statistic of 1.86, indicating only marginally statistically
significant evidence that the SMB factor generates positive average returns over this
period of nearly 50 years. Despite these facts, Fama and French (1993) show that
the SMB portfolio has the ability to explain the abnormal returns of portfolios whose
returns are not explained by the market factor. For this reason, the SMB factor is one of
the pillars of empirical asset pricing research, and any study claiming to demonstrate
the ability to explain or predict stock returns is expected to demonstrate that this
ability persists after controlling for the size effect.

9.7 SUMMARY

In this chapter, we have examined the relation between the market capitalization and
expected stock returns. Portfolio and regression analyses detect a strong negative rela-
tion between these two variables. The results indicate that small stocks (stocks with
low market capitalization) outperform large stocks. Portfolio analyses demonstrate
that this result is primarily driven by extremely small stocks that generate very high
average returns but comprise a small percentage of total stock market capitalization.
The size phenomenon is not explained by cross-sectional variation in market beta, but
the magnitude and statistical significance of the effect vary substantially depending
on the implementation of the analysis. Value-weighted portfolios tend to produce
weaker results than equal-weighted portfolios. Calculation of portfolio breakpoints
using only stocks listed on the NYSE substantially diminishes the detected magni-
tude of the returns associated with size investing compared to portfolios formed using
breakpoints calculated using all stocks.

Fama and French (1993) conclude that the difference in expected returns between
large and small stocks must be due to exposures to a latent priced risk factor that are
cross-sectionally correlated with market capitalization. Based on this, they create the
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SMB portfolio consisting of long positions in stocks with low market capitalizations
and short positions in stocks with high market capitalizations. This factor-mimicking
portfolio is designed to generate returns that would be realized by a portfolio that is
long one unit of exposure to the latent risk factor with minimal sensitivity to the other
risk factors, and therefore is ideal for use in a multifactor risk model. We show that
while the returns of the SMB portfolio are on average positive, there are substantial
risks associated with this portfolio, and poor performance may persist for extended
periods of time.

REFERENCES

Ball, R. 1978. Anomalies in relationships between securities’ yields and yield-surrogates. Jour-
nal of Financial Economics, 6(2-3), 103–126.

Banz, R. W. 1981. The relationship between return and market value of common stocks. Journal
of Financial Economics, 9(1), 3–18.

Fama, E. F. and French, K. R. 1992. The cross-section of expected stock returns. Journal of
Finance, 47(2), 427–465.

Fama, E. F. and French, K. R. 1993. Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics, 33(1), 3–56.

Fama, E. F. and French, K. R. 2012. Size, value, and momentum in international stock returns.
Journal of Financial Economics, 105(3), 457–472.

Fama, E. F. and MacBeth, J. D. 1973. Risk, return, and equilibrium: empirical tests. Journal of
Political Economy, 81(3), 607.

Lakonishok, J. and Shapiro, A. 1986. Systematic risk, total risk and size as determinants of
stock market returns. Journal of Banking & Finance, 10(1), 115–132.

Lintner, J. 1965. Security prices, risk, and maximal gains from diversification. Journal of
Finance, 20(4), 587–615.

Mossin, J. 1966. Equilibrium in a capital asset market. Econometrica, 34(4), 768–783.

Newey, W. K. and West, K. D. 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.

Sharpe, W. F. 1964. Capital asset prices: a theory of market equilibrium under conditions of
risk. Journal of Finance, 19(3), 425–442.



�

� �

�

10

THE VALUE PREMIUM

Numerous studies document that value stocks, loosely defined as stocks with low
prices relative to earnings (Basu (1977), Jaffe, Keim, and Westerfield (1989)),
dividends (Lakonishok, Shleifer, and Vishny (1994)), debt (Bhandari (1988)), or
the book value of equity (Rosenberg, Reid, and Lanstein (1985), Fama and French
(1992, 1993), Chan, Jegadeesh, and Lakonishok (1995)), generate higher long-run
returns than growth stocks, or stocks with high prices relative to these measures of
fundamental value. Fama and French (1992) show that the relations between each
of these variables and future stock returns are subsumed by two variables, market
capitalization and the ratio of book value of equity to the market value of equity
(book-to-market ratio hereafter). As was shown in Chapter 9, market capitalization
has a negative relation with stock returns. The main objective of the present chapter
is to empirically investigate the value premium. Specifically, we will demonstrate
that the book-to-market ratio has a positive relation with expected stock returns.

The interpretation of the positive relation between book-to-market ratio (or other
related measures) and expected stock returns is controversial. Two main explanations
have been offered. The first is a risk-based explanation proposed by Fama and French
(1993) and Chen and Zhang (1998). These papers argue that the higher (lower) returns
of value (growth) stocks are a result of higher (lower) exposure to a priced risk fac-
tor. The second explanation, offered by Lakonishok, Shleifer, and Vishny (1994), La
Porta (1996), and La Porta, Lakonishok, Shleifer, and Vishny (1997), is behavioral in
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nature. These authors claim that the returns associated with value investing are due
to naive investor expectations of future growth that result in mispricing.

Proponents of a risk-based explanation have proposed several possibilities for the
exact nature of the risk. Fama and French (1992) suggest that book-to-market ratio
(or other variables measuring value) proxy for exposure to a latent fundamental-based
risk factor. This hypothesis is supported by Fama and French (1995) and Chen and
Zhang (1998), who show that value firms have persistently low earnings, high earn-
ings uncertainty, and high leverage. Fama and French (1993) investigate this hypoth-
esis within the context of a multifactor asset pricing model (Merton (1973); Ross
(1976)). They demonstrate that the returns of a portfolio designed to mimic inno-
vations in this factor capture common variation in stock returns. Another possibility
proposed by Fama and French (1992) is that the book-to-market ratio may capture the
relative distress effect postulated by Chan and Chen (1991). According to this expla-
nation, the low share prices relative to measures of fundamentals reflect the market’s
judgment that the prospects for the firm are poor. Furthermore, as low market prices
result in high market leverage, they claim that this distress can also be interpreted as
an involuntary leverage effect.

More recent risk-based studies claim that the value premium can be explained by
time-varying risk and risk-premia (Lettau and Ludvigson (2001), Zhang (2005)). Pro-
ponents of this explanation argue that the risk of a portfolio, that is, long value stocks
and short growth stocks is high (low) when economic conditions are poor (good)
and risk premia are high (low). Lettau and Ludvigson (2001) empirically support
this claim by showing that during economic downturns, the returns of a portfolio of
value stocks are more highly correlated with consumption growth than the returns
of a portfolio of growth stocks. Zhang (2005) derives this hypothesis theoretically
from a production-based asset pricing model in which value stocks are riskier than
growth stocks, especially in states characterized by poor economic conditions and
elevated risk premia. Fama and French (1995) find that during such periods, high
(low) book-to-market ratios are indicative of persistently low (high) profitability.1

Adherents to the behavioral explanation, originally proposed by Lakonishok,
Shleifer, and Vishny (1994), claim that the higher returns of value stocks result from
mispricing caused by investors’ errors in estimating firms’ future earnings growth.
In particular, Lakonishok, Shleifer, and Vishny (1994) postulate that value strategies
work because they are contrary to the strategies followed by naive investors who
tend to extrapolate past growth rates too far into the future. Naive investors tend to
get overly optimistic about stocks that have performed very well in the past, creating
demand for shares that causes these glamor stocks to become overpriced. Similarly,
naive investors overreact to stocks that have performed poorly, oversell them, causing
these “value” stocks to become underpriced. Accordingly, the predictive power of
value-to-price ratios merely reflects the unraveling of past errors made by naive
investors. Consistent with this notion, earlier studies on overreaction (De Bondt and

1Fama and French (2012) and Asness, Moskowitz, and Pedersen 2013 find evidence of the value premium
in many different asset classes and markets and attribute the returns associated with value investing to a
common factor.
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Thaler (1985, 1987), Chopra, Lakonishok, and Ritter (1992)) show that extreme
losers outperform the market over the subsequent several years. Examinations of the
ability of these growth forecast errors to explain the superior returns of value stocks
by La Porta (1996) and La Porta, Lakonishok, Shleifer, and Vishny (1997) support
the mispricing explanation. Griffin and Lemmon (2002) find that firms with high
distress risk exhibit the largest return reversals around earnings announcements, thus
attributing the distress-risk effect to mispricing. Ali, Hwang, and Trombley (2003)
show that the value effect is predominantly driven by stocks whose investors are
unsophisticated. Lakonishok, Shleifer, and Vishny (1994) combat risk-based expla-
nation by showing that high value-to-price stocks are no riskier than growth stocks
based on conventional notions of systematic risk such as beta and standard deviation.
Daniel and Titman (1997) cast doubts on the risk factor interpretation of the superior
returns to high book-to-market stocks by demonstrating that expected returns are
not significantly higher for stocks whose returns are more highly correlated with
the book-to-market factor of Fama and French (1993). In other words, co-movement
with the proposed risk factor does not explain expected returns.

To summarize, although many studies provide evidence that helps discriminate
between the risk and mispricing explanations, the results remain inconclusive.
Whether contrarian strategies generate high returns because stocks are mispriced or
because value stocks are fundamentally riskier than growth stocks remains an open
question.

In remainder of this chapter, we empirically investigate the value premium by
examining the relation between book-to-market ratio and stock returns. We begin
by discussing the calculation of the book-to-market ratio. We then investigate the
cross-sectional relation between book-to-market ratio and future stock returns using
portfolio and Fama and MacBeth (1973) regression analysis. Next, we discuss the
HML portfolio of Fama and French (1993), designed to capture the returns derived
from exposure to the risk associated with the value premium. Finally, we present the
Fama and French (1993) three-factor risk model, which has become a widely used
standard for measuring risk-adjusted returns.

10.1 CALCULATING BOOK-TO-MARKET RATIO

The book-to-market ratio, which we denote BM, is defined as the book value of a
firm’s common equity (BE) divided by the market value of the firm’s equity (ME), or

BM = BE
ME

(10.1)

where the book value comes from the firm’s balance sheet and the market value is
identical to the market capitalization of the firm. As will be seen in the summary
statistics presented in Section 10.2, the cross-sectional distribution of BM is highly
positively skewed. To minimize the effect of extreme values of BM in statistical anal-
yses, we define ln BM as the natural log of BM.

ln BM = ln (BM). (10.2)
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It is worth noting that, despite the skewed distribution of BM, most empirical research
uses the untransformed version of BM even in regression and correlation analyses.
In this chapter, we will investigate whether applying the log transformation has any
qualitative effect on the results of such analyses.

The most commonly implemented calculation of the book-to-market ratio is that
of Fama and French (1992, 1993). Calculation of the book value of common equity
(BE) is done from balance sheet data provided by Compustat. While the files pro-
vided by Compustat have changed over time, at the time of this writing (2015), the
data necessary for the calculation of BE is available in Compustat’s North America
Fundamentals Annual (funda) file.

The calculation of BE begins by taking the book value of stockholder’s equity,
which is the SEQ field in Compustat. We adjust this value for tax effects by adding
deferred taxes (TXDB field) and investment tax credit (ITCB field) to it. Finally, from
this, we subtract the book value of preferred stock. The book value of preferred stock
is taken to be the redemption value (PSTKRV field), the liquidating value (PSTKL
field), or the par value (PSTK field), taken in the given order, as available. If either
the stockholders equity (SEQ) or the deferred taxes field (TXDB) is missing in the
Compustat database, the book value of common equity is not calculated and calcula-
tion of the book-to-market ratio fails. If investment tax credit (ITCB) is missing, it is
taken to be zero. Finally, if all of the values for preferred stock are missing, the book
value of preferred stock is taken to be zero. We can therefore define the book equity
as

BE = SEQ + TXDB + ITCB − BVPS (10.3)

where

BVPS =
⎧
⎪⎨⎪⎩

PRTKRV , if available
PSTKL, if available and PSTKRV not available
PSTK, if available and PSTKRV ,PSTKL not available
0, otherwise.

All of the fields used in the calculation of BE are reported in $millions in the Com-
pustat database. In some cases, the calculation results in a negative value for BE.
The value of BE for these observations is taken to be missing, resulting in a failure
to calculate BM. This ensures that the book-to-market ratio, when calculated, will be
positive. Values of BM for observations with negative BE are therefore not calculated.
It is also worth mentioning that the Compustat database has multiple entries for many
firm/date observations, where firm/date observations are identified by unique combi-
nations of the g𝑣key and datadate fields in the Compustat database. The correct entry
to use in calculation of the book-to-market ratio can be identified by taking the entry
where the industry format (indfmt field) is set to “INDL” and the data format (datafmt
field) is set to “STD.” In fact, when calculating the book value of equity, only entries
with the industry format and data format fields set to the aforementioned values in
Compustat’s North America Fundamentals Annual file should be used. Thus, it is
advised that when using this file to calculate the book value of common equity, all
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entries with alternative values in either of these fields be removed. The remaining
entries will represent unique firm/date observations.2

The second step to calculating the book-to-market ratio is to calculate the mar-
ket equity. The market value of equity used in the calculation of the book-to-market
ratio is usually taken to be the market capitalization, defined as the number of shares
outstanding times the price of the stock, measured at the end of December of any
given year. As discussed in Chapter 9, the number of shares outstanding (SHROUT
field) and share price (ALTPRC or PRC field) data used to calculate the market cap-
italization are taken from the Center for Research in Security Prices (CRSP) daily
or monthly files. As CRSP reports the number of shares outstanding in thousands of
shares, and the calculation of the book value of common equity was done in $millions,
the market equity used in the book-to-market ratio calculation is defined as

ME = |ALTPRC × SHROUT|
1000

(10.4)

where ALTPRC and SHROUT are taken from CRSP monthly stock file on the last
trading day in December of the given year. The absolute value in the numerator is
because in some situations, CRSP reports the price of a share as a negative number.
The reasons for this are discussed in detail in Section 9.1.

The next step to calculating the book-to-market ratio is to properly align the timing
of the calculation of the book value of equity (BE) with the market value of equity
(ME). The most standard approach to doing this, proposed by Fama and French (1992,
1993), is to pair the book equity calculated using data for the fiscal year ending in
calendar year y with the market equity calculated at the end of that same year y. Thus,
for firms with fiscal year-ends in January, the calculation of book equity will be as of
the end of January of the given year, and the calculation of market equity will be as
of the end of December of that same year. The timing of the calculation of the book
and market values can, therefore, differ by up to 11 months. Fama and French (1992)
find that this lag has negligible effect on empirical analyses. The datadate field in the
Compustat database represents the fiscal year-end date, thus simply taking the year
of this date is all that is needed to find the desired year y. In some cases, firms change
the month in which their fiscal year ends, resulting in two entries in the Compustat
database for the same calendar year y. In such cases, data from the latest datadate in
the given calendar year y are used.

To ensure that the value of the book-to-market ratio used in empirical research is
based on data that would have been publicly available by the time presumed in the
analysis, the book-to-market ratio that is calculated using data from calendar year y
is not assumed to be known until the end of June of year y + 1. Thus, the value of
BMi,t (the book-to-market ratio for stock i in month t), for months t from June of year
y + 1 (inclusive) to May of year y + 2 (inclusive), is taken to be the book-to-market
ratio calculated using data from calendar year y. The reason for this approach to the

2In Compustat’s North America Fundamentals Annual file used in writing this book, there is one exception
to this claim. There are two entries for g𝑣key 175650 and datadate 12/31/2005. We drop both observations
for this firm/date combination from our analyses.
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timing of the calculation of the book-to-market ratio is that firms have 3 months from
the end of their fiscal year-ends to report the required data, but many firms fail to
meet this deadline. Thus, Fama and French (1992) assume at least a six-month gap
between the end of the fiscal year and the time at which the fiscal year-end data is
publicly available. Put succinctly, for the monthly analyses performed in the book, the
book-to-market ratio for months t from June of year y + 1 through May of year y + 2
is taken to be the book value of equity measured at the end of the fiscal year ending
in calendar year y divided by the market value of equity at the end of December of
calendar year y.

When calculating BM, it is necessary to match entries in the Compustat database
to entries in the CRSP database. This task is not trivial as CRSP and Compustat do
not have common firm or stock identifiers. Stocks in the CRSP database are identi-
fied by the PERMNO field. Firms in the Compustat database are identified by g𝑣key
field. If access to the CRSP/Compustat merged database, provided by CRSP, is avail-
able, then the best way to link the Compustat data used to calculate the book value
of common equity to the CRSP data used to calculate the market value of equity is
to use the link-used table (CCMXPF_LNKUSED) in the CRSP/Compustat database.
The link-used table matches a CRSP PERMNO to the Compustat g𝑣key for the same
firm and indicates the dates for which the link is valid. There are several types of
links in the link-used file, indicated in the ULINKTYPE field. Only links with val-
ues of “LU” or “LC” in the ULINKTYPE field should be used.3 Additionally, only
links with values of 1 in the USEDFLAG field in the link-used table should be used.4

The ULINKDT field in the link-used table indicates the first date for which the link
between the CRSP PERMNO and the Compustat gvkey is valid and the ULINK-
ENDDT field indicates the last date that the link is valid. If the ULINKENDDT field
is not populated it indicates that the link remains valid as of the time that the file
was generated. Matches between the Compustat database and the link-used file in the
CRSP/Compustat merged database are identified by matching the UGVKEY field in
the link-used file to the gvkey field in the Compustat file while requiring that the data-
date field in the Compustat file be greater than or equal to the date in the ULINKDT
field and less than or equal to the ULINKENDDT field (if the ULINKENDDT field
is populated) in the link-used file. The CRSP PERMNO corresponding to the given
entry in the Compustat database is taken from the UPERMNO field in the matched
entry of the link-used table.

If access to the CRSP/Compustat merged database is not available, then the
best approach to merging the CRSP and Compustat databases is to match the cusip
(NCUSIP field) from CRSP’s daily stock names (dsenames) or monthly stock

3A value of “LU” in the ULINKTYPE field indicates that the link is established by comparing CUSIP
values in the Compustat and CRSP databases. A value of “LC” in the ULINKTYPE field indicates that the
link has been researched and that the research has verified that the link is correct. For more information on
the exact meanings of the different values in the ULINKTYPE field, consult the CRSP/Compustat merged
database documentation.
4The USEDFLAG field is set to 1 if the g𝑣key represents a direct link to the corresponding PERMNO.
For more information on the exact meanings of the different values in the USEDFLAG field, consult the
CRSP/Compustat merged database documentation.
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names (msenames) file to the first eight characters of the CUSIP (cusip field) from
Compustat. In CRSP’s daily and monthly stock names files, each entry has a start
date (NAMEDT field) and an end date (NAMEENDT field). The matching procedure
should require that CRSP’s start date be on or prior to the datadate from Compustat,
and CRSP’s end date to be on or after Compustat’s datadate. In implementing this
match, we use CRSP’s daily names file.

To maximize the number of CRSP PERMNOs that we can match to the Compustat
database, we implement both matching techniques. We first use the links provided
by the link-used table in the CRSP/Compustat merged database. For entries in our
sample that are not matched using this technique, we attempt to create the link by
matching the CUSIPs in the two databases.

10.2 SUMMARY STATISTICS

We begin our empirical investigation by presenting summary statistics for the
book-to-market ratio (BM) and the natural log of the book-to-market ratio (ln BM)
using our sample of the U.S.-based common stocks in the CRSP database covering
the period from 1963 through 2012. In addition to BM and ln BM, we present
summary statistics for the book value of equity (BE) and the market value of equity
(ME) used to calculate BM, both presented in $millions and adjusted to 2012 dollars
using the Consumer Price Index (CPI).5

Table 10.1 presents the summary statistics for each of these variables. The first
row indicates that, in the average month, the mean and median values of BM are 0.94
and 0.72, respectively. The standard deviation of BM of 1.14 is larger than either the
mean or the median. This, combined with the fact that BM is bounded below by zero,
indicates that a substantial portion of the variation in BM is coming from stocks with
extremely high BM values. Consistent with this, the skewness of the cross-sectional
distribution of BM in the average month is 10.16, indicating a very positively skewed
distribution of BM. The distribution of BM is also fat-tailed, as the excess kurtosis
of BM in the average month is nearly 285. The presented percentiles of BM indicate
that BM values range from 0.01 to 32.92 in the average month. The 95th percentile
value of 2.32 is only 1.21 standard deviations above the mean, whereas the maximum
value of 32.92 is more than 28 standard deviations above the mean.

The summary statistics for ln BM indicate that applying the log transformation
to the book-to-market ratio has the desired effect of dramatically reducing the skew-
ness of the cross-sectional distribution. The skewness of ln BM in the average month
of −0.66 is actually negative, in stark contrast to the untransformed variable. The
excess kurtosis has also been substantially decreased, although ln BM does remain
substantially leptokurtic, with an average excess kurtosis of 2.41. The mean and
median values of ln BM of−0.47 and−0.39, respectively, are reasonably similar. The
average cross-sectional standard deviation of ln BM is 0.87. Finally, ln BM values

5CPI data are taken from the Bureau of Labor Statistics website. The data are available at www.
bls.gov/cpi/data.htm. We use data for the All Urban Consumer series.
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TABLE 10.1 Summary Statistics
This table presents summary statistics for variables measuring the ratio of a firm’s book value
of equity to its market value of equity calculated using the CRSP sample for the months t from
June 1963 through November 2012. Each month, the mean (Mean), standard deviation (SD),
skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min), fifth percentile (5%), 25th percentile
(25%), median (Median), 75th percentile (75%), 95th percentile (95%), and maximum (Max)
values of the cross-sectional distribution of each variable are calculated. The table presents the
time-series means for each cross-sectional value. The column labeled n indicates that average
number of stocks for which the given variable is available. BM for months t from June of year
y through May of year y + 1 is calculated as the book value of common equity as of the end
of the fiscal year ending in calendar year y − 1 to the market value of common equity as of the
end of December of year y − 1. ln BM is the natural log of BM. BE and ME are the book value
and market value, respectively, used to calculate BM, both adjusted to reflect 2012 dollar using
the consumer price index and recorded in millions of dollars. MktCap is the share price times
the number of shares outstanding.

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

BM 0.94 1.14 10.16 284.75 0.01 0.15 0.41 0.72 1.15 2.32 32.92 3409
ln BM −0.47 0.87 −0.66 2.41 −6.11 −1.98 −0.95 −0.39 0.08 0.77 3.07 3409
BE 1043 4799 16.95 450.54 1 11 50 158 542 3946 129,735 3409
ME 2040 9666 15.50 348.57 2 17 77 269 1021 7220 246,201 3409
MktCap 1234 6035 15.27 338.07 1 7 34 128 530 4574 159,003 3397

range from −6.11, or approximately 6.5 standard deviations below the mean, to 3.07,
or about four standard deviations above the mean.

Consistent with the mean of BM being below one and the negative mean of ln BM,
the results in Table 10.1 indicate that values of book equity (BE) tend to be smaller
in magnitude than values of market equity (ME). The CPI-adjusted mean (median)
values of BE and ME are just over $1 billion and just over $2 billion ($158 million and
$269 million), respectively. As expected given the skewness of market capitalization
(MktCap) observed in Table 9.1, the extreme positive skewness of BE and ME of
greater than 15.00 is expected.

There are only 3409 stocks, on average, for which a valid value of BM is available.
This compares to 4440 for market beta (𝛽, see Table 8.1) and 4794 for market capital-
ization (MktCap, see Table 9.1). There are three reasons for this. First, the majority of
the lost data points are because of a failure to match the Compustat data from which
the value of BE, and thus BM, is calculated, to the CRSP database. Second, a very
small number of data points are lost because of a negative calculated value of BE, in
which case, as discussed earlier, the value of BE, and thus BM, is taken to be missing.
Third, the lag of up to 17 months between the end of a fiscal year and the first month
for which balance sheet data from that fiscal year are used to calculate BM results, in
many cases, in a substantial delay between when a stock enters the CRSP database
and when a value of BM is first available.

To examine the similarity between the sample of stocks for which values of
BM are available to the full sample used in our previous analyses, the last line of
Table 10.1 presents the distribution of market capitalization (MktCap) for stocks
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with a non-missing BM value. Comparing the results here to those for the full market
capitalization sample (see Table 9.1) indicates that stocks for which values of BM
exist are, on average and in median, slightly larger than the stocks in the full sample,
as the mean (median) MktCap for stocks with a valid BM value is $1.2 billion ($128
million), compared to $1.1 billion ($107 million) for the full sample. The decrease
in the sample size from 3409 stocks with valid BM to 3397 stocks with valid BM
and MktCap indicates that there are a very small number of stocks with valid BM
but missing MktCap.

10.3 CORRELATIONS

We proceed now to examine the cross-sectional correlations between BM and ln BM,
as well as between these variables and the main variables discussed previously in this
book, namely market beta (𝛽) and stock size (Size, the natural log of market capi-
talization). Table 10.2 presents correlations between BM, ln BM, 𝛽, and Size values.
The sample used to calculate these correlations includes only stocks for which a value
of BM is available. Each of the variables is winsorized at the 0.5% level on a monthly
basis. Values below (above) the diagonal present the average cross-sectional Pearson
product–moment (Spearman rank) correlation between the given pair of variables.

As would be expected, the Pearson correlation between BM and ln BM of 0.84
is quite high. This result indicates that taking the log transformation does not have
a huge effect on the cross-sectional characteristics of BM. By necessity, the Spear-
man rank correlation between BM and ln BM is exactly one. The results demonstrate
that BM is negatively correlated with each of market beta (𝛽) and size (Size). BM
exhibits a Pearson correlation of −0.19 and a Spearman correlation of −0.23 with 𝛽.
The negative Pearson (Spearman) correlation of −0.27 (−0.26) between BM and Size
is perhaps somewhat mechanical market equity (ME), which is calculated in exactly
the same manner as market capitalization (of which Size is the log), is the denomi-
nator in the calculation of BM. The Pearson correlations between ln BM and each of

TABLE 10.2 Correlations
This table presents the time-series averages of the annual
cross-sectional Pearson product–moment (below-diagonal
entries) and Spearman rank (above-diagonal entries) corre-
lations between pairs BM, ln BM, 𝛽, and Size.

BM ln BM 𝛽 Size

BM 1.00 −0.23 −0.26
ln BM 0.84 −0.23 −0.26
𝛽 −0.19 −0.22 0.32
Size −0.27 −0.24 0.30
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𝛽 (correlation = −0.22) and Size (correlation = −0.24) are quite similar to the cor-
responding correlations using BM instead of ln BM.6 This, combined with the fact
that the Spearman and Pearson correlations are quite similar to each other, indicates
either that the skewed distribution of BM may not be an important issue empirically
or that winsorizing the variables at the 0.5% level is sufficiently effective at adjusting
the extreme values of BM to ameliorate any negative impact the extreme values may
have on the results of statistical analyses.

10.4 PERSISTENCE

In this section, we examine the persistence of both BM and ln BM. As discussed in
the introduction to this chapter, there are two interpretations of the book-to-market
ratio that have received particular attention. The first is that book-to-market ratio
measures sensitivity to a price risk factor. The second is that book-to-market ratio
captures mispricing of some sort. If the factor sensitivity interpretation is correct and
this sensitivity is a persistent characteristic of a given stock, it would be expected that
book-to-market ratio exhibits strong cross-sectional persistence. On the other hand,
if BM measures mispricing, it may be expected that book-to-market ratio be a some-
what transient stock characteristic, as its value would tend to change as the mispricing
corrects itself.

In Table 10.3, we present the results of persistence analyses of BM and ln BM.
We calculate persistence at lags of between 12 and 120 months. We do not include
results for persistence at lags of less than one year because values of BM and therefore
ln BM are only updated once per year, in June. Therefore, persistence measured at
shorter lags would be largely mechanical and therefore difficult to interpret.

TABLE 10.3 Persistence
This table presents the results of persistence analyses of BM and ln BM.
Each month t, the cross-sectional Pearson product–moment correlation
between the month t and month t + 𝜏 values of the given variable is
calculated. The table presents the time-series averages of the monthly
cross-sectional correlations. The column labeled 𝜏 indicates the lag at
which the persistence is measured.

𝜏 BM ln BM

12 0.799 0.819
24 0.669 0.696
36 0.582 0.611
48 0.521 0.553
60 0.474 0.504

120 0.367 0.393

6By necessity, the Spearman correlations using BM and ln BM are identical.
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The results of the persistence analysis indicate that both BM and ln BM exhibit
substantial persistence. At a lag of one year (𝜏 = 12), the results indicate persistence
of BM and ln BM of 0.799 and 0.819, respectively. As would be expected, the per-
sistence decays with longer lags. But, even when measured five years apart (𝜏 = 60),
the persistence of BM of 0.474 and persistence of ln BM of 0.504 remain quite high.
After 10 years, however, the persistence of each of these measures drops substantially
to 0.367 for BM and 0.393 for ln BM. At all lags, the persistence of ln BM is slightly
higher than that of BM, indicating that if book-to-market ratio does in fact measure a
persistent risk factor sensitivity, then ln BM may be a slightly better measure, espe-
cially for use in analyses that assume linearity in the relations between the variables
under investigation.

The persistence of BM and ln BM is substantially higher than that of market beta
(𝛽, see Table 8.3), especially for short lags. Given that 𝛽 measures a factor sensitivity
(sensitivity to the market factor), and BM and ln BM are more persistent than 𝛽, the
persistence analyses certainly do not dispel and are potentially consistent with the
interpretation of BM and ln BM as factor sensitivities. On the other hand, BM and
ln BM are much less persistent than market capitalization (MktCap) and size (Size,
see Table 9.3).

In summary, book-to-market ratio exhibits high levels of persistence for short lags,
but this persistence decays as the length of the lag gets quite long. Even when mea-
sured at a lag of 10 years, however, book-to-market ratio still exhibits a substantial
persistence, indicating that whatever characteristic is measured by book-to-market
ratio, whether it be a factor sensitivity or mispricing, persists for an extended period
of time, at least in the average stock.

10.5 BOOK-TO-MARKET RATIO AND STOCK RETURNS

Having sufficiently examined the variables measuring the book-to-market ratio (BM
and ln BM), we turn now to investigation of the value premium by examining the
cross-sectional relation between book-to-market ratio and expected stock returns. As
discussed earlier, the superior long-run returns generated by value stocks is one of the
central findings of empirical asset pricing research. In this section, we demonstrate the
value premium using portfolio and Fama and MacBeth (1973) regression analyses.

10.5.1 Univariate Portfolio Analysis

We begin our examination of the relation between book-to-market ratio (BM)
and future stock returns with univariate portfolio analyses using decile portfolios
formed by sorting on BM. As with the portfolio analyses examining the size effect,
presented in Chapter 9, we use two sets of breakpoints when examining the relation
between BM and future stock returns. The first set of breakpoints uses all stocks
in our sample to calculate the breakpoints. We refer to these analyses as using
NYSE/AMEX/NASDAQ breakpoints. The second set of breakpoints uses only
stocks that trade on the New York Stock Exchange (NYSE) when calculating the
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breakpoints (NYSE breakpoints). While most analyses of the value premium in the
empirical asset pricing literature use breakpoints calculated using the full sample of
stocks (Fama and French (1992), NYSE/AMEX/NASDAQ breakpoints), we perform
the univariate portfolio analyses using both sets of breakpoints to demonstrate the
robustness of the effect.7 In all of the analyses, we sort all stocks in the sample (not
just NYSE stocks) into the portfolios. Thus, the only difference is in the calculation
of the breakpoints.

The results of the univariate portfolio analyses of the relation between BM and
future stock returns are presented in Table 10.4. Panel A presents the results for
portfolios formed using NYSE/AMEX/NASDAQ breakpoints. The top of the panel
presents average characteristics for the stocks in each of the decile portfolios. By
construction, the average value of BM (ln BM) increases monotonically from 0.14
(−2.18) for portfolio 1 to 2.95 (0.89) for portfolio 10. Average market capitalization
(MktCap) is decreasing monotonically from about $2.2 billion for stocks in the lowest
BM decile portfolio to $334 million for stocks in the portfolio with high-BM stocks.
Beta (𝛽) also exhibits a strong negative relation with BM, as average 𝛽 decreases
monotonically from 1.05 for stocks in the low-BM portfolio to 0.60 for stocks in the
high-BM portfolio. The negative relations between BM and each of MktCap and 𝛽

are consistent with the negative correlations observed in Table 10.2. The row labeled
% NYSE indicates the percent of stocks in the given portfolio that are listed on the
NYSE. The table indicates that NYSE stocks tend to have relatively moderate val-
ues of BM, as portfolios consisting of high-BM stocks and portfolios consisting of
low-BM stocks tend to hold a smaller percentage of NYSE-listed stocks. The row
labeled n indicates that, as necessitated by the use of the same sample for breakpoint
calculation and portfolio creation, the average number of stocks in each portfolio is
the same (341).

The middle section (EW portfolios) of Panel A presents the average excess returns
and risk-adjusted returns relative to the CAPM risk model for the equal-weighted
BM-sorted portfolio. The results indicate a strong positive relation between BM and
expected stock returns. The average excess returns of the portfolios increase mono-
tonically from 0.08% per month for decile portfolio 1 to 1.42% per month for the
decile portfolio 10. The average return of the difference portfolio of 1.34% per month
is highly statistically significant with a Newey and West (1987)-adjusted t-statistic of
6.06. Adjusting the returns of the portfolios using the CAPM risk model has very
little effect on the results. The CAPM alpha of the decile portfolios increases mono-
tonically from −0.57% per month for the low-BM portfolio to 0.94% per month for
the high-BM portfolio. The alpha of the difference portfolio of 1.51% per month is
once again highly statistically significant with a t-statistic of 6.57.

7It is worth noting that when examining the relation between market capitalization and future stock returns,
Fama and French (1992) form univariate decile portfolios using only NYSE stocks to calculate the break-
points. However, when forming univariate decile portfolios based on the book-to-market ratio, Fama and
French (1992) use all stocks in their sample to calculate the breakpoints. Additionally, when Fama and
French (1992) create their size (SMB) and book-to-market (HML, to be discussed in Section 10.6) factors,
they use only NYSE-listed stocks to calculate the breakpoints.
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The average returns and CAPM alphas for value-weighted portfolios are pre-
sented at the bottom of Panel A (VW portfolios). The results indicate that, while
value-weighting does result in a substantial reduction in the magnitude of the
average return and alpha of the difference portfolio, evidence of the value premium
remains strong in value-weighted portfolios. The average excess returns of the
value-weighted BM-sorted decile portfolios increases monotonically from 0.31%
per month for decile portfolio 1 to 0.88% per month for decile portfolio 10. The
0.57% per month (t-statistic = 2.40) generated by the 10-1 portfolio is once again
economically large and highly statistically significant. As with the equal-weighted
portfolios, risk-adjusting the returns of the value-weighted portfolios has little effect
on the results. The CAPM alpha of the value-weighted difference portfolio of 0.62%
per month (t-statistic = 2.55) is very similar in magnitude and statistical significance
to the average return. Furthermore, the CAPM alphas of the decile portfolios increase
nearly monotonically (the exception is decile portfolio 3) from −0.20% per month
for decile portfolio one to 0.43% per month for decile portfolio 10.

The results of the portfolio analysis using NYSE breakpoints are presented in
Panel B of Table 10.4. The Characteristics portion of Panel B indicates that the aver-
age values of BM, ln BM, MktCap, and 𝛽 in each of the decile portfolios are very
similar to the corresponding portfolios created using NYSE/AMEX/NASDAQ break-
points presented in Panel A. Interestingly, Panel B indicates that the percentage of
NYSE stocks in each of the decile portfolios is higher when using NYSE breakpoints
than when using NYSE/AMEX/NASDAQ breakpoints. At first, this may not seem
logical. The reason for this, however, is that by calculating the breakpoints using
only NYSE stocks, there are no longer the same number of stocks in each portfolio.
The low-BM and high-BM portfolios tend to have more stocks than the portfolios
containing stocks with moderate levels of BM. The reason for this is that a dispropor-
tionate number of non-NYSE stocks tend to have values of BM that appear extreme
(high or low) relative to the subset of NYSE stocks that are used to calculate the
breakpoints. For this reason, portfolios containing high-BM stocks as well as those
containing low-BM stocks tend to hold more stocks than the portfolios holding stocks
with more moderate BM values.

The average excess returns of the equal-weighted and value-weighted port-
folios formed using NYSE breakpoints are also very similar to those of the
NYSE/AMEX/NASDAQ breakpoint portfolios. The main difference is that the
average return and CAPM alpha of the 10-1 portfolio are slightly lower when using
NYSE breakpoints than when using NYSE/AMEX/NASDAQ breakpoints. When
using NYSE breakpoints, the average return and CAPM alpha of the equal-weighted
10-1 portfolio are 1.13% and 1.29% per month, with t-statistics of 5.71 and 6.26,
respectively. Value-weighted portfolios generate 10-1 average portfolio returns
of 0.42% per month (t-statistic = 2.10) and a CAPM alpha of 0.46% per month
(t-statistic = 2.23). For the equal-weighted portfolios, the returns and alphas
are monotonically increasing across the BM deciles, while for value-weighted
portfolios, monotonicity nearly holds. Thus, while the average returns and alphas
of the 10-1 portfolios are slightly lower when using NYSE breakpoints instead of
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NYSE/AMEX/NASDAQ breakpoints, the positive relation between BM and future
stock returns remains strong in all univariate portfolio analyses.

In summary, the univariate portfolio results indicate a strong positive relation
between book-to-market ratio and expected stock returns. This phenomenon is
known as the value premium, as value stocks (stock with high book-to-market ratios)
tend to outperform growth stocks (stocks with low book-to-market ratios). The
results are robust when using equal-weighted or value-weighted portfolios although
equal-weighted portfolios produce stronger results than value-weighted portfolios.
The results are also robust when using NYSE/AMEX/NASDAQ breakpoints or
NYSE breakpoints. To be consistent with the prevalent practice in the empirical
asset pricing literature, for the remainder of the portfolio analyses presented
in this chapter, we use breakpoints constructed using all stocks in the sample
(NYSE/AMEX/NASDAQ breakpoints).

10.5.2 Bivariate Portfolio Analysis

The results from the correlation and univariate portfolio analyses indicate that there
are strong cross-sectional relations between book-to-market ratio (BM) and each of
beta (𝛽) and market capitalization (MktCap). In this section, we use bivariate portfolio
analyses to examine whether the value premium detected in the univariate portfolio
analyses can be explained by either of these variables. We use both dependent-sort
and independent-sort analyses and sort stocks into five quintile groups based on the
control variable (𝛽 or MktCap) and five quintile groups based on BM. The breakpoints
are calculated using all stocks in the sample. We perform each analysis using both
equal-weighted and value-weighted portfolios.

We begin by presenting the results of dependent-sort portfolio analyses of the
relation between BM and future stock returns after controlling for the effects of 𝛽
or MktCap. Thus, 𝛽 or MktCap is the first sort variable and BM is the second sort
variable. Panel A of Table 10.5 presents the average return and CAPM alphas for the
difference portfolio that is long high-BM stocks and short low-BM stocks within each
quintile of the given control variable. Focusing first on the results when controlling
for 𝛽, the table indicates that 𝛽 cannot explain the value premium. The equal-weighted
(Weights = EW) average BM difference portfolio (column Control Avg), across all
quintiles of 𝛽, generates an average monthly return of 0.93% and CAPM alpha of
0.97% with Newey and West (1987) t-statistics of 6.51 and 6.74, respectively. When
value-weighted (Weights = VW) portfolios are used, the average monthly return and
CAPM alpha of the average BM difference portfolio are 0.46% (t-statistic= 3.37) and
0.47% (t-statistic = 3.36). This shows that after controlling for 𝛽, the value premium
is economically and statistically strong even in value-weighted portfolios.

When using equal-weighted portfolios, the results demonstrate that the value
premium is strong not only in the average 𝛽 quintile but also within each indivi-
dual 𝛽 quintile. The average monthly returns (CAPM alphas) of the equal-weighted
BM difference portfolios range from 0.72% with a t-statistic of 4.85 (0.76% with a
t-statistic of 5.10) for 𝛽 quintile 3 to 1.21% with a t-statistic of 6.56 (1.25% with
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TABLE 10.5 Bivariate Dependent-Sort Portfolio Analysis
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between BM and future stock returns after controlling for the effect of each of 𝛽 and MktCap
(control variables). Each month, all stocks in the CRSP sample are sorted into five groups
based on an ascending sort of one of the control variables. Within each control variable group,
all stocks are sorted into five portfolios based on an ascending sort of BM. The quintile break-
points used to create the portfolios are calculated using all stocks in the CRSP sample. Panel A
presents the average return and CAPM alpha (in percent per month) of the long–short zero-cost
portfolios that are long the fifth BM quintile portfolio and short the first BM quintile portfolio
in each quintile, as well as for the average quintile, of the control variable. Panel B presents the
average return and CAPM alpha for the average control variable quintile portfolio within each
BM quintile, as well as for the difference between the fifth and first BM quintiles. Results for
equal-weighted (Weights = EW) and value-weighted (Weights = VW) portfolios are shown.
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags, testing
the null hypothesis that the average return or alpha is equal to zero, are shown in parentheses.

Panel A: BM Difference Portfolios
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𝛽 EW Return 0.97 0.83 0.72 0.94 1.21 0.93
(5.57) (5.19) (4.85) (5.53) (6.56) (6.51)

CAPM 𝛼 1.02 0.87 0.76 0.97 1.25 0.97
(5.93) (5.45) (5.10) (5.68) (6.80) (6.74)

VW Return 0.67 0.36 0.40 0.53 0.35 0.46
(3.46) (2.18) (2.51) (2.79) (1.50) (3.37)

CAPM 𝛼 0.65 0.41 0.40 0.54 0.37 0.47
(3.37) (2.47) (2.43) (2.78) (1.53) (3.36)

MktCap EW Return 0.72 1.17 0.96 0.67 0.30 0.76
(3.06) (4.95) (4.11) (2.95) (1.51) (3.90)

CAPM 𝛼 0.87 1.31 1.14 0.86 0.46 0.93
(3.79) (5.54) (4.99) (3.76) (2.25) (4.77)

VW Return 0.87 1.16 0.91 0.67 0.17 0.76
(3.60) (4.78) (3.82) (3.00) (0.92) (3.90)

CAPM 𝛼 1.01 1.30 1.10 0.85 0.25 0.90
(4.23) (5.33) (4.70) (3.79) (1.31) (4.64)

Panel B: Average Control Variable Portfolios
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𝛽 EW Return 0.32 0.65 0.79 0.94 1.25 0.93
(1.00) (2.29) (2.96) (3.45) (3.83) (6.51)

CAPM 𝛼 −0.24 0.12 0.30 0.45 0.73 0.97
(−1.47) (0.92) (2.24) (3.32) (4.05) (6.74)

(continued)
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TABLE 10.5 (Continued)

Panel B: Average Control Variable Portfolios
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VW Return 0.34 0.42 0.51 0.59 0.81 0.46
(1.62) (2.15) (2.62) (3.06) (3.71) (3.37)

CAPM 𝛼 −0.10 −0.01 0.10 0.18 0.38 0.47
(−1.37) (−0.20) (1.51) (2.35) (3.58) (3.36)

MktCap EW Return 0.33 0.71 0.87 0.93 1.10 0.76
(0.93) (2.39) (3.14) (3.50) (3.86) (3.90)

CAPM 𝛼 −0.30 0.18 0.37 0.47 0.63 0.93
(−1.52) (1.15) (2.71) (3.42) (4.02) (4.77)

VW Return 0.23 0.57 0.76 0.83 0.99 0.76
(0.67) (2.02) (2.82) (3.25) (3.57) (3.90)

CAPM 𝛼 −0.38 0.04 0.26 0.37 0.52 0.90
(−2.08) (0.33) (2.08) (2.97) (3.45) (4.64)

a t-statistic of 6.80) for 𝛽 quintile 5. When value-weighted portfolios are used, the
value premium exists in all stocks except those with the highest values of 𝛽. In quin-
tiles 1 through 4 of 𝛽, the value-weighted average returns and CAPM alphas for the
BM 5-1 portfolios are each economically large and highly statistically significant. In
quintile 5 of 𝛽, however, the average return and alpha of the BM difference portfolio
is statistically indistinguishable from zero.

The results are similar when controlling for market capitalization (MktCap).
When MktCap is used as the first sort variable, the results of the dependent-sort
bivariate portfolio analyses show that the average BM difference portfolio (column
Control Avg) generates an equal-weighted average return of 0.76% per month
(t-statistic = 3.90) and a CAPM alpha of 0.93% per month (t-statistic = 4.77).
When value-weighted portfolios are used, the average monthly return and CAPM
alpha of this portfolio of 0.76% (t-statistic = 3.90) and 0.90% (t-statistic = 4.64),
respectively, are very similar to those of the equal-weighted portfolios. It is not
surprising, in this case, that the equal-weighted and value-weighted portfolios give
very similar results. The reason for this is that, by sorting first on MktCap, we have
already grouped the stocks by MktCap. Since all stocks in each of the portfolios
already have similar values of MktCap, weighting the portfolios using MktCap
is unlikely to have a substantial effect on the portfolio’s holdings and, therefore,
on its returns. The results in Panel A also indicate that, with the exception of the
highest MktCap quintile, the positive relation between BM and future stock returns
is robust across all MktCap quintiles. Even within quintile 5 of MktCap, which
contains only the largest stocks in the sample, the equal-weighted 5-1 BM portfolio
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generates an average monthly return of 0.30% and CAPM alpha of 0.46%, with
the latter being statistically significant (t-statistic = 2.25). When value-weighted
portfolios are used, the BM difference portfolio in the fifth MktCap quintile generates
a statistically insignificant average return of 0.17% (t-statistic = 0.92) and alpha of
0.25% (t-statistic = 1.31) per month. These results are consistent with the findings
of Loughran (1997), who demonstrates that the value effect is not present in large
capitalization stocks.

In Panel B of Table 10.5, we present results for the average portfolios, across all
quintiles of the control variable and within each quintile of BM. The results in Panel
B allow us to examine the patterns in the returns across the different BM quintiles
after controlling for 𝛽 or MktCap. The results indicate that, after controlling for 𝛽
or MktCap, the average returns and CAPM alphas of the BM portfolios are mono-
tonically increasing across the quintiles of BM. In most cases, the low-BM portfolio
fails to generate a statistically significant average return or alpha. This indicates that
the value premium is primarily driven by stocks with high BM values. The exception
to this is the value-weighted portfolio for quintile one of BM after controlling for
MktCap, which generates a statistically significant negative CAPM alpha of −0.38%
per month (t-statistic = −2.08).

Having examined the relation between BM and future stock returns, after con-
trolling for 𝛽 and MktCap, using dependent-sort portfolio analyses, we now perform
similar analyses, this time using independently sorted portfolios. Table 10.6 presents
the results of the bivariate independent-sort portfolio analysis using 𝛽 and BM as the
sort variables. Results for equal-weighted (value-weighted) portfolios are presented
in Panel A (Panel B).

We first look at the returns and alphas of equal-weighted portfolios (Panel A) that
are long high-BM stocks and short low-BM stocks in each quintile of 𝛽. The row
labeled BM 5-1 indicates that within each quintile of 𝛽, the BM 5-1 portfolio generates
an economically large and statistically significant average return ranging from 0.79%
per month to 1.12% per month. For the average 𝛽 quintile, the BM 5-1 portfolio
generates an average return of 0.93% per month with an associated t-statistic of 6.05.
Subjecting the returns of the BM 5-1 portfolios to the CAPM risk model does little to
explain these results. In fact, the CAPM alphas, in each 𝛽 quintile as well as for the
average 𝛽 quintile, are higher and more statistically significant than the corresponding
average returns. The BM 5-1 portfolio for the average 𝛽 quintile generates a CAPM
alpha of 0.99% per month (t-statistic = 6.39).

The independent-sort portfolio analysis also allows us to examine the relation
between 𝛽 and expected stock returns after controlling for BM. The results are quite
consistent with what was observed in the univariate portfolio analysis using 𝛽 as a sort
variable shown in Section 8.5.1 and Table 8.4. After controlling for BM, the returns of
the 𝛽 5-1 portfolios are negative, economically small, and statistically insignificant,
with the exception of the 𝛽 5-1 portfolio in the lowest BM quintile. This result contra-
dicts the main prediction of the Capital Asset Pricing Model (CAPM, Sharpe (1964),
Lintner (1965), Mossin (1966)) of a positive relation between 𝛽 and expected stock
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returns. The CAPM alphas of the 𝛽 5-1 portfolio are all negative, economically large,
and highly statistically significant. For the average BM quintile, the 𝛽 5-1 portfolio
generates a CAPM alpha of −0.56% per month (t-statistic = −3.10).

Panel B of Table 10.6 shows that, consistent with the results of the dependent-sort
analysis, the value premium is detected by the independent-sort portfolio analysis
that controls for 𝛽 even when value-weighted portfolios are used. The average BM

TABLE 10.6 Bivariate Independent-Sort Portfolio Analysis—Control for 𝜷

This table presents the results of bivariate independent-sort portfolio analyses of the relation
between BM and future stock returns after controlling for the effect of 𝛽. Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of 𝛽. All
stocks are independently sorted into five groups based on an ascending sort of BM. The quin-
tile breakpoints used to create the groups are calculated using all stocks in the CRSP sample.
The intersections of the 𝛽 and BM groups are used to form 25 portfolios. The table presents
the average one-month-ahead excess return (in percent per month) for each of the 25 portfo-
lios as well as for the average 𝛽 quintile portfolio within each quintile of BM and the average
BM quintile within each 𝛽 quintile. Also shown are the average return and CAPM alpha of a
long–short zero-cost portfolio that is long the fifth BM (𝛽) quintile portfolio and short the first
BM (𝛽) quintile portfolio in each 𝛽 (BM) quintile. t-statistics (in parentheses), adjusted follow-
ing Newey and West (1987) using six lags, testing the null hypothesis that the average return
or alpha is equal to zero, are shown in parentheses. Panel A presents results for equal-weighted
portfolios. Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolios
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BM 1 0.48 0.42 0.40 0.28 0.05 0.33 −0.42 −0.77
(−1.93) (−3.46)

BM 2 0.60 0.67 0.66 0.61 0.59 0.63 −0.01 −0.41
(−0.06) (−2.05)

BM 3 0.91 0.77 0.94 0.86 0.75 0.84 −0.16 −0.57
(−0.75) (−2.68)

BM 4 0.98 0.98 0.96 0.91 0.97 0.96 −0.01 −0.44
(−0.05) (−2.35)

BM 5 1.37 1.32 1.19 1.24 1.17 1.26 −0.20 −0.59
(−0.82) (−2.70)

BM Avg 0.87 0.83 0.83 0.78 0.71 −0.16 −0.56
(−0.83) (−3.10)

BM 5-1 0.89 0.90 0.79 0.96 1.12 0.93
(4.32) (5.09) (4.65) (5.45) (5.58) (6.05)

BM 5-1 0.99 0.94 0.83 1.00 1.17 0.99
CAPM 𝛼 (5.00) (5.36) (4.93) (5.57) (5.86) (6.39)
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TABLE 10.6 (Continued)

Panel B: Value-Weighted Portfolios
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BM 1 0.39 0.30 0.40 0.24 0.27 0.32 −0.12 −0.49
(−0.40) (−1.81)

BM 2 0.33 0.47 0.38 0.57 0.31 0.41 −0.02 −0.37
(−0.10) (−1.69)

BM 3 0.52 0.48 0.48 0.50 0.63 0.52 0.11 −0.25
(0.44) (−1.06)

BM 4 0.70 0.61 0.64 0.54 0.63 0.63 −0.07 −0.48
(−0.29) (−2.37)

BM 5 0.93 0.77 0.82 0.76 0.70 0.80 −0.23 −0.64
(−0.90) (−2.53)

BM Avg 0.57 0.52 0.54 0.53 0.51 −0.07 −0.45
(−0.30) (−2.33)

BM 5-1 0.55 0.47 0.42 0.52 0.43 0.48
(2.36) (2.66) (2.48) (2.63) (1.87) (3.30)

BM 5-1 0.56 0.51 0.42 0.51 0.40 0.48
CAPM 𝛼 (2.43) (2.94) (2.45) (2.53) (1.70) (3.28)

5-1 portfolio generates an average return and CAPM alpha of 0.48% per month with
corresponding t-statistics of 3.30 and 3.28, respectively. The positive relation between
BM and expected returns exists in all but the highest 𝛽 quintile. Even in the highest 𝛽
quintile, however, the results remain marginally statistically significant and econom-
ically large.

As for the relation between 𝛽 and future stock returns after controlling for BM,
the results indicate that within each BM quintile, the 𝛽 5-1 portfolio generates nega-
tive but insignificant average returns and negative and at least marginally significant
CAPM alpha. For the average BM quintile, the CAPM alpha of the 𝛽 5-1 portfolio
is an economically important and highly statistically significant −0.45% per month
(t-statistic = −2.33).

The results of bivariate independent-sort portfolio analyses using MktCap and
BM as the sort variables are presented in Table 10.7. The results for equal-weighted
portfolios, presented in Panel A, demonstrate that MktCap cannot explain the value
premium. Within each quintile of MktCap, the BM 5-1 portfolio generates econom-
ically large and highly statistically significant average returns and CAPM alphas.8

8The average return for the BM 5-1 portfolio in MktCap quintile 5 is only marginally statistically
significant.
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TABLE 10.7 Bivariate Independent-Sort Portfolio Analysis—Control for MktCap
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between BM and future stock returns after controlling for the effect of MktCap. Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of MktCap. All
stocks are independently sorted into five groups based on an ascending sort of BM. The quintile
breakpoints used to create the groups are calculated using all stocks in the CRSP sample. The
intersections of the MktCap and BM groups are used to form 25 portfolios. The table presents
the average one-month-ahead excess return (in percent per month) for each of the 25 portfolios
as well as for the average MktCap quintile portfolio within each quintile of BM and the aver-
age BM quintile within each MktCap quintile. Also shown are the average return and CAPM
alpha of a long–short zero-cost portfolio that is long the fifth BM (MktCap) quintile portfolio
and short the first BM (MktCap) quintile portfolio in each MktCap (BM) quintile. t-statistics (in
parentheses), adjusted following Newey and West (1987) using six lags, testing the null hypoth-
esis that the average return or alpha is equal to zero, are shown in parentheses. Panel A presents
results for equal-weighted portfolios. Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolios
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BM 1 1.12 −0.09 0.04 0.29 0.37 0.34 −0.75 −0.68

(−1.96) (−1.83)
BM 2 1.25 0.38 0.60 0.61 0.50 0.67 −0.75 −0.71

(−2.41) (−2.33)
BM 3 1.65 0.76 0.77 0.72 0.60 0.90 −1.05 −1.13

(−2.99) (−2.48)
BM 4 1.52 0.84 0.87 0.88 0.65 0.95 −0.87 −0.82

(−3.48) (−3.35)
BM 5 1.73 1.06 0.96 0.96 0.70 1.08 −1.03 −1.02

(−3.94) (−3.89)
BM Avg 1.46 0.59 0.65 0.69 0.56 −0.89 −0.87

(−3.24) (−3.16)
BM 5-1 0.61 1.15 0.92 0.67 0.34 0.74

(2.31) (4.80) (3.83) (2.89) (1.72) (3.65)
BM 5-1 CAPM 𝛼 0.80 1.31 1.09 0.83 0.46 0.90

(3.21) (5.51) (4.66) (3.45) (2.33) (4.51)



�

� �

�

BOOK-TO-MARKET RATIO AND STOCK RETURNS 197

TABLE 10.7 (Continued)

Panel B: Value-Weighted Portfolios
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BM 1 0.48 −0.07 0.08 0.30 0.35 0.23 −0.13 0.02
(−0.32) (0.04)

BM 2 0.76 0.37 0.59 0.61 0.43 0.55 −0.34 −0.24
(−1.06) (−0.78)

BM 3 1.01 0.75 0.79 0.70 0.45 0.74 −0.56 −0.52
(−1.89) (−1.64)

BM 4 1.09 0.87 0.87 0.89 0.53 0.85 −0.57 −0.50
(−2.15) (−1.96)

BM 5 1.31 1.05 0.95 0.96 0.55 0.97 −0.76 −0.72
(−2.96) (−2.86)

BM Avg 0.93 0.60 0.66 0.69 0.46 −0.47 −0.39
(−1.66) (−1.46)

BM 5-1 0.83 1.12 0.87 0.66 0.20 0.74
(3.10) (4.58) (3.57) (2.83) (1.04) (3.65)

BM 5-1 CAPM 𝛼 1.01 1.28 1.05 0.81 0.27 0.88
(3.92) (5.22) (4.39) (3.39) (1.38) (4.40)

Averaged across the MktCap quintiles, the BM difference portfolio generates an aver-
age monthly return of 0.74% (t-statistic= 3.65) and CAPM alpha of 0.90% (t-statistic
= 4.51). The results are very similar to those generated by the dependent-sort portfolio
analysis presented in Table 10.5.

When using equal-weighted portfolios (Panel A), Table 10.7 demonstrates that the
negative relation between MktCap and expected stock returns persists after control-
ling for the effect of the value premium. Within each quintile of BM, the average
return and alpha of the MktCap difference portfolio are negative, large in magnitude,
and statistically significant.9 For the average BM quintile, the MktCap difference port-
folio produces average returns of −0.89% per month (t-statistic = −3.24) and CAPM
alpha of −0.87% per month (t-statistic = −3.16).

Turning now to the value-weighted portfolio results shown in Panel B, consis-
tent with the previous univariate and dependent-sort bivariate portfolio analyses, the

9The MktCap 5-1 CAPM alpha for quintile 1 of BM of −0.68% per month is only marginally statistically
significant with a t-statistic of −1.83.
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results indicate that the value premium is robust. In the average MktCap quintile, the
BM 5-1 portfolio generates average monthly returns of 0.74% (t-statistic = 3.65) and
CAPM alpha of 0.88% (t-statistic= 4.40). As documented by Loughran (1997) and in
the dependent-sort analyses presented earlier in this chapter, the value-weighted port-
folio analysis indicates that the value premium does not exist in the highest MktCap
quintile.

Finally, we turn our attention to the relation between MktCap and expected stock
returns, after controlling for BM, in value-weighted bivariate independent-sort port-
folio analysis. The results indicate that the size effect exists only among stocks in
quintiles 4 and 5 of BM. Stocks with low values of BM do not exhibit the size effect in
value-weighted portfolios. For the average BM quintile, despite being economically
quite substantial in magnitude, the average return and CAPM alpha of the MktCap
5-1 portfolio of −0.47% and −0.39% per month, respectively, are statistically indis-
tinguishable from zero.

In summary, the results of the dependent-sort and independent-sort bivariate port-
folio analyses demonstrate that the value premium cannot be explained by either
beta or market capitalization. The negative alpha of portfolios that are long high-beta
stocks and short-beta stock persists after controlling for the effect of book-to-market
ratio, indicating that the value premium cannot explain the lack of a relation between
beta and future stock returns. Similarly, the size effect, which only truly exists in
equal-weighted portfolios, is not explained by book-to-market ratio.

10.5.3 Fama–MacBeth Regression Analysis

We continue our examination of the relation between book-to-market ratio (BM) and
future stock returns using (Fama and MacBeth 1973, FM hereafter) regression analy-
sis. We employ a univariate cross-sectional regression specification using BM as the
lone independent variable as well as specifications that control for the effects of beta
(𝛽) and stock size (Size, the log of market capitalization). To account for the pos-
sibility that the high skewness of the cross-sectional distribution of BM will make
the results of FM regressions using BM unreliable, we repeat the analyses using the
natural log of the book-to-market ratio (ln BM) in place of BM.

The results of the FM regression analyses, presented in Table 10.8, indicate a
strong positive relation between book-to-market ratio and expected stock returns,
regardless of whether BM or ln BM is used as the measure of book-to-market ratio.
The univariate regression specification using BM as the only independent variable
(specification (1)) generates an average slope coefficient on BM of 0.41 with a Newey
and West (1987) t-statistic of 5.30. When 𝛽 is included as a control (specification (2)),
the average coefficient drops to 0.34 with a t-statistic of 5.03. When Size is the only
control variable (specification (3)), the regressions produce an average coefficient of
0.27 (t-statistic = 3.32) on BM. Finally, when both 𝛽 and MktCap are included as
controls, the average coefficient on BM of 0.21 remains highly statistically signifi-
cant, with a t-statistic of 3.16. When ln BM is used (specifications (5)-(8)) instead of
BM, the results are similar. All specifications detect a positive and highly statistically
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TABLE 10.8 Fama–MacBeth Regression Analysis
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and book-to-market ratio. Each column in the table presents
results for a different cross-sectional regression specification. The dependent variable in all
specifications is the one-month-ahead excess stock return. The independent variables are indi-
cated in the first column. Independent variables are winsorized at the 0.5% level on a monthly
basis. The table presents average slope and intercept coefficients along with t-statistics (in
parentheses), adjusted following Newey and West (1987) using six lags, testing the null hypoth-
esis that the average coefficient is equal to zero. The rows labeled Adj. R2 and n present the
average adjusted R-squared and the number of data points, respectively, for the cross-sectional
regressions.

(1) (2) (3) (4) (5) (6) (7) (8)

BM 0.41 0.34 0.27 0.21
(5.30) (5.03) (3.32) (3.16)

ln BM 0.44 0.39 0.31 0.27
(6.18) (6.26) (3.78) (4.13)

𝛽 −0.17 0.03 −0.12 0.08
(−1.30) (0.16) (−0.97) (0.49)

Size −0.15 −0.16 −0.14 −0.16
(−3.00) (−2.68) (−2.81) (−2.66)

Intercept 0.42 0.62 1.20 1.28 0.98 1.04 1.56 1.56
(1.44) (2.55) (2.37) (2.88) (3.48) (4.18) (3.35) (3.68)

Adj. R2 0.01 0.02 0.02 0.04 0.01 0.02 0.02 0.04
n 3391 3373 3391 3373 3391 3373 3391 3373

significant relation between ln BM and future stock returns, regardless of which set
of controls is included in the specification. In fact, the statistical significance of the
coefficient on ln BM is even greater than that of the corresponding regression spec-
ification using BM. Consistent with the results from previous chapters, regardless
of specification, the OLS regressions detect no relation between 𝛽 and future stock
returns and a strong negative relation between Size and future stock returns.

We next examine the economic significance of the average coefficients on BM and
ln BM generated by the FM regression analyses. We focus on the specifications that
employ the full set of controls (specifications (4) and (8)). Multiplying the coefficient
on BM of 0.21 by BM’s standard deviation of 1.14 (see Table 10.1) indicates that a
one-standard-deviation difference in BM is associated with at 0.24% (0.21 × 1.14)
difference in expected monthly return. A similar analysis using ln BM, which has
a standard deviation of 0.87, indicates that a one-standard-deviation difference in
ln BM is associated with a 0.23% (0.27 × 0.87) difference in expected monthly stock
returns. Thus, the results using BM and ln BM appear to be highly similar. To exam-
ine the difference in expected returns between stocks with very high and very low
levels of BM, we multiply the average regression coefficient of 0.21 by the differ-
ence in average BM between the highest and lowest BM quintile portfolios from the
univariate portfolio analysis of 2.81 (2.95 − 0.14, see Panel A of Table 10.4). Doing
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so indicates an average return difference of 0.59% per month between stocks in the
top and bottom quintiles of BM. This number, while quite high in economic terms,
is much smaller than the average return of the equal-weighted BM 10-1 portfolio of
1.34% per month. Repeating the analysis using the results for ln BM indicates an
average return difference of 0.83% (0.27 × 3.07) between stocks in the highest and
lowest quintiles of BM. While this result is closer to the 1.34% generated by the BM
10-1 portfolio, it remains substantially lower. These results indicate that the value
premium may be driven by stocks with very high and very low values of BM.

To summarize, the FM regression analyses provide strong evidence of a value
premium and no evidence that the value premium is a manifestation of the relations
between 𝛽 or MktCap and future stock returns. Furthermore, the results are similar
regardless of whether BM or ln BM is used as the measure of value, indicating that the
highly skewed distribution of BM does not have a substantial impact on the effective-
ness of the FM regression methodology. For this reason, and for consistency with the
majority of empirical asset pricing research, throughout the remainder of this book,
we will use BM as our measure of value.

10.6 THE VALUE FACTOR

Fama and French (1993) claim that the value premium indicates that book-to-market
ratio is a proxy for a stock’s sensitivity to a distress-risk factor. To approximate the
returns associated with taking exposure to this risk factor, Fama and French (1993)
create a zero-cost factor mimicking portfolio holding long positions in stocks with
high book-to-market ratios and short positions in stocks with low book-to-market
ratios. This portfolio is referred to as the HML portfolio, for high minus low.

To create the HML portfolio, each month, Fama and French (1993) sort all
NYSE, American Stock Exchange (AMEX), and NASDAQ stocks into six portfolios
based on market capitalization at the end of the most recent June (MktCapFF ,
defined in Chapter 9) and book-to-market ratio (BM). The breakpoint dividing
stocks into market capitalization groups is the median NYSE market capitaliza-
tion. All NYSE, AMEX, and NASDAQ stocks are independently divided into
three book-to-market ratio groups, with the breakpoints being the 30th and 70th
percentiles of book-to-market ratio among NYSE stocks. The six portfolios are
then taken to be the intersections of the two market capitalization-based groups
and the three book-to-market-based groups. The stocks within each portfolio are
value-weighted. These are the same six portfolios that were used to create the SMB
factor that mimicks the returns associated with the size effect (see Section 9.6).
The return of the HML portfolio is then taken to be the average return of the two
portfolios that contain high book-to-market stocks (S∕H and B∕H, H refers to high
book-to-market ratio, S and B refer to small and big stocks, respectively) minus the
average return of the two portfolios holding low book-to-market stocks (S∕L and
B∕L, L refers to low book-to-market ratio). The portfolio is designed to isolate the
relation between book-to-market ratio and stock returns while controlling for the
effect of market capitalization.
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The HML portfolio generates an average monthly return (log return) of 0.40%
(0.34%) for the period from July 1926 through December 2012. The standard devia-
tion of the portfolio’s monthly returns (log returns) is 3.52% (3.42%), resulting in an
annualized Sharpe ratio of 0.40 (0.35).10 The compounded return of the HML portfo-
lio over this period is 3431%, giving a cumulative log return of 3.56. The correlation
between the monthly returns (log returns) of the HML and market factor (MKT) is
0.22 (0.19), and that of the HML and SMB portfolio is 0.13 (0.10). The risk-adjusted
alpha of the HML portfolio relative to the CAPM model, calculated as the estimated
intercept term from a regression of the HML return on the excess return of the market
portfolio, is 0.32% per month, with t-statistic, adjusted following Newey and West
(1987) using six lags, of 2.66. The results indicate that the long-run performance of
the HML portfolio cannot be explained by the market factor. Despite its zero-cost
nature, the HML portfolio does exhibit moderate exposure to the market factor, as the
estimated market sensitivity, or beta, of the HML portfolio is 0.14 (t-statistic = 1.73).
To examine the abnormal returns of the HML portfolio after accounting for not only
the market factor but also the size factor (SMB), we regress the returns of the HML
portfolio on the MKT and SMB factors. The estimated alpha from this regression
is 0.31% per month (t-statistic = 2.60), while the estimated sensitivities to the MKT
and SMB factors are 0.13 (t-statistic = 1.66) and 0.07 (t-statistic = 0.67), respectively.
Thus, the returns of the HML portfolio are not driven by sensitivity to the market or
size factors.

The cumulative returns earned by investing in the HML portfolio from July 1926
through December 2012 are plotted in Figure 10.1. The solid line plots the total com-
pounded return generated by the investment. The scale for this line is presented on
the left side of the plot. The dashed line presents the cumulative sum of the monthly
log returns for the HML portfolio, where the monthly log return is calculated as the
natural log of one plus the return. The scale for this line is on the right side of the plot.
The returns of the HML portfolio are reasonably steady, at least compared to those
of the SMB portfolio (see Chapter 9, Figure 9.2). The most severe drawdown for the
HML portfolio began in September 1998. From the beginning of September 1998 to
the end of February 2000, the HML portfolio realized losses of 45%. The portfolio
regained its previous maximum value in July 2001, only two years and 11 months
after the previous high water mark had been achieved. The second largest drawdown
began in September of 1933 and ended in March 1935, during which time the port-
folio lost 42% of its value. This drawdown ended in February 1937, 3 years and six
months after it began. Another prolonged drawdown commenced shortly thereafter
in April 1937, reached a maximum loss of 37% in May 1940, and ended in February
1943. This drawdown of five years and 11 months was the longest drawdown ever
realized by the HML portfolio. That being said, the second longest drawdown in the
sample began in April 2007 and reached a maximum loss of 25% in February 2009.
As of December 2012, five years and nine months after the drawdown began, the
HML portfolio had not achieved its previous high water mark. Thus, it is likely that

10Monthly and daily HML portfolio returns are available from Kenneth French’s data library at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Figure 10.1 Cumulative Returns of HML Portfolio.
This figure plots the cumulate returns of the HML factor for the period from July 1926 through
December 2012. The compounded excess return for month t is calculated as 100 times the
cumulative product of one plus the monthly return up to and including the given month. The
cumulate log excess return is calculated as the sum of the monthly log excess returns up to and
including the given month

this drawdown will eclipse the drawdown beginning in 1937 as the most prolonged
drawdown for the HML portfolio.

10.7 THE FAMA AND FRENCH THREE-FACTOR MODEL

Having completed our discussion of the HML portfolio, the final objective of this
chapter is to introduce the Fama and French (1993) three-factor (FF) risk model. As
with all risk models, the FF risk model is frequently used to assess whether a portfolio
(or security) generates an average return that is not due to sensitivity to risk factors.
As indicated by its name, the three-factor model includes three risk factors. The first
is the market factor (MKT , discussed in Chapter 7), the second is the size factor (SMB,
discussed in Chapter 9), and the third is value factor (HML). The returns of each of
these portfolios are intended to proxy for the returns associated with taking one unit
of the given risk, with minimal exposure to the other risks.

To test whether any given portfolio p (or security) generates an average excess
return that is not a result of exposure to the market, size, or value factors, we regress
the excess return of the portfolio p on the excess return of the MKT , SMB, and HML
factor mimicking portfolios. The FF factor model can therefore be written as
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rp,t = 𝛼p + 𝛽MKT ,pMKTt + 𝛽SMB,pSMBt + 𝛽HML,pHMLt + 𝜖p,t (10.5)

where rp,t is the excess return of the portfolio p during time period t; and MKTt,
SMBt, and HMLt are the returns of the MKT , SMB, and HML factor mimicking port-
folios, respectively. 𝛼p represents the average excess return that is not attributable to
the MKT , SMB, or HML portfolio returns. The betas (𝛽MKT ,p, 𝛽SMB,p, and 𝛽HML,p)
represent the sensitivities of the portfolio p to the corresponding risk factors. 𝜖p,t
is the idiosyncratic portion of portfolio p’s return during period t. The parameters
𝛼p, 𝛽MKT ,p, 𝛽SMB,p, and 𝛽HML,p are estimated by executing the time-series regression
specified by equation (10.5). An estimated value of 𝛼p that is statistically distinguish-
able from zero is indicative that the portfolio p generates a nonzero abnormal return
(alpha), meaning that a portion of the portfolio’s expected excess return is not a result
of the portfolio’s sensitivity to the market, size, and value risk factors.

10.8 SUMMARY

To summarize, in this chapter, we have examined the value premium by empirically
investigating the relation between book-to-market ratio (BM) and stock returns. We
began by defining the book-to-market ratio as the book value of shareholders’ equity
divided by its market value and discussed in detail the calculation of the most fre-
quently used measure of this value. The most challenging aspect of the calculation is
to make sure that the timings of the book equity and market equity values follow the
convention set by Fama and French (1992, 1993).

We then used portfolio and Fama and MacBeth (1973) regression analyses to
demonstrate that book-to-market ratio has a strong positive cross-sectional relation
with expected stock returns, even after controlling for the effects of beta and size.
Next, we introduced the HML factor mimicking portfolio that is designed to gener-
ate returns associated with exposure to the risk factor that drives the value premium.
Finally, we discussed the Fama and French (1993) three-factor risk model, which
takes the market factor, the size factor, and the value factor as the set of factors that
should explain the returns of all assets.
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THE MOMENTUM EFFECT

Many studies have shown that previous stock returns have the ability to predict future
stock returns in the cross section. One of the most prominent such phenomena, docu-
mented by Jegadeesh and Titman (1993) and known as the medium-term momentum
effect, is that stocks that have performed well in the medium-term past (six to 12
months) are more likely to outperform in the future. While Jegadeesh and Titman
(1993) is the most commonly cited study exemplifying this phenomenon, variations
of this effect are examined in previous work. For example, Levy (1967) shows that
relative strength, measured as the ratio of the current stock price to the prior 27-week
moving-average stock price, is positively related to future stock returns.1 Several
papers, such as Fama and French (2012), Asness, Moskowitz, and Pedersen (2013),
and Jostova, Nikolova, and Philipov (2013), find evidence of the momentum phe-
nomenon in international equity markets as well as in different asset classes. The
word “medium” in “medium-term momentum effect” is in light of the fact that previ-
ous performance over short periods, such as a month or a week, tends to be negatively
related to future performance. This phenomenon, documented by Jegadeesh (1990)
and Lehmann (1990), is known as the short-term reversal effect and is discussed in
detail in Chapter 12. Furthermore, as shown in Jegadeesh and Titman (1993), reversal
patterns emerge when using long-term past performance to predict future returns.

The momentum effect is widely considered a behavioral phenomenon, as includ-
ing controls for risk in statistical analyses fails to change the result. Furthermore,

1Jensen and Benington (1970) claim that the results in Levy (1967) are a manifestation of selection bias.
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Jegadeesh and Titman (1993) find that while the momentum effect holds for up
to 12 months in the future, a long-term reversal effect is present for months 13
through 31. They claim that this result is indicative of a delayed stock-price reaction
to firm-specific events. Several subsequent papers (Barberis, Shleifer, and Vishny
(1998), Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and Stein (1999))
have developed behavioral models in which the momentum phenomenon arises as a
result of investors’ delayed reaction and overreaction to information. The predictions
of these models are consistent with not only medium-term momentum but also
long-term reversal, as in the long run, the inefficient prices generated by investors’
behavioral biases are corrected.

Rational explanations for the momentum phenomenon have been offered by
Conrad and Kaul (1989) and Lo and MacKinlay (1990a,b). Rational models contend
that the momentum phenomenon is a manifestation of cross-sectionally persistent
expected stock returns. Stocks that have generated relatively high (low) realized
returns in the past have likely done so because of high (low) expected returns. These
same stocks have high (low) expected returns and, therefore, have high (low) average
realized returns in the future. Such models, however, are difficult to reconcile with
the long-term reversal phenomenon. Alternative potential rational explanations have
found little empirical support. Lewellen and Nagel (2006) find that the conditional
Capital Asset Pricing Model (CAPM) cannot explain the momentum phenomenon
and Bali and Engle (2010) demonstrate that the intertemporal CAPM of Merton
(1973) fails in this regard as well.

The remainder of this chapter is devoted to an empirical investigation of the
momentum effect. We begin by discussing the measurement of momentum. We
then proceed to examinations of the relation between momentum and future stock
returns. Finally, we discuss the momentum factor of Carhart (1997) and the Fama
and French (1993) and Carhart (1997) four-factor risk model.

11.1 MEASURING MOMENTUM

The most commonly used measure of a stock’s momentum is the 11-month return of
the stock during the period beginning 12 months prior to and ending one month prior
to the measurement date. For analyses using monthly samples, such as the analyses
presented throughout Part II of this book, the momentum of stock i measured at the
end of month t, which we denote Momi,t, is therefore taken to be the return of the
stock during the 11-month period covering months t − 11 through t − 1. Specifically,

Momi,t = 100

[ ∏
m∈{t−11∶t−1}

(Ri,m + 1) − 1

]
(11.1)

where Ri,m represents the return of stock i in month m, in decimal form (0.01 is a
1% return). We multiply by 100 so that momentum is represented as a percentage
(1.00 is a 1% return). The monthly returns used to calculate Mom are most com-
monly gathered from the Center for Research in Security Prices’ (CRSP) monthly
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stock file.2 In calculating momentum for the empirical analyses presented in
this chapter, we require a minimum of nine available monthly returns during the
11-month measurement period. Observations with fewer than nine months of
available return data are considered missing.

The convention of excluding the stock return during month t from the calcula-
tion of momentum is driven by the desire to separate the medium-term momentum
effect from the short-term reversal effect, to be discussed in Chapter 12. As the stan-
dard measure of the reversal variable is the one-month stock return during month t,
excluding this monthly return from the calculation of Mom removes the mechanical
correlation between the measures of momentum and reversal, thus allaying concerns
that such correlation may have undesired ramifications on the results of statistical
analyses.

It is worth mentioning that this most commonly used calculation of momentum
is slightly different from the measure used in the foundational momentum paper.
Jegadeesh and Titman (1993) define momentum for stock i in month t as the stock
return during the k months up to and including month t, where k ∈ {3, 6, 9, 12}. They
account for the reversal effect by demonstrating that their results are robust when
excluding the prior one-week return from the calculation of momentum. Furthermore,
the original paper uses an overlapping portfolio holding-period methodology, where,
while new portfolios are formed on a monthly basis, the portfolios are held for three,
six, nine, or 12 months. This approach is not common in empirical asset pricing analy-
ses, and we will therefore not replicate their exact analysis. We will see, however, that
methodology can have a substantial effect on the results generated by the analysis.
To examine the momentum effect using the measures of momentum in Jegadeesh and
Titman (1993), we define R12M , R9M , R6M , and R3M to be the return of the given stock
during the 12-, nine-, six-, and three-month periods, respectively, up to and including
month t. We require a minimum of 10, 7, 5, and 3 months of available return data,
respectively, to calculate these measures.

We also examine two less frequently used measures of momentum. These two
measures are the 12-month return during months t − 12 through t − 1 (denoted
Rt−12∶t−1) and the six-month return covering months t − 6 through t − 1 (denoted
Rt−6∶t−1). When calculating Rt−12∶t−1 and Rt−6∶t−1, we require a minimum of 10 and
five available monthly return observations, respectively. As will be demonstrated
in our empirical analysis, while these measures generate similar results to the most
common measure Mom, their ability to predict future stock returns is not quite as
strong as that of Mom.

11.2 SUMMARY STATISTICS

We begin our empirical investigation by presenting summary statistics for our pri-
mary momentum variable, Mom, as well as the alternative measures of momentum

2The identical value can be generated by using daily returns over the months t − 11 through t − 1, taken
from the CRSP daily return file. In this case, the summation would be over all days during the 11-month
calculation period.
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TABLE 11.1 Summary Statistics
This table presents summary statistics for variables measuring momentum using the CRSP
sample for the months t from June 1963 through November 2012. Each month, the mean
(Mean), standard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min),
fifth percentile (5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th
percentile (95%), and maximum (Max) values of the cross-sectional distribution of each vari-
able are calculated. The table presents the time-series means for each cross-sectional value.
The column labeled n indicates the average number of stocks for which the given variable
is available. Mom in month t is the return of the stock during the 11-month period including
months t − 11 through t − 1. Rt−12∶t−1 is the return of the stock during months t − 12 through
t − 1. Rt−6∶t−1 is the return of the stock during months t − 6 through t − 1. R12M is the return of
the stock during months t − 11 through month t. R9M is the return of the stock during months
t − 8 through month t. R6M is the return of the stock during months t − 5 through month t. R3M

is the return of the stock during months t − 3 through month t.

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

Mom 14.12 58.40 4.12 61.62 −89.41 −49.88 −17.11 5.70 31.98 102.73 1064.02 4426
Rt−12∶t−1 15.55 62.23 4.31 66.48 −90.02 −51.34 −17.59 6.29 34.08 109.48 1164.03 4389
Rt−6∶t−1 7.38 39.53 3.63 57.52 −84.36 −39.84 −13.55 2.84 21.00 67.11 689.20 4569
R12M 15.54 62.39 4.30 66.24 −90.40 −51.69 −17.70 6.30 34.19 109.74 1168.12 4423
R9M 11.34 51.02 3.84 55.89 −88.40 −46.79 −15.99 4.55 27.83 88.90 908.54 4533
R6M 7.39 39.69 3.61 57.06 −85.18 −40.13 −13.61 2.85 21.08 67.41 690.85 4603
R3M 3.63 26.69 3.16 48.69 −78.54 −30.25 −10.22 1.18 13.52 43.96 449.21 4667

that have been used throughout the empirical asset pricing literature, for our sample of
U.S.-based common stocks in the CRSP database. Table 11.1 presents the time-series
averages of the monthly cross-sectional summary statistics for each variable. In ana-
lyzing these variables, the reader should remember that each of the measures of
momentum is simply the return of the security over a given period.

In the average month, the mean value of Mom is 14.12%, the cross-sectional
standard deviation is 58.40%, and values range from −89.41% to 1064.02%.
There are 4426 valid values of Mom in the average month. The skewness of the
cross-sectional distribution of Mom is 4.12 in the average month and, as would be
expected given the strong positive skewness, the median of 5.70% is well below the
mean.

The distributions of R12M , R9M , R6M , and R3M are all very similar to that of Mom.
The main difference is that the magnitude of each of the cross-sectional summary
statistics decreases as the length of the measurement period decreases.3 This is not
surprising, as returns would be expected to be larger in magnitude over longer holding
periods.4 Finally, the distributions of Rt−12∶t−1 and Rt−6∶t−1 are, by necessity, nearly
identical to those of R12M and R6M , respectively.

3The one exception is the excess kurtosis (Kurt), which is higher for R6M than for R9M .
4One may argue that this argument is not valid for the skewness (Skew) and excess kurtosis (Kurt) of the
cross-sectional distributions of R12M , R9M , R6M , and R3M . This pattern in skewness and excess kurtosis is
likely driven by the fact that we are using returns, and not log returns, as the measures of momentum.
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11.3 CORRELATIONS

Table 11.2 presents average cross-sectional correlations between the measures of
momentum and the variables examined in previous chapters of this book. Specifi-
cally, we examine correlations between momentum and each of beta (𝛽), stock size
(Size, the natural log of market capitalization), and book-to-market ratio (BM). We
do not present correlations between the different measures of momentum because
these measures have a mechanical correlation, making the results difficult to interpret.
For this reason, the table presents only a portion of the standard correlation matrix.
Pearson product–moment correlations are presented in Panel A and Spearman rank
correlations are presented in Panel B.

The results in Table 11.2 show that the correlation between 𝛽 and momentum
is fairly low. The average cross-sectional Pearson correlation between Mom and 𝛽

is only 0.07, and the Spearman correlation of 0.04 is even lower. The other mea-
sures of momentum generate Pearson correlations with 𝛽 between 0.08 for (Rt−12∶t−1)
and −0.02 for R3M , and Spearman correlations between 0.05 for Rt−12∶t−1 and −0.02
for R3M . Momentum exhibits a moderate positive correlation with Size. The Pearson
(Spearman) correlation between Mom and Size is 0.18 (0.25), while other measures of
momentum generate Pearson (Spearman) correlations between 0.19 (0.26) and 0.11
(0.16) with Size. Finally, the average cross-sectional Pearson (Spearman) correlation
between Mom and BM is 0.02 (0.04), and other measures of momentum have Pearson
(Spearman) correlations between 0.06 (0.08) and 0.01 (0.02) with BM. The results
therefore indicate very little cross-sectional correlation between momentum and the
book-to-market ratio.

TABLE 11.2 Correlations
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (Panel A) and Spearman rank (Panel B) correlations between different measures of
momentum and each of 𝛽, Size, and BM.

Panel A: Pearson Correlations

M
om

R
t−

12
∶t
−

1

R
t−

6∶
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1

R
12

M

R
9M

R
6M

R
3M

𝛽 0.07 0.08 0.01 0.06 0.03 −0.00 −0.02
Size 0.18 0.19 0.14 0.19 0.17 0.15 0.11
BM 0.02 0.01 0.06 0.03 0.06 0.06 0.04

Panel B: Spearman Correlations

M
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R
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1

R
12

M

R
9M

R
6M

R
3M

𝛽 0.04 0.05 −0.00 0.03 0.01 −0.01 −0.02
Size 0.25 0.26 0.20 0.26 0.24 0.20 0.16
BM 0.04 0.02 0.07 0.05 0.07 0.08 0.05
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In the previous chapters in Part II of this book, the correlation analyses have been
immediately followed by persistence analyses of the variables under investigation.
Because each of the momentum variables is a measure the stock’s return, in the case
of momentum, persistence analysis would simply be an examination of the relation
between past and future stock returns. As this relation is the focus of the subsequent
portfolio and Fama and MacBeth (1973) regression analyses presented in the next
section, we forgo persistence analysis of the momentum variables in favor of these
other methodologies.

11.4 MOMENTUM AND STOCK RETURNS

In this section, we examine the relation between momentum and future stock returns.
We demonstrate not only the medium-term momentum effect that is the focal phe-
nomenon of this chapter, but also the long-term reversal effect that is well known but
not as frequently analyzed by empirical asset pricing researchers. The results will also
provide preliminary indications of a short-term reversal effect that will be examined
in depth in Chapter 12.

11.4.1 Univariate Portfolio Analysis

We begin our investigation of the relation between momentum and future stock
returns with univariate portfolio analyses. We perform a univariate portfolio analysis
using each of the measures of momentum. The portfolio breakpoints in each analysis
are calculated as the deciles of the given measure of momentum calculated using all
stocks in the sample.

To help understand the characteristics of the stocks comprising each of the Mom
sorted portfolios, Panel A of Table 11.3 presents the equal-weighted average values
of Mom, 𝛽, MktCap, and BM for each of the portfolios formed by sorting on Mom.
We present characteristics for portfolios sorted on Mom instead of any of the other
momentum variables because Mom is the most commonly used measure of momen-
tum in the empirical asset pricing literature.

Panel A demonstrates that average values of Mom increase monotonically (by
construction) from −52.40% for the first decile of Mom to 132.10% for stocks in the
10th Mom decile. Average 𝛽 exhibits a U-shaped pattern across the Mom-sorted decile
portfolios with the first decile portfolio having an average 𝛽 of 0.85, the fifth and
sixth decile portfolios having average 𝛽 of 0.71, and the 10th decile portfolio holding
stocks with average 𝛽 of 0.97. The relation between momentum and market capital-
ization is inverted-U-shaped, as average values of MktCap increase from $154 million
for stocks in the first decile of Mom to more than $1.7 billion for stocks in the seventh
Mom decile. Stocks in the eight, ninth, and 10th Mom deciles, however, exhibit pro-
gressively smaller values of average MktCap of just under $1.7 billion, about $1.45
billion, and $849 million, respectively. Finally, average values of BM are generally
increasing across the Mom deciles from 0.89 for the Mom decile 1 portfolio to 1.00 for
the 10th decile portfolio. The average BM values for portfolios 2 through 9, however,
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are all relatively similar, with values between 0.93 and 0.95. Portfolio 1 has a sub-
stantially lower average BM of 0.89, whereas portfolio 10 has a substantially higher
average BM of 1.00. Thus, the positive relation between Mom and BM detected in the
correlation analysis appears to be mostly driven by stocks with extreme values
of Mom.

The average monthly value-weighted excess returns for the decile portfolios cre-
ated by sorting on each measure of momentum are shown in Panel B of Table 11.3.
The final three columns indicate the return (10-1), CAPM alpha (CAPM 𝛼), and Fama
and French (1993) three-factor alpha (FF 𝛼) for the momentum difference portfolio,
along with associated t-statistics, adjusted following Newey and West (1987) using
six lags.

Focusing first on the results for the analysis that uses the standard measure of
momentum (Mom) as the sort variable, the results in Panel B indicate a strong pos-
itive relation between momentum and expected stock returns. The average excess
return of the first decile portfolio is −0.76% per month, while that of the 10th decile
portfolio is 1.18% per month, resulting in an average difference of 1.95% per month
between the return of the high-momentum (decile 10) and low-momentum (decile 1)
portfolios. The average return difference of 1.95% per month is highly economically
significant, and the associated t-statistic of 5.39 indicates that this value is statistically
greater than zero. The difference portfolio’s abnormal returns of 2.13% per month
(t-statistic = 6.48) and 2.37% per month (t-statistic = 7.54) relative to the CAPM and
FF risk models, respectively, are both larger and more statistically significant than
the raw return difference. Furthermore, with one exception (decile portfolio 6), the
average excess returns of the decile portfolio are increasing across deciles of Mom.

Turning our attention now to the other measures of momentum, we notice first
that, consistent with the existence of a momentum effect, all measures of momentum
generate a positive return difference between the decile portfolio 10 and decile one
portfolio. Measures of momentum that use longer calculation periods produce 10-1
return differences and alphas that are both larger and more statistically significant
than those with shorter calculation periods. For the six-month (R6M) and three-month
measures (R3M) that do not skip a month, the 10-1 return difference is not statistically
significant although the risk-adjusted alphas remain significant.

Another important observation from Panel B of Table 11.3 is that holding the
length of the measurement period constant, skipping a month between the measure-
ment and portfolio formation periods dramatically increases the predictive power of
the momentum measure. The return difference between decile portfolio 10 and decile
portfolio one for the 12-month measure that does not skip a month (R12M) is 1.42% per
month, with a corresponding t-statistic of 3.64. For the 12-month measure that does
skip a month (Rt−12∶t−1), the return difference is 1.79% per month with a t-statistic of
5.12. The difference is even more substantial when comparing the results using the
six-month return measures. Portfolios formed by sorting on Rt−6∶t−1, which skips a
month between the end of the measurement period and portfolio formation, gener-
ate a 10-1 portfolio return of 1.50% per month (t-statistic = 4.11), with CAPM and
FF alphas of 1.71% per month (t-statistic = 5.14) and 1.86% per month (t-statistic
= 5.91), respectively. The six-month measure that does not skip a month between
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TABLE 11.3 Univariate Portfolio Analysis
This table presents the results of univariate portfolio analyses of the relation between each of
the measures of momentum and future stock returns. Monthly portfolios are formed by sorting
all stocks in the CRSP sample into portfolios using decile breakpoints calculated based on the
given sort variable using all stocks in the CRSP sample. Panel A shows the average values
of Mom, 𝛽, MktCap, and BM for stocks in each decile portfolio. Panel B (Panel C) shows
the average value-weighted (equal-weighted) one-month-ahead excess return (in percent per
month) for each of the 10 decile portfolios. The table also shows the average return of the
portfolio that is long the 10th decile portfolio and short the first decile portfolio, as well as the
CAPM and FF alpha for this portfolio. Newey and West (1987) t-statistics, adjusted using six
lags, testing the null hypothesis that the average 10-1 portfolio return or alpha is equal to zero,
are shown in parentheses.

Panel A: Mom-Sorted Portfolio Characteristics

Value 1 2 3 4 5 6 7 8 9 10

Mom −52.40 −29.83 −17.21 −7.33 1.44 10.11 19.81 32.24 52.22 132.10
𝛽 0.85 0.80 0.75 0.72 0.71 0.71 0.73 0.76 0.83 0.97
MktCap 154 487 874 1178 1441 1645 1709 1698 1468 849
BM 0.89 0.93 0.93 0.93 0.93 0.94 0.94 0.95 0.95 1.00

Panel B: Value-Weighted Portfolio Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 CAPM 𝛼 FF 𝛼

Mom −0.76 −0.12 0.04 0.35 0.39 0.37 0.53 0.67 0.75 1.18 1.95 2.13 2.37
(5.39) (6.48) (7.54)

R12M −0.36 0.01 0.26 0.39 0.37 0.43 0.54 0.62 0.73 1.05 1.42 1.66 1.93
(3.64) (4.81) (5.82)

R9M 0.02 0.40 0.40 0.40 0.43 0.44 0.44 0.58 0.65 0.97 0.95 1.24 1.45
(2.51) (3.67) (4.48)

R6M 0.21 0.48 0.48 0.50 0.53 0.47 0.51 0.47 0.53 0.78 0.58 0.85 0.98
(1.71) (2.76) (3.30)

R3M 0.33 0.54 0.60 0.60 0.61 0.51 0.46 0.48 0.47 0.63 0.31 0.57 0.69
(1.07) (2.08) (2.40)

Rt−12∶t−1 −0.71 −0.12 0.19 0.31 0.42 0.40 0.48 0.66 0.74 1.08 1.79 1.96 2.23
(5.12) (6.21) (7.33)

Rt−6∶t−1 −0.52 0.22 0.38 0.40 0.51 0.48 0.52 0.51 0.54 0.97 1.50 1.71 1.86
(4.11) (5.14) (5.91)

Panel C: Equal-Weighted Portfolio Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 CAPM 𝛼 FF 𝛼

Mom 0.29 0.34 0.48 0.64 0.68 0.78 0.92 1.04 1.19 1.37 1.08 1.14 1.36
(3.42) (3.85) (4.62)

R12M 1.10 0.29 0.45 0.52 0.59 0.72 0.84 0.94 1.09 1.20 0.10 0.21 0.45
(0.28) (0.64) (1.36)

R9M 1.27 0.43 0.45 0.50 0.61 0.67 0.75 0.77 0.93 1.18 −0.10 0.05 0.28
(−0.27) (0.16) (0.84)

R6M 1.49 0.53 0.54 0.54 0.55 0.69 0.68 0.72 0.80 0.91 −0.58 −0.43 −0.23
(−1.75) (−1.36) (−0.74)

R3M 1.89 0.68 0.60 0.58 0.66 0.63 0.61 0.64 0.66 0.50 −1.39 −1.23 −1.11
(−4.72) (−4.27) (−3.58)

Rt−12∶t−1 0.39 0.36 0.52 0.63 0.72 0.80 0.91 1.02 1.13 1.28 0.90 0.95 1.20
(2.84) (3.23) (4.04)

Rt−6∶t−1 0.46 0.39 0.56 0.71 0.72 0.78 0.80 0.86 1.00 1.23 0.77 0.87 1.01
(2.65) (3.11) (3.81)



�

� �

�

214 THE MOMENTUM EFFECT

calculation and portfolio formation (R6M) generates an average difference portfolio
return of 0.58% a month with a t-statistic of 1.71. While the CAPM and FF alphas of
0.85% per month (t-statistic = 2.76) and 0.98% per month (t-statistic = 3.30) remain
economically large and highly statistically significant, the returns and alphas for port-
folios sorted on R6M are substantially lower than for portfolios sorted on Rt−6∶t−1. The
results indicate that including the most recent month in the measurement of momen-
tum actually reduces the effect. This is consistent with the negative relation between
past one-month returns and future returns, known as the short-term reversal effect,
which will be discussed in Chapter 12.

Having demonstrated the momentum effect using value-weighted portfolios, we
repeat the univariate portfolio analyses using equal-weighted portfolios. The results
of these analyses, shown in Panel C of Table 11.3, indicate that weighting scheme
has a substantial effect on the momentum phenomenon, especially when the measure
of momentum includes the return in the most recent month t.

We first look at equal-weighted portfolios formed by sorting on the primary mea-
sure of momentum, Mom. The average excess returns of the Mom-sorted portfolios
increase monotonically from 0.29% per month for decile portfolio 1 to 1.37% per
month for decile portfolio 10. The 10-1 portfolio generates an average monthly return
of 1.08% (t-statistic = 3.42), CAPM alpha of 1.14% (t-statistic = 3.85), and FF alpha
of 1.36% (t-statistic = 4.62). By any objective measure, these results indicate a strong
momentum effect. However, they are not quite as strong, either economically or sta-
tistically, as the results for the value-weighted portfolios.

When R12M is used instead of Mom as the sort variable, the results change substan-
tially. The average return of the first R12M-sorted decile portfolio is 1.10% per month,
and that of the 10th decile portfolio is 1.20% per month. The average return of the
R12M 10-1 of 0.10% per month is both economically small and statistically insignif-
icant, with a corresponding t-statistic of 0.28. Adjusting the returns of this portfolio
for risk does not change the conclusions of the analysis. The CAPM alpha of 0.21%
per month and FF alpha of 0.45% per month are both statistically indistinguishable
from zero, with t-statistics of 0.64 and 1.36, respectively. The difference between this
result and the corresponding result using value-weighted portfolios seems to indicate
that the momentum phenomenon is largely a phenomenon among stocks with large
market capitalizations, and that the effect is reduced, if not completely eradicated,
among small stocks.

The difference between the results for equal-weighted portfolios formed by sorting
on Mom and R12M are also quite dramatic, especially given that the only difference
between Mom and R12M is that R12M includes the return of the stock in the most
recent month t, whereas the calculation of Mom excludes this month. The magni-
tude of the difference in these results indicates that the month t stock return has very
substantially different cross-sectional implications for the one-month-ahead (month
t + 1) returns than the returns in months t − 11 through t − 1. The results of the anal-
yses using R9M , R6M , and R3M as the sort variable indicate that as fewer months
from the more distant past are used in the calculation of momentum, and the impact
of the most recent month’s return gains a higher influence on the momentum mea-
sure, the returns of the difference portfolio actually become negative, economically
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large, and highly statistically significant. When R9M is used as the sort variable,
the average return, CAPM alpha, and FF alpha are all statistically indistinguishable
from zero. When R6M is used, the average return of −0.58% per month is econom-
ically large but only marginally statistically significant, with a t-statistic of −1.75.
The CAPM and FF alphas for this portfolio of −0.43% and −0.23% per month,
respectively, are statistically insignificant. When R3M is used as the sort variable,
the negative returns and alphas of the difference portfolio become economically very
large and highly statistically significant since the R3M-sorted 10-1 portfolio generates
an average return of −1.39% per month (t-statistic=−4.72), CAPM alpha of −1.23%
per month (t-statistic = −4.27), and FF alpha of −1.11% per month (t-statistic =
−3.58%). Examination of the individual decile portfolio returns indicates that the first
R3M decile portfolio generates an average excess return of 1.89% per month, much
higher than any of the other decile portfolios, whose average excess returns range
from 0.50% to 0.68% per month. As with the results for the Mom-sorted portfolios,
the difference between the value-weighted and equal-weighted portfolio results for
portfolios formed by sorting on R12M , R9M , R6M , and R3M indicate that the momentum
phenomenon is likely to be driven by high market capitalization stocks.

When a month is skipped between the measurement period and portfolio formation
(sort variables Rt−12∶t−1 and Rt−6∶t−1), we once again find a positive, economically
large, and highly statistically significant relation between momentum and future stock
returns. When using Rt−12∶t−1 as the sort variable, the difference portfolio gener-
ates average monthly returns of 0.90% (t-statistic = 2.84), CAPM alpha of 0.95%
(t-statistic = 3.23), and FF alpha of 1.20% (t-statistic = 4.04). The results when sort-
ing on Rt−6∶t−1 are similar although the returns, alphas, and corresponding t-statistics
for the 10-1 portfolio are slightly lower. The results indicate that skipping a month
between the last month used in the calculation of momentum and when the portfo-
lios are formed has a very important effect on the results of the portfolio analysis.
When no time is lapsed between calculation of momentum and portfolio formation,
equal-weighted portfolios using short measurement periods indicate a reversal effect
instead of a momentum effect. When one month is left between measurement of
momentum and portfolio formation, the momentum effect appears to be strong.

While these results may initially seem confusing and contradictory, there is a good
explanation for them. As will be shown in Chapter 12, there is a strong negative
cross-sectional relation between a stock’s return in month t and it’s return in month
t + 1. This negative relation is strong in small stocks but quite weak in large stocks.
This phenomenon manifests itself in our analyses of momentum in many ways. First,
it explains the fact that, when using measures of momentum that do not skip a month
between the measurement period and portfolio formation, we observe lower return
differences between decile 10 minus decile one of momentum compared to the mea-
sures that do skip a month. Second, the fact that the reversal effect is more prevalent
in small stocks than in large stocks explains the negative relation between momentum
and future returns when using the measures of momentum without a time lapse before
portfolio formation in the equal-weighted portfolios. In the equal-weighted analy-
ses, the momentum effect is substantially reduced compared to the value-weighted
counterparts. This is true regardless of the measure of momentum. When the return
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in month t is included in the measure of momentum and equal-weighted portfo-
lios are used, both the weighting scheme and the measure of momentum are favor-
able to the reversal effect and unfavorable to the momentum effect. Thus, in these
equal-weighted analyses using measures of momentum with no time lapse, the rever-
sal effect generated by the return in month t dominates the momentum effect from
returns in months prior to month t.

Univariate Portfolio Analysis: Predicting k-Month-Ahead Returns

One of the main conclusions that can be drawn from the results of the univariate
portfolio analyses presented in Table 11.3 is that the timing of the measurement of
momentum plays a substantial role in the nature of the relation between momen-
tum and future stock returns. To assess this in more detail and to examine whether
momentum has the ability to predict returns further in the future than the next month,
we perform univariate portfolio analyses using the k-month-ahead excess return as
the outcome variable for values of k ∈ {1, 2, 3, · · · , 12}. Table 11.4 presents the aver-
age returns, FF alphas, and associated Newey and West (1987) t-statistics for the
10-1 portfolios from each of these analyses. The first two columns of the table indi-
cate the sort variable and the measure of performance. The columns in the table
labeled rt+k present results using the k-month-ahead excess stock return as the out-
come variable. Panel A presents results for value-weighted portfolios, and the results
for equal-weighted portfolios are shown in Panel B.

The value-weighted portfolio results in Panel A of Table 11.4 indicate that using
the standard measure of momentum, Mom, the momentum phenomenon persists for
up to 10 months into the future because the FF alphas for returns up to 10 months
in the future (rt+10) are economically large and statistically significant, although the
average k-month-ahead returns of these portfolios cease to be statistically distinguish-
able from zero when using seven or more month-ahead returns. For returns coming
11 and 12 months after portfolio formation, the FF alphas are statistically indistin-
guishable from zero, but the returns of the portfolio actually become negative, large
in magnitude, and statistically significant. Consistent with the evidence presented in
De Bondt and Thaler (1985) and Jegadeesh and Titman (1993), the results indicate
that the medium-term momentum phenomenon may give way to a long-term rever-
sal phenomenon. While our analysis differs substantially from that in either of these
papers, the general patterns are similar.

When other measures of momentum are used as the sort variable, the results in
Panel A of Table 11.4 exhibit patterns consistent with medium-term momentum and
provide hints of a long-term reversal effect. The results of the nonlagged 12-month
measure of momentum (R12M) are similar to those using Mom as the sort variable.
The main exception is that the long-term reversal phenomenon does not present
itself when forming portfolios sorted on this measure of momentum, even when
using 12-month-ahead future excess returns as the outcome variable. Using the
nine-month momentum measure (R9M), the portfolio analysis indicates that the
momentum phenomenon persists for up to 11 months (rt+11) in the future when
examining the FF alphas, but the average return is significant only up to eight months
in the future. The six-month (R6M) and three-month (R3M) measures generate the
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momentum effect using returns as far as 11 months (rt+11) in the future regardless
of whether the average return or FF alpha is examined.5 Interestingly, when using
R3M as the sort variable, the strength of the momentum effect does not degrade as
the time between the measurement of R3M and portfolio formation increases. In
fact, the average 11-month-ahead 10-1 return (rt+11) and the associated FF alpha are

TABLE 11.4 Univariate Portfolio Analysis—k-Month-Ahead Returns
This table presents the results of univariate portfolio analyses of the relation between each of
measures of momentum and future stock returns. Monthly portfolios are formed by sorting
all stocks in the CRSP sample into portfolios using decile breakpoints calculated based on the
given sort variable using all stocks in the CRSP sample. Each panel in the table shows that aver-
age k-month-ahead return (as indicated in the column header), in percent per month, along with
the associated FF alpha, of the portfolio, that is, long the 10th decile portfolio and short the first
decile portfolio. Panel A (Panel B) shows results for value-weighted (equal-weighted) portfo-
lios. Newey and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis
that the average portfolio return or alpha is equal to zero are shown in parentheses.

Panel A: Value-Weighted Portfolios

Sort
Variable Value rt+1 rt+2 rt+3 rt+4 rt+5 rt+6 rt+7 rt+8 rt+9 rt+10 rt+11 rt+12

Mom Return 1.95 1.70 1.25 1.20 0.92 0.71 0.53 0.26 0.04 −0.06 −0.62 −0.63
(5.39) (5.00) (3.47) (3.25) (2.85) (2.50) (1.62) (0.82) (0.15) (−0.20) (−1.96) (−1.95)

FF 𝛼 2.37 2.13 1.61 1.72 1.45 1.23 1.07 0.75 0.54 0.49 −0.05 −0.01
(7.54) (7.12) (4.72) (5.66) (5.42) (5.00) (4.17) (2.85) (2.15) (1.85) (−0.20) (−0.03)

R12M Return 1.42 1.60 1.37 1.28 1.04 0.93 0.58 0.41 0.08 0.08 −0.30 −0.61
(3.64) (4.38) (3.82) (3.45) (2.88) (2.78) (1.73) (1.27) (0.24) (0.24) (−0.96) (−1.56)

FF 𝛼 1.93 2.06 1.83 1.78 1.60 1.50 1.17 0.95 0.66 0.65 0.23 0.06
(5.82) (6.62) (5.78) (5.67) (5.70) (5.58) (4.56) (3.55) (2.44) (2.56) (0.87) (0.22)

R9M Return 0.95 1.29 1.54 1.71 1.46 1.33 1.04 0.82 0.39 0.24 0.07 −0.60
(2.51) (3.41) (4.44) (4.95) (4.13) (3.99) (3.07) (2.57) (1.16) (0.82) (0.25) (−1.69)

FF 𝛼 1.45 1.72 1.93 2.08 1.88 1.76 1.59 1.35 0.90 0.71 0.54 −0.01
(4.48) (5.27) (6.24) (6.94) (6.33) (5.89) (5.74) (5.24) (3.40) (2.86) (2.26) (−0.02)

R6M Return 0.58 1.26 1.21 1.19 1.20 1.35 1.65 1.38 0.94 0.81 0.42 −0.34
(1.71) (3.31) (3.54) (3.67) (3.73) (4.44) (5.47) (4.30) (2.95) (3.18) (1.54) (−1.03)

FF 𝛼 0.98 1.62 1.51 1.43 1.54 1.68 1.99 1.70 1.29 1.17 0.87 0.20
(3.30) (5.00) (4.88) (4.59) (5.09) (5.93) (7.80) (6.20) (4.77) (5.17) (3.93) (0.85)

R3M Return 0.31 1.04 0.95 0.91 0.71 0.94 0.85 0.97 1.05 1.33 1.09 0.07
(1.07) (3.69) (3.21) (3.09) (2.44) (3.44) (3.31) (3.29) (3.34) (4.89) (4.33) (0.25)

FF 𝛼 0.69 1.32 1.15 1.06 0.94 1.15 1.11 1.25 1.31 1.48 1.24 0.35
(2.40) (4.99) (4.31) (3.52) (3.42) (4.26) (4.12) (4.54) (5.02) (5.97) (5.25) (1.38)

Rt−12∶t−1 Return 1.79 1.42 1.21 1.11 0.87 0.68 0.43 0.07 0.03 −0.26 −0.46 −0.42
(5.12) (4.11) (3.37) (3.13) (2.53) (2.29) (1.38) (0.22) (0.10) (−0.85) (−1.41) (−1.25)

FF 𝛼 2.23 1.87 1.68 1.66 1.41 1.23 0.96 0.61 0.61 0.29 0.15 0.22
(7.33) (6.13) (5.36) (5.98) (5.15) (5.04) (3.69) (2.30) (2.41) (1.15) (0.57) (0.81)

Rt−6∶t−1 Return 1.50 1.29 1.14 1.18 1.24 1.70 1.40 0.97 0.79 0.43 −0.24 −0.80
(4.11) (3.90) (3.59) (3.58) (4.13) (6.08) (4.54) (3.18) (3.01) (1.60) (−0.88) (−2.48)

FF 𝛼 1.86 1.61 1.38 1.51 1.56 2.01 1.73 1.30 1.17 0.91 0.24 −0.29
(5.91) (5.43) (4.44) (4.96) (5.56) (7.85) (6.46) (4.97) (5.08) (4.03) (1.08) (−1.09)

(continued)

5The one exception is that the average 11-month-ahead return for the R6M difference portfolio is not
statistically significant.
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TABLE 11.4 (Continued)

Panel B: Equal-Weighted Portfolios

Sort
Variable Value rt+1 rt+2 rt+3 rt+4 rt+5 rt+6 rt+7 rt+8 rt+9 rt+10 rt+11 rt+12

Mom Return 1.08 0.98 0.73 0.56 0.39 0.12 −0.06 −0.27 −0.34 −0.55 −0.79 −0.99
(3.42) (3.23) (2.41) (1.84) (1.31) (0.43) (−0.22) (−0.97) (−1.44) (−2.23) (−3.32) (−3.89)

FF 𝛼 1.36 1.26 1.05 0.91 0.74 0.48 0.30 0.06 0.02 −0.17 −0.42 −0.58
(4.62) (4.49) (3.81) (3.44) (2.85) (1.93) (1.21) (0.24) (0.07) (−0.72) (−1.89) (−2.55)

R12M Return 0.10 0.90 0.81 0.60 0.47 0.25 0.04 −0.10 −0.37 −0.45 −0.63 −0.80
(0.28) (2.84) (2.61) (1.95) (1.53) (0.81) (0.15) (−0.34) (−1.31) (−1.77) (−2.58) (−3.23)

FF 𝛼 0.45 1.20 1.11 0.96 0.86 0.63 0.41 0.29 −0.02 −0.06 −0.25 −0.42
(1.36) (4.01) (3.96) (3.45) (3.21) (2.39) (1.65) (1.14) (−0.08) (−0.23) (−1.07) (−1.84)

R9M Return −0.10 0.77 0.95 1.08 0.90 0.58 0.34 0.13 −0.15 −0.25 −0.36 −0.61
(−0.27) (2.42) (3.09) (3.76) (3.11) (1.99) (1.25) (0.44) (−0.56) (−1.01) (−1.52) (−2.68)

FF 𝛼 0.28 1.07 1.21 1.32 1.17 0.88 0.66 0.46 0.15 0.07 −0.02 −0.26
(0.84) (3.69) (4.35) (5.07) (4.52) (3.34) (2.75) (1.79) (0.56) (0.31) (−0.09) (−1.21)

R6M Return −0.58 0.77 0.93 0.85 0.76 0.72 0.99 0.68 0.24 0.19 0.02 −0.42
(−1.75) (2.69) (3.37) (3.06) (2.68) (2.64) (3.83) (2.60) (0.95) (0.82) (0.08) (−1.88)

FF 𝛼 −0.23 1.01 1.19 1.10 1.03 0.95 1.15 0.88 0.44 0.44 0.30 −0.12
(−0.74) (3.83) (4.99) (4.53) (4.12) (3.90) (4.85) (3.65) (1.69) (2.01) (1.40) (−0.57)

R3M Return −1.39 0.47 0.64 0.54 0.61 0.72 0.53 0.37 0.43 0.85 0.59 0.09
(−4.72) (2.16) (2.97) (2.22) (2.46) (3.04) (2.53) (1.60) (1.82) (4.03) (3.06) (0.50)

FF 𝛼 −1.11 0.62 0.80 0.70 0.76 0.93 0.71 0.54 0.53 0.88 0.70 0.27
(−3.58) (2.72) (3.78) (2.92) (3.30) (4.26) (3.64) (2.50) (2.27) (4.31) (3.69) (1.52)

Rt−12∶t−1 Return 0.90 0.82 0.60 0.48 0.25 0.07 −0.10 −0.37 −0.45 −0.63 −0.79 −0.82
(2.84) (2.65) (1.96) (1.57) (0.85) (0.24) (−0.37) (−1.30) (−1.78) (−2.58) (−3.18) (−3.24)

FF 𝛼 1.20 1.13 0.96 0.86 0.64 0.43 0.28 −0.02 −0.05 −0.25 −0.40 −0.42
(4.04) (4.02) (3.48) (3.25) (2.42) (1.76) (1.12) (−0.06) (−0.21) (−1.08) (−1.78) (−1.83)

Rt−6∶t−1 Return 0.77 0.94 0.85 0.77 0.73 0.99 0.67 0.24 0.18 0.02 −0.41 −0.85
(2.65) (3.43) (3.08) (2.71) (2.69) (3.85) (2.61) (0.95) (0.81) (0.07) (−1.82) (−3.59)

FF 𝛼 1.01 1.19 1.10 1.04 0.96 1.15 0.87 0.44 0.44 0.30 −0.10 −0.50
(3.81) (5.07) (4.56) (4.16) (3.94) (4.87) (3.66) (1.71) (2.00) (1.39) (−0.50) (−2.29)

similar in magnitude to and higher in statistical significance than the corresponding
values for the 2-month-ahead return difference (rt+2). However, R3M fails to predict
12-month-ahead returns. This result indicates that past returns are positively related
to future returns for up to 11 months in the future. Consistent with the observation that
including the month t return in the calculation of momentum reduces the strength of
the momentum effect, for each of R12M , R9M , R6M , and R3M , the momentum effect is
stronger when predicting two-month-ahead returns (rt+2) instead of one-month-ahead
returns (rt+1). Finally, examining the persistence of the momentum effect using
alternative one-month-lapsed measures of momentum (Rt−6∶t−1 and Rt−12∶t−1), we
see that similar patterns exist in these measures as were detected in the nonlapsed
measures. The main difference is that, as discussed previously, the predictability of
one-month-ahead return is stronger for the lapsed measures, as the lapsed measures
are not affected by the reversal effect. Interestingly, when using Rt−12∶t−1 as the sort
variable, the long-term reversal phenomenon never becomes statistically significant,
whereas when Rt−6∶t−1 is used as the sort variable, the average 12-month ahead return
generated by the Rt−6∶t−1 10-1 portfolio of −0.80% per month is highly statistically
significant with a t-statistic of −2.48, but the FF alpha of the 12-month-ahead returns
of only −0.29% per month is statistically indistinguishable from zero.
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In Panel B of Table 11.4, we present the results of equal-weighted portfolio
analyses of the relations between the different measures of momentum and k-month-
ahead stock returns, where k ∈ {1, 2, 3, · · · , 12}. When using Mom as the sort
variable, the results indicate that the Mom difference portfolio generates statistically
significant average returns for up to three months in the future (rt+3) and statistically
significant positive FF alpha for up to six months in the future (rt+6). When using
four-month-ahead through nine-month-ahead returns, the analysis detects no relation
between Mom and future returns. Mom exhibits a strong negative relation with
11-month-ahead and 12-month-ahead returns, as the average return and FF alpha of
the difference portfolio for each of these analyses are negative, economically large,
and statistically significant.

When using equal-weighted portfolios formed by sorting on R12M , R9M , R6M ,
and R3M , the results indicate a strong momentum effect when examining two-
month-ahead (rt+2) returns. Regardless of which of these measures of momentum is
used, the momentum phenomenon tends to weaken as the lag until portfolio formation
increases. When R12M (R9M) are used as the sort variable, the long-term reversal phe-
nomenon appears in the average return when using 12-month-ahead excess returns
as the outcome variable, but the FF alpha remains at best only marginally significant.

Finally, the equal-weighted portfolio analyses using the one-month lagged
12-month return measure of momentum (Rt−12∶t−1) as the sort variable detect a
positive FF alpha for the difference portfolio using one-month-ahead (rt+1) through
five-month-ahead (rt+2) returns. Beginning with the 10-month-ahead returns (rt+10),
the long-term reversal phenomenon appears in the average portfolio returns, with the
FF alphas being marginally statistically significant when using the 11-month-ahead
and 12-month-ahead returns. When sorting on the one-month lagged 6-month return
measure of momentum (Rt−6∶t−1), the medium-term momentum phenomenon is
present for up to seven-month-ahead returns (rt+7) and the long-term reversal phe-
nomenon appears when using 12-month-ahead (rt+12) returns as the outcome variable.

A few additional comments regarding the portfolio results presented in Table 11.4
are warranted. When using equal-weighted portfolios (Panel B), the patterns in
the results using R12M as the sort variable are very similar to the patterns observed
when using Rt−12∶t−1 as the sort variable, except that the patterns in the latter occur
one-month earlier. This is not at all a coincidence, as the ability of the 12-month
nonlagged measure of momentum (R12M) to predict k-month-ahead return should
be the same as the ability of the 12-month lagged measure (Rt−12∶t−1) to predict
k − 1-month-ahead returns. Thus, the empirical differences between these results are
completely driven by changes in the sample. As can be seen from the table, these
differences are very small and economically unimportant. The same can be said when
comparing the results for R6M and Rt−6∶t−1. For example, the two-month-ahead return
difference for portfolios sorted on each of R12M and the one-month-ahead return
difference for portfolios sorted on Rt−12∶t−1 are both 0.90% per month with a t-statistic
of 2.84. Referring back to the corresponding results from the value-weighted analysis
in Panel A, we see that the corresponding results fail to exhibit the same similarity.
In the value-weighted analysis, the two-month-ahead return difference for the non-
lagged 12-month momentum measure (R12M) is 1.60% per month (t-statistic = 4.38)
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and the one-month-ahead return difference when sorting on the lagged 12-month
measure (Rt−12∶t−1) is 1.79% with a t-statistic of 5.12. These two results combined
(equal-weighted and value-weighted) indicate that the effect of weighting scheme
on persistence analyses is much more substantial, at least in this case, than the effect
of a changing sample. If nothing else, this example serves as a caution to researchers
that there are potentially many moving parts in even these simple analyses, and they
may manifest themselves in unexpected ways. Thus, attention to detail is a necessary
component of high-quality empirical asset pricing research.

This completes our examination of the momentum phenomenon using univariate
portfolio analysis. The results have actually demonstrated not just the medium-term
momentum effect but also the long-term and short-term reversal effects. We discuss
the short-term reversal effect in Chapter 12. The long-term reversal effect is a less
frequently discussed phenomenon, and thus we will not pay special attention to it in
this book. As the primary objective of this chapter is the analysis of the momentum
effect, we proceed now to examine whether the momentum effect persists after con-
trolling for other variables known to be related to expected stock returns. In doing so,
we focus on the most commonly used measure of momentum, namely, the 11-month
return covering months t − 11 through t − 1, which we have denoted Mom. We focus
on this measure for two reasons. First, the momentum effect is strongest when using
Mom, especially when predicting one-month-ahead future returns. Second, this is
the most commonly used measure of momentum in the asset pricing literature. This
second reason is likely a result of the first.

11.4.2 Bivariate Portfolio Analysis

We now continue our examination of the relation between momentum and expected
stock returns by using bivariate portfolio analysis to control for the relations between
each of beta, market capitalization, and book-to-market ratio and expected stock
returns.

Bivariate Dependent-Sort Portfolio Analysis

Our bivariate portfolio analysis of the momentum effect begins with an analysis of
the returns of portfolios formed by sorting first on market capitalization (MktCap)
and then on momentum (Mom). This analysis is motivated by the substantial differ-
ences in the value-weighted and equal-weighted univariate portfolio analyses, which
detected a much stronger medium-term momentum effect when using value-weighted
portfolios than when using equal-weighted portfolios. We begin with dependent-sort
portfolio analyses using five MktCap groups and five Mom groups with breakpoints
corresponding to quintiles of each of the sort variables. The outcome variable in these
analyses is the one-month-ahead excess stock return.

The results of the analysis using value-weighted portfolios, shown in Panel A of
Table 11.5, demonstrate that the momentum phenomenon remains strong after con-
trolling for market capitalization. In the average MktCap quintile, the return of the
Mom 5-1 portfolio is 1.29% per month with a corresponding t-statistic of 5.61. The
CAPM and FF risk models fail to explain the returns of this portfolio, since the CAPM
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alpha of 1.40% per month and FF alpha of 1.55% per month are both economically
large and highly statistically significant, with t-statistics of 6.76 and 7.76, respec-
tively. The average returns of the Mom quintile portfolios for the MktCap Avg port-
folio are increasing monotonically from −0.08% per month for the low-momentum
(Mom 1) portfolio to 1.21% per month for the high-momentum (Mom 5) portfolio.
The results of the value-weighted portfolio analysis also indicate that the momentum
effect is strong for stocks at all market capitalization levels, since the average return,
CAPM alpha, and FF alpha of the Mom 5-1 portfolio are positive, economically large,
and statistically significant within each of the MktCap quintiles. Furthermore, within
each quintile of MktCap, the average portfolio returns are monotonically increasing
from quintile one to quintile five of momentum.

We next perform a similar bivariate portfolio analysis using equal-weighted port-
folios. The results are presented in Panel B of Table 11.5. Focusing first on the average
market capitalization quintile (MktCap Avg), the results of the equal-weighted analy-
sis once again provide strong support of the momentum phenomenon, as the average
return of the difference portfolio is 1.13% per month with a corresponding t-statistic
of 4.97, indicating high levels of both economic and statistical significance. Expo-
sure to the market (MKT), size (SMB), and value (HML) factors does not explain this
return, as the risk-adjusted alphas relative to the CAPM and FF models are larger and
more statistically significant than the raw return difference. As in the value-weighted
analysis, the equal-weighted average returns of the Mom quintile portfolios increase
monotonically from quintile 1 to 5 of Mom. Overall, therefore, the momentum effect
is detected by the equal-weighted portfolio analysis.

Examining the individual quintiles of market capitalization uncovers some
interesting patterns. Quintiles two through five of market capitalization each exhibit
a monotonically increasing average excess return across the quintiles of momentum,
with raw return differences and risk-adjusted alphas that are economically large
and highly statistically significant. Looking at quintile one of market capitalization,
however, we find that using an equal-weighted portfolio analysis, the momentum
phenomenon does not exist at all for small stocks. In fact, the Mom 5-1 portfolio
for the smallest market capitalization quintile generates an economically small and
statistically insignificant average monthly return of 0.09% (t-statistic = 0.27). The
CAPM and FF alphas of 0.30% per month (t-statistic = 0.97) and 0.36% per month
(t-statistic = 1.16) also provide no evidence of a momentum effect among small
stocks.

The lack of a medium-term momentum effect among stocks with low market
capitalizations is consistent with what was observed in the univariate portfolio anal-
yses, which generated much stronger momentum results when using value-weighted
portfolios than when using equal-weighted portfolios. To investigate this phe-
nomenon further, we refine our sorting procedure by breaking the lowest quintile
of market capitalization into four separate groups, each holding 5% of all stocks
used in the analysis. The first group holds stocks in the lowest 5% of market
capitalization. Groups two, three, and four hold percentiles five to 10, 10–15, and
15–20, respectively. Within each of these four groups, we then sort the stocks into
five portfolios based on momentum (Mom). We perform this analysis using both
value-weighted and equal-weighted portfolios.
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TABLE 11.5 Bivariate Dependent-Sort Portfolio Analysis—Control for MktCap
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between Mom and future stock returns after controlling for the effect of MktCap. Each month,
all stocks in the CRSP sample are sorted into five groups based on an ascending sort of MktCap.
Within each MktCap group, all stocks are sorted into five portfolios based on an ascending sort
of Mom. The quintile breakpoints used to create the portfolios are calculated using all stocks
in the CRSP sample. The table presents the average one-month-ahead excess return (in percent
per month) for each of the 25 portfolios as well as for the average MktCap quintile portfolio
within each quintile of Mom. Also shown are the average return, CAPM alpha, and FF alpha of
a long–short zero-cost portfolio, that is, long the fifth Mom quintile portfolio and short the first
Mom quintile portfolio in each MktCap quintile. t-statistics (in parentheses), adjusted following
Newey and West (1987) using six lags, testing the null hypothesis that the average return or
alpha is equal to zero, are shown in parentheses. Panel A presents results for value-weighted
portfolios. Panel B presents results for equal-weighted portfolios.
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Mom 3 0.92 0.72 0.75 0.74 0.33 0.69
Mom 4 1.13 1.01 0.97 0.89 0.54 0.91
Mom 5 1.40 1.38 1.31 1.17 0.81 1.21
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Mom 5-1 FF 𝛼 1.42 2.30 1.87 1.37 0.79 1.55
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Panel B: Equal-Weighted Portfolios
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Mom 1 1.48 −0.61 −0.29 0.02 0.20 0.16
Mom 2 1.29 0.36 0.47 0.58 0.49 0.64
Mom 3 1.24 0.72 0.78 0.75 0.51 0.80
Mom 4 1.38 1.01 0.99 0.92 0.64 0.99
Mom 5 1.57 1.37 1.30 1.18 1.01 1.29
Mom 5-1 0.09 1.99 1.60 1.16 0.80 1.13

(0.27) (7.61) (6.06) (4.84) (3.57) (4.97)
Mom 5-1 CAPM 𝛼 0.30 2.14 1.70 1.22 0.83 1.24

(0.97) (9.18) (6.91) (5.51) (3.78) (6.08)
Mom 5-1 FF 𝛼 0.36 2.27 1.85 1.39 1.03 1.38

(1.16) (9.72) (8.10) (6.40) (4.74) (6.96)
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Panel A of Table 11.6 reports the results of the refined portfolio analysis using
value-weighted portfolios. The results indicate that for extremely small stocks,
namely those in the bottom 5% of MktCap, the momentum phenomenon does not
exist. Among such stocks (MktCap Pctls 0–5), the average return of the portfolio,
that is, long high-Mom stocks and short low-Mom stocks (Mom 5-1) is −0.86% per
month, indicating more of a reversal effect than a momentum effect. Despite the
large magnitude of the average return, it is statistically indistinguishable from zero
as the corresponding t-statistic is −1.67. Adjusting the returns of this portfolio using
the CAPM and FF risk models results in large but statistically insignificant alphas of
−0.60 (t-statistic = −1.25) and −0.56 (t-statistic = −1.13) per month, respectively.
For stocks with market capitalizations between the fifth and 10th, 10th and 15th, and
15th and 20th percentiles of MktCap, the medium-term momentum phenomenon is
strong, as each of the Mom 5-1 portfolios for these MktCap groups generates eco-
nomically large and statistically significant average returns and risk-adjusted alphas.

The results of the equal-weighted portfolio analysis, presented in Panel B of
Table 11.6, are even more dramatic than those of the value-weighted portfolios.
When equal-weighted portfolios are used, the results show a strong negative relation
between Mom and future stock returns for stocks in the lowest 5% of MktCap. The
average monthly return of the equal-weighted Mom 5-1 portfolio for these extremely
small-cap stocks is an economically large and highly statistically significant −1.60%
with a corresponding t-statistic of −2.84. Adjusting the returns of this portfolio
for risk does not explain the returns, as the CAPM alpha of −1.34% per month
(t-statistic = −2.53) and FF alpha of −1.30% per month (t-statistic = −2.39) are
both large in magnitude and statistically significant. The equal-weighted results for
stocks in percentiles five through 10, 10 through 15, and 15 through 20 of MktCap
are very similar to the value-weighted results, as each of the Mom 5-1 portfolios for
these MktCap groups generates positive and statistically significant average monthly
returns and alphas.

The results in Table 11.6 demonstrate that for stocks that are not in the small-
est 5% of market capitalization, the momentum effect is quite strong. For extremely
small stocks, specifically those in the bottom 5% of market capitalization, the effect
disappears when using value-weighted portfolios and is reversed (becomes a rever-
sal phenomenon) when using equal-weighted portfolios. The substantial difference
between the value-weighted and equal-weighted portfolios, even among only stocks
in the bottom 5% of MktCap, indicates that even among these very small stocks, it is
the smallest of the small stocks that are driving the negative relation between Mom
and future stock returns among stocks in the bottom 5% of MktCap. While we do
not investigate the cause of this reversal (instead of momentum) effect in very small
stocks, we posit that it may be driven at least in part by microstructure effects such as
the bid–ask spread, as well as illiquidity effects, which may cause reversal patterns
in the returns of such stocks.6

6The research examining the relation between market imperfections and autocorrelation in stock returns
is expansive. A short list of such studies is Fisher (1966), Roll (1984), Atchison, Butler, and Simonds
(1987), Lo and MacKinlay (1990a), Campbell, Grossman, and Wang (1993), Boudoukh, Richardson, and
Whitelaw (1994), Ahn, Boudoukh, Richardson, and Whitelaw (2002), and Connolly and Stivers (2003).
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TABLE 11.6 Bivariate Dependent-Sort Portfolio Analysis—Small Stocks
This table presents the results of bivariate dependent-sort portfolio analyses of the rela-
tion between Mom and future stock returns after controlling for the effect of MktCap
using only small stocks. Each month, all stocks with values below the 20th percentile
value of MktCap in the CRSP sample are sorted into four groups based on an ascend-
ing sort of MktCap. Within each MktCap group, all stocks are sorted into five portfolios
based on an ascending sort of Mom. The table presents the average one-month-ahead
excess return (in percent per month) for each of the 20 portfolios as well as for the
average MktCap portfolio within each Mom group. Also shown are the average return,
CAPM alpha, and FF alpha of a long–short zero-cost portfolio, that is, long the fifth
Mom quintile portfolio and short the first Mom quintile portfolio in each MktCap group.
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags,
testing the null hypothesis that the average return or alpha is equal to zero, are shown
in parentheses. Panel A presents results for value-weighted portfolios. Panel B presents
results for equal-weighted portfolios.
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Mom 1 3.16 0.48 −0.35 −0.44
Mom 2 3.26 1.07 0.41 0.41
Mom 3 2.23 1.00 1.00 0.84
Mom 4 2.20 1.32 1.03 1.09
Mom 5 2.30 1.60 1.33 1.26
Mom 5-1 −0.86 1.12 1.68 1.70

(−1.67) (3.17) (5.20) (4.83)
Mom 5-1 CAPM 𝛼 −0.60 1.36 1.86 1.88

(−1.25) (4.23) (6.20) (5.80)
Mom 5-1 FF 𝛼 −0.56 1.43 1.92 1.94

(−1.13) (4.44) (6.61) (6.43)

Panel B: Equal-Weighted Portfolios
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Mom 1 4.17 0.52 −0.32 −0.42
Mom 2 3.70 1.13 0.45 0.41
Mom 3 2.70 1.00 1.00 0.84
Mom 4 2.51 1.33 1.02 1.08
Mom 5 2.56 1.59 1.35 1.25
Mom 5-1 −1.60 1.07 1.67 1.68

(−2.84) (2.99) (5.13) (4.79)
Mom 5-1 CAPM 𝛼 −1.34 1.31 1.85 1.86

(−2.53) (4.03) (6.12) (5.77)
Mom 5-1 FF 𝛼 −1.30 1.37 1.92 1.91

(−2.39) (4.21) (6.54) (6.35)
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Having sufficiently examined the effect of controlling for market capitalization on
the momentum phenomenon using dependent-sort bivariate portfolio analyses, we
proceed now to similar analyses of momentum after controlling for each of beta (𝛽)
and book-to-market ratio (BM). The results of bivariate dependent-sort portfolio anal-
yses of the momentum effect using each of beta (𝛽) and book-to-market ratio (BM)
as the first, or control, sort variable are presented in Table 11.7. The table presents
the average return, CAPM alpha, and FF alpha for the Mom 5-1 portfolio within each
quintile of the control variable, as well as for the average control variable quintile.
Results for value-weighted (Weights = VW) and equal-weighted (Weights = EW)
portfolios are tabulated.

The results of the bivariate dependent-sort portfolio analysis using beta (𝛽) as the
first sort variable indicate that within each quintile of 𝛽, the average return of the Mom
5-1 value-weighted portfolio is positive and highly statistically significant, with aver-
age returns ranging from 0.75% per month (t-statistic = 2.87) for 𝛽 quintile three to
1.78% per month (t-statistic = 5.12) for 𝛽 quintile five. Risk-adjusted alphas relative
to the CAPM and FF risk models exhibit similar patterns, with alphas ranging from
0.86% to 2.13% per month. The average Mom 5-1 portfolio across all quintiles of 𝛽
generates an average monthly return of 1.16% per month (t-statistic = 5.01) and FF
alpha of 1.43% per month (t-statistic = 6.85). The results using equal-weighed port-
folios are qualitatively similar, but perhaps not quite as strong. Each of the Mom 5-1
portfolios generates a large and statistically significant average return, CAPM alpha,
and FF alpha. The lone exception is the average return of the Mom 5-1 portfolio in
the smallest 𝛽 quintile of 0.35% per month, which is statistically insignificant with
a t-statistic of 1.36. The Mom 5-1 equal-weighted portfolio for the average 𝛽 quin-
tile generates average monthly returns of 0.94% (t-statistic = 4.12), CAPM alpha of
1.00% per month (t-statistic = 4.82), and FF alpha of 1.17% per month (t-statistic
= 5.76). The value-weighted and equal-weighted bivariate dependent-sort portfolio
analyses, therefore, indicate that the momentum effect remains highly robust after
controlling for the effect of 𝛽.

The momentum effect is also robust to controlling for the relation between
book-to-market ratio (BM) and expected stock returns. When using value-weighted
portfolios, each of the Mom 5-1 portfolio produces a large and statistically significant
average monthly return, CAPM alpha, and FF alpha, with the only exception being
the average return of the Mom 5-1 portfolio in the fourth BM quintile of 0.55% per
month (t-statistic = 1.58). For the average BM quintile, the average return of 0.88%
per month (t-statistic = 3.21), CAPM alpha of 1.01% per month (t-statistic = 4.09),
and FF alpha of 1.22% (t-statistic = 5.23) all provide strong evidence that controlling
for the relation between BM and future stock returns cannot explain the momentum
phenomenon. When using equal-weighted portfolios, the results are similar. The
main exception is that in quintile three of BM, the equal-weighted average return
and alphas of the Mom 5-1 portfolio are statistically indistinguishable from zero.
The only other statistically insignificant result in the equal-weighted analysis is the
average return of the Mom 5-1 portfolio in the fifth quintile of BM. The risk-adjusted
returns of this portfolio, however, are highly statistically significant. The average
Mom 5-1 equal-weighted portfolio across all quintiles of BM produces average
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TABLE 11.7 Bivariate Dependent-Sort Portfolio Analysis
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between Mom and future stock returns after controlling for the effect of each of 𝛽 and BM (con-
trol variables). Each month, all stocks in the CRSP sample are sorted into five groups based
on an ascending sort of one of the control variables. Within each control variable group, all
stocks are sorted into five portfolios based on an ascending sort of Mom. The quintile break-
points used to create the portfolios are calculated using all stocks in the CRSP sample. The
table presents the average return, CAPM alpha, and FF alpha (in percent per month) of the
long–short zero-cost portfolios that are long the fifth Mom quintile portfolio and short the
first Mom quintile portfolio in each quintile, as well as for the average quintile, of the control
variable. Results for value-weighted (Weights = VW) and equal-weighted (Weights = EW)
portfolios are shown. t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average return or alpha is equal to zero, are
shown in parentheses.
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𝛽 VW Return 1.15 0.96 0.75 1.14 1.78 1.16
(4.31) (4.02) (2.87) (4.27) (5.12) (5.01)

CAPM 𝛼 1.25 1.05 0.86 1.24 1.90 1.26
(5.08) (4.60) (3.38) (4.77) (5.86) (5.92)

FF 𝛼 1.41 1.19 1.02 1.38 2.13 1.43
(6.09) (5.35) (4.13) (5.26) (6.53) (6.85)

EW Return 0.35 0.89 0.67 1.31 1.48 0.94
(1.36) (3.90) (2.51) (5.84) (4.48) (4.12)

CAPM 𝛼 0.48 0.97 0.67 1.36 1.53 1.00
(2.11) (4.75) (2.19) (6.59) (5.14) (4.82)

FF 𝛼 0.60 1.11 0.78 1.55 1.83 1.17
(2.80) (5.41) (2.47) (7.27) (6.02) (5.76)

BM VW Return 1.75 0.58 0.78 0.55 0.73 0.88
(5.42) (1.96) (2.38) (1.58) (2.36) (3.21)

CAPM 𝛼 1.91 0.71 0.89 0.67 0.85 1.01
(6.38) (2.54) (2.83) (2.06) (3.11) (4.09)

FF 𝛼 2.17 0.88 1.06 0.88 1.12 1.22
(7.21) (3.13) (3.38) (2.88) (4.45) (5.23)

EW Return 1.13 0.70 0.44 0.56 0.47 0.66
(3.96) (2.60) (1.39) (2.22) (1.63) (2.64)

CAPM 𝛼 1.23 0.79 0.39 0.63 0.53 0.71
(4.72) (3.23) (1.03) (2.79) (2.07) (3.10)

FF 𝛼 1.46 0.99 0.55 0.81 0.67 0.90
(5.41) (3.83) (1.39) (3.58) (2.95) (3.95)

returns of 0.66% per month (t-statistic = 2.64), CAPM alpha of 0.71% per month
(t-statistic = 3.10), and FF alpha of 0.90% per month (t-statistic = 3.95). Once again,
consistent with the previous results in this chapter, while the momentum effect is still
strong in equal-weighted portfolios, the results using value-weighted portfolios are
stronger.
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Bivariate Independent-Sort Portfolio Analysis

We now continue our examination of whether the momentum effect is a manifestation
of the relation between either beta, market capitalization, or book-to-market ratio
and future stock returns using independent-sort instead of dependent-sort bivariate
portfolio analysis.

Table 11.8 presents summary results of the bivariate independent-sort portfolio
analyses of the relation between momentum (Mom) and future stock returns after
controlling for each of beta (𝛽), market capitalization (MktCap), and book-to-market
ratio (BM). With the exception of the use of independent-sort portfolios instead of
dependent-sort portfolios, the parameters of these portfolio analyses are the same
as those used in the dependent-sort analyses presented earlier in this chapter. The
table presents only the average returns, CAPM alphas, and FF alphas for the Mom
5-1 portfolio within each quintile of the control variable, along with the associated
t-statistics. Overall, the results of the independent-sort portfolio analyses are very
similar to those of the dependent-sort portfolio analyses. Our discussion of these
results will therefore be concise.

The top portion of Table 11.8 demonstrates that the momentum phenomenon per-
sists after controlling for 𝛽 in a bivariate independent-sort portfolio analysis. Both
value-weighted and equal-weighted portfolios produce economically and statistically
significant average returns, CAPM alphas, and FF alphas for the average 𝛽 quintile
as well as within each individual 𝛽 quintile.

When controlling for MktCap, the results in the middle portion of Table 11.8
show that when using value-weighted independently sorted portfolios, the momen-
tum effect is strong in each MktCap quintile, as well as in the average MktCap
quintile, since all average returns and alphas are positive and statistically significant.
When equal-weighted portfolio are used, the momentum effect exists in all but the
lowest MktCap quintile. This result is very similar to what was observed in the
dependent-sort bivariate portfolio analysis.

The positive relation between Mom and future stock returns is also robust to con-
trolling for BM in independent-sort portfolios. The bottom portion of Table 11.8
shows that when using value-weighted portfolios, the average returns and alphas of
the Mom 5-1 portfolio are positive, economically large, and statistically significant in
all BM quintiles. When using equal-weighted portfolios, this result holds for all but
quintile three of BM. This result is very similar to what was observed in BM quin-
tile three when using dependent-sort portfolios. Thus, the results are qualitatively the
same regardless of the sorting procedure.

Can Momentum Explain Other Relations

Having found no evidence in our bivariate portfolio analyses that relations between
expected returns and beta, market capitalization, or book-to-market ratio can explain
the momentum effect, we now use bivariate portfolio analysis to examine whether
the momentum effect can explain the negative alpha of portfolios consisting of long
positions in high-beta stocks and short positions in low-beta stocks, the size effect,
or the value premium.
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TABLE 11.8 Bivariate Independent-Sort Portfolio Analysis
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between Mom and future stock returns after controlling for the effect of each of 𝛽, MktCap, and
BM (control variables). Each month, all stocks in the CRSP sample are sorted into five groups
based on an ascending sort of the control variable. All stocks are independently sorted into five
groups based on an ascending sort of Mom. The quintile breakpoints used to create the groups
are calculated using all stocks in the CRSP sample. The intersections of the control variable
and Mom groups are used to form 25 portfolios. The table presents the average return, CAPM
alpha, and FF alpha (in percent per month) of the long–short zero-cost portfolios that are long
the fifth Mom quintile portfolio and short the first Mom quintile portfolio in each quintile, as
well as for the average quintile, of the control variable. Results for value-weighted (Weights =
VW) and equal-weighted (Weights = EW) portfolios are shown. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses.
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𝛽 VW Return 1.16 1.20 0.72 0.94 1.39 1.08
(4.06) (4.79) (2.13) (3.17) (4.46) (4.40)

CAPM 𝛼 1.25 1.29 0.85 1.07 1.51 1.19
(4.74) (5.29) (2.68) (3.87) (5.19) (5.33)

FF 𝛼 1.37 1.49 1.02 1.30 1.72 1.38
(5.29) (6.36) (3.19) (4.90) (5.82) (6.40)

EW Return 0.47 0.99 0.65 1.28 1.42 0.96
(1.75) (3.97) (2.15) (5.51) (4.86) (4.01)

CAPM 𝛼 0.58 1.08 0.66 1.34 1.46 1.02
(2.40) (4.79) (1.93) (6.39) (5.53) (4.68)

FF 𝛼 0.69 1.21 0.77 1.54 1.77 1.19
(2.92) (5.32) (2.18) (7.29) (6.83) (5.59)

MktCap VW Return 0.95 1.90 1.72 1.37 0.97 1.38
(3.89) (7.65) (6.27) (5.34) (3.08) (5.78)

CAPM 𝛼 1.05 2.02 1.84 1.49 1.12 1.50
(4.70) (9.00) (7.26) (6.39) (3.85) (7.03)

FF 𝛼 1.13 2.17 2.00 1.66 1.29 1.65
(5.30) (9.52) (8.39) (7.52) (4.72) (8.22)

EW Return 0.26 1.88 1.70 1.40 1.15 1.28
(1.00) (7.62) (6.21) (5.27) (4.00) (5.42)

CAPM 𝛼 0.33 2.00 1.82 1.52 1.28 1.39
(1.34) (8.97) (7.23) (6.34) (4.74) (6.54)

FF 𝛼 0.39 2.14 1.98 1.69 1.43 1.53
(1.58) (9.53) (8.48) (7.50) (5.69) (7.67)

BM VW Return 1.49 0.61 0.89 0.72 0.66 0.87
(5.12) (2.08) (2.49) (1.98) (2.12) (3.13)

CAPM 𝛼 1.64 0.75 1.01 0.86 0.78 1.01
(6.14) (2.70) (2.91) (2.55) (2.69) (3.98)

FF 𝛼 1.87 0.91 1.14 1.06 1.01 1.20
(7.33) (3.37) (3.28) (3.24) (3.61) (4.98)

EW Return 1.21 0.72 0.48 0.59 0.44 0.69
(4.52) (2.64) (1.42) (2.22) (1.71) (2.77)

CAPM 𝛼 1.30 0.80 0.43 0.66 0.49 0.74
(5.34) (3.25) (1.04) (2.77) (2.13) (3.20)

FF 𝛼 1.51 1.00 0.60 0.84 0.62 0.91
(6.34) (3.95) (1.40) (3.44) (2.81) (4.01)
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We begin this investigation by using bivariate dependent-sort portfolio analysis to
control for the effect of momentum by using Mom as the first sort variable. We then
examine the relations between future returns and each of 𝛽, MktCap, and BM within
each quintile of Mom. The parameters of the portfolio analyses are the same as in the
previous dependent-sort analyses. The only difference is that here, the first sort vari-
able is Mom, and the second sort variable, which is the variable whose relation with
expected returns is the focus of the analysis, is either 𝛽, MktCap, or BM. For the analy-
ses the use MktCap as the second sort variable, and thus examine the relation between
MktCap and future stock returns after controlling for Mom, when subjecting the
returns of the MktCap 5-1 portfolios to the FF risk model, we exclude the size factor
(SMB) because inclusion of the size factor would amount to examining the size effect
after controlling for the size effect. Similarly, the FF alphas of the BM difference port-
folios are calculated relative to a factor model that excludes the value factor (SMB).

The results of these portfolio analyses are presented in Table 11.9. When control-
ling for Mom, the value-weighted 𝛽 5-1 portfolios within each Mom quintile generate
negative but statistically insignificant average returns. The CAPM alphas of each of
these portfolios, however, are negative, economically large, and statistically signif-
icant. For the average Mom quintile, the 𝛽 5-1 portfolio generates CAPM alpha of
−0.57% per month with a corresponding t-statistic of −3.33. When the FF risk model
is used to adjust the returns, the negative alpha of the 𝛽 5-1 portfolio is significant only
in quintiles two and three of Mom, and marginally significant in Mom quintile four.
However, for the average Mom quintile, the 𝛽 difference portfolio generates statisti-
cally significant negative FF alpha of −0.35% per month (t-statistic = −2.08). The
equal-weighted portfolios produce even stronger empirical evidence of a negative
relation between 𝛽 and future stock returns since, with the exception of the average
returns of the 𝛽 5-1 portfolio in quintiles three through five of Mom, all average returns
and alphas are negative and highly statistically significant when equal-weighted port-
folios are used. Most importantly, the average returns and alphas of the 𝛽 5-1 portfolio
for the average Mom quintile are all negative, economically large, and highly statisti-
cally significant. The analysis therefore fails to find any evidence that controlling for
Mom explains the negative abnormal returns of portfolios that are long high-𝛽 stocks
and short low-𝛽 stocks.

Similarly, the dependent-sort portfolio analyses examining the relation between
MktCap and expected returns after controlling for Mom find no indication that Mom
explains the negative relation between MktCap and future stock returns. The MktCap
5-1 portfolios, within each of the Mom quintiles as well as for the average Mom quin-
tile, generates a negative and statistically significant average return, CAPM alpha,
and FF (after removing the SMB factor) alpha, regardless of whether value-weighted
or equal-weighted portfolios are used.

The bottom portion of Table 11.9 demonstrates that the positive relation between
BM and future stock returns cannot be explained by momentum. When using value-
weighted portfolios, the average returns and alphas of the BM 5-1 portfolios in
quintiles one, two, and three of Mom, as well as for the average Mom quintile, are
positive, large, and statistically significant. In Mom quintile four, the BM 5-1 portfolio
generates a positive and marginally statistically significant average return and CAPM
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TABLE 11.9 Bivariate Dependent-Sort Portfolio Analysis—Control for Mom
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of 𝛽, MktCap, and BM (second sort variables) after
controlling for the effect of Mom. Each month, all stocks in the CRSP sample are sorted into five
groups based on an ascending sort of Mom. All stocks are independently sorted into five groups
based on an ascending sort of one of the second sort variables. The quintile breakpoints used
to create the groups are calculated using all stocks in the CRSP sample. The intersections of
the Mom and second sort variable groups are used to form 25 portfolios. The table presents the
average return, CAPM alpha, and FF alpha (in percent per month) of the long–short zero-cost
portfolios that are long the fifth quintile portfolio and short the first quintile portfolio for the
second sort variable in each quintile, as well as for the average quintile, of Mom. Results for
value-weighted (Weights = VW) and equal-weighted (Weights = EW) portfolios are shown.
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags, testing
the null hypothesis that the average return or alpha is equal to zero, are shown in parentheses.
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𝛽 VW Return −0.27 −0.33 −0.25 −0.22 −0.20 −0.25
(−0.88) (−1.54) (−1.31) (−1.13) (−0.75) (−1.32)

CAPM 𝛼 −0.62 −0.66 −0.55 −0.51 −0.53 −0.57
(−2.16) (−3.38) (−3.06) (−2.74) (−2.13) (−3.33)

FF 𝛼 −0.35 −0.47 −0.38 −0.32 −0.23 −0.35
(−1.24) (−2.29) (−2.14) (−1.76) (−0.85) (−2.08)

EW Return −1.44 −0.46 −0.28 −0.32 −0.34 −0.57
(−6.49) (−2.40) (−1.41) (−1.59) (−1.36) (−3.04)

CAPM 𝛼 −1.78 −0.83 −0.66 −0.71 −0.73 −0.94
(−8.00) (−4.65) (−3.98) (−4.08) (−3.25) (−5.62)

FF 𝛼 −1.70 −0.74 −0.61 −0.60 −0.47 −0.83
(−7.78) (−4.59) (−3.97) (−3.80) (−2.15) (−5.41)

MktCap VW Return −2.11 −0.63 −0.60 −0.68 −0.58 −0.92
(−5.58) (−2.47) (−2.74) (−3.00) (−2.50) (−4.08)

CAPM 𝛼 −2.30 −0.70 −0.64 −0.71 −0.59 −0.99
(−5.40) (−2.64) (−2.86) (−3.05) (−2.48) (−4.17)

FF 𝛼 −2.33 −0.70 −0.59 −0.66 −0.45 −0.95
(−5.21) (−2.63) (−2.56) (−2.65) (−1.86) (−3.80)

EW Return −2.96 −0.90 −0.73 −0.76 −0.55 −1.18
(−7.39) (−3.90) (−3.49) (−3.40) (−2.63) (−5.52)

CAPM 𝛼 −3.17 −1.01 −0.81 −0.82 −0.60 −1.28
(−7.01) (−4.09) (−3.71) (−3.52) (−2.76) (−5.54)

FF 𝛼 −3.18 −1.01 −0.81 −0.81 −0.46 −1.25
(−6.76) (−4.03) (−3.66) (−3.27) (−2.11) (−5.25)
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TABLE 11.9 (Continued)
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BM VW Return 0.92 0.67 0.40 0.30 0.20 0.50
(3.39) (2.57) (2.38) (1.69) (0.82) (2.91)

CAPM 𝛼 1.02 0.73 0.45 0.32 0.24 0.55
(3.60) (2.58) (2.55) (1.77) (0.96) (3.05)

FF 𝛼 0.99 0.69 0.42 0.29 0.22 0.52
(3.47) (2.45) (2.39) (1.59) (0.92) (2.93)

EW Return 1.41 1.05 1.05 0.88 0.73 1.03
(6.80) (5.73) (6.64) (4.84) (3.36) (6.24)

CAPM 𝛼 1.57 1.19 1.18 1.01 0.84 1.16
(7.16) (6.23) (7.42) (5.73) (3.91) (6.89)

FF 𝛼 1.58 1.17 1.15 0.99 0.85 1.15
(7.24) (6.14) (7.34) (5.63) (3.95) (6.84)

alpha, but statistically insignificant FF (after removing the HML factor) alpha. In Mom
quintile five, the average return and alphas of the BM difference portfolio are statis-
tically indistinguishable from zero. Finally, when using equal-weighted portfolios,
the average returns and alphas of the BM 5-1 portfolios within each Mom quintile are
positive and highly significant. This is consistent with the results in Chapter 10 that
indicated that the value premium is stronger when using equal-weighted portfolios.

We now repeat the analyses of the relations between each of 𝛽, MktCap, and BM
after controlling for Mom using independent-sort portfolios instead of dependent-sort
portfolios. These are exactly the same independent-sort analyses as were used to
generate the results in Table 11.8. The only difference here is that we report results
pertaining to the relations between future stock returns and each of 𝛽, MktCap, and
BM after controlling for Mom, instead of examining the relation between returns and
Mom after controlling for each of the other variables.

The independent-sort analyses lead to very similar conclusions to those stemming
from the dependent-sort analyses. The results are presented in Table 11.10. In
value-weighted independent-sort portfolio analysis, the relation between 𝛽 and
future stock returns is negative but statistically insignificant when examining the
average portfolio returns. When risk-adjusted returns are used, consistent with
our previous findings that portfolios that are long high-𝛽 stocks and short low-𝛽
stocks generate negative abnormal returns, the CAPM and FF alphas of the 𝛽 5-1
portfolios after controlling for Mom are negative and statistically significant.7 The
results are stronger when using equal-weighted portfolios, since with the exception
of the average returns of the 𝛽 5-1 portfolio in quintiles three through five of Mom,

7The only exception is the FF alpha of the 𝛽 5-1 portfolio in quintile five of Mom. The FF alpha of the 𝛽

5-1 portfolio in quintile two of Mom is marginally statistically significant.
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TABLE 11.10 Bivariate Independent-Sort Portfolio Analysis—Control for Mom
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of 𝛽, MktCap, and BM (second sort variables) after
controlling for the effect of Mom. Each month, all stocks in the CRSP sample are sorted into five
groups based on an ascending sort of Mom. All stocks are independently sorted into five groups
based on an ascending sort of one of the second sort variables. The quintile breakpoints used
to create the groups are calculated using all stocks in the CRSP sample. The intersections of
the Mom and second sort variable groups are used to form 25 portfolios. The table presents the
average return, CAPM alpha, and FF alpha (in percent per month) of the long–short zero-cost
portfolios that are long the fifth quintile portfolio and short the first quintile portfolio for the
second sort variable in each quintile, as well as for the average quintile, of Mom. Results for
value-weighted (Weights = VW) and equal-weighted (Weights = EW) portfolios are shown.
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags, testing
the null hypothesis that the average return or alpha is equal to zero, are shown in parentheses.
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𝛽 VW Return −0.49 −0.26 −0.31 −0.30 −0.26 −0.32
(−1.79) (−1.11) (−1.24) (−1.23) (−0.98) (−1.51)

CAPM 𝛼 −0.86 −0.62 −0.67 −0.65 −0.60 −0.68
(−3.26) (−2.91) (−2.87) (−3.00) (−2.46) (−3.56)

FF 𝛼 −0.67 −0.40 −0.44 −0.39 −0.33 −0.45
(−2.66) (−1.85) (−1.98) (−1.96) (−1.23) (−2.43)

EW Return −1.31 −0.48 −0.37 −0.35 −0.36 −0.57
(−6.12) (−2.24) (−1.57) (−1.49) (−1.51) (−2.85)

CAPM 𝛼 −1.65 −0.88 −0.79 −0.78 −0.77 −0.98
(−7.56) (−4.30) (−3.87) (−3.77) (−3.46) (−5.23)

FF 𝛼 −1.59 −0.77 −0.68 −0.63 −0.51 −0.83
(−7.30) (−4.43) (−3.86) (−3.36) (−2.28) (−5.08)

MktCap VW Return −0.57 −0.66 −0.78 −0.79 −0.56 −0.67
(−1.84) (−2.53) (−3.39) (−3.29) (−2.26) (−2.89)

CAPM 𝛼 −0.66 −0.71 −0.83 −0.83 −0.59 −0.72
(−2.07) (−2.66) (−3.51) (−3.38) (−2.34) (−3.03)

FF 𝛼 −0.68 −0.71 −0.78 −0.78 −0.45 −0.68
(−2.04) (−2.63) (−3.29) (−2.97) (−1.76) (−2.75)

EW Return −1.49 −0.91 −0.88 −0.86 −0.60 −0.95
(−4.84) (−3.86) (−4.05) (−3.68) (−2.67) (−4.36)

CAPM 𝛼 −1.62 −1.00 −0.97 −0.93 −0.68 −1.04
(−4.96) (−4.02) (−4.26) (−3.82) (−2.88) (−4.48)

FF 𝛼 −1.64 −1.00 −0.98 −0.92 −0.51 −1.01
(−4.76) (−3.99) (−4.26) (−3.60) (−2.18) (−4.25)
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TABLE 11.10 (Continued)
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BM VW Return 0.91 0.70 0.53 0.34 0.09 0.51
(3.63) (2.65) (3.04) (1.78) (0.39) (3.07)

CAPM 𝛼 1.00 0.76 0.60 0.36 0.14 0.57
(3.85) (2.71) (3.30) (1.87) (0.59) (3.26)

FF 𝛼 0.96 0.73 0.57 0.33 0.12 0.54
(3.70) (2.57) (3.14) (1.70) (0.53) (3.13)

EW Return 1.45 1.07 1.15 0.92 0.68 1.05
(6.95) (5.66) (6.23) (4.77) (3.31) (6.24)

CAPM 𝛼 1.61 1.21 1.28 1.06 0.80 1.19
(7.34) (6.25) (7.04) (5.62) (3.90) (6.93)

FF 𝛼 1.61 1.19 1.26 1.04 0.80 1.18
(7.37) (6.20) (6.96) (5.54) (3.95) (6.89)

all average returns and alphas are negative, large in magnitude, and statistically
significant. The independent-sort portfolio results provide no evidence that the
size effect is explained by the momentum phenomenon, as the average returns and
alphas of the MktCap 5-1 portfolios are negative, large, and statistically significant.
Finally, the results examining the relation between BM and future stock returns
after controlling for Mom using independently sorted portfolios are very similar
to the results generated by the dependent-sort portfolio analyses. When using
value-weighted portfolios, the positive relation between BM and future stock returns
is robust in the average Mom quintile, but the strength of the effect decreases as
Mom increases. In the average Mom quintile, however, the average return and alphas
of the value-weighted BM difference portfolio are positive, economically large, and
highly statistically significant. All equal-weighted BM 5-1 portfolios average returns,
CAPM alphas, and FF alphas are positive, large, and highly statistically significant.

In summary, in this section, we have shown that univariate and bivariate port-
folio analyses produce strong evidence supporting the existence of a momentum
phenomenon. While the results of the analyses are substantially stronger using
value-weighted portfolios compared to equal-weighted portfolios, the main conclu-
sion persists regardless of the portfolio weighting scheme. A detailed investigation of
the driver of the difference between the value-weighted and equal-weighted analyses
finds that while the momentum effect exists for the largest 95% of stocks in our
sample, there is actually a negative relation between the standard measure of momen-
tum and one-month-ahead future returns for stocks in the smallest 5% of market
capitalization. The bivariate analyses demonstrate that the momentum effect is
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robust to controlling for each of beta, market capitalization, or book-to-market ratio.
Similar analyses fail to find any evidence that the momentum phenomenon is driving
the relations between future stock returns and either beta, market capitalization, or
book-to-market ratio.

11.4.3 Fama–MacBeth Regression Analysis

We continue our examination of the momentum effect using (Fama and MacBeth
1973, FM hereafter) regression analysis. FM regression analysis allows us to exam-
ine the momentum effect after controlling simultaneously for several different vari-
ables that have been shown to predict future stock returns. We use several different
cross-sectional specifications for our analysis. In all specifications, the dependent
variable is the one-month-ahead excess stock return. We begin with a univariate speci-
fication using only Mom as the independent variable. We also examine specifications
that include all possible combinations of 𝛽, Size, and BM as control variables. All
independent variables are winsorized at the 0.5% level on a monthly basis.

The time-series averages of the cross-sectional regression coefficients, along with
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags,
testing the null hypothesis that the average coefficient is equal to zero, are presented
in Table 11.11. The results of the FM regressions indicate a strong positive relation
between momentum and future stock returns after controlling for the effects of beta
(𝛽), size (Size), and book-to-market ratio (BM) since, regardless of the specification,
the average coefficient on Mom is positive and statistically significant. When Mom is
the only independent variable in the regression (specification (1)), the average coef-
ficient is 0.007 with a t-statistic of 3.01. In the full specification that includes all
control variables (specification (8)), the average coefficient is once again 0.007 with
a t-statistic of 3.70. For the other specifications that include different combinations
of 𝛽, Size, and BM as control variables (specifications (2) through (7)), the average
coefficients on Mom range from 0.005 to 0.007 with t-statistics between 2.51 and
3.77. Thus, controlling for the effects of the other predictors of stock returns appears
to have very little effect on the relation between Mom and future stock returns.

Consistent with what was observed in Chapter 8, when 𝛽 is included in the regres-
sion specification (specifications (2), (5), (6), and (8)), it carries a negative average
coefficient that, in some specifications, is statistically significant. In the specifica-
tion that includes all control variables, however, the negative average coefficient on
𝛽 of −0.059 is statistically insignificant with a t-statistic of −0.38. All specifications
that include Size as a control (specifications (3), (5), (7), and (8)) produce negative and
statistically significant average coefficients on Size, ranging from −0.173 to −0.182
with t-statistics between −3.27 and −3.98. The regressions, therefore, indicate that
the momentum effect does not explain the size effect. The momentum effect also fails
to explain the value premium, as when BM is included in as an independent variable
(specifications (4), (6)–(8)), the average slope on BM is always positive and highly
statistically significant.

To assess the economic importance of the relation between Mom and future stock
returns, we focus on the average coefficient of 0.007 from the regressions that include
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TABLE 11.11 Fama–MacBeth Regressions
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and momentum. Each column in the table presents results for a
different cross-sectional regression specification. The dependent variable in all specifications
is the one-month-ahead excess stock return. The independent variables are indicated in the
first column. Independent variables are winsorized at the 0.5% level on a monthly basis. The
table presents average slope and intercept coefficients along with t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average adjusted
R-squared and the number of data points, respectively, for the cross-sectional regressions.

(1) (2) (3) (4) (5) (6) (7) (8)

Mom 0.007 0.006 0.007 0.006 0.007 0.005 0.007 0.007
(3.01) (3.06) (3.77) (2.51) (4.28) (2.52) (3.33) (3.70)

𝛽 −0.373 −0.124 −0.285 −0.059
(−2.91) (−0.73) (−2.32) (−0.38)

Size −0.182 −0.178 −0.173 −0.177
(−3.98) (−3.27) (−3.69) (−3.28)

BM 0.405 0.319 0.246 0.183
(5.41) (4.93) (3.09) (2.84)

Intercept 0.607 0.877 1.356 0.261 1.448 0.544 1.178 1.310
(2.22) (3.62) (3.15) (0.95) (3.62) (2.36) (2.51) (3.13)

Adj. R2 0.01 0.03 0.02 0.02 0.04 0.03 0.03 0.04
n 4410 4410 4410 3370 4409 3370 3370 3370

the full set of control variables (specification (8)). The average coefficient of 0.007
indicates that a difference of 100 in Mom, which corresponds to a 100% difference
in realized returns during the Mom calculation period, results in an expected return
difference of 0.70% in the next month. If we multiply the average coefficient of 0.007
by the standard deviation of Mom in the average month of 58.40 (see Table 11.1), we
find that a one-standard-deviation increase in Mom is associated with a 0.41% per
month (0.007 × 58.40%) increase in expected returns. Finally, to examine the differ-
ence in expected returns between stocks in the highest and lowest deciles of Mom,
we multiply 0.007 with the difference in average Mom between stocks in the highest
and lowest Mom deciles of 184.50% (132.10 − (−52.40)), see Panel A of Table 11.3)
to get a 1.29% difference in expected returns for stocks with extremely high Mom
compared to stocks with extremely low Mom. This value is similar to, although a bit
larger than, the average return of 1.08% per month realized by the Mom 10-1 port-
folio in the equal-weighted univariate portfolio analysis (see Panel C of Table 11.3).
Regardless of which approach is used, the results indicate that the average coefficient
of 0.007 on Mom is very important economically.

In summary, the results of the FM regression analyses strongly support the exis-
tence of the momentum effect. Regardless of regression specification, the average
coefficient on momentum (Mom) is positive, statistically significant, and has a mag-
nitude indicating that the effect is economically important.
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11.5 THE MOMENTUM FACTOR

Carhart (1997) investigates the ability of the momentum phenomenon to explain
persistence in mutual fund performance documented by several previous studies,
and finds that including a momentum-based factor in the risk model substantially
decreases the risk-adjusted alpha of momentum-based portfolios of mutual funds.8 In
Carhart (1997), the monthly momentum factor is constructed as the equal-weighted
average return of stocks in the top 30% of Mom minus that of stocks in the bottom
30% of Mom. Since then, researchers have modified the momentum factor by adopt-
ing the methodology of Fama and French (1993) to construct a monthly (or daily)
return series. In this section, we describe the construction of this factor and examine
its properties.

The monthly momentum factor most commonly used in empirical asset pricing is
created by sorting all stocks into two groups based on market capitalization calculated
at the end of the most recent June and three groups based on momentum. The break-
point dividing stocks into the two market capitalization groups is the median market
capitalization (MktCap) of stocks traded on the New York Stock Exchange (NYSE).
The breakpoints dividing the stocks into momentum groups are the 30th and 70th per-
centiles of Mom calculated using only NYSE-listed stocks. The market capitalization
and momentum breakpoints are calculated independently of one another. The inter-
sections of the market capitalization and momentum groups generate six portfolios,
which we term L∕U, L∕M, L∕D, S∕U, S∕M, and S∕D, where L and S stand for “large”
and “small” stocks, respectively, and thus represent the market capitalization groups,
and U, M, and D stand for “up,” “medium,” and “down,” respectively, indicating the
return of the stock during the momentum measurement period. It should be noted that
the terms “up” and “down” are misnomers, as it is not necessary that stocks in the U
(D) portfolios have positive (negative) values of momentum. The monthly return of
the momentum factor is then taken to be the average one-month-ahead return of the
two U portfolios minus the average one-month-ahead return of the two D portfolios.
As with the SMB and HML factors, the momentum factor is therefore the return on a
zero-cost portfolio designed to be neutral to market capitalization, thereby isolating
the effect of momentum on portfolio returns. The momentum factor is commonly
referred to as UMD, for “up minus down,” or by MOM, for momentum. We refer
to the momentum factor as MOM (all capitals) so that it is easily associated with
the stock-level momentum variable Mom (only first letter capitalized). MOM is also
the way the momentum factor is denoted in the file containing the monthly factor
returns in Kenneth French’s data library, which is where we obtain the returns of the
MOM factor.9 Because of the requirement of one-year prior data to calculate Mom,

8Studies documenting persistence in mutual fund performance include Grinblatt and Titman (1992),
Hendricks, Patel, and Zeckhauser (1993), Elton, Gruber, Das, and Hlavka (1993), Goetzmann and Ibbotson
(1994), Grinblatt, Titman, and Wermers (1995), and Elton, Gruber, and Blake (1996).
9Monthly and daily momentum factor returns are available from Kenneth French’s data library at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. It is worth noting that while the
monthly and annual momentum factor returns from the website are denoted as MOM, the daily momentum
factor is denoted UMD. Additionally, the monthly momentum factor available through the “Fama French &
Liquidity Factors” database on Wharton Research Data Services (WRDS) is denoted “UMD.”
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momentum factor returns are available beginning in January 1927 instead of July
1926, as was the case for the market (MKT), size (SMB), and value (HML) factors.

During the period from January 1927 through December 2012, the MOM portfo-
lio produces a mean monthly return (log return) of 0.69% (0.56%), and a monthly
(log) return standard deviation of 4.78% (5.31%). The annualized Sharpe ratio of the
monthly (log) returns of the MOM portfolio is therefore 0.50 (0.36). The cumula-
tive return of the MOM portfolio over this period is 31,207%, giving a cumulative
log return of 575%. The correlation of the MOM factor returns with the MKT fac-
tor returns, the SMB factor returns, and the HML factor returns are −0.34, −0.17,
and −0.39, respectively. Regressing the MOM factor returns on the MKT , SMB, and
HML returns indicates that the MOM portfolio has a risk-adjusted alpha of 1.02% per
month with a Newey and West (1987) adjusted (six lags) t-statistic of 8.24 relative to
the FF risk model. The returns of the MOM portfolio, therefore, are not explained by
exposure to the MKT , SMB, or HML factors. Using the FF model, the MOM portfo-
lio’s sensitivity to the MKT factor is −0.22 with a corresponding t-statistic of −3.13,
indicating that the MOM portfolio’s return has a negative sensitivity to the return
of the market portfolio. The sensitivity of MOM to the SMB portfolio is a statisti-
cally insignificant −0.058 (t-statistic = −0.66). Finally, the MOM portfolio exhibits
a highly statistically significant sensitivity of −0.45 (t-statistic = −3.16) to the HML
portfolio.

Figure 11.1 plots the cumulative returns (solid line) and cumulative log returns
(dashed line) realized by an investor holding the MOM portfolio from the end of
December 1926 through the end of December of 2012. The chart indicates that from
the early 1940s through approximately year 2000, the MOM factor mimicking portfo-
lio generated consistently positive returns, with very few and minimally sized draw-
downs. Prior to and after this prolonged period of consistent profitability, the portfolio
experiences high volatility and extremely large drawdowns. The worst drawdown
occurs beginning at the end of June 1932. From this point until the end of September
1939, the MOM portfolio loses more than 76% of its value. Starting in October 1939,
the portfolio generated generally positive returns, but did not regain its previous max-
imum value until the end of July 1956, more than 24 years after the drawdown begins.
The second largest drawdown occurs toward the end of the financial crisis of 2007 and
2008. Between the end of November 2008 and the end of September 2009 the MOM
portfolio loses more than 57% of its value. As can be seen in Figure 11.1, as of the end
of 2012, the portfolio had yet to regain this lost value, or to even come close. The third
largest drawdown also comes on the heels of crisis in the financial markets. Starting at
the end of September 2002, approximately the same time that the NASDAQ index hit
its post Internet bubble lows, the MOM portfolio begins a drawdown that resulted in
a cumulative loss of more than 31% by the end of August 2004. The portfolio finally
regains its previous high-water mark at the end of June of 2008, only five months
before the next severe drawdown begins. It is easily seen by observing the figure that
the value of the MOM portfolio at the end of December 2012 remains well below
its value as of the beginning of this drawdown in September 2002. In fact, the first
time the MOM portfolio achieved the value it has at the end of the sample period was
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Compounded excess return (left axis)

Cumulative log excess return (right axis)
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Figure 11.1 Cumulative Returns of MOM Portfolio.
This figure plots the cumulate returns of the MOM factor for the period from January 1927
through December 2012. The compounded excess return for month t is calculated as 100 times
the cumulative product of one plus the monthly return up to and including the given month.
The cumulate log excess return is calculated as the sum of the monthly log excess returns up
to and including the given month

December 1999. From this point forward, while there have been substantial ups and
downs, the MOM portfolio has produced a cumulative return of approximately zero.

11.6 THE FAMA, FRENCH, AND CARHART FOUR-FACTOR MODEL

The main objective of Carhart (1997) in generating the momentum factor is to
include it as a factor in risk models. Following Carhart (1997)’s lead, researchers
soon adopted what is now known as the Fama and French (1993) and Carhart (1997)
four-factor, or FFC, model. This model includes the three factors included in the
Fama and French (1993) three-factor model (MKT , SMB, and HML), as well as
the MOM factor that captures the returns associated with momentum investing.
The FFC risk model can therefore be written as

rp,t = 𝛼p + 𝛽MKT ,pMKTt + 𝛽SMB,pSMBt

+ 𝛽HML,pHMLt + 𝛽MOM,pMOMt + 𝜖p,t (11.2)

where rp,t is the excess return of portfolio (or security) p during period t, MKTt, SMBt,
HMLt, and MOMt are the month t returns of the market, size, value, and momen-
tum factor mimicking portfolios, respectively. The betas (𝛽MKTRF,p, 𝛽SMB,p, 𝛽HML,p,
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𝛽MOM,p) in the FFC risk model represent the sensitivity of the return of the portfolio
p to the corresponding factors, and 𝜖p,t is the component of the return of portfolio
p during period t that is not due to exposure to the factors included in the model.
Finally, 𝛼p is the risk-adjusted average return of the portfolio after accounting for the
portfolio’s sensitivities to the MKT , SMB, HML, and MOM factors. A statistically
nonzero estimate of 𝛼p is considered evidence that the portfolio p generates nonzero
average excess returns that are not related to the factors included in the risk model.
Theoretically, if the risk model is correct, the factors included in the model represent
all factors priced by investors, and 𝛼p should be equal to zero for all portfolios p. The
FFC model has become the most commonly used risk factor model by empirical asset
pricing researchers.

11.7 SUMMARY

In this chapter, we have demonstrated that there exists a strong positive cross-
sectional relation between momentum (Mom), measured as the return of a stock
during the period covering months t − 11 through t − 1, and the return of the stock
in month t + 1. This phenomenon, documented by Jegadeesh and Titman (1993) and
known as the momentum effect, persists after controlling for the relations between
expected stock returns and each of beta, market capitalization, and book-to-market
ratio. Interestingly, we find that for extremely small stocks, namely those in the
bottom 5% of market capitalization, the momentum effect may be reversed. For all
other stocks, however, the effect appears strong.

Following Carhart (1997), it has become common for researchers to include the
momentum-based factor, MOM, in risk models designed to explain asset returns.
We therefore introduced the Fama and French (1993) and Carhart (1997) four-factor
(FFC) risk model, which uses the excess return of the market portfolio (MKT), and
returns of the SMB, HML, and MOM portfolios as proxies for factors that are related
to security returns. While several different models have been proposed and used
throughout the empirical asset pricing literature, the FFC model remains the most
commonly accepted and widely used risk model.
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SHORT-TERM REVERSAL

In this chapter, we examine the short-term reversal effect documented by Jegadeesh
(1990) and Lehmann (1990). The short-term reversal effect is both one of the
strongest (particularly in equal-weighted analyses) and one of the simplest phenom-
ena documented in the empirical asset pricing literature. As eluded to in the previous
chapter, short-term reversal refers to the fact that stock returns over the short-term
past, such as one week as in Lehmann (1990) or one month as in Jegadeesh (1990),
tend to have a negative cross-sectional relation with returns over the next week or
month. Thus, a strategy of buying recent losers and selling recent winners generates
positive returns that are not explained by any of the standard risk models.

The reversal phenomenon is most commonly attributed to liquidity and micro-
structure effects. Several papers have examined the impact of liquidity and micro-
structure issues on the time-series properties of security and portfolio returns. Roll
(1984) generates a model in which the bid–ask spread generates negative serial corre-
lation in time series of stock returns. Many other papers, such as Lo and MacKinlay
(1990), Conrad, Gultekin, and Kaul (1997), Keim (1989), Hasbrouck (1991), Admati
and Pfleiderer (1989), and Mech (1993), have demonstrated that microstructure issues
such as the bid–ask bounce and transaction costs can generate autocorrelation in secu-
rity returns. Boudoukh, Richardson, and Whitelaw (1994) demonstrate that a large
portion of documented serial correlation is attributable to institutional factors such as
trading and nontrading periods, market frictions such as the bid–ask spread, or other
microstructure effects. Nagel (2012) presents evidence that the returns of short-term
reversal strategies can be used as proxies for the returns associated with liquidity
provision.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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A common theme among the papers that investigate either the reversal phe-
nomenon or autocorrelation in security returns is that the effect is not reflective
of firm fundamentals. Both Jegadeesh (1990) and Lehmann (1990) conclude that
their empirical results are inconsistent with the efficient market hypothesis of Fama
(1970). Lehmann (1990) goes a step further by proposing that short-term reversal
phenomenon is a manifestation of inefficiency in the market for liquidity in stocks
that have recently realized large price changes.

In the remainder of this chapter, we empirically examine the short-term reversal
phenomenon and discuss the reversal factor, which some researchers have used in
augmented risk models.

12.1 MEASURING SHORT-TERM REVERSAL

Short-term reversal is perhaps the easiest variable to calculate in all of empirical asset
pricing. In most applications, the short-term reversal of stock i for month t is taken
simply to be the return of the stock during the month t. Thus, we have

Re𝑣i,t = 100 × Ri,t (12.1)

where Re𝑣i,t denotes short-term reversal and Ri,t is the return of stock i in month t. In
most cases, the return in month t is taken from the RET field in the monthly stock file
from the Center for Research in Security Prices (CRSP). Multiplication by 100 results
in Re𝑣 being represented as a percentage. In analyses where there may be benefits of
using a period shorter than one month for measuring reversal, such as in analyses of
future returns where the future return period is less than one month (Lehmann (1990)),
some researchers measure reversal using a shorter period. Measurement periods of
longer than one month, however, are generally not used.

12.2 SUMMARY STATISTICS

Summary statistics for Re𝑣 for our sample of U.S.-based common stocks in the CRSP
database from 1963 through 2012 are presented in Table 12.1. The results show that
in the average month, the average value of Re𝑣 is 1.21% and the median value is
0.06%, indicating that the cross-sectional distribution of reversal has strong posi-
tive skewness. Indeed, the skewness of Re𝑣 in the average month is 3.11. Values of
Re𝑣 range from −67.35% to 266.45%, and the cross-sectional standard deviation of
Re𝑣 is 15.49%. In addition to being highly skewed, the cross-sectional distribution
of Re𝑣 is highly leptokurtic with an excess kurtosis in the average month of 59.45.
There are an average of 4750 stocks with valid values of Re𝑣 per month.

12.3 CORRELATIONS

Table 12.2 presents the average cross-sectional Pearson product–moment and
Spearman rank correlations between Re𝑣 and each of market beta (𝛽), log of market
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TABLE 12.1 Summary Statistics
This table presents summary statistics for reversal (Re𝑣), measured as the stock return in month
t, calculated using the CRSP sample for the months t from June 1963 through November 2012.
Each month, the mean (Mean), standard deviation (SD), skewness (Ske𝑤), excess kurtosis
(Kurt), minimum (Min), fifth percentile (5%), 25th percentile (25%), median (Median), 75th
percentile (75%), 95th percentile (95%), and maximum (Max) values of the cross-sectional
distribution of each variable is calculated. The table presents the time-series means for each
cross-sectional value. The column labeled n indicates that average number of stocks for Re𝑣 is
available.

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

Re𝑣 1.21 15.49 3.11 59.45 −67.35 −18.93 −6.27 0.06 6.92 24.20 266.45 4750

TABLE 12.2 Correlations
This table presents the time-series averages of the annual cross-sectional
Pearson product–moment and Spearman rank correlations between Re𝑣
and each of 𝛽, Size, BM, and Mom.

Correlation 𝛽 Size BM Mom

Pearson −0.02 0.07 0.02 0.02
Spearman −0.01 0.11 0.03 0.04

capitalization (Size), book-to-market ratio(BM), and momentum (Mom). The results
demonstrate that Re𝑣 is not highly correlated with any of these variables. Reversal is
most highly correlated with Size, but the average cross-sectional Pearson correlation
between these variables is only 0.07, and the corresponding Spearman correlation
is only 0.11. The average Pearson (Spearman) correlations between Re𝑣 and 𝛽,
BM, and Mom of −0.02 (−0.01), 0.02 (0.03), and 0.02 (0.04), respectively, are all
quite low.

As with the analysis of the momentum variable Mom, we forego a persistence
analysis of Re𝑣 because a persistence analysis would simply examine the ability of
Re𝑣 to predict future stock returns, the primary focus of the remainder of this chapter.

12.4 REVERSAL AND STOCK RETURNS

We proceed now to examine the relation between reversal and expected stock returns
using portfolio and Fama and MacBeth (1973) regression analysis.

12.4.1 Univariate Portfolio Analysis

We begin our empirical investigation of the short-term reversal phenomenon with
univariate decile portfolio analyses. The decile breakpoints are calculated using all
stocks in the sample. The results of these analyses are shown in Table 12.3.
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TABLE 12.3 Univariate Portfolio Analysis
This table presents the results of univariate portfolio analyses of the relation between reversal
and future stock returns. Monthly portfolios are formed by sorting all stocks in the CRSP
sample into portfolios using Re𝑣 decile breakpoints calculated using all stocks in the CRSP
sample. Panel A shows the average values of Re𝑣, 𝛽, MktCap, BM, and Mom for stocks in
each decile portfolio. Panel B (Panel C) shows the average equal-weighted (value-weighted)
one-month-ahead excess return (in percent per month), CAPM alpha, FF alpha, and FFC alpha
for each of the 10 decile portfolios as well as for the long–short zero-cost portfolio that is long
the 10th decile portfolio and short the first decile portfolio. Newey and West (1987) t-statistics,
adjusted using six lags, testing the null hypothesis that the average portfolio excess return or
CAPM alpha is equal to zero, are shown in parentheses.

Panel A: Rev-Sorted Portfolio Characteristics

Value 1 2 3 4 5 6 7 8 9 10

Re𝑣 −21.38 −10.50 −6.29 −3.41 −1.07 1.23 3.75 6.97 12.06 30.80
𝛽 0.89 0.84 0.78 0.73 0.70 0.71 0.73 0.77 0.83 0.84
MktCap 279 716 1048 1316 1435 1547 1524 1485 1110 489
BM 0.93 0.93 0.93 0.94 0.96 0.94 0.94 0.92 0.93 1.02
Mom 11.71 13.72 13.70 13.26 12.80 13.71 14.16 15.03 16.24 14.42

Panel B: Equal-Weighted Portfolio Returns

Value 1 2 3 4 5 6 7 8 9 10 10-1

Excess 2.31 0.99 0.83 0.78 0.76 0.72 0.66 0.50 0.34 −0.38 −2.69
return (5.56) (2.93) (2.74) (2.71) (2.73) (2.73) (2.52) (1.78) (1.12) (−1.02) (−9.72)

CAPM 𝛼 1.61 0.40 0.30 0.29 0.29 0.30 0.25 0.04 −0.15 −0.91 −2.52
(5.90) (2.12) (1.91) (1.90) (2.10) (2.01) (1.72) (0.28) (−0.98) (−4.15) (−9.44)

FF 𝛼 1.32 0.12 0.03 0.00 0.01 0.05 0.01 −0.19 −0.37 −1.10 −2.42
(5.97) (1.01) (0.31) (0.02) (0.16) (0.49) (0.09) (−2.48) (−4.39) (−7.13) (−8.35)

FFC 𝛼 1.86 0.42 0.22 0.14 0.12 0.15 0.10 −0.12 −0.32 −1.07 −2.93
(6.40) (2.99) (2.36) (1.73) (1.78) (1.53) (0.87) (−1.42) (−3.22) (−6.41) (−8.31)

Panel C: Value-Weighted Portfolio Returns

Value 1 2 3 4 5 6 7 8 9 10 10-1

Excess 0.72 0.50 0.73 0.68 0.58 0.47 0.48 0.44 0.33 0.12 −0.60
return (2.07) (1.79) (3.22) (3.16) (2.84) (2.46) (2.41) (2.08) (1.52) (0.45) (−2.40)

CAPM 𝛼 0.01 −0.09 0.20 0.21 0.13 0.04 0.06 0.00 −0.12 −0.40 −0.40
(0.03) (−0.72) (2.34) (2.98) (2.21) (0.78) (1.08) (0.00) (−1.43) (−2.80) (−1.69)

FF 𝛼 −0.09 −0.15 0.17 0.18 0.10 0.03 0.04 0.01 −0.11 −0.39 −0.31
(−0.46) (−1.09) (1.89) (2.60) (1.87) (0.67) (0.62) (0.11) (−1.25) (−2.85) (−1.21)

FFC 𝛼 0.28 0.05 0.28 0.24 0.13 0.02 0.03 −0.02 −0.17 −0.48 −0.76
(1.58) (0.37) (2.47) (2.86) (2.00) (0.34) (0.48) (−0.28) (−1.67) (−3.49) (−3.21)
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In Panel A, we present the equal-weighted average values for each of Re𝑣, beta (𝛽),
market capitalization (MktCap), book-to-market ratio (BM), and momentum (Mom)
for stocks in each of the Re𝑣-sorted decile portfolios. By design, the average val-
ues of Re𝑣 increase from −21.38% for decile portfolio 1 to 30.80% for the 10th
decile portfolio. 𝛽 exhibits a U-shaped relation with reversal, as the average values
of 𝛽 decrease from 0.89 in decile portfolio 1 to 0.70 in decile portfolio five, and
then increase from there to 0.84 for decile portfolio 10. The relation between Re𝑣
and market capitalization appears to be inverted U-shaped because average MktCap
increases from $279 million for stocks in Re𝑣 decile portfolio 1 to $1.547 billion in
portfolio 6, and then decreases to $489 million in portfolio 10. The relation between
book-to-market ratio and reversal is quite flat, with the exception of stocks with very
high values of Re𝑣, which also tend to high values of BM. The average values of BM
for portfolios 1 through 9 range from 0.92 to 0.96, whereas decile portfolio 10 holds
stocks with an average BM of 1.02. Finally, average values of Mom tend to increase,
although not monotonically, from 11.71% for portfolio 1 to 16.24% for portfolio 9,
before decreasing to 14.42% for decile portfolio 10.

The equal-weighted average excess returns, capital asset pricing model alphas
(CAPM 𝛼), Fama and French (1993) three-factor alphas (FF 𝛼), Fama and French
(1993) and Carhart (1997) four-factor alphas (FFC 𝛼), and associated Newey and
West (1987)-adjusted t-statistics (six lags), for the Re𝑣-sorted decile portfolios, as
well as for the portfolio that is long high-Re𝑣 stocks and short low-Re𝑣 stocks (10-1)
are shown in Panel B. The excess returns indicate a strong negative relation between
Re𝑣 and future stock returns. The average monthly excess returns of the decile port-
folios decrease monotonically from 2.31% per month for the first decile portfolio to
−0.38% for the 10th decile portfolio. The resulting −2.69% average monthly return
of the 10-1 portfolio is highly statistically significant, with a t-statistic of −9.72. The
majority of this effect is driven by the extreme decile portfolios. Portfolio 1 generates
an extremely high average excess return of 2.31% per month, compared to 0.99% for
decile portfolio 2. Similarly, decile portfolio 10 produces an average excess return
of −0.38% per month, which is much lower than the 0.34% average monthly excess
return generated by portfolio 9. The differences in average excess returns of 1.32%
between portfolios 1 and 2, and 0.72% between portfolios 9 and 10, are each higher
than the difference in average returns between portfolios 2 and 9 of 0.65% per month.

Adjusting the returns of the equal-weighted portfolios for risk does little to
explain the patterns in average excess returns. The CAPM, FF, and FFC alphas of the
decile portfolios all decrease, nearly monotonically, from decile portfolio 1 to decile
portfolio 10 of Re𝑣. The difference portfolio generates CAPM alpha of −2.52% per
month (t-statistic = −9.44), FF alpha of −2.42% per month (t-statistic = −8.35), and
FFC alpha of −2.93% per month (t-statistic = −8.31), each of which is economically
very large and highly statistically significant. In all cases, the positive alphas of
decile portfolio 1 and negative alphas of decile portfolio 10 are large and highly
statistically significant. This indicates that the reversal phenomenon is driven by
stocks with both high and low values of Re𝑣.

Panel C of Table 12.3 shows that using value-weighted portfolios instead
of equal-weighted portfolios has a very substantial impact on the results of the
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portfolio analysis, with value-weighted portfolios detecting a much weaker reversal
phenomenon than equal-weighted portfolios. The average value-weighted excess
returns of the decile portfolios decrease, albeit not monotonically, from 0.72% per
month for decile portfolio 1 to 0.12% per month for decile portfolio 10. The average
return difference of −0.60% per month remains economically large and statistically
significant with a t-statistic of −2.40. However, this return difference of −0.60%
per month is much smaller in magnitude and statistical significance than the return
difference of −2.69% per month found when using equal-weighted portfolios. When
the CAPM and FF models are used to adjust the portfolio returns for risk, the results
fail to indicate a statistically significant reversal phenomenon since the Re𝑣 10-1
portfolio produces a CAPM alpha of −0.40% per month (t-statistic = −1.69) and an
FF alpha of −0.31% per month (t-statistic = −1.21), neither of which is statistically
significant. Interestingly, the FFC alpha of the Re𝑣 difference portfolio is −0.76%
per month with a corresponding t-statistic of −3.21. Regardless of which risk model
is used, the first decile portfolio fails to generate statistically significant abnormal
returns. Decile portfolio 10, however, generates large and statistically negative
abnormal returns of −0.40% per month (t-statistic = −2.80), −0.39% per month
(t-statistic = −2.85), and −0.48% per month (t-statistic = −3.49) relative to the
CAPM, FF, and FFC risk models, respectively. The value-weighted portfolio results,
therefore, indicate that the reversal phenomenon is driven by stocks with high returns
in the previous month.

Predicting k-Month-Ahead Returns

We have thus far demonstrated that Re𝑣, calculated as the month t stock return, has
the ability to predict the cross section of month t + 1 stock returns. We now exam-
ine the ability of more distant previous individual month returns to predict month
t + 1 returns. To this end, we define Ri,t−k for k ∈ {1, 2, 3, … , 11} to be the return of
stock i in month t − k. We then use univariate portfolio analysis to examine the month
t + 1 returns of portfolios formed at the end of month t when sorting on the returns
measured with different lags. Recall that Re𝑣 is the return measured at lag zero. The
results of the analyses using equal-weighted (Panel A) and value-weighted (Panel B)
portfolios are presented in Table 12.4.

The results in Table 12.4 show that when there is a lag introduced between the
measurement of reversal and portfolio formation, the reversal phenomenon quickly
becomes a momentum phenomenon because the average monthly returns of the 10-1
portfolio sorted on Re𝑣t−k for k ∈ {1, 2, … , 11} are all positive and, in most cases,
statistically significant. This result holds using both equal-weighted portfolios and
value-weighted portfolios. The only exceptions are that the positive average returns
of the equal-weighted portfolios formed by sorting on Re𝑣t−1, Re𝑣t−7, Re𝑣t−8, and
Re𝑣t−9 are all statistically insignificant. The average returns of the value-weighted
Re𝑣t−3 and Re𝑣t−7 10-1 portfolios are only marginally statistically significant. The
results are very similar when the FF risk model is used to adjust the returns. As would
be expected, when the FFC model, which includes the momentum (MOM) factor,
is used to risk-adjust the portfolio returns, the abnormal returns of the 10-1 portfo-
lios become, for the most part, statistically insignificant. Interestingly, when Re𝑣t−10
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TABLE 12.4 Univariate Portfolio Analysis—Lagged Values of Reversal
This table presents the results of univariate portfolio analyses of the relation between previous
values of reversal and future stock returns. Monthly portfolios are formed by sorting all stocks
in the CRSP sample into portfolios using decile breakpoints calculated based on the given sort
variable using all stocks in the CRSP sample. The variables used to form portfolios at the end
of month t are the values of reversal (the stock return) measured in month t (Re𝑣) or month
t − k (Rt−k). Panel A (Panel B) shows the average value-weighted (equal-weighted) month t + 1
excess return (in percent per month) for each of the 10 decile portfolios. The table also shows
the average month t + 1 return of the portfolio that is long the 10th decile portfolio and short
the first decile portfolio, as well as the CAPM, FF, and FFC alphas for this portfolio. Newey
and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis that the average
10-1 portfolio return or alpha is equal to zero, are shown in parentheses.

Panel A: Equal-Weighted Portfolio Returns

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FF 𝛼 FFC 𝛼

Re𝑣 2.31 0.99 0.83 0.78 0.76 0.72 0.66 0.50 0.34 −0.38 −2.69 −2.42 −2.93
(−9.72) (−8.35) (−8.31)

Rt−1 0.53 0.82 0.87 0.91 0.90 0.82 0.77 0.70 0.68 0.54 0.01 0.18 −0.38
(0.08) (0.94) (−1.66)

Rt−2 0.25 0.59 0.71 0.78 0.88 0.83 0.85 0.81 0.90 0.87 0.62 0.70 0.15
(4.36) (4.53) (0.83)

Rt−3 0.36 0.57 0.81 0.90 0.96 0.87 0.83 0.75 0.80 0.71 0.35 0.39 −0.09
(2.29) (2.62) (−0.46)

Rt−4 0.42 0.63 0.73 0.77 0.85 0.91 0.85 0.84 0.81 0.73 0.31 0.45 −0.03
(2.06) (3.45) (−0.23)

Rt−5 0.51 0.57 0.68 0.78 0.85 0.78 0.79 0.83 0.89 0.87 0.36 0.46 −0.06
(1.83) (2.31) (−0.29)

Rt−6 0.42 0.56 0.66 0.76 0.81 0.81 0.91 0.86 0.93 0.91 0.49 0.58 0.20
(3.06) (4.50) (1.39)

Rt−7 0.63 0.60 0.70 0.78 0.74 0.81 0.84 0.85 0.85 0.85 0.22 0.33 −0.03
(1.33) (2.00) (−0.13)

Rt−8 0.65 0.65 0.71 0.76 0.80 0.78 0.77 0.82 0.86 0.91 0.26 0.35 −0.14
(1.35) (1.67) (−0.53)

Rt−9 0.66 0.76 0.69 0.76 0.81 0.85 0.93 0.82 0.79 0.79 0.13 0.20 −0.14
(0.83) (1.39) (−1.00)

Rt−10 0.46 0.59 0.72 0.75 0.81 0.92 0.91 0.89 0.90 0.96 0.50 0.56 0.32
(3.34) (3.94) (2.29)

Rt−11 0.29 0.47 0.55 0.73 0.86 0.85 0.93 0.97 1.10 1.20 0.91 0.89 0.75
(6.50) (6.72) (4.94)

Re𝑣 0.72 0.50 0.73 0.68 0.58 0.47 0.48 0.44 0.33 0.12 −0.60 −0.31 −0.76
(−2.40) (−1.21) (−3.21)
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TABLE 12.4 (Continued)

Panel B: Value-Weighted Portfolio Returns

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FF 𝛼 FFC 𝛼

Rt−1 −0.07 0.50 0.52 0.61 0.58 0.43 0.48 0.40 0.51 0.49 0.57 0.74 0.12
(2.53) (3.27) (0.60)

Rt−2 −0.17 0.36 0.37 0.55 0.56 0.54 0.54 0.48 0.51 0.66 0.83 1.02 0.37
(3.61) (4.52) (1.75)

Rt−3 0.08 0.32 0.48 0.52 0.50 0.43 0.50 0.54 0.48 0.42 0.34 0.33 −0.24
(1.71) (1.58) (−1.11)

Rt−4 0.05 0.31 0.47 0.51 0.50 0.47 0.55 0.54 0.53 0.57 0.51 0.66 0.07
(2.34) (3.20) (0.34)

Rt−5 0.09 0.15 0.30 0.44 0.48 0.54 0.43 0.55 0.54 0.66 0.57 0.70 0.15
(2.19) (2.68) (0.62)

Rt−6 0.08 0.28 0.40 0.36 0.51 0.42 0.49 0.47 0.52 0.62 0.53 0.60 0.15
(2.55) (2.81) (0.61)

Rt−7 0.37 0.32 0.34 0.44 0.39 0.50 0.42 0.52 0.55 0.75 0.38 0.48 0.14
(1.90) (2.25) (0.58)

Rt−8 0.21 0.32 0.25 0.36 0.43 0.45 0.41 0.47 0.77 0.85 0.64 0.79 0.28
(2.69) (3.35) (1.28)

Rt−9 0.15 0.26 0.25 0.46 0.49 0.50 0.65 0.48 0.61 0.65 0.50 0.59 0.18
(2.23) (2.81) (0.82)

Rt−10 −0.09 0.22 0.24 0.36 0.46 0.48 0.59 0.58 0.73 0.79 0.88 1.00 0.58
(4.95) (5.58) (2.79)

Rt−11 0.04 0.19 0.27 0.31 0.42 0.47 0.53 0.64 0.77 0.81 0.77 0.80 0.49
(3.54) (4.10) (2.59)

and Re𝑣t−11 are used as the sort variable, the FFC alphas of the difference portfolios
remain positive and highly statistically significant, indicating that the inclusion of
the MOM factor in the risk model does not completely capture the momentum effect
between returns at extended lags. Thus, while the medium-term momentum effect
appears in returns spaced between two and 12 months apart, the reversal phenomenon
is a very short-term effect.

12.4.2 Bivariate Portfolio Analyses

The univariate regression analyses provide strong indications of a short-term reversal
phenomenon. We now use bivariate portfolio analyses to examine whether this effect
can be explained by market beta (𝛽), market capitalization (MktCap), book-to-market
ratio (BM), or momentum (Mom). Referring to the correlation analysis in Table 12.2
and the univariate portfolio characteristics in Table 12.3, we see that 𝛽 has almost no
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cross-sectional relation with Re𝑣, and thus is unlikely to explain the reversal phe-
nomenon. Average BM and Mom are slightly higher in decile 10 of Re𝑣 than in
decile 1. Since both of these variables are positively related to future returns and
the Re𝑣 decile 10 portfolio generates a lower average return than the Re𝑣 decile one
portfolio, BM and Mom are unlikely to explain the reversal effect. Average MktCap is
substantially higher in decile 10 than in decile 1 of Re𝑣. Because MktCap is negatively
related to expected future returns, it is possible that the high (low) average MktCap
for stocks in the 10th (first) Re𝑣 decile portfolio is driving the reversal effect.

Dependent-Sort Analysis

We therefore begin our bivariate portfolio analysis of the short-term reversal effect
with a dependent-sort analysis using market capitalization (MktCap) as the first sort
variable and reversal (Re𝑣) as the second sort variable. The breakpoints for each
sort are the quintiles of the sort variables calculated using all stocks in the sample.
Table 12.5 presents the results of this analysis.

When using equal-weighted portfolios, the results in Panel A show that the
reversal phenomenon is strong in each quintile of market capitalization although
it becomes stronger for smaller capitalization stocks. The Re𝑣 5-1 portfolio for
the average MktCap quintile generates an average monthly return of −1.66% per
month with a corresponding t-statistic of −8.74. This result cannot be explained by
exposure to any of the factors in the FFC risk model, as the CAPM alpha, FF alpha,
and FFC alpha of this portfolio’s returns are −1.52% per month (t-statistic =
−8.26), −1.46% per month (t-statistic = −7.40), and −1.77% per month (t-statistic
= −7.99), respectively. Furthermore, the returns of the Re𝑣 quintile portfolios for
the average MktCap quintile decrease monotonically across the quintiles of Re𝑣.
Examination of the results within each quintile of MktCap indicate similar patterns.
Within each MktCap quintile, the average returns of the Re𝑣-sorted portfolios
decrease monotonically from quintile one to quintile five of Re𝑣. The Re𝑣 5-1
portfolios in each of the MktCap quintiles all generate economically large and highly
statistically significant negative average returns and risk-adjusted alphas. The results
are strongest in the lowest MktCap quintile and become progressively less strong as
the market capitalizations of the stocks in the portfolios increase since the average
returns and alphas for the Re𝑣 5-1 portfolios decrease monotonically in magnitude
from MktCap quintile one to MktCap quintile five.

The results of the analysis using value-weighted portfolios presented in Panel B of
Table 12.5 demonstrate that most of the patterns found in the equal-weighted portfo-
lios also hold when using value-weighted portfolios. However, the magnitudes of the
negative average returns and alphas for the Re𝑣 difference portfolios are somewhat
smaller when using value-weighted portfolios instead of equal-weighted portfolios.
In fact, when using value-weighted portfolios, the Re𝑣 5-1 portfolio in the fifth quin-
tile of MktCap generates statistically insignificant CAPM alpha of −0.22% per month
(t-statistic = −1.47) and FF alpha of −0.16% per month t-statistic = −0.96). The
FFC alpha for this portfolio of −0.37% per month, however, remains statistically sig-
nificant with a t-statistic of −2.01. Finally, within the fifth quintile of MktCap, the
average portfolio excess returns are not quite monotonically decreasing across the



�

� �

�

REVERSAL AND STOCK RETURNS 251

TABLE 12.5 Bivariate Dependent-Sort Portfolio Analysis—Control for MktCap
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between Re𝑣 and future stock returns after controlling for the effect of MktCap. Each month,
all stocks in the CRSP sample are sorted into five groups based on an ascending sort of MktCap.
Within each MktCap group, all stocks are sorted into five portfolios based on an ascending sort
of Re𝑣. The quintile breakpoints used to create the portfolios are calculated using all stocks in
the CRSP sample. The table presents the average one-month-ahead excess return (in percent per
month) for each of the 25 portfolios as well as for the average MktCap quintile portfolio within
each quintile of Re𝑣. Also shown are the average return, CAPM alpha, FF alpha, and FFC alpha
of a long–short zero-cost portfolio that is long the fifth Re𝑣 quintile portfolio and short the first
Re𝑣 quintile portfolio in each MktCap quintile. t-statistics (in parentheses), adjusted following
Newey and West (1987) using six lags, testing the null hypothesis that the average return or
alpha is equal to zero, are shown in parentheses. Panel A presents results for equal-weighted
portfolios. Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolios
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Re𝑣 1 3.91 1.28 1.00 0.99 0.82 1.60
Re𝑣 2 1.31 0.66 0.71 0.83 0.73 0.85
Re𝑣 3 1.12 0.62 0.66 0.73 0.60 0.75
Re𝑣 4 1.03 0.54 0.60 0.50 0.43 0.62
Re𝑣 5 −0.38 −0.42 0.09 0.20 0.22 −0.06

Re𝑣 5-1 −4.29 −1.70 −0.91 −0.79 −0.61 −1.66
(−12.38) (−6.57) (−4.23) (−4.47) (−4.02) (−8.74)

Re𝑣 5-1 CAPM 𝛼 −4.13 −1.55 −0.78 −0.67 −0.49 −1.52
(−12.10) (−6.02) (−3.70) (−3.95) (−3.31) (−8.26)

Re𝑣 5-1 FF 𝛼 −4.07 −1.48 −0.69 −0.64 −0.44 −1.46
(−11.17) (−5.64) (−3.11) (−3.32) (−2.70) (−7.40)

Re𝑣 5-1 FFC 𝛼 −4.57 −1.84 −0.98 −0.83 −0.65 −1.77
(−10.51) (−6.20) (−4.25) (−4.22) (−3.86) (−7.99)

Panel B: Value-Weighted Portfolios
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Re𝑣 1 2.80 1.26 1.00 0.98 0.57 1.32
Re𝑣 2 1.03 0.67 0.74 0.85 0.58 0.77
Re𝑣 3 0.82 0.63 0.67 0.72 0.47 0.66
Re𝑣 4 0.72 0.56 0.58 0.50 0.35 0.54
Re𝑣 5 −0.54 −0.36 0.12 0.21 0.25 −0.06

(continued)
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TABLE 12.5 (Continued)

Panel B: Value-Weighted Portfolios
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Re𝑣 5-1 −3.34 −1.62 −0.89 −0.77 −0.33 −1.39
(−10.60) (−6.20) (−4.10) (−4.35) (−2.12) (−7.48)

Re𝑣 5-1 CAPM 𝛼 −3.17 −1.46 −0.75 −0.66 −0.22 −1.25
(−10.16) (−5.65) (−3.59) (−3.84) (−1.47) (−6.93)

Re𝑣 5-1 FF 𝛼 −3.09 −1.40 −0.67 −0.62 −0.16 −1.19
(−9.69) (−5.27) (−2.97) (−3.19) (−0.96) (−6.22)

Re𝑣 5-1 FFC 𝛼 −3.55 −1.77 −0.95 −0.81 −0.37 −1.49
(−9.02) (−5.90) (−4.15) (−4.12) (−2.01) (−6.82)

quintiles of Re𝑣 since the Re𝑣 1 portfolio generates slightly lower average excess
returns (0.57% per month) than the Re𝑣 2 portfolio (0.58% per month). With these
few exceptions, the results of the value-weighted analysis are qualitatively similar
to those of the equal-weighted portfolio analysis. There is little evidence, therefore,
that controlling for market capitalization explains the reversal effect. However, the
reversal phenomenon is strongest in small stocks.

We proceed now to investigate the effect of controlling for market beta (𝛽),
book-to-market ratio (BM), and momentum (Mom) on the reversal phenomenon,
once again using bivariate-sort portfolio analyses. While our preliminary assess-
ments based on the cross-sectional relations between Re𝑣 and each of 𝛽, BM, and
Mom provide no indications that any of these variables may explain the reversal
phenomenon, the investigation is worthwhile because even if none of these variables
can fully explain the reversal effect, we may observe differences in the strength of the
reversal effect among stocks with different values of the given control. We therefore
repeat the bivariate-sort portfolio analyses using each of 𝛽, BM, and Mom as the
first sort variable. Table 12.6 shows the average return, FF alpha, and FFC alpha
for the Re𝑣 5-1 portfolio within each quintile, as well as for the average quintile, of
each of these control variables. Results using equal-weighted (Weights = EW) and
value-weighted (Weights = VW) are presented.

When controlling for 𝛽 using equal-weighted portfolios, the table indicates that
the average return, FF alpha, and FFC alpha for the Re𝑣 difference portfolio within
each quintile of 𝛽, as well as for the average 𝛽 quintile, is negative, economically
large, and highly statistically significant. The FFC alpha of the Re𝑣 5-1 portfolio in
the average 𝛽 quintile is −1.94% per month with a corresponding t-statistic of −8.01.
Furthermore, in equal-weighted portfolios, there is no strong indication of differen-
tial performance of the Re𝑣 5-1 portfolio across the different 𝛽 quintiles. When using
value-weighted portfolios, the reversal effect is strong among stocks in the lowest
three 𝛽 quintiles, as in these 𝛽 quintiles, the average returns, FF alphas, and FFC
alphas of the Re𝑣 5-1 portfolios are all negative, large, and statistically significant.
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TABLE 12.6 Bivariate Dependent-Sort Portfolio Analysis
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between Re𝑣 and future stock returns after controlling for the effect of each of 𝛽, BM, and Mom
(control variables). Each month, all stocks in the CRSP sample are sorted into five groups based
on an ascending sort of one of the control variables. Within each control variable group, all
stocks are sorted into five portfolios based on an ascending sort of Re𝑣. The quintile breakpoints
used to create the portfolios are calculated using all stocks in the CRSP sample. The table
presents the average return, CAPM alpha, FF alpha, and FFC alpha (in percent per month) of
the long–short zero-cost portfolios that are long the fifth Re𝑣 quintile portfolio and short the
first Re𝑣 quintile portfolio in each quintile, as well as for the average quintile, of the control
variable. Results for equal-weighted (Weights = EW) and value-weighted (Weights = VW)
portfolios are shown. t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average return or alpha is equal to zero, are
shown in parentheses.
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𝛽 EW Return −1.81 −1.56 −1.81 −1.75 −1.82 −1.75
(−8.72) (−7.81) (−8.72) (−7.52) (−6.80) (−8.90)

FF 𝛼 −1.61 −1.39 −1.62 −1.48 −1.60 −1.54
(−7.73) (−6.73) (−7.97) (−6.18) (−5.73) (−7.71)

FFC 𝛼 −1.96 −1.69 −1.97 −1.92 −2.17 −1.94
(−9.02) (−7.52) (−8.22) (−5.76) (−6.31) (−8.01)

VW Return −0.72 −0.78 −0.95 −0.19 −0.13 −0.55
(−3.41) (−4.21) (−5.33) (−1.03) (−0.54) (−3.67)

FF 𝛼 −0.53 −0.61 −0.74 0.03 0.10 −0.35
(−2.39) (−2.98) (−4.17) (0.14) (0.39) (−2.21)

FFC 𝛼 −0.74 −0.85 −1.02 −0.28 −0.38 −0.66
(−3.49) (−4.00) (−5.54) (−1.31) (−1.62) (−4.15)

BM EW Return −2.09 −1.78 −1.73 −1.66 −2.20 −1.89
(−8.78) (−7.54) (−8.62) (−8.06) (−9.05) (−9.57)

FF 𝛼 −1.90 −1.59 −1.52 −1.42 −1.99 −1.68
(−7.27) (−6.14) (−6.90) (−6.96) (−8.62) (−8.12)

FFC 𝛼 −2.37 −2.01 −1.86 −1.74 −2.27 −2.05
(−7.54) (−6.08) (−7.18) (−7.20) (−9.12) (−8.09)

VW Return −0.28 −0.64 −0.45 −0.56 −0.54 −0.49
(−1.21) (−2.90) (−2.00) (−2.71) (−2.08) (−2.82)

FF 𝛼 −0.06 −0.42 −0.19 −0.23 −0.24 −0.23
(−0.25) (−1.77) (−0.79) (−1.08) (−0.90) (−1.22)

FFC 𝛼 −0.44 −0.74 −0.49 −0.52 −0.42 −0.52
(−1.82) (−2.93) (−2.07) (−1.90) (−1.38) (−2.62)

Mom EW Return −5.04 −1.74 −1.00 −0.81 −0.62 −1.84
(−13.19) (−7.72) (−5.83) (−5.14) (−3.55) (−10.10)

FF 𝛼 −4.78 −1.55 −0.81 −0.58 −0.38 −1.62
(−12.11) (−7.12) (−4.85) (−3.64) (−2.19) (−8.92)

(continued)
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TABLE 12.6 (Continued)
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FFC 𝛼 −5.37 −1.92 −1.11 −0.82 −0.63 −1.97
(−11.97) (−8.15) (−6.57) (−5.07) (−3.49) (−9.96)

VW Return −2.17 −0.94 −0.53 −0.39 −0.20 −0.85
(−6.36) (−3.80) (−2.82) (−2.35) (−0.99) (−5.16)

FF 𝛼 −1.90 −0.73 −0.35 −0.25 0.02 −0.64
(−6.38) (−2.72) (−1.88) (−1.36) (0.09) (−3.98)

FFC 𝛼 −2.52 −1.02 −0.57 −0.44 −0.20 −0.95
(−8.14) (−3.14) (−2.87) (−2.45) (−1.04) (−5.63)

In the highest two quintiles of 𝛽, however, the average returns and alphas of the Re𝑣
difference portfolios, while negative, are statistically indistinguishable from zero. For
the average 𝛽 quintile, the value-weighted portfolios indicate a strong reversal phe-
nomenon since the average return, FF alpha, and FFC alpha of −0.55% per month
(t-statistic = −3.67), −0.35% per month (t-statistic = −2.21), and −0.66% per month
(t-statistic = −4.15) are all economically important and highly statistically signifi-
cant.

The equal-weighted bivariate dependent-sort portfolio results that use
book-to-market ratio (BM) as the first sort variable indicate a very strong neg-
ative relation between Re𝑣 and one-month-ahead excess stock returns within each
of the BM quintiles since, for each BM quintile, the average return, FF alpha, and
FFC alpha of the Re𝑣 5-1 portfolio are negative, large in magnitude, and highly
statistically significant. The equal-weighted Re𝑣 5-1 portfolio for the average BM
quintile generates an average return of −1.89% per month (t-statistic = −9.57),
FF alpha of −1.68% per month (t-statistic = −8.12), and FFC alpha of −2.05%
per month (t-statistic = −8.09). The results change quite substantially when using
value-weighted portfolios. In quintile one of BM, the average return and FF alpha
of the Re𝑣 difference portfolio are both statistically indistinguishable from zero.
The FFC alpha for this portfolio of −0.44% per month, however, is marginally
statistically significant with a t-statistic of −1.82. None of the BM quintiles produce
a Re𝑣 5-1 portfolio that generates a statistically significant FF alpha (the FF alpha
in BM quintile two is marginally statistically significant). The FFC alphas for the
Re𝑣 difference portfolios, however, are statistically significant in BM quintiles
one through four, albeit only marginally in BM quintiles one and four. In BM
quintile five, neither the FF nor FFC alpha of the Re𝑣 difference portfolio is
statistically distinguishable from zero. For the average BM quintile, however,
the value-weighted Re𝑣 5-1 portfolio produces economically large and highly
statistically significant average monthly returns of −0.49% per month (t-statistic
= −2.82) and FFC alpha of −0.52% per month (t-statistic = −2.62). The FF alpha
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for this portfolio of −0.23% per month with a t-statistic of −1.22 is not statistically
significant.

Finally, we examine whether controlling for momentum can explain the reversal
phenomenon. The results of the equal-weighted portfolio analysis find no evidence
that this is the case, as within each Mom quintile, as well as for the average Mom
quintile, the average return, FF alpha, and FFC alpha of the Re𝑣 5-1 portfolio are
negative and highly statistically significant. There is substantial variation, however,
in the strength of the reversal effect among stocks with different levels of momentum.
The magnitude of the average monthly returns of the equal-weighted Re𝑣 5-1 portfo-
lios in the different Mom quintiles drop monotonically from −5.04% in Mom quintile
1 to −0.62% in Mom quintile five. The patterns in the FF and FFC alphas are similar.
The results indicate that the reversal effect is much stronger in low-momentum stocks
than in high-momentum stocks. As in the previous analyses, the strength of the rever-
sal effect in the value-weighted portfolio analysis that controls for the effect of Mom
is substantially weaker than in the equal-weighted analysis. The average return, FF
alpha, and FFC alpha of the value-weighted Re𝑣 5-1 portfolio for the average Mom
quintile, however, remain large in magnitude and highly statistically significant. The
average return of this portfolio is −0.85% per month with a t-statistic of −5.16 while
this portfolio’s FFC alpha is −0.95% per month (t-statistic =−5.63). In the fifth quin-
tile of Mom, however, the Re𝑣 5-1 portfolio fails to generate an average return, FF
alpha, or FFC alpha that is economically large or statistically distinguishable from
zero. Within quintiles one through four of Mom, the Re𝑣 5-1 portfolio generates sta-
tistically significant negative average returns and FFC alpha. The FF alpha of the Re𝑣
5-1 portfolio is statistically significant only in quintiles one and two of Mom and is
marginally significant in Mom quintile three. The value-weighted portfolio results,
therefore, demonstrate that while the reversal phenomenon is strong for the average
Mom quintile, it is much stronger among stocks with low momentum than stocks with
high momentum.

Independent-Sort Analysis

The results in Tables 12.5 and 12.6 demonstrate that the reversal phenomenon is
detected when using bivariate dependent-sort portfolio analysis to control for the rela-
tion between stock returns and beta, market capitalization, book-to-market ratio, or
size. The results are strongest in equal-weighted portfolios, but still exist, at least for
the average quintile of the control variable, in value-weighted portfolios. We now
examine the robustness of these results using bivariate independent-sort, instead of
dependent-sort, portfolio analysis.

The results of the independent-sort portfolio analyses of the relation between Re𝑣
and future stock returns after controlling for each of beta (𝛽), market capitalization
(MktCap), book-to-market ratio (BM), and momentum (Mom) are presented in
Table 12.7. The analyses demonstrate that when using equal-weighted portfolios,
the reversal phenomenon is strong in all quintiles, as well as the average quin-
tile, of each of the control variables. The average returns and FFC alphas of the
Re𝑣 5-1 portfolios are negative, large, and highly statistically significant for each
of these equal-weighted portfolios. Similar to the dependent-sort analyses, the
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TABLE 12.7 Bivariate Independent-Sort Portfolio Analysis
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between Re𝑣 and future stock returns after controlling for the effect of each of 𝛽, MktCap,
BM, and Mom (control variables). Each month, all stocks in the CRSP sample are sorted into
five groups based on an ascending sort of the control variable. All stocks are independently
sorted into five groups based on an ascending sort of Re𝑣. The quintile breakpoints used to
create the groups are calculated using all stocks in the CRSP sample. The intersections of the
control variable and Re𝑣 groups are used to form 25 portfolios. The table presents the average
return and FFC alpha (in percent per month) of the long–short zero-cost portfolios that are
long the fifth Re𝑣 quintile portfolio and short the first Re𝑣 quintile portfolio in each quintile, as
well as for the average quintile, of the control variable. Results for equal-weighted (Weights =
EW) and value-weighted (Weights = VW) portfolios are shown. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses.
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𝛽 EW Return −1.96 −1.68 −1.85 −1.77 −1.75 −1.80
(−8.71) (−7.95) (−8.45) (−7.91) (−7.42) (−9.08)

FFC 𝛼 −2.12 −1.84 −2.03 −1.94 −2.01 −1.99
(−8.39) (−7.41) (−8.05) (−6.55) (−7.38) (−8.25)

VW Return −0.56 −0.92 −0.91 −0.22 −0.23 −0.57
(−2.37) (−4.34) (−4.68) (−1.18) (−1.06) (−3.61)

FFC 𝛼 −0.58 −0.89 −1.02 −0.33 −0.41 −0.65
(−2.43) (−3.79) (−5.32) (−1.58) (−2.07) (−4.13)

MktCap EW Return −3.31 −1.56 −0.90 −0.75 −0.48 −1.40
(−12.19) (−6.52) (−4.21) (−3.98) (−2.59) (−7.59)

FFC 𝛼 −3.51 −1.70 −0.99 −0.84 −0.55 −1.52
(−10.44) (−6.33) (−4.32) (−4.01) (−2.74) (−7.22)

VW Return −2.69 −1.47 −0.87 −0.72 −0.13 −1.18
(−10.70) (−6.09) (−4.05) (−3.77) (−0.68) (−6.53)

FFC 𝛼 −2.86 −1.62 −0.96 −0.80 −0.22 −1.29
(−8.93) (−5.99) (−4.20) (−3.80) (−1.03) (−6.23)

BM EW Return −1.88 −1.74 −1.81 −1.83 −2.18 −1.89
(−8.69) (−7.21) (−8.47) (−8.47) (−9.51) (−9.52)

FFC 𝛼 −2.12 −1.96 −1.97 −1.94 −2.25 −2.05
(−7.58) (−6.07) (−7.09) (−7.31) (−9.24) (−8.04)

VW Return −0.45 −0.57 −0.37 −0.39 −0.53 −0.46
(−2.12) (−2.49) (−1.61) (−1.72) (−2.24) (−2.56)

FFC 𝛼 −0.60 −0.66 −0.45 −0.37 −0.41 −0.50
(−2.74) (−2.46) (−1.84) (−1.27) (−1.53) (−2.47)
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TABLE 12.7 (Continued)
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Mom EW Return −3.98 −1.73 −1.03 −0.85 −0.60 −1.64
(−13.81) (−7.78) (−5.25) (−4.84) (−3.41) (−9.11)

FFC 𝛼 −4.23 −1.89 −1.16 −0.88 −0.64 −1.76
(−12.43) (−8.21) (−5.93) (−4.56) (−3.12) (−8.89)

VW Return −1.68 −0.93 −0.37 −0.30 −0.16 −0.69
(−5.59) (−3.97) (−1.68) (−1.63) (−0.79) (−4.10)

FFC 𝛼 −1.93 −1.06 −0.37 −0.42 −0.20 −0.79
(−6.99) (−3.74) (−1.64) (−2.14) (−0.95) (−4.63)

independent-sort analysis indicate that when controlling for each of MktCap and
Mom, the reversal effect is substantially stronger for stocks with low values of the
control variable and becomes less strong for stocks with high values of MktCap or
Mom.

As with the equal-weighted portfolios, the value-weighted portfolios generate sim-
ilar results when using independently sorted portfolios to those generated by the
dependently sorted portfolios. The independent-sort value-weighted portfolio anal-
yses indicate that, after controlling separately for each of 𝛽, MktCap, BM, and Mom,
the average returns and FFC alphas of the Re𝑣 5-1 portfolios in the average control
variable quintile are negative and statistically significant. Within certain quintiles of
each of the control variables, however, the reversal effect is not detected when using
value-weighted portfolios. Specifically, the average return of the value-weighted Re𝑣
difference portfolio is statistically indistinguishable from zero in quintiles four and
five of 𝛽, and the FFC alpha is insignificant in 𝛽 quintile four. In quintile five of
MktCap, the value-weighted Re𝑣 5-1 portfolio fails to produce statistically signifi-
cant average returns or FFC alpha. The average value-weighted return of the Re𝑣 5-1
portfolio in quintile three of BM is statistically insignificant, while that of BM quintile
four is only marginally significant. The FFC alphas of the value-weighted Re𝑣 differ-
ence portfolio is insignificant in quintiles four and five of BM, and only marginally
significant in BM quintile three. Finally, when controlling for Mom, only quintiles
one and two of Mom generate statistically significant average value-weighted Re𝑣
difference portfolio returns, with the average return of the Re𝑣 5-1 portfolio in quin-
tile three of Mom being marginally statistically significant. The FFC alpha of the
value-weighted Re𝑣 difference portfolios in quintiles three and five of Mom are also
not statistically significant.

In summary, the results of the bivariate portfolio analyses indicate that the reversal
phenomenon is robust to controls for market capitalization, beta, book-to-market
ratio, and momentum. The effect is substantially stronger in equal-weighted port-
folios than in value-weighted portfolios. The evidence demonstrates that among



�

� �

�

258 SHORT-TERM REVERSAL

high-market capitalization and high-momentum stocks, the reversal phenomenon
is particularly weak and, when using value-weighted portfolios, nonexistent. The
results using independently sorted portfolios are similar to those of dependent-sort
portfolio analyses.

Can Reversal Explain Other Relations?

Having shown that the reversal phenomenon is not explained by the relation between
beta and stock returns nor by the size, value, or momentum effects, we now explore
whether the reversal phenomenon can explain any of these patterns in expected
returns that have been documented in previous chapters. To this end, in Table 12.8 we
present the results of equal-weighted and value-weighted bivariate dependent-sort
portfolio analyses that sort first on Re𝑣 and then on either 𝛽, MktCap, BM, or Mom.
The FFC alphas for the analyses examining the relation between MktCap and future
stock returns after controlling for Re𝑣 are calculated relative to a factor model that
includes the market (MKT), value (HML), and momentum (MOM) factors, but
excludes the size (SMB) factor. The reason for this is that including the size factor
would control for the size effect, which is the exact effect that we are examining.
Similarly, for the analyses that use BM as the second sort variable, the FFC alpha
is calculated relative to a model that excludes the HML factor. For the same reason,
when Mom is the second sort variable, we use the Fama and French (1993) (FF)
three-factor risk model, which does not include the momentum factor, instead of the
four-factor model.

The results in Table 12.8 show that after controlling for the effect of reversal, the
relation between 𝛽 and future stock returns is negative but statistically insignificant,
as the average return of the equal-weighted (value-weighted) 𝛽 difference portfolio
for the average Re𝑣 quintile is −0.34% per month (−0.09% per month) with a corre-
sponding t-statistic of −1.62 (−0.38). The FFC alpha of the equal-weighted portfolio
of −0.47% per month (t-statistic = −2.94) is highly statistically significant, whereas
the FFC alpha for the value-weighted portfolio of −0.08% per month (t-statistic =
−0.47) is not significant. These results lead to slightly different conclusions than
the results of the univariate portfolio analyses presented in Tables 8.4 and 8.5 of
Chapter 8.1 The results in Chapter 8 show that in equal-weighted portfolio analy-
sis, both the average returns and CAPM alpha of the 𝛽-sorted difference portfolio are
significantly negative, whereas the results here indicate that after controlling for Re𝑣,
only the alpha, but not the average return, is statistically significant. In value-weighted
portfolios, the results in Chapter 8 indicate a statistically insignificant 𝛽 difference
portfolio average return but a significantly negative alpha. Here, the results indicate
that while the average monthly return and FFC alpha of the value-weighted 𝛽 5-1
portfolio in the average Re𝑣 quintile are negative, neither is statistically significant.
While there are differences in the methodologies between the analyses presented here
and those shown in Chapter 8, including the use of different risk models to assess
abnormal returns, this is the first analysis in this book to find a statistically insignifi-
cant abnormal return for a portfolio holding long positions in high-𝛽 stocks and short

1In Chapter 8, the variable 𝛽 is denoted 𝛽

12M .
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TABLE 12.8 Bivariate Dependent-Sort Portfolio Analysis—Control for Re𝒗
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of 𝛽, MktCap, BM, and Mom (second sort variables) after
controlling for the effect of Re𝑣. Each month, all stocks in the CRSP sample are sorted into five
groups based on an ascending sort of Re𝑣. All stocks are independently sorted into five groups
based on an ascending sort of one of the second sort variables. The quintile breakpoints used to
create the groups are calculated using all stocks in the CRSP sample. The intersections of the
Re𝑣 and second sort variable groups are used to form 25 portfolios. The table presents the aver-
age return and FFC alpha (in percent per month) of the long–short zero-cost portfolios that are
long the fifth quintile portfolio and short the first quintile portfolio for the second sort variable
in each quintile, as well as for the average quintile, of Re𝑣. Results for equal-weighted (Weights
= EW) and value-weighted (Weights = VW) portfolios are shown. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses.
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𝛽 EW Return −0.77 0.06 −0.15 −0.43 −0.39 −0.34
(−3.19) (0.26) (−0.70) (−1.87) (−1.63) (−1.62)

FFC 𝛼 −0.77 −0.09 −0.38 −0.64 −0.48 −0.47
(−3.37) (−0.53) (−2.16) (−3.61) (−2.33) (−2.94)

VW Return −0.77 0.09 −0.09 0.20 0.15 −0.09
(−2.57) (0.39) (−0.40) (0.80) (0.52) (−0.38)

FFC 𝛼 −0.66 0.13 −0.18 0.15 0.14 −0.08
(−2.65) (0.62) (−0.86) (0.73) (0.60) (−0.47)

MktCap EW Return −2.75 −0.01 −0.46 −0.55 0.54 −0.65
(−8.60) (−0.04) (−1.68) (−2.02) (2.04) (−2.70)

FFC 𝛼 −3.05 −0.13 −0.74 −0.87 0.47 −0.86
(−7.51) (−0.48) (−2.21) (−2.41) (1.75) (−3.26)

VW Return −2.34 0.09 −0.33 −0.31 0.78 −0.42
(−7.14) (0.33) (−1.19) (−1.16) (2.78) (−1.68)

FFC 𝛼 −2.59 0.05 −0.48 −0.50 0.70 −0.56
(−6.14) (0.20) (−1.68) (−1.69) (2.51) (−2.17)

BM EW Return 1.37 0.93 0.85 0.92 1.08 1.03
(6.36) (4.96) (4.90) (5.07) (4.40) (5.75)

FFC 𝛼 1.51 1.10 1.07 1.11 1.30 1.22
(6.58) (6.20) (6.74) (6.45) (5.38) (6.92)

VW Return 0.49 0.41 0.51 0.38 0.62 0.48
(1.99) (1.88) (2.36) (1.84) (2.56) (2.66)

(continued)
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TABLE 12.8 (Continued)
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FFC 𝛼 0.53 0.56 0.66 0.51 0.75 0.60
(1.89) (2.75) (3.13) (2.66) (3.27) (3.53)

Mom EW Return −0.82 0.83 0.83 1.06 2.96 0.97
(−2.32) (3.25) (3.11) (3.96) (11.25) (3.97)

FF 𝛼 −0.57 1.07 0.99 1.19 3.21 1.18
(−1.73) (4.78) (3.45) (3.91) (13.17) (5.29)

VW Return 0.37 0.82 0.83 1.03 2.14 1.04
(0.86) (2.53) (3.04) (3.78) (6.92) (3.69)

FF 𝛼 0.73 1.13 1.02 1.25 2.47 1.32
(2.17) (3.90) (3.86) (4.83) (8.35) (5.44)

positions in low-𝛽 stocks. That being said, there are at least two potential reasons
for this. The first is that this is the first time that a value-weighted 𝛽-sorted portfolio
has been subjected to the four-factor risk model, meaning that it is potentially the
momentum factor (MOM) that is driving this result. Alternatively, it is possible that
controlling for Re𝑣 is driving the difference in results. While the insignificant abnor-
mal return of the value-weighted 𝛽 5-1 portfolio for the average Re𝑣 quintile may
indicate that this portfolio does not generate abnormal returns, the portfolio analysis
does not give any indications of a positive relation between 𝛽 and future stock returns,
as would be predicted by the CAPM of Sharpe (1964), Lintner (1965), and Mossin
(1966). Thus, it appears that the reversal phenomenon cannot completely explain the
discrepancy between the theoretical prediction and empirical results.

The bivariate dependent-sort portfolio analyses examining the relation between
MktCap and future stock returns after controlling for Re𝑣 generate results that are
similar to those of previous analyses. The negative relation between MktCap and
future stock returns is strong in equal-weighted portfolios, even after controlling for
Re𝑣, since the average return of −0.65% per month (t-statistic = −2.70) and FFC
(excluding the SMB factor) alpha of −0.86% per month (t-statistic = −3.26) for the
equal-weighted MktCap difference portfolio in the average quintile of Re𝑣 indicate
that Re𝑣 does not explain the size effect in equal-weighted portfolios. Consistent with
what has been seen in previous analyses, the size effect is substantially weaker in
value-weighted portfolios. However, the average return and FFC (excluding the SMB
factor) alpha for the MktCap 5-1 value-weighted portfolio in the average Re𝑣 quin-
tile of −0.42% per month (t-statistic = −1.68) and −0.56% per month (t-statistic =
−2.17), respectively, are both at least marginally statistically significant. Interestingly,
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the relation between MktCap and future stock returns varies very strongly across the
quintiles of Re𝑣. For stocks in the lowest Re𝑣 quintile, the previously documented
negative relation between MktCap and future stock returns is very strong. However,
this relation is substantially weaker in quintiles two, three, and four of Re𝑣. In Re𝑣
quintile five, the relation between MktCap and future stock returns is actually positive
and statistically significant, as the average returns and FFC (excluding the SMB fac-
tor) alphas of the MktCap 5-1 portfolio in Re𝑣 quintile five are economically large and
at least marginally statistically significant in both equal-weighted and value-weighted
portfolios.

The relation between BM and future stock returns appears to be mostly unchanged
after controlling for the effect of Re𝑣 in the bivariate dependent-sort portfolio analy-
sis. In equal-weighted portfolios, the average returns and FFC alphas (excluding the
HML factor) of the BM 5-1 portfolios in each quintile of Re𝑣, including the average
Re𝑣 quintile, are positive and statistically significant. When using value-weighted
portfolios, the results are substantially weaker, but the returns and FFC alphas
(excluding the HML factor) of the BM 5-1 portfolios remain at least marginally
statistically significant in each quintile, as well as for the average quintile, of Re𝑣.

Finally, the results indicate that the reversal phenomenon cannot explain the
momentum phenomenon since, in the average Re𝑣 quintile, the average returns and
FF alphas of equal-weighted and value-weighted Mom 5-1 portfolios are positive
and highly statistically significant. The relation between future stock returns and
Mom changes dramatically across the quintiles of Re𝑣, especially in equal-weighted
portfolios. In the lowest Re𝑣 quintile, when using equal-weighted portfolios, the
average return and FFC alpha of the Mom 5-1 portfolio are actually negative and at
least marginally statistically significant. This result indicates a medium-term reversal
phenomenon, not a medium-term momentum phenomenon, among stocks with low
values of Re𝑣. When using value-weighted portfolios, however, the average return
of this portfolio is statistically insignificant but its FF alpha is significantly positive.

We proceed now to examine the relations between expected stock returns and each
of beta, market capitalization, book-to-market ratio, and momentum after controlling
for reversal, using bivariate portfolio analysis with independently sorted portfolios.
These analyses are identical to those whose results are presented in Table 12.7. Here,
instead of presenting the results that focus on the relation between Re𝑣 and future
stock returns, we present the results that examine the relations between each of 𝛽,
MktCap, BM, and Mom and future stock returns after controlling for Re𝑣. The results
of these independent-sort analyses, which are presented in Table 12.9 are very similar
to those of the dependent-sort analyses presented in Table 12.8. Both sets of results
can be summarized as indicating that the reversal phenomenon fails to explain the
lack of a positive relation between 𝛽 and expected stock returns as well as the size,
value, and momentum effects. While there are interesting patterns in several of these
phenomena across the different levels of reversal, for the average stock, each of these
effects appears to be a different phenomenon.
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TABLE 12.9 Bivariate Independent-Sort Portfolio Analysis—Control for Re𝒗
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of 𝛽, MktCap, BM, and Mom (second sort variables) after
controlling for the effect of Re𝑣. Each month, all stocks in the CRSP sample are sorted into five
groups based on an ascending sort of Re𝑣. All stocks are independently sorted into five groups
based on an ascending sort of one of the second sort variables. The quintile breakpoints used to
create the groups are calculated using all stocks in the CRSP sample. The intersections of the
Re𝑣 and second sort variable groups are used to form 25 portfolios. The table presents the aver-
age return and FFC alpha (in percent per month) of the long–short zero-cost portfolios that are
long the fifth quintile portfolio and short the first quintile portfolio for the second sort variable
in each quintile, as well as for the average quintile, of Re𝑣. Results for equal-weighted (Weights
= EW) and value-weighted (Weights = VW) portfolios are shown. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses.
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𝛽 EW Return −0.67 0.10 −0.24 −0.60 −0.45 −0.37
(−2.75) (0.40) (−0.95) (−2.31) (−1.89) (−1.65)

FFC 𝛼 −0.66 −0.03 −0.44 −0.76 −0.55 −0.49
(−2.92) (−0.14) (−2.24) (−3.97) (−2.75) (−2.85)

VW Return −0.46 0.19 −0.17 −0.09 −0.13 −0.13
(−1.75) (0.79) (−0.61) (−0.33) (−0.45) (−0.57)

FFC 𝛼 −0.34 0.25 −0.20 −0.15 −0.18 −0.12
(−1.23) (1.15) (−0.83) (−0.70) (−0.75) (−0.65)

MktCap EW Return −2.16 −0.02 −0.48 −0.59 0.66 −0.52
(−7.05) (−0.09) (−1.72) (−2.12) (2.38) (−2.08)

FFC 𝛼 −2.43 −0.16 −0.78 −0.89 0.59 −0.74
(−6.16) (−0.59) (−2.37) (−2.57) (2.08) (−2.72)

VW Return −1.64 0.07 −0.35 −0.40 0.91 −0.28
(−5.30) (0.24) (−1.19) (−1.41) (3.13) (−1.07)

FFC 𝛼 −1.86 0.00 −0.53 −0.58 0.83 −0.43
(−4.81) (0.00) (−1.77) (−1.93) (2.83) (−1.60)

BM EW Return 1.36 0.99 0.94 1.05 1.07 1.08
(6.57) (5.18) (4.84) (5.40) (4.32) (5.89)

FFC 𝛼 1.49 1.17 1.18 1.26 1.28 1.28
(6.84) (6.48) (6.60) (6.65) (5.29) (7.07)

VW Return 0.69 0.40 0.65 0.47 0.61 0.56
(2.87) (1.68) (2.77) (2.14) (2.72) (2.99)

FFC 𝛼 0.70 0.57 0.79 0.58 0.74 0.68
(2.78) (2.46) (3.36) (2.76) (3.38) (3.74)
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TABLE 12.9 (Continued)
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Mom EW Return −0.51 0.85 0.90 1.20 2.86 1.06
(−1.65) (2.87) (2.78) (4.00) (11.88) (4.05)

FF 𝛼 −0.27 1.11 1.05 1.33 3.12 1.27
(−0.99) (4.27) (3.09) (3.86) (13.74) (5.31)

VW Return 0.42 0.84 1.02 1.05 1.94 1.05
(1.10) (2.40) (3.12) (3.36) (6.38) (3.59)

FF 𝛼 0.75 1.21 1.29 1.34 2.26 1.37
(2.59) (4.12) (4.26) (4.68) (7.71) (5.57)

12.5 FAMA–MACBETH REGRESSIONS

We continue our analysis of the reversal effect using Fama and MacBeth (1973,
FM hereafter) regression analysis. The FM regression methodology allows us to
simultaneously control for beta, size, book-to-market ratio, and momentum in exam-
ining the reversal phenomenon. We examine a specification that includes only Re𝑣
as an independent variable, specifications that combine Re𝑣 with one of 𝛽, MktCap,
BM, or Mom as independent variables, and a final specification that includes Re𝑣, 𝛽,
MktCap, BM, and Mom as independent variables. All independent variables are win-
sorized at the 0.5% level on a monthly basis. The dependent variable in all regressions
is the one-month-ahead excess stock return.

Table 12.10 presents the results of the FM regression analyses. When only Re𝑣
is used as an independent variable in the regression (specification (1)), the table
shows that the average coefficient on Re𝑣 is −0.048 with a t-statistic of −10.07, indi-
cating a statistically significant negative cross-sectional relation between Re𝑣 and
future stock returns. The models that include 𝛽 (specification (2)), Size (specifica-
tion (3)), book-to-market ratio (specification (4)), and momentum (specification (5))
generate similar results, with average coefficients of −0.053 (t-statistic = −10.78),
−0.051 (t-statistic =−10.65), −0.055 (t-statistic =−10.85), and −0.054 (t-statistic =
−11.08), respectively, on Re𝑣. When all control variables are simultaneously included
in the regression model (specification (6)), the average coefficient on Re𝑣 of−0.063 is
slightly larger in magnitude than in any of the other specifications, and remains highly
statistically significant with a t-statistic of −12.54. The results of the FM regressions,
therefore, provide strong evidence that the reversal phenomenon persists after con-
trolling for each of 𝛽, Size, BM, and Mom.

The regression results also demonstrate that the previously identified relations
between the control variables and future stock returns persist when Re𝑣 is included
in the regression. The average coefficient on 𝛽 is negative but statistically indistin-
guishable from zero. The size effect remains strong after controlling for the reversal
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TABLE 12.10 Fama–MacBeth Regressions Analysis
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and reversal. Each column in the table presents results for a
different cross-sectional regression specification. The dependent variable in all specifications
is the one-month-ahead excess stock return. The independent variables are indicated in the
first column. Independent variables are winsorized at the 0.5% level on a monthly basis. The
table presents average slope and intercept coefficients along with t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average adjusted
R-squared and the number of data points, respectively, for the cross-sectional regressions.

(1) (2) (3) (4) (5) (6)

Re𝑣 −0.048 −0.053 −0.051 −0.055 −0.054 −0.063
(−10.07) (−10.78) (−10.65) (−10.85) (−11.08) (−12.54)

𝛽 −0.235 −0.099
(−1.67) (−0.61)

Size −0.106 −0.132
(−2.13) (−2.36)

BM 0.415 0.229
(5.13) (3.35)

Mom 0.007 0.006
(2.89) (3.05)

Intercept 0.760 0.977 1.182 0.439 0.628 1.114
(2.44) (3.66) (2.40) (1.41) (2.17) (2.52)

Adj. R2 0.01 0.03 0.02 0.02 0.02 0.05
n 4740 4423 4740 3389 4407 3368

effect, since both regression models that include Size as an independent variable
produce negative and statistically significant average coefficients. The value effect
also persists since the average coefficients on BM are positive and highly statisti-
cally significant. Finally, the results show that the relation between Mom and future
stock returns remains positive and statistically significant when Re𝑣 is included in the
regression model, indicating that the momentum phenomenon cannot be explained by
the reversal phenomenon.

We now examine the economic magnitude of the reversal phenomenon using
the average coefficient on Re𝑣 of −0.063 from the regressions that include all
of the control variables (specification (6)). We begin by multiplying the average
coefficient on Re𝑣 by the average cross-sectional standard deviation of reversal,
15.49%, taken from the summary statistics in Table 12.1. The result indicates that
a one-standard-deviation difference in reversal results in a highly economically
significant 0.98% (0.063 × 15.49%) difference in expected monthly returns. Mul-
tiplying the average coefficient by the difference in average reversal of 51.18%
(30.80% − (−21.38%), see Table 12.3) between stocks in the top and bottom
deciles of Re𝑣 indicates that the expected monthly return difference between such
stocks is 3.28%, which is quite similar to the 2.69% return difference found by
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the equal-weighted univariate portfolio analysis. Both approaches demonstrate that
the magnitude of the reversal phenomenon indicated by the average regression
coefficient of −0.063 is economically highly significant.

Decomposing Reversal and Momentum

In Section 12.4.1, we examined the returns of portfolios formed by sorting on the
Re𝑣 as well as the individual returns in months t − k for k ∈ {1, 2, … , 11}, which we
denote Rt−k. Here, we perform a similar investigation using FM regression analysis
instead of univariate portfolio analysis. In addition to examining the ability of each
of these previous returns to predict future returns individually, the FM regression
methodology allows us to examine the conditional predictive power of each of each
month’s return after controlling for the effects of each of the other month’s returns.

The results of these FM regression analyses, presented in Table 12.11, show that
when a univariate regression specification is used with only Rt−k as the independent
variable, there is a positive cross-sectional relation between Rt−k and stock returns in
month t + 1 for each value of k ∈ {2, 3, … , 11} (specifications (3) through (12)). In
all cases except that of Rt−9, this relation is at least marginally statistically significant.
The univariate regression analysis detects no relation between Rt−1 and stock returns
in month t + 1 (specification (2)). When all of the previous monthly returns are simul-
taneously included in the regression model (specification (13)), the results show that
each of the individual months carries information regarding the return in month t + 1
that is orthogonal to the information contained in any other month’s return. As docu-
mented throughout this chapter, the relation between the return in month t (Re𝑣) and
the excess return in month t + 1 (the dependent variable) is negative and highly statis-
tically significant. The results of the full-specification regressions indicate a negative
and marginally significant relation between Rt−1 and future stock returns. The rela-
tions between Rt−k and future stock returns for k ∈ {2, 3, … , 11} are all positive and
highly statistically significant. Interestingly, the return during month t − 11, which is
the return that is exactly 12 months prior to the dependent variable, appears to play a
special role, since the coefficient on Rt−11 is substantially larger and more statistically
significant than any of the other coefficients (with the exception of Re𝑣).

We now add 𝛽, Size, BM, and Mom, both individually and simultaneously, as con-
trols to the specification that includes all previous months’ returns and repeat the FM
regression analyses. The results of these FM regressions are presented in Table 12.12.
Adding 𝛽 as a control (specification (1)) does little to the coefficients on the other
independent variables although the coefficient on Rt−1 is no longer even marginally
significant. Interestingly, in this specification, the coefficient on 𝛽 becomes nega-
tive and highly statistically significant, with an average coefficient of −0.409 and a
corresponding t-statistic of −3.66. The results are similar when Size is used as a con-
trol (specification (2)), with Size carrying a negative and significant coefficient, as
expected. When BM is included as a control (specification (3)), the average coeffi-
cients on Rt−3, Rt−4, and Rt−5 are only marginally statistically significant, while the
negative average slope on Rt−1 becomes highly significant. The average coefficient
on BM remains positive and significant. When Mom is added to the specification,
the coefficients on Rt−k for k ∈ {2, 3, … , 10} become statistically indistinguishable
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TABLE 12.11 Fama–MacBeth Regression Analysis—Lagged Values of Reversal
This table presents the results of Fama and MacBeth (1973) regression analyses of the rela-
tion between expected stock returns and previous values of reversal. Each column in the table
presents results for a different cross-sectional regression specification. The dependent variable
in all specifications is the one-month-ahead excess stock return. The independent variables
are indicated in the first column. Rt−k is the stock return in month t − k. Independent variables
are winsorized at the 0.5% level on a monthly basis. The table presents average slope and inter-
cept coefficients along with t-statistics (in parentheses), adjusted following Newey and West
(1987) using six lags, testing the null hypothesis that the average coefficient is equal to zero.
The rows labeled Adj. R2 and n present the average adjusted R-squared and the number of data
points, respectively, for the cross-sectional regressions.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Re𝑣 −0.048 −0.060
(−10.07) (−12.08)

Rt−1 −0.000 −0.006
(−0.09) (−1.75)

Rt−2 0.012 0.010
(3.84) (3.32)

Rt−3 0.005 0.006
(1.68) (2.13)

Rt−4 0.007 0.008
(2.11) (2.63)

Rt−5 0.007 0.009
(1.73) (2.48)

Rt−6 0.010 0.009
(3.31) (3.37)

Rt−7 0.007 0.008
(1.72) (2.44)

Rt−8 0.008 0.010
(2.27) (3.00)

Rt−9 0.004 0.006
(1.09) (2.00)

Rt−10 0.010 0.010
(3.21) (3.57)

Rt−11 0.021 0.019
(6.64) (7.65)

Intercept 0.760 0.690 0.726 0.722 0.697 0.729 0.764 0.724 0.792 0.793 0.765 0.780 0.595
(2.44) (2.35) (2.52) (2.51) (2.49) (2.59) (2.71) (2.54) (2.85) (2.84) (2.73) (2.76) (2.39)

Adj. R2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
n 4740 4703 4665 4628 4591 4555 4519 4483 4447 4412 4377 4341 4306

from zero. This is not that surprising given that Mom is mechanically related to each
of these returns. Although it is perhaps surprising that Mom captures the effect of
each of these months’ returns, instead of the individual months’ returns explaining
the predictive power of Mom. The regression results show that the relation between
Mom and future stock returns persists after controlling for the returns in each of
the individual months that comprise the 11-month period covered by Mom (months
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TABLE 12.12 Fama–MacBeth Regression Analysis—Lagged Values of Reversal with
Controls
This table presents the results of Fama and MacBeth (1973) regression analyses of the rela-
tion between expected stock returns and previous values of reversal. Each column in the table
presents results for a different cross-sectional regression specification. The dependent variable
in all specifications is the one-month-ahead excess stock return. The independent variables are
indicated in the first column. Rt−k is the stock return in month t − k. Independent variables are
winsorized at the 0.5% level on a monthly basis. The table presents average slope and intercept
coefficients along with t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average coefficient is equal to zero. The rows
labeled Adj. R2 and n present the average adjusted R-squared and the number of data points,
respectively, for the cross-sectional regressions.

(1) (2) (3) (4) (5)

Re𝑣 −0.061 −0.061 −0.063 −0.061 −0.066
(−11.97) (−12.28) (−12.27) (−12.07) (−12.66)

Rt−1 −0.005 −0.005 −0.008 −0.013 −0.020
(−1.52) (−1.60) (−2.17) (−3.14) (−3.84)

Rt−2 0.011 0.012 0.007 0.003 −0.002
(3.73) (4.05) (2.23) (0.86) (−0.49)

Rt−3 0.006 0.007 0.006 −0.001 −0.005
(2.24) (2.61) (1.85) (−0.42) (−1.33)

Rt−4 0.008 0.010 0.007 0.001 −0.003
(2.62) (3.29) (1.91) (0.18) (−0.67)

Rt−5 0.009 0.010 0.006 0.002 −0.002
(2.88) (2.99) (1.79) (0.38) (−0.47)

Rt−6 0.008 0.010 0.007 0.002 −0.004
(3.00) (4.05) (2.47) (0.59) (−1.08)

Rt−7 0.009 0.009 0.008 0.001 −0.002
(2.63) (2.67) (2.23) (0.26) (−0.49)

Rt−8 0.010 0.012 0.009 0.002 −0.001
(3.26) (3.93) (2.63) (0.66) (−0.33)

Rt−9 0.006 0.007 0.005 −0.002 −0.005
(2.30) (2.68) (1.64) (−0.53) (−1.06)

Rt−10 0.010 0.010 0.007 0.002 −0.004
(3.95) (4.00) (2.51) (0.73) (−1.06)

Rt−11 0.019 0.017 0.017 0.012 0.003
(7.80) (7.29) (6.51) (4.19) (0.96)

𝛽 −0.409 −0.165
(−3.66) (−1.21)

Size −0.162 −0.136
(−3.85) (−2.75)

BM 0.372 0.229
(5.32) (3.34)

Mom 0.009 0.012
(4.46) (4.05)

Intercept 0.791 1.281 0.254 0.583 1.094
(3.27) (3.23) (1.03) (2.36) (2.64)

Adj. R2 0.05 0.05 0.05 0.04 0.06
n 4306 4306 3332 4306 3332
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t − 11 through t − 1). This result seems to indicate that it is stocks whose returns
were relatively persistent that are driving the momentum phenomenon. The results
once again demonstrate that the relation between Rt−11 and the return in month t + 1
is particularly strong. In this specification, the negative coefficient on Rt−1 remains
highly statistically significant. Finally, when all control variables are included in the
regression model (specification (5)), the results show that Re𝑣 and Rt−1 remain neg-
atively and significantly related to future stock returns. The coefficients on Rt−k for
k ∈ {2, 3, … , 10} remain statistically indistinguishable from zero. Here, Rt−11 also
carries an insignificant coefficient, indicating that the predictive power of Rt−11 that
is not captured by 𝛽, Size, BM, or Mom individually is captured by some linear com-
bination of these variables. Finally, consistent with the results presented throughout
this text, the average slope on 𝛽 is negative but statistically insignificant, the coeffi-
cient on Size is negative and highly significant, and the slopes of BM and Mom are
positive and highly statistically significant.

In summary, the FM regression results show that the reversal phenomenon is not
explained by relations between beta, size, book-to-market ratio, or momentum, and
future stock returns. Similarly, neither of these other phenomena is explained by the
reversal phenomenon. The returns in each month from t − 2 through t − 11 are indi-
vidually positively related to returns in month t + 1. However, the effects of each
of these individual months’ returns are captured by the combination of beta, size,
book-to-market ratio, and momentum.

12.6 THE REVERSAL FACTOR

As with the previous variables that have been shown to be related to stock returns, sev-
eral researchers have included a reversal-based factor in the risk models used to assess
the abnormal returns of portfolios or securities. The most commonly used reversal
factor is created in exactly the same manner as the value (HML) and momentum
(MOM) factors. Each month, all stocks in the CRSP database are sorted into two
groups based on market capitalization, with the breakpoint dividing the two groups
being the median market capitalization of all NYSE stocks. The same set of stocks
is broken into three groups based on reversal (Re𝑣), with the breakpoints being the
30th and 70th percentiles of Re𝑣 among NYSE stocks. Six value-weighted portfolios
are then formed based on the intersections of the two market capitalization-based and
three reversal-based groups of stocks. The monthly reversal factor, which we denote
STR for short-term reversal, is taken to be the average one-month-ahead future return
of the two low-reversal portfolios minus the average one-month-ahead future return
of the two high-reversal portfolios.2,3

2The literature has not adopted a universally recognized acronym for the reversal factor. STR, STRe𝑣,
ST_Re𝑣, and Re𝑣 are commonly used.
3Daily and monthly returns for the reversal factor are available from Kenneth French’s data library at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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During the period from July 1926 through December 2012, the STR factor gener-
ates a mean monthly return (log return) of 0.75% (0.68%) with a monthly standard
deviation of 3.50% (3.43%), resulting in an annualized Sharpe ratio of 0.74 (0.69).
Over the entire 86-and-a-half year period, the monthly compounded STR factor return
(log return) is 121,104% (710%), which is substantially higher than the corresponding
values for the excess market return (MKT factor) or the size (SMB), book-to-market
(HML), or momentum-based (MOM) factors. The STR factor has a correlation of 0.21
with the MKT factor, and its correlations with the SMB, HML, and MOM factors are
0.16, 0.04, and −0.19, respectively. Subjecting the STR factor to the FFC four-factor
risk model, we find a risk-adjusted alpha of 0.77% per month with a Newey and West
(1987) adjusted (six lags) t-statistic of 6.37, indicating that the STR factor generates
economically large and highly statistically significant returns after accounting for the
effect of the factors included in the FFC model. The STR factor has a sensitivity of
0.09 (t-statistic = 2.27) to the MKT factor, and statistically insignificant estimated
sensitivities of 0.10 (t-statistic = 1.49) to the SMB factor, −0.06 (t-statistic = −0.83)
to the HML factor, and −0.11 (t-statistic = −1.39) to the MOM factor.

Figure 12.1 plots the cumulative returns of the STR factor from July 1926 through
December of 2012. The solid line, whose scale is presented on the left side of the plot,

Compounded excess return (left axis)

Cumulative log excess return (right axis)

C
u
m

u
la

ti
v
e
 S
TR

0
%

1
8
2
%

3
6
5
%

5
4
7
%

7
2
9
%

−3
6
%

3
6
,7

4
0
%

7
3
,5

1
6
%

1
1
0
,2

9
2
%

1
4
7
,0

6
8
%

1
9
3
6
–
0
2
–
2
9

1
9
4
5
–
0
9
–
3
0

1
9
5
5
–
0
4
–
3
0

1
9
6
4
–
1
1
–
3
0

1
9
7
4
–
0
7
–
3
1

1
9
8
4
–
0
2
–
2
9

1
9
9
3
–
0
9
–
3
0

2
0
0
3
–
0
4
–
3
0

1
9
2
6
–
0
7
–
3
1

2
0
1
2
–
1
2
–
3
1

Date

Figure 12.1 Cumulative Returns of STR Portfolio.
This figure plots the cumulate returns of the STR factor for the period from July 1926 through
December 2012. The compounded excess return for month t is calculated as 100 times the
cumulative product of one plus the monthly return up to and including the given month. The
cumulate log excess return is calculated as the sum of the monthly log excess returns up to and
including the given month
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represents the cumulative compounded return of the factor. The dashed line presents
the cumulative sum of monthly log-returns, and its scale is shown on the right side of
the chart. As is evident in the chart, the STR factor does not exhibit drawdowns that
are as extreme as those associated with the other factors. The deepest drawdown for
the reversal factor began in January 1927. From this point until the end of Novem-
ber 1929, the reversal factor lost almost 36%. The previous high water mark was
regained by the end of October 1931, not quite five years after the drawdown began.
While this drawdown is the largest from previous peak to trough, it is only the third
most prolonged drawdown experienced by the STR factor. The longest, but only the
fifth largest, drawdown began at the end of September 1989 and ended in July of
1997. The largest cumulative loss experienced during period drawdown was realized
in April 1993, at which point the STR factor was down 22% from its previous high.
The second largest and fourth longest drawdown for the STR factor began at the end
of July 1999. From then until December 2000, the STR portfolio lost more than 33%.
The previous high value was regained by the end of March 2002, a mere 32 months
after the drawdown began. Finally, it is worth noting that as of the end of the sam-
ple used in this analysis, the STR factor was in the midst of a large drawdown that
will quite possibly prove to be the longest, and potentially the deepest, drawdown
experienced by the portfolio. The all-time high for the STR factor was realized at the
end of February 2007. By the end of May 2009 the portfolio had lost 32% from this
previous high, making this drawdown, as it stands now, the third largest drawdown
ever experienced by the reversal factor mimicking portfolio. As can be seen in the
graph, as of December 2012, 70 months after the drawdown began, the cumulative
compounded return of the STR portfolio remains more than 17% below its previous
peak.

Despite the strong empirical support for, and wide acceptance of, the reversal phe-
nomenon, the STR factor is used substantially less frequently than the MKT , SMB,
HML, and MOM factors that comprise the Fama and French (1993) and Carhart
(1997) four-factor model, which remains the standard in the empirical asset pricing
literature. In most cases when the STR factor is used, it is appended to the four-factor
model and included primarily as a robustness check instead of the main benchmark
model.

12.7 SUMMARY

In this chapter, we have discussed and empirically examined the reversal phenomenon
documented by Jegadeesh (1990) and Lehmann (1990). The main empirical result is
that reversal, measured as the return of a stock in the most recent month, has a strong
negative relation with the next month’s return. The result is largely driven by small
stocks, as the results of value-weighted portfolios are substantially weaker than those
of equal-weighted portfolios. While not as frequently used as the previously discussed
factors, the reversal factor mimicking portfolio, denoted STR, generates larger returns
with smaller and less prolonged drawdowns than the portfolios mimicking the market,
size, value, and momentum factors.
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LIQUIDITY

In this chapter, we examine the effect of liquidity on expected security returns. While
it is difficult to provide a precise definition of liquidity, a security’s liquidity refers to
the ease with which the security can be bought and/or sold. Securities that are difficult
or expensive to transact in are considered illiquid, while securities for which the cost
of transacting is small or negligible are more liquid.

Examination of the role of liquidity in the pricing of securities can be viewed as
an examination of one of the key assumptions of the Capital Asset Pricing Model
(CAPM) of Sharpe (1964), Lintner (1965), and Mossin (1966) and the arbitrage pric-
ing theory of Ross (1976), each of which assumes that all securities are perfectly
liquid, meaning that transaction costs are zero. Most practitioners and academics,
however, acknowledge the shortcomings of this assumption.

Several theoretical and empirical papers have examined the role of liquidity in
determining expected stock returns.1 In a seminal study, Amihud and Mendelson
(1986) generate a theoretical model that predicts a positive relation between the
bid-ask spread, one of the most commonly used measures of liquidity, and expected
security returns.2 Amihud and Mendelson (1989) empirically test this prediction and
find that, consistent with the prediction of a liquidity premium, the bid–ask spread
has a positive cross-sectional relation with future stock returns after controlling
for other variables related to expected stock returns, such as market beta, market

1Holden et al. (2014) provide a comprehensive review of empirical analyses of liquidity.
2The bid–ask spread is a measure of illiquidity, as securities with higher bid–ask spreads are less liquid.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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capitalization (Banz (1981)), and idiosyncratic volatility (Levy (1978), Merton
(1987)).3 In perhaps the most widely cited article on the relation between liquidity
and expected stock returns, Amihud (2002) generates a measure of stock illiquidity
that requires only return and volume data to calculate and shows that illiquidity
is positively related to expected market returns in both the time series and cross
section. Brennan and Subrahmanyam (1996) find similar results using a measure of
liquidity generated from intraday data. Acharya and Pedersen (2005) demonstrate
theoretically that liquidity shocks should be positively correlated with contempo-
raneous returns and negatively correlated with future returns.4,5 Easley, Hvidkjaer,
and O’Hara (2002) suggest that some measures of liquidity may be capturing the
amount of information-based trading in a stock and show that their measure of
information-based trading is positively related to expected stock returns. Bali, Peng,
Shen, and Tang (2014) find that shocks to stock-level liquidity are positively related
to future stock returns and attribute this predictability to investor underreaction and
inattention. Chordia et al. (2001b) document a negative relation between liquidity
volatility and expected returns. Pereira and Zhang (2010) provide a theoretical
rationale for this relation.

Many other studies have examined the role of aggregate liquidity in the pricing of
securities. Chordia, Roll, and Subrahmanyam (2000) document substantial common-
ality in individual stock liquidity, meaning that individual stock liquidity is highly
related to aggregate market liquidity. They find that this effect aggregates to the port-
folio level, indicating that shocks to portfolio-level liquidity cannot be diversified
away, which supports the claim that an aggregate liquidity factor plays a role in
asset pricing. Hasbrouck and Seppi (2001) also find commonality in the liquidity
of the stocks that comprise the Dow Jones Industrial Average. Pastor and Stam-
baugh (2003) demonstrate that an aggregate liquidity factor plays a strong role in
determining both cross-sectional variation in individual stock returns and time-series
variation in the market risk premium.6 Kamara, Lou, and Sadka (2008) demonstrate
that cross-sectional variation in liquidity commonality has decreased over time and
associate this phenomenon with similar patterns in systematic risk and changes in
institutional ownership.

Additional work has further characterized the role of liquidity in the financial
markets. Chordia, Roll, and Subrahmanyam (2001a) document several properties of
aggregate market level liquidity in U.S. equities. They find that liquidity is low during
market downturns, periods of high market volatility, and on Fridays; that liquidity

3Subsequent to the publication of Amihud and Mendelson (1989), additional papers on the relations
between expected returns and each of market capitalization and idiosyncratic volatility were published.
Fama and French (1992, 1993) demonstrate a strong negative relation between market capitalization and
future stock returns. Ang et al. (2006) demonstrate a strong negative relation between idiosyncratic volatil-
ity and future stock returns, contrary to the theoretical predictions of Levy (1978) and Merton (1987).
4Several other studies such as Eleswarapu (1997), Brennan, Chordia, and Subrahmanyam (1998), Datar,
Naik, and Radcliffe (1998) and Hasbrouck (2009) have documented a positive premium associated with
illiquidity.
5Eleswarapu and Reinganum (1993) demonstrate that this phenomenon has a seasonal component.
6Other studies such as Huberman and Halka (2001) document time variation in liquidity.
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is high prior to major macroeconomic announcements and on Tuesdays; and that
daily aggregate liquidity is negatively serially correlated. Chordia, Roll, and Sub-
rahmanyam (2002) find that imbalances in buy and sell orders result in decreased
liquidity and in some cases lead to reversal patterns in the daily returns of individual
stocks. Chordia, Roll, and Subrahmanyam (2008) find that increased liquidity leads
to increased arbitrage activity and, in turn, enhanced market efficiency.

In this chapter, we discuss the most commonly used measure of stock-level liq-
uidity in empirical asset pricing research. We show that this measure, developed by
Amihud (2002), has a strong positive relation with expected stock returns. We then
discuss the aggregate liquidity factor generated by Pastor and Stambaugh (2003). This
factor is frequently used to augment the Fama and French (1993) and Carhart (1997)
four-factor model.

13.1 MEASURING LIQUIDITY

Many different measures of liquidity have been put forth in the finance literature.
Roll (1984) proposes that two times the square root of the negative of the covariance
between successive prices changes in a given stock measures the effective spread,
which is defined as the actual (not quoted) cost investors pay for trading in the given
stock, and finds that this measure is negatively related in the cross section to mar-
ket capitalization, which is known to be positively related to liquidity. Chordia et al.
(2001a) define several different measures of illiquidity. They take the quoted spread
to be the difference between the bid and the ask price, which they measure both in
dollar terms and as a percentage of the security price. The effective spread is taken
to be the difference between the midpoint of the best bid and best offer prices and
the execution price of a trade. Once again, the effective spread is calculated in dollar
terms and as a percentage of price. Market depth is calculated as the average of the
number of shares available at the best bid and the best offer. Dollar depth is the aver-
age of the best bid price times the number of shares available at that price and the
best offer price times the number of shares available at the offer price. Chordia et al.
(2001a) also look at volume, dollar volume, and the number of trades as measures of
liquidity.

In this chapter, we focus on the Amihud (2002) measure of liquidity. While, by
Amihud’s own admission, this measure is likely not the most accurate of all mea-
sures of liquidity, it has several benefits not offered by many of the other measures.
First, calculation of the Amihud measure requires only daily return, volume, and price
data, whereas other (potentially more accurate) measures of liquidity such as those of
Chordia et al. (2001a) and Brennan and Subrahmanyam (1996) require intraday data.
Second, given the minimal data requirements for the Amihud measure, the necessary
data are available for a much larger set of assets and generally longer time series than
the data required for other measures. This permits much more comprehensive stud-
ies of the relation between liquidity and expected security returns. For these reasons,
combined with its efficacy, the Amihud (2002) measure of liquidity is the most widely
used liquidity variable in the empirical asset pricing literature.
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Amihud’s measure is actually a measure of illiquidity, not liquidity, thus more
liquid securities will have lower values and less liquid securities will have higher
values. The main idea behind the measure is to calculate the effect of volume on the
magnitude of the return of the security. If a security realizes a large absolute return
on small volume, this indicates that the stock is quite illiquid, as a small amount of
trading had a substantial impact on the price. However, if a security trades at high
volume and the price impact is quite small, as reflected in a small magnitude of the
return, then the security is considered quite liquid. Accordingly, Amihud calculates
illiquidity as the ratio of the absolute value of the daily security return divided by the
daily dollar volume traded in the security, averaged over all days in the estimation
period. Formulaically, the illiquidity measure is defined as

Illiqi =
1
D

D∑
d=1

|Ri,d|
VOLDi,d

(13.1)

where Ri,d is the return of stock i on day d measured as a decimal (0.01 is a 1% return);
VOLDi,d is the dollar volume of stock i traded on day d, calculated as the closing price
of the stock times the number of shares traded on the given date, measured in millions
of dollars; and D is the number of days in the estimation period. When calculating
Illiq, Ri,d is most commonly taken from the RET field in the Center for Research
in Security Prices (CRSP) daily stock file. The volume and price used to calculate
VOLD are taken from the VOL and PRC fields, respectively, in CRSP’s daily stock
file. Since VOL is recorded in shares and PRC is recorded in dollars, VOLD is taken
to be the product of these two fields divided by one million. Days where either the
PRC field or the VOL field is nonpositive are omitted from the calculation.7 The
summation is taken over all trading days in the calculation period, as described in the
next paragraph. The value of Illiq can be interpreted as the percentage price impact
of trading one million dollars ($10,000), where the percentage impact is measured as
a decimal (in percent).

To calculate Illiq for stock i in month t, Amihud (2002) uses one year’s worth of
daily data covering the 12-month period including months t − 11 through t, inclusive.
Different studies, however, have adopted different measurement periods.8 We exam-
ine four measures of illiquidity in the empirical analyses presented throughout this
chapter. Specifically, we calculate the Amihud (2002) measure of illiquidity using
one (Illiq1M), three (Illiq3M), six (Illiq6M), and 12 months (Illiq12M) worth of data up
to and including the month t (the month for which Illiq is being calculated). As will
be seen in Section 13.2, the distribution of Illiq is highly skewed. For this reason, we
also use log-transformed versions of the different illiquidity variables. We therefore

7The reasons for negative values in the PRC field are discussed in Section 9.1.
8Amihud (2002) also calculates Illiq for each stock during each calendar year and holds the value of
Illiq for any given stock constant for an entire year. Most subsequent studies that employ this measure
calculate Illiq at the end of each month t using k months of daily data covering months t − k + 1 through
t, inclusive, and therefore update their values of Illiq on a monthly basis. In Fama and MacBeth (1973)
regression analyses, Amihud (2002) also scales Illiq by its cross-sectional average in the given month. This
approach is not employed in most studies.
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define ln Illiq1M to be the natural log of one plus Illiq1M . ln Illiq3M , ln Illiq6M , and
ln Illiq12M are defined analogously using Illiq3M , Illiq6M , and Illiq12M , respectively,
instead of Illiq1M . We require a minimum of 15, 50, 100, and 200 valid daily obser-
vations to calculate Illiq1M , Illiq3M , Illiq6M , and Illiq12M , respectively. A valid daily
observation has a nonmissing return (RET field) as well as positive volume (VOL
field) and a nonnegative closing price (PRC field) in CRSP’s daily stock file.

13.2 SUMMARY STATISTICS

In Table 13.1, we present summary statistics for the measures of illiquidity using
our sample of U.S. stocks during the 1963 through 2012 period. The results show
that in the average month, Illiq1M has a cross-sectional mean and median of 3.79 and
0.26, respectively, with a cross-sectional standard deviation of 27.73. In the average
month, Illiq1M has cross-sectional skewness of 22.15 and excess kurtosis of 827.12,
indicating that the distribution of Illiq1M is highly positively skewed and leptokurtic.
This is driven in large part by a small number of stocks that are extremely illiquid.
In the average month, the 95th percentile of Illiq1M is 13.39, which is less than 0.35
standard deviations above the mean. The maximum value of Illiq1M in the average
month of 1174.73 is more than 42 standard deviations above the mean. The existence
of a small number of extremely large values of Illiq1M raise concerns about the
reliability of results of statistical analyses that are sensitive to extreme data points,
such as correlation and regression analyses. There are 3604 stocks with valid values
of Illiq1M in the average month.

TABLE 13.1 Summary Statistics
This table presents summary statistics for variables measuring illiquidity using the CRSP sam-
ple for the months t from June 1963 through November 2012. Each month, the mean (Mean),
standard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min), fifth per-
centile (5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th percentile
(95%), and maximum (Max) values of the cross-sectional distribution of each variable is cal-
culated. The table presents the time-series means for each cross-sectional value. The column
labeled n indicates the average number of stocks for which the given variable is available.
Illiq1M , Illiq3M , Illiq6M , and Illiq12M are the ratio daily stock return, measured as a decimal,
divided by the daily dollar trading volume, measured in millions of dollars, averaged over one,
three, six, and 12 months, respectively. ln Illiq1M , ln Illiq3M , ln Illiq6M, and ln Illiq12M are the
natural logs of Illiq1M, Illiq3M, Illiq6M, and Illiq12M, respectively.

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

Illiq1M 3.79 27.73 22.15 827.12 0.00 0.01 0.05 0.26 1.35 13.39 1174.73 3604
Illiq3M 2.88 18.03 20.09 684.53 0.00 0.01 0.05 0.24 1.17 10.70 687.71 3438
Illiq6M 2.76 15.75 18.35 568.03 0.00 0.01 0.05 0.25 1.19 10.65 560.23 3370
Illiq12M 2.70 14.01 16.51 451.68 0.00 0.01 0.05 0.26 1.23 10.81 452.60 3247
ln Illiq1M 0.57 0.84 2.50 8.08 0.00 0.01 0.05 0.20 0.73 2.39 6.22 3604
ln Illiq3M 0.53 0.79 2.50 8.07 0.00 0.01 0.05 0.20 0.68 2.24 5.85 3438
ln Illiq6M 0.54 0.79 2.43 7.50 0.00 0.01 0.05 0.20 0.70 2.26 5.72 3370
ln Illiq12M 0.55 0.79 2.34 6.81 0.00 0.01 0.05 0.21 0.72 2.29 5.59 3247
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The cross-sectional distributions of Illiq3M , Illiq6M , and Illiq12M exhibit several
similar characteristics to the distribution of Illiq1M , although the effects of extreme
data points become a little bit less severe as the length of the measurement period
increases. The maximum values of the illiquidity measures decrease as the measure-
ment period gets longer, since Illiq3M , Illiq6M , and Illiq12M have average monthly
maximum values of 687.71, 560.23, and 452.60, respectively. Similarly, the mean,
standard deviation, skewness, and kurtosis of these measures also decrease with
extended sample periods. The mean values decrease from 2.88 for Illiq3M to 2.76 for
Illiq6M and 2.70 for Illiq12M . The standard deviations of Illiq3M , Illiq6M , and Illiq12M

are 18.03, 15.75, and 14.01, respectively. The average cross-sectional skewness of
Illiq3M is 20.09. The average skewness decreases to 18.35 for Illiq6M and 16.51 for
Illiq12M . Finally, Illiq3M , Illiq6M , and Illiq12M have average cross-sectional excess
kurtosis of 684.53, 568.03, and 451.68, respectively.

The summary statistics for the log-transformed measures of illiquidity (ln Illiq1M ,
ln Illiq3M , ln Illiq6M , and ln Illiq12M) demonstrate that applying the log transforma-
tion has very little effect on values in the left tail of the distributions of these variables,
but substantially reduces the magnitudes of values in the right tail. The effect is a sub-
stantial reduction in the mean, standard deviation, skewness, and excess kurtosis of
each of these variables relative to their untransformed counterparts. The mean values
of the log-transformed variables of 0.57 for ln Illiq1M , 0.53 for ln Illiq3M , 0.54 for
ln Illiq6M , and 0.55 for ln Illiq12M are all quite similar. The cross-sectional standard
deviations of these variables also fall in a narrow range, with ln Illiq1M having an
average standard deviation of 0.84 and ln Illiq3M , ln Illiq6M , and ln Illiq12M all hav-
ing standard deviations of 0.79 in the average month. The cross-sectional skewness
of the log-transformed measures decreases from 2.50 for ln Illiq1M and ln Illiq3M to
2.43 for ln Illiq6M and 2.34 for ln Illiq12M Finally, ln Illiq1M has an average excess
kurtosis of 8.08 compared to 8.07 for ln Illiq3M , 7.50 for ln Illiq6M , and 6.81 for
ln Illiq12M . Thus, while applying the log transformation certainly reduces the skew-
ness and kurtosis of the distribution of the illiquidity measures, the results indicate
that even ln Illiq remains highly positively skewed and leptokurtic.

13.3 CORRELATIONS

The time-series averages of monthly cross-sectional correlations between the
different measures of liquidity, market beta (𝛽), size (Size, natural log of market
capitalization), book-to-market ratio (BM), momentum (Mom), and reversal (Re𝑣)
are shown in Table 13.2. Each of the variables is winsorized at the monthly level
before performing the analysis. Pearson product–moment correlations are presented
in the below-diagonal entries, and Spearman rank correlations are presented in the
above-diagonal entries.

We first examine the correlations between Illiq calculated using different mea-
surement periods. The table indicates that regardless of measurement period, the
values of Illiq are highly correlated in the cross section. The Pearson correlations
range from 0.81 between Illiq1M and Illiq12M to 0.95 between Illiq6M and Illiq12M as
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TABLE 13.2 Correlations
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (below-diagonal entries) and Spearman rank (above-diagonal entries) correlations
between pairs of variables measuring illiquidity as well as 𝛽, Size, BM, Mom, and Re𝑣.
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Illiq1M 0.98 0.97 0.96 1.00 0.98 0.97 0.96 −0.32 −0.92 0.25 −0.24 −0.08
Illiq3M 0.91 0.99 0.98 0.98 1.00 0.99 0.98 −0.30 −0.93 0.24 −0.23 −0.05
Illiq6M 0.87 0.95 0.99 0.97 0.99 1.00 0.99 −0.30 −0.93 0.25 −0.20 −0.05
Illiq12M 0.81 0.89 0.95 0.96 0.98 0.99 1.00 −0.30 −0.93 0.25 −0.14 −0.04
ln Illiq1M 0.81 0.79 0.78 0.75 0.98 0.97 0.96 −0.32 −0.92 0.25 −0.24 −0.08
ln Illiq3M 0.78 0.83 0.82 0.79 0.96 0.99 0.98 −0.30 −0.93 0.24 −0.23 −0.05
ln Illiq6M 0.75 0.80 0.83 0.82 0.93 0.98 0.99 −0.30 −0.93 0.25 −0.20 −0.05
ln Illiq12M 0.71 0.77 0.80 0.83 0.90 0.94 0.97 −0.30 −0.93 0.25 −0.14 −0.04
𝛽 −0.15 −0.15 −0.15 −0.15 −0.27 −0.25 −0.26 −0.25 0.33 −0.23 0.04 −0.01
Size −0.42 −0.44 −0.45 −0.46 −0.69 −0.70 −0.71 −0.71 0.31 −0.26 0.25 0.11
BM 0.18 0.18 0.20 0.21 0.26 0.25 0.26 0.27 −0.19 −0.27 0.04 0.03
Mom −0.16 −0.16 −0.14 −0.09 −0.22 −0.20 −0.17 −0.10 0.07 0.18 0.02 0.04
Re𝑣 −0.04 −0.01 −0.01 −0.00 −0.05 −0.02 −0.01 −0.00 −0.02 0.07 0.02 0.02

well as between Illiq3M and Illiq6M . While there is a mechanical component of these
correlations, they are much too high to be driven by this. The Spearman rank correla-
tions are even higher, ranging from 0.96 to 0.99. This indicates that the length of the
measurement period used to calculate Illiq has almost no effect on the cross-sectional
ordering of stocks by illiquidity. The difference between the Pearson and Spearman
correlations indicates that the effect of a few extreme data points may be substantial.

The correlations between the log-transformed measures and the corresponding
untransformed measures range from 0.81 between Illiq1M and ln Illiq1M to 0.83
between each of Illiq3M and ln Illiq3M , Illiq6M and ln Illiq6M , and Illiq12M and
ln Illiq12M . Since the transformed and untransformed measures are increasing
functions of one another, these correlations capture the effect of the nonlinearity of
the log transformation. The correlations between these pairs of variables are low
enough to raise concern that the log-transformed variables will generate somewhat
different results in linear analyses such as Fama and MacBeth (1973) regressions
than the untransformed variables. The Spearman correlations between a given Illiq
variable and its log-transformed version ln Illiq are all, by construction, one.

Examining the Pearson correlations between the log-transformed measures, we
see that these correlations are in all cases higher than the correlation between the
corresponding pair of untransformed variables. For example, the correlation between
Illiq1M and Illiq12M in the average month is 0.81 compared to an average correla-
tion of 0.90 between ln Illiq1M and ln Illiq12M . The increased correlation when using
the log-transformed measures is additional evidence that the influence of extreme
data points in the untransformed versions may have an undesired impact on statisti-
cal analyses. By necessity, the Spearman correlations between the log-transformed
measures are identical to the Spearman correlations for the corresponding pairs of
untransformed variables.



�

� �

�

CORRELATIONS 279

Turning now to the correlations between the measures of illiquidity and other
stock-level characteristics, the results show that illiquidity is negatively related to
beta (𝛽). The Pearson correlations between Illiq and 𝛽 are all −0.15, whereas the
correlations between 𝛽 and ln Illiq range from −0.25 to −0.27. The Spearman rank
correlations between 𝛽 and the illiquidity measures range from −0.30 to −0.32. The
fact that the correlations between 𝛽 and the untransformed measures (Illiq) are sub-
stantially lower in magnitude than the correlations between 𝛽 and the log-transformed
measures (ln Illiq) indicates that the controlling for 𝛽 in linear regression analyses
using Illiq may not capture the nature of the relation between 𝛽 and illiquidity, making
the control ineffective. The fact that the Spearman rank correlations are reasonably
similar to the Pearson product–moment correlations when using ln Illiq indicates that
the relation between 𝛽 and ln Illiq is probably reasonably linear.

Illiquidity has a strong negative relation with stock size. The Pearson
product–moment correlations between Illiq and Size are between −0.42 and
−0.46. The Pearson correlations between ln Illiq and Size are substantially higher in
magnitude, ranging from −0.69 to −0.71. All of these correlations are substantially
lower than the Spearman rank correlations between the illiquidity measures and Size,
which are all between −0.92 and −0.93. The Spearman rank correlations indicate
that illiquidity and size have a strong negative and highly monotonic relation. The
substantial decrease in the magnitude of these correlations when using the Pearson
measure indicates that the relation between stock size and illiquidity may not be
linear. The decreases in the magnitude of the correlations when using Illiq instead of
ln Illiq indicate that for linear analyses, ln Illiq is likely the better variable. It should
be noted that the strong negative correlation between illiquidity and size is somewhat
mechanical. Illiq is calculated by taking the daily average of absolute stock return
divided by dollar trading volume. Dollar trading volume is highly cross-sectionally
correlated to stock size, with large stocks having higher dollar trading volume than
small stocks. Therefore, the calculation of Illiq effectively puts stock size in the
denominator, thereby inducing a strong negative serial correlation.

The correlation analyses find a positive relation between illiquidity and
book-to-market ratio. The Pearson correlations between Illiq and BM range from
0.18 to 0.21 depending on the measurement period used to calculate Illiq. The
Pearson correlations between ln Illiq and BM are somewhat higher, ranging from
0.25 to 0.27. Finally, the average Spearman correlations between the illiquidity
variables and BM are all either 0.24 or 0.25, very similar in magnitude to the
correlations between ln Illiq and BM. There is no evidence, therefore, that the
effectiveness of controlling for the relation between BM and future stock returns in
analyses of the relation between illiquidity and future stock returns will be hampered
by a nonlinear relation between BM and illiquidity, especially if ln Illiq is used as
the measure of illiquidity.

Illiquidity exhibits a negative relation with Mom. This negative relation is stronger
when shorter measurement periods are used in the calculation of illiquidity. The mag-
nitudes of the correlations are also slightly stronger when using ln Illiq instead of
Illiq. The Spearman rank correlations are, in all cases, negative and larger in magni-
tude than the corresponding Pearson correlations. The Spearman correlations range
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from −0.24 between Illiq1M (or ln Illiq1M) and Mom to −0.14 between Illiq12M (or
ln Illiq12M) and Mom, and exhibit the same decreasing pattern as shorter measurement
periods are used in the calculation of Illiq.

Finally, the results of the correlation analyses indicate a small negative correlation
between illiquidity and Re𝑣. This correlation is highest in magnitude when illiquidity
is measured using one month of data, with the magnitude decreasing as the measure-
ment period is extended. In all cases, however, the magnitude of the correlations is
quite small. The Pearson correlation between Illiq1M and Re𝑣 is only −0.04. The
Pearson correlation between ln Illiq1M and Re𝑣 of −0.05 is only slightly larger in
magnitude. Finally, the Spearman rank correlation between Illiq1M (or ln Illiq1M) and
Re𝑣 is −0.08. This is the highest (in magnitude) average correlation between any of
the measures of illiquidity and Re𝑣, regardless of which measure of correlation is
used. Thus, while there may be a slight negative relation between illiquidity and Re𝑣,
this relation does not appear to be strong.

In summary, the results indicate that length of the measurement period used to
calculate illiquidity is unlikely to have substantial impact on the results of empirical
analyses, as measures calculated using different amounts of data are cross-sectionally
very similar. The log-transformed measures (ln Illiq) appear to have stronger lin-
ear relations with other predictors of future stock returns, indicating the possibility
that using ln Illiq, instead of Illiq, in regression analyses, will produce more reliable
results, especially when examining the relation between illiquidity and future stock
returns after controlling for other effects. Finally, the fact that the Spearman corre-
lations tend to be a little bit higher than the Pearson correlations indicates that, even
when using the log-transformed measures, the relations between illiquidity and the
other predictors of stock returns may be somewhat nonlinear.

13.4 PERSISTENCE

We next examine the persistence of Illiq and ln Illiq. Table 13.3 presents the results
of persistence analyses of the Illiq and ln Illiq variables. Persistence is calculated
for each variable at lags of one, three, six, 12, 24, 36, 48, 60, and 120 months. The
missing entries in the table represent cases where the measurement period is longer
than the lag. These values are omitted because persistence in such cases is likely
to be in large part mechanical. The table shows that Illiq1M , Illiq3M , Illiq6M , and
Illiq12M have persistence 0.80, 0.84, 0.81, and 0.75 when measured one, three, six, and
12 months apart, respectively, indicating that Illiq is a highly persistent variable. Eco-
nomically this means that historical illiquidity is a very strong predictor of future
illiquidity, making the historical data-based value a useful measure in analyses aimed
at discerning the relation between liquidity and expected returns. The persistence
of the log-transformed measures of illiquidity (ln Illiq1M , ln Illiq3M , ln Illiq6M , and
ln Illiq12M) is even stronger than that of the untransformed variables, as the one-,
three-, six-, and 12-month measures produce persistence values of 0.91, 0.92, 0.91,
and 0.87 when measured at lags of one, three, six, and 12 months, respectively. This
result is quite reassuring since, given the distribution of Illiq, it would seem possible
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TABLE 13.3 Persistence
This table presents the results of persistence analyses of variables measuring illiquidity. Each
month t, the cross-sectional Pearson product–moment correlation between the month t and
month t + 𝜏 values of the given variable is calculated. The table presents the time-series aver-
ages of the monthly cross-sectional correlations. The column labeled 𝜏 indicates the lag at
which the persistence is measured.

𝜏 Illiq1M Illiq3M Illiq6M Illiq12M ln Illiq1M ln Illiq3M ln Illiq6M ln Illiq12M

1 0.80 0.91
3 0.74 0.84 0.87 0.92
6 0.67 0.76 0.81 0.83 0.88 0.91

12 0.58 0.64 0.68 0.75 0.76 0.80 0.83 0.87
24 0.45 0.49 0.53 0.57 0.66 0.69 0.71 0.75
36 0.38 0.41 0.43 0.47 0.60 0.62 0.64 0.67
48 0.33 0.36 0.38 0.42 0.56 0.57 0.59 0.62
60 0.31 0.33 0.35 0.38 0.53 0.54 0.56 0.59

120 0.24 0.27 0.28 0.30 0.47 0.47 0.49 0.51

that a very small number of stocks with very large but persistent values of Illiq would
be driving the apparent persistence of the untransformed measure. The increased per-
sistence of ln Illiq compared to Illiq indicates that this is not the case.

The results show that at any given lag, measures of illiquidity that are calculated
using longer measurement periods are more persistent than measures calculated using
shorter measurement periods. The table also shows that the persistence values of the
log-transformed (ln Illiq) measures are all substantially higher than the corresponding
persistence values for the untransformed (Illiq) measures. This is potentially an indi-
cation that the log-transformed measures are better at capturing a cross-sectionally
persistent characteristic and that the untransformed measure may be a somewhat
noisy, especially when the measured value of Illiq is extreme. Overall, the results
of the persistence analyses indicate that the log-transformed measures may be more
effective at capturing individual stock-level liquidity.

13.5 LIQUIDITY AND STOCK RETURNS

We now proceed to examine the relation between liquidity and future stock returns.
We remind the reader that Illiq and ln Illiq measure illiquidity and are thus inversely
related to liquidity. The finding of a positive relation between Illiq (or ln Illiq) and
future stock returns, therefore, indicates that less liquid stocks command higher
expected returns while more liquid stocks command lower expected returns.

13.5.1 Univariate Portfolio Analysis

We begin our investigation of the cross-sectional relation between liquidity and
expected returns with univariate sort portfolio analyses. Each month, we sort all
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stocks in the sample into decile portfolios based on an ascending sort of each of the
Illiq variables.9 The results of the portfolio analyses are shown in Table 13.4.

In Panel A, we present equal-weighted average values of Illiq12M , 𝛽, MktCap, BM,
Mom, and Re𝑣 for each of the Illiq12M-sorted decile portfolios. By construction, aver-
age Illiq12M increases monotonically from 0.01 for the first decile portfolio to 21.29
for the 10th decile portfolio. Consistent with the correlation analyses that found a
negative relation between 𝛽 and Illiq12M , the portfolio analysis indicates that average
𝛽 decreases monotonically from 1.11 for stocks in the first Illiq12M decile to 0.60 for
stocks in Illiq12M decile 10. The portfolio analysis detects a very strong negative rela-
tion between illiquidity and market capitalization. Stocks in the first decile of Illiq12M

have an average market capitalization of $10.3 billion. In decile two of Illiq12M , the
average value of MktCap decreases by more than 85% to only $1.5 billion. The aver-
age MktCap of stocks in the third decile portfolio of $690 million is less than half that
of the second decile portfolio. The decreasing pattern continues. The average stock
in Illiq12M decile seven has a market capitalization of only $102 million, less than 1%
of the average MktCap for stocks in Illiq12M decile one. Finally, stocks in the 10th
decile portfolio have an average market capitalization of only $17 million, less than
two-tenths of a percent of the average MktCap for stocks in the decile one portfolio.
While the strength of the relation between MktCap and Illiq12M is striking, perhaps it
should not be surprising, as it is well known that small stocks tend to be illiquid and
large stocks tend to be liquid.

The results also indicate a positive relation between illiquidity and book-to-market
ratio. The average value of BM increases monotonically from 0.64 for stocks in the
first Illiq12M-sorted decile portfolio to 1.47 for stocks in the 10th decile portfolio. The
average values of Mom increase slightly from 15.80 for the first portfolio to 17.25
for the third portfolio and then decrease monotonically across decile portfolios three
through 10. Stocks in the highest illiquidity decile have an average Mom of 7.02,
substantially lower than any of the other decile portfolios. The portfolio analysis
indicates a positive relation between Illiq12M and Re𝑣. Average Re𝑣 increases
nearly monotonically from 0.92 in portfolio 1 to 1.79 in portfolio 10. This result
is interesting since the correlation analysis detected, if anything, a slight negative
relation between Re𝑣 and Illiq12M . The finding of a strong positive relation between
Re𝑣 and Illiq12M in the portfolio analysis likely indicates that portfolios with higher
values of Illiq12M are more likely to have stocks with extremely high values of Re𝑣.
In the correlation analysis, the effect of these values is mollified by winsorizing each
variable at the 0.5% level. However, the effect of these values comes through in the
portfolio analysis because the values of Re𝑣 are not winsorized prior to calculating
the average values for each portfolio.

The results of the equal-weighted portfolio analysis examining the relation
between Illiq and one-month-ahead excess stock returns are shown in Panel B of
Table 13.4. The table also shows the average returns, Fama and French (1993)
and Carhart (1997) four-factor (FFC) alphas, and alphas relative to the FFC model

9Because ln Illiq is a monotonically increasing function of Illiq, the results when sorting on ln Illiq are
identical to those from the analyses that sort on Illiq.
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TABLE 13.4 Univariate Portfolio Analysis
This table presents the results of univariate portfolio analyses of the relation between illiquid-
ity and future stock returns. Monthly portfolios are formed by sorting all stocks in the CRSP
sample into portfolios using decile breakpoints calculated based on the given sort variable
using all stocks in the CRSP sample. Panel A shows the average values of Illiq12M , ln Illiq12M ,
𝛽, MktCap, BM, Mom, and Re𝑣 for stocks in each Illiq12M decile portfolio. Panel B (Panel
D) shows the average equal-weighted (value-weighted) one-month-ahead excess return (in
percent per month) for each of the 10 decile portfolios formed using different measures of
illiquidity as the sort variable. Panel C shows the average equal-weighted one-month-ahead
non-delisting-adjusted excess return (in percent per month), for each of the 10 decile portfo-
lios formed using different measures of illiquidity as the sort variable. Panels B–D also show
the average return of the portfolio that is long the 10th decile portfolio and short the first decile
portfolio, as well as the FFC and FFCSTR alphas for this portfolio. Panel E shows the FFCSTR
alpha as well as factor sensitivities for decile portfolios formed by sorting on Illiq1M . Newey
and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis that the average
10-1 portfolio return, alpha, or factor sensitivity is equal to zero, are shown in parentheses.

Panel A: Illiq12M-Sorted Portfolio Characteristics

Value 1 2 3 4 5 6 7 8 9 10

Illiq12M 0.01 0.02 0.05 0.10 0.19 0.35 0.65 1.27 3.01 21.29
ln Illiq12M 0.01 0.02 0.05 0.09 0.16 0.27 0.45 0.73 1.24 2.49
𝛽 1.11 1.06 1.06 1.03 1.00 0.95 0.86 0.76 0.66 0.60
MktCap 10,263 1,455 690 392 241 154 102 62 36 17
BM 0.64 0.70 0.70 0.75 0.79 0.87 0.94 1.01 1.15 1.47
Mom 15.80 16.55 17.25 16.94 16.39 15.40 15.39 14.52 11.64 7.02
Re𝑣 0.92 1.06 1.06 1.10 1.04 1.12 1.21 1.27 1.31 1.79

Panel B: Equal-Weighted Portfolio Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCSTR 𝛼

Illiq1M 0.53 0.64 0.73 0.76 0.71 0.71 0.79 0.81 0.73 1.11 0.58 0.43 0.35
(1.93) (2.09) (1.74)

Illiq3M 0.49 0.62 0.65 0.66 0.67 0.68 0.73 0.83 0.76 1.11 0.62 0.44 0.40
(1.98) (2.09) (1.96)

Illiq6M 0.48 0.59 0.62 0.62 0.60 0.63 0.74 0.83 0.79 1.13 0.65 0.42 0.40
(2.11) (2.04) (1.99)

Illiq12M 0.46 0.60 0.58 0.61 0.59 0.65 0.77 0.82 0.83 1.23 0.77 0.45 0.44
(2.49) (2.11) (2.14)

Panel C: Equal-Weighted Portfolio Unadjusted Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCSTR 𝛼

Illiq1M 0.53 0.63 0.72 0.76 0.72 0.72 0.82 0.85 0.82 1.36 0.83 0.68 0.60
(2.75) (3.20) (2.90)

Illiq3M 0.49 0.61 0.65 0.66 0.68 0.70 0.76 0.87 0.85 1.35 0.86 0.68 0.65
(2.76) (3.18) (3.11)

Illiq6M 0.47 0.59 0.63 0.63 0.62 0.65 0.77 0.88 0.87 1.37 0.90 0.67 0.65
(2.88) (3.13) (3.12)

Illiq12M 0.46 0.60 0.58 0.62 0.61 0.67 0.79 0.87 0.92 1.47 1.01 0.68 0.68
(3.23) (3.13) (3.18)

(continued)
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TABLE 13.4 (Continued)

Panel D: Value-Weighted Portfolio Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCSTR 𝛼

Illiq1M 0.42 0.54 0.60 0.62 0.55 0.57 0.64 0.66 0.50 0.24 −0.18 −0.46 −0.52
(−0.65) (−3.16) (−3.48)

Illiq3M 0.41 0.57 0.58 0.61 0.61 0.62 0.69 0.78 0.60 0.39 −0.02 −0.34 −0.38
(−0.07) (−2.27) (−2.45)

Illiq6M 0.41 0.55 0.58 0.60 0.60 0.62 0.76 0.85 0.67 0.50 0.09 −0.28 −0.28
(0.32) (−1.83) (−1.77)

Illiq12M 0.41 0.57 0.58 0.61 0.64 0.70 0.79 0.86 0.80 0.67 0.27 −0.21 −0.19
(0.89) (−1.40) (−1.26)

Panel E: Value-Weighted Illiq1M-Sorted Portfolio FFCSTR Factor Sensitivites

Value 1 2 3 4 5 6 7 8 9 10 10-1

FFCSTR 𝛼 0.03 −0.02 0.01 −0.03 −0.10 −0.10 −0.04 −0.04 −0.23 −0.50 −0.52
(1.83) (−0.38) (0.13) (−0.60) (−2.04) (−1.67) (−0.62) (−0.49) (−2.49) (−3.34) (−3.48)

𝛽MKT 0.99 1.06 1.04 1.01 0.99 0.98 0.96 0.93 0.84 0.82 −0.16
(186.17) (73.36) (84.67) (62.89) (59.17) (54.77) (48.47) (28.43) (21.73) (14.57) (−2.86)

𝛽SMB −0.17 0.25 0.45 0.63 0.74 0.82 0.84 0.90 0.98 1.22 1.40
(−12.04) (9.91) (15.23) (19.02) (20.36) (15.81) (15.18) (12.54) (11.04) (9.85) (10.39)

𝛽HML −0.05 0.11 0.11 0.13 0.19 0.27 0.31 0.35 0.39 0.47 0.53
(−5.10) (3.65) (4.34) (4.79) (5.60) (6.49) (6.56) (4.81) (4.67) (3.87) (4.16)

𝛽MOM 0.02 −0.05 −0.07 −0.09 −0.14 −0.18 −0.17 −0.19 −0.16 −0.25 −0.27
(3.40) (−2.80) (−3.49) (−3.91) (−7.58) (−6.97) (−7.00) (−4.87) (−3.27) (−4.43) (−4.66)

𝛽STR −0.02 0.01 0.04 0.09 0.08 0.09 0.08 0.09 0.11 0.11 0.13
(−2.45) (0.52) (1.64) (3.28) (2.82) (2.54) (2.23) (1.87) (1.98) (1.43) (1.69)

augmented with the short-term reversal factor (FFCSTR) for the Illiq 10-1 portfolios,
along with Newey and West (1987)-adjusted t-statistics testing the null hypothesis
that the average return or abnormal return of the given 10-1 portfolio is equal to zero.

For portfolios formed by sorting on Illiq1M , the average monthly excess portfo-
lio return increases, although not monotonically, from 0.53% per month for the first
decile portfolio to 1.11% per month for the 10th decile portfolio. The average return
of the equal-weighted Illiq1M 10-1 portfolio of 0.58% per month is economically
large and marginally statistically significant, with a Newey and West (1987)-adjusted
t-statistic of 1.93. When the returns are adjusted using the FFC risk model, the differ-
ence portfolio generates an abnormal return of 0.43% per month with a corresponding
t-statistic of 2.09. Inclusion of the short-term reversal factor in the risk model, how-
ever, seems to explain a small portion of the FFC alpha, since the alpha of the Illiq1M

difference portfolio relative to the FFCSTR risk model of 0.35% per month is only
marginally statistically significant with a t-statistic of 1.74.

When Illiq3M is used as the sort variable, the results of the portfolio analysis are
a bit stronger, although very similar to the results of the analysis using Illiq1M as the
sort variable. The average return of the equal-weighted Illiq3M-sorted 10-1 portfolio
is 0.62% per month (t-statistic = 1.98). This portfolio generates abnormal returns of
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0.44% per month (t-statistic = 2.09) relative the FFC model and 0.40% per month
(t-statistic = 1.96) relative to the FFCSTR risk model.

The results of the portfolio analysis using Illiq6M as the sort variable are very sim-
ilar to the results generated by the Illiq3M-sorted portfolios. The first equal-weighted
Illiq6M-sorted portfolio generates an average excess return of 0.48% per month. The
average excess returns tend to increase, once again not quite monotonically, to 1.13%
per month for decile portfolio 10. The Illiq6M 10-1 portfolio produces an average
monthly return of 0.65% per month (t-statistic = 2.11). The alphas of this portfolio
relative to the FFC and FFCSTR risk models of 0.42% per month (t-statistic = 2.04)
and 0.40% per month (t-statistic = 1.99) are both statistically significant and of
economically important magnitude.

The relation between illiquidity and expected stock returns appears strongest when
Illiq12M is used as the sort variable. The average excess returns of the Illiq12M-sorted
decile portfolios increase, nearly monotonically, from 0.46% per month for the
first decile portfolio to 1.23% per month for the 10th decile portfolio. The average
difference in returns of 0.77% per month is highly statistically significant with a
t-statistic of 2.49. Adjusting for risk does not explain the returns of this portfolio
since the FFC alpha of 0.45% per month (t-statistic = 2.11) and FFCSTR alpha of
0.44% per month (t-statistic) are both economically large and statistically significant.

In each of the equal-weighted portfolio analyses, it is the decile 10 portfolio that
generates a substantially higher average excess return than any of the other decile
portfolios. In fact, regardless of the length of the period used to measure Illiq, the
difference between the average return of the 10th decile portfolio and the average
return of the ninth decile portfolio is larger than the difference in average returns
between the decile nine and decile one portfolios. The results therefore indicate
that it is highly illiquid stocks, specifically those stocks in the highest illiquidity
decile, that are driving the positive relation between illiquidity and average returns.
Referring back to Panel A, however, we notice that these stocks tend to have
extremely low market capitalizations. The liquidity result, similar to the size effect,
is driven primarily by stocks that comprise an extremely small percentage of the
total capitalization of the entire stock market.

While the equal-weighted portfolio results presented in Panel B of Table 13.4
indicate a positive relation between Illiq and future stock returns, the strength of this
relation is not quite as strong as one might have thought based on the results in previ-
ous studies. While every study has its own methodological differences (e.g., Amihud
(2002) uses only stocks that are listed on the New York Stock Exchange), one possible
reason for this is that stocks that are very illiquid or hardly trade at all are more likely
to be delisted. In calculating the excess returns for the stocks in our sample, we fol-
lowed Shumway (1997) and adjusted for delisting based on the reason the stock was
delisted.10 When a stock is delisted, in a large number of cases, the delisted stocks are
assigned a return of −100% for the month during which they delist. It is possible that
the weakness of the equal-weighted portfolio results presented in Panel B, therefore,

10See Section 7.2 for a detailed discussion of how the one-month-ahead excess returns used in our analyses
are calculated.
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is driven by the fact that a disproportionate number of stocks that are in the highest
illiquidity decile tend to delist in the following month. The result of this may be that
the return of the decile 10 portfolio is lower than it would be if the unadjusted returns
were used instead of the adjusted returns. To examine this possibility, we repeat the
equal-weighted univariate portfolio analysis using the unadjusted excess stock return,
instead of the delisting-adjusted excess stock return, as the outcome variable.11

Panel C of Table 13.4 presents the results of the equal-weighted univariate
portfolio analyses using the unadjusted excess stock return as the outcome variable.
The results of these analyses indicate a much stronger relation between Illiq and
future stock returns than the results that used the delisting-adjusted returns as the
outcome variable. The average return of the Illiq1M 10-1 portfolio of 0.83% per
month is highly statistically significant with a t-statistic of 2.75. The returns of this
portfolio cannot be explained by the factors in the FFCSTR model, as the FFC alpha
of 0.68% per month (t-statistic = 3.20) and FFCSTR alpha of 0.60% per month
(t-statistic = 2.90) are both economically large and highly statistically significant.
The returns and alphas of this portfolio are each 0.25% per month higher than when
the delisting-adjusted returns were used as the outcome variable. In the case of the
FFCSTR alpha, this represents more than a 70% increase in the abnormal return
generated by the portfolio. When Illiq3M , Illiq6M , and Illiq12M are used as the sort
variables, the results are even stronger. When using Illiq12M as the sort variable,
the difference portfolio generates an average return of 1.01% per month (t-statistic
= 3.23), FFC alpha of 0.68% per month (t-statistic = 3.13) and FFCSTR alpha of
0.68% per month (t-statistic = 3.18). Each of these results is economically larger
and more statistically significant than the corresponding result from the analyses
using the delisting-adjusted excess return as the outcome variable.

While the results using the unadjusted excess returns as the outcome variable
presented in Panel C of Table 13.4 are more consistent with the perception among
most empirical asset pricing researchers that the illiquidity effect is very strong in
equal-weighted portfolios, this does not mean that these results are truly reflective
of reality. Our objective in presenting both sets of results is not to make a claim as to
which set of results is correct but to demonstrate to the reader that, in this case, the
difference between using the delisting-adjusted returns versus the unadjusted returns
is actually consequential. In almost all other cases, this difference is empirically
unimportant. The differences in the results show that even small methodological
changes can have substantial impacts on the results.

We proceed now to repeat the univariate portfolio analyses using value-weighted
instead of equal-weighted portfolios. In these analyses, as well as in all subse-
quent analyses where we do not explicitly state otherwise, we continue to use the
delisting-adjusted excess returns that have been used in every other analysis in
Part II of this book, as the outcome variable. All aspects of the analyses except for
the weighting scheme of the stocks within each portfolio remain the same as the

11The unadjusted excess return of the stock is simply the return indicated in the RET field of CRSP’s
monthly stock file minus the return on the risk-free security (see Section 7.2 for more details).
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univariate portfolio analyses whose results are shown in Panel A. The results of the
value-weighted portfolio analyses are presented in Panel D of Table 13.4.

Consistent with our conjecture that the relation between illiquidity detected in the
equal-weighted portfolio analyses is driven by extremely small stocks, the results of
the value-weighted portfolio analyses fail to detect a positive relation between Illiq
and future stock returns, regardless of the measurement period used to calculate Illiq.
The average monthly returns of the value-weighted 10-1 portfolios formed by sorting
on Illiq1M , Illiq3M , Illiq6M , and Illiq12M of −0.18% (t-statistic = −0.65), −0.02%
(t-statistic =−0.07), 0.09% (t-statistic = 0.32), and 0.27% (t-statistic = 0.89), respec-
tively, are all statistically indistinguishable from zero. Interestingly, the abnormal
returns of these portfolios relative to the FFC and FFCSTR factor models are negative
and, with the exception of the Illiq12M-sorted portfolios, statistically significant.12,13

The insignificance of the average returns and significance of the FFCSTR alphas
for value-weighted portfolios formed by sorting on Illiq1M , Illiq3M , and Illiq6M

indicates that the negative alphas must be driven by sensitivities to one or more of the
factors in the FFCSTR factor model. We focus on the results for the Illiq1M-sorted
portfolios. Assuming that the patterns in the value-weighted average characteristics
of the Illiq1M-sorted decile portfolios are similar to those of the equal-weighted
portfolios shown in Panel A of Table 13.4 (unreported analyses indicate that this
is the case), the negative relation between Illiq1M and 𝛽 should result in a negative
sensitivity of the Illiq1M 10-1 portfolio to the market factor, meaning that the
portfolio would be expected to have negative returns and that the abnormal returns
of the portfolio should be higher than the average unadjusted returns. Sensitivity to
the MKT factor, therefore, should not be driving the negative abnormal returns of the
Illiq1M 10-1 portfolio. Stocks in decile 10 of Illiq1M have lower values of MktCap
than stocks in the decile one portfolio. Since the SMB factor is comprised of long
positions in low-MktCap stocks and short positions in high-MktCap stocks, we would
expect the Illiq1M portfolio to have a positive sensitivity to the SMB factor. This
positive sensitivity combined with the failure to generate a positive return may result
in a negative abnormal return. Similarly, the high (low) average BM values of stocks
in the high (low) Illiq1M deciles indicates that the 10-1 Illiq1M portfolio should have
a positive sensitivity to the HML factor, and this sensitivity may result in the negative
abnormal returns. Mom is lower in the high-Illiq1M portfolios, which should result in
a negative sensitivity of the difference portfolio to the MOM factor, which could not
therefore drive the portfolio’s negative alpha. Finally, high-Illiq1M stocks tend to be
low-Re𝑣 stocks. The Illiq1M 10-1 portfolio likely has a positive sensitivity to the STR
factor, which could potentially be driving the negative alpha. However, it should be
noted that the FFC and FFCSTR alphas of the Illiq1M 10-1 portfolio are very similar,

12The alphas for the Illiq6M-sorted portfolios are only marginally statistically significant.
13In unreported results, we repeat the value-weighted portfolio analyses using the unadjusted excess stock
returns instead of the delisting-adjusted excess stock returns as the outcome variable. The results of these
analyses are qualitatively similar, albeit slightly weaker, than the results presented in Panel D of Table 13.4.
The difference between using the adjusted returns and unadjusted returns, therefore, is relatively inconse-
quential when value-weighted portfolios are used.
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indicating it is unlikely that the STR factor sensitivity is driving the portfolio’s
alpha.

To investigate our hypotheses further, in Panel E of Table 13.4 we present
the FFCSTR alpha as well as the factor sensitivities relative to the MKT (𝛽MKT ),
SMB (𝛽SMB), HML (𝛽HML), MOM (𝛽MOM), and STR (𝛽STR) factors for each of the
Illiq1M-sorted decile portfolios, as well as for the difference portfolio. t-statistics
testing the null hypothesis that the given coefficient is equal to zero are presented in
parentheses. Consistent with our predictions, the results show that the 10-1 portfolio
has a negative sensitivity to the market factor of −0.16 (t-statistic = −2.86) and pos-
itive sensitivities of 1.40 (t-statistic = 10.39) and 0.53 (t-statistic = 4.16) to the SMB
and HML factors, respectively. The sensitivity of the Illiq1M 10-1 value-weighted
portfolio to the MOM factor of −0.27 (t-statistic = −4.66) is negative, as we
expected. Finally, the portfolio’s sensitivity to the STR factor of 0.13 is, as expected,
positive, but statistically insignificant (or at best marginally significant), because
the corresponding t-statistic is only 1.69. Furthermore, the factor sensitivities across
each of the decile portfolios follow strong patterns consistent with our predictions.
As one progresses from decile portfolio one to decile portfolio 10, the values of 𝛽MKT
decrease (with the exception of portfolio one), the values of 𝛽SMB and 𝛽HML increase,
the values of 𝛽MOM decrease (with the exception of portfolios seven and nine),
and the values of 𝛽STR increase (with the exception of portfolios five and seven).
The results indicate strong cross-sectional patterns in the factor sensitivities of the
value-weighted Illiq1M-sorted portfolios. More importantly, these results indicate
that, as discussed previously, based on the high sensitivities of the portfolio to the
SMB and HML factors, it would be expected that this portfolio would generate a sub-
stantial positive average return. The portfolio’s failure to do so results in a negative
alpha. Finally, it is worth noting that the vast majority of the negative abnormal return
of the 10-1 Illiq1M-sorted portfolio is generated by the 10th decile portfolio. The
FFCSTR alpha of this portfolio alone is −0.50% per month with a t-statistic of −3.34.
The first decile portfolio’s alpha of 0.03% per month is economically very small.

13.5.2 Bivariate Portfolio Analysis

We continue our examination of the relation between illiquidity and expected returns
by using bivariate-sort portfolio analyses to examine whether the positive relation
between illiquidity and future stock returns detected in the univariate portfolio anal-
yses persists when controlling for either beta, market capitalization, book-to-market
ratio, momentum, or reversal. In doing so, we use the delisting-adjusted excess
return as the outcome variable. This is the same measure of excess return that has
been used in almost all other analyses in this book. Furthermore, we choose to
use Illiq12M as our measure of illiquidity. We choose to use the 12-month measure
of illiquidity because this is the variable that produced the strongest results in the
univariate portfolio analysis and this is also the variable used by Amihud (2002).

Before we proceed, a short note regarding analyses that control for market
capitalization is warranted. The results of the correlation analyses presented in
Table 13.2 show that, in the average month, the Spearman rank correlation between
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Illiq12M and Size is −0.93.14 This indicates that, in the average cross section, the
ordering of stocks when sorted on Illiq12M is nearly the opposite of that when stocks
are sorted on MktCap. Thus, using portfolio analysis to disentangle the effects of
size and illiquidity on expected returns may be challenging, since sorting on Illiq12M

is very similar to sorting (in reverse order) on MktCap.

Bivariate Dependent-Sort Portfolio Analysis

Given the anticipated challenges of disentangling the effects of illiquidity and mar-
ket capitalization on expected stock returns, our first bivariate portfolio analysis is a
dependent-sort analysis of the relation between illiquidity and stock returns after con-
trolling for market capitalization. Each month, all stocks in the sample are sorted into
five quintiles based on an ascending sort of MktCap. Within each MktCap quintile,
stocks are sorted into quintile portfolios based on an ascending sort of Illiq12M . We
focus our examination on equal-weighted portfolios since only the equal-weighted
univariate Illiq12M 10-1 portfolio generated statistically significant average returns
and alphas, whereas the returns and alphas of the value-weighted Illiq12M 10-1 port-
folio were small and statistically insignificant.

The results of the equal-weighted portfolio analysis examining the relation
between Illiq12M and one-month-ahead excess stock returns after controlling for
MktCap are presented in Table 13.5. Panel A shows that for the average MktCap
quintile, the Illiq12M 5-1 portfolio generates an average monthly return of 0.49% that
is highly statistically significant with a corresponding t-statistic of 3.75. This result
seems to indicate that the positive relation between Illiq12M and future stock returns
persists after controlling for MktCap. The abnormal monthly return of this portfolio
relative to the FFC risk model of 0.12% per month, however, is statistically indis-
tinguishable from zero, with a corresponding t-statistic of only 0.77. Interestingly,
when the short-term reversal factor is included in the risk model (FFCSTR), the
abnormal return increases to a marginally statistically significant 0.24% per month
(t-statistic = 1.78). Examining the returns and alphas of the Illiq12M portfolio within
each of the MktCap quintiles, we see that the positive relation between Illiq12M and
future returns is strongest in MktCap quintile one and the strength of this relation
decreases as the market capitalization of the stocks in the portfolio gets larger. The
FFC and FFCSTR alphas are only statistically significant, however, in MktCap
quintile one, while the average returns are statistically significant in quintiles one,
two, and marginally in quintile three of MktCap. While it is tempting to conclude that
liquidity matters most among small stocks, the extremely strong negative Spearman
correlation between Illiq12M and MktCap makes us question even this result, since
it is possible that even within a MktCap quintile, an ascending sort on Illiq12M is
effectively a descending sort on MktCap. The results show that the fifth Illiq12M

quintile portfolio in the first MktCap quintile produces an average return of 1.73%

14The Spearman rank correlation between Illiq12M and MktCap is identical to that between Illiq12M and
Size because Size and MktCap are monotonically increasing functions of each other and the Spearman
correlation measure relies only on the ordering of the observations based on each of the variables, not on
the magnitude of the variables.
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TABLE 13.5 Bivariate Dependent-Sort Portfolio Analysis—Control for MktCap
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between Illiq12M and future stock returns after controlling for the effect of MktCap. Each
month, all stocks in the CRSP sample are sorted into five groups based on an ascending sort
of MktCap. Within each MktCap group, all stocks are sorted into five portfolios based on an
ascending sort of Illiq12M . The quintile breakpoints used to create the portfolios are calculated
using all stocks in the CRSP sample. Panel A presents the average one-month-ahead excess
return (in percent per month) for each of the 25 equal-weighted portfolios as well as for the
average MktCap quintile portfolio within each quintile of Illiq12M . Also shown are the average
return, FFC alpha, and FFCSTR alpha of a long–short zero-cost portfolio that is long the fifth
Illiq12M quintile portfolio and short the first Illiq12M quintile portfolio in each MktCap quintile.
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags, testing
the null hypothesis that the average return or alpha is equal to zero, are shown in parentheses.
Panel B presents the average values of MktCap for stocks in each of the portfolios.
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Illiq12M 1 0.46 0.25 0.48 0.57 0.40 0.43
Illiq12M 2 0.79 0.76 0.71 0.68 0.51 0.69
Illiq12M 3 0.79 0.76 0.70 0.75 0.57 0.72
Illiq12M 4 1.04 0.89 0.79 0.70 0.63 0.81
Illiq12M 5 1.73 0.85 0.81 0.75 0.49 0.93

Illiq12M 5-1 1.27 0.59 0.34 0.18 0.08 0.49
(4.85) (2.67) (1.94) (1.37) (0.87) (3.75)

Illiq12M 5-1 FFC 𝛼 0.76 0.14 −0.07 −0.09 −0.16 0.12
(2.44) (0.60) (−0.44) (−0.74) (−1.67) (0.77)

Illiq12M5-1 FFCSTR 𝛼 0.98 0.26 0.05 0.02 −0.11 0.24
(3.39) (1.19) (0.33) (0.16) (−1.33) (1.78)
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Illiq12M 1 24 73 198 642 19,705 4128
Illiq12M 2 21 66 180 557 4589 1083
Illiq12M 3 18 62 165 488 2494 645
Illiq12M 4 15 57 152 429 1658 462
Illiq12M 5 9 51 141 392 1330 385



�

� �

�

LIQUIDITY AND STOCK RETURNS 291

per month, much higher than any of the other Illiq12M and MktCap-sorted portfolios.
The positive average return and alphas of the Illiq12M 5-1 portfolio in the first
MktCap quintile, as well as for the average MktCap quintile, are potentially driven
by this one portfolio. If this portfolio does in fact contain extremely small stocks,
as is likely the case, then this result is consistent with the results of the univariate
portfolio analysis of the relation between MktCap and future stock returns (see
Table 9.5) in which we found that the size effect appears to be driven by extremely
small stocks that in total comprise a very small percentage of total stock market
capitalization.

To further examine the possibility that sorting on Illiq12M within each MktCap
quintile is effectively the same as performing a descending sort on MktCap, in Panel
B of Table 13.5 we present the average values of MktCap for stocks in each of the
25 MktCap and Illiq12M-sorted portfolios. The results confirm our concerns about the
sorting procedure. Within each MktCap quintile, the average MktCap of the stocks in
the Illiq12M portfolios decreases monotonically from quintile one to quintile five of
Illiq12M . Equally as important, the fifth Illiq12M quintile portfolio in the first MktCap
quintile, which appears to be driving the results of the bivariate-sort analysis, contains
stocks with average MktCap of only $9 million. This is by far the smallest average
MktCap of any of the 25 MktCap and Illiq12M-sorted portfolios. The results demon-
strate that the Spearman correlation between MktCap and Illiq12M is too high for a
bivariate portfolio analysis to distinguish between the effects of illiquidity and size on
expected stock returns. The double-sort procedure is not effective at controlling for
MktCap. In fact, the high correlation potentially indicates that these two effects are
indistinguishable. We reserve judgment on this issue until we have seen the results of
the remaining analyses in this chapter.

We continue our investigation by examining whether controlling for 𝛽, BM, Mom,
or Re𝑣 can explain the positive relation between Illiq12M and future stock returns.
To do so, we use bivariate dependent-sort quintile portfolio analyses sorting first on
the control variable (𝛽, BM, Mom, or Re𝑣) and then on Illiq12M . The equal-weighted
(Weights = EW) and value-weighted (Weights = VW) average returns and FFCSTR
alphas for the Illiq12M 5-1 portfolios within each quintile, as well as the average quin-
tile, of the control variable, are presented in Table 13.6.

The results of the bivariate dependent-sort portfolio analyses show that the
equal-weighted average return of the Illiq12M 5-1 portfolio in the average 𝛽 quintile
of 0.49% per month is marginally statistically significant with a t-statistic of 1.85.
When the returns are adjusted for risk, however, the alphas of 0.27% per month
(t-statistic = 1.53) relative to the FFC model and 0.25% per month (t-statistic = 1.46)
relative to the FFCSTR model are substantially lower than the unadjusted average
return and are no longer statistically significant. This indicates that after controlling
for the effect of 𝛽, for the average stock, the relation between Illiq12M and future
returns is not very strong, and any such relation is potentially driven by sensitivity
to the MKT , SMB, HML, MOM, or STR factors. For stocks with low values of 𝛽,
however, the positive relation between Illiq12M and future stock returns appears
strong. In 𝛽 quintile one, the Illiq12M 5-1 portfolio generates an average monthly
return of 1.00% (t-statistic = 3.28) and FFCSTR alpha of 0.79% (t-statistic = 3.77).
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TABLE 13.6 Bivariate Dependent-Sort Portfolio Analysis
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between Illiq12M and future stock returns after controlling for the effect of each of 𝛽, BM,
Mom, and Re𝑣 (control variables). Each month, all stocks in the CRSP sample are sorted into
five groups based on an ascending sort of one of the control variables. Within each control vari-
able group, all stocks are sorted into five portfolios based on an ascending sort of Illiq12M . The
quintile breakpoints used to create the portfolios are calculated using all stocks in the CRSP
sample. The table presents the average return, FFC alpha, and FFCSTRL alpha (in percent per
month) of the long–short zero-cost portfolios that are long the fifth Illiq12M quintile portfolio
and short the first Illiq12M quintile portfolio in each quintile, as well as for the average quin-
tile, of the control variable. Results for equal-weighted (Weights = EW) and value-weighted
(Weights = VW) portfolios are shown. t-statistics (in parentheses), adjusted following Newey
and West (1987) using six lags, testing the null hypothesis that the average return or alpha is
equal to zero, are shown in parentheses.
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𝛽 EW Return 1.00 0.57 0.36 0.26 0.27 0.49
(3.28) (1.99) (1.28) (0.91) (0.99) (1.85)

FFC 𝛼 0.79 0.39 0.16 0.03 0.00 0.27
(3.58) (2.02) (0.92) (0.13) (0.01) (1.53)

FFCSTR 𝛼 0.79 0.38 0.14 −0.01 −0.06 0.25
(3.77) (1.91) (0.80) (−0.06) (−0.23) (1.46)

VW Return 0.51 0.49 0.29 0.33 0.24 0.37
(1.72) (1.82) (1.08) (1.15) (0.86) (1.46)

FFC 𝛼 0.19 0.13 −0.09 −0.18 −0.19 −0.03
(1.01) (0.80) (−0.60) (−1.14) (−0.85) (−0.23)

FFCSTR 𝛼 0.24 0.14 −0.09 −0.17 −0.19 −0.01
(1.27) (0.76) (−0.59) (−0.95) (−0.86) (−0.11)

BM EW Return 0.17 0.25 0.27 0.55 0.85 0.42
(0.62) (1.04) (1.25) (2.33) (2.95) (1.80)

FFC 𝛼 −0.08 0.21 0.25 0.51 0.93 0.37
(−0.37) (1.05) (1.45) (3.17) (4.00) (2.16)

FFCSTR 𝛼 −0.12 0.16 0.21 0.51 0.92 0.34
(−0.59) (0.88) (1.34) (3.30) (3.93) (2.14)

VW Return −0.19 0.12 0.20 0.40 0.63 0.23
(−0.70) (0.53) (0.94) (1.58) (2.28) (1.04)

FFC 𝛼 −0.50 −0.03 0.03 0.24 0.52 0.05
(−2.98) (−0.22) (0.27) (1.64) (2.73) (0.46)

FFCSTR 𝛼 −0.53 −0.06 −0.01 0.25 0.50 0.03
(−3.00) (−0.39) (−0.08) (1.70) (2.53) (0.27)

Mom EW Return 0.93 0.56 0.80 0.83 0.73 0.77
(3.30) (2.51) (3.80) (3.81) (3.52) (3.86)

FFC 𝛼 0.43 0.07 0.48 0.59 0.57 0.43
(1.41) (0.42) (3.83) (4.36) (3.74) (2.93)
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TABLE 13.6 (Continued)
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FFCSTR 𝛼 0.40 0.05 0.45 0.61 0.52 0.41
(1.32) (0.28) (3.51) (4.35) (3.40) (2.83)

VW Return −0.06 0.30 0.64 0.74 0.62 0.45
(−0.22) (1.27) (2.97) (3.49) (2.75) (2.19)

FFC 𝛼 −0.70 −0.30 0.19 0.43 0.35 −0.01
(−2.95) (−1.94) (1.46) (3.81) (2.41) (−0.06)

FFCSTR 𝛼 −0.72 −0.34 0.16 0.46 0.31 −0.03
(−3.12) (−2.04) (1.16) (3.91) (2.08) (−0.24)

Re𝑣 EW Return 2.10 0.24 0.35 0.17 −0.83 0.41
(7.38) (1.02) (1.41) (0.70) (−2.95) (1.79)

FFC 𝛼 1.85 −0.01 0.07 −0.10 −1.16 0.13
(6.03) (−0.06) (0.40) (−0.68) (−5.20) (0.80)

FFCSTR 𝛼 2.05 0.11 0.09 −0.22 −1.33 0.14
(7.29) (0.69) (0.50) (−1.42) (−5.58) (0.86)

VW Return 1.49 0.30 0.46 0.24 −0.55 0.39
(5.46) (1.34) (1.97) (1.02) (−2.04) (1.81)

FFC 𝛼 1.19 −0.09 0.09 −0.14 −0.97 0.02
(4.53) (−0.67) (0.64) (−1.15) (−5.04) (0.14)

FFCSTR 𝛼 1.36 −0.01 0.08 −0.25 −1.11 0.01
(5.39) (−0.08) (0.57) (−1.94) (−5.45) (0.12)

In quintile two of 𝛽, the results are not quite as strong, but the average returns of
0.57% (t-statistic = 1.99) and FFCSTR alpha of 0.38% (t-statistic = 1.91) remain
economically important and at least marginally statistically significant. When using
value-weighted portfolios, consistent with the univariate portfolio results, there is no
evidence of a relation between Illiq12M and future stock returns after controlling for
𝛽, since the average returns and alphas of the Illiq12M 5-1 portfolio in each 𝛽 quintile
are statistically indistinguishable from zero.15

When sorting first on BM, Table 13.6 shows that when using equal-weighted
portfolios, for the average BM quintile, the positive relation between Illiq12M and
future returns persists, since the average return, FFC alpha, and FFCSTR alpha
of 0.42% per month (t-statistic = 1.80), 0.37% per month (t-statistic = 2.16),
and 0.34% per month (t-statistic = 2.14) are all at least marginally statistically
significant. The relation appears to be much stronger among stocks with high values
of BM. The Illiq12M 5-1 portfolios in quintiles one, two, and three fail to generate
statistically significant average returns or alphas. However, in quintiles four and five

15The two small exceptions are the value-weighted average returns of the Illiq12M 5-1 portfolio in quintiles
one and two of 𝛽, both of which are marginally statistically significant.
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of BM, the average returns and alphas of the Illiq12M 5-1 portfolios are large and
highly statistically significant. Overall, the results indicate that controlling for BM
does not explain the positive relation between Illiq12M and future stock returns in
equal-weighted portfolios. In value-weighted portfolios, the results show that for
the average BM quintile, the Illiq12M 5-1 portfolio fails to generate a statistically
significant average return or alpha. Once again, however, the relation between
Illiq12M and future stock returns appears to vary substantially across different levels
of BM. The value-weighted Illiq12M 5-1 portfolio in the lowest BM quintile actually
generates negative and statistically significant alpha of −0.50% per month (t-statistic
= −2.98) relative to the FFC model and −0.53% (t-statistic = −3.00) relative to
the FFCSTR model. In quintile five of BM, the value-weighted Illiq12M difference
portfolio produces large positive average returns of 0.63% per month (t-statistic
= 2.28) with alphas of 0.52% per month (t-statistic = 2.73) and 0.50% per month
(t-statistic = 2.53) relative to the FFC and FFCSTR risk models, respectively.

The equal-weighted bivariate dependent-sort portfolio analysis indicates that con-
trolling for Mom fails to explain the positive relation between Illiq12M and future stock
returns. Within each Mom quintile, the Illiq12M difference portfolio produces a large
and statistically significant average return. With the exception of the first and second
Mom quintiles, the FFC and FFCSTR alphas of these portfolios are also large and sta-
tistically significant. For the average Mom quintile, the equal-weighted Illiq12M 5-1
portfolio produces an average monthly return of 0.77% per month (t-statistic = 3.86),
with corresponding FFC alpha of 0.43% per month (t-statistic = 2.93) and FFCSTR
alpha of 0.41% per month (t-statistic = 2.83). When using value-weighted portfolios,
the average return of the Illiq12M 5-1 portfolio for the average Mom quintile of 0.45%
per month is statistically significant, with a t-statistic of 2.19. However, the FFC and
FFCSTR alphas of this portfolio are small and statistically insignificant. Once again,
a strong pattern appears in the relation between Illiq12M and future returns across the
different quintiles of Mom. For quintiles one and two of Mom, the value-weighted
Illiq12M portfolio generates negative and statistically significant abnormal returns,
indicating a potential negative relation between illiquidity and stock returns for stocks
with low momentum. In quintiles four and five of Mom, the value-weighted Illiq12M

5-1 portfolio produces large positive abnormal returns, consistent with the positive
relation between illiquidity and expected returns.

When controlling for Re𝑣, the results of the equal-weighted bivariate
dependent-sort portfolio analysis are quite similar to those for the value-weighted
analysis. For the average Re𝑣 quintile, the Illiq12M 5-1 portfolio produces marginally
statistically significant average monthly returns, but the abnormal returns of these
portfolios are statistically indistinguishable from zero. However, the positive relation
between Illiq12M and future stock returns is very strong among stocks in the lowest
Re𝑣 quintile, since this portfolio generates very high average and abnormal returns
regardless of whether equal-weighted or value-weighted portfolios are used. The
opposite is true, however, for stocks with high values of Re𝑣. The equal-weighted
and value-weighted Illiq12M difference portfolio generates large negative average
returns and alphas in quintile five of Re𝑣.



�

� �

�

LIQUIDITY AND STOCK RETURNS 295

Bivariate Independent-Sort Portfolio Analysis

We now repeat the bivariate portfolio analyses, this time using independent sorts
instead of dependent sorts. The rest of the parameters of the portfolio analyses remain
the same. We do not perform an independent-sort portfolio analysis using MktCap and
Illiq12M as the sort variables because, as discussed earlier, the cross-sectional Spear-
man rank correlation between these two variables is extremely high. Thus, sorting
in ascending order on MktCap produces almost the opposite ordering as sorting in
ascending order on Illiq12M . The result of this is that portfolios that would hold stocks
with high values of MktCap and high values of Illiq12M frequently do not contain any
stocks. The same is true for portfolios that hold stocks with low values of both vari-
ables. The results of the bivariate independent-sort analyses of the relation between
Illiq12M and one-month-ahead excess stock returns are shown in Table 13.7. The pat-
terns in the returns of the independently sorted portfolios are very similar to those
found in the dependently sorted portfolios. We therefore refrain from a detailed dis-
cussion of these results, since such a discussion would be repetitive and not provide
any new insights. The independent-sort results, therefore, are presented primarily for
the reader’s reference.

The results of the bivariate-sort portfolio analyses of the relation between Illiq12M

can be summarized as follows. First, distinguishing between a size effect and an
illiquidity effect using bivariate portfolios sorted on MktCap and Illiq12M is not effec-
tive because of the high Spearman rank correlation between these two variables. The
results indicate that controlling for 𝛽 or Re𝑣 explains a substantial portion of the pos-
itive relation between Illiq12M and future stock returns in equal-weighted portfolios,
while BM and Mom have little ability to explain this relation. The relation between
Illiq12M and future stock returns varies substantially in the cross section of 𝛽, BM, and
Re𝑣, with the positive relation being strong in low-𝛽, high-BM, and low-Re𝑣 stocks.
For high-Re𝑣 stocks, the relation between Illiq12M and future stock returns actually
becomes strongly negative.

Can Liquidity Explain Other Relations

We next examine the ability of liquidity to explain the failure of beta to exhibit a posi-
tive relation with future returns, the positive relations between future returns and each
of book-to-market ratio and momentum, or the negative relation between reversal
and future returns. To do so, we perform bivariate dependent-sort portfolio analyses
using Illiq12M as the first sort variable and each of 𝛽, BM, Mom, and Re𝑣 as the sec-
ond sort variable. We do not examine the relation between MktCap and future returns
after controlling for Illiq12M because of the extremely high Spearman rank correla-
tion between these variables. As with the previous bivariate portfolio analyses, the
breakpoints are taken to be the quintiles of each of the sort variables. The average
returns and alphas for the Illiq12M 5-1 portfolios generated by these analyses are pre-
sented in Table 13.8. When calculating the FFC and FFCSTR alphas for the portfolios
formed using BM as the second sort variable, we exclude the value (HML) factor from
the factor model to avoid controlling for the value effect when examining the value
effect. Similarly, when examining the momentum phenomenon after controlling for
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TABLE 13.7 Bivariate Independent-Sort Portfolio Analysis
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between Illiq12M and future stock returns after controlling for the effect of each of 𝛽, BM,
Mom, and Re𝑣 (control variables). Each month, all stocks in the CRSP sample are sorted into
five groups based on an ascending sort of the control variable. All stocks are independently
sorted into five groups based on an ascending sort of Illiq12M . The quintile breakpoints used
to create the groups are calculated using all stocks in the CRSP sample. The intersections
of the control variable and Illiq12M groups are used to form 25 portfolios. The table presents
the average return, FFC alpha, and FFCSTR alpha (in percent per month) of the long–short
zero-cost portfolios that are long the fifth Illiq12M quintile portfolio and short the first Illiq12M

quintile portfolio in each quintile, as well as for the average quintile, of the control variable.
Results for equal-weighted (Weights = EW) and value-weighted (Weights = VW) portfolios
are shown. t-statistics (in parentheses), adjusted following Newey and West (1987) using six
lags, testing the null hypothesis that the average return or alpha is equal to zero, are shown in
parentheses.
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𝛽 EW Return 0.66 0.58 0.30 0.18 0.25 0.39
(2.21) (1.95) (0.98) (0.51) (0.84) (1.38)

FFC 𝛼 0.42 0.37 0.12 −0.08 −0.07 0.15
(2.15) (1.98) (0.60) (−0.31) (−0.22) (0.78)

FFCSTR 𝛼 0.41 0.37 0.11 −0.12 −0.15 0.12
(2.12) (1.92) (0.54) (−0.44) (−0.52) (0.65)

VW Return 0.38 0.45 0.23 0.23 −0.00 0.26
(1.50) (1.65) (0.80) (0.71) (−0.00) (1.00)

FFC 𝛼 0.07 0.07 −0.18 −0.36 −0.48 −0.18
(0.44) (0.44) (−1.14) (−1.89) (−1.81) (−1.40)

FFCSTR 𝛼 0.08 0.08 −0.20 −0.36 −0.50 −0.18
(0.51) (0.44) (−1.19) (−1.85) (−1.97) (−1.44)

BM EW Return 0.38 0.32 0.34 0.55 0.67 0.45
(1.21) (1.28) (1.46) (2.36) (2.55) (1.91)

FFC 𝛼 −0.04 0.19 0.29 0.49 0.66 0.32
(−0.16) (0.94) (1.51) (3.20) (3.55) (1.87)

FFCSTR 𝛼 −0.08 0.16 0.24 0.48 0.62 0.28
(−0.34) (0.83) (1.36) (3.29) (3.20) (1.77)

VW Return −0.02 0.09 0.21 0.43 0.51 0.24
(−0.05) (0.35) (0.89) (1.72) (2.12) (1.06)

FFC 𝛼 −0.47 −0.21 −0.01 0.25 0.38 −0.01
(−2.28) (−1.27) (−0.09) (1.82) (2.45) (−0.12)

FFCSTR 𝛼 −0.49 −0.21 −0.07 0.26 0.33 −0.04
(−2.32) (−1.17) (−0.46) (1.80) (2.00) (−0.32)

Mom EW Return 0.48 0.59 0.89 0.92 0.80 0.74
(1.73) (2.55) (3.83) (4.03) (3.75) (3.50)

FFC 𝛼 −0.07 0.09 0.55 0.70 0.66 0.39
(−0.25) (0.52) (3.72) (4.58) (4.21) (2.57)
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TABLE 13.7 (Continued)
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FFCSTR 𝛼 −0.12 0.07 0.53 0.72 0.63 0.36
(−0.45) (0.36) (3.49) (4.49) (3.93) (2.53)

VW Return −0.17 0.37 0.71 0.77 0.72 0.48
(−0.63) (1.51) (2.94) (3.37) (3.08) (2.25)

FFC 𝛼 −0.82 −0.25 0.24 0.46 0.47 0.02
(−3.89) (−1.56) (1.59) (3.61) (3.04) (0.18)

FFCSTR 𝛼 −0.84 −0.28 0.23 0.49 0.46 0.01
(−4.03) (−1.69) (1.44) (3.60) (2.79) (0.09)

Re𝑣 EW Return 2.02 0.35 0.43 0.12 −0.94 0.40
(7.02) (1.38) (1.58) (0.46) (−3.30) (1.66)

FFC 𝛼 1.79 0.07 0.13 −0.16 −1.25 0.12
(5.96) (0.40) (0.67) (−0.92) (−5.57) (0.71)

FFCSTR 𝛼 1.97 0.20 0.16 −0.27 −1.43 0.13
(7.32) (1.16) (0.79) (−1.53) (−6.00) (0.79)

VW Return 1.43 0.43 0.47 0.15 −0.60 0.38
(5.34) (1.71) (1.77) (0.59) (−2.24) (1.65)

FFC 𝛼 1.09 −0.02 0.08 −0.24 −0.99 −0.02
(4.41) (−0.14) (0.52) (−1.60) (−5.20) (−0.13)

FFCSTR 𝛼 1.25 0.08 0.09 −0.35 −1.13 −0.01
(5.32) (0.56) (0.57) (−2.30) (−5.73) (−0.09)

liquidity, we exclude the momentum (MOM) factor from the factor model, and as a
result we use the Fama and French (1993) (FF) three-factor model as well as the FF
model augmented with the short-term reversal factor (FFSTR). For the same reason,
when we examine the relation between Re𝑣 and future stock returns after controlling
for Illiq12M , we do not use the short-term reversal (STR) factor in a factor model and,
therefore, examine only the raw return and FFC alpha for the Re𝑣 5-1 portfolios.

The results show that after controlling for Illiq12M , the 𝛽 5-1 equal-weighted port-
folio for the average Illiq12M quintile generates negative but statistically insignificant
average returns of −0.19% per month (t-statistic = −0.76). The abnormal returns
of this portfolio relative to the FFC and FFCSTR risk models are also negative,
similar in magnitude, and statistically insignificant. The same can be said for the
equal-weighted 𝛽 5-1 portfolio in quintiles one through four of Illiq12M . Each of
these portfolios generates insignificant average returns and alphas. In quintile five
of Illiq12M , however, the average return of the 𝛽 5-1 portfolio of −0.43% per month
is statistically significant with a t-statistic of −2.61. This portfolio’s abnormal returns
of −0.50% per month (t-statistic =−3.11) relative to the FFC risk model and −0.56%
per month relative to the FFCSTR risk model are also highly statistically significant.
The results therefore indicate a negative relation between 𝛽 and future stock returns
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TABLE 13.8 Bivariate Dependent-Sort Portfolio Analysis—Control for Illiq12M

This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of 𝛽, BM, Mom, and Re𝑣 (second sort variables) after
controlling for the effect of Illiq12M . Each month, all stocks in the CRSP sample are sorted
into five groups based on an ascending sort of Illiq12M . All stocks are independently sorted
into five groups based on an ascending sort of one of the second sort variables. The quintile
breakpoints used to create the groups are calculated using all stocks in the CRSP sample. The
intersections of the Illiq12M and second sort variable groups are used to form 25 portfolios.
The table presents the average return, FFC alpha, and FFCSTR alpha (in percent per month)
of the long–short zero-cost portfolios that are long the fifth quintile portfolio and short the
first quintile portfolio for the second sort variable in each quintile, as well as for the average
quintile, of Illiq12M . Results for equal-weighted (Weights = EW) and value-weighted (Weights
= VW) portfolios are shown. t-statistics (in parentheses), adjusted following Newey and West
(1987) using six lags, testing the null hypothesis that the average return or alpha is equal to
zero, are shown in parentheses.
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𝛽 EW Return −0.11 −0.20 −0.06 −0.16 −0.43 −0.19
(−0.35) (−0.64) (−0.19) (−0.62) (−2.61) (−0.76)

FFC 𝛼 −0.03 −0.16 −0.03 −0.26 −0.50 −0.19
(−0.17) (−0.74) (−0.11) (−1.02) (−3.11) (−1.08)

FFCSTR 𝛼 −0.02 −0.16 −0.06 −0.31 −0.56 −0.22
(−0.10) (−0.75) (−0.26) (−1.36) (−3.44) (−1.26)

VW Return −0.03 −0.06 0.03 −0.25 −0.35 −0.13
(−0.12) (−0.20) (0.09) (−0.95) (−1.71) (−0.52)

FFC 𝛼 −0.07 −0.16 −0.10 −0.52 −0.59 −0.29
(−0.34) (−0.82) (−0.49) (−2.79) (−3.58) (−1.85)

FFCSTR 𝛼 −0.07 −0.12 −0.09 −0.52 −0.62 −0.28
(−0.28) (−0.59) (−0.40) (−2.74) (−3.26) (−1.65)

BM EW Return 0.34 0.67 0.88 0.82 0.76 0.70
(1.68) (3.11) (4.01) (3.57) (4.46) (3.90)

FFC 𝛼 0.64 0.88 1.05 0.98 0.82 0.87
(3.28) (4.16) (5.02) (4.37) (4.79) (5.14)

FFCSTR 𝛼 0.66 0.93 1.09 1.01 0.85 0.91
(3.03) (3.96) (4.56) (3.96) (4.83) (4.65)

VW Return 0.16 0.60 0.73 0.77 0.73 0.60
(0.87) (2.82) (3.33) (3.44) (3.47) (3.34)

FFC 𝛼 0.37 0.83 0.94 0.98 0.85 0.79
(2.10) (3.98) (4.62) (4.99) (4.24) (4.78)

FFCSTR 𝛼 0.35 0.83 0.88 0.97 0.81 0.77
(1.84) (3.63) (3.86) (4.12) (3.88) (4.09)
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TABLE 13.8 (Continued)

Se
co

nd
So

r
V

ar
ia

bl
e

W
ei

gh
ts

V
al

ue

Il
li

q12
M

1

Il
li

q12
M

2

Il
li

q12
M

3

Il
li

q12
M

4

Il
li

q12
M

5

Il
li

q12
M

A
vg

Mom EW Return 0.78 1.11 1.50 1.58 1.32 1.26
(3.24) (4.44) (5.24) (5.43) (4.89) (5.19)

FF 𝛼 1.03 1.39 1.78 1.82 1.52 1.51
(4.50) (6.17) (6.95) (7.33) (5.65) (6.97)

FFSTR 𝛼 1.23 1.58 1.97 2.02 1.70 1.70
(5.00) (6.85) (7.48) (7.83) (5.99) (7.49)

VW Return 0.61 1.00 1.37 1.64 2.15 1.36
(2.60) (4.06) (4.95) (6.00) (8.17) (5.86)

FF 𝛼 0.86 1.27 1.63 1.89 2.36 1.60
(3.84) (5.65) (6.90) (8.28) (9.36) (7.94)

FFSTR 𝛼 1.05 1.46 1.80 2.08 2.51 1.78
(4.52) (6.32) (6.88) (8.37) (9.45) (8.30)

Re𝑣 EW Return −0.35 −0.72 −1.00 −1.47 −3.96 −1.50
(−2.15) (−4.09) (−4.91) (−5.98) (−11.55) (−7.93)

FFC 𝛼 −0.43 −0.85 −1.24 −1.77 −4.19 −1.70
(−2.39) (−3.32) (−4.36) (−5.72) (−10.21) (−6.82)

VW Return −0.18 −0.90 −0.97 −1.14 −2.59 −1.16
(−1.10) (−5.41) (−5.17) (−5.07) (−8.56) (−6.79)

FFC 𝛼 −0.24 −0.95 −1.09 −1.38 −2.82 −1.30
(−1.27) (−4.33) (−4.92) (−5.37) (−7.98) (−6.25)

among highly illiquid stocks. The value-weighted portfolios generate similar results.
The main exception is that the FFC alpha of the value-weighted 𝛽 difference portfolio
for the average Illiq12M quintile of −0.29% per month is marginally statistically sig-
nificant with a t-statistic of −1.85. Furthermore, the FFC and FFCSTR alphas of the
value-weighted 𝛽 5-1 portfolio in both quintiles four and five of Illiq12M are negative,
large in magnitude, and highly statistically significant, whereas in the equal-weighted
portfolios this result was only found in quintile five of Illiq12M . The results cer-
tainly provide no evidence that controlling for illiquidity can explain our failure to
empirically detect a positive relation between 𝛽 and future stock returns, as would be
predicted by the CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966).

The table demonstrates that controlling for Illiq12M cannot explain the positive
relation between BM and future stock returns, since the average returns and alphas of
the BM 5-1 portfolio in the average Illiq12M quintile are all positive and statistically
significant. This holds for both equal-weighted and value-weighted portfolios. With
the exception of the average return of the value-weighted BM 5-1 portfolio in the first
Illiq12M quintile, the average return, FFC alpha, and FFCSTR alpha (the alphas are
calculated relative to models that exclude the HML factor) generated by the BM 5-1
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portfolio in each quintile, as well as for the average quintile, of Illiq12M is positive
and statistically significant.

The momentum phenomenon also remains strong in both equal-weighted and
value-weighted portfolios after controlling for illiquidity. The average returns, FF
alphas, and FFSTR alphas (the alphas are calculated relative to models that exclude
the MOM factor) of the Mom 5-1 portfolios in each quintile of Illiq12M , as well as
for the average Illiq12M quintile, are positive and highly statistically significant.

The dependent-sort bivariate portfolio analyses using Re𝑣 as the second sort vari-
able after controlling for Illiq12M provide no evidence that illiquidity can explain
the reversal phenomenon. When using equal-weighted portfolios, the average returns
and FFC alphas (we do not calculate FFCSTR alphas because the FFCSTR model
includes the short-term reversal factor) of the Re𝑣 5-1 portfolios in each quintile of
Illiq12M , including the average quintile, are negative and highly statistically signifi-
cant. The results when using value-weighted portfolios are quite similar. The main
differences are that in Illiq12M quintile one, the Re𝑣 5-1 portfolio fails to generate a
statistically significant average return or FFC alpha.

The final observation from Table 13.8 that is worth mentioning is that the patterns
across the quintiles of Illiq12M exhibited by each of the portfolios are nearly the oppo-
site of the patterns found throughout the previous chapters of this book when MktCap
is used as the first sort variable. This, once again, is because in the cross section, rank-
ing stocks in ascending order based on Illiq12M is very similar to ranking stocks in
descending order based on MktCap.

Table 13.9 presents the average returns, FFC alphas, and FFCSTR alphas for the
𝛽, BM, Mom, and Re𝑣 difference portfolios from independent-sort portfolio analyses
using Illiq12M as one sort variable and one of 𝛽, BM, Mom, or Re𝑣 as the other sort
variable. These are the exact same analyses whose results were shown in Table 13.7.
Here, instead of presenting the results for the Illiq12M 5-1 portfolios after controlling
for other variables, we present the results for the difference portfolio for each of the
other variables after controlling for Illiq12M . The results of the independent-sort port-
folio analyses are, once again, very similar to those of the dependent-sort analyses
and are presented primarily for completeness.

In summary, the results of the bivariate portfolio analyses find no evidence that
illiquidity is responsible for the lack of a relation between future stock returns and
beta, or for the value effect, the momentum effect, or the reversal effect. While
interesting patterns in several of these phenomena are detected across stocks with
varying levels of liquidity, for the average stock, none of these patterns in stock
returns are explained.

13.5.3 Fama–MacBeth Regression Analysis

We now continue our investigation of the relation between illiquidity and expected
stock returns using (Fama and MacBeth 1973, FM hereafter) regression analysis. The
FM regressions allow us to control for all of the other effects simultaneously, instead
of one at a time, in examining the relation between illiquidity and expected stock
returns.
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TABLE 13.9 Bivariate Independent-Sort Portfolio Analysis—Control for Illiq12M

This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of 𝛽, BM, Mom, and Re𝑣 (second sort variables) after
controlling for the effect of Illiq12M . Each month, all stocks in the CRSP sample are sorted
into five groups based on an ascending sort of Illiq12M . All stocks are independently sorted
into five groups based on an ascending sort of one of the second sort variables. The quintile
breakpoints used to create the groups are calculated using all stocks in the CRSP sample. The
intersections of the Illiq12M and second sort variable groups are used to form 25 portfolios.
The table presents the average return, FFC alpha, and FFCSTR alpha (in percent per month)
of the long–short zero-cost portfolios that are long the fifth quintile portfolio and short the
first quintile portfolio for the second sort variable in each quintile, as well as for the average
quintile, of Illiq12M . Results for equal-weighted (Weights = EW) and value-weighted (Weights
= VW) portfolios are shown. t-statistics (in parentheses), adjusted following Newey and West
(1987) using six lags, testing the null hypothesis that the average return or alpha is equal to
zero, are shown in parentheses.
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𝛽 EW Return −0.17 −0.03 −0.10 −0.24 −0.57 −0.22
(−0.57) (−0.09) (−0.31) (−0.84) (−2.43) (−0.84)

FFC 𝛼 −0.12 0.00 −0.11 −0.28 −0.61 −0.22
(−0.58) (0.01) (−0.47) (−0.94) (−2.69) (−1.21)

FFCSTR 𝛼 −0.14 −0.02 −0.13 −0.33 −0.70 −0.26
(−0.60) (−0.08) (−0.53) (−1.27) (−3.03) (−1.42)

VW Return −0.15 −0.01 −0.01 −0.36 −0.53 −0.21
(−0.54) (−0.02) (−0.04) (−1.30) (−2.04) (−0.83)

FFC 𝛼 −0.19 −0.13 −0.23 −0.55 −0.74 −0.37
(−0.83) (−0.71) (−1.02) (−2.20) (−2.88) (−2.08)

FFCSTR 𝛼 −0.18 −0.12 −0.23 −0.57 −0.76 −0.37
(−0.69) (−0.55) (−0.94) (−2.53) (−2.97) (−2.04)

BM EW Return 0.40 0.70 0.86 0.88 0.69 0.71
(2.10) (3.14) (3.91) (3.76) (3.29) (3.87)

FFC 𝛼 0.65 0.90 1.03 1.06 0.79 0.88
(3.50) (4.07) (4.86) (4.83) (4.19) (5.25)

FFCSTR 𝛼 0.69 0.93 1.08 1.10 0.84 0.93
(3.38) (3.71) (4.41) (4.45) (4.34) (4.73)

VW Return 0.20 0.59 0.70 0.91 0.72 0.62
(1.08) (2.76) (3.14) (4.04) (2.94) (3.40)

FFC 𝛼 0.36 0.80 0.92 1.13 0.88 0.82
(2.00) (3.70) (4.44) (5.71) (3.95) (4.79)

FFCSTR 𝛼 0.36 0.79 0.87 1.13 0.85 0.80
(1.89) (3.29) (3.74) (5.03) (3.62) (4.15)

(continued)
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TABLE 13.9 (Continued)
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Mom EW Return 1.02 1.21 1.58 1.55 1.34 1.34
(3.42) (4.33) (5.53) (5.51) (6.17) (5.35)

FF 𝛼 1.34 1.53 1.88 1.77 1.52 1.61
(5.26) (6.40) (7.52) (6.94) (6.90) (7.44)

FFSTR 𝛼 1.56 1.72 2.06 1.96 1.67 1.79
(5.64) (6.77) (7.92) (7.47) (7.16) (7.74)

VW Return 1.01 1.14 1.44 1.55 1.90 1.41
(3.21) (4.24) (5.26) (5.99) (8.55) (5.80)

FF 𝛼 1.35 1.46 1.73 1.79 2.06 1.68
(4.98) (6.23) (7.41) (7.65) (9.16) (8.05)

FFSTR 𝛼 1.57 1.65 1.88 1.97 2.19 1.85
(5.63) (6.82) (7.37) (7.96) (9.18) (8.36)

Re𝑣 EW Return −0.25 −0.74 −1.01 −1.43 −3.20 −1.33
(−1.28) (−3.89) (−4.97) (−6.20) (−11.33) (−7.20)

FFC 𝛼 −0.35 −0.91 −1.25 −1.71 −3.39 −1.52
(−1.67) (−3.25) (−4.53) (−6.09) (−10.13) (−6.37)

VW Return −0.01 −0.94 −1.00 −1.13 −2.04 −1.02
(−0.05) (−5.11) (−5.35) (−5.33) (−8.17) (−6.17)

FFC 𝛼 −0.10 −1.00 −1.12 −1.33 −2.18 −1.15
(−0.46) (−4.17) (−5.26) (−5.98) (−7.90) (−5.96)

We begin our FM regression analyses using cross-sectional regression specifi-
cations that include Illiq12M as the lone independent variable, Illiq12M along with
one of 𝛽, Size, BM, Mom, or Re𝑣 as independent variables, and then all of the vari-
ables together. Each of the independent variables is winsorized at the 0.5% level on
a monthly basis. The dependent variable in all regressions is the delisting-adjusted
one-month-ahead excess stock return.

The results of these FM regression analyses are presented in Panel A of
Table 13.10. Interestingly, when Illiq12M (specification (1)) is included as the only
independent variable in the regression specification, the average coefficient of 0.027
is positive but statistically insignificant, indicating no relation between Illiq12M

and future stock returns. This result contrasts with the univariate portfolio analysis
presented in Panel B of Table 13.4, which found a significant relation between
Illiq12M and future stock returns. This difference indicates the possibility that the
linear structure assumed by the regressions does not accurately describe the relation
between Illiq12M and future stock returns. When 𝛽 is added to the regression model
(specification (2)), the results are similar since the average coefficient on Illiq12M

of 0.022 is statistically insignificant with a t-statistic of 1.03. The negative but



�

� �

�

LIQUIDITY AND STOCK RETURNS 303

TABLE 13.10 Fama–MacBeth Regression Analysis—Illiq12M and ln Illiq12M

This table presents the results of Fama and MacBeth (1973) regression analyses of the rela-
tion between expected stock returns and each of Illiq12M (Panel A) and ln Illiq12M (Panel B).
Each column in the table presents results for a different cross-sectional regression specifica-
tion. The dependent variable in all specifications is the one-month-ahead excess stock return.
The independent variables are indicated in the first column. Independent variables are win-
sorized at the 0.5% level on a monthly basis. The table presents average slope and intercept
coefficients along with t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average coefficient is equal to zero. The rows
labeled Adj. R2 and n present the average adjusted R-squared and the number of data points,
respectively, for the cross-sectional regressions.

Panel A: Illiq12M

(1) (2) (3) (4) (5) (6) (7)

Illiq12M 0.027 0.022 0.050 0.055 0.037 0.024 0.071
(1.33) (1.03) (2.87) (2.20) (1.89) (1.15) (3.70)

𝛽 −0.134 −0.151
(−0.90) (−0.93)

Size −0.046 −0.039
(−0.90) (−0.74)

BM 0.309 0.192
(3.63) (2.54)

Mom 0.010 0.009
(4.41) (4.19)

Re𝑣 −0.049 −0.061
(−9.57) (−12.18)

Intercept 0.643 0.777 0.835 0.383 0.429 0.692 0.641
(2.33) (3.55) (1.66) (1.37) (1.65) (2.38) (1.47)

Adj. R2 0.01 0.03 0.02 0.02 0.03 0.02 0.06
n 3242 3242 3242 2611 3235 3241 2609

Panel B: ln Illiq12M

(1) (2) (3) (4) (5) (6) (7)

ln Illiq12M 0.256 0.238 0.290 0.297 0.335 0.227 0.342
(2.32) (1.88) (3.14) (2.62) (3.21) (1.98) (3.74)

𝛽 −0.083 −0.132
(−0.50) (−0.80)

Size −0.017 −0.008
(−0.32) (−0.16)

BM 0.285 0.200
(3.32) (2.66)

Mom 0.010 0.008
(4.41) (4.04)

Re𝑣 −0.050 −0.062
(−9.80) (−12.27)

Intercept 0.544 0.631 0.618 0.331 0.308 0.612 0.392
(2.15) (3.39) (1.19) (1.24) (1.28) (2.29) (0.93)

Adj. R2 0.02 0.04 0.02 0.02 0.03 0.03 0.06
n 3242 3242 3242 2611 3235 3241 2609
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statistically insignificant relation between 𝛽 and future stock returns is consistent
with previous analyses presented throughout this book. The specification that
includes both Illiq12M and Size (specification (3)) as independent variables finds
a highly statistically significant average coefficient of 0.050 on Illiq12M and a
statistically insignificant coefficient of −0.046 on Size. This indicates that control-
ling for the effect of illiquidity, the size effect disappears, yet when controlling
for size, the illiquidity effect is strong. Thus, it is possible that the size effect is
simply a manifestation of the pricing of liquidity. When Illiq12M and BM are the
only independent variables in the model (specification (4)), the results indicate that
both Illiq12M (coefficient = 0.055, t-statistic = 2.20) and BM (coefficient = 0.309,
t-statistic = 3.63) are positively related to future stock returns. When Mom is used
as the only control variable (specification (5)), the FM regression analysis detects
a marginally statistically significant relation between Illiq12M and future returns,
since the average coefficient on Illiq12M of 0.037 carries a t-statistic of 1.89. The
positive relation between Mom and future stock returns remains strong (coefficient =
0.010, t-statistic = 4.41). When Re𝑣 and Illiq12M are the only independent variables
(specification (6)), the analysis detects no relation between Illiq12M and future stock
returns since the average coefficient on Illiq12M of 0.024 has a t-statistic of only
1.15. The average coefficient of −0.049 on Re𝑣 is highly statistically significant,
with a t-statistic of −9.57. Finally, when all variables are included in the regression
specification (specification (7)), the analysis finds a strong positive relation between
Illiq12M and future stock returns, since the average coefficient of 0.071 has a
corresponding t-statistic of 3.70. We find a negative but statistically insignificant
relation between 𝛽 and future stock returns, consistent with previous analyses. The
size effect once again appears to have been explained by the inclusion of Illiq12M ,
since the average coefficient of −0.039 on Size is statistically indistinguishable from
zero with a t-statistic of −0.74. The positive relation between BM and future stock
returns persists after controlling for Illiq12M and the other variables. The momentum
effect remains strong since the average coefficient on Mom of 0.009 (t-statistic =
4.19) is highly statistically significant. Finally, the average coefficient of −0.061
(t-statistic = −12.18) on Re𝑣 shows that the reversal phenomenon is not explained
by any linear combination of the other variables in the regression specification.

We now repeat the FM regression analyses using ln Illiq12M instead of Illiq12M as
our measure of illiquidity. All other aspects of the regressions remain unchanged. The
results of these analyses presented in Panel B of Table 13.10 indicate that, regardless
of the specification, the relation between ln Illiq12M and future stock returns is
positive and statistically significant.16 Once again, regardless of the specification,
the average coefficients on 𝛽 and Size are negative but statistically insignificant, BM
and Mom exhibit positive and highly statistically significant relations with future
returns, and Re𝑣 has a very strong negative relation with future stock returns. Thus,
consistent with our conclusions from the correlation and persistence analyses, the
results indicate that ln Illiq12M may be a more useful measure of illiquidity than the

16The relation is only marginally statistically significant when 𝛽 is the only other independent variable in
the regression model (specification (2)).
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untransformed version Illiq12M , especially in analyses that assume a linear relation
between expected returns and the variable under examination. Regardless of which
measure is used, however, the specification that includes all of the other variables as
controls detects a very strong positive relation between illiquidity and future stock
returns.

We proceed now with FM regression analyses examining the relation between
illiquidity and expected stock returns using measures of illiquidity calculated from
shorter measurement periods. In Panel A of Table 13.11, we present the results
of FM regressions that use Illiq1M , Illiq3M , Illiq6M , and for ease of comparison,

TABLE 13.11 Fama–MacBeth Regression Analysis—Illiq and ln Illiq
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and illiquidity. Each column in the table presents results for a
different cross-sectional regression specification. The dependent variable in all specifications
is the one-month-ahead excess stock return. The independent variables are indicated in the
first column. Independent variables are winsorized at the 0.5% level on a monthly basis. The
table presents average slope and intercept coefficients along with t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average adjusted
R-squared and the number of data points, respectively, for the cross-sectional regressions.

Panel A: Illiq

(1) (2) (3) (4) (5) (6) (7) (8)

Illiq1M 0.050 0.055
(1.98) (3.10)

Illiq3M 0.041 0.082
(1.53) (3.28)

Illiq6M 0.033 0.078
(1.31) (3.30)

Illiq12M 0.027 0.071
(1.33) (3.70)

𝛽 −0.182 −0.174 −0.169 −0.151
(−1.11) (−1.07) (−1.04) (−0.93)

Size −0.073 −0.047 −0.041 −0.039
(−1.34) (−0.87) (−0.77) (−0.74)

BM 0.221 0.220 0.200 0.192
(2.97) (2.88) (2.62) (2.54)

Mom 0.008 0.008 0.009 0.009
(4.11) (4.23) (4.35) (4.19)

Re𝑣 −0.061 −0.060 −0.061 −0.061
(−11.83) (−11.80) (−12.15) (−12.18)

Intercept 0.693 0.859 0.661 0.692 0.641 0.658 0.643 0.641
(2.47) (1.96) (2.36) (1.58) (2.31) (1.51) (2.33) (1.47)

Adj. R2 0.01 0.06 0.01 0.06 0.01 0.06 0.01 0.06
n 3600 2723 3433 2640 3365 2628 3242 2609
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TABLE 13.11 (Continued)

Panel B: In Illiq

(1) (2) (3) (4) (5) (6) (7) (8)

ln Illiq1M 0.221 0.113
(1.99) (1.35)

ln Illiq3M 0.220 0.294
(1.88) (3.18)

ln Illiq6M 0.230 0.329
(1.98) (3.47)

ln Illiq12M 0.256 0.342
(2.32) (3.74)

𝛽 −0.199 −0.172 −0.157 −0.132
(−1.19) (−1.04) (−0.95) (−0.80)

Size −0.101 −0.038 −0.017 −0.008
(−1.86) (−0.73) (−0.33) (−0.16)

BM 0.233 0.226 0.206 0.200
(3.15) (2.97) (2.72) (2.66)

Mom 0.008 0.008 0.009 0.008
(3.81) (4.05) (4.21) (4.04)

Re𝑣 −0.062 −0.060 −0.061 −0.062
(−11.84) (−11.82) (−12.21) (−12.27)

Intercept 0.645 1.040 0.590 0.607 0.555 0.459 0.544 0.392
(2.49) (2.39) (2.29) (1.41) (2.18) (1.09) (2.15) (0.93)

Adj. R2 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06
n 3600 2723 3433 2640 3365 2628 3242 2609

Illiq12M (these results have already been presented in Table 13.10), as the measure
of illiquidity. For each measure of illiquidity, we conduct analyses using only
Illiq as an independent variable and then again with 𝛽, Size, BM, Mom, and Re𝑣
as controls. When using Illiq1M as the measure of illiquidity, both the univariate
(specification (1)) and multivariate (specification (2)) specifications generate positive
and statistically significant average coefficients on Illiq1M . When we take Illiq3M or
Illiq6M as the illiquidity variable, the univariate specifications (specifications (3) and
(5)) produce insignificant average coefficients of 0.041 (t-statistic = 1.53) and 0.033
(t-statistic = 1.31), respectively. The corresponding multivariate specifications,
however, generate average coefficients that are at least twice as large as those in
the corresponding univariate specifications, and highly statistically significant. The
results of the analyses using Illiq12M have been previously discussed. Interestingly,
regardless of which measure of illiquidity is used, the average coefficient on Size is
statistically indistinguishable from zero. This result seems to indicate that the size
effect is, at least in large part, an illiquidity effect. Consistent with results in previous
chapters of this text, in all multivariate specifications, the average coefficient on 𝛽

is negative but statistically insignificant, the average coefficients on BM and Mom
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are both positive and highly statistically significant, and Re𝑣 exhibits a very strong
statistically significant negative relation with future stock returns.

In Panel B of Table 13.11 we present the results of similar FM regressions, this
time using the log-transformed illiquidity measures (ln Illiq) instead of the untrans-
formed measures. When only ln Illiq1M is included as an independent variable in
the regression model (specification (1)), the analysis finds a positive relation between
ln Illiq1M and future stock returns since the average coefficient of 0.221 is statistically
significant with a t-statistic of 1.99. When the controls are added to the specification
(specification (2)), however, the average coefficient on ln Illiq1M of 0.113 is statis-
tically indistinguishable from zero. In this specification, the average coefficient on
Size of −0.101 is marginally statistically significant with a t-statistic of −1.86. This
is the only FM regression analysis that generates a significant (albeit only marginally)
average coefficient on Size. When ln Illiq3M is used as the measure of illiquidity, the
univariate regression analysis (specification (3)) produces a positive and marginally
statistically significant coefficient of 0.220 (t-statistic = 1.88) on ln Illiq3M . When
controls are added, the average coefficient on ln Illiq3M increases to 0.294 and is
highly statistically significant with a t-statistic of 3.18. Finally, using ln Illiq6M to
measure illiquidity, both the univariate specification (specification (5)) and the mul-
tivariate specification (specification (6)) detect positive and statistically significant
relations between ln Illiq6M and future stock returns. The univariate specification
generates an average coefficient of 0.230 (t-statistic = 1.98) on ln Illiq6M , while the
average coefficient from the multivariate specification is 0.329 (t-statistic = 3.47).
Regardless of the measure of illiquidity, the coefficients on the other variables are
qualitatively similar to those of other regressions, with the one exception being the
marginally statistically significant negative relation between Size and future stock
returns when ln Illiq1M is used to measure illiquidity.

Overall, the FM regression analyses provide evidence of a positive relation
between illiquidity and future stock returns. The relation is much strong when the
full set of control variables is included in the regression specification. Consistent
with our previous assessments, the results are strongest when using measures of
illiquidity calculated using longer (six-month or 12-month) measurement periods.
The statistical significance of the relation between illiquidity and future stock
returns in multivariate specifications is approximately the same when using the
untransformed measures (Illiq) compared to when using the log-transformed
measures (ln Illiq) calculated using the same measurement period. Thus, despite
the extreme skewness of the untransformed measures and the enhanced persistence
of the log-transformed measures, the FM regression analyses do not provide much
evidence that one measure is better than the other.

To examine the economic magnitude of the relation between illiquidity and future
stock returns, we use the average coefficient on Illiq12M of 0.071 from the full regres-
sion specification (specification (8) in Panel A of Table 13.11). Multiplying this coef-
ficient by the cross-sectional standard deviation of Illiq12M in the average month of
27.73, we find that a one-standard-deviation difference in Illiq12M is associated with
a difference in expected returns of 0.99% (0.071 × 27.73) per month. To examine the
difference in expected returns between stocks in the highest and lowest deciles of
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Illiq12M , we multiply the average coefficient of 0.071 by the difference between the
average value of Illiq12M for stocks in the highest and lowest Illiq12M decile portfolios
of 21.28 (21.29 − 0.01, see Table 13.4). This indicates that the expected return of the
average stock in the 10th decile of Illiq12M is 1.51% per month (0.071 × 21.28) higher
than that of a stock in the lowest Illiq12M decile. Both of these results indicate that
illiquidity is very economically important in the pricing of stocks. However, it is pos-
sible that both of these estimates overstate the effect of illiquidity on expected stock
returns because both the standard deviation of Illiq12M and the difference in average
Illiq12M between stocks in the highest and lowest Illiq12M decile portfolios are likely
inflated by the fact that the cross-sectional distribution of Illiq12M contains a small
number of stocks with extremely high values of Illiq12M . To examine the effect this
may have on our conclusions, we repeat these analyses using the log-transformed ver-
sion ln Illiq12M . The average coefficient on ln Illiq12M in the regression that includes
the full set of controls is 0.342 (see Table 13.11, Panel B, specification (8)). Multiply-
ing this by the cross-sectional standard deviation of ln Illiq12M in the average month,
0.79, indicates that a one-standard-deviation difference in ln Illiq12M is associated
with a 0.27% (0.342 × 0.79) per month difference in expected stock returns. Multi-
plying the average coefficient by the difference in average ln Illiq12M for stocks in the
highest and lowest Illiq12M decile portfolios (same as ln Illiq12M decile portfolios) of
2.48 (2.49 − 0.01, see Table Panel A of 13.4), we find a difference in expected return
between stocks in the highest and lowest ln Illiq12M deciles of 0.85% (0.342 × 2.48)
per month. This value is very similar to the average return of the equal-weighted
Illiq12M 10-1 portfolio of 0.77% per month (see Table 13.4). Regardless of which
estimates of the premium associated with illiquidity are used, the results indicate that
liquidity plays an economically important role in determining expected stock returns.

13.6 LIQUIDITY FACTORS

The previous analyses in this chapter examine whether individual stock-level liquid-
ity plays a role in determining expected stock returns. Standard asset pricing theories,
such as the arbitrage pricing theory of Ross (1976), dictate that cross-sectional vari-
ation in expected returns is determined only by securities’ sensitivities to priced risk
factors. According to these theories, it is not the actual liquidity of an individual secu-
rity that plays a role in determining the security’s expected return. What is important
is how the security’s return is contemporaneously related to aggregate changes in
liquidity.

Pastor and Stambaugh (2003, PS hereafter) investigate whether aggregate liquidity
is a priced risk factor and find strong empirical evidence that stock-level sensitivity
to innovations in an aggregate liquidity factor plays an important role in determin-
ing expected stock returns. To accomplish this, PS begin by creating a measure of
stock-level liquidity and aggregating this measure across all stocks to generate a
measure of market-level liquidity. They then calculate innovations in aggregate stock
market liquidity using average changes in stock-level liquidity and take these innova-
tions to be their liquidity factor. This factor is used by PS (and subsequent researchers)
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to calculate stock-level sensitivities to unexpected changes in aggregate liquidity.
Finally, PS use portfolio analysis to demonstrate that stocks with high sensitivities to
liquidity innovations generate higher average returns than stocks with low liquidity
factor sensitivities.

The returns of the long–short liquidity sensitivity portfolio, commonly referred
to as the traded liquidity factor, are widely interpreted as the returns of a
factor-mimicking portfolio in the same spirit as the SMB and HML factors of Fama
and French (1993). The traded liquidity factor is, therefore, frequently used by
researchers in factor analyses of portfolio returns aimed at calculating the portfolio’s
alpha after adjusting for aggregate liquidity risk. It is worth noting that the PS
liquidity factors have the conceptual advantage that the source of the risk being
captured (aggregate liquidity) is known. The innovations series captures unexpected
changes in aggregate liquidity while the traded factor captures the returns associated
with sensitivity to aggregate liquidity innovations. This contrasts with the SMB and
HML factors that capture returns associated with size and value investing, but the
economic risks that the returns of these portfolios are compensating for are not as
well understood.

In the remainder of this section, we describe the approach used by PS to gen-
erate their measure of aggregate stock market liquidity and examine its time-series
properties. We then discuss how they use the aggregate liquidity measure to calcu-
late liquidity innovations. Finally, we examine the time series of returns generated by
their portfolio analysis, which is used by many researchers to augment the Fama and
French (1993) three-factor model or the Fama and French (1993) and Carhart (1997)
four-factor model with a liquidity factor.

13.6.1 Stock-Level Liquidity

The first step toward creating PS’s liquidity factor is to generate a measure of
stock-level liquidity. Similar to the Amihud (2002) measure of illiquidity, the PS
measure of individual stock liquidity is based on the concept that large volume on an
illiquid stock will cause the stock to realize a substantial price move. The PS measure
differs, however, in that it attempts to capture only the portion of that move that is
not related to changes in the fundamental value of the stock. As such, conceptually,
what PS capture is whether a given stock tends to realize daily return reversals on
days subsequent to days with high trading volume. By PS’s own admission, their
measure of individual stock liquidity is very noisy and does not exhibit any ability
to predict the cross section of future stock returns, or even the cross section of future
liquidity. The value of the measure is that it aggregates in a manner that appears
to capture the time series of market-level liquidity. This key fact allows them to
calculate innovations in aggregate liquidity.

To exemplify the intuition behind their measure, imagine that on certain day, there
is a large amount of order flow from investors looking to buy a highly illiquid stock.
The result will likely be that the stock will realize high volume on that day combined
with a large positive return because the investors’ buying pressure pushed the price of
the stock up. On the next day, however, the investors’ demand for the stock has been
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satisfied, and the stock is likely to realize a price decrease back toward its fundamental
value. The idea behind the PS liquidity measure is to capture this type of behavior in
stock returns. A stock that exhibits this phenomenon to a high degree is considered
highly illiquid while a stock for which high volume days are not followed by price
reversals is considered highly liquid.

Following this intuition, PS measure the illiquidity of stock i in month m to be the
estimated coefficient 𝛾i,m from regression specification

ri,d+1 − rm,d+1 = 𝜃i,m + 𝜙ri,d + 𝛾i,msign(ri,d − rm,d)𝜐i,d + 𝜖i,d+1 (13.2)

where ri,d and rm,d are the return of the given stock i and the market portfolio, respec-
tively, on day d and 𝜐i,d is the dollar volume traded in stock i on day t, measured in
$millions, calculated by multiplying the day d closing price of the stock with the day
d number of shares traded and dividing by one million. The regression is run using
all days d where both day d and day d + 1 are in the given month m. PS require that
the regression be fit using at least 15 data points, which is equivalent to requiring that
there be 16 valid data points in the month m for the stock i.

As can be seen in equation (13.2), the PS liquidity measure uses the abnormal
return of the stock, defined in this context as the difference between the return of
stock i and the market return, to capture the reversal effect discussed previously. The
term 𝜙ri,d is used to control for any potential daily reversal effect that is not related
to volume or order flow. The key term in equation (13.2), sign(ri,d − rm,d)𝜐i,d, is what
PS refer to as signed volume. The magnitude of this term is simply the dollar volume
in the stock on the given day, and the sign of this term is the same as the sign of
the difference between the stock’s return and the market return. The idea is that the
sign captures the direction of the price pressure or order flow, and the magnitude
captures the amount of price pressure. If the coefficient 𝛾i,m is negative, this means
that the stock tends to underperform (outperform) the market on days subsequent
to high buying (selling) pressure days. Thus, high values of 𝛾i,m are associated with
highly liquid stocks and low values of 𝛾i,m indicate illiquid stocks. 𝛾i,m can therefore be
thought of as the effect on the return of the stock associated with trading one million
dollars of stock i. A slightly looser interpretation proposed by PS is that the negative
of 𝛾i,m is the cost, as a percentage of trade value, associated with trading one million
dollars worth of stock.

13.6.2 Aggregate Liquidity

As discussed earlier, PS acknowledge that their measure of individual stock liquidity
is very noisy on an individual level. However, when aggregated to the market level,
PS demonstrate that the aggregated measure exhibits properties very consistent with
what would be expected of a measure of aggregate liquidity. PS define their measure
of aggregate liquidity for month m as

�̂�m = 1
Nm

Nm∑
i=1

�̂�i,m (13.3)
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Figure 13.1 Time-Series Plot of (Vm ∕V𝟏)�̂�m.
This figure plots the values of (Vm∕V1)�̂�m, a measure of aggregate stock market liquidity, for
the period from August 1962 through December 2012

where �̂�i,m is the fitted value of the parameter 𝛾i,m from regression (13.2) for stock i in
month m and Nm is the number of stocks in the given month m. In addition to requiring
that the regression be fitted using at least 15 data points, PS perform the aggregation
over only those stocks with share prices between $5 and $1000, inclusive, as of the
end of the previous month m − 1. Similar to their interpretation of the stock-level
measure, PS interpret their market-level measure as the cost of trading one million
dollars worth of the equal-weighted market portfolio.

In Figure 13.1, we plot the time series of (Vm∕V1)�̂�m, where Vm is the total market
capitalization of the Nm stocks included in the calculation of �̂�m calculated as of the
end of month m − 1, and month 1 corresponds to August 1962.17 PS scale the �̂�m by
Vm∕V1 series to account for the fact that trading one million dollars of stock in 1962
is not comparable to trading one million dollars of stock in 2012. PS only calculate
their aggregate liquidity measure for months beginning in August 1962. The plotted
series, therefore, covers the period from August 1962 through December 2012.

PS point to the fact that several well-documented instances of substantial drops
in liquidity are captured by their measure. Specifically, they mention the Mideast oil
embargo in November 1973, the Cambodia invasion announcement and shootings at
Kent State and Jackson State in May 1980, the October 1987 stock market crash,
the Asian financial crisis in October 1997, the Russian debt crisis of August 1998,

17The (Vm∕V1)�̂�m data were downloaded from Lubos Pastors’ website (http://faculty.chicagobooth.edu/
lubos.pastor/research/liq_data_1962_2013.txt). This is the series labeled “Levels of aggregate liqidity.”

http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2013.txt
http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2013.txt
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and the collapse of Long Term Capital Management in September 1998. Lending
strong support to their measure, subsequent to the publication of the article, the series
also detects the bursting of the dot-com bubble in March 2000 and the housing and
financial crisis of 2007 and 2008.

13.6.3 Liquidity Innovations

While Figure 13.1 indicates that PS’s measure of market liquidity does a reason-
able job at capturing overall levels of market liquidity, the series (Vm∕V1)�̂�m does not
capture innovations, or unexpected changes, in liquidity. To capture innovations in
liquidity, PS begin by taking the average change in the individual stock-level values
of liquidity, averaging across stocks, and adjusting for overall market size

Δ�̂�m =
(

Vm

V1

)
1

Nm

Nm∑
i=1

(�̂�i,m − �̂�i,m−1) (13.4)

where this time Nm represents the number of stocks with valid liquidity measures in
both months m and m − 1, and Vm is calculated using only these stocks. To remove
the long-run mean and any potential serial correlation in the series Δ�̂�m, PS run the
regression.

Δ�̂�m = a + bΔ�̂�m−1 + c

(
Vm−1

V1

)
�̂�m−1 + um. (13.5)

Finally, PS define the monthly innovation in aggregate liquidity for month m to be
the fitted month m residual from regression 13.5, scaled by 100.

Lm = 1
100

ûm. (13.6)

In Figure 13.2, we plot the time series of Lm.18 The plot looks almost identical
to that of the total market-level liquidity measure �̂�m. The two time series exhibit a
correlation of 0.81. This is likely in part because of the construction of the measures.
However, if we accept each of �̂�m and Lm as an accurate reflection of what they are
attempting to measure, aggregate market-level liquidity and innovations in aggre-
gate market-level liquidity, respectively, this result indicates that the vast majority of
time-series variation in aggregate market-level liquidity is unexpected.

13.6.4 Traded Liquidity Factor

As discussed earlier, PS acknowledge that the measure of stock-level liquidity (�̂�i,m)
is highly noisy, exhibits little cross-sectional persistence, and fails to show any
cross-sectional relation to expected or future stock returns. PS show that another
stock-level variable, sensitivity of the stock’s returns to liquidity innovations, does
have a relation with expected stock returns. To demonstrate this, PS calculate the
liquidity innovation beta of a stock by using a time-series regression of a stock’s

18The Lm data were downloaded from Lubos Pastors’ website (http://faculty.chicagobooth.edu/lubos
.pastor/research/liq_data_1962_2013.txt). This is the series labeled “Innovations in aggregate liquidity.”

http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2013.txt
http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2013.txt
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Figure 13.2 Time-Series Plot of Lm.
This figure plots the values of Lm, a measure of aggregate stock market liquidity, for the period
from August 1962 through December 2012

excess return on the three factors in the Fama and French (1993) risk model
(FF) along with the liquidity innovations L. The estimated coefficient on liquidity
innovations is taken to be the stock’s liquidity beta. The regression specification is

ri,t = 𝛽

0
i + 𝛽i,MKTMKTt + 𝛽i,SMBSMBt + 𝛽i,HMLHMLt + 𝛽i,LLt + 𝜖i,t (13.7)

where ri,t is the excess return of stock i during period t and MKTt, SMBt, HMLt, and Lt
are the market factor, size factor, value factor, and liquidity innovation, respectively,
in month t. The regression is estimated using five years worth of historical monthly
return data. PS require a minimum of three-years worth of monthly return data to
estimate the regression.

There is a slight adjustment to the procedure described earlier that PS make to
ensure that their analysis is based on data available at the time of portfolio formation.
The liquidity innovations Lm, as described earlier, are calculated as residuals from a
regression model that includes the entire time series of Δ�̂�m. This means that the esti-
mated residual for month t is affected by the values of Δ�̂�m for months m subsequent
to month t. To ensure that their asset pricing analyses are based only on data that are
available at the time that the portfolios are formed, when calculating liquidity betas
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for stocks in any given month t, the regression used to calculate liquidity innovations
(equation (13.5)) is estimated using only values of Δ�̂�m for months m where m ≤ t.19

PS estimate liquidity innovation betas at the end of each year and hold them
constant for all months during the subsequent year. Thus, the values of 𝛽i,L calculated
at the end of December of year t are used to form portfolios that will be held during
all months in calendar year t + 1. PS form monthly decile portfolios using all stocks
in the CRSP database that trade on the New York Stock Exchange, American Stock
Exchange, or NASDAQ. They then calculate the monthly returns of each of these
portfolios. The difference in return between the decile 10 portfolio and the decile
one portfolio is the return that empirical asset pricing researchers most commonly
use as a liquidity factor, which we denote as PSL.

PS make PSL factor returns for the period from January 1968 through December
2012 available on their websites.20 During this period, the average monthly return (log
return) of the PSL portfolio is 0.45% per month (0.39% per month) with a monthly
standard deviation of 3.53% (3.50%). The annualized Sharpe ratio of the monthly
(log) returns of the PSL portfolio is therefore 0.44 (0.38). Over the entire 1968 through
2012 period, the PSL factor generated a cumulative return of 701% and a cumulative
log return of 208%. The correlations of the PSL factor with other factors are quite
low. PSL has historical monthly return correlations of −0.05 with the MKT factor,
−0.04 with the SMB factor, 0.04 with the HML factor, −0.03 with the MOM fac-
tor, and 0.09 with the STR factor. The alpha of the PSL factor relative to the Fama
and French (1993) three-factor risk model is 0.46% per month with a Newey and
West (1987)-adjusted (six lags) t-statistic of 2.93. Relative to the FFC risk model, the
PSL factor generates alpha of 0.48% per month with a t-statistic of 3.04. When the
FFC model is augmented with the reversal factor (STR), we find that the PSL factor
produces FFCSTR alpha of 0.42% per month (t-statistic = 2.58).

In Figure 13.3, we plot the cumulative returns (solid line) and log returns (dashed
line) of the PSL portfolio. The chart shows that the PSL portfolio has produced rea-
sonably consistent returns without any extremely severe single month losses. This
does not mean that the PSL portfolio is without risk, however. From the end of Octo-
ber 1986 until the end of September 1993, the PSL portfolio lost more than 33% of its
October 1986 value. This value was not recovered until the end of February 2001, or
14 years and four months after the drawdown began. This represents both the longest
and deepest drawdown experienced by the PSL portfolio. The later portion of our sam-
ple period is the most volatile period for the PSL portfolio. Between the end of June
2008 and the end of December 2008, the PSL portfolio lost almost 23%. These losses
were regained in full two months later, by the end of February 2009, resulting in the

19While PS take this extra step to ensure the veracity of their results, which set of aggregate liquidity inno-
vations (innovations calculated using the full sample or innovations calculated using backward-looking
data only) is used is empirically inconsequential. The time-series correlation between aggregate liquidity
innovations calculated using the two different methodologies is greater than 0.99. This result is indicative
of the robustness of the aggregate liquidity measures produced by PS.
20The PSL data were downloaded from Lubos Pastors’ website (http://faculty.chicagobooth.edu/lubos
.pastor/research/liq_data_1962_2013.txt). This is the series labeled “Traded liquidity factor.”

http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2013.txt
http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2013.txt
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Figure 13.3 Cumulative Returns of PSL Portfolio.
This figure plots the cumulate returns of the PSL factor for the period from January 1968
through December 2012. The compounded excess return for month t is calculated as 100 times
the cumulative product of one plus the monthly return up to and including the given month.
The cumulate log excess return is calculated as the sum of the monthly log excess returns up
to and including the given month

drawdown lasting only eight months. Despite the short duration of this drawdown, it
represents the third deepest drawdown in the history of the PSL portfolio. The second
most extreme drawdown began immediately as this short drawdown ended. From the
end of February 2009, the PSL portfolio lost more than 24% over the next six months.
This drawdown was once again relatively short-lived, since the previous high water
mark was regained in October 2010, a mere 20 months after the drawdown began.
The second longest and fourth deepest drawdown experienced by the PSL portfolio
began at the end of January 1976. By the end of December 1979, the portfolio had
lost nearly 23% of its value. The previous high was regained by the end of September
1981, five years and eight months after the drawdown began.

As with the short-term reversal factor (STR), the Pastor and Stambaugh (2003) liq-
uidity factor is frequently used to augment the Fama and French (1993) and Carhart
(1997) four-factor model in analyses of time series of returns. It is most commonly
used as a robustness check instead of being included in the benchmark model which,
in most cases, remains the four-factor model. Despite this fact, the PSL factor remains
quite useful, especially for studies documenting a pattern in returns that could poten-
tially be driven by liquidity.
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13.7 SUMMARY

In summary, in this chapter we have empirically examined the cross-sectional
relation between liquidity and expected stock returns. While numerous different
measures of liquidity have been proposed, we focus on the most commonly used
measure, that of Amihud (2002). We demonstrate that, consistent with the findings
throughout the empirical asset pricing literature, illiquidity has a strong positive
cross-sectional relation with future stock returns. This result is consistent with the
theoretical prediction that illiquid securities command higher expected returns than
more liquid securities. The result exists regardless of whether illiquidity is measured
using one, three, six, or 12 months of historical data, but the results are strongest
when using variables estimated from long measurement periods. Since most empir-
ical asset pricing researchers calculate illiquidity using one month of daily return
data, for the remainder of this text, we will take the one-month measure, denoted
Illiq1M throughout this chapter, as our primary measure of illiquidity. Going forward,
we will drop the superscript from the variable name and denote this variable Illiq.

We then discuss the creation of the traded Pastor and Stambaugh (2003) liquidity
factor, PSL, which is designed to capture returns associated with innovations in
aggregate liquidity. We demonstrate that the measures of aggregate liquidity as well
as aggregate liquidity innovations generated by Pastor and Stambaugh (2003) have
the time-series properties that would be expected of such measures. We then show
that the PSL factor mimicking portfolio generates substantial long-term average
returns.
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SKEWNESS

According to the mean–variance paradigm introduced by Markowitz (1952),
investors make portfolio decisions by optimally trading off expected return (mean)
and risk, measured by the variance of a portfolio’s return, with high expected
return and low risk being desirable portfolio properties. The assumption in the
mean–variance paradigm is that all risk relevant to investors’ portfolio selection
is captured by the second moment, or variance, of the portfolio’s return. From
the mean–variance paradigm, Sharpe (1964), Lintner (1965), and Mossin (1966)
developed the Capital Asset Pricing Model (CAPM). According to the CAPM,
the expected return on any security is equal to the risk-free rate of return plus a
risk premium, which is equal to the security’s market beta times the market risk
premium. The empirical failures of the CAPM (Friend and Blume (1970), Fama and
MacBeth (1973), Reinganum (1981), Lakonishok and Shapiro (1986), Fama and
French (1992, 1993)) prompted researchers to search for other models to describe
expected security returns.

The idea that the skewness, or the third moment, of returns is an important
consideration to investors when determining optimal investments is introduced
by Arditti (1967, 1971), who shows theoretically and empirically that investors
demand a higher (lower) rate of return on investments whose return distributions
are negatively (positively) skewed. Scott and Horvath (1980) extend this analysis
to include not just the third moment, but all higher moments of the distribution
of returns, and demonstrate that positive values of even (odd) moments command

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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positive (negative) risk premia, and vice versa for negative moment values.1 Stated
alternatively, higher (lower) values of even moments (variance and kurtosis) are
associated with higher (lower) expected returns, while higher (lower) values of odd
moments (skewness) are associated with lower (higher) expected returns. Kraus
and Litzenberger (1976) incorporate this notion into a three-moment capital asset
pricing model. According to their model, in equilibrium, expected security returns
are determined not only by the amount of systematic (undiversifiable) variance
associated with the security but also by the security’s systematic skewness. As with
the CAPM, according to three-moment model of Kraus and Litzenberger (1976),
unsystematic risk (both variance and skewness) is diversifiable and thus does not
play a role in determining expected security returns. Harvey and Siddique (2000)
introduce systematic skewness into the pricing of securities via a stochastic discount
factor that is quadratic in the market return and show that this results in the pricing of
conditional co-skewness, defined as the covariance between the excess security return
and the squared excess market return, conditional on the market return. Empirically,
Harvey and Siddique (2000) find a co-skewness risk premium of 3.60% per year.

Some papers have challenged the notion that idiosyncratic skewness is diversified
away and therefore cannot be priced. Kane (1982) shows that the total proportion
of wealth that is invested in risky securities is affected by portfolio skewness, and
that skewness preference may cause investors to not completely diversify. Simkowitz
and Beedles (1978) and Conine and Tamarkin (1981) propose that when investors
do not completely diversify, idiosyncratic skewness may be relevant to the pricing of
securities. Mitton and Vorkink (2007) develop a model in which heterogeneous skew-
ness preference causes investors to underdiversify and demonstrate that idiosyncratic
skewness has an impact on equilibrium prices. These findings are consistent with
Barberis and Huang (2008), who show that the cumulative prospect theory of Tver-
sky and Kahneman (1992) predicts a negative relation between individual security
skewness and expected return. Boyer, Mitton, and Vorkink (2010) demonstrate that
expected idiosyncratic skewness, calculated based on firm-specific characteristics,
has a strong negative cross-sectional relation with future stock returns. Bali, Cakici,
and Whitelaw (2011) use the maximum daily return over the past month as a proxy
for extreme positive skewness and find a strong negative relation with future stock
returns.2

Given the difficulties in measuring the market’s view of the skewness of the dis-
tribution of future stock returns from historical data (Boyer et al. (2010), Bali et al.
(2011)), recent research has examined the ability of skewness implied from option
prices to predict future security returns. The results of such studies are mixed. Consis-
tent with theoretical predictions, Conrad, Dittmar, and Ghysels (2013) find a negative
cross-sectional relation between implied skewness and future stock returns, and Bali
and Murray (2013) find a negative relation between implied skewness and the returns

1Dittmar (2002) and Kimball (1993) also conclude that investors are averse to kurtosis.
2Bali, Cakici, and Whitelaw (2011) argue that the maximum daily return over the past month measures
the attractiveness of the stock to lottery investors, or investors who want to own stocks that have a high
probability of a large short-term price increase.
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of skewness assets. Boyer and Vorkink (2014) demonstrate that options with high
implied skewness generate lower average returns. Amaya, Christoffersen, Jacobs, and
Vasquez (2015) demonstrate a negative relation between skewness measures from
intraday data and expected returns. On the other hand, Xing, Zhang, and Zhao (2010)
and Cremers and Weinbaum (2010) find a positive relation between measures related
to implied skewness and future stock returns. The positive relation between implied
skewness and future stock returns is potentially explained by demand-based option
pricing models of Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman
(2009). According to demand-based option pricing, investors anticipating positive
(negative) returns establish exposure to the stock by buying calls and selling puts
(selling calls and buying puts). The price pressure exerted by these trades causes call
prices to increase (decrease) relative to put prices resulting in higher (lower) values
of option implied skewness for stocks that investors predict will increase (decrease)
in value.3

In this chapter, we examine the relations between skewness and expected stock
returns. We begin by presenting the most commonly used approaches to measuring
total skewness, co-skewness (aka systematic skewness), and idiosyncratic skewness.
We then proceed to an examination of the ability of these variables to predict future
stock returns.

14.1 MEASURING SKEWNESS

In this section, we present the most standard calculations of total skewness,
co-skewness, and idiosyncratic skewness. As with several of the other variables
discussed throughout this text, measures of skewness can be constructed from
historical return data using different data frequencies and estimation periods.

Total skewness is most commonly measured as the sample skewness of historical
realized stock returns and is calculated as

Ske𝑤i =
1
n

∑n
t=1 (Ri,t − Ri)3

(
1
n

∑n
t=1

(
Ri,t − Ri

)2
)3∕2

(14.1)

where Ri,t is the return of security i during period t, n is the number of periods used
in the calculation, and Ri is the average periodic return of stock i over all periods
included in the calculation.

Systematic skewness, frequently referred to as co-skewness, is calculated follow-
ing Harvey and Siddique (2000) as the slope coefficient on the squared excess market
return from a regression of excess stock returns on the excess return of the market
portfolio and the squared excess market return. Specifically, co-skewness is the esti-
mated slope coefficient CoSke𝑤i from the regression

ri,t = 𝛼i + 𝛽MKT ,iMKTt + CoSke𝑤iMKT2
t + 𝜖i,t (14.2)

3An, Ang, Bali, and Cakici (2014), Bali and Hovakimian (2009), and DeMiguel, Plyakha, Uppal, and
Vilkov (2013) provide empirical evidence consistent with the predictions of demand-based option pricing.
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where ri,t is the excess return of stock i during period t and MKTt is the return of the
market factor during period t.

While total skewness and co-skewness are most commonly measured using the
simple measures discussed earlier, Boyer, Mitton, and Vorkink (2010) show that mea-
surement of idiosyncratic skewness from historical data can be improved upon, as sev-
eral firm-specific variables, specifically idiosyncratic volatility, momentum, turnover,
size, industry, and whether the firm trades on the NASDAQ exchange increase the
accuracy of forecasts of future idiosyncratic skewness. Boyer, Mitton, and Vorkink
(2010), therefore, argue that the expectation of future idiosyncratic skewness, which
is the theoretically relevant variable for predicting future returns, should be calcu-
lated as a function of historical idiosyncratic skewness and these additional firm
characteristics. Despite these findings, in this text, we will focus on a measure of
idiosyncratic skewness based purely on historical return data. The reasons for this
decision are twofold. First, Boyer et al. (2010) demonstrate that there is some per-
sistence in idiosyncratic skewness measured purely from historical data. Measuring
idiosyncratic skewness from only historical data allows us to examine this persis-
tence empirically. Second, by using only historical data, we alleviate the possibility
that it is the relation between these firm characteristics and future stock returns that
is driving the apparent relation between expected idiosyncratic skewness and future
stock returns documented by Boyer, Mitton, and Vorkink (2010). We therefore define
idiosyncratic skewness as the sample skewness of the residuals from a Fama and
French (1993) three-factor model regression. Specifically, we define idiosyncratic
skewness as

IdioSke𝑤i =
1
n

∑n
t=1 𝜖

3
i,t(

1
n

∑n
t=1 𝜖

2
i,t

)3∕2
(14.3)

where the 𝜖i,t are the residuals from the regression model

ri,t = 𝛼i + 𝛽MKT ,iMKTt + 𝛽SMB,iSMBt + 𝛽HML,iHMLt + 𝜖i,t (14.4)

and SMBt and HMLt are the returns of the size and value factor mimicking portfolios,
respectively, during the period t.

In the empirical analyses presented throughout this chapter, we use several dif-
ferent measures of skewness, co-skewness, and idiosyncratic skewness that vary in
the length of the measurement period and the frequency of the data used to calculate
the variables. Specifically, we calculate each of the variables using one, three, six,
and 12 months worth of daily return data. When calculating the daily return-based
variables for a given stock i in a given month t, we use daily data during the period
covering the months t − k + 1 through t, inclusive, where k is the number of months
in the measurement period. We require a minimum of 15, 50, 100, and 200 days
of valid returns during the measurement period to calculate the one-, three-, six-,
and 12-month variables, respectively. We also calculate skewness, co-skewness, and
idiosyncratic skewness using one, two, three, and five years worth of monthly return
data. We require 10, 20, 24, and 24 months of valid returns during the measure-
ment period to calculate the one-, two-, three-, and five-year variables, respectively.
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We denote the measures of total skewness using Ske𝑤, the co-skewness measures
as CoSke𝑤, and the idiosyncratic skewness measures with IdioSke𝑤. Variables cal-
culated using one, three, six, and 12 months worth of daily data are denoted with
superscripts 1M, 3M, 6M, and 12M, respectively. Variables calculated using one, two
, three, and five years of monthly return data are denoted with superscripts 1Y , 2Y ,
3Y , and 5Y , respectively.

Daily and monthly stock return data used to calculate the skewness measures are
taken from CRSP’s daily and monthly stock files, respectively. Daily and monthly
factor and risk-free security returns are gathered from Ken French’s data library.4

14.2 SUMMARY STATISTICS

Summary statistics for each of the skewness variables are presented in Table 14.1.
The values in the table are the time-series averages of monthly cross-sectional dis-
tributional statistics calculated using our sample of U.S.-based common stocks in
the Center for Research in Security Prices (CRSP) database during the 1963 through
2012 period.

Panel A of Table 14.1 shows summary statistics for the measures of total skew-
ness. The table indicates that the daily returns of individual stocks are, on average
and in median, positively skewed. The mean (median) values of daily return skew-
ness range from 0.24 (0.22) for Ske𝑤1M to 0.63 (0.46) for the 12-month measure
Ske𝑤12M . The average positivity of the skewness of daily individual stock returns is
interesting when compared to the skewness of the daily returns of the market port-
folio, which is consistently found to be negative. During the sample period used to
create Table 14.1, the skewness of the daily returns of the market factor is−0.51.5 The
summary statistics show that the measured values of daily return skewness increase
as the measurement period gets longer because the mean, as well as each percentile of
the cross-sectional distribution (with the exception of the minimum value) increases
when the measurement period is extended. For Ske𝑤1M and Ske𝑤3M , more than 25%
of stocks exhibit negative daily return skewness, whereas for Ske𝑤6M and Ske𝑤12M ,
the percentage of stocks exhibiting negative skewness is less than 25%. Some stocks
exhibit quite extreme daily return skewness, as the minimum and maximum values
are substantially different than the fifth and 95th percentiles, respectively. This phe-
nomenon is more prevalent in the measures that use the longer estimation periods.
Consistent with this observation, the table shows that the cross-sectional distribu-
tion of Ske𝑤 measured using daily returns becomes more leptokurtic as the length of
measurement period increases.

The patterns observed in the summary statistics for the monthly return-based mea-
sures of total skewness are similar to those of the daily return measure. The mean

4The URL for Ken French’s data library is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.
5Bakshi and Kapadia (2003) document a similar pattern in option implied skewness and discuss ways in
which the positive skewness of individual stocks and negative skewness of the market portfolio can be
reconciled.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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TABLE 14.1 Summary Statistics
This table presents summary statistics for variables measuring total skewness (Panel A),
co-skewness (Panel B), and idiosyncratic skewness (Panel C), using the CRSP sample for
the months t from June 1963 through November 2012. Each month, the mean (Mean), stan-
dard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min), fifth percentile
(5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th percentile (95%),
and maximum (Max) values of the cross-sectional distribution of each variable is calculated.
The table presents the time-series means for each cross-sectional value. The column labeled
n indicates the average number of stocks for which the given variable is available. Ske𝑤1M ,
Ske𝑤3M , Ske𝑤6M , and Ske𝑤12M are the skewness of daily stock returns calculated using one,
three, six, and 12 months of daily return data. Ske𝑤1Y , Ske𝑤2Y , Ske𝑤3Y , and Ske𝑤5Y are the
skewness of monthly stock returns calculated using one, two, three, and five years worth of
monthly return data. CoSke𝑤1M , CoSke𝑤3M , CoSke𝑤6M , and CoSke𝑤12M are calculated as the
slope coefficient on the excess market return squared term from a regression of excess stock
returns on the excess market return and the excess market return squared using one, three, six,
and 12 months of daily return data. CoSke𝑤1Y , CoSke𝑤2Y , CoSke𝑤3Y , and CoSke𝑤5Y are cal-
culated as the slope coefficient on the excess market return squared term from a regression of
excess stock returns on the excess market return and the excess market return squared using
one, two, three, and five years of monthly return data. IdioSke𝑤1M , IdioSke𝑤3M , IdioSke𝑤6M ,
and IdioSke𝑤12M are calculated as the skewness of the residuals from a regression of excess
stock returns on the excess market return, the return of the size (SMB) factor, and the return of
the value (HML) factor using one, three, six, and 12 months of daily return data. IdioSke𝑤1Y ,
IdioSke𝑤2Y , IdioSke𝑤3Y , and IdioSke𝑤5Y are calculated as the skewness of the residuals from
a regression of excess stock returns on the excess market return, the return of the size (SMB)
factor, and the return of the value (HML) factor using one, two, three, and five years of monthly
return data.

Panel A: Skew

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

Ske𝑤1M 0.24 1.02 0.02 2.52 −3.96 −1.38 −0.25 0.22 0.73 1.93 4.14 4704
Ske𝑤3M 0.43 1.21 0.46 7.03 −6.41 −1.18 −0.09 0.34 0.87 2.35 7.29 4686
Ske𝑤6M 0.54 1.28 1.05 11.53 −8.26 −0.99 0.01 0.41 0.93 2.53 10.06 4609
Ske𝑤12M 0.63 1.33 1.90 18.41 −9.53 −0.80 0.09 0.46 0.97 2.63 13.43 4440
Ske𝑤1Y 0.37 0.74 0.23 0.49 −2.55 −0.78 −0.11 0.33 0.82 1.69 2.92 4422
Ske𝑤2Y 0.50 0.79 0.71 1.74 −2.78 −0.60 0.00 0.42 0.91 1.93 4.22 4072
Ske𝑤3Y 0.58 0.82 1.02 2.76 −2.79 −0.52 0.06 0.46 0.97 2.09 5.09 3958
Ske𝑤5Y 0.67 0.87 1.39 4.44 −2.71 −0.41 0.12 0.52 1.04 2.27 6.33 3992

Panel B: CoSkew

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

CoSke𝑤1M −6.41 185.52 0.72 37.52 −1885.65 −266.87 −80.93 −5.99 65.65 252.18 2360.93 4742
CoSke𝑤3M −6.46 71.87 0.65 29.61 −666.57 −111.18 −37.39 −5.57 23.84 95.21 861.30 4697
CoSke𝑤6M −6.08 41.98 0.44 20.17 −369.28 −69.24 −24.86 −5.11 12.73 53.89 464.24 4611
CoSke𝑤12M −5.28 24.56 0.26 13.34 −209.73 −43.77 −16.68 −4.40 6.52 30.15 235.67 4440
CoSke𝑤1Y −1.11 38.64 0.91 32.41 −318.36 −57.30 −19.06 −1.25 16.07 55.09 529.65 4423
CoSke𝑤2Y −1.40 18.34 0.67 17.22 −132.93 −29.21 −10.21 −1.33 7.20 25.84 221.45 4072
CoSke𝑤3Y −1.43 12.75 0.69 17.61 −89.72 −20.92 −7.61 −1.34 4.61 17.55 142.32 3958
CoSke𝑤5Y −1.20 9.49 1.86 69.42 −79.85 −14.60 −5.26 −1.11 2.75 11.77 128.72 3992
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TABLE 14.1 (Continued)

Panel C: IdioSkew

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

IdioSke𝑤1M 0.19 0.91 0.06 2.17 −3.69 −1.27 −0.27 0.17 0.65 1.74 3.88 4742
IdioSke𝑤3M 0.41 1.17 0.37 6.45 −6.28 −1.19 −0.09 0.33 0.86 2.30 7.09 4697
IdioSke𝑤6M 0.55 1.29 0.90 10.49 −8.22 −1.06 0.01 0.42 0.96 2.57 9.87 4611
IdioSke𝑤12M 0.65 1.36 1.70 16.87 −9.61 −0.88 0.09 0.49 1.02 2.72 13.31 4440
IdioSke𝑤1Y 0.21 0.66 0.17 0.42 −2.27 −0.82 −0.21 0.19 0.62 1.34 2.59 4423
IdioSke𝑤2Y 0.42 0.71 0.65 1.70 −2.63 −0.59 −0.03 0.35 0.79 1.69 3.86 4072
IdioSke𝑤3Y 0.53 0.75 0.99 2.81 −2.70 −0.48 0.05 0.43 0.89 1.90 4.75 3958
IdioSke𝑤5Y 0.64 0.81 1.42 4.79 −2.64 −0.37 0.14 0.51 0.98 2.13 6.14 3992

(median) values of Ske𝑤1Y , Ske𝑤2Y , Ske𝑤3Y , and Ske𝑤5Y of 0.37 (0.33), 0.50 (0.42),
0.58 (0.46), and 0.67 (0.52), respectively, increase as the measurement period is
elongated, as do each of the percentiles of the cross-sectional distribution, with the
exception of the minimum value. With the exception of Ske𝑤1Y , each of the monthly
return skewness measures indicates that more than 75% of stocks exhibit positive
monthly return skewness. The positive values of total skewness once again contrast
with negative skewness of the monthly market factor returns of −0.51 for the July
1963 through December 2012 period.6

The summary statistics for the measures of co-skewness are presented in Panel B
of Table 14.1. The results show that the daily return-based co-skewness measures
CoSke𝑤1M , CoSke𝑤3M , CoSke𝑤6M , and CoSke𝑤12M have negative mean (median)
values of −6.41 (−5.99), −6.46 (−5.57), −6.08 (−5.11), and −5.28 (−4.40), respec-
tively. Each of these measures has a small number of very extreme observations,
as the difference between the minimum and fifth percentile, as well as between the
95th percentile and the maximum, is always more than six standard deviations. The
cross-sectional standard deviation of the measures decreases substantially as the mea-
surement period is extended. This indicates that calculation of co-skewness based on
short estimation periods may be susceptible to measurement error.

The values of co-skewness measured using monthly return data, CoSke𝑤1Y ,
CoSke𝑤2Y , CoSke𝑤3Y , and CoSke𝑤5Y , also tend to be negative, with mean (median)
values of −1.11 (−1.25), −1.40 (−1.33), −1.43 (−1.34), and −1.20 (−1.11),
respectively. The dispersion of the measures of co-skewness is substantially higher
for measures using shorter estimation periods than longer estimation periods, as the
cross-sectional standard deviation decreases from 38.64 for CoSke𝑤1Y to 9.49 for
CoSke𝑤5Y . These patterns in the summary statistics for CoSke𝑤 calculated from
monthly data are similar to those found in the daily return-based measures.

Summary statistics for the unsystematic component of skewness, referred to as
idiosyncratic skewness, are shown in Panel C of Table 14.1. The results demonstrate

6It is purely coincidence that the skewness of the daily MKT factor returns and the skewness of the monthly
MKT factor returns are both −0.51.
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that idiosyncratic skewness calculated using daily return data is, on average, positive,
with mean (median) values of 0.19 (0.17), 0.41 (0.33), 0.55 (0.42), and 0.65 (0.49) for
IdioSke𝑤1M , IdioSke𝑤3M , IdioSke𝑤6M , and IdioSke𝑤12M , respectively. These values
are very similar to the corresponding values of total skewness displayed in Panel A.
Furthermore, the patterns in the summary statistics for idiosyncratic skewness are
highly consistent with those of total skewness. Specifically, values of IdioSke𝑤 based
on longer estimation periods exhibit larger cross-sectional standard deviations than
values calculated using shorter estimation periods. This phenomenon is largely driven
by more extreme values in the very ends of the tails of the cross-sectional distri-
butions, as the magnitudes of the fifth and 95th percentiles are relatively compara-
ble across the measures using different estimation periods, whereas the minimum
and maximum values become substantially more extreme as the estimation period is
extended. Furthermore, at all reported percentiles of the distribution (with the excep-
tion of the minimum value), as well as the mean, the values of idiosyncratic skewness
increase as the measurement period is extended.

The last set of variables we analyze are the measures of idiosyncratic skewness
calculated from monthly return data. The summary statistics demonstrate that the
mean (median) values of IdioSke𝑤1Y , IdioSke𝑤2Y , IdioSke𝑤3Y , and IdioSke𝑤5Y of
0.21 (0.19), 0.42 (0.35), 0.53 (0.43), 0.64 (0.51), respectively, are all positive. The
mean, standard deviation, and all reported deciles with the exception of the minimum
value are increasing as the estimation period gets longer. Each of these patterns is
consistent with what is observed in the measures of total skewness as well as the
measures of idiosyncratic skewness measured from daily data. Values of idiosyncratic
skewness based on monthly return data are slightly lower than their total skewness
counterparts.

14.3 CORRELATIONS

We now examine correlations between the different measures of skewness. We begin
by looking at correlations between the different variables that are designed to mea-
sure the same aspect of skewness, total skewness (Ske𝑤), co-skewness (CoSke𝑤), and
idiosyncratic skewness (IdioSke𝑤). We then examine the correlations between total
skewness, co-skewness, and idiosyncratic skewness. Finally, we examine the correla-
tions between each of the measures and beta, size, book-to-market ratio, momentum,
reversal, and illiquidity.

14.3.1 Total Skewness

In Table 14.2, we present time-series averages of the monthly cross-sectional corre-
lations between the different measures of total skewness. Pearson product–moment
correlations are shown in the below-diagonal entries, and Spearman rank correlations
are presented in the above-diagonal entries. When calculating the Pearson correlation,
each variable is winsorized at the 0.5% level on a monthly basis.

The Pearson correlations between the daily return-based measures of total skew-
ness range from 0.20 between Ske𝑤1M and Ske𝑤12M to 0.71 between Ske𝑤6M and
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TABLE 14.2 Correlations—Total Skewness
This table presents the time-series averages of the annual cross-sectional Pear-
son product–moment (below-diagonal entries) and Spearman rank (above-
diagonal entries) correlations between pairs of variables measuring total
skewness.

Sk
e𝑤

1M

Sk
e𝑤

3M

Sk
e𝑤

6M

Sk
e𝑤

12
M

Sk
e𝑤

1Y

Sk
e𝑤

2Y

Sk
e𝑤

3Y

Sk
e𝑤

5Y

Ske𝑤 1M 0.46 0.30 0.21 0.04 0.05 0.05 0.05
Ske𝑤 3M 0.47 0.65 0.46 0.14 0.13 0.13 0.13
Ske𝑤 6M 0.30 0.67 0.69 0.22 0.21 0.20 0.20
Ske𝑤 12M 0.20 0.46 0.71 0.33 0.31 0.29 0.28
Ske𝑤 1Y 0.05 0.16 0.26 0.37 0.62 0.50 0.41
Ske𝑤 2Y 0.05 0.15 0.23 0.33 0.63 0.79 0.65
Ske𝑤 3Y 0.05 0.14 0.22 0.31 0.50 0.80 0.81
Ske𝑤 5Y 0.05 0.13 0.20 0.28 0.41 0.66 0.82

Ske𝑤12M . Two general patterns are present in the correlations. First, the correlations
increase as the amount of overlap in the estimation periods increases. For example,
Ske𝑤1M and Ske𝑤3M have one month of overlapping data and a correlation of 0.47,
Ske𝑤3M and Ske𝑤6M have three months of overlapping data and a correlation of 0.67,
and Ske𝑤6M and Ske𝑤12M have six months of overlapping data and a correlation of
0.71. The second pattern is that, for a fixed amount of data overlap, the correlations are
decreasing as the amount of nonoverlapping data increases. For example, Ske𝑤1M has
correlations of 0.47, 0.29, and 0.20 with Ske𝑤3M , Ske𝑤6M , and Ske𝑤12M , which have
nonoverlapping data covering two, five, and 11 months, respectively. Both of these
patterns are likely to be highly mechanical, making economic conclusions based on
these results susceptible to error. It is worth mentioning, however, that the correlation
between Ske𝑤1M and Ske𝑤12M of only 0.20 is quite low given that about 1/12 of the
data used in these calculations is overlapping. The important conclusion we can draw
from these results is that empirical analyses using Ske𝑤1M to measure skewness will
quite possibly generate substantially different results than a similar analyses using
Ske𝑤12M , as the correlation between these variables is not high. The Spearman rank
correlations between each of the daily return-based total skewness measures are very
similar to the Pearson correlations. We are therefore not very concerned about the
effect of outliers on linear analyses using these variables.

The Pearson correlations between the measures of total skewness calculated from
monthly return data range from 0.41 between Ske𝑤1Y and Ske𝑤5Y to 0.82 between
Ske𝑤3Y and Ske𝑤5Y . The patterns in the correlations are very similar to those found
using the daily data, since the correlations increase as the overlap in the estimation
period increases and decrease as the length of the nonoverlapping portion of the esti-
mation period increases, consistent with a mechanical effect. While the correlations
calculated from the monthly data are on average higher than those from the daily data,
so are the lengths of the overlapping estimation period as a percentage of the longer
estimation period. Thus, it is possible that the higher correlations are still entirely
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mechanical. That being said, the results show that there is substantial correlation
between all pairs of monthly return-based total skewness measures, indicating that use
of monthly skewness measures with different estimation periods in empirical analyses
are more likely (compared to the daily return-based measures) to give similar results.

Table 14.2 also shows correlations between the daily and monthly return-based
measures of total skewness. For a fixed daily estimation period, the correlation
decreases (or stays the same) as the monthly estimation period is extended. This is
likely due to the fact that the overlapping time period used to estimate the daily and
monthly measures is larger, as a proportion of the total time period used to estimate
the monthly measure, for lower monthly estimation period lengths. Thus, this pattern
in the correlation is likely mechanical. That being said, when the daily measure’s
estimation period is six or 12 months, the correlations between Ske𝑤 measured using
daily and monthly data are substantial, ranging from 0.20 between Ske𝑤6M and
Ske𝑤5Y to 0.37 between Ske𝑤12M and Ske𝑤1Y . The results potentially indicate that,
at least for daily estimation periods of six months and greater, the daily and monthly
return-based versions of Ske𝑤 are capturing the same characteristic of the stock. At
first, this result may seem reassuring, since it indicates that total skewness can be cap-
tured using either daily or monthly data. There is one consideration that has not yet
been discussed, however, in drawing this conclusion. The formula used to calculate
total skewness (equation 14.1) is only correct under the assumption that the periodic
returns (regardless of the periodicity of the data) are independent and identically
distributed. However, if the daily returns are independent and identically distributed,
then if the return of a stock in any given month is approximately the sum of the daily
returns of the stock over that month, the central limit theorem indicates that monthly
returns should approach a normal distribution, and thus have skewness of zero.7

There are three reasons why this may not hold. First, the approximation that the daily
returns sum to the monthly returns is not quite true and is likely to be substantially
less true when the daily returns of the stock are highly skewed (either positively or
negatively). Second, when the distribution of daily stock returns is highly skewed,
the convergence to normality dictated by the central limit theorem may be too slow
for the monthly returns to be approximately normal. Third, the assumption that
the returns are independent and identically distributed may not be completely true.
Despite these potential issues with the calculation of skewness, the results of the
correlation analysis indicate a substantial common component between skewness
measured using daily and monthly returns. We raise this issue simply to point out a
potential statistical issue that may arise when calculating measures of risk, especially
moments of the distribution of returns, from data with differing frequencies.

Once again, the Spearman rank correlations between the daily and monthly mea-
sures of total skewness are very similar to the Pearson product–moment correlations.

7When using log returns, it would hold perfectly that the log of the monthly stock return is equal to the sum
of the logs of the daily stock returns. The returns we use when calculating the skewness variables are not
log returns. It is therefore only an approximation that the sum of daily returns is equal to the monthly return.
For returns of small magnitudes, the log return and return are nearly identical. However, for larger returns,
which are likely driving the calculation of skewness, the return and log return may differ substantially.
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TABLE 14.3 Correlations—Co-Skewness
This table presents the time-series averages of the annual cross-sectional Pearson
product–moment (below-diagonal entries) and Spearman rank (above-diagonal
entries) correlations between pairs of variables measuring co-skewness.
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CoSke𝑤 1M 0.45 0.29 0.19 0.01 0.01 0.01 0.01
CoSke𝑤 3M 0.48 0.62 0.41 0.02 0.02 0.03 0.03
CoSke𝑤 6M 0.31 0.65 0.63 0.05 0.05 0.05 0.05
CoSke𝑤 12M 0.21 0.43 0.66 0.09 0.08 0.08 0.07
CoSke𝑤 1Y 0.01 0.02 0.04 0.08 0.57 0.42 0.32
CoSke𝑤 2Y 0.01 0.02 0.04 0.08 0.59 0.73 0.56
CoSke𝑤 3Y 0.01 0.02 0.04 0.07 0.45 0.76 0.74
CoSke𝑤 5Y 0.01 0.02 0.04 0.06 0.35 0.60 0.78

14.3.2 Co-Skewness

Correlations between the different measures of co-skewness are given in Table 14.3.
The patterns in correlations between the daily return-based co-skewness measures are
very similar to those for total skewness (see Table 14.2). The correlations are higher
for pairs of variables with longer overlapping estimation periods and lower for pairs
with longer nonoverlapping estimation periods. These results are likely to be largely
mechanical. The lowest correlation of 0.21 between CoSke𝑤1M and CoSke𝑤12M indi-
cates that the length of the measurement period may be a significant consideration
when calculating CoSke𝑤, and that it is reasonably possible that different measure-
ment periods will generate different results in empirical analyses.

The correlations between the measures of co-skewness calculated from monthly
return data range from 0.35 between CoSke𝑤1Y and CoSke𝑤5Y to 0.78 between
CoSke𝑤3Y and CoSke𝑤5Y . As with all previous correlation analyses presented in
this chapter, the correlations increase as the length of the overlapping measurement
period increases, and decrease as the length of the nonoverlapping portion of the
estimation period increases, consistent with a mechanical effect.

The correlations between co-skewness measured using daily and monthly data
are quite low. Regardless of the length of the estimation period of the monthly
return-based measure, when the daily return-based measure is calculated using
less than six-months of daily returns, the Pearson (Spearman) correlations are all
0.04 (0.05) and below, indicating negligible cross-sectional correlation between
co-skewness measured at daily and monthly frequencies when the length of the daily
estimation period is short. The Pearson (Spearman) correlations between Ske𝑤12M

and the monthly return-based measures range from 0.06 to 0.08 (0.07 to 0.09) and
are decreasing as the length of the monthly estimation period increases. This result
indicates that there is likely a mechanical effect involved in these correlations, as the
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correlation is highest when the period covered by the calculation is identical (i.e.,
between CoSke𝑤12M and CoSke𝑤1Y ). The results fail to give a strong indication
that measures of co-skewness calculated using daily and monthly return data are
capturing the same characteristic of the stock’s returns. There are several possible
reasons for this. It is possible that one or both of the variables fails to capture the
desired characteristic of the stock. We examine this issue in more depth later in
this chapter when we employ persistence analyses of skewness variables. It is also
possible that daily and monthly return-based co-skewness are capturing different
stock-level characteristics. This seems unlikely given that one would expect the
sensitivity of a stock’s return to any factor, in this case the squared market return, to
be the same (or at least similar) regardless of the length of the period for which the
sensitivity is being calculated. The low correlations between the daily return-based
and monthly return-based measures of co-skewness, therefore, provide preliminary
indications that these variables are likely to be very noisy, perhaps to the point of
being ineffective at measuring the characteristic of the stock that they are designed
to capture, namely co-skewness as defined in Harvey and Siddique (2000).

14.3.3 Idiosyncratic Skewness

The Pearson product–moment (below-diagonal entries) and Spearman rank
(above-diagonal entries) correlations between the measures of idiosyncratic skew-
ness are shown in Table 14.4. The correlations between the idiosyncratic skewness
measures are highly similar to those of total skewness (see Table 14.2). Looking first
at correlations between the daily return-based measures of idiosyncratic skewness,
the table demonstrates that the Pearson (Spearman) correlations range from 0.17
(0.18) between IdioSke𝑤1M and IdioSke𝑤12M to 0.71 (0.69) between IdioSke𝑤6M

TABLE 14.4 Correlations—Idiosyncratic Skewness
This table presents the time-series averages of the annual cross-sectional Pear-
son product–moment (below-diagonal entries) and Spearman rank (above-
diagonal entries) correlations between pairs of variables measuring idiosyn-
cratic skewness.
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IdioSke𝑤1M 0.42 0.27 0.18 0.03 0.04 0.04 0.05
IdioSke𝑤3M 0.42 0.65 0.45 0.09 0.12 0.12 0.12
IdioSke𝑤6M 0.26 0.66 0.69 0.15 0.19 0.19 0.19
IdioSke𝑤12M 0.17 0.46 0.71 0.22 0.28 0.28 0.27
IdioSke𝑤1Y 0.03 0.12 0.18 0.25 0.47 0.35 0.28
IdioSke𝑤2Y 0.05 0.14 0.22 0.31 0.49 0.75 0.59
IdioSke𝑤3Y 0.05 0.13 0.21 0.30 0.37 0.77 0.78
IdioSke𝑤5Y 0.05 0.12 0.19 0.27 0.28 0.61 0.80
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and IdioSke𝑤12M . The correlations are higher for pairs of measures that have longer
overlapping measurement periods and lower for pairs of measures that have longer
nonoverlapping measurement periods. These results, for reasons discussed earlier,
are likely mechanical. The only meaningful conclusion that can be drawn from the
correlations, therefore, is that for the purposes of empirical analyses of the relations
between idiosyncratic skewness and other variables, the measurement period chosen
for estimating idiosyncratic skewness may be important, as different estimation
periods result in substantially different cross-sectional properties of idiosyncratic
skewness.

Pearson (Spearman) correlations between the monthly data-based measures of
idiosyncratic skewness range from 0.28 (0.28) between IdioSke𝑤1Y and IdioSke𝑤5Y

to 0.80 (0.78) between IdioSke𝑤3Y and IdioSke𝑤5Y . Consistent with a highly mechan-
ical effect, the correlations increase (decrease) as the length of the overlap (nonover-
lapping portion) of the estimation period increases.

Finally, the correlations between daily and monthly measures of idiosyncratic
skewness are also very similar to those for total skewness (see Table 14.2), especially
when the monthly return-based measure is calculated using more than one-year’s
worth of data. The results show that there is a substantial common component to
the daily and monthly measures of idiosyncratic skewness, indicating that the daily
and monthly measures are, to some degree, capturing the same characteristic of the
stock’s return.

14.3.4 Total Skewness, Co-Skewness, and Idiosyncratic Skewness

The above-mentioned correlation analyses have examined each of total skewness,
co-skewness, and idiosyncratic skewness in isolation. Here, we examine the
cross-sectional correlations between total skewness, co-skewness, and idiosyncratic
skewness. The average cross-sectional Pearson product–moment (Panel A) and
Spearman rank (Panel B) correlations between Ske𝑤 and CoSke𝑤, Ske𝑤 and
IdioSke𝑤, and CoSke𝑤 and IdioSke𝑤 are presented in Table 14.5. In each analysis,
both variables are calculated using the same measurement period and data frequency.

The results show that, regardless of the length of the estimation period, total
skewness and co-skewness calculated from daily return data exhibit negligible
cross-sectional correlation in the average month, as the average Pearson and
Spearman correlations range from −0.01 for the 12-month measures to 0.03 for
the one-month measures. While the correlations do appear to be decreasing with
the measurement period, the magnitude of the correlations indicates no substantial
cross-sectional relation between Ske𝑤 and CoSke𝑤 calculated from daily return
data. The correlations between Ske𝑤 and CoSke𝑤 calculated using monthly data are
a little bit higher, with Pearson (Spearman) correlations decreasing from 0.09 (0.11)
between Ske𝑤1Y and CoSke𝑤1Y to 0.07 (0.08) between Ske𝑤5Y and CoSke𝑤5Y .
The correlations indicate a small but not negligible positive relation between total
skewness and co-skewness of monthly returns, as would be expected if there is a
systematic component of individual stock skewness. However, the low levels of
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TABLE 14.5 Correlations—Total, Co-, and Idiosyncratic Skewness
This table presents the time-series averages of the annual cross-sectional Pearson
product–moment (Panel A) and Spearman rank (Panel B) correlations between pairs of vari-
ables measuring total skewness (Ske𝑤), co-skewness (CoSke𝑤), and idiosyncratic skewness
(IdioSke𝑤) calculated using different data frequencies and measurement period lengths. Cor-
relations between variables calculated from one, three, six, and 12 months of daily return data
are shown in the columns 1M, 3M, 6M, and 12M, respectively. Correlations between vari-
ables calculated from one, two, three, and five months of monthly return data are shown in the
columns 1Y , 2Y , 3Y , and 5Y , respectively.

Panel A: Pearson Correlations

Correlation Between 1M 3M 6M 12M 1Y 2Y 3Y 5Y

Ske𝑤 and CoSke𝑤 0.03 0.02 0.01 −0.01 0.09 0.09 0.08 0.07
Ske𝑤 and IdioSke𝑤 0.84 0.95 0.97 0.97 0.50 0.73 0.80 0.85
CoSke𝑤 and IdioSke𝑤 −0.10 −0.05 −0.05 −0.05 −0.15 −0.11 −0.10 −0.08

Panel B: Spearman Correlations

Correlation Between 1M 3M 6M 12M 1Y 2Y 3Y 5Y

Ske𝑤 and CoSke𝑤 0.03 0.02 0.01 −0.01 0.11 0.10 0.10 0.08
Ske𝑤 and IdioSke𝑤 0.78 0.91 0.94 0.95 0.46 0.67 0.74 0.79
CoSke𝑤 and IdioSke𝑤 −0.13 −0.08 −0.07 −0.08 −0.16 −0.12 −0.11 −0.10

this correlation indicate that the systematic component of individual stock return
skewness is likely to be small.

The second row of each panel indicates a strong and positive cross-sectional
relation between total skewness (Ske𝑤) and idiosyncratic skewness (IdioSke𝑤), with
average Pearson (Spearman) correlations among the daily return-based measures
ranging from 0.84 (0.78) between Ske𝑤1M and IdioSke𝑤1M to 0.97 (0.94) between
the Ske𝑤12M and IdioSke𝑤12M . This indicates that, when calculated from daily return
data, Ske𝑤 and IdioSke𝑤 contain almost identical information in the cross section
of stocks. The correlations between the monthly return-based measures of total
skewness and idiosyncratic skewness are again positive and large in magnitude and
exhibit an increasing pattern as the length of the measurement period gets longer.
The average Pearson (Spearman) cross-sectional correlations increase from 0.50
(0.46) between Ske𝑤1Y and IdioSke𝑤1Y to 0.85 between Ske𝑤5Y and IdioSke𝑤5Y .
The high correlations between total and idiosyncratic skewness are not surprising
given that the summary statistics for Ske𝑤 and IdioSke𝑤 were highly similar (see
Table 14.1) and the correlations between total skewness and co-skewness are very
low. The results indicate that total skewness is almost completely driven by the
portion of the stock’s return that is orthogonal to the return of the market factor or
the size and book-to-market factors of Fama and French (1993).

Finally, Table 14.5 shows a weak negative cross-sectional correlation between
co-skewness and idiosyncratic skewness. When using daily return-based measures
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of these variables, the average Pearson (Spearman) correlations range from −0.10
(−0.13) between CoSke𝑤1M and IdioSke𝑤1M to −0.05 (−0.07) between CoSke𝑤12M

and IdioSke𝑤12M (CoSke𝑤6M and IdioSke𝑤6M). When using the monthly
return-based measures of co-skewness and idiosyncratic skewness, the results
are similar. The average Pearson (Spearman) cross-sectional correlation decreases
as the measurement period gets longer from −0.15 (−0.16) between CoSke𝑤1Y and
IdioSke𝑤1Y to −0.08 (−0.10) between CoSke𝑤5Y and IdioSke𝑤5Y . Thus, while there
appears to be a small negative relation between the measured values of co-skewness
and idiosyncratic skewness, this relation is not very strong.

14.3.5 Skewness and Other Variables

Having examined the correlations between the measures of skewness in some detail,
we proceed now to examine the correlations between each of our skewness measures
and beta (𝛽), size (Size, log of market capitalization), book-to-market ratio (BM),
momentum (Mom), reversal (Re𝑣), and illiquidity (Illiq). Table 14.6 presents the aver-
age cross-sectional correlations between each of these variables and the measures of
total skewness (Ske𝑤, Panel A), co-skewness (CoSke𝑤, Panel B), and idiosyncratic
skewness (IdioSke𝑤, Panel C).

The results in Panel A show that the correlation between 𝛽 and total skewness tends
to be negative and small in magnitude, regardless of the length of the measurement
period or the frequency of the data. The exceptions to this are the Pearson correlation
between 𝛽 and Ske𝑤1M and the Spearman correlations between 𝛽 and each of Ske𝑤1M

and Ske𝑤3M , each of which is positive but small in magnitude. Overall, however, total
skewness does not exhibit strong correlation with 𝛽.

The correlations between the measures of total skewness and Size are all negative,
with the magnitude of these correlations increasing substantially as the measurement
period is extended, both for daily and monthly return-based measures of total skew-
ness. If skewness from longer measurement periods does a better job at capturing the
true skewness of a stock’s returns, then the results indicate that total skewness has a
meaningful negative relation with Size.

Book-to-market ratio (BM) exhibits a weak positive correlation with total
skewness. For the daily return-based measures of total skewness, this correlation is
stronger when skewness is calculated using longer measurement periods. The length
of the measurement has a negligible effect on the average correlations between BM
and total skewness measured from monthly return data.

Most of the measures of total skewness have a small positive correlation with
Mom. The exceptions to this are the average Pearson product–moment correlation
between Ske𝑤1M and Mom of −0.02 and the Spearman rank correlations between
Mom and each of Ske𝑤1M (average correlation=−0.04) and Ske𝑤5Y (average correla-
tion = −0.01). For the daily return-based measures of total skewness, the correlations
increase as the measurement period is extended from one to 12 months. This is not
surprising, and is likely largely mechanical, since a few large positive (negative)
one-day returns within the past year would likely result in high (low) values of both
Mom and Ske𝑤12M . Likely for the same reason, the correlations between the monthly
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TABLE 14.6 Correlations—Skewness and Other Variables
This table presents the time-series averages of the annual cross-sectional Pearson
product-moment (below-diagonal entries) and Spearman rank (above-diagonal entries) cor-
relations between pairs of variables measuring idiosyncratic volatility.

Panel A: Skew
Pearson Correlations Spearman Correlations
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Ske𝑤1M 0.03 −0.03 0.02 −0.02 0.37 0.03 Ske𝑤1M 0.04 −0.04 0.01 −0.04 0.37 0.05
Ske𝑤3M −0.00 −0.10 0.05 0.06 0.21 0.05 Ske𝑤3M 0.02 −0.12 0.04 0.04 0.18 0.12
Ske𝑤6M −0.04 −0.16 0.09 0.11 0.14 0.07 Ske𝑤6M −0.01 −0.20 0.07 0.09 0.10 0.19
Ske𝑤12M −0.06 −0.22 0.11 0.18 0.10 0.10 Ske𝑤12M −0.04 −0.28 0.10 0.17 0.06 0.25
Ske𝑤1Y −0.04 −0.20 0.07 0.10 0.06 0.10 Ske𝑤1Y −0.04 −0.20 0.05 0.07 −0.02 0.19
Ske𝑤2Y −0.06 −0.30 0.09 0.08 0.04 0.15 Ske𝑤2Y −0.06 −0.32 0.06 0.02 −0.02 0.28
Ske𝑤3Y −0.05 −0.35 0.09 0.07 0.03 0.17 Ske𝑤3Y −0.07 −0.37 0.06 0.00 −0.03 0.32
Ske𝑤5Y −0.05 −0.38 0.08 0.05 0.03 0.19 Ske𝑤5Y −0.06 −0.41 0.05 −0.01 −0.03 0.36

Panel B: CoSkew
Pearson Correlations Spearman Correlations
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CoSke𝑤1M 0.01 0.02 0.00 −0.01 −0.02 −0.00 CoSke𝑤1M 0.01 0.02 0.00 −0.01 −0.03 −0.03
CoSke𝑤3M 0.03 0.05 −0.00 −0.03 −0.01 −0.01 CoSke𝑤3M 0.02 0.05 −0.00 −0.03 −0.01 −0.05
CoSke𝑤6M 0.05 0.07 −0.00 −0.04 −0.01 −0.02 CoSke𝑤6M 0.04 0.08 −0.00 −0.04 −0.00 −0.08
CoSke𝑤12M 0.07 0.11 −0.01 −0.05 −0.00 −0.03 CoSke𝑤12M 0.06 0.12 −0.00 −0.04 0.01 −0.12
CoSke𝑤1Y 0.02 0.04 −0.01 −0.04 −0.01 −0.02 CoSke𝑤1Y 0.02 0.06 −0.00 −0.03 −0.00 −0.04
CoSke𝑤2Y 0.03 0.07 0.00 −0.02 0.00 −0.03 CoSke𝑤2Y 0.03 0.09 0.01 −0.01 0.01 −0.09
CoSke𝑤3Y 0.04 0.09 0.01 −0.01 0.00 −0.04 CoSke𝑤3Y 0.05 0.11 0.02 −0.01 0.01 −0.11
CoSke𝑤5Y 0.06 0.11 0.02 −0.00 0.00 −0.04 CoSke𝑤5Y 0.08 0.14 0.02 0.00 0.01 −0.13

Panel C: IdioSkew
Pearson Correlations Spearman Correlations
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IdioSke𝑤1M 0.02 −0.03 0.02 −0.01 0.33 0.02 IdioSke𝑤1M 0.03 −0.03 0.01 −0.02 0.33 0.05
IdioSke𝑤3M −0.00 −0.09 0.05 0.07 0.21 0.04 IdioSke𝑤3M 0.02 −0.10 0.03 0.06 0.18 0.11
IdioSke𝑤6M −0.03 −0.15 0.08 0.13 0.15 0.06 IdioSke𝑤6M 0.00 −0.17 0.07 0.12 0.11 0.16
IdioSke𝑤12M −0.05 −0.21 0.11 0.20 0.10 0.09 IdioSke𝑤12M −0.02 −0.25 0.09 0.21 0.06 0.23
IdioSke𝑤1Y −0.03 −0.12 0.04 0.10 0.05 0.05 IdioSke𝑤1Y −0.03 −0.12 0.03 0.08 −0.00 0.11
IdioSke𝑤2Y −0.04 −0.25 0.06 0.10 0.04 0.11 IdioSke𝑤2Y −0.05 −0.25 0.05 0.06 −0.02 0.22
IdioSke𝑤3Y −0.05 −0.30 0.06 0.09 0.04 0.14 IdioSke𝑤3Y −0.06 −0.32 0.04 0.04 −0.02 0.28
IdioSke𝑤5Y −0.04 −0.34 0.06 0.07 0.03 0.16 IdioSke𝑤5Y −0.06 −0.36 0.03 0.02 −0.02 0.32

return-based measure of total skewness and Mom decrease as the measurement period
is extended. In both the cases of the daily return and monthly return-based measures,
higher correlations occur when the period covered by the calculation of total skewness
is most similar to the period covered by the calculation of momentum.

Likely for similar reasons, Ske𝑤1M exhibits a strong positive cross-sectional
correlation with Re𝑣 of 0.37 (both Pearson and Spearman). This correlation drops
substantially as longer measurement periods are used for the measures calculated
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from daily return data. The monthly return measures of total skewness exhibit low
correlation with Re𝑣. Interestingly, the Pearson correlations are all slightly positive,
ranging from 0.03 between Ske𝑤5M and Re𝑣 to 0.06 between Ske𝑤1Y and Re𝑣.
The Spearman correlations, on the other hand, are all negative, ranging from −0.03
between Ske𝑤5Y and Re𝑣 to −0.02 between Re𝑣 and each of Ske𝑤1Y , Ske𝑤2Y ,
and Ske𝑤3Y . Despite the fact that the Pearson and Spearman correlations carry the
opposite signs, the magnitudes of these correlations are negligible.

The results indicate a positive cross-sectional correlation between total skewness
and Illiq. The Pearson (Spearman) correlations between the daily return total
skewness measures and Illiq increase from 0.03 (0.05) for Ske𝑤1M to 0.10 (0.25)
for Ske𝑤12M . When using the monthly return-based measures of total skewness, the
Pearson (Spearman) correlations between Illiq and total skewness grow from 0.10
(0.19) for Ske𝑤1Y to 0.19 (0.36) for Ske𝑤5Y . The results indicate that less liquid
(higher values of Illiq) tend to have returns that are more positively skewed. In
this case, the difference between the Pearson and Spearman correlations is quite
substantial. This is quite possibly driven by the highly skewed distribution of Illiq
(see Table 13.1), but may also indicate a nonlinear relation between Illiq and total
skewness. Once again assuming that the measures of total skewness calculated from
longer measurement periods provide more accurate values of the true skewness of
a stock’s returns, the results indicate that total skewness and Illiq have a substantial
positive correlation.

Moving to the correlations between co-skewness and the variables discussed
in previous chapters of this book, the results in Panel B of Table 14.6 provide
no evidence of any meaningful cross-sectional correlation between co-skewness
and BM, Mom, or Re𝑣 since the Pearson and Spearman correlations between each
of these variables and CoSke𝑤, regardless of the data frequency or measurement
period length used to calculate CoSke𝑤, range from −0.05 (Pearson correlation
between CoSke𝑤12M and Mom) to 0.02 (Pearson and Spearman correlations between
CoSke𝑤5Y and BM).

The correlation analyses indicate a small positive correlation between 𝛽 and
co-skewness. These correlations are negligible for values of CoSke𝑤 calculated from
shorter measurement periods, but for longer measurement periods, the correlations
are slightly larger. The Pearson (Spearman) correlation between CoSke𝑤12M and
𝛽 is 0.07 (0.06) and the correlation between CoSke𝑤5Y and 𝛽 is 0.06 (0.08). Even
these correlations, however, are quite small in magnitude.

Co-skewness exhibits a slightly stronger positive correlation with Size, with
Pearson (Spearman) correlations for the daily return-based measures of co-skewness
ranging from 0.02 (0.02) for Ske𝑤1M to 0.11 (0.12) for Ske𝑤12M . The monthly
return-based measures of co-skewness also exhibit correlations that increase with
longer measurement periods since the Pearson (Spearman) correlations between the
monthly return-based measures of co-skewness and Size increase from 0.04 (0.06)
for CoSke𝑤1Y to 0.11 (0.14) for CoSke𝑤5Y . Thus, if the measures of co-skewness
calculated using longer measurement periods are more accurate than those calculated
from shorter measurement periods, the results indicate a nonnegligible, albeit not
very large, positive correlation between co-skewness and Size.
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The Pearson correlations between CoSke𝑤 and Illiq are all negative, but small in
magnitude, regardless of the length of the measurement period or the frequency of
the data used to calculate co-skewness. These correlations range from −0.04 between
CoSke𝑤5Y and Illiq to −0.00 between CoSke𝑤1M and Illiq. The Spearman correla-
tions are also negative, but a bit larger in magnitude, ranging from −0.13 between
CoSke𝑤5Y and Illiq to −0.03 between CoSke𝑤1M and Illiq. Once again, the mag-
nitudes of these correlations increase as the measurement period used to calculate
CoSke𝑤 is extended. The substantial difference between the Pearson and Spearman
correlations is likely driven by a few extreme values in the distribution of Illiq.

Finally, Panel C of Table 14.6 shows the correlations between different measures
of idiosyncratic skewness and each of 𝛽, Size, BM, Mom, Re𝑣, and Illiq. The corre-
lations between idiosyncratic skewness and these variables are all very similar to the
correlations between total skewness and these variables. This is not surprising given
that total Ske𝑤 and IdioSke𝑤 tend to be highly correlated in the cross section (see
Table 14.5). In most cases, the correlations between IdioSke𝑤 and the other variables
are of either the same or slightly smaller magnitude or a little bit lower than the cor-
responding correlation between Ske𝑤 and the other variables. The one exception to
this is Mom, which exhibits a higher (or equivalent) correlation with the measures of
idiosyncratic skewness (with the exception of IdioSke𝑤1M) than with the correspond-
ing total skewness variables. The magnitudes of these correlations, however, are still
quite similar.

14.4 PERSISTENCE

We continue our examination of the variables measuring total skewness, co-skewness,
and idiosyncratic skewness with persistence analyses. If skewness is a persistent char-
acteristic of individual stock returns and the variables, we use to measure skewness
do a reasonable job at capturing this characteristic, we would expect the variables
to exhibit substantial cross-sectional persistence when measured using different time
periods. Several of the correlation analyses indicated that some of the skewness vari-
ables exhibit larger correlations with some of the variables discussed in previous
chapters of this book when skewness is measured using longer measurement periods.
If the persistence analyses lead to the conclusion that longer measurement periods do
in fact more accurately capture a persistent characteristic of individual stock returns,
then the results of the correlation analyses using skewness variables calculated using
longer measurement periods are likely more reflective of the actual relations between
skewness and the other stock characteristics. For each variable, we calculate per-
sistence at lags of one, three, six, 12, 24, 36, 48, 60, and 120 months. To avoid
mechanical persistence, we only present results for persistence analyses where the
lag between the times at which the given variable is measured is at least as long as
the measurement period.

14.4.1 Total Skewness

We begin with persistence analyses of the measures of total skewness. The results
indicate that there is very little cross-sectional persistence in the total skewness
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variables measured using daily stock returns. The average cross-sectional correlation
between values of Ske𝑤1M measured one, three, six, and 12 months apart are each
0.03, indicating almost no relation between present and future values of Ske𝑤1M . The
persistence is even lower (0.01 or 0.02) when measured at lags of 24, 36, 48, 60, and
120 months. For skewness measured using longer estimation periods, the average
cross-sectional correlation between values calculated using nonoverlapping mea-
surement periods range from 0.03 for Ske𝑤3M measured 120 months apart to 0.14 for
Ske𝑤12M measured 12 months apart. While slightly higher than the correlations for
Ske𝑤1M , these values are still quite low. The low persistence of the daily return-based
skewness variables has two potential causes. The first is that the skewness of the distri-
bution of daily returns is not a persistent property of the stock. The other is that the cal-
culation of daily return skewness is very noisy, meaning that the variable does a poor
job at capturing the desired property of the stock. The former explanation seems less
likely than the latter for two reasons. First, the highest persistence value comes from
Ske𝑤12M measured 12 months apart. If lack of persistence in skewness were driving
the low correlations, we would expect this measure to exhibit lower lagged correlation
than the values calculated using shorter measurement intervals. Second, the fact that
the persistence increases as the measurement period increases is likely an indication
that skewness is in fact persistent, but that it takes a long estimation period to get an
accurate measure of daily return skewness. The results are, therefore, consistent with
the hypothesis that Ske𝑤, measured from daily return data, is a very noisy measure
of the actual skewness of the stock’s returns. That being said, there does appear to
be some information in the longer estimation period measures, and it is possible that
despite the fact that the measure appears to be quite noisy, with a large enough sample,
it may be capable of detecting patterns in expected returns that are related to skewness.

The results indicate that the persistence of the monthly return-based measures of
total skewness is substantially higher than those of the daily return-based measures.
For example, the average cross-sectional correlation between Ske𝑤5Y measured five
years (60 months) apart is 0.25. This indicates that Ske𝑤5Y is more persistent when
measured five years apart than any of the daily return-based measures, even when
they are measured one-year (or less) apart. The results also demonstrate that the
persistence of the measures of total skewness increases substantially as the mea-
surement period gets longer, despite the fact that the lag between the measurements
is extended. Ske𝑤1Y exhibits a persistence of only 0.08 when measured one year
apart. Ske𝑤2Y exhibits a persistence of 0.16 when measured two years apart. The per-
sistence of Ske𝑤3Y when measured three years apart is 0.21. Furthermore, for any
given lag between measurement periods, the persistence of the variables calculated
using longer measurement periods is higher than that of the variables calculated using
shorter measurement periods. This holds for both the monthly return-based measures
of total skewness and the daily return-based measures.

These results lead to a few important conclusions. First, assuming that the true
skewness of a given stock’s returns is reasonably persistent, which is a generally nec-
essary assumption when using historical data to estimate a stock-level characteristic,
calculating total skewness from monthly data provides a substantially better measure
than the daily data-based measures. Second, there is in fact a substantial degree of
persistence in the actual total skewness of individual stock returns. We conclude this
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because if skewness were not persistent, then there would not be any persistence in
any measure of skewness.8 Finally, longer estimation periods result in better measures
of skewness than shorter estimation periods. We conclude this because the persistence
of Ske𝑤5Y measured five years apart is higher than that of Ske𝑤1Y measured one year
apart. If Ske𝑤1Y and Ske𝑤5Y were equally good measures of total skewness, then we
would expect the one-year persistence of Ske𝑤1Y to be higher than the five-year per-
sistence of Ske𝑤5Y . The fact that the opposite is true combined with the strong pattern
of increasing persistence as the measurement period (and thus lowest nonoverlapping
lag) increases indicates that measures of total skewness based on shorter estimation
periods are noisier than measures based on higher estimation periods.

14.4.2 Co-Skewness

The results of the persistence analyses of the variables measuring co-skewness,
shown in Table 14.7, provide almost no indication of persistence in co-skewness. The
highest persistence value for any of the co-skewness variables calculated at any lag
is 0.06 for CoSke𝑤12M measured 12 months apart. The daily return-based measures
of co-skewness calculated from less than one year’s worth of data (CoSke𝑤1M ,
CoSke𝑤3M , and CoSke𝑤6M) have persistence values ranging between 0.00 and

TABLE 14.7 Persistence—Co-Skewness
This table presents the results of persistence analyses of variables measur-
ing co-skewness. Each month t, the cross-sectional Pearson product–moment
correlation between the month t and month t + 𝜏 values of the given vari-
able measured is calculated. The table presents the time-series averages of the
monthly cross-sectional correlations. The column labeled 𝜏 indicates the lag
at which the persistence is measured
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1 0.00
3 0.00 0.02
6 0.00 0.01 0.03

12 0.00 0.02 0.03 0.06 0.01
24 0.00 0.01 0.02 0.04 −0.00 0.00
36 0.00 0.01 0.02 0.03 0.00 0.01 0.01
48 0.00 0.01 0.02 0.04 0.00 0.01 0.02
60 0.00 0.01 0.02 0.04 0.00 0.01 0.02 0.03
120 0.00 0.00 0.01 0.03 0.00 0.02 0.03 0.05

8A possible objection to this conclusion would be that, in attempting to measure skewness, we are actually
capturing some other persistent characteristic of the stock’s returns. This seems unlikely in this case since
the measure of skewness is based on the statistical definition of skewness.



�

� �

�

PERSISTENCE 339

0.03, indicating practically no cross-sectional persistence in these values. Similarly,
for the measures of co-skewness calculated from less than five years of monthly
return data, the persistence values range from −0.00 to 0.03, regardless of lag. The
highest persistence value for the monthly return-based measures of 0.05 comes
from the five-year measure (CoSke𝑤5Y ) calculated 10 years apart. Interestingly, for
CoSke𝑤2Y , CoSke𝑤3Y , and CoSke𝑤5Y , the persistence actually increases as the lag
between measurement gets longer. This is potentially driven by the fact that the
analyses at long lags require a stock to be in the sample for an extended period
of time. For these stocks, which are likely to be well-established large firms, the
measurement of co-skewness may exhibit a small amount of persistence. Even if this
is the case, the level of persistence in these variables is negligible.

There are a few potential explanations for the lack of persistence detected in
the measures of co-skewness. One possibility is that co-skewness is in fact not a
cross-sectionally persistent stock-level characteristic. If this is the case, then the
assumption that co-skewness measured from historical data provides a reasonable
proxy for the market’s view of future co-skewness is not a viable assumption.
Since this assumption is necessary when using empirical analyses of relations
between historical measures of risk and future stock returns to try to understand the
trade-offs between risk and expected returns made by investors, the usefulness of the
co-skewness measure for individual stocks is questionable. Another potential expla-
nation is that CoSke𝑤 does a poor job at measuring the stock’s actual co-skewness.9

Regardless of which of these explanations hold, the results indicate that stock-level
co-skewness is unlikely to be an empirically strong variable. Despite these results,
CoSke𝑤 remains a widely used variable in the empirical asset pricing literature.

14.4.3 Idiosyncratic Skewness

Finally, in Table 14.8, we present the results of persistence analyses of the variables
measuring idiosyncratic skewness. The results of the persistence analyses of idiosyn-
cratic skewness are very similar to those of total skewness presented in Table 14.9.
This is not surprising given the high correlations between these variables. For any
fixed lag, the persistence values are higher for the variables calculated using longer
measurement periods. The highest persistence values are generated by IdioSke𝑤5Y ,
which exhibits persistence of 0.21 when measured with lag of five years and 0.20
when measured at a lag of 10 years. Among the daily return-based measures, Ske𝑤12M

exhibits the highest level of persistence, with persistence values decreasing from 0.14
when measured with a lag of one year to 0.08 when measured with a lag of 10 years.
The low levels of persistence among the daily return-based measures of idiosyncratic
skewness are consistent with Boyer, Mitton, and Vorkink (2010), who propose an

9It is worth noting that in their seminal study, Harvey and Siddique (2000) examine the co-skewness
of 32 equity portfolios based on industry as well as the 25 portfolios formed by sorting on size and
book-to-market used by Fama and French (1995), with results for individual securities playing a sec-
ondary role. Thus, it is possible that measurement noise associated with individual stock co-skewness can
be substantially reduced by using portfolio level measures of co-skewness.
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TABLE 14.8 Persistence—Idiosyncratic Skewness
This table presents the results of persistence analyses of variables measuring
idiosyncratic skewness. Each month t, the cross-sectional Pearson product–
moment correlation between the month t and month t + 𝜏 values of the given
variable measured is calculated. The table presents the time-series averages of
the monthly cross-sectional correlations. The column labeled 𝜏 indicates the
lag at which the persistence is measured.
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1 0.03
3 0.02 0.06
6 0.02 0.06 0.09

12 0.02 0.05 0.09 0.14 0.03
24 0.02 0.05 0.07 0.12 0.03 0.12
36 0.01 0.04 0.06 0.10 0.03 0.11 0.17
48 0.01 0.03 0.06 0.10 0.02 0.10 0.16
60 0.01 0.03 0.05 0.09 0.02 0.10 0.15 0.21
120 0.01 0.03 0.05 0.08 0.02 0.09 0.14 0.20

TABLE 14.9 Persistence—Total Skewness
This table presents the results of persistence analyses of variables measuring total
skewness. Each month t, the cross-sectional Pearson product–moment correlation
between the month t and month t + 𝜏 values of the given variable measured is calcu-
lated. The table presents the time-series averages of the monthly cross-sectional cor-
relations. The column labeled 𝜏 indicates the lag at which the persistence is measured.
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48 0.01 0.03 0.06 0.10 0.06 0.14 0.20
60 0.02 0.03 0.06 0.10 0.06 0.14 0.19 0.25
120 0.01 0.03 0.05 0.08 0.05 0.12 0.16 0.21
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alternative methodology for calculating the market’s expectation of future idiosyn-
cratic skewness. The fact that the persistence of idiosyncratic skewness measured
from monthly return data, especially when using long measurement periods, is higher
than that of the daily return measures indicates that the monthly return measures are
likely more effective at capturing a persistent characteristic of the stock. Even for
Ske𝑤5Y , which is the most persistent of the idiosyncratic skewness variables, the mag-
nitude of the persistence is quite low, indicating that either idiosyncratic skewness is
not a highly persistent stock-level characteristic or measurement of this characteristic
using Ske𝑤5Y is highly noisy.

In summary, in Sections 14.1–14.4, we have analyzed in detail measures of
total skewness, co-skewness, and idiosyncratic skewness calculated using daily
and monthly stock return data. The main conclusions are the following. First, total
skewness and idiosyncratic skewness are highly similar, while co-skewness appears
to be largely unrelated to either. Both total skewness and idiosyncratic skewness
appear to be best measured using long estimation periods and monthly, instead of
daily, returns. When long estimation periods are used, these variables appear to
do a reasonable, albeit still noisy job at capturing a persistent characteristic of the
given stock’s returns. Co-skewness, as measured by CoSke𝑤, fails to exhibit any
substantial persistence or correlation with total skewness or idiosyncratic skewness,
leading us to conclude that the variable CoSke𝑤 likely fails to capture the amount of
systematic skewness associated with individual stocks. Finally, it is worth noting that
while the results of the persistence analyses and the correlations between the daily
and monthly return-based measures of total skewness and idiosyncratic skewness
indicate that these variables do capture the actual skewness of the stock’s returns,
the levels of persistence and correlations are not high, indicating that regardless of
the estimation period or data frequency, the measurement of total skewness and
idiosyncratic skewness with Ske𝑤 and IdioSke𝑤, respectively, is highly noisy.

14.5 SKEWNESS AND STOCK RETURNS

We move now to our examination of the relation between expected stock returns and
each of total skewness, co-skewness, and idiosyncratic skewness. Before proceeding,
we remind the reader that the theoretical results in Harvey and Siddique (2000)
predict a negative relation between co-skewness and future stock returns. Mitton
and Vorkink (2007) present theoretical support for a negative relation between
idiosyncratic skewness and expected stock return. If both systematic skewness
(co-skewness) and idiosyncratic skewness have a theoretically negative relation with
expected returns, then total skewness should have a negative relation as well. Thus,
asset pricing theory unambiguously predicts a negative relation between skewness
(total skewness, co-skewness, or idiosyncratic skewness), and expected stock returns.

14.5.1 Univariate Portfolio Analysis

We begin our empirical investigation of the relation between skewness and expected
returns using univariate decile portfolio analyses. Because of the large number
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of skewness variables we are examining in this chapter, we forgo presentation of
portfolio level characteristics and proceed directly to the examination of the ability
of these variables to predict future stock returns.

Total Skewness

Our first portfolio analyses examine the relations between future stock excess
returns and each of the different measures of total skewness. Table 14.10 presents
the average monthly returns for each of the total skewness-sorted decile portfolios,
as well as for the portfolio that is long the 10th decile portfolio and short the first
decile portfolio (10-1). Abnormal returns relative to the Fama and French (1993)
and Carhart (1997) four-factor model (FFC), as well as the FFC model augmented
with Pastor and Stambaugh (2003)’s liquidity factor (FFCPS), are also shown.10

t-statistics testing whether the average return, FFC alpha, and FFCPS alpha are equal
to zero, adjusted following Newey and West (1987), are shown in parentheses.

Panel A presents results for equal-weighted portfolios. The results demonstrate
that portfolios sorted on total skewness measured using one month of daily return
data (Ske𝑤1M) exhibit a strong and nearly monotonically decreasing (the exception is
decile portfolio 1) pattern in average returns across the deciles portfolios, with decile
portfolio one generating an average excess return of 0.86% per month compared
to 0.39% per month for the decile 10 portfolio. The average 10-1 portfolio return
of −0.47% per month is highly statistically significant, with a t-statistic of −4.01.
The results do not appear to be driven by exposure to the market (MKT), size (SMB),
value (HML), or momentum (MOM) factors, since the FFC alpha of the difference
portfolio of −0.45% (t-statistic = −4.35) is very similar to the portfolio’s average
return. Adding the liquidity (PSL) factor to the risk model has little effect since
the FFCPS alpha of −0.45% per month (t-statistic = −3.87) is nearly identical to
the FFC alpha. When the portfolios are formed by sorting on Ske𝑤3M , the average
return, FFC alpha, and FFCPS alpha for the difference portfolio of −0.28% per
month (t-statistic = −1.79), −0.34% per month (t-statistic = −2.03), and −0.34% per
month (t-statistic = −1.88), respectively, are also statistically significant (marginally
for the unadjusted return and FFCPS alpha). The average returns and alphas for
the difference portfolio formed by sorting on each of Ske𝑤6M , Ske𝑤12M , Ske𝑤1Y ,
Ske𝑤2Y , Ske𝑤3Y , and Ske𝑤5Y are all statistically insignificant at conventional levels.

The results of the equal-weighted portfolio analyses are quite interesting, espe-
cially given our conclusions from the persistence analyses that longer measurement
periods result in more accurate calculation of total skewness, with the monthly return
measures being potentially more reliable than the daily return measures. Contrary to
our prediction that the variables calculated from longer measurement periods would
be more likely to provide evidence of a skewness premium, we find that the measures
calculated from one month, and to some degree three months, of daily data, are the

10Note that the Pastor and Stambaugh (2003) factor data are only available beginning in January 1968.
The alphas relative to the FFCPS model, along with associated t-statistics, are therefore calculated using
portfolio returns realized during the months from January 1968 through December 2012, instead of July
1963 through December 2012, as is the case for all other analyses.
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TABLE 14.10 Univariate Portfolio Analysis—Total Skewness
This table presents the results of univariate portfolio analyses of the relation between total
skewness and future stock returns. Monthly portfolios are formed by sorting all stocks in the
CRSP sample into portfolios using decile breakpoints calculated based on the given sort vari-
able using all stocks in the CRSP sample. Panel A (Panel B) shows the average equal-weighted
(value-weighted) one-month-ahead excess return (in percent per month) for each of the 10
decile portfolios formed using different measures of total skewness as the sort variable. The
table also shows the average return of the portfolio that is long the 10th decile portfolio and
short the first decile portfolio, as well as the FFC and FFCPS alphas for this portfolio. Newey
and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis that the average
10-1 portfolio return or alpha is equal to zero, are shown in parentheses.

Panel A: Equal-Weighted Portfolios

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

Ske𝑤1M 0.86 0.96 0.96 0.90 0.86 0.72 0.67 0.62 0.49 0.39 −0.47 −0.45 −0.45
(−4.01) (−4.35) (−3.87)

Ske𝑤3M 0.75 0.88 0.94 0.89 0.79 0.76 0.74 0.65 0.55 0.47 −0.28 −0.34 −0.34
(−1.79) (−2.03) (−1.88)

Ske𝑤6M 0.64 0.78 0.92 0.86 0.81 0.79 0.75 0.72 0.62 0.55 −0.08 −0.12 −0.11
(−0.53) (−0.87) (−0.71)

Ske𝑤12M 0.63 0.74 0.79 0.78 0.82 0.82 0.79 0.82 0.81 0.68 0.04 0.00 0.05
(0.27) (0.03) (0.33)

Ske𝑤1Y 0.84 0.84 0.82 0.80 0.79 0.79 0.75 0.77 0.71 0.63 −0.21 −0.18 −0.17
(−1.37) (−1.01) (−0.95)

Ske𝑤2Y 0.86 0.86 0.87 0.81 0.83 0.84 0.81 0.77 0.85 0.69 −0.18 −0.20 −0.22
(−0.94) (−0.90) (−0.93)

Ske𝑤3Y 0.88 0.87 0.85 0.85 0.87 0.82 0.82 0.87 0.83 0.70 −0.19 −0.21 −0.24
(−0.93) (−0.88) (−0.97)

Ske𝑤5Y 0.82 0.89 0.87 0.84 0.85 0.84 0.84 0.86 0.91 0.65 −0.18 −0.28 −0.32
(−0.84) (−1.52) (−1.57)

Panel B: Value-Weighted Portfolios

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

Ske𝑤1M 0.24 0.47 0.41 0.51 0.42 0.51 0.46 0.53 0.57 0.50 0.26 0.25 0.25
(2.26) (2.15) (2.01)

Ske𝑤3M 0.39 0.48 0.48 0.51 0.49 0.51 0.44 0.46 0.54 0.60 0.22 0.13 0.17
(1.78) (1.04) (1.25)

Ske𝑤6M 0.46 0.48 0.51 0.49 0.47 0.53 0.40 0.40 0.50 0.58 0.13 −0.02 0.03
(0.91) (−0.16) (0.22)

Ske𝑤12M 0.34 0.60 0.48 0.45 0.58 0.47 0.45 0.50 0.51 0.68 0.34 0.21 0.26
(2.38) (1.64) (1.81)

Ske𝑤1Y 0.52 0.59 0.46 0.60 0.44 0.44 0.43 0.47 0.40 0.18 −0.34 −0.31 −0.29
(−2.49) (−2.28) (−1.90)

Ske𝑤2Y 0.52 0.63 0.51 0.51 0.46 0.54 0.34 0.33 0.39 0.23 −0.29 −0.38 −0.37
(−1.91) (−2.27) (−2.13)

Ske𝑤3Y 0.53 0.52 0.53 0.57 0.44 0.42 0.22 0.47 0.45 0.28 −0.25 −0.44 −0.39
(−1.52) (−2.67) (−2.18)

Ske𝑤5Y 0.50 0.56 0.48 0.44 0.49 0.51 0.47 0.38 0.31 0.22 −0.29 −0.52 −0.49
(−1.63) (−3.41) (−2.95)
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only variables for which a relation between total skewness and future stock returns
is detected. However, the univariate portfolio analyses do not allow us to control for
the effects of other variables. One possibility is that high values of Ske𝑤1M result
from one or two days of very large returns occurring during the measurement month.
These few days may also result in high values of reversal (Re𝑣). We therefore defer
any strong conclusion regarding these relations until we have performed multivariate
analyses.

Average returns and alphas for value-weighted portfolios formed by sorting on
the measures of total skewness are presented in Panel B of Table 14.10. When using
value-weighted portfolios, the results indicate a strong positive relation between
Ske𝑤1M and future stock returns, the exact opposite of what was detected in the
equal-weighted portfolios. The average return, FFC alpha, and FFCPS alpha for the
value-weighted Ske𝑤1M difference portfolio of 0.26% per month (t-statistic= 2.26),
0.25% per month (t-statistic = 2.15), and 0.25% per month (t-statistic = 2.01) are
all economically large and highly statistically significant. The results show that
the majority of the effect is driven by the first decile portfolio, which generates
excess returns of only 0.24% per month, compared to between 0.42% and 0.57%
per month for each of the other nine decile portfolios. Furthermore, there is no
discernable pattern in the excess returns across the Ske𝑤1M-sorted decile portfolios,
indicating that potentially this result may be spurious. The contradictory findings
between the equal-weighted and value-weighted analyses indicate that there may
be a substantial interaction between market capitalization and Ske𝑤1M that affects
the relation between Ske𝑤1M and future stock returns. That being said, a similar,
although not as strong, result is generated by the value-weighted portfolios sorted
on Ske𝑤12M . The average return generated by the Ske𝑤12M difference portfolio of
0.34% per month (t-statistic = 2.38) is highly significant. The FFC alpha of 0.21%,
however, is statistically insignificant with a t-statistic of only 1.64. When the PSL
factor is added to the factor model, the abnormal return increases to 0.26% per
month with a corresponding t-statistic of 1.81. Once again, the result appears to
be driven by the first decile portfolio since the average excess return of the first
Ske𝑤12M decile portfolio of 0.34% per month is substantially below that of any of
the other portfolios. Also like the value-weighted portfolios formed by sorting on
Ske𝑤1M , the average excess returns of the Ske𝑤12M-sorted portfolios fail to exhibit
a strong pattern across the Ske𝑤12M deciles.

The results for value-weighted portfolios formed by sorting on the monthly
return-based measures of total skewness indicate a negative and, in many cases,
statistically significant negative relation between total skewness and expected stock
returns. When the portfolios are formed by sorting on Ske𝑤1Y , the value-weighted
difference portfolio produces a statistically significant average monthly return of
−0.34% (t-statistic = −2.49), FFC alpha of −0.31% (t-statistic = −2.28), and
FFCPS alpha of −0.29% per month (t-statistic = −1.90). As the length of the
period used to calculate total skewness is lengthened, the abnormal returns of the
difference portfolios increase substantially. The Ske𝑤5Y 10-1 portfolio generates
FFC alpha of −0.52% per month (t-statistic = −3.41) and FFCPS alpha of −0.49%
per month (t-statistic = −2.95). This negative relation is consistent with theoretical
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predictions. Furthermore, the fact that the results get stronger as the length of the
measurement period is extended is consistent with our previous conclusions that
variables calculated using longer measurement periods more accurately reflect
values of total skewness.

Co-Skewness

The results of univariate portfolio analyses of the relation between co-skewness and
expected stock returns are presented in Table 14.11. The equal-weighted portfolio
analysis using CoSke𝑤1M as the sort variable indicates a positive and statistically
significant relation between CoSke𝑤1M and future stock returns. The average return
of the CoSke𝑤1M 10-1 portfolio is 0.17% per month (t-statistic = 1.89), and the FFC
and FFCPS alphas are 0.23% per month (t-statistic = 2.52) and 0.25% per month
(t-statistic = 2.50). Thus, while the average return and alphas of this portfolio are at
least marginally statistically significant, the magnitudes of these values are actually
quite small. Furthermore, the results indicate a strong inverse-U-shaped pattern in the
portfolio excess returns. The average monthly excess return for the CoSke𝑤1M decile
one portfolio is 0.53% per month. The excess returns increase to 0.85% per month
for the decile three portfolio and then decrease nearly monotonically (the exception
is decile portfolio seven) to 0.70% per month for CoSke𝑤1M portfolio 10. In fact,
while the first CoSke𝑤1M decile portfolio generates the lowest average return of any
of the CoSke𝑤1M decile portfolios, the 10th decile portfolio generates the second
lowest average return. Overall, the evidence from this portfolio analysis combined
with the fact that a positive relation is contrary to theoretical predictions makes us
question whether the statistical significance of the average return and alphas of the
CoSke𝑤1M 10-1 portfolio is truly indicative of a cross-sectional pattern related to
the pricing of co-skewness. The average returns and alphas of the 10-1 portfolios
formed by sorting on CoSke𝑤3M , CoSke𝑤6M , and CoSke𝑤12M are all statistically
indistinguishable from zero.

The equal-weighted portfolio analyses using the measures of co-skewness calcu-
lated from monthly return data all indicate a negative, and in some cases statistically
significant, relation between co-skewness and expected stock returns. When the
portfolios are formed by sorting on CoSke𝑤1Y , the average returns and alphas of
the difference portfolio, while negative, are not significant. For portfolios sorted
on Ske𝑤2Y , the average return produced by the difference portfolio of −0.23% per
month (t-statistic = −1.44) is statistically insignificant, but the FFC alpha of −0.42%
per month (t-statistic = −1.98) and FFCPS alpha of −0.48% per month (t-statistic
= −2.24), are both substantially larger in magnitude and statistically significant.
Furthermore, with the exception of deciles seven and eight, the average portfolio
returns are monotonically decreasing across the deciles of CoSke𝑤2Y . Similar
patterns emerge in the CoSke𝑤3Y - and CoSke𝑤5Y -sorted portfolios. The average
monthly returns and alphas for the CoSke𝑤3Y - and CoSke𝑤5Y -sorted portfolio are all
at least marginally statistically significant. As with the CoSke𝑤2Y -sorted portfolios,
the alphas are substantially larger in magnitude than the average portfolio returns.

The results of the value-weighted portfolios using the different measures of
co-skewness as the sort variable are shown in Panel B of Table 14.11. The results
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TABLE 14.11 Univariate Portfolio Analysis—Co-Skewness
This table presents the results of univariate portfolio analyses of the relation between
co-skewness and future stock returns. Monthly portfolios are formed by sorting all stocks in the
CRSP sample into portfolios using decile breakpoints calculated based on the given sort vari-
able using all stocks in the CRSP sample. Panel A (Panel B) shows the average equal-weighted
(value-weighted) one-month-ahead excess return (in percent per month) for each of the 10
decile portfolios formed using different measures of co-skewness as the sort variable. The
table also shows the average return of the portfolio that is long the 10th decile portfolio and
short the first decile portfolio, as well as the FFC and FFCPS alphas for this portfolio. Newey
and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis that the average
10-1 portfolio return or alpha is equal to zero, are shown in parentheses.

Panel A: Equal-Weighted Portfolio

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

CoSke𝑤1M 0.53 0.73 0.85 0.83 0.82 0.78 0.79 0.74 0.73 0.70 0.17 0.23 0.25
(1.89) (2.52) (2.50)

CoSke𝑤3M 0.57 0.79 0.83 0.77 0.74 0.82 0.74 0.74 0.77 0.67 0.10 0.25 0.23
(0.86) (1.65) (1.45)

CoSke𝑤6M 0.61 0.77 0.86 0.80 0.82 0.76 0.75 0.76 0.69 0.63 0.01 0.18 0.17
(0.09) (0.96) (0.84)

CoSke𝑤12M 0.80 0.87 0.80 0.78 0.79 0.77 0.72 0.74 0.66 0.76 −0.04 0.11 0.14
(−0.26) (0.56) (0.67)

CoSke𝑤1Y 0.80 0.81 0.81 0.82 0.78 0.83 0.78 0.80 0.72 0.58 −0.22 −0.30 −0.34
(−1.31) (−1.52) (−1.63)

CoSke𝑤2Y 0.96 0.89 0.87 0.87 0.83 0.79 0.80 0.71 0.73 0.73 −0.23 −0.42 −0.48
(−1.44) (−1.98) (−2.24)

CoSke𝑤3Y 1.01 0.93 0.86 0.87 0.87 0.81 0.80 0.73 0.76 0.72 −0.29 −0.40 −0.47
(−1.97) (−1.90) (−2.18)

CoSke𝑤5Y 1.03 0.95 0.87 0.85 0.82 0.84 0.72 0.73 0.81 0.75 −0.28 −0.40 −0.48
(−1.90) (−1.92) (−2.27)

Panel B: Value-Weighted Portfolios

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

CoSke𝑤1M 0.31 0.53 0.60 0.51 0.53 0.40 0.47 0.46 0.44 0.24 −0.07 0.03 0.06
(−0.41) (0.22) (0.39)

CoSke𝑤3M 0.07 0.58 0.49 0.54 0.51 0.50 0.51 0.45 0.49 0.35 0.28 0.61 0.69
(1.41) (2.73) (2.89)

CoSke𝑤6M 0.13 0.50 0.49 0.50 0.49 0.64 0.48 0.52 0.43 0.28 0.15 0.63 0.72
(0.64) (2.66) (2.82)

CoSke𝑤12M 0.41 0.65 0.51 0.52 0.55 0.52 0.51 0.51 0.34 0.31 −0.10 0.45 0.47
(−0.41) (2.00) (1.79)

CoSke𝑤1Y 0.43 0.54 0.50 0.55 0.54 0.43 0.46 0.51 0.46 0.25 −0.17 −0.04 −0.02
(−0.71) (−0.19) (−0.10)

CoSke𝑤2Y 0.63 0.54 0.64 0.66 0.55 0.53 0.58 0.41 0.34 0.50 −0.13 −0.13 −0.09
(−0.69) (−0.74) (−0.44)

CoSke𝑤3Y 0.55 0.71 0.70 0.60 0.57 0.50 0.52 0.45 0.44 0.39 −0.16 −0.03 −0.03
(−0.86) (−0.16) (−0.17)

CoSke𝑤5Y 0.51 0.63 0.68 0.53 0.58 0.52 0.47 0.48 0.43 0.48 −0.03 0.09 0.05
(−0.16) (0.55) (0.27)
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show that none of the co-skewness variables generate an average 10-1 portfolio
return that is statistically distinguishable from zero. The FFC and FFCPS alphas for
portfolios formed by sorting on CoSke𝑤3M , CoSke𝑤6M , and CoSke𝑤12M , however,
are economically large and statistically significant. Examination of the average
excess returns of the decile portfolios sorted on CoSke𝑤3M provides no indication of
a pattern in the average returns across the CoSke𝑤3M deciles. In fact, once again the
results show that while the first decile portfolio for each of these variables generates
the lowest average return, the 10th decile portfolio generates the second lowest
average return. For portfolios sorted on CoSke𝑤12M , the average return of the 10-1
portfolio is actually negative, with the 10th portfolio generating the lowest average
return and the first decile portfolio generating the third-lowest average return. The
results, therefore, are too weak to reach a theoretically contradictory conclusion of a
positive relation between co-skewness and stock returns.

Idiosyncratic Skewness

We now repeat the univariate portfolio analyses using the measures of idiosyncratic
skewness as the sort variables. The results, shown in Table 14.12, are very similar
to the univariate portfolio analyses that use measures of total skewness as the sort
variables (see Table 14.10). This is not surprising given the high levels of correlation
between the measures of total skewness and idiosyncratic skewness (see Table 14.5).

The only equal-weighted portfolio analysis that detects a significant relation
between idiosyncratic skewness and future stock returns is the analysis using
IdioSke𝑤1M as the sort variable. The IdioSke𝑤1M 10-1 portfolio generates an average
monthly return of −0.31% with a corresponding t-statistic of −2.44. Adjusting
for risk using the FFC model does not explain this average return since the FFC
(FFCPS) alpha for this portfolio of −0.39% (−0.37%) per month is once again
highly statistically significant with a t-statistic of −2.36 (−2.19). For each of the
other measures of idiosyncratic skewness, the average returns and alphas of the 10-1
portfolios are statistically indistinguishable from zero.11

The value-weighted portfolios formed by sorting on IdioSke𝑤1M indicate a pos-
itive relation between idiosyncratic skewness and future stock returns since the dif-
ference portfolio produces an average return of 0.36% per month (t-statistic = 3.60),
FFC alpha of 0.27% per month (t-statistic = 2.76), and FFCPS alpha of 0.30% per
month (t-statistic = 2.90). This result is similar to what was observed in the portfo-
lios formed by sorting on Ske𝑤1M (see Table 14.10). When sorting on IdioSke𝑤3M ,
the average 10-1 portfolio return of 0.32% per month (t-statistic = 2.88) is highly
statistically significant, but the FFC alpha of 0.16% per month (t-statistic = 1.40) is
small and insignificant and the FFCPS alpha of 0.20% per month (t-statistic= 1.65) is
also small, albeit marginally statistically significant. Portfolios sorted on IdioSke𝑤6M

and IdioSke𝑤12M also generate at least marginally statistically significant average
difference portfolio returns of 0.23% per month (t-statistic = 1.78) and 0.29% per

11The only exceptions are the FFC and FFCPS alphas for the IdioSke𝑤3M difference portfolio of −0.29%
and −0.30% per month, which are marginally statistically significant with t-statistics of −1.75 and −1.72,
respectively.
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TABLE 14.12 Univariate Portfolio Analysis—Idiosyncratic Skewness
This table presents the results of univariate portfolio analyses of the relation between idiosyn-
cratic skewness and future stock returns. Monthly portfolios are formed by sorting all stocks
in the CRSP sample into portfolios using decile breakpoints calculated based on the given
sort variable using all stocks in the CRSP sample. Panel A (Panel B) shows the average
equal-weighted (value-weighted) one-month-ahead excess return (in percent per month) for
each of the 10 decile portfolios formed using different measures of idiosyncratic skewness as
the sort variable. The table also shows the average return of the portfolio that is long the 10th
decile portfolio and short the first decile portfolio, as well as the FFC and FFCPS alphas for this
portfolio. Newey and West (1987) t-statistics, adjusted using six lags, testing the null hypoth-
esis that the average 10-1 portfolio return or alpha is equal to zero, are shown in parentheses.

Panel A: Equal-Weighted Portfolio

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IdioSke𝑤1M 0.80 0.92 0.86 0.85 0.78 0.78 0.79 0.67 0.53 0.49 −0.31 −0.39 −0.37
(−2.44) (−2.36) (−2.19)

IdioSke𝑤3M 0.69 0.80 0.85 0.87 0.83 0.81 0.78 0.68 0.62 0.51 −0.18 −0.29 −0.30
(−1.18) (−1.75) (−1.72)

IdioSke𝑤6M 0.58 0.70 0.87 0.83 0.82 0.83 0.82 0.78 0.62 0.59 0.01 −0.06 −0.05
(0.10) (−0.50) (−0.34)

IdioSke𝑤12M 0.56 0.68 0.75 0.80 0.83 0.84 0.88 0.79 0.85 0.69 0.13 0.06 0.09
(0.81) (0.44) (0.65)

IdioSke𝑤1Y 0.74 0.81 0.79 0.78 0.85 0.70 0.84 0.77 0.80 0.66 −0.09 −0.11 −0.11
(−0.86) (−1.30) (−1.13)

IdioSke𝑤2Y 0.76 0.78 0.83 0.88 0.84 0.86 0.88 0.87 0.80 0.68 −0.07 −0.14 −0.18
(−0.47) (−0.90) (−1.09)

IdioSke𝑤3Y 0.81 0.80 0.84 0.85 0.89 0.86 0.88 0.86 0.85 0.71 −0.11 −0.17 −0.21
(−0.65) (−0.98) (−1.20)

IdioSke𝑤5Y 0.80 0.82 0.81 0.87 0.84 0.88 0.90 0.97 0.76 0.70 −0.10 −0.18 −0.24
(−0.61) (−1.14) (−1.40)

Panel B: Value-Weighted Portfolios

Sort
Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IdioSke𝑤1M 0.22 0.39 0.56 0.36 0.42 0.49 0.53 0.56 0.51 0.59 0.36 0.27 0.30
(3.60) (2.76) (2.90)

IdioSke𝑤3M 0.29 0.34 0.48 0.49 0.61 0.49 0.57 0.53 0.51 0.62 0.32 0.16 0.20
(2.88) (1.40) (1.65)

IdioSke𝑤6M 0.39 0.45 0.53 0.48 0.59 0.45 0.59 0.50 0.45 0.62 0.23 −0.01 0.00
(1.78) (−0.11) (0.04)

IdioSke𝑤12M 0.33 0.49 0.54 0.52 0.51 0.55 0.58 0.56 0.66 0.62 0.29 0.06 0.09
(2.18) (0.51) (0.66)

IdioSke𝑤1Y 0.48 0.44 0.49 0.44 0.58 0.45 0.52 0.50 0.42 0.40 −0.08 −0.16 −0.12
(−0.68) (−1.42) (−0.94)

IdioSke𝑤2Y 0.53 0.53 0.42 0.48 0.47 0.44 0.45 0.49 0.48 0.38 −0.15 −0.34 −0.30
(−1.14) (−2.52) (−2.09)

IdioSke𝑤3Y 0.51 0.46 0.48 0.48 0.53 0.49 0.51 0.54 0.50 0.32 −0.19 −0.53 −0.50
(−1.22) (−3.42) (−3.18)

IdioSke𝑤5Y 0.43 0.48 0.55 0.50 0.53 0.43 0.55 0.46 0.39 0.26 −0.16 −0.57 −0.53
(−0.97) (−3.63) (−3.17)
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month (t-statistic = 2.18), respectively. The alphas of these portfolios relative to both
the FFC and FFCPS risk models are small and insignificant, however, indicating
that sensitivity to one or more of the four factors in the FFC model explains these
returns.

When sorting on the measures of idiosyncratic skewness calculated from
monthly return data (IdioSke𝑤1Y , IdioSke𝑤2Y , IdioSke𝑤3Y , and IdioSke𝑤5Y ),
the value-weighted portfolio analyses find that the average monthly returns of
the 10-1 portfolios are negative, but small and statistically insignificant, ranging
from −0.08% per month for portfolios sorted on IdioSke𝑤1Y to −0.19% per month
for IdioSke𝑤3Y -sorted portfolio. The abnormal returns of these portfolios, however,
are all larger in magnitude than the average returns and, when idiosyncratic skewness
is measured using more than one year of monthly return data, the alphas are
statistically significant. The magnitudes of the alphas increase as the measurement
period used to calculate idiosyncratic skewness is lengthened. The IdioSke𝑤5Y 10-1
portfolio generates FFC alpha of −0.57% per month (t-statistic = −3.63) and FFCPS
alpha of −0.53% per month (t-statistic = −3.17). When sorting on IdioSke𝑤5Y ,
while the 10th value-weighted decile portfolio generates the lowest average excess
return of 0.26% per month of any of the IdioSke𝑤5Y -sorted decile portfolios, the
first decile portfolio’s return of 0.43% per month is tied for the third-lowest average
excess return. This result raises concern about interpreting the negative alpha of
the difference portfolio as being indicative of a skewness risk premium. From this
perspective, the value-weighted portfolio results that use monthly return-based
measures of idiosyncratic skewness as the sort variables are strongest when sorting
on IdioSke𝑤2Y since the first decile portfolio in this analysis generates the highest
average excess return and the 10th decile portfolio generates the lowest average
excess return. The average portfolio returns, however, are not nearly monotonic
across the deciles of IdioSke𝑤2M . Overall, the results do not provide a convincing
evidence of a strong relation between idiosyncratic skewness and expected stock
returns. Further analysis is definitely warranted.

In summary, the results of the univariate portfolio analyses presented in
Section 13.5.1 are difficult to interpret. In some cases, the results of the
equal-weighted portfolio analyses are qualitatively the opposite of those gen-
erated by value-weighted portfolio analysis. Such results indicate that it is highly
possible that one or more of the other variables known to be related to expected stock
returns has a confounding effect on the relation between our measures of skewness
and expected stock returns.

In previous chapters, we have performed bivariate sort analyses to examine the
relation between the variable of interest and expected stock returns after controlling,
one at a time, for the effects of each of the other variables known to be related to
expected stock returns. Given the large number of skewness variables being examined
in this chapter, we leave such analyses to the reader and proceed directly to Fama
and MacBeth (1973) regression analyses of these relations. The Fama and MacBeth
(1973) regression analyses allow us to control for all of the other known predictors
of stock returns at once, instead of one at a time.
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14.5.2 Fama–MacBeth Regressions

We continue our examination of the cross-sectional relation between skewness and
future stock returns using (Fama and MacBeth 1973, FM hereafter) regression anal-
ysis. For each variable measuring skewness, we perform two FM regression analyses
examining the relation of the given variable with future stock returns. The first anal-
ysis uses a univariate cross-sectional regression specification with only the given
measure of skewness as an independent variable. The second analysis includes the
given measure of skewness as well as 𝛽, Size, BM, Mom, Re𝑣, and Illiq as independent
variables in the monthly cross-sectional regressions. Therefore, the full regression
specification is

ri,t+1 = 𝛿0,t + 𝛿1,tXi,t + 𝛿2,t𝛽i,t + 𝛿3,tSizei,t + 𝛿4,tBMi,t

+𝛿5,tMomi,t + 𝛿6,tRe𝑣i,t + 𝛿7,tIlliqi,t + 𝜖i,t (14.5)

where ri,t+1 is the excess return of stock i in month t + 1 and Xi,t is one of the measures
of skewness. All of the independent variables are winsorized at the 0.5% level on
a monthly basis. Tables showing results of the FM regression analyses present the
time-series averages of the monthly cross-sectional regression coefficients along with
t-statistics, adjusted following Newey and West (1987) using six lags, testing the null
hypothesis that the average coefficient is equal to zero.

Total Skewness

The results of the FM regression analyses examining the relation between total skew-
ness and expected stock returns are shown in Table 14.13. Using univariate specifi-
cations, Panel A shows that FM regression analysis detects a strong negative relation
between Ske𝑤1M and future stock returns since the average coefficient of −0.150 is
highly statistically significant with a t-statistic of −4.08. When using Ske𝑤3M as the
measure of total skewness, the average coefficient of −0.077 is also statistically sig-
nificant with a t-statistic of −2.01. None of the other measures of total stock return
skewness exhibit any relation with one-month-ahead excess stock returns since in
all other univariate specifications, the average coefficient on the variable measuring
total skewness is statistically indistinguishable from zero. These results are very sim-
ilar to the results of the equal-weighted univariate portfolio analyses (see Panel A of
Table 14.10), which found a statistically significant negative relation between each
of Ske𝑤1M and Ske𝑤3M and future stock returns, but no relation between any other
measure of total skewness and future stock returns.

Panel B of Table 14.13 shows that the results of the FM regressions of total
skewness on future stock returns that include the full set of control variables in the
regression specification lead to substantially different conclusions. After controlling
for the relations between future stock returns and each 𝛽, Size, BM, Mom, Re𝑣, and
Illiq, the negative relation between Ske𝑤1M and future stock excess returns is no
longer detected since the average coefficient on Ske𝑤1M of 0.034 is positive and
statistically insignificant. The same can be said about the relation between Ske𝑤3M .
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When controlling for other effects, the average coefficient of −0.015 is much smaller
than the coefficient from the univariate specification (−0.077) and statistically
insignificant, with a t-statistic of −0.60.

The results using each of the other measures of total return skewness, however,
indicate strong negative relations between total skewness and expected stock returns.
For the daily return-based measures of total skewness, the results find an average
coefficient of −0.061 (t-statistic = −2.24) on Ske𝑤6M and an average coefficient
of −0.104 (t-statistic = −3.82) on Ske𝑤12M . When using the monthly return-based
measures of total skewness, the average coefficients of −0.145 (t-statistic = −4.46)
for Ske𝑤1Y , −0.162 (t-statistic = −4.58) for Ske𝑤2Y , −0.168 (t-statistic = −4.66) for
Ske𝑤3Y , and −0.175 (t-statistic = −4.93) for Ske𝑤5Y are all negative and very highly
statistically significant. Furthermore, in both the cases of the daily and monthly

TABLE 14.13 Fama–MacBeth Regression Analysis—Ske𝒘
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and total skewness. Each column in the table presents results
for a different cross-sectional regression specification. The dependent variable in all specifica-
tions is the one-month-ahead excess stock return. The independent variables are indicated in
the first column. Independent variables are winsorized at the 0.5% level on a monthly basis.
The table presents average slope and intercept coefficients along with t-statistics (in parenthe-
ses), adjusted following Newey and West (1987) using six lags, testing the null hypothesis that
the average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average
adjusted R-squared and the number of data points, respectively, for the cross-sectional regres-
sions. Results from univariate (multivariate) specifications are shown in Panel A (Panel B).

Panel A: Univariate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

Ske𝑤1M −0.150
(−4.08)

Ske𝑤3M −0.077
(−2.01)

Ske𝑤6M −0.040
(−1.06)

Ske𝑤12M 0.002
(0.06)

Ske𝑤1Y −0.075
(−1.30)

Ske𝑤2Y −0.051
(−0.76)

Ske𝑤3Y −0.054
(−0.76)

Ske𝑤5Y −0.041
(−0.58)

Intercept 0.778 0.760 0.748 0.747 0.781 0.821 0.841 0.848
(2.65) (2.64) (2.63) (2.66) (2.76) (3.00) (3.13) (3.21)

Adj. R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
n 4694 4675 4597 4426 4409 4058 3935 3948

(continued)
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TABLE 14.13 (Continued)

Panel B: Multivariate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

Ske𝑤1M 0.034
(1.27)

Ske𝑤3M −0.015
(−0.60)

Ske𝑤6M −0.061
(−2.24)

Ske𝑤12M −0.104
(−3.82)

Ske𝑤1Y −0.145
(−4.46)

Ske𝑤2Y −0.162
(−4.58)

Ske𝑤3Y −0.168
(−4.66)

Ske𝑤5Y −0.175
(−4.93)

𝛽 −0.173 −0.172 −0.173 −0.174 −0.180 −0.148 −0.132 −0.128
(−1.07) (−1.06) (−1.06) (−1.07) (−1.11) (−0.93) (−0.84) (−0.81)

Size −0.073 −0.075 −0.079 −0.087 −0.084 −0.098 −0.102 −0.107
(−1.34) (−1.40) (−1.49) (−1.63) (−1.59) (−1.88) (−1.97) (−2.06)

BM 0.219 0.219 0.223 0.225 0.220 0.193 0.188 0.181
(2.96) (2.96) (3.00) (3.05) (2.97) (2.66) (2.59) (2.51)

Mom 0.008 0.008 0.008 0.009 0.009 0.008 0.008 0.008
(4.11) (4.12) (4.16) (4.30) (4.26) (4.10) (4.09) (4.14)

Re𝑣 −0.062 −0.061 −0.060 −0.060 −0.060 −0.062 −0.062 −0.062
(−11.87) (−11.82) (−11.76) (−11.64) (−11.77) (−11.87) (−12.05) (−12.03)

Illiq 0.055 0.055 0.055 0.056 0.055 0.047 0.049 0.050
(3.11) (3.07) (3.08) (3.12) (3.13) (2.56) (2.68) (2.72)

Intercept 0.849 0.866 0.907 0.965 0.945 1.067 1.105 1.154
(1.95) (2.01) (2.10) (2.24) (2.20) (2.53) (2.64) (2.75)

Adj. R2 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
n 2723 2723 2723 2723 2723 2618 2559 2561

measures, the average coefficients and t-statistics become more negative as the
length of the measurement period used to calculate the total skewness variable gets
longer. This is consistent with the results of the correlation and persistence analyses
that indicated that longer calculation periods resulted in more accurate measurement
of total skewness. Overall, the results provide strong evidence that, after controlling
for several other variables that are known to be related to expected stock returns, total
skewness has the theoretically predicted negative relation with expected returns. The
fact that this relation is evident only after controlling for several other characteristics
indicates that the effect of total skewness on expected returns is likely not as strong
as that of other variables, which makes univariate analysis of the relation between
total skewness and expected stock returns very noisy.

To examine the magnitude of the relation between total skewness and expected
stock returns, we take the average coefficients from the full-specification FM
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regression analyses using each of Ske𝑤12M and Ske𝑤5Y of −0.104 and −0.175,
respectively. Multiplying the average coefficient on Ske𝑤12M by the standard
deviation of the cross-sectional distribution of Ske𝑤12M of 1.33 (see Panel A
of Table 14.1), we find that a one-standard-deviation difference in Ske𝑤12M is
associated with an expected return difference of 0.14% (0.104 × 1.33) per month.
We calculate the difference in expected returns between stocks in the 95th and
fifth percentiles of Ske𝑤12M by multiplying the average coefficient of −0.104 by
the difference between the 95th percentile and fifth percentile values of Ske𝑤12M

of 2.63 and 0.09, respectively. Doing so, we find that the difference in expected
returns between two such stocks is 0.36% per month (0.104 × [2.63 − (−0.80)]).
Repeating these exercises using Ske𝑤5Y , we find that a one-standard-deviation
difference in Ske𝑤5Y is associated with a difference of 0.15% (0.175 × 0.87) per
month in expected stock returns. The difference in expected returns between stocks
at the 95th percentile of Ske𝑤5Y (Ske𝑤5Y = 2.27) and the fifth percentile of Ske𝑤5Y

(Ske𝑤5Y = −0.41) is −0.47% (0.175 × [2.27 − (−0.41)]). The results indicate that
the economic importance of the effect of skewness on stock returns is, as expected,
smaller than other previously documented effects. That being said, this effect is not
negligible, especially for stocks with extreme high or low total skewness.

The FM regression analyses also demonstrate that the previously documented rela-
tions between other variables and expected stock returns are not manifestations of
the relation between total skewness and expected stock returns. Regardless of spec-
ification, the average coefficient on 𝛽 is negative and statistically insignificant. The
coefficient on Size is negative and, when using Ske𝑤2Y , Ske𝑤3Y , or Ske𝑤5Y as the
measure of total skewness, at least marginally statistically significant. BM, Mom, and
Illiq exhibit a strong positive relations with expected stock after controlling for total
skewness. The negative relation between Re𝑣 and future stock returns persists when
total skewness is included in the regression specification.

Co-Skewness

Table 14.14 presents the results of univariate (Panel A) and multivariate (Panel B)
FM regression analyses of the relation between co-skewness and expected stock
returns. The univariate regression analyses using daily return-based measures of
co-skewness provide no indication of a relation between co-skewness and expected
returns. The average slopes of −0.000 (t-statistic = −0.21) on CoSke𝑤1M , 0.002
(t-statistic = 0.97) on CoSke𝑤3M , −0.002 (t-statistic = −0.49) on CoSke𝑤6M , and
−0.006 (t-statistic = −1.02) on CoSke𝑤12M are all statistically indistinguishable
from zero. Similarly, when using the measure of co-skewness calculated from one
year of monthly return data (CoSke𝑤1Y ), the FM regression analysis fails to detect
a relation between co-skewness and expected stock returns since the average coeffi-
cient on CoSke𝑤1Y of −0.005 is statistically insignificant with a t-statistic of −1.44.
When co-skewness is calculated from two, three, or five years worth of monthly
return data, however, the results provide some evidence of a negative relation
between co-skewness and expected stock returns. The average coefficients of −0.010
(t-statistic = −1.84) on CoSke𝑤2Y , −0.010 (t-statistic = −1.71) on CoSke𝑤3Y , and
−0.012 (t-statistic = −1.80) on CoSke𝑤5Y are all marginally statistically significant.
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As would be expected, the results of the univariate FM regression analyses are
quite similar to those of the univariate equal-weighted portfolio analyses (see Panel A
of Table 14.11). The one exception is the analysis of the relation between CoSke𝑤1M

and expected stock returns where the equal-weighted portfolio analysis indicated that
the 10-1 portfolio generated a marginally statistically significant average monthly
return. As discussed previously, however, the pattern in the average returns across the
decile portfolios in this analysis cast some doubt upon the robustness in the portfolio
analysis result. Our skepticism is confirmed by the FM regression analysis that detect
no relation between CoSke𝑤1M and future stock returns. The negative and marginally
statistically significant relations between one-month-ahead excess returns and each
of CoSke𝑤3Y and CoSke𝑤5Y detected by the FM regression analyses are highly con-
sistent with the corresponding univariate portfolio analyses.

TABLE 14.14 Fama–MacBeth Regression Analysis—CoSke𝒘
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and co-skewness. Each column in the table presents results
for a different cross-sectional regression specification. The dependent variable in all specifica-
tions is the one-month-ahead excess stock return. The independent variables are indicated in
the first column. Independent variables are winsorized at the 0.5% level on a monthly basis.
The table presents average slope and intercept coefficients along with t-statistics (in parenthe-
ses), adjusted following Newey and West (1987) using six lags, testing the null hypothesis that
the average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average
adjusted R-squared and the number of data points, respectively, for the cross-sectional regres-
sions. Results from univariate (multivariate) specifications are shown in Panel A (Panel B).

Panel A: Univariate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

CoSke𝑤1M −0.000
(−0.21)

CoSke𝑤3M 0.002
(0.97)

CoSke𝑤6M −0.002
(−0.49)

CoSke𝑤12M −0.006
(−1.02)

CoSke𝑤1Y −0.005
(−1.44)

CoSke𝑤2Y −0.010
(−1.84)

CoSke𝑤3Y −0.010
(−1.71)

CoSke𝑤5Y −0.012
(−1.80)

Intercept 0.751 0.747 0.746 0.744 0.753 0.793 0.812 0.821
(2.54) (2.54) (2.57) (2.62) (2.61) (2.79) (2.87) (2.90)

Adj. R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n 4732 4686 4599 4426 4410 4058 3935 3948
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TABLE 14.14 (Continued)

Panel B: Multivariate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

CoSke𝑤1M 0.001
(1.15)

CoSke𝑤3M 0.002
(0.97)

CoSke𝑤6M 0.000
(0.09)

CoSke𝑤12M −0.001
(−0.27)

CoSke𝑤1Y −0.002
(−0.88)

CoSke𝑤2Y 0.000
(0.01)

CoSke𝑤3Y 0.002
(0.41)

CoSke𝑤5Y 0.002
(0.45)

𝛽 −0.180 −0.176 −0.180 −0.176 −0.183 −0.150 −0.140 −0.139
(−1.10) (−1.08) (−1.09) (−1.07) (−1.12) (−0.93) (−0.87) (−0.86)

Size −0.075 −0.074 −0.076 −0.076 −0.072 −0.078 −0.079 −0.080
(−1.37) (−1.37) (−1.41) (−1.44) (−1.33) (−1.45) (−1.46) (−1.48)

BM 0.219 0.219 0.218 0.214 0.219 0.190 0.186 0.183
(2.94) (2.96) (2.95) (2.91) (2.96) (2.65) (2.57) (2.51)

Mom 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
(4.08) (4.08) (4.20) (4.20) (4.06) (3.87) (3.92) (3.87)

Re𝑣 −0.061 −0.061 −0.061 −0.061 −0.061 −0.062 −0.062 −0.062
(−11.83) (−11.82) (−11.83) (−11.83) (−11.16) (−11.64) (−11.79) (−11.83)

Illiq 0.055 0.054 0.054 0.054 0.056 0.048 0.051 0.051
(3.13) (3.07) (3.07) (3.04) (3.13) (2.58) (2.83) (2.81)

Intercept 0.875 0.872 0.887 0.885 0.854 0.925 0.942 0.958
(2.00) (1.99) (2.05) (2.07) (1.96) (2.14) (2.19) (2.22)

Adj. R2 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
n 2723 2723 2723 2723 2723 2618 2559 2561

Panel B of Table 14.14 presents the results of the FM regression analyses
that control for the effects of other variables. The results demonstrate that after
controlling for 𝛽, Size, BM, Mom, Re𝑣, and Illiq, none of the co-skewness variables
exhibit a cross-sectional relation with expected stock returns. The average coefficient
on co-skewness in each analysis is small and statistically insignificant regardless
of which measure of co-skewness is used. The results indicate that the marginally
statistically significant relations detected in the univariate portfolio analyses are
explained by the other variables since the coefficients on CoSke𝑤2Y , CoSke𝑤3Y , and
CoSke𝑤5Y decrease substantially in both magnitude and statistical significance when
using the multivariate specifications. The results of the FM regressions, therefore,
fail to provide any indication of a relation between co-skewness and expected
stock returns. Furthermore, they demonstrate that the weak results realized in the
univariate equal-weighted portfolio analyses and FM regression analyses are driven
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by cross-sectional relations between co-skewness and other variables known to
be related to expected stock returns. Finally, the FM regressions show that, after
controlling for co-skewness, the relations between expected stock returns and each
of 𝛽, Size, BM, Mom, Re𝑣, and Illiq are similar to those documented in previous
chapters of this book.

Idiosyncratic Skewness

The results of the FM regression analyses examining the relation between idiosyn-
cratic skewness and expected stock returns, presented in Table 14.15, are very similar
to the results of the FM regressions examining the relation between total skewness
and expected stock returns (see Table 14.13). This is to be expected given the high
correlations between idiosyncratic skewness and total skewness (see Table 14.5).

TABLE 14.15 Fama–MacBeth Regression Analysis—IdioSke𝒘
This table presents the results of Fama and MacBeth (1973) regression analyses of the rela-
tion between expected stock returns and idiosyncratic skewness. Each column in the table
presents results for a different cross-sectional regression specification. The dependent vari-
able in all specifications is the one-month-ahead excess stock return. The independent vari-
ables are indicated in the first column. Independent variables are winsorized at the 0.5% level
on a monthly basis. The table presents average slope and intercept coefficients along with
t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags, testing
the null hypothesis that the average coefficient is equal to zero. The rows labeled Adj. R2 and
n present the average adjusted R-squared and the number of data points, respectively, for the
cross-sectional regressions. Results from univariate (multivariate) specifications are shown in
Panel A (Panel B).

Panel A: Univariate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

IdioSke𝑤1M −0.117
(−3.02)

IdioSke𝑤3M −0.048
(−1.28)

IdioSke𝑤6M −0.013
(−0.36)

IdioSke𝑤12M 0.024
(0.62)

IdioSke𝑤1Y −0.029
(−0.69)

IdioSke𝑤2Y −0.017
(−0.29)

IdioSke𝑤3Y −0.038
(−0.61)

IdioSke𝑤5Y −0.032
(−0.51)

Intercept 0.766 0.750 0.737 0.738 0.776 0.821 0.847 0.853
(2.60) (2.59) (2.58) (2.62) (2.69) (2.96) (3.12) (3.20)

Adj. R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n 4732 4686 4599 4426 4410 4058 3935 3948
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TABLE 14.15 (Continued)

Panel B: Multivariate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

IdioSke𝑤1M 0.076
(2.79)

IdioSke𝑤3M 0.023
(0.87)

IdioSke𝑤6M −0.031
(−1.16)

IdioSke𝑤12M −0.080
(−3.06)

IdioSke𝑤1Y −0.095
(−3.42)

IdioSke𝑤2Y −0.145
(−4.90)

IdioSke𝑤3Y −0.167
(−5.18)

IdioSke𝑤5Y −0.163
(−4.88)

𝛽 −0.184 −0.178 −0.177 −0.175 −0.181 −0.150 −0.137 −0.133
(−1.13) (−1.10) (−1.09) (−1.08) (−1.11) (−0.93) (−0.86) (−0.83)

Size −0.071 −0.072 −0.077 −0.083 −0.078 −0.093 −0.098 −0.101
(−1.32) (−1.35) (−1.45) (−1.56) (−1.44) (−1.75) (−1.84) (−1.91)

BM 0.221 0.219 0.222 0.225 0.221 0.193 0.186 0.181
(2.97) (2.96) (2.99) (3.04) (2.97) (2.66) (2.56) (2.49)

Mom 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.008
(4.11) (4.08) (4.12) (4.25) (4.17) (4.06) (4.04) (4.06)

Re𝑣 −0.062 −0.061 −0.061 −0.061 −0.061 −0.062 −0.062 −0.062
(−11.99) (−11.86) (−11.75) (−11.63) (−11.76) (−11.80) (−11.99) (−11.98)

Illiq 0.054 0.055 0.055 0.056 0.055 0.047 0.050 0.049
(3.09) (3.06) (3.08) (3.11) (3.12) (2.58) (2.69) (2.66)

Intercept 0.840 0.850 0.892 0.945 0.897 1.041 1.091 1.125
(1.92) (1.97) (2.06) (2.18) (2.06) (2.43) (2.55) (2.64)

Adj. R2 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
n 2723 2723 2723 2723 2723 2618 2559 2561

When using the univariate specifications (Panel A), the only idiosyncratic
skewness variable for which a relation with future returns is detected is the measure
calculated from one month of daily return data, IdioSke𝑤1M , for which the average
coefficient of −0.117 is negative and statistically significant, with a t-statistic
of −3.02. These results are similar to those of the univariate FM regression analyses
using the total skewness variables, which produced statistically significant average
slopes on only Ske𝑤1M and Ske𝑤3M . Unlike the total skewness measures, however,
when idiosyncratic skewness is measured using three months of daily returns
(IdioSke𝑤3M), the average coefficient of −0.048 is statistically indistinguishable
from zero with a t-statistic of −1.28.

The results of the FM regressions using the multivariate specifications, presented
in Panel B of Table 14.12, are very different than the univariate FM regression results.
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When using IdioSke𝑤1M as the measure of idiosyncratic skewness, the results actu-
ally indicate a strong positive relation between idiosyncratic skewness and expected
stock returns after controlling for the effects of each of the other variables. The aver-
age slope on IdioSke𝑤1M of 0.076 is highly statistically significant with a t-statistic
of 2.79. This result is actually similar to the result generated by the value-weighted
univariate portfolio analysis examining the relation between IdioSke𝑤1M and future
stock returns, which found that the IdioSke𝑤1M 10-1 portfolio generated positive and
statistically significant average monthly returns. This strong positive coefficient is
inconsistent with theoretical predictions.

When using idiosyncratic skewness measures from either three months
(IdioSke𝑤3M) or six months (IdioSke𝑤6M) worth of daily return data, the multi-
variate FM regression analyses find no relation between idiosyncratic skewness
and expected stock returns. The average coefficients of 0.023 (t-statistic = 0.87) on
IdioSke𝑤3M and −0.031 (t-statistic = −1.16) on IdioSke𝑤6M are both statistically
insignificant. The latter result differs somewhat from the multivariate FM regression
results for Ske𝑤6M , which detected a significantly negative relation between Ske𝑤6M

and future stock returns (see Panel B of Table 14.13).
When using idiosyncratic skewness measured from 12 months of daily return data

(IdioSke𝑤12M) or any of the monthly return-based measures of idiosyncratic skew-
ness (IdioSke𝑤1Y , IdioSke𝑤2Y , IdioSke𝑤3Y , and IdioSke𝑤5Y ), the results indicate
a negative and statistically significant relation between idiosyncratic skewness and
expected stock returns. The regressions using IdioSke𝑤12M as the measure of idiosyn-
cratic skewness generate an average coefficient of −0.080 with a t-statistic of −3.06.
When using the monthly return-based measures of idiosyncratic skewness, the result
is strongest when using measures of idiosyncratic skewness calculated from three or
five years worth of data. The FM regression analysis using IdioSke𝑤5Y to measure
idiosyncratic skewness produces an average slope on IdioSke𝑤5Y of −0.163 with a
corresponding t-statistic of −4.88.

As with the previous multivariate regressions presented in this chapter, including
idiosyncratic skewness, in the regression specification has little effect on the coeffi-
cients on the other variables. The average coefficient on 𝛽 remains negative and statis-
tically insignificant. Size has a negative and, depending the measure of idiosyncratic
volatility, either insignificant or marginally significant average slope. BM, Mom, and
Illiq each have positive and highly statistically significant average coefficients, and
the average coefficient on Re𝑣 is negative and highly statistically significant.

We now examine the economic magnitudes of the relations between the idiosyn-
cratic skewness variables and expected stock returns. We begin this analysis by using
IdioSke𝑤1M as the measure of idiosyncratic skewness. This is the only skewness
variable for which the multivariate FM regression analysis produced a positive
and statistically significant average coefficient. Given that the persistence analyses
failed to find any evidence that IdioSke𝑤1M captured a persistent characteristic of
the stock’s returns, we are somewhat skeptical that this result is truly indicative of
a relation between skewness and expected stock returns. Nonetheless, we proceed
with the analysis. Multiplying the average coefficient of 0.076 by the average
cross-sectional standard deviation of IdioSke𝑤1M of 0.91, we find that the results
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imply that a one-standard-deviation difference in IdioSke𝑤1M is associated with
a difference in expected returns of 0.07% (0.076 × 0.91) per month. Multiplying
the average coefficient by the difference in the average 95th percentile IdioSke𝑤1M

value of 1.74 and the fifth percentile value of −1.27, we find that the difference in
expected returns between stocks with very high and very low values of IdioSke𝑤1M

is 0.23% (0.076 × [1.74 − (−1.27)]) per month, which while not very large, is also
not trivial.

Applying similar analyses to IdioSke𝑤12M , we multiply the average coefficient
of −0.080 on IdioSke𝑤12M with the average standard deviation IdioSke𝑤12M of 1.36.
The result indicates that a one-standard-deviation difference in IdioSke𝑤12M corre-
sponds to a 0.11% (0.080 × 1.33) difference in expected monthly returns. Multiplying
the average coefficient by the difference between the 95th percentile (2.72) and fifth
percentile (−0.88) values of IdioSke𝑤12M indicates that the difference in expected
returns between stocks with very high and very low values of IdioSke𝑤12M is 0.29%
(0.080 × [2.72 − (−0.88)]) per month.

Finally, we multiply the average coefficient on IdioSke𝑤5Y of −0.163 by the
standard deviation of IdioSke𝑤5Y in the average month of 0.81 and find that a
one-standard-deviation difference in IdioSke𝑤5Y results in an expected return dif-
ference of 0.13% (0.163 × 0.81). The difference in expected returns between stocks
with high (95th percentile value of 2.13) and low (fifth percentile value of −0.37)
values of IdioSke𝑤5Y is −0.41% (0.163 × [2.13 − (−0.37)]). This value, while
once again not huge given that it represents the difference in expected returns for
stocks with extremely high and low values of IdioSke𝑤5Y , is certainly economically
important.

14.6 SUMMARY

In this chapter, we have outlined the theoretical predictions regarding the relation
between skewness and expected security returns. We then provide an extended empir-
ical analysis of measures of total skewness, co-skewness, and idiosyncratic skewness.
The results indicate that skewness is an extremely difficult property of a stock to
measure since most of the measures fail to exhibit substantial persistence. The evi-
dence indicates that total and idiosyncratic skewness are more accurately measured
using long estimation periods, and that monthly return-based measures tend to cap-
ture skewness better than daily return-based measures. Measurement of co-skewness
is a challenge regardless of the length of the measurement period or the frequency of
the data.

Portfolio and Fama and MacBeth (1973) regression analyses provide mixed results
regarding relations between the measures of skewness and future stock returns, with
the results being highly dependent on the parameters of the empirical analysis, such
as whether equal-weighted or value-weighted portfolios are used, as well as whether
univariate or multivariate regression specifications are used. FM regression analyses
that control for the other effects documented in previous chapters of this book tend
to find a negative relation between expected stock returns and each of total skewness
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and idiosyncratic skewness. Similar regressions examining the relation between
co-skewness and expected stock returns find no evidence of such a relation.

Because both Harvey and Siddique (2000) and Boyer, Mitton, and Vorkink (2010)
use measures of co-skewness and idiosyncratic skewness, respectively, calculated
from five years worth of monthly return data, for the remainder of this book, we use
CoSke𝑤5Y as our primary measure of co-skewness and IdioSke𝑤5Y as our primary
measure of idiosyncratic skewness.12 Going forward, for simplicity, we denote these
variables CoSke𝑤 and IdioSke𝑤, respectively.
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IDIOSYNCRATIC VOLATILITY

According to many asset pricing models, including the Capital Asset Pricing Model
(CAPM, Sharpe (1964), Lintner (1965), Mossin (1966)) and arbitrage pricing the-
ory (APT, Ross (1976)), investors can create portfolios that have zero exposure to
firm-specific risk by holding a well-diversified portfolio with a large number of secu-
rities. Firm-specific risk, therefore, does not command a risk premium. The empirical
implication of this is that measures of firm-specific risk, or risk that is not related to
a systematic factor, should exhibit no relation with future stock returns. The CAPM
and APT are based on the assumption of perfect markets. Specifically, these theo-
ries assume that all assets are perfectly liquid (frictionless) and that all investors have
complete information.1,2

Pointing to evidence that the assumptions underlying the CAPM and APT
may be too restrictive to adequately explain investor behavior, Levy (1978) and
Merton (1987) develop models of market equilibrium that relax these assumptions.3

In Levy’s model, each investor is constrained to hold at most a certain number of

1A perfectly liquid or frictionless market refers to a market in which there are no transaction costs, no
taxes, and unconstrained borrowing and short-selling.
2The complete information assumption is that all investors have instantaneous access to all publicly avail-
able information and act on new information immediately upon its acquisition.
3Reasons given for the relaxation of these assumptions are the realities of transaction costs, costs of acquir-
ing and processing information, the imperfect and noninstantaneous diffusion of information to all market
participants, market segmentation, institutional restrictions, limits on borrowing and short-selling, taxation,
and indivisibility of securities.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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risky securities.4 Merton’s model is similar, but the restriction on the number of
risky securities is explicitly said to arise from the fact that a given investor only has
information about certain securities. The main implication of each of these models is
that, in equilibrium, firm-specific risk is priced. Specifically, there is a positive risk
premium associated with firm-specific risk.5

Empirically, the prediction of a positive relation between firm-specific risk
and expected stock returns has received substantial attention. Early empirical
studies by Friend, Westerfield, and Granito (1978), Levy (1978), Tinic and West
(1986), and Lehmann (1990) find weak evidence of a positive cross-sectional
relation between idiosyncratic volatility (the most commonly used measure of
firm-specific risk) and stock returns, while the results in Fama and MacBeth (1973)
provide no indication of such a relation. The samples and empirical techniques
employed by these studies, however, indicate that these results may not be widely
generalizable.

The most widely cited study of the cross-sectional relation between firm-specific
risk and expected stock returns is Ang, Hodrick, Xing, and Zhang (2006), which finds
a strong negative cross-sectional relation between idiosyncratic volatility and future
stock returns. This result is highly inconsistent with the predictions of all theoretical
models.6 While Ang et al. demonstrate that a small portion of this relation can be
explained by exposure to aggregate volatility risk, which is empirically shown to carry
a negative risk premium, this phenomenon does not entirely explain the result. The
negative relation between idiosyncratic volatility and future stock returns is therefore
widely considered a puzzle.

Several subsequent papers have proposed explanations for the idiosyncratic
volatility puzzle. Bali and Cakici (2008) demonstrate that data frequency, portfolio
weighting scheme, portfolio breakpoint calculation methodology, and the screens
used to create the sample all have a substantial impact on the idiosyncratic volatility
puzzle, and that the relation disappears for many choices of these parameters.
Fu (2009) uses an exponential GARCH model to estimate expected idiosyncratic
volatility, and finds a positive relation between this measure and future stock returns,
although Guo, Kassa, and Ferguson (2014) show that this study is potentially afflicted
by the in-sample nature of the estimation of expected idiosyncratic volatility. Huang
et al. (2010) demonstrate that the negative relation between idiosyncratic volatility
and future stock returns is driven by the short-term reversal phenomenon. Han
and Lesmond (2011) provide evidence that the idiosyncratic volatility puzzle is
a manifestation of liquidity shocks and microstucture effects. Bali, Cakici, and
Whitelaw (2011) find that after controlling for demand for lottery-like stocks, the
negative relation between idiosyncratic volatility and future stock returns disappears,

4The constraint on the number of securities may vary from investor to investor. All investors, however, are
constrained, and therefore no investor can invest in all available risky assets.
5It is worth noting that in both models, when the restriction on the number of risky securities in which
each investor can invest is removed, the models simplify to the CAPM. Thus, both models can be viewed
as generalized versions of the CAPM.
6Ang, Hodrick, Xing, and Zhang (2009) demonstrate that this phenomenon exists in international
stock markets, not just the U.S. market.
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and in some analyses the relation becomes positive. Baker, Bradley, and Wurgler
(2011) show that benchmarking by institutional investors may result in a limit to
arbitrage, thus allowing this phenomenon to persist.7

The remainder of this chapter is devoted to an empirical examination of idiosyn-
cratic volatility and expected stock returns. As part of our investigation, we also exam-
ine measures to total stock return volatility. We do this to demonstrate to the reader
that idiosyncratic volatility and total volatility are very similar in the cross section.
While total volatility is a function of idiosyncratic volatility and systematic risk (cap-
tured by beta in the CAPM model), it is important for a researcher to recognize that
these variables are highly similar empirically. We begin by discussing in detail sev-
eral different approaches to calculating idiosyncratic volatility and total volatility.
We then proceed to examine the cross-sectional properties of total and idiosyncratic
volatility. Next, we investigate the relation between idiosyncratic volatility and future
stock returns.

15.1 MEASURING TOTAL VOLATILITY

There are two frequently used approaches to calculating the total volatility of a stock’s
returns. The first is to simply calculate the standard deviation of the periodic stock
returns. Because volatilities are most easily interpreted when presented as annual-
ized values and expressed in percent, the total volatility of a stock’s return can be
calculated as

Voli = 100

√∑n
t=1 (Ri,t − Ri)2

n − 1

√
m (15.1)

where Ri,t is the return of stock i during period t, Ri is the average return of stock i
taken over all periods used in the calculation of Vol, n is the number of periods of data
used in the calculation, and m is the number of periods in one year. The multiplication
by

√
m converts the standard deviation of the periodic returns to an annualized value,

and multiplication by 100 is performed because the values of the periodic returns
(Ri,t) are assumed to be represented in decimal form.

In many cases, an even simpler approach is taken by empirical asset pricing
researchers. In this alternative approach, we simply take the sum of the squared
periodic returns, R2

i,t, instead of the squared demeaned periodic returns, (Ri,t − Ri)2,
in the numerator, and divide by n instead of n − 1. The thinking behind this approach
is that in almost all cases, the true expected return of any stock in a given period
t is quite small and poorly captured by the average value over all periods in the
calculation, Ri. This method therefore effectively replaces Ri in equation (15.1) with
zero. The summation in the numerator of the equation, therefore, simply becomes

7Baker and Wurgler (2014) attribute the idiosyncratic volatility puzzle to mispricing and examine its impli-
cations on firms’ capital structure decisions.
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the sum of the squared periodic stock returns. For this reason, we denote this variable
with SS in the superscript and calculate it as

VolSS
i = 100

√∑n
t=1 R2

i,t

n

√
m. (15.2)

15.2 MEASURING IDIOSYNCRATIC VOLATILITY

Idiosyncratic volatility is measured as the residual standard error from a time-series
regression of periodic excess stock returns on the returns of factor-mimicking port-
folios. The model used most frequently to calculate idiosyncratic volatility is the
Fama and French (1993) three-factor (FF) model. This model includes the market
(MKT), size (SMB), and value (HML) factors as independent variables in the regres-
sion. Therefore, the regression specification is

ri,t = 𝛼i + 𝛽MKT ,iMKTt + 𝛽SMB,iSMBt + 𝛽HML,iHMLt + 𝜖i,t (15.3)

where ri,t is the excess return of stock i during time period t, and MKTt, SMBt, and
HMLt are the period t returns of the market, size, and book-to-market factors, respec-
tively.

In some cases, researchers use a simple CAPM regression or a four-factor regres-
sion based on the four-factor model of Fama and French (1993) and Carhart (1997)
(FFC). In these cases, the regression specification is

ri,t = 𝛼i + 𝛽MKT ,iMKTt + 𝜖i,t (15.4)

when using the CAPM model and

ri,t = 𝛼i + 𝛽MKT ,iMKTt + 𝛽SMB,iSMBt

+𝛽HML,iHMLt + 𝛽MOM,iMOMt + 𝜖i,t (15.5)

when the FFC model is used.
The residual standard error from the regression is then calculated as

RSEi =

√∑n
j=1 𝜖

2
i,j

n − k
(15.6)

where n is the number of data points that are used to fit the regression and k is the
number of parameters estimated by the regression.

When the FF model is used there are four parameters estimated by the regression
(𝛼i, 𝛽MKT ,i, 𝛽SMB,i, and 𝛽HML,i), and thus in this case k = 4.8 When the CAPM model

8Frequently, researchers will omit the subtraction of k from the denominator of the calculation, or sim-
ply use k = 1, which statistically assumes that the parameter estimates are exact, and therefore that RSE
represents an unbiased estimate of the standard deviation of the residuals.
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is used there are two parameters (k = 2), and when the FFC model is used, there are
five parameters (k = 5).

Idiosyncratic volatility is then calculated by multiplying the residual standard error
by

√
m (m is the number of return periods in a year) so that it represents an annualized

value. If the periodic excess returns used in the regression are represented in decimal
form, the annualized residual standard error is frequently then multiplied by 100 so
that idiosyncratic volatility is measured in percent. We therefore define idiosyncratic
volatility as

IdioVoli = 100RSEi ×
√

m. (15.7)

We use several different combinations of measurement period and data frequency
to calculate both total volatility (Vol and VolSS) and idiosyncratic volatility. Specif-
ically, we calculate each of our measures using one, three, six, and 12 months of
daily return data and one, two, three, and five years worth of monthly return data.
The one-, three-, six-, and 12-month daily return-based variables are denoted with
1M, 3M, 6M, and 12M in the superscript, respectively. We require a minimum of
15, 50, 100, and 200 days worth of return data to calculate the one-, three-, six-,
and 12-month variables, respectively. The one-, two-, three-, and five-year monthly
return-based measures are denoted with 1Y , 2Y , 3Y , and 5Y in the superscript and we
require, 10, 20, 24, and 24 months of return data to calculate these variables, respec-
tively. The value of each variable for stock i in month t is calculated using return data
from months t − k + 1 through t, inclusive, where k is the number of months in the
measurement period. We denote idiosyncratic volatility variables calculated using the
CAPM model with CAPM in the superscript, variables calculated using the FF model
with FF in the superscript, and those calculated using the FFC model with FFC in
the superscript.

The daily (monthly) return data used in the calculation of each of the volatility
variables come from the RET field in the Center for Research in Security Price’s
daily (monthly) stock file. Risk-free security and factor return data are taken from
Ken French’s data library.9

15.3 SUMMARY STATISTICS

In Table 15.1, we present summary statistics for each of the total and idiosyncratic
volatility variables for our 1963–2012 sample of U.S.-based common stocks in the
CRSP database. Panel A presents results for the measure of total volatility calculated
using the sample standard deviation of periodic returns (Vol). When Vol is calcu-
lated using daily return data, the average values increase slightly as the length of
the measurement period increases from 50.71% for the one-month measure (Vol1M)
to 53.43% for the 12-month measure (Vol12M). This increasing pattern is also found
in each of the cross-sectional percentiles, with the exception of the 95th percentile

9The URL for Ken French’s data library is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&
uscore;library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&uscore;library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data&uscore;library.html
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TABLE 15.1 Summary Statistics
This table presents summary statistics for variables measuring total and idiosyncratic volatil-
ity using the CRSP sample for the months t from June 1963 through November 2012. Each
month, the mean (Mean), standard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt),
minimum (Min), 5th percentile (5%), 25th percentile (25%), median (Median), 75th percentile
(75%), 95th percentile (95%), and maximum (Max) values of the cross-sectional distribution
of each variable is calculated. The table presents the time-series means for each cross-sectional
value. The column labeled n indicates the average number of stocks for which the given vari-
able is available. Vol is the annualized standard deviation of periodic stock returns. VolSS is
the annualized sum of the squared periodic stock returns. IdioVolCAPM is the annualized stan-
dard deviation of the residuals from a regression of excess stock returns on the market factor.
IdioVolFF is the annualized standard deviation of the residuals from a regression of excess stock
returns on the market factor, the size factor (SMB), and the value factor (HML). IdioVolFFC is
the annualized standard deviation of the residuals from a regression of excess stock returns on
the market factor, the size factor (SMB), the value factor (HML), and the momentum factor
(MOM). Variables denoted 1M, 3M, 6M, and 12M are calculated from one, three, six, and 12
months of daily return data, respectively. Variables denoted 1Y , 2Y , 3Y , and 5Y are calculated
from one, two, three, and five years of monthly return data, respectively.

Panel A: Vol

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

Vol1M 50.71 40.11 4.22 61.02 1.26 13.55 26.82 41.11 62.71 118.31 743.34 4761
Vol3M 52.63 36.41 3.54 43.40 2.49 17.28 29.80 44.12 64.94 115.67 633.42 4697
Vol6M 53.24 34.37 3.14 33.84 3.53 18.78 31.00 45.31 65.75 113.89 571.08 4611
Vol12M 53.43 32.43 2.81 27.44 5.29 19.92 31.82 46.07 66.14 111.46 513.06 4440
Vol1Y 46.87 31.16 3.92 56.45 2.70 16.17 27.56 39.88 57.61 99.21 579.54 4423
Vol2Y 47.33 28.17 3.14 36.79 5.10 18.11 28.97 41.16 58.27 95.68 472.85 4072
Vol3Y 47.77 27.01 2.84 31.39 6.63 18.98 29.66 41.96 58.98 94.97 433.11 3958
Vol5Y 48.48 26.14 2.64 29.63 7.64 19.75 30.46 43.05 60.16 94.63 410.30 3992

Panel B: VolSS

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

VolSS,1M 50.51 39.79 4.24 61.95 1.26 13.59 26.83 41.02 62.43 117.43 741.62 4761
VolSS,3M 52.56 36.33 3.56 43.93 2.49 17.31 29.80 44.08 64.85 115.37 634.86 4697
VolSS,6M 53.21 34.34 3.15 34.25 3.54 18.80 31.01 45.30 65.71 113.75 573.18 4611
VolSS,12M 53.43 32.43 2.82 27.80 5.30 19.93 31.83 46.07 66.13 111.41 515.21 4440
VolSS,1Y 47.11 30.91 3.90 56.55 2.88 16.58 27.89 40.19 57.91 98.90 574.90 4423
VolSS,2Y 47.50 28.04 3.14 36.95 5.27 18.41 29.19 41.37 58.44 95.60 471.01 4072
VolSS,3Y 47.92 26.89 2.84 31.61 6.84 19.25 29.87 42.14 59.12 94.83 432.08 3958
VolSS,5Y 48.62 26.01 2.65 29.98 7.95 20.01 30.69 43.25 60.27 94.54 409.49 3992

Panel C: IdioVolCAPM

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

IdioVolCAPM,1M 48.66 40.15 4.28 61.28 1.43 12.74 24.73 38.57 60.12 116.84 744.85 4742
IdioVolCAPM,3M 50.42 36.53 3.57 42.99 2.46 15.82 27.51 41.50 62.40 114.30 633.88 4697
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TABLE 15.1 (Continued)

IdioVolCAPM,6M 51.02 34.54 3.16 33.18 3.49 17.17 28.67 42.67 63.25 112.56 571.21 4611
IdioVolCAPM,12M 51.18 32.64 2.82 26.67 5.17 18.14 29.41 43.40 63.66 110.18 513.06 4440
IdioVolCAPM,1Y 42.93 30.89 4.07 56.39 2.61 14.05 23.91 35.47 52.89 95.03 579.50 4423
IdioVolCAPM,2Y 43.31 27.77 3.29 37.74 4.90 15.93 25.28 36.75 53.49 91.28 472.56 4072
IdioVolCAPM,3Y 43.73 26.60 2.99 32.46 6.34 16.72 25.94 37.54 54.26 90.45 433.33 3958
IdioVolCAPM,5Y 44.52 25.72 2.77 30.35 7.35 17.47 26.76 38.72 55.58 90.31 409.48 3992

Panel D: IdioVolFF

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

IdioVolFF,1M 48.07 40.25 4.31 61.51 1.40 12.41 24.15 37.84 59.40 116.48 748.45 4742
IdioVolFF,3M 49.88 36.52 3.59 43.25 2.45 15.53 27.02 40.86 61.71 113.83 634.32 4697
IdioVolFF,6M 50.48 34.51 3.18 33.25 3.48 16.87 28.19 42.04 62.58 112.07 571.65 4611
IdioVolFF,12M 50.65 32.61 2.84 26.68 5.14 17.83 28.94 42.76 62.99 109.71 513.17 4440
IdioVolFF,1Y 40.95 30.16 4.08 52.97 2.31 12.92 22.51 33.59 50.44 91.96 554.13 4423
IdioVolFF,2Y 41.59 26.94 3.27 33.71 4.73 15.15 24.23 35.18 51.25 88.11 448.38 4072
IdioVolFF,3Y 42.03 25.74 2.93 27.65 6.20 15.99 24.92 36.02 51.94 87.24 408.82 3958
IdioVolFF,5Y 42.82 24.87 2.71 25.82 7.21 16.78 25.79 37.19 53.27 87.07 386.82 3992

Panel E: IdioVolFFC

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

IdioVolFFC,1M 47.91 40.31 4.32 61.66 1.39 12.27 23.97 37.63 59.19 116.45 751.85 4742
IdioVolFFC,3M 49.77 36.53 3.60 43.36 2.45 15.44 26.91 40.73 61.58 113.74 635.46 4697
IdioVolFFC,6M 50.37 34.52 3.18 33.32 3.47 16.78 28.10 41.93 62.46 111.99 572.19 4611
IdioVolFFC,12M 50.56 32.62 2.84 26.71 5.12 17.75 28.85 42.66 62.89 109.61 513.34 4440
IdioVolFFC,1Y 40.34 30.06 4.10 52.82 2.13 12.40 21.97 33.01 49.83 90.99 553.62 4423
IdioVolFFC,2Y 41.20 26.77 3.29 34.04 4.68 14.91 23.99 34.85 50.82 87.29 448.03 4072
IdioVolFFC,3Y 41.70 25.58 2.94 27.60 6.14 15.79 24.72 35.76 51.58 86.48 408.46 3958
IdioVolFFC,5Y 42.54 24.72 2.71 25.93 7.16 16.63 25.62 36.97 52.92 86.50 385.86 3992

and the maximum value, which exhibit a decreasing pattern as the measurement
period is elongated. The fact that the average maximum values decrease as the mea-
surement period is extended is likely due to the fact that variables calculated from
longer measurement periods are less susceptible to measurement errors driven by
one extreme daily return. The distribution of Vol is positively skewed, with average
cross-sectional skewness of 4.22, 3.54, 3.14, and 2.81 for Vol1M , Vol3M , Vol6M , and
Vol12M , respectively. As with many of the variables we have seen previously in this
book, the positive skewness is driven by a small number of stocks for which the values
of Vol are very high. The cross-sectional distributions of the daily return-based total
volatility variables are also highly leptokurtic, with average excess kurtosis between
32.43 for Vol12M and 40.11 for Vol1M .

The summary statistics for the monthly return-based Vol variables (Vol1Y , Vol2Y ,
Vol3Y , and Vol5Y ) indicate that the monthly return-based measures have many of
the same distributional characteristics as the daily return-based measures. The
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average values of the monthly return-based variables range from 46.87% for Vol1Y

to 48.48% for Vol5Y . Once again, the average values exhibit an increasing pattern as
the measurement period is extended. The average values of the monthly return-based
measures are slightly lower than the daily return-based measures. As with the daily
return-based measures, the cross-sectional distributions of the monthly return-based
Vol variables are positively skewed, leptokurtic, and characterized by a small number
of very large values.

Characteristics of the average cross-sectional distributions of the measures of total
volatility calculated using the sum of the squared periodic returns (VolSS), shown in
Panel B of Table 15.1, are extremely similar to those of Vol. In all cases, the differ-
ences between the summary statistics for Vol and those for VolSS are negligible. The
greatest takeaway from Panel B, therefore, is that there is almost no impact of using
the simpler undemeaned sum-squared-based approach to calculating total volatility,
instead of the sample standard deviation-based approach, on the cross-sectional dis-
tribution of total volatility.

In Panels C–E of Table 15.1, we present summary statistics for the IdioVolCAPM ,
IdioVolFF , and IdioVolFFC variables. As with the measures of total volatility, the
different approaches to calculating idiosyncratic volatility all generate variables
whose cross-sectional distributions are very similar. We focus our discussion on
IdioVolFF (Panel D) because idiosyncratic volatility is most commonly calculated
by empirical asset pricing researchers using the FF model. The daily return-based
IdioVolFF variables have average values ranging from 48.07% for IdioVolFF,1M to
50.65% for IdioVolFF,12M . For the monthly return-based measures, the average values
range from 40.95% for IdioVolFF,1Y to 42.82% for IdioVolFF,5Y . Thus, on average, the
monthly return-based values of idiosyncratic volatility are substantially lower than
the daily return-based values. Similar to total volatility, with the exception of the 95th
percentile and the maximum value, each of the reported percentiles (as well as the
mean) of the cross-sectional distributions of the IdioVolFF variables increases as the
length of the measurement period is made longer. Finally, the cross-sectional
distributions of the IdioVolFF measures are positively skewed and leptokurtic.

It is perhaps not a surprise that the different measures of total volatility are so
similar to each other, nor that the measures of idiosyncratic volatility are so simi-
lar to each other. A part of this is largely mechanical since the calculations of each
of the different measures are highly similar. What is potentially more interesting is
that the cross-sectional distribution of idiosyncratic volatility is very similar to the
cross-sectional distribution of total volatility. This indicates either that for the average
stock, the vast majority of total volatility is idiosyncratic, or that the regressions used
to calculate idiosyncratic volatility fail to effectively capture the systematic effect.

15.4 CORRELATIONS

We now examine the cross-sectional correlations between the different measures of
volatility, as well as between volatility and other variables that have been examined
in previous chapters of this book. We begin by examining the correlations between
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variables calculated using the same methodology but with different measurement
periods and data frequencies. In all correlation analyses presented throughout this
section, each variable is winsorized at the 0.5% level on a monthly basis prior to
calculating the correlation.

In Panel A of Table 15.2, we present the time-series averages of the monthly
cross-sectional correlations between each of the measures of total volatility
calculated using the sample standard deviation of the periodic returns (Vol). Pearson
product–moment correlations are presented in the below-diagonal entries, and
Spearman rank correlations are shown in the above-diagonal entries. The results
show that regardless of measurement period length or data frequency, the different
Vol variables have high cross-sectional correlations. A substantial portion of this
is mechanical, especially for the correlations between two variables that use the
same data frequency, but the correlations are way too high for the entire effect

TABLE 15.2 Correlations—Total Volatility
This table presents the time-series averages of the annual cross-sectional Pearson
product–moment (below-diagonal entries) and Spearman rank (above-diagonal entries) cor-
relations between pairs of variables measuring total volatility. Panel A presents correlations
between values of Vol calculated using different data frequencies and measurement period
lengths. Panel B presents correlations between values of VolSS calculated using different data
frequencies and measurement period lengths.

Panel A: Vol

Vo
l1M

Vo
l3M

Vo
l6M

Vo
l12

M

Vo
l1Y

Vo
l2Y

Vo
l3Y

Vo
l5Y

Vol1M 0.87 0.82 0.79 0.64 0.65 0.65 0.64
Vol3M 0.86 0.95 0.90 0.74 0.75 0.74 0.73
Vol6M 0.80 0.94 0.96 0.79 0.80 0.79 0.77
Vol12M 0.76 0.88 0.95 0.82 0.84 0.83 0.82
Vol1Y 0.57 0.67 0.73 0.78 0.90 0.86 0.81
Vol2Y 0.57 0.67 0.72 0.78 0.88 0.96 0.91
Vol3Y 0.56 0.65 0.71 0.76 0.82 0.94 0.96
Vol5Y 0.55 0.64 0.69 0.74 0.77 0.89 0.95

Panel B: VolSS

Vo
lSS

,
1M

Vo
lSS

,
3M

Vo
lSS

,
6M

Vo
lSS

,
12

M

Vo
lSS

,
1Y

Vo
lSS

,
2Y

Vo
lSS

,
3Y

Vo
lSS

,
5Y

VolSS,1M 0.87 0.82 0.79 0.66 0.66 0.65 0.64
VolSS,3M 0.86 0.95 0.90 0.75 0.75 0.74 0.73
VolSS,6M 0.80 0.94 0.96 0.80 0.80 0.79 0.77
VolSS,12M 0.76 0.88 0.95 0.83 0.84 0.83 0.81
VolSS,1Y 0.58 0.68 0.74 0.78 0.91 0.86 0.82
VolSS,2Y 0.58 0.67 0.72 0.78 0.88 0.96 0.91
VolSS,3Y 0.57 0.65 0.71 0.76 0.82 0.94 0.96
VolSS,5Y 0.55 0.64 0.69 0.74 0.77 0.89 0.95
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to be mechanical. Looking first at the correlations between the daily return-based
measures, the table indicates average Pearson cross-sectional correlations ranging
from 0.76 between Vol1M and Vol12M to 0.95 between Vol6M and Vol12M . As would
be expected given the mechanical effect, the correlations are increasing as the length
of the overlapping portion of the measurement period increases and decreasing
as the length of the nonoverlapping portion of the estimation period increases.
However, Vol1M and Vol12M are calculated from only one month of overlapping
data, with Vol12M using 11 months of data not included in Vol1M . The correlation
of 0.76 between these measures gives a strong indication that these variables are
both effective at capturing the same characteristic of stock returns. The Spearman
rank correlations between the daily return-based Vol variables are slightly higher
than the Pearson correlations. The correlations between the monthly return-based
Vol variables are similarly high, ranging from 0.77 between Vo11Y and Vol5Y to 0.95
between Vol3Y and Vol5Y . Once again, the patterns in the correlations are consistent
with a mechanical effect, but the magnitudes of the correlations are much too high
for the results to be purely mechanical. As with the daily return-based measures,
the monthly return-based measures have slightly higher Spearman rank correlations
than Pearson product–moment correlations.

Pearson (Spearman) correlations between the daily and monthly data-based Vol
measures range from 0.55 (0.64) between Vol1M and Vol5Y to 0.78 (0.84) between
Vol12M and Vol2Y . The results indicate that there is a very strong common compo-
nent to these variables. This effect is likely not nearly as mechanical as the results
for variables calculated using the same data frequency. The results therefore give us
a high level of confidence that both the daily return-based measures and the monthly
return-based measures are capturing the same stock-level characteristic. Once again,
the Spearman correlations are somewhat higher than the Pearson correlations, poten-
tially indicating that, at least for extreme values, the measurement of these variables
is quite noisy.

Panel B of Table 15.2 shows that the correlations between the sum-of-squared
returns-based total volatility variables (VolSS) are extremely similar to the correspond-
ing correlations between the Vol variables. The largest difference between corre-
sponding correlations for the VolSS and Vol variables is the Spearman correlation
of 0.66 between the VolSS,1M and VolSS,1Y , which differs by a negligible 0.02 from
the Spearman correlation between Vol1M and Vol1Y of 0.64. All other correlations
between the VolSS variables differ by either 0.01 (rounded to 2 decimal points) or
less from the correlation between the corresponding pair of Vol variables. As was
the case with the summary statistics, the results indicate that the characteristics of the
variables produced using the two different approaches used to calculate total volatility
are highly similar.

Table 15.3 shows the average cross-sectional correlations between the IdioVolCAPM

variables (Panel A), the IdioVolFF variables (Panel B), and the IdioVolFFC variables
(Panel C). Regardless of which model (CAPM, FF, or FFC) is used to calculate
idiosyncratic volatility, the results are highly similar. We therefore focus our discus-
sion on the correlations between the measures of idiosyncratic volatility calculated
using the FF risk model.
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Pearson correlations between the daily return-based measures of idiosyncratic
volatility range from 0.77 between IdioVolFF,1M and IdioVolFF,12M to 0.95 between
IdioVolFF,6M and IdioVolFF,12M . Similarly, the monthly return-based measures have
Pearson correlations ranging from 0.75 between IdioVolFF,1Y and IdioVolFF,5Y to
0.95 between IdioVolFF,3Y and IdioVolFF,5Y . Pearson correlations between the daily
and monthly measures are a bit lower, ranging from 0.55 between IdioVolFF,1M

TABLE 15.3 Correlations—Idiosyncratic Volatility
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (below-diagonal entries) and Spearman rank (above-diagonal entries) correlations
between pairs of variables measuring idiosyncratic volatility. Panel A presents correlations
between values of IdioVolCAPM calculated using different data frequencies and measurement
period lengths. Panel B presents correlations between values of IdioVolFF calculated using
different data frequencies and measurement period lengths. Panel C presents correlations
between values of IdioVolFFC calculated using different data frequencies and measurement
period lengths.

Panel A: IdioVolCAPM
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,
5Y

IdioVolCAPM,1M 0.87 0.83 0.80 0.64 0.66 0.66 0.65
IdioVolCAPM,3M 0.86 0.95 0.91 0.74 0.75 0.75 0.74
IdioVolCAPM,6M 0.81 0.94 0.96 0.79 0.80 0.80 0.78
IdioVolCAPM,12M 0.77 0.88 0.95 0.82 0.84 0.84 0.82
IdioVolCAPM,1Y 0.57 0.67 0.73 0.78 0.90 0.85 0.81
IdioVolCAPM,2Y 0.58 0.67 0.72 0.78 0.87 0.96 0.91
IdioVolCAPM,3Y 0.57 0.66 0.71 0.76 0.82 0.94 0.96
IdioVolCAPM,5Y 0.56 0.64 0.69 0.74 0.77 0.89 0.95

Panel B: IdioVolFF
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IdioVolFF,1M 0.87 0.83 0.80 0.62 0.65 0.65 0.64
IdioVolFF,3M 0.86 0.95 0.91 0.71 0.74 0.74 0.73
IdioVolFF,6M 0.81 0.94 0.96 0.76 0.79 0.79 0.78
IdioVolFF,12M 0.77 0.88 0.95 0.79 0.83 0.83 0.82
IdioVolFF,1Y 0.55 0.65 0.71 0.75 0.88 0.83 0.79
IdioVolFF,2Y 0.56 0.66 0.71 0.76 0.86 0.95 0.91
IdioVolFF,3Y 0.56 0.65 0.70 0.75 0.80 0.94 0.96
IdioVolFF,5Y 0.55 0.64 0.69 0.74 0.75 0.88 0.95

(continued)
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TABLE 15.3 (Continued)

Panel C: IdioVol FFC
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IdioVolFFC,1M 0.87 0.82 0.80 0.60 0.64 0.65 0.64
IdioVolFFC,3M 0.86 0.95 0.91 0.70 0.74 0.74 0.73
IdioVolFFC,6M 0.80 0.94 0.96 0.75 0.79 0.79 0.78
IdioVolFFC,12M 0.76 0.88 0.95 0.78 0.83 0.83 0.82
IdioVolFFC,1Y 0.54 0.64 0.70 0.74 0.86 0.81 0.77
IdioVolFFC,2Y 0.56 0.65 0.71 0.76 0.85 0.95 0.90
IdioVolFFC,3Y 0.56 0.65 0.70 0.75 0.79 0.94 0.96
IdioVolFFC,5Y 0.55 0.64 0.69 0.74 0.74 0.88 0.95

and IdioVolFF,5Y to 0.76 between IdioVolFF,12M and IdioVolFF,2Y . In all cases, the
Spearman correlations are similar to, and slightly higher than, the corresponding
Pearson correlations.

The final notable result from Tables 15.2 and 15.3 is that the results for Vol and
VolSS (Table 15.2), while similar to each other, are also very similar to the results for
each of IdioVolCAPM , IdioVolFF , and IdioVolFFC (Table 15.3). In all cases, when fixing
the measurement period and data frequency for each of the variables for which the
correlation is being calculated, the correlations observed using different measures of
total and idiosyncratic volatility are very similar.

The summary statistics and correlation results presented thus far show that Vol,
VolSS, IdioVolCAPM , IdioVolFF , and IdioVolFFC all have very similar characteristics.
To gain additional insight into this, in Table 15.4 we present correlations between
pairs of variables calculated using different methodologies but holding the length
of the measurement period and data frequency constant. The results show that the
Pearson correlations (Panel A) between each pair of variables are extremely high.
The average cross-sectional correlations between Vol and VolSS range from 0.993
when the variables are calculated using one year of monthly return data to 1.000
(rounded to 3 decimal points) when Vol and VolSS are calculated using six or
12 months of daily return data.

The Pearson correlations between Vol and idiosyncratic volatility range from 0.912
between Vol1Y and IdioVolFFC,1Y to 0.995 between Vol and IdioVol calculated using
either six or 12 months of daily data. The correlations between the VolSS and IdioVol
variables are very similar, although in general slightly lower than those between Vol
and IdioVol. That being said, the lowest correlation between these pairs of variables
is 0.908 between VolSS,1Y and IdioVolFFC,1Y .

The results indicate that the three different measures of idiosyncratic volatility are
extremely similar in the cross section. The lowest Pearson correlation between any
of the pairs of idiosyncratic volatility variables is 0.943 between IdioVolCAPM,1Y and
IdioVolFFC,1Y . Idiosyncratic volatility measured using the FF and FFC risk models
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TABLE 15.4 Correlations—Total and Idiosyncratic Volatility
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (Panel A) and Spearman rank (Panel B) correlations between pairs of variables mea-
suring total volatility (Vol and VolSS) and idiosyncratic volatility (IdioVolCAPM , IdioVolFF , and
IdioVolFFC) calculated using different data frequencies and measurement period lengths. Cor-
relations between variables calculated from one, three, six, and 12 months of daily return data
are shown in the columns 1M, 3M, 6M, and 12M, respectively. Correlations between vari-
ables calculated from one, two, three, and five months of monthly return data are shown in the
columns 1Y , 2Y , 3Y , and 5Y , respectively.

Panel A: Pearson Correlations

Correlation Between 1M 3M 6M 12M 1Y 2Y 3Y 5Y

Vol and VolSS 0.999 1.000 1.000 1.000 0.993 0.998 0.999 0.999
Vol and IdioVolCAPM 0.990 0.994 0.995 0.995 0.968 0.979 0.983 0.986
Vol and IdioVolFF 0.983 0.991 0.993 0.994 0.932 0.964 0.971 0.977
Vol and IdioVolFFC 0.979 0.990 0.992 0.993 0.912 0.957 0.967 0.974
VolSS and IdioVolCAPM 0.989 0.994 0.995 0.995 0.963 0.977 0.982 0.986
VolSS and IdioVolFF 0.982 0.991 0.993 0.994 0.928 0.962 0.970 0.976
VolSS and IdioVolFFC 0.978 0.990 0.992 0.993 0.908 0.955 0.966 0.973
IdioVolCAPM and IdioVolFF 0.994 0.999 0.999 1.000 0.962 0.984 0.989 0.992
IdioVolCAPM and IdioVolFFC 0.991 0.998 0.999 0.999 0.943 0.979 0.986 0.990
IdioVolFF and IdioVolFFC 0.997 1.000 1.000 1.000 0.981 0.995 0.997 0.998

Panel B: Spearman Correlations

Correlation Between 1M 3M 6M 12M 1Y 2Y 3Y 5Y

Vol and VolSS 0.999 1.000 1.000 1.000 0.991 0.997 0.999 0.999
Vol and IdioVolCAPM 0.982 0.988 0.990 0.991 0.953 0.970 0.977 0.982
Vol and IdioVolFF 0.973 0.985 0.987 0.989 0.914 0.955 0.966 0.974
Vol and IdioVolFFC 0.968 0.983 0.986 0.988 0.893 0.949 0.962 0.971
VolSS and IdioVolCAPM 0.981 0.988 0.990 0.991 0.947 0.968 0.975 0.981
VolSS and IdioVolFF 0.972 0.985 0.987 0.989 0.909 0.953 0.964 0.973
VolSS and IdioVolFFC 0.967 0.983 0.986 0.988 0.889 0.947 0.961 0.971
IdioVolCAPM and IdioVolFF 0.992 0.998 0.999 0.999 0.958 0.984 0.990 0.993
IdioVolCAPM and IdioVolFFC 0.989 0.997 0.998 0.999 0.937 0.979 0.987 0.991
IdioVolFF and IdioVolFFC 0.996 0.999 1.000 1.000 0.978 0.995 0.997 0.999

are nearly perfectly correlated in the cross section, with the lowest average correla-
tion between these variables of 0.981 once again being generated by the measures
calculated from one year of monthly data. In fact, in all cases, the lowest correlation
between each given pair of variables is the correlation generated by the measures
calculated from one year of monthly data. For each given measurement period and
data frequency, the pairs of variables that generate the lowest correlations are Vol and
IdioVolFFC, as well as VolSS and IdioVolFFC. These correlations, however, are still
very high.
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The Spearman rank correlations presented in Panel B of Table 15.4 give a very
similar story. The lowest average cross-sectional Spearman correlation that appears
in the table is 0.889 between VolSS,1Y and IdioVolFFC,1Y . The only other Spearman
correlation that falls below 0.900 is, not surprisingly, the correlation between Vol1Y

and IdioVolFFC,1Y . The same patterns that emerge in the Pearson correlations are also
present in the Spearman correlations.

The conclusion to be drawn from Table 15.4 is clear. The results demonstrate that
the methodology used to calculate total volatility or idiosyncratic volatility is incon-
sequential. Total volatility and idiosyncratic volatility are very highly correlated in the
cross section. The correlations are high enough to alleviate any reasonable concern
that empirical results will differ substantially when using one approach to measure
volatility instead of another. For this reason, for most of the remainder of this chapter,
we use only measures of idiosyncratic volatility calculated using the FF risk model
(IdioVolFF) as our volatility variables. While the correlation analysis presented in
Panel B of Table 15.3 indicated that correlations between IdioVolFF calculated using
different measurement periods and data frequencies are high, the correlations are not
high enough to be confident that empirical results will not be substantially differ-
ent when the measurement period and data frequency are changed. For this reason,
we continue to examine all of the IdioVolFF variables. We choose to use IdioVolFF

as our measure of idiosyncratic volatility because this is the measure used by Ang
et al. (2006) and is the most commonly used measure of idiosyncratic volatility in
empirical asset pricing research.

Having examined the relations between the different measures of idiosyncratic
volatility (as well as total volatility), we now examine the cross-sectional relations
between idiosyncratic volatility and other variables whose relations with expected
stock returns have been examined in previous chapters.

In Table 15.5, we present the Pearson product–moment (Panel A) and Spearman
rank (Panel B) correlations between IdioVolFF and each of beta (𝛽), size (Size,
log of market capitalization), book-to-market ratio (BM), momentum (Mom),
reversal (Re𝑣), illiquidity (Illiq), co-skewness (CoSke𝑤), and idiosyncratic skewness
(IdioSke𝑤). The results indicate a weak positive relation between idiosyncratic
volatility and 𝛽. When using the daily return-based measures of IdioVolFF , the
average correlations between IdioVolFF and 𝛽 increase as the measurement period
is elongated from 0.08 for IdioVolFF,1M to 0.11 for IdioVolFF,12M . For the monthly
return-based measures, the same pattern of increasing correlation as the measure-
ment period is lengthened is observed. The correlations between 𝛽 and the monthly
return-based measures of idiosyncratic volatility range from 0.13 for IdioVolFF,1Y to
0.16 for IdioVolFF,3Y and IdioVolFF,5Y . Thus, the correlation between idiosyncratic
volatility and beta appears to be slightly higher when idiosyncratic volatility is
measured using monthly return data. The Spearman rank correlations between 𝛽 and
IdioVolFF , which range from 0.16 between 𝛽 and IdioVolFF,1M to 0.20 between 𝛽

and each of IdioVolFF,2Y , IdioVolFF,3Y , and IdioVolFF,5Y , are a little higher than the
Pearson correlations, but follow the same general patterns.

Idiosyncratic volatility has a strong negative relation with Size, since the Pear-
son (Spearman) correlations between IdioVolFF and Size range from −0.42 (−0.46)
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TABLE 15.5 Correlations—Idiosyncratic Volatility and Other Variables
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (Panel A) and Spearman rank (Panel B) correlations between pairs of variables mea-
suring idiosyncratic volatility and each of 𝛽, Size, BM, Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤.

Panel A: Pearson Correlations
𝛽 Si

ze

B
M

M
om

R
e𝑣

Il
li

q

C
oS

ke
𝑤

Id
io

Sk
e𝑤

IdioVolFF,1M 0.08 −0.45 0.07 −0.16 0.10 0.48 −0.06 0.25
IdioVolFF,3M 0.09 −0.52 0.08 −0.14 0.02 0.49 −0.06 0.29
IdioVolFF,6M 0.10 −0.55 0.09 −0.12 0.00 0.50 −0.07 0.32
IdioVolFF,12M 0.11 −0.58 0.10 −0.08 −0.01 0.49 −0.07 0.35
IdioVolFF,1Y 0.13 −0.42 0.04 0.10 0.04 0.24 −0.08 0.39
IdioVolFF,2Y 0.15 −0.48 0.02 0.05 0.01 0.27 −0.08 0.48
IdioVolFF,3Y 0.16 −0.50 0.00 0.03 0.00 0.27 −0.09 0.52
IdioVolFF,5Y 0.16 −0.51 −0.02 0.01 −0.00 0.28 −0.09 0.56

Panel B: Spearman Correlations

𝛽 Si
ze

B
M

M
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e𝑣
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𝑤
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e𝑤

IdioVolFF,1M 0.16 −0.48 −0.01 −0.22 0.00 0.54 −0.07 0.26
IdioVolFF,3M 0.17 −0.55 −0.01 −0.22 −0.06 0.57 −0.09 0.30
IdioVolFF,6M 0.17 −0.59 −0.01 −0.21 −0.07 0.59 −0.09 0.33
IdioVolFF,12M 0.18 −0.62 −0.00 −0.19 −0.08 0.60 −0.10 0.35
IdioVolFF,1Y 0.19 −0.46 −0.06 −0.06 −0.05 0.38 −0.09 0.33
IdioVolFF,2Y 0.20 −0.52 −0.08 −0.11 −0.06 0.44 −0.10 0.40
IdioVolFF,3Y 0.20 −0.54 −0.08 −0.12 −0.07 0.46 −0.11 0.44
IdioVolFF,5Y 0.20 −0.55 −0.10 −0.12 −0.07 0.47 −0.12 0.47

between Size and IdioVolFF,1Y to −0.58 (−0.62) between Size and IdioVolFF,12M . For
each IdioVolFF variable, the Spearman correlation with Size is slightly larger in mag-
nitude than the Pearson correlation.

Table 15.5 provides mixed results regarding the correlation between idiosyncratic
volatility and BM. The Pearson correlations between BM and the daily return-based
IdioVolFF variables (IdioVolFF,1M , IdioVolFF,3M , IdioVolFF,6M , and IdioVolFF,12M) are
positive, ranging from 0.07 between BM and IdioVolFF,1M to 0.10 between BM and
IdioVolFF,12M . While these correlations are not very large, they are not quite low
enough to be considered completely negligible. Interestingly, the corresponding aver-
age Spearman correlations are all negative, albeit very small in magnitude (−0.01 or
less). The correlations between BM and the monthly return-based IdioVolFF variables
exhibit the opposite patterns, with the Pearson correlations being negligible (between
−0.02 and 0.04) and the Spearman correlations being negative and, while small, not
quite negligibly small (between −0.06 and −0.10).
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The results of the correlation analyses examining the relation between idiosyn-
cratic volatility and momentum are also mixed. IdioVolFF calculated from daily stock
returns exhibits a negative relation with Mom, with the magnitude of the Pearson
correlation decreasing as the length of the measurement period is extended from
−0.16 for IdioVolFF,1M to −0.08 for IdioVolFF,12M . The corresponding Spearman cor-
relations exhibit the same pattern, but are substantially higher in magnitude than
the Pearson correlations. When the monthly return-based measures of idiosyncratic
volatility are used, the Pearson correlations actually become positive, ranging from
0.10 between Mom and IdioVolFF,1Y to 0.01 between Mom and IdioVolFF,5Y . These
positive correlations may be driven somewhat by the fact that Mom is calculated as
the 11-month return during months t − 11 through t − 1 and IdioVolFF,1Y is calculated
using the 12 monthly returns covering months t − 11 through t. If a stock experiences
a very high return in one of the months t − 11 through t − 1, this will cause both Mom
and IdioVolFF,1Y to be high. One might reasonably argue that a large negative return
should result in a high value of IdioVolFF,1M but a low value of Mom, which would
result in a negative correlation. However, in Tables 7.2 and 14.1, we saw evidence
that monthly stock returns are positively skewed, a phenomenon that is potentially
driven by the fact that the maximum monthly return is infinite while the minimum
possible monthly return is −100%. Therefore, it makes sense that this effect would
manifest itself in a positive relation between idiosyncratic skewness (which is very
similar to total skewness) and momentum. Consistent with a mechanical effect, as
the length of the overlapping period of data used in the calculation of momentum and
idiosyncratic volatility becomes a smaller percentage of the length of the IdioVolFF

measurement period, this effect weakens. Consistent with this explanation, the Spear-
man correlations between idiosyncratic volatility measured from monthly return data
and momentum range from −0.06 between Mom and IdioVolFF,1Y to −0.12 between
Mom and IdioVolFF,5Y . The fact that these correlations are negative indicates that the
positive Pearson correlations are likely driven by a small number of extreme data
points.

With the exception of the correlation of 0.10 between Re𝑣 and IdioVolFF,1M , the
average Pearson correlations between idiosyncratic volatility and reversal are negli-
gibly small, with magnitudes that are less than 0.04 in all other cases. The positive
correlation between Re𝑣 and IdioVolFF,1M is once again likely mechanical because
both Re𝑣 and IdioVol1M are measured using only return data from the most recent
month t. As for the Spearman correlations, each of the IdioVolFF variables exhibits a
slightly negative relation with Re𝑣, with the exception of the measure calculated from
one month of daily returns (IdioVolFF,1M). Once again, this effect is likely mechanical.

Idiosyncratic volatility has a strong negative relation with illiquidity. When
using the daily return-based measures of idiosyncratic volatility (IdioVolFF,1M ,
IdioVolFF,3M , IdioVolFF,6M , and IdioVolFF,12M), the average Pearson correlations are
between 0.48 and 0.50. The corresponding Spearman correlations are slightly higher,
ranging from 0.54 to 0.60. Correlation between Illiq and the monthly return-based
measures of idiosyncratic volatility (IdioVolFF,1Y , IdioVolFF,2Y , IdioVolFF,3Y , and
IdioVolFF,5Y ) are substantially lower, ranging from 0.24 to 0.28 when using the
Pearson correlation and from 0.38 to 0.47 when using the Spearman correlation.
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Despite being lower than the correlations with the daily return-based measures,
these correlations still indicate a strong positive relation between illiquidity and
idiosyncratic volatility. It is possible that the lower correlation in the monthly
return-based measures is because prices of highly illiquid stocks may move up and
down substantially on a day-to-day basis to satisfy demand for liquidity, resulting in
high idiosyncratic volatility in daily returns. Over the horizon of one month, however,
the price effects of daily liquidity demand tend to offset each other, resulting in less
idiosyncratic volatility when monthly returns are used in the calculation.

The results in Table 15.5 indicate a weak negative relation between idiosyncratic
volatility and co-skewness, with Pearson correlations ranging from −0.06 to −0.09
and Spearman correlations ranging from −0.07 to −0.12. The correlations increase
as the length of the IdioVolFF measurement period is increased.

Finally, the correlation analyses indicate a strong positive correlation between
idiosyncratic volatility and idiosyncratic skewness. The Pearson correlations between
IdioSke𝑤 and IdioVolFF are increasing in the length of the IdioVolFF measurement
period and are higher when IdioVolFF is measured using monthly return data. Both of
these effects are potentially mechanical. Recall that we are calculating IdioSke𝑤 using
five years of monthly return data. As discussed previously, monthly returns are posi-
tively skewed. This, combined with the fact that high volatility stocks are more likely
to produce extreme returns, as well as the fact that idiosyncratic volatility and idiosyn-
cratic skewness are very similar to total volatility and total skewness, respectively, is
likely the driving force behind the strong positive relation between IdioVolFF and
IdioSke𝑤. The Spearman rank correlations between the daily return-based measures
of IdioVolFF and IdioSke𝑤 are similar to the corresponding Pearson correlations. For
the monthly return-based measures of IdioVolFF , while the Spearman correlations
remain large and positive, they are lower than the Pearson product–moment correla-
tions, indicating that the Pearson correlations may be influenced by a small number
of extreme data points.

In summary, the results of the correlation analyses indicate that for a fixed mea-
surement period and data frequency, total volatility and idiosyncratic volatility are
extremely similar in the cross section, regardless of the methodology used to mea-
sure the variables. Correlations between measures calculated using different mea-
surement periods and data frequencies are high, but not so high as to indicate that
empirical analysis of variables calculated using different measurement periods and
data frequencies will necessarily produce highly similar results. Given these results,
for reasons discussed earlier, we choose to proceed by using idiosyncratic volatility
calculated relative to the FF risk model (IdioVolFF) as our measure of idiosyncratic
volatility. We continue to examine this measure calculated using different measure-
ment periods and data frequencies.

We then examine the correlation between idiosyncratic volatility and other vari-
ables examined previously in this book. The results demonstrate that idiosyncratic
volatility has a strong negative cross-sectional relation with stock size and a strong
positive relation with each of illiquidity and idiosyncratic skewness. There is a pos-
itive but relatively weak relation between idiosyncratic volatility and beta, and a
relatively weak negative relation between idiosyncratic volatility and co-skewness.
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15.5 PERSISTENCE

Our last analysis of the idiosyncratic volatility variables before proceeding to our
examination of the relation between idiosyncratic volatility and expected stock
returns is a persistence analysis. The results of the persistence analysis for each of
the IdioVolFF variables using lags of 𝜏 ∈ {1, 3, 6, 12, 24, 36, 48, 60, 120} months are
shown in Table 15.6. We omit results for lags where the lag is less than the length
of the measurement period to ensure that our analysis is not based on mechanical
results. Prior to performing the persistence analysis, each variable is winsorized at
the 0.5% level on a monthly basis.

The results indicate that IdioVolFF is highly persistent. When measured using daily
return data, the persistence values of 0.65, 0.76, 0.80, and 0.80 for the variables
calculated from one month (IdioVolFF,1M), three months (IdioVolFF,3M), six months
(IdioVolFF,6M), and 12 months (IdioVolFF,12M), respectively, of daily data, measured
at a lag equal to the length of the measurement period, are substantially higher than the
corresponding values for 𝛽 (see Table 8.3) or any of the skewness variables (see Tables
14.7–14.9). The same can be said for the idiosyncratic volatility variables calculated
from monthly data, since IdioVolFF,1Y , IdioVolFF,2Y , IdioVolFF,3Y , and IdioVolFF,5Y

generate persistence values of 0.51, 0.61, 0.64, and 0.66 at lags of one, two, three, and
five years, respectively. These levels of persistence are high enough to conclude that
IdioVolFF is capturing a cross-sectionally persistent characteristic of stock returns.

Similar to the results for 𝛽 and the skewness variables, the persistence increases as
the length of the measurement period increases, indicating that longer measurement

TABLE 15.6 Persistence
This table presents the results of persistence analyses of variables mea-
suring idiosyncratic volatility. Each month t, the cross-sectional Pearson
product–moment correlation between the month t and month t + 𝜏 values of
the given variable measured is calculated. The table presents the time-series
averages of the monthly cross-sectional correlations. The column labeled
𝜏 indicates the lag at which the persistence is measured.
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1 0.65
3 0.60 0.76
6 0.57 0.71 0.80

12 0.53 0.66 0.73 0.80 0.51
24 0.46 0.58 0.65 0.71 0.46 0.61
36 0.43 0.53 0.60 0.65 0.44 0.57 0.64
48 0.40 0.50 0.56 0.62 0.42 0.54 0.61
60 0.39 0.48 0.54 0.59 0.40 0.52 0.58 0.66

120 0.34 0.43 0.47 0.52 0.36 0.47 0.52 0.58
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periods generate stronger estimates of the true idiosyncratic volatility of the stock’s
returns. Fixing the length of the lag (𝜏) at which the persistence is measured and the
frequency of the data used, the persistence is always highest when using the variable
calculated from a longer measurement period. Finally, looking only at the variables
calculated from 12 months of daily return data (IdioVolFF,12M) and five years of
monthly return data (IdioVolFF,5Y ), which are the longest measurement periods for
their respective data frequencies, we see that at long lags of 5 years (𝜏 = 60) and
10 years (𝜏 = 120), the persistence of IdioVolFF,5Y is slightly higher than that of
IdioVolFF,12M . However, because IdioVolFF,5Y requires at least two years of monthly
returns (we require a minimum of 24 months of return data to calculate IdioVolFF,5Y ),
for a stock to have a valid value of IdioVolFF,5Y in month t, it must have entered the
CRSP database, at the latest, in month t − 23. Given that we require a minimum of
200 daily data points to calculate IdioVolFF,12M , it is possible for a valid value of
IdioVolFF,12M to be calculated in month t if the stock entered the CRSP database in
month t − 9, only 10 months prior.10 Thus, researchers may face a trade-off between
the benefit of slightly higher measurement accuracy using the variable calculated
from five years of monthly data (IdioVolFF,5Y ) and the ability to include more stocks
in the sample when using idiosyncratic volatility calculated from 12 months of daily
data (IdioVolFF,12M).

One last comment regarding the persistence of idiosyncratic volatility is war-
ranted. Despite the discussion in the previous paragraph indicating that longer
estimation periods give more accurate measurement, the persistence of the variable
calculated from one month of daily return data (IdioVolFF,1M) measured at a lag
of one month (𝜏 = 1) of 0.65 is quite high. Thus, even short measurement periods
capture a highly persistent characteristic of the stock quite well. In the most widely
cited study of the relation between idiosyncratic volatility and expected stock
returns, Ang et al. (2006) use IdioVolFF,1M as their primary measure of idiosyncratic
volatility. Most subsequent studies follow their lead. IdioVolFF,1M , therefore, has
become the most frequently used measure of idiosyncratic volatility in empirical
asset pricing research.

15.6 IDIOSYNCRATIC VOLATILITY AND STOCK RETURNS

Having completed our analysis of the different measures of idiosyncratic volatility
(and total volatility), we proceed now to examine the relation between idiosyncratic
volatility and expected stock returns. As discussed in the introduction to this chapter,
perfect market-based asset pricing theories such as the CAPM (Sharpe (1964),
Lintner (1965), Mossin (1966)) and the APT of Ross (1976) predict that there should
be no relation between idiosyncratic volatility and expected stock returns because all
idiosyncratic risk can be diversified away. Theoretical models that introduce market
frictions, such as those developed by Levy (1978) and Merton (1987), predict a
positive relation between idiosyncratic volatility and expected returns. There is no

10There are at least 200 trading days in every 10-month span during our sample period.
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rational theoretical model that predicts a negative relation between idiosyncratic
volatility and expected stock returns.

15.6.1 Univariate Portfolio Analysis

Our investigation of the relation between idiosyncratic volatility and expected stock
returns begins with univariate portfolio analyses. Each month, we sort all stocks in
our sample into decile portfolios based on each of the FF idiosyncratic volatility
variables. Table 15.7 presents the one-month-ahead value-weighted (Panel A) and
equal-weighted (Panel B) excess returns for each of the portfolios each month, as
well as the average return of the portfolio that is long the decile 10 portfolio and
short the decile one portfolio, and alphas of this portfolio relative to the FFC risk
model, as well as the FFC risk model augmented with the Pastor and Stambaugh
(2003) liquidity factor (FFCPS). The numbers in parentheses are t-statistics, adjusted
following Newey and West (1987) using six lags, testing the null hypothesis that the
10-1 portfolio average return or alpha is equal to zero.11

The results of the value-weighted portfolio analyses, presented in Panel A, pro-
vide strong evidence of a negative relation between idiosyncratic volatility measured
from daily return data (IdioVolFF,1M , IdioVolFF,3M , IdioVolFF,6M , and IdioVolFF,12M)
and future stock returns. This result strongly contradicts the theoretical predictions.
For portfolios formed by sorting on IdioVolFF,1M , the 10-1 value-weighted portfolio
generates economically large and highly statistically significant average returns of
−1.27% per month with a t-statistic of −3.48. The FFC alpha of −1.43% per month
(t-statistic = −5.25) and FFCPS alpha of −1.47% per month (t-statistic = −4.90)
indicate that none of the factors included in either of these risk models explains
the returns of the IdioVolFF,1M difference portfolio. Examining the excess returns
of the individual decile portfolios, we see that decile portfolios one through six
generate similar average excess returns of between 0.48% per month for decile
portfolios one and two and 0.62% per month for decile portfolio six. Starting with
portfolio seven, the average excess returns of the decile portfolios fall sharply to
0.38% per month for the decile seven portfolio and 0.15%, −0.21%, and −0.79% per
month for the IdioVolFF,1M decile eight, nine, and 10 portfolios, respectively. The
substantially lower average returns of the high decile portfolios indicate that it is the
high idiosyncratic volatility stocks that are driving this theoretically contradictory
negative relation.

Examination of the results for value-weighted portfolios formed by sorting stocks
on IdioVolFF,3M , IdioVolFF,6M , and IdioVolFF,12M are similar. The average return and
alphas of the difference portfolio formed by sorting on each of these measures of
idiosyncratic volatility are negative, large in magnitude, and highly statistically sig-
nificant. Additionally, the large decrease in average excess returns beginning with

11Note that the PSL factor data are only available beginning in January of 1968. The alphas relative to the
FFCPS model, along with associated t-statistics, are therefore calculated using portfolio returns realized
during the months from January 1968 through December 2012, instead of July 1963 through December
2012, as is the case for all other analyses.
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TABLE 15.7 Univariate Portfolio Analysis
This table presents the results of univariate portfolio analyses of the relation between idiosyn-
cratic volatility and future stock returns. Monthly portfolios are formed by sorting all stocks in
the CRSP sample into portfolios decile breakpoints calculated based on the given sort variable
using all stocks in the CRSP sample. Panel A (Panel B) shows the average value-weighted
(equal-weighted) one-month-ahead excess return (in percent per month) for each of the 10
decile portfolios formed using different measures of idiosyncratic volatility as the sort variable.
The table also shows the average return of the portfolio that is long the 10th decile portfolio
and short the first decile portfolio, as well as the FFC and FFCPS alphas for this portfolio.
Newey and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis that the
average 10-1 portfolio return or alpha is equal to zero, are shown in parentheses.

Panel A: Value-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IdioVolFF,1M 0.48 0.48 0.53 0.57 0.60 0.62 0.38 0.15 −0.21 −0.79 −1.27 −1.43 −1.47
(−3.48) (−5.25) (−4.90)

IdioVolFF,3M 0.50 0.50 0.52 0.60 0.71 0.58 0.32 0.00 −0.41 −0.87 −1.37 −1.58 −1.59
(−3.39) (−5.93) (−5.70)

IdioVolFF,6M 0.48 0.52 0.52 0.61 0.65 0.52 0.36 −0.05 −0.46 −0.85 −1.33 −1.52 −1.54
(−3.08) (−4.53) (−4.22)

IdioVolFF,12M 0.48 0.49 0.54 0.61 0.58 0.58 0.30 0.06 −0.18 −0.60 −1.08 −1.39 −1.38
(−2.50) (−4.87) (−4.51)

IdioVolFF,1Y 0.54 0.42 0.50 0.53 0.46 0.51 0.54 0.47 0.33 −0.15 −0.69 −1.03 −0.99
(−1.97) (−4.19) (−3.71)

IdioVolFF,2Y 0.45 0.53 0.57 0.50 0.63 0.54 0.57 0.40 0.31 −0.14 −0.60 −0.95 −0.94
(−1.62) (−3.45) (−3.15)

IdioVolFF,3Y 0.43 0.57 0.50 0.59 0.58 0.65 0.59 0.59 0.19 −0.11 −0.55 −0.88 −0.88
(−1.52) (−3.35) (−3.11)

IdioVolFF,5Y 0.45 0.50 0.53 0.63 0.53 0.77 0.56 0.45 0.25 −0.19 −0.64 −0.93 −0.94
(−1.82) (−3.69) (−3.45)

Panel B: Equal-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IdioVolFF,1M 0.69 0.76 0.87 0.94 0.93 0.90 0.85 0.70 0.56 0.28 −0.41 −0.58 −0.60
(−1.12) (−2.11) (−2.09)

IdioVolFF,3M 0.66 0.78 0.85 0.93 0.97 0.92 0.83 0.62 0.47 0.40 −0.26 −0.34 −0.38
(−0.62) (−1.09) (−1.16)

IdioVolFF,6M 0.67 0.77 0.84 0.94 0.89 0.89 0.76 0.60 0.50 0.58 −0.09 −0.17 −0.20
(−0.20) (−0.52) (−0.59)

IdioVolFF,12M 0.66 0.75 0.84 0.89 0.85 0.88 0.71 0.65 0.64 0.82 0.16 0.03 0.01
(0.34) (0.08) (0.03)

IdioVolFF,1Y 0.76 0.80 0.82 0.84 0.82 0.79 0.78 0.84 0.74 0.52 −0.24 −0.36 −0.37
(−0.62) (−1.23) (−1.19)

IdioVolFF,2Y 0.69 0.80 0.83 0.82 0.88 0.83 0.87 0.89 0.96 0.62 −0.07 −0.16 −0.19
(−0.17) (−0.51) (−0.55)

IdioVolFF,3Y 0.68 0.78 0.81 0.82 0.85 0.91 0.90 1.02 0.90 0.69 0.00 −0.07 −0.09
(0.00) (−0.20) (−0.26)

IdioVolFF,5Y 0.65 0.75 0.84 0.80 0.86 0.93 0.92 0.98 0.97 0.66 0.01 −0.01 −0.04
(0.03) (−0.02) (−0.13)
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the seventh decile portfolio is evident in portfolios formed by sorting on each of
these variables. Regardless of the length of the measurement period, therefore, the
value-weighted univariate portfolio analyses detect a strong negative cross-sectional
relation between idiosyncratic volatility measured from daily return data and future
stock returns.

The results from the value-weighted portfolios formed by sorting on the monthly
return-based measures of idiosyncratic volatility (IdioVolFF,1Y , IdioVolFF,2Y ,
IdioVolFF,3Y , and IdioVolFF,5Y ) are similar, but slightly weaker. When using
IdioVolFF,1Y as the sort variable, the 10-1 portfolio generates an average return
of −0.69% per month with a t-statistic of −1.97. While the average return of this
portfolio is substantially lower than the average returns of the 10-1 portfolios
formed by sorting on the daily return-based idiosyncratic volatility variables, it is
nonetheless not only economically large in magnitude but also highly statistically
significant. Both the FFC alpha of −1.03% per month (t-statistic = −4.19) and the
FFCPS alpha of −0.99% per month (t-statistic = −3.71) are very large in magnitude
and highly statistically significant. Once again, we observe a substantial drop in the
average excess returns for the high-IdioVolFF,1Y portfolios. In this case, the drop
appears to begin with decile portfolio nine. Decile portfolios one through eight all
generate average excess returns between 0.42% per month and 0.54% per month,
whereas IdioVolFF,1Y decile portfolio nine generates an average excess return of
only 0.33% per month and the average excess return of the 10th decile portfolio is
−0.15% per month.

When sorting on IdioVolFF,2Y or IdioVolFF,3Y , Panel A of Table 15.7 shows that
the average returns of the value-weighted 10-1 portfolios of −0.60% per month and
−0.55% per month are not quite statistically significant, with associated t-statistics
of −1.62 and −1.52, respectively. The FFC alphas and FFCPS alphas for these
portfolios, however, are substantially larger than the average returns and, in each
case, highly statistically significant. As with the portfolios formed by sorting on
IdioVolFF,1Y , the average portfolio excess returns for the decile nine and 10 portfolios
are lower than the excess returns of any of the other decile portfolios.

When sorting on IdioVolFF,5Y , the average return of the 10-1 value-weighted port-
folio of −0.64% per month is marginally statistically significant with a t-statistic of
−1.82. Both the FFC and the FFCPS alpha of this portfolio of 0.93% and 0.94%
per month are highly statistically significant, with t-statistics of −3.69 and −3.32,
respectively. Similar to the results of the univariate portfolios analyses using the other
measures of monthly return-based idiosyncratic volatility, the average excess returns
of IdioVolFF,5Y decile portfolios nine and 10 are much lower than the average excess
returns of the other eight decile portfolios.

In Panel B of Table 15.7, we present the results of the equal-weighted univari-
ate portfolio analyses of the relation between idiosyncratic volatility and expected
stock returns. The results contrast starkly with those of the value-weighted portfolio
analyses. When the equal-weighted portfolios are formed by sorting on idiosyncratic
volatility calculated from one month of daily return data (IdioVolFF,1M), the table
shows that the 10-1 portfolio generates an average monthly return of −0.41%, which,
while of substantial economic magnitude, is statistically indistinguishable from zero
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with a t-statistic of −1.12. The FFC and FFCPS alphas for this portfolio of −0.58%
(t-statistic = −2.11) and −0.60% per month (t-statistic = −2.09), respectively, how-
ever, are larger in magnitude and highly statistically significant. Examination of the
individual decile portfolio returns indicates somewhat of an inverse U-shaped pattern
in the average excess portfolio returns across the deciles of IdioVolFF,1M . The average
excess returns of the portfolios increase from 0.69% per month for decile portfolio
one to 0.94% per month for decile portfolio four and then decrease to 0.28% per
month for decile portfolio 10. As with the value-weighted portfolios, decile portfolio
10 generates substantially lower average portfolio returns than any of the other decile
portfolios.

The equal-weighted univariate portfolio analyses using each of the other measures
of idiosyncratic volatility (not IdioVolFF,1M) as the sort variable all fail to detect any
cross-sectional relation between idiosyncratic volatility and expected stock returns.
For each of these analyses, the average return, FFC alpha, and FFCPS alpha of the
10-1 portfolio are statistically indistinguishable from zero. Thus, with the exception
of the portfolios formed by sorting on IdioVolFF,1M , the puzzling negative relation
between idiosyncratic volatility detected in the value-weighted portfolio analyses is
not found when using equal-weighted portfolios.

In summary, consistent with the results in Ang et al. (2006), the value-weighted
portfolio analyses detect a strong negative relation between idiosyncratic volatility
and expected stock returns. With the exception of portfolios sorted on IdioVolFF,1M ,
equal-weighted portfolio analyses fail to provide any indication of such a relation.

The negative relation between IdioVolFF,1M and future stock returns detected in the
equal-weighted portfolios, while consistent with the value-weighted portfolio results,
is inconsistent with results in Bali and Cakici (2008), who perform a similar analysis
and find no relation between IdioVolFF,1M and future stock returns in equal-weighted
portfolios. One of the main differences between the analyses in Bali and Cakici (2008)
and the analyses whose results are shown in Table 15.7 is that, following Ang et al.
(2006), Bali and Cakici (2008) do not adjust their returns for delisting according
to Shumway (1997). In unreported analyses, we confirm the results in each of Ang
et al. (2006) and Bali and Cakici (2008) by restricting our sample to the sample peri-
ods of the given papers, 1963 through 2000 and 1963 through 2004, respectively,
and using unadjusted excess returns instead of delisting-adjusted excess returns. Our
replications produce extremely similar results to those in the original papers, indicat-
ing that the results of analyses examining the relation between idiosyncratic volatility
and future stock returns are highly sensitive to both sample period and the details of
the empirical methodology. To examine the effect of using delisting-adjusted returns
on the results of the univariate portfolio analyses in our sample covering the 1963
through 2012 period, we repeat the univariate portfolio analyses whose results are
presented in Table 15.7 using the unadjusted excess returns as the outcome variable
instead of the delisting-adjusted excess returns.12

Table 15.8 presents the results of the univariate portfolio analyses using unad-
justed excess returns as the outcome variable. Panel A shows that when using

12See Section 7.2 for more details on unadjusted and delisting-adjusted returns.
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TABLE 15.8 Univariate Portfolio Analysis—Unadjusted Returns
This table presents the results of univariate portfolio analyses of the relation between idiosyn-
cratic volatility and nondelisting-adjusted future stock returns. Monthly portfolios are formed
by sorting all stocks in the CRSP sample into portfolios using decile breakpoints calculated
based on the given sort variable using all stocks in the CRSP sample. Panel A (Panel B) shows
the average value-weighted (equal-weighted) one-month-ahead nondelisting-adjusted excess
return (in percent per month) for each of the 10 decile portfolios formed using different mea-
sures of idiosyncratic volatility as the sort variable. The table also shows the average return of
the portfolio that is long the 10th decile portfolio and short the first decile portfolio, as well
as the FFC and FFCPS alphas for this portfolio. Newey and West (1987) t-statistics, adjusted
using six lags, testing the null hypothesis that the average 10-1 portfolio return or alpha is equal
to zero, are shown in parentheses.

Panel A: Value-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IdioVolFF,1M 0.48 0.48 0.53 0.57 0.60 0.62 0.38 0.15 −0.20 −0.70 −1.18 −1.33 −1.37
(−3.20) (−4.86) (−4.51)

IdioVolFF,3M 0.50 0.49 0.52 0.60 0.71 0.58 0.31 −0.00 −0.41 −0.75 −1.26 −1.48 −1.48
(−3.07) (−5.53) (−5.28)

IdioVolFF,6M 0.48 0.52 0.52 0.61 0.66 0.51 0.34 −0.05 −0.46 −0.71 −1.19 −1.39 −1.39
(−2.71) (−4.04) (−3.73)

IdioVolFF,12M 0.48 0.49 0.54 0.62 0.56 0.57 0.30 0.06 −0.16 −0.50 −0.97 −1.30 −1.29
(−2.22) (−4.56) (−4.20)

IdioVolFF,1Y 0.54 0.42 0.50 0.52 0.46 0.51 0.55 0.46 0.33 −0.15 −0.70 −1.06 −1.01
(−1.93) (−4.24) (−3.75)

IdioVolFF,2Y 0.45 0.53 0.57 0.49 0.62 0.53 0.56 0.40 0.31 −0.11 −0.56 −0.93 −0.92
(−1.51) (−3.35) (−3.05)

IdioVolFF,3Y 0.43 0.57 0.49 0.59 0.56 0.64 0.60 0.59 0.19 −0.08 −0.52 −0.86 −0.86
(−1.43) (−3.28) (−3.03)

IdioVolFF,5Y 0.45 0.50 0.53 0.63 0.53 0.77 0.57 0.45 0.27 −0.16 −0.61 −0.92 −0.93
(−1.75) (−3.68) (−3.43)

Panel B: Equal-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IdioVolFF,1M 0.66 0.76 0.87 0.94 0.94 0.90 0.87 0.73 0.63 0.66 0.01 −0.07 −0.08
(0.02) (−0.27) (−0.27)

IdioVolFF,3M 0.66 0.78 0.84 0.93 0.98 0.93 0.84 0.65 0.53 0.77 0.11 −0.03 −0.05
(0.25) (−0.10) (−0.14)

IdioVolFF,6M 0.67 0.77 0.84 0.93 0.90 0.89 0.77 0.63 0.57 0.96 0.29 0.15 0.14
(0.66) (0.46) (0.41)

IdioVolFF,12M 0.66 0.75 0.84 0.88 0.85 0.88 0.72 0.67 0.72 1.20 0.53 0.34 0.34
(1.15) (1.01) (0.97)

IdioVolFF,1Y 0.76 0.81 0.82 0.85 0.82 0.81 0.82 0.90 0.86 0.75 −0.01 −0.20 −0.20
(−0.03) (−0.76) (−0.71)

IdioVolFF,2Y 0.69 0.79 0.83 0.82 0.88 0.84 0.89 0.95 1.09 0.84 0.16 −0.02 −0.04
(0.39) (−0.09) (−0.12)

IdioVolFF,3Y 0.68 0.78 0.81 0.82 0.85 0.92 0.92 1.09 1.04 0.89 0.21 0.05 0.04
(0.51) (0.18) (0.12)

IdioVolFF,5Y 0.65 0.75 0.83 0.81 0.87 0.94 0.96 1.05 1.10 0.85 0.20 0.09 0.06
(0.49) (0.31) (0.20)
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value-weighted portfolios, the results of the univariate portfolio analyses are very
similar to the results produced using the delisting-adjusted excess returns. Regardless
of the measure of idiosyncratic volatility used as the sort variable, the results indicate
a strong negative cross-sectional relation between idiosyncratic volatility and future
stock returns.

When equal-weighted portfolios are used, however, the results for the portfo-
lios formed by sorting on IdioVolFF,1M change substantially. The average unadjusted
return of the IdioVolFF,1M 10-1 portfolio is 0.01% per month, compared to −0.41%
per month when using the delisting-adjusted returns. Furthermore, both the FFC and
FFCPS alphas calculated from the analysis using the unadjusted returns of −0.07%
per month (t-statistic = −0.27) and −0.08% per month (t-statistic = −0.35) are sta-
tistically indistinguishable from zero. These results are very different from the corre-
sponding results when delisting-adjusted returns are used as the dependent variable.
When delisting-adjusted returns are used, the FFC and FFCPS alphas are −0.58% per
month (t-statistic = −2.11) and −0.60% per month (t-statistic = −2.09), respectively,
both of which are much larger in magnitude than the corresponding results from the
analysis using unadjusted returns. Furthermore, when adjusted returns are used, the
alphas are highly statistically significant, whereas when unadjusted returns are used,
the alphas are not even close to significant.

Further comparison of the results indicates that the equal-weighted delisting-
adjusted and unadjusted average excess returns for the first nine IdioVolFF,1M decile
portfolios are very similar. However, the equal-weighted average unadjusted excess
return of the 10th IdioVolFF,1M decile portfolio is 0.66% per month, compared to an
average delisting-adjusted return of only 0.28% per month. This likely indicates that
stocks in the highest IdioVolFF,1M decile are substantially more likely to delist, and
thus realize a large negative delisting-adjusted return, than stocks in the first decile
of IdioVolFF,1M .

While the divergence between the results of the equal-weighted univariate portfo-
lio when using unadjusted compared to delisting-adjusted returns is interesting, not
well-known by empirical asset pricing researchers, and worthy of further investiga-
tion, we do not investigate this issue further. For the remainder of this chapter, we
continue to use the delisting-adjusted returns, as we have done in most analyses in
this book, as the measure of future stock returns.

In Table 15.9, we present the equal-weighted average values of IdioVolFF,1M ,
beta (𝛽), market capitalization (MktCap), book-to-market ratio (BM), momentum
(Mom), reversal (Re𝑣), illiquidity (Illiq), co-skewness (CoSke𝑤), and idiosyncratic
skewness (IdioSke𝑤) for decile portfolios formed by sorting on IdioVolFF,1M .
We choose to present average characteristics for portfolio sorted on IdioVolFF,1M

instead of some other variable measuring idiosyncratic volatility for two reasons.
First, this is the only variable that produced statistically significant results in both
the value-weighted and equal-weighted portfolio analyses. Second, this is the
most commonly used measure of idiosyncratic volatility in empirical asset pricing
research. In addition to understanding the characteristics of the stocks that comprise
each of the IdioVolFF,1M-sorted portfolios, the average characteristics can be used,
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TABLE 15.9 Portfolio Characteristics—IdioVolFF,1M

This table presents the average characteristics for stocks in decile portfolios formed by sorting
on IdioVolFF,1M . Monthly portfolios are formed by sorting all stocks in the CRSP sample into
portfolios using IdioVolFF,1M decile breakpoints calculated using all stocks in the CRSP sample.
The table shows the average values of IdioVolFF,1M , 𝛽, MktCap, BM, Mom, Re𝑣, Illiq, CoSke𝑤,
and IdioSke𝑤 for each of the decile portfolios.

Value 1 2 3 4 5 6 7 8 9 10

IdioVolFF,1M 11.51 19.01 24.16 29.26 34.82 41.21 49.03 59.62 76.66 135.40
𝛽 0.48 0.65 0.73 0.79 0.85 0.89 0.92 0.91 0.87 0.76
MktCap 3730 2622 1626 1088 716 498 342 226 139 70
BM 0.95 0.87 0.86 0.86 0.88 0.89 0.93 0.98 1.04 1.20
Mom 14.65 15.46 16.11 17.20 18.08 18.67 18.14 16.26 11.12 −2.91
Re𝑣 0.27 0.39 0.41 0.45 0.47 0.47 0.59 0.81 1.52 6.83
Illiq 0.15 0.24 0.36 0.53 0.77 1.14 1.72 2.83 5.59 28.14
CoSke𝑤 −0.77 −0.66 −0.77 −0.87 −1.01 −1.12 −1.30 −1.53 −1.85 −2.29
IdioSke𝑤 0.46 0.40 0.44 0.49 0.56 0.63 0.71 0.80 0.92 1.08

along with the correlation analyses presented in Table 15.5, to identify variables that
may potentially be driving the idiosyncratic volatility puzzle.

The results in Table 15.9 show that, by construction, average IdioVolFF,1M

increases monotonically from 11.51% for stocks in decile portfolio one to 135.40%
for stocks in the 10th decile portfolio.

Average 𝛽 exhibits an inverse U-shaped pattern across the IdioVolFF,1M deciles,
increasing from 0.48 in decile portfolio one to 0.92 in decile portfolio seven and then
decreasing to 0.76 in decile portfolio 10.

Consistent with the results of the correlation analysis, MktCap exhibits a strong
negative relation with IdioVolFF,1M since the average market capitalization decreases
monotonically from $3.73 billion for stocks in the first IdioVolFF,1M decile portfolio to
only $70 million for stocks in the 10th decile portfolio. Since low-MktCap stocks tend
to generate high average returns, it is unlikely that market capitalization is driving the
negative relation between idiosyncratic volatility and future stock returns.

The table indicates a U-shaped relation between BM and IdioVolFF,1M . The average
values of BM decrease from 0.95 for the first decile portfolio to 0.86 for the third and
fourth decile portfolios and then increase to 1.20 for the 10th decile portfolio.

The relation between Mom and IdioVolFF,1M is inverse U-shaped, with average val-
ues of Mom increasing from 14.65 in decile portfolio one to 18.67 in decile portfolio
six, and the dropping dramatically to −2.91 in decile portfolio 10. Because stocks
with low values of Mom generate low average returns, the extremely low values of
momentum in the high IdioVolFF,1M indicate that Mom may play an important role in
the low returns of the high-IdioVolFF,1M portfolios.

Re𝑣 exhibits a strong positive relation with IdioVolFF,1M , with average values of
Re𝑣 increasing monotonically from 0.27 in decile portfolio one to 6.83 in the 10th
decile portfolio. Since Re𝑣 is negatively related to future returns, it is also possible
that the reversal phenomenon is driving the negative relation between idiosyncratic
volatility and future returns. Interestingly, despite the apparent strength of the
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positive relation between IdioVolFF,1M detected in the average portfolio values of
Re𝑣, the correlation analyses in Table 15.5 indicates only a weak Pearson correlation
of 0.10 between IdioVolFF,1M and Re𝑣, and a Spearman correlation between these
two variables of 0.00 in the average month.

Consistent with the strong positive relation between Illiq and IdioVolFF,1M detected
in the correlation analyses, the average values of Illiq increase monotonically from
0.15 for stocks in the first IdioVolFF,1M decile portfolio to 28.14 for stocks in the
10th decile portfolio. Stocks with high values of Illiq, however, tend to generate high
returns; thus, Illiq is unlikely to explain the negative relation between idiosyncratic
volatility and future stock returns.

Table 15.9 shows a strong negative relation between IdioVolFF,1M and CoSke𝑤
since average values of CoSke𝑤 decrease nearly monotonically (the exception is
decile portfolio two) from −0.77 for stocks in decile portfolio one to −2.29 for stocks
in decile portfolio 10. Given that CoSke𝑤 failed to exhibit an empirical relation with
future stock returns and theoretically low co-skewness is associated with higher aver-
age returns, CoSke𝑤 is unlikely to explain the idiosyncratic volatility puzzle.

Finally, with the exception of decile portfolio one, average values of IdioSke𝑤
increase monotonically across the deciles of IdioVolFF,1M , with stocks in the decile
two portfolio having average IdioSke𝑤 of 0.40 and stocks in the 10th decile portfo-
lio having average IdioSke𝑤 of 1.08. This result is consistent with the strong posi-
tive relation between IdioSke𝑤 and IdioVolFF,1M detected in the correlation analyses
(Table 15.5). The positive relation between IdioVolFF,1M and IdioSke𝑤 combined with
the negative relation between IdioSke𝑤 and future stock returns (see Chapter 14)
indicates that it is possible that idiosyncratic skewness is driving the idiosyncratic
volatility puzzle.

15.6.2 Bivariate Portfolio Analysis

We proceed now to examine whether controlling for any of the variables examined
previously in this book can explain the idiosyncratic volatility puzzle. The aver-
age portfolio characteristics presented in Table 15.9 show that momentum (Mom),
reversal (Re𝑣), and idiosyncratic skewness (IdioSke𝑤) have cross-sectional relations
with IdioVolFF,1M indicating that these variables may provide an explanation for the
idiosyncratic volatility puzzle.

Bivariate Dependent-Sort Portfolio Analysis

Our first analyses investigating potential explanations for the idiosyncratic volatility
puzzle are bivariate dependent-sort portfolio analyses using each of 𝛽, MktCap, BM,
Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤 as the first sort variable and IdioVolFF,1M

as the second sort variable. We sort all stocks into five groups based on the first
sort variable and then, within each quintile of the first sort variable, we sort stocks
into quintile portfolios based on IdioVolFF,1M . The portfolio breakpoints are calcu-
lated using all stocks in the sample. Table 15.10 shows the value-weighted aver-
age returns, FFC alphas, and FFCPS alphas for the zero-cost portfolio that is long
high-IdioVolFF,1M stocks and short low-IdioVolFF,1M stocks within each quintile of
the given control variable, as well as for the average control variable quintile. Newey
and West (1987)-adjusted t-statistics are presented in parentheses.
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TABLE 15.10 Bivariate Dependent-Sort Portfolio Analysis—Value-Weighted
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between IdioVolFF,1M and future stock returns after controlling for the effect of each of 𝛽,
MktCap, BM, Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤 (control variables). Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of one
of the control variables. Within each control variable group, all stocks are sorted into five
value-weighted portfolios based on an ascending sort of IdioVolFF,1M . The quintile break-
points used to create the portfolios are calculated using all stocks in the CRSP sample. The
table presents the average return, FFC alpha, and FFCPS alpha (in percent per month) of the
long–short zero-cost portfolios that are long the fifth IdioVolFF,1M quintile portfolio and short
the first IdioVolFF,1M quintile portfolio in each quintile, as well as for the average quintile, of
the control variable. t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average return or alpha is equal to zero, are
shown in parentheses.
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𝛽 Return −0.44 −0.17 −0.49 −0.58 −1.08 −0.55
(−1.44) (−0.69) (−1.71) (−2.21) (−3.36) (−2.28)

FFC 𝛼 −0.78 −0.41 −0.69 −0.79 −1.22 −0.78
(−3.26) (−2.35) (−2.90) (−3.72) (−4.93) (−5.00)

FFCPS 𝛼 −0.86 −0.49 −0.79 −0.78 −1.18 −0.82
(−3.17) (−2.60) (−3.22) (−3.50) (−4.30) (−4.80)

MktCap Return −0.94 −1.63 −1.23 −0.72 −0.19 −0.94
(−2.73) (−5.38) (−4.34) (−2.62) (−0.81) (−3.59)

FFC 𝛼 −1.22 −1.76 −1.28 −0.75 −0.27 −1.06
(−4.21) (−7.50) (−6.44) (−4.13) (−1.57) (−6.40)

FFCPS 𝛼 −1.24 −1.80 −1.28 −0.75 −0.29 −1.07
(−4.03) (−7.22) (−5.96) (−3.79) (−1.50) (−6.01)

BM Return −1.31 −0.81 −0.21 −0.07 0.22 −0.44
(−3.75) (−2.92) (−0.69) (−0.20) (0.62) (−1.57)

FFC 𝛼 −1.36 −0.82 −0.27 −0.39 0.04 −0.56
(−5.09) (−3.39) (−1.28) (−1.60) (0.15) (−3.24)

FFCPS 𝛼 −1.46 −0.92 −0.36 −0.54 −0.03 −0.66
(−4.97) (−3.50) (−1.58) (−2.15) (−0.08) (−3.53)

Mom Return −2.47 −0.82 −0.41 −0.20 −0.42 −0.87
(−7.16) (−2.90) (−1.55) (−0.81) (−1.62) (−3.72)

FFC 𝛼 −2.98 −1.26 −0.67 −0.34 −0.70 −1.19
(−10.31) (−5.70) (−3.61) (−2.20) (−2.90) (−8.86)

FFCPS 𝛼 −3.00 −1.30 −0.78 −0.27 −0.70 −1.21
(−8.91) (−5.35) (−3.79) (−1.53) (−2.63) (−7.75)
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TABLE 15.10 (Continued)
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Re𝑣 Return −1.20 −0.80 −0.71 −0.58 −1.11 −0.88
(−3.29) (−2.31) (−2.26) (−1.88) (−3.40) (−3.06)

FFC 𝛼 −1.32 −1.10 −1.08 −0.79 −1.26 −1.11
(−4.23) (−5.03) (−6.65) (−3.51) (−4.25) (−6.55)

FFCPS 𝛼 −1.28 −1.19 −1.08 −0.81 −1.36 −1.14
(−3.85) (−4.87) (−5.88) (−3.34) (−4.24) (−6.17)

Illiq Return −0.22 −0.42 −0.90 −1.36 −2.08 −0.99
(−0.87) (−1.43) (−2.78) (−4.42) (−6.91) (−3.67)

FFC 𝛼 −0.34 −0.44 −0.92 −1.39 −2.14 −1.05
(−1.91) (−2.30) (−4.19) (−6.14) (−9.51) (−6.43)

FFCPS 𝛼 −0.34 −0.45 −0.96 −1.44 −2.21 −1.08
(−1.75) (−2.13) (−3.92) (−5.95) (−8.93) (−6.06)

CoSke𝑤 Return −1.31 −0.52 −0.36 −0.57 −0.89 −0.73
(−3.61) (−1.65) (−1.26) (−2.18) (−2.74) (−2.75)

FFC 𝛼 −1.11 −0.73 −0.57 −0.69 −1.05 −0.83
(−3.54) (−2.73) (−2.87) (−3.27) (−4.49) (−4.86)

FFCPS 𝛼 −1.06 −0.75 −0.63 −0.77 −1.11 −0.86
(−2.95) (−2.49) (−2.85) (−3.42) (−4.25) (−4.40)

IdioSke𝑤 Return −0.17 −0.51 −0.38 −0.78 −1.48 −0.66
(−0.57) (−1.62) (−1.29) (−2.06) (−4.38) (−2.38)

FFC 𝛼 −0.25 −0.62 −0.56 −0.96 −1.54 −0.79
(−1.12) (−2.87) (−2.86) (−3.11) (−5.75) (−4.72)

FFCPS 𝛼 −0.19 −0.61 −0.64 −1.08 −1.54 −0.81
(−0.75) (−2.49) (−2.94) (−3.22) (−5.03) (−4.29)

The results in Table 15.10 show that none of the control variables fully explain the
idiosyncratic volatility puzzle in value-weighted portfolios since the average return,
FFC alpha, and FFCPS alpha of the IdioVolFF,1M 5-1 portfolio for the average control
variable quintile are economically large and highly statistically significant in all anal-
yses. The one exception is the average return of the IdioVolFF,1M difference portfolio
for the average BM quintile of −0.44% per month, which, while economically large,
is statistically insignificant with a t-statistic of −1.57.

After controlling for 𝛽, while the average returns of the IdioVolFF,1M difference
portfolio in the first and second quintiles of 𝛽 are statistically insignificant, and that
of the third 𝛽 quintile is only marginally significant, all of the difference portfolios
generate abnormal returns relative to both the FFC and FFCPS risk models that are
economically large and highly statistically significant.

When controlling for MktCap, the average returns and alphas of the IdioVolFF,1M

5-1 portfolios are negative, economically large, and highly statistically significant in
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all but the fifth quintile of MktCap, indicating that the idiosyncratic volatility puzzle
exists in all but the largest stocks in our sample. This result is interesting given that the
univariate portfolio results are stronger when using value-weighted portfolios instead
of equal-weighted portfolios. Based on the univariate portfolio results, one may have
expected the negative relation to be strong among large stocks. The results indicate
the opposite.

When the portfolios are formed by first sorting on BM, the results in Table 15.10
show that the idiosyncratic volatility puzzle only exists in low BM stocks. The average
returns and alphas of the IdioVolFF,1M 5-1 portfolio in quintiles one and two of BM are
negative, economically large, and highly statistically significant. In quintiles three,
four, and five of BM, however, the average returns and alphas of the IdioVolFF,1M

difference portfolios are statistically insignificant.13 The difference portfolio in the
fifth BM quintile is the only portfolio in any of the value-weighted portfolio analyses
that generates a positive average or abnormal return.

Controlling for Mom, one of the variables whose cross-sectional relation with
IdioVolFF,1M indicated a possible explanation, the results of the value-weighted
bivariate dependent-sort portfolio analysis indicate that in all quintiles of Mom, the
FFC and FFCPS alphas of the IdioVolFF,1M portfolio are negative and statistically
significant, with the exception of the FFCPS alpha in the fourth Mom quintile.
The average returns of the IdioVolFF,1M difference portfolios, while negative in all
quintiles of Mom, are only significant in the first two Mom quintiles.

When controlling for Re𝑣, another variable whose relation with IdioVolFF,1M

indicated a potential explanation for the idiosyncratic volatility puzzle, the average
returns and alphas of the IdioVolFF,1M 5-1 portfolio in each quintile of Re𝑣 are all
negative, economically large, and highly statistically significant, with the exception
of the average return of the portfolio in the fourth Re𝑣 quintile of −0.58% per month,
which is only marginally significant with a t-statistic of −1.88.

The idiosyncratic volatility puzzle is strong in all but the most liquid stocks,
since the average returns and alphas of the IdioVolFF,1M 5-1 portfolio in quintiles
two through five of Illiq are all negative, large in magnitude, and statistically signifi-
cant.14 In quintile one of Illiq, which holds the most liquid stocks, while the FFC and
FFCPS alphas of −0.34% per month are marginally significant with t-statistics of
−1.91 and −1.75, respectively, the average return of −0.22% per month (t-statistic
= −0.87) is statistically indistinguishable from zero. The results demonstrate that
the idiosyncratic volatility puzzle becomes stronger for more illiquid stocks since
the average returns and alphas of the IdioVolFF,1M difference portfolio increase
monotonically in magnitude from quintile one to quintile five of Illiq.

The results in Table 15.10 provide no evidence that CoSke𝑤 can explain the
idiosyncratic volatility puzzle in value-weighted portfolios, since, with only two
exceptions, within each quintile of CoSke𝑤, the average return and alphas of

13The one exception is the FFCPS alpha of the IdioVolFF,1M 5-1 portfolio in the fourth BM quintile of
−0.54% per month, which is statistically significant with a t-statistic of −2.15.
14The only exception is the average return in the IdioVolFF,1M 5-1 portfolio in the second Illiq quintile of
−0.42% per month, which is statistically insignificant with a t-statistic of −1.43.
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the IdioVolFF,1M 5-1 portfolio are negative, economically large, and statistically
significant. The exceptions are the average returns in CoSke𝑤 quintiles two and
three of −0.52% per month (t-statistic = −1.65) and −0.36% per month (t-statistic =
−1.26%), respectively, which, while economically meaningful, are not statistically
significant.

Finally, the value-weighted bivariate dependent-sort portfolio analyses show
that the idiosyncratic volatility puzzle is stronger among stocks with high levels
of IdioSke𝑤. The IdioVolFF,1M 5-1 portfolio in the first quintile of IdioSke𝑤 fails
to produce significant average or abnormal returns. In quintiles two and three of
IdioSke𝑤, the average returns of the IdioVolFF,1M difference portfolio are statistically
insignificant, but the FFC and FFCPS alphas are significant. In quintiles four and
five of IdioSke𝑤, the average returns and alphas are all statistically significant.
Furthermore, the magnitudes of the average returns and alphas of the IdioVolFF,1M

5-1 portfolio increase monotonically (with the exception of the average return and
FFC alpha for the second IdioSke𝑤 quintile) across the quintiles of IdioSke𝑤.

Having found no evidence using value-weighted portfolio that any of the control
variables can fully explain the idiosyncratic volatility puzzle, we repeat the anal-
yses using equal-weighted portfolios. Recall that the univariate portfolio analysis
results in Table 15.7 demonstrated that the idiosyncratic volatility puzzle is sub-
stantially weaker in equal-weighted portfolios than in value-weighted portfolios. In
fact, the univariate portfolio analysis indicated a statistically significant idiosyncratic
volatility puzzle only when the variable calculated from one month of daily return
data (IdioVolFF,1M) is used as the sort variable. Even then, the average return of the
IdioVolFF,1M difference portfolio was statistically indistinguishable from zero, but the
FFC and FFCPS alphas were significant.

Table 15.11 presents the results of the equal-weighted bivariate dependent-sort
portfolio analyses of the relation between IdioVolFF,1M and future returns after con-
trolling for each of 𝛽, MktCap, BM, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤. The results
provide evidence that after controlling for the effects of 𝛽, BM, CoSke𝑤, or IdioSke𝑤,
the idiosyncratic volatility puzzle is no longer present in equal-weighted portfolios,
since the average returns and alphas of the IdioVolFF,1M 5-1 portfolio in the aver-
age quintile of each of these control variables are statistically indistinguishable from
zero. Interestingly, when controlling for MktCap, and Illiq, the idiosyncratic volatil-
ity puzzle appears stronger in the bivariate portfolio analysis than in the univariate
portfolio analysis. In these cases, not only are the alphas of the IdioVolFF,1M differ-
ence portfolio negative and significant for the average control variable quintile, but
the average returns of this portfolio are also significant. Finally, when controlling for
Mom or Re𝑣, the results for the average control variable quintile are similar to the
equal-weighted univariate portfolio results, since these analyses find a statistically
insignificant average return for the IdioVolFF,1M difference portfolio but statistically
significant FFC and FFCPS alphas.

The results of the analysis that uses 𝛽 as the control variable show that the
relation between IdioVolFF,1M changes substantially for stocks with different levels
of 𝛽 in equal-weighted portfolios, with the relation being positive for stocks with
low values of 𝛽 and negative for stocks with high values of 𝛽. The average return
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TABLE 15.11 Bivariate Dependent-Sort Portfolio Analysis—Equal-Weighted
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between IdioVolFF,1M and future stock returns after controlling for the effect of each of 𝛽,
MktCap, BM, Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤 (control variables). Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of one
of the control variables. Within each control variable group, all stocks are sorted into five
equal-weighted portfolios based on an ascending sort of IdioVolFF,1M . The quintile break-
points used to create the portfolios are calculated using all stocks in the CRSP sample. The
table presents the average return, FFC alpha, and FFCPS alpha (in percent per month) of the
long–short zero-cost portfolios that are long the fifth IdioVolFF,1M quintile portfolio and short
the first IdioVolFF,1M quintile portfolio in each quintile, as well as for the average quintile, of
the control variable. t-statistics (in parentheses), adjusted following Newey and West (1987)
using six lags, testing the null hypothesis that the average return or alpha is equal to zero, are
shown in parentheses.
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𝛽 Return 0.62 0.10 −0.22 −0.51 −1.00 −0.20
(1.98) (0.34) (−0.64) (−1.73) (−3.10) (−0.71)

FFC 𝛼 0.37 −0.02 −0.46 −0.58 −0.99 −0.34
(1.57) (−0.10) (−1.15) (−2.34) (−3.29) (−1.50)

FFCPS 𝛼 0.36 −0.05 −0.47 −0.61 −0.92 −0.34
(1.43) (−0.20) (−1.16) (−2.36) (−2.86) (−1.42)

MktCap Return 0.19 −1.57 −1.25 −0.74 −0.24 −0.72
(0.52) (−5.23) (−4.41) (−2.68) (−0.99) (−2.71)

FFC 𝛼 −0.11 −1.70 −1.31 −0.77 −0.25 −0.83
(−0.28) (−7.23) (−6.50) (−4.30) (−1.63) (−4.68)

FFCPS 𝛼 −0.00 −1.75 −1.31 −0.77 −0.24 −0.81
(−0.01) (−6.98) (−6.06) (−3.95) (−1.41) (−4.31)

BM Return −0.74 −0.12 −0.04 0.30 0.51 −0.02
(−2.17) (−0.42) (−0.12) (0.99) (1.80) (−0.07)

FFC 𝛼 −0.69 −0.09 −0.28 0.15 0.47 −0.09
(−2.23) (−0.35) (−0.60) (0.73) (2.13) (−0.37)

FFCPS 𝛼 −0.78 −0.20 −0.30 0.10 0.46 −0.15
(−2.41) (−0.74) (−0.63) (0.43) (1.97) (−0.60)

Mom Return −0.74 −0.03 0.15 0.23 −0.27 −0.13
(−2.23) (−0.13) (0.58) (0.84) (−1.08) (−0.53)

FFC 𝛼 −1.22 −0.32 −0.13 −0.07 −0.55 −0.46
(−3.00) (−1.74) (−0.92) (−0.46) (−3.09) (−2.84)

FFCPS 𝛼 −1.13 −0.34 −0.20 −0.09 −0.51 −0.45
(−2.71) (−1.75) (−1.26) (−0.51) (−2.60) (−2.61)
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TABLE 15.11 (Continued)
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Re𝑣 Return 1.36 −0.45 −0.45 −0.69 −1.89 −0.42
(3.94) (−1.46) (−1.31) (−2.05) (−5.79) (−1.42)

FFC 𝛼 1.43 −0.57 −0.84 −1.07 −2.08 −0.62
(4.49) (−3.06) (−3.07) (−3.53) (−8.49) (−3.28)

FFCPS 𝛼 1.58 −0.62 −0.86 −1.12 −2.18 −0.64
(4.67) (−3.19) (−3.05) (−3.63) (−8.07) (−3.18)

Illiq Return −0.19 −0.46 −0.89 −1.35 −0.71 −0.72
(−0.75) (−1.67) (−2.83) (−4.12) (−2.10) (−2.56)

FFC 𝛼 −0.29 −0.48 −0.85 −1.27 −0.73 −0.72
(−1.84) (−2.49) (−3.54) (−4.43) (−2.45) (−3.62)

FFCPS 𝛼 −0.26 −0.46 −0.84 −1.31 −0.69 −0.71
(−1.51) (−2.21) (−3.24) (−4.30) (−2.10) (−3.31)

CoSke𝑤 Return −0.55 −0.14 −0.05 −0.03 −0.22 −0.20
(−1.50) (−0.48) (−0.20) (−0.12) (−0.70) (−0.70)

FFC 𝛼 −0.73 −0.33 −0.21 −0.15 −0.19 −0.32
(−1.56) (−1.73) (−1.22) (−0.77) (−0.67) (−1.50)

FFCPS 𝛼 −0.66 −0.36 −0.22 −0.16 −0.23 −0.33
(−1.38) (−1.72) (−1.23) (−0.79) (−0.78) (−1.45)

IdioSke𝑤 Return 0.25 0.07 −0.08 −0.28 −0.72 −0.16
(0.80) (0.24) (−0.27) (−0.76) (−2.43) (−0.53)

FFC 𝛼 0.19 −0.03 −0.18 −0.63 −0.73 −0.28
(0.95) (−0.15) (−0.89) (−1.39) (−2.76) (−1.28)

FFCPS 𝛼 0.23 −0.03 −0.25 −0.63 −0.75 −0.29
(1.05) (−0.14) (−1.16) (−1.38) (−2.75) (−1.28)

of the IdioVolFF,1M difference portfolio in the first 𝛽 quintile of 0.62% per month
is actually not only positive but also statistically significant, with a t-statistic
of 1.98. The FFC and FFCPS alphas of this portfolio, however, are statistically
indistinguishable from zero. In 𝛽 quintiles two and three, the average and abnormal
returns of the IdioVolFF,1M 5-1 portfolio are economically small and statistically
insignificant. The idiosyncratic volatility puzzle is present only among stocks in the
highest two 𝛽 quintiles. In quintiles four and five of 𝛽, the IdioVolFF,1M difference
portfolios generates negative, economically large, and statistically significant (at
least marginally) average returns and alphas.

When controlling for MktCap, the equal-weighted portfolio results in Table 15.11
show that the idiosyncratic volatility puzzle does not exist for stocks in the first or fifth
quintiles of MktCap, but is very strong in quintiles two, three, and four of MktCap,
indicating that it is likely moderately sized stocks that are driving the phenomenon.
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The idiosyncratic volatility puzzle is strong among stocks with low values of
BM, since the average return and alphas of the IdioVolFF,1M portfolio in quintile one
of BM are negative, large in magnitude, and statistically significant. However, in
quintile two, three, and four of BM, the effect does not exist since the average returns
and alphas are all insignificant. In quintile five of BM, the results actually indicate a
positive and marginally significant relation between IdioVolFF,1M and average stock
returns.

The results of the analysis that use Mom as the control variable indicate that
the negative relation between idiosyncratic volatility and future stock returns is
strongest in stocks with low and high momentum, but does not exist among stocks
with moderate levels of momentum. In quintiles one, two, and five of Mom, the
alphas (and average return for quintile one) of the IdioVolFF,1M 5-1 portfolio are
at least marginally statistically significant, whereas no significant relation between
IdioVolFF,1M and future returns is detected in quintiles three and four of Mom.

The relation between IdioVolFF,1M and future stock returns varies very strongly
across the quintile of Re𝑣. In the first Re𝑣 quintile, the equal-weighted portfolio
analysis detects a strong positive relation between IdioVolFF,1M and future stock
returns, since the average return of the IdioVolFF,1M 5-1 portfolio of 1.36% per month
(t-statistic = 3.94), and corresponding FFC alpha of 1.43% per month (t-statistic =
4.49) and FFCPS alpha of 1.58% per month (t-statistic = 4.67) are very large and
highly statistically significant. In quintiles two through five of Re𝑣, however, the
relation between IdioVolFF,1M and future stock returns is negative. In each of these
quintiles, the FFC and FFCPS alphas of the IdioVolFF,1M difference portfolio are
negative, large in magnitude, and highly significant. The average returns of these
portfolios are negative, economically large, but in the cases of Re𝑣 quintiles two and
three, not statistically significant.

Using Illiq as the first sort variable in the equal-weighted bivariate portfolio anal-
ysis, we find that the negative relation between IdioVolFF,1M and future stock returns
is detected in all but the first Illiq quintile, which holds the most liquid stocks. The
results of this analysis are very similar to those of the corresponding value-weighted
analysis. Perhaps the main difference is that in the value-weighted portfolio results,
the idiosyncratic volatility puzzle became much stronger as illiquidity increased,
whereas in the equal-weighted analysis, this is not the case.

Controlling for co-skewness has a very substantial impact on the idiosyncratic
volatility puzzle in equal-weighted portfolios. None of the CoSke𝑤 quintiles have
IdioVolFF,1M difference portfolios that generate statistically significant average or
abnormal returns. The lone exception is the FFC alpha of the IdioVolFF,1M 5-1 port-
folio in the second CoSke𝑤 quintile of −0.33%, which is marginally statistically
significant with a t-statistic of −1.73.

Finally, Table 15.11 shows that when controlling for IdioSke𝑤, the negative rela-
tion between IdioVolFF,1M and future stock returns exists only for stocks in the fifth
IdioSke𝑤 quintile. In quintiles one through four of IdioSke𝑤, the average returns and
alphas of the equal-weighted IdioVolFF,1M 5-1 portfolios are all statistically indistin-
guishable from zero.



�

� �

�

IDIOSYNCRATIC VOLATILITY AND STOCK RETURNS 397

In summary, the results of the bivariate dependent-sort portfolio analyses indi-
cate that, in value-weighted portfolios, none of the variables previously examined in
this book explain the idiosyncratic volatility puzzle. In equal-weighted portfolios, the
idiosyncratic volatility puzzle is not present after controlling for 𝛽, BM, CoSke𝑤, or
IdioSke𝑤.

Bivariate Independent-Sort Portfolio Analysis

To examine the robustness of these results, we repeat the bivariate-sort portfolio anal-
yses, this time using independently sorted portfolios. With the exception of the change
in the sorting procedure, all other aspects of the analyses are the same as in the previ-
ous bivariate portfolio analyses. Since the results of these analyses are, in most cases,
highly similar to those of the dependent-sort analyses presented in Tables 15.10 and
15.11, we focus our discussion of the independent-sort portfolio analysis results on
the outcomes that are different from the dependent-sort results.

Table 15.12 presents the average returns and alphas for the IdioVolFF,1M 5-1 port-
folios generated by the value-weighted bivariate independent-sort portfolio analy-
ses. Similar to the dependent-sort results, there is no indication that the negative
relation between idiosyncratic volatility and future stock returns is explained by 𝛽,
MktCap, BM, Mom, Re𝑣, Illiq, CoSke𝑤, or IdioSke𝑤. The main differences between
these results and those of the dependently sorted portfolios come from the analy-
ses that use MktCap, Illiq, and IdioSke𝑤 as the control variable. When MktCap is
used as the control variable, in the dependent-sort value-weighted portfolio anal-
ysis, the negative relation between IdioVolFF,1M was present among stocks in the
lowest MktCap quintile, but not in the highest MktCap quintile (see Table 15.10).
When independent-sort portfolio analysis is used, the results indicate that the neg-
ative relation between IdioVolFF,1M exists among large stocks, but not among the
stocks in the lowest quintile of MktCap. In the value-weighted analysis that sorts on
Illiq and IdioVolFF,1M , the dependent-sort analysis indicated that the idiosyncratic
volatility puzzle was weak among stocks in the lowest two quintiles of Illiq. We
do not find this result when using independently sorted portfolios. The results of
the independent-sort portfolio analysis indicate that the negative relation between
IdioVolFF,1M and future stock returns is strong in all Illiq quintiles. Lastly, when using
dependently sorted portfolios, we found that the IdioVolFF,1M 5-1 portfolio in the first
quintile of IdioSke𝑤 failed to generate statistically significant average and abnor-
mal returns. When independent-sort portfolio analysis is used, the average return and
alphas of IdioVolFF,1M difference portfolio in the first IdioSke𝑤 quintile are negative,
economically large, and highly statistically significant. Apart from these relatively
minor differences, the results of the dependent- and independent-sort value-weighted
portfolio analyses are qualitatively similar.

The results of the equal-weighted bivariate independent-sort portfolio analyses,
shown in Table 15.13, are perhaps even more similar to their dependent-sort coun-
terparts. The main conclusions from the equal-weighted portfolio analyses remain
the same when independently sorted portfolios are used. Specifically, the idiosyn-
cratic volatility puzzle is not present in the average quintile of the control variable
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TABLE 15.12 Bivariate Independent-Sort Portfolio Analysis—Value-Weighted
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between IdioVolFF,1M and future stock returns after controlling for the effect of each of 𝛽,
MktCap, BM, Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤 (control variables). Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of the control
variable. All stocks are independently sorted into five groups based on an ascending sort of
IdioVolFF,1M . The quintile breakpoints used to create the groups are calculated using all stocks
in the CRSP sample. The intersections of the control variable and IdioVolFF,1M groups are used
to form 25 value-weighted portfolios. The table presents the average return, FFC alpha, and
FFCPS alpha (in percent per month) of the long–short zero-cost portfolios that are long the
fifth IdioVolFF,1M quintile portfolio and short the first IdioVolFF,1M quintile portfolio in each
quintile, as well as for the average quintile, of the control variable. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses.
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𝛽 Return −0.53 −0.45 −0.55 −0.67 −0.89 −0.61
(−1.80) (−1.69) (−1.79) (−2.49) (−2.60) (−2.41)

FFC 𝛼 −0.79 −0.63 −0.79 −0.89 −1.02 −0.82
(−3.32) (−3.15) (−3.00) (−4.31) (−3.88) (−5.15)

FFCPS 𝛼 −0.82 −0.71 −0.85 −0.88 −1.03 −0.85
(−3.04) (−3.43) (−3.08) (−3.89) (−3.62) (−4.81)

MktCap Return −0.10 −1.17 −1.35 −1.37 −1.06 −1.00
(−0.30) (−3.68) (−4.35) (−4.14) (−2.73) (−3.38)

FFC 𝛼 −0.35 −1.37 −1.43 −1.30 −1.10 −1.11
(−1.23) (−6.14) (−6.45) (−5.07) (−3.19) (−5.70)

FFCPS 𝛼 −0.33 −1.38 −1.41 −1.27 −1.31 −1.14
(−1.10) (−5.83) (−5.93) (−4.52) (−3.50) (−5.30)

BM Return −1.28 −0.75 −0.32 −0.22 0.22 −0.47
(−3.57) (−2.45) (−0.98) (−0.61) (0.66) (−1.60)

FFC 𝛼 −1.30 −0.74 −0.38 −0.59 −0.01 −0.61
(−4.99) (−2.75) (−1.51) (−2.31) (−0.03) (−3.22)

FFCPS 𝛼 −1.33 −0.91 −0.51 −0.80 −0.08 −0.73
(−4.52) (−3.20) (−1.94) (−2.94) (−0.26) (−3.56)

Mom Return −1.68 −0.85 −0.49 −0.21 −0.47 −0.74
(−3.51) (−2.71) (−1.61) (−0.70) (−1.63) (−2.67)

FFC 𝛼 −2.10 −1.19 −0.77 −0.37 −0.63 −1.01
(−4.38) (−5.44) (−3.53) (−1.53) (−2.47) (−5.80)

FFCPS 𝛼 −2.03 −1.20 −0.92 −0.31 −0.61 −1.02
(−3.99) (−4.76) (−3.70) (−1.16) (−2.26) (−5.18)
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TABLE 15.12 (Continued)
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Re𝑣 Return −1.12 −1.27 −1.35 −1.04 −0.62 −1.08
(−3.11) (−3.07) (−3.20) (−2.71) (−1.86) (−3.27)

FFC 𝛼 −1.49 −1.48 −1.67 −1.09 −0.74 −1.30
(−3.98) (−5.54) (−6.67) (−3.69) (−2.65) (−6.47)

FFCPS 𝛼 −1.45 −1.57 −1.73 −1.13 −0.80 −1.34
(−3.69) (−5.30) (−6.25) (−3.53) (−2.64) (−5.99)

Illiq Return −0.80 −0.91 −1.18 −1.23 −0.99 −1.03
(−2.17) (−2.74) (−3.29) (−3.83) (−3.09) (−3.42)

FFC 𝛼 −0.91 −0.92 −1.18 −1.31 −1.14 −1.10
(−3.08) (−3.72) (−4.61) (−5.92) (−4.55) (−5.76)

FFCPS 𝛼 −0.99 −0.94 −1.19 −1.34 −1.27 −1.15
(−3.00) (−3.45) (−4.20) (−5.79) (−4.72) (−5.43)

CoSke𝑤 Return −1.26 −0.65 −0.76 −0.70 −0.84 −0.84
(−3.93) (−1.95) (−2.41) (−2.26) (−2.64) (−2.99)

FFC 𝛼 −1.22 −0.84 −0.87 −0.91 −0.98 −0.96
(−5.28) (−2.77) (−3.55) (−3.61) (−4.56) (−5.17)

FFCPS 𝛼 −1.26 −0.87 −0.90 −1.00 −1.03 −1.01
(−4.95) (−2.58) (−3.42) (−3.62) (−4.30) (−4.81)

IdioSke𝑤 Return −0.82 −0.57 −0.48 −0.76 −1.09 −0.74
(−2.42) (−1.48) (−1.54) (−2.12) (−3.41) (−2.47)

FFC 𝛼 −0.95 −0.64 −0.56 −0.99 −1.27 −0.88
(−3.92) (−2.06) (−2.61) (−3.55) (−5.23) (−4.66)

FFCPS 𝛼 −0.98 −0.72 −0.61 −1.11 −1.29 −0.94
(−3.73) (−2.07) (−2.65) (−3.71) (−4.74) (−4.48)

when the control variable is 𝛽, BM, CoSke𝑤, or IdioSke𝑤, but persists when the con-
trol variable is MktCap, Mom, Re𝑣, or Illiq. The only qualitative differences between
the dependent- and independent-sort analyses come from the portfolios formed by
sorting on either MktCap or Illiq, and IdioVol. When MktCap is the control variable,
the equal-weighted dependent-sort portfolio analysis fails to detect a negative relation
between IdioVolFF,1M in the highest MktCap quintile (see Table 15.11), whereas in the
independent-sort analysis, the IdioVolFF,1M 5-1 portfolio in the fifth MktCap quintile
generates large, negative, and statistically significant average and abnormal returns.
When Illiq is used as the control variable, the equal-weighted dependent-sort analyses
found that the idiosyncratic volatility puzzle does not exist among stocks in the lowest
Illiq quintile, but does exist among stocks in the highest Illiq quintile. The oppo-
site is found in the independently sorted portfolios. The results in Table 15.13 show
that when equal-weighted independently sorted portfolios are used, the IdioVolFF,1M
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TABLE 15.13 Bivariate Independent-Sort Portfolio Analysis—Equal-Weighted
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between IdioVolFF,1M and future stock returns after controlling for the effect of each of 𝛽,
MktCap, BM, Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤 (control variables). Each month, all
stocks in the CRSP sample are sorted into five groups based on an ascending sort of the control
variable. All stocks are independently sorted into five groups based on an ascending sort of
IdioVolFF,1M . The quintile breakpoints used to create the groups are calculated using all stocks
in the CRSP sample. The intersections of the control variable and IdioVolFF,1M groups are used
to form 25 equal-weighted portfolios. The table presents the average return, FFC alpha, and
FFCPS alpha (in percent per month) of the long–short zero-cost portfolios that are long the
fifth IdioVolFF,1M quintile portfolio and short the first IdioVolFF,1M quintile portfolio in each
quintile, as well as for the average quintile, of the control variable. t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average return or alpha is equal to zero, are shown in parentheses.

C
on

tr
ol

V
al

ue

C
on

tr
ol

1

C
on

tr
ol

2

C
on

tr
ol

3

C
on

tr
ol

4

C
on

tr
ol

5

C
on

tr
ol

A
vg

𝛽 Return 0.54 −0.02 −0.21 −0.48 −0.79 −0.19
(1.74) (−0.08) (−0.57) (−1.51) (−2.26) (−0.61)

FFC 𝛼 0.32 −0.09 −0.41 −0.56 −0.75 −0.30
(1.30) (−0.39) (−1.02) (−2.24) (−2.72) (−1.31)

FFCPS 𝛼 0.32 −0.13 −0.40 −0.57 −0.69 −0.30
(1.23) (−0.54) (−0.97) (−2.18) (−2.33) (−1.22)

MktCap Return 0.56 −1.12 −1.36 −1.41 −1.22 −0.90
(1.62) (−3.56) (−4.40) (−4.29) (−3.23) (−3.05)

FFC 𝛼 0.28 −1.32 −1.44 −1.35 −1.14 −0.99
(0.71) (−5.92) (−6.34) (−5.29) (−3.50) (−4.92)

FFCPS 𝛼 0.33 −1.34 −1.43 −1.31 −1.30 −1.01
(0.84) (−5.64) (−5.90) (−4.65) (−3.59) (−4.55)

BM Return −0.65 −0.07 −0.08 0.24 0.48 −0.02
(−1.84) (−0.21) (−0.21) (0.79) (1.68) (−0.05)

FFC 𝛼 −0.59 −0.05 −0.33 0.09 0.38 −0.10
(−1.94) (−0.16) (−0.64) (0.38) (1.75) (−0.41)

FFCPS 𝛼 −0.66 −0.19 −0.38 −0.01 0.35 −0.18
(−2.06) (−0.64) (−0.71) (−0.05) (1.50) (−0.70)

Mom Return −0.93 0.03 0.08 0.07 −0.37 −0.23
(−2.10) (0.11) (0.28) (0.20) (−1.31) (−0.81)

FFC 𝛼 −1.49 −0.23 −0.19 −0.24 −0.69 −0.57
(−2.07) (−1.17) (−1.09) (−1.17) (−3.38) (−2.76)

FFCPS 𝛼 −1.45 −0.23 −0.26 −0.30 −0.67 −0.58
(−2.01) (−1.12) (−1.41) (−1.31) (−3.00) (−2.70)
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TABLE 15.13 (Continued)
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Re𝑣 Return 1.28 −0.54 −0.72 −1.03 −1.33 −0.47
(3.71) (−1.52) (−1.84) (−2.75) (−3.54) (−1.40)

FFC 𝛼 1.34 −0.68 −1.02 −1.26 −1.54 −0.64
(4.40) (−2.95) (−3.95) (−4.66) (−5.83) (−3.09)

FFCPS 𝛼 1.42 −0.71 −1.06 −1.34 −1.61 −0.67
(4.49) (−2.95) (−3.89) (−4.65) (−5.48) (−3.02)

Illiq Return −0.93 −0.97 −1.16 −1.16 −0.11 −0.88
(−2.78) (−3.00) (−3.36) (−3.33) (−0.30) (−2.83)

FFC 𝛼 −0.91 −0.94 −1.11 −1.14 −0.23 −0.88
(−3.76) (−3.68) (−4.00) (−4.13) (−0.73) (−3.96)

FFCPS 𝛼 −0.88 −0.91 −1.09 −1.17 −0.30 −0.88
(−3.22) (−3.25) (−3.62) (−4.01) (−0.92) (−3.61)

CoSke𝑤 Return −0.48 −0.20 −0.13 −0.14 −0.14 −0.22
(−1.19) (−0.67) (−0.43) (−0.43) (−0.45) (−0.72)

FFC 𝛼 −0.83 −0.38 −0.25 −0.25 −0.15 −0.37
(−1.39) (−1.85) (−1.16) (−1.07) (−0.55) (−1.56)

FFCPS 𝛼 −0.82 −0.39 −0.25 −0.27 −0.18 −0.38
(−1.35) (−1.81) (−1.11) (−1.08) (−0.64) (−1.54)

IdioSke𝑤 Return 0.12 −0.00 −0.04 −0.39 −0.43 −0.15
(0.34) (−0.01) (−0.13) (−0.98) (−1.45) (−0.49)

FFC 𝛼 0.04 −0.07 −0.10 −0.82 −0.52 −0.30
(0.16) (−0.31) (−0.44) (−1.50) (−2.19) (−1.26)

FFCPS 𝛼 0.08 −0.06 −0.16 −0.82 −0.53 −0.30
(0.30) (−0.24) (−0.69) (−1.49) (−2.14) (−1.23)

5-1 portfolio in the first Illiq quintile generates large negative average and abnor-
mal returns, but the average return and alphas of the IdioVolFF,1M difference port-
folio in the fifth Illiq quintile are insignificant. Apart from these small differences,
the results of the equal-weighted independent-sort portfolio analyses of the relation
between IdioVolFF,1M and future stock returns are qualitatively the same as those of
the equal-weighted dependent-sort portfolio results.

In summary, the bivariate sort portfolio analyses indicate that, consistent with the
univariate sort portfolio analysis results, when using value-weighted portfolios, the
idiosyncratic volatility puzzle is robust after controlling for beta, size, book-to-market
ratio, momentum, reversal, illiquidity, co-skewness, or idiosyncratic skewness. When
using equal-weighted portfolios, the idiosyncratic volatility puzzle is substantially
weaker and, in some cases, does not persist in bivariate portfolio analyses.
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15.6.3 Fama–MacBeth Regression Analysis

We continue our investigation of the idiosyncratic volatility puzzle using (Fama and
MacBeth 1973, FM hereafter) regression analysis. FM regression analysis allows us
to control for the relations between all of the control variables and future stock returns
at once. We execute FM regression analyses using several different regression specifi-
cations. We begin with a specification that uses IdioVolFF,1M as the only independent
variable. We also use specifications that include IdioVolFF,1M along with one control
variable as independent variables. Finally, we examine a specification that includes
IdioVolFF,1M and all of the other variables together. This specification allows us to
examine the relation between IdioVolFF,1M and future stock returns after controlling
for all other effects simultaneously. It also allows us to examine whether other effects
documented previously in this book can be explained by the relation between idiosyn-
cratic volatility and future stock returns. The dependent variable in each of the FM
regression analyses is the one-month-ahead excess stock return. All independent vari-
ables in the regressions are winsorized at the 0.5% level on a monthly basis.

In Table 15.14, we present the time-series averages of the monthly cross-sectional
regression coefficients along with Newey and West (1987) t-statistics, adjusted
using six lags, testing the null hypothesis that the average coefficient is equal to zero
(in parentheses). The specification including only IdioVolFF,1M as an independent
variable (specification (1)) detects a negative and statistically significant relation
between idiosyncratic volatility and future stock returns, since the average coefficient
on IdioVolFF,1M of −0.008 has an associated t-statistic of −2.52. The results are
similar when beta (𝛽, specification (2)), size (Size, specification (3)), momentum
(Mom, specification (5)), illiquidity (Illiq, specification (7)), co-skewness (CoSke𝑤,
specification (8)), or idiosyncratic skewness (IdioSke𝑤, specification (9)) is included
as the lone control variable. In each of these analyses, the average coefficient
on IdioVolFF,1M remains negative and statistically significant. In fact, when Size
or Illiq is used as the control variable, the magnitude of the average coefficient
becomes substantially larger than in other specifications. This is not surprising.
High IdioVolFF,1M stocks tend to generate low average returns. The correlation
(Table 15.5) and portfolio characteristics (Table 15.9) show that high IdioVolFF,1M

stocks also tend to be small stocks, which were shown in Chapter 9 to generate
high average returns. Thus, after controlling for the size effect, the negative relation
between IdioVolFF,1M should be even stronger. Similarly, high IdioVolFF,1M stocks
tend to be high Illiq stocks, which were shown in Chapter 13 to generate higher
average returns. Thus, when controlling for this effect, the negative relation between
IdioVolFF,1M would be expected to become even stronger. This is exactly what
the regression results demonstrate. When either BM (specification (4)) or Re𝑣
(specification (6)) is included as the control variable, the FM regression analysis fails
to detect a negative relation between IdioVolFF,1M and future stock returns since, in
each of these cases, the average coefficient on Re𝑣 is statistically indistinguishable
from zero, albeit still negative.

When all control variables are simultaneously included in the regression speci-
fication (specification (10)), the results indicate a strong negative relation between
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TABLE 15.14 Fama–MacBeth Regression Analysis
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and IdioVolFF,1M . Each column in the table presents results for a
different cross-sectional regression specification. The dependent variable in all specifications
is the one-month-ahead excess stock return. The independent variables are indicated in the
first column. Independent variables are winsorized at the 0.5% level on a monthly basis. The
table presents average slope and intercept coefficients along with t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average adjusted
r-squared and the number of data points, respectively, for the cross-sectional regressions.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

IdioVolFF,1M −0.008 −0.007 −0.014 −0.005 −0.007 −0.006 −0.018 −0.008 −0.008 −0.013
(−2.52) (−2.35) (−5.25) (−1.44) (−2.38) (−1.61) (−5.39) (−2.37) (−2.47) (−5.85)

𝛽 −0.211 0.004
(−1.71) (0.03)

Size −0.228 −0.179
(−5.96) (−4.15)

BM 0.345 0.141
(4.71) (1.99)

Mom 0.006 0.007
(2.94) (3.85)

Re𝑣 −0.056 −0.059
(−11.49) (−11.32)

Illiq 0.096 0.067
(4.10) (3.74)

CoSke𝑤 −0.016 0.001
(−2.46) (0.13)

IdioSke𝑤 0.003 −0.123
(0.07) (−3.85)

Intercept 1.040 1.153 2.296 0.644 0.849 0.994 1.352 1.047 1.061 1.915
(5.01) (5.92) (6.50) (2.99) (4.17) (4.56) (6.64) (5.23) (5.26) (5.46)

Adj. R2 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.07
n 4732 4408 4732 3379 4392 4720 3600 3932 3932 2561

IdioVolFF,1M and future stock returns, with the average coefficient of −0.013 hav-
ing an associated t-statistic of −5.85. Thus, the results show that the idiosyncratic
volatility puzzle is quite strong when all of the effects discussed in previous chapters
of this book are simultaneously controlled for. Interestingly, in this specification, the
average coefficient on 𝛽 becomes slightly positive. All previous FM regression analy-
ses in this text have generated a theoretically contradictory negative (but insignificant)
average coefficient on 𝛽. In the full specification that includes IdioVolFF,1M , while the
coefficient remains statistically insignificant, it has the theoretically predicted sign.
The results also indicate that the negative relations between each of Size, Re𝑣, and
IdioSke𝑤 and future stock returns are robust to the inclusion of IdioVolFF,1M , as are
the positive relations between each of BM, Mom, and Illiq, and future stock returns.
Consistent with the results in Chapter 14, when the full specification is used, the FM
regression analysis detects no relation between co-skewness (CoSke𝑤) and future
stock returns.
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To examine the economic magnitude of the negative relation between IdioVolFF,1M

and expected stock returns, we use the average coefficient of −0.013 from the
full-specification FM regression analysis in Table 15.14. To find the effect of
a one-standard-deviation difference in IdioVolFF,1M on expected returns, we
multiply the average coefficient by 40.25, the average cross-sectional standard
deviation of IdioVolFF,1M (see Panel D of Table 15.1). Doing so, we find that a
one-standard-deviation difference in IdioVolFF,1M is associated with an economi-
cally large 0.52% (0.013 × 40.25) per month difference in expected return. If we
multiply the average coefficient by the difference between the average 95th and 5th
IdioVolFF,1M percentiles of 104.07 (116.48 − 12.41), we find that an expected return
difference of 1.35% (0.13 × 104.07) per month between stocks with very high and
very low values of IdioVolFF,1M . Both analyses indicate that the average coefficient
of −0.013 is of substantial economic magnitude.

The results in Table 15.14 demonstrate that the idiosyncratic volatility puzzle is
not a manifestation of one of the other stock return phenomena examined in previous
chapters of this book. However, we have only examined in depth the relation between
idiosyncratic volatility measured from one month of daily return data (IdioVolFF,1M)
and future stock returns. While the correlation analyses presented in Section 15.4
demonstrated that, holding the length of the measurement period and data frequency
constant, measures of idiosyncratic volatility calculated relative to different risk mod-
els (CAPM, FF, or FFC) are extremely similar, the results indicated nontrivial differ-
ences between measures calculated using different measurement periods and data
frequencies. To examine whether the idiosyncratic volatility puzzle is robust to the
use of different measurement periods and data frequencies in calculating idiosyn-
cratic volatility, we perform FM regression analyses on the measures of idiosyncratic
volatility calculated using each of the different measurement period lengths and data
frequencies examined earlier in this chapter. In this analysis, we continue to use mea-
sures of idiosyncratic volatility calculated from the FF risk model. For each measure
of idiosyncratic volatility, we perform an FM regression analysis using the specifica-
tion that includes all other variables as controls.

The results of the FM regression analyses using the IdioVolFF variables calcu-
lated from different measurement period lengths and data frequencies are shown
in Table 15.15. The measurement period length is indicated in the first row of the
table. 1M, 3M, 6M, and 12M indicate that IdioVolFF is calculated using one, three,
six, and 12 months of daily data, respectively. The columns labeled 1Y, 2Y, 3Y, and
5Y use IdioVolFF calculated from one, two, three, and five years of monthly data,
respectively, as the measure of idiosyncratic volatility. It is worth recalling that in the
equal-weighted portfolio analyses (Panel B of Table 15.7), the idiosyncratic volatil-
ity puzzle was only evident when using IdioVolFF,1M as the sort variable. IdioVolFF

calculated using other measurement periods and data frequencies failed to generate
the phenomenon.

The FM regression analysis results show that, after controlling for 𝛽, Size, BM,
Mom, Re𝑣, Illiq, CoSke𝑤, and IdioSke𝑤, regardless of the measurement period or data
frequency used to calculate IdioVolFF , there is a negative and statistically significant
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TABLE 15.15 Fama–MacBeth Regression Analysis—IdioVolFF

This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and IdioVolFF . Each column in the table presents results for
a different cross-sectional regression specification. The columns labeled 1M, 3M, 6M, 12M,
1Y, 2Y, 3Y, 5Y present results for specifications using IdioVolFF,1M , IdioVolFF,3M , IdioVolFF,6M ,
IdioVolFF,12M , IdioVolFF,1Y , IdioVolFF,2Y , IdioVolFF,3Y , and IdioVolFF,5Y as the measure of
idiosyncratic volatility. The dependent variable in all specifications is the one-month-ahead
excess stock return. The independent variables are indicated in the first column. The row
labeled IdioVolFF shows results for the given measure of idiosyncratic volatility. Independent
variables are winsorized at the 0.5% level on a monthly basis. The table presents average slope
and intercept coefficients along with t-statistics (in parentheses), adjusted following Newey
and West (1987) using six lags, testing the null hypothesis that the average coefficient is equal
to zero. The rows labeled Adj. R2 and n present the average adjusted r-squared and the number
of data points, respectively, for the cross-sectional regressions.

1M 3M 6M 12M 1Y 2Y 3Y 5Y

IdioVolFF −0.013 −0.016 −0.015 −0.011 −0.015 −0.012 −0.011 −0.009
(−5.85) (−5.11) (−4.11) (−2.61) (−5.55) (−3.34) (−2.70) (−1.97)

𝛽 0.004 0.038 0.023 −0.017 −0.005 −0.006 −0.008 −0.027
(0.03) (0.28) (0.18) (−0.14) (−0.04) (−0.05) (−0.06) (−0.22)

Size −0.179 −0.198 −0.190 −0.166 −0.170 −0.166 −0.163 −0.154
(−4.15) (−5.12) (−5.16) (−4.75) (−3.89) (−4.02) (−4.15) (−4.06)

BM 0.141 0.141 0.149 0.153 0.147 0.136 0.125 0.122
(1.99) (2.00) (2.11) (2.12) (2.08) (1.94) (1.80) (1.79)

Mom 0.007 0.008 0.008 0.008 0.009 0.009 0.008 0.008
(3.85) (4.03) (4.37) (4.46) (4.68) (4.43) (4.30) (4.17)

Re𝑣 −0.059 −0.061 −0.062 −0.062 −0.061 −0.062 −0.062 −0.063
(−11.32) (−11.77) (−11.97) (−12.12) (−11.66) (−11.84) (−12.02) (−12.11)

Illiq 0.067 0.072 0.069 0.063 0.055 0.054 0.053 0.052
(3.74) (4.11) (3.99) (3.70) (3.02) (3.04) (2.95) (2.89)

CoSke𝑤 0.001 −0.000 −0.001 −0.001 −0.001 −0.000 −0.000 −0.000
(0.13) (−0.06) (−0.17) (−0.25) (−0.12) (−0.10) (−0.05) (−0.01)

IdioSke𝑤 −0.123 −0.107 −0.104 −0.119 −0.088 −0.066 −0.050 −0.041
(−3.85) (−3.45) (−3.32) (−3.73) (−2.73) (−1.83) (−1.26) (−0.87)

Intercept 1.915 2.126 2.039 1.802 1.835 1.800 1.794 1.721
(5.46) (6.51) (6.41) (5.79) (5.28) (5.52) (5.80) (5.75)

Adj. R2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
n 2561 2561 2561 2561 2561 2559 2559 2561

relation between IdioVolFF and future stock returns. The idiosyncratic volatility puz-
zle therefore appears to exist regardless of how idiosyncratic volatility is calculated.
The previously documented relations between future stock returns and other variables
are also robust. The one exception is that, when IdioVolFF,3Y or IdioVolFF,5Y is used
as the measure of idiosyncratic volatility, the negative relation between IdioSke𝑤 and
future stock returns becomes statistically insignificant.

As discussed previously, the different measures of total and idiosyncratic volatility
are all highly correlated with each other when calculated using the same measurement
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period and data frequency. For this reason, to this point, we have only used IdioVolFF

to measure idiosyncratic volatility. To verify our claim that changing the approach to
calculating total or idiosyncratic volatility will have negligible effects on the results
of empirical analyses, we repeat the full-specification FM regression analyses with
total volatility (Vol) measured using each of the different measurement periods and
data frequencies employed throughout this chapter, as our variable of interest. It is
worth noting that Vol measures total volatility, not idiosyncratic volatility. Thus, in
performing these analyses, we are also examining whether the idiosyncratic volatility
puzzle holds for total volatility as well.

TABLE 15.16 Fama–MacBeth Regression Analysis—Total Volatility
This table presents the results of Fama and MacBeth (1973) regression analyses of the rela-
tion between expected stock returns and total volatility. Each column in the table presents
results for a different cross-sectional regression specification. The columns labeled 1M, 3M,
6M, 12M, 1Y, 2Y, 3Y, 5Y present results for specifications using Vol1M , Vol3M , Vol6M , Vol12M ,
Vol1Y , Vol2Y , Vol3Y , and Vol5Y as the measure of idiosyncratic volatility. The dependent variable
in all specifications is the one-month-ahead excess stock return. The independent variables
are indicated in the first column. The row labeled Vol shows results for the given measure
of volatility. Independent variables are winsorized at the 0.5% level on a monthly basis. The
table presents average slope and intercept coefficients along with t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average adjusted
r-squared and the number of data points, respectively, for the cross-sectional regressions.

1M 3M 6M 12M 1Y 2Y 3Y 5Y

Vol −0.013 −0.017 −0.016 −0.011 −0.013 −0.009 −0.008 −0.006
(−5.89) (−5.14) (−4.12) (−2.58) (−4.45) (−2.27) (−1.76) (−1.18)

𝛽 0.080 0.121 0.091 0.033 0.026 −0.004 −0.018 −0.049
(0.58) (0.94) (0.75) (0.28) (0.20) (−0.04) (−0.15) (−0.44)

Size −0.177 −0.194 −0.188 −0.165 −0.166 −0.155 −0.149 −0.137
(−4.07) (−4.95) (−5.05) (−4.68) (−3.94) (−3.94) (−4.03) (−3.88)

BM 0.141 0.141 0.150 0.153 0.143 0.133 0.128 0.132
(1.99) (2.00) (2.11) (2.12) (2.02) (1.91) (1.86) (1.96)

Mom 0.007 0.008 0.008 0.008 0.009 0.008 0.008 0.008
(3.87) (4.04) (4.37) (4.46) (4.83) (4.52) (4.40) (4.24)

Re𝑣 −0.059 −0.061 −0.062 −0.063 −0.063 −0.063 −0.064 −0.064
(−11.30) (−11.76) (−11.97) (−12.11) (−11.82) (−11.97) (−12.13) (−12.20)

Illiq 0.068 0.073 0.070 0.063 0.056 0.053 0.052 0.050
(3.79) (4.18) (4.01) (3.68) (3.12) (3.05) (2.93) (2.84)

CoSke𝑤 0.001 −0.000 −0.001 −0.001 −0.001 0.000 0.000 −0.000
(0.11) (−0.05) (−0.20) (−0.26) (−0.16) (0.05) (0.00) (−0.09)

IdioSke𝑤 −0.124 −0.109 −0.105 −0.120 −0.098 −0.087 −0.081 −0.078
(−3.92) (−3.51) (−3.37) (−3.76) (−2.95) (−2.37) (−1.98) (−1.66)

Intercept 1.903 2.098 2.026 1.794 1.799 1.704 1.658 1.556
(5.41) (6.39) (6.34) (5.74) (5.42) (5.53) (5.83) (5.69)

Adj. R2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
n 2561 2561 2561 2561 2561 2559 2559 2561
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The results of these analyses, presented in Table 15.16, show that in most cases,
the relation between total volatility, measured using Vol, and future stock returns, is
very similar to the measure between the corresponding IdioVolFF variable and future
returns. The exceptions are when Vol is calculated using three years (3Y) or five years
(5Y) of monthly return data. When Vol3Y is used as the measure of total volatility, the
FM regressions detect only a marginally significant negative relation between total
volatility and future stock returns. When Vol5Y is used, the relation becomes statisti-
cally insignificant. Regardless of the length of the measurement period, when monthly
returns are used, the results using Vol as the measure of volatility are slightly weaker
than the corresponding FM regression results that use IdioVolFF as the measure of
idiosyncratic volatility.

In summary, the results of the empirical analyses examining the relation
between idiosyncratic volatility and future stock returns indicate a negative relation
between idiosyncratic volatility and future stock returns. The relation is robust
in value-weighted portfolios and, depending on which measure of idiosyncratic
volatility is used, disappears when equal-weighted portfolios are used. Fama and
MacBeth (1973) regression analyses indicate that the statistical significance of
the negative relation between idiosyncratic volatility and future stock returns is
somewhat dependent on specification. However, after controlling simultaneously for
all other effects discussed in the previous chapters of this book, the negative relation
is both statistically significant and economically important.

15.6.4 Cumulative Returns of IdioVolFF,1M Portfolio

For many of the variables known to be related to future stock returns, researchers
have created a risk factor mimicking portfolio associated with the given variable and
claimed that the returns of that portfolio proxy for the returns associated with taking
a unit risk in whatever latent factor is captured by the given predictive variable. This
is not the case with idiosyncratic volatility. The reason for this is that it is not possible
to tell a risk story for the negative relation between idiosyncratic volatility and future
returns. As discussed earlier, all risk-based explanations for such a relation predict a
positive, not negative relation.

To assess the time series of returns associated with an investment strategy based
on idiosyncratic volatility, we therefore use the excess returns of a portfolio that
is long stocks with low idiosyncratic volatility and short stocks with high idiosyn-
cratic volatility. Specifically, we analyze the negative of the monthly returns of the
value-weighted 10-1 IdioVolFF,1M portfolio from Panel A of Table 15.7. Thus, the
portfolio we investigate is a zero-cost portfolio that takes long positions in all stocks
in the lowest decile of IdioVolFF,1M and short positions in all stocks in the highest
decile of IdioVolFF,1M , where the long positions and short positions are independently
value-weighted. We refer to this portfolio as the Low–High IdioVolFF,1M portfolio. We
diverge from our standard approach of taking a long (short) position in high idiosyn-
cratic volatility (low idiosyncratic volatility) stocks so that the portfolio we examine
in this section has positive average returns.
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Figure 15.1 Cumulative Returns of Low–High IdioVolFF,𝟏M Portfolio.
This figure plots the cumulate returns of the decile one minus decile 10 IdioVolFF,1M

value-weighted portfolio for the period from July 1963 through December 2012. The com-
pounded excess return for month t is calculated as 100 times the cumulative product of one
plus the monthly return up to and including the given month. The cumulate log excess return
is calculated as the sum of monthly log excess returns up to and including the given month.

As seen in Table 15.7, during the period from July 1963 through December of
2012, the Low–High IdioVolFF,1M portfolio generates an average monthly return of
1.27% with a monthly standard deviation of 8.22%, giving an annualized Sharpe ratio
of 0.53. Using log returns instead of returns, we find a mean monthly log return of
0.91%, a standard deviation of 8.55%, and thus an annualized Sharpe ratio of 0.37.
Over the entire sample period, the monthly compounded return that would have been
realized by this investment strategy is 21,897%, meaning that an initial investment of
$1 at the end of June 1963 would have turned into $219.97 by the end of December
2012. Taken on the log scale, this corresponds to a cumulative sum of log monthly
returns equal to 539%.

The cumulative returns of the Low–High IdioVolFF,1M portfolio are plotted in
Figure 15.1 for the period from July 1963 through December 2012. The solid line
represents the cumulative monthly compounded return and has its scale on the left
side of the plot. The cumulative sum of monthly log returns is shown by the dashed
line, the scale for which is on the right side of the plot. The plot shows that while, in
the long-run, the Low–High IdioVolFF,1M portfolio has generated substantial returns,
the ride has been quite bumpy, and as of the end of 2012, the portfolio value remains
well below its previous high. As can be seen in Figure 15.1, the investment strategy



�

� �

�

SUMMARY 409

experienced a dramatic loss starting in August 2002. In August 2002, the Low–High
IdioVolFF,1M portfolio experienced a loss of 10.31%. It rebounded slightly in
September with a 6.66% gain, only to lose 6.44% in October. In November 2002,
a huge loss of 41.74% was realized, the largest single-month loss realized by the
strategy during the entire sample period. A few months later, in June 2003, the
portfolio realized another devastating loss of 28.89%. The subsequent low point
for the portfolio came at the end of November 2010, at which point the portfolio
had lost more than 82% of its previous maximum value. The portfolio has not even
come close to regaining its previous high water mark. As of the end of 2012, the
cumulative return of the investment strategy remains almost 74% lower than its
previous high value. The drawdown realized beginning in August 2002 is both the
largest and most prolonged drawdown experienced by the idiosyncratic volatility
investment strategy.

While the losses realized in the period subsequent to the end of July 2002 are
severe, the investment strategy based on idiosyncratic volatility produces several
additional large and prolonged drawdowns. The second largest drawdown began in
November of 1998. Between then and the end of February 2000, the portfolio lost
almost 67%. In this case, the recovery was quite quick. By the end of November
2000, the portfolio had achieved a new high water mark. The third largest and second
longest drawdown began in January 1975. The portfolio lost almost 66% of its value
between then and November 1980. It finally recovered its previous high value in
August 1983. Finally, the fourth largest and third most prolonged drawdown began
in January 1965, from which point the portfolio lost more than 58% of its value by
the end of January 1969, with a complete recovery realized in November 1971. In
summary, while the long-run returns of the Low–High IdioVolFF,1M portfolio have
been substantial, this investment strategy involves a very high level of risk. As of the
end of 2012, the portfolio remains well below its previous high, which was achieved
in 2002, more than 10 years earlier.

15.7 SUMMARY

In this chapter, we have examined the relation between idiosyncratic volatility and
expected stock returns. We begin by calculating and examining several different mea-
sures of total and idiosyncratic volatility. Comparison of the different measures of
idiosyncratic volatility indicates that the decision of whether to use the one-factor
market model (CAPM), Fama and French (1993) three-factor model (FF), or the Fama
and French (1993) and Carhart (1997) four-factor model (FFC) to calculate idiosyn-
cratic volatility is largely inconsequential, as the measures are extremely highly cor-
related and very similar in magnitude in the cross section. Additionally, idiosyncratic
volatility and total volatility are extremely similar in the cross section. Following the
empirical asset pricing literature, we focus on the measure of idiosyncratic volatility
that is calculated using the FF risk model and one month of daily return data.

The main result of the chapter is what is known as the idiosyncratic volatil-
ity puzzle. Specifically, the results of our empirical analyses detect a negative
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cross-sectional relation between idiosyncratic volatility and future stock returns.
This relation is very strong when using value-weighted portfolio analysis but
substantially weaker and, depending on the measure of idiosyncratic volatility used,
nonexistent, in equal-weighted portfolios. Fama and MacBeth (1973) regression
analyses produce results similar to the equal-weighted portfolio analyses. The
strength of the negative relation between idiosyncratic volatility and future stock
returns detected by the regression analyses depends on the regression specification.
However, when a full set of controls is employed, the results indicate a negative
cross-sectional relation between idiosyncratic volatility and expected stock returns.

For the remaining chapters of this book, we will continue to use idiosyncratic
volatility calculated relative to the FF risk model from one month of daily return
data as our measure of idiosyncratic volatility. In this chapter, we have denoted this
variable IdioVolFF,1M . Moving forward, this variable will be denoted IdioVol.
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LIQUID SAMPLES

In the previous chapters of Part II of this book, we have examined several different
phenomena observed in historical stock returns. In doing so, we have used a sample
of stocks consisting of all U.S.-based common stocks in the Center for Research in
Security Prices (CRSP) database, which we have referred to as the CRSP sample.
The construction of this sample was discussed in detail in Section 7.1.1.

As discussed in Chapter 9, the CRSP sample is characterized by a small number
of extremely large stocks and a large number of very small stocks. Many researchers
prefer to exclude some of the smallest and most illiquid stocks from the sample used
in empirical analyses. There are several reasons for this. First, the pricing of small
stocks, especially stocks with low share prices, tends to be less efficient and informa-
tive than the pricing of large and liquid stocks. For stocks that are not heavily traded,
the price at which the last trade was executed may not be indicative of the value of
the stock at the end of the day. Price changes for such stocks are also more suscepti-
ble to microstructure issues such as the bid–ask bounce. McLean and Pontiff (2015)
show that the strength of many anomalies documented in the empirical asset pricing
literature, especially those concentrated among low-liquidity stocks, lose strength in
out-of-sample tests. Second, even though these stocks may be large in number, as
shown in Chapter 9, they are very small in total market value. Thus, excluding such
stocks from the sample still allows the researcher to draw conclusions that pertain
to the vast majority of stock market wealth. Many researchers believe that excluding
small and illiquid stocks from the sample substantially reduces the measurement error

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



�

� �

�

SAMPLES 413

in variables whose calculation relies on historical returns, such as beta, momentum,
reversal, co-skewness, idiosyncratic skewness, and idiosyncratic volatility. If this is
the case, then removing such stocks from the sample can alleviate the possibility that
measurement error in these variables is driving the empirical results. Furthermore, in
many cases, the results of analyses that exclude such stocks may be more indicative of
realistic investment opportunities because the cost of transacting in small and illiquid
stocks can negate any profits that may be realized.

In this chapter, we introduce some commonly used screens that researchers use to
remove small and illiquid stocks from the sample. We then repeat several of the analy-
ses presented throughout the text using samples restricted according to these criteria.
In addition to presenting the results from analyses using the restricted samples, we
also show the corresponding CRSP sample results that have been presented through-
out the previous chapters of this book. The results in this chapter can, therefore, be
thought of as both examining the phenomena documented in previous chapters of
this book using different samples of stocks and summarizing the results generated
throughout the previous chapters.

16.1 SAMPLES

In addition to the CRSP sample, in this chapter we examine two commonly used
subsamples of the CRSP sample. The first subsample includes all stocks that have a
share price between $5 and $1000, inclusive, at the end of month t. The idea behind
using this sample is that the excluded stocks (stocks with share prices less than $5 or
more than $1000) are likely illiquid and expensive to trade. We refer to this sample
as the Price sample. To generate the Price sample, for each month t, we begin with
the CRSP sample, and then remove all stocks with a price at the end of month t, as
indicated in the ALTPRC field in CRSP’s monthly stock file, that is less than $5 or
more than $1000.1

The second new sample we use is the subset of stocks in the Price sample that
have a market capitalization that is equal to or greater than the 10th percentile market
capitalization of stocks listed on the New York Stock Exchange (NYSE). We refer
to this sample as the Size sample. To generate the Size sample in any given month t,
we calculate the 10th percentile of month t MktCap (defined in Section 9.1), across
all stocks in the CRSP database that are listed on the NYSE at the end of month t.2

The Size sample is then generated by removing all stocks from the Price sample with
MktCap values less than the 10th percentile of MktCap among NYSE stocks. The
Size sample can, therefore, be described as the set of stocks that have a share price
between $5 and $1000 (inclusive) with market capitalizations greater than or equal
to the 10th percentile market capitalization of NYSE-listed stocks.

1For reasons discussed in Section 7.1.2, in some cases the ALTPRC field may be negative. In such cases,
the stock price is taken to be the absolute value of the value in the ALTPRC field.
2The set of stocks that are NYSE-listed at the end of month t is taken to be the set of stocks in the CRSP
sample with a value of 1 in the EXCHCD field in CRSP’s monthly stock names file.
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16.2 SUMMARY STATISTICS

Table 16.1 presents summary statistics for each of the main variables examined
throughout the previous chapters of Part II of this book. Specifically, we present
summary statistics for each of 𝛽, MktCap, Size, BM, Mom, Re𝑣, Illiq, CoSke𝑤,
IdioSke𝑤, and IdioVol. Summary statistics for the CRSP sample are presented in
Panel A, Price sample summary statistics are shown in Panel B, and Size sample

TABLE 16.1 Summary Statistics
This table presents summary statistics for variables defined in the previous chapters of Part II
or this book. Panel A presents results for the CRSP sample. Panel B presents results for the
Price sample, which includes stocks in the CRSP sample with month-end share price of $5 or
more. Panel C presents results for the Size sample, which includes stocks in the Price sample
that have market capitalization above the 10th percentile of market capitalization calculated
among stocks listed on the New York Stock Exchange. Each sample covers the months t from
June 1963 through November 2012. Each month, the mean (Mean), standard deviation (SD),
skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min), 5th percentile (5%), 25th percentile
(25%), median (Median), 75th percentile (75%), 95th percentile (95%), and maximum (Max)
values of the cross-sectional distribution of each variable is calculated. The table presents the
time-series means for each cross-sectional value. The column labeled n indicates that average
number of stocks for which the given variable is available.

Panel A: CRSP Sample

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

𝛽 0.78 0.61 0.49 1.46 −2.16 −0.05 0.35 0.71 1.15 1.89 3.90 4440
MktCap 1101 5568 18 459 0 6 29 107 446 4108 161, 217 4794
Size 4.33 1.92 0.38 −0.08 −1.18 1.46 2.93 4.16 5.57 7.74 11.48 4794
BM 0.94 1.14 10.16 284.75 0.01 0.15 0.41 0.72 1.15 2.32 32.92 3409
Mom 14.12 58.40 4.12 61.62 −89.41 −49.88−17.11 5.70 31.98 102.73 1064.02 4426
Re𝑣 1.21 15.49 3.11 59.45 −67.35 −18.93 −6.27 0.06 6.92 24.20 266.45 4750
Illiq 3.79 27.73 22.15 827.12 0.00 0.01 0.05 0.26 1.35 13.39 1174.73 3604
CoSke𝑤 −1.20 9.49 1.86 69.42 −79.85 −14.60 −5.26 −1.11 2.75 11.77 128.72 3992
IdioSke𝑤 0.64 0.81 1.42 4.79 −2.64 −0.37 0.14 0.51 0.98 2.13 6.14 3992
IdioVol 48.07 40.25 4.31 61.51 1.40 12.41 24.15 37.84 59.40 116.48 748.45 4742

Panel B: Price Sample

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

𝛽 0.83 0.58 0.63 0.62 −1.05 0.04 0.41 0.76 1.17 1.90 3.32 3277
MktCap 1449 6376 16 350 3 17 66 200 704 5495 161, 217 3529
Size 4.97 1.69 0.49 0.02 0.71 2.50 3.73 4.78 6.04 8.01 11.48 3529
BM 0.84 0.85 7.65 152.16 0.01 0.16 0.41 0.69 1.06 1.94 19.04 2481
Mom 20.93 55.22 4.48 64.16 −76.48 −34.50 −7.83 11.24 35.80 104.97 972.76 3267
Re𝑣 1.85 12.23 2.45 40.33 −48.91 −14.29 −4.71 0.73 6.89 21.21 168.31 3499
Illiq 0.73 1.88 8.53 165.18 0.00 0.01 0.04 0.16 0.62 3.39 37.70 2885
CoSke𝑤 −0.87 7.64 0.52 16.50 −59.00 −11.89 −4.43 −0.85 2.57 10.04 76.17 2961
IdioSke𝑤 0.52 0.71 1.39 5.47 −2.38 −0.39 0.09 0.42 0.83 1.78 5.60 2961
IdioVol 36.90 23.37 3.29 46.47 1.49 11.98 21.60 31.89 46.38 77.63 362.70 3502
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TABLE 16.1 (Continued)

Panel C: Size Sample

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

𝛽 0.95 0.55 0.71 0.65 −0.63 0.21 0.54 0.86 1.26 1.99 3.26 2215
MktCap 2083 7589 13 233 88 102 187 417 1218 7818 161, 217 2339
Size 5.84 1.33 0.92 0.52 4.07 4.21 4.78 5.57 6.65 8.37 11.48 2339
BM 0.75 0.69 6.96 132.10 0.01 0.16 0.38 0.63 0.95 1.65 13.40 1752
Mom 21.83 52.72 4.21 53.72 −72.70 −31.36 −5.76 12.54 36.13 102.51 823.92 2210
Re𝑣 1.85 11.14 1.72 21.43 −44.15 −13.41 −4.34 0.97 6.85 19.68 119.28 2325
Illiq 0.24 0.53 12.04 291.81 0.00 0.00 0.02 0.08 0.25 0.97 9.62 2130
CoSke𝑤 −0.51 6.88 0.24 13.30 −51.78 −10.45 −3.76 −0.50 2.66 9.41 55.56 2045
IdioSke𝑤 0.41 0.65 1.42 6.36 −2.23 −0.43 0.03 0.34 0.70 1.52 5.14 2045
IdioVol 33.31 19.48 2.87 31.56 2.01 12.14 20.41 29.13 41.44 67.65 259.93 2329

summary statistics are shown in Panel C. Since the summary statistics for the CRSP
sample have been discussed in previous chapters of this book, our discussion of the
summary statistics focuses on comparisons of the different samples.

The summary statistics for 𝛽 are quite similar in the CRSP and Price samples.
Perhaps the most prevalent difference is in the average excess kurtosis of the
cross-sectional distribution of 𝛽, which is 1.46 in the CRSP sample and only 0.62
in the Price sample. The decrease in kurtosis is a manifestation of the removal of
stocks with extreme values of 𝛽 when the Price sample restrictions are imposed.
In the average month, the minimum value of 𝛽 for stocks in the Price sample is
−1.05 compared to −2.16 for the CRSP sample. Similarly, the maximum value of
𝛽 for stocks in the Price sample is 3.32 compared to 3.90 in the CRSP sample. The
other shown percentiles of 𝛽 are similar in the CRSP and Price samples. It is also
interesting that, despite the removal of stocks with extreme values of 𝛽, the standard
deviation of 𝛽 in the Price sample of 0.58 is very similar to the corresponding CRSP
sample standard deviation of 0.61, indicating that the kurtosis of 𝛽 in the CRSP
sample is driven by a very small number of stocks with stock prices below $5 or
above $1000. In the average month, there are 3277 stocks in the Price sample with
valid values of 𝛽 compared to 4440 in the CRSP sample. The distribution of 𝛽 in
the Size sample is similar to the distribution of 𝛽 in the Price sample, except that
values at all percentiles (except for the maximum value) of 𝛽, as well as the mean,
are slightly higher in the Size sample than in the Price sample. This is driven by the
fact that the NYSE 10th percentile size screen results in the removal of stocks that
have low values of 𝛽. In the average month, the minimum 𝛽 for Size sample stocks is
−0.63, compared to −1.05 for stocks in the Price sample. The additional restriction
reduces the average number of stocks with a valid value of 𝛽 in the Size sample to
2215 from 3277 in the Price sample.

The summary statistics for MktCap show that, in the average month, all percentiles
as well as the mean of MktCap are higher among stocks in the Price sample than in
the CRSP sample, with the Price sample having a mean (median) MktCap of $1.45
billion ($200 million) compared to $1.10 billion ($107 million) for the CRSP sample.
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This is expected since the removal of stocks with prices less than $5 is likely to result
in the exclusion of stocks with low values of MktCap from the Price sample. There
are relatively few stocks with a price greater than $1000, so this condition is not
nearly as restrictive. In the average month, the Price sample has only 3529 stocks
with valid values of MktCap compared to 4794 in the CRSP sample. The increase in
MktCap values in the Size sample is even more dramatic. This is not surprising since
the NYSE 10th percentile size screen is explicitly a screen that removes stocks with
low values of MktCap. The mean (median) MktCap for stocks in the Size sample is
just over $2 billion ($417 million). The additional screen results in only 2339 stocks
in the Size sample, in the average month, with valid values of MktCap. The summary
statistics for Size, which is the natural log of MktCap, are reflective of the summary
statistics for MktCap and thus do not warrant further discussion.

The average and median values of BM are lower in the Price sample than in the
CRSP sample and lower in the Size sample than in the Price sample. The mean value
of BM in the Price (Size) sample is 0.84 (0.75) compared to 0.94 in the CRSP sample.
The summary statistics indicate that the price screen, and then in turn the NYSE
10th percentile size screen, result primarily in the removal of stocks with high values
of BM because the minimum, 5th percentile, and 25th percentile values of BM are
all similar across the different samples. However, the median, 75th percentile, 95th
percentile, and maximum values are substantially lower in the Size sample that in
the Price sample, and lower in the Price sample than in the CRSP sample. In the
average month, the Price (Size) sample has 2481 (1752) stocks with valid values of
BM compared to 3409 in the CRSP sample.

Mom is, on average, highest among stocks in the Size sample and higher in the
Price sample than in the CRSP sample. At first glance, this result may seem con-
tradictory given that Mom is simply a measure of return and small stocks, which
have been targeted for removal by the different screens have been shown to generate
relatively high returns. The likely explanation for this pattern is that, since Mom in
month t measures returns during the months t − 11 through t − 1, stocks with low
values of Mom have realized very large negative returns in the medium-term past
resulting in low share prices and market capitalizations, resulting in the removal of
low-Mom stocks from the restricted samples. Both the Price sample and Size sam-
ple average Mom values of 21.83 and 20.93, respectively, are substantially higher
than the average Mom value of 14.12 in the CRSP sample. The minimum, fifth per-
centile, 25th percentile, and median values of Mom in the Price sample are similar to
the corresponding values for the Size sample. These percentiles from the Price and
Size samples are substantially higher than the corresponding values from the CRSP
sample. 75th and 95th percentile values are more similar across all three samples.
The summary statistics, therefore, indicate that it is indeed stocks with low values of
Mom (loser stocks) that tend to be removed by the price and size screens. The Price
(Size) sample has 2210 (3267) stocks with valid values of Mom in the average month
compared to 4426 for the CRSP sample.

The patterns in Re𝑣 across the different samples are very similar to those of
Mom. Stocks with low values of Re𝑣 are more likely to be removed from the sample
than stocks with high values of Re𝑣. The likely reason for this is once again that
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stocks with high values of Re𝑣 are more likely to have share prices and market
capitalizations that satisfy the price and size screens since Re𝑣 is simply the return
of the stock in the given month t. The distribution of Re𝑣 is very similar in both the
Price and Size samples. In both restricted samples, the average Re𝑣 value is 1.85 and
all percentiles are reasonably similar. The minimum, fifth percentile, 25th percentile,
and median values of Re𝑣 in the Price and Size samples are substantially higher
than the corresponding values for the CRSP sample, while the 75th percentile and
95th percentile values are relatively similar across all three samples. In the average
month, the Price (Size) sample has 3499 (2325) stocks with valid Re𝑣 values, while
the CRSP sample has 4750 such stocks.

The summary statistics presented in Table 16.1 demonstrate that the screens are
very effective at removing illiquid stocks from the sample. The average value of Illiq
for stocks in the Price (Size) sample is 0.73 (0.24) compared to 3.79 for stocks in
the CRSP sample. In the average month, the maximum and 95th percentile values of
Illiq for stocks in the Price (Size) sample are 37.70 (9.62) and 3.39 (0.97) compared
to 1174.73 and 13.39, respectively, for the CRSP sample. Thus, the price screen
succeeds at removing the most illiquid stocks from the CRSP sample, and the size
screen succeeds at removing the most illiquid stocks from the Price sample. In the
average month, the Price sample has 2885 stocks with a valid value of Illiq, and the
Size sample has 2130 such stocks. The CRSP sample has 3604 stocks, on average,
with a valid value of Illiq.

Average values of CoSke𝑤 in the Price and Size samples of −0.87 and −0.51,
respectively, are slightly higher than the average in the CRSP sample of −1.20, but
this difference is relatively minor. The main difference between the distribution of
CoSke𝑤 among stocks in the different samples is that price and size screens tend to
remove stocks with extreme (high and low) values of CoSke𝑤. For this reason, the
standard deviation and excess kurtosis of the cross-sectional distribution of CoSke𝑤
are lowest in the Size sample, second lowest in the Price sample, and highest in the
CRSP sample. There are, in the average month, 2961 stocks in the Price sample and
2045 stocks in the Size sample with valid values of CoSke𝑤 compared to an average
of 3992 stocks in the CRSP sample.

The cross-sectional distribution of IdioSke𝑤 is similar in all three samples. At all
presented percentiles (with the exception of the minimum value), as well as at the
mean, the values of IdioSke𝑤 are lowest in the Size sample, second lowest in the
Price sample, and highest in the CRSP sample. Since IdioSke𝑤 is calculated using
the exact same set of returns as CoSke𝑤 and the data requirements for these two
variables are the same, the number of stocks with valid values of IdioSke𝑤 in each
sample is the same as number of stocks with valid CoSke𝑤 values.

Finally, values of IdioVol are, on average and in median, substantially lower in the
Price and Size samples than in the CRSP sample. For stocks in the Price sample, the
average (median) value of IdioVol is 36.90 (31.89), and for stocks in the Size sample
the average (median) IdioVol is 33.31 (29.13). The CRSP sample, for comparison,
is comprised of stocks with an average (median) IdioVol value of 48.07 (37.84).
With the exception of the minimum and fifth percentile values, each of the presented
cross-sectional percentiles of IdioVol is highest in the CRSP sample, substantially
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lower in the Price sample, and lower still in the Size sample. The results indicate
that the price and size screens tend to remove stocks with high values of IdioVol. The
Price (Size) sample has 3502 (2329) stocks with valid values of IdioVol compared to
4742 such stocks in the CRSP sample.

16.3 CORRELATIONS

The average cross-sectional Pearson product–moment and Spearman rank correla-
tions between each of the pairs of variables for the CRSP (Panel A), Price (Panel
B), and Size (Panel C) samples are shown in Table 16.2. Pearson correlations are
presented in the below-diagonal entries and Spearman correlations are shown in the
above-diagonal entries. In most cases, the correlation between any given pair of vari-
ables is similar across each of the three samples. We therefore discuss only the cor-
relations that differ substantially between the different samples.

16.3.1 CRSP Sample and Price Sample

We begin by comparing correlations in the Price sample to the corresponding corre-
lations in the CRSP sample.

The negative Pearson correlation between 𝛽 and Illiq is much larger in magnitude
in the Price sample than in the CRSP sample. In the Price sample, 𝛽 and Illiq have an
average cross-sectional correlation of −0.25 compared to −0.15 in the CRSP sam-
ple. Interestingly, the Spearman correlations between these variables of −0.33 in the
Price sample and −0.32 in the CRSP sample are very similar. This indicates that the
relatively low correlation between 𝛽 and Illiq in the CRSP sample is driven by non-
linearity in the relation between Illiq and 𝛽 that largely disappears when the price
screen is applied.

The positive Pearson (Spearman) correlation between 𝛽 and IdioVol in the Price
sample of 0.22 (0.28) is much higher than the corresponding correlation in the CRSP
sample of 0.08 (0.16). This likely indicates that the true relation between 𝛽 and IdioVol
is stronger than indicated by the CRSP sample results. Noisy measurement of both
𝛽 and IdioVol for illiquid and low-priced stocks in the CRSP sample likely results in
the relatively low CRSP sample correlations. Restricting the sample to more liquid
stocks that do not have low share prices increases the accuracy of the measurement
of both 𝛽 and IdioVol for the average stock in the Price sample, resulting in more
accurate measurement of the correlation between these variables.

The correlation between Size and Mom is much smaller in the Price sample than in
the CRSP sample. In the Price sample, the Pearson (Spearman) correlation between
these variables is 0.03 (0.08) compared to 0.18 (0.25) in the CRSP sample. The
CRSP sample correlation is likely driven by the fact that stocks with very low val-
ues of Mom, which captures medium-term past returns, are, as a result of this poor
performance, likely to have low market capitalization, thus generating the positive
correlation between Size and Mom in the CRSP sample. These low Mom stocks,
however, are also likely to be removed by the price screen, resulting in a decreased
correlation between Size and Mom in the Price sample.
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TABLE 16.2 Correlations
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (below-diagonal entries) and Spearman rank (above-diagonal entries) correlations
between pairs of 𝛽, Size, BM, Mom, Re𝑣, Illiq, CoSke𝑤, IdioSke𝑤, and IdioVol. Panel A
presents results of the CRSP sample. Panel B presents results for the Price sample. Panel
C presents results for the Size sample.

Panel A: CRSP Sample
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𝛽 0.33 −0.23 0.04 −0.01 −0.32 0.08 −0.06 0.16
Size 0.31 −0.26 0.25 0.11 −0.92 0.14 −0.36 −0.48
BM −0.19 −0.27 0.04 0.03 0.25 0.02 0.03 −0.01
Mom 0.07 0.18 0.02 0.04 −0.24 0.00 0.02 −0.22
Re𝑣 −0.02 0.07 0.02 0.02 −0.08 0.01 −0.02 0.00
Illiq −0.15 −0.42 0.18 −0.16 −0.04 −0.13 0.32 0.54
CoSke𝑤 0.06 0.11 0.02 −0.00 0.00 −0.04 −0.10 −0.07
IdioSke𝑤 −0.04 −0.34 0.06 0.07 0.03 0.16 −0.08 0.26
IdioVol 0.08 −0.45 0.07 −0.16 0.10 0.48 −0.06 0.25

Panel B: Price Sample
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𝛽 0.32 −0.25 0.01 −0.02 −0.33 0.08 −0.03 0.28
Size 0.30 −0.26 0.08 0.04 −0.90 0.14 −0.30 −0.34
BM −0.21 −0.25 0.04 0.03 0.24 0.02 0.04 −0.08
Mom 0.06 0.03 0.04 0.00 −0.11 −0.03 0.09 −0.06
Re𝑣 −0.02 0.00 0.03 0.01 −0.03 −0.00 0.01 0.08
Illiq −0.25 −0.50 0.19 −0.08 0.00 −0.13 0.26 0.39
CoSke𝑤 0.07 0.12 0.02 −0.03 −0.00 −0.06 −0.09 −0.05
IdioSke𝑤 −0.02 −0.28 0.05 0.14 0.05 0.15 −0.07 0.18
IdioVol 0.22 −0.33 −0.01 0.02 0.18 0.29 −0.04 0.19

Panel C: Size Sample
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𝛽 0.09 −0.20 0.02 −0.02 −0.22 0.06 0.05 0.40
Size 0.07 −0.13 0.04 0.02 −0.85 0.11 −0.23 −0.34
BM −0.16 −0.14 0.03 0.02 0.15 0.05 −0.01 −0.14
Mom 0.07 −0.01 0.02 0.01 −0.08 −0.04 0.10 −0.03
Re𝑣 −0.01 −0.01 0.03 0.02 −0.02 −0.00 0.01 0.08
Illiq −0.18 −0.42 0.12 −0.06 −0.00 −0.11 0.19 0.30
CoSke𝑤 0.06 0.09 0.05 −0.03 −0.01 −0.05 −0.07 −0.04
IdioSke𝑤 0.07 −0.21 0.01 0.15 0.05 0.11 −0.05 0.15
IdioVol 0.36 −0.32 −0.08 0.05 0.16 0.17 −0.03 0.17
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Size is also less negatively correlated with IdioVol in the Price sample compared
to the CRSP sample. The Pearson (Spearman) correlation between Size and IdioVol
in the Price sample is −0.33 (−0.34), whereas this correlation is −0.45 (−0.48) in the
CRSP sample. The summary statistics presented in Table 16.1 indicate that a substan-
tial number of stocks with low values of Size and high values of IdioVol are removed
by the price screen. The decrease in the magnitude of the correlation, therefore, indi-
cates that the relatively strong correlation in the CRSP sample is driven by a strong
propensity of such very small stocks to have very high idiosyncratic volatility.

The correlation between Mom and Illiq in the Price sample is much smaller in
magnitude than in the CRSP sample. In the Price sample, both the Pearson corre-
lation of −0.16 and the Spearman correlation of −0.24 are substantially negative.
This indicates that in the CRSP sample, stocks that have had large negative returns
in the medium-term past, as captured by Mom, tend to be highly illiquid. In the Price
sample, the diminished Pearson (Spearman) correlation of −0.08 (−0.11) indicates
that the stocks driving this relation have been removed by the price screen. However,
even after removing stocks with extremely low or high share prices, a nonnegligible
negative correlation between Mom and Illiq still exists.

In the Price sample, the Pearson (Spearman) correlation between Mom and IdioVol
of 0.02 (−0.06) is quite small. In the CRSP sample, however, the correlation between
these variables of −0.16 (−0.22) is much stronger. The substantial negative corre-
lation between Mom and IdioVol in the CRSP sample indicates that high IdioVol
stocks are likely to have experienced substantial losses (low values of Mom) in the
medium-term past. These losses tend to drop the stock price below $5, causing them
to be excluded from the Price sample. The exclusion of such stocks from the Price
sample results in a lower correlation between Mom and IdioVol.

The Pearson (Spearman) correlation of 0.29 (0.39) between Illiq and IdioVol in the
Price sample is much lower than the corresponding correlation in the CRSP sample of
0.48 (0.54). The likely reason for this is that stocks with low or high share prices are
likely to be highly illiquid and also to experience high levels of idiosyncratic volatility
due to either illiquidity or microstructure issues. The removal of these stocks from
the Price sample, therefore, results in a reduced correlation between Illiq and IdioVol
among the remaining stocks.

16.3.2 Price Sample and Size Sample

We proceed now to compare the pairwise correlations for the Size sample to those of
the Price sample.

Panel C on Table 16.2 shows that the Pearson (Spearman) correlation between 𝛽

and Size is only 0.07 (0.09) compared to 0.30 (0.32) in the Price sample. The strong
decrease in the correlation between 𝛽 and Size when small stocks are removed indi-
cates that the positive correlation between 𝛽 and Size in the Price sample is largely
driven by very small stocks that tend to have very low betas.

The Pearson (Spearman) correlation of −0.18 (−0.22) between 𝛽 and Illiq is sub-
stantially reduced in magnitude from the correlation between these variables of−0.25
(−0.33) in the Price sample. A decrease in this correlation of similar magnitude was
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detected when moving from the CRSP sample to the Price sample. The reason for this
decrease in both cases is likely the same. Less liquid stocks tend to have extremely low
values of 𝛽. The removal of highly illiquid stocks, therefore, results in a weakening
of the cross-sectional relation between 𝛽 and Illiq.

𝛽 is more strongly positively correlated with IdioVol in the Size sample than in the
Price sample. The Pearson (Spearman) correlation between these two variables is 0.36
(0.40) in the Size sample compared to 0.22 (0.28) in the Price sample. As discussed in
our analysis of the increased correlation between these variables when moving from
the CRSP sample to the Price sample, this result is likely a manifestation of increased
measurement error in 𝛽 and IdioVol among small stocks. The result indicates that beta
and idiosyncratic volatility have a strong cross-sectional relation.

The magnitude of the negative correlation between Size and BM in the Size sam-
ple is lower than in the Price sample. In the Size sample, the Pearson (Spearman)
correlation between Size and BM is −0.14 (−0.13) compared to −0.25 (−0.26) in the
Price sample. The drop in the magnitude of this correlation indicates that the stronger
negative correlation found in the Price sample is largely driven by small stocks that
tend to have high values of BM.

Finally, the results in Panel C of Table 16.2 indicate a substantially lower corre-
lation between Illiq and IdioVol in the Size sample than in the Price sample. In the
Size sample, the Pearson (Spearman) correlation between Illiq and IdioVol is 0.22
(0.31) compared to 0.33 (0.40) in the Price sample. Recall that a similar decrease
in the correlation between Illiq and IdioVol was observed in the Price sample com-
pared to the full CRSP sample. The reason for the reduction in this correlation in
the Size sample compared to the Price sample is likely similar to the reason for the
reduction in correlation in the Price sample relative to the CRSP sample. Small and
illiquid stocks tend to have higher firm-specific risk. Therefore, when such stocks
are removed from the sample, the strength of the relation between illiquidity and
firm-specific risk decreases.

16.4 PERSISTENCE

Our final analyses before proceeding to examination of the relations between the
main asset pricing variables examined throughout this book and future stock returns
are persistence analyses of each of these variables. The results of the persistence
analyses for each of 𝛽, MktCap, Size, BM, Mom, Re𝑣, Illiq, CoSke𝑤, IdioSke𝑤, and
IdioVol are presented in Table 16.3. Results for the CRSP sample, the Price sam-
ple, and the Size sample are shown in Panels A, B, and C, respectively. Because
results for the CRSP sample have already been discussed throughout the previous
chapters of Part II of this book, our discussion examines only the differences in the
results of the persistence analyses between the samples. Furthermore, quick examina-
tion of the results of the persistence analyses for the Price sample (Panel B) and Size
sample (Panel C) indicates that the results are very similar for both of these restricted
samples. None of the differences in the results of the persistence analyses between
these two samples are large enough to warrant discussion. We therefore only discuss
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TABLE 16.3 Persistence
This table presents the results of persistence analyses of 𝛽, MktCap, Size, BM, Mom, Re𝑣, Illiq,
CoSke𝑤, IdioSke𝑤, and IdioVol using the CRSP (Panel A), Price (Panel B), and Size (Panel
C) samples. Each month t, the cross-sectional Pearson product–moment correlation between
the month t and month t + 𝜏 values of the given variable is calculated. The table presents
the time-series averages of the monthly cross-sectional correlations. The column labeled 𝜏

indicates the lag at which the persistence is measured.

Panel A: CRSP Sample
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1 1.00 1.00 0.98 −0.04 0.80 0.65
3 0.99 0.99 0.95 0.01 0.74 0.60
6 0.99 0.98 0.90 0.01 0.67 0.57

12 0.63 0.98 0.97 0.80 0.02 0.02 0.58 0.53
24 0.55 0.96 0.94 0.67 −0.04 0.01 0.45 0.46
36 0.50 0.94 0.92 0.58 −0.02 0.01 0.38 0.43
48 0.47 0.93 0.90 0.52 −0.02 0.01 0.33 0.40
60 0.44 0.91 0.89 0.47 −0.04 0.01 0.31 0.03 0.21 0.39

120 0.35 0.84 0.84 0.37 0.01 0.01 0.24 0.05 0.20 0.34

Panel B: Price Sample
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1 1.00 1.00 0.99 −0.03 0.79 0.57
3 0.99 0.99 0.96 0.01 0.74 0.53
6 0.99 0.99 0.92 0.01 0.69 0.50

12 0.73 0.98 0.98 0.85 0.02 0.01 0.63 0.46
24 0.65 0.96 0.96 0.75 −0.04 0.01 0.55 0.41
36 0.60 0.94 0.94 0.68 −0.03 0.01 0.50 0.38
48 0.56 0.93 0.92 0.63 −0.02 0.01 0.47 0.35
60 0.53 0.91 0.91 0.58 −0.04 0.00 0.44 0.05 0.15 0.34

120 0.42 0.84 0.86 0.46 0.01 0.01 0.38 0.06 0.14 0.27

the differences between the Price and CRSP samples. Similar interpretation applies
to the differences between the Size and CRSP samples.

The results in Table 16.3 demonstrate that 𝛽 is more persistent in the Price and
Size samples than in the CRSP sample. In the Price sample, the persistence values
of 𝛽 measured at a lags of one year (𝜏 = 12), two years (𝜏 = 24), and three years
(𝜏 = 36) of 0.73, 0.65, and 0.60, respectively, are 0.10 higher than the corresponding
persistence values in the CRSP sample. At lags of four years (𝜏 = 48), five years
(𝜏 = 60), and 10 years (𝜏 = 120), 𝛽 has persistence of 0.56, 0.53, and 0.42 in the
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TABLE 16.3 (Continued)

Panel C: Size Sample
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1 1.00 1.00 0.99 −0.03 0.82 0.56
3 0.99 0.99 0.96 0.01 0.76 0.53
6 0.99 0.98 0.92 0.01 0.72 0.50

12 0.73 0.98 0.97 0.85 0.04 0.01 0.66 0.47
24 0.65 0.96 0.94 0.74 −0.04 0.01 0.58 0.42
36 0.59 0.94 0.91 0.67 −0.02 0.01 0.53 0.39
48 0.55 0.92 0.89 0.62 −0.01 0.01 0.49 0.37
60 0.52 0.90 0.88 0.57 −0.03 0.01 0.46 0.05 0.10 0.35

120 0.40 0.83 0.81 0.45 0.00 0.01 0.38 0.05 0.10 0.28

Price sample compared to 0.47, 0.44, and 0.35, respectively, in the CRSP sample.
One likely driver of the increased persistence of 𝛽 in the restricted samples is that
measurement of 𝛽 is more accurate for more liquid stocks. Thus, when illiquid stocks,
for which 𝛽 is likely to be measured with substantial error, are removed from the
sample, the persistence increases.

The persistence of MktCap and Size is not only extremely high, but very simi-
lar across each of the different samples. The results indicate that the cross-sectional
correlation between MktCap (Size) measured at two times separated by a period of
10 years is, on average, 0.84 (0.86) for stocks in the Price sample. MktCap and Size
are by far the most persistent of the variables examined in this book.

BM is more persistent in the Price sample than in the CRSP sample, especially
when the persistence is measured at longer lags. The increased persistence of BM in
the restricted samples indicates that, if in fact BM does capture a persistent sensitivity
to a priced risk factor, this sensitivity is measured with more accuracy for stocks that
survive the price and size screens than for stocks that are removed by these screens.

The persistence of both Mom and Re𝑣 in all three samples is negligibly low. This is
not surprising because both Mom and Re𝑣 are measures of historical returns. If Mom
or Re𝑣 exhibited strong persistence, it would indicate that the cross section of stock
returns is highly predictable from past performance.

The results in Table 16.3 show that Illiq is more persistent in the restricted samples
than in the CRSP sample. This result is interesting because it indicates that, even after
removing the most illiquid stocks from the sample, not only are there still persistent
cross-sectional differences in liquidity between the stocks that remain, but that the
cross section of historical liquidity is more indicative of future liquidity for the more
liquid stocks that remain in the Price and Size samples than for the stocks that are
removed from the sample. One might have thought that it is the highly illiquid stocks
that remain highly illiquid, and that this would drive the persistence of Illiq in the
CRSP sample. The results actually indicate that it is cross-sectional persistence of



�

� �

�

424 LIQUID SAMPLES

Illiq among the more liquid stocks that remain after the price and size screens are
implemented that is driving the persistence of Illiq.

CoSke𝑤 exhibits extremely low persistence in all samples. With the exception of
Mom and Re𝑣, for which substantial persistence would indicate a strong ability to
predict future returns, CoSke𝑤 exhibits the lowest persistence of any of the variables
used throughout this book.

The persistence of IdioSke𝑤 is also low, but not as low as that of CoSke𝑤.
Interestingly, the persistence of IdioSke𝑤 in the Price and Size samples is lower
than the persistence of IdioSke𝑤 in the CRSP sample. Given that the Price and Size
samples contain more liquid stocks for which the measurement of IdioSke𝑤 is likely
more accurate, it would be expected that if IdioSke𝑤 does in fact measure a persistent
characteristic of the stock’s returns, then IdioSke𝑤 would be more persistent among
stocks for which this measurement error is low. This is not the case. A potential expla-
nation for this finding is that the returns of the more liquid stocks in the Price and Size
sample exhibit relatively similar levels of idiosyncratic skewness, and that the stocks
for which idiosyncratic skewness differs substantially are those stocks that have been
removed from the restricted samples. The summary statistics presented in Table 16.1
provide some evidence that this may be the case since the standard deviation of the
cross-sectional distribution of IdioSke𝑤 is lower in the more restricted samples.

Finally, Table 16.3 shows that IdioVol is also slightly less persistent in the Price
and Size samples than in the CRSP sample. Once again, one might have predicted
the opposite given that idiosyncratic volatility may be hard to accurately estimate
for illiquid stocks. However, it may in fact be the illiquid nature of some stocks that
causes the values of IdioVol for these stocks to be high. Consistent with this conjec-
ture, the summary statistics in Table 16.1 demonstrate that high IdioVol tend to be
removed from the sample when the price and size screens are implemented.

16.5 EXPECTED STOCK RETURNS

Having examined the summary statistics, correlations, and persistence of our
variables using each of the CRSP, Price, and Size samples, we proceed now to
examine the relations between each of these variables and expected stock returns
using each of the samples. While most of the results for the CRSP sample have been
presented in previous chapters, we repeat them here for several reasons. First, there
are a few results that were not presented in previous chapters. Specifically, in some
cases, we did not show the alphas of some portfolios using factor models that had
not yet been introduced when the results of the portfolio analysis were presented.
For example, when we presented the results of the univariate portfolio analysis using
𝛽 as the sort variable in Section 8.5.1, we had not yet introduced the size (SMB),
value (HML), or momentum (MOM) factors; thus, we did not subject the returns of
the 𝛽-sorted portfolio to the Fama and French (1993) and Carhart (1997) four-factor
(FFC) model. Second, these results are not only the main results presented in this
book, but they are the foundational findings of empirical asset pricing research. They
therefore warrant repeating. Third, presenting the results all in one place provides an
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easy-to-use summary of the main results of empirical asset pricing research. Finally,
having the results of the analyses generated by each of the samples in the same place
facilitates comparisons across the samples.

16.5.1 Univariate Portfolio Analysis

We begin our examination of the relations between each of the variables of interest
and expected stock returns with univariate decile portfolio analyses. For each
analysis, the table presenting the results shows the average monthly excess return for
each of the decile portfolios. We also show the average difference in return between
the decile 10 portfolio and the decile one portfolio, as well as this portfolio’s FFC
alpha and the alpha of this portfolio relative to the FFC model augmented by the
Pastor and Stambaugh (2003) liquidity factor (PSL), which we refer to as the FFCPS
alpha. When the sort variable is MktCap, the values reported in the tables in the
columns labeled FFC 𝛼 and FFCPS 𝛼 are alphas relative to a model that excludes
the size (SMB) factor. The reason for this is that to examine the effect of MktCap
on expected stock returns, it does not make sense to remove the component of the
portfolio’s return that is due to the size effect, which is captured by the SMB factor.
Similarly, when examining portfolios formed by sorting on BM, the value factor
(HML) is excluded from the risk models, and for portfolios formed by sorting on
Mom, the momentum factor (MOM) is excluded from the factor models.

CRSP Sample

Table 16.4 shows the results of univariate decile portfolio analyses of the relations
between each of the variables and expected stock returns using the CRSP sample.
When value-weighted portfolios are used, the analysis detects no relation between 𝛽

and future stock returns. This result is surprising given that the Capital Asset Pricing
Model (CAPM, Sharpe (1964), Lintner (1965), Mossin (1966)), the foundational
asset pricing theory, predicts a positive relative between beta and expected stock
returns. The FFC and FFCPS alphas for this portfolio are also very small and
statistically indistinguishable from zero. When equal-weighted portfolios are used,
however, the 𝛽 10-1 portfolio generates a negative and statistically significant
average return of −0.53% per month with a t-statistic of −2.04. This portfolio’s
alphas relative to the FFC and FFCPS risk models of −0.61% per month and −0.59%
per month, respectively, are even more negative.3 This is to be expected since the 𝛽

10-1 portfolio should have a positive exposure to the market factor and the market
factor carries a positive risk premium. The results are similar to those of Reinganum
(1981), Lakonishok and Shapiro (1986), Fama and French (1992), Frazzini and
Pedersen (2014), and Bali, Brown, Murray, and Tang (2014).

The value-weighted and equal-weighted portfolio analyses detect a strong
negative relation between MktCap and future stock returns. This result was

3This result, first documented by Black et al. (1972), suggests that high-beta stocks generate lower
risk-adjusted returns than low-beta stocks, indicating that the security market line is flatter than predicted
by the CAPM. Black (1972, 1993) propose that this phenomenon is explained by restricted borrowing.
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TABLE 16.4 Univariate Portfolio Analysis—CRSP Sample
This table presents the results of univariate portfolio analyses of the relation between each
of the variables discussed in previous chapters of Part II of this book and future stock
returns. Monthly portfolios are formed by sorting all stocks in the CRSP sample into port-
folios using decile breakpoints calculated based on the given sort variable using all stocks
in the CRSP sample. Panel A (Panel B) shows the average value-weighted (equal-weighted)
one-month-ahead excess return (in percent per month) for each of the 10 decile portfolios
formed using different variables as the sort variable. The table also shows the average return
of the portfolio that is long the 10th decile portfolio and short the first decile portfolio, as well
as the FFC and FFCPS alphas for this portfolio. Newey and West (1987) t-statistics, adjusted
using six lags, testing the null hypothesis that the average 10-1 portfolio return or alpha is
equal to zero, are shown in parentheses.

Panel A: Value-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

𝛽 0.39 0.53 0.54 0.43 0.56 0.48 0.51 0.43 0.39 0.34 −0.05 −0.01 −0.02
(−0.18) (−0.03) (−0.08)

MktCap 1.53 0.63 0.54 0.56 0.59 0.65 0.66 0.67 0.63 0.42 −1.11 −1.40 −1.34
(−3.47) (−3.97) (−3.76)

BM 0.31 0.33 0.45 0.44 0.46 0.53 0.59 0.67 0.68 0.88 0.57 0.73 0.83
(2.40) (3.13) (3.51)

Mom −0.76 −0.12 0.04 0.35 0.39 0.37 0.53 0.67 0.75 1.18 1.95 2.37 2.36
(5.39) (7.54) (6.76)

Re𝑣 0.72 0.50 0.73 0.68 0.58 0.47 0.48 0.44 0.33 0.12 −0.60 −0.76 −0.69
(−2.40) (−3.21) (−2.77)

Illiq 0.42 0.54 0.60 0.62 0.55 0.57 0.64 0.66 0.50 0.24 −0.18 −0.46 −0.51
(−0.65) (−3.16) (−3.30)

CoSke𝑤 0.51 0.63 0.68 0.53 0.58 0.52 0.47 0.48 0.43 0.48 −0.03 0.09 0.05
(−0.16) (0.55) (0.27)

IdioSke𝑤 0.43 0.48 0.55 0.50 0.53 0.43 0.55 0.46 0.39 0.26 −0.16 −0.57 −0.53
(−0.97) (−3.63) (−3.17)

IdioVol 0.48 0.48 0.53 0.57 0.60 0.62 0.38 0.15 −0.21 −0.79 −1.27 −1.43 −1.47
(−3.48) (−5.25) (−4.90)

Panel B: Equal-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

𝛽 0.92 0.87 0.91 0.85 0.86 0.87 0.77 0.65 0.60 0.38 −0.53 −0.61 −0.59
(−2.04) (−2.78) (−2.56)

MktCap 2.08 0.64 0.53 0.56 0.59 0.64 0.66 0.67 0.63 0.49 −1.59 −1.96 −1.96
(−4.94) (−5.23) (−5.11)

BM 0.08 0.36 0.50 0.68 0.83 0.85 0.94 1.03 1.18 1.42 1.34 1.58 1.63
(6.06) (6.95) (6.66)

Mom 0.29 0.34 0.48 0.64 0.68 0.78 0.92 1.04 1.19 1.37 1.08 1.36 1.33
(3.42) (4.62) (4.16)

Re𝑣 2.31 0.99 0.83 0.78 0.76 0.72 0.66 0.50 0.34 −0.38 −2.69 −2.93 −2.95
(−9.72) (−8.31) (−8.24)

Illiq 0.53 0.64 0.73 0.76 0.71 0.71 0.79 0.81 0.73 1.11 0.58 0.43 0.43
(1.93) (2.09) (1.97)

CoSke𝑤 1.03 0.95 0.87 0.85 0.82 0.84 0.72 0.73 0.81 0.75 −0.28 −0.40 −0.48
(−1.90) (−1.92) (−2.27)

IdioSke𝑤 0.80 0.82 0.81 0.87 0.84 0.88 0.90 0.97 0.76 0.70 −0.10 −0.18 −0.24
(−0.61) (−1.14) (−1.40)

IdioVol 0.69 0.76 0.87 0.94 0.93 0.90 0.85 0.70 0.56 0.28 −0.41 −0.58 −0.60
(−1.12) (−2.11) (−2.09)
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first documented by Banz (1981) and Fama and French (1992). When using
value-weighted and equal-weighted portfolios, the average returns produced by the
MktCap 10-1 portfolios of −1.11% per month (t-statistic = −3.47) and −1.59%
per month (t-statistic = −4.94), respectively, are both economically very large and
highly statistically significant. The alphas of these portfolios are even larger and
remain highly statistically significant, indicating that the MKT , HML, MOM, and
PSL factors fail to explain the returns of the MktCap 10-1 portfolios.

Consistent with Fama and French (1992, 1993), the results in Table 16.4 indicate
a strong positive relation between BM and future stock returns. The value-weighted
BM 10-1 portfolio generates an average return of 0.57% per month (t-statistic = 2.40)
and the equal-weighted BM 10-1 portfolio produces an average return of 1.34%
per month (t-statistic = 6.06). Once again, the alphas are even larger and of higher
statistical significance than the average returns, indicating that the MKT , SMB,
MOM, and PSL factors fail to explain the returns of the BM difference portfolios.

The momentum effect of Jegadeesh and Titman (1993) exists in both
value-weighted and equal-weighted portfolios since the average return of the
value-weighted (equal-weighted) Mom 10-1 portfolio is 1.95% per month (1.08%
per month) with a t-statistic of 5.39 (3.42). The alphas of the Mom difference portfolio
relative to each of the risk models, which as discussed earlier, exclude the momentum
factor (MOM), remain very economically large and highly statistically significant.

Table 16.4 shows that the reversal effect exists in both value-weighted and
equal-weighted portfolios but is much stronger in equal-weighted portfolios.
The average return of the value-weighted Re𝑣 10-1 portfolio is −0.60% with a
t-statistic of −2.40. When using equal-weighted portfolios, the Re𝑣 10-1 portfolio
generates −2.69% per month with a corresponding t-statistic of −9.72. In both
value-weighted and equal-weighted portfolios, the FFC and FFCPS risk models fail
to explain the returns of the Re𝑣 10-1 portfolio.

When value-weighted portfolios are used, the results of the univariate decile
portfolio analysis indicates that the Illiq 10-1 portfolio generates a statistically
insignificant average return of −0.18% per month. However, adjusting the returns
of this portfolio for risk using the FFC and FFCPS models, the results indicate
that high Illiq stocks underperform low Illiq stocks since the alphas of −0.76% per
month (t-statistic = −3.21) and −0.69% per month (t-statistic = −2.77) when using
the FFC and FFCPS models, respectively, are negative, large in magnitude, and
highly statistically significant. When equal-weighted portfolios are used, consistent
with Amihud (2002) and Pastor and Stambaugh (2003), the results indicate a strong
positive relation between illiquidity and future stock returns. The average return of
the equal-weighted Illiq 10-1 portfolio of 0.58% (t-statistic = 1.93) is marginally
statistically significant. The FFC and FFCPS alphas of 0.43% per month (t-statistic
= 2.09) and 0.43% per month (t-statistic = 1.97), respectively, are also statistically
significant.

The value-weighted portfolio analysis detects no relation between co-skewness,
calculated following Harvey and Siddique (2000), and future stock returns since the
average return and alphas of the CoSke𝑤 10-1 portfolio are all small and statistically
insignificant. When equal-weighted portfolios are used, the univariate portfolio
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analysis detects a negative and statistically significant relation between CoSke𝑤 and
future returns, consistent with the theoretical predictions (Kraus and Litzenberger
(1976), Kane (1982), Harvey and Siddique (2000)). The average return, FFC alpha,
and FFCPS alpha of the equal-weighted CoSke𝑤 10-1 portfolio are −0.28% per
month (t-statistic = −1.90), −0.40% per month (t-statistic = −1.92), and −0.48%
per month (t-statistic = −2.27), respectively.

When portfolios are formed by sorting on idiosyncratic skewness, the aver-
age returns of the IdioSke𝑤 10-1 value-weighted and equal-weighted portfolios
of−0.16% per month (t-statistic=−0.97) and−0.10% per month (t-statistic=−0.61)
are both small and statistically indistinguishable from zero. The FFC alpha of−0.57%
per month (t-statistic = −3.63) and FFCPS alpha of −0.53% per month (t-statistic
= −3.17) generated by the value-weighted IdioSke𝑤 10-1 portfolio, however, are
negative, large in magnitude, and highly statistically significant. The results indicate
that after controlling for risk, IdioSke𝑤 exhibits a negative relation with future stock
returns, consistent with Boyer, Mitton, and Vorkink (2010).

Consistent with the empirical evidence presented by Ang, Hodrick, Xing, and
Zhang (2006), but contradictory to theoretical predictions of Levy (1978) and
Merton (1987), the portfolio analyses detect a negative relation between idiosyn-
cratic volatility and future stock returns. When value-weighted portfolios are
used, the IdioVol 10-1 portfolio generates an average monthly return of −1.27%
(t-statistic=−3.48), FFC alpha of −1.43% (t-statistic = −5.25), and FFCPS alpha
of −1.47% (t-statistic = −4.90). Consistent with Bali and Cakici (2008), the results
indicate that the idiosyncratic volatility puzzle is weaker in equal-weighted portfolios
since the equal-weighted IdioVol 10-1 portfolio generates an insignificant average
return −0.41% per month (t-statistic = −1.12). The FFC alpha of −0.58% per month
(t-statistic = −2.11) and FFCPS alpha of −0.60% per month (t-statistic = −2.09),
however, are both large and statistically significant.

Price Sample

Having presented and briefly discussed the results of the univariate portfolio analyses
using the full CRSP sample, in Table 16.5 we show the results of similar analyses
using the Price sample, which is the subset of the stocks in the CRSP sample
that have month-end share prices between $5 and $1000, inclusive. Results using
value-weighted (equal-weighted) portfolios are shown in Panel A (Panel B). We
focus our discussion here on the differences between the results generated using the
CRSP sample and the results generated using the Price sample.

When sorting Price sample stocks into 𝛽-based decile portfolios, the
value-weighted portfolio analysis finds no evidence of a relation between 𝛽

and expected stock returns since the average return and the FFC and FFCPS alphas
are all small and statistically insignificant. This is consistent with the value-weighted
results generated by the CRSP sample. When equal-weighted portfolios are used,
the Price sample results show that the average return of the 𝛽 10-1 portfolio of
−0.35% per month is statistically insignificant with a t-statistic of −1.14. This
is slightly different from the results generated using the CRSP sample, which
indicated a statistically significant negative average return of the equal-weighted
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TABLE 16.5 Univariate Portfolio Analysis—Price Sample
This table presents the results of univariate portfolio analyses of the relation between each of
the variables discussed in previous chapters of Part II of this book and future stock returns.
Monthly portfolios are formed by sorting all stocks in the Price sample into portfolios using
decile breakpoints calculated based on the given sort variable using all stocks in the Price sam-
ple. Panel A (Panel B) shows the average value-weighted (equal-weighted) one-month-ahead
excess return (in percent per month) for each of the 10 decile portfolios formed using different
variables as the sort variable. The table also shows the average return of the portfolio that is
long the 10th decile portfolio and short the first decile portfolio, as well as the FFC and FFCPS
alphas for this portfolio. Newey and West (1987) t-statistics, adjusted using six lags, testing
the null hypothesis that the average 10-1 portfolio return or alpha is equal to zero, are shown
in parentheses.

Panel A: Value-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

𝛽 0.47 0.56 0.45 0.50 0.54 0.49 0.48 0.45 0.37 0.36 −0.12 −0.12 −0.14
(−0.40) (−0.51) (−0.55)

MktCap 0.75 0.73 0.73 0.69 0.64 0.66 0.68 0.63 0.60 0.40 −0.35 −0.34 −0.28
(−1.60) (−1.60) (−1.31)

BM 0.36 0.33 0.49 0.39 0.47 0.51 0.52 0.62 0.68 0.74 0.38 0.55 0.65
(1.67) (2.42) (2.81)

Mom −0.40 0.15 0.31 0.38 0.33 0.42 0.57 0.64 0.80 1.24 1.64 1.97 1.99
(5.74) (7.24) (6.87)

Re𝑣 0.48 0.61 0.71 0.56 0.52 0.48 0.43 0.46 0.26 0.18 −0.30 −0.41 −0.32
(−1.41) (−1.84) (−1.32)

Illiq 0.41 0.53 0.50 0.65 0.56 0.54 0.60 0.62 0.68 0.41 0.00 −0.27 −0.27
(0.01) (−2.36) (−2.28)

CoSke𝑤 0.56 0.60 0.63 0.56 0.56 0.51 0.49 0.47 0.41 0.42 −0.14 0.01 0.01
(−0.86) (0.09) (0.03)

IdioSke𝑤 0.45 0.45 0.50 0.59 0.42 0.59 0.41 0.54 0.41 0.34 −0.11 −0.55 −0.49
(−0.79) (−4.47) (−3.82)

IdioVol 0.46 0.50 0.49 0.54 0.55 0.58 0.57 0.35 0.19 −0.49 −0.96 −1.10 −1.12
(−3.04) (−5.46) (−5.06)

Panel B: Equal-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

𝛽 0.69 0.78 0.78 0.76 0.80 0.74 0.72 0.63 0.52 0.35 −0.35 −0.51 −0.48
(−1.14) (−2.43) (−2.16)

MktCap 0.79 0.73 0.72 0.69 0.65 0.66 0.69 0.64 0.60 0.45 −0.34 −0.37 −0.31
(−1.65) (−1.82) (−1.53)

BM 0.12 0.33 0.52 0.58 0.66 0.73 0.77 0.87 0.96 1.00 0.88 1.16 1.17
(3.77) (5.19) (5.18)

Mom −0.42 0.28 0.47 0.59 0.68 0.77 0.89 0.98 1.18 1.38 1.80 2.03 2.08
(7.52) (9.03) (8.33)

Re𝑣 1.11 0.94 0.82 0.78 0.72 0.72 0.60 0.52 0.34 0.03 −1.07 −1.11 −1.04
(−5.93) (−5.88) (−4.95)

Illiq 0.51 0.62 0.61 0.75 0.70 0.70 0.71 0.75 0.78 0.58 0.07 −0.13 −0.14
(0.36) (−1.03) (−1.08)

CoSke𝑤 0.68 0.83 0.79 0.76 0.77 0.74 0.68 0.65 0.70 0.61 −0.07 −0.04 −0.07
(−0.66) (−0.42) (−0.56)

IdioSke𝑤 0.70 0.68 0.75 0.75 0.77 0.79 0.74 0.77 0.68 0.59 −0.11 −0.31 −0.33
(−0.87) (−3.27) (−3.22)

IdioVol 0.61 0.78 0.82 0.91 0.92 0.95 0.81 0.74 0.43 −0.35 −0.96 −1.17 −1.16
(−3.56) (−8.12) (−7.50)
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𝛽 10-1 portfolio. However, as discussed previously, the CAPM predicts that the
average return of a portfolio that is long high-𝛽 stocks and short low-𝛽 stocks
should be positive. Not surprisingly, therefore, after adjusting for risk using the FFC
and FFCPS risk models, the results indicate that the 𝛽 10-1 portfolio significantly
underperforms. The FFC and FFCPS alphas for this portfolio are −0.51% per month
(t-statistic = −2.43) and −0.48% per month (t-statistic = −2.16), respectively, both
of which are economically important and highly statistically significant.

The results using the Price sample fail to indicate a strong relation between
stock size and future stock returns. Regardless of whether value-weighted or
equal-weighted portfolios are used, the average return and alphas of the MktCap
10-1 portfolio are all small and statistically indistinguishable from zero. The one
exception is the alpha generated by the equal-weighted MktCap 10-1 portfolio
of −0.37% per month (t-statistic = −1.82) relative to a risk model that includes
the market (MKT), value (HML), and momentum (MOM) factors.4 This differs
substantially from the CRSP sample, in which a strong negative relation between
MktCap and future stock returns was detected. The result is not that surprising,
however, since the objective in creating the Price sample is to remove small and
illiquid stocks from the sample. As was shown in Chapter 9, the size effect is
largely driven by very small stocks. The summary statistics presented in Table 16.1
demonstrate that many such small stocks have been removed by the price screen
used to create the Price sample.

The value effect in the Price sample is slightly weaker than in the CRSP sample,
but it is still present. When using value-weighted portfolios, the average return of
the BM 10-1 portfolio using the Price sample is a marginally significant 0.38%
per month (t-statistic = 1.67). The alpha of this portfolio relative to a model that
includes the market (MKT), size (SMB), and momentum (MOM) factors of 0.55%
per month (t-statistic = 2.42) is larger than the average return and highly statistically
significant. The alpha is higher once again when the liquidity (PSL) factor is included
in the model. The results are stronger when equal-weighted portfolios are used. The
equal-weighted BM 10-1 portfolio’s average return of 0.88% per month (t-statistic
= 3.77) is much higher than the average return of the value-weighted portfolio. The
same can be said of the alphas.

The results in Table 16.5 indicate that the momentum phenomenon is extremely
strong in the Price sample. The value-weighted Mom 10-1 portfolio generates an
average return of 1.64% per month (t-statistic = 5.74) and alphas of 1.97% per month
(t-statistic = 7.24) and 1.99% per month (t-statistic = 6.87) relative to the FFC and
FFCPS risk models with the MOM factor removed. When using equal-weighted
portfolios, the average return, FFC (MOM factor removed) alpha, and FFCPS (MOM
factor removed) alpha of the Mom 10-1 portfolio are 1.80% per month (t-statistic =
7.52), 2.03% per month (t-statistic = 9.03), and 2.08% per month (t-statistic = 8.33),
respectively. These results are even stronger than the CRSP sample equal-weighted
portfolio results.

4Recall that we exclude the size (SMB) factor when risk-adjusting the returns of portfolios formed by
sorting on MktCap.
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The average return of the value-weighted Re𝑣 10-1 portfolio using the Price
sample is a statistically insignificant −0.30% per month (t-statistic = −1.41).
However, when adjusting for risk using the FFC model, this portfolio’s alpha of
−0.41% per month (t-statistic = −1.84) is marginally statistically significant. This
pattern is consistent with what was observed in the CRSP sample, except that in
the CRSP sample the magnitudes of the average return and alpha were substantially
larger and highly statistically significant. When the PSL factor is added to the risk
model, the Price sample alpha of −0.32% per month (t-statistic = −1.32) once again
becomes insignificant. When using equal-weighted portfolios, the average return and
alphas of the Re𝑣 10-1 portfolio are all negative and highly statistically significant,
indicating that none of the factors can explain the negative average return of the
equal-weighted Re𝑣 10-1 portfolio. These Price sample results are similar to the
corresponding results from the CRSP sample, although the reversal phenomenon
appears to be stronger in the CRSP sample. Overall, the reversal phenomenon is
weaker in the Price sample than in the CRSP sample.

The Price sample results provide only scant evidence of a relation between
illiquidity and expected returns. This is not surprising because the Price sample was
designed to exclude highly illiquid stocks, which were shown in Chapter 16 to be the
drivers of the positive relation between Illiq and future stock returns detected in the
CRSP sample. In the Price sample, neither the value-weighted nor equal-weighted
Illiq 10-1 portfolios generates a statistically significant average return. However,
consistent with the results from the CRSP sample, when value-weighted portfolios
are formed using the Price sample, the FFC alpha of −0.27% per month (t-statistic
= −2.36) and FFCPS alpha of −0.27% per month (t-statistic = −2.28) generated
by the Illiq 10-1 portfolio are not only negative, but highly statistically significant.
When using equal-weighted portfolios however, the alphas of the Illiq 10-1 portfolio
are statistically indistinguishable from zero. This contrasts with the positive and
significant alphas of the equal-weighted Illiq difference portfolio formed using the
CRSP sample.

The univariate portfolio analyses using the Price sample fail to detect any relation
between co-skewness and future stock returns. The average return and alphas of
the CoSke𝑤 10-1 portfolio are small and statistically indistinguishable from zero
regardless of whether value-weighted or equal-weighted portfolios are used. This
contrasts somewhat with the results of the CRSP sample. Using the CRSP sample,
the average return and alphas of the equal-weighted CoSke𝑤 10-1 portfolio were
negative and at least marginally statistically significant.

Similar to the results generated by the CRSP sample, when using the Price sample,
the value-weighted IdioSke𝑤 10-1 portfolio generates a negative but statistically
insignificant average return, but the FFC alpha of −0.55% per month (t-statistic =
−4.47) and FFCPS alpha of −0.49% per month (t-statistic = −3.82) are both large in
magnitude and highly significant. These results indicate a negative relation between
idiosyncratic skewness and future stock returns after controlling for risk captured by
the factors included in the risk models. The equal-weighted Price sample results are
similar to the Price sample value-weighted results in that the average equal-weighted
IdioSke𝑤 10-1 portfolio generates insignificant abnormal returns but large, negative,
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and significant risk-adjusted returns. The equal-weighted results in the Price sample
are stronger than the equal-weighted results in the CRSP sample. In the CRSP
sample, the average return and alphas of the equal-weighted IdioSke𝑤 10-1 portfolio
are not significant.

The idiosyncratic volatility puzzle is strong in the Price sample. Regardless
of weighting scheme, the average return and alphas of the IdioVol 10-1 portfolio
are negative, large in magnitude, and highly statistically significant. When using
equal-weighted portfolios, the results are stronger in the Price sample than in the
CRSP sample. In the CRSP sample, the equal-weighted average return of the IdioVol
10-1 portfolio was insignificant. In the Price sample, not only is the average return
generated by the IdioVol 10-1 portfolio of −0.93% per month (t-statistic = −3.62)
statistically significant, it is substantially larger in magnitude than the average return
of the corresponding portfolio from the CRSP sample. The same is true of the alphas,
which, when using equal-weighted portfolios, are much larger in magnitude using
the Price sample than the CRSP sample.

Size Sample

We now turn to the results of the univariate decile portfolio analyses using the
Size sample. The Size sample is created by restricting the Price sample to those
stocks that have market capitalizations at least as large as the 10th percentile market
capitalization among all NYSE-listed stocks in the given month. The results of the
univariate portfolio analyses using the Size sample are shown in Table 16.6. Since
the Size sample is a subset of the Price sample, our discussion of the Size sample
results focuses on the differences between the Size and Price samples.

The Size sample univariate portfolio analyses detect no relation between 𝛽 and
future stock returns. The average return and alphas of the 𝛽 10-1 portfolio, regardless
of how the portfolios are weighted, are statistically indistinguishable from zero. The
Size sample and Price sample value-weighed portfolio results are quite similar. When
using equal-weighted portfolios, however, the alphas of the 𝛽 10-1 portfolio in the
Price sample are negative and significant, whereas this result is not found in the Size
sample.

When sorting Size sample stocks into MktCap-based portfolios, the average return
of the MktCap 10-1 portfolio, while negative, is statistically insignificant, regardless
of weighting scheme. The same can be said for the alphas relative to risk models
that include the market (MKT), value (HML), momentum (MOM), and liquidity
(PSL) factors. These results are similar to the results from the Price sample. The only
exception is that in the Price sample, the alpha of the equal-weighted MktCap 10-1
portfolio relative to a risk model that includes the MKT , HML, and MOM factors is
marginally statistically significant. We do not find this result in the Size sample.

The univariate portfolio analysis using the Size sample and sorting on BM detects
a positive and marginally significant value-weighted BM 10-1 portfolio average
return of 0.38% per month (t-statistic = 1.66). The alphas of this portfolio relative to
the FFC and FFCPS risk models that exclude the value (HML) factor are larger than
the average return and highly statistically significant. The average return and alphas
of the BM 10-1 equal-weighted portfolio are all economically large and highly
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TABLE 16.6 Univariate Portfolios—Size Sample
This table presents the results of univariate portfolio analyses of the relation between each of
the variables discussed in previous chapters of Part II of this book and future stock returns.
Monthly portfolios are formed by sorting all stocks in the Size sample into portfolios using
decile breakpoints calculated based on the given sort variable using all stocks in the Size sam-
ple. Panel A (Panel B) shows the average value-weighted (equal-weighted) one-month-ahead
excess return (in percent per month) for each of the 10 decile portfolios formed using different
variables as the sort variable. The table also shows the average return of the portfolio that is
long the 10th decile portfolio and short the first decile portfolio, as well as the FFC and FFCPS
alphas for this portfolio. Newey and West (1987) t-statistics, adjusted using six lags, testing
the null hypothesis that the average 10-1 portfolio return or alpha is equal to zero, are shown
in parentheses.

Panel A: Value-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

𝛽 0.45 0.41 0.48 0.48 0.58 0.49 0.48 0.38 0.38 0.36 −0.09 −0.17 −0.21
(−0.28) (−0.73) (−0.88)

MktCap 0.66 0.65 0.68 0.68 0.72 0.68 0.62 0.63 0.55 0.39 −0.27 −0.16 −0.12
(−1.50) (−0.96) (−0.69)

BM 0.32 0.33 0.47 0.45 0.42 0.48 0.51 0.56 0.64 0.70 0.38 0.60 0.68
(1.66) (2.69) (3.03)

Mom −0.26 0.24 0.39 0.39 0.37 0.42 0.52 0.65 0.79 1.19 1.45 1.77 1.78
(4.99) (6.39) (6.05)

Re𝑣 0.42 0.66 0.66 0.50 0.50 0.48 0.41 0.42 0.31 0.24 −0.18 −0.29 −0.20
(−0.83) (−1.30) (−0.81)

Illiq 0.41 0.55 0.51 0.54 0.63 0.60 0.56 0.57 0.55 0.52 0.12 −0.16 −0.17
(0.74) (−1.91) (−1.78)

CoSke𝑤 0.64 0.63 0.53 0.55 0.55 0.49 0.45 0.49 0.37 0.45 −0.19 −0.03 −0.02
(−1.19) (−0.23) (−0.10)

IdioSke𝑤 0.44 0.42 0.54 0.53 0.51 0.48 0.55 0.45 0.50 0.35 −0.09 −0.48 −0.45
(−0.70) (−3.83) (−3.36)

IdioVol 0.45 0.54 0.49 0.47 0.59 0.53 0.62 0.52 0.27 −0.27 −0.72 −0.83 −0.86
(−2.34) (−4.22) (−3.89)

Panel B: Equal-Weighted Portfolios

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

𝛽 0.63 0.64 0.70 0.73 0.72 0.75 0.70 0.62 0.52 0.37 −0.26 −0.35 −0.34
(−0.79) (−1.65) (−1.48)

MktCap 0.66 0.64 0.67 0.68 0.72 0.68 0.63 0.62 0.56 0.43 −0.23 −0.15 −0.11
(−1.42) (−0.98) (−0.70)

BM 0.17 0.32 0.49 0.62 0.62 0.72 0.73 0.79 0.85 0.91 0.74 1.01 1.03
(3.07) (4.39) (4.54)

Mom −0.25 0.29 0.49 0.57 0.62 0.67 0.78 0.87 1.06 1.29 1.54 1.80 1.83
(5.97) (7.40) (6.92)

Re𝑣 0.90 0.94 0.82 0.74 0.71 0.64 0.52 0.50 0.30 0.17 −0.74 −0.80 −0.73
(−3.76) (−3.94) (−3.23)

Illiq 0.51 0.62 0.61 0.66 0.76 0.74 0.70 0.69 0.65 0.54 0.04 −0.19 −0.19
(0.23) (−2.04) (−1.88)

CoSke𝑤 0.68 0.72 0.73 0.73 0.74 0.67 0.65 0.61 0.65 0.54 −0.14 −0.08 −0.08
(−1.28) (−0.67) (−0.60)

IdioSke𝑤 0.65 0.63 0.72 0.69 0.73 0.73 0.72 0.73 0.63 0.49 −0.17 −0.38 −0.40
(−1.28) (−3.66) (−3.44)

IdioVol 0.57 0.71 0.77 0.78 0.88 0.82 0.81 0.69 0.49 −0.25 −0.82 −0.98 −0.96
(−2.83) (−5.84) (−5.27)
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statistically significant. All of the Size sample results for BM-sorted portfolios are
very similar to the corresponding results produced by the Price sample.

The momentum phenomenon is very strong in the Size sample. The average
return and alphas of the Mom 10-1 portfolio, regardless of portfolio weighting
scheme, are positive and highly statistically significant. While the average return
and alphas are somewhat smaller in the Size sample than in the corresponding Price
sample portfolios, they remain very economically important in the Size sample.

The results for Re𝑣-sorted portfolios using the Size sample are similar to, but
slightly weaker than, those found using the Price sample. When using value-weighted
portfolios, the Size sample Re𝑣 10-1 portfolio generates statistically insignificant
average return and alphas. When using equal-weighted portfolios, consistent with
the results from the Price sample, the Size sample Re𝑣 10-1 portfolio generates a
negative and significant average return, FFC alpha, and FFCPS alpha. The results
of the Size sample univariate decile portfolio analyses using Illiq as the sort variable
are quite interesting. Regardless of weighting scheme, the average return of the
Illiq 10-1 portfolio is positive but economically small and statistically insignificant.
The FFC and FFCPS alphas of this portfolio, however, are negative and at least
marginally statistically significant. Thus, we not only fail to detect a positive relation
between illiquidity and future stock returns in the Size sample, but the results
indicate that stock with high values of Illiq tend to underperform, on a risk-adjusted
basis, stocks with low values of Illiq. In the Price sample, this effect only existed in
value-weighted portfolios. In the Size sample, the Illiq difference portfolio generates
negative abnormal returns regardless of weighting scheme.

Similar to the Price sample, the Size sample produces no evidence of a relation
between co-skewness and expected stock returns. The average return, FFC alpha,
and FFCPS alpha of the Size sample CoSke𝑤 10-1 portfolio, regardless of weighting
scheme, are economically small and statistically insignificant.

The results of the portfolio analysis of the relation between idiosyncratic skewness
and future stock returns using the Size sample are, once again, highly similar to
the corresponding results from the Price sample. Regardless of weighting scheme,
the IdioSke𝑤 10-1 portfolio generates a negative but insignificant average return.
The FFC and FFCPS alphas of this portfolio, however, are negative, economically
important, and highly statistically significant.

Finally, as was the case in the Price sample, the idiosyncratic volatility puzzle
is strong in the Size sample. Regardless of weighting scheme, the average return,
FFC alpha, and FFCPS alpha of the IdioVol 10-1 portfolio are negative, large, and
highly statistically significant. The results are very similar to the corresponding Price
sample results.

This completes our portfolio analysis of the relations between each of the variables
examined in this book and future stock returns using the CRSP, Price, and Size sam-
ples. Due to the large number of pairs of variables that could be used to perform
bivariate portfolio analyses, and the impracticality of presenting all such results for
each of the samples, we proceed directly to (Fama and MacBeth (1973), FM hereafter)
regression analyses of the relations between these variables and future stock returns.
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16.5.2 Fama–MacBeth Regression Analysis

For each sample, we perform FM regression analyses using several different
cross-sectional regression specifications. For each variable, we use a univariate spec-
ification with only the given variable as an independent variable in the regression.
We then employ a specification that includes all of the variables as independent
variables simultaneously. We refer to this specification as the full specification.

The results of the FM regression analyses are presented in Table 16.7. Results
using the CRSP, Price, and Size samples are presented in Panels A, B, and C,
respectively. The table shows the time-series averages of the monthly cross-sectional
regression coefficients, along with Newey and West (1987)-adjusted (six lags)
t-statistics testing the null hypothesis that the average coefficient is equal to zero.
To facilitate comparison of the results across the different sample, Table 16.7 is
laid out in a different manner than the previous tables reporting FM regression
results. In the portion of each panel labeled Univariate Specifications, each column
corresponds to a different specification, with the lone independent variable used in
the specification displayed at the top of each column. The rows labeled Slope and
Intercept present the average slope and intercept coefficients, respectively, from the
given FM regression. In the section of each panel labeled Multivariate Specification,
we present results for the multivariate specification that includes all of the variables
as independent variables. Each column shows the average coefficient on the variable
indicated at the top of the column.

Consistent with the equal-weighted univariate portfolio results, the univariate
regression specifications using 𝛽 as the only independent variable detect a negative
and significant relation between 𝛽 and future stock returns in the CRSP sample, but
no such relation is detected in the Price or Size samples, since the restricted sample
regressions generate average coefficients on 𝛽 that, while negative, are statistically
indistinguishable from zero. When the multivariate specification is employed,
regardless of which sample is used, the FM regressions detect no relation between 𝛽

and future stock returns. This result is a contradiction of the CAPM’s main prediction
of a positive cross-sectional relation between beta and expected stock returns.

The univariate FM regression analysis using Size as the only independent variable
in the regression specification detect a negative relation between Size and future
stock returns in the CRSP sample, but no such relation in the Price or Size samples.
This is once again consistent with the equal-weighted portfolio analyses. When
using the full specification, however, regardless of which sample is used, the FM
regression analysis detects a strong negative relation between Size and future stock
returns after controlling for the effects of all of the other variables. The results,
therefore, indicate that the size effect is present, even in the restricted samples.

As was the case in the equal-weighted portfolio analyses, the univariate FM regres-
sion analyses detect a strong positive relation between BM and future stock returns in
all samples. In the full-specification analysis, however, while the value effect is robust
in the CRSP and Price samples, the coefficient on BM in the Size sample is positive but
statistically insignificant. Among stocks that pass the price and size screens, therefore,
the value effect appears to be explained by the other variables examined in this book.
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TABLE 16.7 Fama–MacBeth Regression Analysis
This table presents the results of Fama and MacBeth (1973) regression analyses of the relation
between expected stock returns and the variables examined throughout this book. Panels A,
B, and C show results for the CRSP sample, the Price sample, and the Size sample, respec-
tively. Each panel presents results for univariate regression specifications and a multivariate
regression specification that includes all of the independent variables. Each column present-
ing univariate specification results corresponds to an analysis using a different independent
variable, indicated in the column header. When presenting the results of the multivariate spec-
ification, the average coefficient for each independent variable is presented in a different
column, indicated in the column header. The dependent variable in all specifications is the
one-month-ahead excess stock return. Independent variables are winsorized at the 0.5% level
on a monthly basis. t-statistics, adjusted following Newey and West (1987) using six lags,
testing the null hypothesis that the average coefficient is equal to zero, are shown in parenthe-
sis. The table also presents the average adjusted R-squared (Adj. R2) and the number of data
points (n) for the cross-sectional regressions.

Panel A: CRSP Sample

Univariate Specifications

𝛽 Size BM Mom Re𝑣 Illiq CoSke𝑤 IdioSke𝑤 IdioVol

Slope −0.265 −0.142 0.415 0.007 −0.048 0.050 −0.012 −0.032 −0.008
(−1.96) (−2.93) (5.30) (3.01) (−10.07) (1.98) (−1.80) (−0.51) (−2.52)

Intercept 0.971 1.314 0.423 0.607 0.760 0.693 0.821 0.853 1.040
(3.85) (2.81) (1.44) (2.22) (2.44) (2.47) (2.90) (3.20) (5.01)

Adj. R2 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02
n 4426 4781 3391 4410 4740 3600 3948 3948 4732

Multivariate Specification

Intercept 𝛽 Size BM Mom Re𝑣 Illiq CoSke𝑤 IdioSke𝑤 IdioVol

1.915 0.004 −0.179 0.141 0.007 −0.059 0.067 0.001 −0.123 −0.013
(5.46) (0.03) (−4.15) (1.99) (3.85) (−11.32) (3.74) (0.13) (−3.85) (−5.85)

Adj. R2: 0.07, n: 2561.

Panel B: Price Sample

Univariate Specifications

𝛽 Size BM Mom Re𝑣 Illiq CoSke𝑤 IdioSke𝑤 IdioVol

Slope −0.175 −0.053 0.346 0.010 −0.026 −0.015 −0.005 −0.044 −0.016
(−1.08) (−1.39) (3.69) (6.08) (−6.16) (−0.39) (−0.98) (−0.87) (−4.60)

Intercept 0.817 0.883 0.373 0.480 0.686 0.689 0.719 0.742 1.230
(4.03) (2.36) (1.34) (2.00) (2.61) (2.74) (2.93) (3.11) (6.36)

Adj. R2 0.03 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.02
n 3273 3524 2478 3262 3495 2883 2957 2957 3498

Multivariate Specification

Intercept 𝛽 Size BM Mom Re𝑣 Illiq CoSke𝑤 IdioSke𝑤 IdioVol

1.951 −0.033 −0.170 0.156 0.008 −0.040 −0.042 0.004 −0.105 −0.016
(5.90) (−0.22) (−4.25) (2.10) (4.98) (−8.49) (−1.38) (0.73) (−3.20) (−7.93)

Adj. R2: 0.07, n: 2033.
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TABLE 16.7 (Continued)

Panel C: Size Sample

Univariate Specifications

𝛽 Size BM Mom Re𝑣 Illiq CoSke𝑤 IdioSke𝑤 IdioVol

Slope −0.115 −0.047 0.312 0.009 −0.021 −0.861 −0.008 −0.063 −0.016
(−0.64) (−1.16) (2.56) (4.89) (−4.52) (−1.45) (−1.24) (−1.22) (−3.96)

Intercept 0.751 0.864 0.390 0.434 0.667 0.665 0.672 0.701 1.139
(4.17) (2.07) (1.42) (1.88) (2.69) (2.74) (2.85) (3.04) (6.15)

Adj. R2 0.04 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.02
n 2213 2337 1751 2208 2323 2128 2043 2043 2327

Multivariate Specification

Intercept 𝛽 Size BM Mom Re𝑣 Illiq CoSke𝑤 IdioSke𝑤 IdioVol

1.800 −0.013 −0.156 0.125 0.008 −0.037 −0.221 0.002 −0.096 −0.012
(5.24) (−0.09) (−3.81) (1.40) (4.43) (−7.55) (−0.27) (0.28) (−2.88) (−5.65)

Adj. R2: 0.08, n: 1563.

The FM regression analyses detect a strong momentum effect in all samples.
The average coefficients of 0.007 (t-statistic = 3.01), 0.010 (t-statistic = 6.08), and
0.009 (t-statistic = 4.89) in the univariate specifications using the CRSP sample,
Price sample, and Size sample, respectively, are all positive and highly statistically
significant. Consistent with the univariate portfolio analyses, the results indicate
that the momentum phenomenon is stronger in the restricted samples than in the
unrestricted CRSP sample. The same is true when using the multivariate regression
specification. The CRSP sample multivariate FM regression analysis produces an
average coefficient on Mom of 0.007 (t-statistic = 3.85). The corresponding analyses
for the Price and Size sample generate average coefficients of 0.008 (t-statistic =
4.98) and 0.008 (t-statistic = 4.43), respectively.

The reversal phenomenon is also strong in all samples. Both the univariate and
multivariate specifications produce average coefficients on Re𝑣 that are negative
and highly statistically significant. In each sample, the average coefficient on Re𝑣
is larger in magnitude when using the full specification than in the univariate
specification, indicating that not only is the reversal phenomenon not explained
by the other variables, but that when the other variables are controlled for, the
magnitude of the effect is actually larger than indicated by the univariate analyses.

Table 16.7 indicates that the positive relation between illiquidity and expected
stock returns is present only in the full CRSP sample. In the CRSP sample, the average
coefficient on Illiq of 0.050 (t-statistic= 1.98) in the univariate specification and 0.067
(t-statistic = 3.74) in the multivariate specification are both positive and statistically
significant. However, in the Price sample and the Size sample, both the univariate and
multivariate specifications generate statistically insignificant average coefficients on
Illiq. These results are consistent with the results of the equal-weighted univariate
portfolio analyses that failed to indicate a positive relation between Illiq and future
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stock returns in the Price and Size samples. In fact, in the Size sample, when adjusting
the returns of the Illiq 10-1 portfolio for risk using the FFC or FFCPS models, the
results indicate a negative and at least marginally significant alpha. The results of
the full-specification FM regression analysis using the Size sample, however, fail
to detect any relation between Illiq and future stock returns. The average coefficient
on Illiq in the Size sample univariate specification of −0.861, while insignificant,
is much larger in magnitude than the coefficient on Illiq in the full specification of
−0.221. This indicates that the negative alphas of the Illiq 10-1 portfolio are likely
explained by other variables included in the full FM regression specification.

Consistent with the negative and marginally statistically significant average return
produced by the equal-weighted CRSP sample CoSke𝑤 10-1 portfolio, the CRSP
sample univariate FM regression analysis using CoSke𝑤 as the only independent
variable produces a marginally statistically significant average coefficient of −0.012
(t-statistic = −1.80) on CoSke𝑤. The results of the full-specification analysis,
however, find an insignificant average coefficient of 0.001 (t-statistic = 0.13) on
CoSke𝑤, indicating that any relation between CoSke𝑤 and future stock returns is
explained by the other variables. In the Price and Size samples, the FM regression
analyses provide no indication of a relation between co-skewness and expected
stock returns since the average coefficient on CoSke𝑤 in both the univariate and
multivariate analyses is statistically indistinguishable from zero.

Regardless of which sample is used, the univariate FM regression analyses
generate a negative but statistically insignificant average coefficient on IdioSke𝑤.
However, the full-specification FM regression analyses detect a strong negative
relation between idiosyncratic skewness and future stock returns. The average
full-specification coefficients on IdioSke𝑤 in the CRSP, Price, and Size samples are
−0.123 (t-statistic = −3.85), −0.105 (t-statistic = −3.20), and −0.096 (t-statistic
= −2.88), respectively. For the Price and Size samples, these results are similar to
the univariate portfolio analyses, which indicated that the IdioSke𝑤 10-1 portfolios
generated insignificant average returns but negative and significant alphas. Both
analyses indicate that to isolate the effect of idiosyncratic skewness, it is necessary
to control for other effects first.

Finally, the FM regression results indicate a strong negative relation between
idiosyncratic volatility and future stock returns. In all three samples, both the
univariate and multivariate regression specifications generate a negative and highly
statistically significant average coefficient on IdioVol. The results indicate that the
idiosyncratic volatility puzzle is present even among the larger and more liquid
stocks that comprise the Price and Size samples.

16.6 SUMMARY

In this chapter, we have examined the main results of empirical asset pricing
research, documented throughout this book, using three samples. The CRSP sample,
which is used in all previous chapters of Part II of this book, contains all U.S.-based
common stocks that are listed on the New York Stock Exchange, the American Stock
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Exchange, and the NASDAQ. The Price sample is the subset of stocks in the CRSP
sample that have a share price between $5 and $1000, inclusive. The Size sample
further restricts the set of stocks to include only those with market capitalizations
above the 10th percentile market capitalization among NYSE-listed stocks.

Portfolio and Fama and MacBeth (1973) regression analyses fail to indicate a
robust relation between beta and expected stock returns in any of the samples. A neg-
ative relation between stock size and expected stock returns is detected in all samples,
but is substantially weaker in the restricted samples. Portfolio analyses fail to detect
a size effect in the Price and Size sample. The regression analyses detect a negative
relation between stock size and expected returns in the restricted samples only when
other effects are controlled for. A positive relation between book-to-market ratio and
expected stock returns, known as the value effect, is present in all samples, although
in the Size sample, regression results indicate that this phenomenon is explained
by other variables. The momentum effect is very strong in all samples regardless
of empirical methodology. A negative relation between reversal, measured as the
stock return in the most recent months, is detected in most of the empirical analyses.
However, value-weighted portfolio analyses fail to detect the reversal phenomenon in
the Price and Size samples, indicating that reversal is primarily a small stock effect.
The portfolio and regression analyses fail to detect a consistent relation between
illiquidity and future stock returns. Equal-weighted portfolio analysis and regression
analysis using the full CRSP sample indicate that less liquid stocks command higher
expected returns. Other analyses fail to detect a strong relation between illiquidity
and expected stock returns. The results of the analyses provide very little indication
of a relation between co-skewness and expected stock returns. There is evidence,
however, that idiosyncratic skewness is related to expected stock returns, though this
result is only found when other effects are controlled for. Finally, the results indicate
that idiosyncratic volatility has a strong negative relation with future stock returns.
This result is commonly referred to as the idiosyncratic volatility puzzle.
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OPTION-IMPLIED VOLATILITY

In this, the final empirical chapter of this book, we investigate the ability of variables
calculated from option prices to predict future stock returns and future option returns.
The empirical asset pricing literature has identified several cross-sectional relations
between option-based variables and future stock and option returns. Here, we provide
a brief overview of several of the main results in this area of research.

Bali and Hovakimian (2009) find that the difference between the implied volatil-
ity of at-the-money (ATM) call options and ATM put options, a measure commonly
referred to as the call minus put implied volatility spread, has a strong positive rela-
tion with future stock returns. Cremers and Weinbaum (2010) document a similar
phenomenon using implied volatilities of options across a wider range of strikes. The
explanations for the ability of the call minus put implied volatility spread to predict
future stock returns vary between the two papers. Bali and Hovakimian (2009) find
that the call minus put implied volatility spread is strongly positively related, in the
cross section, to jump risk and conclude that the high average returns of stocks with
high call minus put implied volatility spreads represents a jump risk premium. Bali
and Hovakimian (2009) also find evidence of informed trading in the option markets
that may be an additional driver of this phenomenon. Cremers and Weinbaum (2010)
note that the ability of the call minus put implied volatility spread to predict future
stock returns is strongest among stocks that have highly liquid options and relatively
illiquid stocks, and that the ability of this measure to predict future stock returns dete-
riorates over time. Based on these results, Cremers and Weinbaum (2010) attribute
this effect to stock mispricing.

Empirical Asset Pricing: The Cross Section of Stock Returns, First Edition.
Turan G. Bali, Robert F. Engle, and Scott Murray.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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A second phenomenon documented by Bali and Hovakimian (2009) is the
strong negative relation between future stock returns and the realized minus implied
volatility spread, which is defined as the difference between volatility calculated
from historical stock returns and option-implied volatility calculated from option
prices. They claim that the realized minus implied volatility spread can be inter-
preted as a measure of volatility risk and the returns, therefore, capture the premium
associated with volatility risk. This finding is consistent with several other papers
that document a negative volatility risk premium. Jackwerth and Rubinstein (1996)
demonstrate that the implied volatilities of options written on the S&P 500 index
are higher than historical realized volatility. Bakshi and Kapadia (2003a) find that
delta-hedged option portfolios that constitute long volatility positions generate
negative average returns. Bakshi and Kapadia (2003b) demonstrate that implied
volatilities of individual equities are also, on average, higher than volatility measured
from historical returns. Ang, Hodrick, Xing, and Zhang (2006) show that stocks with
high sensitivities to innovations in aggregate volatility generate low average returns.
Carr and Wu (2009) find strong evidence of a negative variance risk premium by
comparing variance swap rates implied from option prices to realized variances.

Xing, Zhang, and Zhao (2010) show that the slope of the implied volatility smirk,
which measures risk-neutral skewness, has a strong cross-sectional relation with
future stock returns. Specifically, Xing et al. (2010) find that the implied volatility
of an out-of-the-money (OTM) put option minus the implied volatility of an ATM
call option, which is negatively related to risk-neutral skewness (high values of this
measure indicate a more negatively skewed risk-neutral distribution), is negatively
related to future stock returns. Their results, therefore, indicate a positive relation
between risk-neutral skewness and expected stock returns. Several other papers
such as Rehman and Vilkov (2012) and DeMiguel, Plyakha, Uppal, and Vilkov
(2013) document a similar positive relation between implied risk-neutral skewness
(or related measures) and future stock returns. This positive relation is consistent
with the predictions generated by demand-based option pricing models of Bollen
and Whaley (2004) and Garleanu, Pedersen, and Poteshman (2009). According
to demand-based option pricing, when informed investors predict positive returns
on a stock, they express this view in the market by buying calls and selling puts.
This price pressure increases the prices of OTM calls and decreases the prices of
OTM puts. The option-implied distribution of future stock returns, therefore, has
fatter right tails and thinner left tails for stocks expected by market participants to
appreciate in value. The opposite is true for stocks forecast to lose value.

It should be noted that the positive relation between skewness and expected
returns is contrary to the predictions of equilibrium asset pricing models. Models
produced by Arditti (1967, 1971), Kraus and Litzenberger (1976), Simkowitz and
Beedles (1978), Scott and Horvath (1980), Conine and Tamarkin (1981), Kane
(1982), Harvey and Siddique (2000), and Mitton and Vorkink (2007) all show that
investors have preference for, and thus command lower expected returns from, assets
with more positively skewed return distributions. Consistent with these theories,
Conrad, Dittmar, and Ghysels (2013) find evidence of a negative relation between
risk-neutral skewness and expected stock returns, and Chang, Christoffersen, and



�

� �

�

OPTIONS SAMPLE 443

Jacobs (2013) demonstrate that stocks whose returns exhibit higher exposures to
innovations in the option-implied skewness of the S&P 500 index returns generate
lower average returns.

An, Ang, Bali, and Cakici (2014) further the research on informed trading in
option markets by examining whether changes in call implied volatility and changes
in put implied volatility predict future stock returns. Their results demonstrate that
month-to-month changes in the implied volatility of ATM call options are positively
related to future stock returns and, after controlling for this effect, changes in the
implied volatility of ATM put options are negatively related to future stock returns.

In addition to the growing literature that examines cross-sectional relations
between option price-based variables and stock returns, there is a smaller line or
research that examines the returns of options. Goyal and Saretto (2009) demonstrate
that the realized minus implied volatility spread, discussed earlier, has a very strong
positive cross-sectional relation with the future returns of straddles, delta-hedged
calls, and delta-hedged puts. They attribute this phenomenon to mispricing in the
option market. According to Goyal and Saretto (2009), high (low) implied volatilities
relative to historical volatility are indications of overpriced (underpriced) options.
Large negative (positive) values of historical minus implied volatility, therefore,
coincide with overpriced (underpriced) options and thus lower (higher) future
returns for strategies designed to capture volatility. Cao and Han (2013) demonstrate
that delta-hedged option returns are negatively related, in the cross section, to
idiosyncratic volatility. Finally, Bali and Murray (2013) demonstrate a negative
relation between risk-neutral skewness and the returns of positions consisting of
options and shares in a manner such that the effect skewness is isolated.

In the remainder of this chapter, we examine several of the above-mentioned phe-
nomena. Doing so requires us to introduce a new database, OptionMetrics (OM here-
after), which is the most commonly used source of option price and Greek data. We
also discuss the construction of a new sample, generated from the OM database, that
contains only the subset of stocks upon which options are traded.

17.1 OPTIONS SAMPLE

The set of stocks upon which options trade is substantially smaller than the full set
of U.S.-based common stocks that comprise the CRSP sample used throughout the
majority of this book. The source most commonly used by empirical asset pricing
researchers for options data is the OM database. The OM database provides price,
implied volatility, and Greeks for all U.S.-listed index and equity options. The data
began in January of 1996 and, for the version of the database used for the analyses
whose results are presented in this text, end in January 2013. OM also provides data on
interest rates, individual stocks, and equity indices. These data, however, are intended
only to complement the options data and do not represent complete data sets.

Our sample of optionable stocks for any month t, which we refer to as the Options
sample, consists of all common stocks in the OM database for which there is a valid
price in OM’s security price (secprd) table on the last trading day of the given month.
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The security price table gives price, volume, return, and shares outstanding data for
securities underlying the options in the OM database. We remove entries where the
closing price (close field) in the security price table is less than or equal to $0.01.1

Common stocks are identified as those securities with a value of 0 in the issue_type
field in OM’s security (securd) table.

The CRSP database is merged to the OM database using CUSIPs. The OM
database identifies each underlying security using a security identifier (secid), which
is stored in the secid field in many different OM tables. To match OM secids to
CRSP PERMNOs, we match the cusip field in OM’s security (securd) file to the
NCUSIP field in CRSP’s daily stock names (dsenames) file. The security file in
the OM database contains only one entry for each secid. The daily stock names file
in the CRSP database, however, often contains many different entries for the same
PERMNO, with each entry being valid for a nonoverlapping date range indicated by
the NAMEDT (beginning of date range) and NAMEENDT (end of date range) fields
in the daily stock names file. When matching a CRSP PERMNO to a given month,
secid combination in our options sample, we require that this date range in the CRSP
database include the last calendar day of the given month t. Finally, for consistency
with the CRSP sample used throughout most of this text, the last month t we include
in our options sample is November 2012, meaning that our analyses of returns will
examine returns in months t + 1 from February 1996 through December 2012.

17.2 OPTION-BASED VARIABLES

In this section, we define several variables whose relations with expected stock returns
will be examined. We also define several variables that are used to measure the returns
associated with option positions.

17.2.1 Predictive Variables

Before proceeding to the definition of the focal variables of the analyses to be per-
formed in this chapter, it is useful to define a few intermediate variables that will be
used to construct several of the option-based variables of interest.

We begin by defining the ATM call implied volatility, ATM put implied volatility,
and OTM put implied volatility for stock i in month t. The ATM implied volatilities
come from OM’s standardized option price (stdopd) file. This file contains prices,
implied volatilities, and Greeks for at-the-forward-money call and put options with
fixed days until expiration. Specifically, data are provided for options with 30, 60,
91, 182, 273, 365, 547, and 730 days until expiration. The strike prices of all options
in this file are set to be equal to the forward price of the underlying stock with the
forward delivery date equal to the expiration date of the options. Since options with
the exact expirations and strikes indicated in the file are not available in the market,

1A negative value in the close field in OM’s security price database indicates that the value given in this
field is the average of the closing bid and ask values. We exclude stocks with negative values in the close
field from our sample.
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values in this table are generated from an implied volatility surface that is calculated
by OM for each stock on each day using values interpolated from available option
price data. Specifically, the implied volatility of each option is calculated from OM’s
implied volatility surface, which is discussed in more detail below. The option price
and Greeks are then calculated from the implied volatility using the Cox, Ross, and
Rubinstein (1979) binomial tree model. OM uses the Cox et al. (1979) model to gener-
ate equity option prices (and implied volatilities from prices) instead of the Black and
Scholes (1973) model because the Cox et al. (1979) model can account for possibility
of early exercise that arises due to the fact that exchange-traded options are American
in nature. In addition to providing option data, OM’s standardized option price file
gives a forward price for each stock for each given expiration. We take ATM call and
put implied volatilities, which we denote IVolCATM

i,t and IVolPATM
i,t , for a given stock

i in a given month t to be the implied volatilities, taken from the standardized option
price file on the month’s last trading day, of the 30-day ATM call and put options,
respectively. We require that the recorded implied volatility, forward price, and option
price indicated in the OM database be greater than zero.2 We also define the ATM
volatility, denoted IVol, to be the average of the ATM call implied volatility and the
ATM put implied volatility. Specifically, we have IVoli,t = (IVolCATM

i,t + IVolPATM
i,t )∕2.

Calculation of the implied volatility skew of Xing et al. (2010) requires the implied
volatility of an OTM put option. The OTM put implied volatility, which we denote
IVolPOTM , is taken from OM’s volatility surface (vsurfd) file. The volatility surface
file contains option prices and implied volatilities for options with fixed days until
expiration and fixed deltas. The days to expiration are the same as in the standardized
option price file. The volatility surface file includes data for call and put options with
absolute deltas from 0.20 to 0.80 in increments of 0.05. We define IVolPOTM

i,t to be
the implied volatility of the 30-day put option written on stock i with delta of −0.20,
taken on the last trading day of the given month t.

Having described the necessary components of the OM database and the prelimi-
nary variables, we can now define the option-based variables of interest.

Call Minus Put Implied Volatility Spread

We define the call minus put implied volatility spread, IVolSpread, shown by Bali
and Hovakimian (2009) and Cremers and Weinbaum (2010) to be positively related
to future stock returns, as the difference between the ATM call implied volatility and
the ATM call implied volatility. Specifically, we have

IVolSpreadi,t = IVolCATM
i,t − IVolPATM

i,t . (17.1)

Realized Minus Implied Volatility Spread

We define two versions of the realized minus implied volatility spread. The first
follows Bali and Hovakimian (2009), who find that the difference between realized

2When an implied volatility or Greek cannot be calculated for an option, OM puts a value of −99.00 in
the given field.
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and implied volatility has a strong negative relation with future stock returns.
Bali and Hovakimian (2009) calculate realized volatility using one month of daily
return data. We therefore take Vol1M

i,t − IVoli,t to be one measure of the difference
between realized and implied volatility. Vol1M is the sample standard deviation of
the daily returns of the given stock i in the given month t, as defined in Chapter 15.

Goyal and Saretto (2009) demonstrate that the realized minus implied volatil-
ity spread, where realized volatility is measured as the standard deviation of daily
stock returns over the past year, has a strong positive relation with future straddle,
delta-hedged call, and delta-hedged put returns. We therefore let Vol12M − IVol be the
difference between the 12-month realized volatility and the ATM implied volatility,
where Vol12M is once again defined in Chapter 15. While the main results of Goyal
and Saretto (2009) hold when realized volatility is calculated using one month of
daily return data, we use Vol12M − IVol to more accurately replicate their results.

Implied Volatility Skew

The implied volatility skew measures the steepness of the implied volatility smirk.
Following Xing et al. (2010), we define the volatility skew, denoted IVolSke𝑤, as the
difference between the implied volatility of the OTM put and the implied volatility
of the ATM call, giving

IVolSke𝑤 = IVolPOTM
i,t − IVolCATM

i,t . (17.2)

Holding the ATM call implied volatility constant, IVolSke𝑤 is higher for higher
values of OTM put implied volatility. Since a high OTM put implied volatility is
a symptom of a fat left tail of the risk-neutral distribution of future stock returns,
high values of IVolSke𝑤 are actually indicative of large negative skewness of the
risk-neutral distribution. IVolSke𝑤 therefore measures negative skewness. The neg-
ative relation between IVolSke𝑤 and future stock returns documented by Xing et al.
(2010), therefore, reflects a positive relation between risk-neutral skewness and future
stock returns.

Implied Volatility Changes

The volatility spread and skew variables defined above all measure volatility at the
end of month t. An et al. (2014) show that changes in implied volatility over time
predict the cross section of future stock returns. We therefore define the change in
ATM call implied volatility as the difference between the ATM call implied volatility
measured at the end of month t and the ATM call implied volatility measured at the
end of month t − 1.

ΔIVolCi,t = IVolCATM
i,t − IVolCATM

i,t−1. (17.3)

We define the change in ATM put implied volatility analogously.

ΔIVolPi,t = IVolPATM
i,t − IVolPATM

i,t−1. (17.4)
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17.2.2 Option Returns

In addition to examining the ability of option-based variables to predict future stock
returns, some studies examine the returns associated with option positions. The option
positions whose returns are most frequently examined are straddles, delta-hedged
calls, and delta-hedged puts.

Straddle Returns

A straddle position consists of a call and a put with the same strike and same expi-
ration. Straddle returns are calculated assuming that the straddle is created from the
same options used to determine the ATM call implied volatility (IVolC, ATM) and the
ATM put implied volatility (IVolP, ATM). In addition to providing implied volatility
data, OM’s standardized options table provides the price (premium field) and the
strike price (strike_price field), which is the same as the forward price, for all options
in the table. The price of the straddle position is, therefore, the sum of the price of
the 30-day at-the-forward-money call and put options on the last trading day of the
month t.

The payoff of the straddle position is the absolute value of the difference between
the spot price of the stock at expiration and the strike price of the options used to create
the straddle. The spot price of the stock at expiration is taken from OM’s security price
file on the last trading day on or prior to 30 days after the formation of the straddle
position.3 As mentioned earlier, the straddle position is formed on the last trading day
of month t.

The return of the straddle in month t + 1 is then calculated as the payoff of the
straddle divided by the price of the straddle minus one. To calculate the excess strad-
dle return, we then subtract the return of the risk-free security during the period from
the time at which the straddle was created until the time at which the return of the
straddle is calculated. Since the holding period for the straddle is not necessarily the
entire calendar month t + 1, the return on the risk-free security is calculated as the
compounded daily risk-free security returns over all days during the holding period.
Daily risk-free security return data are taken from Ken French’s data library.4

Delta-Hedged Call Returns

Delta-hedged call returns are calculated assuming that a long position in the 30-day
ATM call option is taken on the last trading day of the month t and delta-hedged at that
time using a position in the 30-day forward contract. The number of forward contracts
shorted is the delta of the call option, as reported in the delta field in OM’s standard
option file. Both the call and forward positions are held unchanged until expiration.
Since the cost of entering a forward contract is zero, the price of the delta-hedged call
position is simply the price of the call option.

The payoff of the delta-hedged call position at expiration is simply the sum of the
payoffs of the call position and the forward position. The payoff of the call position

3The expiration stock price is adjusted for splits using the adjustment factor (cfadj) field in OM’s security
price table.
4The URL for Ken French’s data library is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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is the maximum of the spot price at expiration minus the strike price of the call, and
zero. The payoff of the forward position is the position in the forward contract (the
negative of the call’s delta at the time the delta-hedged call is constructed) times
the difference between the spot price at expiration and the initial forward price. The
payoff of the delta-hedged call is simply the sum of the payoffs of the call position
and the forward position.

The delta-hedged call’s return in month t + 1 is found by dividing the payoff by the
initial price. The excess return is then calculated by taking the return and subtracting
the return of the risk-free security during the period for which the call and forward
positions are held.

Delta-Hedged Put Returns

The returns of delta-hedged put positions are calculated analogously to returns
of the delta-hedged calls. On the last day of month t, a long position in a 30-day
at-the-forward-money put is taken. A long forward position is also taken, with the
number of forward contracts being equal to the negative of the put’s delta (the delta
of a put is negative). The price of the position is the price of the put option. The
delta-hedged put’s payoff is the payoff of the put option (the maximum of the strike
price minus the spot price at expiration, and zero) plus the payoff of the forward
contract times the size of the position in the forward contract. The month t + 1 return
of the delta-hedged put is the payoff divided by the price, and the excess return is
the return minus the return of the risk-free security during the holding period.

17.2.3 Additional Notes

Before proceeding to our empirical investigations, a few additional notes on the cal-
culation of the option-based variables are warranted. Many of the variables used in
our analyses are not calculated in exactly the same way as in the original studies doc-
umenting the results. One reason for this is that we have chosen to use data from
OM’s implied volatility surface. There are a few advantages to this approach. First,
OM’s implied volatility surface gives data for options with standardized expirations
and moneyness. Thus, there is no need to further address potential differences in the
time to expiration or moneyness of the options used for different stocks in the sample.
Second, because the implied volatility surface is calculated by interpolating all avail-
able option price data on the given day, using the implied volatility surface provides
a larger sample than would be permitted by other approaches.5

Despite these benefits, many studies choose to use data pertaining to actual traded
options. OM provides this data in its option price (opprcd) file. The data include the
closing best bid and offer prices, Greeks, and an implied volatility for each available
option on each day. While on any given day, options for a given stock and expiration
combination may not be traded or quoted, some researchers prefer to use the actual
option price data instead of data taken from OM’s implied volatility surface.

5OM only provides volatility surface data for a stock if there exists enough option price data on the given
date to accurately calibrate the volatility surface.
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17.3 SUMMARY STATISTICS

Table 17.1 presents summary statistics for the Options sample. In addition to showing
summary statistics for the option-based variables, we show summary statistics for
other variables used throughout this book. The reason for this is that the Options

TABLE 17.1 Summary Statistics
This table presents summary statistics for option-based variables (Panel A), excess stock and
option returns (Panel B), and other variables (Panel C) calculated using the Options sample
for the months t from January 1996 through November 2012. Each month, the mean (Mean),
standard deviation (SD), skewness (Ske𝑤), excess kurtosis (Kurt), minimum (Min), fifth per-
centile (5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th percentile
(95%), and maximum (Max) values of the cross-sectional distribution of each variable is cal-
culated. The table presents the time-series means for each cross-sectional value. The column
labeled n indicates that average number of stocks for which the given variable is available.
IVolSpread is the difference between the implied volatilities of at-the-money call and put
options. Vol1M − IVol (Vol12M) is the difference between historical volatility calculated from
one month (12 months) of daily return data and the average of the implied volatilities of the
at-the-money call and put options. IVolSke𝑤 is the difference between the implied volatilities
of an out-of-the-money put option and an at-the-money call option. ΔIVolC and ΔIVolP are
the changes in the implied volatilities of at-the-money call and put options, respectively, from
the previous month end. IVol is the average of the at-the-money call and put implied volatil-
ities. Vol1M (Vol12M) is historical volatility calculated from one month (12 months) of daily
return data. IVolCATM and IVolPATM are the implied volatilities of at-the-money call and put
options. IVolPOTM is the implied volatility of an out-of-the-money put option. Panel B presents
summary statistics for excess stock returns, straddle returns, delta-hedged call returns, and
delta-hedged put returns. The options used to calculate each of these variables have expiration
in 30 days.

Panel A: Option Variables

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

IVolSpread −0.84 9.66 −0.78 106.79 −131.03 −11.34 −2.83 −0.54 1.49 8.74 124.79 2110
Vol1M − IVol −3.03 19.74 1.98 51.32 −140.09 −28.77 −11.09 −3.43 4.16 23.60 236.12 1617
IVolSke𝑤 5.88 11.65 0.83 51.65 −120.29 −6.31 1.61 4.70 8.95 22.25 140.87 2110
ΔIVolC −0.06 12.97 0.02 54.61 −143.82 −15.52 −4.52 −0.17 4.23 15.87 144.97 2072
ΔIVolP −0.06 12.76 0.22 55.73 −141.36 −14.83 −4.29 −0.20 3.97 15.20 144.96 2072
Vol12M − IVol 0.39 14.38 0.02 44.18 −134.36 −18.57 −4.63 0.64 6.01 18.25 155.26 1587
IVol 50.25 22.89 1.66 6.91 8.86 23.35 33.66 45.46 61.97 92.32 225.75 2110
Vol1M 46.46 25.74 3.27 40.13 6.07 19.11 29.42 40.76 57.24 91.09 332.91 1617
Vol12M 49.68 21.68 1.92 13.77 14.81 23.71 33.84 45.43 61.60 87.96 246.22 1587
IVolCATM 49.83 23.28 1.86 9.43 7.47 22.72 33.19 45.00 61.52 92.08 242.76 2110
IVolPATM 50.67 23.63 1.86 8.98 8.66 23.47 33.82 45.66 62.30 93.59 246.22 2110
IVolPOTM 55.71 23.88 1.83 8.91 13.06 27.60 38.79 51.05 67.51 98.54 253.95 2110

Panel B: Excess Returns

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

Stock 0.70 13.27 0.73 9.66 −66.08 −18.78 −6.41 0.21 7.12 21.60 101.38 1617
Straddle −8.87 75.62 2.08 14.40 −100.14 −93.11 −64.16 −25.07 27.29 128.92 697.49 2105
ΔHedged call −7.78 76.82 2.16 16.40 −100.14 −93.06 −63.87 −24.25 28.75 131.73 739.56 2105
ΔHedged put −9.41 74.95 2.06 13.58 −100.14 −93.17 −64.43 −25.33 26.70 126.90 692.00 2105

(continued)
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TABLE 17.1 (Continued)

Panel C: Firm Characteristics

Mean SD Ske𝑤 Kurt Min 5% 25% Median 75% 95% Max n

𝛽 1.13 0.51 0.70 0.66 −0.27 0.44 0.76 1.04 1.43 2.09 3.32 1587
MktCap 6140 20,809 9 117 32 149 477 1249 3798 23,410 368,429 1618
BM 0.54 0.55 7.26 119.73 0.00 0.10 0.24 0.42 0.69 1.30 10.47 1394
Mom 18.52 65.10 4.05 45.12 −85.63 −47.02 −14.89 7.51 34.97 117.08 871.05 1584
Re𝑣 1.14 13.60 1.38 21.92 −58.01 −18.32 −6.13 0.50 7.48 22.29 123.68 1616
Illiq 0.01 0.05 12.69 261.35 0.00 0.00 0.00 0.00 0.01 0.06 1.21 1617
CoSke𝑤 0.16 10.00 1.05 18.80 −59.92 −13.41 −4.45 −0.09 4.19 14.58 86.66 1512
IdioSke𝑤 0.38 0.73 1.53 7.00 −2.53 −0.54 −0.05 0.28 0.67 1.64 5.48 1512
IdioVol 39.09 24.79 3.58 43.90 5.06 14.42 23.04 33.22 48.37 82.15 326.72 1617

sample differs substantially from the CRSP sample used in the majority of Part II and
also from the subsets of the CRSP sample used in Chapter 16.

Summary statistics for the variables calculated from option-implied volatilities
are presented in Panel A. All volatilities are annualized values measured in percent.
The average value of IVolSpread is −0.84 indicating that, on average, put implied
volatilities are slightly higher than call implied volatilities. This can also be seen
in the summary statistics for IVolCATM and IVolPATM , which have means of 49.83
and 50.67, respectively. Values of IVolSpread range from −131.03 to 124.79 with a
median IVolSpread value of −0.54, only slightly higher than the mean. While the
cross-sectional distribution of IVolSpread is relatively symmetric with an average
skewness of −0.78, it is highly leptokurtic with an excess kurtosis of 106.79.

Values of Vol1M − IVol range from −140.09 to 236.12 in the average month, with
mean and median values of −3.03 and −3.43, respectively. Consistent with previous
work (Jackwerth and Rubinstein (1996), Bakshi and Kapadia (2003a,b) and Carr
and Wu (2009)), the negative mean and median values of Vol1M − IVol indicate that
implied volatility tends to be, on average, a little bit higher than recent realized
volatility.

The mean (median) IVolSke𝑤 value of 5.88 (4.70) shows that, consistent with a
volatility smirk, the implied volatility of an OTM put option tends to be higher than
the implied volatility of the ATM call. In the average month, even the 25th percentile
IVolSke𝑤 value of 1.61 is positive, indicating that the vast majority of stocks exhibit
a volatility smirk.

As would be expected, average values of ΔIVolC and ΔIVolP are very close to
zero. However, there is substantial variation in each of these variables, as indicated
by the average cross-sectional standard deviations of 12.97 and 12.76 for ΔIVolC and
ΔIVolP, respectively.

Interestingly, the mean and median values of Vol12M − IVol are slightly positive,
indicating that, on average, realized volatility calculated from 12 months of daily
return data is higher than option-implied volatility. The cross-sectional distribution
of Vol12M − IVol is quite symmetric with an average skewness of only 0.02, and highly
leptokurtic with an excess kurtosis of 44.18. The range of values of Vol12M − IVol is
similar to that of Vol1M − IVol.
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Panel B of Table 17.1 presents summary statistics for the excess returns of the
stocks, straddles, delta-hedged calls, and delta-hedged puts that will be examined
throughout this chapter. The mean (median) stock in the Options sample generates
an average monthly excess return of 0.70% (0.21%). Straddles generate mean
(median) monthly excess returns of −8.87% (−25.07%). Similar results are seen for
the delta-hedged calls (average excess return of −7.78% per month, median excess
return of −24.25% per month), and the delta-hedged puts (average excess return
of −9.41% per month, median excess return of −25.33% per month). The large
negative average returns of the straddle, delta-hedged call, and delta-hedged put
positions are consistent with previous findings of a negative price of volatility risk
(Bakshi and Kapadia (2003a) and Carr and Wu (2009)).

Summary statistics for the variables used in the previous chapters of Part II,
calculated using the Options sample, are shown in Panel C of Table 17.1. The most
salient difference between the options sample and the stock-based samples examined
throughout this book is that the market capitalization of the stocks in the options
sample is much larger than that of the stocks in the previously examined samples.
This holds even for the Size sample, the most restrictive sample used in Chapter 16.
The average stock in the Options sample has a market capitalization of more than
$6 billion. While some small stocks are included in the Options sample, the stocks
in the options sample are generally much larger than those included in the other
samples examined in this book.

Comparing the values of the other variables for stocks in the options sample to
those in the CRSP sample used throughout this book, the results indicate that 𝛽,
Mom, and CoSke𝑤 are all higher, in mean and in median, in the Options sample
than in the CRSP sample. BM, Illiq, IdioSke𝑤, and IdioVol all tend to be lower in
the Options sample than in the CRSP sample. Finally, the mean and median values
of Re𝑣 are approximately the same in both samples. In most cases, these results
hold when comparing the Options sample to the Price and Size samples examined
in Chapter 16, with a few exceptions. The Price and Size samples both have lower
mean and median values of IdioVol than the Options sample and higher average
values of Mom than the Options sample. Perhaps the Options sample can best be
characterized as containing the largest and most liquid stocks.

The last noteworthy result in Table 17.1 is that there are, in the average month,
2110 stocks in the Options sample in the average month. Of these, we are only able
to match 1618, on average, to stocks in the CRSP database. Thus, analyses that use
variables calculated from the CRSP database will have, at most, 1618 stocks in the
average month. This is substantially smaller than the 4794 stocks available in the
average month in the CRSP sample.

17.4 CORRELATIONS

Average cross-sectional correlations between the variables used to predict future
returns are shown in Table 17.2. Below-diagonal entries present the Pearson product-
moment correlations, and above-diagonal entries show Spearman correlations.
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TABLE 17.2 Correlations
This table presents the time-series averages of the annual cross-sectional Pearson product–
moment (below-diagonal entries) and Spearman rank (above-diagonal entries) correlations
between pairs of IVolSpread, Vol12M − IVol, IVolSke𝑤, ΔIVolC, ΔIVolP, Vol12M − IVol, 𝛽, Size,
BM, Re𝑣, Illiq, CoSke𝑤, IdioSke𝑤, IdioVol using the Options sample.
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IVolSpread −0.00 −0.59 0.29 −0.21 −0.03 −0.00 0.01 0.01 −0.01 −0.07 −0.01 −0.00 −0.02 −0.02
Vol1M − IVol 0.01 0.05 −0.13 −0.12 0.32 0.08 0.19 −0.01 0.05 0.13 −0.16 0.02 −0.06 0.31
IVolSke𝑤 −0.66 0.03 −0.25 0.06 0.08 −0.01 −0.01 0.02 0.01 0.08 0.02 0.00 −0.00 −0.02
ΔIVolC 0.32 −0.17 −0.27 0.53 −0.33 −0.02 0.01 0.00 0.05 −0.25 −0.01 −0.00 −0.01 0.01
ΔIVolP −0.26 −0.16 0.11 0.54 −0.33 −0.02 0.01 0.00 0.03 −0.18 −0.01 −0.00 −0.02 0.01
Vol12M − IVol −0.01 0.39 0.05 −0.37 −0.38 0.26 0.08 −0.06 0.06 0.16 −0.10 0.05 0.02 0.05
𝛽 −0.00 0.09 −0.03 −0.01 −0.02 0.24 −0.14 −0.12 −0.04 −0.02 0.09 0.08 0.15 0.41
Size 0.02 0.15 −0.02 −0.00 0.00 0.10 −0.12 −0.11 0.23 0.09 −0.93 0.07 −0.23 −0.51
BM 0.01 −0.02 0.03 0.00 0.00 −0.03 −0.09 −0.13 0.00 0.01 0.15 −0.01 −0.02 −0.11
Mom −0.00 0.03 0.00 0.03 0.02 0.11 0.00 0.13 0.01 0.01 −0.23 0.02 0.04 −0.12
Re𝑣 −0.07 0.13 0.07 −0.24 −0.17 0.16 −0.01 0.07 0.01 −0.00 −0.05 0.02 −0.01 −0.01
Illiq −0.00 −0.12 −0.04 0.01 0.01 −0.14 −0.06 −0.49 0.09 −0.17 −0.03 −0.08 0.20 0.44
CoSke𝑤 −0.00 0.02 −0.00 −0.01 −0.01 0.06 0.10 0.05 0.00 0.04 0.03 −0.04 0.02 −0.00
IdioSke𝑤 −0.02 −0.06 −0.01 −0.02 −0.02 0.04 0.15 −0.22 0.01 0.09 0.02 0.13 0.05 0.20
IdioVol −0.04 0.46 −0.03 0.03 0.03 0.02 0.35 −0.45 −0.05 −0.03 0.02 0.28 0.01 0.19

We first examine the correlations between the option-based variables. The table
shows that IVolSpread is strongly negatively correlated with IVolSke𝑤, positively
correlated with ΔIVolC, and negatively correlated with ΔIVolP. None of these
correlations are surprising and many of them are potentially mechanical. The
calculation of IVolSpread has a positive sign on ATM call implied volatility and
a negative sign on ATM put implied volatility. Since the calculation of IVolSke𝑤
assigns a negative sign to ATM call implied volatility, the calculation of ΔIVolC has
a positive sign on contemporaneous ATM call implied volatility, and the calculation
of ΔIVolP has a positive sign on the contemporaneous ATM put implied volatility,
the observed correlations are consistent with a mechanical effect.

The realized minus implied volatility spread, calculated using one-month realized
volatility (Vol1M − IVol), is negatively correlated with both ΔIVolC and ΔIVolP and
positively correlated with the realized minus implied volatility spread calculated
using 12-month realized volatility (Vol12M − IVol). Once again, these correlations
are probably at least partially mechanical. ATM call and put implied volatility enter
positively into the calculation of ΔIVolC and ΔIVolP, respectively, and negatively
into the calculation of Vol1M − IVol, potentially driving the negative correlation.
Obviously, IVol, which is the average of the ATM call and put implied volatilities,
carries a negative sign in the calculation of both Vol1M − IVol and Vol12M − IVol,
creating a positive correlation.

IVSke𝑤 has a negative correlation with ΔIVolC, as would be expected given that
IVolSke𝑤 is calculated with a positive sign on ATM call implied volatility while
ΔIVolC incorporates ATM call implied volatility with a positive sign. IVSke𝑤 also
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exhibits a relatively small, but not negligible, positive Pearson correlation of 0.11
with ΔIVolP.

Both ΔIVolC and ΔIVolP have a negative correlation with Vol12M − IVol, which is
once again probably a mechanical effect sinceΔIVolC andΔIVolP have a positive sign
on contemporaneous call and put implied volatility, respectively, and Vol12M − IVol
carries a negative sign on contemporaneous ATM call and put implied volatility.
Finally, ΔIVolC and ΔIVolP have an average cross-sectional Pearson correlation of
0.54, indicating that stocks whose ATM call implied volatility increases are also likely
to experience increases in ATM put implied volatility. One may actually think that this
correlation is lower than expected. For European options, the put–call parity relation
necessitates that the implied volatility of a call and put option with the same strike and
expiration be the same. If this holds at the end of both month t − 1 and month t, the
result would be a perfect correlation between ΔIVolC and ΔIVolP. The options under
consideration, however, are American options, meaning that the call and put implied
volatilities may differ from each other without indicating an arbitrage opportunity.

We next examine the correlations between the option variables and the variables
discussed in previous chapters of this book. Neither IVolSpread nor IVolSke𝑤 exhibit
substantial correlation with any of the previously examined variables. Vol1M − IVol
exhibits moderate positive correlations with 𝛽, Size, and Re𝑣, a moderate negative
correlation with Illiq, and a strong positive correlation with IdioVol. This last
correlation is expected because Vol1M measures total volatility over the last month
and IdioVol measures idiosyncratic volatility over the last month. Vol12M − IVol has
similar correlations to 𝛽, Size, Re𝑣, and Illiq as Vol1M − IVol, and a nonnegligible pos-
itive correlation with Mom. Interestingly, the correlation between Vol12M − IVol and
IdioVol is quite small. Both ΔIVolC and ΔIVolP are negatively correlated with Re𝑣
and exhibit very little correlation with any of the other previously examined variables.

Finally, the correlations between the variables examined in previous chapters of
this book, calculated from the stocks in the Options sample, are similar to those
found in the samples examined in Chapter 16. Perhaps the most notable difference
is that the average Pearson correlation between 𝛽 and Size in the option sample of
−0.12 is negative and substantial, whereas in the CRSP sample used throughout Part
II of this book and the Price and Size samples used in Chapter 16, the correlation
between 𝛽 and Size is substantially positive. Also, the average Pearson correlation
of −0.06 between 𝛽 and Illiq in the options sample is substantially smaller than the
corresponding correlation in the previously examined samples.

17.5 PERSISTENCE

We now proceed to persistence analyses of the option variables. The results of these
analyses, shown in Panel A of Table 17.3, show that many of the option variables
exhibit some persistence at relatively short lags, but none of them exhibit substantial
persistence when measured at lags of more than one year.

The persistence of IVolSpread measured at lags of one and three months are 0.16
and 0.11, respectively, indicating a nonnegligible but economically small persistence.
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TABLE 17.3 Persistence
This table presents the results of persistence analyses of IVolSpread, Vol1M − IVol, IVolSke𝑤,
ΔIVolC, ΔIVolP, Vol12M − IVol in Panel A, and 𝛽, MktCap, Size, BM, Mom, Re𝑣, Illiq,
CoSke𝑤, IdioSke𝑤, and IdioVol in Panel B, using the Options sample. Each month t, the
cross-sectional Pearson product–moment correlation between the month t and month t + 𝜏

values of the given variable is calculated. The table presents the time-series averages of the
monthly cross-sectional correlations. The column labeled 𝜏 indicates the lag at which the
persistence is measured.

Panel A: Option Variables
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1 0.16 0.15 0.26 −0.34 −0.33
3 0.11 0.17 0.19 0.01 0.02
6 0.08 0.14 0.14 0.02 0.02

12 0.06 0.13 0.10 0.04 0.04 0.12
24 0.04 0.09 0.06 0.03 0.03 0.09
36 0.02 0.09 0.04 0.03 0.03 0.08
48 0.01 0.07 0.04 0.02 0.03 0.05
60 0.01 0.07 0.04 0.03 0.03 0.06

120 0.00 0.04 0.02 0.02 0.03 0.00

Panel B: Stock Characteristics
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1 1.00 1.00 −0.02 0.90 0.54
3 0.99 0.99 0.00 0.84 0.54
6 0.99 0.98 0.01 0.78 0.51

12 0.68 0.97 0.96 0.75 −0.06 0.00 0.66 0.48
24 0.57 0.95 0.92 0.63 −0.05 0.01 0.51 0.43
36 0.51 0.93 0.90 0.56 −0.02 0.01 0.42 0.40
48 0.46 0.91 0.88 0.53 −0.00 0.00 0.36 0.37
60 0.41 0.90 0.87 0.50 −0.03 0.00 0.32 0.05 0.12 0.35

120 0.16 0.86 0.80 0.41 0.02 −0.00 0.29 0.01 0.10 0.27

For lags of six months and greater, however, all persistence values are 0.08 and lower,
indicating very little, if any, longer-term persistence in IVolSpread.

The results examining the persistence of Vol1M − IVol are interesting since the
persistence appears to increase slightly from 0.15 when measured at a lag of one
month to 0.17 when measured at a lag of three months. Since there is no economic
reason to think that the persistence of Vol1M − IVol should increase at longer lags,
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it seems likely that this result is simply an empirical artifact. At lags of six and 12
months, the persistence values of 0.14 and 0.13 remain nonnegligible, but still quite
small. At lags longer than 12 months, however, the persistence decays even further.

IVolSke𝑤 exhibits somewhat stronger short-term persistence than IVolSpread and
Vol1M − IVol. However, even when measured at a lag of only one month, IVolSke𝑤’s
persistence of 0.26 is not very high, and this persistence decays quite rapidly as the
lag is increased. At a lag of 12 months, the persistence is only 0.10, and at 24 months
and longer lags, the persistence values are all 0.06 and lower.

Both ΔIVolC and ΔIVolP exhibit strong negative cross-sectional correlation when
measured at lags of one month. This indicates that large increases in call or put
implied volatility tend to indicate pricing errors that are reversed in the following
month. At lags of more than one month, neither ΔIVolC nor ΔIVolP exhibits any
notable persistence.

Finally, the persistence of Vol12M − IVol, which we calculate only at lags of 12
months and longer due to the use of 12 months of data in the calculation of Vol12M ,
is 0.12 at a 12-month lag and decays to zero at a lag of five years.

The general lack of strong persistence exhibited by the option-based variables
indicates that any ability of these variables to predict future stock or option returns is
likely due to a short-lived effect such as mispricing that informed investors attempt
to discretely profit from by trading in the options market. It is unlikely that any of
these variables measure a risk that is priced by the market.

Panel B of Table 17.3 shows the results of persistence analyses of all of the
previously examined variables using only stocks in the Options sample. The results
of these analyses are similar to those of the analyses shown in previous chapters of
this book, and thus can be summarized very quickly. The size variables (MktCap
and Size) exhibit extremely high persistence at all lags. 𝛽, BM, Illiq, and IdioVol are
all strongly persistent. Mom and Re𝑣 exhibit very little persistence, but this is not
surprising because these variables simply measure stock returns, and persistence in
these variables would amount to a strong ability to predict the cross section of future
stock returns. Finally, CoSke𝑤 exhibits almost no persistence and the persistence of
IdioSke𝑤, while much smaller than that of other variables, is a little too large to be
considered negligible.

Having examined the summary statistics, correlations, and persistence of all of
our variables using the options sample, we proceed now to investigate the ability of
the option-based variables to predict future stock and option returns. Given the large
number of relations being examined in this chapter, we do not dig deep into any single
phenomenon. The objective of the remainder of this chapter is to provide the reader
with a preliminary overview of the main results pertaining to the option markets.

17.6 STOCK RETURNS

Our investigation of the ability of the option-based variables to predict future
stock returns proceeds in two steps. First, we examine the relations between the
variables calculated from contemporaneous volatility levels. Specifically, we begin
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by examining the cross-sectional relations between future stock returns and each
of IVolSpread, Vol1M − IVol, and IVolSke𝑤. As has been done throughout this book,
we use univariate portfolio analysis and (Fama and MacBeth 1973, FM hereafter)
regression analysis to investigate these relations.

We then examine the relations between future stock returns and each of ΔIVolC
and ΔIVolP, which capture changes in implied volatility over time. We separate these
analyses from the analyses using IVolSpread, IVolSke𝑤, and Vol1M − IVol because,
as documented by An et al. (2014), the negative relation between ΔIVolP and future
stock returns is strongest after controlling for ΔIVolC. Our investigations of the rela-
tions between future stock returns and each of ΔIVolC and ΔIVolP, therefore, use
bivariate (instead of univariate) portfolio analyses and FM regression analyses.

17.6.1 IVolSpread, IVolSke𝒘, and Vol1M − IVol

Table 17.4 presents the results of univariate portfolio analyses of the relations between
expected stock returns and each of IVolSpread, IVolSke𝑤, and Vol1M − IVol. Results
for equal-weighted portfolios are shown in Panel A and value-weighted portfolio
results are shown in Panel B.

TABLE 17.4 Univariate Portfolio Analysis—Stock Returns
This table presents the results of univariate portfolio analyses of the relation between future
stock returns and each of IVolSpread, Vol1M − IVol, and IVolSke𝑤. Monthly portfolios are
formed by sorting all stocks in the Options sample into portfolios using decile breakpoints cal-
culated based on the given sort variable using all stocks in the Options sample. Panel A (Panel
B) shows the average equal-weighted (value-weighted) one-month-ahead excess return (in per-
cent per month) for each of the 10 decile portfolios formed using different variables as the sort
variable. The table also shows the average return of the portfolio that is long the 10th decile
portfolio and short the first decile portfolio, as well as the FFC and FFCPS alphas for this port-
folio. Newey and West (1987) t-statistics, adjusted using six lags, testing the null hypothesis
that the average 10-1 portfolio return or alpha is equal to zero, are shown in parentheses.

Panel A: Equal-Weighted Portfolio Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IVolSpread −0.33 0.36 0.44 0.52 0.65 0.73 0.90 0.83 1.22 1.68 2.02 2.16 2.10
(8.23) (7.96) (8.39)

Vol1M − IVol 0.89 0.91 0.80 0.83 0.71 0.71 0.58 0.60 0.52 0.48 −0.41 −0.48 −0.38
(−2.05) (−2.23) (−1.66)

IVolSke𝑤 1.57 1.25 1.00 0.75 0.59 0.57 0.50 0.48 0.42 −0.08 −1.66 −1.74 −1.65
(−6.65) (−6.01) (−6.62)

Panel B: Value-Weighted Portfolio Returns

Sort Variable 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼 FFCPS 𝛼

IVolSpread −0.19 0.08 0.15 0.37 0.55 0.62 0.76 0.77 1.06 1.61 1.80 2.08 2.10
(4.90) (5.07) (4.94)

Vol1M − IVol 0.86 0.86 0.96 0.92 0.63 0.57 0.44 0.44 0.30 0.21 −0.65 −0.58 −0.49
(−1.84) (−1.64) (−1.47)

IVolSke𝑤 1.47 1.22 0.93 0.63 0.42 0.45 0.48 0.29 0.25 −0.09 −1.56 −1.70 −1.61
(−3.53) (−3.81) (−3.73)
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Consistent with the results of Bali and Hovakimian (2009) and Cremers and
Weinbaum (2010), the results in Table 17.4 demonstrate a strong positive relation
between IVolSpread and future stock returns. When using equal-weighted portfolios,
the average monthly excess returns of the decile portfolios increase monotonically
from −0.33% for the first decile portfolio to 1.68% per month for the 10th decile
portfolio. The average return of the IVolSpread 10-1 portfolio of 2.02% per month
is not only economically very large but also highly statistically significant with a
Newey and West (1987)-adjusted (six lags) t-statistic of 8.23. The alphas of this
portfolio relative to the Fama and French (1993) and Carhart (1997) four-factor
model (FFC) and the FFC model augmented with the Pastor and Stambaugh (2003)
liquidity factor (FFCPS) of 2.16% per month (t-statistic = 7.96) and 2.10% per
month (t-statistic = 8.39), respectively, indicate that the large average return of this
portfolio is not driven by large factor sensitivities. The results for value-weighted
portfolios, shown in Panel B, are nearly as strong. The average excess returns of the
decile portfolios increase from −0.19% per month for decile portfolio one to 1.61
for decile portfolio 10. The difference portfolio’s average return of 1.80% per month
is highly statistically significant with a t-statistic of 4.90. Once again, the FFC and
FFCPS models fail to explain the returns of this portfolio since the alphas of 2.08%
per month (t-statistic = 5.07) and 2.10% per month (t-statistic = 4.94), respectively,
remain economically very large and highly statistically significant.

The results of the univariate portfolio analyses using Vol1M − IVol as the sort
variable indicate, as demonstrated by Bali and Hovakimian (2009), a negative
relation between Vol1M − IVol and future stock returns. This relation, however, is not
quite as strong as some of the other relations examined in this chapter. When using
equal-weighted portfolios, the average return of the Vol1M − IVol 10-1 portfolio
of 0.41% per month (t-statistic = −2.05) is economically meaningful and highly
statistically significant. The FFC alpha of −0.48% per month (t-statistic = −2.23)
generated by this portfolio is slightly larger in magnitude and higher in statistical sig-
nificance than the average return. Interestingly, however, the FFCPS alpha decreases
in magnitude to a marginally statistically significant −0.38% per month (t-statistic
= −1.66), indicating that a portion of this portfolio’s average return is driven by
aggregate liquidity sensitivity. The average return of the value-weighted Vol1M − IVol
10-1 of −0.65% per month (t-statistic = −1.84) is larger in magnitude than that of
the equal-weighted portfolio, albeit slightly lower in statistical significance. Sim-
ilarly, both the FFC and FFCPS alphas of −0.58% per month (t-statistic = −1.64)
and −0.49% per month (t-statistic = −1.47), respectively, of the value-weighted
difference portfolio are larger in magnitude, but carry lower t-statistics, than their
equal-weighted counterparts. Thus, while the economic significance of these results
is quite substantial, the statistical significance is relatively low. It should be noted,
however, that these analyses only cover returns in the months from February 1996
through December 2012, a relatively short sample period. It is possible, therefore,
that the low t-statistics are a manifestation of the short sample period causing a lack
of power in the statistical tests.

The last set of portfolio analyses whose results are presented in Table 17.4
examine the relation between IVolSke𝑤 and future stock returns. Consistent with
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Xing et al. (2010), the results demonstrate a strong negative relation between
IVolSke𝑤 and future stock returns. The average excess returns of the equal-weighted
decile portfolios decrease monotonically from 1.57% per month for the first decile
portfolio to −0.08% per month for the 10th decile portfolio. The IVolSke𝑤 differ-
ence portfolio therefore generates an average return of −1.66% per month with a
corresponding t-statistic of −6.65. The FFC alpha of −1.74% per month (t-statistic
= −6.01) and FFCPS alpha of −1.65% per month (t-statistic = −6.62) are similar
in magnitude and statistical significance. The excess returns of value-weighted
IVolSke𝑤-sorted decile portfolios decrease monotonically from 1.47% per month for
decile portfolio one to −0.09% per month for decile portfolio 10. The average return,
FFC alpha, and FFCPS alpha generated by the value-weighted difference portfolio
of −1.56% per month (t-statistic = −3.53), −1.70% per month (t-statistic = −3.81)
and −1.61% per month (t-statistic = −3.73) are all economically large in magnitude,
highly statistically significant, and very similar to their equal-weighted counterparts.

The results of the univariate portfolio analyses presented in Table 17.4 demon-
strate a strong positive univariate relation between IVolSpread and future stock
returns and negative univariate relations between future stock returns and each
of Vol1M − IVol and IVolSke𝑤. We now use FM regression analyses to examine
whether these relations can be explained by any of the phenomena documented in
previous chapters of this book. We employ several different specifications for the
monthly cross-sectional regressions. We begin with univariate specifications using
each IVolSpread, Vol1M − IVol, and IVolSke𝑤 as the only independent variable. We
then include these three measures as independent variables in the same specification.
Finally, we repeat each of these analyses while also controlling for 𝛽, Size, BM,
Mom, Re𝑣, Illiq, CoSke𝑤, IdioSke𝑤, and IdioVol. Given the strong and highly
mechanical relation between Vol1M − IVol and IdioVol, following An et al. (2014)
we exclude IdioVol from specifications that include Vol1M − IVol. The independent
variables in all specifications are winsorized at the 0.5% level on a monthly basis.

The results of the FM regression analyses are presented in Table 17.5. Specifica-
tion (1) shows that the positive relation between IVolSpread and future stock returns
is strongly detected using FM regression analysis since the average coefficient
of 0.077 on IVolSpread is highly statistically significant with a t-statistic of 9.28.
Similarly, the negative relations between one-month-ahead excess stock returns and
each of Vol1M − IVol and IVolSke𝑤 are also found using FM regression analysis
since both the average coefficient of −0.006 (t-statistic = −1.89, specification (2)) on
Vol1M − IVol and the average coefficient of −0.050 (t-statistic = −7.77, specification
(3)) on IVolSke𝑤 are statistically significant. When all three option-based variables
are included simultaneously as independent variables (specification (4)), the results
are very similar. The average coefficients on IVolSpread, Vol1M − IVol, and IVolSke𝑤
of 0.053 (t-statistic = 4.51), −0.005 (t-statistic = −1.81), and −0.025 (t-statistic
= −2.90) are all statistically significant and of similar (albeit slightly smaller)
magnitude than the corresponding coefficients from the univariate specifications.

The specifications that include the control variables demonstrate that none of
these cross-sectional relations are driven by previously documented patterns in stock
returns. When the univariate specifications are augmented with the control variables,
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TABLE 17.5 Fama–MacBeth Regression Analysis—Stock Returns
This table presents the results of Fama and MacBeth (1973) regression analyses of the relations
between expected stock returns and each of IVolSpread, Vol1M − IVol, and IVolSke𝑤. Each col-
umn in the table presents results for a different cross-sectional regression specification. The
dependent variable in all specifications is the one-month-ahead excess stock return. The inde-
pendent variables are indicated in the first column. Independent variables are winsorized at the
0.5% level on a monthly basis. The table presents average slope and intercept coefficients along
with t-statistics (in parentheses), adjusted following Newey and West (1987) using six lags,
testing the null hypothesis that the average coefficient is equal to zero. The rows labeled Adj.
R2 and n present the average adjusted R-squared and the number of data points, respectively,
for the cross-sectional regressions.

Option Variables

(1) (2) (3) (4) (5) (6) (7) (8)

IVolSpread 0.077 0.053 0.071 0.052
(9.28) (4.51) (8.91) (5.35)

Vol1M − IVol −0.006 −0.005 −0.008 −0.008
(−1.89) (−1.81) (−2.80) (−2.78)

IVolSke𝑤 −0.050 −0.025 −0.047 −0.022
(−7.77) (−2.90) (−7.78) (−3.19)

𝛽 0.140 0.139 0.142 0.147
(0.38) (0.36) (0.39) (0.39)

Size −0.170 −0.125 −0.174 −0.133
(−2.24) (−1.43) (−2.32) (−1.52)

BM −0.049 −0.007 −0.017 0.007
(−0.26) (−0.03) (−0.09) (0.04)

Mom −0.002 −0.002 −0.002 −0.002
(−0.37) (−0.50) (−0.36) (−0.47)

Re𝑣 −0.014 −0.016 −0.014 −0.013
(−1.87) (−2.10) (−1.84) (−1.69)

Illiq −0.064 −1.116 −0.653 −1.688
(−0.02) (−0.37) (−0.21) (−0.56)

CoSke𝑤 0.014 0.015 0.014 0.015
(1.77) (1.84) (1.77) (1.82)

IdioSke𝑤 −0.091 −0.116 −0.104 −0.114
(−1.35) (−1.68) (−1.54) (−1.65)

IdioVol −0.007 −0.008
(−1.87) (−2.09)

Intercept 0.771 0.722 0.971 0.898 2.061 1.453 2.304 1.661
(1.69) (1.61) (2.09) (1.95) (3.05) (1.85) (3.43) (2.09)

Adj. R2 0.00 0.00 0.00 0.01 0.09 0.08 0.09 0.09
n 1617 1616 1617 1616 1338 1338 1338 1338

specifications (5)–(7) demonstrate that the positive relation between IVolSpread and
future stock returns, and the negative relations between future stock returns and each
of Vol1M − IVol and IVolSke𝑤, all persist. The same is true when all variables are
included in the regression specification (specification (8)). In fact, the magnitude
and statistical strength of the negative relation between Vol1M − IVol and future
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stock returns are substantially enhanced when the control variables are included.
Specification (8) produces an average coefficient of 0.052 (t-statistic = 5.35) on
IVolSpread, an average coefficient of −0.008 (t-statistic = −2.78) on Vol1M − IVol,
and an average coefficient of −0.022 (t-statistic = −3.19) on IVolSke𝑤.

We examine the economic importance of these relations by multiplying the
average coefficients from specification (8) by the average standard deviation, as
well as the difference between the 95th and fifth percentiles, of the cross-sectional
distributions of each of IVolSpread, Vol1M − IVol, and IVolSke𝑤. Multiplying the
average coefficient on IVolSpread of 0.052 by the standard deviation of IVolSpread,
we find that a one-standard-deviation difference in IVolSpread is associated with
a 0.50% (0.052 × 9.66, see Table 17.1) per month difference in expected returns.
The difference in expected returns between a stock at the fifth and 95th percentiles
of IVolSpread is 1.04% (0.052 × [8.74 − (−11.34)]) per month. A similar analysis
shows that while a one-standard-deviation difference in Vol1M − IVol results in
only a 0.16% (0.008 × 19.74) per month difference in expected returns, the dif-
ference in expected returns between stocks with high (95th percentile) and low
(fifth percentile) Vol1M − IVol values of 0.42% (0.008 × [23.60 − (−28.77)]) per
month is economically important. Finally, a one-standard-deviation difference in
IVolSke𝑤 generates an expected return difference of 0.26% (0.022 × 11.65) per
month, while the difference in expected returns for stocks at the 95th and fifth
percentiles of IVolSke𝑤 is 0.63% (0.022 × [22.25 − (−6.31)]) per month.

Finally, it is worth mentioning that when using the specification with the full set of
control variables (specification (8)), the average coefficient on several of the variables
previously shown to predict future stock returns are statistically indistinguishable
from zero. Specifically, the average coefficients on Size, BM, Mom, and Illiq are
all statistically insignificant. The reversal effect is substantially weaker than in
previous analyses, with an average coefficient on Re𝑣 of −0.013 (t-statistic = −1.69).
Interestingly, the average coefficient on CoSke𝑤 of 0.015 is marginally statistically
significant with a t-statistic of 1.82. Finally, the average coefficient on IdioSke𝑤 of
−0.114 (t-statistic = −1.65) is negative and marginally statistically significant. The
failure of this analysis to detect relations between future stock returns and each of
Size, BM, Mom, and Illiq is consistent with previous empirical work. These relations
do not appear to be present when the sample is restricted to stocks with traded options.

In summary, consistent with the results of the univariate portfolio analyses, the
results of the FM regression analyses indicate that IVolSpread is positively related,
in the cross section, to future stock returns while both Vol1M − IVol and IVolSke𝑤
are negatively related to future stock returns. Each of these relations is highly
statistically significant and economically important.

17.6.2 𝚫IVolC and 𝚫IVolP

We proceed now to examine the ability of each of ΔIVolC and ΔIVolP to predict
future stock returns. An et al. (2014) find a positive relation between ΔIVolC and
future stock returns and a negative relation between ΔIVolP and stock returns after
controlling for the effect of ΔIVolC. As discussed in An et al. (2014), because ΔIVolC
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and ΔIVolP are strongly positively correlated in the cross section, it is important to
control for ΔIVolC when examining the relation between ΔIVolP and future stock
returns. For this reason, we forego univariate portfolio analyses in favor of bivariate
portfolio analyses in our examination of the relations between these variables and
future stock returns.

In Table 17.6, we present the results of dependent-sort bivariate portfolio analyses
examining the relation between ΔIVolC and future stock returns after controlling for
ΔIVolP. Each month, we sort all stocks in the options sample into ΔIVolP quintiles.
Within each ΔIVolP quintile, we sort stocks into quintile portfolios based on ΔIVolC.
The table presents the average excess returns for each of the resulting 25 portfolios,
as well as average returns and alphas for the portfolios that are long the ΔIVolC quin-
tile five portfolio and short the ΔIVolC quintile one portfolio within each quintile of
ΔIVolP. Results for the average ΔIVolP portfolio within each ΔIVolC quintile are also
presented.

The results of the equal-weighted bivariate dependent-sort analysis, shown in
Panel A, demonstrate that within each quintile of ΔIVolP, the average monthly return
of the ΔIVolC 5-1 portfolio is positive, economically large, and highly statistically
significant. The same is true of the FFC and FFCPS alphas. In the average ΔIVolP
quintile, the ΔIVolC 5-1 portfolio generates an average monthly return of 0.88%
(t-statistic = 5.47), FFC alpha of 0.87% per month (t-statistic = 5.31), and FFCPS
alpha of 0.86% per month (t-statistic = 5.14). In each ΔIVolP quintile, the first
ΔIVolC quintile portfolio generates the lowest average return and, with the exception
of ΔIVolP quintile five, the fifth ΔIVolC quintile portfolio generates the highest
average return.

Panel B of Table 17.6 presents the average excess returns of value-weighted port-
folios created using the same sorting procedure. The results indicate that the positive
relation between ΔIVolC and future stock returns persists, although it is not quite
as strong, when using value-weighted portfolios. In quintiles one through four of
ΔIVolP, the average return and alphas of the ΔIVolC difference portfolio are positive
and statistically significant (at least marginally). The exception is the FFCPS alpha
of the ΔIVolC 5-1 portfolio in the first ΔIVolP quintile. In quintile five of ΔIVolP,
however, the average return and alphas of the ΔIVolC 5-1 portfolio, while positive
and of substantial economic magnitude, are all statistically indistinguishable from
zero. In the average ΔIVolP quintile, the ΔIVolC 5-1 portfolio produces a positive and
highly statistically significant average return of 0.76% per month with a correspond-
ing t-statistic of 3.67. Adjusting for risk using the FFC and FFCPS factor models does
little to explain the returns of this portfolio since the FFC alpha of 0.70% (t-statistic
= 3.32) and FFCPS alpha of 0.68% per month (t-statistic = 3.21) are very similar in
magnitude to the average return, and highly statistically significant.

We next examine the relation between ΔIVolP and future stock returns after
controlling for ΔIVolC using bivariate dependent-sort portfolio analyses. To do so,
we sort stocks first into ΔIVolC quintiles and then, within each ΔIVolC quintile,
into ΔIVolP quintiles. Table 17.7 presents the results of these analyses using
equal-weighted (Panel A) and value-weighted (Panel B) portfolios.
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TABLE 17.6 Bivariate Dependent-Sort Portfolio Analysis—𝚫IVolC
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between ΔIVolC and future stock returns after controlling for the effect of ΔIVolP. Each
month, all stocks in the Options sample are sorted into five groups based on an ascend-
ing sort of ΔIVolP. Within each ΔIVolP group all stocks are sorted into five portfolios
based on an ascending sort of ΔIVolC. The quintile breakpoints used to create the port-
folios are calculated using all stocks in the CRSP sample. The table presents the average
one-month-ahead excess return (in percent per month) for each of the 25 portfolios as well
as for the average ΔIVolP quintile portfolio within each quintile of ΔIVolC. Also shown
are the average return, FFC alpha, and FFCPS alpha of a long–short zero-cost portfolio
that is long the fifth ΔIVolC quintile portfolio and short the first ΔIVolC quintile portfolio
in each ΔIVolP quintile. t-statistics (in parentheses), adjusted following Newey and West
(1987) using six lags, testing the null hypothesis that the average return or alpha is equal
to zero, are shown in parentheses. Panel A presents results for equal-weighted portfolios.
Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolio Returns
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ΔIVolC 1 0.04 0.31 0.33 0.39 −0.20 0.17
ΔIVolC 2 0.57 0.58 0.65 0.82 0.62 0.65
ΔIVolC 3 0.50 0.55 0.74 0.93 0.68 0.68
ΔIVolC 4 0.79 0.78 0.87 0.85 1.16 0.89
ΔIVolC 5 1.30 1.27 1.10 1.03 0.58 1.06

ΔIVolC 5-1 1.26 0.96 0.76 0.64 0.78 0.88
(3.96) (4.13) (3.57) (2.72) (2.45) (5.47)

ΔIVolC 5-1 FFC 𝛼 1.22 0.99 0.78 0.65 0.71 0.87
(4.10) (4.17) (3.54) (2.71) (2.40) (5.31)

ΔIVolC 5-1 FFCPS 𝛼 1.16 0.96 0.75 0.67 0.74 0.86
(3.85) (4.01) (3.35) (2.74) (2.46) (5.14)

Panel B: Value-Weighted Portfolio Returns
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ΔIVolC 1 0.10 0.04 0.44 0.19 −0.45 0.07
ΔIVolC 2 0.24 0.33 0.71 0.38 0.24 0.38
ΔIVolC 3 0.43 0.56 0.32 0.58 0.77 0.54
ΔIVolC 4 0.41 0.83 0.57 1.10 1.44 0.87
ΔIVolC 5 0.95 1.05 0.94 0.94 0.25 0.83

ΔIVolC 5-1 0.85 1.00 0.50 0.75 0.71 0.76
(2.04) (2.75) (1.71) (2.11) (1.28) (3.67)

ΔIVolC 5-1 FFC 𝛼 0.74 1.17 0.52 0.61 0.43 0.70
(1.79) (3.14) (1.77) (1.72) (0.82) (3.32)

ΔIVolC 5-1 FFCPS 𝛼 0.57 1.11 0.46 0.66 0.60 0.68
(1.38) (2.96) (1.56) (1.82) (1.15) (3.21)
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TABLE 17.7 Bivariate Dependent-Sort Portfolio Analysis—𝚫IVolP
This table presents the results of bivariate dependent-sort portfolio analyses of the relation
between ΔIVolP and future stock returns after controlling for the effect of ΔIVolC. Each
month, all stocks in the Options sample are sorted into five groups based on an ascend-
ing sort of ΔIVolC. Within each ΔIVolC group all stocks are sorted into five portfolios
based on an ascending sort of ΔIVolP. The quintile breakpoints used to create the port-
folios are calculated using all stocks in the CRSP sample. The table presents the average
one-month-ahead excess return (in percent per month) for each of the 25 portfolios as well
as for the average ΔIVolC quintile portfolio within each quintile of ΔIVolP. Also shown
are the average return, FFC alpha, and FFCPS alpha of a long–short zero-cost portfolio
that is long the fifth ΔIVolP quintile portfolio and short the first ΔIVolP quintile portfolio
in each ΔIVolC quintile. t-statistics (in parentheses), adjusted following Newey and West
(1987) using six lags, testing the null hypothesis that the average return or alpha is equal
to zero, are shown in parentheses. Panel A presents results for equal-weighted portfolios.
Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolio Returns
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ΔIVolP 1 0.34 0.78 0.97 1.02 1.60 0.94
ΔIVolP 2 0.32 0.53 0.80 1.04 1.08 0.75
ΔIVolP 3 0.13 0.55 0.60 0.96 1.04 0.66
ΔIVolP 4 0.20 0.49 0.78 0.71 1.34 0.70
ΔIVolP 5 0.02 0.42 0.71 0.59 0.25 0.40

ΔIVolP 5-1 −0.32 −0.36 −0.25 −0.43 −1.35 −0.54
(−1.04) (−1.75) (−1.34) (−2.11) (−4.61) (−4.02)

ΔIVolP 5-1 FFC 𝛼 −0.33 −0.47 −0.30 −0.49 −1.38 −0.59
(−1.13) (−2.31) (−1.54) (−2.43) (−5.05) (−4.35)

ΔIVolP 5-1 FFCPS 𝛼 −0.46 −0.49 −0.39 −0.54 −1.36 −0.65
(−1.60) (−2.41) (−2.02) (−2.64) (−4.90) (−4.77)

Panel B: Value-Weighted Portfolio Returns
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ΔIVolP 1 0.35 0.21 1.11 1.24 1.23 0.83
ΔIVolP 2 0.27 0.19 0.51 0.70 0.81 0.49
ΔIVolP 3 0.21 0.60 0.30 0.81 1.01 0.59
ΔIVolP 4 −0.01 0.46 0.51 0.73 1.36 0.61
ΔIVolP 5 0.11 0.13 0.38 0.67 −0.04 0.25

ΔIVolP 5-1 −0.24 −0.08 −0.73 −0.57 −1.26 −0.58
(−0.45) (−0.25) (−2.48) (−1.78) (−2.65) (−2.83)

ΔIVolP 5-1 FFC 𝛼 −0.39 −0.22 −0.78 −0.65 −1.47 −0.70
(−0.75) (−0.67) (−2.58) (−2.08) (−3.16) (−3.41)

ΔIVolP 5-1 FFCPS 𝛼 −0.65 −0.30 −0.88 −0.71 −1.33 −0.77
(−1.26) (−0.91) (−2.91) (−2.23) (−2.86) (−3.76)
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When using equal-weighted portfolios, the average returns and alphas of the
ΔIVolP 5-1 portfolios are all negative and, in most cases, statistically significant.
The results are strongest for stocks with high values of ΔIVolC. In quintiles four
and five of ΔIVolC, the ΔIVolP difference portfolio generates an average return
−0.43% per month (t-statistic = −2.11) and −1.35% per month (t-statistic = −4.61),
respectively. Adjusting for risk does not explain the returns of these portfolios since
the FFC and FFCPS alphas are similar in magnitude and statistical significance
to the average returns. In ΔIVolC quintile three, the average return and FFC alpha
of the ΔIVolP 5-1 portfolio are statistically indistinguishable from zero, but the
FFCPS alpha of −0.39% per month (t-statistic = −2.02) is statistically negative.
In quintile two of ΔIVolC, the ΔIVolP difference portfolio generates a negative
and statistically significant average return, FFC alpha, and FFCPS alpha, but in the
first ΔIVolC quintile, the average return and alphas of the ΔIVolP 5-1 portfolio are
statistically indistinguishable from zero. Most importantly, the average return, FFC
alpha, and FFCPS alpha generated by the ΔIVolP 5-1 portfolio in the average ΔIVolC
quintile of −0.54% per month (t-statistic = −4.02), −0.59% per month (t-statistic =
−4.35), and −0.65% per month (t-statistic = −4.77), respectively, are all negative,
of economically important magnitude, and highly statistically significant.

The results of the value-weighted portfolio analysis, shown in Panel B of
Table 17.7, are similar. As in the equal-weighted portfolio analysis, the negative
relation between ΔIVolP and future stock returns is strongest among stocks with high
values of ΔIVolC. In the first two ΔIVolC quintiles, the average return and alphas of
the ΔIVolP 5-1 portfolio are negative but statistically indistinguishable from zero. In
ΔIVolC quintiles three, four, and five, however, the ΔIVolP 5-1 portfolio generates
large negative average and abnormal returns that are highly statistically significant.
In the average ΔIVolC quintile, the ΔIVolP difference portfolio produces an average
return of −0.58% per month (t-statistic = −2.83), FFC alpha of −0.70% per month
(t-statistic = −3.41), and FFCPS alpha of −0.77% per month (t-statistic = −3.76),
indicating a strong negative relation between ΔIVolP and one-month-ahead stock
returns.

To further examine the ability of each ofΔIVolC andΔIVolP to predict future stock
returns, we perform equal-weighted and value-weighted bivariate independent-sort
portfolio analyses of these relations. The results of these analyses, presented in
Table 17.8, are similar to those of the dependent-sort analyses.

When using equal-weighted portfolios (Panel A), the ΔIVolC 5-1 portfolio in the
average ΔIVolP quintile generates an average monthly return of 1.26% (t-statistic =
6.38), FFC alpha of 1.22% (t-statistic = 6.04), and FFCPS alpha of 1.20% (t-statistic
= 5.88). Furthermore, within each ΔIVolP quintile, the ΔIVolC difference portfolio
generates large, positive, and highly statistically significant raw and abnormal returns.

The negative relation between ΔIVolP and future stock returns is also strong
in the equal-weighted portfolio analysis. The ΔIVolP 5-1 portfolio in the average
ΔIVolC quintile generates a raw return of −0.69% per month with a corresponding
t-statistic of −3.43. The FFC alpha of −0.73% per month (t-statistic = −3.52)
and FFCPS alpha of −0.82% per month (t-statistic = −3.97) once again indicate
that the average return is not driven by sensitivity to the factors included in these
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TABLE 17.8 Bivariate Independent-Sort Portfolio Analysis—𝚫IVolC and 𝚫IVolP
This table presents the results of bivariate independent-sort portfolio analyses of the relation
between future stock returns and each of ΔIVolC and ΔIVolP after controlling for the other.
Each month, all stocks in the Options sample are sorted into five groups based on an ascending
sort of ΔIVolC. All stocks are independently sorted into five groups based on an ascending sort
of ΔIVolP. The quintile breakpoints used to create the groups are calculated using all stocks
in the Options sample. The intersections of the ΔIVolC and ΔIVolP groups are used to form
25 portfolios. The table presents the average one-month-ahead excess return (in percent per
month) for each of the 25 portfolios as well as for the average ΔIVolC quintile portfolio within
each quintile of ΔIVolP and the average ΔIVolP quintile within each ΔIVolC quintile. Also
shown are the average return, FFC alpha, and FFCPS alpha of a long–short zero-cost portfolio
that is long the fifth ΔIVolC (ΔIVolP) quintile portfolio and short the first ΔIVolC (ΔIVolP)
quintile portfolio in each ΔIVolP (ΔIVolC) quintile. t-statistics (in parentheses), adjusted fol-
lowing Newey and West (1987) using six lags, testing the null hypothesis that the average return
or alpha is equal to zero, are shown in parentheses. Panel A presents results for equal-weighted
portfolios. Panel B presents results for value-weighted portfolios.

Panel A: Equal-Weighted Portfolio Returns
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ΔIVolC 1 0.31 0.36 0.27 0.27 −0.51 0.14 −0.82 −0.83 −0.93
(−2.60) (−2.71) (−3.05)

ΔIVolC 2 0.80 0.52 0.49 0.61 −0.01 0.48 −0.81 −0.93 −1.00
(−2.16) (−2.42) (−2.57)

ΔIVolC 3 1.16 0.71 0.71 0.82 0.69 0.82 −0.47 −0.52 −0.67
(−1.28) (−1.38) (−1.76)

ΔIVolC 4 0.86 1.16 0.94 0.90 0.42 0.86 −0.44 −0.42 −0.52
(−1.22) (−1.16) (−1.42)

ΔIVolC 5 1.78 1.81 1.47 1.09 0.86 1.40 −0.92 −0.94 −0.98
(−2.61) (−2.68) (−2.74)

ΔIVolC Avg 0.98 0.91 0.78 0.74 0.29 −0.69 −0.73 −0.82
(−3.43) (−3.52) (−3.97)

ΔIVolC 5-1 1.48 1.44 1.20 0.81 1.37 1.26
(3.90) (3.86) (3.28) (2.28) (4.80) (6.38)

ΔIVolC 5-1 FFC 𝛼 1.39 1.46 1.10 0.86 1.27 1.22
(3.74) (3.85) (2.95) (2.36) (4.53) (6.04)

ΔIVolC 5-1 FFCPS 𝛼 1.33 1.39 1.11 0.90 1.28 1.20
(3.52) (3.63) (2.93) (2.44) (4.48) (5.88)

(continued)

models. Interestingly, in the independent-sort analysis, the negative relation between
ΔIVolP and future stock returns appears strongest for stocks with high or low values
of ΔIVolC, and relatively weak for stocks with more moderate ΔIVolC values. In
quintiles one, two, and five of ΔIVolC, the average return and alphas of the ΔIVolP
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TABLE 17.8 (Continued)

Panel B: Value-Weighted Portfolio Returns
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ΔIVolC 1 0.30 0.18 0.50 0.26 −0.01 0.25 −0.31 −0.43 −0.63
(−0.64) (−0.89) (−1.33)

ΔIVolC 2 0.12 0.44 0.65 0.05 −0.04 0.24 −0.16 −0.21 −0.28
(−0.35) (−0.44) (−0.59)

ΔIVolC 3 1.02 0.75 0.30 0.55 0.32 0.59 −0.70 −0.94 −1.07
(−1.33) (−1.78) (−2.01)

ΔIVolC 4 0.78 1.15 0.75 0.90 0.45 0.81 −0.33 −0.46 −0.47
(−0.72) (−1.01) (−1.04)

ΔIVolC 5 1.75 1.73 1.01 0.88 0.80 1.23 −0.95 −0.89 −0.93
(−2.02) (−1.92) (−1.98)

ΔIVolC Avg 0.79 0.85 0.64 0.53 0.30 −0.49 −0.58 −0.68
(−2.02) (−2.38) (−2.76)

ΔIVolC 5-1 1.45 1.55 0.50 0.62 0.81 0.99
(3.14) (3.62) (1.45) (1.37) (1.58) (4.69)

ΔIVolC 5-1 FFC 𝛼 1.12 1.57 0.49 0.56 0.65 0.88
(2.48) (3.63) (1.38) (1.25) (1.31) (4.22)

ΔIVolC 5-1 FFCPS 𝛼 1.07 1.52 0.51 0.72 0.77 0.92
(2.33) (3.46) (1.42) (1.58) (1.54) (4.34)

difference portfolios are negative and highly statistically significant. In quintiles
three and four of ΔIVolC, however, the ΔIVolP 5-1 portfolio generates negative,
economically large, but statistically insignificant (with the exception of the FFCPS
alpha in ΔIVolC quintile three) average returns and alphas.

The results of the independent-sort value-weighted portfolio analysis, shown in
Panel B of Table 17.8, show that both the positive relation between ΔIVolC and future
stock returns, and the negative relation between ΔIVolP and future stock returns, are
robust to the use of value-weighted portfolios. In the average ΔIVolP quintile, the
value-weighted ΔIVolC 5-1 portfolio generates an average monthly return of 0.99%
(t-statistic = 4.69), FFC alpha of 0.88% (t-statistic = 4.22), and FFCPS alpha of
0.92% (t-statistic = 4.34). Looking at the individual ΔIVolP quintiles, however, the
results indicate that the positive relation between ΔIVolC and future stock returns is
driven by stocks with low values of ΔIVolP. In the lowest two ΔIVolP quintiles, the
average raw and abnormal returns of the ΔIVolC 5-1 portfolios are positive, large, and
highly statistically significant. In quintiles three, four, and five of ΔIVolP, however,
while the ΔIVolC difference portfolio generates positive and economically large aver-
age returns and alphas, none of these values are statistically distinguishable from zero.

The ΔIVolP 5-1 portfolio for the average ΔIVolC quintile in the independent-sort
value-weighted portfolio analysis generates an average return of −0.49% per
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month (t-statistic = −2.02), FFC alpha of −0.58% per month (t-statistic = −2.38),
and FFCPS alpha of −0.68% per month (t-statistic = −2.76), each of which is
economically important and highly statistically significant. Interestingly, while the
raw returns and alphas of the ΔIVolP 5-1 portfolios in each ΔIVolC quintile are all
negative, they are statistically significant only in the fifth ΔIVolC quintile.

The final set of analyses we perform to examine the ability of ΔIVolC and ΔIVolP
to predict the cross section of future stock returns are FM regression analyses. The
results of these analyses are shown in Table 17.9.

Specification (1) includes only ΔIVolC and ΔIVolP as independent variables in the
cross-sectional regressions. Consistent with the results of the portfolio analyses, the
FM regression analysis produces an average coefficient of 0.039 on ΔIVolC with a
corresponding t-statistic of 5.26, indicating a strong positive relation between ΔIVolC
and future stock returns. The negative average coefficient of −0.030 (t-statistic =
−4.98) indicates a strong negative relation between ΔIVolP and future stock returns.

In specification (2), we include Vol1M − IVol and IVolSke𝑤 as control variables.
We do not include IVolSpread as a control because of mechanical multicolinearity
between ΔIVolC, ΔIVolP, and IVolSpread. The results indicate that Vol1M − IVol
and IVolSke𝑤 fail to explain the relations between future stock returns and each
of ΔIVolC and ΔIVolP since the average coefficient of 0.022 (t-statistic = 2.81) on
ΔIVolC remains positive and statistically significant, and the average coefficient of
−0.017 (t-statistic = −2.54) on ΔIVolP remains negative and statistically significant.
Furthermore, the results indicate that the negative relations between future stock
returns and each of Vol1M − IVol and IVolSke𝑤 are not driven by changes in call
or put implied volatility since the average coefficients on both Vol1M − IVol and
IVolSke𝑤 are negative and statistically significant.

We next examine a specification that controls for the variables used in previous
chapters of this book. The results of specification (3) in Table 17.9 show that the posi-
tive relation between ΔIVolC and future stock returns, as well as the negative relation
between ΔIVolP and future stock returns, remain highly statistically significant after
controlling for 𝛽, Size, BM, Mom, Re𝑣, Illiq, CoSke𝑤, IdioSke𝑤, and IdioVol.

The last specification we examine includes all of the variables as independent
variables in the cross-sectional regressions. As discussed earlier, due to the mechani-
cal relation between Vol1M − IVol and IdioVol, we exclude IdioVol from this analysis.
The average coefficient of 0.015 (t-statistic = 2.65) on ΔIVolC indicates that none of
the other variables can explain the strong positive relation between ΔIVolC and future
stock returns. Similarly, the average coefficient of −0.022 (t-statistic = −3.05) on
ΔIVolP shows that the negative relation between ΔIVolP and future stock returns is
robust to controls for all other phenomena documented in this book. Additionally, the
negative coefficients on each of Vol1M − IVol and IVolSke𝑤 are negative and highly
statistically significant, indicating that the negative relations between these variables
and future stock returns are robust to the inclusion of the full set of control variables.

We examine the economic magnitude of the ΔIVolC and ΔIVolP effects by
multiplying the average coefficient from specification (4) by the average stan-
dard deviation of the cross-sectional distribution of the given variable (shown in
Table 17.1). The results indicate that a one-standard-deviation difference in ΔIVolC
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TABLE 17.9 Fama–MacBeth Regression Analysis—Implied Volatility Changes
This table presents the results of Fama and MacBeth (1973) regression analyses of the
relations between expected stock returns and each of ΔIVolC and ΔIVolP. Each col-
umn in the table presents results for a different cross-sectional regression specification.
The dependent variable in all specifications is the one-month-ahead excess stock return.
The independent variables are indicated in the first column. Independent variables are
winsorized at the 0.5% level on a monthly basis. The table presents average slope and
intercept coefficients along with t-statistics (in parentheses), adjusted following Newey
and West (1987) using six lags, testing the null hypothesis that the average coefficient
is equal to zero. The rows labeled Adj. R2 and n present the average adjusted R-squared
and the number of data points, respectively, for the cross-sectional regressions.

Panel A: Option Variables

(1) (2) (3) (4)

ΔIVolC 0.039 0.022 0.032 0.015
(5.26) (2.81) (5.73) (2.65)

ΔIVolP −0.030 −0.017 −0.033 −0.022
(−4.98) (−2.54) (−5.00) (−3.05)

Vol1M − IVol −0.006 −0.009
(−1.90) (−3.35)

IVolSke𝑤 −0.038 −0.037
(−5.96) (−6.03)

𝛽 0.170 0.160
(0.46) (0.43)

Size −0.158 −0.118
(−2.07) (−1.36)

BM −0.061 0.014
(−0.33) (0.08)

Mom −0.002 −0.002
(−0.45) (−0.50)

Re𝑣 −0.018 −0.017
(−2.25) (−2.11)

Illiq −0.057 −2.198
(−0.02) (−0.70)

CoSke𝑤 0.015 0.016
(1.80) (1.83)

IdioSke𝑤 −0.086 −0.113
(−1.25) (−1.60)

IdioVol −0.008
(−2.08)

Intercept 0.710 0.932 1.924 1.580
(1.56) (2.13) (2.85) (2.01)

Adj. R2 0.01 0.01 0.09 0.09
n 1599 1599 1328 1328
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corresponds to a difference of 0.19% (0.015 × 12.97) in expected monthly return.
A one-standard-deviation difference in ΔIVolP corresponds to an expected return
difference of 0.28% (0.022 × 12.76) per month. To examine the difference in
expected returns between stocks with extremely high and low changes in call and
put implied volatility, we multiply the average coefficient by the difference between
the 95th percentile and fifth percentile of the cross-sectional distribution of the given
variable in the average month. Doing so, we find that the difference in expected
return between stocks with 95th percentile and fifth percentile values of ΔIVolC is
0.47% (0.015 × [15.87 − (−15.52)]) per month. For ΔIVolP, this difference is 0.66%
(0.022 × [15.20 − (−14.83)]) per month. The results therefore indicate that, after
controlling for all of the other effects documented in this book, the relations between
future stock returns and each of ΔIVolC and ΔIVolP are not only highly statistically
significant but also economically important.

In summary, the results presented in this section indicate that, consistent with
Bali and Hovakimian (2009) and Cremers and Weinbaum (2010), there is a strong
positive relation between IVolSpread and future stock returns. We also demonstrate
a strong negative relation between Vol1M − IVol and future stock returns, as in Bali
and Hovakimian (2009) and a strong negative relation between IVolSke𝑤 and future
stock returns, as in Xing et al. (2010). Finally, our analyses detect a positive relation
between ΔIVolC and future stock returns and a negative relation between ΔIVolP
and future stock returns, as documented by An et al. (2014).

17.7 OPTION RETURNS

In the final set of analyses we undertake in this book, we examine the ability of the
realized minus implied volatility spread to predict future straddle, delta-hedged call,
and delta-hedge put returns. Each of these positions is designed to effectively take a
long volatility position while having little exposure to moves in the underlying stock.
Goyal and Saretto (2009) show that the returns of each of these option positions is
positively related to the realized minus implied volatility spread. Following Goyal
and Saretto (2009), when calculating the realized minus implied volatility spread,
we use 12 months of daily return data to calculate realized volatility. The predictive
variable of interest in this section, therefore, is Vol12M − IVol. However, in unreported
analyses, we have verified that the relations are robust to the use of Vol1M − IVol as
the measure of realized minus implied volatility spread.

We begin with univariate portfolio analyses examining the ability of Vol12M − IVol
to predict future straddle, delta-hedged call, and delta-hedged put returns. The results
of these analyses are presented in Table 17.10. When performing the factor analyses
of the returns of the difference portfolios, it is necessary to calculate the returns of the
factors for the period during which the option positions are held, which does not, in
most cases, correspond perfectly to a calendar month. Factor returns corresponding
to the holding periods are therefore calculated by compounding the daily returns of
the market (MKT), size (SMB), value (HML), and momentum (MOM) factors over all
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TABLE 17.10 Univariate Portfolio Analysis—Option Returns
This table presents the results of univariate portfolio analyses of the relation between
Vol12M − IVol and future option returns. Monthly portfolios are formed by sorting all stocks
in the Options sample into portfolios using Vol12M − IVol decile breakpoints calculated using
all stocks in the Options sample. Panel A (Panel B) shows the average equal-weighted
(value-weighted) one-month-ahead excess return (in percent per month) for portfolios of strad-
dles, delta-hedged calls, and delta-hedged puts for each of the 10 decile portfolios. The table
also shows the average return and FFC alpha of the portfolio that is long the 10th decile port-
folio and short the first decile portfolio. Newey and West (1987) t-statistics, adjusted using six
lags, testing the null hypothesis that the average 10-1 portfolio return or alpha is equal to zero,
are shown in parentheses.

Panel A: Equal-Weighted Portfolios Returns

Position 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼

Straddle −23.85 −15.50 −12.57 −10.64 −8.44 −7.35 −6.50 −5.70 −1.89 −0.05 23.81 23.83
(12.48) (12.79)

ΔHedged call −22.31 −14.92 −12.07 −10.07 −7.84 −6.69 −5.70 −4.78 −0.69 1.77 24.08 24.20
(12.38) (12.78)

ΔHedged put −23.58 −15.96 −13.07 −11.26 −9.03 −8.06 −7.23 −6.46 −2.64 −1.09 22.49 22.54
(12.22) (12.38)

Panel B: Value-Weighted Portfolios Returns

Position 1 2 3 4 5 6 7 8 9 10 10-1 FFC 𝛼

Straddle −22.51 −16.61 −12.29 −12.16 −10.58 −11.70 −9.00 −7.51 −4.32 −2.48 20.02 19.53
(6.50) (6.92)

ΔHedged call −21.27 −16.15 −12.08 −11.88 −10.54 −11.26 −8.40 −6.82 −3.38 −1.03 20.24 19.67
(6.73) (7.07)

ΔHedged put −22.42 −17.16 −12.61 −12.69 −11.12 −12.43 −9.70 −8.09 −4.97 −3.37 19.04 18.46
(6.29) (6.63)

days during the holding period. Daily factor return data are taken from Ken French’s
data library. Since daily return data for the Pastor and Stambaugh (2003) liquidity
factor are not available, we use only the FFC model when risk-adjusting the returns
of the option portfolios.

Panel A of Table 17.10 demonstrates that when using equal-weighted portfolios,
the average excess returns of the straddle portfolios increase monotonically from
−23.85% per month for straddles on stocks in decile one of Vol12M − IVol to −0.05%
per month straddles on for stocks in Vol12M − IVol decile 10. The Vol12M − IVol 10-1
straddle portfolio generates an average monthly return of 23.81% (t-statistic= 12.48),
indicating a strong positive relation between Vol12M − IVol and future straddle returns.
Risk-adjusting the returns of this portfolio has very little effect. The FFC alpha of
23.81% per month (t-statistic = 12.79) is very similar to the average return.

It should be noted that while the return of the difference portfolio is extremely large
in magnitude, it is potentially not reflective of the actual returns that could be realized
by a long–short straddle portfolio. The main reason for this is that to enter into short
straddle positions, it is necessary to satisfy margin requirements in excess of the price
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of the straddle.6 Furthermore, options, by their nature, are highly levered securities.
Thus, instead of interpreting this result as the return of a long–short straddle portfolio,
it may be more accurate to interpret it as the difference in average returns between
straddles on stocks in the 10th decile of Vol12M − IVol and those in the first decile
of Vol12M − IVol. A similar commentary holds for the remaining portfolio analyses
discussed in this section.

Table 17.10 shows that the returns of delta-hedged calls and delta-hedged
puts exhibit similar cross-sectional patterns. The average excess returns of the
equal-weighted delta-hedged call portfolios increase from −22.31% per month
for stocks in Vol12M − IVol decile one to 1.77% per month for stocks in the 10th
Vol12M − IVol decile portfolio. The 10-1 portfolio generates an average return
of 24.08% per month (t-statistic = 12.38) and FFC alpha of 24.20% per month
(t-statistic = 12.78). For portfolios of delta-hedged puts, the average excess returns
increase monotonically from −23.58% for decile portfolio one to −1.09% per month
for decile portfolio 10. The difference of 22.49% per month (t-statistic = 12.22), as
well as the associated FFC alpha of 22.54% per month (t-statistic = 12.38), are all
positive, economically large, and highly statistically significant.

The results of value-weighted univariate portfolio analyses, presented in Panel B
of Table 17.10, are very similar to those of the equal-weighted portfolio analyses.
We therefore refrain from a prolonged evaluation of these results. However, there
is one issue pertaining to value-weighted analyses that warrants a short discussion.
In the analyses whose results are presented in Panel B, we have used MktCap as
the weighting variable, consistent with all other value-weighted portfolio analyses
performed in this book. However, one may argue that because the positions held in the
portfolios are not stocks, but option positions (and in the case of the delta-hedged calls
and puts, forward positions) it may be more appropriate to weight the portfolios using
some other weighting variable, such as option open interest, that is more indicative
of the importance of a given stock’s options in the overall option market. We leave
this exercise to the reader.

Our final set of analyses examines the relation between Vol12M − IVol and future
option returns using FM regression analyses. For each option position (straddle,
delta-hedged call, and delta-hedged put), we employ a specification that includes
only Vol12M − IVol as an independent variable, Vol12M − IVol along with IVolSpread,
IVolSke𝑤, ΔIVolC, and ΔIVolP as controls, and then all of these option variables
along with all of the variables examined in the previous chapters as independent
variables. None of our specifications include Vol1M − IVol as an independent variable
due to its mechanical relation with the focal variable Vol12M − IVol. The dependent
variable in the regressions is the one-month-ahead straddle, delta-hedged call, or
delta-hedged put excess return.

The results of the FM regression analyses are presented in Table 17.11. The
results show that, regardless of specification, Vol12M − IVol has a strong positive

6Goyal and Saretto (2009) indicate that margin requirements and execution costs may substantially
decrease the profitability of a trading strategy based on the results in Table 17.10. Murray (2013) examines
the effects of margin requirements on the returns of short option positions.
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TABLE 17.11 Fama–MacBeth Regression Analysis—Option Returns
This table presents the results of Fama and MacBeth (1973) regression analyses of the rela-
tions between Vol12M − IVol and the expected returns of straddles, delta-hedged calls, and
delta-hedged puts. Each column in the table presents results for a different cross-sectional
regression specification. The option position whose excess return is used as the independent
variable is indicated in the column headers. The independent variables are indicated in the
first column. Independent variables are winsorized at the 0.5% level on a monthly basis. The
table presents average slope and intercept coefficients along with t-statistics (in parentheses),
adjusted following Newey and West (1987) using six lags, testing the null hypothesis that the
average coefficient is equal to zero. The rows labeled Adj. R2 and n present the average adjusted
R-squared and the number of data points, respectively, for the cross-sectional regressions.
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Vol12M − IVol 0.560 0.541 0.542 0.566 0.543 0.544 0.530 0.520 0.523
(11.50) (10.50) (10.56) (11.10) (10.59) (10.53) (11.15) (9.99) (9.88)

IVolSpread 0.186 0.181 −0.640 −0.647 0.901 0.915
(3.40) (3.02) (−12.71) (−11.75) (12.46) (11.74)

IVolSke𝑤 0.133 0.150 0.141 0.158 0.160 0.179
(3.25) (3.27) (3.49) (3.46) (3.80) (3.72)

ΔIVolC −0.010 −0.068 −0.058 −0.116 0.027 −0.026
(−0.36) (−2.46) (−2.11) (−3.78) (1.06) (−1.00)

ΔIVolP −0.009 −0.029 0.037 0.027 −0.046 −0.064
(−0.26) (−0.89) (1.11) (0.79) (−1.43) (−2.08)

𝛽 1.118 0.763 1.073
(0.93) (0.64) (0.89)

Size −0.986 −0.999 −0.986
(−3.07) (−3.22) (−3.15)

BM −0.209 −0.123 0.035
(−0.22) (−0.13) (0.04)

Mom −0.028 −0.026 −0.028
(−1.77) (−1.83) (−1.87)

Re𝑣 −0.183 −0.167 −0.175
(−4.96) (−4.64) (−4.98)

Illiq −59.571 −57.661 −56.609
(−4.27) (−3.94) (−4.18)

CoSke𝑤 0.080 0.072 0.069
(3.12) (3.03) (2.78)

IdioSke𝑤 −0.648 −0.623 −0.633
(−1.67) (−1.54) (−1.65)

IdioVol −0.058 −0.058 −0.053
(−3.60) (−3.55) (−3.47)

Intercept −8.871 −9.301 −1.719 −7.950 −9.037 −1.002 −9.478 −9.632 −2.239
(−5.21) (−5.49) (−0.52) (−4.19) (−4.90) (−0.30) (−5.42) (−5.48) (−0.70)

Adj. R2 0.01 0.01 0.04 0.01 0.02 0.04 0.01 0.02 0.04
n 1582 1569 1325 1582 1569 1325 1582 1569 1325
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cross-sectional relation with future option returns. When straddle excess return is the
dependent variable, the average coefficient on Vol12M − IVol of 0.560 in the univari-
ate specification is highly statistically significant with a t-statistic of 11.50. When
the other option variables are included as controls, the average coefficient 0.541
(t-statistic = 10.50) is very similar. Finally, including the variables discussed in pre-
vious chapters of this book has almost no effect. In the full-specification regression,
the average coefficient on Vol12M − IVol is 0.542 with a t-statistic of 10.56.

The results are very similar when the future delta-hedged call or put excess returns
are used as the dependent variable. In the univariate regressions using delta-hedged
call (delta-hedged put) excess return as the dependent variable, the average coefficient
on Vol12M − IVol of 0.566 (0.530) is highly statistically significant with a t-statistic of
11.10 (11.15). When the option-based variables are included as controls, the average
coefficient on Vol12M − IVol of 0.543 (0.520) remains highly statistically significant
with a t-statistic of 10.59 (9.99). When the full set of controls is included in the spec-
ification, the average coefficient on Vol12M − IVol when the dependent variable is the
delta-hedged call excess return of 0.544 (t-statistic = 10.53) remains positive and
highly statistically significant. When delta-hedged put excess returns are used as the
dependent variable, the average coefficient of 0.523 is once again highly statistically
significant with a t-statistic of 9.88.

As in previous analyses, we examine the economic importance of the average
coefficients on Vol12M − IVol by multiplying them by the standard deviation of
14.38 as well as the difference between the 95th and fifth percentile of 36.82
(18.25 − (−18.57)) of Vol12M − IVol in the average month (see Table 17.1). In
all cases, we use the coefficient from the regression that includes the full set of
controls. A one-standard-deviation difference in Vol12M − IVol is associated with
7.79% (0.542 × 14.38) difference in expected monthly straddle returns, a difference
of 7.82% (0.544 × 14.38) in expected monthly delta-hedged call returns, and
a difference of 7.52% (0.523 × 14.38) per month in expected delta-hedged put
returns. The difference in expected option position returns for stocks with 95th and
fifth percentile values of Vol12M − IVol is 19.96% (0.542 × 36.82) per month for
straddles, 20.03% (0.544 × 36.82) per month for delta-hedged calls, and 19.26%
(0.523 × 36.82) per month for delta-hedged puts. The magnitudes of these return
differences are similar to those found in the portfolio analyses and indicate that not
only are the relations between Vol12M − IVol and future option returns statistically
significant, but they are also very economically large.

Finally, it is worth noting that the results in Table 17.11 indicate significant
relations between several other variables and future option returns. The regressions
indicate a positive relation between IVolSpread and each of future straddle and
delta-hedged put returns, and a negative relation between IVolSpread and future
delta-hedged call positions. IVolSke𝑤 is positively related to the future returns
of all three option positions. ΔIVolC is negatively related to future delta-hedged
call returns while ΔIVolP is negative related to future delta-hedged put returns.
Additionally, Size, Mom, Re𝑣, Illiq, and IdioVol all exhibit statistically significant
negative relations with future option returns while CoSke𝑤 appears to be positively
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related to future option returns. These relations have not received a lot of attention
in the empirical asset pricing literature and may warrant further investigation.

17.8 SUMMARY

In summary, in this chapter we investigate relations between variables generated
from option data and future stock and option returns. Consistent with Bali and
Hovakimian (2009) and Cremers and Weinbaum (2010), we demonstrate that the
difference between put and call implied volatility is positively related to future stock
returns. The difference between realized and implied volatility is, as documented
by Bali and Hovakimian (2009), negatively related to future stock returns, as is
the difference between OTM put implied volatility and ATM call implied volatility
(Xing et al. (2010)). We also show that changes in call implied volatility are
positively related to future stock returns and changes in put implied volatility are
negatively related to future stock returns, a finding first put forth by An et al. (2014).
The results for option returns indicate that, as demonstrated by Goyal and Saretto
(2009), the realized minus implied volatility spread is strongly positively related to
the returns of straddle positions, delta-hedged call positions, and delta-hedged put
positions.

REFERENCES

An, B.-J., Ang, A., Bali, T. G., and Cakici, N. 2014. The joint cross section of stocks and
options. Journal of Finance, 69(5), 2279–2337.

Ang, A., Hodrick, R. J., Xing, Y., and Zhang, X. 2006. The cross-section of volatility and
expected returns. Journal of Finance, 61(1), 259–299.

Arditti, F. D. 1967. Risk and the required return on equity. Journal of Finance, 22(1), 19–36.

Arditti, F. D. 1971. Another look at mutual fund performance. Journal of Financial and Quan-
titative Analysis, 6(3), 909–912.

Bakshi, G. and Kapadia, N. 2003a. Delta-hedged gains and the negative volatility risk premium.
Review of Financial Studies, 16(2), 527–566.

Bakshi, G. and Kapadia, N. 2003b. Volatility risk premium embedded in individual equity
options: some new insights. Journal of Derivatives, 11(1), 45–54.

Bali, T. G. and Hovakimian, A. 2009. Volatility spreads and expected stock returns. Manage-
ment Science, 55(11), 1797–1812.

Bali, T. G. and Murray, S. 2013. Does risk-neutral skewness predict the cross-section of
equity option portfolio returns? Journal of Financial and Quantitative Analysis, 48(4),
1145–1171.

Black, F. and Scholes, M. S. 1973. The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3), 637–654.

Bollen, N. P. B. and Whaley, R. E. 2004. Does net buying pressure affect the shape of implied
volatility functions. Journal of Finance, 59(2), 711–753.



�

� �

�

REFERENCES 475

Cao, J. and Han, B. 2013. Cross-section of option returns and idiosyncratic stock volatility.
Journal of Financial Economics, 108(1), 231–249.

Carhart, M. M. 1997. On persistence in mutual fund performance. Journal of Finance, 52(1),
57–82.

Carr, P. and Wu, L. 2009. Variance risk premiums. Review of Financial Studies, 22(3),
1311–1341.

Chang, B. Y., Christoffersen, P., and Jacobs, K. 2013. Market skewness risk and the cross
section of stock returns. Journal of Financial Economics, 107(1), 46–68.

Conine, T. E. and Tamarkin, M. J. 1981. On diversification given asymmetry in returns. Journal
of Finance, 36(5), 1143–1155.

Conrad, J. S., Dittmar, R. F., and Ghysels, E. 2013. Ex ante skewness and expected stock
returns. Journal of Finance, 68(1), 85–124.

Cox, J. C., Ross, S. A., and Rubinstein, M. 1979. Option pricing: a simplified approach. Journal
of Financial Economics, 7(3), 229–263.

Cremers, M. and Weinbaum, D. 2010. Deviations from put-call parity and stock return pre-
dictability. Journal of Financial Quantitative Analysis, 45(2), 335–367.

DeMiguel, V., Plyakha, Y., Uppal, R., and Vilkov, G. 2013. Improving portfolio selection using
option-implied volatility and skewness. Journal of Financial and Quantitative Analysis,
48(6), 1813–1845.

Fama, E. F. and French, K. R. 1993. Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics, 33(1), 3–56.

Fama, E. F. and MacBeth, J. D. 1973. Risk, return, and equilibrium: empirical tests. Journal of
Political Economy, 81(3), 607.

Garleanu, N., Pedersen, L. H., and Poteshman, A. M. 2009. Demand-based option pricing.
Review of Financial Studies, 22(10), 4259–4299.

Goyal, A. and Saretto, A. 2009. Cross-section of option returns and volatility. Journal of Finan-
cial Economics, 94(2), 310–326.

Harvey, C. R. and Siddique, A. 2000. Conditional skewness in asset pricing tests. Journal of
Finance, 55(3), 1263–1295.

Jackwerth, J. C. and Rubinstein, M. 1996. Recovering probability distributions from option
prices. Journal of Finance, 51(5), 1611–1631.

Kane, A. 1982. Skewness preference and portfolio choice. Journal of Financial and Quantita-
tive Analysis, 17(1), 15–25.

Kraus, A. and Litzenberger, R. H. 1976. Skewness preference and the valuation of risk assets.
Journal of Finance, 31(4), 1085–1100.

Mitton, T. and Vorkink, K. 2007. Equilibrium underdiversification and the preference for skew-
ness. Review of Financial Studies, 20(4), 1255–1288.

Murray, S. 2013. A margin requirement based return calculation for portfolios of short option
positions. Managerial Finance, 39(6), 550–568.

Newey, W. K. and West, K. D. 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.

Pastor, L. and Stambaugh, R. F. 2003. Liquidity risk and expected stock returns. Journal of
Political Economy, 111(3), 642–685.

Rehman, Z. and Vilkov, G. 2012. Risk-Neutral Skewness: Return Predictability and its Sources.
SSRN eLibrary.



�

� �

�

476 OPTION-IMPLIED VOLATILITY

Scott, R. C. and Horvath, P. A. 1980. On the direction of preference of moments of higher order
than the variance. Journal of Finance, 35(4), 915–919.

Simkowitz, M. A. and Beedles, W. L. 1978. Diversification in a three-moment world. Journal
of Financial and Quantitative Analysis, 13(5), 927–941.

Xing, Y., Zhang, X., and Zhao, R. 2010. What does the individual option volatility smirk
tell us about future equity returns? Journal of Financial Quantitative Analysis, 45(3),
641–662.



�

� �

�

18

OTHER STOCK RETURN
PREDICTORS

In this chapter, we conclude this book by briefly discussing several additional stock
return phenomena documented throughout the empirical asset pricing literature.
While the effects documented in the previous chapters of Part II are the most widely
recognized, controlled for, and cited effects, several of the variables discussed in this
chapter are just as strong, if not stronger, predictors of future stock returns than the
variables discussed in previous chapters. Many of the results discussed in this chapter
are considered to be behavioral in nature and/or have their roots in accounting and
financial statement data. While our intention in writing this chapter is to provide the
reader with as wide-ranging an overview as is reasonable of empirical asset pricing
research not discussed in previous chapters, the set of phenomena documented in
this and previous chapters is by no means complete. In fact, Harvey, Liu, and Zhu
(2015) catalog 316 documented factors related to cross-sectional pricing effects.
Green, Hand, and Zhang (2013) examine 330 different signals proposed by previous
work.1 Additional surveys of the cross-sectional predictors of stock returns are
provided by Haugen and Baker (1996), Barberis and Thaler (2003), Schwert (2003),
and McLean and Pontiff (2015).2 Hirshleifer (2015) provides an introduction to the

1Both Harvey, Liu, and Zhu (2015) and Green, Hand, and Zhang (2013) find that many of the docu-
mented predictors of stock returns capture the same underlying economic phenomena. Thus, the number
of orthogonal drivers of expected stock returns is likely to be substantially lower.
2McLean and Pontiff (2015) provide evidence that some of the return patterns documented by academic
research may be exaggerated in magnitude and fail to persist after publication of articles identifying the
given phenomenon.
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foundations of behavioral phenomena in the stock market along with a survey of
previous empirical results.

We present no empirical results in this chapter. Instead, we very briefly describe
the main results and conclusions and provide citations to the most important papers
in each line of research. For researchers looking for a more in-depth understanding
of any given topic, the references herein should serve as a good starting point.

18.1 ASSET GROWTH

There is a long line of research that has demonstrated a negative relation between
changes in firm-level assets and future stock returns. Specifically, several studies have
shown that firms tend to experience negative abnormal returns in periods following
actions that increase assets (equity offerings and acquisitions), whereas firms that
decrease assets (share repurchases and spinoffs) tend to realize positive abnormal
returns in subsequent periods.

Several papers have documented that measures of firm growth are negatively
related, in the cross section, to future stock returns. Lakonishok, Shleifer, and
Vishny (1994) demonstrate a negative relation between growth in sales and future
stock returns and La Porta (1996) finds a similar negative relation between expected
earnings growth, calculated from analyst forecasts, and future stock returns.

The objective of both Lakonishok, Shleifer, and Vishny (1994) and La Porta
(1996) is to examine whether the value premium (the positive relation between
book-to-market ratio and future stock returns, see Chapter 10) is a manifestation
of risk or of a behavioral phenomenon. Lakonishok, Shleifer, and Vishny (1994)
hypothesize that investors extrapolate past performance into the future, thereby
expecting firms that have exhibited high (low) past performance, as measured by
growth in sales, to continue this strong (weak) performance. When pricing stocks,
therefore, investors tend to overprice (underprice) stocks with previous strong (weak)
performance, resulting in the positive relation between book-to-market ratio and
future stock returns. Both Lakonishok, Shleifer, and Vishny (1994) and La Porta
(1996) investigate and reject the possibility of a risk-based explanation for this result
and conclude that the phenomenon is behavioral in nature.

Sloan (1996) expands on this work by investigating which components of earnings
are responsible for the overpricing (underpricing) of high-growth (low-growth)
stocks and finds that firms with large accruals exhibit lower earnings persistence and
that it is the accruals component of earnings that is negatively related to future stock
returns. Hirshleifer, Hou, Teoh, and Zhang (2004) examine whether investors focus
their attention on accounting profitability instead of cash profitability and show
that the difference (accounting profitability minus cash profitability), measured by
net operating assets, is negatively related to future stock returns. Titman, Wei, and
Xie (2004) find that increases in capital investments are negatively related to future
stock returns and attribute this result to investors’ failure to incorporate the effects
of managers’ empire-building incentives when valuing capital investments.
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Other papers have investigated the performance of stocks subsequent to capital
raising events and found that firms that raise (disperse) capital exhibit low (high)
long-term abnormal returns. Ritter (1991) and Loughran (1993) demonstrate that
stocks experience negative abnormal returns in the years after an initial public
offering with Ritter (1991) finding evidence that this result is driven by firms’
tendency to go public when investors are irrationally optimistic about future
prospects. Loughran and Ritter (1995) document a similar pattern in returns
following seasoned public equity offerings. Lakonishok and Vermaelen (1990) and
Ikenberry, Lakonishok, and Vermaelen (1995) look at share repurchases and find
that repurchasing stocks exhibit subsequent outperformance, with the effect being
concentrated among small stocks and value stocks. Fama and French (2008a,b)
demonstrate that net share issuance is negatively related to future stock returns.3 Rau
and Vermaelen (1998) find a similar result for firms issuing tender offers.

Another strand of this literature investigates corporate actions such as acquisi-
tions and spinoffs. Agrawal, Jaffe, and Mandelker (1992), Loughran and Vijh (1997),
and Rau and Vermaelen (1998) find that acquiring firms realize very low returns
subsequent to the acquisition. Rau and Vermaelen (1998) demonstrate that this phe-
nomenon is concentrated among stocks with low book-to-market ratios. On the other
hand, Cusatis, Miles, and Woolridge (1993) and McConnell and Ovtchinnikov (2004)
find that firms that execute spinoffs realize positive abnormal returns subsequent to
the spinoff event.

Recent work has examined whether the results listed above are generated by the
same underlying economic phenomenon. Pontiff and Woodgate (2008) find evidence
that the negative abnormal returns subsequent to equity issuances and acquisitions, as
well as the positive abnormal returns subsequent to stock repurchases, are all driven
by a common share-issuance effect. Fairfield, Whisenant, and Yohn (2003) provide
evidence that the accrual effect (Sloan 1996) is a manifestation of a larger growth
effect. Cooper, Gulen, and Schill (2008) find that growth in total assets captures a
component that is common to many of these anomalies.

18.2 INVESTOR SENTIMENT

Investor sentiment can roughly be thought of as the deviation between investors’ view
of the prospects for a stock and a purely rational assessment of the stock’s prospects.
In a perfectly rational world, the two would be the same. However, many researchers
believe that, even in the aggregate, investors are not perfectly rational. In a world that
is not perfectly rational, therefore, investor sentiment can influence stock prices and,
thus, future stock returns.

3The empirical evidence in Hovakimian, Opler, and Titman (2001) indicates that firms tend to repurchase
(issue) shares when their stock prices perform poorly (well) relative to changes in their cash flows. Baker
and Wurgler (2002) point out that this tendency reflects the fact that managers time the equity markets.
Daniel and Titman (2006) provide evidence that if managers issue equity when stocks are overvalued, then
stock issuance will negatively predict returns.
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The impetus for the investor sentiment literature comes from several phenomena
empirically observed in stock returns. First, many papers find evidence that investors
underreact to news in the short run. Cutler, Poterba, and Summers (1991) find that
stock returns exhibit positive serial correlation over periods of less than one year.
Ball and Brown (1968), Foster, Olsen, and Shevlin (1984), and Bernard and Thomas
(1989, 1990) demonstrate a phenomenon known as post earnings announcement
drift, which refers to the empirical finding that firms realizing positive (negative)
earnings surprises experience, on average, positive (negative) abnormal returns for
many months subsequent to the earnings announcement, indicating that investors
underreact to the earnings news. As discussed in Chapter 11, Jegadeesh and Titman
(1993) show that there is a very strong momentum effect in the cross section of
stock returns. Chan, Jegadeesh, and Lakonishok (1996) conclude that both the
post earnings announcement drift and momentum phenomena result from sluggish
reaction by the market to new information.

Second, several researchers find that over periods of many years, investors tend
to overreact to new information. Cutler et al. (1991) demonstrate that over periods of
three to five years, returns tend to exhibit negative autocorrelation. This is consistent
with the long-term reversal phenomenon discussed briefly in Chapter 11. De Bondt
and Thaler (1985) and Chopra, Lakonishok, and Ritter (1992) find similar evidence
and attribute the phenomenon to overreaction, not compensation for risk.

A seminal theoretical article, Barberis, Shleifer, and Vishny (1998) develop
a model of investor belief formation that generates predictions consistent with
not only the observed underreaction and overreaction phenomena discussed in
the previous paragraphs but also the representativeness (Tverskey and Kahneman
(1974)) and conservatism (Edwards (1968)) phenomena documented by cognitive
psychologists. Daniel, Hirshleifer, and Subrahmanyam (1998) generate a model
based on different psychological phenomena, overconfidence (Griffin and Tversky
(1992)) and attribution (Bem (1965)), that produces similar predictions.

Since then, numerous papers have been written examining the relation between
investor sentiment and future security returns. Neal and Wheatley (1998) find evi-
dence that investor sentiment partially explains the size effect discussed in Chapter 9.
Baker and Stein (2004) develop a model relating investor sentiment to liquidity and
showing that high investor sentiment can result in overvaluation. Baker and Wur-
gler (2006) show that young, risky firms underperform significantly after periods
of high sentiment. Once again, the notion here is that periods of high sentiment
reflect overvaluation, especially for hard to value firms (i.e., young firms with high
return volatility). Grinblatt and Han (2005) demonstrate that a tendency of some
investors to hold on to losing trades generates the momentum phenomenon. Han
(2008) finds that for S&P 500 index options, the implied volatility smile is more
pronounced and the implied risk-neutral skewness is more negative when investor
sentiment is low. Stambaugh, Yu, and Yuan (2012, 2014) demonstrate that several
empirical anomalies detected in stock returns are stronger following periods of high
investor sentiment, and that this result is driven by the short positions in long–short
portfolios.
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18.3 INVESTOR ATTENTION

The literature on investor attention is related to the research on investor sentiment
in that its main objective is to explain the underreaction of stock prices to relevant
news documented by many papers discussed earlier (Ball and Brown (1968), Cutler,
Poterba, and Summers (1991), Foster, Olsen, and Shevlin (1984), Bernard and
Thomas (1990) and Jegadeesh and Titman (1993)). However, the work on investor
attention posits another driver of these phenomena, specifically investors’ limited
attention capacity. As with the models describing investor sentiment, models of
investor attention have the roots in cognitive psychology. Kahneman (1973)’s theory
of attention indicates that attention is a scarce cognitive resource. The implication of
attention theory in financial markets is that limited availability of time and cognitive
resources imposes constraints on how fast investors can process information.

Recent theoretical models have shown that limited investor attention can lead to
underreaction to information and thus slow price adjustments. Hirshleifer and Teoh
(2003) examine the effects of information presentation and clarity on the speed and
accuracy of stock price reactions and valuations. Peng (2005) derives an equilib-
rium model in which investors optimally allocate their attention. Peng and Xiong
(2006) find that limited attention capacity leads investors to focus on market-level
and sector-level information and to ignore firm-specific information. When combined
with investor overconfidence, this focus on market-level and sector-level informa-
tion explains many empirically observed stock price dynamics that are difficult to
rationalize in standard asset pricing models that assume instantaneous and complete
information processing. The main implication of each of these models is that limited
attention capacity results in delayed stock price reactions to value-relevant public
information.

This central prediction derived from models of investor inattention has been
confirmed by several recent empirical studies. Hirshleifer, Lim, and Teoh (2009)
find that stock price reaction to earnings announcements is slower, and post earnings
announcement drift (Ball and Brown (1968), Foster, Olsen, and Shevlin (1984),
Bernard and Thomas (1989, 1990)) is much stronger, for earnings announced on days
with a large number of earnings announcements, when investor attention is a highly
scarce resource. DellaVigna and Pollet (2009) demonstrate that investors react much
more slowly to earnings news released on Fridays, when investor attention is likely
to be low.4 Li and Yu (2012) show that the Dow Jones Industrial Average exhibits
a positive trend when it is near the 52-week high and a negative trend when it is
near its historical high and attribute these effects to investor attention. Da, Gurun,
and Warachka (2014) find that investors’ tendency to underreact is attenuated when
information is released gradually instead of in a single announcement. Bali, Peng,
Shen, and Tang (2014b) provide evidence that the theory of investor inattention is
important in understanding stock market underreactions to liquidity shocks.

4DellaVigna and Pollet (2007) find that investors fail to fully account for demographic information when
forecasting future sales, leading to stock return predictability. They offer investor inattention as one pos-
sible explanation for this phenomenon.
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18.4 DIFFERENCES OF OPINION

Miller (1977) hypothesizes that stock prices reflect an upward bias as long as there
exists divergence of opinion among investors about stock value and pessimistic
investors are constrained with respect to the size of the short position they can take.
In Miller’s model, overvaluation arises because potential short-sellers are restricted
to hold zero shares. The result is that the determination of market prices for securities
is driven primarily by the beliefs of more optimistic investors. Since divergence
of opinion is likely to be higher for riskier stocks, Miller (1977) conjectures that
divergence of opinion plays a role in the historically low (high) abnormal returns
generated by stocks with high (low) levels of firm-specific risk (see Chapter 15 and
Ang, Hodrick, Xing, and Zhang (2006)).5 Hong and Stein (2003) produce a model
of market crashes in which the negative opinions held by potential short-sellers only
influence stock prices when previously bullish investors sell their positions, resulting
in large drops in market prices.

The role of differences of opinion in the cross section of stock returns has been
empirically examined in several papers. Diether, Malloy, and Scherbina (2002) use
dispersion in analysts earnings forecasts as a proxy for divergence of opinion and
find that stocks with higher analyst forecast dispersion generate significantly lower
future returns than those with lower dispersion. Chen, Hong, and Stein (2002) find
that breadth of ownership, defined as the number of different investors that own
a stock, influences stock returns. The idea is that when only a small number of
investors have a long position in the stock, this indicates that short-sale constraints
are likely binding, and as a result, the stock is overpriced. The main empirical finding
in Chen, Hong, and Stein (2002) is that stocks with recent increases in breadth
of ownership significantly outperform those with breadth decreases. Boehme,
Danielsen, and Sorescu (2006) demonstrate that both dispersion in investor opinion
and short-sale constraints are necessary conditions for overvaluation. Stocks for
which either of these conditions fails to hold, therefore, do not exhibit a tendency to
be overvalued. Berkman, Dimitrov, Jain, Koch, and Tice (2009) assume that earnings
announcements reduce differences of opinion and find that stocks with previously
high differences of opinions earn lower returns around earnings announcements than
stocks with previously low differences of opinions.

18.5 PROFITABILITY AND INVESTMENT

There is a long line of research that investigates the relation between accounting
ratios and expected stock returns. This research has produced two main results.

5Harris and Raviv (1993) model the effect of differences of opinion in speculative markets. Their model
predicts that, in the time series, the magnitude of price changes and trading volume are contemporaneously
positively correlated, consecutive price changes are negatively serially correlated, and volume is positively
auto-correlated. Bessembinder, Chan, and Seguin (1996) find corroborating empirical evidence using data
on S&P 500 index futures.
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The first of these results is that there is a strong positive relation between profitability
and expected stock returns. Haugen and Baker (1996) and Cohen, Gompers, and
Vuolteenaho (2002) find a strong positive relation between return on equity and
future stock returns. Bali, Demirtas, and Tehranian (2008) provide evidence that
expected stock returns are positively related to the ratio of earnings to total assets.
Novy-Marx (2013) finds similar results using the ratio of profits (revenues minus
cost of goods sold) to assets as the predictive variable.

The second result is that there exists a negative relation between investment and
future stock returns. Fairfield, Whisenant, and Yohn (2003) find that both accruals
and net operating assets are negatively related, in the cross section, to future stock
returns. Titman, Wei, and Xie (2004) detect a negative relation between growth in
capital investment, measured as the ratio of recent capital expenditures to histori-
cal capital expenditures, and future stock returns. Cooper, Gulen, and Schill (2008)
demonstrate a very strong negative relation between growth in total assets and future
stock returns. Aharoni, Grundy, and Zeng (2013) find a negative relation between
expected investment and expected stock returns.

Fama and French (2006, 2015) theoretically model these results using a simple
dividend discount model and find that, consistent with many of the previous empiri-
cal results, holding all else equal, the expected return of a stock is positively related to
the book-to-market ratio, positively related to profitability, and negatively related to
investment. Based on this, Fama and French (2015) develop a five-factor risk model
that includes the market (MKT), size (SMB), and value (HML) factors included in
the Fama and French (1993) three-factor model along with new profitability and
investment factors. They find that the five-factor model does a better job at capturing
cross-sectional variation in stock returns than the three-factor model.

Hou, Xue, and Zhang (2015) develop a similar model based on the q-theory of
investment. The Hou et al. (2015) model includes the market factor (MKT), a size
factor, a profitability factor, and an investment factor.6 Notably missing from the Hou
et al. (2015) model is a value factor. Hou, Xue, and Zhang (2015) claim that the
value factor is both theoretically and empirically captures by the investment factor.
Additionally, Hou, Xue, and Zhang (2015) find that the profitability factor captures
the momentum effect.

18.6 LOTTERY DEMAND

The final topic we discuss in this chapter is the effect of lottery demand on stock
prices. The main premise of the lottery demand literature is that some investors
demand lottery-like stocks, or stocks that are more likely to experience large
short-term increases in value. While lottery demand is a well-documented phe-
nomenon in the gambling arena (Thaler and Ziemba (1988)), the prevalence and

6The precise definitions of the size, profitability, and investment factors used by Hou, Xue, and Zhang
(2015) are different from those used by Fama and French (1993, 2015).
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effect of lottery demand in financial markets has, until recently, received little
attention.

Recent work, however, has uncovered strong evidence that lottery demand plays
an important role in financial markets. Kumar (2009) uses demographic data to
demonstrate that investors who are more likely to play the lottery are also more likely
to invest in lottery-like stocks, where lottery-like stocks are defined as stocks with low
prices (below $5) whose returns exhibit high idiosyncratic volatility and high idiosyn-
cratic skewness. Han and Kumar (2013) show that retail investors, particularly retail
investors with high gambling propensity, invest disproportionately in such stocks.

Bali, Cakici, and Whitelaw (2011) examine the effect of lottery demand on stock
pricing. Measuring lottery demand using MAX, defined as the highest daily return
in the given month, Bali et al. (2011) find a strong negative relation between lottery
demand and future U.S. stock returns. Several subsequent papers find similar results
in other markets. Annaert, De Ceuster, and Verstegen (2013) and Walkshäusl (2014)
show that the lottery demand phenomenon is strong in European markets. Carpenter,
Lu, and Whitelaw (2014) find evidence of a negative relation between lottery demand
and future stock returns in the Chinese stock market. Consistent with investor prefer-
ence for lottery-like stocks, Conrad, Kapadia, and Xing (2014) show that stocks with
high predicted probabilities for extremely large positive returns earn abnormally low
average returns.7

While the negative relation between lottery demand and future stock returns is
interesting in its own right, there is substantial evidence that this relation may be a
driving factor in some of the most persistent and confusing phenomena documented in
the empirical asset pricing literature. Specifically, Bali et al. (2011) present evidence
that the idiosyncratic volatility puzzle of Ang, Hodrick, Xing, and Zhang (2006)
(see Chapter 15) is explained by lottery demand and that, after controlling for lot-
tery demand, the relation between idiosyncratic volatility and future stock returns is
positive. Bali, Brown, Murray, and Tang (2014a) show that the empirical failure of
the Capital Asset Pricing Model (Sharpe (1964), Lintner (1965) and Mossin (1966))
documented in Chapter 8 is, in part, explained by lottery demand. Specifically, after
controlling for lottery demand and other characteristics known to predict future stock
returns, the empirical analyses in Bali, Brown, Murray, and Tang (2014a) find a pos-
itive relation between beta and future stock returns.
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excess returns, 449, 451

firm characteristics, 450, 451
implied volatility changes, 446, 467, 468
implied volatility skew, 446
OM database, 443–444
OM’s implied volatility surface, 448
option returns, 469–471, 470, 472, 473–474
option variables, 449, 450, 454, 454–455
realized minus implied volatility spread,

445–446
stock characteristics, 454, 455
stock returns, 456, 457–458, 458–460, 459
straddle returns, 447

ordinary-least-squares (OLS) regression, 90

Pastor and Stambaugh (PS)
PSL portfolio, 312–315
stock-level liquidity, 309–310
time-series plot of Lm, 312, 313
time-series plot of (Vm∕V1)�̂� , 310–312, 311

Pearson correlations
book-to-market ratio, 183–184
co-skewness, 329, 329–330
idiosyncratic skewness, 330, 330–331
momentum effect, 210
total skewness, 326–328, 327

Pearson product–moment correlations, 128, 129,
210

average cross-sectional correlations, 19–20, 21
average pairwise correlations, 23, 23–24
beta and size, 22
BM, 22
book-to-market ratio, 183–184
definition, 17–18
momentum, 210
one-year-ahead excess return (rt+1), 22–23
periodic cross-sectional correlations, 18–19, 20
regression techniques, 21

periodic cross-section regression, 90–91, 92–94
persistence analysis

average cross-sectional persistence, 28, 28
of 𝛽, 31, 31–32
of BM, 31, 31–32
book-to-market ratio, 184–185
definition, 25
dual hypothesis problem, 29
momentum effect, 211
optimal calculation period, 30–31
periodic cross-sectional persistence, 26–27, 27
of Size, 31, 31–32
size effects, 154, 154–155

portfolio analysis, 89
application, 33
benefit, 33
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bivariate dependent-sort portfolio analysis see
bivariate dependent-sort portfolio analysis

bivariate independent-sort analysis see bivariate
independent-sort analysis

disadvantage, 33–34
independent vs. dependent sort, 85–87, 86, 87
objective, 33
trivariate-sort analysis, 87
univariate portfolio analysis see univariate

portfolio analysis
PRC field, 147
probit model, 90

realized minus implied volatility spread, 445–446
reversal phenomenon, 242

sample, 4
short-term reversal, 263, 264

bivariate dependent-sort portfolio analysis, 250,
251–252, 252, 253–254, 254–255, 258,
259–260, 260

bivariate independent-sort portfolio analysis,
255, 256–257, 257–258, 261, 262–263

correlations, 243–244, 244
cumulative returns of STR portfolio, 268–270,

269
equal-weighted portfolio returns, 245, 246
lagged values of reversal, 247, 248–249, 249,

265, 266
lagged values of reversal with controls, 265, 267
measuring, 243
Rev-sorted portfolio characteristics, 245, 246
statistics, time-reversal, 243
value-weighted portfolio returns, 245, 246–247

short-term reversal effect, 206
SHROUT field, 147, 148
SIC codes see standard industrial classification

(SIC) codes
size effects

ALTPRC field, 147, 148
bivariate portfolio analysis, 162–168, 163–164,

166–169
correlations, 152–154, 153
CRSP, 147
definition, 146
Fama and French measure of, 148
Fama and French three-factor model, 146
Fama–MacBeth regression analysis, 168–171,

170
inflation-adjusted values of, 150
issues in, 150
MktCap and MktCapFF , 148–150
persistence analysis, 154, 154–155

in regression analyses, 149
size factor, 171–173
statistics, 149, 150–152, 152
timing of, 149
univariate portfolio analysis, 155–162, 156,

157–158, 160–161
skewness

beta (𝛽), 333, 335
book-to-market ratio (BM), 333
CAPM, 319
co-skewness see co-skewness
equilibrium, 320
idiosyncratic skewness see idiosyncratic

skewness
illiquidity (Illiq), 335, 336
mean–variance paradigm, 319
momentum (Mom), 333–334
reversal, 334–335
size, 333, 335
total skewness see total skewness

Spearman rank correlations, 128, 129
average cross-sectional correlations, 19–20, 21
average pairwise correlations, 23, 23–24
beta and size, 22
BM, 22
book-to-market ratio, 183–184
co-skewness, 329, 329–330
definition, 18
idiosyncratic skewness, 330, 330–331
momentum effect, 210
one-year-ahead excess return (rt+1), 22–23
periodic cross-sectional correlations, 18–19, 20
regression analysis, 21
total skewness, 326–328, 327

standard errors, 91
standard industrial classification (SIC) codes, 108,

109
statistics, size effects, 149, 150–152, 152
stock return predictors

asset growth, 478–479
differences of opinion, 482
investor attention, 481
investor sentiment, 479–480
lottery demand, 483–484
profitability and investment, 482–483

stock returns
bivariate dependent-sort portfolio analysis,

190–193, 220–226, 229–231, 461, 462,
463, 464

bivariate independent-sort portfolio analysis,
193–198, 227, 228, 232–233, 464,
465–466, 466

bivariate portfolio analysis, 162–168, 163–164,
166–169
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equal-weighted portfolios, 132, 133–135, 136
Fama and MacBeth regression analysis, 140,

141, 142–143, 168–171, 170, 198–200,
234–235, 458–460, 459, 467, 468

univariate portfolio analysis, 155–162, 156,
157–158, 160–161, 185–190, 456,
457–458 see also univariate portfolio
analysis

value-weighted portfolios, 137, 138–139
stock-level liquidity, 309–310
summary statistics

average cross-sectional summary statistics, 12,
12

𝛽, 13, 14
book-to-market ratio, 14, 15, 181–183
MktCap, 13–15, 14
momentum variables, measures of, 208–209
objectives, 13
periodic cross-sectional summary statistics,

10–12, 11

total skewness
correlations, 326–328, 327
Fama–MacBeth regressions, 350–353,

351–352
measurement period and data frequency,

331–333, 332
measuring, 321–323
persistence, 336–338, 340
statistics, 323, 324
univariate portfolio analysis, 342, 343, 344–345

total volatility, 365–366
correlations, 370–372, 371, 375, 376
statistics, 367, 368–369, 369–370

trivariate-sort analysis, 87
truncation, 6

univariate portfolio analysis, 382, 383, 384–385
average values, 39–43, 42, 43, 47
book-to-market ratio and stock returns,

185–190
breakpoints calculation, 34–37, 37
𝛽 –sorted portfolios, 49–50, 50
CAPM, 48, 51

co-skewness, 345, 346, 347
CRSP sample, 425, 426, 427–428
different sort variables, same outcome

variables, 47–48, 48
equal-weighted excess returns, 44–45, 45
equal-weighted liquidity, 282, 283, 284–285
equal-weighted portfolio returns, 213–216
equal-weighted portfolio unadjusted returns,

283, 286
FF three-factor model, 48–49, 51
FFC four-factor model, 49, 51
idiosyncratic skewness, 347, 348, 349
IdioVolFF,1M , 387–389, 388
k-month-ahead returns, 216–220
Illiq12M-sorted liquidity, 282, 283
long-term reversal effect, 220
Mom-sorted portfolio characteristics, 211–213
objective, 34, 41
portfolios formation, 37–39, 39
price sample, 428, 429, 430–432
p-values, 44
short-term reversal effect, 220
single portfolio analysis, 45–46, 46
size sample, 432, 433, 434
slope coefficient, 49
time-series means, 41–43
total skewness, 342, 343, 344–345
t-statistics, 44
unadjusted returns, 385, 386, 387

U.S. stock market, 103–104

value premium
book-to-market ratio see book-to-market ratio

(BM)
Fama and French three-factor (FF) risk model,

202–203
HML portfolio, 200–202
risk-based explanation, 175–176

value stocks
definition, 175
higher long-run returns, generation of, 175

value-weighted portfolios, 137, 138–139

Wharton Research Data Services (WRDS), 104
winsorization, 5–6
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