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The complexities of exterior gateway protocols, including TCP connections, message states, path 
attributes, interior routing protocol interoperation, and setting up neighbor connections, require a 
comprehensive understanding of router operations in order to manage network growth. Routing 
TCP/IP, Volume II, provides you with the expertise necessary to understand and implement BGP-4, 
multicast routing, Network Address Translation, IPv6, and effective router management techniques. 
Jeff Doyle's practical approach, easy-to-read format, and comprehensive topic coverage make this 
book an instant classic and a must-have addition to any network professional's library.

Routing TCP/IP, Volume II expands upon the central theme of Volume I: scalability and management 
of network growth. Volume II moves beyond the interior gateway protocols covered in Volume I to 
examine both inter-autonomous system routing and more exotic routing issues such as multicasting 
and IPv6. This second volume follows the same informational structure used effectively in Volume I: 
discussing the topic fundamentals, following up with a series of configuration examples designed to 
show the concept in a real-world environment, and relying on tested troubleshooting measures to 
resolve any problems that might arise. Designed not only to help you walk away from the CCIE lab 
exam with one of those valued and valuable numbers after your name, this book also helps you to 
develop the knowledge and skills essential to a CCIE. Whether you are pursuing CCIE certification, 
need to review for your CCIE recertification exam, or are just looking for expert-level advice on 
advanced routing issues, Routing TCP/IP, Volume II helps you understand foundation concepts and 
apply best practice techniques for effective network growth and management.
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Introduction
Since the publication of Volume I of Routing TCP/IP, many volumes have been added to the Cisco 
Press CCIE Professional Development series. And the CCIE program itself has expanded to include 
various areas of specialization. Yet the IP routing protocols remain the essential foundation on which 
the CCIE candidate must build his or her expertise. If the foundation is weak, the house will tumble.

I stated in the introduction to Volume I that "…as internetworks grow in size and complexity, routing 
issues can become at once both large and subtle." Scalability and management of growth continues 
to be a central theme in this second volume, as we move beyond the interior gateway protocols to 
examine both interautonomous system routing and more exotic routing issues such as multicasting 
and IPv6.

My objective in this book is not only to help you walk away from the CCIE lab exam with one of those 
valued and valuable numbers after your name, but also to help you develop the knowledge and skills 
to live up to the CCIE title. As with the first volume, I want to make CCIEs, not people who can pass 
the CCIE lab. In this vein, you will find in this book more information than you will need to pass the 
lab, but certainly all of the material is important in your career as a recognized internetworking 
expert.

When I earned my CCIE, the lab still consisted mostly of AGS+ routers. Certainly the lab and the 
nature of the exam have changed substantially since that ancient time. If anything, the lab is more 
difficult now. Another addition to the CCIE program has been the recertification requirement. Even 
before I took the recertification exam for the first time, people were telling me how much Volume I 
had helped them prepare for the test—particularly for IS-IS, a protocol that few outside of service 
provider environments are exposed to. I have therefore written this second volume with not only 
CCIE candidates in mind, but also existing CCIEs who need to review for their recertification. The 
chapters on multicasting and IPv6 are directed to this audience.

I have endeavored to follow the same structure that I followed in Volume I, in which a protocol is 
introduced in generic terms, followed by examples of configuring the protocol using Cisco IOS 
Software, and finally by examples of Cisco IOS Software tools for troubleshooting the protocol. In the 
case of BGP and IP multicast, this structure is far too lengthy for a single chapter and therefore spans 
multiple chapters.

I hope you learn as much from reading this book as I have from writing it.



 
  
Icons Used in This Book





 
  
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the 
IOS Command Reference. The Command Reference describes these conventions as follows:

●     Vertical bars (|) separate alternative, mutually exclusive elements.
●     Square brackets [ ] indicate optional elements.
●     Braces { } indicate a required choice.
●     Braces within brackets [{ }] indicate a required choice within an optional element.
●     Boldface indicates commands and keywords that are entered literally as shown. In actual 

configuration examples and output (not general command syntax), boldface indicates 
commands that are manually input by the user (such as a show command).

●     Italics indicates arguments for which you supply actual values.



 
  

Part I: Exterior Gateway Protocols

 Chapter 1 Exterior Gateway Protocol

 Chapter 2 Introduction to Border Gateway Protocol 4

 Chapter 3 Configuring and Troubleshooting Border Gateway Protocol 4

Part I Exterior Gateway Protocols



 
  

Chapter 1. Exterior Gateway Protocol
This chapter covers the following key topics:

●     The Origins of EGP— This section discusses the history of the development of the Exterior 
Gateway Protocol, presented in RFC 827 (1982).

●     Operation of EGP— This section explores the fundamental mechanics of EGP with a focus on 
EGP topology issues, EGP functions, and EGP message formats.

●     Shortcomings of EGP— This section explores some of the reasons why EGP is no longer 
pursued as a viable external gateway protocol solution.

●     Configuring EGP— This section presents four separate case studies—EGP stub gateway, EGP 
core gateway, indirect neighbors, and default routes—to demonstrate different types of EGP 
configuration.

●     Troubleshooting EGP— This section examines how to interpret an EGP neighbor table and 
presents a case study on the slow convergence speed of an EGP network to show why EGP is 
no longer a popular option.

The first question knowledgeable readers will (and should) ask is "Why kill a few trees publishing a 
chapter about an obsolete protocol such as the Exterior Gateway Protocol (EGP)?" After all, EGP has 
been almost universally replaced by the Border Gateway Protocol (BGP). This question has two 
answers.

First, although EGP is rarely used these days, it is still occasionally encountered. As of this writing, 
for instance, you can still find EGP in a few U.S. military internetworks. As a CCIE, you should 
understand EGP for such rare encounters.

Second, this chapter serves as something of a history lesson. Examining the motives for developing 
an external gateway protocol and the shortcomings of the original external protocol provides a 
prologue for the following two chapters. BGP will make more sense to you if you are familiar with the 
roots from which it evolved.



 
  
The Origins of EGP

In the early 1980s, the routers (gateways) that made up the ARPANET (predecessor of the modern 
Internet) ran a distance vector routing protocol known as the Gateway-to-Gateway Protocol (GGP). 
Every gateway knew a route to every reachable network, at a distance measured in gateway hops. 
As the ARPANET grew, its architects foresaw the same problem that administrators of many growing 
internetworks encounter today: Their routing protocol did not scale well.

Eric Rosen, in RFC 827[1], chronicles the scalability problems:

●     With all gateways knowing all routes, "the overhead of the routing algorithm becomes 
excessively large." Whenever a topology change occurs, the likelihood of which increases with 
the size of the internetwork, all gateways have to exchange routing information and 
recalculate their tables. Even when the internetwork is in a steady state, the size of the 
routing tables and routing updates becomes an increasing burden.

●     As the number of GGP software implementations increases, and the hardware platforms on 
which they are implemented become more diverse, "it becomes impossible to regard the 
Internet as an integrated communications system." Specifically, maintenance and 
troubleshooting become "nearly impossible."

●     As the number of gateways grows, so does the number of gateway administrators. As a 
result, resistance to software upgrades increases: "[A]ny proposed change must be made in 
too many different places by too many different people."

The solution proposed in RFC 827 was that the ARPANET be migrated from a single internetwork to a 
system of interconnected, autonomously controlled internetworks. Within each internetwork, known 
as an autonomous system (AS), the administrative authority for that AS is free to manage the 
internetwork as it chooses. In effect, the concept of autonomous systems broadens the scope of 
internetworking and adds a new layer of hierarchy. Where there was a single internetwork—a 
network of networks—there is now a network of autonomous systems, each of which is itself an 
internetwork. And just as a network is identified by an IP address, an AS is identified by an 
autonomous system number. An AS number is a 16-bit number assigned by the same addressing 
authority that assigns IP addresses.

NOTE

Also like IP addresses, some AS numbers are reserved for private use. These 
numbers range from 64512 to 65535. See RFC 1930 (www.isi.edu/in-
notes/rfc1930.txt) for more information.

Chief among the choices the administrative authority of each AS is free to make is the routing 
protocol that its gateways run. Because the gateways are interior to the AS, their routing protocols 
are known as interior gateway protocols (IGPs). Because GGP was the routing protocol of the 
ARPANET, it became by default the first IGP. However, interest in the more modern (and simpler) 
Routing Information Protocol (RIP) was building in 1982, and it was expected that this and other as-
yet-unplanned protocols would be used in many autonomous systems. These days, GGP has been 
completely replaced by RIP, RIP-2, Interior Gateway Routing Protocol (IGRP), Enhanced IGRP 
(EIGRP), Open Shortest Path First (OSPF), and Integrated Intermediate System-to-Intermediate 
System (IS-IS).

http://www.isi.edu/in-notes/rfc1930.txt
http://www.isi.edu/in-notes/rfc1930.txt


Each AS is connected to other autonomous systems via one or more exterior gateways. RFC 827 
proposed that the exterior gateways share routing information between each other by means of a 
protocol known as the EGP. Contrary to popular belief, although EGP is a distance vector protocol, it 
is not a routing protocol. It has no algorithm for choosing an optimal path between networks; rather, 
it is a common language that exterior gateways use to exchange reachability information with other 
exterior gateways. That reachability information is a simple list of major network addresses (no 
subnets) and the gateways by which they can be reached.



 
  
Operation of EGP

Version 1 of EGP was proposed in RFC 827. Version 2, slightly modified from version 1, was proposed 
in RFC 888[2], and the formal specification of EGPv2 is given in RFC 904[3].

EGP Topology Issues

EGP messages are exchanged between EGP neighbors, or peers. If the neighbors are in the same AS, 
they are interior neighbors. If they are in different autonomous systems, they are exterior neighbors. 
EGP has no function that automatically discovers its neighbors; the addresses of the neighbors are 
manually configured, and the messages they exchange are unicast to the configured addresses.

RFC 888 suggests that the time-to-live (TTL) of EGP messages be set to a low number, because an 
EGP message should never travel farther than to a single neighbor. However, nothing in the EGP 
functionality requires EGP neighbors to share a common data link. For example, Figure 1-1 shows 
two EGP neighbors separated by a router that speaks only RIP. Because EGP messages are unicast to 
neighbors, they can cross router boundaries. Therefore, Cisco routers set the TTL of EGP packets to 
255.

Figure 1-1. EGP Neighbors Do Not Have to Be Connected to the Same 
Network

EGP gateways are either core gateways or stub gateways. Both gateway types can accept information 
about networks in other autonomous systems, but a stub gateway can send only information about 
networks in its own AS. Only core gateways can send information they have learned about networks 
in autonomous systems other than their own.



To understand why EGP defines core and stub gateways, it is necessary to understand the 
architectural limitations of EGP. As previously mentioned, EGP is not a routing protocol. Its updates 
list only reachable networks, without including enough information to determine shortest paths or to 
prevent routing loops. Therefore, the EGP topology must be built with no loops.

Figure 1-2 shows an EGP topology. There is a single core AS to which all other autonomous systems 
(stub autonomous systems) must attach. This two-level tree topology is very similar to the two-level 
topology requirements of OSPF, and its purpose is the same. Recall from Routing TCP/IP, Volume I 
that interarea OSPF routing is essentially distance vector, and therefore vulnerable to routing loops. 
Requiring all traffic between nonbackbone OSPF areas to traverse the backbone area reduces the 
potential for routing loops by forcing a loop-free interarea topology. Likewise, requiring all EGP 
reachability information between stub autonomous systems to traverse the core AS reduces the 
potential for routing loops in the EGP topology.

Figure 1-2. To Prevent Routing Loops, Only Core Gateways Can Send 
Information Learned from One AS to Another AS

EGP Functions

EGP consists of the following three mechanisms:

●     Neighbor Acquisition Protocol
●     Neighbor Reachability Protocol
●     Network Reachability Protocol

These three mechanisms use ten message types to establish a neighbor relationship, maintain the 
neighbor relationship, exchange network reachability information with the neighbor, and notify the 



neighbor of procedural or formatting errors. Table 1-1 lists all of the EGP message types and the 
mechanism that uses each message type.

Table 1-1. EGP Message Types

Message Type Mechanism 

Neighbor Acquisition Request Neighbor Acquisition 

Neighbor Acquisition Confirm Neighbor Acquisition 

Neighbor Acquisition Refuse Neighbor Acquisition 

Neighbor Cease Neighbor Acquisition 

Neighbor Cease Acknowledgment Neighbor Acquisition 

Hello Neighbor Reachability 

I-Heard-You Neighbor Reachability 

Poll Network Reachability 

Update Network Reachability 

Error All functions 

The following sections discuss the details of each of the three EGP mechanisms; the section "EGP 
Message Formats" in this chapter covers the specific details of the messages.

Neighbor Acquisition Protocol

Before EGP neighbors can exchange reachability information, they must establish that they are 
compatible. This function is performed by a simple two-way handshake in which one neighbor sends 
a Neighbor Acquisition Request message, and the other neighbor responds with a Neighbor 
Acquisition Confirm message.

None of the RFCs specify how two EGP neighbors initially discover each other. In practice, an EGP 
gateway learns of its neighbor by manual configuration of the neighbor's IP address. The gateway 
then unicasts an Acquisition Request message to the configured neighbor. The message states a 
Hello interval, the minimum interval between Hello messages that the gateway is willing to accept 
from the neighbor, and a Poll interval, the minimum interval that the gateway is willing to be polled 
by the neighbor for routing updates. The neighbor's responding Acquisition Confirm message will 
contain its own values for the same two intervals. If the neighbors agree on the values, they are 
ready to exchange network reachability information.

When a gateway first learns of a neighbor, it considers the neighbor to be in the Idle state. Before 
sending the first Acquisition Request, the gateway transitions the neighbor to the Acquire state; when 
the gateway receives an Acquisition Confirm, it transitions the neighbor to the Down state.

NOTE

See RFC 904 for a complete explanation of the EGP finite state machine.



A gateway can refuse to accept a neighbor by responding with a Neighbor Acquisition Refuse 
message rather than an Acquisition Confirm message. The Refuse message can include a reason for 
the refusal, such as a lack of table space, or it can refuse for an unspecified reason.

A gateway can also break an established neighbor relationship by sending a Neighbor Cease 
message. As with the Refuse message, the originating gateway has the option of including a reason 
for the Cease or leaving the reason unspecified. A neighbor receiving a Neighbor Cease message 
responds with a Neighbor Cease Acknowledgment.

The last case of a Neighbor Acquisition procedure is a case in which a gateway sends an Acquisition 
Request but the neighbor does not respond. RFC 888 suggests retransmitting the Acquisition 
message "at a reasonable rate, perhaps every 30 seconds or so." Cisco's EGP implementation does 
not just repeat unacknowledged messages over a constant period. Rather, it retransmits an 
unacknowledged Acquisition message 30 seconds after the original transmission. It then waits 60 
seconds before the next transmission. If no response is received within 30 seconds of the third 
transmission, the gateway transitions the neighbor state from Acquire to Idle (see Example 1-1). The 
gateway remains in the Idle state for 300 seconds (5 minutes) and then transitions to Acquire and 
starts the process all over.

Notice in Example 1-1 that each EGP message has a sequence number. The sequence number allows 
EGP message pairs (such as Neighbor Acquisition Request/Confirm, Request/Refusal, and 
Cease/Cease-Ack pairs) to be identified. The next section, "Network Reachability Protocol," details 
how the sequence numbers are used.

When two EGP gateways become neighbors, one is the active neighbor and one is the passive 
neighbor. Active gateways always initiate the neighbor relationship by sending Neighbor Acquisition 
Requests. Passive gateways do not send Acquisition Requests; they only respond to them. The same 
is true for Hello/I-Heard-You message pairs, described in the following section: The active neighbor 
sends the Hello, and the passive neighbor responds with an I-Heard-You (I-H-U). A passive gateway 
can initiate a Neighbor Cease message, however, to which the active gateway must reply with a 
Cease Acknowledgement message.

Example 1-1 debug ip egp transactions Command Output Displays EGP 
State Transitions

Shemp#debug ip egp transactions

EGP debugging is on

Shemp#

EGP: 192.168.16.2 going from IDLE to ACQUIRE

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=0

     Type=ACQUIRE, Code=REQUEST, Status=0 (UNSPECIFIED), Hello=60, Poll=180

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=0

     Type=ACQUIRE, Code=REQUEST, Status=0 (UNSPECIFIED), Hello=60, Poll=180

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=0



     Type=ACQUIRE, Code=REQUEST, Status=0 (UNSPECIFIED), Hello=60, Poll=180

EGP: 192.168.16.2 going from ACQUIRE to IDLE

EGP: 192.168.16.2 going from IDLE to ACQUIRE

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=0

     Type=ACQUIRE, Code=REQUEST, Status=0 (UNSPECIFIED), Hello=60, Poll=180

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=0

     Type=ACQUIRE, Code=REQUEST, Status=0 (UNSPECIFIED), Hello=60, Poll=180

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=0

     Type=ACQUIRE, Code=REQUEST, Status=0 (UNSPECIFIED), Hello=60, Poll=180

EGP: 192.168.16.2 going from ACQUIRE to IDLE

A core gateway, which can be a neighbor of routers in several other autonomous systems, might be 
the active gateway of one neighbor adjacency and the passive gateway of another neighbor 
adjacency. Cisco's EGP implementation uses the AS numbers as the determining factor: The neighbor 
whose AS number is lower will be the active neighbor.

Neighbor Reachability Protocol

After a gateway has acquired a neighbor, it maintains the neighbor relationship by sending periodic 
Hello messages. The neighbor responds to each Hello with an I-H-U message. RFC 904 does not 
specify a standard period between Hellos; Cisco uses a default period of 60 seconds, which can be 
changed with the command timers egp.

When three Hello/I-H-U message pairs have been exchanged, the neighbor state changes from Down 
to Up (see Example 1-2). The neighbors can then exchange network reachability information, as 
described in the next section.

If an active neighbor sends three sequential messages without receiving a response, the neighbor 
state transitions to Down. The gateway sends three more Hellos at the normal Hello interval; if there 
is still no response, the state changes to Cease. The gateway sends three Neighbor Cease messages 
at 60-second intervals. If the neighbor responds to any of the messages with a Cease 
Acknowledgment, or does not respond at all, the gateway transitions the neighbor state to Idle and 
waits 5 minutes before transitioning back to Acquire and attempting to reacquire the neighbor. 
Example 1-3 shows this sequence of events.

Example 1-2 debug ip egp transactions Command Output Displays Two-Way 
Handshake Success and EGP State Transitions

EGP: 192.168.16.2 going from IDLE to ACQUIRE

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=ACQUIRE, Code=REQUEST, Status=1 (ACTIVE-MODE), Hello=60, Poll=180

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=2

     Type=ACQUIRE, Code=CONFIRM, Status=2 (PASSIVE-MODE), Hello=60, Poll=180

EGP: 192.168.16.2 going from ACQUIRE to DOWN



EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=REACH, Code=HELLO, Status=2 (DOWN)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=2

     Type=REACH, Code=I-HEARD-YOU, Status=2 (DOWN)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=REACH, Code=HELLO, Status=2 (DOWN)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=2

     Type=REACH, Code=I-HEARD-YOU, Status=2 (DOWN)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=REACH, Code=HELLO, Status=2 (DOWN)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=2

     Type=REACH, Code=I-HEARD-YOU, Status=2 (DOWN)

EGP: 192.168.16.2 going from DOWN to UP

Example 1-3 The Neighbor at 192.168.16.2 Has Stopped Responding. The 
Interval Between Each of the Unacknowledged EGP Messages Is 60 Seconds

Shemp#

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=2

     Type=REACH, Code=I-HEARD-YOU, Status=1 (UP)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=2

     Type=POLL, Code=0, Status=1 (UP), Net=192.168.16.0

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: 192.168.16.2 going from UP to DOWN

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3

     Type=REACH, Code=HELLO, Status=2 (DOWN)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3

     Type=REACH, Code=HELLO, Status=2 (DOWN)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3



     Type=REACH, Code=HELLO, Status=2 (DOWN)

EGP: 192.168.16.2 going from DOWN to CEASE

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3

     Type=ACQUIRE, Code=CEASE, Status=5 (HALTING)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3

     Type=ACQUIRE, Code=CEASE, Status=1 (ACTIVE-MODE)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3

     Type=ACQUIRE, Code=CEASE, Status=1 (ACTIVE-MODE)

EGP: 192.168.16.2 going from CEASE to IDLE

Example 1-4 shows another example of a dead neighbor, except this time a core gateway 
(192.168.16.2) in the passive mode is discovering the dead neighbor (192.168.16.1).

Example 1-4 Neighbor 192.168.16.1 Has Stopped Responding. The debug 
Messages Are Taken from 192.168.16.2, a Gateway in Passive Mode

Moe#

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=1

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=1

     Type=REACH, Code=I-HEARD-YOU, Status=1 (UP)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=1

     Type=POLL, Code=0, Status=1 (UP), Net=192.168.16.0

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=2

     Type=POLL, Code=0, Status=1 (UP), Net=192.168.16.0

EGP: 192.168.16.1 going from UP to DOWN

EGP: 192.168.16.1 going from DOWN to CEASE

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=3

     Type=ACQUIRE, Code=CEASE, Status=5 (HALTING)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=3

     Type=ACQUIRE, Code=CEASE, Status=2 (PASSIVE-MODE)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=3

     Type=ACQUIRE, Code=CEASE, Status=2 (PASSIVE-MODE)

EGP: 192.168.16.1 going from CEASE to IDLE

When the gateway does not receive a Hello within the 60-second Hello interval, it tries to "wake up" 



its neighbor. Because a gateway in passive mode cannot send Hellos, it sends a Poll message. The 
gateway then waits for one Poll interval. (Cisco's default Poll interval is 180 seconds, or 3 minutes.) If 
no response is received, it sends another Poll and waits another Poll interval. If there still is no 
response, the gateway changes the neighbor state to Down and then immediately to Cease. As in 
Example 1-3, three Cease messages are sent and the neighbor state is changed to Idle.

Network Reachability Protocol

When the neighbor state is Up, the EGP neighbors can begin exchanging reachability information. 
Each gateway periodically sends a Poll message to its neighbor, containing some sequence number. 
The neighbor responds with an Update message that contains the same sequence number and a list 
of reachable networks. Example 1-5 shows how Cisco's IOS Software uses the sequence numbers.

Example 1-5 EGP Neighbors Poll Each Other Periodically for Network 
Reachability Updates

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=120

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=120

     Type=REACH, Code=I-HEARD-YOU, Status=1 (UP)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=120

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=120

     Type=REACH, Code=I-HEARD-YOU, Status=1 (UP)

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=120

     Type=POLL, Code=0, Status=1 (UP), Net=192.168.16.0

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=120

     Type=UPDATE, Code=0, Status=1 (UP), IntGW=2, ExtGW=1, Net=192.168.16.0

     Network 172.17.0.0 via 192.168.16.2 in 0 hops

     Network 192.168.17.0 via 192.168.16.2 in 0 hops

     Network 10.0.0.0 via 192.168.16.2 in 3 hops

     Network 172.20.0.0 via 192.168.16.4 in 0 hops

     Network 192.168.18.0 via 192.168.16.3(e) in 3 hops

     Network 172.16.0.0 via 192.168.16.3(e) in 3 hops

     Network 172.18.0.0 via 192.168.16.3(e) in 3 hops

EGP: 192.168.16.2 updated 7 routes

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=3

     Type=POLL, Code=0, Status=1 (UP), Net=192.168.16.0

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=3



     Type=UPDATE, Code=0, Status=1 (UP), IntGW=1, ExtGW=0, Net=192.168.16.0

     Network 172.19.0.0 via 192.168.16.1 in 0 hops

EGP: from 192.168.16.1 to 192.168.16.2, version=2, asystem=1, sequence=121

     Type=REACH, Code=HELLO, Status=1 (UP)

EGP: from 192.168.16.2 to 192.168.16.1, version=2, asystem=2, sequence=121

     Type=REACH, Code=I-HEARD-YOU, Status=1 (UP)

Every Hello/I-H-U pair exchanged between neighbors contains the same sequence number until a Poll 
is sent. The Poll/Update pair also uses the same sequence number. After the Update has been 
received, the active neighbor increments the sequence number. In Example 1-5, the sequence 
number is 120 through the Poll/Update, and it then is incremented to 121. Notice that both neighbors 
send a Poll; in this example, the Poll from the passive neighbor (192.168.16.2) has an entirely 
different sequence number (3). A neighbor always responds with an Update containing the same 
sequence number as the Poll.

The default polling interval used by Cisco's IOS Software is 180 seconds and can be changed with the 
command timers egp. Normally, a gateway sends an Update only when it is polled; however, this 
means a topology change might go unannounced for up to 3 minutes. EGP provides for this 
eventuality by allowing a gateway to send one unsolicited Update—that is, an Update that is not in 
response to a Poll—each Poll interval. Cisco, however, does not support unsolicited Updates.

NOTE

The timers egp command is also used to change the Hello interval. The format of 
the command is timers egp hello polltime.

Both the Poll and the Update messages include the address of a source network. For example, the 
Poll and Update messages in Example 1-5 show a source network of 192.168.16.0. The source 
network is the network from which all reachability information is measured—that is, all networks 
requested or advertised can be reached via a router attached to the source network. Although this 
network is usually the network to which the two neighbors are both attached, it is more accurately 
the network about which the Poll is requesting information, and the network about which the Update 
is supplying information. EGP is a purely classful protocol, and the source network—as well as the 
network addresses listed in the Updates—are always major class network addresses, and never 
subnets.

Following the source network address is a list of one or more routers and the networks that can be 
reached via those routers. The common characteristic of the routers on the list is that they are all 
attached to the source network. If a router on the list is not the EGP gateway that originated the 
Update, the router is an indirect or third-party neighbor.

Figure 1-3 illustrates the concept of indirect EGP neighbors. One router, Moe, is a core gateway and 
is peered with three other gateways.

Figure 1-3. Indirect EGP Neighbors



The debug messages in Example 1-5 are taken from Shemp, the router in AS1. Notice in the Update 
originated by Moe (192.168.16.2) that three networks are listed as reachable via Moe, but also, four 
networks are listed as reachable via Larry (192.168.16.4) and Curly (192.168.16.3). These two 
routers are Shemp's indirect neighbors, via Moe. Joe, in AS3, is not an indirect neighbor, because it is 
not attached to the source network. Its networks are merely advertised as being reachable via Moe.

The advertisement of indirect neighbors saves bandwidth on a common link, but more importantly, 
indirect neighbors increase efficiency by eliminating an unnecessary router hop. In Figure 1-3, for 
example, Shemp is not peered with any router other than Moe. In fact, Larry is not even speaking 
EGP, but is advertising its networks to Moe via RIP. Moe is performing a sort of "preemptive redirect" 
by informing Shemp of better next-hop routers than itself.

In fact, it is possible for an EGP Update to contain indirect neighbors only—that is, the originator 
might not include itself as a next hop to any network. In this scenario, the originator is a route 
server. It has learned reachability information from an IGP or from static routes, and it advertises 
this information to EGP neighbors without itself performing any packet-forwarding functions.

From the perspective of an EGP gateway, a neighbor is either an interior gateway or an exterior 
gateway. A neighbor is an interior gateway if it is in the same AS, and it is an exterior gateway if it is 
in a different AS. In Figure 1-3, all the EGP gateways see all their neighbors as external gateways. If 
Larry were speaking EGP and peered with Moe, those two routers would see each other as interior 
gateways.

An EGP Update message includes two fields for describing whether the routers in its list are interior 
or exterior gateways (see the following section, "EGP Message Formats"). Looking at the first Update 
message in Example 1-5, you can see these fields just before the source network: IntGW=2 and 
ExtGW=1. The sum of these two fields tells how many routers are listed in the Update. All the interior 
gateways specified are listed first; therefore, if IntGW=2 and ExtGW=1, the first two routers listed 



are interior gateways and the last router listed is an exterior gateway. If you compare the Update 
message from 192.168.16.2 in Example 1-5 with Figure 1-3, you will see that the three networks 
reachable via Curly are listed last in the Update and are marked as exterior—that is, they are 
reachable via a gateway exterior to Moe. Because stub gateways cannot advertise networks outside 
of their own AS, only Updates from core gateways can include exterior gateways.

The EGP Update message associates a distance with each network it lists. The distance field is 8 bits, 
so the distance can range from 0 to 255. RFC 904 does not specify how the distance is to be 
interpreted, however, other than that 255 is used to indicate unreachable networks. Nor does the 
RFC define an algorithm for using the distance to calculate shortest inter-AS paths. Cisco chooses to 
interpret the distance as hops, as shown in Example 1-5. The default rules are very basic:

●     A gateway advertises all networks within its own AS as having a distance of 0.
●     A gateway advertises all networks within an AS other than its own as having a distance of 3.
●     A gateway indicates that a network has become unreachable by giving it a distance of 255.

For example, you can see in Example 1-5 and Figure 1-3 that although network 172.20.0.0 is one 
router hop away from Moe, Moe is advertising the network with a distance of 0—the same distance as 
network 172.17.0.0, which is directly attached. Network 10.0.0.0 is also one router hop away, and 
network 172.18.0.0 is two hops away, but both are in different autonomous systems and are 
therefore advertised with a distance of 3. The point is that the distance used by EGP is virtually 
useless for determining the best path to a network.

Example 1-6 shows the routing table of Shemp and the route entries resulting from the Update in 
Example 1-5.

Example 1-6 Shemp's Routing Table

Shemp#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

E    10.0.0.0 [140/4] via 192.168.16.2, 00:00:52, Ethernet0

C    192.168.16.0 is directly connected, Ethernet0

E    192.168.17.0 [140/1] via 192.168.16.2, 00:00:52, Ethernet0

E    192.168.18.0 [140/4] via 192.168.16.3, 00:00:52, Ethernet0

E    172.20.0.0 [140/1] via 192.168.16.4, 00:00:52, Ethernet0

E    172.16.0.0 [140/4] via 192.168.16.3, 00:00:52, Ethernet0

E    172.17.0.0 [140/1] via 192.168.16.2, 00:00:52, Ethernet0

E    172.18.0.0 [140/4] via 192.168.16.3, 00:00:52, Ethernet0



     172.19.0.0 255.255.255.0 is subnetted, 1 subnets

C       172.19.1.0 is directly connected, Loopback0

Shemp#

There are two points of interest in the routing table. First, notice that the EGP entries have an 
administrative distance of 140. This is higher than the administrative distance of any IGP (with the 
exception of External EIGRP), so a router will always choose an IGP route over an EGP advertisement 
of the same network.

Second, notice that the distances to each of the EGP-advertised networks are one higher than the 
distances shown in the Update of Example 1-5. Cisco's EGP process increments the distance by one, 
just as a RIP routing algorithm does.

EGP Message Formats

EGP uses five different formats to encode the ten message types shown in Table 1-1. All the 
messages have a common header, as shown in Figure 1-4.

Figure 1-4. EGP Message Header

The fields in the EGP message header are defined as follows:

●     Version— Specifies the current EGP version number. If this number in a received message 
does not agree with the receiver's version number, the message is rejected. The version 
number of all current EGP implementations is 2.

●     Type— Specifies which of the five message formats follows the header. Table 1-2 (which 
appears after this list) shows the ten EGP message types and the type number used by each.

●     Code— Specifies the subtype. For example, if type = 5, the code specifies whether the 
message is a Hello or an I-Heard-You.

●     Status— Varies according to the message type (as with the Code field). For example, a 
Neighbor Acquisition message can use the status to indicate whether it is active or passive, 
whereas a Neighbor Reachability message can use the Status field to indicate an Up or Down 
state.

●     Checksum— The one's complement of the one's complement sum of the EGP message. This 
is the same error-checking algorithm used by IP, TCP, and UDP.

●     Autonomous System Number— Specifies the AS of the message's originator.
●     Sequence Number— Synchronizes message pairs (as described previously in this chapter). 

For example, an Update should always contain the same sequence number as the Poll to 



which it is responding.

Table 1-2. EGP Message Types

Type Message 

3 Neighbor Acquisition Request 

3 Neighbor Acquisition Confirm 

3 Neighbor Acquisition Refuse 

3 Neighbor Cease 

3 Neighbor Cease Acknowledgment 

5 Hello 

5 I-Heard-You 

2 Poll 

1 Update 

8 Error 

The Neighbor Acquisition Message (EGP Message Type 3)

Neighbor Acquisition messages are EGP message type 3. Table 1-3 shows the codes used to indicate 
the EGP message. Table 1.4, taken from RFC 904, shows the possible values of the Status field and 
the reasons a particular status might be used.

Table 1-3. Codes Used with Message Type 3

Code Message 

0 Neighbor Acquisition Request 

1 Neighbor Acquisition Confirm 

2 Neighbor Acquisition Refuse 

3 Neighbor Cease 

4 Neighbor Cease Acknowledgment 

Figure 1-5 shows the format of the Neighbor Acquisition message. The Hello Interval and Poll Interval 
fields are present only in the Neighbor Acquisition Request (code 0) and Neighbor Acquisition Confirm 
(code 1) messages. All other Neighbor Acquisition messages are identical to the message header, 
with no other fields included.

Figure 1-5. The Neighbor Acquisition Message



Table 1-4. Status Numbers Used with Message Type 3

Status Description Use 

0 Unspecified When nothing else fits 

1 Active mode Request/Confirm only 

2 Passive mode Request/Confirm only 

3 Insufficient resources 
1.  Out of table space

2.  Out of system resources

4 Administratively prohibited 
1.  Unknown autonomous system

2.  Use another gateway

5 Going down 
1.  Operator initiated stop

2.  Abort timeout

6 Perimeter problem 
1.  Nonsense polling parameters

2.  Unable to assume compatible mode



7 Protocol violation Invalid command or response received in this 
state 

●     Hello interval— The minimum interval, in seconds, between Hellos that the originator is 
willing to accept. The Cisco default Hello interval is 60 seconds and can be changed with the 
command timers egp.

●     Poll interval— The minimum interval, in seconds, between Polls that the originator is willing 
to accept. The Cisco default Poll interval is 180 seconds and can be changed with the 
command timers egp.

The Neighbor Reachability Message (EGP Message Type 5)

The Neighbor Reachability message (see Figure 1-6) is the EGP header, with Type = 5. No additional 
fields are included, because all necessary information is carried in the Code (see Table 1-5) and 
Status (see Table 1-6) fields.

Figure 1-6. The Neighbor Reachability Message

Table 1-5. Codes Used with Message Type 5

Code Message 

0 Hello 

1 I-Heard-You 

Table 1-6. Status Numbers Used with Message Types 5 and 2

Status Description 

0 Indeterminate 

1 Up state 



2 Down state 

The Poll Message (EGP Message Type 2)

The only field that is added to the EGP header to create the Poll message (see Figure 1-7) is the IP 
Source Network, the network about which reachability information is being requested. The IP address 
encoded in this field is always a major Class A, B, or C network. The Code field is always 0, and the 
Status numbers used are the same as those described in Table 1-6. (RFC 888 shows the Status field 
as unused in the Poll and Error messages.)

Figure 1-7. The Poll Message

The Update Message (EGP Message Type 1)

As with the Poll message, the Code field of the Update is always 0. Table 1-7 shows the possible 
values of the Status field, which is the same as the values of Table 1-6 with the exception of the 
Unsolicited value.

Table 1-7. Status Numbers Used with Message Type 1

Status Description 

0 Indeterminate 

1 Up state 

2 Down state 

128 Unsolicited 

The most significant bit of the Status field is the Unsolicited bit; if the bit is set (giving the field a 
value of 128), the Update is unsolicited. The Unsolicited bit can be used in combination with any of 
the other Status values.



The Update message includes a four-level hierarchy of lists. Figure 1-8 shows the format of the 
Update message and how the hierarchy of lists is organized.

Figure 1-8. The Update Message



At the highest level of the hierarchy is a list of all the routers that are directly attached to the source 
network. The number of gateways on the list is specified by the sum of the # of Interior Gateways 
and the # of Exterior Gateways fields.

At the next level, interior gateways are distinguished from exterior gateways. All interior gateways, 
including the originator, are listed first. If there are any exterior gateways, they are listed after the 
interior gateways.

At the third layer of the hierarchy, each listed gateway has a list of distances. As with the interior and 
exterior gateways, a field specifies the number of distances on the list.

Finally, for each listed distance there is a list of networks that can be reached at that distance and via 
that gateway. A field is included to specify the number of networks on the list.

The complete descriptions for the fields of the Update message format are as follows:

●     # of Interior Gateways— Specifies the number of interior gateways on the list.
●     # of Exterior Gateways— Specifies the number of exterior gateways following the list of 

interior gateways. The sum of this field and the # of Interior Gateways, shown as N in Figure 
1-8, is the total number of gateways listed in the Update.

●     IP Source Network— Specifies the network about which reachability information is being 
supplied. That is, all networks listed in the Update are reachable via a gateway attached to 
this network. The IP address encoded in this field is always a major Class A, B, or C network.

●     Gateway IP Address— Specifies the address of a gateway attached to the source network. 
Only the host portion of the major Class A, B, or C address is listed; as a result, the length of 
the field is variable from 1 octet for a Class C address to 3 octets for a Class A address. The 
network portion of the address is already known from the IP Source Network field.

●     # of Distances— Specifies the total number of distances being advertised under the listed 
gateway.

●     Distance— Specifies a particular distance advertised under the listed gateway.
●     # of Networks— Specifies the total number of networks advertised under the listed distance 

of the listed gateway.
●     Network— Specifies the IP address of the network being advertised. In Figure 1-8, each 

network is shown as belonging to a particular gateway, a particular distance, and a particular 
order in the network list. Like the Gateway IP Address field, the Network field is variable. 
Unlike the Gateway IP Address field, the Network field lists the network portion rather than 
the host portion of a major Class A, B, or C address.

The Error Message (EGP Message Type 8)

A gateway can send an Error message (see Figure 1-9) at any time to notify a sender of a bad EGP 
message or an invalid field value. The Code field of the error message is always 0, and the Status is 
one of the values described in Table 1-7.

Figure 1-9. The Error Message



NOTE

RFC 888 shows the Status field in the Error message (like in the Poll message) as 
unused. RFC 904 specifies the uses shown in Table 1-7.

The originator of the Error message can use an arbitrary value as the sequence number. Table 1-8, 
which is taken from RFC 904, describes the possible values of the Reason field. The Error message 
header is the first 12 octets of the EGP message that prompted the Error message.

Table 1-8. Values of the Reason Field of the Error Message

Reason Field 
Value Description Use 

0 Unspecified When nothing else fits. 

1 Bad EGP header 
format 

1.  Bad message length.

2.  Invalid Type, Code, or Status field.



2 Bad EGP Data field 
format 1.  Nonsense polling rates (Request/Confirm).

2.  Invalid Update message format.

3.  Response IP Network Address field does not 
match command (Update).

3 Reachability info 
unavailable 

No information available on the network 
specified in the IP Network Address field 
(Poll). 

4 Excessive polling rate 
1.  Two or more Hello messages received 

within the Hello interval.

2.  Two or more Poll messages received within 
the Poll interval.

3.  Two or more Request messages received 
within some (reasonably short) interval.

5 No response No Update received for the Poll within 
some (reasonably long) interval. 



 
  
Shortcomings of EGP

The fundamental problem with EGP is its inability to detect routing loops. Because there is an upper 
boundary on the distance EGP uses (255), you might be tempted to say that counting to infinity is at 
least a rudimentary loop-detection mechanism. It is, but the high limit combined with the typical Poll 
interval makes counting to infinity useless. Given a default Poll interval of 180 seconds, EGP peers 
could take almost 13 hours to count to infinity.

As a result, EGP must be run on an engineered loop-free topology. Although that was not a problem 
in 1983, when EGP was intended merely to connect stub gateways to the ARPANET backbone, the 
creators of EGP already foresaw that such a limited topology would soon become inadequate. The 
autonomous systems making up the Internet would need to evolve into a less structured mesh, in 
which many autonomous systems could serve as transit systems for many other autonomous 
systems.

With the advent of the NSFnet, the limitations of EGP became more pronounced. Not only were there 
now multiple backbones, but there were acceptable use policies concerning what traffic could 
traverse what backbone. Because EGP cannot support sophisticated policy-based routing, interim 
solutions had to be engineered[4].

Another major problem with EGP is its inability to adequately interact with IGPs to determine a 
shortest route to a network in another AS. For example, EGP distances do not reliably translate into 
RIP hop counts. If the EGP distance causes the hop count to exceed 15, RIP declares the network 
unreachable. Other shortcomings of EGP include its susceptibility to failures when attempting to 
convey information on a large number of networks, and its vulnerability to intentionally or 
unintentionally inaccurate network information.

Last but certainly not least, EGP can be mind-numbingly slow to advertise a network change. The 
section "Troubleshooting EGP" includes an example in which a network in an EGP-connected AS 
becomes unreachable. As the example demonstrates, almost an hour passes before a gateway four 
hops away determines that the network has gone down.

Several attempts were made to create an EGPv3, but none were successful. In the end, EGP was 
abandoned in favor of an entirely new inter-AS protocol, BGP. As a result, Exterior Gateway Protocol 
is now not only the name of a protocol, but the name of a class of protocols, giving rise to the notion 
of an EGP named EGP. Nonetheless, the legacy of EGP is still with us today in the form of 
autonomous systems and inter-AS routing.



 
  
Configuring EGP

You can configure EGP on a router in four basic steps:

Step 1. Specify the router's AS with the command autonomous-system.

Step 2. Start the EGP process and specify the neighbor's AS with the command router egp.

Step 3. Specify the EGP neighbors with the neighbor command.

Step 4. Specify what networks are to be advertised by EGP.

The first three steps are demonstrated in the first case study, along with several approaches to Step 
4.

Case Study: An EGP Stub Gateway

Figure 1-10 shows an EGP stub gateway in AS 65502, connected to a core gateway in AS 65501. The 
IGP of the stub AS is RIP.

Figure 1-10. EGP Stub Gateway Advertises the Interior Networks of AS 
65502 to the Core Gateway



Example 1-7 shows the initial configuration of the stub gateway.

Example 1-7 Stub Gateway Configuration for Figure 1-10

autonomous-system 65502

!

router rip

 redistribute connected



 redistribute egp 65501 metric 5

 network 172.16.0.0

!

router egp 65501

 neighbor 192.168.16.1

Notice that the local AS (LAS) is specified by the autonomous-system statement, and the far AS 
(FAS) is specified by the router egp statement. An EGP process cannot be configured until the LAS is 
configured. The EGP process is told where to find its peer by the neighbor statement. Buster's 
routing table (see Example 1-8) contains both EGP route entries learned from the core gateway and 
RIP entries learned from the interior neighbors.

Example 1-8 Buster's Routing Table Shows Entries Learned from the EGP 
Neighbor and from the Interior RIP Neighbors

Buster#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

E    10.0.0.0 [140/4] via 192.168.16.1, 00:02:12, Serial3

C    192.168.16.0 is directly connected, Serial3

R    192.168.17.0 [120/1] via 172.16.1.2, 00:00:05, Ethernet0

E    192.168.19.0 [140/4] via 192.168.16.1, 00:02:13, Serial3

E    192.168.20.0 [140/4] via 192.168.16.1, 00:02:13, Serial3

E    192.168.21.0 [140/4] via 192.168.16.1, 00:02:13, Serial3

E    192.168.22.0 [140/4] via 192.168.16.1, 00:02:13, Serial3

     172.16.0.0 255.255.255.0 is subnetted, 2 subnets

C       172.16.1.0 is directly connected, Ethernet0

R       172.16.2.0 [120/1] via 172.16.1.2, 00:00:05, Ethernet0

R    172.17.0.0 [120/1] via 172.16.1.2, 00:00:05, Ethernet0

Buster#

The EGP-learned routes are being redistributed into RIP with a metric of 5 (see Example 1-9).



Notice that directly connected networks are also being redistributed into RIP. This configuration is 
necessary to advertise network 192.168.16.0 into the LAS; split horizon prevents Stan from 
advertising the network to Buster via EGP. An alternative configuration is to add a network 
192.168.16.0 statement to the RIP configuration, along with a passive-interface statement to 
keep RIP broadcasts off of the inter-AS link.

Example 1-9 Routing Table from a Router Interior to AS 65502 Shows the 
Redistributed EGP Routes

Charlie#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

R    10.0.0.0 [120/5] via 172.16.1.1, 00:00:13, Ethernet0

R    192.168.16.0 [120/1] via 172.16.1.1, 00:00:13, Ethernet0

C    192.168.17.0 is directly connected, Ethernet3

R    192.168.19.0 [120/5] via 172.16.1.1, 00:00:13, Ethernet0

R    192.168.20.0 [120/5] via 172.16.1.1, 00:00:13, Ethernet0

R    192.168.21.0 [120/5] via 172.16.1.1, 00:00:13, Ethernet0

R    192.168.22.0 [120/5] via 172.16.1.1, 00:00:13, Ethernet0

     172.16.0.0 255.255.255.0 is subnetted, 2 subnets

C       172.16.1.0 is directly connected, Ethernet0

C       172.16.2.0 is directly connected, Ethernet1

     172.17.0.0 255.255.255.0 is subnetted, 1 subnets

C       172.17.3.0 is directly connected, Ethernet2

Charlie#

As Buster's EGP configuration stands so far, network information is being received from the core, but 
no interior networks are being advertised to the core (see Example 1-10).

Example 1-10 Stan's Routing Table Shows That None of the Interior 
Networks from AS 65502 Are Being Learned from Buster

Stan#show ip route



Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

E    10.0.0.0 [140/4] via 192.168.18.2, 00:01:56, Serial1

C    192.168.16.0 is directly connected, Serial0

C    192.168.18.0 is directly connected, Serial1

E    192.168.19.0 [140/1] via 192.168.18.2, 00:01:57, Serial1

E    192.168.20.0 [140/4] via 192.168.18.2, 00:01:57, Serial1

E    192.168.21.0 [140/4] via 192.168.18.2, 00:01:57, Serial1

E    192.168.22.0 [140/1] via 192.168.18.2, 00:01:57, Serial1

Stan#

One option for configuring EGP to advertise the interior networks is to add a redistribute rip 
statement. However, there are hazards associated with mutual redistribution. The danger is more 
pronounced when there are topological loops or multiple redistribution points, but even a simple 
design like the one in Figure 1-10 can be vulnerable to route feedback. For safety, route filters should 
always be used with mutual redistribution configurations to ensure that no interior network addresses 
are accepted from the exterior gateway, and no exterior addresses are advertised to the exterior 
gateway. The problems associated with mutual redistribution are introduced in Routing TCP/IP, 
Volume I and are discussed in further detail in Chapter 2, "Introduction to Border Gateway Protocol 
4," and Chapter 3, "Configuring and Troubleshooting Border Gateway Protocol 4," of this book.

A better approach to configuring EGP to advertise interior networks is to use the network statement. 
When used with EGP or BGP, the network statement has a different function from when used with 
an IGP configuration. For example, the network 172.16.0.0 statement under Buster's RIP 
configuration instructs the router to enable RIP on any interface that has an IP address in the major 
network 172.16.0.0. When used in conjunction with an inter-AS protocol, the network statement 
tells the protocol what network addresses to advertise. Example 1-11 shows Buster's configuration to 
advertise all the networks in AS 65502.

Example 1-11 Buster Configuration to Advertise All Networks in AS 65502

autonomous-system 65502

!

router rip

 redistribute connected

 redistribute egp 65501 metric 5

 network 172.16.0.0



!

router egp 65501

 network 172.16.0.0

 network 172.17.0.0

 network 192.168.17.0

 neighbor 192.168.16.1

Example 1-12 shows Stan's routing table after the network statements have been added to Buster's 
EGP configuration.

The advantage of using the network statement under EGP rather than redistribution is somewhat 
akin to the advantage of using static routes rather than a dynamic routing protocol: Both allow 
precise control over network reachability. In the case of EGP, the precision is limited by EGP's 
classfulness. Although you can keep a major network "private" by not specifying it in a network 
statement, the same cannot be said of individual subnets. Refer back to Example 1-8, which shows 
that Buster's routing table contains subnets 172.16.1.0/24 and 172.16.2.0/24. Reexamining the EGP 
Update message format in Figure 1-8, you will recall that the Update carries only the major class 
portion of the IP network: the first octet of a Class A network, the first two octets of a Class B 
network, and the first three octets of a Class C network. Therefore, the network statement under 
EGP can specify only major networks.

Example 1-12 Buster Is Now Advertising the Interior Networks of AS 65502 
to Stan

Stan#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

E    10.0.0.0 [140/4] via 192.168.18.2, 00:00:27, Serial1

C    192.168.16.0 is directly connected, Serial0

E    192.168.17.0 [140/1] via 192.168.16.2, 00:01:38, Serial0

C    192.168.18.0 is directly connected, Serial1

E    192.168.19.0 [140/1] via 192.168.18.2, 00:00:27, Serial1

E    192.168.20.0 [140/4] via 192.168.18.2, 00:00:27, Serial1

E    192.168.21.0 [140/4] via 192.168.18.2, 00:00:27, Serial1

E    192.168.22.0 [140/1] via 192.168.18.2, 00:00:27, Serial1



E    172.16.0.0 [140/1] via 192.168.16.2, 00:01:39, Serial0

E    172.17.0.0 [140/1] via 192.168.16.2, 00:01:39, Serial0

Stan#

Case Study: An EGP Core Gateway

By definition, an EGP core gateway can peer with multiple neighbors within multiple far autonomous 
systems and can pass network information from one FAS to another FAS. Because of this, the 
configuration of a core gateway differs slightly. Figure 1-11 shows a core router, Stan, which is 
peered with a router in a FAS (Buster) and a router within its LAS (Ollie).

Figure 1-11. Core Router Stan Must Peer with Both Remote Neighbor Buster 
and Local Neighbor Ollie



Example 1-13 demonstrates the EGP configuration of Stan in Figure 1-11 .

Example 1-13 Core Gateway Configuration for Network Topology in Figure 1-
11

autonomous-system 65501

!

router egp 0

 network 192.168.16.0

 neighbor any

The LAS is still specified with the autonomous-system command, but the FAS is not specified by 
the router egp command. Instead, an AS number of 0 is used to specify any AS. Likewise, neighbors 
are specified with a neighbor any command, to respond to any neighbor that sends Acquisition 
messages. The neighbor any command implicitly configures neighbors, whereas the neighbor 
command explicitly configures neighbors. Core gateways can have explicitly configured neighbors, 
but the implicit neighbor any makes life simpler when there are a large number of neighbors, as 
might be expected at a core gateway.

Of course, at least one neighbor must have an explicit neighbor configuration; two neighbors cannot 
discover each other if they both have a neighbor any command. Example 1-14 shows the 
configuration for the neighbor Ollie in Figure 1-11.

Example 1-14 Neighbor Configuration for Ollie in the Network Topology of 
Figure 1-11

autonomous-system 65501

!

router egp 0

 network 192.168.19.0

 neighbor 192.168.18.1

 neighbor any

Although Ollie still picks up its external neighbors with the neighbor any command, Stan's address 
is explicitly configured. If it were not, Stan and Ollie would be unaware of each other's existence.

With the configuration in Example 1-14, the core gateway will pass reachability information about 
networks external to its own AS to every other external AS. The core gateway will not, however, pass 
information about the networks in its own AS. You can see in Buster's routing table of Example 1-8, 



for instance, that there is no entry for network 192.168.18.0. If the interior networks are to be 
advertised, Stan must have a network statement for each network to be advertised. The only 
network statement shown is for 192.168.16.0, which allows Ollie to receive information about that 
network. Look again at Buster's routing table. Notice that there is an entry for network 192.168.19.0. 
This entry is the result of the network 192.168.19.0 statement in Ollie's configuration in Example 1-
14.

What happens if a core should not peer with every EGP-speaking neighbor? In Figure 1-12, the three 
routers in AS 65506 are all running EGP, but Stan should peer with only Spanky and Buckwheat. 
Alfalfa should peer with Ollie. Of course, the core administrator could trust the administrator of AS 
65506 to set up the correct peering with neighbor statements, but trust is seldom good enough in 
inter-AS routing.

Figure 1-12. Spanky and Buckwheat Must Peer Only with Stan, Whereas 
Alfalfa Must Peer Only with Ollie

In this example, all three gateways in AS 65506 have neighbor statements for both Stan and Ollie. 
To regulate the peering, an access list is used with the neighbor any statement, as demonstrated in 
the configuration for Stan in Example 1-15.

Example 1-15 Regulating Peering with Access Lists Using the neighbor any 
Command

autonomous-system 65501

!



router egp 0

 network 192.168.16.0

 neighbor any 10

!

access-list 10 deny 172.20.1.2

access-list 10 permit any

In Example 1-15, the neighbor any statement contains a reference to access list 10, which denies 
Alfalfa (172.20.1.2) and permits all other neighbors. A similar configuration at Ollie denies Spanky 
and Buckwheat and permits all other neighbors. Example 1-16 shows the results of this configuration.

Example 1-16 The show ip egp Command Displays Information About EGP 
Neighbors

Stan#show ip egp

Local autonomous system is 65501

 EGP Neighbor     FAS/LAS  State      SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.18.2    65501/65501 UP    10      3      4    60   180   4 Temp, Act

*192.168.16.2    65502/65501 UP  3:20     39     39    60   180   4 Temp, Act

*172.20.1.1      65506/65501 UP     4      2      2    60   180   4 Temp, Act

*172.20.1.3      65506/65501 UP    10      4      4    60   180   4 Temp, Act

Stan#

_______________________________________________________________________

Ollie#show ip egp

Local autonomous system is 65501

 EGP Neighbor     FAS/LAS  State      SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.18.1    65501/65501 UP     9      4      3    60   180   4 Perm, Pass

*172.20.1.2      65506/65501 UP    13      5      5    60   180   4 Temp, Act

Ollie#

Using the show ip egp command with Stan and Ollie shows that Ollie is peered with Alfalfa and Stan 
is peered with Spanky and Buckwheat.

NOTE



The details of the fields displayed by the show ip egp command are discussed in 
the section "Troubleshooting EGP." For now, the addresses of the neighbors are of 
interest.

Case Study: Indirect Neighbors

In Figure 1-13, three stub gateways (Groucho, Harpo, and Chico) are connected to the core gateway 
named Ollie. Groucho and Harpo, in separate autonomous systems, share a common Ethernet and 
can therefore be configured as indirect or third-party neighbors.

Figure 1-13. EGP Indirect Neighbors

Groucho and Harpo cannot exchange EGP information directly, but they can route packets directly to 
each other if Ollie advertises them as indirect neighbors. Example 1-17 shows the configuration for 
Ollie.

Example 1-17 Advertising Indirect EGP Neighbors to One Another Enables 
the Routing of Packets Between Indirect EGP Neighbors



autonomous-system 65501

!

router egp 0

 network 192.168.19.0

 network 192.168.22.0

 network 192.168.18.0

 neighbor 192.168.19.3

 neighbor 192.168.19.3 third-party 192.168.19.2

 neighbor 192.168.19.2

 neighbor 192.168.19.2 third-party 192.168.19.3

 neighbor 192.168.18.1

 neighbor any

In the configuration in Example 1-17, Groucho and Harpo are explicitly configured as neighbors. 
Following the neighbor statements for the two routers are neighbor third-party statements. These 
entries specify the neighbor in question and then specify that gateway's indirect neighbor on the 
shared Ethernet. Notice that Chico, which is not on the shared Ethernet, falls under the neighbor 
any statement. Example 1-18 shows the core gateway's indirect neighbors recorded as Third Party.

Example 1-18 Displaying Core Gateway Indirect Neighbors

Ollie#show ip egp

Local autonomous system is 65501

 EGP Neighbor     FAS/LAS    State    SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.19.3    65504/65501 UP 5TE        8    249    60   180   4 Perm, Act

*192.168.19.2    65503/65501 UP 5TE        8   3177    60   180   4 Perm, Act

*192.168.18.1    65501/65501 UP 5TE        9   3192    60   180   4 Perm, Pass

*192.168.22.2    65505/65501 UP 5TE        5   3170    60   180   4 Temp, Act

 EGP Neighbor     Third Party

*192.168.19.3     192.168.19.2

*192.168.19.2     192.168.19.3

Ollie#

Ollie's EGP neighbor table indicates that Groucho and Harpo (192.168.19.2 and 192.168.19.3, 
respectively) have been configured as indirect neighbors of each other.



Harpo's routing table (see Example 1-19) shows the results of the indirect neighbor configuration. 
Rather than pointing to the core gateway as the next hop to network 192.168.20.0 in AS 65503, the 
next hop points directly to Groucho (192.168.19.2).

Example 1-19 Routing Table Displays Next-Hop Routes to Indirect 
Neighbors

Harpo#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

E    10.0.0.0 [140/4] via 192.168.19.1, 00:02:21, Ethernet0

E    192.168.16.0 [140/4] via 192.168.19.1, 00:02:21, Ethernet0

E    192.168.17.0 [140/4] via 192.168.19.1, 00:02:21, Ethernet0

E    192.168.18.0 [140/1] via 192.168.19.1, 00:02:21, Ethernet0

C    192.168.19.0 is directly connected, Ethernet0

E    192.168.20.0 [140/4] via 192.168.19.2, 00:02:21, Ethernet0

E    192.168.21.0 [140/4] via 192.168.19.1, 00:02:22, Ethernet0

E    192.168.22.0 [140/1] via 192.168.19.1, 00:02:22, Ethernet0

E    172.16.0.0 [140/4] via 192.168.19.1, 00:02:22, Ethernet0

E    172.17.0.0 [140/4] via 192.168.19.1, 00:02:22, Ethernet0

     172.18.0.0 255.255.255.0 is subnetted, 1 subnets

C       172.18.1.0 is directly connected, Loopback0

Harpo#

Harpo's routing table in Example 1-19 shows that network 192.168.20.0 is directly reachable via next 
hop 192.168.19.2. Without the indirect neighbor configuration, Harpo would have to use 
192.168.19.1 as the next hop.

Case Study: Default Routes

EGP can be configured to advertise a default route in addition to more specific routes. If an AS has 
only a single exterior gateway, a default route is usually more efficient than a full list of exterior 
routes. Memory and processing cycles are conserved on the router, and bandwidth is saved on the 
link.



To advertise a default route into AS 65502, as illustrated previously in Figure 1-13, you configure 
Stan as demonstrated in Example 1-20.

Example 1-20 Advertising a Default Route

router egp 0

 network 192.168.16.0

 neighbor any

 default-information originate

 distribute-list 20 out Serial0

!

access-list 20 permit 0.0.0.0

The default-information originate command is used to generate the default route. Unlike in other 
protocols, when the command is used with EGP, there are no optional statements. Notice, too, that a 
route filter has been added, which permits only the default route to be advertised out of Stan's S0 
interface to AS 65502. Without this filter, the default and all more-specific networks would be 
advertised. Example 1-21 shows the results of the configuration.

Example 1-21 192.168.20.1 Is Reachable as a Result of the Default Route

Buster#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 192.168.16.1 to network 0.0.0.0

C    192.168.16.0 is directly connected, Serial3

R    192.168.17.0 [120/1] via 172.16.1.2, 00:00:20, Ethernet0

     172.16.0.0 255.255.255.0 is subnetted, 2 subnets

C       172.16.1.0 is directly connected, Ethernet0

R       172.16.2.0 [120/1] via 172.16.1.2, 00:00:21, Ethernet0

R    172.17.0.0 [120/1] via 172.16.1.2, 00:00:21, Ethernet0

E*   0.0.0.0 0.0.0.0 [140/4] via 192.168.16.1, 00:00:46, Serial3

Buster#ping 192.168.20.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.20.1, timeout is 2 seconds:



!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 64/66/76 ms

Buster#

The routing table of AS 65502's exterior gateway shows that the core gateway is advertising only a 
default route, by which all the exterior networks in Figure 1-13 are reached.



 
  
Troubleshooting EGP

The earlier section "Shortcomings of EGP" discussed several reasons why EGP cannot be used in 
complex inter-AS topologies. An unexpected benefit is that by forcing a simple topology, EGP is easy 
to troubleshoot.

As with any routing protocol, the first step in troubleshooting EGP is examining the routing tables. If 
a required route is missing or an unwanted route is present, the routing tables should lead you to the 
source of the problem. Because the EGP metrics have very little meaning, using the routing tables for 
troubleshooting is greatly simplified in comparison with other routing protocols.

When examining EGP configurations, remember that the gateway must have some sort of neighbor 
statement—either explicit or neighbor any—for every neighbor. Understanding the use of the 
network statement, and how it differs from the network statement used with IGPs, is also 
important.

The debug ip egp transactions command, used several times in the "Operation of EGP" section, is 
a very useful troubleshooting tool. The output of this command reveals all the important information 
in all the EGP messages being exchanged between neighbors.

Interpreting the Neighbor Table

An examination of the EGP neighbor table using show ip egp will tell you about the state and 
configuration of a gateway's neighbors. Example 1-18 displayed the output of this command; 
Example 1-22 shows some additional output from the show ip egp command that examines Stan's 
neighbor table.

Example 1-22 show ip egp Command Output Displays Information Useful 
for Troubleshooting EGP Peers

Stan#show ip egp

Local autonomous system is 65501

 EGP Neighbor     FAS/LAS    State    SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.18.2    65501/65501 UP  2:08   3227     43    60   180   4 Temp, Act

*192.168.16.2    65502/65501 UP  6d17   3233   3233    60   180   4 Temp, Act

Stan#

You can see in Stan's neighbor table that neighbor 192.168.18.2 is an interior neighbor, because the 
FAS and LAS are the same (65501). The state of the neighbor is shown, as is its uptime. Whereas 
192.168.18.2 has been up for just over 2 hours, 192.168.16.2 has been up for 6 days and 17 hours. 
The present sequence number being used by the gateway for each neighbor is shown, as is the 
present sequence number being used by the neighbor.

After the Hello and Poll intervals, the number of neighbor reachability messages that have been 



received in the past four Hello intervals is recorded. This number is used to determine whether a 
neighbor should be declared Up or Down, based on two values known as the j and k thresholds. The j 
threshold specifies the number of neighbor reachability messages that must be received during four 
Hello intervals before a Down neighbor is declared Up. The k threshold specifies the minimum 
number of neighbor reachability messages that must be received within four Hello intervals to 
prevent an Up neighbor from being declared Down. The thresholds, shown in Table 1-9, differ for 
active and passive neighbors.

Table 1-9. EGP j and k Thresholds

Threshold Active Passive Description 

j 3 1 Neighbor Up threshold 

k 1 4 Neighbor Down threshold 

The next field (Flags) in Example 1-22 specifies whether the neighbor is permanent or temporary. 
Permanent neighbors are neighbors that have been explicitly configured with a neighbor statement, 
whereas temporary neighbors have been implicitly peered under the neighbor any statement. In 
Example 1-22, you can see that both of Stan's neighbors are temporary; this fits with the 
configuration of Stan discussed earlier, in which there is a single neighbor any statement. 
Comparing Example 1-22 with Example 1-18, you might find it interesting that although Stan sees 
Ollie (192.168.18.2) as a temporary neighbor, Ollie sees Stan (192.168.18.1) as a permanent 
neighbor. An examination of Ollie's configuration in Example 1-23 shows why.

Example 1-23 Neighbor Configuration of Router Ollie

autonomous-system 65501

!

router egp 0

 network 192.168.19.0

 network 192.168.22.0

 network 192.168.18.0

 neighbor 192.168.19.3

 neighbor 192.168.19.3 third-party 192.168.19.2

 neighbor 192.168.19.2

 neighbor 192.168.19.2 third-party 192.168.19.3

 neighbor 192.168.18.1

 neighbor any

The explicit neighbor 192.168.18.1 causes Ollie to classify Stan as a permanent neighbor.

The last field indicates whether the local router is the active or the passive neighbor. Example 1-22 



shows that Stan is the active neighbor for both of its peer relationships, so you would expect Ollie to 
show that it is the passive neighbor. Example 1-18 bears out this assumption and also indicates that 
Ollie is the active neighbor for all of its other peer relationships. This is also to be expected, because 
AS 65501 is lower than the other AS numbers.

Case Study: Converging at the Speed of Syrup

A distinct characteristic of EGP is that nothing happens quickly. The neighbor acquisition process is 
slow, and the advertisement of network changes is almost glacial. As a result, you might sometimes 
mistakenly assume that there is a problem where none exists (except for the problematic nature of 
EGP itself). For example, suppose users in AS 65503 of Figure 1-13 complain that they cannot reach 
network 172.17.0.0 in AS 65502. When you examine Groucho's routing table, there is a route to 
172.17.0.0 (see Example 1-24), but a ping to a known address on that network fails. You might be 
led to believe that traffic to the network is being misrouted, or black holed.

A clue to the problem is shown in Ollie's routing table (see Example 1-25). Notice that a new update 
for network 172.17.0.0 has not been received in more than 16 minutes, but the route entry for the 
network is still valid and is still being advertised to Ollie's neighbors.

Example 1-24 Groucho in Figure 1-13 Has a Route to 172.17.0.0, but the 
Network Is Unreachable

Groucho#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 192.168.19.1 to network 0.0.0.0

E    10.0.0.0 [140/4] via 192.168.19.1, 00:01:23, Ethernet0

E    192.168.16.0 [140/4] via 192.168.19.1, 00:01:23, Ethernet0

E    192.168.17.0 [140/4] via 192.168.19.1, 00:01:23, Ethernet0

C    192.168.19.0 is directly connected, Ethernet0

C    192.168.20.0 is directly connected, Loopback0

E    192.168.21.0 [140/4] via 192.168.19.1, 00:01:24, Ethernet0

E    192.168.22.0 [140/1] via 192.168.19.1, 00:01:24, Ethernet0

E    172.16.0.0 [140/4] via 192.168.19.1, 00:01:24, Ethernet0

E    172.17.0.0 [140/4] via 192.168.19.1, 00:01:24, Ethernet0

E    172.18.0.0 [140/4] via 192.168.19.1, 00:01:24, Ethernet0

E*   0.0.0.0 0.0.0.0 [140/4] via 192.168.19.1, 00:01:24, Ethernet0



Groucho#ping 172.17.3.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.17.3.1, timeout is 2 seconds:

.....

Success rate is 0 percent (0/5)

Groucho#

Example 1-25 New Network Updates Are Not Being Advertised

Ollie#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

Gateway of last resort is not set

E    10.0.0.0/8 [140/1] via 192.168.22.2, 00:01:20, Serial1

E    192.168.16.0/24 [140/1] via 192.168.18.1, 00:01:13, Serial0

E    192.168.17.0/24 [140/4] via 192.168.18.1, 00:16:14, Serial0

C    192.168.18.0/24 is directly connected, Serial0

C    192.168.19.0/24 is directly connected, Ethernet0

E    192.168.20.0/24 [140/1] via 192.168.19.2, 00:02:06, Ethernet0

E    192.168.21.0/24 [140/1] via 192.168.22.2, 00:01:21, Serial1

C    192.168.22.0/24 is directly connected, Serial1

E    172.16.0.0/16 [140/4] via 192.168.18.1, 00:01:13, Serial0

E    172.17.0.0/16 [140/4] via 192.168.18.1, 00:16:14, Serial0

E    172.18.0.0/16 [140/1] via 192.168.19.3, 00:01:59, Ethernet0

Ollie#

Stan has not included network 172.17.0.0 in the past five update messages to Ollie. There is no black 
hole problem here; network 172.17.0.0 has just become unreachable due to a disconnected Ethernet 
interface on a router in AS 65502. EGP will not declare a route down until it has failed to receive six 
consecutive updates for the route. Couple this with an update interval of 180 seconds, and you will 



see that EGP will take 18 minutes to declare a route down. Only then will it stop including the 
network in its own updates. In the internetwork of Figure 1-13, 54 minutes will pass between the 
time the exterior gateway of AS 65502 declares network 172.17.0.0 down and the time Groucho 
declares the network down!



 
  
Looking Ahead

This chapter has explored both the motives for inventing an inter-AS routing protocol and the 
reasons why EGP has proven inadequate in that role. Chapter 2 introduces the protocol that has 
replaced EGP, the Border Gateway Protocol, and examines its operation. Table 1-10 summarizes the 
commands used in this chapter.

Table 1-10. Chapter 1 Command Review

Command What It Does 

autonomous-system local-as Specifies the local autonomous 
system in which the EGP router 
resides 

debug ip egp transactions Displays information about EGP 
message exchanges and state 
changes 

default-information originate Causes EGP to advertise a default 
route 

neighbor ip-address Specifies the IP address of an EGP 
neighbor 

neighbor any [access-list-number | name] Tells EGP to attempt to peer with 
any router that initiates the Neighbor 
Acquisition Protocol 

neighbor any third-party ip-address 
[internal | external] 

Configures an indirect EGP neighbor 

neighbor ip-address third-party third-
party-ip-address [internal | external] 

Configures EGP to send updates 
regarding indirect neighbors 

network network-number Specifies networks in the IGP routing 
table that should be advertised to 
EGP peers 

router egp remote-as Configures an EGP routing process 

router egp 0 Configures an EGP core gateway 
process 

show ip egp Displays information about the EGP 
connections and neighbors 

timers egp hello polltime Sets the EGP Hello and Poll intervals 
to a value different from the default 



 
  
Review Questions

You can find the answers to the Review Questions in Appendix D, "Answers to Review Questions."

1: What is the current version of EGP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: What is an EGP interior neighbor? An EGP exterior neighbor?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: What is the primary difference between an EGP stub gateway and an EGP core gateway?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: Why does EGP use the concept of a core, or backbone, AS?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



5: What is the difference between an active EGP neighbor and a passive EGP neighbor?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: What is the purpose of an EGP Poll message?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: What is an indirect, or third-party, neighbor?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

8: How does EGP use its metrics to calculate the best path to a destination?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



 
  
Configuration Exercises

You can find the answers to the Configuration Exercises in Appendix E, "Answers to Configuration Exercises."

1: Autonomous System 65531 in Figure 1-14 is a core AS.

Figure 1-14. The Internetwork for Configuration Exercise 1

Configure EGP on RTA and RTB, with the following constraints:

- The data link interior to the AS is not advertised to any exterior neighbor.

- RTA advertises the network attached to its S1 interface to RTB; with this exception, no 
other inter-AS link is advertised between RTA and RTB.

- RTA and RTB advertise a default route to their exterior neighbors, in addition to 
networks learned from other autonomous systems. Neither gateway advertises a default 
route to its internal neighbor.



2: Example 1-26 shows the route table of RTC in Figure 1-15.

Figure 1-15. The Internetwork for Configuration Exercise 2

Example 1-26 The Route Table of RTC in Figure 1-15

RTC#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

I    192.168.105.0 [100/8976] via 192.168.6.2, 00:01:00, Serial1

I    192.168.110.0 [100/8976] via 192.168.6.2, 00:01:00, Serial1

I    192.168.100.0 [100/8976] via 192.168.10.2, 00:01:00, Serial2

I    192.168.120.0 [100/8976] via 192.168.10.2, 00:01:01, Serial2

C    192.168.2.0 is directly connected, Serial0

C    192.168.6.0 is directly connected, Serial1

C    192.168.10.0 is directly connected, Serial2

RTC#



Using redistribution, configure RTC to advertise all EGP-learned networks into AS 65510, and all 
internal networks except 192.168.105.0 to the core AS. Protect against route feedback by 
ensuring that none of the networks internal to AS 65510 are advertised back via EGP. The process 
ID in this configuration is the same as the local AS number.

3: Example 1-27 shows the route table of RTD in Figure 1-15.

Example 1-27 The Route Table of RTD in Figure 1-15

RTD#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C    192.168.3.0 is directly connected, Serial0

C    192.168.7.0 is directly connected, Serial1

R    192.168.230.0 [120/1] via 192.168.7.2, 00:00:14, Serial1

R    192.168.200.0 [120/2] via 192.168.7.2, 00:00:15, Serial1

R    192.168.220.0 [120/1] via 192.168.7.2, 00:00:15, Serial1

R    192.168.210.0 [120/2] via 192.168.7.2, 00:00:15, Serial1

RTD#

Configure RTD with the following parameters:

- Only 192.168.220.0 and 192.168.230.0 are to be advertised to AS 65531.

- No routing protocol is redistributed into EGP.

- EGP is redistributed into the IGP of AS 65515.

- 192.168.3.0 is advertised into AS 65515 with a metric of 1.

- 192.168.100.0, from RTC, is advertised into AS 65515 with a metric of 1.

- 192.168.120.0, from RTC, is advertised into AS 65515 with a metric of 3.

- All other routes are advertised into AS 65515 with a metric of 5.



4: Example 1-28 shows the route table of RTE in Figure 1-15.

Example 1-28 The Route Table of RTE in Figure 1-15

RTE#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

Gateway of last resort is not set

O    192.168.125.0/28 [110/74] via 192.168.130.6, 00:01:03, Serial1

C    192.168.4.0/24 is directly connected, Serial0

     192.168.225.0/28 is subnetted, 1 subnets

O E2    192.168.225.160 [110/50] via 192.168.130.18, 00:01:04, Ethernet0

     192.168.215.0/24 is variably subnetted, 3 subnets, 3 masks

O       192.168.215.161/32 [110/65] via 192.168.130.6, 00:01:04, Serial1

O E2    192.168.215.192/26 [110/50] via 192.168.130.18, 00:01:04, Ethernet0

O E1    192.168.215.96/28 [110/164] via 192.168.130.6, 00:01:04, Serial1

     192.168.130.0/24 is variably subnetted, 7 subnets, 4 masks

D       192.168.131.192/27 [90/2195456] via 192.168.130.6, 00:16:49, Serial1

D       192.168.131.96/27 [90/409600] via 192.168.130.18, 00:16:49, Ethernet0

O       192.168.131.97/32 [110/11] via 192.168.130.18, 00:01:05, Ethernet0

D       192.168.131.64/27 [90/409600] via 192.168.130.18, 00:15:01, Ethernet0

D       192.168.131.8/30 [90/2195456] via 192.168.130.6, 00:16:49, Serial1

C       192.168.131.4/30 is directly connected, Serial1

C       192.168.131.16/28 is directly connected, Ethernet0

RTE#

Configure RTE with the following parameters:

- No IGP is redistributed into EGP.

- EGP is not redistributed into any IGP.



- All the internal networks of AS 65520 are advertised to AS 65531.

- The internal routers of AS 65520 can forward packets to any network advertised by RTA.

- All process IDs are the same as the AS number.

- All OSPF interfaces are in area 0.

5: In Figure 1-16, AS 65525 has been added to the internetwork of the previous exercises. RTF's 
Ethernet interface has an IP address of 192.168.1.3/24.

Figure 1-16. The Internetwork for Configuration Exercise 5

Configure this router to peer only with RTB and make any necessary configuration changes to 
support third-party neighbors.



 
  
Troubleshooting Exercise

You can find the answer to the Troubleshooting Exercise in Appendix F, "Answers to Troubleshooting 
Exercises."

1: In Figure 1-17, router RTG has been added to the internetwork.

Figure 1-17. The Internetwork for Troubleshooting Exercise 1

Although it is peering with RTB and exchanging reachability information, there is a configuration 
error. Based on the information in Example 1-29, what is the error?

Example 1-29 The EGP Tables of RTB and RTG in Figure 1-17

RTB#show ip egp

Local autonomous system is 65531

 EGP Neighbor       FAS/LAS  State    SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.1.1     65531/65531 UP     4      2      6    60   180   2 Perm, Pass



*192.168.1.3     65525/65531 UP     4      2    492    60   180   2 Perm, Pass

*192.168.5.2     65505/65531 UP     3      2     33    60   180   3 Temp, Pass

 EGP Neighbor     Third Party

*192.168.1.1      192.168.1.3(e)

*192.168.1.3      192.168.1.1

RTB#

_______________________________________________________________________

RTG#show ip egp

Local autonomous system is 65505

 EGP Neighbor       FAS/LAS  State    SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.5.1     65505/65505 UP     9     36      3    60   180   4 Perm, Act

RTG#
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Chapter 2. Introduction to Border Gateway 
Protocol 4
This chapter covers the following key topics:

●     Classless Interdomain Routing— This section introduces CIDR and discusses both its 
advantages and its shortcomings.

●     Who Needs BGP?— This section examines several inter-AS scenarios, with an eye to where 
BGP is necessary and where it is not.

●     BGP Basics— This section discusses the fundamentals of the Border Gateway Protocol, 
including message types and path attributes.

●     IBGP and IGP Synchronization— This section presents the issues surrounding 
synchronization between IBGP and the IGP within an AS, why synchronization is required by 
default, and how synchronization problems can be avoided.

●     Managing Large-Scale BGP Peering— This section presents four tools for controlling large-
scale BGP implementations.

●     BGP Message Formats— This section examines the details of the various BGP messages.

Border Gateway Protocol (BGP) is a particularly important topic for any CCIE, and you can expect 
your knowledge of it to be thoroughly challenged in the CCIE lab.

You learned in Chapter 1, "Exterior Gateway Protocol," that the architects of the ARPANET began 
recognizing in the early 1980s that autonomous systems, and an inter-AS reachability protocol, were 
necessary to maintain manageability of the fast-growing Internet. Their original solution, Exterior 
Gateway Protocol (EGP), was adequate for the backbone-based ARPANET, but from the beginning, 
the architects understood the necessity of moving to a meshed inter-AS topology. They further 
understood that EGP was not capable of efficiently routing in such an environment because of its 
inability to detect loops, its very slow convergence time, and its lack of tools to support routing 
policies.

Attempts were made to enhance EGP, but in the end, an entirely new inter-AS protocol, a true 
routing protocol rather than a mere reachability protocol such as EGP, was called for. That inter-AS 
routing protocol, first introduced in 1989 in RFC 1105[1], is BGP. The first version of BGP was 
updated exactly one year later in RFC 1163[2]. BGP was upgraded again in 1991 in RFC 1267[3], and 
with this third modification, it became customary to refer to the three versions as BGP-1, BGP-2, and 
BGP-3, respectively.

The current version of BGP, BGP-4, was introduced in 1995 in RFC 1771[4]. BGP-4 differs 
significantly from the earlier versions. The most important difference is that BGP-4 is classless, 
whereas the earlier versions are classful. The motive for this fundamental change goes to the very 
heart of the reason exterior gateway protocols exist at all: to keep routing within the Internet both 
manageable and reliable. Classless interdomain routing (CIDR)—originally introduced in RFC 1517[5] 
in 1993, finalized in RFC 1519[6] in the same year as a standard proposal, and amended by RFC 
1520[7]—was created for this purpose, and BGP-4 was created to support CIDR.



 
  
Classless Interdomain Routing

The invention of autonomous systems and exterior routing protocols solved the early scalability problems on the Internet in the 
1980s. However, by the early 1990s the Internet was beginning to present a different set of scalability problems, including the 
following:

●     Explosion of the Internet routing tables. The exponentially growing routing tables were becoming increasingly 
unmanageable both by the routers of the time and the people who managed them. The mere size of the tables was 
burden enough on Internet resources, but day-to-day topological changes and instabilities added heavily to the load.

●     Depletion of the Class B address space. In January 1993, 7133 of the 16,382 available Class B addresses had been 
assigned; at 1993 growth rates, the entire Class B address space would be depleted in less than 2 years (as cited in 
RFC 1519).

●     The eventual exhaustion of the entire 32-bit IP address space.

Classless interdomain routing provides a short-term solution to the first two problems. Another short-term solution is network 
address translation (NAT), discussed in Chapter 4, "Network Address Translation." These solutions were intended to buy the 
Internet architects enough time to create a new version of IP with enough address space for the foreseeable future. That 
initiative, known as IP Next Generation (IPng), resulted in the creation of IPv6, with a 128-bit address format. IPv6, discussed 
in Chapter 8, "IP Version 6," is the long-term solution to the third problem. Interestingly, CIDR and NAT have been so 
successful that few people place as much urgency on the migration to IPv6 as they once did.

CIDR is merely a politically sanctioned address summarization scheme that takes advantage of the hierarchical structure of the 
Internet. So before discussing CIDR further, a review of summarization and classless routing, and a look at the modern 
Internet, are in order.

A Summarization Summary

Summarization or route aggregation (discussed extensively in Routing TCP/IP, Volume I) is the practice of advertising a 
contiguous set of addresses with a single, less-specific address. Basically, summarization/route aggregation is accomplished by 
reducing the length of the subnet mask until it masks only the bits common to all the addresses being summarized. In Figure 2-
1, for example, the four subnets (172.16.100.192/28, 172.16.100.208/28, 172.16.100.224/28, and 172.16.100.240/28) are 
summarized with the single aggregate address 172.16.100.192/26.

Figure 2-1. Route Aggregation

Many networkers who view summarization as a difficult topic are surprised to learn that they use summarization daily. What is 



a subnet address, after all, other than a summarization of a contiguous group of host addresses? For example, the subnet 
address 192.168.5.224/27 is the aggregate of host addresses 192.168.5.224/32 through 192.168.5.255/32. (The "host 
address" 192.168.5.224/32 is, of course, the address of the data link itself.) The key characteristic of a summary address is 
that its mask is shorter than the masks of the addresses it is summarizing. The ultimate summary address is the default 
address, 0.0.0.0/0, commonly written as just 0/0. As the /0 indicates, the mask has shrunk until no network bits remain—the 
address is the aggregate of all IP addresses.

Summarization can also cross class boundaries. For example, the four Class C networks (192.168.0.0, 192.168.1.0, 
192.168.2.0, and 192.168.3.0) can all be summarized with the aggregate address 192.168.0.0/22. Notice that the aggregate, 
with its 22-bit mask, is no longer a legal Class C address. Therefore, to support the aggregation of major class network 
addresses, the routing environment must be classless.

Classless Routing

Classless routing features two aspects:

●     Classlessness can be a characteristic of a routing protocol.
●     Classlessness can be a characteristic of a router.

Classless routing protocols carry, as part of the routing information, a description of the network portion of each advertised 
address. The network portion of a network address is commonly referred to as the address prefix. An address prefix can be 
described by including an address mask, a length field that indicates how many bits of the address are prefix bits, or by 
including only the prefix bits in the update (see Figure 2-2). The classless IP routing protocols are RIP-2, EIGRP, OSPF, 
Integrated IS-IS, and BGP-4.

Figure 2-2. Advertising an Address Prefix with a Classless Routing Protocol

A classful router records destination addresses in its routing table as major class networks and subnets of those networks. 
When it performs a route lookup, it first looks up the major class network address and then tries to find a match in its list of 
subnets under that major address. A classless router ignores address classes and merely attempts a "longest match." That is, 
for any given destination address, it chooses the route that matches the most bits of the address. Take the routing table of 
Example 2-1, for instance, which shows several variably subnetted IP networks. If the router is classless, it attempts to find the 
longest match for each destination address.

Example 2-1 A Routing Table Containing Several Variably Subnetted IP Networks

Cleveland#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 192.168.2.130 to network 0.0.0.0



O E2 192.168.125.0 [110/20] via 192.168.2.2, 00:11:19, Ethernet0

O    192.168.75.0 [110/74] via 192.168.2.130, 00:11:19, Serial0

O E2 192.168.8.0 [110/40] via 192.168.2.18, 00:11:19, Ethernet1

     192.168.1.0 is variably subnetted, 3 subnets, 3 masks

O E1    192.168.1.64 255.255.255.192

           [110/139] via 192.168.2.134, 00:11:20, Serial1

O E1    192.168.1.0 255.255.255.128

           [110/139] via 192.168.2.134, 00:00:34, Serial1

O E2    192.168.1.0 255.255.255.0

           [110/20] via 192.168.2.2, 00:11:20, Ethernet0

     192.168.2.0 is variably subnetted, 4 subnets, 2 masks

C       192.168.2.0 255.255.255.240 is directly connected, Ethernet0

C       192.168.2.16 255.255.255.240 is directly connected, Ethernet1

C       192.168.2.128 255.255.255.252 is directly connected, Serial0

C       192.168.2.132 255.255.255.252 is directly connected, Serial1

O E2 192.168.225.0 [110/20] via 192.168.2.2, 00:11:20, Ethernet0

O E2 192.168.230.0 [110/20] via 192.168.2.2, 00:11:21, Ethernet0

O E2 192.168.198.0 [110/20] via 192.168.2.2, 00:11:21, Ethernet0

O E2 192.168.215.0 [110/20] via 192.168.2.2, 00:11:21, Ethernet0

O E2 192.168.129.0 [110/20] via 192.168.2.2, 00:11:21, Ethernet0

O E2 192.168.131.0 [110/20] via 192.168.2.2, 00:11:21, Ethernet0

O E2 192.168.135.0 [110/20] via 192.168.2.2, 00:11:21, Ethernet0

O*E2 0.0.0.0 0.0.0.0 [110/1] via 192.168.2.130, 00:11:21, Serial0

O E2 192.168.0.0 255.255.0.0 [110/40] via 192.168.2.18, 00:11:22, Ethernet1

Cleveland#

If the router receives a packet with a destination address of 192.168.1.75, several entries in the routing table match the 
address: 192.168.0.0/16, 192.168.1.0/24, 192.168.1.0/25, and 192.168.1.64/26. The entry 192.168.1.64/26 is chosen (see 
Example 2-2) because it matches 26 bits of the destination address—the longest match.

Example 2-2 A Packet with a Destination Address of 192.168.1.75 Is Forwarded Out Interface 
S1

Cleveland#show ip route 192.168.1.75

Routing entry for 192.168.1.64 255.255.255.192

  Known via "ospf 1", distance 110, metric 139, type extern 1

  Redistributing via ospf 1

  Last update from 192.168.2.134 on Serial1, 06:46:52 ago

  Routing Descriptor Blocks:

  * 192.168.2.134, from 192.168.7.1, 06:46:52 ago, via Serial1

      Route metric is 139, traffic share count is 1

A packet with a destination address of 192.168.1.217 will not match 192.168.1.64/26, nor will it match 192.168.1.0/25. The 
longest match for this address is 192.168.1.0/24, as demonstrated in Example 2-3.

Example 2-3 The Router Cannot Match 192.168.1.217 to a More-Specific Subnet, So It Matches 



the Network Address 192.168.1.0/24

Cleveland#show ip route 192.168.1.217

Routing entry for 192.168.1.0 255.255.255.0

  Known via "ospf 1", distance 110, metric 20, type extern 2, forward metric 10

  Redistributing via ospf 1

  Last update from 192.168.2.2 on Ethernet0, 06:48:18 ago

  Routing Descriptor Blocks:

  * 192.168.2.2, from 10.2.1.1, 06:48:18 ago, via Ethernet0

      Route metric is 20, traffic share count is 1

The longest match that can be made for destination address 192.168.5.3 is the aggregate address 192.168.0.0/16, as 
demonstrated in Example 2-4.

Example 2-4 Packets Destined for 192.168.5.3 Do Not Match a More-Specific Subnet or 
Network, and Therefore Match the Supernet 192.168.0.0/16

Cleveland#show ip route 192.168.5.3

Routing entry for 192.168.0.0 255.255.0.0, supernet

  Known via "ospf 1", distance 110, metric 139, type extern 1

  Redistributing via ospf 1

  Last update from 192.168.2.18 on Ethernet1, 06:49:26 ago

  Routing Descriptor Blocks:

  * 192.168.2.18, from 192.168.7.1, 06:49:26 ago, via Ethernet1

      Route metric is 139, traffic share count is 1

Finally, a destination address of 192.169.1.1 will not match any of the network entries in the routing table, as demonstrated in 
Example 2-5. However, packets with this destination address are not dropped, because the routing table of Example 2-1 
contains a default route. The packets are forwarded to next-hop router 192.168.2.130.

Example 2-5 No Match Is Found in the Routing Table for 192.169.1.1; Packets Destined for This 
Address Are Forwarded to the Default Address, Out Interface S0

Cleveland#show ip route 192.169.1.1

% Network not in table

Beginning with IOS 11.3, Cisco routers are classless by default. Prior to this release, the IOS defaults were classful. You can 
change the default with the ip classless command.

The routing table in Example 2-1 and the associated examples demonstrates another characteristic of longest-match routing. 
Namely, a route to an aggregate address does not necessarily point to every member of the aggregate. Figure 2-3 shows the 
vectors of the routes in Examples 2-2 through 2-5.

Figure 2-3. The Vectors of Routes in the Routing Table of Example 2-1



You can consider network 192.168.1.0/24 an aggregate of all its subnets; Figure 2-3 shows that the route to this network 
address directs packets out interface E0. Yet routes to two of its subnets, 192.168.1.0/25 and 192.168.1.64/26, point out a 
different interface, S1.

NOTE

In fact, 192.168.1.64/26 is itself a member of 192.168.1.0/25. The fact that there are distinct routes for these 
two addresses, both pointing out S1, hints that they are advertised by separate routers somewhere upstream.

Likewise, 192.168.1.0/24 is a member of the aggregate 192.168.0.0/16, but the route to that less-specific address is out E1. 
The least-specific route, 0.0.0.0/0, which is an aggregate of all other addresses, is out S0. Because of longest-match routing, 
packets to subnets 192.168.1.64/26 and 192.168.1.0/25 are forwarded out S1, whereas packets to other subnets of network 
192.168.1.0/24 are forwarded out E0. Packets with destination addresses beginning with 192.168, other than 192.168.1, are 
forwarded out E1, and packets whose destination addresses do not begin with 192.168 are forwarded out S0.

Summarization: The Good, the Bad, and the Asymmetric

Summarization is a great tool for conserving network resources, from the amount of memory required to store the routing table 
to the amount of network bandwidth and router horsepower necessary to transmit and process routing information. 
Summarization also conserves network resources by "hiding" network instabilities.

For example, the network in Figure 2-4 has a flapping route—a route that, due to a bad physical connection or router interface, 
keeps transitioning down and up and down again.

Figure 2-4. A Flapping Route Can Destabilize the Entire Network



Without summarization, every time subnet 192.168.1.176/28 goes up or down, the information must be conveyed to every 
router in the corporate internetwork. Each of those routers, in turn, must process the information and adjust its routing table 
accordingly. If router Nashville advertises all the upstream routes with the aggregate address 192.168.1.128/25, however, 
changes to any of the more-specific subnets are not advertised past that router. Nashville is the aggregation point; the 
aggregate continues to be stable even if some of its members are not.

The price to be paid for summarization is a reduction in routing precision. In Example 2-6, interface S1 of the router in Figure 2-
3 has failed, causing the routes learned from the neighbor on that interface to become invalid. Instead of dropping packets that 
would normally be forwarded out S1, however, such as a packet with a destination address of 192.168.1.75, the packet now 
matches the next-best route, 192.168.1.0/24, and is forwarded out interface E0. (Compare this to Example 2-2.)

Example 2-6 A Failed Route Can Lead to Inaccurate Packet Forwarding

Cleveland#

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1, changed state to down

%LINK-3-UPDOWN: Interface Serial1, changed state to down

Cleveland#show ip route 192.168.1.75

Routing entry for 192.168.1.0 255.255.255.0

  Known via "ospf 1", distance 110, metric 20, type extern 2, forward metric 10

  Redistributing via ospf 1

  Last update from 192.168.2.2 on Ethernet0, 00:00:20 ago

  Routing Descriptor Blocks:

  * 192.168.2.2, from 10.2.1.1, 00:00:20 ago, via Ethernet0

      Route metric is 20, traffic share count is 1

Cleveland#

This imprecision may or may not be a problem, depending on what the rest of the internetwork looks like. Continuing with the 
example, suppose the next-hop router 192.168.2.2 still has a route entry to 192.168.1.64/26 via the router Cleveland, either 



because the internetwork has not yet converged or because the route was statically entered. In this case, a routing loop occurs. 
On the other hand, some router reachable via Cleveland's E0 interface may have a "back door" route to subnet 
192.168.1.64/26 that should be used only if the primary route, via Cleveland's S1, becomes invalid. In this second case, the 
route to 192.168.1.0/24 has been designed as a backup route, and the behavior shown in Example 2-6 is intentional.

Figure 2-5 shows an internetwork in which a loss of routing precision can cause a different sort of problem. Here, routing 
domain 1 is connected to routing domain 2 by routers in San Francisco and Atlanta. What defines these domains is unimportant 
for the example. What is important is that all the networks in domain 1 can be summarized with the address 172.16.192.0/18, 
and all the networks in domain 2 can be summarized with the address 172.16.128.0/18.

Figure 2-5. When Multiple Routers Are Advertising the Same Aggregate Addresses, Loss of 
Routing Precision Can Become a Problem

Rather than advertise individual subnets, Atlanta and San Francisco advertise the summary addresses into the two domains. If 
a host on Dallas' subnet 172.16.227.128/26 sends a packet to a host on Seattle's subnet 172.16.172.32/28, the packet most 
likely is routed to Atlanta, because that is the closest router advertising domain 2's summary route. Atlanta forwards the packet 
into domain 2, and it arrives at Seattle. When the host on subnet 172.16.172.32/28 sends a reply, Seattle forwards that packet 
to San Francisco—the closest router advertising the summary route 172.16.192.0/18.

The problem here is that the traffic between the two subnets has become asymmetric: Packets from 172.16.227.128/26 to 
172.16.172.32/28 take one path, whereas packets from 172.16.172.32/28 to 172.16.227.128/26 take a different path. 
Asymmetry occurs because the Dallas and Seattle routers do not have complete routes to each other's subnets. They have only 
routes to the routers advertising the summaries and must forward packets based on those routes. In other words, the 
summarization at San Francisco and Atlanta has hidden the details of the internetworks behind those routers.

Asymmetric traffic can be undesirable for several reasons. First, internetwork traffic patterns become unpredictable, making 
baselining, capacity planning, and troubleshooting more problematic. Second, link usage can become unbalanced. The 
bandwidth of some links can become saturated, while other links are underutilized. Third, a distinct variation can occur in the 
delay times of outgoing traffic and incoming traffic. This delay variation can be detrimental to some delay-sensitive applications 
such as voice and live video.

The Internet: Still Hierarchical After All These Years

Although the Internet has grown away from the single-backbone architecture of the ARPANET described in Chapter 1, it retains 
a certain hierarchical structure. At the lowest level, Internet subscribers connect to an Internet service provider (ISP). In many 
cases, that ISP is one of many small providers in the local geographic area (called local ISPs). For example, there are presently 
almost 200 ISPs in Colorado's 303 area code. These local ISPs in turn are the customers of larger ISPs that cover an entire 
geographic region such as a state or a group of adjacent states. These larger ISPs are called regional service providers. 
Examples in Colorado are CSD Internet and Colorado Supernet. The regional service providers, in turn, connect to large ISPs 
with high-speed (DS-3 or OS-3 or better) backbones spanning a national or global area. These largest providers are the 
network service providers and include companies such as MCI/WorldCom (UUNET), SprintNet, Cable & Wireless, Concentric 
Network, and PSINet. More commonly, these various providers are referred to as Tier III, Tier II, and Tier I providers, 
respectively.



Figure 2-6 shows how these different types of ISPs are interrelated. In each case, a subscriber—whether an end user or a lower-
level service provider—connects to a higher-level service provider at that ISP's Point of Presence (POP). A POP is just a nearby 
router to which the subscriber can connect via dialup or a dedicated local loop. At the highest level, the network service 
providers interconnect via network access points (NAPs). A NAP is a LAN or switch—typically Ethernet, FDDI, or ATM—across 
which different providers can exchange routes and data traffic.

Figure 2-6. ISP/NAP Hierarchy

As Table 2-1 shows, some NAPs are known by names such as Commercial Internet Exchange (CIX), Federal Internet Exchange 
(FIX), and Metropolitan Area Exchange (MAE—originally called Metropolitan Area Ethernets, a creation of Metropolitan Fiber 
Systems, Inc.). CIX, FIX, and MAE-East were early experiments to connect backbones; based on the experience gained from 
these connection points, the National Science Foundation implemented the first four NAPs in 1994 as part of the 
decommissioning of the NSFnet.

Table 2-1. Well-Known Network Access Points in the United States

NAP Location Maintained By 

New York NAP[*] Pennsauken, New Jersey Sprint 

Chicago NAP[*] Chicago, Illinois Ameritech and Bellcore 

San Francisco NAP[*] San Francisco, California Pacific Bell 

Big East NAP Bohemia, New York ICS Network Systems 

MAE-West San Jose, California MCI/WorldCom 

MAE-East[*] Washington, DC MCI/WorldCom 

MAE-LA Los Angeles, California MCI/WorldCom 

MAE-Houston Houston, Texas MCI/WorldCom 

MAE-Dallas Dallas, Texas MCI/WorldCom 

MAE-New York New York City, New York MCI/WorldCom 

MAE-Chicago Chicago, Illinois MCI/WorldCom 

FIX-East College Park, Maryland University of Maryland 

FIX-West Moffett Field, California NASA Ames Research Center 



CIX Santa Clara, California Wiltel 

Digital PAIX Palo Alto, California Digital Equipment Corporation 

[*] One of the original four NSF NAPs

In addition to the major NAPs shown in Table 2-1, where the NSPs come together, there are many smaller NAPs. These usually 
interconnect smaller regional providers. Examples of regional NAPs are Seattle Internet eXchange (SIX) and the New Mexico 
network access point.

In conjunction with the formation of the NAPs, the NSF funded the Routing Arbiter (RA) project. One of the duties of the RA is 
to promote Internet stability and manageability. To this end, the RA proposed a database (the RADB, or Routing Arbiter 
Database) of routes (topology) and policies (preferred paths) from the service providers. The database is maintained at NAPs 
on a route server, a UNIX workstation or server running BGP. Rather than peering with every other router at the NAP, each 
provider's router peers with only the route server. Routes and policies are communicated to the server, which uses a 
sophisticated database language called RIPE-181 to process and maintain the information. The appropriate routes are then 
passed to the other routers.

Although the route server speaks BGP and processes routes, it does not perform packet forwarding. Instead, its updates inform 
routers of the best next-hop router that is directly reachable across the NAP. You are already familiar with this concept from the 
discussion in Chapter 1 of EGP third-party neighbors. By making one-to-many peering feasible rather than many-to-many 
peering, route servers increase the stability, manageability, and throughput of traffic through the NAPs.

The NAPs and the RA project proved that the competing network service providers could cooperate to provide manageable 
connectivity and stability to the Internet. As a result, the NSF ceased funding of the route servers and NAPs on January 1, 
1997, and turned the operations over to the commercial interests. Although publicly funded Internet research continues with 
such projects as Internet2, GigaPOPs, and the very high-speed Backbone Network Service (vBNS), the present Internet can be 
considered a commercial operation.

A result of the transition to commercial control of the Internet is that the topology of the modern Internet is far from the tidy 
picture drawn by the preceding paragraphs. The largest service providers, driven by financial, competitive, and policy interests, 
generally choose to peer directly rather than peer through route servers. The peering also takes place at many levels, rather 
than just at the top level shown in Figure 2-6.

When two or more service providers agree to share routes across a NAP, either directly or through a route server, they enter 
into a peering agreement. A peering agreement may be established directly between two providers (a bilateral peering 
agreement) or between a group of similar-sized providers (a multilateral peering agreement, or MLPA). Traffic patterns play a 
major role in determining the financial nature of the agreement. If the traffic between the peering partners is reasonably 
balanced in both directions, money usually does not exchange hands. The peering is equitable for the two partners. However, if 
the traffic is heavier in one direction than in the other across the peering point, as is the case when a small provider peers with 
a larger provider, the small provider usually must pay for the peering privilege. The rationale here is that the small provider 
benefits more from the peering than the larger provider.

Another factor muddling the Internet picture is the location of peering points. NAPs in which many providers come together, 
such as the ones listed in Table 2-1, are public peering sites. In addition to these public sites, service providers have created 
hundreds of smaller NAPs at sites where they find themselves co-located with other service providers. The peering agreements 
at such sites are usually private agreements between two or a few providers. Private peering is encouraged because it helps 
relieve congestion at the national NAPs, adds to route diversity, and can decrease delay for some traffic.

Another fact hinting that real life is not as tidy as Figure 2-6 suggests is that many national and regional service providers also 
sell local Internet access, in direct competition with the local ISPs. The "starting point" of the route traces in Example 2-7, for 
example, is a dial-in POP belonging to Concentric Network—a backbone provider. Regional service providers also frequently 
have a presence at the backbone NAPs. They might connect to one or more network service providers across the NAP, or they 
might connect to other regional service providers across the NAP, bypassing any network service provider.

The route traces in Example 2-7 show a little of the Internet backbone structure. Both traces originated from a Concentric 
Network POP in Denver. In the first trace, the packets traverse Concentric Network's backbone to MAE-East, where they 
connect to the BBN Planet backbone (lines 3 and 4). The packets traverse BBN Planet's backbone to a Tier II NAP shared by 
BBN and US West in Minneapolis (lines 10 and 11) and then are passed to the US West destination.

Example 2-7 Route Traces from a Concentric Network POP in Denver

--- traceroute to www.uswest.com (205.215.207.54),

    30 hops max, 18 byte packets

  1  (  207.155.168.5)  ts003e01.den-co.concentric.net  174 ms



  2 (  207.155.168.1)  rt001e0102.den-co.concentric.net.168.155.207.IN-ADDR.ARPA

162 ms

  3  (   207.88.24.29)  us-dc-wash-core1-a1-0d12.rtr.concentric.net  385 ms

  4  (   192.41.177.2)  maeeast2.bbnplanet.net  225 ms

  5  (       4.0.1.93)  p2-2.vienna1-nbr2.bbnplanet.net  232 ms

  6  (      4.0.3.130)  p3-1.nyc4-nbr2.bbnplanet.net  222 ms

  7  (       4.0.5.26)  p1-0.nyc4-nbr3.bbnplanet.net  223 ms

  8  (      4.0.3.121)  p2-1.chicago1-nbr1.bbnplanet.net  235 ms

  9  (       4.0.5.89)  p10-0-0.chicago1-br1.bbnplanet.net  239 ms

 10  (       4.0.2.18)  h1-0.minneapol1-cr1.bbnplanet.net  258 ms

 11  (    4.0.246.254)  h1-0.uswest-mn.bbnplanet.net  260 ms

 12  (207.225.159.221)  207.225.159.221  249 ms

 13  ( 205.215.207.54)  www.uswc.uswest.net  258 ms

____________________________________________________________________________________________________________

--- traceroute to www.rmi.net (166.93.8.30),

    30 hops max, 18 byte packets

  1  (  207.155.168.5)  ts003e01.den-co.concentric.net  152 ms

  2  (  207.155.168.1)  rt001e0102.den-co.concentric.net.168.155.207.IN-ADDR.ARPA

161 ms

  3  (   207.88.24.21)  207.88.24.21  190 ms

  4  (   207.88.0.253)  us-ca-scl-core1-f9-0.rtr.concentric.net  189 ms

  5  (   207.88.0.178)  207.88.0.178  206 ms

  6  ( 144.228.207.73)  sl-gw18-chi-5-1-0-T3.sprintlink.net  210 ms

  7  (  144.232.0.217)  sl-bb11-chi-3-3.sprintlink.net  216 ms

  8  (  144.232.0.174)  sl-bb5-chi-4-0-0.sprintlink.net  211 ms

  9  (   144.232.8.85)  sl-bb7-pen-5-1-0.sprintlink.net  225 ms

 10  (   144.232.5.53)  sl-bb10-pen-1-3.sprintlink.net  236 ms

 11  (   144.232.5.62)  sl-nap1-pen-4-0-0.sprintlink.net  228 ms

 12  (  192.157.69.13)  p219.t3.ans.net  263 ms

 13  ( 140.223.60.209)  f1-1.t60-6.Reston.t3.ans.net  264 ms

 14  (  140.223.65.17)  h12-1.t64-0.Houston.t3.ans.net  286 ms

 15  (  140.223.25.14)  h13-1.t80-1.St-Louis.t3.ans.net  283 ms

 16  (  140.223.25.29)  h14-1.t24-0.Chicago.t3.ans.net  292 ms

 17  (   140.223.9.18)  h14-1.t96-0.Denver.t3.ans.net  309 ms

 18  ( 140.222.96.122)  f1-0.c96-10.Denver.t3.ans.net  313 ms

 19  (  207.25.224.14)  h1-0.enss3191.t3.ans.net  306 ms

 20  (  166.93.46.246)  166.93.46.246  305 ms

 21  (    166.93.8.30)  www.rmi.net  285 ms

The packets in the second trace take a pretty thorough tour of the United States before arriving at their destination, a few miles 
from their origination. First, they follow Concentric's backbone through a router in California (line 4) and then to the Chicago 
NAP, where they connect to the Sprint backbone (line 6). The packets are routed to the New York NAP in Pennsauken, New 



Jersey, where they are passed to the ANS backbone (lines 11 and 12). They then visit routers in Reston, Houston, St. Louis, 
and Chicago (again), and finally arrive back in Denver.

Like the packets in the last trace, we have taken a rather lengthy and circuitous route to get back to the topic at hand, CIDR.

CIDR: Reducing Routing Table Explosion

Given the somewhat hierarchical structure of the Internet, you can see how the structure lends itself to an address 
summarization scheme. At the top layers, large blocks of contiguous Class C addresses are assigned by the Internet Assigned 
Numbers Authority (IANA) to the various addressing authorities around the globe, known as the regional IP registries. 
Currently, there are three regional registries. The regional registry for North and South America, the Caribbean, and sub-
Saharan Africa is the American Registry for Internet Numbers (ARIN). ARIN also is responsible for assigning addresses to the 
global network service providers. The regional registry for Europe, the Middle East, northern Africa, and parts of Asia (the area 
of the former Soviet Union) is the Resèaux IP Europèens (RIPE). The regional registry for the rest of Asia and the Pacific nations 
is the Asia Pacific Network Information Center (APNIC).

NOTE

ARIN was spun off of the InterNIC (run by Network Solutions, Inc.) in 1997 to separate the management of IP 
addresses and domain names.

Table 2-2 shows the original scheme for assigning Class C addresses to the regions these registries serve, although some of the 
allocations are now outdated. As Example 2-8 demonstrates, the blocks labeled "Others" are now being assigned. The regional 
registries, in turn, assign portions of these blocks to the large service providers or to local IP registries. Generally, the blocks 
assigned at this level are no smaller than 32 contiguous Class C addresses (and are usually larger). Concentric Network has 
been assigned the block 207.155.128.0/17, for example, which includes the equivalent of 128 contiguous Class C addresses 
(see Example 2-8).

Table 2-2. CIDR Address Allocation by Geographic Region

Region Address Range 

Multiregional 192.0.0.0–193.255.255.255 

Europe 194.0.0.0–195.255.255.255 

Others 196.0.0.0–197.255.255.255 

North America 198.0.0.0–199.255.255.255 

Central/South America 200.0.0.0–201.255.255.255 

Pacific Rim 202.0.0.0–203.255.255.255 

Others 204.0.0.0–205.255.255.255 

Others 206.0.0.0–207.255.255.255 

Example 2-8 When a WHOIS Is Performed on the Address 207.155.128.5 from Example 2-7, the 
Address Is Shown as Part of a /17 CIDR Block Assigned to Concentric Network

--- looking up 207.155.128.5

--- performing WHOIS on "207.155.128.5", please wait...

--- contacting host whois.arin.net

--- smart query on "207.155.128"

Concentric Research Corp. (NETBLK-CONCENTRIC-CIDR)



   10590 N. Tantau Ave.

   Cupertino, CA  95014

   Netname: CONCENTRIC-CIDR

   Netblock: 207.155.128.0 - 207.155.255.255

   Maintainer: CRC

   Coordinator:

      DNS and IP ADMIN  (DIA-ORG-ARIN)  hostmaster@CONCENTRIC.NET

      (408) 342-2800

Fax- (408) 342-2810

   Domain System inverse mapping provided by:

   NAMESERVER3.CONCENTRIC.NET    206.173.119.72

   NAMESERVER2.CONCENTRIC.NET    207.155.184.72

   NAMESERVER1.CONCENTRIC.NET    207.155.183.73

   NAMESERVER.CONCENTRIC.NET    207.155.183.72

   Record last updated on 13-Feb-97.

   Database last updated on 29-Jan-99 16:12:40 EDT.

The service providers receiving these blocks assign them in smaller blocks to their subscribers. If those subscribers are 
themselves ISPs, they can again break their blocks into smaller blocks. The obvious advantage of assigning these blocks of 
Class C addresses, called CIDR blocks, comes when the blocks are summarized back up the hierarchy. For more information on 
how addresses are assigned throughout the Internet, see RFC 2050 (www.isi.edu/in-notes/rfc2050.txt).

To illustrate, suppose Concentric Network assigns to one of its subscribers a portion of its 207.155.128.0/17 block, consisting of 
207.155.144.0/20. If that subscriber is an ISP, it may assign a portion of that block, say 207.155.148.0/22, to one of its own 
subscribers. That subscriber advertises its /22 (read "slash twenty-two") block back to its ISP. That ISP in turn summarizes all 
of its subscribers to Concentric Network with the single aggregate 207.155.144.0/20, and Concentric Network summarizes its 
subscribers into the NAPs to which it is attached with the single aggregate 207.155.128.0/17.

The advertisement of a single aggregate to the higher-level domain is obviously preferable to advertising possibly hundreds of 
individual addresses. But an equally important benefit is the stability such a scheme adds to the Internet. If the state of a 
network in a low-level domain changes, that change is felt only up to the first aggregation point and no further.

Table 2-3 shows the different sizes of CIDR blocks, their equivalent size in Class C networks, and the number of hosts each 
block can represent.

Table 2-3. CIDR Block Sizes

CIDR Block Prefix 
Size 

Number of Equivalent Class C 
Addresses 

Number of Possible Host 
Addresses 

/24 1 254 

/23 2 510 

/22 4 1022 

/21 8 2046 

/20 16 4094 

http://www.isi.edu/in-notes/rfc2050.txt


/19 32 8190 

/18 64 16,382 

/17 128 32,766 

/16 256 65,534 

/15 512 131,070 

/14 1024 262,142 

/13 2048 524,286 

CIDR: Reducing Class B Address Space Depletion

The depletion of Class B addresses was due to an inherent flaw in the design of the IP address classes. A Class C address 
provides 254 host addresses, whereas a Class B address provides 65,534 host addresses. That's a wide gap. Before CIDR, if 
your company needed 500 host addresses, a Class C address would not have served your needs. You probably would have 
requested a Class B address, even though you would be wasting 65,000 host addresses. With CIDR, your needs can be met 
with a /23 block. The host addresses that would have otherwise been wasted have been conserved.

Difficulties with CIDR

Although CIDR has proven successful in slowing both the growth of Internet routing tables and the depletion of Class B 
addresses, it also has presented some problems for the users of CIDR blocks.

The first problem is one of portability. If you have been given a CIDR block, the addresses are most likely part of a larger block 
assigned to your ISP. Suppose, however, that your ISP is not living up to your expectations or contractual agreements, or you 
have just gotten a more attractive offer from another ISP. A change of ISPs most likely means you must re-address. It's 
unlikely that an ISP will allow a subscriber to keep its assigned block when the subscriber moves to a new provider. Aside from 
an ISP's being unwilling to give away a portion of its own address space, regional registries strongly encourage the return of 
address space when a subscriber changes ISPs.

For an end user, re-addressing carries varying degrees of difficulty. The process is probably the easiest for those who use 
private address space within their routing domain and network address translation (see Chapter 4) at the edges of the domain. 
In this case, only the "public-facing" addresses have to be changed, with minimal impact on the internal users. At the other 
extreme are end users who have statically assigned public addresses to all their internal network devices. These users have no 
choice but to visit every device in the network to re-address.

Even if the end user is using the CIDR block throughout the domain, the pain of re-addressing can be somewhat reduced by the 
use of DHCP (or BOOTP). In this case, the DHCP scopes must be changed and users must reboot, but only some statically 
addressed network devices, such as servers and routers, must be individually re-addressed.

The problem is much amplified if you are an ISP rather than an end user and you want to change your upstream service 
provider. Not only must your own internetwork be renumbered, but so must any of your subscribers to whom you have 
assigned a portion of your CIDR block.

CIDR also presents a problem to anyone who wants to connect to multiple service providers. Multihoming (discussed in more 
depth later in this chapter) is used for redundancy so that an end user or ISP is not vulnerable to the failure of a single 
upstream service provider. The trouble is that if your addresses are taken from one ISP's block, you must advertise those 
addresses to the second provider.

Figure 2-7 shows what can happen. Here, the subscriber has a /23 CIDR block that is part of ISP1's larger /20 block. When the 
subscriber attaches to ISP2, he wants to ensure that traffic from the Internet can reach him through either ISP1 or ISP2. To 
make this happen, he must advertise his /23 block through ISP2. The trouble arises when ISP2 advertises the /23 block to the 
rest of the world. Now all the routers "out there" have a route to 205.113.48.0/20 advertised by ISP1 and a route to 
205.113.50.0/23 advertised by ISP2. Any packets destined for the subscriber are forwarded on the more-specific route, and as 
a result, almost all traffic from the Internet to the subscriber is routed through ISP2—including traffic from sources that are 
geographically much closer to the subscriber through ISP1.

Figure 2-7. Incoming Internet Traffic Matches the Most-Specific Route



In Figure 2-7, it is even possible for the 205.113.50.0/23 route to be advertised into ISP1 from the Internet. This shouldn't 
happen, because most ISPs set route filters to prevent their own routes from reentering their domain. However, there are no 
guarantees that ISP1 is filtering properly. If the more-specific route should leak in from the Internet, traffic from ISP1's other 
subscribers could traverse the Internet and ISP2 to 205.113.50.0/23 rather than take the more-direct path.

For the subscriber to be multihomed, ISP1 must advertise the more-specific route in addition to its own CIDR block (see Figure 
2-8). Most service providers will not agree to this arrangement, because it means "punching a hole" in their own CIDR block 
(sometimes called address leaking). In addition to reducing the overall effectiveness of CIDR, advertising a more-specific route 
of its own CIDR block carries an administrative burden for the ISP.

Figure 2-8. ISP1 "Punches a Hole" in Its CIDR Block



Although Figures 2-7 and 2-8 show ISP1 as having only a single connection to the Internet, in most cases an ISP has many 
connections to higher-level providers and at NAPs. At each of these connections, the provider must reconfigure its router to 
advertise the more-specific route in addition to the CIDR block, and possibly must modify all its incoming route filters. 
Administration is also complicated by the fact that ISP1 and ISP2 have to closely coordinate their efforts to ensure that the 
subscriber's /23 block is advertised correctly. Because ISP1 and ISP2 are competitors, either or both might be resistant to 
working so closely together.

Even if the subscriber in Figure 2-8 can get ISP1 and ISP2 to agree to advertise its own /23 block, there is another obstacle. 
Some Tier I providers accept only prefixes of /19 or smaller, to control the backbone-level routing tables. If ISP1 or ISP2 or 
both get their Internet connectivity from one of these network service providers, they cannot advertise the subscriber's /23. 
The practice of filtering any CIDR addresses with a prefix larger than /19 has become so well-known that a /19 prefix is 
commonly referred to as a globally routable address. The implication here is that if you advertise a longer CIDR prefix, say a 
/21 or /22, your prefix might not be advertised to all parts of the Internet. Remember that any parts of the Internet that do not 
know how to reach you are essentially unreachable by you.

NOTE

Many Tier I providers have relaxed their /19 rules recently in response to increased subscriber complaints.

A possible solution for the multihomed subscriber in Figure 2-8 is to obtain a provider-independent address space (also known 
as a portable address space). That is, the subscriber can apply for a block that is not a part of either ISP1's or ISP2's CIDR 
block; both ISPs can advertise the subscriber's block without interference with their own address space. Since the formation of 
ARIN, obtaining a provider-independent block is somewhat easier than it was under the InterNIC. Although ARIN strongly 
encourages you to seek an address space first from your provider and second from your provider's provider, obtaining a 
provider-independent address space from ARIN is a last resort. However, you still face difficulties.

First, if you want to multihome, it is likely that your present address space was obtained from your original ISP. Changing to a 
provider-independent address space means renumbering, with all the difficulties already discussed. (Of course, if you obtained 
your IP address space in the pre-CIDR days, you are already provider-independent, making the question moot.)

Second, the registries assign address space based on justified need, not on long-term predicted need. This policy means that 
you probably will be allocated "just enough" space to fit your present needs and a three-month predicted need. From there, you 
have to justify a further allocation by proving that you are efficiently using the original space. For example, ARIN requires proof 
of address utilization by one of two means: the use of the Shared WHOIS Project (SWIP) or the use of a Referral WHOIS Server 



(RWHOIS). SWIP, most commonly used, is the practice of adding WHOIS information to a SWIP template and e-mailing it to 
ARIN. To use RWHOIS, you establish an RWHOIS server on your premises that ARIN can access for WHOIS information. In both 
cases, the WHOIS information establishes proof that you have efficiently used, and are approaching exhaustion of, your present 
address space.

Of course, you still have a problem if you cannot justify obtaining a globally routable (/19) address space. The bottom line is 
that CIDR allocation rules make multihoming a difficult problem for small subscribers and ISPs. The following section discusses 
multihoming in more detail, along with some alternative topologies.



 
  
Who Needs BGP?

Not as many internetworks need BGP as you might think. A common misconception is that whenever an internetwork must be 
broken into multiple routing domains, BGP should be run between the domains. BGP is certainly an option, but why complicate 
matters by unnecessarily adding another routing protocol to the mix?

Take, for example, a multinational corporate network consisting of 3000 routers and perhaps 150,000 users. Figure 2-9 shows 
how such a huge internetwork might be constructed. The entire network is routed with OSPF and is divided into eight 
geographic OSPF routing domains for easier manageability. Although the illustration shows only the backbone areas for each 
OSPF domain, each of the domains is divided into multiple OSPF areas that also correspond to geographic subregions.

Figure 2-9. Even a Very Large Internetwork Can Be Built Using Only Multiple IGP Domains

BGP can be used to provide connectivity between the multiple OSPF domains, but it is unnecessary. Instead, each of the eight 
OSPF backbone areas redistributes into a single global backbone. The global backbone is another OSPF domain, consisting of a 
single OSPF area. Although this core consists of high-end routers to handle the packet-switching load, the load on these routers 
from routing tables and OSPF processing is actually very small. Because of the way the entire internetwork is addressed, each 
of the eight OSPF domains advertises only a single aggregate route to the global backbone. In fact, aggregation is fundamental 
to making this design work. There are, presumably, such a large number of subnets in such an internetwork that without 
aggregation OSPF would "choke" trying to process them all. The result would be very poor performance and possible router 
failures.

The hierarchical construction of the physical topology and the address space are two of the three factors contributing to the 
simplicity of the internetwork in Figure 2-9. The third factor is a common administrative body for the entire internetwork. 
Having a single administration means that routing policies are imposed equally and consistently throughout. In this case, the 
routing policy dictates the address range used in each OSPF area and that all OSPF processes interconnect through OSPF 1 
only.

NOTE

A routing policy is just a designed and configured process for controlling the traffic patterns within an 
internetwork by controlling routes and their characteristics. Redistribution, route filters, and route maps are 
the most common tools for implementing routing policies with Cisco IOS Software.

Of course, in real life, few corporations the size of the one depicted in Figure 2-9 have the luxury of being designed "from the 
ground up" in such a coordinated, logical fashion. Many, if not most, large internetworks have evolved from smaller 



internetworks that have been merged as divisions and corporations have merged. The result is that different network 
administrators have made different design choices for the various parts of the internetwork; when the parts are merged, the 
first order of business is basic interoperability.

The second order of business might be the enforcement of routing policies. Some traffic from some domains of the internetwork 
to other domains may be required to always prefer certain links or routes, for example, or perhaps only certain routes should 
be advertised between domains. In most cases, the necessary policies can still be implemented with redistribution between 
IGPs and tools such as route filters and route maps. You should implement BGP only when a sound engineering reason compels 
you to do so, such as when the IGPs do not provide the tools necessary to implement the required routing policies or when the 
size of the routing tables cannot be controlled with summarization. BGP proves useful, for instance, when many different IGPs 
are used in the domains. Here, BGP might be simpler to implement than attempting to redistribute among all the IGPs.

When considering whether BGP is necessary in an internetwork design, keep in mind why exterior routing protocols were 
invented in the first place. Exterior routing protocols are used to route between autonomous systems—that is, between 
internetwork domains under different administrative authorities. In a single corporate internetwork, even a large one with 
different domains under different local administrations, there is usually enough of a centralized authority to impose routing 
policy using the tools available with interior routing protocols. When separate autonomous systems must interconnect, 
however, BGP might be called for.

The majority of the cases calling for BGP involve Internet connectivity—either between a subscriber and an ISP or (more likely) 
between ISPs. Yet even when interconnecting autonomous systems, BGP might be unnecessary. The remainder of this section 
examines typical inter-AS topologies and demonstrates where BGP is and is not needed.

A Single-Homed Autonomous System

Figure 2-10 shows a subscriber attached by a single connection to an ISP. BGP, or any other type of routing protocol, is 
unnecessary in this topology. If the single link fails, no routing decision needs to be made, because no alternative route exists. 
A routing protocol accomplishes nothing. In this topology, the subscriber adds a static default route to the border router and 
redistributes the route into his AS.

Figure 2-10. Static Routes Are All That Is Needed in This Single-Homed Topology

The ISP similarly adds a static route pointing to the subscriber's address range and advertises that route into its AS. Of course, 
if the subscriber's address space is a part of the ISP's larger address space, the route advertised by the ISP's router goes no 
farther than the ISP's own AS. "The rest of the world" reaches the subscriber by routing to the ISP's advertised address space, 
and the more-specific route to the subscriber is picked up only within the ISP's AS.



An important principle to remember when working with inter-AS traffic is that each physical link actually represents two logical 
links: one for incoming traffic and one for outgoing traffic (see Figure 2-11).

Figure 2-11. Each Physical Link Between Autonomous Systems Represents Two Logical Links, 
Carrying Incoming and Outgoing Packets

The routes you advertise in each direction influence the traffic separately. Avi Freedman, who has written many excellent 
articles on ISP issues, calls a route advertisement a promise to carry packets to the address space represented in the route. In 
Figure 2-10, the subscriber's router is advertising a default route into the local AS—a promise to deliver packets to any 
destination for which there is not a more-specific route. And the ISP's router, advertising a route to 205.110.32.0/20, is 
promising to deliver traffic to the subscriber's AS. The outgoing traffic from the subscriber's AS is the result of the default route, 
and the incoming traffic to the subscriber's AS is the result of the route advertised by the ISP's router. This concept might seem 
somewhat trivial and obvious at this point, but it is very important to keep in mind as you examine more-complex topologies.

The obvious vulnerability of the topology in Figure 2-10 is that the entire connection is made up of single points of failure. If the 
single data link fails, if a router or one of its interfaces fails, if the configuration of one of the routers fails, if a process within 
the router fails, or if one of the routers' all-too-human administrators makes a mistake, the subscriber's entire Internet 
connectivity can be lost. What is lacking in this picture is redundancy.

Multihoming to a Single Autonomous System

Figure 2-12 shows an improved topology, with redundant links to the same provider. How the incoming and outgoing traffic is 
manipulated across these links depends on how the two links are used. For example, a typical setup when multihoming to a 
single provider is for one of the links to be a primary, dedicated Internet access link—say, a T1—and for the other link to be 
used only for backup. In such a scenario, the backup link is likely to be some lower-speed connection.

Figure 2-12. Multihoming to a Single Autonomous System



When the redundant link is used only for backup, there is again no call for BGP. The routes can be advertised just as they were 
in the single-homed scenario, except that the routes associated with the backup link have the distances set high so that they 
are used only if the primary link fails.

Example 2-9 shows what the configurations of the routers carrying the primary and secondary links might look like.

Example 2-9 Primary and Secondary Link Configurations for Multihoming to a Single 
Autonomous System

Primary Router

router ospf 100

 network 205.110.32.0 0.0.15.255 area 0

 default-information originate metric 10

!

ip route 0.0.0.0 0.0.0.0 205.110.168.108

____________________________________________________________________________________________________________

Backup Router

router ospf 100

 network 205.110.32.0 0.0.15.255 area 0



 default-information originate metric 100

!

ip route 0.0.0.0 0.0.0.0 205.110.168.113 150

In this configuration, the backup router has a default route whose administrative distance is set to 150 so that it is in the 
routing table only if the default route from the primary router is unavailable. Also, the backup default is advertised with a 
higher metric than the primary default route to ensure that the other routers in the OSPF domain prefer the primary default 
route. The OSPF metric type of both routes is E2, so the advertised metrics remain the same throughout the OSPF domain. This 
consistency ensures that the metric of the primary default route remains lower than the metric of the backup default route in 
every router, regardless of the internal cost to each border router. Example 2-10 shows the default routes in a router internal 
to the OSPF domain.

Example 2-10 The First Display Shows the Primary External Route; the Second Display Shows 
the Backup Route Being Used After the Primary Route Has Failed

Phoenix#show ip route 0.0.0.0

Routing entry for 0.0.0.0 0.0.0.0, supernet

  Known via "ospf 1", distance 110, metric 10, candidate default path

  Tag 1, type extern 2, forward metric 64

  Redistributing via ospf 1

  Last update from 205.110.36.1 on Serial0, 00:01:24 ago

  Routing Descriptor Blocks:

  * 205.110.36.1, from 205.110.36.1, 00:01:24 ago, via Serial0

      Route metric is 10, traffic share count is 1

Phoenix#show ip route 0.0.0.0

Routing entry for 0.0.0.0 0.0.0.0, supernet

  Known via "ospf 1", distance 110, metric 100, candidate default path

  Tag 1, type extern 2, forward metric 64

  Redistributing via ospf 1

  Last update from 205.110.38.1 on Serial1, 00:00:15 ago

  Routing Descriptor Blocks:

  * 205.110.38.1, from 205.110.38.1, 00:00:15 ago, via Serial1

      Route metric is 100, traffic share count is 1

Although a primary/backup design satisfies the need for redundancy, it does not efficiently use the available bandwidth. A 
better design is to use both paths, with each providing backup for the other in the event of a link or router failure. In this case, 
the configuration used in both routers is as indicated in Example 2-11.

Example 2-11 Configuration for Load Sharing When Multihomed to the Same AS

router ospf 100

 network 205.110.32.0 0.0.15.255 area 0

 default-information originate metric 10 metric-type 1

!

ip route 0.0.0.0 0.0.0.0 205.110.168.108

The static routes in both routers have equal administrative distances, and the default routes are advertised with equal metrics 



(10). Notice that the default routes are now advertised with an OSPF metric type of E1. With this metric type, each of the 
routers in the OSPF domain takes into account the internal cost of the route to the border routers in addition to the cost of the 
default routes themselves. As a result, every router chooses the closest exit point when choosing a default route (see Figure 2-
13).

Figure 2-13. Border Routers Advertising a Default Route with a Metric of 10 and an OSPF Metric 
Type of E1

In most cases, advertising default routes into the AS from multiple exit points, and summarizing address space out of the AS at 
the same exit points, is sufficient for good internetwork performance. The one consideration is whether asymmetric traffic 
patterns will become a concern. If the geographical separation between the two (or more) exit points is large enough for delay 
variations to become significant, you might have a need for better control of the routing. You might now consider BGP.

Suppose, for example, that the two exit routers depicted in Figure 2-12 are located in Los Angeles and London. You might want 
all your exit traffic destined for the Eastern Hemisphere to use the London router and all your exit traffic for the Western 
Hemisphere to use the Los Angeles router. Remember that the incoming route advertisements influence your outgoing traffic. If 
the provider advertises routes into your AS via BGP, your internal routers have more-accurate information about external 
destinations. BGP also provides the tools for setting routing policies for the external destinations.

Similarly, outgoing route advertisements influence your incoming traffic. If internal routes are advertised to the provider via 
BGP, you have influence over which routes are advertised at which exit point, and also tools for influencing (to some degree) 
the choices the provider makes when sending traffic into your AS.

When considering whether to use BGP, carefully weigh the benefits gained against the cost of added routing complexity. You 
should use BGP only when you can realize an advantage in traffic control. Consider the incoming and outgoing traffic 
separately. If it is only important to control your incoming traffic, use BGP to advertise routes to your provider while still 
advertising only a default route into your AS.

On the other hand, if it is only important to control your outgoing traffic, use BGP only to receive routes from your provider. 
Consider carefully the ramifications of accepting routes from your provider. "Taking full BGP routes" means that your provider 
advertises to you the entire Internet routing table. As of this writing, that is approximately 88,000 route entries, as shown in 
Example 2-12. To store and process a table of this size, you need a reasonably powerful router and at least 64 MB of memory 
(although 128 MB is recommended). On the other hand, you can easily implement a simple default routing scheme with a low-
end router and a moderate amount of memory.

Example 2-12 This Full Internet Routing Table Summary Shows 57,624 BGP Entries

route-server>show ip route summary



Route Source    Networks    Subnets     Overhead    Memory (bytes)

connected       0           1           56          144

static          2           1           168         432

bgp 65000       76302       11967       4943064     12847416

  External: 88269 Internal: 0 Local: 0

internal        779                                 906756

Total           77083       11969       4943288     13754748

route-server>

NOTE

The routing table summary in Example 2-12 is taken from a publicly accessible route server at route-
server.ip.att.net. Another server to which you can Telnet is route-server.cerf.net. The number of BGP entries 
varies somewhat in each, but all indicate a similar size.

"Taking partial BGP routes" is a compromise between taking full routes and accepting no routes at all. As the name implies, 
partial routes are some subset of the full Internet routing table. For example, a provider might advertise only routes to its other 
subscribers, plus a default route to reach the rest of the Internet. The following section presents a scenario in which taking 
partial routes proves useful.

Another consideration is that when running BGP, a subscriber's routing domain must be identified with an autonomous system 
number. Like IP addresses, autonomous system numbers are limited and are assigned only by the regional address registries 
when there is a justifiable need. And like IP addresses, a range of autonomous system numbers is reserved for private use: the 
AS numbers 64512 to 65535. With few exceptions, subscribers that are connected to a single service provider (either single or 
multihomed) use an autonomous system number out of the reserved range. The service provider filters the private AS number 
out of the advertised BGP path.

Although the topology in Figure 2-12 is an improvement over the topology in Figure 2-10 because redundant routers and data 
links have been added, it still entails a single point of failure: the ISP itself. If the ISP loses connectivity to the rest of the 
Internet, so does the subscriber. And if the ISP suffers a major internal outage, the single-homed subscriber also suffers.

Multihoming to Multiple Autonomous Systems

Figure 2-14 shows a topology in which a subscriber has homed to more than one service provider. In addition to the 
advantages of multihoming already described, this subscriber is protected from losing Internet connectivity as the result of a 
single ISP failure.

Figure 2-14. Multihoming to Multiple Autonomous Systems



For a small corporation or a small ISP, there are substantial obstacles to multihoming to multiple service providers. You already 
have seen the problems involved if the subscriber's address space is a part of one of the service providers' larger address 
space:

●     The originating provider must be persuaded to "punch a hole" in his CIDR block.
●     The second provider must be persuaded to advertise an address space that belongs to a different provider.
●     Both providers must be willing to closely coordinate the advertisement of the subscriber's address space.
●     If the subscriber's address space is smaller than a /19 (which a small subscriber's space is likely to be), some backbone 

providers might not accept the route.

The best candidates for multihoming to multiple providers are corporations and ISPs that are large enough to qualify for a 
provider-independent address space (or who already have one) and a public autonomous system number.

The subscriber in Figure 2-14 could still forego BGP. One option is to use one ISP as a primary Internet connection and the 
other as a backup only; another option is to default route to both providers and let the routing chips fall where they may. If a 
subscriber has gone to the expense of multihoming and contracting with multiple providers, however, neither of these solutions 
is likely to be acceptable. BGP is the preferred option in this scenario.

Again, incoming and outgoing traffic should be considered separately. For incoming traffic, the most reliability is realized if all 
internal routes are advertised to both providers. This setup ensures that all destinations within the subscriber's AS are 
completely reachable via either ISP. Even though both providers are advertising the same routes, there are cases in which 
incoming traffic should prefer one path over another. BGP provides the tools for communicating these preferences.

For outgoing traffic, the routes accepted from the providers should be carefully considered. If full routes are accepted from both 
providers, the best route for every Internet destination is chosen. In some cases, however, one provider might be a preferred 
for full Internet connectivity, whereas the other provider is preferred for only some destinations. In this case, full routes can be 
taken from the preferred provider and partial routes can be taken from the other provider. For example, you might want to use 
the secondary provider, only to reach its other subscribers and for backup to your primary Internet provider (see Figure 2-15). 
The secondary provider sends its customer routes, and the subscriber configures a default route to the secondary ISP to be 
used if the connection to the primary ISP fails.

Figure 2-15. ISP1 Is the Preferred Provider for Most Internet Connectivity; ISP2 Is Used Only 
to Reach Its Other Customers' Internetworks and for Backup Internet Connectivity



Notice that the full routes sent by ISP1 probably include the customer routes of ISP2. Because the same routes are received 
from ISP2, however, the subscriber's routers normally prefer the shorter path through ISP2. If the link to ISP2 fails, the 
subscriber uses the longer paths through ISP1 and the rest of the Internet to reach ISP2's customers.

Similarly, the subscriber normally uses ISP1 to reach all destinations other than ISP2's customers. If some or all of those more-
specific routes from ISP1 are lost, however, the subscriber uses the default route through ISP2.

If router CPU and memory limitations prohibit taking full routes, partial routes from both providers are an option. Each provider 
might send its own customer routes, and the subscriber points default routes to both providers. In this scenario, some routing 
accuracy is traded for a savings in router hardware.

In yet another partial-routes scenario, each ISP might send its customer routes and also the customer routes of its upstream 
provider. In Figure 2-16, for example, ISP1 is connected to Sprint, and ISP2 is connected to MCI. The partial routes sent to the 
subscriber by ISP1 consist of all of ISP1's customer routes and all of Sprint's customer routes. The partial routes sent by ISP2 
consist of all of ISP2's customer routes and all of MCI's customer routes. The subscriber points to default routes at both 
providers. Because of the size of the two backbone service providers, the subscriber has enough routes to make efficient 
routing decisions on a large number of destinations. At the same time, the partial routes are still significantly smaller than a full 
Internet routing table.

Figure 2-16. The Subscriber Is Taking Partial Routes from Both ISPs, Consisting of Each ISP's 
Customer Routes and the Customer Routes of Their Respective Upstream Providers



The remainder of this chapter (after two short cautionary sections) examines the operation of BGP and the tools it provides for 
setting preferences and policies for both incoming and outgoing traffic.

A Note on "Load Balancing"

The principal benefits of multihoming are redundancy and, to a lesser extent, increased bandwidth. Increased bandwidth does 
not mean that both links are used with equal efficiency. You should not expect the traffic load to be balanced 50/50 across the 
two links; one of the ISPs will almost always be "better connected" than the other ISP. The ISP itself or its upstream provider 
might have better routers, better physical links, or more NAP connections than the other ISP, or one ISP might just be 
topologically closer to more of the destinations to which your users regularly connect.

That is not to say that you cannot, through the expenditure of considerable time and effort, manipulate route preferences to 
fairly evenly balance your route traffic across the two links. The problem is that you probably actually degrade your Internet 
performance by forcing some traffic to take a less-optimal route for the sake of so-called load balancing. All you really 
accomplish, in most cases, is an evening out of the utilization numbers of your two ISP links. Do not be too concerned if 75 
percent of your traffic uses one link while only 25 percent of your traffic uses the other link. Multihoming is for redundancy and 
increased routing efficiency, not load balancing.

BGP Hazards

Creating a BGP peering relationship involves an interesting combination of trust and mistrust. The BGP peer is in another AS, so 
you must trust the network administrator on that end to know what he or she is doing. At the same time, if you are smart, you 
will take every practical measure to protect yourself in the event that a mistake is made on the other end. When you're 
implementing a BGP peering connection, paranoia is your friend.

Recall the earlier description of a route advertisement as a promise to deliver packets to the advertised destination. The routes 
you advertise directly influence the packets you receive, and the routes you receive directly influence the packets you transmit. 
In a good BGP peering arrangement, both parties should have a complete understanding of what routes are to be advertised in 
each direction. Again, incoming and outgoing traffic must be considered separately. Each peer should ensure that he is 
transmitting only the correct routes and should use route filters or other policy tools such as AS_PATH filters, described in 
Chapter 3, to ensure that he is receiving only the correct routes.

Your ISP might show little patience with you if you make mistakes in your BGP configuration, but the worst problems can be 
attributed to a failure on both sides of the peering arrangement. Suppose, for example, that through some misconfiguration 
you advertise 207.46.0.0/16 to your ISP. On the receiving side, the ISP does not filter out this incorrect route, allowing it to be 
advertised to the rest of the Internet. This particular CIDR block belongs to Microsoft, and you have just claimed to have a 
route to that destination. A significant portion of the Internet community could decide that the best path to Microsoft is through 
your domain. You will receive a flood of unwanted packets across your Internet connection and, more importantly, you will have 
black-holed traffic that should have gone to Microsoft. They will be neither amused nor understanding.



Figure 2-17 shows another example of a BGP routing mistake. This same internetwork was shown in Figure 2-15, but here the 
customer routes that the subscriber learned from ISP2 have been inadvertently advertised to ISP1.

Figure 2-17. This Subscriber Is Advertising Routes Learned from ISP2 into ISP1, Inviting 
Packets Destined for ISP2 and Its Customers to Transit His Domain

In all likelihood, ISP1 and its customers will see the subscriber's domain as the best path to ISP2 and its customers. In this 
case, the traffic is not black-holed, because the subscriber does indeed have a route to ISP2. The subscriber has become a 
transit domain for packets from ISP1 to ISP2, to the detriment of its own traffic. And because the routes from ISP2 to ISP1 still 
point through the Internet, the subscriber has caused asymmetric routing for ISP2.

The point of this section is that BGP, by its very nature, is designed to allow communication between autonomously controlled 
systems. A successful and reliable BGP peering arrangement requires an in-depth understanding of not only the routes to be 
advertised in each direction, but also the routing policies of each of the involved parties.



 
  
BGP Basics

Like EGP, BGP forms a unique, unicast-based connection to each of its BGP-speaking peers. To 
increase the reliability of the peer connection, BGP uses TCP (port 179) as its underlying delivery 
mechanism. The update mechanisms of BGP are also somewhat simplified by allowing the TCP layer 
to handle such duties as acknowledgment, retransmission, and sequencing. Because BGP rides on 
TCP, a separate point-to-point connection to each peer must be established.

BGP is a distance vector protocol in that each BGP node relies on downstream neighbors to pass 
along routes from their routing table; the node makes its route calculations based on those 
advertised routes and passes the results to upstream neighbors. However, other distance vector 
protocols quantify the distance with a single number, representing hop count or, in the case of IGRP 
and EIGRP, a sum of total interface delays and lowest bandwidth. In contrast, BGP uses a list of AS 
numbers through which a packet must pass to reach the destination (see Figure 2-18). Because this 
list fully describes the path a packet must take, BGP is called a path vector routing protocol to 
contrast it with traditional distance vector protocols. The list of AS numbers associated with a BGP 
route is called the AS_PATH and is one of several path attributes associated with each route. Path 
attributes are described fully in a subsequent section.

Figure 2-18. BGP Determines the Shortest Loop-Free Inter-AS Path from a 
List of AS Numbers Known as the AS_PATH Attribute

Recall from Chapter 1 that EGP is not a true routing protocol because it does not have a fully 
developed algorithm for calculating the shortest path and it cannot detect route loops. In contrast, 
the AS_PATH attribute qualifies BGP as a routing protocol on both counts. First, the shortest inter-AS 
path is very simply determined by the least number of AS numbers. In Figure 2-18, AS7 is receiving 



two routes to 207.126.0.0/16. One of the routes has four AS hops, and the other has three hops. 
AS7 chooses the shortest path, (4,2,1).

Route loops also are very easily detected with the AS_PATH attribute. If a router receives an update 
containing its local AS number in the AS_PATH, it knows that a routing loop has occurred. In Figure 2-
19, AS7 has advertised a route to AS8. AS8 advertises the route to AS9, which advertises it back to 
AS7. AS7 sees its own number in the AS_PATH and does not accept the update, thereby avoiding a 
potential routing loop.

Figure 2-19. If a BGP Router Sees Its Own AS Number in the AS_PATH of a 
Route from Another AS, It Rejects the Update

BGP does not show the details of the topologies within each AS. Because BGP sees only a tree of 
autonomous systems, it can be said that BGP takes a higher view of the Internet than IGP, which 
sees only the topology within an AS. And because this higher view is not really compatible with the 
view seen by IGPs, Cisco routers maintain a separate routing table to hold BGP routes. Example 2-13 
demonstrates a typical BGP routing table viewed with the show ip bgp command.

Example 2-13 The show ip bgp Command Displays the BGP Routing Table

route-server>show ip bgp

BGP table version is 4639209, local router ID is 12.0.1.28

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete



   Network          Next Hop          Metric LocPrf Weight Path

*  3.0.0.0          192.205.31.225                       0 7018 701 80 i

*                   192.205.31.161                       0 7018 701 80 i

*>                  192.205.31.33                        0 7018 701 80 i

*                   192.205.31.97                        0 7018 701 80 i

*  4.0.0.0          192.205.31.225                       0 7018 1 i

*                   192.205.31.161                       0 7018 1 i

*>                  192.205.31.33                        0 7018 1 i

*                   192.205.31.97                        0 7018 1 i

*  6.0.0.0          192.205.31.226                       0 7018 568 721 1455 i

*                   192.205.31.225                       0 7018 568 721 1455 i

*                 192.205.31.161                     0 7018 701 6113 568 721 1455 i

*>                  192.205.31.34                        0 7018 568 721 1455 i

*                   192.205.31.33                        0 7018 568 721 1455 i

*                   192.205.31.97                        0 7018 1239 568 721 1455 i

*  9.2.0.0/16       192.205.31.225                       0 7018 1 1673 1675 i

*                   192.205.31.161                       0 7018 701 1673 1675 i

 --More--

Although the BGP routing table in Example 2-13 looks somewhat different from the AS-internal 
routing table displayed with the show ip route command, the same elements exist. The table shows 
destination networks, next-hop routers, and a measure by which the shortest path can be selected. 
The Metric, LocPrf, and Weight columns are discussed later in this section, but what is of interest 
now is the Path column. This column lists the AS_PATH attributes for each network. Notice that each 
AS_PATH ends in an i, indicating that the path terminates at an IGP according to the Origin codes 
legend.

Notice also that for each destination network, multiple next hops are listed. Unlike the AS-internal 
routing table, which lists only the routes currently being used, the BGP table lists all known paths. A 
> following the * (valid) in the leftmost column indicates which path the router is currently using. 
This best path is the one with the shortest AS_PATH. When multiple routes have equivalent paths, as 
in the table of Example 2-13, the router must have some criteria for deciding which path to choose. 
That decision process is covered later in this section.

When there are parallel, equal-cost paths to a particular destination, as in Example 2-13, Cisco's 
implementation of EBGP by default selects only one path—in contrast to other IP routing protocols, in 
which the default is to load balance across up to four paths. As with the other IP routing protocols, 
the maximum-paths command is used to change the default maximum number of parallel paths in 
the range from one to six. Note that load balancing works only with EBGP. IBGP can use only one 
link.

The neighbor with which a BGP speaker peers can be either in a different AS or in the same AS. If the 
neighbor's AS differs, the neighbor is an external peer and the BGP is called external BGP (EBGP). If 



the neighbor is in the same AS, the neighbor is an internal peer and the BGP is called internal BGP 
(IBGP). A unique set of issues must be confronted when configuring IBGP; those issues are discussed 
in the section "IBGP and IGP Synchronization."

When two neighbors first establish a BGP peer connection, they exchange their entire BGP routing 
tables. After that, they exchange incremental, partial updates—that is, they exchange routing 
information only when something changes, and only information about what changed. Because BGP 
does not use periodic routing updates, the peers must exchange keepalive messages to ensure that 
the connection is maintained. The Cisco default keepalive interval is 60 seconds (RFC 1771 does not 
specify a standard keepalive time); if three intervals (180 seconds) pass without a peer receiving a 
keepalive message, the peer declares its neighbor down. You can change these intervals with the 
timers bgp command.

BGP Message Types

Before establishing a BGP peer connection, the two neighbors must perform the standard TCP three-
way handshake and open a TCP connection to port 179. TCP provides the fragmentation, 
retransmission, acknowledgment, and sequencing functions necessary for a reliable connection, 
relieving BGP of those duties. All BGP messages are unicast to the one neighbor over the TCP 
connection.

BGP uses four message types:

●     Open
●     Keepalive
●     Update
●     Notification

This section describes how these messages are used; for a complete description of the message 
formats and the variables of each message field, see the section "BGP Message Formats."

Open Message

After the TCP session is established, both neighbors send Open messages. Each neighbor uses this 
message to identify itself and to specify its BGP operational parameters. The Open message includes 
the following information:

●     BGP version number— This specifies the version (2, 3, or 4) of BGP that the originator is 
running. Unless a router is set to run an earlier version with the neighbor version 
command, it defaults to BGP-4. If a neighbor is running an earlier version of BGP, it rejects 
the Open message specifying version 4; the BGP-4 router then changes to BGP-3 and sends 
another Open message specifying this version. This negotiation continues until both 
neighbors agree on the same version.

●     Autonomous system number— This is the AS number of the originating router. It 
determines whether the BGP session is EBGP (if the AS numbers of the neighbors differ) or 
IBGP (if the AS numbers are the same).

●     Hold time— This is the maximum number of seconds that can elapse before the router must 
receive either a Keepalive or an Update message. The hold time must be either 0 seconds (in 
which case, Keepalives must not be sent) or at least 3 seconds; the default Cisco hold time is 
180 seconds. If the neighbors' hold times differ, the smaller of the two times becomes the 
accepted hold time.

●     BGP identifier— This is an IP address that identifies the neighbor. The Cisco IOS determines 
the BGP Identifier in exactly the same way as it determines the OSPF router ID: The 
numerically highest loopback address is used; if no loopback interface is configured with an 
IP address, the numerically highest IP address on a physical interface is selected.

●     Optional parameters— This field is used to advertise support for such optional capabilities 



as authentication, multiprotocol support, and route refresh.

Keepalive Message

If a router accepts the parameters specified in its neighbor's Open message, it responds with a 
Keepalive. Subsequent Keepalives are sent every 60 seconds by Cisco default, or a period equal to 
one-third the agreed-upon hold time.

Update Message

The Update message advertises feasible routes, withdrawn routes, or both. The Update message 
includes the following information:

●     Network Layer Reachability Information (NLRI)— This is one or more (Length, Prefix) 
tuples that advertise IP address prefixes and their lengths. If 206.193.160.0/19 were being 
advertised, for example, the Length portion would specify the /19 and the Prefix portion 
would specify 206.193.160.

●     Path Attributes— The path attributes, described in a later section of the same name, are 
characteristics of the advertised NLRI. The attributes provide the information that allows BGP 
to choose a shortest path, detect routing loops, and determine routing policy.

●     Withdrawn Routes— These are (Length, Prefix) tuples describing destinations that have 
become unreachable and are being withdrawn from service.

Note that although multiple prefixes might be included in the NLRI field, each update message 
describes only a single BGP route (because the path attributes describe only a single path, but that 
path might lead to multiple destinations). This, again, emphasizes that BGP takes a higher view of an 
internetwork than an IGP, whose routes always lead to a single destination IP address.

Notification Message

The Notification message is sent whenever an error is detected and always causes the BGP 
connection to close. The section "BGP Message Formats" includes a list of possible errors that can 
cause a Notification message to be sent.

An example of the use of a Notification message is the negotiation of a BGP version between 
neighbors. If, after establishing a TCP connection, a BGP-3 speaker receives an Open message 
specifying version 4, the router responds with a Notification message stating that the version is not 
supported. The connection is closed, and the neighbor attempts to reestablish a connection with BGP-
3.

The BGP Finite State Machine

The stages of a BGP connection establishment and maintenance can be described in terms of a finite 
state machine. Figure 2-20 and Table 2-4 show the complete BGP finite state machine and the input 
events that can cause a state transition.

Figure 2-20. The BGP Finite State Machine



Table 2-4. The Input Events (IE) of Figure 2-20

IE Description 

1 BGP Start 

2 BGP Stop 

3 BGP Transport connection open 

4 BGP Transport connection closed 

5 BGP Transport connection open failed 

6 BGP Transport fatal error 

7 ConnectRetry timer expired 

8 Hold timer expired 

9 Keepalive timer expired 

10 Receive Open message 



11 Receive Keepalive message 

12 Receive Update message 

13 Receive Notification message 

The following sections provide a brief description of each of the six states illustrated in Figure 2-20.

Idle State

BGP always begins in the Idle state, in which it refuses all incoming connections. When a Start event 
(IE 1) occurs, the BGP process initializes all BGP resources, starts the ConnectRetry timer, initializes 
a TCP connection to the neighbor, listens for a TCP initialization from the neighbor, and changes its 
state to Connect. The Start event is caused by an operator configuring a BGP process or resetting an 
existing process, or by the router software resetting the BGP process.

An error causes the BGP process to transition to the Idle state. From there, the router may 
automatically try to issue another Start event. However, limitations should be imposed on how the 
router does this—constantly trying to restart in the event of persistent error conditions causes 
flapping. Therefore, after the first transition back to the Idle state, the router sets the ConnectRetry 
timer and cannot attempt to restart BGP until the timer expires. Cisco's initial ConnectRetry time is 
60 seconds. The ConnectRetry time for each subsequent attempt is twice the previous time, meaning 
that consecutive wait times increase exponentially.

Connect State

In this state, the BGP process is waiting for the TCP connection to be completed. If the TCP 
connection is successful, the BGP process clears the ConnectRetry timer, completes initialization, 
sends an Open message to the neighbor, and transitions to the OpenSent state. If the TCP 
connection is unsuccessful, the BGP process continues to listen for a connection to be initiated by the 
neighbor, resets the ConnectRetry timer, and transitions to the Active state.

If the ConnectRetry timer expires while in the Connect state, the timer is reset, another attempt is 
made to establish a TCP connection with the neighbor, and the process stays in the Connect state. 
Any other input event causes a transition to Idle.

Active State

In this state, the BGP process is trying to initiate a TCP connection with the neighbor. If the TCP 
connection is successful, the BGP process clears the ConnectRetry timer, completes initialization, 
sends an Open message to the neighbor, and transitions to OpenSent. The Hold timer is set to 4 
minutes.

If the ConnectRetry timer expires while BGP is in the Active state, the process transitions back to the 
Connect state and resets the ConnectRetry timer. It also initiates a TCP connection to the peer and 
continues to listen for connections from the peer. If the neighbor is attempting to establish a TCP 
session with an unexpected IP address, the ConnectRetry timer is reset, the connection is refused, 
and the local process stays in the Active state. Any other input event (except a start event, which is 
ignored in the Active state) causes a transition to Idle.

OpenSent State

In this state, an Open message has been sent, and BGP is waiting to hear an Open from its neighbor. 
When an Open message is received, all its fields are checked. If errors exist, a Notification message 



is sent and the state transitions to Idle.

If no errors exist in the received Open message, a Keepalive message is sent and the Keepalive timer 
is set. The Hold time is negotiated, and the smaller value is agreed upon. If the negotiated Hold time 
is zero, the Hold and Keepalive timers are not started. The peer connection is determined to be either 
internal or external, based on the peer's AS number, and the state is changed to OpenConfirm.

If a TCP disconnect is received, the local process closes the BGP connection, resets the ConnectRetry 
timer, begins listening for a new connection to be initiated by the neighbor, and transitions to Active. 
Any other input event (except a start event, which is ignored) causes a transition to Idle.

OpenConfirm State

In this state, the BGP process waits for a Keepalive or Notification message. If a Keepalive is 
received, the state transitions to Established. If a Notification is received, or a TCP disconnect is 
received, the state transitions to Idle.

If the Hold timer expires, an error is detected, or a Stop event occurs, a Notification is sent to the 
neighbor and the BGP connection is closed, changing the state to Idle.

Established State

In this state, the BGP peer connection is fully established and the peers can exchange Update, 
Keepalive, and Notification messages. If an Update or Keepalive message is received, the Hold timer 
is restarted (if the negotiated hold time is nonzero). If a Notification message is received, the state 
transitions to Idle. Any other event (again, except for the Start event, which is ignored) causes a 
Notification to be sent and the state to transition to Idle.

Path Attributes

A path attribute is a characteristic of an advertised BGP route. Some path attributes are familiar, 
such as the destination IP address and the next-hop router, because they are a common 
characteristic of all routes. Others, such as the ATOMIC_AGGREGATE, are unique to BGP and might 
be unfamiliar. In addition to providing the information necessary for basic routing functionality, the 
path attributes are what allow BGP to set and communicate routing policy.

Each path attribute falls into one of four categories:

●     Well-known mandatory
●     Well-known discretionary
●     Optional transitive
●     Optional nontransitive

From the names of these four categories, you can see that two subclasses exist and that each 
subclass has its own subclass. First, an attribute is either well-known, meaning that it must be 
recognized by all BGP implementations, or it is optional, meaning that the BGP implementation is not 
required to support the attribute.

Well-known attributes are either mandatory, meaning that they must be included in all BGP Update 
messages, or they are discretionary, meaning that they may or may not be sent in a specific Update 
message.

If an optional attribute is transitive, a BGP process should accept the path in which it is included, 
even if it doesn't support the attribute, and it should pass the path on to its peers.



If an optional attribute is nontransitive, a BGP process that does not recognize the attribute can 
quietly ignore the Update in which it is included and not advertise the path to its other peers.

Table 2-5 lists the path attributes, and following sections describe the use of each attribute. Chapter 
3, "Configuring and Troubleshooting Border Gateway Protocol 4," demonstrates the configuration, 
filtering, and manipulation of the path attributes.

Table 2-5. Path Attributes[*]

Attribute Class 

ORIGIN Well-known mandatory 

AS_PATH Well-known mandatory 

NEXT_HOP Well-known mandatory 

LOCAL_PREF Well-known discretionary 

ATOMIC_AGGREGATE Well-known discretionary 

AGGREGATOR Optional transitive 

COMMUNITY Optional transitive 

MULTI_EXIT_DISC (MED) Optional nontransitive 

ORIGINATOR_ID Optional nontransitive 

CLUSTER_LIST Optional nontransitive 

[*] Actually, there are a few more attributes besides the ones listed in Table 2-5; however, they are neither 
specified in RFC 1771 nor supported by Cisco, so they are beyond the scope of this book.

The ORIGIN Attribute

ORIGIN is a well-known mandatory attribute that specifies the origin of the routing update. When 
BGP has multiple routes, it uses the ORIGIN as one factor in determining the preferred route. It 
specifies one of the following origins:

●     IGP— The Network Layer Reachability Information (NLRI) was learned from a protocol 
internal to the originating AS. An IGP origin gets the highest preference of the ORIGIN 
values. BGP routes are given an origin of IGP if they are learned from an IGP routing table via 
the network statement, as described in Chapter 3.

●     EGP— The NLRI was learned from the Exterior Gateway Protocol. EGP is preferred second to 
IGP.

●     Incomplete— The NLRI was learned by some other means. Incomplete is the lowest-
preferred ORIGIN value. Incomplete does not imply that the route is in any way faulty, only 
that the information for determining the origin of the route is incomplete. Routes that BGP 
learns through redistribution carry the incomplete origin attribute, because there is no way to 
determine the original source of the route.

The AS_PATH Attribute



AS_PATH is a well-known mandatory attribute that uses a sequence of AS numbers to describe the 
inter-AS path, or route, to the destination specified by the NLRI. When a BGP speaker originates a 
route—when it advertises NLRI about a destination within its own AS—it adds its AS number to the 
AS_PATH. As subsequent BGP speakers advertise the route to external peers, they prepend their own 
AS numbers to the AS_PATH (see Figure 2-21). The result is that the AS_PATH describes all the 
autonomous systems it has passed through, beginning with the most recent AS and ending with the 
originating AS.

Figure 2-21. AS Numbers Are Prepended (Added to the Front of) the 
AS_PATH

Note that a BGP router adds its AS number to the AS_PATH only when an Update is sent to a 
neighbor in another AS. That is, an AS number is prepended to the AS_PATH only when the route is 
being advertised between EBGP peers. If the route is being advertised between IBGP peers—peers 
within the same autonomous system—no AS number is added.

Usually, having multiple instances of the same AS number on the list would make no sense and 
would defeat the purpose of the AS_PATH attribute. In one case, however, adding multiple instances 
of a particular AS number to the AS_PATH proves useful. Remember that outgoing route 
advertisements directly influence incoming traffic. Normally, the route from the NAP to AS 100 in 
Figure 2-21 passes through AS 300 because the AS_PATH of that route is shorter. But what if the link 
to AS 200 is AS 100's preferred path for incoming traffic? The links along the (500,200,100) path 
might all be DS3, for example, whereas the links along the (300,100) path are only DS1. Or perhaps 
AS 200 is the primary provider, and AS 300 is only the backup provider. Outgoing traffic is sent to AS 
200, so it is desired that incoming traffic follow the same path.



AS 100 can influence its incoming traffic by changing the AS_PATH of its advertised route (see Figure 
2-22). By adding multiple instances of its own AS number to the list sent to AS 300, AS 100 can 
make routers at the NAP think that the (500,200,100) path is the shorter path. The procedure of 
adding extra AS numbers to the AS_PATH is called AS path prepending.

Figure 2-22. AS 100 Has Begun the AS_PATH Advertised to AS 300 with 
Multiple Instances of Its Own AS Number

The other function of the AS_PATH attribute, as discussed earlier in the chapter, is loop avoidance. 
The mechanism is very simple: If a BGP router receives a route from an external peer whose 
AS_PATH includes its own AS number, the router knows that the route has looped. Such a route is 
dropped.

The NEXT_HOP Attribute

As the name implies, this well-known mandatory attribute describes the IP address of the next-hop 
router on the path to the advertised destination. The IP address described by the BGP NEXT_HOP 
attribute is not always the address of a neighboring router. The following rules apply:

●     If the advertising router and receiving router are in different autonomous systems (external 
peers), the NEXT_HOP is the IP address of the advertising router's interface.

●     If the advertising router and the receiving router are in the same AS (internal peers), and the 
NLRI of the update refers to a destination within the same AS, the NEXT_HOP is the IP 



address of the neighbor that advertised the route.
●     If the advertising router and the receiving router are internal peers and the NLRI of the 

update refers to a destination in a different AS, the NEXT_HOP is the IP address of the 
external peer from which the route was learned.

Figure 2-23 illustrates the first rule. Here, the advertising router and receiving router are in different 
autonomous systems. The NEXT_HOP is the interface address of the external peer. So far, this 
behavior is the same as would be expected of any routing protocol.

Figure 2-23. If a BGP Update Is Advertised via EBGP, the NEXT_HOP 
Attribute Is the IP Address of the External Peer

Figure 2-24 illustrates the second rule. This time, the advertising router and the receiving router are 
in the same AS, and the destination being advertised is also in the AS. The NEXT_HOP associated 
with the NLRI is the IP address of the originating router.

Figure 2-24. If a BGP Update Is Advertised via IBGP, and the Advertised 
Destination Is in the Same AS, the NEXT_HOP Attribute Is the IP Address of 

the Originating Router



Notice that the advertising router and the receiving router do not share a common data link, but the 
IBGP TCP connection is passed through an IGP-speaking router. This is discussed in more detail in 
the section "Internal BGP"; for now, the important point is that the receiving router must perform a 
recursive route lookup (recursive lookups are discussed in Routing TCP/IP, Volume I) to send a 
packet to the advertised destination. First, it looks up the destination 172.16.5.30; that route 
indicates a next hop of 172.16.83.2. Because that IP address does not belong to one of the router's 
directly connected subnets, the router must then look up the route to 172.16.83.2. That route, 
learned via the IGP, indicates a next hop of 172.16.101.1. The packet can now be forwarded. This 
example is very important for understanding the dependency of IBGP on the IGP.

Figure 2-25 illustrates the third rule. Here, a route has been learned via EBGP and is then passed to 
an internal peer. Because the destination is in a different AS, the NEXT_HOP of the route passed 
across the IBGP connection is the interface of the external router from which the route was learned.

Figure 2-25. If a BGP Update Is Advertised via IBGP, and the Advertised 
Destination Is in a Different AS, the NEXT_HOP Attribute Is the IP Address 

of the External Peer from Which the Route Was Learned



In Figure 2-25, the IBGP peer must perform a recursive route lookup to forward a packet to 
207.135.64.0/19. However, a potential problem exists. The network 192.168.5.0, to which the next-
hop address belongs, is not part of AS 509. Unless the AS border router advertises the network into 
AS 509, the IGP—and hence the internal peers—will not know about this network. And if the network 
is not in the routing tables, the next-hop address for 207.135.64.0/19 is unreachable, and packets 
for that destination are dropped. In fact, although the route to 207.135.64.0/19 is installed in the 
internal peer's BGP table, it is not installed in the IGP routing table, because the next-hop address is 
invalid for that router.

The first solution to the problem is, of course, to ensure that the external network linking the two 
autonomous systems is known to the internal routers. Although you could use static routes, the 
practical method is to run the IGP in passive mode on the external interfaces. In some cases, this 
might be undesirable. The second solution is to use a configuration option to cause the AS border 
router in AS 509 to set its own IP address in the NEXT_HOP attribute, in place of the IP address of 
the external peer. The internal peers would then have a next-hop router address of 172.16.83.2, 
which is known to the IGP. This configuration option, called next-hop-self, is demonstrated in 
Chapter 3.

The LOCAL_PREF Attribute

LOCAL_PREF is short for local preference. This well-known discretionary attribute is used only in 
updates between internal BGP peers; it is not passed to other autonomous systems. The attribute is 
used to communicate a BGP router's degree of preference for an advertised route. If an internal BGP 
speaker receives multiple routes to the same destination, it compares the LOCAL_PREF attributes of 



the routes. The route with the highest LOCAL_PREF is selected.

Figure 2-26 demonstrates how the LOCAL_PREF attribute is used. AS 2101 is taking routes from two 
ISPs, but ISP1 is the preferred service provider. The router connected to ISP1 advertises the routes 
from that provider with a LOCAL_PREF of 200, and the router connected to ISP2 advertises the 
routes from that provider with a LOCAL_PREF of 100 (the default value). All internal peers, including 
the router attached to ISP2, prefer the routes learned from ISP1 over routes to the same destinations 
learned from ISP2.

Figure 2-26. The LOCAL_PREF Attribute Communicates a Degree of 
Preference to Internal Peers, with the Higher Value Preferred

The MULTI_EXIT_DISC Attribute

The LOCAL_PREF attribute affects only traffic leaving the AS. To influence incoming traffic, the 
MULTI_EXIT_DISC attribute, known as the MED for short, is used. This optional nontransitive 
attribute is carried in EBGP updates and allows an AS to inform another AS of its preferred ingress 
points. If all else is equal, an AS receiving multiple routes to the same destination compare the MEDs 
of the routes. Unlike LOCAL_PREF, in which the largest value is preferred, the lowest MED value is 
preferred. This is because MED is considered a metric, and with a metric the lowest value—the lowest 
distance—is preferred.

NOTE



In BGP-2 and BGP-3, the MULTI_EXIT_DISC attribute is called the INTER_AS metric.

Figure 2-27 shows how you can use the MED. Here, a subscriber is dual-homed to a single ISP. AS 
525 prefers that its incoming traffic use the DS-3 link, with the DS-1 link used only for backup. The 
MED in the updates passing across the DS-3 link is set to 0 (the default), and the MED in the updates 
passing across the DS-1 link is set to 100. If nothing else differs in the two routes, the ISP prefers 
the DS-3 link, with the lower MED.

Figure 2-27. The Lower MED Associated with Routes Passed Over the DS-3 
Link Causes the ISP to Prefer This Link

Notice that within the ISP, IBGP is being used between the routers. The MEDs from AS 525 are 
passed between these internal peers so that they both know which route to prefer. However, MEDs 
are not passed beyond the receiving AS. If the ISP advertises 206.25.160.0/19 to another AS, for 
example, it does not pass along the MED set by the originating AS. This means that MEDs are used 
only to influence traffic between two directly connected autonomous systems; to influence route 
preferences beyond the neighboring AS, the AS_PATH attribute must be manipulated, as shown 
earlier in this section.

MEDs also are not compared if two routes to the same destination are received from two different 
autonomous systems. If the ISP in Figure 2-27 receives advertisements of 206.25.160.0/19 not only 
from AS 525 but also from another AS, for example, the MEDs from the two autonomous systems are 
not compared. MEDs are meant only for a single AS to demonstrate a degree of preference when it 
has multiple ingress points.

The ATOMIC_AGGREGATE and AGGREGATOR Attributes



A BGP-speaking router can transmit overlapping routes to another BGP speaker. Overlapping routes 
are nonidentical routes that point to the same destination. For example, the routes 206.25.192.0/19 
and 206.25.128.0/17 are overlapping. The first route is included in the second route, although the 
second route also points to other more-specific routes besides 206.25.192.0/19.

When making a best-path decision, a router always chooses the more-specific path. When advertising 
routes, however, the BGP speaker has several options for dealing with overlapping routes:

●     Advertise both the more-specific and the less-specific route
●     Advertise only the more-specific route
●     Advertise only the nonoverlapping part of the route
●     Aggregate the two routes and advertise the aggregate
●     Advertise the less-specific route only
●     Advertise neither route

Earlier, this chapter emphasized that when summarization (route aggregation) is performed, some 
route information is lost and routing can become less precise. When aggregation is performed in a 
BGP-speaking router, the information that is lost is path detail. Figure 2-28 illustrates this loss of 
path detail.

Figure 2-28. Aggregating BGP Routes Results in the Loss of Path 
Information

AS 3113 is advertising an aggregate address representing addresses in several autonomous systems. 
Because that AS is originating the aggregate, it includes only its own number in the AS_PATH. The 
path information to some of the more-specific prefixes represented by the aggregate is lost.



ATOMIC_AGGREGATE is a well-known discretionary attribute that is used to alert downstream routers 
that a loss of path information has occurred. Any time a BGP speaker summarizes more-specific 
routes into a less-specific aggregate (the fifth option in the preceding list), and path information is 
lost, the BGP speaker must attach the ATOMIC_AGGREGATE attribute to the aggregate route. Any 
downstream BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute cannot make 
any NLRI information of that route more specific, and when advertising the route to other peers, the 
ATOMIC_AGGREGATE attribute must remain attached.

When the ATOMIC_AGGREGATE attribute is set, the BGP speaker has the option of also attaching the 
AGGREGATOR attribute. This optional transitive attribute provides information about where the 
aggregation was performed by including the AS number and the IP address of the router that 
originated the aggregate route (see Figure 2-29). Cisco's implementation of BGP inserts the BGP 
router ID as the IP address in the attribute.

Figure 2-29. The ATOMIC_AGGREGATE Attribute Indicates That a Loss of 
Path Information Has Occurred, and the AGGREGATOR Attribute Indicates 

Where the Aggregation Occurred

The COMMUNITY Attribute

COMMUNITY is an optional transitive attribute that is designed to simplify policy enforcement. 
Originally a Cisco-specific attribute, it is now standardized in RFC 1997[8]. The COMMUNITY attribute 
identifies a destination as a member of some community of destinations that share one or more 
common properties. For example, an ISP might assign a particular COMMUNITY attribute to all of its 
customers' routes. The ISP can then set its LOCAL_PREF and MED attributes based on the 
COMMUNITY value rather than on each individual route.



The COMMUNITY attribute is a set of four octet values. RFC 1997 specifies that the first two octets 
are the autonomous system and the last two octets are an administratively defined identifier, giving a 
format of AA:NN. The default Cisco format, on the other hand, is NN:AA. You can change this default 
to the RFC 1997 format with the command ip bgp-community new-format.

Suppose, for example, a route from AS 625 has a COMMUNITY identifier of 70. The COMMUNITY 
attribute, in the AA:NN format, is 625:70 and is represented in hex as a concatenation of the two 
numbers: 0x02710046, where 625 = 0x0271 and 70 = 0x0046. The RFCs use the hex 
representation, but COMMUNITY attribute values are represented on Cisco routers in decimal. For 
example, 625:70 is 40960070 (the decimal equivalent of 0x2710046).

The community values from 0 (0x00000000) to 65535 (0x0000FFFF) and from 4294901760 
(0xFFFF0000) to 4294967295 (0xFFFFFFFF) are reserved. Out of this reserved range, several well-
known communities are defined:

●     INTERNET— The Internet community does not have a value; all routes belong to this 
community by default. Received routes belonging to this community are advertised freely.

●     NO_EXPORT (4294967041, or 0xFFFFFF01)— Routes received carrying this value cannot 
be advertised to EBGP peers or, if a confederation is configured, the routes cannot be 
advertised outside of the confederation. (Confederations are defined in a later section, 
"Managing Large-Scale BGP Peering.")

●     NO_ADVERTISE (4294967042, or 0xFFFFFF02)— Routes received carrying this value 
cannot be advertised at all, to either EBGP or IBGP peers.

●     LOCAL_AS (4294967043, or 0xFFFFFF03)— RFC 1997 calls this attribute 
NO_EXPORT_SUBCONFED. Routes received carrying this value cannot be advertised to EBGP 
peers, including peers in other autonomous systems within a confederation.

Chapter 3 provides examples of using communities to help enforce routing policies.

The ORIGINATOR_ID and CLUSTER_LIST Attributes

ORIGINATOR_ID and CLUSTER_LIST are optional, nontransitive attributes used by route reflectors, 
which are described in the section "Managing Large-Scale BGP Peering." Both attributes are used to 
prevent routing loops. The ORIGINATOR_ID is a 32-bit value created by a route reflector. The value 
is the router ID of the originator of the route in the local AS. If the originator sees its RID in the 
ORIGINATOR_ID of a received route, it knows that a loop has occurred, and the route is ignored.

CLUSTER_LIST is a sequence of route reflection cluster IDs through which the route has passed. If a 
route reflector sees its local cluster ID in the CLUSTER_LIST of a received route, it knows that a loop 
has occurred, and the route is ignored.

Administrative Weight

Administrative weight is a Cisco-specific BGP parameter that applies only to routes within an 
individual router. It is not communicated to other routers. The weight is a number between 0 and 
65,535 that can be assigned to a route; the higher the weight, the more preferable the route. When 
choosing a best path, the BGP decision process considers weight above all other route characteristics 
except specificity. By default, all routes learned from a peer have a weight of 0, and all routes 
generated by the local router have a weight of 32,768.

Administrative weights can be set for individual routes, or for routes learned from a specific neighbor. 
For example, peer A and peer B might be advertising the same routes to a BGP speaker. By assigning 
a higher weight to the routes received from peer A, the BGP speaker prefers the routes through that 
peer. This preference is entirely local to the single router; weights are not included in the BGP 
updates or in any other way communicated to the BGP speaker's peers.



AS_SET

The AS_PATH attribute has been presented so far as consisting of an ordered sequence of AS 
numbers that describes the path to a particular destination. There are actually two types of 
AS_PATH:

●     AS_SEQUENCE— This is the ordered list of AS numbers, as previously described.
●     AS_SET— This is an unordered list of the AS numbers along a path to a destination.

These two types are distinguished in the AS_PATH attribute with a type code, as described in the 
section "BGP Message Formats."

NOTE

There are, in fact, four types of AS_PATH. See the section "Confederations" for 
details on the other two types: AS_CONFED_SEQUENCE and AS_CONFED_SET.

Recall that one of the major benefits of the AS_PATH is loop prevention. If a BGP speaker sees its 
own AS number in a received route from an external peer, it knows that a loop has occurred and 
ignores the route. When aggregation is performed, however, as in Figure 2-28, some AS_PATH detail 
is lost. As a result, the potential for a loop increases.

Suppose, for example, AS 810 in Figure 2-28 has an alternate connection to another AS (see Figure 2-
30). The aggregate from AS 3113 is advertised to AS 6571, and from there back to AS 810.

Figure 2-30. The Loss of Path Detail When Aggregating Can Cause Inter-AS 
Routing Loops



Because the AS numbers "behind" the aggregation point are not included in the AS_PATH, AS 810 
does not detect the potential loop. Next, suppose a network within AS 810, such as 206.25.225.0/24, 
fails. The routers within that AS will match the aggregate route from AS 6571, and a loop occurs.

If you think about it, the loop-prevention function of the AS_PATH does not require that the AS 
numbers be included in any particular order. All that is necessary is that a receiving router be able to 
recognize whether its own AS number is a part of the AS_PATH. This is where AS_SET comes in.

When a BGP speaker creates an aggregate from NLRI learned from other autonomous systems, it can 
include all those AS numbers in the AS_PATH as an AS_SET. For example, Figure 2-31 shows the 
network of Figure 2-28 with an AS_SET added to the aggregate route.

Figure 2-31. Including an AS_SET in the AS_PATH of an Aggregate Route 
Restores the Loop Avoidance That Was Lost in the Aggregation



The aggregating router still begins an AS_SEQUENCE, so receiving routers can trace the path back to 
the aggregator, but an AS_SET is included to prevent routing loops. In this example, you also can 
see why the AS_SET is an unordered list. Behind the aggregator in AS 3113 are branching paths to 
the autonomous systems in which the aggregated routes reside. There is no way for an ordered list 
to describe these separate paths.

When an AS_SET is included in an AS_PATH, the ATOMIC_AGGREGATE does not have to be included 
with the aggregate. The AS_SET serves to notify downstream routers that aggregation has occurred 
and includes more information than the ATOMIC_AGGREGATE.

Like most options in life, AS_SET involves a trade-off. You already understand that one of the 
advantages of route summarization is route stability. If a network that belongs to the aggregate fails, 
the failure is not advertised beyond the aggregation point. If an AS_SET is included with the 
aggregate's AS_PATH, this stability is reduced. If the link to AS 225 in Figure 2-31 fails, for example, 
the AS_SET changes; this change is advertised beyond the aggregation point.

The BGP Decision Process

The BGP Routing Information Database (RIB) consists of three parts:

●     Adj-RIBs-In— Stores unprocessed routing information that has been learned from updates 
received from peers. The routes contained in Adj-RIBs-In are considered feasible routes.

●     Loc-RIB— Contains the routes that the BGP speaker has selected by applying its local 
routing policies to the routes contained in Adj-RIBs-In.

●     Adj-RIBs-Out— Contains the routes that the BGP speaker advertises to its peers.

These three parts of the Routing Information Database may be three distinct databases, or the RIB 



may be a single database with pointers to distinguish the three parts.

The BGP decision process selects routes by applying local routing policies to the routes in the Adj-
RIBs-In and by entering the selected or modified routes into the Loc-RIB and Adj-RIBs-Out. The 
decision process entails three phases:

●     Phase 1 calculates the degree of preference for each feasible route. It is invoked whenever a 
router receives a BGP Update from a peer in a neighboring AS containing a new route, a 
changed route, or a withdrawn route. Each route is considered separately, and a nonnegative 
integer is derived that indicates the degree of preference for that route.

●     Phase 2 chooses the best route out of all the available routes to a particular destination and 
installs the route in the Loc-RIB. It is invoked only after phase 1 has been completed.

●     Phase 3 adds the appropriate routes to the Adj-RIBs-Out for advertisement to peers. It is 
invoked after the Loc-RIB has changed, and only after phase 2 has been completed. Route 
aggregation, if it is to be performed, happens during this phase.

Barring a routing policy that dictates otherwise, phase 2 always selects the most specific route to a 
particular destination out of all feasible routes to that destination. It is important to note that if the 
address specified by the route's NEXT_HOP attribute is unreachable, the route is not selected. This 
fact has particular ramifications for internal BGP, as described in the section "IBGP and IGP 
Synchronization."

You should have an appreciation by now of the multiple attributes that can be assigned to a BGP 
route to enforce routing policy within a single router, to internal peers, to adjacent autonomous 
systems, and beyond. A sequence and rules are needed for considering these attributes, especially 
when a router must select among multiple, equally specific routes to the same destination. The 
following criteria are used to break ties:

1.  Prefer the route with the highest administrative weight. This is a Cisco-specific function, 
because BGP administrative weight is a Cisco parameter.

2.  If the weights are equal, prefer the route with the highest LOCAL_PREF value.

3.  If the LOCAL_PREF values are the same, prefer the route that was originated locally on the 
router. That is, prefer a route that was learned from an IGP on the same router.

4.  If the LOCAL_PREF is the same, and no route was locally originated, prefer the route with the 
shortest AS_PATH.

5.  If the AS_PATH length is the same, prefer the path with the lowest origin code. IGP is lower 
than EGP, which is lower than Incomplete.

6.  If the origin codes are the same, prefer the route with the lowest MULTI_EXIT_DISC value. 
This comparison is done only if the AS number is the same for all the routes being 
considered.

7.  If the MED is the same, prefer EBGP routes over confederation EBGP routes, and prefer 
confederation EBGP routes over IBGP routes.

8.  If the routes are still equal, prefer the route with the shortest path to the BGP NEXT_HOP. 
This is the route with the lowest IGP metric to the next-hop router.

9.  If the routes are still equal, they are from the same neighboring AS, and BGP multipath is 
enabled with the maximum-paths command, install all the equal-cost routes in the Loc-RIB.



10.  If multipath is not enabled, prefer the route with the lowest BGP router ID.

Route Dampening

Route flaps are a leading contributor to instability on the Internet—and, for that matter on any 
internetwork. Flaps occur when a valid route is declared invalid and then declared valid again. The 
problem is evident: Every time the state of a route changes, the change must be advertised 
throughout the internetwork, and each router must make the appropriate recalculations. Both 
bandwidth and CPU resources are consumed.

NOTE

You might occasionally hear the term route oscillation used interchangeably with 
route flapping, but the terms differ. Oscillations are periodic; flaps are not.

Most people quickly name unstable physical links or failing router interfaces as leading causes of 
route flapping, and they are right. But another common cause of route flaps, possibly the most 
common of all, is humans. Technicians tinkering in the telco central office or in your wiring closet can 
certainly cause outages leading to flaps, but don't forget the inexperienced network administrator 
innocently configuring or troubleshooting his router. Perhaps he is repeatedly adding and deleting a 
route, changing the state of an interface, or clearing a BGP session. If the resulting route changes are 
communicated to his ISP, his careless work can affect the entire Internet.

How bad can the effects of an instability be? Consider a single somewhat overloaded or 
underpowered BGP router. An upstream connection becomes unstable, causing many routes to flap 
simultaneously. The router cannot handle the changes, and it fails. Now downstream routers have to 
process not only the original flapping routes, but also all the now-unreachable routes originated from 
the failed router. The effects can snowball, cascading throughout the internetwork, possibly causing 
more routers to fail. It is not pretty.

You already have seen how route aggregation helps to hide instabilities. If a member route of the 
aggregate fails, the aggregate itself does not change. Packets destined for the failed route continue 
to be forwarded to the aggregate address; the originator of the aggregate has knowledge of the 
invalid route and drops the packets.

But aggregation is not always possible. For instance, an ISP's subscriber might have a provider-
independent IP address. Because the address is outside of the provider's address block, the 
subscriber's address must be advertised independently of the provider's aggregate. And as you 
learned in the discussion on multihoming, aggregation also cannot be used when a subscriber is 
multihomed to multiple providers.

Even if an ISP can provide a stable route to the rest of the Internet by aggregating its subscribers' 
routes, the aggregate does not contribute to stability within the ISP's own AS. A route flap still affects 
all routers behind the aggregation point.

Route dampening is a method created to stop unstable routes from being forwarded throughout an 
internetwork. It does not prevent a router from accepting unstable routes, but it does prevent it from 
forwarding them. Although route dampening has been around for some time, it has only recently 
been formalized in an RFC, RFC 2439 (www.isi.edu/in-notes/tr.rfc2439.txt).

http://www.isi.edu/


A router using route dampening assigns to each route a dynamic figure of merit that reflects the 
route's degree of stability. When a route flaps, it is assigned a penalty; the more it flaps, the more 
penalties accumulate. There is also a time period called the half-life. The penalty is decreased at a 
rate that reduces it to half at the end of each half-life. If the penalty value exceeds a predefined 
threshold, known as the suppress limit, the route is suppressed—that is, it is no longer advertised. 
The route continues to be suppressed until the half-life reduces the penalties to less than another 
threshold called the reuse limit. At that time, the route is advertised again. Alternatively, the route's 
penalties can be manually cleared; such a clearing proves useful in cases in which the instability has 
been rectified and immediate reuse of the route is required.

Unless the suppress limit is set unusually low, a single flap does not cause the route to be 
suppressed. The half-life eventually reduces the penalty to zero. If a route flaps enough for its 
penalties to increase faster than the half-life reduces them, however, it will exceed the suppress 
limit. Although penalties can continue to accumulate while the route is suppressed, the route cannot 
be suppressed beyond a period known as the maximum suppress limit. This ensures that a route that 
has flapped perhaps dozens of times in a short period does not accumulate such a high penalty that it 
remains suppressed indefinitely.

The Cisco defaults for the various route-dampening variables are as follows:

●     Penalty— 1000 per flap
●     Suppress limit— 2000
●     Reuse limit— 750
●     Half-life— 15 minutes
●     Maximum suppress time— 60 minutes, or 4 times the half-life

Examples of configuring and using route dampening on Cisco routers are found in the case study 
"Route Dampening" in Chapter 3.



 
  
IBGP and IGP Synchronization

With very few exceptions, interior BGP—BGP between peers in the same AS—is used only in 
multihomed scenarios. IBGP allows edge routers to share NLRI and associated attributes, to enforce a 
systemwide routing policy. IBGP also is the means by which an edge router in a transit AS passes 
routes learned from an external peer to other edge routers for advertisement to their external peers.

You might be tempted to think that in some cases IBGP could be used as an IGP. For instance, an 
ISP's AS is mostly connected to other autonomous systems by EBGP, and mostly carries transit 
traffic. Why not run IBGP only within the AS, and have a single consistent routing protocol? The 
problem is that for full connectivity, every IBGP router must peer with every other IBGP router—that 
is, the IBGP internetwork must be fully meshed. This section explains why an IGP is necessary to 
support IBGP and why synchronization between IGP and IBGP is important. Fully meshed IBGP is 
used for two reasons:

●     To prevent BGP routing loops within an AS
●     To ensure that all routers along the path of a BGP route know how to forward packets to the 

destination

When routes are advertised via IBGP, they are by definition advertised within the same AS. As a 
result, the AS_PATH does not change. In fact, the local AS number is not added to the AS_PATH until 
the route is advertised to an EBGP peer. As a result, the IBGP routes do not have the loop protection 
that EBGP routes have. To protect against loops, BGP does not advertise routes that have been 
learned from an IBGP peer to another IBGP peer.

Figure 2-32 illustrates what happens when IBGP peers are not fully meshed. Here, IBGP peering 
sessions have been configured between Seattle and Tacoma and between Tacoma and Spokane. You 
can see that Seattle and Tacoma are exchanging NLRI about their local networks, as are Spokane 
and Tacoma. But Seattle and Spokane are not learning each other's NLRI.

Figure 2-32. In a Partially Meshed IBGP Environment, Full NLRI Is Not 
Advertised, Because Routes Learned from One IBGP Peer Are Not 

Forwarded to Another IBGP Peer



Figure 2-33 shows how full reachability is achieved by creating fully meshed IBGP peers. Note that 
Seattle and Spokane are peers, even though no direct data link exists between them. The TCP 
session that BGP uses passes through Tacoma but is logically a point-to-point session between 
Seattle and Spokane. This is an important point, because for the TCP session to be established, 
Seattle and Spokane must have knowledge of the addresses of the data links interconnecting them.

Figure 2-33. In a Fully Meshed IBGP Environment, Every IBGP Router Is 
Peered with Every Other IBGP Router, and Full NLRI Is Exchanged



At first, ensuring that the data link addresses are known seems simple enough—the addresses at 
each router must be included in the BGP network statements (discussed in Chapter 3). However, it 
is not always that simple.

Example 2-14 shows Seattle's BGP routing table and its IGP routing table. For the router to forward 
packets, the destination must be in the IGP routing table.

Example 2-14 Although Several Routes Exist in the BGP Routing Table, They 
Are Not Automatically Entered into the Router's IGP Routing Table

Seattle#show ip bgp

BGP table version is 7, local router ID is 206.25.193.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.1.0      0.0.0.0                0         32768 i

* i                 192.168.1.1            0    100      0 i

*>i192.168.2.0      192.168.1.1            0    100      0 i

*>i206.25.161.0     192.168.1.1            0    100      0 i

*> 206.25.193.0     0.0.0.0                0         32768 i



Seattle#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C    206.25.193.0 is directly connected, Loopback0

C    192.168.1.0 is directly connected, Serial0

Seattle#

As you can see from the output in Example 2-14, the BGP table contains several routes, including the 
addresses of the Seattle-Tacoma and Spokane-Tacoma data links (192.168.1.0/24 and 
192.168.2.0/24). But only Seattle's directly connected links are entered in the IGP routing table. 
Notice also that Spokane's network 206.25.129.0/24 is not even in the BGP table, indicating that 
Seattle and Spokane are not peering correctly.

NOTE

Notice the weight of the directly connected links in the BGP table as compared to the 
weights of the routes learned from Tacoma.

Example 2-14 illustrates the problem of synchronization. The rule of synchronization states the 
following:

Before a route learned from an IBGP neighbor is entered into the IGP routing table or 
is advertised to a BGP peer, the route must first be known via IGP.

In the internetwork of Figure 2-33, the BGP routes cannot be entered into the IGP routing table 
because no IGP is running on the routers, and synchronization requires that the routes be known via 
IGP before they can be entered.

To understand why the rule of synchronization exists, consider the network shown in Figure 2-34. In 
this case, IBGP is not used as the interior gateway protocol. Instead, a legitimate IGP (OSPF) is used. 
Salt Lake and Provo are connected to two separate autonomous systems, and they advertise the 
EBGP-learned routes with each other over an IBGP connection. The TCP session for this IBGP 
connection passes through Orem and Ogden.

Figure 2-34. This Internetwork Runs Partially-Meshed IBGP Between Salt 
Lake and Provo and Uses OSPF as Its IGP



Next, suppose Salt Lake learns a route to 196.223.18.0/24 from AS 500 and advertises the route 
over the IBGP connection to Provo, using a next-hop-self policy to change the NEXT_HOP attribute to 
its own router ID. Provo then advertises the route to AS 700. Routers in AS 700 now begin 
forwarding packets destined for 196.223.18.0/24 to Provo. (Remember that a route advertisement is 
a promise to deliver packets.) Here is where things go wrong. Provo does a route lookup for 
196.223.18.0/24 and sees that the network is reachable via Salt Lake. It then does a lookup for Salt 
Lake's IP address and sees that it is reachable via the next-hop router, Ogden. So the packet 
destined for 196.223.18.0/24 is forwarded to Ogden. But the external routes are shared between Salt 
Lake and Provo via IBGP; the OSPF routers have no knowledge of the external routes. Therefore, 
when the packet is forwarded to Ogden, that router does a route lookup and does not find an entry 
for 196.223.18.0/24. The router drops the packet and all subsequent packets for that address. Traffic 
for the network 196.223.18.0/24 is black-holed.

Of course, if the OSPF routers in Figure 2-34 know about the external routes, the situation just 
described will not happen. Ogden will know that 196.223.18.0/24 is reachable via Salt Lake and will 
forward the packet correctly. Synchronization prevents packets from being black-holed within a 
transit AS by an IGP with insufficient information.

When Provo receives the advertisement for 196.223.18.0/24 from Salt Lake, it adds the route to its 
BGP table. It then checks its IGP routing table to see whether an entry exists for the route. If not, 
Provo knows that the route is unknown to the IGP, and it cannot advertise the route. If and when the 
IGP makes an entry in the routing table for 196.223.18.0/24 (that is, when the IGP knows of the 
route), Provo's BGP route is synchronized with the IGP route, and the router is free to begin 
advertising the route to its BGP peers.

Returning to the example of Figure 2-33 and Example 2-14, you can now see why synchronization is 
preventing the fully meshed IBGP from working properly. Tacoma is stuck in a Catch-22. It is 
receiving routes from Seattle and Spokane, but it cannot enter the routes in its IGP routing table or 



advertise them, because the routes are not in the IGP routing table already. There is no IGP to put 
them there.

Synchronization is a somewhat antiquated feature of BGP that assumes redistribution of routes into 
the IGP. As this example shows, however, with fully meshed IBGP, all routers can know all necessary 
BGP routes through BGP alone. Synchronization, in this case, stands in the way of keeping BGP 
routes within BGP and using IGP only for establishing IBGP connectivity.

Luckily, Cisco routers have the option of disabling synchronization. Example 2-15 shows Seattle's 
BGP and IGP routing tables after synchronization is turned off. Tacoma has forwarded the routes 
from Spokane, and packets are forwarded correctly.

Example 2-15 Seattle Has Full NLRI In Its BGP and IGP Routing Tables 
After Synchronization Is Disabled on the Three Routers Shown in Figure 2-
33

Seattle#show ip bgp

BGP table version is 11, local router ID is 206.25.193.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.1.0      0.0.0.0                0         32768 i

* i                 192.168.1.1            0    100      0 i

*>i192.168.2.0      192.168.1.1            0    100      0 i

* i                 192.168.2.1            0    100      0 i

*>i206.25.129.0     192.168.2.1            0    100      0 i

*>i206.25.161.0     192.168.1.1            0    100      0 i

*> 206.25.193.0     0.0.0.0                0         32768 i

Seattle#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C    206.25.193.0 is directly connected, Loopback0

B    206.25.129.0 [200/0] via 192.168.2.1, 00:07:34



C    192.168.1.0 is directly connected, Serial0

B    192.168.2.0 [200/0] via 192.168.1.1, 00:07:42

B    206.25.161.0 [200/0] via 192.168.1.1, 00:07:43

Seattle#ping 206.25.129.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 206.25.129.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms

Seattle#

The moral of the story is that for IBGP to work correctly, one of two configuration options must be 
performed:

●     The external routes must be redistributed into the IGP to ensure that the IGP can synchronize 
with BGP. The drawback to this approach is that if you are taking a large number of routes 
from BGP, such as a full Internet routing table, you are placing a huge processing and 
memory burden on the IGP routers. In the majority of cases, routers cannot handle this 
burden and will fail. In fact, several large-scale outages have resulted from full BGP routes 
being inadvertently redistributed into OSPF or IS-IS. In one incident, a major provider was 
down for 19 hours.

●     The IBGP routers must be fully meshed, and synchronization must be disabled. Every router 
then has knowledge of the external routes via BGP, and disabling synchronization allows the 
routes to be entered into the routing table without having to first inform the IGP. The 
drawback to this approach is that in an AS where there are more than a few IBGP routers, 
peering every router with every other router becomes an administrative challenge. 
Nonetheless, this is the approach that is almost always used when dealing with Internet 
routes. Two tools for controlling the full IBGP mesh requirement, route reflectors and 
confederations, are presented in the next section.

Chapter 3 offers several examples of IBGP configurations. It also revisits the drawbacks to the two 
configuration options and demonstrates some partial solutions to them.



 
  
Managing Large-Scale BGP Peering

The preceding section pointed out that when an AS becomes large, attempting to create fully meshed 
IBGP peers can be daunting. This is just one of the problems that emerges when you attempt to work 
with BGP on a large scale. BGP features four tools that can simplify the management of large 
numbers of BGP peers:

●     Peer groups
●     Communities
●     Route reflectors
●     Confederations

The first two tools help simplify the management of routing policies between multiple peers, either 
internal or external. The second two tools simplify the management of IBGP among large numbers of 
peers.

Peer Groups

Often in large BGP internetworks, policies on a router apply to multiple peers. The same attributes 
might be set in the updates going to several peers, for example, or the same filter might be used on 
routes coming from several peers. In such cases, you can simplify configuration and management by 
adding peers that share common policies to a peer group.

A peer group is defined on a Cisco router with a name and a set of routing policies. Peers are then 
added to the peer group. Any changes that must be made to the policies can then be made for the 
group rather than for each individual peer. Peer groups also prove useful for improving performance 
on a router. Instead of repeatedly consulting the policy database for each update sent to each peer, 
the router can consult the policy database once, create a single update, and then send copies of it to 
all the peers in the group.

At times, additional policies might apply to one or more members of a peer group. In such a case, 
you can apply the additional policies to the appropriate neighbors in addition to the common policies 
of the group.

Communities

Whereas peer groups apply policies to a group of routers, communities apply policies to a group of 
routes. A router adds a route to a preconfigured community by setting its COMMUNITY attribute to 
some value that identifies it as a member of the community. Neighboring routers can then apply their 
policies, such as filtering or redistribution policies, to the routes based on the value of the 
COMMUNITY attribute. The COMMUNITY attribute, which can be set to a well-known value or to some 
value defined by the network administrator, is described more fully in the section "The COMMUNITY 
Attribute," earlier in this chapter.

You can set more than one COMMUNITY attribute for a single route. A router receiving a route with 
multiple COMMUNITY attributes has the option of setting policies based on all those attributes or on 
some subset of the attributes. When routes containing COMMUNITY attributes are aggregated, the 
aggregate inherits all the COMMUNITY attributes of all the routes.

Route Reflectors



Route reflectors are useful when an AS contains a large number of IBGP peers. (For more 
information, see RFC 1966 at www.isuedu/in-notes/rfc1771.txt.) Unless EBGP routes are 
redistributed into the autonomous system's IGP, all IBGP peers must be fully meshed. For every n 
routers, there will be n(n – 1)/2 IBGP connections in the AS. For example, Figure 2-35 shows six fully 
meshed IBGP routers, hardly a large number of routers; even here, however, 15 IBGP connections 
are needed.

Figure 2-35. Fully Meshed IBGP Peers

Route reflectors offer an alternative to fully meshed IBGP peers. A router is configured as a route 
reflector (RR), and other IBGP routers, known as clients, peer with the RR only, rather than with 
every other IBGP router (see Figure 2-36). As a result, the number of peering sessions is reduced 
from n(n – 1)/2 to n – 1. A router reflector and its clients are known collectively as a cluster.

Figure 2-36. IBGP Clients in a Route Reflection Cluster Peer Only with the 
Route Reflector, Reducing the Number of Necessary IBGP Connections

http://www.isuedu/in-notes/rfc1771.txt


Route reflectors work by relaxing the rule that IBGP peers cannot advertise routes learned from other 
IBGP peers. In the internetwork of Figure 2-36, for example, the route reflector learns routes from 
each of its clients. Unlike other IBGP routers, the RR can advertise these routes to its other clients 
and to nonclient peers. In other words, the routes from one IBGP client are reflected from the RR to 
the other clients. To avoid possible routing loops or other routing errors, the route reflector cannot 
change the attributes of the routes it receives from clients.

A client router in a route reflection cluster can peer with external neighbors, but the only internal 
neighbor it can peer with is a route reflector in its cluster or other clients in the cluster. However, the 
RR itself can peer with both internal and external neighbors outside of the cluster and can reflect 
their routes to its clients (see Figure 2-37).

Figure 2-37. Route Reflection Cluster Peering Relationships



If an RR receives multiple routes to the same destination, it uses the normal BGP decision process to 
select the best path. RFC 1966 defines three rules that the RR uses to determine who the route is 
advertised to, depending on how the route was learned:

●     If the route was learned from a nonclient IBGP peer, it is reflected to clients only.
●     If the route was learned from a client, it is reflected to all nonclients and clients, except for 

the originating client.
●     If the route was learned from an EBGP peer, it is reflected to all clients and nonclients.

The route reflector functionality has to be supported only on the route reflector itself. From the 
clients' perspectives, they are merely peering with an internal neighbor. This is an attractive feature 
of route reflectors, because routers with relatively basic BGP implementations can still be clients in a 
route reflection cluster.

The concept of route reflectors is similar to that of route servers, discussed earlier in this chapter. 
The primary purpose of both devices is to reduce the number of required peering sessions by 
providing a single peering point for multiple neighbors. The neighbors then depend on the one device 
to learn their routes. The difference between route reflectors and route servers is that route 
reflectors are also routers, whereas route servers are not.

A single RR, like a single route server, introduces a single point of failure into a system. If the RR 
fails, the clients lose their only source of NLRI. Therefore, for redundancy, a cluster can have more 
than one RR (see Figure 2-38). The clients have physical connections to each of the route reflectors, 
and they peer to each. If one of the RRs fails, the clients still have a connection to the other RR and 
do not lose reachability information.



Figure 2-38. A Cluster Can Have Multiple Route Reflectors for Redundancy

NOTE

Although it is possible for a client to have a physical link to only one RR and still peer 
to multiple RRs, this setup defeats the purpose of having redundancy. The client is 
still vulnerable to the failure of the single RR to which it is physically connected.

An AS also can have multiple clusters. Figure 2-39 shows an AS with two clusters. Each cluster has 
redundant route reflectors, and the clusters themselves are interconnected redundantly.

Figure 2-39. Multiple Route Reflection Clusters Can Be Created Within a 
Single Autonomous System



Because clients do not know they are clients, a route reflector can itself be a client of another route 
reflector. As a result, you can build "nested" route reflection clusters (see Figure 2-40).

Figure 2-40. A Route Reflector Can Be the Client of Another Route Reflector



Although clients cannot peer with routers outside of their own cluster, they can peer with each other. 
As a result, a route reflection cluster can be fully meshed (see Figure 2-41). When the clients are 
fully meshed, the route reflector is configured so that it does not reflect routes from one client to 
another. Instead, it reflects only routes from clients to its nonclient peers, and routes from nonclient 
peers to clients.

Figure 2-41. A Route Reflection Cluster Can Be Fully Meshed



Recall from the discussion in the section "IBGP and IGP Synchronization" that BGP cannot forward a 
route learned from one internal peer to another internal peer, because the AS_PATH attribute does 
not change within an AS, and routing loops could result. Note, however, that a route reflector is a 
BGP router in which this rule has been relaxed. To prevent routing loops, route reflectors use two 
BGP path attributes: ORIGINATOR_ID and CLUSTER_LIST.

ORIGINATOR_ID is an optional, nontransitive attribute that is created by the route reflector. The 
ORIGINATOR_ID is the router ID of the originator of a route within the local AS. A route reflector 
does not advertise a route back to the originator of the route; nonetheless, if the originator receives 
an update with its own RID, the update is ignored.

Each cluster within an AS must be identified with a unique 4-octet cluster ID. If the cluster contains a 
single route reflector, the cluster ID is the router ID of the route reflector. If the cluster contains 
multiple route reflectors, each RR must be manually configured with a cluster ID.

CLUSTER_LIST is an optional, nontransitive attribute that tracks cluster IDs the same way that the 



AS_PATH attribute tracks AS numbers. When an RR reflects a route from a client to a nonclient, it 
appends its cluster ID to the CLUSTER_LIST. If the CLUSTER_LIST is empty, the RR creates one. 
When an RR receives an update, it checks the CLUSTER_LIST. If it sees its own cluster ID in the list, 
it knows that a routing loop has occurred and ignores the update.

Confederations

Confederations are another way to control large numbers of IBGP peers. A confederation is an AS 
that has been subdivided into a group of subautonomous systems, known as member autonomous 
systems (see Figure 2-42). The BGP speakers within the confederation speak IBGP to peers in the 
same member AS and EBGP to peers in other member autonomous systems. The confederation is 
assigned a confederation ID, which is represented to peers outside of the confederation as the AS 
number of the entire confederation. External peers do not see the internal structure of the 
confederation; rather, they see a single AS. In Figure 2-42, AS 9184 is the confederation ID.

Figure 2-42. A Typical Confederation

You are very familiar with the concept of subdividing entities for better manageability. IP subnets are 
subdivisions of IP networks, and VLSM subdivides subnets. Similarly, autonomous systems are 
subdivisions of large internetworks (such as the Internet). Confederations are subdivisions of 
autonomous systems.



The section "AS_SET" described two types of AS_PATH attributes: AS_SEQUENCE and AS_SET. 
Confederations add two more types to the AS_PATH:

●     AS_CONFED_SEQUENCE— This is an ordered list of AS numbers along a path to a 
destination. It is used in exactly the same way as the AS_SEQUENCE, except that the AS 
numbers in the list belong to autonomous systems within the local confederation.

●     AS_CONFED_SET— This is an unordered list of AS numbers along a path to a destination. It 
is used in exactly the same way as the AS_SET, except that the AS numbers in the list belong 
to autonomous systems within the local confederation.

Because the AS_PATH attribute is used in updates between the member autonomous systems, loop 
avoidance is preserved. From the perspective of a BGP router within a member AS, all peers in other 
member autonomous systems are external neighbors.

When an update is sent to a peer external to the confederation, the AS_CONFED_SEQUENCE and 
AS_CONFED_SET information is stripped from the AS_PATH attribute, and the confederation ID is 
prepended to the AS_PATH. Because of this, external peers see the confederation as a single AS 
rather than as a collection of autonomous systems. As Figure 2-42 shows, it is common practice to 
use AS numbers from the reserved range 64512 to 65535 to number the member autonomous 
systems within a confederation.

When choosing a route, the BGP decision process remains the same, with one addition: EBGP routes 
external to the confederation are preferred over EBGP routes to member autonomous systems, which 
are preferred over IBGP routes. Another difference between confederations and standard autonomous 
systems is the way in which some attributes are handled. Attributes such as NEXT_HOP and MED can 
be advertised unchanged to EBGP peers in another member AS within the confederation, and the 
LOCAL_PREF attribute also can be sent.

Unlike route reflector environments in which only the route reflector itself has to support route 
reflection, all routers within a confederation must support the confederation functionality. This 
support is necessary because all routers must be able to recognize the AS_CONFED_SEQUENCE and 
AS_CONFED_SET types in the AS_PATH attribute. Because these AS_PATH types are removed from 
routes advertised out of the confederation, however, routers in other autonomous systems do not 
have to support confederations.

In very large autonomous systems, you can use confederations and route reflectors together. You 
can configure one or more RR clusters within one or more member autonomous systems for even 
more optimal control of IBGP peers.



 
  
BGP Message Formats

BGP messages are carried within TCP segments using TCP port 179. The maximum message size is 
4096 octets, and the minimum size is 19 octets. All BGP messages have a common header (see 
Figure 2-43). Depending on the message type, a data portion might or might not follow the header.

Figure 2-43. The BGP Message Header

Marker is a 16-octet field that is used to detect loss of synchronization between BGP peers and to 
authenticate messages when authentication is supported. If the message type is Open or if the Open 
message contains no authentication information, the Marker field is set to all 1s. Otherwise, the value 
of the marker can be predicted by some computation as part of the authentication process.

Length is a 0-octet field that indicates the total length of the message, including the header, in 
octets.

Type is a 0-octet field specifying the message type. Table 2-6 indicates the possible type codes.

Table 2-6. BGP Type Codes

Code Type 

1 Open 

2 Update 

3 Notification 

4 Keepalive 



The Open Message

The Open message, whose format is shown in Figure 2-44, is the first message sent after a TCP 
connection has been established. If a received Open message is acceptable, a Keepalive message is 
sent to confirm the Open. After the Open has been confirmed, the BGP connection is in the 
Established state and Update, Keepalive, and Notification messages can be sent.

Figure 2-44. The BGP Open Message Format

The BGP Open message contains the following fields:

●     Version— A 1-octet field specifying the BGP version running on the originator.
●     My Autonomous System— A 2-octet field specifying the AS number of the originator.
●     Hold Time— A 2-octet number indicating the number of seconds the sender proposes for the 

hold time. A receiver compares the value of the Hold Time field and the value of its 
configured hold time and accepts the smaller value or rejects the connection. The hold time 
must be either 0 or at least 3 seconds.

●     BGP Identifier— The router ID of the originator. A Cisco router sets its router ID as either 
the highest IP address of any of its loopback interfaces or, if no loopback interface is 
configured, the highest IP address of any of its physical interfaces.

●     Optional Parameters Length— A 1-octet field indicating the total length of the following 
Optional Parameters field, in octets. If the value of this field is zero, no Optional Parameters 
field in included in the message.

●     Optional Parameters— A variable-length field containing a list of optional parameters. Each 
parameter is specified by a 1-octet type field, a 1-octet length field, and a variable-length 
field containing the parameter value.

The Update Message

The Update message, whose format is shown in Figure 2-45, is used to advertise a single feasible 
route to a peer, or to withdraw multiple unfeasible routes, or both.



Figure 2-45. The BGP Update Message Format

The BGP Update message contains the following fields:

●     Unfeasible Routes Length— A 2-octet field indicating the total length of the following 
Withdrawn Routes field, in octets. A value of zero indicates that no routes are being 
withdrawn and that no Withdrawn Routes field is included in the message.

●     Withdrawn Routes— A variable-length field containing a list of routes to be withdrawn from 
service. Each route in the list is described with a (Length, Prefix) tuple in which the Length is 
the length of the prefix and the Prefix is the IP address prefix of the withdrawn route. If the 
Length part of the tuple is zero, the Prefix matches all routes.

●     Total Path Attribute Length— A 2-octet field indicating the total length of the following 
Path Attribute field, in octets. A value of zero indicates that attributes and NLRI are not 
included in this message.

●     Path Attributes— A variable-length field listing the attributes associated with the NLRI in 
the following field. Each path attribute is a variable-length triple of (Attribute Type, Attribute 
Length, Attribute Value). The Attribute Type part of the triple is a 2-octet field consisting of 
four flag bits, four unused bits, and an Attribute Type code (see Figure 2-46).

Figure 2-46. The Attribute Type Part of the Path Attributes Field



●     Network Layer Reachability Information— A variable-length field containing a list of 
(Length, Prefix) tuples. The Length indicates the length in bits of the following prefix, and the 
Prefix is the IP address prefix of the NLRI. A Length value of zero indicates a prefix that 
matches all IP addresses.

Table 2-7 shows the most common Attribute Type codes and the possible Attribute Values for each 
Attribute Type.

Table 2-7. Attribute Types and Associated Attribute Values[*]

Attribute 
Type Code Attribute Type 

Attribute 
Value Code Attribute Value 

1 ORIGIN 0 IGP 

1 EGP 

2 Incomplete 

2 AS_PATH 1 AS_SET 

2 AS_SEQUENCE 

3 AS_CONFED_SET 

4 AS_CONFED_SEQUENCE 

3 NEXT_HOP 0 Next-hop IP address 



4 MULTI_EXIT_DISC 0 4-octet MED 

5 LOCAL_PREF 0 4-octet LOCAL_PREF 

6 ATOMIC_AGGREGATE 0 None 

7 AGGREGATOR 0 AS number and IP address of 
aggregator 

8 COMMUNITY 0 4-octet community identifier 

9 ORIGINATOR_ID 0 4-octet router ID of originator 

10 CLUSTER_LIST 0 Variable-length list of cluster 
IDs 

[*] Other attribute types exist, but they are proprietary to non-Cisco vendors and are therefore beyond the 
scope of this book.

The Keepalive Message

Keepalive messages are exchanged on a period one-third the hold time, but not less than 1 second. 
If the negotiated hold time is 0, Keepalives are not sent.

The Keepalive message consists of only the 19-octet BGP message header, with no additional data.

The Notification Message

Notification messages, whose format is shown in Figure 2-47, are sent when an error condition is 
detected. The BGP connection is closed immediately after the message is sent.

Figure 2-47. The BGP Notification Message Format

The BGP Notification message contains the following fields:

●     Error Code— A 1-octet field indicating the type of error.
●     Error Subcode— A 1-octet field providing more-specific information about the error. Table 2-

8 shows the possible error codes and associated error subcodes.
●     Data— A variable-length field used to diagnose the reason for the error. The contents of the 

Data field depend on the error code and subcode.



Table 2-8. BGP Notification Message Error Codes and Error Subcodes

Error Code Error Error Subcode Subcode Detail 

1 Message Header 
Error 

1 Connection not synchronized 

2 Bad message length 

3 Bad message type 

2 Open Message 
Error 

1 Unsupported version number 

2 Bad peer AS 

3 Bad BGP identifier 

4 Unsupported optional 
parameter 

5 Authentication failure 

6 Unacceptable hold time 

3 Update Message 
Error 

1 Malformed attribute list 

2 Unrecognized well-known 
attribute 

3 Missing well-known attribute 

4 Attribute flags error 

5 Attribute length error 

6 Invalid ORIGIN attribute 

7 AS routing loop 

8 Invalid NEXT_HOP attribute 

9 Optional attribute error 

10 Invalid network field 

11 Malformed AS_PATH 

4 Hold Timer Expired 0 — 

5 Finite State 
Machine Error 0 — 

6 Cease 0 — 



 
  
Looking Ahead

Now that you have had a good look at the basics of BGP and related concepts, Chapter 3 shows you 
how to configure and troubleshoot BGP on Cisco routers. In addition to configuring BGP, you learn 
how to set routing policies and how to redistribute BGP and IGPs.
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Review Questions

1: What is the most important difference between BGP-4 and earlier versions of BGP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: What two problems was CIDR developed to alleviate?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: What is the difference between classful and classless IP routers?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: What is the difference between classful and classless IP routing protocols?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

5: Given the addresses 172.17.208.0/23, 172.17.210.0/23, 172.17.212.0/23, and 172.17.214.0/23, 
summarize the addresses with a single aggregate, using the longest possible address mask.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



6: What is an address prefix?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: The routing table in Example 2-16 is taken from a classless router. To what next-hop address does 
the router forward packets with each of the following destination addresses?

172.20.3.5

172.20.1.67

172.21.255.254

172.16.50.50

172.16.0.224

172.16.51.50

172.17.40.1

172.17.41.1

172.30.1.1

Example 2-16 The Routing Table for Review Question 7

Stratford#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

     172.20.0.0 is variably subnetted, 6 subnets, 2 masks

D       172.20.0.0 255.255.0.0 [90/409600] via 172.20.5.2, 00:01:50, Ethernet0

D       172.20.2.0 255.255.255.0

           [90/409600] via 172.20.6.2, 00:01:50, Ethernet1

D       172.20.3.0 255.255.255.0

           [90/5401600] via 172.20.6.2, 00:01:50, Ethernet1

C       172.20.5.0 255.255.255.0 is directly connected, Ethernet0



C       172.20.6.0 255.255.255.0 is directly connected, Ethernet1

C       172.20.7.0 255.255.255.0 is directly connected, Ethernet2

     172.16.0.0 is variably subnetted, 3 subnets, 2 masks

D       172.16.50.0 255.255.255.0

           [90/409600] via 172.20.6.2, 00:01:50, Ethernet1

D       172.16.0.0 255.255.255.0

           [90/460800] via 172.20.6.2, 00:01:51, Ethernet1

D       172.16.0.0 255.255.0.0 [90/409600] via 172.20.7.2, 00:01:51, Ethernet2

     172.17.0.0 is subnetted (mask is 255.255.255.0), 1 subnets

D       172.17.40.0 [90/2841600] via 172.20.7.2, 00:01:52, Ethernet2

D    172.16.0.0 (mask is 255.240.0.0) [90/409600] via 172.20.5.2, 00:01:52, Ethernet0

Stratford#

8: Explain how summarization helps hide network instabilities.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

9: Explain how summarization can cause asymmetric traffic patterns.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

10: Is asymmetric traffic undesirable?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



11: What is a NAP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

12: What is a route server?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

13: What is a provider-independent address space, and why can it be advantageous to have one?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

14: Why can it be a problem to have a /21 provider-independent address space?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

15: What is a routing policy?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



16: What is the underlying protocol that BGP uses to reliably connect to its neighbors?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

17: What are the four BGP message types, and how is each one used?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

18: In what state or states can BGP peers exchange Update messages?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

19: What is NLRI?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

20: What is a path attribute?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



21: What are the four categories of BGP path attributes?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

22: What is the purpose of the AS_PATH attribute?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

23: What are the different types of AS_PATH?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

24: What is the purpose of the NEXT_HOP attribute?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

25: What is the purpose of the LOCAL_PREF attribute?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



26: What is the purpose of the MULTI_EXIT_DISC attribute?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

27: What attribute or attributes are useful if a BGP speaker originates an aggregate route?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

28: What is a BGP administrative weight?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

29: Given an EBGP route and an IBGP route to the same destination, which route will a BGP router 
prefer?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

30: A router has two IBGP routes to the same destination. Path A has a LOCAL_PREF of 300 and three 
AS numbers in the AS_PATH. Path B has a LOCAL_PREF of 200 and two AS numbers in the 
AS_PATH. Assuming no other differences, which path will the router choose?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



31: What is route dampening?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

32: Define the penalty, suppress limit, reuse limit, and half-life as they apply to route dampening.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

33: What is IGP synchronization, and why is it important?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

34: Under what circumstances can you safely disable IGP synchronization?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

35: What is a BGP peer group?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



36: What is a BGP community?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

37: What is a route reflector? What is a route reflection client? What is a route reflection cluster?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

38: What is the purpose of the ORIGINATOR_ID and the CLUSTER_LIST path attributes?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

39: What is a BGP confederation?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

40: Can route reflectors be used within confederations?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



41: What is the purpose of the next-hop-self function? Are there any reasonable alternatives to using 
this function?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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Chapter 3. Configuring and Troubleshooting 
Border Gateway Protocol 4
This chapter covers the following key topics:

●     Basic BGP Configuration— This section provides a series of case studies for BGP 
configuration, including peering BGP routers, injecting IBGP routes into BGP, injecting BGP 
routes into an IGP, IBGP without an IGP, IBGP over an IGP, EBGP multihop, and aggregate 
routes.

●     Managing BGP Connections— This section examines a variety of commands and tools that 
are available for making BGP connections more manageable from both an administrative and 
a maintenance standpoint.

●     Routing Policies— This section discusses resetting BGP connections and provides a series of 
case studies covering filtering routes by network layer reachability information (NLRI), by 
AS_PATH, and with route maps; administrative weight; administering distances and backdoor 
routes; using the LOCAL_PREF and MULTI_EXIT_DISC attributes; prepending the AS_PATH; 
route tagging; and route dampening.

●     Large-Scale BGP— This section provides a series of case studies for large-scale BGP design, 
including BGP peer groups, BGP communities, private AS numbers, BGP confederations, and 
route reflectors.

Many newcomers to BGP approach the protocol with trepidation. The source of this sentiment is the 
fact that BGP implementations are much more rare than IGP implementations. Outside of ISPs, most 
network administrators deal with BGP far less than with IGPs, if at all. Even when BGP is used, the 
configurations in small ISPs and non-ISP subscribers are usually pretty basic. Because most 
networking professionals lack in-depth experience with the protocol, it is often viewed as mysterious 
or intimidating.

You learned in Chapter 2, "Introduction to Border Gateway Protocol 4," that BGP itself is a relatively 
simple protocol. Certainly it is less complex than EIGRP, OSPF, or Integrated IS-IS. The complexity of 
BGP is not in the protocol, but in the scenarios in which it is used and the powerful tools associated 
with it. If an AS is not multihomed, or has only basic routing policies, BGP is usually unnecessary.

This chapter begins with basic BGP configurations and then presents some examples of using BGP to 
set routing policies—rules for sending and receiving route advertisements. Configuring BGP in large 
autonomous systems is covered last.

The configuration options available to BGP are so numerous that troubleshooting cannot be 
demonstrated adequately in just a few case studies. Therefore, this chapter presents troubleshooting 
issues in parallel with many configuration options and cases.



 
  
Basic BGP Configuration

This section presents the essential steps for configuring a BGP process and the most commonly used 
techniques for controlling BGP. For the great majority of BGP implementations, the information presented 
in this section is all that you need.

Case Study: Peering BGP Routers

A BGP session between routers is configured in two steps:

Step 1. Establish the BGP process and specify the local AS number with the router bgp 
command.

Step 2. Specify a neighbor and the neighbor's AS number with the neighbor remote-as 
command.

Figure 3-1 shows two routers in different autonomous systems. The structure of the BGP configuration for 
these routers differs from EGP configuration. Recall from Chapter 1, "Exterior Gateway Protocol," that the 
router egp command specifies the remote AS, and the autonomous-system command specifies the 
local AS. In contrast, router bgp specifies the local AS. Each neighbor's AS is specified with the neighbor 
remote-as command. This difference is significant. Whereas only core EGP routers can peer with more 
than one remote AS (with the router egp 0 command), any BGP process can peer with any number of 
remote autonomous systems. The EGP requirement for stub autonomous systems connected through a 
core AS is eliminated; autonomous systems can be meshed fully under BGP.

Figure 3-1. An EBGP Session Is Established Between Taos and Vail

Example 3-1 shows the EBGP configurations for the Taos and Vail routers in Figure 3-1.



Example 3-1 EBGP Configurations for Routers in Figure 3-1

Taos

router bgp 200

 neighbor 192.168.1.226 remote-as 100

_______________________________________________________________________

Vail

router bgp 100

 neighbor 192.168.1.225 remote-as 200

Example 3-2 shows the information Vail has recorded about Taos. Much of the information in this screen is 
particularly useful for troubleshooting. Appendix A, "The show ip bgp neighbors Display," provides a 
complete description of all the fields displayed by the show ip bgp neighbors command.

Example 3-2 show ip bgp neighbors Command Output Contains Details About 
the Peer Connection with a Neighbor

Vail#show ip bgp neighbors

BGP neighbor is 192.168.1.225,  remote AS 200, external link

 Index 1, Offset 0, Mask 0x2

  BGP version 4, remote router ID 192.168.1.225

  BGP state = Established, table version = 1, up for 19:32:02

  Last read 00:00:03, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 30 seconds

  Received 1175 messages, 0 notifications, 0 in queue

  Sent 1175 messages, 0 notifications, 0 in queue

  Prefix advertised 0, suppressed 0, withdrawn 0

  Connections established 1; dropped 0

  Last reset never

  0 accepted prefixes consume 0 bytes

  0 history paths consume 0 bytes

Connection state is ESTAB, I/O status: 1, unread input bytes: 0

Local host: 192.168.1.226, Local port: 11025

Foreign host: 192.168.1.225, Foreign port: 179

Enqueued packets for retransmit: 0, input: 0  mis-ordered: 0 (0 bytes)



Event Timers (current time is 0x45FDF2C):

Timer          Starts    Wakeups            Next

Retrans          1176          0             0x0

TimeWait            0          0             0x0

AckHold          1175        885             0x0

SendWnd             0          0             0x0

KeepAlive           0          0             0x0

GiveUp              0          0             0x0

PmtuAger            0          0             0x0

DeadWait            0          0             0x0

iss: 4072889888  snduna: 4072912224  sndnxt: 4072912224     sndwnd:  16004

irs: 4121607729  rcvnxt: 4121630065  rcvwnd:      16004  delrcvwnd:    380

SRTT: 300 ms, RTTO: 607 ms, RTV: 3 ms, KRTT: 0 ms

minRTT: 4 ms, maxRTT: 340 ms, ACK hold: 200 ms

Flags: higher precedence, nagle

Datagrams (max data segment is 1460 bytes):

Rcvd: 2220 (out of order: 0), with data: 1175, total data bytes: 22335

Sent: 2077 (retransmit: 0), with data: 1175, total data bytes: 22335

Vail#

The first line of output in Example 3-2 shows the address of Taos (192.168.1.225), its AS number (200), 
and the type of BGP connection to the router (external). The third line displays the BGP version used 
between Vail and Taos, and Taos' router ID. The fourth line begins by showing the state of the BGP finite 
state machine. The table version is incremented whenever the BGP routing table changes; in Example 3-2, 
no changes have taken place since the connection to Taos was established, so the table version is still 1. 
Uptime shows the time since the present peer connection was established. In Example 3-2, Taos has been 
peered continuously for 19 hours, 32 minutes, and 2 seconds.

Also of interest are the details of the underlying TCP connection. Example 3-2 highlights these lines. The 
lines show that the TCP connection state is Established, that Vail is originating BGP messages from TCP 
port 11025, and that the destination port at Taos is 179. The source port can be especially important 
when you are capturing packets on a link carrying more than one BGP session.

In Figure 3-2, another router is added to AS 100. Because they are in the same AS, Vail and Aspen are 
internal neighbors.

Figure 3-2. IBGP Is Spoken Between Vail and Aspen



Example 3-3 shows the configuration for Vail.

Example 3-3 Configuration for Vail Router in Figure 3-2

router bgp 100

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

Example 3-4 shows Aspen being configured. BGP debugging is used to observe the peer session being 
created. The figure shows that the time from the creation of the BGP configuration (18:24:13) to the 
beginning of the BGP peer negotiation (18:24:33) is 20 seconds; the TCP connection is established during 
this interval. BGP then transitions from Idle to Active, and the entire negotiation lasts approximately 10 
seconds.

Example 3-4 The debug ip bgp events Command Displays the States of the BGP 
Finite State Machine as Aspen Peers with Vail

Aspen#debug ip bgp events

BGP events debugging is on

Aspen#conf t

Enter configuration commands, one per line.  End with CNTL/Z.

Aspen(config)#router bgp 100



Aspen(config-router)#neighbor 192.168.1.221 remote-as 100

Aspen(config-router)#^Z

Aspen#

18:24:13: %SYS-5-CONFIG_I: Configured from console by console

Aspen#

18:24:33: BGP: 192.168.1.221 went from Idle to Active

18:24:41: BGP: 192.168.1.221 went from Active to OpenSent

18:24:42: BGP: 192.168.1.221 went from OpenSent to OpenConfirm

18:24:42: BGP: 192.168.1.221 went from OpenConfirm to Established

18:24:43: BGP: 192.168.1.221 computing updates, neighbor version 0, table version

n 1, starting at 0.0.0.0

18:24:43: BGP: 192.168.1.221 update run completed, ran for 0ms, neighbor version

 0, start version 1, throttled to 1, check point net 0.0.0.0

Aspen#

Example 3-5 shows a portion of Aspen's neighbor information.

Example 3-5 Aspen's Neighbor Information Shows That Vail's Router ID Is from 
One of Its Physical Interfaces

Aspen#show ip bgp neighbors

BGP neighbor is 192.168.1.221,  remote AS 100, internal link

 Index 1, Offset 0, Mask 0x2

  BGP version 4, remote router ID 192.168.1.226

  BGP state = Established, table version = 1, up for 00:03:46

  Last read 00:00:46, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 5 seconds

  Received 6 messages, 0 notifications, 0 in queue

  Sent 6 messages, 0 notifications, 0 in queue

  Prefix advertised 0, suppressed 0, withdrawn 0

  Connections established 1; dropped 0

  Last reset never

  0 accepted prefixes consume 0 bytes

  0 history paths consume 0 bytes

Connection state is ESTAB, I/O status: 1, unread input bytes: 0

Local host: 192.168.1.222, Local port: 179

Foreign host: 192.168.1.221, Foreign port: 11000



Notice that Vail's router ID is 192.168.1.226, the address of its interface to Taos. The rules for selecting a 
BGP router ID are identical to the rules for selecting an OSPF router ID:

●     The router chooses the numerically highest IP address on any of its loopback interfaces.
●     If no loopback interfaces are configured with IP addresses, the router chooses the numerically 

highest IP address on any of its physical interfaces. The interface from which the router ID is 
taken does not have to be running BGP.

Because Vail does not have a loopback interface configured, the router chose the numerically highest IP 
address on a physical interface. Using addresses associated with loopback interfaces has two advantages:

●     The loopback interface is more stable than any physical interface. It is active when the router 
boots up, and it fails only if the entire router fails.

●     The network administrator has more leeway in assigning predictable or recognizable addresses as 
the router IDs.

Cisco's BGP continues to use a router ID learned from a physical interface, even if the interface 
subsequently fails or is deleted. Therefore, the stability of a loopback interface is only a minor advantage. 
The primary benefit is the capability to control the router ID, making it easily distinguishable from other IP 
addresses.

Example 3-6 shows how to configure Vail with a unique router ID.

Example 3-6 Configuring Vail with a Unique Router ID

interface loopback 0

 ip address 192.168.255.254 255.255.255.255

!

router bgp 100

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

Just configuring a loopback address on a working BGP router does not change the router ID, however. The 
command clear ip bgp (discussed in more detail in the section "Configuring Routing Policies") must be 
issued at Vail to clear all of its BGP sessions. A second look at Aspen's neighbor information in Example 3-
7 shows that Vail's router ID is now its loopback 0 address.

Another point of interest in Example 3-7, when compared to Example 3-5, is the table version. After Vail's 
session is reset, the table version is incremented to 2. The change also is reflected in the Connections 
established; dropped field. These fields should not change often; if they do, it might indicate an 
unstable neighbor.

Example 3-7 Vail's Router ID, After a Loopback Address Is Configured and Its 
BGP Sessions Are Reset, Is Its Loopback Address

Aspen#show ip bgp neighbors

BGP neighbor is 192.168.1.221,  remote AS 100, internal link



 Index 1, Offset 0, Mask 0x2

  BGP version 4, remote router ID 192.168.255.254

  BGP state = Established, table version = 2, up for 00:00:42

  Last read 00:00:42, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 5 seconds

  Received 37 messages, 0 notifications, 0 in queue

  Sent 37 messages, 0 notifications, 0 in queue

  Prefix advertised 0, suppressed 0, withdrawn 0

  Connections established 2; dropped 1

  Last reset 00:00:51, due to Peer closed the session

  0 accepted prefixes consume 0 bytes

  0 history paths consume 0 bytes

Connection state is ESTAB, I/O status: 1, unread input bytes: 0

Local host: 192.168.1.222, Local port: 179

Foreign host: 192.168.1.221, Foreign port: 11003

You also can set the router ID of a BGP speaker manually, overriding both the physical and loopback 
interface addresses. The command for doing so is bgp router-id. For example, the configuration in 
Example 3-8 sets the BGP router ID of Vail to 1.1.3.2.

Example 3-8 Setting the BGP Router ID Manually

interface loopback 0

 ip address 192.168.255.254 255.255.255.255

!

router bgp 100

 bgp router-id 1.1.3.2

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

The bgp router-id command can prove useful in situations where loopback interfaces are needed for 
other reasons, such as OSPF router IDs or SNMP functions, but the IP addresses on the interfaces differ 
from what you desire for the BGP router ID.

Case Study: Injecting IGP Routes into BGP

Chapter 2 emphasizes that at an AS border, outgoing route advertisements affect incoming traffic, and 
incoming route advertisements affect outgoing traffic. As a result, outgoing and incoming advertisements 
should be considered separately. This section begins the discussion of BGP route advertisements by 
examining basic methods of injecting routes into BGP.



Figure 3-3 shows that AS 200 uses EIGRP as its IGP. Taos must advertise three addresses to its EBGP 
peer: 192.168.200.0/24 is learned via EIGRP, 192.168.100.0/24 is directly attached to Taos, and 
192.168.1.216/30 is connecting Taos and AngelFire. Whereas the first two addresses are full class C 
addresses, the last is a subnet. Other subnets of 192.168.1.0 appear outside of AS 200, so the subnet 
only, not the major network address, must be advertised.

Figure 3-3. AS 200 Is Using EIGRP as Its IGP

Example 3-9 shows a "first-pass" configuration of Taos.

Example 3-9 Taos' Basic EIGRP and BGP Configuration

router eigrp 200

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

!

router bgp 200

 redistribute eigrp 200

 neighbor 192.168.1.226 remote-as 100



Example 3-10 shows the results in Vail's BGP table. All EIGRP networks have been advertised over the 
EBGP link. Notice in the configuration that no metric was specified with the redistribute command. As a 
result, the metric of each route defaults to the EIGRP metric, as shown in Taos' routing table in Example 3-
11. The directly connected networks have a metric of 0, and 192.168.200.0/24 has a metric of 409600. 
You can change this default method of selecting a metric with the default-metric command.

NOTE

The BGP metric is the MULTI_EXIT_DISC. The use and manipulation of this attribute is 
demonstrated in the section "Case Study: Using the MULTI_EXIT_DISC Attribute."

Example 3-10 Taos Advertised 192.168.100.0/24 and 192.168.200.0/24 
Correctly, but the Subnet 192.168.1.216/30 Was Summarized to the Major 
Network

Vail#show ip bgp

BGP table version is 15, local router ID is 192.168.255.254

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.0      192.168.1.225       281600             0 200 ?

*> 192.168.100.0    192.168.1.225            0             0 200 ?

*> 192.168.200.0    192.168.1.225       409600             0 200 ?

Vail#

Example 3-11 Taos' Routing Table Shows That the EIGRP Metrics Are the Same 
as the Metrics in Vail's BGP Table

Taos#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route



Gateway of last resort is not set

D    192.168.200.0/24 [90/409600] via 192.168.1.217, 00:52:09, Ethernet0

     192.168.1.0/24 is variably subnetted, 3 subnets, 2 masks

D       192.168.1.0/24 is a summary, 00:52:11, Null0

C       192.168.1.224/30 is directly connected, Serial0

C       192.168.1.216/30 is directly connected, Ethernet0

C    192.168.100.0/24 is directly connected, Ethernet1

Taos#

The two major networks in AS 200 are advertised correctly, but you can see in Example 3-9 that the 
subnet 192.168.1.216/30 has been summarized to the major network. The reason for this is that BGP-4, 
although it is classless, by default summarizes at network boundaries. In the internetwork of Figure 3-3, 
this summarization presents no problem. Vail is directly connected to the other two subnets of 
192.168.1.0 and therefore knows the two more-specific routes. As the network grows and other subnets 
of that network are used on other routers, however, the summary can cause incorrect routing. To turn off 
BGP's automatic summarization, configure Taos as in Example 3-12.

Example 3-12 Taos Configuration to Turn Off BGP Automatic Summarization

router eigrp 200

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

!

router bgp 200

 redistribute eigrp 200

 neighbor 192.168.1.226 remote-as 100

 no auto-summary

Example 3-13 shows the results in Vail's BGP table. The subnets of 192.168.1.0 are now being advertised. 
However, the major network 192.168.1.0 is still being advertised in addition to the subnets. Another look 
at Taos' routing table in Example 3-11 shows why. EIGRP also performs automatic route summarization 
and has entered a summary route to Null0 in the routing table. BGP is picking up this route in addition to 
the subnets and is advertising it to Vail.

Example 3-13 Vail's BGP Table, After BGP Auto-Summarization Is Turned Off at 
Taos

Vail#show ip bgp

BGP table version is 17, local router ID is 192.168.255.254

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal



Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.0      192.168.1.225       281600             0 200 ?

*> 192.168.1.216/30 192.168.1.225            0             0 200 ?

*> 192.168.1.224/30 192.168.1.225            0             0 200 ?

*> 192.168.100.0    192.168.1.225            0             0 200 ?

*> 192.168.200.0    192.168.1.225       409600             0 200 ?

Vail#

To turn off EIGRP auto-summarization for the Taos router, you use the same no auto-summary 
command as demonstrated in Example 3-14.

Example 3-14 Taos Configuration to Turn Off EIGRP Automatic Summarization

router eigrp 200

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

 no auto-summary

!

router bgp 200

 redistribute eigrp 200

 neighbor 192.168.1.226 remote-as 100

 no auto-summary

Example 3-15 shows the resulting BGP table at Vail.

Example 3-15 Vail's BGP Table After EIGRP Auto-Summarization Is Turned Off 
at Taos

Vail#show ip bgp

BGP table version is 20, local router ID is 192.168.255.254

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.216/30 192.168.1.225            0             0 200 ?



*> 192.168.1.224/30 192.168.1.225            0             0 200 ?

*> 192.168.100.0    192.168.1.225            0             0 200 ?

*> 192.168.200.0    192.168.1.225       409600             0 200 ?

Vail#

The advantage of using redistribution to inject routes into BGP is that internal changes can be advertised 
with few or no changes to the BGP configuration. If a network is added or removed within the EIGRP 
domain of AS 200, the change is automatically advertised to Vail. However, advertising every IGP route is 
also the major disadvantage of IGP-to-BGP redistribution. For example, the administrators of autonomous 
systems 100 and 200 might or might not want subnet 192.168.1.224/30 advertised from Taos to Vail, as 
it is in Example 3-15. If the subnet should not be advertised, a route filter must be used. Later in this 
chapter, the section "Routing Policies" demonstrates, through several case studies, various options for 
configuring route filters.

Route filters are almost always necessary when redistributing an IGP's routes into BGP. By default, every 
route known by the IGP is redistributed. The administrator of the AS might want to advertise only a subset 
of the IGP routes, and so must filter the others. Or, perhaps a multihomed AS should not be a transit for 
any of its neighboring autonomous systems. Route filters must be used to prevent external routes learned 
from one AS from being advertised to other autonomous systems. Then there is the problem of route 
feedback, in which external routes received from EBGP are advertised into an IGP and then are 
redistributed from that IGP back into EBGP. At a minimum, best practice dictates that route filters should 
be used to ensure that only the correct routes are redistributed. In actual practice, redistribution of IGP 
prefixes into BGP is rarely used because of this lack of precise control.

An alternative to redistributing IGP routes into BGP is to use the network command. As discussed in 
Chapter 1, this command functions differently under EGP and BGP than it does under an IGP. When used 
with an IGP, the network command specifies the address of an interface or group of interfaces on which 
the routing protocol will be enabled. When used with EGP and BGP, network specifies an IP prefix to be 
advertised. For each prefix specified with the command, BGP looks into the routing table. If an entry in 
the table exactly matches the network prefix, that prefix is entered into the BGP table and advertised.

Example 3-16 shows the configuration for Taos using the network command rather than redistribution.

Example 3-16 Configuring Taos with the network Command

router eigrp 200

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

!

router bgp 200

 network 192.168.1.216 mask 255.255.255.252

 network 192.168.100.0

 network 192.168.200.0

 neighbor 192.168.1.226 remote-as 100

The major networks 192.168.100.0 and 192.168.200.0 are specified alone. For the subnet 192.168.1.216, 



a mask is also specified. Subnets and masks can be specified only under BGP-4; under EGP or earlier 
versions of BGP, all of which are classful, only major networks can be specified.

Notice that the no auto-summary command is not used under either EIGRP or BGP in this configuration. 
Because no redistribution is taking place, turning off auto-summarization is unnecessary. Example 3-17 
shows the result of the configuration.

Example 3-17 Vail's BGP Table After Taos Is Reconfigured Using the BGP 
network Command

Vail#show ip bgp

BGP table version is 36, local router ID is 192.168.255.254

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.216/30 192.168.1.225            0             0 200 i

*> 192.168.100.0    192.168.1.225            0             0 200 i

*> 192.168.200.0    192.168.1.225       409600             0 200 i

Vail#

Unlike in Example 3-15, subnet 192.168.1.224/30 is not advertised, because it was not specified with a 
network command. The administrator has more control than with redistribution, and no filtering is 
necessary. Comparing Example 3-15 and Example 3-17, notice that the ORIGIN codes differ. Whereas the 
redistributed routes in Example 3-15 are tagged with a ?, indicating an ORIGIN of "incomplete," the 
routes in Example 3-17 are tagged with an i, indicating an ORIGIN of IGP. This tagging can make a 
difference in some circumstances because the BGP decision process, discussed in Chapter 2, gives a 
higher preference to ORIGIN code 1 (IGP) than to code 3 (incomplete).

A maximum of 200 addresses can be specified with the network command. If you must advertise more 
addresses across a BGP connection, you must use redistribution.

Case Study: Injecting BGP Routes into an IGP

Prefixes that are learned from an EBGP neighbor are automatically added to the routing table. In Figure 3-
4, for instance, AS 300 is advertising two routes: 192.168.250.0/24 and 192.168.1.212/30. AS 300's IGP, 
and the configuration of router Tahoe, are unimportant to this example. The important observations are 
that the prefixes advertised by Tahoe to its external BGP peer are displayed in the Taos routing table as 
reachable and that pings to a destination in AS 300 are successful (see Example 3-18). An extended ping 
is used because the subnet of Taos' serial interface, 192.168.1.224/30, is not advertised. The BGP-learned 
routes are tagged in the routing table with a B.

Figure 3-4. AS 300 Has Been Added to the Topology Presented in Figure 3-3



Example 3-18 A Ping to an Address in AS 300 of Figure 3-4 Is Successful

Taos#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

D    192.168.200.0/24 [90/409600] via 192.168.1.217, 00:25:37, Ethernet0

B    192.168.250.0/24 [20/0] via 192.168.1.226, 16:18:12

     192.168.1.0/24 is variably subnetted, 4 subnets, 2 masks

D       192.168.1.0/24 is a summary, 00:25:43, Null0

C       192.168.1.224/30 is directly connected, Serial0

C       192.168.1.216/30 is directly connected, Ethernet0

B       192.168.1.212/30 [20/0] via 192.168.1.226, 16:18:12

C    192.168.100.0/24 is directly connected, Ethernet1

Taos#ping



Protocol [ip]:

Target IP address: 192.168.250.1

Repeat count [5]:

Datagram size [100]:

Timeout in seconds [2]:

Extended commands [n]: y

Source address or interface: 192.168.100.1

Type of service [0]:

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0xABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]:

Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.250.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/64/112 ms

Taos#

Although the networks of AS 300 are reachable from Taos, the BGP routes must be advertised into EIGRP 
before the networks are reachable from AS 200's interior routers. One way to accomplish this is with 
redistribution at Taos, as demonstrated by the configuration in Example 3-19.

Example 3-19 Advertising the BGP Routes into EIGRP

router eigrp 200

 redistribute bgp 200 metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

!

router bgp 200

 network 192.168.1.216 mask 255.255.255.252

 network 192.168.100.0

 network 192.168.200.0

 neighbor 192.168.1.226 remote-as 100

Example 3-20 shows that AS 300's prefixes are advertised to AngelFire and that the destinations are 



reachable. However, many of the same concerns about redistribution exist for inbound routes as for 
outbound routes. Redistribution picks up every BGP route, but the administrator might want only a subset 
of the BGP routes to be redistributed. In such a case, route filters are again required to suppress the 
unwanted routes.

CAUTION

Another vitally important reason exists for not redistributing BGP routes into an IGP. A 
full Internet routing table consists of more than 80,000 prefixes, and an IGP process will 
"choke" trying to process so many routes. Redistribution of a full Internet table, or even a 
large partial table, will inevitably cause a major network crash. The redistribution 
examples shown in this chapter can be useful in an enterprise network with limited 
prefixes, but you should never use a BGP-to-IGP redistribution on an Internet-facing 
router.

Example 3-20 Taos Has Redistributed Its BGP-Learned Routes into EIGRP

AngelFire#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

Gateway of last resort is not set

D    192.168.100.0/24 [90/409600] via 192.168.1.218, 01:14:22, Ethernet0/0

     192.168.1.0/24 is variably subnetted, 4 subnets, 2 masks

D       192.168.1.224/30 [90/2195456] via 192.168.1.218, 01:16:44, Ethernet0/0

C       192.168.1.216/30 is directly connected, Ethernet0/0

D EX    192.168.1.212/30 [170/307200] via 192.168.1.218, 00:03:55, Ethernet0/0

D EX 192.168.250.0/24 [170/307200] via 192.168.1.218, 00:03:55, Ethernet0/0

C    192.168.200.0/24 is directly connected, Ethernet0/1

AngelFire#ping 192.168.250.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.250.1, timeout is 2 seconds:

!!!!!



Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/12 ms

AngelFire#

For more control over which routes are advertised into AS 200, you can use static routes, as 
demonstrated in Example 3-21.

Example 3-21 Controlling Routes Advertised into AS 200 via Static Routes

router eigrp 200

 redistribute static metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

!

router bgp 200

 network 192.168.1.216 mask 255.255.255.252

 network 192.168.100.0

 network 192.168.200.0

 neighbor 192.168.1.226 remote-as 100

!

ip route 192.168.250.0 255.255.255.0 Serial0

In this configuration, only 192.168.250.0/24 is advertised into the AS. As Example 3-22 shows, AngelFire 
has no knowledge of subnet 192.168.1.212/30. Using static routes in the configuration has the added 
benefit of protecting AS 200 from instabilities. If network 192.168.250.0 flaps in AS 300, the changes are 
not advertised any further into AS 200 than Taos.

Example 3-22 Subnet 192.168.1.212/30 Is Not Advertised to AngelFire

AngelFire#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

Gateway of last resort is not set



D    192.168.100.0/24 [90/409600] via 192.168.1.218, 00:14:33, Ethernet0/0

     192.168.1.0/24 is variably subnetted, 3 subnets, 2 masks

D       192.168.1.224/30 [90/2195456] via 192.168.1.218, 00:14:33, Ethernet0/0

C       192.168.1.216/30 is directly connected, Ethernet0/0

D EX 192.168.250.0/24 [170/307200] via 192.168.1.218, 00:11:17, Ethernet0/0

C    192.168.200.0/24 is directly connected, Ethernet0/1

AngelFire#ping 192.168.250.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.250.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/7/8 ms

AngelFire#

Of course, in a single-homed AS, such as AS 200 in Figure 3-4, little reason exists to advertise any 
external routes into the AS at all. Unless there is a need to advertise specific routes into the AS, a default 
route suffices, as demonstrated by Example 3-23.

Example 3-23 Configuring a Default Route in a Single-Homed AS

router eigrp 200

 redistribute static metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

!

router bgp 200

 network 192.168.1.216 mask 255.255.255.252

 network 192.168.100.0

 network 192.168.200.0

 neighbor 192.168.1.226 remote-as 100

!

ip classless

ip route 0.0.0.0 0.0.0.0 Serial0

In the configuration in Example 3-23, Taos generates a default route and advertises it to all EIGRP 
speakers; however, you also can configure BGP to generate a default route. To advertise a default from 



Vail to its BGP neighbors, use the configuration in Example 3-24.

Example 3-24 Configuring a Default Route to BGP Neighbors

router bgp 100

 network 0.0.0.0

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

!

ip route 0.0.0.0 0.0.0.0 Null0

A default route to the Null0 interface is created statically, and the route is advertised with the network 
command. The assumption with the configuration in Example 3-24 is that Vail has full routing information. 
All packets are forwarded to Vail; any destination address that cannot be matched to a more-specific route 
matches the static route and is dropped.

In some design cases, a default should be sent to some neighbors, but not to others. To send a default 
from Vail to Taos, but not to any of Vail's other neighbors, use the configuration in Example 3-25.

Example 3-25 Configuring a Default Route to Specific BGP Neighbors

router bgp 100

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

 neighbor 192.168.1.225 default-originate

The BGP neighbor default-originate command is similar to the OSPF default-information-originate 
always command in that a default is advertised whether the router actually has a default route or not. 
Notice in the configuration that the static route from the preceding configuration is no longer present; 
however, a route to 0.0.0.0/0 is still advertised to Taos, as Example 3-26 shows. Example 3-26 also 
shows the routing table of Tahoe. You can see that, unlike Taos, Tahoe does not have an entry for 
0.0.0.0/0.

Example 3-26 A Default Route Has Been Advertised to Taos, But Not to Tahoe

Taos#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP



       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is 192.168.1.226 to network 0.0.0.0

D    192.168.200.0/24 [90/409600] via 192.168.1.217, 02:06:34, Ethernet0

B    192.168.250.0/24 [20/0] via 192.168.1.226, 00:46:03

     192.168.1.0/24 is variably subnetted, 4 subnets, 2 masks

D       192.168.1.0/24 is a summary, 02:06:34, Null0

C       192.168.1.224/30 is directly connected, Serial0

C       192.168.1.216/30 is directly connected, Ethernet0

B       192.168.1.212/30 [20/0] via 192.168.1.226, 00:46:04

C    192.168.100.0/24 is directly connected, Ethernet1

B*   0.0.0.0/0 [20/0] via 192.168.1.226, 00:47:03

Taos#

_______________________________________________________________________

Tahoe#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

B    192.168.100.0 [20/0] via 192.168.1.209, 00:48:26

     192.168.1.0 255.255.255.252 is subnetted, 3 subnets

B       192.168.1.216 [20/0] via 192.168.1.209, 00:48:26

C       192.168.1.208 is directly connected, Serial0

C       192.168.1.212 is directly connected, Serial1

C    192.168.250.0 is directly connected, Ethernet0

B    192.168.200.0 [20/0] via 192.168.1.209, 00:48:27

Tahoe#

The advertisement of a default route to a BGP neighbor does not suppress the more-specific routes. In 
Example 3-26, you can see that the routes from AS 300 are still present in Taos' routing table. In some 
cases, this can be desirable. For example, an ISP might send to a customer the routes to all of its other 
customers (a partial Internet table), as well as a default to the rest of the Internet. Such a case is useful 



when multihomed to the same ISP. The customer network can then make best-path choices to the ISP's 
customers and use the default route for all other external destinations.

If only the default is to be sent, you must use a route filter to suppress all more-specific routes. The 
configuration in Example 3-27, using the neighbor distribute-list command, is just one way to filter BGP 
routes. The section "Routing Policies" demonstrates other techniques.

Example 3-27 Filtering BGP Routes with the neighbor distribute-list Command

router bgp 100

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

 neighbor 192.168.1.225 default-originate

 neighbor 192.168.1.225 distribute-list 1 out

!

access-list 1 permit 0.0.0.0

access-list 1 deny any

Case Study: IBGP without an IGP

In Figure 3-5, another router is added to AS 100; it connects to another AS via EBGP. AS 100 is now a 
transit AS, carrying traffic that neither originates nor terminates in AS 100.

Figure 3-5. AS 100 Is Running IBGP to Carry the Transit Traffic Between AS 400 
and the Other Two Autonomous Systems



To carry the transit traffic, the interior routers in AS 100 are fully meshed with IBGP, as shown in the 
configurations in Example 3-28.

Example 3-28 Configuring the Interior Routers in AS 100 to Be Fully Meshed 
with IBGP

Vail

router bgp 100

 no synchronization

 network 192.168.1.208 mask 255.255.255.252

 network 192.168.1.224 mask 255.255.255.252

 neighbor 192.168.1.197 remote-as 100

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.225 remote-as 200

_______________________________________________________________________

Aspen

router bgp 100

 no synchronization

 network 192.168.1.196 mask 255.255.255.252

 network 192.168.1.220 mask 255.255.255.252

 neighbor 192.168.1.197 remote-as 100



 neighbor 192.168.1.221 remote-as 100

_______________________________________________________________________

Telluride

router bgp 100

 no synchronization

 network 192.168.1.204 mask 255.255.255.252

 neighbor 192.168.1.198 remote-as 100

 neighbor 192.168.1.205 remote-as 400

 neighbor 192.168.1.221 remote-as 100

Example 3-29 shows Alta's routing table; a few pings demonstrate that the destinations in AS 200 and AS 
300 are reachable.

Example 3-29 Routes from AS 200 and AS 300 Have Been Passed Across the 
IBGP Connections in AS 100 to AS 400

Alta#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

B    192.168.100.0 [20/0] via 192.168.1.206, 02:02:59

C    192.168.75.0 is directly connected, Ethernet1

C    192.168.50.0 is directly connected, Ethernet0

     192.168.1.0 255.255.255.252 is subnetted, 8 subnets

B       192.168.1.224 [20/0] via 192.168.1.206, 02:02:59

C       192.168.1.200 is directly connected, Ethernet2

C       192.168.1.204 is directly connected, Serial0

B       192.168.1.196 [20/0] via 192.168.1.206, 02:03:30

B       192.168.1.216 [20/0] via 192.168.1.206, 02:02:59

B       192.168.1.220 [20/0] via 192.168.1.206, 02:03:30

B       192.168.1.208 [20/0] via 192.168.1.206, 02:02:59

B       192.168.1.212 [20/0] via 192.168.1.206, 02:02:59

B    192.168.250.0 [20/0] via 192.168.1.206, 02:02:59

B    192.168.200.0 [20/0] via 192.168.1.206, 02:03:00



Alta#ping 192.168.250.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.250.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms

Alta#ping 192.168.200.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.200.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/9/12 ms

Alta#

Remember the following important points when configuring IBGP as shown in Figure 3-5:

●     Synchronization must be turned off.
●     Every IBGP router must be peered with every other IBGP router.
●     All networks and subnets connecting the IBGP routers must be known.

In the configurations in Example 3-28, you can see that synchronization is disabled with the command no 
synchronization. Recall from Chapter 2 that the rule of synchronization states that a router cannot 
advertise IBGP routes to an EBGP peer unless the routes are known by the IGP. In other words, BGP must 
be synchronized with the IGP. Neither redistribution nor network statements cause a route to be 
advertised that is not in the routing table.

The rule of synchronization is circumvented if IBGP-learned routes are entered into the routing table. The 
redistribution or network statements could match an IBGP route in the routing table and advertise it, 
even though the IGP does not know about the route. Therefore, when synchronization is enabled, IBGP 
routes are not entered into the routing table.

Example 3-30 shows what happens at Aspen when synchronization is enabled. The BGP table shows that 
the router has learned all the routes advertised by its IBGP peers, but the routing table shows that none 
of the routes have been entered. Although Aspen has no EBGP peers, forwarding is affected. If Telluride 
forwards a packet destined for 192.168.250.1, for example, Aspen does not have an entry for that 
destination in its routing table and will drop the packet.

Example 3-30 When Synchronization Is Enabled, IBGP-Learned Routes Are Not 
Entered into the Routing Table

Aspen#show ip bgp

BGP table version is 3, local router ID is 192.168.1.222

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.196/30 0.0.0.0                  0         32768 i



* i192.168.1.200/30 192.168.1.205            0    100      0 400 i

* i192.168.1.204/30 192.168.1.197            0    100      0 i

* i192.168.1.208/30 192.168.1.221            0    100      0 i

* i192.168.1.212/30 192.168.1.210            0    100      0 300 i

* i192.168.1.216/30 192.168.1.225            0    100      0 200 i

*> 192.168.1.220/30 0.0.0.0                  0         32768 i

* i192.168.1.224/30 192.168.1.221            0    100      0 i

* i192.168.50.0     192.168.1.205            0    100      0 400 i

* i192.168.75.0     192.168.1.205            0    100      0 400 i

* i192.168.100.0    192.168.1.225            0    100      0 200 i

* i192.168.200.0    192.168.1.225       409600    100      0 200 i

* i192.168.250.0    192.168.1.210            0    100      0 300 i

Aspen#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

     192.168.1.0/30 is subnetted, 2 subnets

C       192.168.1.196 is directly connected, Ethernet1

C       192.168.1.220 is directly connected, Ethernet0

Aspen#

In Example 3-31, synchronization is disabled at Aspen, and the IBGP routes are entered into the routing 
table.

NOTE

If you turn off synchronization on a working BGP process, you must reset the BGP 
connections with the clear ip bgp * command before the changes will take effect. The 
use of this command is explained more completely in the section "Resetting BGP 
Connections."



Example 3-31 Aspen's IBGP Routes Are Entered into the Routing Table When 
Synchronization Is Disabled

Aspen#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

B    192.168.75.0/24 [200/0] via 192.168.1.205, 00:01:00

B    192.168.200.0/24 [200/409600] via 192.168.1.225, 00:01:00

B    192.168.250.0/24 [200/0] via 192.168.1.210, 00:01:00

B    192.168.50.0/24 [200/0] via 192.168.1.205, 00:01:00

     192.168.1.0/30 is subnetted, 8 subnets

B       192.168.1.224 [200/0] via 192.168.1.221, 00:01:50

B       192.168.1.200 [200/0] via 192.168.1.205, 00:01:00

B       192.168.1.204 [200/0] via 192.168.1.197, 00:01:52

C       192.168.1.196 is directly connected, Ethernet1

B       192.168.1.216 [200/0] via 192.168.1.225, 00:01:01

C       192.168.1.220 is directly connected, Ethernet0

B       192.168.1.208 [200/0] via 192.168.1.221, 00:01:50

B       192.168.1.212 [200/0] via 192.168.1.210, 00:01:01

B    192.168.100.0/24 [200/0] via 192.168.1.225, 00:01:02

Aspen#

You can observe in Figure 3-5 and in the configurations for the routers in AS 100 that each of the three 
routers is peered with the other two routers. The reason for this is that a router does not pass routes 
learned from one IBGP peer to another IBGP peer. Vail, for instance, learns the addresses of AS 400 from 
its IBGP session with Telluride. If this session did not exist, Vail would not learn the routes from Aspen. 
Aspen also learns routes from Vail and Telluride over the respective IBGP connections to those peers. If 
Aspen did not learn the routes, it would not be able to forward packets between Telluride and Vail.

When an EBGP-learned route is advertised to an IBGP peer, the next-hop address of the route is 



unchanged. Observe in Aspen's BGP table in Example 3-30 that the next-hop address of all the routes to 
destinations in other autonomous systems is the interface address of the router that originated the EBGP 
route. For example, the next-hop address of the route to 192.168.200.0/24 is 192.168.1.225, Taos' 
interface. These next-hop addresses are entered into the routing table. As a result, all the IBGP routers 
must know how to reach the next-hop addresses. In the configurations for Figure 3-5, Vail and Telluride 
both have network statements for the subnet addresses of the links to their EBGP peers. These 
statements exist solely so that the IBGP peers know how to reach the next-hop addresses on those links.

Aspen also has network statements for its two data links. These exist so that Telluride knows how to 
reach the next-hop address 192.168.1.221 at Vail, and so that Vail knows how to reach the next-hop 
address 192.168.1.197 at Telluride. These addresses are also important for the formation of the IBGP 
peering session between Vail and Telluride. Although the logical connection is between these two routers, 
as shown in Figure 3-5, the TCP connection that the IBGP session uses passes through Aspen. If Vail and 
Telluride do not know how to find each other, the TCP connection cannot be established.

The location of these network statements is also important. If the statement network 192.168.1.220 
mask 255.255.255.252 was at Vail rather than at Aspen, for example, the subnet would not be 
advertised past Aspen, and Telluride would not know how to reach next-hop address 192.168.1.221.

The rule that next-hop addresses of EBGP routes do not change when advertised to IBGP peers does not 
apply in the opposite direction. If a router advertises an IBGP-learned route to an EBGP peer, the next-
hop address is the interface of the advertising router. This is true even if the route was originally an EBGP-
learned route. Compare the next-hop addresses of the routes in Aspen's BGP table in Example 3-31 with 
the next-hop addresses of the routes in Alta's BGP table, shown in Example 3-32. Notice that Aspen shows 
the next-hop address for 192.168.250.0/24 as 192.168.1.210, at Tahoe. Yet Alta's next-hop address for 
the same route is 192.168.1.206, at Telluride. In fact, every EBGP-learned route at Alta has the same 
next-hop address.

Example 3-32 The Next-Hop Address for an EBGP-Learned Route Is Always the 
Address of the EBGP Peer That Advertised the Route

Alta#show ip bgp

BGP table version is 102, local router ID is 192.168.75.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.1.196/30 192.168.1.206                        0 100 i

*> 192.168.1.200/30 0.0.0.0                0         32768 i

*> 192.168.1.204/30 192.168.1.206          0             0 100 i

*> 192.168.1.208/30 192.168.1.206                        0 100 i

*> 192.168.1.212/30 192.168.1.206                        0 100 300 i

*> 192.168.1.216/30 192.168.1.206                        0 100 200 i

*> 192.168.1.220/30 192.168.1.206                        0 100 i

*> 192.168.1.224/30 192.168.1.206                        0 100 i

*> 192.168.50.0     0.0.0.0                0         32768 i

*> 192.168.75.0     0.0.0.0                0         32768 i



*> 192.168.100.0    192.168.1.206                        0 100 200 i

*> 192.168.200.0    192.168.1.206                        0 100 200 i

*> 192.168.250.0    192.168.1.206                        0 100 300 i

Alta#

You can override the rule that the next-hop address of an EBGP route does not change when advertised to 
an IBGP peer by using the neighbor next-hop-self command. Example 3-33 demonstrates the use of 
the neighbor next-hop-self command in the configurations for Vail and Telluride in AS 100.

Example 3-33 Forcing the Next-Hop Address of an EBGP Route to Change When 
Advertised to an IBGP Peer

Vail

router bgp 100

 no synchronization

 neighbor 192.168.1.197 remote-as 100

 neighbor 192.168.1.197 next-hop-self

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.222 remote-as 100

 neighbor 192.168.1.222 next-hop-self

 neighbor 192.168.1.225 remote-as 200

_______________________________________________________________________

Telluride

router bgp 100

 no synchronization

 neighbor 192.168.1.198 remote-as 100

 neighbor 192.168.1.198 next-hop-self

 neighbor 192.168.1.205 remote-as 400

 neighbor 192.168.1.221 remote-as 100

 neighbor 192.168.1.221 next-hop-self

Notice in Example 3-33 that at both routers, the network statements of the previous configurations have 
been removed. Because both routers now advertise their EBGP-learned routes with their own addresses as 
the next hop, the network statements are no longer needed. Example 3-34 shows Aspen's BGP table 
after the reconfiguration.

Example 3-34 Vail and Telluride Now Advertise Themselves As the Next Hops 
for the EBGP-Learned Routes They Send to Aspen

Aspen#show ip bgp



BGP table version is 35, local router ID is 192.168.1.222

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.196/30 0.0.0.0                  0         32768 i

*>i192.168.1.200/30 192.168.1.197            0    100      0 400 i

*>i192.168.1.212/30 192.168.1.221            0    100      0 300 i

*>i192.168.1.216/30 192.168.1.221            0    100      0 200 i

*> 192.168.1.220/30 0.0.0.0                  0         32768 i

*>i192.168.50.0     192.168.1.197            0    100      0 400 i

*>i192.168.75.0     192.168.1.197            0    100      0 400 i

*>i192.168.100.0    192.168.1.221            0    100      0 200 i

*>i192.168.200.0    192.168.1.221       409600    100      0 200 i

*>i192.168.250.0    192.168.1.221            0    100      0 300 i

Aspen#

This section serves to demonstrate several fundamental concepts about the behavior of IBGP. However, 
the approach taken to demonstrate those concepts is certainly not standard. Although you can find many 
discussions in the routing newsgroups about using IBGP in an AS without an IGP, in practice you rarely, if 
ever, find such an implementation. For example, this section shows a configuration in which a network 
statement is used so that internal routers know how to reach external next-hop addresses. "Real-life" 
IBGP implementations use either the next-hop-self function or run an IGP in passive mode on the 
external interfaces. A third option occasionally encountered is to redistribute connected interfaces into the 
IGP on AS border routers, but this can be a heavy-handed approach and is generally frowned upon.

More importantly, an IGP makes the TCP sessions over which IBGP rides, and therefore IBGP itself, more 
robust. The following section begins to expose you to more-realistic BGP configurations.

Case Study: IBGP Over an IGP

In Figure 3-6, the routers within AS 100 have been reconfigured. In this topology, OSPF is running as the 
autonomous system's IGP, and IBGP runs only between Vail and Telluride.

Figure 3-6. OSPF Is Added to the Routers in AS 100



Example 3-35 shows the configurations of the three routers in AS 100.

Example 3-35 Configurations for Vail, Aspen, and Telluride in AS 100

Vail

router ospf 100

 redistribute bgp 100 subnets

 network 192.168.1.221 0.0.0.0 area 0

!

router bgp 100

 neighbor 192.168.1.197 remote-as 100

 neighbor 192.168.1.197 next-hop-self

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.225 remote-as 200

_______________________________________________________________________

Aspen

router ospf 100

 network 192.168.1.0 0.0.0.255 area 0

_______________________________________________________________________

Telluride

router ospf 100

 redistribute bgp 100 subnets



 network 192.168.1.197 0.0.0.0 area 0

!

router bgp 100

 neighbor 192.168.1.205 remote-as 400

 neighbor 192.168.1.221 remote-as 100

 neighbor 192.168.1.221 next-hop-self

In the BGP configurations, synchronization is enabled and EBGP routes are redistributed into OSPF. 
(Synchronization enabled is the default, so no command appears in the configuration.) These two 
configuration steps are integral to the correct operation of the IBGP link. The redistribution serves the 
same purpose as the IBGP links to Aspen in the preceding case study. If Aspen receives a packet 
originated in AS 400 and destined for AS 200, and it does not know the route, it drops the packet.

Synchronization serves as insurance that the redistribution works correctly. If the route to 
192.168.100.0/24 is not redistributed into OSPF at Vail, for instance, it will not show up in Telluride's 
routing table. Telluride knows about the route from the IBGP connection, but because the route is not in 
its routing table, the router cannot advertise the route to Alta. No traffic to that destination is forwarded 
from AS 400 to AS 100. If there is an alternative path from AS 400 to AS 200 (not shown in Figure 3-6), 
that path can be used.

Example 3-36 shows Telluride's BGP table and routing table, and Example 3-37 shows Alta's routing table. 
Notice from Telluride's configuration that no routes are redistributed from OSPF into BGP, and no BGP 
network commands are used. All necessary routes are already in Telluride's BGP table, and these are the 
routes that are advertised to Alta. The routes in Telluride's routing table serve only to satisfy the 
requirements of synchronization.

Example 3-36 The BGP and Routing Tables of Telluride in Figure 3-6

Telluride#show ip bgp

BGP table version is 9, local router ID is 192.168.1.206

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.200/30 192.168.1.205            0             0 400 i

*>i192.168.1.212/30 192.168.1.221            0    100      0 300 i

*>i192.168.1.216/30 192.168.1.221            0    100      0 200 i

*> 192.168.50.0     192.168.1.205            0             0 400 i

*> 192.168.75.0     192.168.1.205            0             0 400 i

*>i192.168.100.0    192.168.1.221            0    100      0 200 i

*>i192.168.200.0    192.168.1.221       409600    100      0 200 i

*>i192.168.250.0    192.168.1.221            0    100      0 300 i

Telluride#show ip route



Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

B    192.168.75.0/24 [20/0] via 192.168.1.205, 15:16:37

O E2 192.168.200.0/24 [110/1] via 192.168.1.198, 15:15:38, Ethernet0

O E2 192.168.250.0/24 [110/1] via 192.168.1.198, 15:15:38, Ethernet0

B    192.168.50.0/24 [20/0] via 192.168.1.205, 15:16:38

     192.168.1.0/30 is subnetted, 6 subnets

B       192.168.1.200 [20/0] via 192.168.1.205, 15:16:38

C       192.168.1.204 is directly connected, Serial0

C       192.168.1.196 is directly connected, Ethernet0

O E2    192.168.1.216 [110/1] via 192.168.1.198, 15:15:38, Ethernet0

O       192.168.1.220 [110/20] via 192.168.1.198, 15:18:22, Ethernet0

O E2    192.168.1.212 [110/1] via 192.168.1.198, 15:15:38, Ethernet0

O E2 192.168.100.0/24 [110/1] via 192.168.1.198, 15:15:39, Ethernet0

Telluride#

Example 3-37 Alta's Routing Table in Figure 3-6

Alta#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

B    192.168.100.0 [20/0] via 192.168.1.206, 15:34:05

C    192.168.75.0 is directly connected, Ethernet1

C    192.168.50.0 is directly connected, Loopback0

     192.168.1.0 255.255.255.252 is subnetted, 4 subnets



C       192.168.1.200 is directly connected, Ethernet2

C       192.168.1.204 is directly connected, Serial0

B       192.168.1.216 [20/0] via 192.168.1.206, 15:33:37

B       192.168.1.212 [20/0] via 192.168.1.206, 15:33:37

B    192.168.250.0 [20/0] via 192.168.1.206, 15:34:05

B    192.168.200.0 [20/0] via 192.168.1.206, 15:34:05

The topology of Figure 3-6 contains a major vulnerability. If Aspen or one of its links fails, AS 400 is 
isolated from the rest of the internetwork. In Figure 3-7, a link is added between Vail and Telluride for 
redundancy, and a second IBGP session is established over the link.

Figure 3-7. A New Link and a Second IBGP Session Are Added Between Vail and 
Telluride for Redundancy

Example 3-38 shows the configurations of Vail and Telluride.

Example 3-38 Configurations for Vail and Telluride in AS 100

Vail

router ospf 100

 redistribute bgp 100 subnets

 network 192.168.1.193 0.0.0.0 area 0

 network 192.168.1.221 0.0.0.0 area 0

!



router bgp 100

 neighbor 192.168.1.194 remote-as 100

 neighbor 192.168.1.194 next-hop-self

 neighbor 192.168.1.197 remote-as 100

 neighbor 192.168.1.197 next-hop-self

 neighbor 192.168.1.210 remote-as 300

 neighbor 192.168.1.225 remote-as 200

_______________________________________________________________________

Telluride

router ospf 100

 redistribute bgp 100 subnets

 network 192.168.1.194 0.0.0.0 area 0

 network 192.168.1.197 0.0.0.0 area 0

!

router bgp 100

 neighbor 192.168.1.193 remote-as 100

 neighbor 192.168.1.193 next-hop-self

 neighbor 192.168.1.205 remote-as 400

 neighbor 192.168.1.221 remote-as 100

 neighbor 192.168.1.221 next-hop-self

Example 3-39 shows the resulting BGP table at Telluride. All the routes learned from Vail indicate two next-
hop addresses, representing the two IBGP connections. A > indicates the path currently being used. If the 
link fails, the other link is used.

Example 3-39 Telluride's Routing Table Shows Alternative Paths for the Routes 
from Vail

Telluride#show ip bgp

BGP table version is 17, local router ID is 192.168.255.253

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.200/30 192.168.1.205            0             0 400 i

*>i192.168.1.212/30 192.168.1.193            0    100      0 300 i

* i                 192.168.1.221            0    100      0 300 i



*>i192.168.1.216/30 192.168.1.193            0    100      0 200 i

* i                 192.168.1.221            0    100      0 200 i

*> 192.168.50.0     192.168.1.205            0             0 400 i

*> 192.168.75.0     192.168.1.205            0             0 400 i

*>i192.168.100.0    192.168.1.193            0    100      0 200 i

* i                 192.168.1.221            0    100      0 200 i

*>i192.168.200.0    192.168.1.193       409600    100      0 200 i

* i                 192.168.1.221       409600    100      0 200 i

*>i192.168.250.0    192.168.1.193            0    100      0 300 i

* i                 192.168.1.221            0    100      0 300 i

Telluride#

Although the configuration illustrated in Figure 3-7 provides redundancy, the failover can be slow. By 
default, the BGP keepalive interval is 60 seconds and the hold time is 180 seconds, as shown in Example 3-
40. Potentially, 180 seconds could pass before BGP detects a failed IBGP connection and switches to the 
other link. You can improve the failover time by resetting the BGP keepalive and hold times with the 
timers bgp command. For example, timers bgp 3 9 sets the keepalive interval to 3 seconds and the 
hold time to 9 seconds.

Example 3-40 The Default BGP Keepalive Time Is 60 Seconds, and the Default 
Hold Time Is 180 Seconds

Telluride#show ip bgp neighbor 192.168.1.193

BGP neighbor is 192.168.1.193,  remote AS 100, internal link

 Index 2, Offset 0, Mask 0x4

  NEXT_HOP is always this router

  BGP version 4, remote router ID 192.168.255.254

  BGP state = Established, table version = 14, up for 00:01:30

  Last read 00:00:31, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 5 seconds

  Received 6 messages, 0 notifications, 0 in queue

  Sent 5 messages, 0 notifications, 0 in queue

  Prefix advertised 3, suppressed 0, withdrawn 0

  Connections established 1; dropped 0

  Last reset 00:02:51, due to User reset

  3 accepted prefixes consume 96 bytes

  0 history paths consume 0 bytes

 --More--



Figure 3-8 shows a better way to add redundancy. Instead of creating two IBGP sessions over the 
alternative paths, a single IBGP session is created between the loopback interfaces of the routers. OSPF 
takes care of finding the best path for the IBGP session and reroutes the session much faster if a link fails.

Figure 3-8. A Single IBGP Session Is Established Between Vail's and Telluride's 
Loopback Interfaces

Example 3-41 shows the configurations of Vail and Telluride for the setup in Figure 3-8.

Example 3-41 Configuring a Single IBGP Session Between the Loopback 
Interfaces of Vail and Telluride

Vail

interface Loopback0

 ip address 192.168.255.254 255.255.255.255

!

router ospf 100

 redistribute bgp 100 subnets

 network 192.168.1.193 0.0.0.0 area 0

 network 192.168.1.221 0.0.0.0 area 0

 network 192.168.255.254 0.0.0.0 area 0

!

router bgp 100

 neighbor 192.168.1.210 remote-as 300



 neighbor 192.168.1.225 remote-as 200

 neighbor 192.168.255.253 remote-as 100

 neighbor 192.168.255.253 update-source Loopback0

 neighbor 192.168.255.253 next-hop-self

_______________________________________________________________________

Telluride

interface Loopback0

 ip address 192.168.255.253 255.255.255.255

!

router ospf 100

 redistribute bgp 100 subnets

 network 192.168.1.194 0.0.0.0 area 0

 network 192.168.1.197 0.0.0.0 area 0

 network 192.168.255.253 0.0.0.0 area 0

!

router bgp 100

 neighbor 192.168.1.205 remote-as 400

 neighbor 192.168.255.254 remote-as 100

 neighbor 192.168.255.254 update-source Loopback0

 neighbor 192.168.255.254 next-hop-self

The significant difference in these configurations, beyond the obvious creation of loopback addresses, is 
the neighbor update-source statement. This command causes the BGP messages to be sourced from 
the IP address of the loopback interface rather than from the physical interface the message is sent on. 
Without it, the TCP source of the TCP sessions would be the outgoing interface address. The end points of 
the TCP sessions would not match and would therefore not come up. Also important is the additional 
network statement under OSPF, advertising the loopback address. Without it, the address is unreachable, 
and the IBGP session is not created. Example 3-42 shows Telluride's BGP table after the reconfiguration.

Example 3-42 The Next-Hop Address of the Routes from Vail Is Vail's Loopback 
Address

Telluride#show ip bgp

BGP table version is 7, local router ID is 192.168.255.253

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.200/30 192.168.1.205            0             0 400 i

*>i192.168.1.212/30 192.168.255.254          0    100      0 300 i



*>i192.168.1.216/30 192.168.255.254          0    100      0 200 i

*> 192.168.50.0     192.168.1.205            0             0 400 i

*> 192.168.75.0     192.168.1.205            0             0 400 i

*>i192.168.100.0    192.168.255.254          0    100      0 200 i

*>i192.168.200.0    192.168.255.254     409600    100      0 200 i

*>i192.168.250.0    192.168.255.254          0    100      0 300 i

Telluride#

CAUTION

The examples in this section use BGP-to-IGP redistribution to better demonstrate basic 
IBGP behavior. However, it is worth noting one more time that if you are receiving a large 
number of routes from an external BGP peer, redistribution into your IGP can be very 
dangerous. In a topology such as the one in Figure 3-8, the safe approach is to configure 
a full IBGP mesh—IBGP sessions between the loopback interfaces of all three routers in 
AS 100. Aspen then learns the necessary information for packet forwarding directly from 
BGP, and no redistribution is necessary.

Case Study: EBGP Multihop

Just as you can establish an IBGP session between loopback interfaces, as demonstrated in the preceding 
case study, you also can establish EBGP sessions between loopback interfaces. Figure 3-9 shows such a 
session. Here, the end points of the EBGP session between Telluride and Alta are loopback interfaces.

Figure 3-9. An EBGP Session Is Established Between Telluride's and Alta's 
Loopback Interfaces



Example 3-43 shows the preliminary configuration of the two routers in Figure 3-9.

Example 3-43 Configuring an EBGP Session Between the Loopback Interfaces 
for Telluride and Alta

Telluride

router bgp 100

 network 192.168.1.204 mask 255.255.255.252

 neighbor 192.168.255.251 remote-as 400

 neighbor 192.168.255.251 update-source Loopback0

 neighbor 192.168.255.254 remote-as 100

 neighbor 192.168.255.254 update-source Loopback0

 neighbor 192.168.255.254 next-hop-self

!

ip route 192.168.255.251 255.255.255.255 192.168.1.205

_______________________________________________________________________

Alta

router bgp 400

 network 192.168.50.0

 network 192.168.75.0

 network 192.168.1.200 mask 255.255.255.252

 neighbor 192.168.255.253 remote-as 100



 neighbor 192.168.255.253 update-source Loopback3

 no auto-summary

!

ip route 192.168.255.253 255.255.255.255 192.168.1.206

Notice that static routes have been added to each router. These routes are necessary so that each router 
knows how to find the address of its neighbor's loopback interface to begin the TCP session. In the 
preceding case study, adding a network statement under OSPF performed the same function. In this 
scenario, no IGP runs between the routers, so static routes are used. When troubleshooting IBGP, keep in 
mind that the IBGP routers must know how to find their peers before an IBGP session can be established 
and BGP routes can be exchanged. If two IBGP neighbors are not peering, one of the first things you 
should check is whether the routers know how to reach each other.

Unfortunately, the neighbors do not peer with the configurations shown. Example 3-44 offers a hint about 
the problem. The highlighted line indicates that the neighbors are not directly connected. You already 
know this; the addresses of the loopback interfaces are indeed not directly connected, which is why the 
static routes are required. However, the fact that BGP points this out is significant.

Example 3-44 show ip bgp neighbors Output Shows That the EBGP Connection 
to Alta Is Not Established

Telluride#show ip bgp neighbor 192.168.255.251

BGP neighbor is 192.168.255.251,  remote AS 400, external link

 Index 1, Offset 0, Mask 0x2

  BGP version 4, remote router ID 0.0.0.0

  BGP state = Idle, table version = 0

  Last read 00:00:11, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 30 seconds

  Received 0 messages, 0 notifications, 0 in queue

  Sent 0 messages, 0 notifications, 0 in queue

  Prefix advertised 0, suppressed 0, withdrawn 0

  Connections established 0; dropped 0

  Last reset never

  0 accepted prefixes consume 0 bytes

  0 history paths consume 0 bytes

  External BGP neighbor not directly connected.

  No active TCP connection

Telluride

The significance is that although you can create IBGP across multiple router hops, EBGP neighbors by 
default must be directly connected. In Figure 3-9, the packets sourced from Alta's loopback interface must 
be routed to its serial interface. At Telluride, the packet must be routed from its serial interface to its 
loopback interface. In other words, the TCP packets must cross two router hops between the loopback 



interfaces.

The neighbor ebgp-multihop command enables you to override the default one-hop EBGP limit by 
changing the TTL of EBGP packets from the default value of 1. Example 3-45 shows the neighbor 
configurations using the neighbor ebgp-multihop command to change the TTL of the EBGP packets to 
2.

Example 3-45 Using the neighbor ebgp-multihop Command Overrides the 
Default One-Hop EBGP Limit for Alta and Telluride

Telluride

router bgp 100

 network 192.168.1.204 mask 255.255.255.252

 neighbor 192.168.255.251 remote-as 400

 neighbor 192.168.255.251 ebgp-multihop 2

 neighbor 192.168.255.251 update-source Loopback0

 neighbor 192.168.255.254 remote-as 100

 neighbor 192.168.255.254 update-source Loopback0

 neighbor 192.168.255.254 next-hop-self

!

ip route 192.168.255.251 255.255.255.255 192.168.1.205

_______________________________________________________________________

Alta

router bgp 400

 network 192.168.50.0

 network 192.168.75.0

 network 192.168.1.200 mask 255.255.255.252

 neighbor 192.168.255.253 remote-as 100

 neighbor 192.168.255.253 ebgp-multihop 2

 neighbor 192.168.255.253 update-source Loopback3

 no auto-summary

!

ip route 192.168.255.253 255.255.255.255 192.168.1.206

Example 3-46 shows the result of the configuration change. The EBGP session is established, and the 
output indicates the new hop limit.

Example 3-46 show ip bgp neighbors Output Shows That the EBGP Connection 
to Alta Is Established



Telluride#show ip bgp neighbor 192.168.255.251

BGP neighbor is 192.168.255.251,  remote AS 400, external link

 Index 1, Offset 0, Mask 0x2

  BGP version 4, remote router ID 192.168.255.251

  BGP state = Established, table version = 9, up for 00:04:44

  Last read 00:00:14, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 30 seconds

  Received 9 messages, 0 notifications, 0 in queue

  Sent 11 messages, 0 notifications, 0 in queue

  Prefix advertised 4, suppressed 0, withdrawn 0

  Connections established 1; dropped 0

  Last reset 00:25:59, due to User reset

  3 accepted prefixes consume 96 bytes

  0 history paths consume 0 bytes

  External BGP neighbor may be up to 2 hops away

Connection state is ESTAB, I/O status: 1, unread input bytes: 0

Local host: 192.168.255.253, Local port: 11001

Foreign host: 192.168.255.251, Foreign port: 179

Unlike IBGP, which is normally configured between loopback interfaces, the majority of EBGP sessions are 
configured between directly connected interfaces. Therefore, ebgp-multihop is not frequently required. 
An example of where EBGP between loopback interfaces can be useful is when two external neighbors are 
directly connected with multiple links (such as multiple ATM or Frame Relay virtual circuits) for 
redundancy, but only a single EBGP session is desired. If the link being used by EBGP fails, the session 
can be rerouted over an alternative link.

Case Study: Aggregate Routes

Autonomous system 100 in Figure 3-10 contains eight Class C network addresses, all of which can be 
summarized with the aggregate address 192.168.192.0/21. Stowe is learning the internal networks via 
EIGRP and is advertising the aggregate to Sugarbush via EBGP.

Figure 3-10. All the Internal Networks of AS 100 Can Be Aggregated into the 
Single Address 192.168.192.0/21



There are two ways to create an aggregate address under BGP. The first is to create a static entry in the 
routing table for the aggregate address and then advertise it with the network command. The second 
way is to use the aggregate-address command.

Aggregation Using Static Routes

Example 3-47 demonstrates a configuration for Stowe using a static entry aggregate address advertised 
with the network command.

Example 3-47 Creating an Aggregate Address Under BGP Using a Static Entry 
Advertised with the network Command

router eigrp 100

 network 192.168.199.0

!

router bgp 100

 network 192.168.192.0 mask 255.255.248.0

 neighbor 192.168.1.253 remote-as 200

!

ip classless

ip route 192.168.192.0 255.255.248.0 Null0

The static route is pointed at the Null interface because the aggregate itself is not a legitimate end 
destination. It merely represents the more-specific routes in Stowe's routing table. Packets whose 
destination addresses belong to one of AS 100's Class C addresses match the aggregate address in 
routers external to AS 100 and are forwarded to Stowe. At that router, the packet is matched to the more-
specific address and forwarded to the correct internal next-hop router. If for some reason the more-
specific Class C address is not in Stowe's routing table, the packet is forwarded to the Null interface and 
dropped.

Example 3-48 shows the BGP tables of Stowe and Sugarbush. Only the aggregate address exists in 



Stowe's BGP table; that router's BGP configuration has not entered any other address.

Example 3-48 The BGP Tables of Stowe and Sugarbush Both Contain Only the 
Aggregate Route

Stowe#show ip bgp

BGP table version is 2, local router ID is 192.168.199.2

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.192.0/21 0.0.0.0                  0         32768 i

Stowe#

_______________________________________________________________________

Sugarbush#show ip bgp

BGP table version is 18, local router ID is 172.17.3.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0/21 192.168.1.254          0             0 100 i

Sugarbush#

Suppressing More-Specific Routes

In a simple topology such as the one in Figure 3-10, this first method normally suffices. As the topology 
and the routing policies grow more complex, however, the options available with the aggregate-address 
command make that method more useful. The remainder of this case study examines the aggregate-
address command and its options.

For the aggregate specified by the aggregate-address command to be advertised, at least one of the 
more-specific addresses belonging to the aggregate must be entered into the BGP table either through 
redistribution or the network command. Example 3-49 demonstrates a configuration for Stowe using the 
aggregate-address command and redistribution.

Example 3-49 Creating an Aggregate Address Under BGP Using the aggregate-
address Command

router eigrp 100

 network 192.168.199.0

!

router bgp 100



 aggregate-address 192.168.192.0 255.255.248.0 summary-only

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

Example 3-50 shows the resulting BGP tables at Stowe and Sugarbush. Stowe's table looks quite different 
than it did in Example 3-48—all the more-specific routes are included. However, Sugarbush's table looks 
the same. Only the aggregate address is advertised.

Example 3-50 Stowe's BGP Table Includes All the More-Specific Routes; Only 
the Aggregate Is Advertised to Sugarbush

Stowe#show ip bgp

BGP table version is 23, local router ID is 192.168.199.2

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

s> 192.168.192.0    192.168.199.1      2297856         32768 ?

*> 192.168.192.0/21 0.0.0.0                            32768 i

s> 192.168.193.0    192.168.199.1      2297856         32768 ?

s> 192.168.194.0    192.168.199.1      2297856         32768 ?

s> 192.168.195.0    192.168.199.1      2297856         32768 ?

s> 192.168.196.0    192.168.199.1      2297856         32768 ?

s> 192.168.197.0    192.168.199.1      2297856         32768 ?

s> 192.168.198.0    192.168.199.1      2297856         32768 ?

s> 192.168.199.0    0.0.0.0                  0         32768 ?

Stowe#

_______________________________________________________________________

Sugarbush#show ip bgp

BGP table version is 2, local router ID is 172.17.3.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0/21 192.168.1.254                        0 100 i

Sugarbush#

The keys to the left of the more-specific routes in Stowe's BGP table indicate that the routes have been 



suppressed. This suppression results from the summary-only option used with the aggregate-address 
command. Without that option, both the aggregate and the more-specific routes are advertised.

Advertising Aggregate and More-Specific Routes

Advertising both the aggregate and the more-specific routes makes no sense in the simple topology of 
Figure 3-10. But Figure 3-11 shows a scenario in which such a scheme can be desirable. Here, AS 100 is 
multihomed to AS 200. AS 200 needs the full routes from AS 100 to set routing policy, but it must send 
only the aggregate to AS 300.

Figure 3-11. AS 100 Is Multihomed to AS 200

Although the more-specific routes of AS 100 are advertised, they are sent to AS 200 with a COMMUNITY 
attribute of NO_EXPORT. As Chapter 2 discusses, routes carrying this attribute cannot be advertised to 
EBGP peers. As a result, AS 200 knows the routes but does not advertise them to AS 300. Only the 
aggregate, which does not carry the COMMUNITY NO_EXPORT attribute, is advertised to AS 300. Example 
3-51 shows the configuration for Stowe. The configuration for Mammoth is similar and appears later in this 
section.

Example 3-51 Configuring Stowe to Advertise Both the Aggregate and the More-
Specific Routes

router eigrp 100

 network 192.168.199.0

!

router bgp 100

 aggregate-address 192.168.192.0 255.255.248.0

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 send-community



 neighbor 192.168.1.253 route-map COMMUNITY out

!

ip classless

!

access-list 101 permit ip host 192.168.192.0 host 255.255.248.0

!

route-map COMMUNITY permit 10

 match ip address 101

 set community none

!

route-map COMMUNITY permit 20

 set community no-export

The summary-only keyword has been removed from the aggregate-address command, so both the 
aggregate and the more-specific routes are advertised to AS 200. The neighbor 192.168.1.253 send-
community command specifies that the COMMUNITY attribute is sent to Sugarbush. The neighbor 
192.168.1.253 route-map COMMUNITY out command filters outgoing BGP routes through a route 
map named COMMUNITY. If the route map matches the update to access list 101, no COMMUNITY 
attribute is set. If the route does not match access list 101, the route is given a COMMUNITY attribute of 
NO_EXPORT.

The usage of access list 101 might be new to you. Normally, the first address specified in an extended IP 
access list is the source address, and the second address is the destination. In this application, however, 
the first address is the route prefix, and the second address is the prefix's mask. The reason such an odd 
access list is necessary is because the exact prefix must be identified. If access-list 1 permit 
192.168.192.0 0.0.7.255 were used, it would match both the aggregate 192.168.192.0/21 and the 
more-specific route 192.168.192.0/24.

Example 3-52 shows Sugarbush's BGP table, and you can see that it contains both the aggregate route 
and the more-specific routes. Additionally, the command show ip bgp community no-export is used to 
display the routes with the NO_EXPORT COMMUNITY attribute. All routes from Stowe except for the 
aggregate are listed.

Example 3-52 Sugarbush's BGP Table Contains Both the Aggregate Route and 
the More-Specific Routes; All the Routes from Stowe Except for the Aggregate 
Have the NO_EXPORT COMMUNITY Attribute

Sugarbush#show ip bgp

BGP table version is 30, local router ID is 172.17.3.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

* i192.168.192.0    192.168.1.237    2297856    100      0 100 ?



*>                  192.168.1.254    2297856             0 100 ?

* i192.168.192.0/21 192.168.1.237               100      0 100 i

*>                  192.168.1.254                        0 100 i

* i192.168.193.0    192.168.1.237    2297856    100      0 100 ?

*>                  192.168.1.254    2297856             0 100 ?

* i192.168.194.0    192.168.1.237    2297856    100      0 100 ?

*>                  192.168.1.254    2297856             0 100 ?

* i192.168.195.0    192.168.1.237    2297856    100      0 100 ?

*>                  192.168.1.254    2297856             0 100 ?

* i192.168.196.0    192.168.1.237    2297856    100      0 100 ?

*>                  192.168.1.254    2297856             0 100 ?

* i192.168.197.0    192.168.1.237    2297856    100      0 100 ?

*>                  192.168.1.254    2297856             0 100 ?

*>i192.168.198.0    192.168.1.237          0    100      0 100 ?

*                   192.168.1.254    2681856             0 100 ?

* i192.168.199.0    192.168.1.237    2681856    100      0 100 ?

*>                  192.168.1.254          0             0 100 ?

Sugarbush#show ip bgp community no-export

BGP table version is 10, local router ID is 172.17.3.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.254    2297856             0 100 ?

*> 192.168.193.0    192.168.1.254    2297856             0 100 ?

*> 192.168.194.0    192.168.1.254    2297856             0 100 ?

*> 192.168.195.0    192.168.1.254    2297856             0 100 ?

*> 192.168.196.0    192.168.1.254    2297856             0 100 ?

*> 192.168.197.0    192.168.1.254    2297856             0 100 ?

*  192.168.198.0    192.168.1.254    2681856             0 100 ?

*> 192.168.199.0    192.168.1.254          0             0 100 ?

Sugarbush#

Example 3-53 shows Burke's BGP table. No routes except the aggregate have been advertised.

Example 3-53 Burke's BGP Table Contains Only the Aggregate Route



Burke#show ip bgp

BGP table version is 15, local router ID is 172.21.1.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0/21 192.168.1.249                        0 200 100 i

*                   192.168.1.241                        0 200 100 i

Burke#

Mammoth produces the same advertisements as Stowe. For demonstration purposes, a different 
configuration (Example 3-54) is used to arrive at the same results. At Mammoth, an IP prefix list is used 
rather than an access list.

Example 3-54 Configuration for Mammoth in Figure 3-11

router eigrp 100

 network 192.168.198.0

!

router bgp 100

 aggregate-address 192.168.192.0 255.255.248.0

 redistribute eigrp 100

 neighbor 192.168.1.246 remote-as 200

 neighbor 192.168.1.246 send-community

 neighbor 192.168.1.246 route-map COMMUNITY out

!

ip classless

ip route 192.168.255.251 255.255.255.255 192.168.1.205

!

!

ip prefix-list AGGREGATE seq 5 permit 192.168.192.0/21

!

route-map COMMUNITY permit 10

 match ip address prefix-list AGGREGATE

 set community none

!

route-map COMMUNITY permit 20



 set community no-export

Like route maps, prefix lists are identified by a name rather than by a number. In Example 3-54, the 
prefix list is named AGGREGATE. The lines of the list are distinguished by a sequence number (seq) that 
identifies each line's place in a multiple-line list and makes editing the list easier. If you do not type a 
sequence number when you enter a line, Cisco IOS Software enters it automatically, in the order that you 
enter the lines. Following the permit | deny keyword, a prefix and the prefix length are specified.

The prefix list shown in Mammoth's configuration in Example 3-54 matches 192.168.192.0/21 exactly. 
However, you can also add an option that matches a range of prefixes. For example, the command ip 
prefix-list AGGREGATE seq 5 permit 192.168.192.0/21 ge 24 matches all prefixes whose first 21 
bits match 192.168.192.0 and whose length is greater than or equal to 24 bits. This line would match all 
the more-specific routes in AS 100. A keyword of le, on the other hand, is used to match prefixes whose 
lengths are less than or equal to the specified number of bits.

The BGP table at Diamond looks very similar to the one at Sugarbush; the more-specific routes and the 
aggregate are entered. In addition to the aggregate from Sugarbush, Burke's BGP table in Example 3-53 
shows that the aggregate is also advertised by Diamond. Example 3-55 shows the aggregate and one of 
the more-specific routes from Diamond's BGP table in greater detail. You can see that the aggregate does 
not have any COMMUNITY attributes (although it does, as an aggregate, have the ATOMIC_AGGREGATE 
and AGGREGATOR attributes set), and the more-specific route does.

Example 3-55 A Closer Look at Two of the Routes from Diamond's BGP Table 
Shows the Attributes of Each

Diamond# show ip bgp 192.168.192.0 255.255.248.0

BGP routing table entry for 192.168.192.0/21, version 59

Paths: (2 available, best #1)

  Advertised to non peer-group peers:

    192.168.1.238 192.168.1.242

  100, (aggregated by 100 192.168.198.2)

    192.168.1.245 from 192.168.1.245 (192.168.198.2)

      Origin IGP, localpref 100, valid, external, atomic-aggregate, best, ref 2

  100, (aggregated by 100 192.168.199.2)

    192.168.1.238 from 192.168.1.238 (192.168.1.253)

      Origin IGP, localpref 100, valid, internal, not synchronized, atomic-aggregate,

ref 2

Diamond#

Diamond#show ip bgp 192.168.199.0

BGP routing table entry for 192.168.199.0/24, version 58

Paths: (2 available, best #1, not advertised to EBGP peer)

  Advertised to non peer-group peers:

    192.168.1.238



  100

    192.168.1.245 from 192.168.1.245 (192.168.198.2)

      Origin incomplete, metric 2681856, localpref 100, valid, external, best, ref 2

      Community: no-export

  100

    192.168.1.238 from 192.168.1.238 (192.168.1.253)

      Origin incomplete, metric 0, localpref 100, valid, internal, not synchronized, ref 2

Diamond#

Advertising Aggregate and Selected More-Specifics

The previous scenarios send the more-specific routes of AS 100 to AS 200 so that AS 200 can implement 
routing policy. That is, AS 200 uses the routes to set routing preferences for sending traffic to AS 100. AS 
100 also can influence its incoming traffic by manipulating its outgoing advertisements. For example, 
advertising 192.168.193.0/24 over the Stowe/Sugarbush link and not over the Mammoth/Diamond link 
causes incoming traffic to use the Stowe/Sugarbush link. An administrator might want to implement such 
a policy if the AS is geographically diverse. For instance, Stowe might be in Vermont and Mammoth in 
California. The administrator might want incoming traffic to use the ingress point closest to the 
destination, to minimize internal routing.

For this demonstration, the following routing policies are implemented in AS 100 of Figure 3-11:

●     192.168.192.0/24, 192.168.193.0/24, and 192.168.194.0/24 are advertised over the 
Stowe/Sugarbush link.

●     192.168.196.0/24, 192.168.197.0/24, and 192.168.198.0/24 are advertised over the 
Mammoth/Diamond link.

●     192.168.195.0/24 and 192.168.199.0/24 are not advertised at all.
●     An aggregate route is advertised over both links for backup so that if either link fails, all incoming 

traffic is routed to the remaining link.

To suppress a subset of the aggregated routes, the suppress-map option is used with the aggregate-
address command. The listed policies are implemented at Stowe and Mammoth with the configurations in 
Example 3-56. The COMMUNITY route maps and the EIGRP configurations do not change from the 
preceding section and so are not shown for simplicity.

Example 3-56 Suppressing Selected Prefixes with the suppress-map Option of 
the aggregate-address Command

Stowe

router bgp 100

 aggregate-address 192.168.192.0 255.255.248.0 suppress-map VERMONT

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 send-community

 neighbor 192.168.1.253 route-map COMMUNITY out

!



access-list 1 permit 192.168.195.0 0.0.0.255

access-list 1 permit 192.168.196.0 0.0.3.255

!

route-map VERMONT permit 10

 match ip address 1

_______________________________________________________________________

Mammoth

router bgp 100

 aggregate-address 192.168.192.0 255.255.248.0 suppress-map CALIFORNIA

 redistribute eigrp 100

 neighbor 192.168.1.246 remote-as 200

 neighbor 192.168.1.246 send-community

 neighbor 192.168.1.246 route-map COMMUNITY out

!

ip prefix-list SUPPRESSEDROUTES seq 5 permit 192.168.192.0/22 le 24

ip prefix-list SUPPRESSEDROUTES seq 10 permit 192.168.199.0/24

!

route-map CALIFORNIA permit 10

 match ip address prefix-list SUPPRESSEDROUTES

Stowe's configuration uses a route map named VERMONT to determine the routes to be suppressed. The 
route map in turn uses access list 1 to identify the appropriate routes. The access list permits the prefix 
192.168.195.0/24 and also all prefixes whose first 22 bits match 192.168.196.0/22. All other prefixes 
match the implicit "deny any" at the end of the access list and so are not suppressed.

NOTE

The logic of route maps sometimes seems a bit tortured. In this case, a route that is 
denied by the access list is "denied from being suppressed"; that is, the route is 
permitted to be advertised. Routes that are permitted by the access list, on the other 
hand, are "permitted to be suppressed" and so are not advertised.

Mammoth's configuration uses a route map named CALIFORNIA to determine the routes to be suppressed. 
Mammoth again uses a prefix list rather than an access list to identify the appropriate routes. Sequence 5 
of the prefix list permits all prefixes whose first 22 bits match 192.168.192.0/22 and whose length is less 
than or equal to 24. Sequence 10 of the prefix list permits the prefix 192.168.199.0/24. Advertisements of 
routes with these permitted prefixes are suppressed; all other routes are implicitly denied by the prefix list 
and so are not suppressed.

Example 3-57 shows the resulting BGP tables at Sugarbush and Diamond. Sugarbush forwards packets 
destined for 192.168.193.0/24 to Stowe (192.168.1.254), for example, whereas packets destined for 



192.168.196.0/24 are forwarded to Diamond (192.168.1.237). Diamond, in turn, routes the packets 
destined for 192.168.196.0/24 to Mammoth (192.168.1.245). Both Stowe and Mammoth are advertising 
the aggregate; if the link to either router fails, the packets that normally would be forwarded across that 
link will match the aggregate from the remaining link.

Example 3-57 These BGP Tables Show That Stowe and Mammoth Have 
Advertised Different Subsets of the More-Specific Routes in AS 100, Whereas 
Both Still Advertise the Aggregate

Sugarbush#show ip bgp

BGP table version is 79, local router ID is 192.168.1.253

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.254    2297856             0 100 ?

* i192.168.192.0/21 192.168.1.237               100      0 100 i

*>                  192.168.1.254                        0 100 i

*> 192.168.193.0    192.168.1.254    2297856             0 100 ?

*> 192.168.194.0    192.168.1.254    2297856             0 100 ?

*>i192.168.196.0    192.168.1.237    2297856    100      0 100 ?

*>i192.168.197.0    192.168.1.237    2297856    100      0 100 ?

*>i192.168.198.0    192.168.1.237          0    100      0 100 ?

Sugarbush#

_______________________________________________________________________

Diamond#show ip bgp

BGP table version is 137, local router ID is 172.18.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i192.168.192.0    192.168.1.238      2297856    100      0 100 ?

*> 192.168.192.0/21 192.168.1.245                          0 100 i

* i                 192.168.1.238                 100      0 100 i

* i192.168.193.0    192.168.1.238      2297856    100      0 100 ?

* i192.168.194.0    192.168.1.238      2297856    100      0 100 ?

*> 192.168.196.0    192.168.1.245      2297856             0 100 ?

*> 192.168.197.0    192.168.1.245      2297856             0 100 ?

*> 192.168.198.0    192.168.1.245            0             0 100 ?



Diamond#

Changing the Attributes of the Aggregate

Yet another option that you can use with the aggregate-address command is the attribute-map option. 
This option enables you to change the attributes of the aggregate route. Notice in Example 3-57, for 
instance, that all the more-specific routes have an ORIGIN attribute of Incomplete, because the routes are 
redistributed into BGP from EIGRP. The aggregates have an origin of IGP, however, because they 
originated within the BGP processes of Stowe and Mammoth. Suppose the administrator wants AS 200 to 
use the Mammoth/Diamond link for all traffic following the aggregate route and to use the 
Stowe/Sugarbush link only for backup. The BGP decision process, as discussed in Chapter 2, chooses an 
ORIGIN of IGP over an ORIGIN of Incomplete when considering two routes to the same destination. If 
Stowe changes the ORIGIN of its aggregate to Incomplete, the routers in AS 200 will prefer the 
Mammoth/Diamond link. Example 3-58 shows the configuration for Stowe.

Example 3-58 Stowe Changes Its Aggregate ORIGIN to Incomplete

router eigrp 100

 network 192.168.199.0

!

router bgp 100

 aggregate-address 192.168.192.0 255.255.248.0 attribute-map ORIGIN suppress-map

VERMONT

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 send-community

 neighbor 192.168.1.253 route-map COMMUNITY out

!

access-list 1 permit 192.168.195.0 0.0.0.255

!

access-list 101 permit ip host 192.168.192.0 host 255.255.248.0

!

route-map ORIGIN permit 10

 set origin incomplete

!

route-map COMMUNITY permit 10

 match ip address 101

 set community none

!

route-map COMMUNITY permit 20



 set community no-export

!

route-map VERMONT permit 10

 match ip address 1

Example 3-59 shows the resulting BGP table at Sugarbush. Before the reconfiguration, Sugarbush 
preferred the aggregate learned via EBGP over the aggregate learned via IBGP (see Example 3-57). 
However, the ORIGIN attribute has a higher priority in the decision process than IBGP/EBGP, so the IBGP 
route from Diamond, with an ORIGIN of IGP, is now preferred.

Example 3-59 The Aggregate Advertised by Stowe (192.168.1.254) Now Has an 
ORIGIN of Incomplete; the Aggregate Advertised by Diamond and Originated 
by Mammoth Is the Preferred Route

Sugarbush#show ip bgp

BGP table version is 17, local router ID is 192.168.1.253

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.254    2297856             0 100 ?

*>i192.168.192.0/21 192.168.1.237               100      0 100 i

*                   192.168.1.254                        0 100 ?

*> 192.168.193.0    192.168.1.254    2297856             0 100 ?

*> 192.168.194.0    192.168.1.254    2297856             0 100 ?

*>i192.168.196.0    192.168.1.237    2297856    100      0 100 ?

*>i192.168.197.0    192.168.1.237    2297856    100      0 100 ?

*>i192.168.198.0    192.168.1.237          0    100      0 100 ?

Sugarbush#

Interestingly, the reconfiguration also affects the routing in AS 300, as demonstrated in Example 3-60. 
The preferred route at Sugarbush is the IBGP route; synchronization is enabled, so the IBGP route is not 
advertised to EBGP peer Burke. As a result, Burke learns the aggregate only from Diamond.

Example 3-60 Only Diamond Advertises the Aggregate to Burke

Burke#show ip bgp

BGP table version is 3, local router ID is 172.21.1.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete



   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0/21 192.168.1.241                        0 200 100 i

Burke#

Using AS_SET with Aggregates

Figure 3-12 shows a modified version of the internetwork shown in Figure 3-11, including a change in the 
source of the aggregate address. Here, both AS 100 and AS 200 advertise the full routes of AS 100 to AS 
300 and AS 400, without an aggregate.

Figure 3-12. Burke Is Creating an Aggregate and Advertising It to Sun

Router Burke, in AS 300, suppresses the more-specific addresses of AS 100 and sends an aggregate to 
Sun in AS 400. Burke's configuration in Example 3-61 is similar to configurations you have encountered 
already in this case study.

Example 3-61 Burke Is Configured to Suppress Specific Addresses of AS 100 
and Send an Aggregate to Sun in AS 400

router bgp 300

 aggregate-address 192.168.192.0 255.255.248.0 summary-only

 neighbor 192.168.1.234 remote-as 400

 neighbor 192.168.1.234 next-hop-self

 neighbor 192.168.1.249 remote-as 200

 neighbor 192.168.1.249 distribute-list 1 out



!

access-list 1 deny   192.168.192.0

access-list 1 permit any

One difference between the Burke configuration in Example 3-61 and the previous configurations is the 
neighbor distribute-list command. This command implements a route filter and operates in the same 
way as distribute-list commands discussed in TCP/IP Routing, Volume I. In this case, the filter prevents 
the aggregate from being advertised back to Sugarbush.

Example 3-62 shows the BGP table at Sun. As expected, the table includes the more-specific routes from 
Sugarbush and the aggregate route from Burke. Of interest in this case study is the AS_PATH associated 
with the aggregate. The AS_SEQUENCE of the AS_PATH attribute of an aggregate begins with the AS in 
which the aggregate was originated. Burke originated the aggregate, so the AS_SEQUENCE includes only 
AS 300. The aggregate actually points to destinations in AS 100; like any summarization, the aggregate 
has caused a loss of routing information.

Example 3-62 The AS_PATH of the Aggregate from Burke Includes Only AS 300, 
the AS in Which the Aggregate Was Originated

Sun#show ip bgp

BGP table version is 20, local router ID is 192.168.1.234

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.229                          0 200 100 ?

*> 192.168.192.0/21 192.168.1.233                          0 300 i

*> 192.168.193.0    192.168.1.229                          0 200 100 ?

*> 192.168.194.0    192.168.1.229                          0 200 100 ?

*> 192.168.195.0    192.168.1.229                          0 200 100 ?

*> 192.168.196.0    192.168.1.229                          0 200 100 ?

*> 192.168.197.0    192.168.1.229                          0 200 100 ?

*> 192.168.198.0    192.168.1.229                          0 200 100 ?

*> 192.168.199.0    192.168.1.229                          0 200 100 ?

Sun#

In Example 3-63, Burke sets the ATOMIC_AGGREGATE and AGGREGATOR attributes in the aggregate to 
indicate that a loss of information has occurred.

Example 3-63 The Aggregate from Burke Has the ATOMIC_AGGREGATE and 
AGGREGATOR (aggregated by 300 192.168.1.250) Attributes Set to Indicate a 
Loss of Path Information



Sun#show ip bgp 192.168.192.0 255.255.248.0

BGP routing table entry for 192.168.192.0/21, version 23

Paths: (1 available, best #1)

  Advertised to non peer-group peers:

    192.168.1.229

  300, (aggregated by 300 192.168.1.250)

    192.168.1.233 from 192.168.1.233 (192.168.1.250)

      Origin IGP, localpref 100, valid, external, atomic-aggregate, best, ref 2

Sun#

In the case of the topology in Figure 3-12, the loss of path information causes a problem. Unlike Burke, 
Sun does not have a route filter in place to prevent the aggregate from being advertised to Sugarbush. 
Because Sugarbush does not see its own AS number in the AS_PATH of the aggregate from Sun, it enters 
the aggregate into its BGP table, as demonstrated in Example 3-64.

Example 3-64 Sugarbush Accepts the Aggregate Route from Sun Because It 
Does Not Find Its Own AS Number in the Route's AS_PATH

Sugarbush#show ip bgp

BGP table version is 19, local router ID is 172.20.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.254    2297856             0 100 ?

*> 192.168.192.0/21 192.168.1.230                        0 400 300 i

*> 192.168.193.0    192.168.1.254    2297856             0 100 ?

*> 192.168.194.0    192.168.1.254    2297856             0 100 ?

*> 192.168.195.0    192.168.1.254    2297856             0 100 ?

*> 192.168.196.0    192.168.1.254    2297856             0 100 ?

*> 192.168.197.0    192.168.1.254    2297856             0 100 ?

*> 192.168.198.0    192.168.1.254    2681856             0 100 ?

*> 192.168.199.0    192.168.1.254          0             0 100 ?

Sugarbush#

If one of the more-specific routes from AS 100 becomes invalid, Sugarbush should drop any packets 
destined for that network. With the aggregate in place, however, the packets will instead be matched to 
the aggregate route. Suppose, for example, that the interface to network 192.168.197.0/24 in AS 100 
fails. Stowe advertises the fact, and the route to that destination is removed from all BGP tables. Next, 
Sugarbush receives a packet with a destination address of 192.168.197.5. Not finding the more-specific 



address, the router matches the destination to the aggregate and forwards the packet to Sun. Sun again 
finds no more-specific address, matches the aggregate, and forwards the packet to Burke. Burke, as the 
originator of the aggregate, has no more-specific address and drops the packet. The packet to an invalid 
destination has been unnecessarily forwarded across two extra router hops before being correctly 
discarded. The problem would be even worse if Sugarbush were advertising an aggregate to Burke. In this 
case, instead of the packet's being dropped later than necessary, it loops until its TTL expires.

To remedy the problem, Burke can advertise an AS_SET in addition to the AS_SEQUENCE as part of the 
AS_PATH attribute by adding the as-set keyword to the aggregate-address statement. As discussed in 
Chapter 2, the AS_SET is an unordered list of the AS numbers along the path to the more-specific 
addresses that make up the aggregate. Unlike the AS_SEQUENCE, the AS_SET is not used to determine a 
shortest path; rather, its only purpose is to restore the loop-detection functionality lost in the aggregation.

Example 3-65 shows the configuration for Burke to advertise the AS_SET.

Example 3-65 Configuring Burke to Advertise the AS_SET

router bgp 300

 aggregate-address 192.168.192.0 255.255.248.0 as-set summary-only

 neighbor 192.168.1.234 remote-as 400

 neighbor 192.168.1.234 next-hop-self

 neighbor 192.168.1.249 remote-as 200

 neighbor 192.168.1.249 distribute-list 1 out

!

access-list 1 deny   192.168.192.0

access-list 1 permit any

Example 3-66 shows the resulting BGP table at Sun. All the AS numbers on the path to the more-specific 
addresses are included in the AS_PATH of the aggregate. When the aggregate is advertised to Sugarbush, 
that router recognizes its AS number of 200 in the AS_PATH and does not accept the route.

Example 3-66 When Burke Is Configured to Include the AS_SET in the AS_PATH 
Attribute, All the AS Numbers on the Path to the Aggregated Addresses Are 
Included

Sun#show ip bgp

BGP table version is 10, local router ID is 172.21.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.229                          0 200 100 ?

*> 192.168.192.0/21 192.168.1.233                          0 300 200 100 ?

*> 192.168.193.0    192.168.1.229                          0 200 100 ?

*> 192.168.194.0    192.168.1.229                          0 200 100 ?



*> 192.168.195.0    192.168.1.229                          0 200 100 ?

*> 192.168.196.0    192.168.1.229                          0 200 100 ?

*> 192.168.197.0    192.168.1.229                          0 200 100 ?

*> 192.168.198.0    192.168.1.229                          0 200 100 ?

*> 192.168.199.0    192.168.1.229                          0 200 100 ?

Sun#

It is important to know that when the AS_SET is advertised, the aggregate route inherits all the attributes 
of the aggregated routes. In the case of Figure 3-12, the AS_PATH of all the more-specific routes is 
(300,200,100). As a result, the AS_SET appears in Sun's BGP table as an ordered sequence, 
indistinguishable from the AS_SEQUENCEs.

Figure 3-13 shows a different topology. A new AS has been added, and network 192.168.197.0/24 has 
been moved from AS 100 to the new AS 500. Burke still receives the same routes, but now not all 
AS_PATH attributes match. As a result, the AS_SET is now advertised as the unordered sequence shown 
in Example 3-67.

Figure 3-13. Network 192.168.197.0/24 Is Moved from AS 100 to AS 500; 
Burke Can No Longer Represent the AS_SET as an Ordered Set

Example 3-67 The AS_SET Is Now Displayed in Sun's BGP Table as an 
Unordered Set, Distinguishable from the Ordered AS_SEQUENCEs

Sun#show ip bgp

BGP table version is 35, local router ID is 172.21.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete



   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.192.0    192.168.1.229                          0 200 100 ?

*> 192.168.192.0/21 192.168.1.233                          0 300 {200,100,500} ?

*> 192.168.193.0    192.168.1.229                          0 200 100 ?

*> 192.168.194.0    192.168.1.229                          0 200 100 ?

*> 192.168.195.0    192.168.1.229                          0 200 100 ?

*> 192.168.196.0    192.168.1.229                          0 200 100 ?

*> 192.168.197.0    192.168.1.229                          0 200 500 i

*> 192.168.198.0    192.168.1.229                          0 200 100 ?

*> 192.168.199.0    192.168.1.229                          0 200 100 ?

Sun#

Basing an Aggregate on Selected More-Specific Routes

In some situations, you might want to advertise an aggregate with the AS_SET but do not want the 
aggregate to inherit all the attributes of all the aggregated routes. In Figure 3-14, Sugarbush receives all 
the routes from AS 100 and AS 500 and advertises an aggregate to Burke.

Figure 3-14. For Sugarbush to Advertise the Aggregate with an AS_SET, the 
Aggregate Must Not Inherit the NO_EXPORT COMMUNITY Attribute from 

192.168.197.0/24

The problem with the setup in Figure 3-14 is that AS 500 is advertising 192.168.197.0/24 with the 
COMMUNITY attribute of NO_EXPORT. When Sugarbush uses the AS_SET option, the aggregate inherits 
the NO_EXPORT attribute, as demonstrated in Example 3-68. Note that the NO_EXPORT attribute is given 



to the aggregate locally, not added to the advertisement of the aggregate. As a result, Sugarbush acts on 
the attribute and does not advertise the aggregate route.

Example 3-68 The show ip bgp community no-export Command Displays All 
Routes with the NO_EXPORT COMMUNITY Attribute; in This Case, the 
Aggregate Route Has Inherited the Attribute from One of the Aggregated 
Addresses, 192.168.197.0/24

Sugarbush#show ip bgp community no-export

BGP table version is 19, local router ID is 172.20.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.192.0/21 0.0.0.0                          32768 {100,500} ?

s> 192.168.197.0    192.168.1.1            0             0 500 i

Sugarbush#

The last option of the aggregate-address command to be discussed, advertise-map, enables you to 
choose the routes upon which to base the aggregate. In the case of the internetwork in Figure 3-14, if 
Sugarbush does not consider 192.168.197.0/24 when forming the aggregate, the aggregate does not 
inherit that route's attributes. Example 3-69 shows the configuration for Sugarbush using the advertise-
map option of the aggregate-address command.

Example 3-69 Configuring Sugarbush to Choose the Routes Upon Which to Base 
the Aggregate

router bgp 200

 aggregate-address 192.168.192.0 255.255.248.0 as-set summary-only advertise-map

ALLOW_ROUTE

 neighbor 192.168.1.1 remote-as 500

 neighbor 192.168.1.250 remote-as 300

 neighbor 192.168.1.254 remote-as 100

!

access-list 1 deny   192.168.197.0

access-list 1 permit any

!

route-map ALLOW_ROUTE permit 10

 match ip address 1

The advertise-map option in the configuration in Example 3-69 points to a route map named 



ALLOW_ROUTE, which identifies the more-specific routes on which the aggregate is based. The route map 
in turn points to access list 1, which rejects 192.168.197.0 and permits all other routes. Because 
Sugarbush now ignores 192.168.197.0/24 when forming the aggregate, the aggregate route does not 
inherit the NO_EXPORT attribute, as demonstrated in Example 3-70.

Example 3-70 After Sugarbush Is Reconfigured with the advertise-map Option, 
the Aggregate Route No Longer Has the NO_EXPORT Attribute

Sugarbush#show ip bgp community no-export

BGP table version is 18, local router ID is 172.20.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

s> 192.168.197.0    192.168.1.1            0             0 500 i

Sugarbush#

Limiting the more-specific prefixes on which an aggregate is based can present some vulnerabilities. In 
the network of Figure 3-14 and the associated configurations, suppose the link between Stowe and 
Sugarbush fails. The aggregate is based only on the prefixes from AS 100 and so is no longer advertised. 
As a result, the destinations within AS 500 are no longer reachable from AS 300 and beyond.



 
  
Managing BGP Connections

Cisco IOS offers several features to help in the management of BGP peer connections. The first is the 
neighbor description statement. Like the description statement that can be entered under an 
interface configuration, this statement has no functional impact on the router. Rather, it adds an 
informational text string to the configuration. You already have encountered many configuration 
options that apply to a BGP neighbor, and you will encounter several more in the remaining sections 
of this chapter. When the BGP configuration becomes elaborate, the neighbor description helps 
provide a reminder of who and where each neighbor is. Example 3-71 demonstrates the use of the 
neighbor description statement.

Example 3-71 The neighbor description Command Helps Alleviate Confusion 
with Elaborate BGP Configurations

router bgp 200

 aggregate-address 192.168.192.0 255.255.248.0 as-set summary-only

 neighbor 192.168.1.1 remote-as 500

 neighbor 192.168.1.1 description ******T1 to Sun, Ckt. ID 54.HCGS.123456

 neighbor 192.168.1.237 remote-as 200

 neighbor 192.168.1.237 description ****Ethernet to Diamond, Interface E0

 neighbor 192.168.1.250 remote-as 300

 neighbor 192.168.1.250 description ****T1 to Burke, Ckt. ID 54.HCGS.654321

 neighbor 192.168.1.254 remote-as 100

 neighbor 192.168.1.254 description ****56K to Stowe, Ckt. ID 54.DWDA.987654

The description can contain any useful information you want to add, up to 80 characters. This 
example includes the link type, the name of the neighboring router, and, where appropriate, the 
circuit ID.

Two BGP neighbors also can authenticate each other with a password using the neighbor password 
statement. In the configuration in Example 3-72, the password noT4U2n0 has been entered for the 
neighbor 192.168.1.253.

Example 3-72 BGP Neighbor Authentication

service password-encryption

!

router bgp 100

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200



 neighbor 192.168.1.253 description ****56K to Sugarbush, Ckt. ID 54.DWDA.987654

 neighbor 192.168.1.253 password 7 14191D3F5831782574

Notice also that the service password-encryption option has been entered into the router's global 
configuration, causing the password to be encrypted when the configuration is displayed, for added 
privacy.

The passwords between different neighbor connections can differ, or they can all be the same. You 
also can apply a common password to a peer group rather than to individual neighbors by specifying 
the peer group name in place of an IP address. For each BGP connection, however, the two neighbors 
must have the same password.

The IOS uses MD5 authentication when a BGP neighbor password is configured. MD5 is a one-way 
message digest or secure hash function produced by RSA Data Security, Inc. It also is occasionally 
referred to as a cryptographic checksum, because it works in somewhat the same way as an 
arithmetic checksum. MD5 computes a 128-bit hash value from a plain-text message of arbitrary 
length (in this case, a BGP message) and a password. This "fingerprint" is transmitted along with the 
message. The receiver, knowing the same password, calculates its own hash value. If nothing in the 
message has changed, the receiver's hash value should match the sender's value transmitted with 
the message. The hash value is impossible to decipher (without a huge amount of computing power) 
without knowing the password so that an unauthorized router cannot, either maliciously or by 
accident, peer with a router running neighbor authentication.

Other options available for the neighbor connection are the neighbor advertisement-interval and 
neighbor version commands. The first command changes the default BGP update interval to a 
specified interval between 0 and 600 seconds. If a large number of routes must be exchanged across 
a link, using this command to increase the period between advertisements can reduce the impact on 
the link's available bandwidth. You should not change the advertisement interval, however, unless 
you fully understand the consequences, such as possible reduced reconvergence times.

The neighbor version command is useful if a neighbor cannot support the default BGP-4. Rather 
than have the version 4 router negotiate down to the neighbor's supported version, you can configure 
the router to speak a specific version to a specific neighbor. As a result, the time necessary to 
establish a BGP connection is reduced. If both neighbors speak version 4, you gain nothing with this 
command, and its use is unnecessary.

The BGP decision process implemented in the Cisco IOS takes into consideration the length of the 
AS_PATH attribute when choosing between multiple routes to the same destination. However, RFC 
1771 does not include this step. As a result, a Cisco BGP speaker occasionally is peered with another 
vendor's router that does not consider the AS_PATH length. If this situation creates the potential for 
inconsistent routing decisions, you can instruct the Cisco router to ignore the AS_PATH length in its 
decision process with the command bgp bestpath as-path ignore.

In some policy situations, you might want to limit the number of prefixes a router is allowed to 
accept from a neighbor. For example, you might know that only a certain number of prefixes should 
be advertised from a particular AS. Any number above this probably indicates a configuration mistake 
by that autonomous system's administrator. Or perhaps there is a service agreement in place in 
which you agree to accept only a finite number of prefixes; to advertise a larger number, the 
administrator of the neighboring AS must first get your approval. To enforce such a policy, you can 
use the neighbor maximum-prefix command. Consider the configuration in Example 3-73.

Example 3-73 Limiting the Number of Prefixes That a Router Is Allowed to 
Accept from a Neighbor



router bgp 100

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 maximum-prefix 300

The router in Example 3-73 is configured to accept a maximum of 300 prefixes from neighbor 
192.168.1.253. If the limit is exceeded, the router closes the BGP session with the neighbor, and the 
session cannot be reestablished until you issue the clear ip bgp 192.168.1.253 command.

Perhaps breaking the peering session might be too severe a consequence for exceeding the 
maximum prefixes, but you still want to be notified when it happens. The configuration in Example 3-
74 does not close the session, but instead causes the router to generate a log message.

Example 3-74 Configuring the Router to Generate a Log Message When a 
Neighbor Exceeds the Number of Prefixes That Can Be Sent

router bgp 100

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 maximum-prefix 300 warning-only

A log message is generated when the neighbor's advertised prefix exceeds 75 percent of the 
maximum—in this case, at 225 prefixes. You can change that default percentage. The configuration 
in Example 3-75 generates a log message when the neighbor's advertised prefixes exceed 90 percent 
of the maximum.

Example 3-75 Configuring the Router to Generate a Log Message When a 
Neighbor Exceeds 90 Percent of the Number of Prefixes That Can Be Sent

router bgp 100

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 maximum-prefix 300 90 warning-only

On occasion, you might need to temporarily disconnect a peer but not want to delete its neighbor 
configuration. The configuration in Example 3-76 uses the neighbor shutdown command to 
disconnect the neighbor 192.168.1.237.

Example 3-76 Temporarily Disconnecting a Neighbor Connection

aggregate-address 192.168.192.0 255.255.248.0 as-set summary-only



 neighbor 192.168.1.1 remote-as 500

 neighbor 192.168.1.1 description ******T1 to Sun, Ckt. ID 54.HCGS.123456

 neighbor 192.168.1.237 remote-as 200

 neighbor 192.168.1.237 description ****Ethernet to Diamond, Interface E0

 neighbor 192.168.1.237 shutdown

 neighbor 192.168.1.250 remote-as 300

 neighbor 192.168.1.250 description ****T1 to Burke, Ckt. ID 54.HCGS.654321

 neighbor 192.168.1.254 remote-as 100

 neighbor 192.168.1.254 description ****56K to Stowe, Ckt. ID 54.DWDA.987654

The neighbor shutdown command in Example 3-76 closes the TCP port 179 connection to a 
specified neighbor, similar to the way the shutdown command disables a single interface. When the 
show ip bgp neighbor command is issued, the neighbor is indicated as administratively shut down.

Finally, you can use the timers bgp command to change the default BGP keepalive and hold time 
intervals of 60 seconds and 180 seconds. The argument can be made that reducing these intervals 
speeds the detection of an unreliable neighbor, but the real solution to such a problem is to eliminate 
the causes of the neighbor's unreliability. A change of the default intervals with this command applies 
to every neighbor, not just a single neighbor. Even if a neighbor has different default keepalive and 
hold time intervals, the intervals that are used are dynamically negotiated as part of the peering 
process. Therefore, under normal circumstances, there should be very few reasons to use this 
command.



 
  
Routing Policies

Webster's Dictionary defines a policy as "a high-level overall plan embracing the general goals and acceptable procedures." A 
routing policy is a plan that defines how routes are accepted on a router and how routes are advertised. The goal that the 
policy embraces is the correct forwarding or suppressing of IP packets. Acceptable procedures means that the routing policy is 
implemented with the least-negative impact possible on the CPU and memory resources of the router, the bandwidth 
resources of the connected links, and the policies of neighboring routers.

NOTE

The term routing policies used in this section and throughout this chapter should not be confused with the 
Cisco feature known as Policy Routes. These special versions of static routes, implemented with the command 
ip policy route-map, are discussed in Routing TCP/IP, Volume I, Chapter 14, "Route Maps."

Routing policies are always important, but especially so in a BGP environment. By its very nature, BGP interconnects 
autonomous systems, and neighboring autonomous systems probably are not under your administrative control. You must 
plan BGP routing policies very carefully. You must fully understand which packets should be forwarded to which neighbors, 
which packets should be accepted from those neighbors, and under what circumstances those packets are forwarded and 
received. When a complete routing plan is developed, you are ready to design the configuration that enables the policy. This 
stage requires that you completely understand the BGP configuration options available to you. A lab can prove very useful at 
this stage, to test the design and verify your assumptions before the design is implemented on a production network. Only 
after a configuration has been completely designed, understood, and validated should you implement it.

A mistake at any one of these steps can have serious consequences in your internetwork and can result in unhappy users, 
unhappy customers, unhappy service providers, and unhappy managers. Because of the potential for disruption of traffic 
across significant portions of the Internet, many service providers discontinue BGP peering with customers who frequently 
misconfigure their policies. The economic impact of being denied BGP peering—particularly if the customer is itself a service 
provider—can be severe. No other IP routing protocol offers policy features as powerful as those of BGP, and no other protocol 
carries as great a potential for getting you into trouble as does BGP.

This section demonstrates the available options for configuring routing policies under BGP. You already have been exposed to 
some of the most fundamental tools for configuring routing policy. If you read Volume I and have read all of this volume up to 
this point, you know how to configure any of the IP routing protocols to advertise selected routes and how to redistribute 
routes from one protocol to another. You also know how to use route filters and route maps and how to manipulate the 
administrative distances and metrics of the various IP routing protocols. You understand the hazards of having more than one 
path into and out of an area, a routing domain, or an AS, and you know some strategies for avoiding those hazards. In this 
chapter, you have encountered several brief examples of some BGP-specific tools, such as manipulating the ORIGIN and 
COMMUNITY attributes and filtering NLRI from a single neighbor.

Finally, you understand that outbound route advertisements affect incoming traffic and that inbound route advertisements 
affect outgoing traffic. When designing a routing policy, it is vitally important that you consider the advertised routes and 
received routes separately and design both an inbound and an outbound routing policy.

Resetting BGP Connections

When a BGP speaker's configuration is changed, it is often necessary to reset the connections to the affected neighbors for the 
change to take effect. The Cisco IOS Software Command Summary lists the following circumstances under which you must 
reset a BGP connection:

●     Additions or changes to BGP-related access lists
●     Changes to BGP-related weights
●     Changes to BGP-related distribution lists
●     Changes in the BGP-related timer's specifications
●     Changes to the BGP administrative distance
●     Changes to BGP-related route maps

All the items on this list affect a route's BGP routing policy in some way, and this is a hint about why resets are required. If 
you are changing routing policy, you do not want the policies to take effect "on the fly." Rather, you want to fully configure the 
new policy and only then implement the policy. Allowing each statement of a routing policy to take effect as you enter it can 
cause routing loops, black holes, security breaches, or other equally nasty results.

You can reset connections with the command clear ip bgp, issued from IOS Exec mode. You can apply the reset to a specific 



neighbor, a peer group, or to all the router's neighbors. To reset a connection to a specific neighbor, the neighbor's IP address 
is specified. To reset a connection to neighbor 192.168.1.253, for example, the command is clear ip bgp 192.168.1.253. To 
reset a connection to all members of a peer group named subscribers, the command is clear ip bgp subscribers. And to 
reset all of a router's BGP connections, the command is clear ip bgp *.

You should clear only the connections that are actually affected by the changes you make. When a connection is reset, a 
Cease notification message is sent to the neighbor, the BGP session is closed, the TCP session is closed, and all caches are 
invalidated. A new BGP session is then begun. While this process takes place, service is disrupted to and from the connection. 
Resetting all connections when only one or two are affected by the new configuration can have serious consequences in a 
production environment.

Cisco provides an alternative to a full reset, called soft reconfiguration. Rather than completely tearing down and 
reestablishing a TCP and BGP connection, soft reconfiguration merely triggers updates to cause new routing policies to take 
effect. A soft reset can be triggered for outbound only, inbound only, or both. Outbound soft reconfiguration is used when the 
policies affecting outbound traffic are changed. Inbound soft reconfiguration is used when the policies affecting inbound traffic 
are changed. Like a "hard" reset, you can specify a single neighbor, a peer group, or all BGP connections.

Suppose, for example, that you change the policy on a BGP router that affects the outbound traffic to neighbor 192.168.1.253. 
To trigger updates to that neighbor under the new policy, the command is clear ip bgp 192.168.1.253 soft out.

Inbound soft reconfiguration is used when you change the policies concerning inbound traffic. Beginning with Cisco IOS 
Software Release 12.1, dynamic soft reconfiguration is supported for inbound routes. Prior to that version, however, you must 
first add a neighbor soft-reconfiguration inbound statement to the BGP configuration before inbound soft reconfiguration 
can be used. The command clear ip bgp soft in is then used for every neighbor that sends traffic affected by the new 
inbound policies. Suppose you change the inbound routing policies on router Stowe in Figure 3-14, and the policies affect 
traffic received from neighbor 192.168.1.253. Example 3-77 shows what Stowe's BGP configuration will look like.

Example 3-77 Configuring a Neighbor for Soft Inbound Reconfiguration

router bgp 100

 redistribute eigrp 100

 neighbor 192.168.1.253 remote-as 200

 neighbor 192.168.1.253 soft-reconfiguration inbound

When the neighbor soft-reconfiguration inbound statement is added, the router begins storing updates from the specified 
neighbor. These updates are unmodified by any existing inbound policies so that the router can correctly apply the new 
policies when soft reconfiguration is triggered. After the new inbound policies are configured for Stowe in the example shown, 
the command clear ip bgp 192.168.1.253 soft in is entered from Exec mode. The router then uses the stored, unmodified 
updates to implement the new inbound policies.

Soft reconfiguration also can be triggered for both inbound and outbound policies at the same time. For instance, the 
command clear ip bgp 192.168.1.253 soft, with no in or out keyword, sends updates to neighbor 192.168.1.253 and also 
applies inbound policies to the stored updates from that neighbor.

The obvious drawback to using inbound soft reconfiguration is that memory is required to store the updates. If the neighbor is 
advertising a large number of routes, or if updates from many neighbors are being stored, the impact on the local router's 
memory can be significant. You can avoid this load on memory. When inbound BGP routing policies are changed on a router, 
its neighbors can send an outbound soft reconfiguration. The local router, receiving the updates from its neighbors, then 
applies the new inbound policies. You should use inbound soft reconfiguration only if you cannot send, or arrange to have 
sent, an outbound soft reconfiguration from the affected neighbors. You might find inbound soft reconfiguration necessary if 
the policy change affects the traffic from many neighbors, and if you must apply the policy change to all neighbors 
simultaneously. In either case, you must carefully weigh the impact on local memory.

Case Study: Filtering Routes by NLRI

Route filters are at the heart of almost any routing policy. After all, if you have an inbound and an outbound routing policy, 
what you are most likely defining is which routes a router accepts and which routes a router advertises.

The first and simplest of the route filters available to BGP are defined by the distribute-list command. This route filter is 
defined for each neighbor or peer group and points to an access list that defines the prefixes, or NLRI, on which the filter will 
act.

The internetwork in Figure 3-15 is used for this and the following two case studies.



Figure 3-15. AS 30 Is Multihomed to Different Transit Autonomous Systems

The IGP of AS 50 is RIP, and the IGP of AS 30 is Integrated IS-IS. AS 100 and AS 200 are transit autonomous systems. 
Example 3-78 shows the preliminary configurations of the five routers in Figure 3-15.

Example 3-78 Filtering Routes by NLRI: Initial Router Configurations

Zermatt

interface Loopback0

 ip address 172.30.255.254 255.255.255.255

 ip router isis

!

router isis

 net 30.5678.1234.defa.00

 redistribute bgp 30 metric 0 metric-type internal level-2

!

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 no auto-summary

!

ip classless

ip route 10.100.83.1 255.255.255.255 Serial1.906

_______________________________________________________________________

Moritz

interface Loopback0

 ip address 172.30.255.150 255.255.255.255

 ip router isis



!

router isis

 net 30.1234.5678.abcd.00

 redistribute bgp 30 metric 0 metric-type internal level-2

!

router bgp 30

 redistribute isis level-2

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 no auto-summary

!

ip route 10.200.60.1 255.255.255.255 Serial1.803

_______________________________________________________________________

Innsbruck

interface Loopback0

 ip address 10.100.83.1 255.255.255.255

!

router bgp 100

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2

 neighbor 172.30.255.254 update-source Loopback0

 no auto-summary

!

ip classless

ip route 10.50.250.1 255.255.255.255 Ethernet0

ip route 10.200.60.1 255.255.255.255 Ethernet0

ip route 172.30.255.254 255.255.255.255 Serial1.609

Cervinia

interface Loopback0

 ip address 10.200.60.1 255.255.255.255

!

router bgp 200

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0



 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 172.30.255.150 remote-as 30

 neighbor 172.30.255.150 ebgp-multihop 2

 neighbor 172.30.255.150 update-source Loopback0

 no auto-summary

!

ip classless

ip route 10.50.250.1 255.255.255.255 Ethernet0/0

ip route 10.100.83.1 255.255.255.255 192.168.4.2

ip route 172.30.255.150 255.255.255.255 Serial0/1.308

_______________________________________________________________________

Meribel

interface Loopback0

 ip address 10.50.250.1 255.255.255.255

!

router rip

 redistribute bgp 50 metric 1

 network 10.0.0.0

!

router bgp 50

 redistribute rip

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 no auto-summary

!

ip classless

ip route 10.100.83.1 255.255.255.255 Ethernet0

ip route 10.200.60.1 255.255.255.255 Ethernet0

Notice that Figure 3-15 shows no IP addresses for any of the data links. All the BGP sessions are configured between router 
IDs, defined by the loopback interfaces of the routers, so the data link addresses are irrelevant to this example. Also 
important in these configurations are the static routes, which tell the routers how to find their neighbors' router IDs. Without 
the static routes, the BGP sessions cannot be established.

CAUTION

This case study and some of the following case studies use mutual redistribution between the IGP and BGP to 
easily demonstrate the application of routing policy. Once again, keep in mind that in practice, mutual 
distribution is usually a bad idea. And more importantly, if many prefixes are involved, redistribution from 
BGP to any IGP is always a bad idea.



AS 30 in Figure 3-15 is multihomed for redundancy but should not be a transit AS. That is, no traffic passing between AS 100 
and AS 200 should cross AS 30. Innsbruck's BGP table in Example 3-79 shows that as the configurations stand, this policy is 
not in effect. One of the next-hop routers that Innsbruck shows for the destinations within AS 50 is Zermatt 
(172.30.255.254). The reason for this is that Meribel advertises those addresses to both Cervinia and Innsbruck. Cervinia 
advertises the addresses to Moritz, which redistributes the addresses into IS-IS. Zermatt then learns the addresses from its IS-
IS neighbor within AS 30, redistributes them into BGP, and advertises them to Innsbruck.

Example 3-79 Innsbruck Shows Zermatt as a Feasible Next Hop to the Destinations Within AS 
50

Innsbruck#show ip bgp

BGP table version is 21, local router ID is 10.100.83.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*  10.20.0.0/16     172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 50 ?

*>                  10.50.250.1              0             0 50 ?

*  10.30.0.0/16     10.50.250.1                            0 50 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 30 ?

*  10.50.250.1/32   172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 50 ?

*>                  10.50.250.1              0             0 50 ?

*> 10.200.60.1/32   10.50.250.1              0             0 50 ?

*  172.16.0.0       10.50.250.1                            0 50 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 30 ?

*  172.17.0.0       172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 50 ?

*>                  10.50.250.1              1             0 50 ?

*  172.29.0.0       172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 50 ?

*>                  10.50.250.1              1             0 50 ?

*  172.29.1.0/24    10.50.250.1                            0 50 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 30 ?

*> 172.30.255.150/32 172.30.255.254          30             0 30 ?

*  172.30.255.254/32 10.50.250.1                            0 50 200 30 ?

*>                  10.200.60.1                            0 200 30 ?

*  172.31.0.0       10.50.250.1                            0 50 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 30 ?



*  192.168.2.0/30   10.50.250.1                            0 50 200 30 ?

*>                  10.200.60.1                            0 200 30 ?

*> 192.168.2.4/30   172.30.255.254          20             0 30 ?

*  192.168.50.0     172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 50 ?

*>                  10.50.250.1              1             0 50 ?

*  192.168.100.0    10.50.250.1                            0 50 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*                   10.200.60.1                            0 200 30 ?

Innsbruck#

If Innsbruck loses its connection to the NAP, it will forward packets destined for AS 50 to Zermatt, making AS 30 a transit AS. 
To prevent this, an outbound policy is implemented at both Zermatt and Moritz, allowing only addresses interior to AS 30 to 
be advertised. Example 3-80 shows the BGP configuration for Zermatt.

Example 3-80 Implementing an Outbound Policy at Zermatt to Allow Only Addresses Interior 
to AS 30 to Be Advertised

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 distribute-list 1 out

 no auto-summary

!

access-list 1 permit 192.168.100.0

access-list 1 permit 10.30.0.0

access-list 1 permit 192.168.2.0

access-list 1 permit 172.29.1.0

access-list 1 permit 172.31.0.0

access-list 1 permit 172.16.0.0

Only the parts of Zermatt's configuration relevant to the example are shown.

Moritz's distribute-list configuration is identical, except for the neighbor reference. At both routers, access list 1 allows all 
the interior routes and denies all other routes.

Another problem shown in Example 3-79 is that Innsbruck lists not only Meribel (10.50.250.1) as a next hop for the 
destinations within AS 50, but also Cervinia (10.200.60.1). The same double entry exists in the BGP table of Cervinia, which 
shows both Meribel and Innsbruck as next-hop routers for the AS 50 addresses. The problem is caused by the fact that 
Innsbruck and Cervinia are peered not only with Meribel, but also with each other.

This problem does not cause any sort of routing dysfunction—if Meribel withdraws a route, the withdrawal is advertised 
between Cervinia and Innsbruck also. The problem is more a matter of aesthetics and clarity. An invalid route should not exist 
in the BGP table.

To correct the problem, Example 3-81 provides the BGP configuration for Innsbruck.



Example 3-81 Eliminating Redundant Next-Hop Routers in Innsbruck's BGP Configuration

router bgp 100

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 distribute-list 1 out

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2

 neighbor 172.30.255.254 update-source Loopback0

 no auto-summary

!

access-list 1 deny   10.20.0.0

access-list 1 deny   192.168.50.0

access-list 1 deny   172.29.0.0

access-list 1 deny   172.17.0.0

access-list 1 permit any

Cervinia has an identical route filter configured for Innsbruck. The filter blocks the advertisement of the AS 50 addresses on 
the BGP connection between Innsbruck and Cervinia. A point of interest in this configuration is the third line of the access list. 
Figure 3-15 indicates that subnet 172.29.2.0/24 resides in AS 50, but the access list filters for the network 172.29.0.0. This is 
because RIP, a classful protocol, does not redistribute the subnet to BGP at Meribel. Rather, it summarizes to the major 
network address. Subnet 172.29.1.0/24 resides in AS 30; IS-IS is classless and therefore redistributes the subnet into BGP at 
Zermatt and Moritz. Innsbruck's access list has no effect on this subnet advertisement, because the third line must have an 
exact match to the major network address.

Finally, Example 3-79 shows that some of the AS 30 addresses, such as 192.168.100.0, are being advertised to Innsbruck 
from Meribel. This problem is similar to the preceding one—Cervinia advertises the routes to Meribel, which then advertises 
them to Innsbruck. Example 3-82 shows the configuration for Innsbruck to block all incoming routes from Meribel except the 
ones that are interior to AS 50.

Example 3-82 Configuring Innsbruck to Block Incoming Routes from Mirabel Except Those 
Interior to AS 50

router bgp 100

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.50.250.1 distribute-list 2 in

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 distribute-list 1 out

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2



 neighbor 172.30.255.254 update-source Loopback0

 no auto-summary

!

access-list 1 deny   10.20.0.0

access-list 1 deny   192.168.50.0

access-list 1 deny   172.29.0.0

access-list 1 deny   172.17.0.0

access-list 1 permit any

access-list 2 permit 10.20.0.0

access-list 2 permit 192.168.50.0

access-list 2 permit 172.29.0.0

access-list 2 permit 172.17.0.0

Example 3-83 shows the resulting BGP table at Innsbruck. Comparing it to the table in Example 3-79, you can readily see that 
the table is much smaller and that it now makes much more sense.

Example 3-83 Innsbruck's BGP Table After the Route Filters Have Been Added

Innsbruck#show ip bgp

BGP table version is 12, local router ID is 10.100.83.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 10.20.0.0/16     10.50.250.1              0             0 50 ?

*  10.30.0.0/16     10.200.60.1                            0 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*> 10.50.250.1/32   10.50.250.1              0             0 50 ?

*  172.16.0.0       10.200.60.1                            0 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*> 172.17.0.0       10.50.250.1              1             0 50 ?

*> 172.29.0.0       10.50.250.1              1             0 50 ?

*  172.29.1.0/24    10.200.60.1                            0 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*  172.31.0.0       10.200.60.1                            0 200 30 ?

*>                  172.30.255.254          20             0 30 ?

*> 192.168.2.0/30   10.200.60.1                            0 200 30 ?

*> 192.168.50.0     10.50.250.1              1             0 50 ?

*  192.168.100.0    10.200.60.1                            0 200 30 ?

*>                  172.30.255.254          20             0 30 ?

Innsbruck#

Case Study: Filtering Routes by AS_PATH



In the face of a large number of advertised addresses, filtering by NLRI can quickly become unwieldy or completely 
impractical. Only a few addresses are being advertised in Figure 3-15, yet the access lists shown in the previous section are 
already somewhat lengthy.

A common factor in the examples in the preceding section is that in each case, the access lists are used to identify all the 
addresses within a single AS. In such situations, it is easier to filter on the AS number instead of enumerating each interior 
address in an access list. The ip as-path access-list command defines a variant of an access list that identifies AS numbers. 
Just as an access list identifying NLRI is called by the neighbor distribute-list command, the AS_PATH access list is called 
by the neighbor filter-list command.

The AS_PATH access list uses a powerful text-parsing tool known as regular expressions, or regex for short. Regular 
expressions are commonly used in such programming languages as Perl, Expect, awk, and Tcl, in search engines, and in UNIX 
utilities such as egrep. Regular expressions use a string of characters, all of which are either metacharacters or literals, to find 
matches in text. In the case of AS_PATH access lists, they are used to find matches in the AS_PATH attributes of BGP updates.

Literals are regular characters that describe what to match. Metacharacters describe how the match is made. For example, the 
regex ^[4-7] matches any string of text that begins with a number between 4 and 7. In this expression, 4 and 7 are the 
literals. The metacharacters in the expression are ^, [], and -. The caret indicates the beginning of a line: "The string begins 
with the following." The brackets indicate a group of characters known as a character class: "Anything within the brackets." 
The hyphen indicates a range: "Anything in the sequence from the first literal to the last literal." Table 3-1 summarizes the 
most common metacharacters, and Appendix B, "A Regular-Expression Tutorial," contains a short tutorial on the use of regular 
expressions. If you are not experienced with regular expressions, read Appendix B before continuing with this section.

Other metacharacters, and some of the metacharacters shown in the table, match more than what is indicated. For the sake 
of simplicity, only the metacharacters and the matches relevant to AS_PATH access lists are listed.

Table 3-1. Regular-Expression Metacharacters Relevant to AS_PATH Access Lists

Metacharacter What It Matches 

. Any single character, including white space. 

[] Any character listed between the brackets. 

[^] Any character except those listed between the brackets. (The caret is placed before 
the sequence of literals.) 

- (Hyphen.) Any character in the range between the two literals separated by the 
hyphen. 

? Zero or one instance of the character or pattern. 

* Zero or more instances of the character or pattern. 

+ One or more instances of the character or pattern. 

^ Start of a line. 

$ End of a line. 

| Either of the literals separated by the metacharacter. 

_ (Underscore.) A comma, the beginning of the line, the end of the line, or a space. 

In the preceding section, the routers Zermatt and Moritz were configured to advertise only routes to addresses interior to AS 
30. All other routes were filtered, to prevent AS 100 or AS 200 from attempting to use AS 30 as a transit AS. To implement 
the filter, all the AS 30 addresses were individually listed in an access list. Example 3-84 shows the configuration for Zermatt 
using an AS_PATH access list to achieve the same results as in the preceding case study.

Example 3-84 Configuring Zermatt to Advertise Only Routes to Addresses Interior to AS 30 
Using an AS_PATH Access List

router bgp 30

 redistribute isis level-2



 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 filter-list 1 out

 no auto-summary

!

ip as-path access-list 1 permit ^$

Moritz's configuration has an identical AS_PATH access list. The regular expression here uses two metacharacters—the first 
matches the beginning of a line, and the second matches the end of a line. No literals are included. The regex matches 
AS_PATHs that include no AS numbers. The only routes in Zermatt's BGP table in Example 3-85 that have empty AS_PATHs 
are to the destinations interior to AS 30. They match the AS_PATH list statement and are permitted. Like other access lists, 
the AS_PATH list has an implicit "deny any" at the end; all the other routes in Example 3-85 match this implicit deny and are 
not advertised.

Example 3-85 The Only Empty AS_PATHs in Zermatt's BGP Table Are Those of Routes to 
Addresses Within AS 30

Zermatt#show ip bgp

BGP table version is 109, local router ID is 172.30.255.254

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.20.0.0/16     10.100.83.1                          0 100 50 ?

*> 10.30.0.0/16     192.168.2.1           20         32768 ?

*> 10.50.250.1/32   10.100.83.1                          0 100 50 ?

*> 172.16.0.0       192.168.2.1           20         32768 ?

*> 172.17.0.0       10.100.83.1                          0 100 50 ?

*> 172.29.0.0       10.100.83.1                          0 100 50 ?

*> 172.29.1.0/24    192.168.2.1           20         32768 ?

*> 172.30.255.150/32 192.168.2.1          30         32768 ?

*> 172.31.0.0       192.168.2.1           20         32768 ?

*> 192.168.2.4/30   192.168.2.1           20         32768 ?

*> 192.168.50.0     10.100.83.1                          0 100 50 ?

*> 192.168.100.0    192.168.2.1           20         32768 ?

Zermatt#

Also in the preceding case study, routers Innsbruck and Cervinia were configured to accept routes from Meribel only if the 
advertised addresses are interior to AS 50. Additionally, these two routers should not advertise to each other routes learned 
from Meribel. Example 3-86 shows Innsbruck's configuration using AS_PATH access lists to accomplish the same goals.

Example 3-86 Configuring Innsbruck Using AS_PATH Access Lists to Accept Routes from 
Meribel if They Are Interior to AS 50

router bgp 100

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2



 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.50.250.1 filter-list 2 in

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 filter-list 1 out

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2

 neighbor 172.30.255.254 update-source Loopback0

 no auto-summary

!

ip as-path access-list 1 deny _50_

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^50$

List 1 is applied to outgoing updates to Cervinia. The first statement of this list denies any update that includes the AS number 
50 anywhere in its AS_PATH. The metacharacters before and after the 50 ensure that this number alone is matched. If the 
metacharacters were left out, the statement would match not only 50, but also such numbers as 500, 5000, 350, and so on. 
The regex of the second statement says, "Match any character, and match zero or more occurrences of that character." In 
other words, match anything. This is the AS_PATH access list version of a "permit any." The result of these two lines is that 
Innsbruck does not advertise to Cervinia any routes learned from Meribel but advertises all other routes to Cervinia.

List 2 is applied to incoming updates from Meribel. The regex of the one line reads, "Match the beginning of the line, followed 
by 50, followed by the end of the line." In other words, match AS_PATHs that include the AS number 50 and nothing else. 
Those routes are permitted. Any routes that Meribel advertises that it learned from another AS will have more than the 
number 50 in the AS_PATH. These routes are denied by the implicit "deny" at the end of the list.

For the topology in Figure 3-15, Cervinia's AS_PATH access lists are identical to those shown for Innsbruck. In Figure 3-16, 
however, the topology has been modified. Here, AS 125 is added and serves as a transit between AS 200 and AS 50. If 
Meribel loses its link to the NAP, traffic into and out of AS 50 should traverse AS 125 and AS 200. With the AS_PATH access 
lists shown in the preceding example, list 1 denies any routes whose AS_PATH includes the AS number 50. This includes 
routes to AS 50 learned from router Oberstdorf, which have an AS_PATH of (125,50). As a result, Innsbruck cannot learn 
these routes from Cervinia and take advantage of the alternate route into AS 50.

Figure 3-16. AS 125 Provides an Alternate Path to AS 50



To remedy the situation, Example 3-87 shows the configuration for Cervinia.

Example 3-87 Configuring Cervinia to Accommodate AS 125 as a Transit AS to AS 50

router bgp 200

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.50.250.1 filter-list 2 in

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 10.125.25.1 remote-as 125

 neighbor 10.125.25.1 ebgp-multihop 2

 neighbor 10.125.25.1 update-source Loopback0

 neighbor 172.30.255.150 remote-as 30

 neighbor 172.30.255.150 ebgp-multihop 2

 neighbor 172.30.255.150 update-source Loopback0

 no auto-summary

!

ip as-path access-list 1 deny ^50$

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^50$

In Example 3-87, the first statement of list 1 denies AS_PATHs that contain only the AS number 50, not all AS_PATHs that 



contain 50, as in the preceding example. Routes that Cervinia learns directly from Meribel are denied, whereas routes to AS 50 
learned from Oberstdorf are permitted.

Case Study: Filtering with Route Maps

You also can implement route filters with route maps. The route map can use either access lists, to filter by NLRI, or AS_PATH 
access lists, to filter by the AS_PATH attribute.

Example 3-88 shows a possible configuration for Zermatt in Figure 3-15.

Example 3-88 Configuring Zermatt to Filter Routes with a Route Map

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map Innsbruck out

 no auto-summary

!

access-list 1 permit 192.168.100.0

access-list 1 permit 10.30.0.0

access-list 1 permit 192.168.2.0

access-list 1 permit 172.29.1.0

access-list 1 permit 172.31.0.0

access-list 1 permit 172.16.0.0

!

route-map Innsbruck permit 10

 match ip address 1

Access list 1 is the same list that is used in the case study "Filtering Routes by NLRI," in which the access list is called by the 
neighbor distribute-list command. In this case, the neighbor route-map command refers outgoing routes to a route map 
named Innsbruck, which in turn uses the match ip address command to call the access list. The route map permits any 
routes permitted by the access list and denies the rest.

A route map also can call an AS_PATH access list, as demonstrated in the configuration for Zermatt in Example 3-89.

The configuration for Zermatt in Example 3-89 is the same as in Example 3-88, except the match as-path command is used 
rather than the match ip address command. The AS_PATH access list is the same one as is used in the case study "Filtering 
Routes by AS_PATH." Routes with an empty AS_PATH attribute—routes originating in AS 30—are permitted, and all other 
routes are denied.

Example 3-89 Configuring Zermatt with a Route Map to Call an AS_PATH Access List

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map Innsbruck out



 no auto-summary

!

ip as-path access-list 1 permit ^$

!

route-map Innsbruck permit 10

 match as-path 1

Route maps can filter incoming as well as outgoing BGP updates. In the preceding case study, router Innsbruck filters 
incoming routes from Meribel and accepts only those routes that have an AS_PATH attribute of 50, with no other numbers in 
the list. The router also filters outgoing routes to Cervinia and allows only those routes that do not have AS 30 in their 
AS_PATH. Using route maps for the same purpose, Example 3-90 shows the configuration for Innsbruck.

Example 3-90 Configuring Innsbruck to Filter Routes with a Route Map

router bgp 100

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.50.250.1 route-map Meribel in

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 route-map Cervinia-to-Meribel out

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2

 neighbor 172.30.255.254 update-source Loopback0

 no auto-summary

!

ip as-path access-list 1 deny _50_

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^50$

!

route-map Meribel permit 10

 match as-path 2

!

route-map Cervinia-to-Meribel permit 10

 match as-path 1

Using route maps rather than distribute lists or filter lists can prove useful when you must configure many route filters on a 
single router. Because route maps use names rather than numbers, an intuitive name can make such a configuration a little 
easier to decipher. In Example 3-88 and Example 3-89, naming the route map Innsbruck very clearly identifies what neighbor 
the route map concerns. In Example 3-90, the names identify paths through neighbors.

The major reason for using route maps, however, is their power not only to identify particular routes with match statements, 
but also to change their attributes with set statements. The next five case studies demonstrate the use of route maps to 
implement more-complex routing policies. Respectively, the five case studies demonstrate methods for influencing route 
preferences:



●     Within a single router (multiple BGP routes to the same destination)
●     Within a single router (multiple routes to the same destination from different routing protocols)
●     Within the local autonomous system
●     Within neighboring autonomous systems
●     Within autonomous systems beyond the neighboring autonomous systems

Case Study: Administrative Weights

Frequently, a BGP router is presented with multiple routes to the same destination. Although BGP has default methods for 
choosing among these routes, you might need to override these defaults on occasion to implement a routing policy. Although 
the RFCs do not provide for methods to influence route preferences within a single router, Cisco's IOS Software does.

The first of these Cisco-specific tools is administrative weight. Each route is assigned a weight, which is a number between 0 
and 65,535. Given multiple routes to the same destination, the router prefers the route with the highest weight. By default, 
BGP routes originated by the router are given a weight of 32,768, and routes learned from neighbors are given a weight of 0.

Given multiple routes to the same destination, administrative weight overrides all other factors in the BGP decision process. 
But administrative weight is also local to the router. That is, it is not advertised to any neighboring BGP speakers. Therefore, 
the assigned weight of a route on one router does not have any bearing on the preference of the route in other routers.

In Figure 3-17, the connectivity of AS 30 has been improved. Zermatt and Moritz are each multihomed to AS 100 and AS 200 
for added redundancy. Each router receives routes to the addresses in AS 50 from Innsbruck and from Cervinia. Recall from 
the discussion of the BGP decision process in Chapter 2 that when selecting a preferred route from multiple same-destination 
routes, if all other attributes are equal, BGP selects the route from the neighbor with the lowest router ID. This means that 
both Zermatt and Moritz in Figure 3-17 will use Innsbruck to reach the destinations in AS 50, because its router ID is lower 
than Cervinia, as demonstrated by the output in Example 3-91. Zermatt and Moritz show that the destinations within AS 50 
are reachable via either Innsbruck (10.100.83.1) or Cervinia (10.200.60.1). Both routers have marked the routes from 
Innsbruck as the best routes, because Innsbruck's router ID is lower.

Figure 3-17. Zermatt and Moritz Are Multihomed for Redundancy

Example 3-91 BGP Tables of Zermatt and Moritz in Figure 3-17

Zermatt# show ip bgp

BGP table version is 34, local router ID is 172.30.255.254

Status codes: s suppressed, * valid, > best, i - internal



Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*  10.20.0.0/16     10.200.60.1                          0 200 50 ?

*>                  10.100.83.1                          0 100 50 ?

*> 10.30.0.0/16     192.168.2.1           20         32768 ?

*  10.50.250.1/32   10.200.60.1                          0 200 50 ?

*>                  10.100.83.1                          0 100 50 ?

*> 10.100.83.1/32   10.200.60.1                          0 200 50 ?

*> 10.200.60.1/32   10.100.83.1                          0 100 50 ?

*> 172.16.0.0       192.168.2.1           20         32768 ?

*  172.17.0.0       10.200.60.1                          0 200 50 ?

*>                  10.100.83.1                          0 100 50 ?

*  172.29.0.0       10.200.60.1                          0 200 50 ?

*>                  10.100.83.1                          0 100 50 ?

*> 172.29.1.0/24    192.168.2.1           20         32768 ?

*> 172.30.255.150/32 192.168.2.1          30         32768 ?

*> 172.31.0.0       192.168.2.1           20         32768 ?

*> 192.168.2.4/30   192.168.2.1           20         32768 ?

*  192.168.50.0     10.200.60.1                          0 200 50 ?

*>                  10.100.83.1                          0 100 50 ?

*> 192.168.100.0    192.168.2.1           20         32768 ?

Zermatt#

_______________________________________________________________________

Moritz#show ip bgp

BGP table version is 33, local router ID is 172.30.255.150

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.20.0.0/16     10.100.83.1                          0 100 50 ?

*                   10.200.60.1                          0 200 50 ?

*> 10.30.0.0/16     192.168.2.5           20         32768 ?

*> 10.50.250.1/32   10.100.83.1                          0 100 50 ?

*                   10.200.60.1                          0 200 50 ?

*> 10.100.83.1/32   10.200.60.1                          0 200 50 ?

*> 10.200.60.1/32   10.100.83.1                          0 100 50 ?

*> 172.16.0.0       192.168.2.5           20         32768 ?

*> 172.17.0.0       10.100.83.1                          0 100 50 ?

*                   10.200.60.1                          0 200 50 ?

*> 172.29.0.0       10.100.83.1                          0 100 50 ?

*                   10.200.60.1                          0 200 50 ?



*> 172.29.1.0/24    192.168.2.5           20         32768 ?

*> 172.30.255.254/32 192.168.2.5          30         32768 ?

*> 172.31.0.0       192.168.2.5           20         32768 ?

*> 192.168.2.0/30   192.168.2.5           20         32768 ?

*> 192.168.50.0     10.100.83.1                          0 100 50 ?

*                   10.200.60.1                          0 200 50 ?

   Network          Next Hop          Metric LocPrf Weight Path

*> 192.168.100.0    192.168.2.5           20         32768 ?

Moritz#

To spread out the traffic load more evenly, Zermatt should use the link to Innsbruck to reach AS 50, and only use the link to 
Cervinia as a backup. Moritz should use the link to Cervinia, and only use Innsbruck as a backup. Both routers implement this 
policy by manipulating the weights of the routes, as demonstrated in Example 3-92.

Example 3-92 Configuring Zermatt and Moritz to Follow Route Policies by Manipulating Route 
Weights

Zermatt

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 10.100.83.1 weight 50000

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 filter-list 1 out

 neighbor 10.200.60.1 weight 20000

 no auto-summary

___________________________________________________________________________________________________________

Moritz

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 10.100.83.1 weight 20000

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 filter-list 1 out



 neighbor 10.200.60.1 weight 50000

 no auto-summary

The configurations in Example 3-92 use the neighbor weight command to assign weights to routes according to which 
neighbor advertises the routes. Zermatt assigns a weight of 50000 to routes learned from Innsbruck (10.100.83.1) and a 
weight of 20000 to routes learned from Cervinia (10.200.60.1). Moritz does just the opposite. As a result, the two routers 
prefer the routes with the higher weight, and will use the alternative paths only if the preferred route becomes invalid, as 
demonstrated by the output in Example 3-93.

Example 3-93 Zermatt and Moritz Designate the Routes with the Highest Weight as "Best"; the 
Locally Originated Routes Continue to Have a Default Weight of 32768

Zermatt#show ip bgp

BGP table version is 104, local router ID is 172.30.255.254

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.20.0.0/16     10.100.83.1                      50000 100 50 ?

*                   10.200.60.1                      20000 200 50 ?

*> 10.30.0.0/16     192.168.2.1           20         32768 ?

*> 10.50.250.1/32   10.100.83.1                      50000 100 50 ?

*                   10.200.60.1                      20000 200 50 ?

*> 10.100.83.1/32   10.200.60.1                      20000 200 50 ?

*> 10.200.60.1/32   10.100.83.1                      50000 100 50 ?

*> 172.16.0.0       192.168.2.1           20         32768 ?

*> 172.17.0.0       10.100.83.1                      50000 100 50 ?

*                   10.200.60.1                      20000 200 50 ?

*> 172.29.0.0       10.100.83.1                      50000 100 50 ?

*                   10.200.60.1                      20000 200 50 ?

*> 172.29.1.0/24    192.168.2.1           20         32768 ?

*> 172.30.255.150/32 192.168.2.1          30         32768 ?

*> 172.31.0.0       192.168.2.1           20         32768 ?

*> 192.168.2.4/30   192.168.2.1           20         32768 ?

*> 192.168.50.0     10.100.83.1                      50000 100 50 ?

*                   10.200.60.1                      20000 200 50 ?

*> 192.168.100.0    192.168.2.1           20         32768 ?

Zermatt#

___________________________________________________________________________________________________________

Moritz#show ip bgp

BGP table version is 20, local router ID is 172.30.255.150

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path



*  10.20.0.0/16     10.100.83.1                      20000 100 50 ?

*>                  10.200.60.1                      50000 200 50 ?

*> 10.30.0.0/16     192.168.2.5           20         32768 ?

*  10.50.250.1/32   10.100.83.1                      20000 100 50 ?

*>                  10.200.60.1                      50000 200 50 ?

*> 10.100.83.1/32   10.200.60.1                      50000 200 50 ?

*> 10.200.60.1/32   10.100.83.1                      20000 100 50 ?

*> 172.16.0.0       192.168.2.5           20         32768 ?

*  172.17.0.0       10.100.83.1                      20000 100 50 ?

*>                  10.200.60.1                      50000 200 50 ?

*  172.29.0.0       10.100.83.1                      20000 100 50 ?

*>                  10.200.60.1                      50000 200 50 ?

*> 172.29.1.0/24    192.168.2.5           20         32768 ?

*> 172.30.255.254/32 192.168.2.5          30         32768 ?

*> 172.31.0.0       192.168.2.5           20         32768 ?

*> 192.168.2.0/30   192.168.2.5           20         32768 ?

*  192.168.50.0     10.100.83.1                      20000 100 50 ?

*>                  10.200.60.1                      50000 200 50 ?

*> 192.168.100.0    192.168.2.5           20         32768 ?

Moritz#

The neighbor weight command is useful if the weights for all routes learned from a particular neighbor are to be the same. 
Sometimes, however, different weights must be assigned to routes from the same neighbor. One way to implement a policy 
requiring this is with the neighbor filter-list weight command. Like the neighbor filter-list command used for route 
filtering, this command references an AS_PATH access list to identify routes according to the details of their AS_PATH 
attribute. However, although a particular neighbor can have at most one neighbor filter-list in and one neighbor filter-list 
out command, multiple instances of the neighbor filter-list weight command might be assigned to a single neighbor. You 
can configure the neighbor filter-list and the neighbor filter-list weight command for the same neighbor; although the 
commands look very similar, their purposes and effects differ significantly.

Figure 3-18 depicts the same topology as in Figure 3-17, but another AS has been connected to the NAP. Both Innsbruck and 
Cervinia advertise the routes from AS 50 and AS 75 to both Zermatt and Moritz. A new routing policy is established, requiring 
Moritz to use Cervinia to reach the destinations within AS 75 and Innsbruck to reach the destinations within AS 50.

Figure 3-18. AS 75 Has Been Connected to the NAP



Example 3-94 shows the configuration for Moritz using the neighbor filter-list weight command.

Example 3-94 Configuring Moritz to Prefer Cervinia as the Next-Hop Router to AS 75 via the 
neighbor filter-list weight Command

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 10.100.83.1 filter-list 2 weight 40000

 neighbor 10.100.83.1 filter-list 3 weight 60000

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 filter-list 1 out

 neighbor 10.200.60.1 filter-list 2 weight 60000

 neighbor 10.200.60.1 filter-list 3 weight 40000

 no auto-summary

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit _75$

ip as-path access-list 3 permit _50$

The regular expression _75$ in list 2 identifies AS_PATHs that end in 75 and will match the paths (100,75) and (200,75). 
Similarly, list 3 matches paths that end in 50. Under the neighbor configuration for Innsbruck (10.100.83.1), routes to AS 75 



are given a weight of 40000, and routes to AS 50 are given a weight of 60000. Under the neighbor configuration for Cervinia 
(10.200.60.1), the opposite is true. Routes to AS 75 are given a weight of 60000, and routes to AS 50 are given a weight of 
40000. Example 3-95 shows the resulting BGP table at Moritz.

Example 3-95 Cervinia Is the Preferred Next-Hop Router to Reach AS 75, and Innsbruck Is the 
Preferred Next-Hop Router to Reach AS 50

Moritz#show ip bgp

BGP table version is 19, local router ID is 172.30.255.150

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.20.0.0/16     10.100.83.1                      60000 100 50 ?

*                   10.200.60.1                      40000 200 50 ?

*> 10.30.0.0/16     192.168.2.5           20         32768 ?

*> 10.50.250.1/32   10.100.83.1                      60000 100 50 ?

*                   10.200.60.1                      40000 200 50 ?

*> 10.100.83.1/32   10.200.60.1                      40000 200 50 ?

*> 10.200.60.1/32   10.100.83.1                      60000 100 50 ?

*> 172.16.0.0       192.168.2.5           20         32768 ?

*> 172.17.0.0       10.100.83.1                      60000 100 50 ?

*                   10.200.60.1                      40000 200 50 ?

*  172.18.0.0       10.100.83.1                      40000 100 75 i

*>                  10.200.60.1                      60000 200 75 i

*> 172.29.0.0       10.100.83.1                      60000 100 50 ?

*                   10.200.60.1                      40000 200 50 ?

*> 172.29.1.0/24    192.168.2.5           20         32768 ?

*> 172.30.255.254/32 192.168.2.5          30         32768 ?

*> 172.31.0.0       192.168.2.5           20         32768 ?

*> 192.168.2.0/30   192.168.2.5           20         32768 ?

*> 192.168.50.0     10.100.83.1                      60000 100 50 ?

*                   10.200.60.1                      40000 200 50 ?

*  192.168.75.0     10.100.83.1                      40000 100 75 i

*>                  10.200.60.1                      60000 200 75 i

*> 192.168.100.0    192.168.2.5           20         32768 ?

Moritz#

If you use both the neighbor weight command and the neighbor filter-list weight command under the same neighbor 
configuration, the neighbor filter-list weight command takes precedence. Any routes from the peer whose weights are not 
set by neighbor filter-list weight have their weights set by the neighbor weight command.

You also can manipulate the weight with the neighbor route-map command. Example 3-96 shows the configuration for 
Moritz using route maps to achieve the same results as the configuration in Example 3-94.

Example 3-96 Configuring Moritz to Prefer Cervinia as the Next-Hop Router to AS 75 via Route 
Maps



router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map Innsbruck in

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 route-map Cervinia in

 neighbor 10.200.60.1 filter-list 1 out

 no auto-summary

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit _75$

ip as-path access-list 3 permit _50$

!

route-map Innsbruck permit 10

 match as-path 2

 set weight 40000

!

route-map Innsbruck permit 20

 match as-path 3

 set weight 60000

!

route-map Cervinia permit 10

 match as-path 2

 set weight 60000

!

route-map Cervinia permit 20

 match as-path 3

 set weight 40000

When route maps are used to set weights, only the AS_PATH can be matched; individual IP addresses cannot be matched with 
the match ip address command. You also can use weight-setting route maps in the same neighbor configuration as 
neighbor filter-list weight and neighbor weight commands. Weight-setting route maps take precedence over either of the 
other two commands.

Case Study: Administrative Distances and Backdoor Routes

The other Cisco-specific tool for manipulating preferences on a single router is administrative distance. Whereas administrative 
weight influences preference among multiple routes to the same destination that have been learned from different BGP peers, 
administrative distance influences preference among multiple routes to the same destination that have been learned from 
different routing protocols. This means that whereas the effects of administrative weights are seen in the BGP table, the 
effects of administrative distances are seen in the IP routing table.



Normally, an administrative distance is assigned to a route according to the protocol or source from which the route is learned. 
The lower the distance, the more preferable the route. Table 3-2 shows the default administrative distances for the various 
protocols. You can see that within an AS, if a router learns routes to the same destination from RIP and OSPF, the OSPF route 
is preferred because its distance (110) is lower than that of the RIP route (120).

EBGP has a default distance of 20, lower than any of the IGPs. At first, this might seem like a problem in internetworks such 
as the one in Figure 3-18. When Zermatt advertises one of the AS 30 internal addresses to Innsbruck, the address is passed 
to Cervinia, which can pass it back to Moritz. Moritz, hearing the route via EBGP, prefers it over the IS-IS route to the same 
destination, because the IS-IS route has a distance of 115. In fact, this doesn't happen, because of the basic BGP loop-
avoidance mechanism. Moritz observes the 30 in the AS_PATH of the route from Cervinia and drops the route.

Table 3-2. Cisco Default Administrative Distances[1]

Route Source Administrative Distance 

Connected interface 0 

Static route 1 

EIGRP summary route 5 

External BGP 20 

EIGRP 90 

IGRP 100 

OSPF 110 

IS-IS 115 

RIP 120 

EGP 140 

External EIGRP 170 

Internal BGP 200 

Local BGP 200 

Unknown 255 

[1] When a static route refers to an interface rather than a next-hop address, the destination is considered to be a directly connected 
network.

On the other hand, IBGP does not add an AS number to the AS_PATH. So a route learned from an IGP and then passed to an 
IBGP peer within a single AS could cause routing loops or black holes. For this reason, the distance of IBGP routes is 200, 
higher than that of any IGP. An IGP-learned route is always preferred over an IBGP route to the same destination.

Local BGP routes are those originated on the local router as the result of using the BGP network command. Like IBGP routes, 
they have a default administrative distance of 200 so that they are not preferred over IGP routes.

Chapter 13, "Route Filtering," of Volume I includes a case study demonstrating how to manipulate the default distances of IGP 
routes. To change the default distances of BGP, you use the distance bgp command. This command sets the distances for 
EBGP, IBGP, and local BGP routes, respectively. The configuration in Example 3-97 changes the IBGP administrative distance 
to 95, making the IBGP routes preferred over all IGP routes to the same destination, except EIGRP routes.

Example 3-97 Changing the IBGP Administrative Distance to 95 to Make IBGP Routes 
Preferred Over All IGP Routes Except EIGRP

router bgp 30

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0



 distance bgp 20 95 200

Unlike IGPs, there is seldom a good reason for changing the default BGP distances for all routes. However, there is a situation 
is which the distances of some BGP routes should be changed. In Figure 3-19, a private link is added between routers Meribel 
and Lillehammer, and the routers speak RIP across the link. This link is used as a back door. That is, some traffic between AS 
50 and AS 75 should be sent over the private backdoor route rather than across the public NAP. Perhaps AS 50 and AS 75 
have a business partnership, and they want some of their communications to pass over their private link rather than the public 
Internet.

Figure 3-19. A Private Backdoor Link Has Been Added Between AS 50 and AS 75, Allowing the 
IGP Processes of Those Autonomous Systems to Communicate Directly Rather Than Through 

the EBGP Sessions

In this example, traffic between 172.17.0.0 in AS 50 and 172.18.0.0 in AS75 should travel across the backdoor link and use 
the NAP route only if the backdoor route fails. The problem is the administrative distance. Lillehammer, for instance, learns 
the route to 172.17.0.0 from Meribel via both RIP across the backdoor link and EBGP across the NAP link. EBGP has a distance 
of 20 and RIP has a distance of 120, so the EBGP route is preferred, as indicated in the output in Example 3-98.

Example 3-98 Lillehammer Learns the Route to 172.17.0.0 via Both RIP and EBGP; the EBGP 
Route, with an Administrative Distance of 20, Is Preferred

Lillehammer#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

C    192.168.75.0/24 is directly connected, Ethernet2

B    172.17.0.0/16 [20/1] via 10.50.250.1, 00:01:24

B    172.16.0.0/16 [20/0] via 10.100.83.1, 00:01:22



C    172.18.0.0/16 is directly connected, Ethernet1

     172.29.0.0/16 is variably subnetted, 2 subnets, 2 masks

B       172.29.1.0/24 [20/0] via 10.100.83.1, 00:01:22

B       172.29.0.0/16 [20/1] via 10.50.250.1, 00:01:24

B    172.31.0.0/16 [20/0] via 10.100.83.1, 00:01:22

     192.168.4.0/29 is subnetted, 1 subnets

C       192.168.4.0 is directly connected, Ethernet0

     10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks

B       10.30.0.0/16 [20/0] via 10.100.83.1, 00:01:22

B       10.20.0.0/16 [20/0] via 10.50.250.1, 00:01:24

C       10.21.0.0/16 is directly connected, Serial1.507

C       10.75.100.1/32 is directly connected, Loopback0

S       10.100.83.1/32 is directly connected, Ethernet0

S       10.50.250.1/32 is directly connected, Ethernet0

S       10.200.60.1/32 is directly connected, Ethernet0

B    192.168.50.0/24 [20/1] via 10.50.250.1, 00:01:27

B    192.168.100.0/24 [20/0] via 10.100.83.1, 00:01:25

Lillehammer#

One solution is to use the BGP network command, as demonstrated in Example 3-99.

Example 3-99 Using the network Command to Cause the EBGP-Discovered Routes to Be 
Treated as Local BGP Routes

Lillehammer

router rip

 redistribute bgp 75

 network 10.0.0.0

 network 172.18.0.0

 network 192.168.75.0

!

router bgp 75

 network 172.17.0.0

 network 172.18.0.0

 network 192.168.75.0

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2



 neighbor 10.200.60.1 update-source Loopback0

___________________________________________________________________________________________________________

Meribel

router rip

 redistribute bgp 50 metric 1

 network 10.0.0.0

!

router bgp 50

 network 172.18.0.0

 redistribute rip

 neighbor 10.75.100.1 remote-as 75

 neighbor 10.75.100.1 ebgp-multihop 2

 neighbor 10.75.100.1 update-source Loopback0

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

 no auto-summary

In the configurations in Example 3-99, the network commands cause the EBGP-discovered routes to be treated as local BGP 
routes. Network 172.17.0.0 is advertised to Lillehammer via EBGP, for instance, and is entered into the routing table. The 
command network 172.17.0.0 is added to Lillehammer's BGP configuration, even though 172.17.0.0 is not really a local 
route. Because the address is in the routing table, the network command matches it and makes it a local route.

The logic sounds quite strange, but it works. By first being an EBGP route, 172.17.0.0 is changed into a local BGP route with 
the network command. Because 172.17.0.0 is now considered a local route at Lillehammer, it is assigned an administrative 
distance of 200. The RIP route to 172.17.0.0 now has a lower distance and becomes the preferred route, as indicated in the 
output in Example 3-100.

Example 3-100 By Causing Lillehammer to Treat the EBGP Route to 172.17.0.0 as a Local BGP 
Route with an Administrative Distance of 200, the RIP Route to That Network Becomes the 
Preferred Route

Lillehammer#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

C    192.168.75.0/24 is directly connected, Ethernet2



R    172.17.0.0/16 [120/2] via 10.21.1.1, 00:00:06, Serial1.507

B    172.16.0.0/16 [20/0] via 10.200.60.1, 00:00:36

C    172.18.0.0/16 is directly connected, Ethernet1

     172.29.0.0/16 is variably subnetted, 2 subnets, 2 masks

B       172.29.1.0/24 [20/0] via 10.200.60.1, 00:00:36

B       172.29.0.0/16 [20/1] via 10.50.250.1, 00:00:24

B    172.31.0.0/16 [20/0] via 10.200.60.1, 00:00:36

     192.168.4.0/29 is subnetted, 1 subnets

C       192.168.4.0 is directly connected, Ethernet0

     10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks

B       10.30.0.0/16 [20/0] via 10.200.60.1, 00:00:36

B       10.20.0.0/16 [20/0] via 10.50.250.1, 00:00:24

C       10.21.0.0/16 is directly connected, Serial1.507

C       10.75.100.1/32 is directly connected, Loopback0

S       10.100.83.1/32 is directly connected, Ethernet0

S       10.50.250.1/32 is directly connected, Ethernet0

S       10.200.60.1/32 is directly connected, Ethernet0

B    192.168.50.0/24 [20/1] via 10.50.250.1, 00:00:25

B    192.168.100.0/24 [20/0] via 10.200.60.1, 00:00:37

Lillehammer#

Although the administrative distances have been manipulated correctly, this configuration has a problem. By using the 
network command to convert an EBGP route into a local route, the local BGP router now advertises the route in its own EBGP 
updates. Lillehammer, for example, now advertises 172.17.0.0 in its EBGP updates to its peers across the NAP. Because 
Meribel's BGP process learns the route to 172.17.0.0 from redistribution, it advertises the route with an ORIGIN of Incomplete. 
But Lillehammer, because of the network statement, advertises the route with an ORIGIN of IGP. As a result, Cervinia and 
Innsbruck choose Lillehammer as the best next hop to 172.17.0.0, as demonstrated in the output in Example 3-101. External 
traffic to 172.17.0.0 is forwarded to Lillehammer, which forwards the traffic across the backdoor link. Only traffic between 
172.17.0.0 and 172.18.0.0 is supposed to use the backdoor link; all other traffic should use the NAP.

Example 3-101 Cervinia Shows Lillehammer (10.75.100.1) as the Best Next Hop to Network 
172.17.0.0, Causing the Backdoor Link Between Lillehammer and Meribel to Become a Transit 
Network for All External Traffic to 172.17.0.0

Cervinia#show ip bgp 172.17.0.0

BGP routing table entry for 172.17.0.0/16, version 474

Paths: (3 available, best #2, advertised over EBGP)

  100 75

    10.100.83.1 from 10.100.83.1

      Origin IGP, localpref 100, valid, external

  75

    10.75.100.1 from 10.75.100.1 (192.168.75.1)

      Origin IGP, metric 2, localpref 100, valid, external, best

  50

    10.50.250.1 from 10.50.250.1

      Origin incomplete, metric 1, localpref 100, valid, external

Cervinia#



Example 3-102 shows the solution to this problem via the network backdoor command, another Cisco-specific tool.

Example 3-102 Restricting External Traffic from the Backdoor Link Between Lillehammer and 
Meribel

Lillehammer

router rip

 redistribute bgp 75

 network 10.0.0.0

 network 172.18.0.0

 network 192.168.75.0

!

router bgp 75

 network 172.17.0.0 backdoor

 network 172.18.0.0

 network 192.168.75.0

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2

 neighbor 10.200.60.1 update-source Loopback0

___________________________________________________________________________________________________________

Meribel

router rip

 redistribute bgp 50 metric 1

 network 10.0.0.0

!

router bgp 50

 network 172.18.0.0 backdoor

 redistribute rip

 neighbor 10.75.100.1 remote-as 75

 neighbor 10.75.100.1 ebgp-multihop 2

 neighbor 10.75.100.1 update-source Loopback0

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2



 neighbor 10.200.60.1 update-source Loopback0

 no auto-summary

The network backdoor command has the same effect as the network command: The EBGP route is treated as a local BGP 
route, and the administrative distance is changed to 200. The difference is that the address specified by the network 
backdoor command is not advertised to EBGP peers. In the case of network 172.17.0.0, the new configurations result in the 
same routing table at Lillehammer shown in Example 3-100. But Cervinia's BGP table no longer contains a route to that 
network from Lillehammer.

Case Study: Using the LOCAL_PREF Attribute

The LOCAL_PREF attribute is used to set preferences among multiple routes to the same destination. Unlike administrative 
weight, the LOCAL_PREF is not limited to a single router. Rather, it is communicated to IBGP peers. The attribute is not 
communicated to EBGP peers—hence the name local preference.

A route's LOCAL_PREF attribute can be any number between 0 and 4,294,967,295; the higher the number, the more 
preferable the route. By default, all routes advertised to IBGP peers have a LOCAL_PREF of 100. This default value can be 
changed with the ip default local-preference command. You can change the LOCAL_PREF attribute of individual routes by 
using a route map and the command set local-preference.

In Figure 3-20, AS 30 is multihomed to a single AS. For redundancy, links are added between Zermatt and Moritz and between 
Innsbruck and Saalbach; IBGP is run on each of these links.

Figure 3-20. AS 30 Is Multihomed to a Single Autonomous System

Routing policy in AS 30 requires that all outgoing traffic to AS 75 must use the Moritz-Saalbach link, and all outgoing traffic to 
AS 50 must use the Zermatt-Innsbruck link. In each case, the other link should be used only if the preferred link is 
unavailable. Example 3-103 shows the configurations of Zermatt and Moritz.

Example 3-103 Influencing Route Preferences with the LOCAL_PREF Attribute

Zermatt

router isis

 net 30.5678.1234.defa.00



 default-information originate

!

router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map PREF in

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 172.30.255.150 remote-as 30

 neighbor 172.30.255.150 ebgp-multihop 2

 neighbor 172.30.255.150 update-source Loopback0

 neighbor 172.30.255.150 next-hop-self

 no auto-summary

!

ip route 10.100.83.1 255.255.255.255 Serial1.906

ip route 172.30.255.150 255.255.255.255 Serial1.908

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit _50$

!

route-map PREF permit 10

 match as-path 2

 set local-preference 200

!

route-map PREF permit 20

___________________________________________________________________________________________________________

Moritz

router isis

 net 30.1234.5678.abcd.00

 default-information originate

!

router bgp 30

 redistribute isis level-2

 neighbor 10.100.65.1 remote-as 100

 neighbor 10.100.65.1 ebgp-multihop 2

 neighbor 10.100.65.1 update-source Loopback0

 neighbor 10.100.65.1 route-map PREF in

 neighbor 10.100.65.1 filter-list 1 out

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2



 neighbor 172.30.255.254 update-source Loopback0

 neighbor 172.30.255.254 next-hop-self

 no auto-summary

!

ip route 10.100.65.1 255.255.255.255 Serial1.803

ip route 172.30.255.254 255.255.255.255 Serial1.809

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit _75$

!

route-map PREF permit 10

 match as-path 2

 set local-preference 300

!

route-map PREF permit 20

Each router links the incoming routes from its EBGP peer to a route map named PREF. Sequence 10 of this route map 
identifies the AS_PATH of the incoming routes. Incoming routes at Zermatt whose AS_PATH ends in a 50 are assigned a 
LOCAL_PREF of 200. Incoming routes at Moritz whose AS_PATH ends in a 75 are assigned a LOCAL_PREF of 300. Any routes 
that are not matched at sequence 10 are permitted by sequence 20 and get the default value of 100.

NOTE

In practice, the two routers would probably assign the same LOCAL_PREF values. The values differ in this 
example only so that the influence of each route map is more easily observed.

Example 3-104 shows the results in the BGP tables of the two routers.

Example 3-104 Zermatt Sets a LOCAL_PREF of 200 for Routes to Destinations Within AS 50, 
and Moritz Sets a LOCAL_PREF of 300 for Routes to Destinations Within AS 75

Zermatt#show ip bgp

BGP table version is 20, local router ID is 172.30.255.254

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.20.0.0/16     10.100.83.1                 200      0 100 50 ?

*> 10.30.0.0/16     192.168.2.1           20         32768 ?

* i                 172.30.255.150        20    100      0 ?

*> 10.50.250.1/32   10.100.83.1                 200      0 100 50 ?

*> 10.75.100.1/32   10.100.83.1                 100      0 100 75 ?

*> 10.100.65.1/32   10.100.83.1                 200      0 100 50 ?

*>i10.100.83.1/32   172.30.255.150              100      0 100 50 ?

*> 172.16.0.0/16    192.168.2.1           20         32768 ?



* i                 172.30.255.150        20    100      0 ?

*> 172.17.0.0       10.100.83.1                 200      0 100 50 ?

*  172.18.0.0       10.100.83.1                          0 100 75 i

*>i                 172.30.255.150              300      0 100 75 i

*> 172.29.0.0       10.100.83.1                 200      0 100 50 ?

*> 172.29.1.0/24    192.168.2.1           20         32768 ?

* i                 172.30.255.150        20    100      0 ?

*> 172.31.0.0       192.168.2.1           20         32768 ?

* i                 172.30.255.150        20    100      0 ?

*>i192.168.2.0/30   172.30.255.150        20    100      0 ?

*> 192.168.2.4/30   192.168.2.1           20         32768 ?

*> 192.168.50.0     10.100.83.1                 200      0 100 50 ?

*  192.168.75.0     10.100.83.1                          0 100 75 i

*>i                 172.30.255.150              300      0 100 75 i

*> 192.168.100.0    192.168.2.1           20         32768 ?

* i                 172.30.255.150        20    100      0 ?

Zermatt#

___________________________________________________________________________________________________________

Moritz#show ip bgp

BGP table version is 25, local router ID is 172.30.255.150

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*  10.20.0.0/16     10.100.65.1                          0 100 50 ?

*>i                 172.30.255.254              200      0 100 50 ?

*> 10.30.0.0/16     192.168.2.5           20         32768 ?

* i                 172.30.255.254        20    100      0 ?

*  10.50.250.1/32   10.100.65.1                          0 100 50 ?

*>i                 172.30.255.254              200      0 100 50 ?

*  10.75.100.1/32   10.100.65.1                          0 100 75 ?

*>i                 172.30.255.254              100      0 100 75 ?

*>i10.100.65.1/32   172.30.255.254              200      0 100 50 ?

*> 10.100.83.1/32   10.100.65.1                          0 100 50 ?

*> 172.16.0.0/16    192.168.2.5           20         32768 ?

* i                 172.30.255.254        20    100      0 ?

*  172.17.0.0       10.100.65.1                          0 100 50 ?

*>i                 172.30.255.254              200      0 100 50 ?

*> 172.18.0.0       10.100.65.1                 300      0 100 75 i

*  172.29.0.0       10.100.65.1                          0 100 50 ?

*>i                 172.30.255.254              200      0 100 50 ?

*> 172.29.1.0/24    192.168.2.5           20         32768 ?



* i                 172.30.255.254        20    100      0 ?

*> 172.31.0.0       192.168.2.5           20         32768 ?

* i                 172.30.255.254        20    100      0 ?

*> 192.168.2.0/30   192.168.2.5           20         32768 ?

*>i192.168.2.4/30   172.30.255.254        20    100      0 ?

*  192.168.50.0     10.100.65.1                          0 100 50 ?

*>i                 172.30.255.254              200      0 100 50 ?

*> 192.168.75.0     10.100.65.1                 300      0 100 75 i

*> 192.168.100.0    192.168.2.5           20         32768 ?

* i                 172.30.255.254        20    100      0 ?

Moritz#

Notice the fundamental difference between the configurations in Example 3-103 and the IS\_IS configurations from several of 
the earlier examples. Here, BGP routes are not distributed into the IS-IS domain. Instead, each router advertises a default 
address. When sending traffic to an external destination, the interior routers forward packets to the nearest default 
address—either Zermatt or Innsbruck. Those routers then forward the packets to either their respective EBGP peer or to the 
IBGP peer across the redundant link, depending on the LOCAL_PREF attribute of the external route.

Eliminating the redistribution of BGP into IS-IS is not done on a whim; it is required for this topology and this routing policy. If 
Moritz redistributes the EBGP route to 172.18.0.0 into IS-IS, for example, the route is advertised across the IS-IS domain to 
Zermatt. Zermatt accepts the route and redistributes it back into BGP, entering it into its own BGP table. Because Zermatt 
enters the route into its BGP table, the route is considered locally originated and is given a weight of 32768. Administrative 
weight overrules LOCAL_PREF, and Zermatt sees the best route to 172.17.0.0 as through the IS-IS domain rather than across 
the direct link to Moritz.

Case Study: Using the MULTI_EXIT_DISC Attribute

The MULTI_EXIT_DISC attribute, or MED, is used to influence the routing decisions in neighboring autonomous systems. The 
MED is also known as the external metric, and in fact is labeled as "metric" in the BGP table. Like LOCAL_PREF, the MED is a 4-
octet number and therefore can be any number from 0 to 4294967295.

When a BGP speaker learns a route from a peer, it can pass the route's MED to any IBGP peers, but not to EBGP peers. As a 
result, the MED has relevance only between neighboring autonomous systems. If router Zermatt in Figure 3-20 advertises 
172.16.0.0 with a certain MED to Innsbruck, Innsbruck can advertise the MED to Saalbach. When Innsbruck and Saalbach 
advertise the route to their EBGP peers in AS 50 and AS 75, however, they cannot include the MED in the route.

The MED is a relatively weak attribute. In the BGP decision process, the weights, LOCAL_PREFs, AS_PATH lengths, and 
ORIGINs of multiple routes to the same destination are all considered before MED. If all of those variables are equal, however, 
the route with the lowest MED is chosen.

TIP

It can be a bit confusing to remember that the highest LOCAL_PREF is preferred, but the lowest MED is 
preferred. Another term for MED is metric, and another term for metric is distance. So remember "highest 
preference, shortest distance."

You can manipulate the MED with the set metric command under a route map. In Figure 3-20, AS 30 wants AS 100 to send 
incoming traffic to network 172.16.0.0 via the Saalbach-Moritz link. Traffic to network 172.31.0.0 should be sent across the 
Innsbruck-Zermatt link. AS 100 is free to send other traffic across either link. Example 3-105 shows the configurations of 
Zermatt and Moritz.

Example 3-105 Configuring Zermatt and Moritz to Manipulate the MED Attribute

Zermatt



router bgp 30

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map PREF in

 neighbor 10.100.83.1 route-map MED out

 neighbor 10.100.83.1 filter-list 1 out

 neighbor 172.30.255.150 remote-as 30

 neighbor 172.30.255.150 ebgp-multihop 2

 neighbor 172.30.255.150 update-source Loopback0

 neighbor 172.30.255.150 next-hop-self

!

access-list 1 permit 172.31.0.0

access-list 2 permit any

!

route-map MED permit 10

 match ip address 1

 set metric 100

!

route-map MED permit

 match ip address 2

 set metric 200

___________________________________________________________________________________________________________

Moritz

router bgp 30

 redistribute isis level-2

 neighbor 10.100.65.1 remote-as 100

 neighbor 10.100.65.1 ebgp-multihop 2

 neighbor 10.100.65.1 update-source Loopback0

 neighbor 10.100.65.1 route-map PREF in

 neighbor 10.100.65.1 route-map MED out

 neighbor 10.100.65.1 filter-list 1 out

 neighbor 172.30.255.254 remote-as 30

 neighbor 172.30.255.254 ebgp-multihop 2

 neighbor 172.30.255.254 update-source Loopback0

 neighbor 172.30.255.254 next-hop-self

 no auto-summary

!

access-list 1 permit 172.16.0.0

access-list 2 permit any



!

route-map MED permit 10

 match ip address 1

 set metric 100

!

route-map MED permit 20

 match ip address 2

 set metric 200

Each router links the outgoing routes to its EBGP peer to a route map named MED. Sequence 10 of this route map references 
access list 1 and assigns a MED to matching routes. Zermatt gives the route to 172.31.0.0 a MED of 100, and Moritz gives the 
route to 172.16.0.0 a MED of 100. Any routes that do not match the access list in sequence 10 are permitted in sequence 20 
and are assigned a MED of 200. Example 3-106 shows the results in Innsbruck's BGP table.

Example 3-106 Innsbruck Forwards Packets Destined for 172.16.0.0 to Saalbach 
(10.100.65.1) and Packets Destined for 172.31.0.0 to Zermatt (172.30.255.254) Based on the 
Lower Metrics of These Paths

Innsbruck#show ip bgp 172.16.0.0

BGP routing table entry for 172.16.0.0/16, version 10

Paths: (2 available, best #2)

  Advertised to non peer-group peers:

    10.50.250.1 10.75.100.1

  30

    172.30.255.254 from 172.30.255.254 (172.30.255.254)

      Origin incomplete, metric 200, localpref 100, valid, external, ref 2

  30

    10.100.65.1 from 10.100.65.1 (10.100.65.1)

      Origin incomplete, metric 100, localpref 100, valid, internal, best, ref 2

Innsbruck#show ip bgp 172.31.0.0

BGP routing table entry for 172.31.0.0/16, version 26

Paths: (2 available, best #1)

  Advertised to non peer-group peers:

    10.50.250.1 10.75.100.1

  30

    172.30.255.254 from 172.30.255.254 (172.30.255.254)

      Origin incomplete, metric 100, localpref 100, valid, external, best, ref 2

  30

    10.100.65.1 from 10.100.65.1 (10.100.65.1)

      Origin incomplete, metric 200, localpref 100, valid, internal, ref 2

Innsbruck#

Normally, the MEDs of multiple routes to the same destination are compared only when the routes originate from the same 
AS. After all, the purpose of the MED is to allow an AS to communicate its preferences for incoming traffic when multiple links 
exist to a neighboring AS. Comparing the preferences of two different autonomous systems usually makes no sense. On 
occasion, however, exceptions apply.



Figure 3-21 again shows a backdoor link between AS 50 and AS 75. As in the case study "Administrative Distances and 
Backdoor Routes," the networks 172.17.0.0 and 172.18.0.0 are advertised via RIP over the backdoor link and are used for 
private communication between the two autonomous systems.

Figure 3-21. The Backdoor Route Between AS 50 and AS 75 Should Also Be Used as a Backup 
Route

The network backdoor command was used so that AS 75 would not advertise 172.17.0.0 and AS 50 would not advertise 
172.18.0.0. But in this example, AS 50 and AS 75 want the routers in AS 100 to use the backdoor link as a secondary route. If 
Meribel's interface to the NAP fails, for example, Innsbruck and Saalbach should send packets destined for 172.17.0.0 to 
Lillehammer, to be forwarded across the backdoor to AS 50. This requires Meribel and Lillehammer to advertise networks that 
do not exist in their own AS and to clearly identify the routes as backup routes. In this situation, because routes to the same 
destination are being originated by routers in different autonomous systems, comparing MEDs from different autonomous 
systems can make sense.

Two commands are relevant to the circumstances of Figure 3-21. The first is set metric-type internal. This command, used 
as part of a route map, sets the MED of a BGP route to the same metric as the IGP route to the same destination. For 
instance, Meribel's RIP route to 172.17.0.0 is one hop. Lillehammer's RIP route to the same destination, learned across the 
backdoor link, is two hops. The set metric-type internal command causes those routers' BGP routes advertising the network 
to inherit those metrics. As a result, the routers in AS 100 prefer Meribel's route, with a MED of 1, over Lillehammer's route to 
the same destination, with a MED of 2.

The second relevant command is used on the receiving side—in Figure 3-21, on the routers in AS 100. The command bgp 
always-compare-med tells a router to compare the MED of multiple routes to the same destination, even if the routes 
originate in different autonomous systems. Using these two commands, Example 3-107 presents the configurations of Meribel, 
Lillehammer, and Saalbach.

Example 3-107 The Configurations of Meribel, Lillehammer, and Saalbach in Figure 3-21, 
Allowing Saalbach to Compare MED Values from Different Autonomous Systems

Meribel

router bgp 50

 network 172.17.0.0

 network 172.18.0.0

 redistribute rip

 neighbor 10.75.100.1 remote-as 75

 neighbor 10.75.100.1 ebgp-multihop 2

 neighbor 10.75.100.1 update-source Loopback0



 neighbor 10.75.100.1 distribute-list 2 in

 neighbor 10.100.65.1 remote-as 100

 neighbor 10.100.65.1 ebgp-multihop 2

 neighbor 10.100.65.1 update-source Loopback0

 neighbor 10.100.65.1 route-map MED out

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map MED out

no auto-summary

!

ip as-path access-list 1 permit ^$

!

access-list 2 permit 192.168.75.0

access-list 2 permit 172.18.0.0

!

route-map MED permit 10

 match as-path 1

 set metric-type internal

___________________________________________________________________________________________________________

Lillehammer

router bgp 75

 network 172.17.0.0

 network 172.18.0.0

 network 192.168.75.0

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.50.250.1 distribute-list 2 in

 neighbor 10.100.65.1 remote-as 100

 neighbor 10.100.65.1 ebgp-multihop 2

 neighbor 10.100.65.1 update-source Loopback0

 neighbor 10.100.65.1 route-map MED out

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map MED out

!

ip as-path access-list 1 permit ^$

!

access-list 2 permit 10.20.0.0



access-list 2 permit 172.17.0.0

access-list 2 permit 172.29.0.0

access-list 2 permit 192.168.50.0

!

route-map MED permit 10

 match as-path 1

 set metric-type internal

________________________________________________________________

Saalbach

router bgp 100

 no synchronization

 bgp always-compare-med

 neighbor 10.50.250.1 remote-as 50

 neighbor 10.50.250.1 ebgp-multihop 2

 neighbor 10.50.250.1 update-source Loopback0

 neighbor 10.50.250.1 filter-list 2 in

 neighbor 10.75.100.1 remote-as 75

 neighbor 10.75.100.1 ebgp-multihop 2

 neighbor 10.75.100.1 update-source Loopback0

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 next-hop-self

 neighbor 10.100.83.1 filter-list 1 in

 neighbor 172.30.255.150 remote-as 30

 neighbor 172.30.255.150 ebgp-multihop 2

 neighbor 172.30.255.150 update-source Loopback0

 no auto-summary

Notice that in Meribel's configuration a network statement is used for 172.17.0.0, even though the network is being 
redistributed into BGP. This statement is necessary to fix the ORIGIN of the route to IGP, because a network statement is 
used for the route at Lillehammer. Without it, the ORIGIN of the route from Meribel would be Incomplete. ORIGIN has a higher 
priority than MED in the BGP decision process, meaning that the Lillehammer route would be preferred at AS 100, even with 
its higher MED.

Another important detail in Meribel's configuration is the distribute list filtering incoming NLRI from Lillehammer. This filter 
permits the route to 192.168.75.0 and 172.18.0.0 and denies all other routes. Of particular importance is the fact that the 
route to 172.17.0.0 advertised by Lillehammer is denied by this filter. Otherwise, the EBGP route, with an administrative 
distance of 20, would take precedence over Meribel's RIP route, causing a routing loop.

Example 3-108 shows the resulting BGP table at Saalbach. Meribel's route to 172.17.0.0, with a MED of 1, is preferred over 
Lillehammer's route, with a MED of 2. 172.18.0.0 is directly attached to Lillehammer, so the local metric and the resulting 
MED from that router are 0. After being advertised via RIP to Meribel, the local metric at that router is 1, which is also 
reflected in that MED of Meribel's route. If either of the preferred routes fails, the alternate route is chosen, and traffic to that 
destination uses the backdoor link.

Example 3-108 The MEDs for the Routes to 172.17.0.0 and 172.18.0.0 Match the Internal RIP 
Metrics of AS 50 and AS 75



Saalbach#show ip bgp

BGP table version is 54, local router ID is 10.100.65.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.20.0.0/16     10.50.250.1            0             0 50 ?

*> 10.21.0.0/16     10.50.250.1            0             0 50 ?

* i10.30.0.0/16     10.100.83.1          200    100      0 30 ?

*>                  172.30.255.150       200             0 30 ?

*> 10.50.250.1/32   10.50.250.1            0             0 50 ?

*> 10.75.100.1/32   10.50.250.1            0             0 50 ?

*> 10.100.83.1/32   10.50.250.1            0             0 50 ?

*> 172.16.0.0       172.30.255.150       100             0 30 ?

*> 172.17.0.0       10.50.250.1            1             0 50 i

*                   10.75.100.1            2             0 75 i

*  172.18.0.0       10.50.250.1            1             0 50 i

*>                  10.75.100.1            0             0 75 i

*> 172.29.0.0       10.50.250.1            1             0 50 ?

* i172.29.1.0/24    10.100.83.1          200    100      0 30 ?

*>                  172.30.255.150       200             0 30 ?

*>i172.31.0.0       10.100.83.1          100    100      0 30 ?

*                   172.30.255.150       200             0 30 ?

*> 192.168.50.0     10.50.250.1            1             0 50 ?

*> 192.168.75.0     10.75.100.1            0             0 75 i

* i192.168.100.0    10.100.83.1          200    100      0 30 ?

*>                  172.30.255.150       200             0 30 ?

Saalbach#

Innsbruck's configuration and BGP table are not shown in this example, but they are similar.

Case Study: Prepending the AS_PATH

The MULTI_EXIT_DISC attribute can influence the incoming traffic from neighboring autonomous systems, but it cannot 
influence the routing decisions of more-remote autonomous systems.

Figure 3-22 repeats a topology encountered in an earlier case study. Looking at the BGP table of Meribel in Example 3-109, 
you can see that the router has duplicate, equal-cost paths to the destinations within AS 30. Because all other values are 
equal, Meribel's BGP decision process has chosen Innsbruck as the next-hop router for all traffic to AS 30 based on 
Innsbruck's lower router ID. As a result, the Cervinia-Moritz link does not get used at all for traffic from AS 50 to AS 30; 
available bandwidth is poorly utilized.

Figure 3-22. Dual, Equal-Cost Paths Exist Between AS 50 and AS 30



Example 3-109 Meribel's BGP Table Shows the Dual Paths to the Destinations Within AS 30; 
Innsbruck Is Chosen as the Best Path for All the Destinations Because Its Router ID 
(10.100.83.1) Is Lower Than Cervinia's (10.200.60.1)

Meribel#show ip bgp

BGP table version is 18, local router ID is 10.50.250.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 10.20.0.0/16     0.0.0.0                  0         32768 ?

*  10.30.0.0/16     10.200.60.1                            0 200 30 ?

*>                  10.100.83.1                            0 100 30 ?

*> 10.50.250.1/32   0.0.0.0                  0         32768 ?

*> 10.100.65.1/32   0.0.0.0                  0         32768 ?

*> 10.100.83.1/32   0.0.0.0                  0         32768 ?

*> 10.200.60.1/32   0.0.0.0                  0         32768 ?

*  172.16.0.0       10.200.60.1                            0 200 30 ?

*>                  10.100.83.1                            0 100 30 ?

*> 172.17.0.0       10.20.1.1                1         32768 i

*> 172.29.0.0       10.20.1.1                1         32768 ?

*  172.29.1.0/24    10.200.60.1                            0 200 30 ?

*>                  10.100.83.1                            0 100 30 ?

*> 172.30.255.150/32 10.100.83.1                            0 100 30 ?

*> 172.30.255.254/32 10.200.60.1                            0 200 30 ?

*  172.31.0.0       10.200.60.1                            0 200 30 ?

*>                  10.100.83.1                            0 100 30 ?



*> 192.168.2.0/30   10.200.60.1                            0 200 30 ?

*> 192.168.2.4/30   10.100.83.1                            0 100 30 ?

*> 192.168.50.0     10.20.1.1                1         32768 ?

*  192.168.100.0    10.200.60.1                            0 200 30 ?

*>                  10.100.83.1                            0 100 30 ?

Meribel#

AS 30 cannot influence the routing decisions of AS 50 with MEDs, because the two autonomous systems are not directly 
connected neighbors. But AS 30 can influence the routing decisions of AS 50 by modifying the AS_PATH of the routes it 
advertises by using the set as-path prepend command. Suppose AS 30 wants AS 50 to forward all traffic destined for 
172.16.0.0 and 172.31.0.0 to Cervinia and wants traffic to 10.30.0.0, 172.29.1.0/24, and 192.168.100.0 forwarded to 
Innsbruck. Example 3-110 shows the configuration for Zermatt and Moritz.

Example 3-110 Configuring Zermatt and Moritz for AS Path Prepending

Zermatt

router bgp 30

 no synchronization

 redistribute isis level-2

 neighbor 10.100.83.1 remote-as 100

 neighbor 10.100.83.1 ebgp-multihop 2

 neighbor 10.100.83.1 update-source Loopback0

 neighbor 10.100.83.1 route-map PATH out

 neighbor 10.100.83.1 filter-list 1 out

 no auto-summary

!

ip as-path access-list 1 permit ^$

!

access-list 3 permit 172.31.0.0

access-list 3 permit 172.16.0.0

!

route-map PATH permit 10

 match ip address 3

 set as-path prepend 30

!

route-map PATH permit 20

___________________________________________________________________________________________________________

Moritz

router bgp 30

 no synchronization

 redistribute isis level-2

 neighbor 10.200.60.1 remote-as 200

 neighbor 10.200.60.1 ebgp-multihop 2



 neighbor 10.200.60.1 update-source Loopback0

 neighbor 10.200.60.1 route-map PATH out

 neighbor 10.200.60.1 filter-list 1 out

 no auto-summary

!

ip as-path access-list 1 permit ^$

!

access-list 3 permit 192.168.100.0

access-list 3 permit 10.30.0.0

access-list 3 permit 172.29.1.0

!

route-map PATH permit 10

 match ip address 3

 set as-path prepend 30

!

route-map PATH permit 20

Each router filters outgoing packets through a route map named PATH. Statement 10 of the route map uses access list 3 to 
identify certain roues by their NLRI; matching routes have an AS number of 30 added to their AS_PATH. Note that this 
number is in addition to the AS number 30 normally added to the AS_PATH. Routes that are not matched by access list 3 are 
permitted by statement 20 of the route map.

Example 3-111 shows the resulting BGP table at Meribel. The prepended routes are now longer than the routes from the 
preferred path, and the router chooses the routes with the shorter AS_PATHs.

Example 3-111 Meribel's BGP Table Shows the Prepended AS_PATHs from Zermatt and Moritz; 
the Router Chooses the Paths with the Shorter AS_PATH

Meribel#show ip bgp

BGP table version is 70, local router ID is 10.50.250.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 10.20.0.0/16     0.0.0.0                  0         32768 ?

*  10.30.0.0/16     10.200.60.1                            0 200 30 30 ?

*>                  10.100.83.1                            0 100 30 ?

*> 10.50.250.1/32   0.0.0.0                  0         32768 ?

*> 10.100.65.1/32   0.0.0.0                  0         32768 ?

*> 10.100.83.1/32   0.0.0.0                  0         32768 ?

*> 10.200.60.1/32   0.0.0.0                  0         32768 ?

*> 172.16.0.0       10.200.60.1                            0 200 30 ?

*                   10.100.83.1                            0 100 30 30 ?

*> 172.17.0.0       10.20.1.1                1         32768 i

*> 172.29.0.0       10.20.1.1                1         32768 ?

*  172.29.1.0/24    10.200.60.1                            0 200 30 30 ?

*>                  10.100.83.1                            0 100 30 ?



*> 172.30.255.150/32 10.100.83.1                            0 100 30 ?

*> 172.30.255.254/32 10.200.60.1                            0 200 30 ?

*> 172.31.0.0       10.200.60.1                            0 200 30 ?

*                   10.100.83.1                            0 100 30 30 ?

*> 192.168.2.0/30   10.200.60.1                            0 200 30 ?

*> 192.168.2.4/30   10.100.83.1                            0 100 30 ?

*> 192.168.50.0     10.20.1.1                1         32768 ?

*  192.168.100.0    10.200.60.1                            0 200 30 30 ?

*>                  10.100.83.1                            0 100 30 ?

Meribel#

You should use AS_PATH prepending with great caution. If you do not fully understand the effects your configuration will have, 
unexpected or broken routing can result. Suppose, for example, the command set as-path prepend 30 30 is used in Moritz's 
configuration. This command adds two instances of the AS number 30 to the AS_PATH rather than one. Examining the effects 
on the route to 10.30.0.0, Cervinia in Figure 3-22 receives the route from Moritz with an AS_PATH of (30,30,30) and a route 
from Meribel to the same destination with an AS_PATH of (50,100,30). Because the routes have the same AS_PATH length, 
Cervinia chooses the route with the lowest next-hop address: Meribel's. The original intention was to affect the routing at AS 
50 only, but this configuration also has caused AS 200 to choose a longer path to the destination.

It is also important when prepending to always use the AS number of the prepending router's AS. If another AS number is 
used, and an AS using that number is encountered by the advertised route, that AS will not accept the route.

Case Study: Route Tagging

A route tag field can be thought of as a sort of "pocket" in a routing update for transporting information across a routing 
domain. The information represented by the tag has no relevance to the routing protocol itself, and the routing protocol does 
not act on the tag in any way. Tags are useful when a route is redistributed from protocol A into protocol B and then 
redistributed back into protocol A at some other point. The tag field within the transit routing protocol's updates allows 
protocol A to send information to its peers on the other side of the transit domain. Usually, this information is inconsistent or 
meaningless to the transit routing protocol.

RIP-2, EIGRP, Integrated IS-IS, OSPF, and BGP support route tags. RIP-1 and IGRP do not. Chapter 14 of Volume I introduces 
route tagging and presents examples of its use. This case study obviously concentrates on the use of tags in a BGP 
environment.

Figure 3-23 depicts an environment in which route tags are useful. AS 1300 provides transit for the inter-AS traffic of several 
autonomous systems. Each route of the three outlying autonomous systems is advertised via EBGP to one of the three border 
routers in AS 1300. The route is redistributed into OSPF, redistributed back into BGP at the other two border routers, and then 
advertised to their EBGP peers.

Figure 3-23. AS 1300 Is a Transit AS for the Other Three Autonomous Systems



NOTE

A configuration such as the one depicted here, with BGP redistributed into an IGP, can find applications in 
some large enterprise networks. As stated several times throughout this chapter, however, you should never 
redistribute BGP routes into an IGP in a service provider AS or in an AS in which large numbers of BGP 
prefixes are being received.

The problem with the topology in Figure 3-23 is that the BGP processes of the three outlying autonomous systems must share 
their routing information through OSPF, which has no understanding of BGP path attributes. As a result, path information is 
lost. Example 3-112 shows the BGP table at router Turoa. You can see that all routes appear to be originated by AS 1300. If 
AS 1400 has an alternate path to AS 1100 or AS 1200, it cannot make an accurate routing decision because of this 
information loss.

Example 3-112 The AS_PATH Information of the Routes from AS 1100 and AS 1200 Has Not 
Been Preserved Across the OSPF Domain in AS 1300; as a Result, All Routes Learned from AS 
1300 Appear to Have Been Originated by That AS

Turoa#show ip bgp

BGP table version is 44, local router ID is 192.168.8.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.0      192.168.10.22            1             0 1300 ?

*> 192.168.2.0      192.168.10.22            1             0 1300 ?



*> 192.168.3.0      192.168.10.22            1             0 1300 ?

*> 192.168.4.0      192.168.10.22            1             0 1300 ?

*> 192.168.5.0      192.168.10.22           20             0 1300 ?

*> 192.168.6.0      192.168.10.22           20             0 1300 ?

*> 192.168.7.0      0.0.0.0                  0         32768 i

*> 192.168.8.0      0.0.0.0                  0         32768 i

*> 192.168.10.0     192.168.10.22          192             0 1300 ?

Turoa#

BGP can use the route tag field in the OSPF packets to convey AS_PATH information across the OSPF domain. In fact, Cisco's 
BGP implementation does this automatically. Example 3-113 shows the details of Zao's route to 192.168.1.0 in AS 1200, 
across the OSPF domain. Notice the tag field, which is marked with a 1200.

Example 3-113 When Router Naeba Redistributed Its EBGP Route to 192.168.1.0 into OSPF, It 
Wrote the AS_PATH of the Route into the External Route Tag Field of the OSPF AS-External 
LSA; You Can See the Tag in the Route Entry at Zao, on the Other Side of the OSPF Domain

Zao#show ip route 192.168.1.0

Routing entry for 192.168.1.0/24

  Known via "ospf 1300", distance 110, metric 1

  Tag 1200, type extern 2, forward metric 128

  Redistributing via ospf 1300, bgp 1300

  Advertised by bgp 1300 match internal external 2

  Last update from 192.168.10.18 on Serial1.503, 00:13:33 ago

  Routing Descriptor Blocks:

  * 192.168.10.18, from 192.168.10.13, 00:13:33 ago, via Serial1.503

      Route metric is 1, traffic share count is 1

Zao#

See Chapter 9, "Open Shortest Path First," of Volume I for more details on the format and use of the OSPF AS-External LSA.

When IGP routes are redistributed into BGP, however, the BGP process does not automatically assume that the IGP's tag field 
contains AS_PATH information. You must configure the process to recover the AS_PATH information. One way to recover the 
AS_PATH information from the tags of redistributed routes is with the set as-path tag command. Example 3-114 shows the 
configuration for Zao using the set as-path tag command.

Example 3-114 Configuring Zao to Recover AS_PATH Information from the Tags of 
Redistributed Routes

router ospf 1300

 redistribute bgp 1300

 network 192.168.10.0 0.0.0.255 area 0

!

router bgp 1300

 redistribute ospf 1300 match internal external 2 route-map GET_TAG

 neighbor 192.168.10.21 remote-as 1400

!



route-map GET_TAG permit 10

 set as-path tag

The redistribute ospf statement under the BGP configuration references a route map named GET_TAG, which sets the 
AS_PATH attribute of the redistributed routes to the value in the OSPF tag field. Example 3-115 shows that as a result, Turoa's 
BGP table now contains accurate AS_PATH information to the routes in AS 1100 and AS 1200.

Example 3-115 Turoa's BGP Table Now Contains Accurate AS_PATH Information

Turoa#show ip bgp

BGP table version is 148, local router ID is 192.168.8.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.0      192.168.10.22            1             0 1300 1200 ?

*> 192.168.2.0      192.168.10.22            1             0 1300 1200 ?

*> 192.168.3.0      192.168.10.22            1             0 1300 1100 ?

*> 192.168.4.0      192.168.10.22            1             0 1300 1100 ?

*> 192.168.5.0      192.168.10.22           20             0 1300 ?

*> 192.168.6.0      192.168.10.22           20             0 1300 ?

*> 192.168.7.0      0.0.0.0                  0         32768 i

*> 192.168.8.0      0.0.0.0                  0         32768 i

*> 192.168.10.0     192.168.10.22          192             0 1300 ?

Turoa#

No configuration is required at Happo or Naeba for Zao to pick up AS_PATH information from the OSPF tag field with the set 
as-path tag command. However, the only information that is entered into the tag field automatically is the AS_PATH. Notice 
in Example 3-115 that the routes from AS 1100 and AS 1200 are marked with an ORIGIN of Incomplete. Routers Thredbo and 
Yangii use the BGP network command to advertise their interior routes with an ORIGIN of IGP, but Happo and Naeba do not 
enter that information into the OSPF tag. The ORIGIN code that Turoa sees is Incomplete as a result of the route's being 
redistributed from OSPF into BGP at Zao.

This might or might not be a problem, depending on whether Turoa has alternative routes to AS 1100 and AS 1200, and 
whether the ORIGIN of the routes might influence the BGP decision process. Cisco offers an alternative configuration, called an 
automatic tag, which enters not only the AS_PATH information but also the ORIGIN code. The automatic tag is set with the 
set automatic-tag command, and the route map containing the command is called from the BGP process with the table-
map command. Unlike the set as-path tag command, which is configured on routers redistributing routes from an IGP into 
BGP, the set automatic-tag command is configured on the routers redistributing routes from BGP into an IGP.

All three AS 1300 routers in Figure 3-23 will be configured the same for setting automatic tags. Example 3-116 shows the 
configuration for Naeba.

Example 3-116 Configuring Naeba to Enter AS_PATH Information and ORIGIN Code

router ospf 1300

 redistribute bgp 1300

 network 192.168.0.0 0.0.255.255 area 0

!

router bgp 1300

 table-map SET_TAG



 redistribute ospf 1300 match internal external 2

 neighbor 192.168.10.5 remote-as 1200

!

ip as-path access-list 1 permit .*

!

route-map SET_TAG permit 10

 match as-path 1

 set automatic-tag

Example 3-117 shows the resulting BGP table at Turoa. You can see that it looks almost identical to the table in Example 3-
115, but the routes from AS 1100 and AS 1200 now correctly reflect an ORIGIN attribute of IGP.

Another use for route tags is to identify certain groups of routes, perhaps for filtering. In Figure 3-23, routers Naeba and 
Happo might be configured to tag some subset of their EBGP routes before redistributing them into OSPF. Zao, retrieving the 
routes from the OSPF domain, could then identify the routes by their common tag instead of having to filter by NLRI. Recall 
from Chapter 2 that the BGP COMMUNITY attribute also is designed to identify routes in a common group. In the topology of 
Figure 3-23, however, the COMMUNITY attribute cannot be communicated across the OSPF domain. For an example of using 
tags for this purpose, see "Case Study: Route Tagging," in Chapter 14 of Volume I.

Finally, you can use tagging only when an IGP is redistributed into BGP. When the network command is used, the BGP route 
is considered locally originated and therefore does not inherit any of the attributes, including tags, of the IGP route.

Example 3-117 Turoa's BGP Table Now Contains Not Only the Correct AS_PATH Information, 
But Also the Correct ORIGIN

Turoa#show ip bgp

BGP table version is 228, local router ID is 192.168.8.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 192.168.1.0      192.168.10.22            1             0 1300 1200 i

*> 192.168.2.0      192.168.10.22            1             0 1300 1200 i

*> 192.168.3.0      192.168.10.22            1             0 1300 1100 i

*> 192.168.4.0      192.168.10.22            1             0 1300 1100 i

*> 192.168.5.0      192.168.10.22           20             0 1300 ?

*> 192.168.6.0      192.168.10.22           20             0 1300 ?

*> 192.168.7.0      0.0.0.0                  0         32768 i

*> 192.168.8.0      0.0.0.0                  0         32768 i

*> 192.168.10.0     192.168.10.22          192             0 1300 ?

Turoa#

Case Study: Route Dampening

Route dampening, as discussed in Chapter 2, is a process that can assign a penalty to a flapping route. If the route 
accumulates enough penalties, the route is suppressed—that is, it is not advertised—for a certain period of time. By default, a 
route is assigned a penalty value of 1000 for each flap. If the value of the route's accumulated penalties exceeds 2000, the 
route is suppressed until the penalty value drops below 750. These upper and lower thresholds are the suppress limit and the 
reuse limit. The accumulated penalty is reduced every 5 seconds, at a rate such that the penalty is reduced by half every 15 
minutes. You can see that this rate, known as the half-life, is exponential. If the penalty is 3000, it is reduced by 1500 over 15 



minutes; if the penalty is 300, it is reduced by 150 over 15 minutes. There is also a maximum time the route can be 
suppressed, known as the maximum suppress limit. By default, this limit is four times the half-life, or 60 minutes.

Route dampening is enabled under the BGP process configuration with the command bgp dampening. If you want to change 
the default values, the syntax is bgp dampening half-life reuse suppress max-suppress.

Figure 3-24 shows a topology in which one router, Colorado, is homed to five other autonomous systems. If the routes 
advertised by any of the remote autonomous systems flaps, Colorado must advertise the change to all other EBGP peers. 
Although this may not be much of a burden on the sample topology, imagine the effects if Colorado has 150 EBGP peers 
rather than the five shown. A regularly flapping route could cause a heavy processing burden on that hub router.

Figure 3-24. If a Route in Any of the "Spoke" Autonomous Systems Flaps, the "Hub" Router, 
Colorado, Must Send an Update to All of Its EBGP Peers Advertising the Change

Example 3-118 provides the BGP configuration for Colorado.

Example 3-118 Configuring Colorado to Send Updates to EBGP Peers to Advertise Changes 
When a Route Flaps

router bgp 100

 bgp dampening

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 ebgp-multihop 2

 neighbor 10.1.255.2 update-source Loopback2

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 ebgp-multihop 2

 neighbor 10.1.255.3 update-source Loopback2

 neighbor 10.1.255.4 remote-as 400



 neighbor 10.1.255.4 ebgp-multihop 2

 neighbor 10.1.255.4 update-source Loopback2

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 ebgp-multihop 2

 neighbor 10.1.255.5 update-source Loopback2

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 ebgp-multihop 2

 neighbor 10.1.255.6 update-source Loopback2

 no auto-summary

Example 3-119 shows Colorado's BGP table. Notice that 10.1.4.0/24 is marked with a d, indicating that it has been dampened, 
or suppressed. 10.1.7.0/24 has been marked with an h. This means that there is a history of flapping; that is, although the 
route has not accumulated a large-enough penalty to be suppressed, it does have a penalty.

Example 3-119 Two Routes, 10.1.4.0/24 and 10.1.7.0/24, Have Accumulated Penalties; the 
First Has Accumulated More than 2000 and Has Been Dampened

Colorado#show ip bgp

BGP table version is 756, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.1.0/24      10.1.255.2             0             0 200 i

*> 10.1.2.0/24      10.1.255.2             0             0 200 i

*> 10.1.3.0/24      10.1.255.3             0             0 300 i

*d 10.1.4.0/24      10.1.255.3             0             0 300 i

*> 10.1.5.0/24      10.1.255.4             0             0 400 i

*> 10.1.6.0/24      10.1.255.4             0             0 400 i

 h 10.1.7.0/24      10.1.255.5             0             0 500 i

*> 10.1.8.0/24      10.1.255.5             0             0 500 i

*> 10.1.9.0/24      10.1.255.6             0             0 600 i

*> 10.1.10.0/24     10.1.255.6             0             0 600 i

*> 10.1.11.0/24     0.0.0.0                0         32768 i

*> 10.1.12.0/24     0.0.0.0                0         32768 i

The unstable routes are readily apparent in the BGP table of Example 3-119 because there are not very many entries. What 
about a table with thousands of BGP entries, however? Finding unstable routes by looking for a d or h could be impractical. 
Two commands make finding these routes easier: show ip bgp flap-statistics and show ip bgp dampened-paths. As the 
names imply, the first command shows all routes that have flapped and how many times a route has flapped. The second 
command shows only those routes that have been suppressed. Example 3-120 shows these commands used at Colorado; 
notice that for suppressed routes, both outputs indicate when the route is expected to be advertised again. This time is 
contingent on the route's not being assigned further penalties. Note that flap statistics are recorded only if BGP dampening is 
configured. You cannot use the command show ip bgp flap-statistics to check for unstable routes on a router that is not 
running the dampening process.

Example 3-120 You Can Display Only Those Routes in the BGP Table That Have Flapped, or 
Only Those Routes That Have Been Suppressed



Colorado#show ip bgp flap-statistics

BGP table version is 756, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          From            Flaps Duration Reuse    Path

*d 10.1.4.0/24      10.1.255.3      3     00:15:52 00:19:40 300

 h 10.1.7.0/24      10.1.255.5      2     00:20:49          500

Colorado#show ip bgp dampened-paths

BGP table version is 757, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          From             Reuse   Path

*d 10.1.4.0/24      10.1.255.3       00:19:2 300 i

Looking at the details of a route shows you not only the statistics displayed in Example 3-120, but also the accumulated 
penalties. In Example 3-121, you can see that the route to 10.1.4.0/24 has a penalty of 1815; the half-life decay process has 
reduced the penalty below the suppress threshold of 2000, but not yet to the reuse threshold of 750. That second threshold is 
expected to be reached in 19 minutes and 10 seconds.

Example 3-121 If an Unstable Route Is Specified with the show ip bgp Command, the Route's 
Penalty Value Displays

Colorado#show ip bgp 10.1.4.0

BGP routing table entry for 10.1.4.0/24, version 755

Paths: (1 available, no best path, advertised over EBGP)

  300, (suppressed due to dampening)

    10.1.255.3 from 10.1.255.3

      Origin IGP, metric 0, localpref 100, valid, external

      Dampinfo: penalty 1815, flapped 3 times in 00:16:28, reuse in 00:19:10

Colorado#

In some cases, you might want to put a suppressed route back into service before the reuse limit is reached. The 
administrator in AS 300 might have assured you that the cause of the flaps of subnet 10.1.4.0/24 has been identified and 
eliminated, for instance, and now he wants traffic to resume. Two commands are available: clear ip bgp flap-statistics and 
clear ip bgp dampening. These two commands have the same effect of clearing all penalties for a route or for all routes 
(depending on whether a route is specified with the command), but the second command clears only those routes that have 
been suppressed. The clear ip bgp flap-statistics also enables you to identify a group of routes by their AS path, either by 
specifying a filter list or by using a regular expression. For example, the command clear ip bgp flap-statistics regexp _30_ 
clears the flap statistics for all routes that have the AS number 30 in their AS_PATH attribute. This command proves useful if 
AS 30 is a transit AS, and a bad link has caused all destinations reachable through that AS to accumulate penalties.



 
  
Large-Scale BGP

Large-scale BGP is something of a subjective term. You decide when your BGP topology grows large enough to justify the use of 
the tools discussed in this section. As a rule, however, peer groups and communities are used in moderate-sized to larger 
internetworks. Route reflectors can also be found in moderate-sized and larger internetworks, but confederations generally are 
found only in the largest of BGP topologies, such as that of a large ISP. The following case studies discuss each of these tools.

Case Study: BGP Peer Groups

The preceding case study presented a BGP topology in Figure 3-24 in which an autonomous system is multihomed to several 
other autonomous systems. Suppose, however, that the router Colorado has 150 EBGP peers rather than five. In addition to 
the standard configuration, each neighbor connection has an outgoing and an incoming route filter. So for each neighbor, there 
are five BGP configuration statements:

●     A neighbor remote-as statement
●     A neighbor ebgp-multihop statement, because the connections are between loopback addresses
●     A neighbor update-source statement, for the same reason
●     A neighbor filter-list out statement
●     A neighbor filter-list in statement

For 150 EBGP peers, this translates into 750 configuration statements.

When the same routing policies are applied to many BGP peers, a router's BGP configuration can be greatly simplified by 
designating the peers as members of a single peer group. Most of the configuration options and routing policies that otherwise 
would be defined for each neighbor can instead be defined once, for the peer group. A peer group is relevant only to the router 
on which it is defined and is not communicated to the router's peers. You follow three steps to create a peer group:

Step 1. Designate the peer group name.

Step 2. Designate the routing policies and configuration options common to all members of the peer group.

Step 3. Designate the neighbors that belong to the peer group.

The configuration in Example 3-122 creates a peer group named CLIENTS on the router Colorado in Figure 3-24.

Example 3-122 Creating a Peer Group, CLIENTS, on the Router Colorado

router bgp 100

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0

 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS filter-list 2 in

 neighbor CLIENTS filter-list 1 out

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS



 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS

 no auto-summary

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit ^[2-6]00$

The neighbor CLIENTS peer-group statement creates the peer group, and the next four statements define options and 
policies common to all members of the group. The EBGP neighbors are then designated as usual with neighbor remote-as, 
and a single statement is added designating the neighbor as a member of the peer group CLIENTS.

By consolidating shared options and policies, peer groups can significantly shorten a BGP configuration. Returning to the 
scenario in which Colorado has 150 EBGP peers, if all the peers are members of peer group CLIENTS, the configuration is 
reduced from 750 statements to 305. The configuration also becomes much easier to interpret. All options are configured in one 
place, and all that is necessary is to know which neighbors are members of which peer group.

When all the members of a peer group belong to the same AS, you can shorten the configuration even more by specifying the 
common AS under the peer group configuration. All the members could be EBGP peers in the same remote AS, but in most 
cases a large number of peers in the same AS will be IBGP peers. In Figure 3-25, routers NewMexico and Idaho have been 
added as IBGP peers of Colorado.

Figure 3-25. Two IBGP Peers Have Been Added to AS 100

Example 3-123 shows the configuration for Colorado.

Example 3-123 Configuring Colorado with a Peer Group for Its Internal Peers

router bgp 100

 no synchronization

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0



 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS filter-list 2 in

 neighbor CLIENTS filter-list 1 out

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 100

 neighbor LOCAL next-hop-self

 neighbor LOCAL filter-list 3 out

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS

 neighbor 10.1.255.7 peer-group LOCAL

 neighbor 10.1.255.8 peer-group LOCAL

 no auto-summary

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit ^[2-6]00$

ip as-path access-list 3 permit ^[246]00$

NewMexico and Idaho have been added to the peer group LOCAL. Their common AS number is specified under the peer group 
configuration, as is a common outgoing routing policy.

NOTE

AS_PATH list 3 permits any route from AS 200, 400, or 600. Routes from AS 300 and AS 500 are implicitly 
denied, as are local routes originated from Colorado.

Incoming routing policies that are defined for a single peer group member take precedence over incoming routing policies 
defined for the peer group. Suppose, for example, that Colorado should accept only subnet 10.1.5.0/24 from EBGP peer 
California, but all other peer group policies and options apply. Example 3-124 shows the new configuration for Colorado.

Example 3-124 Applying a Routing Policy to a Single Neighbor in a Peer Group

router bgp 100

 no synchronization

 network 10.1.11.0 mask 255.255.255.0



 network 10.1.12.0 mask 255.255.255.0

 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS filter-list 2 in

 neighbor CLIENTS filter-list 1 out

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 100

 neighbor LOCAL next-hop-self

 neighbor LOCAL filter-list 3 out

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.4 distribute-list 10 in

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS

 neighbor 10.1.255.7 peer-group LOCAL

 neighbor 10.1.255.8 peer-group LOCAL

 no auto-summary

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit ^[2-6]00$

ip as-path access-list 3 permit ^[246]00$

access-list 10 permit 10.1.5.0

Distribute list 10 has been added to the neighbor configuration for California (10.1.255.4). Although Colorado's configuration 
defines California as a member of the CLIENTS peer group, the distribute list overrides the incoming filter list 2 for that peer.

You can display details about the peer groups defined on a router with the command show ip bgp peer-groups, as 
demonstrated in Example 3-125. You also can use the command to observe the details of a single peer group, by specifying the 
name of the group at the end of the command.

Example 3-125 The show ip bgp peer-groups Command Displays Details About a Router's Peer 
Groups

Colorado#show ip bgp peer-group

BGP neighbor is CLIENTS, peer-group leader

 Index 1, Offset 0, Mask 0x2

  BGP version 4

  Minimum time between advertisement runs is 5 seconds



  Incoming update AS path filter list is 2

  Outgoing update AS path filter list is 1

BGP neighbor is LOCAL, peer-group leader,  remote AS 100

 Index 0, Offset 0, Mask 0x0

  NEXT_HOP is always this router

  BGP version 4

  Minimum time between advertisement runs is 5 seconds

  Outgoing update AS path filter list is 3

Colorado#

Case Study: BGP Communities

Whereas peer groups enable you to apply common policies to a group of neighbors, communities enable you to apply policies to 
a group of routes. A community is a route attribute and therefore is communicated from one BGP speaker to another.

You follow three steps to configure a community attribute:

Step 1. Use a route map to identify the routes in which the attribute is to be set.

Step 2. Use the set community command to set the attribute.

Step 3. Use the neighbor send-community command to specify the neighbors to which the attribute is sent.

In Figure 3-26, AS 100 is connected across a NAP to AS 2000. A routing policy in AS 2000 states that subnet 10.2.2.0/24 
should be advertised to AS 100, but not to any of the EBGP peers connected to Colorado. To implement this policy, the 
NO_EXPORT community attribute is used. This attribute allows a route to be advertised throughout a neighboring AS but does 
not allow that AS to advertise the route to other autonomous systems. Example 3-126 shows router Austria's configuration.

Figure 3-26. Network Topology for BGP Communities Case Study



Example 3-126 Restricting a Subnet in AS 2000 from Being Advertised Beyond AS 100

router bgp 2000

 network 10.2.1.0 mask 255.255.255.0

 network 10.2.2.0 mask 255.255.255.0

 network 10.2.3.0 mask 255.255.255.0

 neighbor 10.1.255.8 remote-as 100

 neighbor 10.1.255.8 ebgp-multihop 2

 neighbor 10.1.255.8 update-source Loopback0

 neighbor 10.1.255.8 send-community

 neighbor 10.1.255.8 route-map AUSTRIA out

 no auto-summary

!

access-list 1 permit 10.2.2.0

!

route-map AUSTRIA permit 10

 match ip address 1

 set community no-export

!

route-map AUSTRIA permit 20

Example 3-127 shows the results of the configuration in Example 3-126. Colorado's BGP table includes the route to 



10.2.2.0/24, indicating that Idaho has advertised the route to its IBGP peers. But Nevada's BGP table does not contain the 
route; Colorado has honored the NO_EXPORT attribute and has suppressed the route to its EBGP peers.

Example 3-127 The Route to 10.2.2.0 Has the NO_EXPORT Community Attribute Set, So 
Colorado Does Not Advertise the Route to Its EBGP Peers Such as Nevada

Colorado#show ip bgp 10.2.2.0

BGP routing table entry for 10.2.2.0/24, version 42

Paths: (1 available, best #1, not advertised to EBGP peer)

  2000

    10.1.255.8 from 10.1.255.8

      Origin IGP, metric 0, localpref 100, valid, internal, best

      Community: no-export

Colorado#

_______________________________________________________________________

Nevada#show ip bgp 10.2.2.0

% Network not in table

Nevada#

Of course, an autonomous system would not be truly autonomous if another AS could tell it what to do. Suppose AS 100 wants 
to override the NO_EXPORT attribute set by Austria and advertise 10.2.2.0/24 to Colorado's EBGP peers. Example 3-128 shows 
the configuration for Idaho to implement such a policy.

Example 3-128 Configuring Idaho to Delete Communities Advertised by AS 2000

router bgp 100

 no synchronization

 network 10.1.12.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 next-hop-self

 neighbor 10.1.255.1 route-map IDAHO out

 neighbor 10.1.255.7 remote-as 100

 neighbor 10.1.255.7 update-source Loopback0

 neighbor 10.2.255.1 remote-as 2000

 neighbor 10.2.255.1 ebgp-multihop 2

 neighbor 10.2.255.1 update-source Loopback0

 no auto-summary

!

access-list 1 permit 10.2.2.0

!

route-map IDAHO permit 10

 match ip address 1

 set community none

!



route-map IDAHO permit 20

The set community none statement in Idaho's configuration does not set a community attribute; rather, it deletes existing 
community attributes. That is why no neighbor send-community statement is necessary in this configuration. Example 3-129 
shows the results at Colorado and Nevada.

Example 3-129 Colorado No Longer Sees a NO_EXPORT Community Attribute for the Route to 
10.2.2.0/24 and Advertises the Route to Its EBGP Peers

Colorado#show ip bgp 10.2.2.0

BGP routing table entry for 10.2.2.0/24, version 90

Paths: (1 available, best #1, advertised over EBGP)

  2000

    10.1.255.8 from 10.1.255.8

      Origin IGP, metric 0, localpref 100, valid, internal, best

Colorado#

_______________________________________________________________________

Nevada#show ip bgp 10.2.2.0

BGP routing table entry for 10.2.2.0 255.255.255.0, version 325

Paths: (1 available, best #1)

  100 2000

    10.1.255.1 from 10.1.255.1

      Origin IGP, valid, external, best

Nevada#

The NO_ADVERTISE community attribute sends the same message as NO_EXPORT—it tells routers to not advertise the route to 
any peers. The difference is that NO_ADVERTISE is sent to IBGP peers rather than EBGP peers. Suppose that Idaho in Figure 3-
26 wants to advertise subnets 10.2.1.0/24 and 10.2.3.0/24 to Colorado but does not want that peer to advertise the routes to 
any of its own IBGP or EBGP peers. Example 3-130 shows the configuration for Idaho.

Example 3-130 Setting the NO_ADVERTISE Community at Idaho for Selected Prefixes

router bgp 100

 no synchronization

 network 10.1.12.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 next-hop-self

 neighbor 10.1.255.1 send-community

 neighbor 10.1.255.1 route-map IDAHO out

 neighbor 10.1.255.7 remote-as 100

 neighbor 10.1.255.7 update-source Loopback0

 neighbor 10.2.255.1 remote-as 2000

 neighbor 10.2.255.1 ebgp-multihop 2

 neighbor 10.2.255.1 update-source Loopback0



 no auto-summary

!

ip as-path access-list 2 permit ^2000$

!

access-list 1 permit 10.2.2.0

!

route-map IDAHO permit 10

 match ip address 1

 set community none

!

route-map IDAHO permit 20

 match as-path 2

 set community no-advertise

!

route-map IDAHO permit 30

Recall that Austria is configured to advertise 10.2.2.0/24 with the NO_EXPORT community and the other two subnets of AS 
2000 with no community attributes. Idaho has now completely reversed that policy. Subnet 10.2.2.0/24 has no community 
attribute, and the subnets 10.2.1.0/24 and 10.2.3.0/24 have the NO_ADVERTISE attribute, preventing them from being 
advertised outside of AS 100. Example 3-131 shows the results of this configuration.

Example 3-131 Colorado Has Knowledge of All Three Routes from AS 2000 But Advertises Only 
10.2.2.0/24 to Its Peers

Colorado#show ip bgp regexp 2000

BGP table version is 138, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*>i10.2.1.0/24      10.1.255.8             0    100      0 2000 i

*>i10.2.2.0/24      10.1.255.8             0    100      0 2000 i

*>i10.2.3.0/24      10.1.255.8             0    100      0 2000 i

Colorado#

___________________________________________________________________________________________________________

Nevada#show ip bgp regexp 2000

BGP table version is 355, local router ID is 10.1.255.5

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.2.2.0/24      10.1.255.1                           0 100 2000 i

Nevada#

NOTE



Example 3-131 also shows yet another way to use the show ip bgp command. Here, a regular expression is 
used to display all routes that have a 2000 in their AS_PATH.

A community attribute called LOCAL_AS is something of a hybrid of the NO_EXPORT and NO_ADVERTISE attributes. This 
attribute is used in conjunction with BGP confederations, in which subautonomous systems are configured within an AS. A route 
with a LOCAL_AS attribute can be advertised to peers in other subautonomous systems within a confederation but cannot be 
advertised outside of the AS that forms the confederation.

The well-known community attributes that have been demonstrated so far are acted upon automatically by a BGP speaker. 
However, you also can configure community attributes that have only the meaning you define. You can designate communities 
in two ways:

●     The decimal format, using a number between 1 and 4294967200
●     The AA:NN format, in which AA is a 16-bit AS number between 1 and 65535 and NN is an arbitrary 16-bit number 

between 1 and 65440

In Figure 3-26, each of the "client" autonomous systems of AS 100 has two subnets. Suppose AS 100 applies a certain policy to 
one of the two subnets of each client AS and a different policy to the other subnet. The policies could be applied by using a 
lengthy access list at Colorado to identify each route by its NLRI (remember the scenario in which there are not five client 
autonomous systems, but 150). Another way is to have each client AS assign each subnet to one of two predetermined 
communities. For example, each client could assign one subnet to community 5 and the other to community 10. The 
configuration in Example 3-132 shows what Utah's configuration might look like.

Example 3-132 Assigning Subnets to Communities in Utah

router bgp 200

 network 10.1.1.0 mask 255.255.255.0

 network 10.1.2.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 ebgp-multihop 2

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 send-community

 neighbor 10.1.255.1 route-map UTAH out

 no auto-summary

!

access-list 1 permit 10.1.1.0

access-list 2 permit 10.1.2.0

!

route-map UTAH permit 10

 match ip address 1

 set community 5

!

route-map UTAH permit 20

 match ip address 2

 set community 10

All the other EBGP peers of Colorado have similar configurations, as demonstrated in Example 3-133. In addition to making it 
much easier for Colorado to identify the routes for each policy, this approach gives the administrators of the client autonomous 
systems the leeway to decide which route is used for which policy.



Example 3-133 Each of the Routes Advertised by Colorado's EBGP Peers Is a Member of Either 
Community 5 or Community 10

Colorado#show ip bgp community 5

BGP table version is 60, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.1.0/24      10.1.255.2             0             0 200 i

*> 10.1.3.0/24      10.1.255.3             0             0 300 i

*> 10.1.5.0/24      10.1.255.4             0             0 400 i

*> 10.1.7.0/24      10.1.255.5             0             0 500 i

*> 10.1.9.0/24      10.1.255.6             0             0 600 i

Colorado#show ip bgp community 10

BGP table version is 60, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.2.0/24      10.1.255.2             0             0 200 i

*> 10.1.4.0/24      10.1.255.3             0             0 300 i

*> 10.1.6.0/24      10.1.255.4             0             0 400 i

*> 10.1.8.0/24      10.1.255.5             0             0 500 i

*> 10.1.10.0/24     10.1.255.6             0             0 600 i

Colorado#

A community list is used to identify routes by their community attributes. This list is a special adaptation of an access list: 
There are possibly multiple lines in the list, each of which has a "permit" or "deny" action. The list is identified by a number 
between 1 and 99, and there is an implicit "deny any" at the end. In the configuration in Example 3-134, Colorado uses 
community lists to assign LOCAL_PREF attributes to routes according to their community.

NOTE

Such a policy might be used if the client autonomous systems were multihomed to AS 100. For simplicity, such 
a topology is not shown in this example.

Example 3-134 Using Community Lists to Assign LOCAL_PREF Attributes to Routes According to 
Their Community Values

router bgp 100

 no synchronization

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0



 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS next-hop-self

 neighbor CLIENTS send-community

 neighbor CLIENTS route-map COMM_PREF in

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 100

 neighbor LOCAL next-hop-self

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS

 neighbor 10.1.255.7 peer-group LOCAL

 neighbor 10.1.255.8 peer-group LOCAL

 no auto-summary

!

ip community-list 1 permit 5

ip community-list 2 permit 10

!

route-map COMM_PREF permit 10

 match community 1

 set local-preference 150

!

route-map COMM_PREF permit 20

 match community 2

 set local-preference 200

Incoming routes from the members of peer group CLIENTS are sent to a route map named COMM_PREF. Sequence 10 of the 
route map uses community list 1 to identify routes with a community of 5 and assigns them a LOCAL_PREF of 150. Sequence 
20 uses community list 2 to identify routes with a community of 10 and assigns them a LOCAL_PREF of 200. Example 3-135 
shows the results in Colorado's BGP table.

Example 3-135 The Routes Belonging to Community 5 as Shown in Example 3-31 Have Been 
Assigned a LOCAL_PREF of 150, and the Routes Belonging to Community 10 Have Been 
Assigned a LOCAL_PREF of 200

Colorado#show ip bgp



BGP table version is 16, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.1.0/24      10.1.255.2             0    150      0 200 i

*> 10.1.2.0/24      10.1.255.2             0    200      0 200 i

*> 10.1.3.0/24      10.1.255.3             0    150      0 300 i

*> 10.1.4.0/24      10.1.255.3             0    200      0 300 i

*> 10.1.5.0/24      10.1.255.4             0    150      0 400 i

*> 10.1.6.0/24      10.1.255.4             0    200      0 400 i

*> 10.1.7.0/24      10.1.255.5             0    150      0 500 i

*> 10.1.8.0/24      10.1.255.5             0    200      0 500 i

*> 10.1.9.0/24      10.1.255.6             0    150      0 600 i

*> 10.1.10.0/24     10.1.255.6             0    200      0 600 i

*>i10.1.11.0/24     10.1.255.7             0    100      0 i

*>i10.1.12.0/24     10.1.255.8             0    100      0 i

*>i10.2.1.0/24      10.1.255.8             0    100      0 2000 i

*>i10.2.2.0/24      10.1.255.8             0    100      0 2000 i

*>i10.2.3.0/24      10.1.255.8             0    100      0 2000 i

Colorado#

RFC 1997 and RFC 1998, which describe the BGP community attribute, specify the use of the AA:NN format. By default, Cisco 
IOS uses the older, decimal format. To use the newer format, you add the command ip bgp-community new-format to the 
global router configuration. When entering communities in this format, you can type the community directly in the AA:NN 
format, in hexadecimal, or in decimal. For example, any of the following three entries specify the community 400:50 (AS 400, 
number 50):

●     set community 400:50
●     set community 0x1900032
●     set community 26214450

All these commands specify a 32-bit number in which the first 16 bits is 400 in decimal and the second 16 bits is 50 in decimal. 
Regardless of which of the three commands are used, the community displays in the router configuration file and the BGP 
tables as 400:50.

Example 3-136 shows the configuration for Utah using this format.

Example 3-136 Configuring Utah to Display Communities in the AA:NN Format

router bgp 200

 network 10.1.1.0 mask 255.255.255.0

 network 10.1.2.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 ebgp-multihop 2

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 send-community

 neighbor 10.1.255.1 route-map UTAH out

 no auto-summary



!

ip bgp-community new-format

!

access-list 1 permit 10.1.1.0

access-list 2 permit 10.1.2.0

!

route-map UTAH permit 10

 match ip address 1

 set community 200:5

!

route-map UTAH permit 20

 match ip address 2

 set community 200:10

Just as there are standard and extended access lists, there are also standard and extended community lists. And like IP access 
lists, standard community lists are numbered 1 through 99, and extended community lists are numbered 100 through 199. The 
difference between the two community list types is that extended lists enable you to use regular expressions to specify the 
community (very useful when using the AA:NN format). To implement the same LOCAL_PREF policy at Colorado as previously 
described, but using the AA:NN format, enter the configuration for Colorado as shown in Example 3-137.

Example 3-137 Using Extended Community Lists

router bgp 100

 no synchronization

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0

 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS next-hop-self

 neighbor CLIENTS send-community

 neighbor CLIENTS route-map COMM_PREF in

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 100

 neighbor LOCAL next-hop-self

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS



 neighbor 10.1.255.7 peer-group LOCAL

 neighbor 10.1.255.8 peer-group LOCAL

 no auto-summary

!

ip community-list 101 permit .*:5

ip community-list 102 permit .*:10

!

route-map COMM_PREF permit 10

 match community 101

 set local-preference 150

!

route-map COMM_PREF permit 20

 match community 102

 set local-preference 200

The configuration in Example 3-137 is identical to Colorado's previous configuration in Example 3-134, except that extended 
community lists are used. If standard community lists were used, a separate line would be needed to match each community 
from each AS, as demonstrated in Example 3-138.

Example 3-138 Using Standard Community Lists

ip community-list 1 permit 200:5

ip community-list 1 permit 300:5

ip community-list 1 permit 400:5

ip community-list 1 permit 500:5

ip community-list 1 permit 600:5

With the extended community lists, a match is specified with a single line. The regular expression .* matches any AS number, 
and the 5 matches the common part of the community number.

Example 3-139 displays the routes matching community lists 101 and 102 at Colorado. The combination of community list and 
show ip bgp community-list commands becomes very useful in large-scale BGP implementations, which might have tens of 
thousands of BGP route entries. Finding routes with particular community attributes becomes a simple matter of entering a 
community list and then displaying the routes that match the list.

Example 3-139 The show ip bgp community-list Command Displays BGP Routes Matching a 
Specified Community List

Colorado#show ip bgp community-list 101

BGP table version is 19, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.1.0/24      10.1.255.2             0    150      0 200 i

*> 10.1.3.0/24      10.1.255.3             0    150      0 300 i

*> 10.1.5.0/24      10.1.255.4             0    150      0 400 i



*> 10.1.7.0/24      10.1.255.5             0    150      0 500 i

*> 10.1.9.0/24      10.1.255.6             0    150      0 600 I

Colorado#show ip bgp community-list 102

BGP table version is 19, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.2.0/24      10.1.255.2             0    200      0 200 i

*> 10.1.4.0/24      10.1.255.3             0    200      0 300 i

*> 10.1.6.0/24      10.1.255.4             0    200      0 400 i

*> 10.1.8.0/24      10.1.255.5             0    200      0 500 i

*> 10.1.10.0/24     10.1.255.6             0    200      0 600 i

Colorado#

A route can have multiple community attributes. Suppose router Austria in Figure 3-26 advertises all of its subnets to Idaho 
with a community of 2000:100. At Idaho, the routes from Austria are also to be made members of community 100:2000. 
Example 3-140 shows the configuration for Idaho.

Example 3-140 Configuring Idaho to Add an Additional Community Value to the Routes from 
Austria

router bgp 100

 no synchronization

 network 10.1.12.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 next-hop-self

 neighbor 10.1.255.1 send-community

 neighbor 10.1.255.1 route-map IDAHO out

 neighbor 10.1.255.7 remote-as 100

 neighbor 10.1.255.7 update-source Loopback0

 neighbor 10.1.255.7 next-hop-self

 neighbor 10.2.255.1 remote-as 2000

 neighbor 10.2.255.1 ebgp-multihop 2

 neighbor 10.2.255.1 update-source Loopback0

 no auto-summary

!

ip as-path access-list 2 permit ^2000$

!

route-map IDAHO permit 10

 match as-path 2

 set community 6555600 additive

!

route-map IDAHO permit 20



This configuration presents two points of interest. First, the community set by statement 10 of route map IDAHO is 6555600. 
The command ip bgp-community new-format is supported in IOS 12.0 and later; router Idaho is running IOS 11.0 and 
therefore does not understand the AA:NN format. However, a quick calculation reveals that the decimal number 6555600 is 
equivalent to the 32-bit number 100:2000 (or 0x6407d0). Colorado, which is running IOS 12.0, correctly interprets this 32-bit 
number in the AA:NN format. The important point here is that although the community attribute can be represented in AA:NN, 
decimal, or hex format, it is still in reality a 32-bit number.

The other point of interest is the keyword additive used with the set community command. If the command set community 
6555600 is used without the additive keyword Idaho replaces the existing community attribute of any matching routes with 
the community 100:2000. In this case, the goal is to add an additional community, not replace the community sent by Austria. 
Example 3-141 shows the results at Colorado.

Example 3-141 The Community Attribute 2000:100 Is Added by Austria, and the Community 
Attribute 100:2000 Is Added by Idaho

Colorado#show ip bgp 10.2.1.0

BGP routing table entry for 10.2.1.0/24, version 49

Paths: (1 available, best #1, advertised over EBGP)

  2000

    10.1.255.8 from 10.1.255.8

      Origin IGP, metric 0, localpref 100, valid, internal, best

      Community: 100:2000 2000:100

Colorado#

When a route has multiple communities, community lists and match statements are used slightly differently. The statement ip 
community-list 1 permit 2000:100 matches any route that has 2000:100 as one of its communities. On the other hand, the 
statement ip community-list 1 permit 2000:100 100:2000 matches any route that has either or both communities. If you 
want to match only those routes that are members of both communities 2000:100 and 100:2000, no more and no less, the 
exact-match keyword is used in the matching statement, as demonstrated in Example 3-142. With this keyword, routes that 
have only 2000:100 or 100:2000, and routes that have both communities but also have other communities, are not matched.

Example 3-142 The exact-match Keyword Returns Routes That Exactly Match the Specified 
Community List

Colorado#conf t

Enter configuration commands, one per line.  End with CNTL/Z.

Colorado(config)#ip community-list 10 permit 2000:100 100:2000

Colorado(config)#^Z

Colorado#

%SYS-5-CONFIG_I: Configured from console by console

Colorado#show ip bgp community-list 10 exact-match

BGP table version is 52, local router ID is 10.1.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*>i10.2.1.0/24      10.1.255.8             0    100      0 2000 i

*>i10.2.2.0/24      10.1.255.8             0    100      0 2000 i

*>i10.2.3.0/24      10.1.255.8             0    100      0 2000 i

Colorado#



If a route can be assigned multiple community attributes, there should also be a way to remove some community attributes 
without removing them all, as the set community none statement does. This is the job of the set comm-list delete 
command.

In the previous configurations, the routes to the subnets in AS 2000 of Figure 3-26 have the community attributes 2000:100 
and 100:2000. At AS 400, the community 100:2000 should be retained, but not the community 2000:100. Example 3-143 
shows the configuration for California.

Example 3-143 Configuring California to Selectively Delete Community Values

router bgp 400

 network 10.1.5.0 mask 255.255.255.0

 network 10.1.6.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 ebgp-multihop 2

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 send-community

 neighbor 10.1.255.1 route-map DROP_COMM in

!

ip bgp-community new-format

!

ip community-list 1 permit 2000:100

!

route-map DROP_COMM permit 10

 set comm-list 1 delete

The route map DROP_COMM refers to community list 1 and deletes the community specified by the list. Example 3-144 shows 
the results. In a previous configuration, you saw that multiple community attributes can be specified in a single community list 
line. When the list is being used by the set comm-list delete command, however, each line of the list can specify only a single 
community. Therefore, if you want to delete the communities 2000:100, NO_EXPORT, and 300:5 from routes, you must 
configure a community list with three separate lines.

Example 3-144 No Matches Can Be Found in California's BGP Table for Routes with Both 
2000:100 and 100:2000 Community Attributes, But the Routes from AS 2000 All Have Single 
Community Attributes of 100:2000

California#show ip bgp community 2000:100 100:2000 exact-match

California#show ip bgp community 100:2000 exact-match

BGP table version is 16, local router ID is 10.1.255.4

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 10.2.1.0/24      10.1.255.1                             0 100 2000 i

*> 10.2.2.0/24      10.1.255.1                             0 100 2000 i

*> 10.2.3.0/24      10.1.255.1                             0 100 2000 i

California#



Case Study: Private AS Numbers

You are familiar with private IP addresses, as specified by RFC 1918. These addresses, in the range 10.0.0.0–10.255.255.255, 
172.16.0.0–172.31.255.255, and 192.168.0.0–192.168.255.255, are designed to help alleviate the depletion of IP addresses. 
When an internetwork has a need for IP addresses, but the addresses do not need to be known publicly (that is, they do not 
need to be reachable from the Internet), you can use private addresses rather than public addresses. Because anyone can use 
any private IP address, the addresses are not unique and must never be advertised into the public Internet.

Private AS numbers also exist, and like private IP addresses, they are designed to alleviate the depletion of public AS numbers. 
AS numbers 64512 to 65535 are reserved for private use. If a BGP-speaking subscriber is homed to a single ISP, the subscriber 
can and is encouraged to use a private AS number.

For example, previous case studies have depicted the autonomous systems connected to router Colorado in Figure 3-26 as 
"client" autonomous systems of AS 100. AS 2000, connected across a NAP to AS 100, represents the public Internet. AS 100 
might be an ISP and the connected autonomous systems its subscribers, or AS 100 might be the publicly connected part of a 
large corporate internetwork, and the other autonomous systems its private divisions. Whatever the case, the five "client" 
autonomous systems in Figure 3-26 are reachable only across the NAP and through AS 100. The only reason they have 
individual AS numbers is so that EBGP can be used to connect them to AS 100; AS 100 can advertise their routes to the 
Internet without including their AS numbers. Figure 3-27 shows the same internetwork as Figure 3-26, but here the "client" 
autonomous systems use AS numbers out of the private pool.

Figure 3-27. The Autonomous Systems Attached to Colorado Use Private AS Numbers

Remember that like private IP addresses, private AS numbers must not be advertised to the Internet, because they are not 
unique. Example 3-145 shows that without further configuration, the AS numbers of AS 100's clients are advertised across the 
NAP to router Austria.

Example 3-145 Austria's BGP Table Shows Private AS Numbers in the AS_PATHs of Some of the 
Routes from AS 100; if Austria Is Part of the Public Internet, Connected to AS 100 Across a 
NAP, These AS Numbers Must Not Be Included in the AS_PATHs

Austria#show ip bgp



BGP table version is 189, local router ID is 10.2.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.1.0/24      10.1.255.8                           0 100 65001 i

*> 10.1.2.0/24      10.1.255.8                           0 100 65001 i

*> 10.1.3.0/24      10.1.255.8                           0 100 65002 i

*> 10.1.4.0/24      10.1.255.8                           0 100 65002 i

*> 10.1.5.0/24      10.1.255.8                           0 100 65003 i

*> 10.1.6.0/24      10.1.255.8                           0 100 65003 i

*> 10.1.7.0/24      10.1.255.8                           0 100 65004 i

*> 10.1.8.0/24      10.1.255.8                           0 100 65004 i

*> 10.1.9.0/24      10.1.255.8                           0 100 65005 i

*> 10.1.10.0/24     10.1.255.8                           0 100 65005 i

*> 10.1.11.0/24     10.1.255.8                           0 100 i

*> 10.1.12.0/24     10.1.255.8             0             0 100 i

*> 10.2.1.0/24      0.0.0.0                0         32768 i

*> 10.2.2.0/24      0.0.0.0                0         32768 i

*> 10.2.3.0/24      0.0.0.0                0         32768 i

Austria#

In Example 3-146, Idaho is configured to prevent the private AS numbers from being advertised across the NAP.

Example 3-146 Filtering Private AS Numbers

router bgp 100

 no synchronization

 network 10.1.12.0 mask 255.255.255.0

 neighbor 10.1.255.1 remote-as 100

 neighbor 10.1.255.1 update-source Loopback0

 neighbor 10.1.255.1 next-hop-self

 neighbor 10.1.255.1 send-community

 neighbor 10.1.255.7 remote-as 100

 neighbor 10.1.255.7 update-source Loopback0

 neighbor 10.1.255.7 next-hop-self

 neighbor 10.2.255.1 remote-as 2000

 neighbor 10.2.255.1 ebgp-multihop 2

 neighbor 10.2.255.1 update-source Loopback0

 neighbor 10.2.255.1 remove-private-AS

 no auto-summary

The neighbor remove-private-AS command is reasonably self-explanatory. It removes private AS numbers from the 
AS_PATH of routes before advertising them to the specified neighbor. In Example 3-147, you can see that all the AS_PATH 



attributes of all the routes advertised from Idaho to Austria now contain only AS 100. The routers within AS 100 still have the 
full path information for the client autonomous systems and can forward packets to the correct destination AS. In this regard, 
advertising the client subnets as if they are part of AS 100 is a form of summarization at the autonomous system level.

Example 3-147 After the neighbor remove-private-AS Command Has Been Added to Idaho's 
BGP Configuration, the Private AS Numbers of AS 100's Client Autonomous Systems Are Hidden 
from Austria

Austria#show ip bgp

BGP table version is 214, local router ID is 10.2.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 10.1.1.0/24      10.1.255.8                           0 100 i

*> 10.1.2.0/24      10.1.255.8                           0 100 i

*> 10.1.3.0/24      10.1.255.8                           0 100 i

*> 10.1.4.0/24      10.1.255.8                           0 100 i

*> 10.1.5.0/24      10.1.255.8                           0 100 i

*> 10.1.6.0/24      10.1.255.8                           0 100 i

*> 10.1.7.0/24      10.1.255.8                           0 100 i

*> 10.1.8.0/24      10.1.255.8                           0 100 i

*> 10.1.9.0/24      10.1.255.8                           0 100 i

*> 10.1.10.0/24     10.1.255.8                           0 100 i

*> 10.1.11.0/24     10.1.255.8                           0 100 i

*> 10.1.12.0/24     10.1.255.8             0             0 100 i

*> 10.2.1.0/24      0.0.0.0                0         32768 i

*> 10.2.2.0/24      0.0.0.0                0         32768 i

*> 10.2.3.0/24      0.0.0.0                0         32768 i

Austria#

Case Study: BGP Confederations

BGP confederations make large transit autonomous systems more manageable by enabling the administrator to break the AS 
into subautonomous systems. The subdivided AS itself becomes the confederation, and the subautonomous systems are the 
member autonomous systems. Autonomous systems outside of the confederation see the entire confederation as a single AS 
and do not see the member autonomous systems. Because the member autonomous systems are hidden from the outside, they 
may use either public or private AS numbers, although best practice suggests using private AS numbers.

The advantage of confederations is that they sharply reduce the number of IBGP peering sessions. IBGP is used normally within 
each member AS, but a special version of EBGP known as confederation EBGP is run between the autonomous systems. No 
IBGP sessions are configured from a BGP speaker in one AS to a BGP speaker in another AS within the confederation.

Figure 3-28 shows an example of a confederation. AS 1200 has been subdivided into three confederation autonomous systems: 
AS 65533, AS 65534, and AS 65535. From the perspective of outside autonomous systems, such as AS 1000 and AS 1500, the 
confederation is a single autonomous system: AS 1200. These external autonomous systems have no knowledge of the 
confederation member autonomous systems.

Figure 3-28. AS 1200 Is a BGP Confederation; Although It Consists of Several Subautonomous 
Systems, the Neighboring Autonomous Systems See the Confederation Only as AS 1200



Confederation EBGP is run between Panorama and Sunshine, between Sunshine and Talisman, and between Talisman and 
Whitetooth. Example 3-148 shows the configuration for Talisman.

Example 3-148 Configuring Talisman as a Confederation Router

router ospf 65534

 network 10.34.0.0 0.0.255.255 area 65534

 network 10.255.0.0 0.0.255.255 area 0

!

router bgp 65534

 no synchronization

 bgp confederation identifier 1200

 bgp confederation peers 65533 65535

 neighbor Confed peer-group

 neighbor Confed ebgp-multihop 2

 neighbor Confed update-source Loopback

 neighbor Confed next-hop-self

 neighbor MyGroup peer-group

 neighbor MyGroup remote-as 65534

 neighbor MyGroup update-source Loopback0

 neighbor 10.33.255.1 remote-as 65533

 neighbor 10.33.255.1 peer-group Confed

 neighbor 10.34.255.2 peer-group MyGroup

 neighbor 10.35.255.1 remote-as 65535

 neighbor 10.35.255.1 peer-group Confed



Talisman is configured so that its local AS is 65534. Its peer connections to Whitetooth and Sunshine are set up like any other 
EBGP session, and the connection to Lakeridge is IBGP. The bgp confederation identifier command tells the router that it is 
a member of a confederation and the confederation ID. The bgp confederation peers command lists the member 
autonomous systems to which Talisman is connected. This command tells the BGP process that the EBGP connection is 
confederation EBGP rather than normal EBGP.

A confederation may run BGP only, a common IGP throughout the entire confederation, or different IGPs within each member 
AS. In Figure 3-28, all the routers within AS 1200 run OSPF. The OSPF permits local communication within the confederation 
and tells the BGP processes how to find their various neighbors. In the configuration in Example 3-148, no routes are 
redistributed between OSPF and BGP at any router. Subsequent configuration examples do not show the OSPF configuration.

Example 3-149 shows configurations of Lakeridge and Sugarloaf.

Example 3-149 Configuring EBGP Between Confederation Router Lakeridge and External Router 
Sugarloaf

Lakeridge

router bgp 65534

 no synchronization

 bgp confederation identifier 1200

 neighbor 10.34.255.1 remote-as 65534

 neighbor 10.34.255.1 update-source Loopback0

 neighbor 10.34.255.1 next-hop-self

 neighbor 192.168.255.1 remote-as 1500

 neighbor 192.168.255.1 ebgp-multihop 2

 neighbor 192.168.255.1 update-source Loopback0

____________________________________________________________________________________________________________

Sugarloaf

router bgp 1500

 network 192.168.1.0

 network 192.168.2.0

 neighbor 10.34.255.2 remote-as 1200

 neighbor 10.34.255.2 ebgp-multihop 2

 neighbor 10.34.255.2 update-source Loopback0

At Lakeridge, the bgp confederation peers command is not used because Lakeridge is not running confederation EBGP. It 
does, however, have a normal EBGP connection to Sugarloaf. Notice that from the perspective of Sugarloaf, Lakeridge is in AS 
1200, not AS 65534. Sugarloaf, being outside of the confederation, has no knowledge of the member autonomous systems.

Confederation EBGP is something of a hybrid between normal BGP and IBGP. Specifically, within a confederation, the following 
applies:

●     The NEXT_HOP attribute of routes external to the confederation is preserved throughout the confederation.
●     MULTI_EXIT_DISC attributes of routes advertised into a confederation are preserved throughout the confederation.
●     LOCAL_PREF attributes of routes are preserved throughout the entire confederation, not just within the member AS in 

which they are assigned.
●     The AS numbers of the member autonomous systems are added to the AS_PATH within the confederation but are not 

advertised outside of the confederation. By default, the member AS numbers are listed in the AS_PATH as AS_PATH 
attribute type 4, AS_CONFED_SEQUENCE. If the aggregate-address command is used within the confederation, the 
as-set keyword causes member AS numbers behind the aggregation point to be listed as AS_PATH attribute type 3, 
AS_CONFED_SET.

●     The confederation AS numbers in an AS_PATH are used for loop avoidance but are not considered when choosing a 
shortest AS_PATH within the confederation.

Most of these characteristics are due to the fact that from the outside, the confederation appears to be a single autonomous 



system. The following discussion provides examples of each of these characteristics.

In Figure 3-28, the routes in AS 1000 are advertised from Bridger to Nakiska with a NEXT_HOP attribute of 172.17.255.1. This 
attribute is preserved when the routes are advertised via IBGP from Nakiska to Sunshine. If Sunshine were connected to 
Talisman with a normal EBGP connection, Sunshine would change the NEXT_HOP of the routes to 10.33.255.1 before 
advertising them to Talisman. Because the connection is confederation EBGP, however, the original NEXT_HOP attribute is 
preserved. As a result, Lakeridge could have route entries for 172.17.0.0 and 172.18.0.0 with a next-hop address of 
172.17.255.1. Lakeridge's connection to Sugarloaf is normal EBGP, so the routes are advertised to Sugarloaf with a NEXT_HOP 
attribute of 10.34.255.2.

The neighbor next-hop-self command is used throughout the confederation of Figure 3-28 so that all next-hop addresses are 
known via the IGP. You can observe these commands in the configurations of Talisman and Lakeridge.

Bridger is configured to advertise its routes with a MED of 50, and Nakiska is configured to set the LOCAL_PREF of the same 
routes to 200. You can observe the results in Example 3-150. In a normal EBGP session, Sunshine would not advertise the MED 
that originated in AS 1000, or the LOCAL_PREF that should only have relevance within AS65533. Because the confederation is 
seen from the outside as a single AS, however, these values must be consistent throughout the confederation.

Example 3-150 The Routes from AS 1000 Have a MED of 50 and a LOCAL_PREF of 200 at 
Lakeridge; These Values Were Preserved Across the Confederation EBGP Connection from 
Sunshine

Lakeridge#show ip bgp

BGP table version is 28, local router ID is 10.34.255.2

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*>i172.17.0.0       10.33.255.1           50    200      0 (65533) 1000 i

*>i172.18.0.0       10.33.255.1           50    200      0 (65533) 1000 i

*> 192.168.1.0      192.168.255.1          0             0 1500 i

*> 192.168.2.0      192.168.255.1          0             0 1500 i

Lakeridge#

You also can see in Example 3-150 that AS 65533 is included in the AS_PATH of the routes to the networks in AS 1000. The 
AS_CONFED_SEQUENCE is shown in parentheses for two reasons. First, it is not advertised outside of the confederation, as 
demonstrated in Example 3-151. Second, it is used only for loop avoidance within the confederation, not for path selection.

Example 3-151 Sugarloaf Sees the Confederation in Figure 3-28 as a Single Autonomous 
System and Does Not See the Member Autonomous Systems; the AS_CONFED_SEQUENCE, 
Shown in Parentheses in Example 3-150, Is Replaced with the Confederation ID 1200

Sugarloaf#show ip bgp

BGP table version is 32, local router ID is 192.168.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 172.17.0.0       10.34.255.2                          0 1200 1000 i

*> 172.18.0.0       10.34.255.2                          0 1200 1000 i

*> 192.168.1.0      0.0.0.0                0         32768 i

*> 192.168.2.0      0.0.0.0                0         32768 i



Sugarloaf#

In the BGP tables of Whitetooth and Panorama displayed in Example 3-152, you can observe a consequence of the fact that 
member AS numbers do not influence the path selection process. Both routers have two paths to each of the destinations in AS 
1000 and AS1500—one via its IBGP neighbor, and one via its confederation EBGP neighbor. Whitetooth, for instance, has two 
paths to network 172.17.0.0. The AS_PATH of one is (65534, 65533, 1000) and the other is (65533, 1000). Clearly the latter 
AS_PATH is shorter, but the member AS numbers are ignored. As a result, the two paths are seen as equivalent: (1000). All 
else being equal, the BGP decision process chooses normal EBGP routes over confederation EBGP routes and confederation 
EBGP routes over IBGP routes. In Example 3-152, the choice is between a confederation EBGP route and an IBGP route.

Notice in the BGP tables of the two routers that the confederation EBGP path is chosen in every instance.

Example 3-152 The AS_CONFED_SEQUENCE, Shown in Parentheses in the Whitetooth and 
Panorama BGP Tables, Are Not Considered When Choosing a Shortest AS_PATH Within an AS 
Confederation

Whitetooth#show ip bgp

BGP table version is 9, local router ID is 10.35.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 172.17.0.0       10.34.255.1           50    200      0 (65534 65533) 1000 i

* i                 10.33.255.1           50    200      0 (65533) 1000 i

*> 172.18.0.0       10.34.255.1           50    200      0 (65534 65533) 1000 i

* i                 10.33.255.1           50    200      0 (65533) 1000 i

*> 192.168.1.0      10.34.255.1            0    100      0 (65534) 1500 i

* i                 10.33.255.1            0    100      0 (65533 65534) 1500 i

*> 192.168.2.0      10.34.255.1            0    100      0 (65534) 1500 i

* i                 10.33.255.1            0    100      0 (65533 65534) 1500 i

Whitetooth#

___________________________________________________________________________________________________________

Panorama#show ip bgp

BGP table version is 5, local router ID is 10.35.255.2

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i172.17.0.0       10.34.255.1             50    200      0 (65534 65533) 1000 i

*>                  10.33.255.1             50    200      0 (65533) 1000 i

* i172.18.0.0       10.34.255.1             50    200      0 (65534 65533) 1000 i

*>                  10.33.255.1             50    200      0 (65533) 1000 i

* i192.168.1.0      10.34.255.1              0    100      0 (65534) 1500 i

*>                  10.33.255.1              0    100      0 (65533 65534) 1500 i

* i192.168.2.0      10.34.255.1              0    100      0 (65534) 1500 i

*>                  10.33.255.1              0    100      0 (65533 65534) 1500 i

Panorama#



In the topology of Figure 3-28, ignoring the member AS numbers presents no problem. Consider the topology in Figure 3-29, 
however, where everything is identical except the BGP router IDs in AS 65534 and AS 65535, which have been swapped. This 
change might seem innocent enough, but consider the effect that it has on the BGP decision process at Sunshine. The routes to 
the networks in AS 1500 are being advertised by both Talisman and Panorama. The AS_PATH lengths are the same because the 
member AS numbers are ignored, and both neighbors are confederation EBGP peers. Both Talisman and Panorama use the 
neighbor next-hop-self command, so the IGP path to the next-hop address of both routes is the same. The tiebreaker 
becomes the lowest neighboring router ID, which is Panorama. Sunshine therefore chooses the path through AS 65535 via 
Panorama rather than the more-direct path via Talisman, as demonstrated in Example 3-153.

Figure 3-29. The Router IDs of the Routers in AS 65534 and AS 65535 Have Been Swapped

Example 3-153 Sunshine Has Chosen Suboptimal Paths to the Networks in AS 1500 Based on 
Panorama's Lower Router ID

Sunshine#show ip bgp

BGP table version is 17, local router ID is 10.33.255.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*>i172.17.0.0       10.33.255.2             50    200      0 1000 i

*>i172.18.0.0       10.33.255.2             50    200      0 1000 i

*> 192.168.1.0      10.34.255.2              0    100      0 (65535 65534) 1500 i

*                   10.35.255.1              0    100      0 (65534) 1500 i

*> 192.168.2.0      10.34.255.2              0    100      0 (65535 65534) 1500 i

*                   10.35.255.1              0    100      0 (65534) 1500 i

Sunshine#

Little can be done to remedy the problems in the topology of Figure 3-29. Attempting to filter routes or manipulate 



administrative weights will make the configurations highly complex, defeating one of the reasons for creating a confederation in 
the first place. Attempting to manipulate the route choices with LOCAL_PREF or MED attributes is fraught with hazards, because 
the attributes are advertised throughout the confederation; with the loops in the topology, the attributes can affect route 
choices in unintended locations.

You must design confederations so that problems such as those presented by the topology in Figure 3-29 do not arise. A 
common design technique takes its cue from OSPF, in which all areas must interconnect through a single backbone area, 
eliminating the possibility of inter-area loops.

Figure 3-30 shows the same routers as in the earlier illustrations, but the member autonomous systems have been redesigned. 
AS 65000 is a backbone autonomous system, and all the other autonomous systems must interconnect through it. The result is 
that the path from any nonbackbone AS to any other nonbackbone AS is the same distance. The connections between AS 
65000 and AS 65535 demonstrate that it is still possible to have redundant connections, but not between nonbackbone 
autonomous systems. BGP's loop-avoidance mechanism prevents the possibility of suboptimal inter-AS paths.

Figure 3-30. AS 65000 Is a Backbone AS in the Confederation; All Other Areas Interconnect 
Through It, Making the AS_PATHs Between All Nonbackbone Autonomous Systems the Same 

Length

Another advantage of a loop-free topology such as the one in Figure 3-30 is that the MED attribute can be used between 
member autonomous systems. To understand why MEDs are safe in this topology, look first at the topology in Figure 3-31. This 
is similar to the confederation in Figure 3-28, except that AS 65534 has redundant connections to AS 65535. Suppose MEDs are 
used so that AS 65535 prefers the Whitetooth/Lakeridge link over the Panorama/Talisman link for traffic destined for AS 1500. 
Correct results can be achieved between these two autonomous systems, but the problem is that the MEDs are also forwarded 
from AS 65534 to AS 65533. Depending on how the latter AS is configured to handle MEDs, and which MEDs are sent by 
Talisman, AS 65533 could again choose a suboptimal route.

Figure 3-31. MED Attributes Are Forwarded Throughout a Confederation; if AS 65534 Uses 
MEDs to Influence the Preferences of AS 65535, AS 65533 Will Also Receive the MEDs



In Figure 3-30, AS 65000 can safely send MEDs to AS 65535. The only path AS 65535 has to other nonbackbone autonomous 
systems is through the backbone. A route that includes 65000 in its AS_PATH is not accepted by Sunshine or Talisman, so 
MEDs sent from those routers to AS 65535 are not seen by other member autonomous systems.

By default, Panorama and Whitetooth in Figure 3-30 prefer confederation EBGP routes over IBGP routes. So Panorama sends all 
traffic destined for the networks in AS 1000 and AS 1500 to Sunshine; Whitetooth sends all traffic for the same destinations to 
Talisman. MEDs can be used so that AS 65535 sends all traffic destined for the networks in AS 1000 across the 
Panorama/Sunshine link and all traffic destined for the networks in AS 1500 across the Whitetooth/Talisman link. Example 3-
154 shows the configurations of Sunshine and Talisman.

Example 3-154 Configuring Sunshine and Talisman to Send MEDs to AS 65535

Sunshine

router bgp 65000

 no synchronization

 bgp confederation identifier 1200

 bgp confederation peers 65533 65535

 neighbor 10.33.255.2 remote-as 65533

 neighbor 10.33.255.2 ebgp-multihop 2

 neighbor 10.33.255.2 update-source Loopback0

 neighbor 10.34.255.2 update-source Loopback0

 neighbor 10.34.255.2 ebgp-multihop 2

 neighbor 10.34.255.2 update-source Loopback0

 neighbor 10.34.255.2 next-hop-self

 neighbor 10.34.255.2 route-map SETMED out

 neighbor 10.35.255.1 remote-as 65000

 neighbor 10.35.255.1 update-source Loopback0

!

ip as-path access-list 1 permit _1000_



ip as-path access-list 2 permit _1500_

!

route-map SETMED permit 10

 match as-path 1

 set metric 100

!

route-map SETMED permit 20

 match as-path 2

 set metric 200

!

route-map SETMED permit 30

___________________________________________________________________________________________________________

Talisman

router bgp 65000

 no synchronization

 bgp confederation identifier 1200

 bgp confederation peers 65534 65535

 neighbor 10.33.255.1 remote-as 65000

 neighbor 10.34.255.1 remote-as 65535

 neighbor 10.34.255.1 ebgp-multihop 2

 neighbor 10.34.255.1 update-source Loopback0

 neighbor 10.34.255.1 next-hop-self

 neighbor 10.34.255.1 route-map SETMED out

 neighbor 10.35.255.2 remote-as 65534

 neighbor 10.35.255.2 ebgp-multihop 2

 neighbor 10.35.255.2 update-source Loopback0

!

ip as-path access-list 1 permit _1500_

ip as-path access-list 2 permit _1000_

!

route-map SETMED permit 10

 match as-path 1

 set metric 100

!

route-map SETMED permit 20

 match as-path 2

 set metric 200

!

route-map SETMED permit 30

Sunshine sets to 100 the MED for all routes whose AS_PATH includes 1000; the MED for all routes whose AS_PATH includes 
1500 is set to 200. Talisman does just the opposite. Example 3-155 shows before-and-after views of Panorama's BGP table. In 



the first table, the router prefers the confederation EBGP paths for all destinations. In the second table, the MEDs have been 
changed so that Panorama sends traffic destined for the networks of AS 1500 across the IBGP link to Whitetooth, which 
forwards the traffic across its preferred confederation EBGP link.

Example 3-155 Panorama's BGP Table, Before and After the Routers in AS 65000 Are 
Configured to Send MED Attributes

Panorama#show ip bgp

BGP table version is 34, local router ID is 10.35.2.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i172.17.0.0       10.35.255.1              0    100      0 (65000 65533) 1000 i

*>                  10.33.255.1              0    100      0 (65000 65533) 1000 i

* i172.18.0.0       10.35.255.1              0    100      0 (65000 65533) 1000 i

*>                  10.33.255.1              0    100      0 (65000 65533) 1000 i

* i192.168.1.0      10.35.255.1              0    100      0 (65000 65534) 1500 i

*>                  10.33.255.1              0    100      0 (65000 65534) 1500 i

* i192.168.2.0      10.35.255.1              0    100      0 (65000 65534) 1500 i

*>                  10.33.255.1              0    100      0 (65000 65534) 1500 i

Panorama#

Panorama#show ip bgp

BGP table version is 47, local router ID is 10.35.2.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i172.17.0.0       10.35.255.1            200    100      0 (65000 65533) 1000 i

*>                  10.33.255.1            200    100      0 (65000 65533) 1000 i

* i172.18.0.0       10.35.255.1            200    100      0 (65000 65533) 1000 i

*>                  10.33.255.1            200    100      0 (65000 65533) 1000 i

*>i192.168.1.0      10.35.255.1            100    100      0 (65000 65534) 1500 i

*                   10.33.255.1            200    100      0 (65000 65534) 1500 i

*>i192.168.2.0      10.35.255.1            100    100      0 (65000 65534) 1500 i

*                   10.33.255.1            200    100      0 (65000 65534) 1500 i

Panorama#

In Figure 3-32, two subnets local to the confederation are added: 10.33.5.0/24 in AS 65533, and 10.35.5.0/24 in AS 65535. 
Sunshine and Talisman are reconfigured to apply the same routing policies to these two subnets as are applied to the external 
networks. That is, MEDs are set so that AS 65535 sends traffic destined for 10.33.5.0/24 across the Panorama/Sunshine link 
and traffic destined for 10.35.5.0/24 across the Whitetooth/Talisman link.

Figure 3-32. Local Subnets Are Added to AS 65533 and AS 65535



You can see in Panorama's BGP table in Example 3-156 that the policies are not having the desired effect. The MEDs are 
correctly configured, but the router is still preferring its confederation EBGP path for both subnets rather than preferring the 
IBGP path, with its lower MED, for traffic to 10.35.5.0/24. The reason for this behavior is that by default, the MED of a 
confederation-interior route (signified by the absence of any exterior AS numbers in the AS_PATH) is not considered in the BGP 
decision process.

Example 3-156 Panorama Is Choosing Paths to Confederation-Exterior Destinations Based on 
the Lowest MED, But the MED Is Not Considered When Choosing Confederation-Interior Paths

Panorama#show ip bgp

BGP table version is 127, local router ID is 10.35.2.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i10.33.5.0/24     10.35.255.1            200    100      0 (65000 65533) i

*>                  10.33.255.1            100    100      0 (65000 65533) i

*> 10.35.5.0/24     10.33.255.1            200    100      0 (65000 65534) i

* i                 10.35.255.1            100    100      0 (65000 65534) i

*> 172.17.0.0       10.33.255.1            100    100      0 (65000 65533) 1000 i

*> 172.18.0.0       10.33.255.1            100    100      0 (65000 65533) 1000 i

*>i192.168.1.0      10.35.255.1            100    100      0 (65000 65534) 1500 i

*                   10.33.255.1            200    100      0 (65000 65534) 1500 i

*>i192.168.2.0      10.35.255.1            100    100      0 (65000 65534) 1500 i

*                   10.33.255.1            200    100      0 (65000 65534) 1500 i

Panorama#

The command bgp deterministic-med tells the BGP process to compare MEDs when choosing paths to confederation-interior 
destinations. Example 3-157 shows the configuration for Panorama using the bgp deterministic-med command.



Example 3-157 Configuring Panorama to Compare MEDs When Choosing Paths to Confederation-
Interior Destinations

router bgp 65535

 no synchronization

 bgp confederation identifier 1200

 bgp confederation peers 65000

 bgp deterministic-med

 neighbor 10.33.255.1 remote-as 65000

 neighbor 10.33.255.1 ebgp-multihop 2

 neighbor 10.33.255.1 update-source Loopback0

 neighbor 10.34.255.1 remote-as 65535

 neighbor 10.34.255.1 update-source Loopback0

Example 3-158 shows the results of configuring Panorama with the bgp deterministic-med command. Panorama now uses 
the path with the lowest MED, whether the path is interior or exterior to the member AS. You can obtain similar results by using 
the bgp always-compare-med command, discussed in an earlier case study. The difference is that this command, unlike bgp 
deterministic-med, compares the MEDs of paths to the same destination regardless of whether the MEDs are advertised from 
the same AS. In a backbone-based confederation such as the one in Figure 3-32, this is not an issue, because no AS has a path 
to more than one neighboring AS.

Example 3-158 Panorama Is Considering the MED When Choosing Both Confederation-Interior 
and Confederation-Exterior Routes

Panorama#show ip bgp

BGP table version is 10, local router ID is 10.35.2.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 10.33.5.0/24     10.33.255.1            100    100      0 (65000 65533) i

* i                 10.35.255.1            200    100      0 (65000 65533) i

*>i10.35.5.0/24     10.35.255.1            100    100      0 (65000 65534) i

*                   10.33.255.1            200    100      0 (65000 65534) i

*> 172.17.0.0       10.33.255.1            100    100      0 (65000 65533) 1000 i

*> 172.18.0.0       10.33.255.1            100    100      0 (65000 65533) 1000 i

*>i192.168.1.0      10.35.255.1            100    100      0 (65000 65534) 1500 i

*                   10.33.255.1            200    100      0 (65000 65534) 1500 i

*>i192.168.2.0      10.35.255.1            100    100      0 (65000 65534) 1500 i

*                   10.33.255.1            200    100      0 (65000 65534) 1500 i

Panorama#

You can use yet another command to accomplish the same goals: bgp bestpath med confed. This command has the same 
effect as bgp deterministic-med, with one difference. If a route has an external AS number in its AS_PATH, and other routes 
to the same destination have only confederation AS numbers in their AS_PATHs, the router picks the confederation-internal 
path with the lowest MED and ignores the path with the external AS number. However, such a situation should be very rare. 
The existence of two routes to the same destination, one indicating that the destination is inside the confederation and another 
that the destination is outside, is probably evidence of a misconfiguration or a poor design.



Case Study: Route Reflectors

Route reflectors are another way to reduce the number of IBGP peer connections in a large AS. The use of route reflectors has 
two advantages over confederations:

●     All routers in a confederation must understand and support confederations. But only the route reflectors themselves 
must understand route reflection; the client routers see their connection to the RR as just another IBGP connection.

●     Route reflection is simpler to implement, both in terms of the commands needed and in terms of topology issues.

On the other hand, you might want to take advantage of the sorts of controls available with EBGP to manage a large AS. In this 
case, confederations are a better choice. This case study shows the possibility of using both.

Figure 3-33 shows a modification of AS 65533 in Figure 3-32. Fortress is a route reflector, and Nakiska and Marmot are the 
clients.

Figure 3-33. Network Topology with Route Reflectors: Fortress Is a Route Reflector, Nakiska, 
and Marmot Are Clients

Example 3-159 shows the configuration of the three routers.

Example 3-159 Configuring Fortress as the Route Reflector and Nakiska and Marmot as Clients

Fortress

router bgp 65533

 no synchronization

 bgp confederation identifier 1200

 bgp confederation peers 65000

 neighbor 10.33.255.1 remote-as 65000

 neighbor 10.33.255.1 ebgp-multihop 2

 neighbor 10.33.255.1 update-source Loopback0

 neighbor 10.33.255.2 remote-as 65533



 neighbor 10.33.255.2 update-source Loopback0

 neighbor 10.33.255.2 route-reflector-client

 neighbor 10.33.255.2 next-hop-self

 neighbor 10.33.255.3 remote-as 65533

 neighbor 10.33.255.3 update-source Loopback0

 neighbor 10.33.255.3 route-reflector-client

 neighbor 10.33.255.3 next-hop-self

______________________________________________________________________________________

Nakiska

router bgp 65533

 no synchronization

 bgp confederation identifier 1200

 network 10.33.5.0 mask 255.255.255.0

 neighbor 10.33.255.4 remote-as 65533

 neighbor 10.33.255.4 update-source Loopback0

 neighbor 10.33.255.4 next-hop-self

 neighbor 172.17.255.1 remote-as 1000

 neighbor 172.17.255.1 ebgp-multihop 2

 neighbor 172.17.255.1 update-source Loopback0

___________________________________________________________________________________________________________

Marmot

router bgp 65533

 no synchronization

 bgp confederation identifier 1200

 network 10.33.4.0 mask 255.255.255.0

 neighbor 10.33.255.4 remote-as 65533

 neighbor 10.33.255.4 update-source Loopback0

 neighbor 10.33.255.4 next-hop-self

Nakiska and Marmot have normal IBGP configurations, except that they peer only with the RR, not with each other. Nakiska 
also peers with Bridger, a router outside of the route reflection cluster. The only command added to Fortress, to make it a route 
reflector, is a neighbor route-reflector-client statement for each of its clients. This statement implements the relaxed IBGP 
rules necessary for route reflection discussed in Chapter 2; namely, that IBGP routes learned from one client are advertised to 
the other clients and to IBGP peers outside the cluster, and that IBGP routes learned from IBGP peers outside the cluster are 
advertised to clients.

Example 3-160 shows the entry for 10.33.5.0/24 in Marmot's BGP table. The ORIGINATOR_ID and CLUSTER_LIST attributes, 
added by the RR, are indicated on the last line. The ORIGINATOR_ID is added by the RR and indicates the client that advertises 
the route; the originator of the route to 10.33.5.0/24 is Nakiska (10.33.255.2). This attribute ensures that routes do not loop 
within the cluster. If Fortress receives this NLRI in an update, it recognizes Nakiska's router ID in the attribute and ignores the 
route. The attribute is optional nontransitive, so a router does not have to support or understand the attribute to participate in 
a route reflection cluster, although some loop protection will be lost.

Like the ORIGINATOR_ID, the CLUSTER_LIST is a loop-prevention measure. A 4-octet cluster ID identifies the cluster, and the 
RR adds this number to the CLUSTER_LIST. If the RR receives an update with its own cluster ID in the CLUSTER_LIST, it knows 
a loop has occurred and it ignores the route. This function proves important when the path passes through multiple route 
reflection clusters. The CLUSTER_LIST of the route in Figure 3-33 is 10.33.255.4, Fortress' router ID. By default, the RR enters 
its own BGP RID in the CLUSTER_LIST. To specify a cluster ID other than the RR's RID, you use the bgp cluster-id command. 
You can specify a cluster ID as a number between 1 and 4294967295 or in dotted decimal format.



Example 3-160 Marmot's BGP Entry for Subnet 10.33.5.0/24 Indicates the ORIGINATOR_ID 
and CLUSTER_LIST Attributes Added to the Route by the Route Reflector

Marmot#show ip bgp 10.33.5.0

BGP routing table entry for 10.33.5.0 255.255.255.0, version 16

Paths: (1 available, best #1)

  Local

    10.33.255.2 (metric 11) from 10.33.255.4 (10.33.255.2)

      Origin IGP, metric 0, localpref 100, valid, internal, best

      Originator : 10.33.255.2, Cluster list: 10.33.255.4

Marmot#

If you configure more than one route reflector in a cluster, you must use the bgp cluster-id command to ensure that all RRs 
are identifying themselves as members of the same cluster. In Figure 3-34, router Norquay is added and is configured as a 
second RR to add redundancy to the cluster.

Figure 3-34. Norquay Is Added to the Route Reflection Cluster for Redundancy

Example 3-161 shows the configurations of Fortress and Norquay.

Example 3-161 Configuring Fortress and Norquay as Route Reflectors

Fortress

router bgp 65533

 no synchronization

 bgp cluster-id 33

 bgp confederation identifier 1200



 bgp confederation peers 65000

 neighbor 10.33.255.1 remote-as 65000

 neighbor 10.33.255.1 ebgp-multihop 2

 neighbor 10.33.255.1 update-source Loopback0

 neighbor 10.33.255.2 remote-as 65533

 neighbor 10.33.255.2 update-source Loopback0

 neighbor 10.33.255.2 route-reflector-client

 neighbor 10.33.255.2 next-hop-self

 neighbor 10.33.255.3 remote-as 65533

 neighbor 10.33.255.3 update-source Loopback0

 neighbor 10.33.255.3 route-reflector-client

 neighbor 10.33.255.3 next-hop-self

 neighbor 10.33.255.5 remote-as 65533

 neighbor 10.33.255.5 update-source Loopback0

 neighbor 10.33.255.5 next-hop-self

___________________________________________________________________________________________________________

Norquay

router bgp 65533

 no synchronization

 bgp cluster-id 33

 bgp confederation identifier 1200

 bgp confederation peers 65000

 neighbor 10.33.255.1 remote-as 65000

 neighbor 10.33.255.1 ebgp-multihop 2

 neighbor 10.33.255.1 update-source Loopback0

 neighbor 10.33.255.2 remote-as 65533

 neighbor 10.33.255.2 route-reflector-client

 neighbor 10.33.255.2 update-source Loopback0

 neighbor 10.33.255.2 next-hop-self

 neighbor 10.33.255.3 remote-as 65533

 neighbor 10.33.255.3 route-reflector-client

 neighbor 10.33.255.3 update-source Loopback0

 neighbor 10.33.255.3 next-hop-self

 neighbor 10.33.255.4 remote-as 65533

 neighbor 10.33.255.4 update-source Loopback0

 neighbor 10.33.255.4 next-hop-self

Both RRs are configured with a cluster ID of 33. They peer with each other via standard IBGP and with the route reflection 
clients using the neighbor route-reflector-client statement. As a result, the two RRs reflect routes to the clients, but IBGP 
rules prevent them from advertising the IBGP routes to each other.

The only change to the client configurations is the addition of an IBGP configuration for Norquay, as shown in Example 3-162.



Example 3-162 Clients Nakiska and Marmot Peer to Both Fortress and Norquay

Nakiska

router bgp 65533

 no synchronization

 bgp confederation identifier 1200

 network 10.33.5.0 mask 255.255.255.0

 neighbor 10.33.255.4 remote-as 65533

 neighbor 10.33.255.4 update-source Loopback0

 neighbor 10.33.255.4 next-hop-self

 neighbor 10.33.255.5 remote-as 65533

 neighbor 10.33.255.5 update-source Loopback0

 neighbor 10.33.255.5 next-hop-self

 neighbor 172.17.255.1 remote-as 1000

 neighbor 172.17.255.1 ebgp-multihop 2

 neighbor 172.17.255.1 update-source Loopback0

___________________________________________________________________________________________________________

Marmot

router bgp 65533

 no synchronization

 bgp confederation identifier 1200

 network 10.33.4.0 mask 255.255.255.0

 neighbor 10.33.255.4 remote-as 65533

 neighbor 10.33.255.4 update-source Loopback0

 neighbor 10.33.255.4 next-hop-self

 neighbor 10.33.255.5 remote-as 65533

 neighbor 10.33.255.5 update-source Loopback0

 neighbor 10.33.255.5 next-hop-self

Example 3-163 shows the resulting entry in Marmot's BGP table for subnet 10.33.5.0/24. Where there was a single path to the 
destination in Example 3-160, there are now two. The paths are entirely equal; because the router is not configured to use both 
paths with the maximum-paths command, the router chooses the route from 10.33.255.4, the lowest next-hop address.

Example 3-163 Marmot Is Receiving Routes from RRs Fortress and Norquay

Marmot#show ip bgp 10.33.5.0

BGP routing table entry for 10.33.5.0 255.255.255.0, version 2

Paths: (2 available, best #1)

  Local

    10.33.255.2 (metric 11) from 10.33.255.4 (10.33.255.2)

      Origin IGP, metric 0, localpref 100, valid, internal, best

      Originator : 10.33.255.2, Cluster list: 0.0.0.33

  Local



    10.33.255.2 (metric 11) from 10.33.255.5 (10.33.255.2)

      Origin IGP, metric 0, localpref 100, valid, internal

      Originator : 10.33.255.2, Cluster list: 0.0.0.33

Marmot#

The route reflectors of Example 3-161 belong to the same cluster, as indicated by the shared cluster ID. However, the route 
reflectors could also belong to separate clusters, and the configurations of the clients, in Example 3-162, would not change. Key 
to this concept is the fact that the clients do not know that they are clients. This approach, peering clients with redundant route 
reflectors in multiple clusters rather than in the same cluster, is used in many current route reflection designs.

Although route reflection clients can have EBGP connections, as Nakiska does in Figure 3-34, clients normally should not have 
any IBGP neighbors except the route reflector. This means that the connections between clusters must be made between the 
route reflectors, not between clients, because clients do not examine the CLUSTER_LIST attribute of received routes. An 
intercluster loop would not be detected by a client. The RRs are peered via standard IBGP and obey all the IBGP rules. The only 
additional information passed between the RRs is the CLUSTER_LIST attribute, to prevent loops. The route reflectors within an 
AS must be fully meshed with all other route reflectors in the AS and with all other AS-interior routers that do not belong to a 
cluster, as shown in Figure 3-35.

Figure 3-35. The Links Interconnecting Clusters Must Be Between Route Reflectors, Not 
Between Clients

The rule that clients must peer only to their RRs has two exceptions. First, a client itself can be a route reflector for another 
cluster. This allows "nesting" of route reflection clusters, or the creation of a hierarchy of clusters, as illustrated in Figure 2-40 
of Chapter 2.

The second exception is when there is a full IBGP mesh among the clients, as shown in Figure 2-41 of Chapter 2. Fully meshing 
the clients provides some increased robustness. When such a design is used, you should configure the route reflector with the 
command no bgp client-to-client reflection. Routes are then communicated between the fully meshed clients under normal 
IBGP rules, and the RR does not reflect routes from one client to another. It does, however, continue to reflect routes from 
clients to peers outside of the cluster, and from peers outside of the cluster to clients.



 
  
Looking Ahead

This chapter concludes this book's examination of exterior gateway protocols. Subsequent chapters 
examine advanced IP routing issues, including network address translation, multicast routing, and 
quality of service. Case studies that involve an exterior gateway protocol in later chapters use BGP.



 
  
Recommended Reading

Halabi, S. Internet Routing Architectures, Second Edition. Indianapolis, Indiana: Cisco Press; 2000.

This book is considered the definitive text on BGP-4 using Cisco IOS Software.



 
  
Command Summary

Table 3-3 provides a list and description of the commands discussed in this chapter.

Table 3-3. Command Summary

Command Description 

aggregate-address address mask [as-set] 
[summary-only] [suppress-map map-name] 
[advertise-map map-name] [attribute-map 
map-name] 

Creates an aggregate entry in 
the BGP routing table. 

auto-summary Enables the automatic 
summarization of subnets to 
their major network addresses. 

bgp always-compare-med Allows the comparison of MED 
attributes of routes to the same 
destination but advertised by 
peers in different autonomous 
systems. 

bgp bestpath as-path ignore Tells the BGP process to ignore 
the AS_PATH length in the BGP 
decision process. 

bgp bestpath med confed Enables the comparison of MED 
attributes of routes advertised 
by confederation EBGP peers. 

bgp client-to-client reflection Enables route reflection 
between IBGP peers. 

bgp cluster-id cluster-id Sets the cluster ID of a BGP 
route reflection cluster. 

bgp confederation identifier autonomous-
system 

Specifies the confederation ID 
(the AS number seen by 
confederation-exterior peers). 

bgp confederation peers autonomous-system 
[autonomous-system] 

Lists the member autonomous 
systems of a router's 
confederation EBGP peers. 

bgp dampening [half-life reuse suppress max-
suppress-time] [route-map map] 

Enables route dampening and 
changes route dampening 
defaults. 



bgp default local-preference value Changes the default 
LOCAL_PREF value from 100. 

bgp deterministic-med Enables the comparison of the 
MED attributes of routes 
advertised by confederation 
EBGP peers in the same 
neighboring member AS. 

bgp log-neighbor-changes Enables logging of neighbor 
resets. 

clear ip bgp {*|address|peer-group-name} 
[soft [in | out]] 

Resets one or more BGP peer 
connections. 

clear ip bgp dampening [address mask] Clears BGP dampening 
information and unsuppresses 
suppressed routes. 

clear ip bgp flap-statistics [{regexp 
regexp}]|{filter-list list}|{address mask} 

Clears BGP flap statistics. 

clear ip bgp peer-group peer-group-name Removes all members of a peer 
group. 

default-information originate Causes a router to advertise 
the default address 0.0.0.0 to 
its BGP peers. 

default-metric number Sets the default metric (MED) 
that a BGP router adds to the 
routes advertised to EBGP 
peers. 

distance bgp external-distance internal-
distance local-distance 

Changes the default 
administrative distances of BGP 
routes. 

ip as-path access-list access-list-number 
{permit | deny} regexp 

Defines an access list that 
examines the AS_PATH 
attributes of BGP routes. 

ip bgp-community new-format Displays community attributes 
in the AA:NN format. 

ip community-list community-list-number 
{permit | deny} community-number 

Defines an access list that 
identifies BGP routes by their 
COMMUNITY attributes. 

ip prefix-list prefix-list-name [seq sequence-
number]{permit|deny} {ip\_prefix/length}[ge 
| le]min/max-length 

Defines an access list that 
examines the NLRI prefix and 
length advertised in a route. 

match as-path path-list-number Creates a call to an AS_PATH 
access list. 



match community-list community-list-number 
[exact] 

Creates a call to a COMMUNITY 
access list. 

neighbor {ip-address|peer-group-name} 
advertisement-interval seconds 

Changes the default minimum 
advertisement interval for 
routing updates to BGP peers. 

neighbor {ip-address|peer-group-name} 
default-originate [route-map map-name] 

Causes a router to advertise 
the default address 0.0.0.0 to 
the specified neighbor or peer 
group. 

neighbor {ip-address | peer-group-name} 
description text 

Associates a descriptive text 
string with a neighbor's 
configuration. 

neighbor {ip-address | peer-group-name} 
distribute-list {access-list-number | prefix-list 
prefix-list-name} {in | out} 

Filters routes to or from a 
neighbor or peer group by 
NLRI. 

neighbor {ip-address | peer-group-name} 
ebgp-multihop hops 

Changes the default TTL of 
packets carrying BGP messages 
to neighbors. 

neighbor {ip-address | peer-group-name} filter-
list access-list-number {in | out | weight 
weight} 

Filters incoming or outgoing 
BGP routes by AS_PATH, or 
sets the weight of incoming 
routes. 

neighbor {ip-address|peer-group-name} 
maximum-prefix maximum 
[threshold][warning-only] 

Sets a maximum number of 
NLRI prefixes that can be 
advertised by a neighbor or 
peer group. 

neighbor {ip-address|peer-group-name} next-
hop-self 

Causes a BGP router to 
advertise its own address as 
the NEXT_HOP attribute of 
EBGP-learned routes advertised 
to IBGP peers. 

neighbor {ip-address|peer-group-name} 
password string 

Enables MD5 authentication 
between peers. 

neighbor ip-address peer-group peer-group-
name 

Assigns a neighbor to a peer 
group. 

neighbor peer-group-name peer-group Creates a peer group. 

neighbor {ip-address | peer-group-name} 
prefix-list prefix-list-name {in|out} 

Filters routes to or from a 
neighbor based on NLRI as 
identified by a prefix list. 

neighbor {ip-address | peer-group-name} 
remote-as as-number 

Adds a neighbor to the BGP 
neighbor table and identifies 
the neighbor as EBGP or IBGP. 



neighbor {ip-address | peer-group-name} 
route-map map-name {in|out} 

References a route map for 
setting policy for routes to or 
from a neighbor or peer group. 

neighbor ip-address route-reflector-client Configures a router as a route 
reflector and identifies a 
neighbor as a route reflection 
client. 

neighbor {ip-address|peer-group-name} send-
community 

Identifies a neighbor to which 
COMMUNITY attributes are to 
be sent. 

neighbor {ip-address|peer-group-name} 
shutdown 

Disables a neighbor or peer 
group. 

neighbor {ip-address|peer-group-name} soft-
reconfiguration inbound 

Enables the router to store 
incoming, unmodified updates 
from a neighbor for inbound 
soft reconfiguration. 

neighbor {ip-address|peer-group-name} 
timers keepalive holdtime 

Changes the default keepalive 
and holdtime intervals for a 
neighbor. 

neighbor {ip-address | peer-group-name} 
update-source interface 

Identifies the interface IP 
address from which IBGP 
updates are to be sourced. 

neighbor {ip-address | peer-group-name} 
version version 

Sets the BGP process to a 
single version. 

neighbor {ip-address | peer-group-name} 
weight weight 

Assigns a weight to routes 
received from a neighbor. 

network network-number [mask network-
mask] 

Specifies a network to be 
advertised by the BGP process. 

network network-address backdoor Sets the administrative distance 
of the specified EBGP route to 
200 and disables EBGP 
advertisement of the route. 

network address mask weight weight [route-
map map-name] 

Assigns a weight to the route to 
the identified destination. 

router bgp autonomous-system Enables a BGP process on a 
router and specifies the local 
AS number. 



set as-path {tag | prepend as-path-string} Sets the AS_PATH of an 
identified route to the 
redistributed tag, or prepends 
the AS_PATH with a specified 
string of one or more AS 
numbers. 

set comm-list community-list-number delete Removes the community 
attributes identified by the 
called community list from an 
identified route. 

set community {community-number 
[additive]} | none 

Sets a community attribute in 
an identified route. 

set dampening half-life reuse suppress max-
suppress-time 

Changes the default dampening 
factors for an identified route. 

set metric-type internal Sets the value of an identified 
route's MED attribute to match 
the IGP metric of the next hop. 

set origin {igp | egp autonomous-system | 
incomplete} 

Changes the ORIGIN attribute 
of an identified route. 

set weight weight Sets the weight of an identified 
route. 

show ip bgp [network][network-mask][longer-
prefixes] 

Displays entries in the BGP 
table. 

show ip bgp cidr-only Displays entries in the BGP 
table with non-natural 
(classless) network masks. 

show ip bgp community {community-name | 
community-number} [exact] 

Displays entries in the BGP 
table with the specified 
community attribute. 

show ip bgp community-list community-list-
number [exact] 

Displays entries in the BGP 
table that are permitted by the 
specified community list. 

show ip bgp dampened-paths Displays dampened 
(suppressed) paths. 

show ip bgp filter-list access-list-number Displays entries in the BGP 
table that match the specified 
access list. 

show ip bgp flap-statistics [{regexp regexp} 
| {filter-list list-number} | {address mask 
[longer-prefix]}] 

Displays the flap statistics of 
one or more entries in the BGP 
table. 



show ip bgp inconsistent-as Displays any entries in the BGP 
table with multiple paths to the 
same destination but with 
inconsistent AS_PATH 
attributes. 

show ip bgp neighbors [address][received-
routes | routes | advertised-routes | {paths 
regex} | dampened-routes] 

Displays information about the 
TCP and BGP connections to 
neighbors. 

show ip bgp paths Displays all BGP paths in the 
database. 

show ip bgp peer-group [peer-group-
name][summary] 

Displays information about 
characteristics shared by a peer 
group. 

show ip bgp regexp regexp Displays entries in the BGP 
table whose AS_PATH 
attributes match the specified 
regular expression. 

show ip bgp summary Displays summary information 
about all BGP connections. 

synchronization Enables synchronization 
between BGP and the local IGP. 

table-map route-map-name Enables a call to a route map to 
modify the metric or tag values 
of a route being entered into 
the IGP routing table. 

timers bgp keepalive holdtime Changes the default keepalive 
and holdtime intervals for the 
entire BGP process. 



 
  
Configuration Exercises

Table 3-4 shows the routers and addresses used for configuration exercises 1 through 13.

Table 3-4. Routers/Addresses for Configuration Exercises 1–13

Autonomous System Router Interface IP Address/Mask 

1 R1 L0 10.255.255.1/32 

S0 192.168.100.1/30 

E0 192.168.100.5/30 

E1 192.168.100.13/30 

R2 L0 10.255.255.2/32 

S0 192.168.100.9/30 

S1 192.168.100.57/30 

E0 192.168.100.6/30 

E1 192.168.100.17/30 

R3 L0 10.255.255.3/32 

S0 192.168.100.25/30 

E0 192.168.100.18/30 

E1 192.168.100.21/30 

R4 L0 10.255.255.4/32 

S0 192.168.100.29/30 

S1 192.168.100.33/30 

E0 192.168.100.22/30 

E1 192.168.100.14/30 

2 R5 S0 192.168.100.2 /30 

E0 192.168.1.129/26 

R6 S0 192.168.100.10/30 

E0 192.168.1.130/26 

3 R7 L0 10.255.255.7/32 

S0 192.168.100.26/30 



S1 192.168.100.41/30 

E0 192.168.100.37/30 

E1 172.16.1.1/24 

4 R8 L0 10.255.255.8/32 

S0 192.168.100.30/30 

S1 192.168.100.45/30 

E0 192.168.100.38/30 

E1 172.16.2.1/24 

5 R9 L0 10.255.255.9/32 

S0 192.168.100.42/30 

E0 192.168.9.1/24 

E1 192.168.150.1/24 

R10 L0 10.255.255.10/32 

S0 192.168.100.46/30 

E0 192.168.10.1/24 

E1 192.168.100.53/30 

E2 192.168.150.2/24 

R11 L0 10.255.255.11/32 

S0 192.168.100.34/30 

E0 192.168.100.54/30 

E1 192.168.11.1/24 

6 R12 L0 192.168.255.1/32 

S0 192.168.100.58/30 

E0 192.168.16.83/27 

Table 3-4 lists the autonomous systems, routers, interfaces, and addresses used in configuration exercises 1 
through 13. All interfaces of the routers are shown. For each exercise, if the table indicates that the router has 
a loopback interface, that interface should be the source of all IBGP connections. EBGP connections should 
always be between physical interface addresses, unless otherwise specified in an exercise. Hint: Draw the 
internetwork, based on the subnets listed in the table, before attempting the exercises.



1: AS 1 in Table 3-4 is a transit AS, and the IGP is OSPF. Area 0 spans the entire AS. No networks 
internal to the AS are advertised outside of the AS. None of the subnets over which EBGP is run 
should be advertised into AS 1. Write BGP configurations for the routers in AS 1, putting all 
internal neighbors in a peer group called LOCAL. For R3 only, EBGP peering should be performed 
between loopback interfaces. Authenticate all IBGP connections with the password ExeRCise1.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: AS 2 in Table 3-4 is a stub (nontransit) AS, and its IGP is EIGRP. Configure the routers in AS 2 to 
speak EBGP to any external peers and to redistribute any EIGRP routes into BGP. Redistribute BGP-
learned routes into EIGRP. Implement any necessary filters to prevent incorrect routes from being 
redistributed.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: Networks 192.168.1.0, 192.168.2.0, 192.168.3.0, 192.168.4.0, and 192.168.5.0 exist within AS 
2. The administrator of this AS wants the neighboring AS to prefer R5 when sending traffic to 
192.168.1.0 and 192.168.3.0. The neighboring AS should prefer R6 when sending traffic to 
192.168.2.0 and 192.168.4.0. In each case, the less-preferred link serves as a backup to the 
more-preferred link. 192.168.5.0 is a private network and must not be advertised to any EBGP 
peer. Modify the configurations written in Exercise 2 to implement this policy.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: Configure the EBGP neighbors of R5 and R6 to advertise a default route to AS 2. No other routes 
are to be advertised.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



5: The administrator of AS 2's neighboring AS disagrees with part of the policy set in Exercise 2. He 
wants all routers in his AS to send traffic destined for 192.168.3.0 to R6, with R5 as a backup. All 
traffic destined for 192.168.4.0 should be sent to R5, with R6 as a backup. The rest of the policy 
set in Exercise 2 is acceptable. Write configurations to implement this policy.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: AS 3 in Table 3-4 is a stub AS, and AS 4 is a transit AS. The IGP of both autonomous systems is 
OSPF, and the internal interfaces of R7 and R8 are both in area 0. Write BGP and OSPF 
configurations for R7 and R8, advertise the internal addresses shown in Table 3-4 to all EBGP 
peers, and ensure that routers in the OSPF domains can reach any external destination. Do not 
redistribute routes in either direction. Also, ensure that the BGP router ID of R7 is 192.168.3.254.

7: Modify the configurations of Exercise 6 so that R7 and R8 speak OSPF across the link directly 
connecting them; remove BGP from the link. Traffic between subnets 172.16.3.0/24 and 
172.16.4.0/24 should prefer this direct link and should use any EBGP links only as backup. Traffic 
between the other addresses internal to AS 3 and AS 4 should use the EBGP links and should use 
the direct link only as a backup. Additionally, traffic from other autonomous systems can use the 
direct link as a backup route. If an EBGP link to AS 4 fails, for example, the neighboring AS can 
send traffic destined for AS 4 to AS 3, to be forwarded to AS 4 across the direct link.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

8: AS 5 in Table 3-4 is a transit AS, and its IGP is IS-IS. The Level 2 area 47.0001 spans the entire 
AS. The internal networks are 192.168.9.0, 192.168.10.0, 192.168.11.0, and 192.168.12.0. Write 
IS-IS and BGP configurations for R9, R10, and R11. Ensure that all external routes are known by 
the routers in the IS-IS domain and that all internal networks are advertised to all EBGP peers. Do 
not redistribute IS-IS routes into BGP.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



9: Modify the configurations written in Exercise 8 so that network 192.168.12.0 is known only by AS 
4, and no other autonomous system.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

10: Modify the configurations written in Exercise 9 so that AS 3 and AS 4 prefer the path through AS 1 
to reach network 192.168.11.0.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

11: The networks internal to AS 6 in Table 3-4 are 192.168.16.0, 192.168.17.0, 192.168.18.0, and 
192.168.19.0. Write a BGP configuration for R12 that advertises these networks to the 
neighboring AS and that also advertises a summary route for the networks. The neighboring AS 
should advertise only the summary to other autonomous systems.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

12: Modify the most recent configuration you wrote for R12's EBGP neighbor so that the neighbor does 
not accept prefixes that do not belong to the aggregate being advertised by R12, does not accept 
prefixes longer than 24 bits, and does not accept more than five prefixes.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



13: Example 3-164 shows a BGP configuration for R7 in Table 3-4. The internal prefixes shown in 
Table 3-4 are advertised by OSPF.

Example 3-164 BGP Configuration of Router R7

router bgp 3

 redistribute ospf 1

 neighbor NEIGHBORS peer-group

 neighbor NEIGHBORS ebgp-multihop 2

 neighbor NEIGHBORS update-source Loopback0

 neighbor NEIGHBORS route-map EX13 out

 neighbor 10.255.255.8 remote-as 4

 neighbor 10.255.255.8 peer-group NEIGHBORS

 neighbor 10.255.255.9 remote-as 5

 neighbor 10.255.255.9 peer-group NEIGHBORS

 neighbor 10.255.255.3 remote-as 1

 neighbor 10.255.255.3 peer-group NEIGHBORS

 no auto-summary

!

ip classless

ip as-path access-list 1 permit ^1 2$

!

access-list 1 permit 172.16.1.0

access-list 2 permit 172.16.3.0

!

route-map EX13 permit 10

 match ip address 1

 set as-path prepend 2

!

route-map EX13 permit 20

 match ip address 2

 set as-path prepend 1

!

route-map EX13 permit 30

 match as-path 1

 set as-path prepend 4 5

!

route-map EX13 deny 40



Explain the effects of route map EX13.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

14: Router R1 in Figure 3-36 is a route reflector for routers R2, R3, and R4 and is connected to those 
neighbors via Frame Relay PVCs. Write a BGP configuration for R1 that provides full connectivity 
for the networks attached to the four routers. The cluster ID is 6500.

Figure 3-36. The Route Reflection Cluster for Configuration Exercise 14

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



 
  
Troubleshooting Exercises

Figure 3-37 shows the internetwork diagram for Troubleshooting Exercises 1 through 6.

Figure 3-37. The Internetwork for Troubleshooting Exercises 1 through 6

1: Example 3-165 shows the BGP configuration of router R2 in Figure 3-37.

Example 3-165 BGP Configuration of Router R2

router bgp 10

 no synchronization

 network 0.0.0.0

 neighbor 172.16.254.2 remote-as 10

 neighbor 172.16.254.2 next-hop-self

 neighbor 172.16.254.6 remote-as 10

 neighbor 172.16.254.6 next-hop-self

 no auto-summary

!

ip classless



ip route 0.0.0.0 0.0.0.0 Ethernet10

Example 3-166 shows the BGP table and routing table for R2. Although there are routes to the 
destinations in the autonomous systems shown in Figure 3-37, pings to those destinations fail. 
Why?

Example 3-166 The BGP and Routing Tables of R2 in Figure 3-37

R2#show ip bgp

BGP table version is 7, local router ID is 10.1.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 0.0.0.0          0.0.0.0                0         32768 i

*>i172.17.0.0       172.16.255.21          0    100      0 60 i

*>i172.18.0.0       172.16.255.9           0    100      0 30 i

*>i172.19.0.0       172.16.255.5           0    100      0 20 i

*>i172.20.0.0       172.16.255.13          0    100      0 40 i

*>i172.21.0.0       172.16.255.17          0    100      0 50 i

R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

     10.0.0.0 255.255.255.0 is subnetted, 1 subnets

C       10.1.1.0 is directly connected, Ethernet11

B    172.20.0.0 [200/0] via 172.16.255.13, 00:01:15

B    172.21.0.0 [200/0] via 172.16.255.17, 00:01:16

     172.16.0.0 255.255.255.252 is subnetted, 2 subnets

C       172.16.254.0 is directly connected, Ethernet12

C       172.16.254.4 is directly connected, Ethernet13

B    172.17.0.0 [200/0] via 172.16.255.21, 00:01:16

B    172.18.0.0 [200/0] via 172.16.255.9, 00:00:59

B    172.19.0.0 [200/0] via 172.16.255.5, 00:00:59



S*   0.0.0.0 0.0.0.0 is directly connected, Ethernet10

R2#ping 172.17.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.17.1.1, timeout is 2 seconds:

.....

Success rate is 0 percent (0/5)

R2#

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: Example 3-167 shows debug output from routers R1 and R5 in Figure 3-37. What problem do 
the messages indicate?

Example 3-167 debug Output from R1 and R5 in Figure 3-37

R1#debug ip bgp

BGP debugging is on

R1#

BGP: 172.16.255.5 open active, local address 172.16.255.6

BGP: 172.16.255.5 sending OPEN, version 4

BGP: 172.16.255.5 received NOTIFICATION 2/2 (peer in wrong AS) 2 bytes 000A

BGP: 172.16.255.5 closing

_________________________________________________________________________________

R5#

6d08h: BGP: 172.16.255.6 open active, delay 28272ms

6d08h: BGP: 172.16.255.6 open active, local address 172.16.255.5

6d08h: BGP: 172.16.255.6 sending OPEN, version 4

6d08h: BGP: 172.16.255.6 OPEN rcvd, version 4

6d08h: BGP: 172.16.255.6 bad OPEN, remote AS is 10, expected 30

6d08h: BGP: 172.16.255.6 sending NOTIFICATION 2/2 (peer in wrong AS) 2 bytes 000A

6d08h: BGP: 172.16.255.6 remote close, state CLOSEWAIT

6d08h: BGP: 172.16.255.6 closing

___________________________________________________________________________

___________________________________________________________________________



___________________________________________________________________________

3: Example 3-168 shows the BGP tables of R1 and R3 in Figure 3-37. The first table indicates that 
172.17.0.0/24 can be reached either via R6 (172.16.255.25) or R3 (172.16.254.9). Which path 
is R1 using, and why?

Example 3-168 BGP Tables from R1 and R3 in Figure 3-37

R1#show ip bgp

BGP table version is 8, local router ID is 172.20.7.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*>i0.0.0.0          172.16.254.1           0    100      0 i

* i172.17.0.0       172.16.254.9           0    100      0 60 i

*>                  172.16.255.25          0             0 60 i

*> 172.18.0.0       172.16.255.9           0             0 30 i

*> 172.19.0.0       172.16.255.5           0             0 20 i

*>i172.20.0.0       172.16.254.9           0    100      0 40 i

*>i172.21.0.0       172.16.254.9           0    100      0 50 i

R1#

__________________________________________________________________________________

R3#show ip bgp

BGP table version is 5, local router ID is 172.16.255.22

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i0.0.0.0          172.16.254.5             0    100      0 i

* i172.17.0.0       172.16.254.10            0    100      0 60 i

*>                  172.16.255.21            0             0 60 i

* i172.18.0.0       172.16.254.10            0    100      0 30 i

* i172.19.0.0       172.16.254.10            0    100      0 20 i

*> 172.20.0.0       172.16.255.13            0             0 40 i

*> 172.21.0.0       172.16.255.17            0             0 50 i

R3#

___________________________________________________________________________



___________________________________________________________________________

___________________________________________________________________________

4: Example 3-169 shows the BGP and IGP configurations for R1, R3, R6, and R7 in Figure 3-37.

Example 3-169 BGP and IGP Configurations for Routers R1, R3, R6, and 
R7

R1

router bgp 10

 neighbor 172.16.254.1 remote-as 10

 neighbor 172.16.254.1 next-hop-self

 neighbor 172.16.254.9 remote-as 10

 neighbor 172.16.254.9 next-hop-self

 neighbor 172.16.255.5 remote-as 20

 neighbor 172.16.255.9 remote-as 30

 neighbor 172.16.255.25 remote-as 60

__________________________________________________________________________________

R3

router bgp 10

 neighbor 172.16.254.5 remote-as 10

 neighbor 172.16.254.5 next-hop-self

 neighbor 172.16.254.10 remote-as 10

 neighbor 172.16.254.10 next-hop-self

 neighbor 172.16.255.13 remote-as 40

 neighbor 172.16.255.17 remote-as 50

 neighbor 172.16.255.21 remote-as 60

 neighbor 172.16.255.21 next-hop-self

__________________________________________________________________________________

R6

router eigrp 60

 redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0

 neighbor 172.16.255.26 remote-as 10



__________________________________________________________________________________

R7

router eigrp 60

 redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0

 neighbor 172.16.255.22 remote-as 10

Example 3-168 shows the BGP tables for R1 and R3. For each of the following destinations, what 
next-hop address does R6 use? Explain why R6 uses the addresses you name.

Destinations:

172.20.7.102

172.18.58.35

10.53.12.6

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

5: Example 3-170 shows the BGP configurations for R1 and R3 in Figure 3-37.

Example 3-170 BGP Configurations for Routers R1 and R3

R1

router bgp 10

no synchronization

aggregate-address 172.16.0.0 255.255.248.0 summary-only

neighbor 172.16.254.1 remote-as 10

neighbor 172.16.254.1 next-hop-self

neighbor 172.16.254.9 remote-as 10

neighbor 172.16.254.9 next-hop-self

neighbor 172.16.255.5 remote-as 20

neighbor 172.16.255.9 remote-as 30

neighbor 172.16.255.25 remote-as 60



_______________________________________________________________________

R3

router bgp 10

 no synchronization

 aggregate-address 172.16.0.0 255.255.248.0 summary-only

 neighbor 172.16.254.5 remote-as 10

 neighbor 172.16.254.5 next-hop-self

 neighbor 172.16.254.10 remote-as 10

 neighbor 172.16.254.10 next-hop-self

 neighbor 172.16.255.13 remote-as 40

 neighbor 172.16.255.17 remote-as 50

 neighbor 172.16.255.21 remote-as 60

 neighbor 172.16.255.21 next-hop-self

The objective is to suppress all the more-specific routes and advertise only an aggregate. R8's 
BGP table, in Example 3-171, still shows the more-specific routes. What is wrong?

Example 3-171 The BGP Table of R8 in Figure 3-37

R8#show ip bgp

BGP table version is 163, local router ID is 172.21.1.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 0.0.0.0          172.16.255.18                        0 10 i

*> 172.17.0.0       172.16.255.18                        0 10 60 i

*> 172.18.0.0       172.16.255.18                        0 10 30 i

*> 172.19.0.0       172.16.255.18                        0 10 20 i

*> 172.20.0.0       172.16.255.18                        0 10 40 i

*> 172.21.0.0       0.0.0.0                0         32768 i

R8#

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



6: Packets from AS 60 destined for any of the other autonomous systems shown in Figure 3-37 
should be forwarded across the link between R6 and R1. The link between R7 and R3 should be 
used only as a backup for this traffic, although packets destined for the Internet can still use this 
link. To implement this policy, R3 should advertise only the default route and the aggregate 
172.16.0.0/13. R1 should advertise the more-specific routes. Example 3-172 shows the 
configurations for R1, R3, R6, and R7.

Example 3-172 Configurations for Routers R1, R3, R6, and R7

R1

router bgp 10

no synchronization

neighbor 172.16.254.1 remote-as 10

neighbor 172.16.254.1 next-hop-self

neighbor 172.16.254.9 remote-as 10

neighbor 172.16.254.9 next-hop-self

neighbor 172.16.255.5 remote-as 20

neighbor 172.16.255.9 remote-as 30

neighbor 172.16.255.25 remote-as 60

________________________________________________________________________________

R3

router bgp 10

 no synchronization

 aggregate-address 172.16.0.0 255.248.0.0 summary-only

 neighbor 172.16.254.5 remote-as 10

 neighbor 172.16.254.5 next-hop-self

 neighbor 172.16.254.10 remote-as 10

 neighbor 172.16.254.10 next-hop-self

 neighbor 172.16.255.13 remote-as 40

 neighbor 172.16.255.17 remote-as 50

 neighbor 172.16.255.21 remote-as 60

 neighbor 172.16.255.21 next-hop-self

________________________________________________________________________________

R6

redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0



 neighbor 172.16.255.26 remote-as 10

________________________________________________________________________________

R7

router eigrp 60

 redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0

 neighbor 172.16.255.22 remote-as 10

Example 3-173 shows R7's routing table. Has the objective been accomplished? If not, why not?

Example 3-173 R7's Routing Table for Troubleshooting Exercise 6

R7#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is 172.16.255.22 to network 0.0.0.0

     172.17.0.0/24 is subnetted, 3 subnets

C       172.17.1.0 is directly connected, Ethernet0

D       172.17.3.0 [90/409600] via 172.17.1.2, 09:18:50, Ethernet0

C       172.17.2.0 is directly connected, Ethernet1

     172.16.0.0/30 is subnetted, 1 subnets

C       172.16.255.20 is directly connected, Serial0

D EX 172.19.0.0/16 [170/2611200] via 172.17.1.2, 00:19:08, Ethernet0

D EX 172.18.0.0/16 [170/2611200] via 172.17.1.2, 00:19:08, Ethernet0

B*   0.0.0.0/0 [20/0] via 172.16.255.22, 00:18:37

B    172.16.0.0/13 [20/0] via 172.16.255.22, 00:18:09

R7#



___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: Reexamine Figure 3-19 and Example 3-98 and the associated discussion. Meribel advertises its 
local route 172.17.0.0 to its EBGP peers with an ORIGIN of Incomplete, whereas Lillehammer 
advertises the route back to Meribel with an ORIGIN of IGP. Will this cause Meribel to prefer the 
route from Lillehammer, thereby causing a routing loop?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

8: Example 3-174 shows the configuration for the router named Colorado in Figure 3-24.

Example 3-174 Configuration for Router Colorado in Figure 3-24

router bgp 100

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0

 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS filter-list 2 in

 neighbor CLIENTS filter-list 1 out

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS

 no auto-summary

!

ip classless



ip route 10.1.255.2 255.255.255.255 Serial0/1.305

ip route 10.1.255.3 255.255.255.255 Serial0/1.306

ip route 10.1.255.4 255.255.255.255 Serial0/1.307

ip route 10.1.255.5 255.255.255.255 Serial0/1.308

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit ^[2-6]00$

All router IDs shown in Figure 3-24 are configured on loopback interfaces, and no routing 
protocol other than BGP is running on any of the routers. Assuming that all the links shown in 
the figure are functioning properly, are all the other five routers EBGP peers of Colorado? If not, 
why not?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

9: Refer to the configuration shown in Troubleshooting Exercise 8 for router Colorado in Figure 3-
24. What will be the result of removing the no auto-summary statement from the 
configuration?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

10: Refer again to the configuration shown in Troubleshooting Exercise 8. What routes does the 
incoming route filter permit?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

11: Refer to Figure 3-24 and the configuration for router Colorado in Troubleshooting Exercise 8. 
What subnets, other than those local to its own AS or the inter-AS links, can a host on subnet 
10.1.3.0/24 ping?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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Chapter 4. Network Address Translation
This chapter covers the following key topics:

●     Operation of NAT— This section discusses the basics of network address translation, 
including fundamental concepts and terminology, and typical NAT applications.

●     NAT Issues— This section examines some potential problems that you might encounter with 
NAT. Solutions to many of the problems, either through Cisco IOS Software functionality or 
through design techniques, are identified.

●     Configuring NAT— This section presents case studies demonstrating how Cisco IOS 
Software is configured to perform typical NAT functions.

●     Troubleshooting NAT— This section examines various methods and tools for 
troubleshooting Cisco NAT.

Network address translation (NAT) is a function by which IP addresses within a packet are replaced 
with different IP addresses. This function is most commonly performed by either routers or firewalls. 
This chapter, of course, focuses on NAT within routers.

NOTE

The acronym NAT is used interchangeably to mean network address translation and 
network address translator (software that runs the NAT function).



 
  
Operation of NAT

NAT is described in RFC 1631.[1] The original intention of NAT was, like classless interdomain routing 
(CIDR), to slow the depletion of available IP address space by allowing many private IP addresses to 
be represented by some smaller number of public IP addresses. Since that time, users have found 
NAT to be a useful tool for network migrations and mergers, server load sharing, and creating "virtual 
servers." This section examines all these applications, but first describes the basics of NAT 
functionality and terminology.

Basic NAT Concepts

Figure 4-1 depicts a simple NAT function. Device A has an IP address that belongs to the private 
range specified by RFC 1918, whereas device B has a public IP address. When device A sends a 
packet to device B, the packet passes through a router that is running NAT. The NAT replaces device 
A's private address (192.168.2.23) in the source address field with a public address (203.10.5.23) 
that can be routed across the Internet, and forwards the packet. When device B sends a reply to 
device A, the destination address of the packet is 203.10.5.23. This packet again passes through the 
NAT router, and the destination address is replaced with device A's private address.

Figure 4-1. The NAT Router Replaces the Private Address of Device A 
(192.168.2.23) with a Publicly Routable Address (203.10.5.23)

NAT is transparent to the end systems involved in the translation. In Figure 4-1, device A knows only 
that its IP address is 192.168.2.23; it is unaware of the 203.10.5.23 address. Device B, on the other 
hand, thinks the address of device A is 203.10.5.23; it knows nothing about the 192.168.2.23 
address. That address is "hidden" from device B.

NAT can hide addresses in both directions. In Figure 4-2, NAT is performed on the addresses of both 
device A and device B. Device A thinks device B's address is 172.16.80.91, when in fact device B's 
real address is 192.31.7.130. You can see that the NAT router is translating both the source and 
destination addresses in both directions to support this address scheme.

Figure 4-2. The NAT Router Is Translating Both the Source and Destination 
Addresses in Both Directions



Cisco NAT devices divide their world into the inside and the outside. Typically the inside is a private 
enterprise or ISP, and the outside is the public Internet or an Internet-facing service provider. 
Additionally, a Cisco NAT device classifies addresses as either local or global. A local address is an 
address that is seen by devices on the inside, and a global address is an address that is seen by 
devices on the outside. Given these four terms, an address may be one of four types:

●     Inside local (IL)— Addresses assigned to inside devices. These addresses are not 
advertised to the outside.

●     Inside global (IG)— Addresses by which inside devices are known to the outside.
●     Outside global (OG)— Addresses assigned to outside devices. These addresses are not 

advertised to the inside.
●     Outside local (OL)— Addresses by which outside devices are known to the inside.

In Figure 4-2, device A is on the inside and device B is on the outside. 192.168.2.23 is an inside local 
address, and 203.10.5.23 is an inside global address. 172.16.80.91 is an outside local address, and 
192.31.7.130 is an outside global address.

IG addresses are mapped to IL addresses, and OL addresses are mapped to OG addresses. The NAT 
device tracks these mappings in an address translation table. Example 4-1 shows the address 
translation table for the NAT router in Figure 4-2. This table contains three entries. Reading the 
entries from the bottom up, the first entry maps OL address 172.16.80.91 to the OG address 
192.31.7.130. The next entry maps the IG address 203.10.5.23 to the IL address 192.168.2.23. 
These two entries are static, created when the router was configured to translate the specified 
addresses. The last (top) entry maps the inside addresses to the outside addresses. This entry is 
dynamic and was created when device A first sent a packet to device B.

Example 4-1 The Address Translation Table of the NAT Router in Figure 4-2

NATrouter#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 203.10.5.23        192.168.2.23       172.16.80.91       192.31.7.130



--- 203.10.5.23        192.168.2.23       ---                ---

--- ---                ---                172.16.80.91       192.31.7.130

NATrouter#

As the preceding paragraph demonstrates, a NAT entry may be static or dynamic. Static entries are 
one-to-one mappings of local addresses and global addresses. That is, a unique local address is 
mapped to a unique global address. Dynamic entries may be many-to-one or one-to-many. A many-
to-one mapping means that many addresses can be mapped to a single address. In a one-to-many 
mapping, a single address can be mapped to one of several available addresses.

The following sections describe several common applications of NAT and demonstrate more clearly 
how static NAT and the various implementations of dynamic NAT operate.

NAT and IP Address Conservation

The original mission of NAT was to slow the depletion of IP addresses, and this is the focus of RFC 
1631. The core assumption of the concept is that only some of an enterprise's hosts will be connected 
to the Internet at any one time. Some devices (print servers and DHCP servers, for example) never 
require connectivity outside of the enterprise at all. As a result, the enterprise can be addressed out 
of the private RFC 1918 address space, and a significantly smaller number of uniquely assigned 
public addresses are placed in a pool on a NAT at the edge of the enterprise, as demonstrated in 
Figure 4-3. The non-unique private addresses are IL addresses, and the public addresses are IG 
addresses.

Figure 4-3. In This NAT Design, a Pool of Public IP Addresses Serves a 
Private Address Space 8 Times as Large



When an inside device sends a packet to the Internet, the NAT dynamically selects a public address 
from the inside global address pool and maps it to the device's inside local address. This mapping is 
entered into the NAT table. For instance, Example 4-2 shows that three inside devices from the 
enterprise in Figure 4-3—10.1.1.1.20, 10.1.197.64, and 10.1.63.148— have sent packets through 
the NAT. Three addresses from the IG pool—205.110.96.2, 205.110.96.3, and 205.110.96.1, 
respectively—have been mapped to the IL addresses.

Example 4-2 Three Addresses from the Inside Local Address Space in Figure 
4-3 Have Been Dynamically Mapped to Three Addresses from the Inside 
Global Address Pool

NATrouter#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 205.110.96.2       10.1.1.20          ---                ---

--- 205.110.96.3       10.1.197.64        ---                ---

--- 205.110.96.1       10.1.63.148        ---                ---

NATrouter#

The destination address of any packet from an outside device responding to the inside device is the 
IG address. Therefore, the original mapping must be held in the NAT table for some length of time to 
ensure that all packets of a particular connection are translated consistently. Holding an entry in the 
NAT table for some period also reduces subsequent lookups when the same device regularly sends 
packets to the same or multiple outside destinations.

When an entry is first placed into the NAT table, a timer is started; the period of the timer is the 
translation timeout. Each time the entry is used to translate the source or destination address of a 
subsequent packet, the timer is reset. If the timer expires, the entry is removed from the NAT table 
and the dynamically assigned address is returned to the pool. Cisco's default translation timeout is 
86,400 seconds (24 hours); you can change this with the command ip nat translation timeout.

NOTE

The default translation timeout varies according to protocol. Table 4-3, later in this 
chapter, displays these values.

This particular NAT application is a many-to-one application, because for each IG address in the pool, 
many IL addresses could be mapped to it. In the case of Figure 4-3, an 8-to-1 relationship exists. 
This is a familiar concept—telcos use it when they design switches and trunks that can handle only a 
portion of their total subscribers, and airlines use it when they overbook flights. Think of it as 
statistically multiplexing IL addresses to IG addresses. The risk, as with telcos and airlines, is in 
underestimating peak usage periods and running out of capacity.

No restrictions apply to the ratio of the size of the local address space and the size of the address 
pool. In Figure 4-3, the IL range and/or the IG range can be made larger or smaller to fit specific 
requirements. For example, the IL range 10.0.0.0/8, comprising more than 16 million addresses, can 



be mapped to a four-address pool of 205.110.96.1–205.110.96.4 or smaller. The real limitation is not 
the number of possible addresses in the specified IL range, but the number of actual devices using 
addresses in the range. If only four devices are using addresses out of the 10.0.0.0/8 range, no more 
than four addresses are needed in the pool. If there are 500,000 devices on the inside, you need a 
bigger pool.

When an address from the dynamic pool is in the NAT table, it is not available to be mapped to any 
other address. If all the pool addresses are used up, subsequent inside packets attempting to pass 
through the NAT router cannot be translated and are dropped. Therefore, it is important to ensure 
that the NAT pool is large enough, and that the translation timeout is small enough, so that the 
dynamic address pool never runs dry.

Almost all enterprises have some systems, such as mail, Web, and FTP servers, that must be 
accessible from the outside. The addresses of these systems must remain the same; otherwise 
outside hosts will not know from one time to the next how to reach them. Therefore, you cannot use 
dynamic NAT with these systems; their IL addresses must be statically mapped to IG addresses. The 
IG addresses used for static mapping must not be included in the dynamic address pool; although the 
IG address is permanently entered into the NAT table, the same address can still be chosen from the 
dynamic pool, creating an address ambiguity.

The NAT technique described in this section can be very useful for scaling a growing enterprise. 
Rather than repeatedly requesting more address space from the addressing authorities or the ISP, 
you can move the existing public addresses into the NAT pool and renumber the inside devices from 
a private address space. Depending on the size of the organization and the structure of its existing 
address allocations, you can perform the renumbering as a single project or as an incremental 
migration.

NAT and ISP Migration

One of the drawbacks of CIDR, as discussed in Chapter 2, "Introduction to Border Gateway Protocol 
4," is that it can increase the difficulty of changing Internet service providers. If you have been 
assigned an address block that belongs to ISP1, and you want to change to ISP2, you almost always 
have to return ISP1's addresses and acquire a new address range from ISP2. This return can mean a 
painful and costly re-addressing project within your enterprise.

TIP

It cannot be overemphasized that the pain and expense of an address migration is 
sharply reduced when the addressing scheme is well designed in the first place.

Suppose you are a subscriber of ISP1, which has a CIDR block of 205.113.48.0/20, and the ISP has 
assigned you an address space of 205.113.50.0/23. You then decide to switch your Internet service 
to ISP2, which has a CIDR block of 207.36.64.0/19. ISP2 assigns you a new address space of 
207.36.76.0/23. Instead of renumbering your inside systems, you can use NAT (see Figure 4-4). The 
205.113.50.0/23 address space has been returned to ISP1, but you continue to use this space for the 
IL addresses. Although the addresses are from the public address space, you can no longer use them 
to represent your internetwork to the public Internet. You use the 207.36.76.0/23 space from ISP2 
as the IG addresses and map (statically or dynamically) the IL addresses to these IG addresses.

Figure 4-4. This Enterprise Has an Inside Local Address Space That Belongs 
to ISP1 But Is a Subscriber of ISP2. It Uses NAT to Translate the IL 



Addresses to IG Addresses Assigned Out of ISP2's CIDR Block

The danger in using a scheme such as this is in the possibility that any of the inside local addresses 
might be leaked to the public Internet. If this were to happen, the leaked address would conflict with 
ISP1, which has legal possession of the addresses. If ISP2 is using appropriately paranoid route 
filtering, such a mistake should not cause leakage to the Internet. As Chapter 2 emphasized, 
however, you should never make the assumption that an AS-external peer is filtering properly. 
Therefore, you must take extreme care to ensure that all the IL addresses are translated before 
packets are allowed into ISP2.

Another problem arising from this scheme is that ISP1 will probably reassign the 205.113.50.0/23 
range to another customer. That customer is then unreachable to you. Suppose, for example, that a 
host on your network wants to send a packet to newbie@ISP1.com. DNS translates the address of 
that destination as 205.113.50.100, so the host uses that address. Unfortunately, that address is 
interpreted as belonging to your local internet and is either misrouted or is dropped as unreachable.

The moral of the story is that the migration scheme described in this section is very useful on a 
temporary basis, to reduce the complexity of the immediate move. Ultimately, however, you should 
still re-address your internet with private addresses.

NAT and Multihomed Autonomous Systems

Another shortcoming of CIDR is that multihoming to different service providers becomes more 
difficult. Figure 4-5 recaps the problem as discussed in Chapter 2. A subscriber is multihomed to ISP1 
and ISP2 and has a CIDR block that is a subset of ISP1's block. To establish correct communication 
with the Internet, both ISP1 and ISP2 must advertise the subscriber's specific address space of 
205.113.50.0/23. If ISP2 does not advertise this address, all the subscriber's incoming traffic passes 
through ISP1. And if ISP2 advertises 205.113.50.0/23, whereas ISP1 advertises only its own CIDR 
block, all the subscriber's incoming traffic matches the more-specific route and passes through ISP2. 

mailto:newbie@ISP1.com


This poses several problems:

Figure 4-5. Because the Multihomed Subscriber's CIDR Block Is a Subset of 
ISP1's CIDR Block, Both ISP1 and ISP2 Must Advertise the More-Specific 

Aggregate

●     ISP1 must "punch a hole" in its CIDR block, which probably means modifying the filters and 
policies on many routers.

●     ISP2 must advertise part of a competitor's address space, an action that both ISPs are likely 
to find objectionable.

●     Advertising the subscriber's more-specific address space represents a small reduction in the 
effectiveness of CIDR in controlling the size of Internet routing tables.

●     Some national service providers do not accept prefixes longer than /19, meaning the 
subscriber's route through ISP2 will be unknown to some portion of the Internet.

Figure 4-6 shows ways that NAT can help solve the problem of CIDR in a multihomed environment. 
Translation is configured on the router connecting to ISP2, and the IG address pool is a CIDR block 
assigned by ISP2. ISP2 no longer advertises an ISP1 address space, so it is no longer necessary for 
ISP1 to advertise the subscriber's more-specific aggregate. Hosts within the subscriber's enterprise 
can access the Internet either by selecting the closest edge router or by some established policy. The 
IL address of the hosts' packets will be the same, no matter which router they pass through; if 
packets are sent to ISP2, however, the address is translated. So from the perspective of the Internet, 
the source addresses of packets from the subscriber vary according to which ISP has forwarded the 
packets.



Figure 4-6. NAT Is Used to Resolve the CIDR Problem Depicted in Figure 4-5

Figure 4-7 shows a more efficient design. NAT is implemented on both edge routers and the CIDR 
blocks from each ISP become the IG address pools of the respective NATs. The IL addresses are from 
the private 10.0.0.0 address space. This enterprise can change ISPs with relative ease, needing only 
to reconfigure the IG address pools when the ISP changes.

Figure 4-7. The IL Addresses of This Enterprise Have No Relationship to Any 
ISP; All ISP CIDR Blocks Are Assigned to NAT Inside Global Address Pools



Port Address Translation

The many-to-one applications of NAT discussed so far have involved a statistical multiplexing of a 
large range of addresses into a smaller pool of addresses. However, there is a one-to-one mapping of 
individual addresses. When an address from an inside global pool is mapped to an inside local 
address, for instance, that IG address cannot be mapped to any other address until the first mapping 
is cleared. However, there is a specialized function of NAT that allows many addresses to be mapped 
to a single address at the same time. Cisco calls this function port address translation (PAT). The 
same function is known in other circles as network address and port translation (NAPT) or IP 
masquerading. It is also sometimes referred to as address overloading.

A TCP/IP session is not identified as a packet exchange between two IP addresses, but as an 
exchange between two IP sockets. A socket is an (address, port) tuple. For example, a Telnet session 
might consist of a packet exchange between 192.168.5.2, 23 and 172.16.100.6, 1026. PAT 
translates both the IP address and the port. Packets from different addresses can be translated to a 
common address, but to different ports of that address, and therefore can share the same address. 
Figure 4-8 shows how PAT works.

Figure 4-8. By Translating Both the IP Address and the Associated Port, PAT 
Allows Many Hosts to Simultaneously Use a Single Global Address



Four packets with inside local addresses arrive at the NAT. Notice that packets 1 and 4 are from the 
same address but different source ports. Packets 2 and 3 are from different addresses but have the 
same source port. The source addresses of all four packets are translated to the same inside global 
address, but the packets remain unique because they each have a different source port. By 
translating ports, approximately 32,000 different inside local sockets can be translated to a single 
inside global address. As a result, PAT is a very useful application for small office/home office (SOHO) 
installations, where several devices might share a single assigned address on a single connection to 
an ISP.

NAT and TCP Load Distribution

You can use NAT to represent multiple, identical servers as having a single address. In Figure 4-9, 
devices on the outside reach a server at address 206.35.91.10. In actuality, there are four mirrored 
servers on the inside, and the NAT distributes sessions among them in a round-robin fashion. Notice 
that the destination addresses of packets 1 through 4, each from a different source, are translated to 
servers 1 through 4. Packet 5, representing a session from yet another source, is translated to server 
1.

Figure 4-9. TCP Packets Sent to a Server Farm, Represented by the Single 
Address 206.35.91.10, Are Translated Round-Robin to the Actual Addresses 

of the Four Identical Servers



Obviously, the accessible contents of the four servers in Figure 4-9 must be identical. A host 
accessing the server farm might hit server 2 at one time and server 4 another time. It must appear 
to the host that it has hit the same server on both occasions.

This scheme is similar to DNS-based load sharing, in which a single name is resolved round-robin to 
several IP addresses. The disadvantage of DNS-based load sharing is that when a host receives the 
name/address resolution, the host caches it. Future sessions are sent to the same address, reducing 
the effectiveness of the load sharing. NAT-based load sharing performs a translation only when a new 
TCP connection is opened from the outside, so the sessions are more likely to be distributed evenly. 
In NAT TCP load balancing, non-TCP packets pass through the NAT untranslated.

It is important to note that NAT-based load balancing, like DNS-based load balancing, is not robust. 
NAT has no way to know when one of the servers goes down, so it continues to translate packets to 
that address. As a result, a failed or offline server can cause some traffic to the server farm to be 
black-holed.

NAT and Virtual Servers

NAT also can allow the distribution of services to different addresses, while giving the appearance 
that the services are all reachable at one address (see Figure 4-10).

Figure 4-10. You Can Configure NAT to Translate Incoming Packets to 
Different Addresses Based on the Destination Port



In Figure 4-10, the enterprise has a mail server at the local address 192.168.50.1 and an HTTP 
server at the local address 192.168.50.2. Both servers have a global address of 206.35.91.10. When 
a host from the outside sends a packet to the inside, the NAT examines the destination port in 
addition to the destination address. In Figure 4-10, a host has sent a packet to 206.35.91.10 with a 
destination port of 25, indicating mail. The NAT translates this packet's destination address to the 
mail server's, 192.168.50.1. A second packet from the same host has a destination port of 80, 
indicating HTTP. The NAT translates this packet's destination address to the Web server's, 
192.168.50.2.



 
  
NAT Issues

Although the general applications of NAT presented so far are straightforward, the underlying 
functions of NAT can be less so, because of the following two factors:

●     The general processing of IP and TCP headers
●     The nature of some specific protocols and applications

Changing the content of an IP address or TCP port can change the meaning of some of the other 
fields, especially the checksum. And many protocols and applications carry the IP address or 
information based on the IP address within their data fields. Changing an IP address in the header 
could change the meaning of the encapsulated data, possibly breaking the application. This section 
examines the most common issues surrounding the operation of NAT.

Header Checksums

The checksum of an IP packet is calculated over the entire header. Therefore, if the source or 
destination IP address or both change, the checksum must be recalculated. The same is true of the 
checksum in the TCP header. This number is calculated over the TCP header and data, and also over 
a pseudo-header that includes the source and destination IP addresses. Therefore, if an IP address or 
a port number changes, the TCP checksum must also change. Cisco's NAT performs these checksum 
recalculations.

Fragmentation

Recall from the section "NAT and Virtual Servers" that you can use NAT to translate to different local 
addresses based on the destination port. A packet with a destination port of 25 can be translated to a 
particular IL address, for example, whereas a packet with some other destination port numbers can 
be translated to other addresses. However, what if the packet destined for port 25 becomes 
fragmented at some point in the network before it reaches the NAT? The TCP or UDP header, 
containing the source and destination port numbers, is in the first fragment only. If that fragment is 
merely translated and forwarded, the NAT has no way to tell whether the subsequent fragments must 
be translated.

IP makes no guarantees that packets are delivered in order. So it's quite possible that the first 
fragment might not even arrive at the NAT before later fragments. You must design NAT to handle 
such eventualities.

Cisco's NAT keeps stateful information about fragments. If a first fragment is translated, information 
is kept so that subsequent fragments are translated the same way. If a fragment arrives before the 
first fragment, the NAT has no choice but to hold the fragment until the first fragment arrives and 
can be examined.

Encryption

Cisco's NAT can change the IP address information carried within the data fields of many applications, 
as you will see shortly. If the data fields are encrypted, however, NAT has no way of reading the 
data. Therefore, for NAT to function, neither the IP addresses nor any information derived from them 
(such as the TCP header checksum) can be encrypted.

Another concern is virtual private networks (VPNs) using, for example, IPSec. With certain modes of 



IPSec, if an IP address is changed in an IPSec packet, the IPSec becomes meaningless and the VPN is 
broken. When any sort of encryption is used, you must place the NAT on the secure side rather than 
in the encrypted path.

Security

Some view NAT as a part of a security plan, because it hides the details of the inside network. A 
translated host may appear on the Internet one day with one address and on another day with a 
different address. But this should be considered very weak security at best. Although NAT might slow 
an attacker who wants to hit a particular host, forcing him to play a sort of shell game with IP 
addresses, it will not stop any determined and knowledgeable aggressor. And worse, NAT does 
nothing to prevent such common attacks as denial of service or session hijacking.

Protocol-Specific Issues

NAT should be transparent to the end systems that send packets through it. However, many 
applications—both commercial applications and applications that are part of the TCP/IP protocol 
suite—use the IP addresses. Information within the data field may be based on an IP address, or an 
IP address itself may be carried in the data field. If NAT translates an address in the IP header 
without being aware of the effects on the data, the application breaks.

Table 4-1 lists the applications that Cisco's NAT implementation supports. For the applications listed 
as carrying IP address information in the application data, NAT is aware of those applications and 
makes the appropriate corrections to the data. Note that the table is current as of this writing. If you 
are implementing NAT, you should check the Cisco Web site or TAC for application support that might 
have been added recently.

Table 4-1. IP Traffic Types/Applications Supported by Cisco NAT1

Traffic Types/Applications Supported 

Any TCP/UDP traffic that does not carry source and/or destination IP addresses in 
the application data stream 

HTTP 

TFTP 

Telnet 

archie 

finger 

NTP 

NFS 

rlogin, rsh, rcp 

Traffic Types/Applications Supported with IP Addresses in Their Data 
Stream 

ICMP 



FTP (including PORT and PASV) 

NetBIOS over TCP/IP (datagram, name, and session services) 

Progressive Networks' RealAudio 

White Pines' CuSeeMe 

Xing Technologies' StreamWorks 

DNS A and PTR queries and responses 

H.323/NetMeeting [12.0(1)/12.0(1)T and later] 

VDOLive [11.3(4)/11.3(4)T and later] 

Vxtreme [11.3(4)/11.3(4)T and later] 

IP Multicast [12.0(1)T] (source address translation only) 

Traffic Types/Applications Not Supported 

Routing table updates 

DNS zone transfers 

BOOTP 

talk, ntalk 

SNMP 

NetShow 

Table 4-1 is taken directly from the Cisco white paper "Cisco IOS Network Address Translation 
(NAT) Packaging Update," available at www.cisco.com.

ICMP

Some ICMP messages include the IP header of the packet that caused the message to be generated. 
Table 4-2 lists these message types. Cisco's NAT checks the listed message types; if IP information in 
the message matches a translated IP address in the header, the NAT also translates the IP 
information. Additionally, the checksum in the ICMP header is corrected in the same way it is 
corrected for TCP and UDP.

Table 4-2. ICMP Message Types That Carry IP Header Information in the 
Message Body

Message Type Number 

Destination Unreachable 3 

Source Quench 4 

Redirect 5 

http://www.cisco.com/


Time Exceeded 11 

Parameter Problem 12 

DNS

One of the core functions of any TCP/IP internetwork, and especially of the Internet, is the Domain 
Name System (DNS). If systems cannot get DNS queries and responses across a NAT, DNS can 
become complicated. Figure 4-11 shows ways you can implement DNS servers around a NAT that 
cannot translate DNS packets.

Figure 4-11. If NAT Does Not Support DNS, Name Servers Must Be 
Implemented on Both Sides of the NAT, Reflecting the Name-to-Address 

Mappings Appropriate for That Side of the NAT

The NAT in Figure 4-11 translates in both directions—outside hosts are made to appear to the inside 
as if they are on the 10.0.0.0 network, and inside hosts are made to appear to the outside as if they 
are on the 204.13.55.0 network. DNS servers reside on both the inside and the outside, and each 
contains resource records that map names to the addresses appropriate for its side of the NAT.

A problem with this approach is the difficulty of maintaining inconsistent resource records on the two 
DNS servers. A more serious problem is that the NAT mappings must be static, to match the 
mappings in the DNS resource records. Pooled NAT does not work, because the mappings change 
dynamically. A better approach, and one that is supported by Cisco's implementation of NAT, is to 
have the NAT support translation of DNS queries.

Although a detailed examination of DNS operations is beyond the scope of this book, a short review 
of the key concepts will help you understand where DNS can coexist with NAT and where it cannot. 
You are familiar with the structure of domain names; for example, the name cisco.com describes a 



second-level domain (cisco) under the top-level domain com. All the IP namespace is organized in a 
tree structure, with host names connected to increasingly higher-level domains, until all domains 
meet at the root.

NOTE

An excellent text on DNS is Paul Albitz and Cricket Liu's DNS and BIND (O'Reilly and 
Associates, 1992).

Name servers store information about some part of the domain namespace. The information in a 
particular name server may be for an entire domain, some portion of a domain, or even multiple 
domains. The portion of the namespace for which a server contains information is the server's zone.

DNS servers are either primary or secondary servers. A primary DNS server acquires its zone 
information from files stored locally in the host on which the server is running and is said to be 
authoritative for its zone. A secondary DNS server acquires its zone information from a primary DNS 
server. It does this by downloading the zone files of the primary in a process called a zone transfer.

Because a zone transfer is a file transfer, a NAT cannot parse the address information out of the file. 
Even if it could, zone files are often very large, which would put a significant performance burden on 
the NAT device. Therefore, a primary and secondary DNS server for the same zone cannot be located 
on opposite sides of a NAT, because the information in zone files will not be translated during a zone 
transfer.

The information within zone files is made up of entries called resource records (RR). There are 
several types of resource records, such as Start-of-Authority (SOA) records, specifying the 
authoritative server for the domain; Canonical Name (CNAME) records, for recording aliases; Mail 
Exchange (MX) records, specifying mail servers for a domain; and Windows Internet Name Server 
(WINS) records, used in some Windows NT name servers. The two RRs of importance to NAT are 
Address (A) records, which map host names to IP addresses, and Pointer (PTR) records, which map 
IP addresses to names. When a host must find an IP address for a particular name, its DNS resolver 
queries a DNS server's A records. If the host wants to find a name that goes with a particular IP 
address (a reverse lookup), it queries the server's PTR records.

Figure 4-12 shows the format of a DNS message, which carries both the queries from hosts and the 
responses from servers. The header, like most headers, is a group of fields carrying information for 
the management and processing of the message. The header information significant to NAT includes 
a bit specifying whether the message is a query or a response, and fields specifying the number of 
RRs contained in each of the other four sections.

Figure 4-12. The DNS Message Format



The Question section is a group of fields that, as the name clearly indicates, asks a question of the 
server. Among other things, the question may contain a name to which the server must try to match 
an address out of its A records, or the question may contain an address to which the server must try 
to match a name from its PTR records. Every DNS message contains a question, and a message 
never contains more than one question.

The Answer section contains RRs that, of course, answer the question. The answer may list one or 
many RRs, or none at all. The Authority and Additional sections contain information that is 
supplemental to the answer, and may also be empty.

When a DNS packet passes through a Cisco NAT, the Question, Answer, and Additional sections are 
examined. If the message is a query for an IP address to match a name, no addresses are yet 
included, and the Answer and Additional sections are empty, so no translation takes place. The 
response to the query, however, contains one or more A RRs in the Answer section and possibly in 
the Additional section. NAT searches its table for a match to the address in these records and 
translates the addresses in the message if it finds a match. If it does not find a match, the message 
is dropped.

If the DNS message is a query for a name to match a known IP address (a reverse lookup), NAT 
examines its table for a match to the address in the Question section. Again, either a match is found 
and the address is translated, or the message is dropped. The response to the query contains one or 
more PTR RRs in the Answer section and possibly in the Additional section, and the addresses in 
these records also are either translated or the message is dropped.

In summary, remember the following two facts when working with DNS and NAT:

●     DNS A and PTR queries can cross a Cisco NAT, so a host on one side of a NAT can query a 
DNS server on the other side of the NAT.

●     DNS zone transfers cannot cross a Cisco NAT, so primary and secondary DNS servers for the 
same zone cannot reside on opposite sides of the NAT.



FTP

The File Transfer Protocol (FTP) is something of an unusual application protocol in that it uses two 
connections (see Figure 4-13). The control connection is initiated by the host and is used to exchange 
FTP commands with the server. The data connection is initiated by the server and is used for the 
actual file transfer.

Figure 4-13. An FTP Session Consists of Two Separate TCP Connections; the 
Host Initiates the Control Connection, and the Server Initiates the Data 

Connection

The sequence of events for setting up an FTP session and transferring a file is as follows:

1.  The FTP server performs a passive open (that is, begins listening for a connection request) on 
TCP port 21, the control port.

2.  The host selects ephemeral (temporary) ports for the control connection and for the data 
connection. In Figure 4-13, these are ports 1026 and 1027, respectively.

3.  The host performs a passive open on the data port.

4.  The host performs an active open for the control connection, creating a TCP connection 
between its control port (1026 in Figure 4-13) and the server's port 21.

5.  To transfer the file, the host sends a PORT command across the control connection, telling 
the server to open a data connection on the host's data port (1027 in Figure 4-13).

6.  The server performs an active open for the data connection, creating a TCP connection 
between its port 20 and the host's data port.

7.  The requested file is transferred across the data connection.

This sequence of events presents a problem for some secured networks. Specifically, it is a common 
security practice to configure a firewall or access list to disallow the initiation of connections from the 
outside to random ports. This is done by looking for a cleared ACK or RST bit in the TCP header, 
indicating a connection request. You can see that when the FTP server tries to establish a connection 
to the host's ephemeral port across such a firewall, the connection is denied.



NOTE

The established keyword tells a Cisco access list to look for a cleared ACK or RST 
bit in the TCP header.

To overcome this difficulty, the host can issue a PASV command rather than a PORT command to 
open the data connection. This command asks the server to passively open a data port and to inform 
the host of the port number. The host then performs the active open of the data connection to the 
server port. Because the connection request is outgoing through the firewall rather than incoming, 
the connection is not blocked.

The significance of all this to NAT is that the PORT and PASV commands carry not only the port 
numbers but also the IP addresses. If the messages cross a NAT, these addresses must be 
translated. To make matters worse, the IP address is encoded in ASCII in its dotted-decimal form. 
This means that the IP address in the FTP message is not of a fixed length, as it would be if it were a 
32-bit binary representation. For example, the address 10.1.5.4 is eight ASCII characters (including 
the dots), whereas 204.192.14.237 is 14 ASCII characters. So when the address is translated, the 
message size can change.

If the size of the translated FTP message remains the same, the Cisco NAT recalculates only the TCP 
checksum (in addition to any operations performed on the IP header). If the translation results in a 
smaller message, the NAT pads the message with ACSII zeros to make it the same size as the 
original message.

The problem becomes more complicated if the translated message is larger than the original 
message, because the TCP sequence and acknowledgment numbers are based directly on the length 
of the TCP segments. Cisco's NAT keeps a table to track the changes in SEQ and ACK numbers. When 
an FTP message is translated, an entry is made into the table containing the source and destination 
IP addresses and ports, the initial sequence number, the delta for the sequence numbers, and a time 
stamp. This information is used to correctly adjust the SEQ and ACK numbers in the FTP messages. It 
can be deleted after the FTP connection is closed.

SMTP

Simple Mail Transfer Protocol (SMTP) messages normally contain domain names, not IP addresses. 
However, they can use IP addresses rather than names when requesting mail transfers. Therefore, 
Cisco NAT examines the appropriate fields within SMTP messages and makes translations when IP 
addresses are found.

Unlike SMTP, which is used for uploading mail and for transferring mail between servers, the Post 
Office Protocol (POP) and the Internet Message Access Protocol (IMAP) are used only for downloading 
messages from a mail server to a client. Both protocols use only host names, never IP addresses, 
within the message bodies. Therefore, these protocols do not require special examination when 
crossing a NAT.

SNMP

Simple Network Management Protocol (SNMP) uses a rich and widely varying set of Management 
Information Bases (MIBs) to manage a wide variety of networking devices. In addition to the many 
Internet-standard MIB groups, a vast number of private MIBs have been created for the management 



of vendor-specific devices.

You can deduce from this very basic description that many MIBs can contain one or more IP 
addresses. Because of the many messages, formats, and variables possible with SNMP, NAT cannot 
easily examine the contents of an SNMP message for IP addresses. Therefore, NAT does not support 
the translation of IP addresses within SNMP messages.

Routing Protocols

IP routing protocols present something of the same problem presented by SNMP. There are many IP 
routing protocols, each with its own packet formats and its own operational characteristics. 
Therefore, NAT cannot translate IP routing protocol packets. A NAT router can run a routing protocol 
on the inside interfaces and a routing protocol on the outside interfaces, but no routing protocol 
packets should transit a NAT boundary in which the advertised addresses change, either through a 
single protocol or by redistribution. This restriction does not present much of a problem, because NAT 
routers will be located on the edge of a routing domain, and therefore can usually use a default 
address or a small set of summary addresses.

Traceroute

Route tracing utilities can vary somewhat. Some, such as Cisco's trace command, use ICMP packets. 
Others, such as tracert under Microsoft Windows 95, use UDP packets. But the basic functionality is 
the same: Packets are sent to a destination with an incrementally increasing TTL, and the addresses 
of the intermediate systems sending ICMP Time Exceeded error messages are recorded. You saw in 
the earlier section on ICMP that Time Exceeded messages are translated by Cisco NAT, so routes can 
be traced through NAT.

The NAT in Figure 4-14 is translating in both directions. The router jerry.insidenet.com has an IP 
address of 10.1.16.50 and is translated to an IG address of 204.13.55.6. The device 
berferd.outsidenet.com has an address of 147.18.34.9 and is translated to an OL address of 
10.2.1.3. Therefore, the OL address is the address by which jerry knows berferd.

Figure 4-14. NAT Is Translating in Both Directions

http://jerry.insidenet.com/
http://berferd.outsidenet.com/


When jerry performs a trace to berferd, the destination is 10.2.1.3. Example 4-3 shows that the first 
hop is the NAT router. The NAT then translates the destination address to 147.18.34.9 and the 
source address to 204.13.55.6 and forwards the packet out its outside interface. When berferd 
receives the trace packet, which is sent to a bogus port, it responds with an ICMP Port Unreachable 
error packet. That packet has a destination of 204.13.55.6 and a source of 147.18.34.9. NAT 
translates these addresses to a destination of 10.1.16.50 and a source of 10.2.1.3, which is what 
jerry receives. Therefore, the trace is successful, but the inside device sees only the outside local 
address.

Example 4-3 A Trace from jerry.insidenet.com to berferd.outsidenet.com in 
Figure 4-14 Shows That the Trace Is Successful, and NAT "Hides" the 
Outside Global Address from the Inside

Jerry#trace berferd.outsidenet.com

Type escape sequence to abort.

Tracing the route to berferd.outsidenet.com (10.2.1.3)

  1 10.1.255.254 8 msec 8 msec 4 msec

  2 berferd.outsidenet.com (10.2.1.3) 12 msec *  8 msec

Jerry#

http://www.jerry.insidenet.com/
http://www.berferd.outsidenet.com/


 
  
Configuring NAT

The first step in configuring NAT is to designate the inside and outside interfaces. Beyond that, the 
configuration depends on whether you are configuring static NAT or dynamic NAT. For static NAT, you 
just create the appropriate mapping entries in the NAT table. For dynamic NAT, you create a pool of 
addresses to be used in the translation and create access lists to identify the addresses to be 
translated. A single command then ties the pool and the access list together.

This section demonstrates the most common configuration techniques for NAT in its most common 
uses.

Case Study: Static NAT

In Figure 4-15, the inside network is addressed out of the 10.0.0.0 address space. Two of the 
devices, hosts A and C, must be able to communicate with the outside world. Those two devices are 
translated to the public addresses 204.15.87.1/24 and 204.15.87.2/24.

Figure 4-15. The Inside Local Addresses of Devices A and C Are Statically 
Translated to Inside Global Addresses by the NAT Process in Router 

Mazatlan

Example 4-4 shows the configuration to implement NAT at Mazatlan.

Example 4-4 Implementing Static NAT at Router Mazatlan in Figure 4-15



interface Ethernet0

 ip address 10.1.1.1 255.255.255.0

 ip nat inside

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.705 point-to-point

 ip address 199.100.35.254 255.255.255.252

 ip nat outside

 frame-relay interface-dlci 705

!

router ospf 100

 network 10.1.1.1 0.0.0.0 area 0

 default-information originate

!

ip nat inside source static 10.1.2.2 204.15.87.2

ip nat inside source static 10.1.1.3 204.15.87.1

!

ip route 0.0.0.0 0.0.0.0 199.100.35.253

!

The router's E0 interface is designated as being on the inside with the ip nat inside command, and 
the Frame Relay subinterface S1.705 is designated as being on the outside with the ip nat outside 
command.

Next, the inside local addresses are mapped to inside global addresses with the ip nat inside source 
static commands. There are two of these commands, one for host C and one for host A. Example 4-5 
shows the resulting NAT table.

Example 4-5 The IL Addresses of Hosts C and A Are Statically Translated 
into IG Addresses

Mazatlan#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.87.2        10.1.2.2           ---                ---



--- 204.15.87.1        10.1.1.3           ---                ---

Mazatlan#

When host A or C sends a packet to the outside, Mazatlan sees the source address in its NAT table 
and makes the appropriate translation. The router Acapulco has a route (in this case, a static route) 
to network 204.15.87.0 and has no knowledge of the 10.0.0.0 network. Therefore, Acapulco and host 
D can respond to packets from hosts A and C. If host B or router Veracruz sends a packet to host D, 
the packet is forwarded, but without any translation; when D responds to the untranslated IL 
address, Acapulco has no route and drops the packet, as demonstrated in Example 4-6.

Example 4-6 When Host D in Figure 4-15 Responds to the Untranslated IL 
Address of Host B, Acapulco Has No Route to 10.0.0.0 and Drops the Packet

Acapulco#debug ip icmp

ICMP packet debugging is on

Acapulco#

1d00h: ICMP: dst (10.1.1.4) host unreachable sent to 201.114.37.5

1d00h: ICMP: dst (10.1.1.4) host unreachable sent to 201.114.37.5

1d00h: ICMP: dst (10.1.1.4) host unreachable sent to 201.114.37.5

1d00h: ICMP: dst (10.1.1.4) host unreachable sent to 201.114.37.5

1d00h: ICMP: dst (10.1.1.4) host unreachable sent to 201.114.37.5

Outside global addresses can also be statically translated into outside local addresses. Suppose, for 
example, that the administrator of the inside network in Figure 4-15 wants host D to "appear" to be a 
part of the inside network—say, with an address of 10.1.3.1. Example 4-7 shows the NAT 
configuration for Mazatlan.

Example 4-7 Configuring Mazatlan to Statically Translate Outside Global 
Addresses to Outside Local Addresses

ip nat inside source static 10.1.1.3 204.15.87.1

ip nat inside source static 10.1.2.2 204.15.87.2

ip nat outside source static 201.114.37.5 10.1.3.1

The router's NAT configuration remains the same, except for the addition of the ip nat outside 
source static command, which in this case maps the OG address 201.114.37.5 to the OL address 
10.1.3.1. Example 4-8 shows the resulting NAT table.

Example 4-8 An OG-to-OL Mapping Is Added to the NAT Table by the 
Additional Command at Mazatlan



Mazatlan#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.87.2        10.1.2.2           ---                ---

--- 204.15.87.1        10.1.1.3           ---                ---

--- ---                ---                10.1.3.1           201.114.37.5

Mazatlan#

Although this case study has involved only static mappings, some dynamic mapping occurs after 
traffic has passed between host A and host D, and between host C and host D, as illustrated by 
Example 4-9. In each case, the inside mappings are automatically mapped to the outside mappings.

Example 4-9 The Inside Addresses of Hosts A and C Have Been 
Automatically Mapped to the Outside Addresses of Host D

Mazatlan#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.87.2        10.1.2.2           ---                ---

--- 204.15.87.1        10.1.1.3           ---                ---

--- ---                ---                10.1.3.1           201.114.37.5

--- 204.15.87.1        10.1.1.3           10.1.3.1           201.114.37.5

--- 204.15.87.2        10.1.2.2           10.1.3.1           201.114.37.5

Mazatlan#

It is important to understand that this configuration does nothing to prevent a host on the inside 
from sending packets to host D's OG address rather than the OL address. In Figure 4-16, host A can 
successfully ping host D at either its OL address (10.1.3.1) or its OG address (201.114.37.5)

Figure 4-16. Host A Can Send Packets to Either the OL or OG Address of 
Host D



In fact, debugging output from host C in Example 4-10 reveals a bit more detail about the behavior 
of this network. Host C pings host D on its OG address, but the source address of the reply packets is 
host D's OL address. The ICMP Echo Request packet to destination 201.114.37.5 has passed through 
the NAT unchanged, but the ICMP Echo Reply packet, with a source address of 201.114.37.5, is 
translated by the NAT to the OL address.

Example 4-10 Although Host C Sends Pings to 201.114.37.5, NAT Causes 
the Replies to Have a Source Address of 10.1.3.1

HostC#debug ip icmp

ICMP packet debugging is on

HostC#ping 201.114.37.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 201.114.37.5, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/12/20 ms

HostC#

ICMP: echo reply rcvd, src 10.1.3.1, dst 10.1.2.2

ICMP: echo reply rcvd, src 10.1.3.1, dst 10.1.2.2



ICMP: echo reply rcvd, src 10.1.3.1, dst 10.1.2.2

ICMP: echo reply rcvd, src 10.1.3.1, dst 10.1.2.2

ICMP: echo reply rcvd, src 10.1.3.1, dst 10.1.2.2

HostC#

TIP

If you're recreating these examples in a lab, Example 4-10 reveals a useful trick. 
Host C is actually a Cisco router with IP routing disabled (no ip routing) and an ip 
default-gateway command pointing to Veracruz's locally attached interface. As 
Example 4-10 demonstrates, this setup enables you to use the IOS's extensive 
debugging tools to observe network behavior from a host's perspective.

If the administrator of the inside network wants to prevent traffic from being sent to OG addresses, 
he must implement a filter, as shown in Example 4-11.

Example 4-11 Implementing a Filter to Prevent Traffic of the Inside 
Network from Being Sent to OG Addresses

interface Ethernet0

 ip address 10.1.1.1 255.255.255.0

 ip access-group 101 in

 ip nat inside

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.705 point-to-point

 ip address 199.100.35.254 255.255.255.252

 ip nat outside

 frame-relay interface-dlci 705

!

router ospf 100

 network 10.1.1.1 0.0.0.0 area 0



 default-information originate

!

ip nat inside source static 10.1.1.3 204.15.87.1

ip nat inside source static 10.1.2.2 204.15.87.2

ip nat outside source static 201.114.37.5 10.1.3.1

!

ip route 0.0.0.0 0.0.0.0 199.100.35.253

!

access-list 101 permit ip any host 10.1.3.1

!

Notice that an incoming filter is used on interface E0. The filtering must take place before the address 
translation; an outgoing filter on S1.705 would have no way to differentiate the already translated 
destination address. Figure 4-17 shows the results of the filter; host A can still reach host D on its OL 
address, but packets to the OG address are blocked.

Figure 4-17. After the Filter Is Implemented on Mazatlan, Inside Hosts Can 
Only Reach Host D via Its OL Address

The debug output in Example 4-10 and Example 4-6 emphasizes the fact that NAT does not, by 



itself, guarantee that private or illegal IP addresses do not leak into the public Internet. Wise 
administrators filter for the private Class A, B, and C addresses on interfaces connected to ISPs. Wise 
ISPs do the same on interfaces connected to their subscribers.

A difficulty with the various configurations shown in this case study so far is that very few "real-life" 
devices will use IP addresses to reach other devices. Names are almost always used. Therefore, DNS 
servers must have the correct IP addresses relevant to their side of the NAT. In Figure 4-18, DNS 
servers are placed on the inside and outside networks. DNS1 might have the following name-to-
address mappings:

Figure 4-18. DNS1 Is Authoritative for the Inside Network, and DNS2 Is 
Authoritative for the Outside Network

HostA.insidenet.com    IN  A    10.1.1.3

HostB.insidenet.com    IN  A    10.1.1.4

HostC.insidenet.com    IN  A    10.1.2.2

Here, all hosts have local addresses (local to the inside network). DNS2 might have the following 
name-to-address mapping:

HostD.outsidenet.com    IN  A     201.114.37.5

These entries all map to global addresses. DNS1 is authoritative for inside.net, and DNS2 is 
authoritative for outside.net. Example 4-12 shows the NAT configuration for Mazatlan. 



Example 4-12 Mazatlan's NAT Configuration, Supporting DNS1 and DNS2 in 
Figure 4-18

ip nat inside source static 10.1.1.3 204.15.87.1

ip nat inside source static 10.1.2.2 204.15.87.2

ip nat inside source static 10.1.1.4 204.15.87.3

ip nat inside source static 10.1.1.254 204.15.87.254

ip nat outside source static 201.114.37.5 10.1.3.1

ip nat outside source static 201.50.34.1 10.1.3.2

In addition to the three inside hosts and one outside host, the configuration in Example 4-12 has 
entries for the two DNS servers. If host A wants to send a packet to host D, it sends a DNS query to 
DNS1 for the address of HostD.outsidenet.com. DNS1 then queries DNS2, which returns an address 
of 201.114.37.5. When this DNS message passes through the NAT, the address is translated to 
10.1.3.1, and DNS1 passes this address on to host A. Host A then sends packets to this address, and 
the NAT translates the source and destination addresses of the packets.

If host D wants to speak to a host on the inside network, the opposite happens. Host D might query 
DNS2 for the address of HostC.insidenet.com, prompting DNS2 to query DNS1. DNS1 responds with 
an address of 10.1.2.2, which is translated to 204.15.87.2 by the NAT and passed to host D by 
DNS2. Again, when packets are exchanged between host D and host C, the NAT translates the source 
and destination addresses.

Case Study: Dynamic NAT

The problem with the configurations of the preceding case study is one of scalability. What if, instead 
of the four inside devices shown in Figure 4-18, there are 60 or 6000? Maintaining static NAT 
mappings, like maintaining static route entries, quickly becomes an administrative burden as the 
network grows.

The inside network in Figure 4-19 uses 10.1.1.0–10.1.2.255 for its IL address space and has been 
assigned the public address space 204.15.86.0/23 by its ISP. This public address space is used as a 
pool from which IG addresses are dynamically selected for mapping to the IL addresses. To make 
things more manageable and predictable, the space 10.1.1.0/24 is mapped to 204.15.86.0/24, and 
10.1.2.0/24 is mapped to 204.15.87.0/24.

Figure 4-19. The Inside Network Has a Large Range of IL and IG Addresses



The ip nat pool command creates a pool of addresses and gives it a name. The pool is then 
designated as an IG pool and is linked to an IL address range with the command ip nat inside 
source list. Example 4-13 shows the configuration for Mazatlan.

Example 4-13 Mazatlan Is Configured to Dynamically Assign IG Addresses 
from an Address Pool

interface Ethernet0

 ip address 10.1.1.1 255.255.255.0

 ip nat inside

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.705 point-to-point

 ip address 199.100.35.254 255.255.255.252

 ip nat outside

 frame-relay interface-dlci 705

!

router ospf 100

 network 10.1.1.1 0.0.0.0 area 0



 default-information originate

!

ip nat pool PoolOne 204.15.86.1 204.15.86.254 netmask 255.255.255.0

ip nat pool PoolTwo 204.15.87.1 204.15.87.253 netmask 255.255.255.0

ip nat inside source list 1 pool PoolOne

ip nat inside source list 2 pool PoolTwo

ip nat inside source static 10.1.1.254 204.15.87.254

!

ip route 0.0.0.0 0.0.0.0 199.100.35.253

!

access-list 1 permit 10.1.1.0 0.0.0.255

access-list 2 permit 10.1.2.0 0.0.0.255

!

Two pools are created, named PoolOne and PoolTwo. PoolOne is assigned an address range of 
204.15.86.1–204.15.86.254. PoolTwo is assigned an address range of 204.15.87.1–204.15.87.253. 
Notice that the address ranges exclude the network addresses and the broadcast addresses; the 
netmask portion of the commands acts as a sanity check, ensuring that such addresses as 
204.15.87.255 are not mapped. An alternative to using the netmask keyword is the prefix-length. 
For example:

ip nat pool PoolTwo 204.15.87.1 204.15.87.253 prefix-length 24

has the same effect as the command with the netmask 255.255.255.0 keyword. Because of these 
commands, you can assign a range such as 204.15.86.0–204.15.86.255, and the "0" and "255" host 
addresses will not be mapped. However, it is good practice to configure only the actual pool 
addresses to avoid confusion.

Notice also that PoolTwo does not include the address 204.15.87.254. This address is statically 
assigned to DNS1 and so is left out of the pool. Any time an outside device must be able to initiate a 
session to an inside device, as in the case of DNS1, there must be a statically assigned address. If its 
IG address were dynamic, outside devices would have no way of knowing to which address to send 
packets.

Next, access lists are used to identify the addresses to be translated. In Mazatlan's configuration, 
access list 1 identifies the IL range 10.1.1.0–10.1.1.255, and access list 2 identifies the IL range 
10.1.2.0–10.1.2.255.

Last, the IL addresses are linked to the correct pool. For example, the statement ip nat inside 
source list 1 pool PoolOne says that an IP address sourced from the inside (that is, IL addresses) 
and matching the range specified in access list 1 is to be translated to an IG address taken from 
PoolOne.

Example 4-14 shows Mazatlan's NAT table just after the dynamic NAT configuration is added. You can 
see that the only mapping in the table is the static entry for DNS1.



Example 4-14 When Mazatlan's Dynamic NAT Is First Configured, No Entries 
Reside in the NAT Table Except for the Single Static Entry

Mazatlan#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.87.254      10.1.1.254         ---                ---

Mazatlan#

Example 4-15 shows the NAT table after several inside devices have originated traffic to the outside. 
The IG addresses are allocated from each pool numerically, beginning with the lowest available 
number.

Example 4-15 Dynamic IL-to-IG Mappings Are Entered into the NAT Table 
as Inside Devices Send Packets to the Outside

Mazatlan#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.86.4        10.1.1.3           ---                ---

--- 204.15.86.3        10.1.1.83          ---                ---

--- 204.15.86.2        10.1.1.239         ---                ---

--- 204.15.86.1        10.1.1.4           ---                ---

--- 204.15.87.3        10.1.2.164         ---                ---

--- 204.15.87.2        10.1.2.57          ---                ---

--- 204.15.87.1        10.1.2.2           ---                ---

--- 204.15.87.254      10.1.1.254         ---                ---

Mazatlan#

Occasionally, a network administrator might want the host portion of the IG address to match the 
host portion of the IL address to which it is mapped. To accomplish this, the keywords type match-
host are added to the end of the statement defining the pool, as demonstrated in Example 4-16.

Example 4-16 Configuring the Host Portion of the IG Address to Match the 
Host Portion of the IL Address to Which It Is Mapped

ip nat pool PoolOne 204.15.86.1 204.15.86.254 netmask 255.255.255.0 type match-host

ip nat pool PoolTwo 204.15.87.1 204.15.87.253 netmask 255.255.255.0 type match-host

ip nat inside source list 1 pool PoolOne

ip nat inside source list 2 pool PoolTwo



ip nat inside source static 10.1.1.254 204.15.87.254

!

ip route 0.0.0.0 0.0.0.0 199.100.35.253

!

access-list 1 permit 10.1.1.0 0.0.0.255

access-list 2 permit 10.1.2.0 0.0.0.255

Example 4-17 shows the resulting NAT table. Comparing it with the table in Example 4-15, you can 
see that all the same IL addresses have been translated. Instead of selecting IG addresses from their 
respective pools sequentially, however, IG addresses are selected with matching host portions.

Example 4-17 The Host Portions of the IG Addresses Match the Host 
Portions of the IL Addresses to Which They Are Mapped

Mazatlan#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.86.4        10.1.1.4           ---                ---

--- 204.15.86.3        10.1.1.3           ---                ---

--- 204.15.86.83       10.1.1.83          ---                ---

--- 204.15.86.239      10.1.1.239         ---                ---

--- 204.15.87.2        10.1.2.2           ---                ---

--- 204.15.87.57       10.1.2.57          ---                ---

--- 204.15.87.164      10.1.2.164         ---                ---

--- 204.15.87.254      10.1.1.254         ---                ---

Mazatlan#

By default, the dynamic entries are held in the NAT table for 86,400 seconds (24 hours). You can 
change this time with the command ip nat translation timeout to any time between 0 and 
2,147,483,647 seconds (approximately 68 years). The timeout period begins when a translation is 
first made and is reset each time a packet is translated by the mapping. While a pool address is 
mapped to an address in the NAT table, it cannot be mapped to any other address. If the timeout 
period elapses with no new "hits" to the mapping, the entry is removed from the table, and the pool 
address is returned to the pool and becomes available. If you use 0 seconds or the keyword never 
with the ip nat translation timeout command, the mapping is never removed from the NAT table.

The translation timeout for each entry appears with the show ip nat translations verbose 
command, as demonstrated in Example 4-18. The ip nat translations verbose command shows 
how long ago the mapping was entered into the NAT table, how long ago the mapping was last used 
to translate an address, and the time remaining before the end of the timeout period. You can use 
the Flags field to indicate translation types other than dynamic. In Example 4-18, for instance, the 
last entry is shown to be a static translation.



Example 4-18 The show ip nat translations verbose Command Reveals 
Details About the Translation Timeout Periods for Each Mapping

Mazatlan#show ip nat translations verbose

Pro Inside global      Inside local       Outside local      Outside global

--- 204.15.86.4        10.1.1.3           ---                ---

    create 00:31:55, use 00:31:55, left 23:28:04, flags: none

--- 204.15.86.3        10.1.1.83          ---                ---

    create 00:32:19, use 00:32:19, left 23:27:40, flags: none

--- 204.15.86.2        10.1.1.239         ---                ---

    create 00:33:38, use 00:33:38, left 23:26:21, flags: none

--- 204.15.86.1        10.1.1.4           ---                ---

    create 00:34:25, use 00:00:05, left 23:59:54, flags: none

--- 204.15.87.3        10.1.2.164         ---                ---

    create 00:31:02, use 00:31:02, left 23:28:57, flags: none

--- 204.15.87.2        10.1.2.57          ---                ---

    create 00:34:10, use 00:34:10, left 23:25:49, flags: none

--- 204.15.87.1        10.1.2.2           ---                ---

    create 00:35:04, use 00:35:04, left 23:24:55, flags: none

--- 204.15.87.254      10.1.1.254         ---                ---

    create 03:59:32, use 03:59:32, flags: static

Mazatlan#

The translation timeout period is important when the range of IL addresses is larger than the pool of 
IG addresses. Consider the configuration in Example 4-19.

Example 4-19 1022 IL Addresses Share a Pool of 254 IG Addresses

ip nat pool GlobalPool 204.15.86.1 204.15.86.254 prefix-length 24

ip nat inside source list 1 pool GlobalPool

!

access-list 1 permit 10.1.0.0 0.0.3.255

Here, 1022 possible IL addresses—10.1.0.1 through 10.1.3.254—are translated using a pool of 254 
available IG addresses. That means that when the NAT table contains 254 mapping entries, no more 
available IG addresses exist. Any packets with IL addresses that have not already been mapped are 
dropped. The designer of such an addressing scheme is gambling that only a fraction of the total 
users in the network will need outside access. With each mapping remaining in the NAT table for 24 



hours, however, the chances of using up all available IG addresses increase substantially. By 
reducing the translation timeout, the designer can reduce this likelihood.

Case Study: A Network Merger

NAT is useful for preventing possible address conflicts between internetworks. The previous two case 
studies demonstrate the connection of internetworks using private address space to an internetwork 
using public addresses. The publicly addressed internetwork might be some other enterprise, or it 
might be the Internet. The bottom line is that the private RFC 1918 addresses must be translated 
because they are not unique. Across the Internet, many enterprises use the same addresses in their 
internetworks, and these addresses are "hidden" by NAT.

You also can use the configurations of the previous case studies in situations where the inside 
network is addressed out of the public address space but the addresses were not assigned by an 
addressing authority. For example, the inside network's address space might be 171.68.0.0/16. 
When connected to the Internet, NAT is required, because this address space is assigned to another 
company. Allowing these untranslated packets onto the Internet will cause routing conflicts.

Another situation in which address conflicts might arise is the merger of two previously separate 
internetworks. In Figure 4-20, Surf Corporation and Sand, Inc. have formed a corporate merger to 
form Surf n' Sand Enterprises. Part of the merger is the connection of their two internetworks. 
Unfortunately, when the two internetworks were first constructed, the designers both chose to use 
the 10.0.0.0 address space. As a result, many devices in Surf Corp.'s internetwork have the same 
addresses as devices in Sand, Inc.'s internetwork.

Figure 4-20. Two Internetworks with Many Duplicate Addresses Must Be 
Connected



The best solution is to re-address the new internetwork. Address schemes are frequently designed 
poorly, however, making re-addressing a major project. In the Surf n' Sand internetwork, for 
instance, all the devices have manually configured IP addresses rather than addresses assigned by 
DHCP. NAT can serve as an interim solution to connect the internetworks until the re-addressing 
project can be completed.

NOTE

Note that in this application, NAT should always be considered an interim solution. It 
is bad practice to allow address conflicts to exist within an internetwork indefinitely.

The Surf n' Sand administrator first applies to his ISP or an addressing authority to acquire a public 
address space and is assigned the CIDR block 206.100.160.0/19. This block is then split in half. 
206.100.160.0/20 is assigned to the former Sand internetwork, and 206.100.176.0/20 is assigned to 
the former Surf internetwork. An assumption is made here that although the 10.0.0.0 network is 
capable of supporting more than 16 million host addresses, in reality there are not more hosts in 
either network than can be serviced out of the /20 address space.

The routers Cozumel and Guaymas in Figure 4-21 connect the two internetworks with the 
configurations in Example 4-20.

Figure 4-21. NAT Is Used at the Boundaries of the Two Internetworks to 
Correct the Address Conflicts

Example 4-20 NAT Configurations for Routers Cozumel and Guaymas in 
Figure 4-21

Cozumel

interface Ethernet0

 ip address 10.100.85.1 255.255.255.0



 ip nat inside

!

interface Ethernet1

 ip address 10.255.13.254 255.255.255.248

 ip nat outside

!

router ospf 1

 redistribute static

 network 10.100.85.1 0.0.0.0 area 18

!

ip nat pool Surf 206.100.176.2 206.100.191.254 prefix-length 20

ip nat inside source list 1 pool Surf

ip nat inside source static 10.100.50.1 206.100.176.1

!

ip route 206.100.160.0 255.255.240.0 10.255.13.253

!

access-list 1 deny   10.255.13.254

access-list 1 permit any

_______________________________________________________________________

Guaymas

interface Ethernet0

 ip address 10.16.95.1 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 10.255.13.253 255.255.255.248

 ip nat outside

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.508 point-to-point



 ip address 10.18.3.253 255.255.255.0

 ip nat inside

 frame-relay interface-dlci 508

!

router eigrp 100

 redistribute static metric 1000 100 255 1 1500

 passive-interface Ethernet1

 network 10.0.0.0

 no auto-summary

!

ip nat pool Sand 206.100.160.2 206.100.175.254 prefix-length 20

ip nat inside source list 1 pool Sand

ip nat inside source static 10.16.95.200 206.100.160.1

!

ip route 206.100.176.0 255.255.240.0 10.255.13.254

!

access-list 1 deny   10.255.13.253

access-list 1 permit 10.0.0.0

!

The DNS servers are crucial to this design. In the NAT configurations, each server has a static IL-to-
IG mapping. Suppose a device in the Sand internetwork, Beachball.sand.com, wants to send a packet 
to Snorkel.surf.com in the Surf internetwork. Suppose further that both devices have an IP address 
of 10.1.2.2. The following sequence of events occurs:

1.  Host Beachball queries DNS2 for the address of Snorkel.surf.com.

2.  DNS2 queries DNS1, which is authoritative for the surf.com domain. The query has a source 
address of 10.16.95.200 and a destination address of 206.100.176.1. The query is forwarded 
to Guaymas, which is advertising a route into EIGRP for 206.100.176.0/20.

3.  Guaymas translates the source address from 10.16.95.200 to 206.100.160.1, based on the 
static NAT entry, and forwards the packet to Cozumel.

4.  Cozumel translates the destination address from 206.100.176.1 to 10.100.50.1, based on the 
static NAT entry, and forwards the query to DNS1.

5.  DNS1 responds to the query, indicating that Snorkel.surf.com has an IP address of 10.1.2.2. 
The response message has a source address of 10.100.50.1 and a destination address of 
206.100.160.1. The response is forwarded to Cozumel, which is advertising a route into OSPF 
for 206.100.160.0/20.
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6.  Cozumel translates the source address of the DNS response to 206.100.176.1. NAT also finds 
the address 10.1.2.2 in the Answer field of the message; the address matches access list 1 
and is translated to an address from the pool named Surf. For this example, the address is 
206.100.176.3. The mapping is entered into the NAT table, and the response is forwarded to 
Guaymas.

7.  Guaymas translates the destination of the DNS response to 10.16.95.200 and forwards the 
message to DNS1.

8.  DNS1 informs Beachball that the IP address of Snorkel.surf.com is 206.100.176.3.

9.  Beachball sends a packet to Snorkel with a source address of 10.1.2.2 and a destination 
address of 206.100.176.3. Again, the packet is forwarded to Guaymas.

10.  At Guaymas, the source address matches access list 1, and an address is selected from the 
pool named Sand. For this example, the address is 206.100.160.2. The source address is 
translated, the mapping is entered into the NAT table, and the packet is forwarded to 
Cozumel.

11.  Cozumel finds that the destination address of 206.100.176.3 is mapped in its NAT table to 
10.1.2.2 and makes the translation to that IL address. The packet is forwarded to Snorkel.

12.  Snorkel sends a packet in response. The source address is 10.1.2.2, and the destination 
address is 206.100.160.2. The packet is forwarded to Cozumel.

13.  Cozumel translates the packet's source address to 206.100.176.3 and forwards the packet to 
Guaymas.

14.  Guaymas translates the packet's destination address to 10.1.2.2 and forwards the packet to 
Beachball.

By following this example, you can see that although two devices have the same IP address, neither 
is aware of the other's true address. The key to making all this work is the routing configurations of 
Cozumel and Guaymas. Neither router leaks information about the 10.0.0.0 network to the other. 
Nothing in either configuration allows a packet with a destination address within the 10.0.0.0 network 
to be forwarded to the other router, with the exception of packets destined for the directly connected 
10.255.13.248/29 subnet. Access list 1 is configured so that packets sourced from either router's E1 
interface are not translated.

NOTE

Troubleshooting Exercise 3 asks you to consider this access list configuration further.

Another detail of interest in Example 4-20 is that there is more than one inside interface at Guaymas. 
Multiple inside interfaces are quite acceptable.

One topic of importance that is not readily evident in the configuration concerns the coordination of 
the NAT translation timeout period and the DNS cache Time-To-Live (TTL) period. When a DNS 
server receives a resource record from another DNS server, it caches the record so that it can 
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respond directly to subsequent queries for the same record. In the example in this case study, DNS2 
will cache the A RR that maps Snorkel.surf.com to IP address 206.100.176.3. DNS2 can then respond 
to subsequent requests for Snorkel's IP address without again querying DNS1. This cached RR has a 
TTL period associated with it and is flushed when the TTL expires. The DNS TTL period must be 
shorter than the NAT translation timeout period.

Suppose, for example, that the NAT translation timeout expires on the 10.1.2.2-to-206.100.176.3 
mapping, and the IG address is returned to the pool. 206.100.176.3 is then mapped to a different IL 
address within the Surf internetwork, but DNS2 still has an RR mapping Snorkel.surf.com to 
206.100.176.3. If a device in the Sand internetwork queries DNS2 for Snorkel's address, DNS2 
responds with obsolete information, and packets are sent to the wrong host.

A final note on this design concerns Internet access. You can easily accomplish Internet access by 
adding an access router to the subnet between Cozumel and Guaymas (see Figure 4-22). The source 
addresses of packets from both the Surf and Sand internetworks already are translated to valid public 
addresses; all that is needed is for default routes to be added to Cozumel and Guaymas, pointing to 
the Internet access router.

Figure 4-22. The Internet Access Router Does Not Have to Support NAT; All 
Translations for Internet Traffic Are Performed by Cozumel and Guaymas

Case Study: ISP Multihoming with NAT

The section "NAT and Multihomed Autonomous Systems" earlier in this chapter demonstrated ways 
you can employ NAT to overcome the problem of multihoming to different ISPs with different CIDR 
blocks. The subscriber in Figure 4-7 is multihomed, and each ISP sees packets with source addresses 
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belonging to its own address space. Neither ISP receives packets from the subscriber with source 
addresses belonging to the other ISP's block of addresses.

Based on the NAT case studies you have already seen, you can easily write configurations for the two 
NAT routers shown in Figure 4-7. But what about a situation in which a single router is multihomed to 
both ISPs, as shown in Figure 4-23? Montego is receiving full BGP routes from both ISPs, so it can 
choose the best provider to any destination. When a packet is forwarded to ISP1, the packet must 
have a source address from the 205.113.50.0/23 block assigned by ISP1; when a packet is 
forwarded to ISP2, it must have a source address from the 207.36.76.0/23 block assigned by ISP2.

Figure 4-23. ISP1 and ISP2 Have Each Assigned a CIDR Block to 
JamaicaNet; When Packets Are Forwarded to an ISP, They Must Have the 

Correct Source Address for That ISP

Example 4-21 shows Montego's configuration for using different address pools on different interfaces.

Example 4-21 Montego's Configuration in Figure 4-23

interface Ethernet0

 ip address 10.1.1.1 255.255.255.0

 ip nat inside



!

interface Ethernet1

 ip address 10.5.1.1 255.255.255.0

 ip nat inside

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.708 point-to-point

 description PVC to ISP1

 ip address 205.113.49.253 255.255.255.252

 ip nat outside

 frame-relay interface-dlci 708

!

interface Serial1.709 point-to-point

 description PVC to ISP2

 ip address 207.36.65.253 255.255.255.252

 ip nat outside

 frame-relay interface-dlci 709

!

router ospf 10

 network 10.0.0.0 0.255.255.255 area 10

 default-information originate always

!

router bgp 451

 neighbor 205.113.49.254 remote-as 1135

 neighbor 207.36.65.254 remote-as 216

!

ip nat pool ISP1 205.113.50.1 205.113.51.254 prefix-length 23

ip nat pool ISP2 207.36.76.1 207.36.77.254 prefix-length 23

ip nat inside source route-map ISP1_MAP pool ISP1

ip nat inside source route-map ISP2_MAP pool ISP2

!



access-list 1 permit 10.0.0.0 0.255.255.255

access-list 2 permit 207.36.65.254

!

route-map ISP1_MAP permit 10

 match ip address 1

 match interface Serial1.708

!

route-map ISP2_MAP permit 10

 match ip address 1

 match ip next-hop 2

!

The address blocks assigned by the ISPs are specified in the pools ISP1 and ISP2. The significant 
feature of this NAT configuration is that the ip nat inside source statements make calls to route 
maps rather than access lists. By using route maps, you can specify not only the IL address, but also 
the interface or the next-hop address to which the packet is to be forwarded. ISP1_MAP specifies 
packets that have a source address belonging to the 10.0.0.0 network (as identified by access list 1) 
and which are to be forwarded out interface s1.708 to ISP1. ISP2_MAP also specifies packets from 
10.0.0.0 that are to be forwarded to the next-hop address 207.36.65.254 to ISP2.

NOTE

Normally, either the match interface or the match ip next-hop command is used 
in both route maps for consistency. Both commands are used here for demonstration 
purposes.

For example, an inside device with an address of 10.1.2.2 sends a packet with a destination address 
of 137.19.1.1. The packet is forwarded to Montego, because that router is advertising a default route 
into JamaicaNet via OSPF. Montego does a route lookup and determines that the best route to the 
destination is via ISP2, out S1.709 and with a next-hop address of 207.36.65.254. The first ip nat 
inside source statement checks this information against route map ISP1_MAP. Although the source 
address matches, the egress interface does not. The second ip nat inside source statement checks 
the information against route map ISP2_MAP. Here both the source address and the next-hop 
address match, so the source address is translated to an address out of the ISP2 pool.

Example 4-22 shows Montego's NAT table after some traffic has passed to the ISPs. Because an IL 
address can be mapped to an address from more than one pool, the address mappings are extended 
mappings, showing the protocol type and the port number. Extended mapping is discussed in more 
detail in the case study "Port Address Translation."

Example 4-22 Montego's NAT Table Shows That the IG Address Chosen for 
Translation Depends on the ISP to Which the Packet Is to Be Forwarded



Montego#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

udp 207.36.76.2:4953   10.1.2.2:4953      137.19.1.1:69      137.19.1.1:69

udp 205.113.50.2:2716  10.1.1.2:2716      171.35.100.4:514   171.35.100.4:514

tcp 205.113.50.1:11009 10.5.1.2:11009     205.113.48.1:23    205.113.48.1:23

tcp 207.36.76.1:11002  10.1.1.2:11002     198.15.61.1:23     198.15.61.1:23

tcp 205.113.50.3:11007 10.1.2.2:11007     171.35.18.1:23     171.35.18.1:23

tcp 207.36.76.2:11008  10.1.2.2:11008     207.36.64.1:23     207.36.64.1:23

Montego#

Of interest in the NAT table in Example 4-22 are the three entries for the IL address 10.1.2.2. The 
UDP traffic and one of the TCP sessions went to a destination via ISP2. The IG address to which the 
IL address is mapped is 207.36.76.2. The other TCP session was sent via ISP1 and so was mapped to 
205.113.50.3. These entries demonstrate that the pool from which the IG address is chosen changes, 
even for the same source address, depending on where the packet is forwarded.

Figure 4-24 shows DNS servers for the three autonomous systems. The servers in ISP1 and ISP2 
must access Ochee, the DNS server authoritative for JamaicaNet. This means that Ochee must have 
static NAT entries to addresses in both CIDR blocks. Statically mapping an IL address to more than 
one IG address is normally not allowed, because the mappings are ambiguous. In this case, 
ambiguity is not a problem because the same NAT is doing both mappings. When Montego routes 
Ochee's DNS queries and responses to DNS1 or DNS2, the appropriate translations are made.

Figure 4-24. The DNS Server Ochee Must Have a Static IL-to-IG Mapping So 
That It Can Be Queried by DNS1 and DNS2



To allow static NAT mappings of one IL address to multiple IG addresses, the keyword extendable is 
added to the end of the mapping statements. Example 4-23 shows the NAT configuration for 
Montego.

Example 4-23 NAT Configuration for Montego to Allow Static NAT Mappings 
of One IL Address to Multiple IG Addresses

ip nat pool ISP1 205.113.50.2 205.113.51.254 prefix-length 23

ip nat pool ISP2 prefix-length 23

 address 207.36.76.1 207.36.76.99

 address 207.36.76.101 207.36.77.254

ip nat inside source route-map ISP1_MAP pool ISP1

ip nat inside source route-map ISP2_MAP pool ISP2

ip nat inside source static 10.5.1.2 207.36.76.100 extendable

ip nat inside source static 10.5.1.2 205.113.50.1 extendable

!

access-list 1 permit 10.0.0.0 0.255.255.255

access-list 2 permit 207.36.65.254

!

route-map ISP1_MAP permit 10

 match ip address 1



 match interface Serial1.708

!

route-map ISP2_MAP permit 10

 match ip address 1

 match ip next-hop 2

From the perspective of DNS1, Ochee's address is 205.113.50.1. Notice that NAT pool ISP1 is 
modified to exclude this address from the pool. From the perspective of DNS2, Ochee's address is 
207.36.76.100. This address is taken from the middle of the 207.36.76.0/23 block rather than from 
one end or the other, making pool ISP2 discontiguous. The pool is modified in the configuration to 
specify two ranges of addresses: those before Ochee's address, and those after Ochee's address.

You configure a discontiguous range of addresses by first naming the pool and specifying the prefix 
length or netmask. The configuration prompt then enables you to enter a list of ranges. Example 4-
24 shows the configuration steps for pool ISP2, including the prompts.

Example 4-24 Configuring a NAT Pool for a Discontiguous Range of 
Addresses

Montego(config)#ip nat pool ISP2 prefix-length 23

Montego(config-ipnat-pool)#address 207.36.76.1 207.36.76.99

Montego(config-ipnat-pool)#address 207.36.76.101 207.36.77.254

Port Address Translation

At the opposite extreme from the multihomed NAT router in the preceding case study is the SOHO 
(small office, home office) router connecting a few devices to the Internet. Instead of acquiring 
separate public addresses for each device, port address translation (PAT) allows all the SOHO devices 
to share a single IG address.

PAT allows overloading, or the mapping of more than one IL address to the same IG address. To 
accomplish this, the NAT entries in the routing table are extended entries—the entries track not only 
the relevant IP addresses, but also the protocol types and ports. By translating both the IP address 
and the port number of a packet, up to 65535 IL addresses could theoretically be mapped to a single 
IG address (based on the 16-bit port number).

NOTE

Each NAT entry uses approximately 160 bytes of memory, so 65535 entries would 
consume more than 10 MB of memory and large amounts of CPU power. Nowhere 
near this number of addresses are mapped in practical PAT configurations.



Cisco's NAT attempts to preserve BSD semantics, mapping an IL port number to the same IG port 
number whenever possible. A different IG port number is used only when the port number associated 
with the IL address is already being used in another mapping.

Figure 4-25 shows three devices connected to an ISP.

Figure 4-25. Barbados Uses PAT to Map the Addresses of the Three Inside 
Hosts to the Single Serial Interface Address

The access router has a single public IP address assigned by the ISP on its serial interface, as 
demonstrated in the configuration in Example 4-25.

Example 4-25 Enabling PAT on Router Barbados in Figure 4-25

interface Ethernet0

 ip address 192.168.1.1 255.255.255.0

 ip nat inside

!

interface Serial0

 ip address 207.35.14.82 255.255.255.252

 ip nat outside

!

ip nat inside source list 1 interface Serial0 overload



!

ip route 0.0.0.0 0.0.0.0 Serial0

!

access-list 1 permit 192.168.1.0 0.0.0.255

!

PAT is enabled with the overload keyword. Although the ip nat inside source command could 
reference an address pool, in this case it just references the interface on which the IG address is 
configured. As usual, the access list identifies the IL addresses.

Example 4-26 shows the NAT table in the access router after a few packets have passed through it. 
Most of the IG ports match the IL ports, but notice that there are two instances in which an IL socket 
has a port number that has already been used (192.168.1.2:11000 and 192.168.1.2:11001). As a 
result, the NAT has chosen an unused port for these sockets that does not match the IL port.

Example 4-26 Different IL Addresses Have Been Mapped to Different Ports 
of the Same IG Address

Barbados#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

tcp 207.35.14.82:11011 192.168.1.3:11011  191.115.37.2:23    191.115.37.2:23

tcp 207.35.14.82:5000  192.168.1.2:11000  191.115.37.2:23    191.115.37.2:23

udp 207.35.14.82:3749  192.168.1.2:3749   135.88.131.55:514  135.88.131.55:514

tcp 207.35.14.82:11000 192.168.1.4:11000  191.115.37.2:23    191.115.37.2:23

tcp 207.35.14.82:11002 192.168.1.2:11002  118.50.47.210:23   118.50.47.210:23

udp 207.35.14.82:9371  192.168.1.2:9371   135.88.131.55:514  135.88.131.55:514

icmp 207.35.14.82:7428 192.168.1.3:7428   135.88.131.55:7428 135.88.131.55:7428

tcp 207.35.14.82:5001  192.168.1.2:11001  135.88.131.55:23   135.88.131.55:23

tcp 207.35.14.82:11001 192.168.1.4:11001  135.88.131.55:23   135.88.131.55:23

Barbados#

Case Study: TCP Load Balancing

Figure 4-26 shows a topology similar to the one in the PAT case study. Here the three inside devices 
are not hosts, however, but are identical servers with mirrored content. The intent is to create a 
"virtual server" with an address of 199.198.5.1; that is, from the outside there appears to be a single 
server at that IG address. In reality, the router Barbados is configured to perform round-robin 
translations to the three IL addresses.

Figure 4-26. The Three Inside Devices Are Identical Servers with Mirrored 
Content, Which from the Outside Appear to Be a Single Server



Example 4-27 shows the configuration for Barbados.

Example 4-27 Barbados' NAT Configuration Evenly Distributes the TCP Load 
to the Three Identical Servers; Outside Devices See Only a Single Inside 
Global Address

interface Ethernet0

 ip address 192.168.1.1 255.255.255.0

 ip nat inside

!

interface Serial0

 ip address 207.35.14.82 255.255.255.252

 ip nat outside

!

ip nat pool V-Server 192.168.1.2 192.168.1.4 prefix-length 24 type rotary

ip nat inside destination list 1 pool V-Server

!



ip route 0.0.0.0 0.0.0.0 Serial0

!

access-list 1 permit 199.198.5.1

!

Instead of translating an IL address as most of the previous case studies have demonstrated, this 
configuration translates the IG address. The address pool V-Server contains a list of the available IL 
addresses, and the keywords type rotary cause a round-robin assignment of the pool addresses. 
The access list, as usual, identifies the address to be translated—in this case, the single destination 
address 199.198.5.1.

Example 4-28 shows the resulting NAT table after four outside devices have sent TCP traffic to the 
virtual server. You can observe that the first three connections (reading from the bottom up) were 
allocated sequentially from the lowest IL address in the pool to the highest. Only three addresses are 
available in the pool, so the fourth connection is again mapped to the lowest IL address.

Example 4-28 The TCP Connections to the Virtual Server Address 
199.198.5.1 Are Balanced Across the Three Real Server Addresses

Barbados#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

tcp 199.198.5.1:23     192.168.1.2:23     203.1.2.3:11003    203.1.2.3:11003

tcp 199.198.5.1:23     192.168.1.4:23     135.88.131.55:11002 135.88.131.55:11002

tcp 199.198.5.1:23     192.168.1.3:23     118.50.47.210:11001 118.50.47.210:11001

tcp 199.198.5.1:23     192.168.1.2:23     191.115.37.2:11000 191.115.37.2:11000

Barbados#

Case Study: Service Distribution

You also can use NAT to create a virtual server in which connections are distributed by TCP or UDP 
services rather than by TCP connection. The internetwork in Figure 4-27 is very similar to that in 
Figure 4-26, except that the servers are not identical. Rather, different servers offer different 
services. From the outside, all three servers appear to be a single server with the address 
199.198.5.1.

Figure 4-27. Three Inside Devices That Offer Different Services Appear to 
Be a Single Server from the Outside



Example 4-29 shows the NAT configuration in Barbados.

Example 4-29 The NAT Configuration in Barbados Translates the Virtual IG 
Address According to the TCP or UDP Port Associated with the Address

interface Ethernet0

 ip address 192.168.1.1 255.255.255.0

 ip nat inside

!

interface Serial0

 ip address 207.35.14.82 255.255.255.252

 ip nat outside

!

ip nat inside source static tcp 192.168.1.4 25 199.198.5.1 25 extendable

ip nat inside source static udp 192.168.1.3 514 199.198.5.1 514 extendable

ip nat inside source static udp 192.168.1.3 69 199.198.5.1 69 extendable

ip nat inside source static tcp 192.168.1.3 21 199.198.5.1 21 extendable



ip nat inside source static tcp 192.168.1.3 20 199.198.5.1 20 extendable

ip nat inside source static tcp 192.168.1.2 80 199.198.5.1 80 extendable

!

ip route 0.0.0.0 0.0.0.0 Serial0

!

No address pools or access lists are here; instead, the configuration is a series of simple IL-to-IG 
mappings. The difference between these statements and the static statements you saw earlier is that 
TCP or UDP is specified, as are the source and destination ports. The extendable keyword is used, 
because the same address—this time, the IG address—appears in more than one statement. You do 
not have to type the keyword: Cisco IOS Software adds it automatically. In order, the statements 
map SMTP (TCP port 25), syslog (UDP port 514), TFTP (UDP port 69), FTP (TCP ports 20 and 21), 
and HTTP (TCP port 80).

Example 4-30 shows the NAT table just after Barbados is configured; the only entries are the static 
entries.

Example 4-30 Before Any Dynamic Translations Occur, Barbados' NAT Table 
Contains Only the Static Mappings of IL Sockets to IG Sockets

Barbados#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

udp 199.198.5.1:514    192.168.1.3:514    ---                ---

udp 199.198.5.1:69     192.168.1.3:69     ---                ---

tcp 199.198.5.1:80     192.168.1.2:80     ---                ---

tcp 199.198.5.1:21     192.168.1.3:21     ---                ---

tcp 199.198.5.1:20     192.168.1.3:20     ---                ---

tcp 199.198.5.1:25     192.168.1.4:25     ---                ---

Barbados#

Example 4-31 shows the NAT table after some traffic has passed through Barbados. Notice that 
among all the dynamic mappings, only two OG addresses appear. Yet the sessions have been 
mapped to different IL addresses, depending on the port associated with the IG address.

Example 4-31 UDP and TCP Packets Are Mapped to Different IL Addresses, 
Depending on Their Associated Port Numbers

Barbados#show ip nat translations

Pro Inside global      Inside local       Outside local      Outside global

udp 199.198.5.1:514    192.168.1.3:514    ---                ---

tcp 199.198.5.1:25     192.168.1.4:25     207.35.14.81:11003 207.35.14.81:11003



udp 199.198.5.1:69     192.168.1.3:69     ---                ---

tcp 199.198.5.1:80     192.168.1.2:80     ---                ---

tcp 199.198.5.1:21     192.168.1.3:21     ---                ---

tcp 199.198.5.1:20     192.168.1.3:20     ---                ---

tcp 199.198.5.1:25     192.168.1.4:25     ---                ---

tcp 199.198.5.1:20     192.168.1.3:20     191.115.37.2:1027  191.115.37.2:1027

tcp 199.198.5.1:21     192.168.1.3:21     191.115.37.2:1026  191.115.37.2:1026

tcp 199.198.5.1:80     192.168.1.2:80     191.115.37.2:1030  191.115.37.2:1030

udp 199.198.5.1:69     192.168.1.3:69     191.115.37.2:1028  191.115.37.2:1028

udp 199.198.5.1:514    192.168.1.3:514    207.35.14.81:1029  207.35.14.81:1029

Barbados#



 
  
Troubleshooting NAT

Cisco NAT enables you to do a lot, and the configurations are straightforward. If it does not work, 
you can spot a few common causes by asking the following questions:

●     Do the dynamic pools contain the correct range of addresses?
●     Is there any overlap between dynamic pools?
●     Is there any overlap between addresses used for static mapping and the addresses in the 

dynamic pools?
●     Do the access lists specify the correct addresses to be translated? Are any addresses left out? 

Are any addresses included that should not be included?
●     Are the correct inside and outside interfaces specified?

One of the most common problems with a new NAT configuration is not NAT itself, but routing. 
Remember that you are changing a source or destination address in a packet; after the translation, 
does the router know what to do with the new address?

Another problem can be timeouts. If a translated address is cached in some system after the 
dynamic entry has timed out of the NAT table, packets can be sent to the wrong address, or the 
destination may seem to have disappeared. Besides the ip nat translation timeout command 
already discussed, you can change several other default timeouts. Table 4-3 lists all the keywords 
you can use with the ip nat translation command and the default values of the timeout periods. You 
can change all the defaults within a range of 0–2,147,483,647 seconds.

Table 4-3. Dynamic NAT Table Timeout Values

ip nat translation 
Default Period (in 
Seconds) Description 

timeout 86,400 (24 hours) Timeout for all non-port-specific 
dynamic translations 

dns-timeout 60 Timeout for DNS connections 

finrst-timeout 60 Timeout after TCP FIN or RST 
flags are seen (closing a TCP 
session) 

icmp-timeout 60 Timeout for ICMP translations 

port-timeout tcp 60 Timeout for TCP port translations 

port-timeout udp 60 Timeout for UDP port 
translations 

syn-timeout 60 Timeout after TCP SYN flag is 
seen, and no further session 
packets 

tcp-timeout 86,400 (24 hours) Timeout for TCP translations 
(non-port-specific) 



udp-port 300 (5 minutes) Timeout for UDP translations 
(non-port-specific) 

Theoretically, there is no limit on the number of mappings that the NAT table can hold. Practically, 
memory and CPU or the boundaries of the available addresses or ports place a limit on the number of 
entries. Each NAT mapping uses approximately 160 bytes of memory. In the rare case where the 
entries must be limited either for performance or policy reasons, you can use the ip nat translation 
max-entries command.

Another useful command for troubleshooting is show ip nat statistics, as demonstrated in Example 
4-32. This command displays a summary of the NAT configuration, as well as counts of active 
translation types, hits to an existing mapping, misses (causing an attempt to create a mapping), and 
expired translations. For dynamic pools, the type of pool, the total available addresses, the number 
of allocated addresses, the number of failed allocations, and the number of translations using the 
pool (refcount) appear.

Example 4-32 show ip nat statistics Displays Many Useful Details for 
Analyzing and Troubleshooting Your NAT Configuration

StCroix#show ip nat statistics

Total active translations: 3 (2 static, 1 dynamic; 3 extended)

Outside interfaces:

  Serial0, Serial1.708, Serial1.709

Inside interfaces:

  Ethernet0, Ethernet1

Hits: 980  Misses: 43

Expired translations: 54

Dynamic mappings:

-- Inside Source

access-list 1 interface Serial0 refcount 0

StCroix#

Finally, you can manually clear dynamic NAT entries from the NAT table. This action can prove useful 
if you need to get rid of a particular offending entry without waiting for the timeout to expire, or if 
you need to clear the entire NAT table to reconfigure an address pool. Note that Cisco IOS Software 
does not allow you to change or delete an address pool while addresses from the pool are mapped in 
the NAT table. The clear ip nat translations command clears entries; you can specify a single entry 
by the global and local address or by TCP and UDP translations (including ports), or you can use an 
asterisk (*) to clear the entire table. Of course, only dynamic entries are cleared; the command does 
not remove static entries.



 
  
Looking Ahead

You have seen that NAT aids in a more efficient use of available network addresses. The next 
chapter, "Introduction to IP Multicast Routing," discusses how multicast routing protocols can make 
more efficient use of network resources when groups of devices must share common information.



 
  
Command Summary

Table 4-4 provides a list and description of the commands discussed in this chapter

Table 4-4. Command Summary

Command Description 

clear ip nat translations {* | [inside [tcp 
{inside [global-ip [global-port] local-ip 
[local-port]} | udp {inside[global-ip [global-
port] local-ip [local-port]}] | [inside global-
ip local-ip][outside local-ip global-ip] 

Clears dynamic entries from the NAT 
table. 

ip nat {inside | outside} Designates the inside and outside 
interfaces; traffic originating from or 
destined for the interface is 
examined by the NAT. 

ip nat inside destination list {access-list-
number|name} pool name 

Enables translation of inside 
destination addresses. 

ip nat inside source {list {access-list-
number|name} pool name [overload] | 
static local-ip global-ip} 

Enables translation of inside source 
addresses. 

ip nat outside source {list {access-list-
number|name} pool name | static global-
ip local-ip} 

Enables translation of outside source 
addresses. 

ip nat pool name start-ip end-ip 
{netmask netmask | prefix-length prefix-
length} type {rotary | match-host} 

Defines a pool of addresses to be 
used for address translation. 

ip nat translation max-entries entries Sets a limit on the number of entries 
allowed in the NAT table. 

ip nat translation {timeout | udp-
timeout | dns-timeout | tcp-timeout | 
finrst-timeout | icmp-timeout | syn-
timeout | port-timeout{tcp | udp}} 
seconds 

Changes the default period after 
which a dynamic entry is removed 
from the NAT table and the address 
is returned to the pool. 

show ip nat statistics Displays NAT statistics. 

show ip nat translations [verbose] Displays the NAT table. 



 
  
Configuration Exercises

Refer to Figure 4-28 for Configuration Exercises 1–5.

Figure 4-28. The Internetwork for Configuration Exercises 1–5

1: ISP1 in Figure 4-28 has assigned the address block 201.50.13.0/24 to AS 3. ISP2 has assigned 
the address block 200.100.30.0/24 to AS 3. RTR1 and RTR2 are accepting full BGP routes from 
the ISP routers but do not transmit any routes to the ISPs. They run IBGP between them and 
OSPF on all Ethernet interfaces. No routes are redistributed between BGP and OSPF. The 
addresses of the router interfaces are as follows:

RTR1, E0: 172.16.3.1/24

RTR1, E1: 172.16.2.1/24

RTR1, S0: 201.50.26.13/30

RTR2, E0: 172.16.3.2/24

RTR2, E1: 172.16.1.1/24

RTR2, S0: 200.100.29.241/30



SVR1 is the DNS server authoritative for AS 3; its address is 172.16.3.3. DNS1 reaches SVR1 at 
201.50.13.1, whereas DNS2 reaches the same server at 200.100.30.254. Write routing and NAT 
configurations for RTR1 and RTR2, translating inside addresses appropriately for each ISP's 
assigned address block. Any inside device must be able to reach either ISP, but no packets can 
leave AS 3 with a private source address under any circumstance.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: The address of SVR2 in Figure 4-28 is 172.16.2.2, and the address of SVR3 is 172.16.2.3. Modify 
the configurations of Configuration Exercise 1 so that devices within ISP1's AS connect to the 
servers round-robin at the address 201.50.13.3.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: HTTP packets sent to 200.100.30.50 from ISP2 are sent to SVR2 in Figure 4-28. SMTP packets 
sent to 200.100.30.50 from ISP2 are sent to SVR3. Modify the configurations of the previous 
exercises to implement these translations.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: Five outside devices in Figure 4-28, 201.50.12.67–201.50.12.71, must appear to devices within 
AS 3 as having addresses 192.168.1.1–192.168.1.5, respectively. Add the appropriate NAT 
configurations to the previously created configurations.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



5: Devices in AS 3 of Figure 4-28 with addresses in the 172.16.100.0/24 subnet should all appear to 
have the IG address 200.100.30.75 when sending packets to ISP2. Modify the configurations of 
the previous exercises to accommodate this.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: In Figure 4-29, redundant links have been added so that RTR1 and RTR2 each have connections to 
both ISPs, and each accept full BGP routes from both ISPs. The address of RTR1, S1 is 
200.100.29.137/30, and the address of RTR2, S1 is 201.50.26.93/30. Write configurations for the 
two routers, ensuring that all features added in the previous exercises still work correctly.

Figure 4-29. The Internetwork for Configuration Exercise 6

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



 
  
Troubleshooting Exercises

1: Identify the mistake in the configuration in Example 4-33.

Example 4-33 Configuration for Troubleshooting Exercise 1

ip nat pool EX1 192.168.1.1 192.168.1.254 netmask 255.255.255.0 type match-host

ip nat pool EX1A netmask 255.255.255.240

 address 172.21.1.33 172.21.1.38

 address 172.21.1.40 172.21.1.46

ip nat inside source list 1 pool EX1

ip nat inside source static 10.18.53.210 192.168.1.1

ip nat outside source list 2 pool EX1A

!

access-list 1 permit 10.0.0.0 0.255.255.255

access-list 2 permit 192.168.2.0 0.0.0.255

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: RTR1 in Figure 4-30 connects two internetworks with overlapping addresses.

Figure 4-30. The Internetwork for Troubleshooting Exercise 2



NAT is implemented on the router as configured in Example 4-34, but devices cannot 
communicate across the router. What is wrong?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

Example 4-34 Configuration for Troubleshooting Exercise 2

interface Ethernet0

 ip address 172.16.10.1 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 172.16.255.254 255.255.255.0

 ip nat outside

!

router ospf 1

 redistribute static metric 10 metric-type 1 subnets

 network 10.0.0.0 0.255.255.255 area 0

!

ip nat translation timeout 500

ip nat pool NET1 10.1.1.1 10.1.255.254 netmask 255.255.0.0

ip nat pool NET2 192.168.1.1 192.168.255.254 netmask 255.255.0.0

ip nat inside source list 1 pool NET1

ip nat outside source list 1 pool NET2

!

ip classless

!

ip route 10.1.0.0 255.255.0.0 Ethernet0

ip route 192.168.0.0 255.255.0.0 Ethernet1

!

access-list 1 permit 172.16.0.0 0.0.255.255



3: Refer to the configurations of Cozumel and Guaymas in Figure 4-21. If the first line of access list 1 
in both configurations is removed, what is the result? Can Guaymas and Cozumel still ping each 
other?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



 
  
End Note

1.  Egevang, K.B., and P. Francis. "RFC 1631: The IP Network Address Translator (NAT)" (Work 
in Progress)



 
  

Chapter 5. Introduction to IP Multicast 
Routing

●     Requirements for IP Multicast— This section explains the basic concepts of IP multicasting 
and examines the functions necessary for efficient multicasting, such as addressing and 
signaling.

●     Multicast Routing Issues— This section describes the issues common to all IP multicast 
routing protocols.

●     Operation of the Distance Vector Multicast Routing Protocol (DVMRP)— This section 
describes the operation of DVMRP.

●     Operation of Multicast OSPF (MOSPF)— This section describes the operation of MOSPF.
●     Operation of Core-Based Trees (CBT)— This section describes the operation of CBT.
●     Introduction to Protocol Independent Multicast (PIM)— This section examines the 

basic PIM functions shared by both PIM-DM and PIM-SM.
●     Operation of Protocol Independent Multicast, Dense Mode (PIM-DM)— This section 

describes the operation of PIM-DM.
●     Operation of Protocol Independent Multicast, Sparse Mode (PIM-SM)— This section 

describes the operation of PIM-SM.

Multicasting is the process of sending data to a group of receivers. It might be argued that unicasting 
and broadcasting are subsets of multicasting. In the case of unicasting, there is only a single member 
of the group; in the case of broadcasting, all possible receivers are members of the group. This 
chapter demonstrates why such an argument is valid only on a conceptual level; in networking, at 
least, distinct differences exist between multicasting, unicasting, and broadcasting.

The delivery of radio and television programming is commonly called "broadcasting," but in reality it 
is multicasting. A transmitter sends data on a certain frequency, and some group of receivers 
acquires the data by tuning in to that frequency. The frequency is, in this sense, a multicast address. 
All receivers within the range of the transmission are capable of receiving the signal, but only those 
who listen to the correct frequency actually receive it.

The signal range brings up another important concept: Radio and television transmissions have 
scope—they are limited by the power of the transmitter. Receivers outside the scope of the 
transmission cannot receive the signal. You will see in this chapter that IP multicast networks also 
can have scope.

You have already had some exposure to IP multicasting in Volume I. RIP-2, EIGRP, and OSPF all 
employ multicasting for efficiency in communicating routing information. Applications can use 
multicasting for exactly the same reason—to increase network efficiency and conserve network 
resources. Figure 5-1 depicts a set of IP hosts. One of the hosts is a source (S) of data that must be 
delivered to a group (G) of receivers. There is more than one receiver, but the group does not 
contain all possible receivers.

Figure 5-1. The Source Must Deliver the Same Data to Multiple Receivers



One approach is for the source to use a replicated unicast. That is, the source creates a separate 
packet containing identical data for each destination host in the group. Each packet is then unicast to 
a specific host, as shown in Figure 5-2.

Figure 5-2. Unicasting the Same Data to Multiple Receivers Places a Burden 
on the Source



If there are only a few destinations, this scheme works fine. In fact, many "multicast" applications in 
use today actually utilize replicated unicast. As the number of recipients grows into the hundreds or 
thousands, however, the burden on the host to create and send so many copies of the same data 
also increases. More importantly, the host's interface, directly connected medium, directly connected 
router, and slow WAN links all become potential bottlenecks. There are also problems if the data is 
delay-sensitive and cannot be contained in a single packet. If all the copies of packet number 2 must 
wait for all the copies of packet number 1 to be queued and sent, the queuing delay can introduce 
unacceptable gaps in the data stream.

Another possible approach to multicasting is to broadcast the data as depicted in Figure 5-3. This 
removes the burden from the source and its local facilities, which now have to send only a single 
copy of each packet, but it can extend the burden to the other hosts in the network. Each host must 
accept a copy of the broadcasted packet and process the packet. It is only at the higher layers, or 
possibly within the application itself, that disinterested hosts recognize that the packet is to be 
discarded. If the number of hosts in the receiving group is small in relation to the total number of 
hosts in the network, this processing burden can again be unacceptable.

Figure 5-3. Broadcasting Data Can Place a Burden on the Rest of the 
Network



NOTE

When there are relatively few group members in relation to the total number of 
hosts in a multicast domain, the domain is sparsely populated. You will encounter 
this concept again later in this chapter.

Another difficulty with broadcasting is that IP routers do not forward packets to broadcast 
destinations. If the cloud in Figure 5-3 is a routed internetwork rather than a single broadcast 
medium, broadcast packets cannot reach the remote hosts. Directed broadcasts could be used, but 
that may be the worst possible solution. Not only would all hosts receive the packet, but also the 
source would again be burdened with having to replicate packets.

Multicasting allows the source to send a single packet to a single multicast destination address, thus 
removing the processing burden of replicating packets. Any receiver that is listening for the multicast 
address can receive the packet, removing the need for disinterested hosts to process an unwanted 
packet. And unlike broadcast packets, multicast-aware routers can forward multicast packets.

Many aspects of IP multicasting are not covered in this chapter. This book is concerned only with IP 
routing, so the primary focus of this chapter is on IP multicast routing. Other topics are touched upon 



only as they pertain to routing. For a complete treatment of IP multicast, have a look at the 
references cited at the end of the chapter in "Recommended Reading."



 
  
Requirements for IP Multicast

IP multicast is not a new concept; Steve Deering wrote the first RFC on multicast host requirements 
in 1986.[1] But it is only in the past few years that interest in multicasting has really taken off, as 
enterprises present increasing demands for one-to-many and many-to-many communications.

Examples of one-to-many applications include video and audio feeds for distance learning or 
company news, software distribution, network-based entertainment programs, news and stock 
updates, and database or Web site replication. The classic many-to-many application is conferencing, 
including video, audio, and shared whiteboards. Multiplayer games are another many-to-many 
application, although most corporations would be loath to include them on a wish list. As the use of 
such group-based applications increases, the efficiency and performance advantages of multicast 
over broadcast and replicated unicast for packet delivery become more attractive.

You must make a variety of protocol choices when implementing IP multicast. Because of this, 
multicast is presently found primarily in enterprise networks where a single administrative authority 
can make the design choices. As the popularity of multicasting grows, however, customers are 
increasing their pressure on ISPs to support multicast across the Internet. Interest in multicast within 
ISPs is also growing as more and more replicated unicast traffic is sent across the Internet, eating up 
more and more bandwidth. Although corporations have been interested in multicast for some time, 
the "killer app" that will finally bring IP multicast to maturity will be entertainment over the Internet.

Multicast has been researched for some time on a subset of the Internet known as the Multicast 
Backbone, or MBone. ISPs are also beginning to offer multicast services to their customers, such as 
UUNET's UUcast. However, ubiquitous availability of multicast services across the entire Internet 
must await further research and development of inter-AS protocols such as Multiprotocol BGP (MBGP) 
and Border Gateway Multicast Protocol (BGMP). Presently, no IP multicast routing protocols exist that 
support routing policies comparable to those supported by BGP. Until adequate tools for enforcing 
policy are introduced, it is unlikely that multicasting will find wide Internet acceptance.

The three basic requirements for supporting multicast across a routed internetwork are as follows:

●     There must be a set of addresses by which multicast groups are identified.
●     There must be a mechanism by which hosts can join and leave groups.
●     There must be a routing protocol that allows routers to efficiently deliver multicast traffic to 

group members without overtaxing network resources.

This section examines the basics of each of these requirements; subsequent sections examine the 
details of the various protocols that are currently available to meet the requirements.

Multicast IP Addresses

The IANA has set aside Class D IP addresses for use as multicast addresses. According to the first 
octet rule, as described in Chapter 2, "TCP/IP Review," of Volume I, the first four bits of a Class D 
address are always 1110, as shown in Figure 5-4. Finding the minimum and maximum 32-bit 
numbers within this constraint, the range of Class D addresses is 224.0.0.0–239.255.255.255.

Figure 5-4. Class D Addresses Are in the Range 224.0.0.0–239.255.255.255



Unlike the Class A, B, and C address ranges, the Class D range is "flat"—that is, subnetting is not 
used, as demonstrated by Figure 5-5. Therefore, with 28 variable bits, 228 (more than 268 million) 
multicast groups can be addressed out of the Class D space.

Figure 5-5. Unlike Class A, B, and C IP Addresses, Class D Addresses Do Not 
Have a Network Portion and a Host Portion



A multicast group is defined by its multicast IP address; groups may be permanent or transient. 
Permanent refers to the fact that the group has a permanently assigned address, not that members 
are permanently assigned to the group. In fact, hosts are free to join or leave any group. Transient 
groups are, as you might guess, groups that do not have a permanent existence—like a 
videoconference group. An unreserved address is assigned to the group and is relinquished when the 
group ceases to exist.

Table 5-1 shows some of the well-known addresses assigned to permanent groups by the IANA. You 
have encountered most of these addresses before, when you studied the routing protocols to which 
they are assigned. For example, you know that on a multiaccess network, OSPF DRothers send 
updates to the OSPF DR and BDR at 224.0.0.6; the DR sends packets to the DRothers at 224.0.0.5.

Table 5-1. Some Well-Known Reserved Multicast Addresses

Address Group 

224.0.0.1 All systems on this subnet 

224.0.0.2 All routers on this subnet 

224.0.0.4 DVMRP routers 

224.0.0.5 All OSPF routers 



224.0.0.6 OSPF designated routers 

224.0.0.9 RIP-2 routers 

224.0.0.10 EIGRP routers 

224.0.0.13 PIM routers 

224.0.0.15 CBT routers 

224.0.1.39 Cisco-RP-Announce 

224.0.1.40 Cisco-RP-Discovery 

The IANA reserves all the addresses in the range 224.0.0.0–224.255.255.255 for routing protocols 
and other network maintenance functions. Multicast routers do not forward packets with a destination 
address from this range. There are also addresses outside of this range that are reserved for open 
and commercial groups; for example, 224.0.1.1 is reserved for the Network Time Protocol (NTP), 
224.0.1.8 is assigned to SUN NIS+, and 224.0.6.0–224.0.6.127 are assigned to the Cornell ISIS 
Project. Yet another reserved range is 239.0.0.0–239.255.255.255. The use of this last group of 
addresses is discussed in the section "Multicast Scoping" later in this chapter. For a complete list of 
reserved Class D addresses, see Appendix C, "Reserved Multicast Addresses," or RFC 1700.

A group member's network interface card (NIC) also must be multicast-aware. When a host joins a 
group, the NIC determines a predictable MAC address. To accomplish this, all multicast-aware 
Ethernet, Token Ring, and FDDI NICs use the reserved IEEE 802 address 0100.5E00.0000 to 
determine a unique multicast MAC. It is significant that the eighth bit of this address is 1; that bit, in 
the 802 format, is the Individual/Group (I/G) bit. When set, it indicates that the address is a 
multicast address.

Multicasting Over Ethernet and FDDI

Ethernet and FDDI interfaces map the lower 23 bits of the group IP address onto the lower 23 bits of 
the reserved MAC address to form a multicast MAC address, as shown in Figure 5-6. Here, the Class 
D IP address 235.147.18.23 is used to create the MAC address 0100.5E13.1217.

Figure 5-6. Multicast MAC Addresses on Ethernet and FDDI Networks Are 
Created by Concatenating the Last 23 Bits of the IP Address with the First 

25 Bits of the MAC Address 0100.5E00.0000



You already have encountered a couple of these addresses. Recall that in Chapter 9, "Open Shortest 
Path First," of Volume I, it was briefly explained that the All OSPF Routers address 224.0.0.5 uses a 
MAC address of 0100.5E00.0005, and the All OSPF Designated Routers address 224.0.0.6 uses the 
MAC address 0100.5E00.0006. Now you know why.

Because only the last 23 bits of the IP address are mapped to the MAC address, the resulting 
multicast MAC address is not universally unique. For example, the IP address 225.19.18.23 will 
produce the very same MAC address, 0100.5E13.1217, as 235.147.18.23. In fact, calculating the 
ratio of the total number of Class D addresses (228) to the number of possible MAC addresses under 
the reserved prefix (223) reveals that 32 different Class D IP addresses can be mapped to every 
possible MAC address!

The IETF's position is that the odds of two or more group addresses existing on the same LAN 
producing the same MAC address are acceptably remote. On the rare occasion that such a conflict 
does arise, the members of the two groups on the LAN will receive each other's traffic. In most of 
these cases, each group's packets will be destined for different port numbers or possibly have 
different application layer authentication schemes; each group's members will discard the other 
group's packets at the transport layer or above.

The benefits of this predictable MAC approach are twofold:

●     A multicast source or router on the local network has to deliver only a single frame to the 
multicast MAC address in order for all group members on the LAN to receive it.

●     Because the MAC address is always known if the group address is known, there is no need for 
an ARP process.

Multicasting Over Token Ring



Multicast over Token Ring networks is treated differently. Token Ring specifies functional or function-
dependent MAC addresses to reach stations running such common TR functions as Active Monitor, 
Ring Parameter Server, and Ring Error Monitor. The first bit of the first octet of the TR MAC address 
is the I/G address, which indicates whether the address is unicast (I/G=0) or broadcast/multicast 
(I/G=1). The second bit is the Universal/Local (U/L) bit, which indicates whether the address is a 
manufacturer burned-in address (U/L=0) or a locally administered address (U/L=1). Additionally, the 
first bit of the third octet is the Functional Address Indicator (FAI). The job of the FAI is to distinguish 
functional addresses (I/G=1, U/L=1, FAI=0) from locally administered group address (I/G=1, U/L=1, 
FAI=1). A specific functional address is created by setting one, and only one, of the 31 remaining bits 
after the FAI. So, for example, the functional address of the Active Monitor is C000.0000.0001 and a 
bridge is reached at C000.0000.0100. Because only one of the 31 bits can be set, there are 31 
available functional addresses. This rule has consequences for IP multicast.

Token Ring MAC addresses use the little-endian format, in which each octet is read from right to left; 
Ethernet uses the big-endian format, in which each octet is read from left to right. Therefore, the 
Ethernet multicast MAC address of 0100.5E13.1217 would be read by Token Ring as 
8000.7AC8.48E6. The FAI in this TR address is 0, but more than one of the following 31 bits is set to 
1. Therefore, Token Ring interprets the address as an illegal functional address.

NOTE

FDDI also uses the little-endian format, but it does not use functional addresses such 
as Token Ring and therefore supports the same mapping scheme as Ethernet.

Because IP addresses cannot be mapped into Token Ring addresses as they are into Ethernet 
addresses, another method must be found to resolve this issue. Currently, there are two methods for 
addressing TR frames carrying IP multicast packets:[2]

●     Just use the broadcast address FFFF.FFFF.FFFF for all frames carrying multicast packets.
●     Use a single reserved functional address, C000.0004.0000.

Cisco routers default to the first method and support the second method with the command ip 
multicast use-functional configured on TR interfaces.

Both of these methods have drawbacks. The first method is inefficient, delivering multicast packets to 
all stations on the ring and relying on upper-layer protocols to accept or reject the packets. The 
second method can be used only if the TR NICs on all stations on the ring recognize the functional 
address. Not all NICs do. Another problem with the second method is that TR NICs that recognize a 
functional address send an interrupt to the station's CPU. If there is even moderate IP multicast 
traffic on the ring, and especially if there is multicast traffic for several different groups all mapped to 
the one functional address, host performance will suffer. Because of these limitations, Token Ring is a 
poor choice for supporting IP multicast.

Group Membership Concepts

Before a host can join a group, it (or its user) must know what groups are available to be joined, and 
how to join them. Various mechanisms are available for advertising multicast groups, such as online 
"TV Guides," or Web-based schedules such as the one shown in Figure 5-7.

Figure 5-7. One Way of Locating Multicast Groups Is Through Web-Based 
Announcements, Such as This Schedule of MBone Sessions at 



www.cilea.it/MBone/browse.htm

There are also tools that utilize such protocols as Session Description Protocol (SDP) and Session 
Advertisement Protocol (SAP) to describe multicast events and advertise those descriptions. Figure 5-
8 shows an example of an application that uses these protocols. A user also may learn of a multicast 
session by invitation, such as via a simple e-mail.

Figure 5-8. Applications Such as Multikit Listen for SDP and SAP and Display 
the Multicast Sessions Advertised by Those Protocols

http://www.cilea.it/mbone/browse.htm


A detailed discussion of these mechanisms is beyond the scope of this book. This section presumes 
that hosts have somehow learned of a multicast group, and it examines the issues around joining and 
leaving the group. After examining these issues, you will see how they are handled by the Internet 
Group Management Protocol (IGMP), the de facto protocol for managing IP multicast groups on 
individual subnets.

Joining and Leaving a Group

Interestingly, the source of a multicast session does not have to be a member of the multicast group 
to which it is sending traffic. In fact, the source typically does not even know what hosts, if any, are 
members of the group. Receivers are free to join and leave groups at any time. This again fits the 
earlier analogy of a radio or television signal; audience members can tune in or tune out at any time, 
and the originating station has no direct way of knowing who is listening.

If the source and all group members share a common LAN, no other protocols are required. The 
source sends packets to a multicast IP (and MAC) address, and the group members "tune in" to this 
address. But sending multicast traffic over a routed internetwork becomes more complicated. Every 
router could merely forward all multicast packets onto every LAN, in case there are group members 
on the LAN, but this partially circumvents the goal of multicasting, which is to conserve network 
resources. If no group members are on the LAN, bandwidth and processing is wasted not only on that 
subnet, but also on all data links and routers leading to it.

Therefore, a router must have some means to learn whether a connected network includes group 
members, and if so, members of what group. When a router becomes aware of a multicast session, it 
can query all of its attached subnets for hosts that want to join the receiving group. The query might 
be addressed to the "all systems on this subnet" address of 224.0.0.1, or it might be addressed to 
the specific address of the group for which it is querying. If one or more hosts respond, the router 



can then forward the session's packets onto the appropriate subnet, as illustrated in Figure 5-9.

Figure 5-9. Multicast Group Member Discovery



The router can periodically resend queries to the subnet. If there are still group members on the 
subnet, they will respond to all queries to let the router know they are still active in the group. If no 
hosts respond, the router assumes that all hosts on the subnet have left the group, and it ceases 
forwarding the group's packets onto the subnet.



Join Latency

A problem with the scheme described so far is that if a host knows of a group it wants to join, it is 
not always practical for the host to wait for a router to query for the group. To reduce this wait time, 
a host could send a message to the router requesting a join, without waiting for a query. Upon 
receiving the join request, the router immediately forwards the multicast traffic onto the subnet.

This procedure has benefits for more than just the local subnet. In the section "Multicast Routing 
Concepts" later in this chapter, you will see that having hosts initiate the join can help make 
multicast routing protocols more efficient. If a router has no group members on any of its attached 
subnets, and the subnets are not transit networks for multicast traffic to other routers, the router 
itself can request that upstream neighbors not forward multicast traffic to it. The result is that the 
traffic streams do not enter parts of the network in which there are no group members. If the router 
then receives a join request on one of its attached subnets, it can send a request upstream to begin 
receiving the relevant data stream.

The trade-off of this scheme is that if a host sends a join request to its local router, and then has to 
wait for the router to request the appropriate traffic from its upstream neighbors, the join latency is 
increased. Join latency is the period between the time a host sends a join request and the time the 
host actually begins receiving group traffic. Of course, if there are already other group members on 
the subnet when the host decides to join, the join latency will be practically zero. The host has no 
reason to send a join request to the router; it can just begin listening to the packets that are already 
being forwarded onto its subnet for the other group members.

Leave Latency

Allowing a host to explicitly notify its local router when it leaves a group can increase efficiency as 
well. Rather than having to wait for no hosts to respond to its queries before it implicitly concludes 
that there are no group members on a subnet, the router can actively determine whether there are 
remaining members. Upon receiving a leave notification from a host, the router immediately sends a 
query onto the subnet, asking whether there are any remaining members. If no one responds, the 
router concludes that there are no more members and can cease forwarding packets for the group 
onto that subnet. The result is a decreased leave latency, which is the period between the time the 
last group member on a subnet leaves the group and the time the router stops forwarding group 
traffic onto the subnet.

Host-initiated group leaves also improve routing protocol efficiency. If a router knows that it no 
longer has any group members on any of its subnets, it can "prune" itself from the multicast tree. 
The sooner a router determines that there are no group members, the sooner it can prune itself.

Decreased join and leave latencies also can improve the overall quality of a multicast network. There 
could be a large suite of multicast groups known to a host. Low join and leave latencies mean that 
the end user can easily "channel surf" through the available groups in the same way that users 
casually flip through radio and television channels.

Group Maintenance

The message that a host sends to a router to indicate that it wants to join a group is known as a 
report. A host can use several possible destination addresses when sending a report:

●     The report can be unicast to the router that sent the query. The problem here is that there 
may be more than one router attached to the subnet that is tracking the group. All concerned 
routers must hear the report.

●     The report can be sent to the "all routers on this subnet" address of 224.0.0.2. However, you 
will see shortly that it is useful for other group members on the subnet to also hear the 



report.
●     To ensure that other group members hear the report, it can be sent to the "all systems on 

this subnet" address of 224.0.0.1. This method reduces the efficiency of multicasting, 
however, by forcing all multicast-capable hosts on the subnet, not just the group members, 
to process the report beyond Layer 2.

●     The report can be sent to the group address. This method ensures that all group members on 
the subnet, and any routers listening for members of the group, hear the report. The NICs of 
hosts that are not members of the group reject the reports based on their Layer 2 address.

If all group members on a subnet respond to a query, bandwidth is unnecessarily wasted. After all, 
the router needs to know only that there is at least one member of the group on the subnet; it does 
not need to know exactly how many there are, or who they are. Another problem with all group 
members responding to a query is the possibility of collisions if all members respond at once. Backing 
off and retransmitting consumes more network and host resources. If many group members are on 
the subnet, there is an increased probability that multiple collisions will occur before everyone sends 
his report.

Sending reports to the group address eliminates multiple reports on a subnet. When a query is 
received, each group member starts a timer based on a random value. The member does not send a 
report until the timer expires. Because the timers are random, it is much more likely that one 
member's timer will expire before the other timers. This member sends a report, and because the 
report is sent to the group address, all other members hear it. These other members, hearing the 
report, cancel their timers and do not send a report of their own.

As a result, only one report is generally sent on the subnet. One report per subnet is all the router 
needs.

Multiple Routers on a Network

The possibility was raised in the preceding section that multiple routers might be attached to a 
subnet, all of which need to know whether group members are present. Figure 5-10 shows an 
example. Two routers are attached to the subnet, both of which receive the same multicast stream 
from the same source over different routes. If one router or route fails, the group members can 
continue to receive their multicast session from the other router. Under normal circumstances, 
however, it is inefficient for both routers to forward the same data stream onto the subnet.

Figure 5-10. Two Routers Receive the Same Multicast Session, but Only One 
Forwards It onto the Subnet



The routers are aware of each other because of their routing protocols. So one way to ensure that 
only one router forwards the session onto the subnet is to add a designated router, or querier, 
function to the multicast routing protocol. The querier is responsible for forwarding the multicast 
stream. The other router or routers only listen, and they begin forwarding the stream only if the 
querier fails.

The problem with allowing the routing protocol to elect a querier is that multiple IP multicast routing 
protocols are available. If the two routers in Figure 5-10 are running incompatible protocols, their 
respective querier election processes will not detect each other; each will decide that it is the querier, 
and both will forward the data stream.

The local group management protocol, however, is independent of the routing protocols. The routers 
have to run this common protocol to query group members, so it makes sense to give the querier 
function to the group management protocol. This guarantees that the routers are speaking a common 
language on the subnet and can agree on which is responsible for forwarding the session.

Internet Group Management Protocol (IGMP)

Regardless of which of the several routing protocols is used in a multicast internetwork, IGMP is 
always the "language" spoken between hosts and routers. All hosts that want to join multicast 
groups, and all routers with interfaces on subnets containing multicast hosts, must implement IGMP. 
It is a control protocol like ICMP, sharing some functional similarities. Like ICMP, it is responsible for 
managing higher-level data exchanges. IGMP messages are encapsulated in IP headers like ICMP 
(with a protocol number of 2), but unlike ICMP, the messages are limited to the local data link. This 
is guaranteed both by the IGMP implementation rules, which require that a router never forward an 
IGMP message, and by always setting the TTL in the IP header to 1.

There are two current versions of IGMP: IGMPv1 is described in RFC 1112,[3] and IGMPv2 is 
described in RFC 2236.[4] Cisco IOS Software Release 11.1 and all later versions support IGMPv2 by 
default; however, many host TCP/IP implementations still support only version 1 (Windows NT 4.0 
with service packs previous to SP4, for example). For this reason, the default can be changed with 
the ip igmp version command.

This next section discusses IGMPv2 and then presents its differences with IGMPv1. IGMPv3 has also 



been proposed,[5] although IOS does not currently support it. However, version 3 is briefly discussed 
in this section with the expectation that Cisco IOS Software may support it in the near future.

IGMPv2 Host Functions

Hosts running IGMPv2 use three types of messages:

●     Membership Report messages
●     Version 1 Membership Report messages
●     Leave Group messages

Membership Report messages are sent to indicate that a host wants to join a group. The messages 
are sent when a host first joins a group, and sometimes in response to a Membership Query from a 
local router.

When a host first learns of a group and wants to join, it does not wait for the local router to send a 
query. As you will learn in the sections on the various multicast routing protocols, the router may 
not—in fact, most likely does not—have any knowledge of the particular group the host wants to join, 
and therefore does not query for members. If the host had to wait for a query, it might never get the 
opportunity to join. Instead, when the host first joins a group, it sends an unsolicited Membership 
Report for the group.

Multicast sessions are identified in the routers by a (source, group) pair of addresses, where source is 
the address of the session's originator and group is the Class D group address. If the local multicast 
router does not already have knowledge of the multicast session the host wants to join, it sends a 
request upstream toward the source. The data stream is received, and the router begins forwarding 
the stream onto the subnet of the host that requested membership.

The destination address of the Membership Report message's IP header is the group address, and the 
message itself also contains the group address. To ensure that the local router receives the 
unsolicited Membership Report, the host sends one or two duplicate reports separated by a short 
interval. RFC 2236 recommends an interval of 10 seconds.

IGMPv2 hosts support IGMPv1 Membership Reports for backward compatibility. The mechanisms that 
IGMPv2 uses to detect and support IGMPv1 hosts and routers on its subnet are discussed in the 
section "IGMPv1 Versus IGMPv2."

The local router periodically polls the subnet with queries. Each query contains a value called the Max 
Response Time, which is normally 10 seconds (specified in units of tenths of a second). When a host 
receives a query, it sets a delay timer to a random value between 0 and the Max Response Time. If 
the timer expires, the host responds to the query with one Membership Report for each group to 
which it belongs.

NOTE

All multicast-enabled devices are members of the "all systems on this subnet" group, 
represented by the group address 224.0.0.1. Because this is a default, hosts do not 
send Membership Reports for this group.

Because the destination of the Membership Report is the group address, other group members that 



might be on the subnet hear the report in addition to the router. If the host receives a Membership 
Report for a group before its delay timer expires, it does not send a Membership Report for that 
group. In this way, the router is informed of the presence of at least one group member on the 
subnet, without all members flooding the subnet with reports.

When a host leaves a group, it notifies the local router with a Leave Group message. The message 
contains the address of the group being left, but unlike Membership Report messages, the Leave 
Group message is addressed to the "all routers on this subnet" address of 224.0.0.2. This is because 
only the multicast routers on the subnet need to know that the host is leaving; other group members 
do not.

RFC 2236 recommends that a Leave Group message be sent only if the leaving member was the last 
host to send a Membership Report in response to a query. As the next section explains, the local 
router always responds to a Leave Group message by querying for remaining group members. If 
group members other than the "last responder" leave quietly, the router continues forwarding the 
session and does not send a query. As a result, a little bandwidth is saved. However, this behavior is 
not required. If the designer of a multicast application does not want to include a state variable to 
remember whether this host was the last to respond to a query, the application can always send a 
Leave Group message when it leaves a group.

IGMPv2 Router Functions

The only type of IGMP message sent by routers is a query. Within IGMPv2, there are two subtypes of 
queries:

●     General Query
●     Group-Specific Query

The General Query is the message with which the router polls each of its subnets to discover whether 
group members are present and to detect when there are no members of a group left on a subnet. 
By default, the queries are sent every 60 seconds; the default can be changed to any value between 
0 and 65,535 seconds with the command ip igmp query-interval.

As described in the preceding section, the query also contains a value called the Max Response Time. 
This value specifies the maximum amount of time the host has to respond to a query with a 
Membership Report. By default, the Max Response Time is 10 seconds; you can use the command ip 
igmp query-max-response-time to change it. The value is carried in the message in an 8-bit field 
and is expressed in units of tenths of a second (although the value is specified with ip igmp query-
max-response-time in units of seconds). For example, the default 10 seconds is expressed within 
the message as 100 tenths of a second. Therefore, the range that can be specified is 0 to 255 tenths, 
or 0 to 25.5 seconds.

The General Query message is sent to the "all systems on this subnet" address of 224.0.0.1 and does 
not contain a reference to any specific group. As a result, the single message polls for reports from 
members of any and all groups that might be active on the subnet. The router tracks known groups 
and the interfaces attached to subnets with active members, as shown in the output in Example 5-1.

Example 5-1 The show ip igmp groups Command Displays the IP Multicast 
Groups of Which the Router Is Aware

Gold#show ip igmp groups

IGMP Connected Group Membership

Group Address    Interface            Uptime    Expires   Last Reporter



224.0.1.40       Serial0/1.306        3d01h     never     0.0.0.0

228.0.5.3        Ethernet0/0          00:09:07  00:02:55  172.16.1.254

239.1.2.3        Ethernet0/0          1d08h     00:02:53  172.16.1.23

Gold#

If a Cisco multicast router does not hear a Membership Report on a particular subnet for a group 
within 3 times the query interval (3 minutes by default), the router declares that no active members 
of the group are on the subnet. This covers the eventuality of a lone group member being 
disconnected or otherwise not following the IGMPv2 rules for leaving a group.

NOTE

This differs from RFC 2236, which specifies twice the query interval plus one Max 
Response Time interval.

The normal way that a host leaves a group is by sending a Leave Group message. When a router 
receives a Leave Group message, it must determine whether any remaining members of that group 
are on the subnet. To do this, the router issues a Group-Specific Query, which differs from a General 
Query in that it contains the group address, and it also uses the group address as its destination 
address.

If the Group-Specific Query were to become lost or corrupted, a remaining group member on the 
subnet might not send a report. As a result, the router would incorrectly conclude that there are no 
group members on the subnet and stop forwarding the session packets. To protect against this 
eventuality, the router sends two Group-Specific Queries, separated by a 1-second interval.

When a multicast-enabled router first becomes active on a subnet, it assumes that it is the 
querier—the router responsible for sending all General and Group-Specific Queries to the subnet—and 
immediately sends a General Query.

NOTE

RFC 2236 recommends sending multiple queries; however, Cisco's IGMPv2 sends 
only one.

This action serves both to quickly discover the group members active on the subnet and to alert 
other multicast routers that may be on the subnet. When there are multiple routers, the rule for 
electing the querier is simple: The router with the lowest IP address is the querier. So when the 
existing router on the subnet hears the General Query from the new router, it checks the source 
address. If the address is lower than its own IP address, it relinquishes the role of querier to the new 
router. If its own IP address is lower, it continues sending queries. When the new router receives one 
of these queries, it sees that the old router has a lower IP address and becomes a nonquerier.



If the nonquerier does not hear queries from the querier within a certain period of time, known as the 
Other Querier Present Interval, it concludes that the querier is no longer present and assumes that 
role. Cisco IOS Software has a default Other Querier Present Interval of twice the Query Interval, or 
120 seconds; you can change this with the command ip igmp query-timeout.

IGMPv1

The important differences between IGMPv1 and IGMPv2 are as follows:

●     IGMPv1 has no Leave Group message, meaning that there is a longer period between the 
time the last host leaves a group and the time the router stops forwarding the group traffic.

●     IGMPv1 has no Group-Specific Query. This follows from the fact that there is no Leave Group 
message.

●     IGMPv1 does not specify a Max Response Time in its query messages. Instead, hosts have a 
fixed Max Response Time of 10 seconds.

●     IGMPv1 has no querier election process. Instead, it relies on the IP multicast routing protocol 
to elect a designated router on the subnet. Because different protocols use different election 
mechanisms, it is possible under IGMPv1 to have more than one querier on a subnet.

The section "IGMP Message Format" illustrates how these differences affect the fields in IGMPv1 and 
IGMPv2 messages.

In some cases, IGMPv1 and IGMPv2 implementations might exist on the same subnet:

●     Some group members might run IGMPv1 while others run IGMPv2.
●     Some group members might run IGMPv2 while the router runs IGMPv1.
●     The router might run IGMPv2 while some group members run IGMPv1.
●     One router might run IGMPv1 while another router on the subnet runs IGMPv2.

RFC 2236 describes several mechanisms that allow IGMPv2 to adapt in these situations. If there is a 
mixture of version 1 and version 2 members on the same subnet, the version 2 members treat both 
version 1 and version 2 Membership Reports the same when determining whether to suppress their 
own Membership Reports. That is, if a version 2 member hears a query from the router and 
subsequently hears a version 1 Membership Report for its group before its own delay timer expires, it 
does not send a Membership Report. Version 1 hosts, on the other hand, ignore version 2 messages. 
Therefore, if a version 2 Membership Report is sent for a group first, the version 1 member also 
sends a report when its delay timer expires. This does not cause problems for the version 2 host, and 
this is important for the version 2 router so that it is aware of the presence of version 1 group 
members.

If a host is running version 2 and the local router is running version 1, the IGMPv1 router ignores the 
version 2 messages. So when a version 2 host receives a version 1 query, it responds with version 1 
Membership Reports. The IGMPv1 query also does not specify a Max Response Time, so the IGMPv2 
host uses the fixed version 1 period of 10 seconds. The host may or may not send Leave Group 
messages in the presence of version 1 routers; the IGMPv1 router does not recognize Leave Group 
messages, and ignores them.

If a version 2 router receives a version 1 Membership Report, it treats all members of the group as if 
they are running version 1. The router ignores Leave Group messages and hence does not send 
Group-Specific Queries that the version 1 members would ignore. Instead, it sets a timer, known as 
the Old Host Present Timer (as shown in Example 5-2). The period of the timer is the same value as 
the Group Membership Interval. Whenever a new version 1 Membership Report is received, the timer 
is reset; if the timer expires, the router concludes that no more version 1 members of the group are 
on the subnet and reverts to version 2 messages and procedures.

NOTE



As described earlier, the Group Membership Interval is the period of time that the 
router waits to hear a Membership Report before declaring that no members are on 
a subnet. Cisco's default is three times the Query Interval.

Example 5-2 This Multicast Router Is Receiving IGMPv2 Membership 
Reports for Group 239.1.2.3 and IGMPv1 Membership Reports for Group 
228.0.5.3. The Version 1 Reports Cause the Router to Set an Old Host 
Present Timer for That Group

Gold#debug ip igmp

IGMP debugging is on

Gold#

IGMP: Send v2 Query on Ethernet0/0 to 224.0.0.1

IGMP: Received v2 Report from 172.16.1.23 (Ethernet0/0) for 239.1.2.3

IGMP: Received v1 Report from 172.16.1.254 (Ethernet0/0) for 228.0.5.3

IGMP: Starting old host present timer for 228.0.5.3 on Ethernet0/0

IGMP: Send v2 Query on Ethernet0/0 to 224.0.0.1

IGMP: Received v2 Report from 172.16.1.23 (Ethernet0/0) for 239.1.2.3

IGMP: Received v1 Report from 172.16.1.254 (Ethernet0/0) for 228.0.5.3

IGMP: Starting old host present timer for 228.0.5.3 on Ethernet0/0

Notice in Example 5-2 that the router continues to send version 2 General Queries. The only 
significant difference between these queries and version 1 queries is that the Max Response Time is 
nonzero. The field in which this value is carried is unused in version 1, and the version 1 host ignores 
it. As a result, the host interprets version 2 queries as version 1 queries.

Another point of interest in Example 5-2 is that the Old Host Present timer is set only for group 
228.0.5.3. The router treats only this group as an IGMPv1 group. Group 239.1.2.3, on the same 
interface, is treated as a version 2 group.

If version 1 and version 2 routers exist on the same subnet, the version 1 router will not participate 
in the querier election process. Because of this, it is important that the version 2 router behaves as a 
version 1 router for consistency. There is no automatic conversion to version 1; the version 2 router 
must be manually configured with the ip igmp version 1 command.

IGMPv3

Because IGMPv3 is still under development and is not yet supported, this section does not examine it 
in the detail that the first two versions are examined. Instead, this section summarizes the major 
features that this version will add if and when it comes into general use.



The primary addition to IGMPv3 is the inclusion of a Group-and-Source-Specific Query. This allows a 
group to be identified not only by group address, but also by source address. The Membership Report 
and Group Leave messages are modified so that they also can make this identification.

When a group has many sources (a many-to-many group), the IGMPv3 router can perform source 
filtering based on the requests of group members. For example, a particular member may want to 
receive group traffic from only certain specified sources, or it may want to receive traffic from all 
sources except certain specified sources. The member can express these wants in a Membership 
Report with Include or Exclude filter requests. If no member on a particular subnet wants to receive 
traffic from a particular source, the router does not forward that source's traffic onto the subnet.

IGMP Message Format

IGMPv2 uses a single message format, as shown in Figure 5-11. The IP header encapsulating the 
message indicates a protocol number of 2. Because the IGMP message must not leave the local 
subnet on which it was originated, the TTL is always set to 1. Additionally, IGMPv2 messages carry 
the IP Router Alert option that informs routers to "examine this packet more closely."[6]

Figure 5-11. The IGMPv2 Message Format

The fields for the IGMPv2 message are defined as follows:

●     Type describes one of four message types:

- Membership Query (0x11) is used by the multicast router to discover the presence 
of group members on a subnet. A General Membership Query message sets the 
Group Address field to 0.0.0.0, whereas a Group-Specific Query sets the field to the 
address of the group being queried.

- Version 2 Membership Report (0x16) is sent by a group member to inform the 
router that at least one group member is present on the subnet.

- Version 1 Membership Report (0x12) is used by IGMPv2 hosts for backward 
compatibility with IGMPv1.

- Leave Group (0x17) is sent by a group member if it was the last member to send a 
Membership Report, to inform the router that it is leaving the group.

●     Max Response Time is set only in query messages. In all other message types, the field is set 
to 0x00. This field specifies a period, in units of 1/10 second, during which at least one group 
member must respond with a Membership Report message.

●     Checksum is the 16-bit one's complement of the one's complement sum of the IGMP 



message. This is the standard checksum algorithm used by TCP/IP.
●     Group Address is set to 0.0.0.0 in General Query messages and is set to the group address in 

Group-Specific messages. Membership Report messages carry the address of the group being 
reported in this field; Group Leave messages carry the address of the group being left in this 
field.

Figure 5-12 shows the format of an IGMPv1 message.

Figure 5-12. The IGMPv1 Message Format

The only differences in the IGMPv1 format from IGMPv2 are as follows:

●     The first octet is split into a 4-bit Version field and a 4-bit Type field.
●     The second octet, which is the Max Response Time in version 2, is unused. This field is set to 

0x00.

Another difference is that the Router Alert option is not set in the IP header of IGMPv1 messages.

IGMPv1 defines just two message types:

●     Host Membership Query (Type 1)
●     Host Membership Report (Type 2)

The Version field is always set to 1. As a result, you can see that the combined Version and Type field 
is 0x11 for a Host Membership Query message, which is the same value as the 8-bit Type field of an 
IGMPv2 Membership Query. The combined Version and Type fields of the Host Membership Report is 
0x12, whereas the Type field of the IGMPv2 Membership Report is 0x16.

Cisco Group Membership Protocol (CGMP)

A fundamental design principle of IP multicast is that traffic should be delivered only to destinations 
that want to receive the traffic. You have seen how Class D addressing and its associated MAC 
addressing help meet this goal at the data link layer, and how IGMP allows routers to determine 
whether they should deliver sessions to particular subnets. You will see in subsequent sections how 
IP multicast routing protocols extend this principle across internetworks, delivering multicast sessions 
only to those routers that have group members on their attached subnets.

What about a switched network, however, such as the one shown in Figure 5-13? Large office 
buildings and campuses abound with such networks. The Ethernet switches, which are really just high-
powered, high-port-density transparent bridges, limit unicast traffic by learning what MAC addresses 
are associated with what ports. They can then filter and forward frames based on this information. 



But broadcast traffic is forwarded to every port of every switch. A large network such as the one 
depicted in Figure 5-13 is normally broken into several virtual LANS (VLANs) to control the scope of 
the broadcast traffic. However, it is not unusual to find "flat" switched networks this large—one big 
subnet, or broadcast domain.

Figure 5-13. Unless This Switched Campus Network Is Divided into Multiple 
VLANs, It Comprises a Single Broadcast Domain. That Is, the Router Port 
Defines a Layer 3 Subnet, and Any Broadcast Frame Is Transmitted Out of 

All 384 Switch Ports

Just as broadcast frames are forwarded to every port within a broadcast domain, so too are frames 
carrying IP multicast packets. After all, a broadcast domain is nothing more than a multicast group to 
which all hosts belong. Figure 5-14 illustrates the problem. Three group members are attached to a 
24-port switch. An IGMP Membership Report is sent to the router, and the router begins forwarding 
the appropriate multicast session onto the subnet. Because IGMP is a Layer 3 protocol, the Ethernet 
switch has no easy way to determine what ports the group members are on. As a result, the 
multicast traffic is forwarded to all 23 ports (discounting the source port).

Figure 5-14. One of the Three Group Members Sends an IGMP Membership 
Report, Joining Multicast Group A (a). When the Router Forwards the 

Multicast Session, the Switch Replicates the Frames to All Ports Except the 
Source Port (b)



Obviously, the preferable behavior is for the switch to forward the multicast session only out of those 
ports to which the group members are attached. If this can be accomplished, switching is not only 
more efficient, but also is the preferable way to implement LANs that carry multicast sessions. For 
example, a videoconferencing multicast stream uses approximately 1 Mbps of bandwidth, and an 
MPEG II video stream can use approximately 4 Mbps. If these sessions can be limited to the group 
members' ports, network and host resources can be conserved.

Cisco Group Membership Protocol (CGMP) is designed to do exactly that—distribute multicast 
sessions only to those switch ports on which group members are located. Before examining the 
operation of CGMP, the next section takes a brief look at some other solutions for regulating switched 
multicast traffic.

Alternative Multicast Control Methods on Switched Networks

There are three methods besides CGMP for constraining multicast traffic in switched environments, all 
of which are supported by Cisco Catalyst software:

●     Manual configuration of switched multicast trees
●     GMRP
●     IGMP Snooping

Because none of these three solutions has any direct bearing on routing, only an overview is provided 



in this section. Have a look at Cisco's Catalyst Switch Software Documentation on CCO for more 
details and complete configuration instructions.

Manual configuration of switched multicast trees just means that you make static entries into the 
switch's bridging table. Cisco Catalyst switches call this table the content addressable memory (CAM) 
table. Suppose that the group members in Figure 5-13 are on switch ports 2/3, 2/4, and 2/19, the 
router is on port 1/1, and the group address is 239.0.5.10. This IP address gives the group a 
multicast MAC address of 0100.5E00.050A. The command for manually entering this information into 
the Catalyst CAM table is as follows:

set cam permanent 01-00-5e-00-05-0a 2/3-4,2/19

set multicast router 1/1

The preceding adds the entry to the CAM table and writes it to the switch's NVRAM; the entry can be 
removed only with the clear cam or clear config command. Alternatively, the static keyword can 
be used rather than the permanent keyword. In that case, the entry is not written to NVRAM and is 
removed if the switch is reset.

The second command is optional. It informs the switch of the port on which the multicast router is 
located, further limiting the scope of the multicast traffic within the switch.

There are several limitations to using manual configuration. The two most obvious are that it is not 
dynamic, and it does not scale. If another group member joins on a different port, a group member 
leaves, or a different group is added to the switch, the information must be manually configured. For 
anything other than small, fixed groups, manual configuration is not practical.

Another limitation is that manual configuration cannot be used across VLAN boundaries. If the group 
239.0.5.10 is on VLAN 1, for example, and VLAN 2 also exists on the switch, none of the members of 
239.0.5.10 can be in the second VLAN—they must all reside in the same VLAN.

Another technique is to use GARP Multicast Registration Protocol (GMRP), an open protocol defined in 
the IEEE 802.1p standard that enables MAC-layer multicast group addresses to be dynamically 
registered and deregistered in the switch. GMRP is enabled on the switch with the command set 
gmrp enable; no configuration is required on the router. As the IEEE 802.1p standard suggests, 
GMRP is strictly a Layer 2 protocol.

The third technique is IGMP Snooping, enabled on the Catalyst switch with the command set igmp 
enable. With this option, the switch software examines IGMP messages and, as a result, knows the 
location of both multicast routers and group members. Unlike the proprietary CGMP, IGMP Snooping 
is supported by several switch manufacturers, making it a better choice for multivendor switched 
networks; however, detection of IGMP messages means that every IP packet must be examined. 
When this is implemented in software, the result can be a significant degradation of switch 
performance. You should use IGMP Snooping only if all the switches in the multicast network can 
implement the function in hardware, using specialized application-specific integrated circuits (ASICs) 
that can examine the IP packets at line rate. For example, this is supported on Cisco Catalyst 
switches with NetFlow Feature Card II (NFFC II).

Operation of CGMP

Although both Cisco routers and Cisco switches must be configured to run CGMP, only the routers 
produce CGMP packets. The CGMP process on switches only reads the packets. There are two types 
of CGMP packets:



●     Join packets are sent by the router to tell the switch to add one or more members to a 
multicast group.

●     Leave packets are sent by the router to tell the switch to remove one or more members from 
a multicast group, or to delete the group altogether.

These two packet types have an identical format, and the destination of the packets is always the 
reserved MAC address 0100.0cdd.dddd. CGMP-enabled switches listen for this address.

The essential information in both packets is one or more pairs of MAC addresses:

●     Group Destination Address (GDA)
●     Unicast Source Address (USA)

When a CGMP router comes online, it makes itself known to the switch by sending a CGMP Join 
packet with the GDA set to zero (0000.0000.0000) and the USA set to its own MAC address. The 
CGMP-speaking switch now knows that a multicast router is attached to the port on which it received 
the packet. The router repeats the packet every 60 seconds as a keepalive.

When a host wants to join a group, it sends an IGMP Membership Report message, as illustrated in 
Part A of Figure 5-15. The switch, following normal IEEE 802.1 procedures, enters the host's MAC 
address into its CAM table.

Figure 5-15. When a Cisco Router Receives an IGMP Membership Report on 
a CGMP Interface (a), It Sends a CGMP Join Packet Telling the Switch to 

Map the Host MAC Address to the Group MAC Address (b)



NOTE

The Catalyst's CAM table is a bridging table that records the MAC addresses it has 
heard and the ports on which they were heard.



When the router receives the IGMP Membership Report, it sends a CGMP Join packet with the GDA 
set to the group MAC address and the USA set to the host's MAC address, as illustrated in Part B of 
Figure 5-15. The switch is now aware of the multicast group, and because the switch knows the port 
on which the host is located, it can add that port to the group. When the router sends frames to the 
group MAC address, the switch forwards a copy of the frame out all ports (except the router port) 
associated with the group.

As long as group members remain on the switched network, the router sends IGMP queries every 60 
seconds, which the switch forwards to the members. The switch forwards the IGMP reports, sent in 
reply to the queries, to the router.

When a host sends an IGMPv2 Leave message, the message is forwarded to the router, as illustrated 
in Part A of Figure 5-16. The router sends two IGMP Group-Specific Queries, which the switch 
forwards to all group ports. If another member responds to the Group-Specific Query, the router 
sends a CGMP Leave packet to the switch with the GDA set to the group MAC address and the USA 
set to the leaving member's MAC address, as illustrated in Part B of Figure 5-16. This packet tells the 
switch to delete just the leaving member's port from the group. If no members respond to the Group-
Specific Query, the router concludes that no members are left on the segment. In this case, it sends 
a CGMP Leave packet to the switch with the GDA set to the group MAC address and the USA set to 
zero, as illustrated in Part C of Figure 5-16. This packet tells the switch to remove the group itself 
from the CAM table.

Figure 5-16. When a Router Receives an IGMP Leave Message on a CGMP 
Interface (a), It Queries to Learn Whether There Are Other Members Left 

on the Subnet (b). If Other Members Respond, It Sends a CGMP Leave 
Packet to the Switch, Removing Just the Leaving Member. If No Members 

Respond, the Router Sends a CGMP Leave Message to the Switch, Removing 
the Entire Group (c)



Table 5-2 summarizes the various possible values of the GDA and USA in CGMP packets, and the 
meaning of each. Only the last two Leave packets have not been discussed. A Leave with the GDA set 
to zero and the USA set to the router's MAC address signals the switch to remove all groups and 
ports associated with the router port from the CAM. This message is sent if the router's CGMP 
function has been disabled on that port. A Leave with both the GDA and the USA set to zero tells all 
switches receiving the message to delete all groups and associated ports from the CAM. This 
message is sent as the result of a clear ip cgmp command entered at the router.

Table 5-2. CGMP Packets

Type GDA USA Function 

Join Zero Router MAC Identifies the port as a multicast router port. 



Join Group MAC Member MAC Identifies the multicast group and adds the 
member's port to the group. 

Leave Group MAC Member MAC Removes the member port from the specified 
group. 

Leave Group MAC Zero Removes the group from the CAM. 

Leave Zero Router MAC Removes all groups and ports bound for the 
router's port from the CAM. 

Leave Zero Zero Removes all groups from all switches. 

CGMP Packet Format

The source MAC address of frames carrying CGMP packets is the MAC address of the originating 
router, and the destination MAC address is the reserved multicast address 0100.0cdd.dddd. Only 
routers originate CGMP packets. Within the frame, the packet is encapsulated in a SNAP header. The 
OUI field of the SNAP header is 0x00000c, and the type field is 0x2001.

Figure 5-17 shows the format of the CGMP packet.

Figure 5-17. The CGMP Packet Format



The fields of the CGMP packet are defined as follows:

●     Version is always set to 0x1 to signify version 1.
●     Type specifies whether the packet is a Join (0x0) or Leave (0x1).
●     Reserved is always set to 0 (0x0000).
●     Count specifies how many GDA/USA pairs the packet carries.
●     GDA is the Group Destination Address. When the field is nonzero, it specifies the MAC 

address of a multicast group. When the field is set to zero (0000.0000.0000), it specifies all 
possible groups.

●     USA is the Unicast Source Address. When the field is nonzero, it may specify the MAC 
address of the originating router or the MAC address of a group member. When it is zero, it 
specifies all group members and the originating router.



 
  
Multicast Routing Issues

Currently, five IP multicast routing protocols are in various stages of development and deployment:

●     Distance Vector Multicast Routing Protocol (DVMRP)
●     Multicast OSPF (MOSPF)
●     Core-Based Trees (CBT)
●     Protocol-Independent Multicast, Dense Mode (PIM-DM)
●     Protocol-Independent Multicast, Sparse Mode (PIM-SM)

The particulars of each of these protocols are examined in subsequent sections, along with their 
individual advantages and disadvantages. Although Cisco IOS Software does not support all five of 
the protocols, a study of each will help you better understand the rationale behind the support or 
nonsupport of each. Of the five, Cisco IOS Software supports PIM-DM and PIM-SM. There is also just 
enough support of DVMRP to allow PIM networks to connect to DVMRP networks. These five protocols 
are multicast IGPs. Multicasting across AS boundaries is discussed in Chapter 7, "Large-Scale IP 
Multicast Routing."

The five IP multicast routing protocols differ significantly from each other, but like the unicast routing 
protocols, they also share many characteristics. This section presents the general issues surrounding 
the design of any multicast routing protocol.

Multicast Forwarding

Like any other router, the two fundamental functions of a multicast router are route discovery and 
packet forwarding. This section addresses the unique requirements of multicast forwarding, and the 
next section looks at the requirements for multicast route discovery.

Unicast packet forwarding involves forwarding a packet toward a certain destination. Unless certain 
policies are configured, a unicast router is uninterested in the source of the packet. The packet is 
received, the destination IP address is examined, a longest-match route lookup is performed, and the 
packet is forwarded out a single interface toward the destination.

Instead of forwarding packets toward a destination, multicast routers forward packets away from a 
source. This distinction may sound trifling at first glance, but it is actually essential to correct 
multicast packet forwarding. A multicast packet is originated by a single source but is destined for a 
group of destinations. At a particular router, the packet arrives on some incoming interface, and 
copies of the packet may be forwarded out multiple outgoing interfaces.

If a loop exists so that one or more of the forwarded packets makes its way back to the incoming 
interface, the packet is again replicated and forwarded out the same outgoing interfaces. The result 
can be a multicast storm, in which packets continue to loop and be replicated until the TTL expires. It 
is the replication that makes a multicast storm potentially so much more severe than a simple unicast 
loop. Therefore, all multicast routers must be aware of the source of the packet and must only 
forward packets away from the source.

A useful and commonly used terminology is that of upstream and downstream. Multicast packets 
should always flow downstream from the source to the destinations, never upstream toward the 
source. To ensure this behavior, each multicast router maintains a multicast forwarding table in 
which (source, group) or (S, G) address pairs are recorded. Packets from a particular source and 
destined for a particular group should always arrive on an upstream interface and be forwarded out 
one or more downstream interfaces. By definition, an upstream interface is closer to the source than 
any downstream interface, as illustrated by Figure 5-18. If a router receives a multicast packet on 



any interface other than the upstream interface for that packet's source, it quietly discards the 
packet.

Figure 5-18. By Identifying Upstream and Downstream Interfaces in 
Relation to Each Multicast Source, Routers Avoid Multicast Routing Loops

Of course, the router needs some mechanism for determining the upstream and downstream 
interfaces for a given (S, G). This is the job of the multicast routing protocol.

Multicast Routing

The function of a unicast routing protocol is to find the shortest path to a particular destination. This 
determination might be made from the advertisements of neighboring routers (distance vector) or 
from a shortest path tree calculated from a topological database (link state). The end result in both 
cases is an entry in the routing or forwarding table indicating the interface to forward packets out, 
and possibly a next-hop router. The cited interface is, from the perspective of the unicast routing 
protocol, the downstream interface on the path to the destination—the closest interface to the 
destination.

In contrast, the function of a multicast routing protocol is to determine the upstream interface—the 
closest interface to the source. Because multicast routing protocols concern themselves with the 
shortest path to the source, rather than the shortest path to the destination, the procedure of 
forwarding multicast packets is known as reverse path forwarding.

The easiest way for a multicast routing protocol to determine the shortest path to a source is to 
consult the unicast forwarding table. However, as the last section pointed out, multicast packets are 
forwarded based on the information in a separate multicast forwarding table. The reason for this is 
that the router must record not only the upstream interface for the source of a particular (S, G) pair, 



but also the downstream interfaces associated with the group.

The simplest way to forward packets would be to merely declare all interfaces except the upstream 
interface to be downstream interfaces. This approach, known as reverse path broadcasting (RPB), 
has obvious shortcomings. As the name implies, packets are effectively broadcast to all subnets on 
the routed internetwork. Group members probably exist on only a subset of the subnets—probably a 
small subset. Flooding a copy of every multicast packet onto every subnet not only defeats the 
objective of multicasting to deliver packets only to interested receivers, but also actually defeats the 
purpose of routing itself.

A slightly improved procedure is truncated reverse path broadcast (TRPB). When a router discovers, 
via IGMP, that one of its attached subnets has no group members, and there are no next-hop routers 
on the subnet, the router stops sending multicast traffic onto the subnet. In keeping with the 
arboreal terminology, such a nontransit subnet is a leaf network. Although TRPB helps conserve 
resources on leaf networks, it is really little improvement over RPB. Interrouter links, on which 
bandwidth is more likely to be at a premium, continue to carry multicast traffic whether they need to 
or not.

So the second function of a multicast routing protocol is to determine the actual downstream 
interfaces associated with an (S, G) pair. When all routers have determined their upstream and 
downstream interfaces for a particular source and group, a multicast tree has been established (see 
Figure 5-19). The root of the tree is the source's directly connected router, and the branches lead to 
all subnets on which group members reside. No branches lead to "empty" subnets"—subnets with no 
members of the associated group. The forwarding of packets only out interfaces leading to group 
members is called reverse path multicast (RPM).

Figure 5-19. The Paths Leading from the Multicast Source to All Group 
Members' Subnets Form a Multicast Tree



Multicast trees last only for the duration of the multicast session. And because members can join and 
leave the group throughout the lifetime of the session, the structure of the tree is dynamic. The third 
function of a multicast routing protocol is to manage the tree, "grafting" branches as members join 
the group and "pruning" branches as members leave the group. The next three sections discuss 
issues surrounding this third function.

Sparse Versus Dense Topologies

A dense topology is one in which there are many multicast group members relative to the total 
number of hosts in an internetwork. Sparse topologies have few group members relative to the total 
number of hosts. Sparse does not mean that there are few hosts. A sparse topology might mean 
there are 2,000 members of a group, for example, spread among 100,000 total hosts.

No specific numeric ratios delineate sparse and dense topologies. It is safe to say, however, that 
dense topologies are usually found in switched LAN and campus environments, and sparse topologies 
usually involve WANs. What is important is that multicast routing protocols are designed to work best 
in one or the other topology and are designated as either dense mode protocols or sparse mode 
protocols. Table 5-3 shows the class to which each of the five multicast routing protocols belongs.

Table 5-3. Dense Mode and Sparse Mode Multicast Routing Protocols

Protocol Dense Mode Sparse Mode 

DVMRP X  

MOSPF X  

PIM-DM X  

PIM-SM  X 

CBT  X 

Implicit Joins Versus Explicit Joins

As was previously observed, members may join or leave a group at any time during the lifetime of a 
multicast session, and as a result, the multicast tree can change dynamically. It is the job of the 
multicast routing protocol to manage this changing tree, adding branches as members join and 
pruning branches as members leave.

The multicast routing protocol may accomplish this task by using either an implicit or explicit join 
strategy. Implicit joins are sender-initiated, whereas explicit joins are receiver-initiated.

Multicast routing protocols that maintain their trees by implicit joins are commonly called broadcast-
and-prune or flood-and-prune protocols. When a sender first initiates a session, each router in the 
internetwork uses reverse path broadcasting to forward the packets out every interface except the 
upstream interface. As a result, the multicast session initially reaches every router in the 
internetwork. When a router receives the multicast traffic, it uses IGMP to determine whether there 
are any group members on its directly connected subnets. If there are not, and there are no 
downstream routers to which the traffic must be forwarded, the router sends a poison-reverse 
message called a prune message to its upstream neighbor. That upstream neighbor then stops 
forwarding the session traffic to the pruned router. If the neighbor also has no group members on its 
subnets, and all downstream routers have pruned themselves from the tree, that router also sends a 



prune message upstream. The result is that the multicast tree is eventually pruned of all branches 
that do not lead to routers with attached group members. Figure 5-20 illustrates the broadcast-and-
prune technique.

Figure 5-20. Broadcast-and-Prune Protocols First Use RPB to Forward a 
Multicast Session to All Parts of the Internetwork (a). Routers with No 

Connection to Group Members Then Prune Themselves from the Tree (b) so 
That the Resulting Tree Only Reaches Routers with Group Members (c)



For every (S, G) pair in its forwarding table, every router in the internetwork maintains state for each 
of its downstream interfaces. The state is either forward or prune. The prune state has a timer 
associated with it, and when the timer expires, the session traffic is again forwarded to neighbors on 
that interface. Each neighbor once again checks for group members and floods the traffic to its own 
downstream neighbors. If new group members are discovered, the traffic continues to be accepted. 
Otherwise, a new prune message is sent upstream.

The broadcast-and-prune technique is better suited to dense topologies than to sparse ones. The 
initial flooding to all routers, the periodic reflooding as prune states expire, and the maintenance of 
prune states all contribute to a waste of network resources when many or most branches are pruned. 
There is also a strong element of illogic in the maintenance of prune state, requiring routers that are 
not participating in the multicast tree to remember that they are not a part of the tree.

A better technique for sparse topologies is the explicit join, in which the routers with directly attached 
group members initiate the join. When a group member signals its router, via IGMP, that it wants to 
join a group, the router sends a message upstream toward the source, indicating the join. In contrast 
to a prune message, this message can be thought of as a graft message; the router sending the 
message is grafting itself onto the tree. If all of a router's group members leave, and the router has 
no downstream neighbors active on the group, the router prunes itself from the tree.

Because traffic is never forwarded to any router that does not explicitly request the traffic, network 



resources are conserved. And because prune state is not kept by nonparticipating routers, overall 
memory is conserved. As a result, explicit joins scale better in sparse topologies. The argument can 
be made, of course, that explicit joins always scale better, regardless of whether the topology is 
sparse or dense. Table 5-4 shows which of the five multicast routing protocols use implicit joins and 
which use explicit joins.

Table 5-4. Implicit Join and Explicit Join Protocols

Protocol Implicit Join Explicit Join 

DVMRP X  

MOSPF  X 

PIM-DM X  

PIM-SM  X 

CBT  X 

Source-Based Trees Versus Shared Trees

Some multicast routing protocols construct separate multicast trees for every multicast source. These 
trees are source-based trees, because they are rooted at the source. The multicast trees that have 
been presented in previous sections have been source-based trees.

You have learned that multicast trees can change during the lifetime of a multicast session as 
members join and leave the group, and that it is the responsibility of the multicast routing protocol to 
dynamically adapt the tree to these changes. However, some parts of the tree might not change. 
Figure 5-21 shows two multicast trees superimposed onto the same internetwork. Notice that 
although the trees have different sources and different members, their paths pass through at least 
one common router.

Figure 5-21. These Two Multicast Trees Have Different Shapes, but They 
Both Pass Through the Single Router RP



Shared trees take advantage of the fact that many multicast trees can share a single router within 
the network. Rather than root each tree at its source, the tree is rooted at a shared router called 
(depending on the protocol) the rendezvous point (RP) or core. The RP is predetermined and 
strategically located in the internetwork. When a source begins a multicast session, it registers with 
the RP. It may be up to the source's directly connected router to determine the shortest path to the 
RP, or it may be up to the RP to find the shortest path to each source. Explicit joins are used to build 
trees from routers with attached group members to the RP. Rather than the (S, G) pair recorded for 
source-based trees, the shared trees use a (*, G) state. This state reflects that fact that the RP is the 
root of the tree to the group and that there may be many sources upstream of the RP. More 
importantly, a separate (S, G) pair must be recorded for each distinct source on a source-based tree. 
Shared trees, on the other hand, record only a single (*, G) for each group.

The impact of the (S, G) entries can be demonstrated with a few simple calculations. Suppose in 
some source-tree, flood-and-prune multicast domain, there are 200 multicast groups and an average 
of 30 sources per group. Each router must record 30 (S, G) entries for each group, or 30 * 200 = 
6000 entries. If there are 150 sources in each of the 200 groups, the entries increase to 150 * 200 = 
30,000.

NOTE

Keep in mind that with interactive multicast applications, many group members 
(receivers) are also sources (senders).



In contrast, shared tree routers record a single (*, G) entry for each group. So if there are 200 
groups in a shared-tree multicast domain, the RP records 200 (*, G) entries. Most significantly, this 
number does not vary with the number of sources. Another way of stating these facts is that source-
based trees scale on an order of (SG * GN), and shared trees scale on an order of (GN), where GN is 
the number of groups in the multicast domain and SG is the number of sources per group. Impact is 
greatly reduced on non-RP routers also, because they do not keep state for groups for which they do 
not forward packets. These routers record a single (*, G) entry for each active downstream group.

This scalability means that shared trees are generally preferable in sparse topologies. As usual, 
however, there are trade-offs. First, the path from the source through the RP may not be the 
optimum path to every group member for every group. Reexamining Figure 5-21, notice that a 
member of group 2 is attached to router R5. The optimal path from the source S2 to this group 
member is R2-R1-R5. But the source traffic must reach the RP first, so the path taken is R2-R3-RP-
R4-R5. RPs must be chosen carefully to minimize suboptimal paths. Another drawback is that the RP 
can become a bottleneck when there are multiple high-bandwidth multicast sessions. Because of both 
suboptimal paths and RP congestion, latency can become a problem in poorly designed shared tree 
internetworks. The RP also represents a single point of failure. Finally, shared trees can be difficult to 
debug.

Table 5-5 shows which multicast routing protocols use source-based trees and which use shared 
trees. Comparing this table with Table 5-4, you can see that although MOSPF uses explicit joins, it 
also uses source-based trees. The converse situation is never true—a protocol using shared trees 
must always use explicit joins, because it has no other way to maintain loop-free trees.

Table 5-5. Source-Based Tree and Shared Tree Protocols

Protocol Source-Based Trees Shared Trees 

DVMRP X  

MOSPF X  

PIM-DM X  

PIM-SM  X 

CBT  X 

Multicast Scoping

You have seen in the preceding discussions of multicast routing issues that although multicast routing 
certainly uses fewer network resources than other strategies, such as replicated unicast or simple 
flooding, it can still be wasteful in some circumstances. This is particularly true of broadcast-and-
prune protocols when used in sparse topologies. In some instances, a multicast source and all group 
members can be found close together in relation to the size of the entire internetwork. In such a 
case, a mechanism that limits the multicast traffic to the general area on the internetwork in which 
the members are located would help conserve resources. There also may be cases in which, for 
security or other policy reasons, the extent of the multicast traffic must be limited.

When multicast traffic is confined to "islands," the traffic is scoped. Put another way, multicast 
scoping is the practice of putting boundaries on the reach of multicast traffic.

TTL Scoping



One method for establishing boundaries to limit the scope of multicast traffic is to set a special filter 
on outgoing interfaces that checks the TTL value of all multicast packets. Only packets whose TTL 
value, after the normal decrement performed by the router, exceeds a configured threshold are 
forwarded. All other multicast packets are dropped.

Figure 5-22 shows an example. On this router, a multicast packet arrives on interface E2 with a TTL 
of 13. The router decrements the packet's TTL to 12. Interface E0 has a multicast TTL threshold of 0, 
which is the default; no multicast packets are blocked based on their TTL. Therefore, a copy of the 
packet is forwarded out E0. Likewise, a copy of the packet is forwarded out interface E1, because its 
TTL threshold is set to 5, which is less than the packet's TTL. However, the packet is not forwarded 
out E3. That interface's TTL threshold is 30, meaning that only packets whose TTL value is greater 
than 30 can be forwarded.

Figure 5-22. Multicast Packets Are Forwarded Only Out Downstream 
Interfaces Whose TTL Threshold Is Less Than the Outgoing Packet's TTL

TTL scoping has been used on the MBone for some time. The MBone is constructed of regional 
multicast networks connected through the Internet by IP-over-IP tunnels. Table 5-6 shows typical 
TTL thresholds used to restrict multicast traffic in the MBone. If you want some traffic to stay within a 
single site—high-bandwidth real-time video, for example—you configure the source application to 
send packets with a TTL no higher than 15.

Table 5-6. MBone TTL Thresholds

TTL Value Restriction 



0 Restricted to the same host 

1 Restricted to the same subnet 

15 Restricted to the same site 

63 Restricted to the same region 

127 Worldwide 

191 Worldwide limited bandwidth 

255 Unrestricted 

TTL scoping has several shortcomings. First, it is inflexible. An interface's TTL threshold applies to all 
multicast packets. If you want some multicast sessions to pass the threshold and others to be 
restricted by it, the separate applications sourcing the sessions must be manipulated. This leads to 
the second problem: Users must be trusted to set the TTLs in their multicast applications correctly. If 
a session is sourced with a too-high TTL, it will pass outside the boundary you have set.

Another problem with TTL scoping is that it is difficult to implement in all but the simplest topologies. 
As your multicast internetwork grows in both scale and complexity, predicting the correct thresholds 
to contain and pass the correct sessions becomes a challenge.

Finally, TTL scoping can cause inefficiencies with broadcast-and-prune protocols. Figure 5-23 
demonstrates the problem. The internetwork is a multicast site, and the boundary router has a TTL 
threshold of 8 configured on the interfaces leading to other parts of the internetwork. The multicast 
source is generating a session in which the TTL of all packets is set to 8, in keeping with local policy, 
to limit its traffic to the multicast site. There are no group members anywhere along the left branch 
of the tree, so those routers should prune themselves all the way back to the source's directly 
connected router. In fact, you can see that one router has sent a prune message upstream to its 
neighbor.

Figure 5-23. The TTL Multicast Filter at the Boundary Router Is Preventing 
It from Sending a Prune Message Upstream



The problem is with the boundary router and its configured TTL filter. When the multicast packets 
reach this router, the packets are discarded at both downstream interfaces, because the packets' TTL 
values are less than the TTL threshold. This is expected behavior. However, the packet discards also 
mean that no IGMP queries for group members take place. Without the queries, the router does not 
send a prune message back upstream. As a result, multicast traffic continues to be forwarded 
unnecessarily through all the routers leading to the boundary router.

Administrative Scoping

Administrative scoping, described in RFC 2365,[7] takes a different approach to bounding multicast 
traffic. Rather than filter on TTL values, a range of Class D addresses is reserved for scoping. Filtering 
on these group addresses can then set boundaries. The reserved range of multicast addresses is 
239.0.0.0–239.255.255.255.

The administratively scoped address space can be further subdivided in a hierarchical manner. For 
example, RFC 2365 suggests using the range 239.255.0.0/16 for local or site scope and the range 
239.192.0.0/14 for organizationwide scope. An enterprise is, however, free to utilize the address 
space in any way it sees fit. In this regard, the reserved Class D range is similar to the RFC 1918 
addresses reserved for private use. And like those addresses, the administratively scoped multicast 
address space is nonunique. Therefore, it is important to set filters for 239.0.0.0–239.255.255.255 
so that none of the addresses in that range leak into the public Internet.

You have encountered both TTL scoping and address-based scoping already in this chapter and 
elsewhere in this book. Recall that the TTL for IGMP and OSPF packets is always set to 1 to prevent 
the packets from being forwarded by any receiving router. In this way, the scope is set to the local 
subnet. Similarly, routers do not to forward packets whose addresses are in the range 
224.0.0.0–224.0.0.255. This range, which includes all the addresses shown in Table 5-1, is also 
scoped to the local subnet.



 
  
Operation of the Distance Vector Multicast Routing Protocol 
(DVMRP)

DVMRP uses the broadcast-and-prune method to build a separate source-based tree for every 
multicast source. It uses a variant of RIP to discover the shortest path to the source—hence the 
name Distance Vector Multicast Routing Protocol. Each multicast tree is maintained dynamically by 
pruning and grafting branches as group members leave and join the group.

DVMRP uses seven packet types:

●     DVMRP Probe
●     DVMRP Report
●     DVMRP Prune
●     DVMRP Graft
●     DVMRP Graft Acknowledgement
●     DVMRP Ask Neighbors2
●     DVMRP Neighbors2

All the packets have a destination address of 224.0.0.4, the reserved All DVMRP Routers address (see 
Table 5-1). The uses of the various packet types are described in the following sections, and the 
section "DVMRP Packet Formats" gives a detailed description of the packet formats.

There are several versions of DVMRP. Version 1 is described in RFC 1075,[8] and version 3, the most 
recent version, is described in an Internet draft.[9] This chapter describes version 3 of the protocol. 
You should be aware that earlier versions of DVMRP vary significantly both in functionality and in 
packet formats. While an effort is made in this section to note differences between DVMRPv3 and 
some earlier versions, coverage of all the differences would make the section unacceptably long and 
complex. In this section, "DVMRP" is understood to mean DVMRPv3 unless otherwise noted. If you 
are working with an earlier version or have an interest in the differences, you should read RFC 1075, 
the relevant mgated documentation, or the software documentation of the router supporting the 
earlier version.

NOTE

Most routers running DVMRP are found on the MBone, and most of those run a 
version of mrouted or mgated.

Cisco IOS Software does not support a full implementation of DVMRP; however, it does support 
connectivity to a DVMRP network such as the MBone.

Neighbor Discovery and Maintenance

The first task when a DVMRP router comes online is to discover its neighbors using Probe packets. 
Each Probe packet contains the following information:

●     A set of flags describing the originating router's DVMRP capabilities. These flags are used to 



determine backward compatibility with earlier versions of the protocol.
●     A generation ID, which is used to detect a change in a neighbor state.
●     A list the addresses of neighbors from which the originating router has received probes.

Out of all this information, the most fundamental is the list of neighbor addresses. When a DVMRP 
router receives a Probe packet, it records the address of the originating router and the interface on 
which the probe was received. Recall that the receiving router never forwards any packet with a 
destination address from the 224.0.0.0/24 range. Both because the Probe packet has a destination 
address of 224.0.0.4, and because it is originated with a TTL of 1, the receiving DVMRP router knows 
that the originator is a directly connected neighbor. When the router sends its own probes, it lists all 
the neighbor addresses it has learned on the subnet on which the probe is sent. When a router sees 
its own IP interface address in a neighbor's probe, it knows that two-way communication is 
established with the neighbor.

After a neighbor has been discovered, probes also are used as keepalives. Probes are sent at 10-
second intervals, and a neighbor is declared dead if a probe is not received from it within 35 seconds.

Earlier versions of DVMRP do not use Probe packets. Instead, they discover neighbors upon reception 
of route advertisement messages from their neighbors.

During the neighbor discovery process, earlier versions of DVMRP would, when discovering more than 
one router on a subnet with group members, select a designated router. The designated router, 
which is the only router that sends multicast session packets and IGMP queries onto the subnet, is 
the router with the lowest IP address on that subnet. DVMRPv3 determines a designated router 
through the IGMPv2 querier election process rather than by reading the source IP addresses of 
received route advertisement messages.

As you learned previously, a broadcast-and-prune multicast routing protocol must store prune states. 
If the router is restarted, however, it cannot know what prunes have been sent or received. It may 
also be slow to reestablish multicast forwarding if it has to wait for the next regularly scheduled route 
update. The generation ID, a nondecreasing 32-bit number derived from some changing reference 
such as a time-of-day clock, is designed to alleviate these problems. When a DVMRP router restarts, 
its generation ID changes. When neighbors detect this changed number in the router's Probe 
messages, they flush all prune information previously received from the router. They also 
immediately send a copy of their routing table to the neighbor. Multicast data will again flow to the 
restarted router due to the cleared prune information, and the router must again prune itself or 
remain a part of the tree.

The DVMRP Routing Table

The primary purpose of the DVMRP routing table is to determine, for each multicast source, the 
upstream interface for that source. As explained earlier in the chapter, this process is important for 
loop avoidance; if a packet is received from a source on any interface other than the upstream 
interface—the interface closest to the source—the packet must be discarded.

DVMRP uses a variant of RIP to advertise the complete routing table plus all directly connected 
multicast-enabled subnets. The routes are advertised in DVMRP Report messages, sent to every 
neighbor using the All DVMRP Routers address 224.0.0.4. Route updates are sent every 60 seconds, 
known as the Route Report Interval. The exception to this rule occurs when a new neighbor is 
discovered by the probe process. In this case, the routing table is immediately unicast to the new 
neighbor. Flash updates also can be used to shorten reconvergence times.

If a route is not updated within 140 seconds, the route expiration time, the route is put into 
holddown for two report intervals (120 seconds). During this time, the route is advertised with a 
metric of infinity; when the holddown time expires, the route is removed from the routing table.



The metric associated with each route is hop count, with infinity defined as 32 hops. However, a 
route may have a metric in the range of 1 through 63. The metric values 1 through 31 indicate 
reachable sources; the values 33 through 63 are used to indicate route dependencies.

For pruning to work correctly, a DVMRP router must be aware of the downstream neighbors that 
depend on it to forward packets from particular multicast sources. For each source network, a 
downstream router signals a route dependency to an upstream router by sending a poison reverse 
route to the upstream router. The poison reverse route contains a metric that is the advertised metric 
plus infinity. Suppose, for example, that router A advertises network 172.16.1.0/24 to router B, with 
a hop count of 3. Router B determines that router A is the upstream router toward this subnet. 
Router B must signal to router A that it is dependent on router A for multicast traffic from sources on 
this subnet. Therefore, router B advertises 172.16.1.0/24 to router A with a metric of 35 (3 + 32). 
Router A recognizes this advertisement as a route dependency.

Yet another function of the DVMRP routing table is the selection of a designated forwarder. When 
multiple upstream routers are connected to a multiaccess network, as in Figure 5-24, only the 
designated forwarder forwards multicast packets downstream. This prevents multiple copies of the 
same packets from being forwarded onto the multiaccess network. When two or more routers on a 
multiaccess network exchange routes, they can tell which of the routers is closest to the source. That 
router is the designated forwarder for that source network. In Figure 5-24, upstream router B would 
be the designated forwarder for the source shown, because it is only one router hop from the source; 
upstream router A is two hops away. If the routers are an equal distance from the source, the router 
with the numerically lower IP address on the shared network becomes the designated forwarder.

Figure 5-24. When Multiple Upstream Routers to a Source Are Connected to 
the Same Data Link, a Designated Forwarder Is Elected



DVMRP Packet Forwarding

When a router first receives a multicast packet from a particular source, an RPF check is performed, 
using the routing table, to verify that the packet arrived on the upstream interface for the packet's 
source. If the packet arrived on any other interface, it is dropped. If the packet did arrive on the 
upstream interface, the (S, G) pair is recorded in a forwarding table, and a copy of the packet is 
forwarded to all downstream dependent neighbors. The router also uses IGMP to query for group 
members on each of its leaf networks—that is, networks with no neighbors. A copy is forwarded to 
any leaf networks that contain group members.

If there are no downstream dependent neighbors, and no leaf networks with group members, the 
router sends a prune message to the upstream router. If the upstream router also has no local group 
members, and if it has received a prune message from all of its downstream dependent neighbors, it 
sends a prune message of its own to its upstream neighbor. In this way, the multicast tree is 
dynamically pruned until only branches leading to active group members remain.

A prune message contains a prune lifetime, which indicates how long an upstream router should hold 
a prune state before resuming the forwarding of packets from the source in question to the pruned 
router. The default prune lifetime is 2 hours. If the router receiving a prune is itself sending a prune 
upstream, the prune lifetime is set to the minimum of either 2 hours or the remaining lifetimes of any 
downstream prunes received for the same (S, G) pair.

As discussed previously, a host can signal its desire to join a multicast group at any time by sending 
an IGMP membership report message to its local router. If that router has previously pruned itself 
from the tree delivering packets from that group, it must now graft itself back onto the tree. The 
router does this by sending a DVMRP Graft message upstream. Grafts are sent hop by hop upstream 
until an active branch of the multicast tree is found.

If a router sends a graft message and does not begin receiving traffic for the requested group, it 
must have a mechanism by which it knows whether the source has stopped transmitting, or the graft 
has been lost. Therefore, at each hop, an upstream router acknowledges the receipt of a Graft 
message by sending a Graft Ack message to its downstream neighbor. The originator of the graft also 
sets a Graft Retransmission timer; if a Graft Ack is not received before the timer expires, another 
Graft message is sent, and the timer is reset. The initial period of the Graft Retransmission timer is 5 
seconds, and subsequent periods are calculated using a binary exponential backoff algorithm.

DVMRP Message Formats

The IP header of a DVMRP packet specifies protocol number 2. Note that this is the same protocol 
number used by IGMP, a legacy of DVMRP's beginnings as a subset of that protocol. This section 
describes DVMRPv3 formats; for a description of earlier formats, see RFC 1075 or other appropriate 
documentation.

DVMRP Message Header

Figure 5-25 shows the format of the DVMRP header, which begins every DVMRP message.

Figure 5-25. The DVMRP Message Header



The fields for the DVMRP message are described as follows:

●     Type is the IGMP type number, which is set to 0x13 for all DVMRP messages. RFC 1075 
specifies a separate 4-bit Version field and 4-bit Type field in this position, in which the 
version is 0x1 and the type is 0x3. Note that the resulting 8 bits of the version 1 header is 
0x13, the same as version 3, making version 3 backward-compatible. The actual DVMRPv3 
version is specified in the Major Version field.

●     Checksum is a standard IP-style checksum, using a 16-bit one's complement of the one's 
complement of the DVMRP message.

●     Minor Version and Major Version are set to 0xFF and 0x03, respectively, for all DVMRPv3 
messages.

●     Code specifies the DVMRPv3 message type. Table 5-7 shows the possible values of the code 
field and the corresponding message types.

Table 5-7. DVMRP Message Types by Code Value

Code DVMRP Message Types 

1 Probe 

2 Report 

3 Ask Neighbors 

4 Neighbors 

5 Ask Neighbors 2 

6 Neighbors 2 

7 Prune 

8 Graft 

9 Graft Ack 

The Ask Neighbors (code 3) and Neighbors (code 4) messages are obsoleted by the Ask Neighbors 2 
(code 5) and Neighbors 2 (code 6) messages. None of these messages have yet been discussed; they 
are used by such diagnostic commands as mrinfo and mstat. They are discussed in this context in 
the troubleshooting section of Chapter 6, "Configuring and Troubleshooting IP Multicast Routing."

DVMRP Probe Message Format



DVMRP Probe messages serve four functions:

●     They allow routers to locate each other by listing all DVMRP-speaking routers detected by the 
originating router on the originating interface.

●     They provide a means for DVMRP routers to communicate their capabilities to each other.
●     They enable the selection of a designated forwarder when there are multiple paths to a 

downstream group member.
●     They provide a keepalive function by being transmitted every 10 seconds. If a probe is not 

heard from a neighbor within 35 seconds, the neighbor is declared dead.

Figure 5-26 shows the format of the probe message.

Figure 5-26. The DVMRP Probe Message

The fields for the DVMRP Probe message are described as follows:

●     Capabilities uses eight of the reserved bits in the header for capability flags. The Probe 
message is the only DVMRP message to modify the header fields. Table 5-8 lists the 
capabilities flags and their meanings. If the flag is set to 1, the corresponding capability is 
supported by the originating router.

Table 5-8. DVMRP Capabilities Flags

Bit Flag Capability 

0 L This router is a leaf router. 



1 P This router understands pruning. 

2 G This router sends Generation IDs. 

3 M This router handles Mtrace requests. 

4 S This router supports the DVMRP MIB. 

5 N This router understands netmasks appended to Prune, Graft, and Graft 
Ack messages. 

6, 7 U Unused. 

●     Generation ID is a nondecreasing 32-bit number used for detecting when a router has 
restarted, without having to wait for an entire report interval to pass. When a change in the 
generation ID is detected, any prune information from the originating router is declared 
invalid and is flushed. If the prune information has been sent upstream, a Graft message is 
sent. The result of this process is that the restarted router is treated as a new router on 
multicast trees, and the broadcast-and-prune process is begun anew.

●     Neighbor Address lists the neighbors from whom the originating router has received Probe 
messages on the originating interface.

DVMRP Route Report Message Format

Route Report messages, depicted in Figure 5-27, are sent every 60 seconds. The Route Report 
consists of a list of one or more netmasks, and for each netmask, a list of one or more source 
network addresses and associated metrics corresponding to the netmask. Although the lengths of the 
source networks in Figure 5-27 are all 3 octets, in reality the lengths may vary, as described in this 
section.

Figure 5-27. DVMRP Route Report Message Format



The fields for the DVMRP Route Report Message are defined as follows:

●     Mask is a netmask. The first octet of the netmask is always assumed to be 255, so only the 
last 3 octets are included in the Mask field. Note that this assumption means that DVMRP 
routes can never be aggregated into addresses with a prefix length less than 8.

●     Source Net is a source network address whose prefix length corresponds to the netmask 
preceding it. The length of the Source Net field varies according to the netmask. For example, 
if the netmask field is 255.0.0, the field is describing a mask of 255.255.0.0 (remembering 
that the first octet is assumed to be 255). The Source Net fields following such a netmask are 
all 2 octets, corresponding to the prefix length specified.

A default route is specified with a netmask of 0.0.0 and a 1-octet source net of 0. DVMRP 
routers always interpret this as 0.0.0.0/0, not 0.0.0.0/8.

●     Metric is the sum of the interface metrics between the router originating the report and the 
source network. The metric is a hop count, with 32 signifying infinity. However, the full range 
of the metric value is 1–63. As described in the section "The DVMRP Routing Table," a router 
signals a dependency to an upstream router by advertising a poison reverse route in which 
the metric is the received metric plus infinity (32). Therefore, metric values between 33 and 
63 indicate a downstream dependency.

DVMRP Prune Message Format

Figure 5-28 shows the format of the Prune message.

Figure 5-28. The DVMRP Prune Message Format



The fields for the DVMRP Prune message are defined as follows:

●     Source Host Address is the IP address of the originating host.
●     Group Address is the IP address of the group to be pruned.
●     Prune Lifetime is the time, in seconds, that the upstream neighbor is to keep the prune. This 

value is either the minimum remaining lifetime of all downstream prunes received for the 
group address or, if there are no downstream prunes, the default prune lifetime of 2 hours.

●     Source Network Mask is the netmask of the source network of the group to be pruned. This 
field is optional, and it is included only if the upstream neighbor has indicated in its Probe 
messages that it understands netmasks.

DVMRP Graft Message Format

Figure 5-29 shows the format of the Graft message.

Figure 5-29. The DVMRP Graft Message Format



The fields for the DVMRP Graft message are defined as follows:

●     Source Host Address is the IP address of the originating host.
●     Group Address is the IP address of the group to be grafted.
●     Source Network Mask is the netmask of the source network of the group to be grafted. This 

field is optional, and it is included only if the upstream neighbor has indicated in its Probe 
messages that it understands netmasks.

DVMRP Graft Acknowledgement Message Format

Figure 5-30 shows the format of the Graft Acknowledgement message. With the exception of the 
Code field in the header, the format is identical to that of the Graft message that it is acknowledging.

Figure 5-30. The DVMRP Graft Acknowledgement Message Format



DVMRP Ask Neighbors 2 Message Format

The DVMRP Ask Neighbors 2 message is one of two messages (along with the Neighbors 2 message, 
discussed in the following section) that are used for troubleshooting. The "2" distinguishes the 
message from the obsolete Ask Neighbors message. The Ask Neighbors 2 message, shown in Figure 
5-31, is unicast to a specified destination. When a router receives an Ask Neighbors 2 message, it 
should respond by unicasting a Neighbors 2 message to the originator. As the figure shows, the 
message is merely the DVMRP header with the code set to 0x5.

Figure 5-31. The DVMRP Ask Neighbors 2 Message Format

DVMRP Neighbors 2 Message Format

A DVMRP router in response to an Ask Neighbors 2 message sends the Neighbors 2 message, shown 
in Figure 5-32. The message is unicast to the originator of the Ask Neighbors 2 message. The 
message indicates the sender's DVMRP capabilities and lists the addresses of the sender's logical 
interfaces. For each interface listed, the DVMRP parameters for the interface are specified, and the 
DVMRP neighbors known on that interface are listed.

Figure 5-32. The DVMRP Neighbors 2 Message Format



The fields for the DVMRP Neighbors 2 message are defined as follows:

●     Capabilities specifies the DVMRP capabilities of the originating router. The field is the same as 
the Capabilities field of the Prune message, and its values are shown in Table 5-8.

●     Local Address is the address of an interface on the router. If the interface is down or 
disabled, a single neighbor entry is associated with the interface, and the neighbor entry has 
an address of 0.0.0.0.

●     Metric specifies the DVMRP metric of the interface.
●     Threshold specifies the administrative scoping threshold of the interface.
●     Neighbor Count specifies the number of neighbors listed for this interface.
●     Neighbor is the IP address of a DVMRP neighbor known on this interface.
●     Flags is a series of bits describing operational parameters of the interface. Table 5-9 lists the 

bits of this field and what flag each bit represents.

Table 5-9. Interface Flags in the Neighbor 2 Message



Bit Flag Description 

0 Tunnel Neighbor reached via tunnel 

1 Source Route Tunnel uses IP source routing 

2 Reserved No longer used 

3 Reserved No longer used 

4 Down Operational status down 

5 Disabled Administrative status down 

6 Querier Querier for interface 

7 Leaf No downstream neighbors on this interface 



 
  
Operation of Multicast OSPF (MOSPF)

Multicast OSPF (MOSPF) offers an improvement over DVMRP in two aspects. First, it is a link-state 
protocol, whereas DVMRP is distance vector. That difference carries with it all the usual advantages of 
link state over distance vector: better convergence properties, better loop avoidance, and less 
periodic control traffic. The second improvement is that MOSPF is more scalable in a dense 
environment. This is partly due to its link-state algorithms, but also to the fact that MOSPF uses 
explicit joins rather than implicit joins via flood-and-prune.

Multicast OSPF is not a separate protocol from OSPF, but rather is an extension of that protocol, as 
indicated by the name of the RFC describing it.[10] Three extensions to OSPF are defined to support 
multicast. First, a new LSA is defined, called the Group Membership LSA. Group Membership LSAs are 
LSA type 6.

The Options field is extended to include a flag, called the MC bit, which is used to indicate support for 
IP multicast. The Options field, described in Chapter 9 of Volume I, is carried in OSPF Hello and 
Database Description packets and in all LSAs. The implication of the MC bit is that OSPF and MOSPF 
routers can be intermixed in the same internetwork, with the MOSPF routers using the MC bit to 
indicate their multicast support. Routers with mismatched MC bits still become adjacent. However, 
only neighbors whose MC bits are set in their Database Description packets exchange Group 
Membership LSAs during their database synchronization process. And only LSAs with the MC bit set 
are used in the calculation of multicast shortest-path trees.

Finally, the rtype field of the Router LSA is extended to include a flag called the W bit. This flag 
indicates that the originating router is a wildcard multicast receiver. Wildcard multicast receivers are 
defined in the section "Inter-Area MOSPF."

Just as unicast OSPF uses a Dijkstra-based SPF algorithm to calculate shortest-path trees to unicast 
destinations, MOSPF calculates trees from multicast sources to multicast destinations. Both unicast 
trees and multicast trees are calculated from the same link-state database. A difference, however, is 
that whereas the unicast SPF trees are rooted at source routers, multicast SPF trees are rooted at 
source multicast subnets.

MOSPF Basics

The best place to begin describing MOSPF is at a local multiaccess medium to which a group member 
is attached. Like unicast OSPF, MOSPF elects a designated router and a backup designated router. All 
attached MOSPF routers should run IGMP on the local link to discover group members, but only the 
DR sends IGMP membership queries and listens for IGMP membership reports.

Recall from Table 5-4 that MOSPF uses explicit joins. When a group member sends an IGMP message 
indicating that it wants to join a group, the MOSPF DR creates an entry in its local group database. 
The local group database entry records the group and the attached network on which the group 
member resides. For example, the router in Figure 5-33 has three attached subnets, and there are 
three multicast group members on two of those subnets. Two of the group members, on separate 
subnets, belong to the same group. The router has to know only the groups and subnets on which 
the groups have members; it does not need to know each individual group member.

Figure 5-33. The Local Group Database Records Attached Groups and the 
Subnets on Which the Group Members Reside



The DR then originates a Group Membership LSA for each attached group. The LSA specifies the 
group address and the originating router ID and lists all the router's attached networks on which 
members of the group reside. In some cases, the router itself may run multicast applications that 
make it a group member. The LSA includes a Type field in which the router can indicate that it is 
advertising itself as a group member.

The LSA is then flooded throughout the originating router's area. The Group Membership (type 6) 
LSA is similar to a Network (type 2) LSA in two regards:

●     Like a Network LSA, only a designated router originates a Group Membership LSA.
●     Like a Network LSA, a Group Membership LSA only has area-wide scope. That is, the LSA is 

not flooded outside of the originating router's area.

The objective of the LSA flooding is to ensure that all MOSPF routers in an area have a copy of all 
Group Membership LSAs originated in the area. As with unicast OSPF, all MOSPF routers in an area 
must have identical link-state databases. The only difference between an OSPF link-state database 
and an MOSPF database in a given area is the inclusion of the type 6 LSAs.

With synchronized databases, every MOSPF router in an area can calculate the same shortest path 
tree. The tree is rooted at the source network and has branches extending to every network 
containing a group member. However, the tree is not calculated immediately. Instead, it is calculated 
"on-demand," when the first multicast packet for the group arrives. This makes sense, because 
although the synchronized routers know where all destinations are, they may not yet know where the 
source is.

The SPF calculation knows where all routers with attached group members are based on the Group 
Membership LSAs. And it knows where the source is located based on the source and destination 
addresses of the first arriving packet for the group. The regular unicast Router and Network LSAs 
whose MC bits are set are then used to calculate the least-cost paths from the source to each 
destination.



The great advantage of the Group Membership LSA-based explicit joins, coupled with the on-demand 
SPF calculation, is that routers already know the location of the destination networks before the 
calculation is performed. So unlike flood-and-prune protocols such as DVMRP, packets are never 
forwarded to all parts of the routing domain. You might say that the MOSPF tree comes "prepruned."

Based on the results of the SPF calculation, entries are made into each router's multicast forwarding 
table. The shortest-path tree is loop-free, and every router knows which interface is the upstream 
interface and which interfaces are downstream interfaces. Therefore, no RPF check is required, as it 
is with DVMRP. The forwarding table entry for a particular (S, G) pair indicates what upstream 
neighbor a matching packet should be received from and what downstream neighbors the packet 
must be forwarded to. The local group database also is used to make entries into the forwarding 
table for locally attached networks containing group members.

Keep in mind a few caveats about MOSPF. First, although unicast OSPF supports equal-cost 
multipath, MOSPF does not. The MOSPF shortest-path tree describes a single path between the 
source and all networks containing group members.

Second, if OSPF and MOSPF routers coexist on the same multiaccess network, care must be taken to 
ensure that the MOSPF router is elected the DR. If an OSPF router becomes the DR, no Group 
Membership LSAs are originated for any group members on the network, and consequently no 
multicast packets for the group are forwarded to the network.

Finally, an MOSPF router must clear its entire forwarding table and recalculate its shortest-path trees 
if the topology within the MOSPF domain changes. Therefore, it is important that the domain be as 
stable as possible.

Inter-Area MOSPF

The preceding section described how MOSPF behaves when the source and all group members are 
within the same area. Emphasis was placed on the fact that a Group Membership LSA is not flooded 
outside of its originating area. So what happens when group members are in one or more areas 
different from the source?

You know from Chapter 9 of Volume I that inter-area OSPF communications is managed by Area 
Border Routers (ABRs). ABRs are members of the backbone area and one or more nonbackbone 
areas. They learn all the destinations within each attached area via Router and Network LSAs, just as 
any other router in the area does. ABRs then create Network Summary (type 3) LSAs, which 
advertise the destinations in one attached area into the ABR's other attached areas. Like type 1 and 
type 2 LSAs, type 3 LSAs are never flooded outside of the area in which they are originated. When an 
ABR receives a Network Summary LSA across the backbone area from another ABR, it creates its 
own Network Summary LSA to advertise that information into its attached nonbackbone areas. Figure 
5-34 illustrates conceptually how ABRs use types 1, 2, and 3 LSAs.

Figure 5-34. Unicast OSPF ABRs Use Network Summary LSAs to Advertise 
Destinations Learned from One Attached Area into Other Attached Areas



MOSPF ABRs are perversely called inter-area multicast forwarders. There are both similarities and 
differences with the way unicast ABRs operate. An inter-area multicast forwarder knows what groups 
have members in each of its attached nonbackbone areas based on the Group Membership LSAs it 
has received in those areas. For each known group, the forwarder creates a new Group Membership 
LSA and floods the LSA into the backbone, as illustrated in Figure 5-35. So far, this behavior is very 
similar to the way an ABR uses type 3 LSAs to summarize information learned from type 1 and type 2 
LSAs into the backbone.

Figure 5-35. Inter-Area Multicast Forwarders Use Group Membership LSAs 
to Advertise the Presence of Group Members in Their Nonbackbone Areas to 

the Backbone Area



Here the similarity to unicast ABRs ends. Unlike the way in which type 3 LSAs are used, an inter-area 
multicast forwarder does not send type 6 LSAs into a nonbackbone area to advertise the presence of 
groups outside the area. In Figure 5-35, for example, RT1 receives the type 6 LSA originated by RT2, 
advertising group C, but it does not create a type 6 LSA to advertise group C into area 1.

The result is that an SPF tree is calculated in the backbone for each group, and the tree's branches 
extend to the inter-area multicast forwarder of each area containing group members. The 
nonbackbone areas have no knowledge of group members outside of their own area.

If the source for group C in Figure 5-35 is located in area 1, however, how do its packets reach 
members in areas 2 and 3? The answer is a wildcard multicast receiver. These devices advertise 
themselves by setting the W bit in the rtype field of their Router LSAs. Within an area, multicast 
traffic is always forwarded to all wildcard multicast receivers. In nonbackbone areas, an inter-area 
multicast forwarder (a multicast ABR) is always a wildcard multicast receiver.

When the source for group C in Figure 5-35 originates a group C packet, the packet is forwarded to 
RT1, the wildcard multicast receiver for area 1. RT1 also is a member of the backbone area, and so 
has calculated a shortest-path tree to all inter-area multicast forwarders whose attached areas 
contain members of group C. Seeing that RT2 is advertising group C members, the packet is 
forwarded to that router across the backbone. RT2, as a member of areas 2 and 3, has calculated 
separate SPF trees for group C in each area and forwards copies of the packet to the group C 
destinations.

NOTE

If there were any group C members in area 1, a copy of the packet would, of course, 



be forwarded over the local SPF tree to those members in addition to being 
forwarded to RT1.

Note that wildcard multicast receivers are unnecessary in the backbone area for intradomain traffic. 
For every group in the MOSPF domain, an SPF tree is calculated in area 0. The branches of the tree 
lead either to group members located in that area or to inter-area multicast forwarders attached to 
other areas. So if a source is located in the backbone area, its packets can be forwarded along the 
correct tree.

Inter-AS MOSPF

RFC 1584 provides for the routing of multicast packets into and out of an MOSPF domain. You know 
from Chapter 9 of Volume I that a router redistributing routes into an OSPF domain from some other 
routing protocol is called an Autonomous System Boundary Router (ASBR). An ASBR uses AS-
External (type 5) LSAs to advertise destinations outside of the OSPF domain and ASBR Summary 
(type 4) LSAs to advertise their own location. These LSAs are flooded into all areas of the OSPF 
domain, with the exception of stub areas.

A router that connects an MOSPF domain to some other multicast routing domain (most likely DVMRP 
presently, and possibly some multicast EGP in the future) is called an inter-AS multicast forwarder. 
These routers behave very similarly to inter-area multicast forwarders. To forward multicast packets 
to destinations outside of the MOSPF domain, inter-AS multicast forwarders set the W bit in their 
Router LSAs and become wildcard multicast forwarders. When the routers are forwarding packets into 
the MOSPF domain from external sources, they become "proxy sources," with their external link 
serving as the root for the group's SPF tree.

Like ASBRs, inter-AS multicast forwarders can be located in any area. Notice, however, that wildcard 
multicast forwarding capability is signaled by the W bit of type 1 LSAs, and type 1 LSAs are not 
flooded outside of an area. If the inter-AS forwarder is located in area 0, this is not a problem; the 
inter-area multicast forwarders already pull all multicast traffic to the backbone. If the inter-AS 
forwarder is located in a nonbackbone area, however, that area's inter-area forwarder also must 
become a wildcard forwarder for the backbone area. Therefore, it is recommended that inter-AS 
multicast forwarders be located only in area 0.

It is also recommended that inter-AS forwarders be placed carefully within the MOSPF domain. 
Because all multicast traffic within the domain is forwarded to these routers, links leading to the 
routers can easily become congested.

MOSPF Extension Formats

This section describes only the formats of the multicast extensions to OSPF. For a complete 
description of all OSPF packets and LSAs, see Chapter 9 of Volume I.

Group Membership LSA Format

The Group Membership LSA carries the standard LSA header and has a type number of 6. Figure 5-36 
shows the format for the Group Membership LSA. Only MOSPF-designated routers originate Group 
Membership LSAs. Notice in the format that no metric is associated with this LSA.

Figure 5-36. The MOSPF Group Membership LSA Format



The fields for the Group Membership LSA are defined as follows:

●     Link State ID carries the address of the multicast group being advertised.
●     Advertising Router is always the router ID of the MOSPF designated router on the multiaccess 

network, because only the DR can originate type 6 LSAs.
●     Vertex Type specifies whether the destination is a router (type = 1) or a transit network 

(type = 2). Type 1 is specified if the originating router is running some application that 
requires it to be a member of a multicast group. Transit network just refers to the originating 
router's directly connected network over which packets must pass to reach the attached 
group members.

●     Vertex ID is the originating router's router ID.

Extended Router LSA Format

Figure 5-37 shows the format of a Router (type 1) LSA that has been extended to support MOSPF. 
The format is identical to the format shown in Figure 9.55 of Volume I, with the exception of the 
addition of the W bit in the rtype field. The W bit is set by inter-area and inter-AS multicast 
forwarders to indicate to other MOSPF routers in an area that they are wildcard multicast forwarders.

Figure 5-37. The Router LSA Format, with the W Bit Added to the rtype Field 
for MOSPF Support



Extended Options Field Format

The Options field, shown in Figure 5-38, is a part of all OSPF Hello and Database Description packets 
and a part of the header of all LSAs. The other flags of this field are described in Chapter 9 of Volume 
I, but the pertinent flag for this chapter is the MC bit. When set, this bit indicates that the originating 
router is multicast-capable.

Figure 5-38. The Options Field Format

The MC bit in Hello packets does little more than signal multicast capability. Two routers will still 
become adjacent, even if one sets the MC bit and the other does not. The real use of the MC bit 



comes into play with the Database Description packets and with LSAs.

During database synchronization, an MOSPF router will send the type 6 LSAs in its database to its 
neighbor only if the neighbor's DD packets have the MC bit set. Likewise, only LSAs with the MC bit 
set are used in the MOSPF SPF calculation.



 
  
Operation of Core-Based Trees (CBT)

DVMRP and MOSPF have two limitations in common. First, they are both dense-mode protocols and 
do not scale well in sparse topologies. That is, when there are few group members relative to the 
total number of hosts in an internetwork, and the group members are widespread across the 
internetwork, both DVMRP and MOSPF consume an unacceptable amount of network resources to 
reach those group members. Much of that resource consumption is in the overhead necessary to 
calculate and hold state for individual trees rooted at each source. Second, both protocols are limited 
to a single unicast routing protocol for determining multicast trees—DVMRP to its own RIP-based 
protocol, and MOSPF to OSPF. Core-Based Trees (CBT), on the other hand, is a protocol-independent, 
sparse-mode, shared-tree protocol.

Protocol-independent means that CBT can use any underlying unicast routing protocol to find sources 
and other CBT routers and build its trees. Besides adding flexibility, overhead is reduced by using the 
existing routing protocols instead of adding another one just for multicast. And CBT trees are rooted 
at core CBT routers rather than at source networks. The cores can be located anywhere within an 
internetwork, and many group trees can be rooted at the one core, making the protocol more 
suitable for sparse multicast topologies.

There are currently three versions of CBT. CBTv2, described in RFC 2189,[11] obsoletes CBTv1. 
There is also a proposed CBTv3. All three versions are experimental, and none have seen widespread 
deployment. Indicative of this experimental status, neither CBTv2 nor CBTv3 is backward-compatible 
with its preceding version. This chapter focuses exclusively on CBTv2; when the term "CBT" is used, 
it refers to that version of the protocol.

CBT Basics

CBT uses nine message types:

●     JOIN_REQUEST
●     JOIN_ACK
●     ECHO_REQUEST
●     ECHO_REPLY
●     QUIT_NOTIFICATION
●     FLUSH_TREE
●     Candidate Core Advertisement
●     Bootstrap message
●     HELLO

With a single exception discussed in the section "CBT Designated Routers," all CBT messages are sent 
to the reserved multicast address 224.0.0.15 (see Table 5-1). The messages are transmitted with a 
TTL of 1, which means all CBT information is passed hop by hop through the multicast domain. The 
format of each message type is detailed in the section "CBT Message Formats."

Like the other IP multicast routing protocols, CBT is informed that an attached host wants to join a 
group via IGMP Membership Report messages. CBT uses explicit joins, so when a CBT router must 
forward packets for a particular group, it must first graft itself to that group's multicast tree. The 
router first examines its unicast routing table for the location of the core for the particular group and 
then forwards a JOIN_REQUEST message upstream on the path toward the core. The message 
contains three important pieces of information:

●     The multicast group address
●     The address of the core



●     The address of the originator

NOTE

How the router knows where to find the core is the topic of the following section, 
unsurprisingly titled "Finding the Core."

When the next-hop router receives the JOIN_REQUEST message, it examines the group address and 
the core address. Based on this information, the router establishes that it is one of the following:

●     The core router
●     Attached to the group's multicast tree (an on-tree router)
●     Neither the core nor an on-tree router

If the router is either the core or an on-tree router, it sends a JOIN_ACK message to the originator of 
the JOIN_REQUEST, indicating that the originator has successfully joined the tree. The router adds 
the interface on which the JOIN_REQUEST was received to its forwarding table entry for the group 
and begins forwarding packets on the interface.

If the router is neither the core nor on the group tree, it must also join the tree. The router consults 
its own unicast routing table for the location of the core and forwards a copy of the JOIN_REQUEST 
message upstream. It also begins a transient join state, in which the group, the interface on which 
the JOIN_REQUEST was received, and the interface on which the JOIN_REQUEST was transmitted is 
recorded. A timer is started, and if a JOIN_ACK is not received within 7.5 seconds (the transient 
timeout period), the transient join state is deleted, and the join is considered unsuccessful.

In CBT parlance, the upstream interface toward the core is the parent interface, and the downstream 
interface toward the group member is the child interface. Likewise, an upstream neighbor is a parent 
router, and a downstream neighbor is a child router. Once a tree is established by the reception of a 
JOIN_ACK, a child router sends an ECHO_REQUEST message to its parent router every 60 seconds. 
The ECHO_REQUEST message contains only the address of the originating child router. The parent 
router responds with an ECHO_REPLY message, which lists all groups for which the parent router 
forwards packets on that link.

If an ECHO_REPLY is not heard within 70 seconds, the parent router is declared unreachable. 
Likewise, a particular group is declared invalid if it has not been listed in an ECHO_REPLY in the past 
90 seconds. The child router then sends a QUIT_NOTIFICATION upstream to the parent router and a 
FLUSH_TREE downstream to each of its own child routers. The FLUSH_TREE lists all group addresses 
that have become invalid, and the receiving child routers flush all information about the listed groups 
from the forwarding tables. The child routers then send the appropriate FLUSH_TREE messages to 
their own children. The process continues until all branches of the tree downstream of the failed 
router are deleted.

The QUIT_NOTIFICATION message also is used for pruning. If a router learns via IGMP Leave Group 
messages that it no longer has any attached members of a particular group, it sends a 
QUIT_NOTIFICATION message to its parent router, listing the group address to be pruned. If that 
parent, in turn, has no attached members of the group and no other child interfaces for the group, it 
too sends a QUIT_NOTIFICATION upstream. The branch continues to be pruned back to either an 
active on-tree router or to the core.

Finding the Core



The obvious prerequisite for CBT routers to build trees to the core is for the routers to know what 
router is the core. One way to meet this requirement is for all routers to be preconfigured with the 
address of the core router for each group. This approach may be fine for small multicast 
internetworks, and it offers good network control, but the administrative requirements certainly do 
not scale to larger internetworks.

Another way is to use the bootstrap mechanism. Using this method, a set of routers within the CBT 
domain are configured as candidate core routers. These routers exchange Candidate Core messages, 
and one of them is elected a bootstrap router (BST) based on a priority or, if all priorities are equal, 
the router with the highest IP address. The other candidate core routers then unicast Candidate Core 
messages to the BSR every 60 seconds as a keepalive. Based on these Candidate Core messages, 
the BSR assembles a candidate core set (CC-set) and advertises the set to all CBT routers in the 
domain via Bootstrap messages. When a router is asked to join a group via IGMP, it runs a hash 
algorithm against the CC-set and determines the correct core router for the group.

The same bootstrap protocol is used by both CBT and PIM-SM. Because this chapter places a closer 
focus on the latter protocol, the bootstrap mechanism is summarized here and is described in greater 
detail in the section "Protocol-Independent Multicast, Sparse Mode (PIM-SM)."

CBT Designated Routers

CBT uses HELLO messages to elect a designated router on multiaccess networks. The rationale for 
using a CBT DR is the same as that for DVMRP-designated forwarders and MOSPF DRs. Because CBT 
does not use an RPF check when forwarding packets, a DR is especially important for preventing 
loops when there are multiple upstream paths to the core, as in Figure 5-39.

Figure 5-39. CBT Elects a Designated Router on Multiaccess Networks to 
Manage Multiple Upstream Paths to the Core



Each CBT interface is configured with a preference value between 0 and 255, and this value is carried 
in the HELLO message. A value between 1 and 254 indicates that the router is eligible to become the 
DR, with the lower number indicating a higher preference—that is, a router with a preference of 10 is 
"more eligible" than a router with a preference of 20. A preference of 0 indicates that the router is 
the DR.

When a CBT router first becomes active on a multiaccess link, it sends two HELLO messages in 
succession to advertise its presence and its preference value. The router then listens for HELLOs, with 
one of the following three results:

●     A HELLO with a lower preference value is heard from another router on the network.
●     All HELLOs heard on the network have a higher preference value.
●     No other HELLOs are heard on the network.

In the first case, the new router knows that the router with the lower preference value is elected as 
the DR. In the other two cases, the new router assumes the role of DR and advertises that fact by 
setting the preference to 0 in its HELLOs. If all HELLOs have equal preference values, the router with 
the lowest IP address is elected as the DR.

In steady state, the DR sends a HELLO every 60 seconds both as an advertisement of its status and 
as a keepalive. The DR also sends a HELLO in response to a HELLO from a new router. Other routers 
do not send HELLOs or respond to HELLOs from new routers.

In some cases, the elected DR may not be on the path to the core. Suppose that RTA in Figure 5-39 



is elected as the DR, but RTB is the best next-hop router to the core. In this case, when RTC 
forwards a JOIN_REQUEST to RTA, RTA unicasts the JOIN_REQUEST back across the multiaccess link 
to RTB. This redirection occurs only with JOIN_REQUESTs; when RTB sends a JOIN_ACK, the 
message is sent directly to RTC.

Member and Nonmember Sources

You might have noticed that so far nothing has been said about how sources deliver their traffic to 
the core. In many multicast applications, a sender also is a group member. CBT takes advantage of 
this fact, so a sender that is also a group member—a member source—can reach the core by virtue 
of the fact that its directly connected router is on-tree. Figure 5-40 illustrates this concept. Here, the 
host labeled SG1 is a member source of group 1. Because the host is a group member, its local 
router has already joined the CBT tree for group 1. Therefore, when SG1 sources packets for group 
1, the local router can forward the packets up the tree.

Figure 5-40. SG1 Is a Member Source for Group 1. Its Local Router Has 
Joined the Group 1 Tree and Forwards Packets up the Tree Toward the 

Source

A fundamental characteristic of CBT is described in this behavior. Namely, CBT uses bidirectional 
trees. In other words, multicast traffic can not only travel downstream on the tree from the core to 
group members, but it also can travel upstream on the tree from a member source to the core. This 
is in contrast to the other shared-tree protocol, PIM-SM, which uses unidirectional trees.

Of course, not all sources are group members. Therefore, CBT also must have a mechanism for 
accommodating these nonmember sources. The mechanism is a simple IP-in-IP tunnel, as shown in 



Figure 5-41. Here, the same host is originating multicast traffic for group 1, but the host itself is not 
a member of the group. When its local router receives the traffic, it creates a tunnel to the core 
(assuming the router is running CBT and therefore knows the address of the core). The multicast 
traffic is then unicast to the core, which passes the traffic onto the group tree.

Figure 5-41. If the Source Host Is Not a Group Member, Its Local CBT 
Router Encapsulates the Source Traffic in an IP-in-IP Tunnel and Unicasts 

the Traffic to the Core

CBT Message Formats

CBT messages are encapsulated in IP headers with a protocol number of 7. With the unicast 
exceptions documented earlier in this section, the packets are transmitted with a destination address 
of 224.0.0.15 and a TTL of 1. Figure 5-42 shows the format of the common header shared by all CBT 
messages.

Figure 5-42. The CBT Message Header Format

The fields for the CBT message header are defined as follows:



●     Version specifies the CBT version number. This section has dealt exclusively with version 2, 
although there is an obsolete version 1 and a proposed version 3.

●     Type specifies the message type. Table 5-10 shows the type numbers used by the various 
CBT messages.

Table 5-10. CBT Message Types

Type Message 

0 HELLO 

1 JOIN_REQUEST 

2 JOIN_ACK 

3 QUIT_NOTIFICATION 

4 ECHO_REQUEST 

5 ECHO_REPLY 

6 FLUSH_TREE 

7 Bootstrap 

8 Candidate Core Advertisement 

●     Address Length specifies the length, in bytes, of the unicast or multicast addresses carried in 
the relevant messages.

●     Checksum is a standard one's complement of the one's complement sum of the entire CBT 
message.

CBT HELLO Message Format

HELLOs, the format of which is illustrated in Figure 5-43, are used to elect designated routers on 
multiaccess networks. They also are sent by a DR every 60 seconds as a keepalive.

Figure 5-43. The CBT HELLO Message Format

The fields for the CBT HELLO message are defined as follows:

●     Preference is a value between 0 and 255. Values from 1 to 254 indicate the "degree of 



eligibility" of the originating router to become the DR. The lower the preference value, the 
higher the eligibility. An advertised value of 0 indicates that the HELLO was originated by the 
DR. When a router first becomes active on a network, it triggers a DR election (even if there 
is an existing DR) by sending two HELLOs containing its preference. Any router whose 
preference value is higher (less eligible) does not respond. A router with a lower preference 
value (more eligible) responds with a HELLO containing its own preference value. The new 
router either becomes the DR if it does not receive a responding HELLO, or it implicitly 
acknowledges another router with a lower preference as the DR by ceasing to send HELLOs.

●     Option Type specifies the type of option in the Option Value field. CBTv2 defines only a single 
option, the border router (BR), which has not been previously defined in this section. A BR is 
a router connecting the CBT domain to another multicast routing domain. HELLOs originated 
by BRs have an Option Type of 0.

●     Option Length specifies the length of the Option Value field in bytes. HELLOs originated by 
BRs have an Option Length of 0.

●     Option Value is a variable-length field carrying the option value. HELLOs originated by BRs 
have an Option Value of 0.

CBT JOIN_REQUEST Message Format

Routers that, as the result of an IGMP Membership Report, want to be grafted onto a CBT tree for a 
particular group originate JOIN_REQUEST messages, the format of which is illustrated by Figure 5-
44.

Figure 5-44. The CBT JOIN_REQUEST Message Format

The fields for the CBT JOIN_REQUEST message are defined as follows:

●     Group Address is the multicast address of the group to be joined.
●     Target Router is the address of the core router for the group.
●     Originating Router is the address of the router that originated the message.
●     Option Type, Option Length, and Option Value are the same fields defined for the HELLO 

message.

CBT JOIN_ACK Message Format

Core routers or on-tree routers in response to JOIN_REQUEST messages send JOIN_ACK messages, 
the format of which is illustrated by Figure 5-45. They are sent to the originator of the 



JOIN_REQUEST to indicate a successful join to the group tree.

Figure 5-45. The CBT JOIN_ACK Message Format

The fields for the CBT JOIN_ACK message are defined as follows:

●     Group Address is the multicast address of the group being joined.
●     Target Router is the address of the router to which the JOIN_ACK is being sent. This is the 

address found in the Originating Router field of the JOIN_REQUEST message to which this 
message is responding.

●     Option Type, Option Length, and Option Value are the same fields defined for the HELLO 
message.

CBT QUIT_NOTIFICATION Message Format

QUIT_NOTIFICATION messages, the format of which is illustrated by Figure 5-46, are sent to parent 
(directly upstream) routers to request a prune from a particular group tree. A router originates a 
QUIT_NOTIFICATION when it no longer has any downstream interfaces for a particular group, either 
as the result of received IGMP Leave Group messages, Query timeouts, or QUIT_NOTIFICATION 
messages received from its own child (directly downstream) routers.

Figure 5-46. The CBT QUIT_NOTIFICATION Message Format

The fields for the CBT QUIT_NOTIFICATION message are defined as follows:

●     Group Address is the multicast address of the group being quit.



●     Originating Child Router is the address of the router originating the message.

CBT ECHO_REQUEST Message Format

A child router is responsible for maintaining the link to the parent router. To accomplish this, the 
child router sends an ECHO_REQUEST message every 60 seconds. As Figure 5-47 shows, the 
ECHO_REQUEST message consists of only a header and the address of the originating child router.

Figure 5-47. The CBT ECHO_REQUEST Message Format

CBT ECHO_REPLY Message Format

Parent routers send ECHO_REPLY messages, the format of which is illustrated by Figure 5-48, in 
response to ECHO_REQUEST messages from child routers. The two message types together form a 
keepalive mechanism for the link between parent and child routers.

Figure 5-48. The CBT ECHO_REPLY Message Format

The fields for the CBT ECHO_REPLY message are defined as follows:

●     Originating Parent Router is the address of the message originator.



●     Group Address is one or more fields listing the multicast group addresses for which the 
parent router is forwarding packets on the link to the child router.

CBT FLUSH_TREE Message Format

The FLUSH_TREE message, the format of which is illustrated by Figure 5-49, is sent downstream to 
child routers when a CBT router loses connection with a parent router. Child routers receiving a 
FLUSH_TREE clear the forwarding information for all groups listed in the message.

Figure 5-49. The CBT FLUSH_TREE Message Format

Group Address is one or more fields listing the multicast group addresses to which the originating 
parent router has lost contact and for which the receiving child router should clear forwarding state.



 
  
Introduction to Protocol Independent Multicast (PIM)

If you are a CCIE candidate, studying the previous sections on protocols not supported or only 
partially supported (in the case of DVMRP) by Cisco may strike you as a poor investment of time. Yet 
each protocol offers lessons in what is desirable about a multicast routing protocol and what is not.

DVMRP shares the characteristic of unicast distance vector protocols of being very simple to 
implement—little more is required than to just turn it on. But this simplicity comes at the expense of 
high overhead, creating serious scaling problems in anything other than small, high-bandwidth 
networks densely populated with group members.

MOSPF brings its link-state advantages to the table, but at the cost of increased design complexity. 
Its use of explicit joins eliminates DVMRP's topsy-turvy rule that routers not forwarding for a 
particular group must remember (hold state) that they are not forwarding packets for that group. 
The result is a reduced impact on network resources. Yet MOSPF's source-based trees still make the 
protocol unsuitable for topologies sparsely populated with group members. Given the limited increase 
in scalability, many, if not most, network designers are unwilling to pay the cost of MOSPF's more-
complex topological requirements.

DVMRP is "self-contained," in that it uses its own built-in protocol to locate the unicast addresses 
necessary for the creation and maintenance of multicast trees. In this sense it is completely 
independent of any underlying unicast routing protocol, but the price of this independence is the 
consumption of network resources to gather information that probably already exists in the unicast 
routing table.

NOTE

This cost is not as high as it might seem. As the section "PIM-DM Basics" explains, 
costs also are associated with running a flood-and-prune protocol without a built-in 
unicast component.

MOSPF, on the other hand, is a multicast extension of a unicast protocol. So while MOSPF eliminates 
the redundancy of a separate unicast protocol, it cannot run independently of OSPF.

CBT introduces true protocol independence. It consults the existing unicast routing table for unicast 
destinations, without regard for what protocol is used to maintain that table. CBT also is scalable to 
sparse topologies, although core placement must be carefully planned to minimize suboptimal paths 
and traffic bottlenecks. At this time, CBT is stuck in a Catch-22: The interest in the protocol for real-
world applications is limited by its lack of maturity, and the protocol lacks maturity because of its 
limited use in the real world. CBT is unlikely to move into mainstream acceptance unless and until its 
designers can introduce significant advantages over the currently favored and more versatile PIM-SM.

PIM is the only IP multicast routing protocol fully supported by Cisco IOS. (DVMRP is supported only 
to the degree that PIM can connect to a DVMRP network.)

Like CBT, and as its name asserts, PIM is protocol-independent. That is, it uses the unicast routing 
table to locate unicast addresses, without regard for how the table learned the addresses.



There is a standard list of PIM message formats. Some messages are used only by PIM-DM, some are 
used only by PIM-SM, and some are shared. All message formats, including those used only by PIM-
DM, are described at the end of the section "Protocol Independent Multicast, Sparse Mode (PIM-SM)."

The current version of PIM is PIMv2. Version 1 of the protocol encapsulates its messages in IP 
packets with protocol number 2 (IGMP) and uses the multicast address 224.0.0.2. PIMv2, which is 
supported beginning with Cisco IOS Software Release 11.3(2)T, uses its own protocol number of 103 
and the reserved multicast address 224.0.0.13. When a PIMv2 router peers with a PIMv1 router, it 
automatically sets that interface to PIMv1.



 
  
Operation of Protocol Independent Multicast, Dense Mode 
(PIM-DM)

As of this writing, no RFC describes PIM-DM. It is, however, described in an Internet draft.[12] 
Beyond the common message formats, you are likely to find more similarities between PIM-DM and 
DVMRP than between PIM-DM and PIM-SM.

PIM-DM Basics

PIM-DM uses five PIMv2 messages:

●     Hello
●     Join/Prune
●     Graft
●     Graft-Ack
●     Assert

PIMv2 routers use Hello messages to discover neighbors. When a PIMv2 router (either PIM-DM or PIM-
SM) becomes active, it periodically sends a Hello message on every interface on which PIM is 
configured. PIMv1 routers have the same functionality, except that they use Query messages. The 
Hello (or Query) messages contain a holdtime, which specifies the maximum time the neighbor 
should wait to hear a subsequent message before declaring the originating router dead. Both the 
PIMv2 Hello interval and the PIMv1 Query interval are 30 seconds in Cisco IOS Software by default. 
They can be changed on a per-interface basis with the command ip pim query-interval. The 
holdtime is set automatically to 3.5 times the Hello/Query interval.

Example 5-3 shows a debug capture of PIM messages being sent and received. Notice that the 
router has both PIMv1 and PIMv2 neighbors, as indicated by the Hello and Router-Query keywords. 
Notice also that the router is sending Hellos on interface E0 but is receiving neither Hellos nor 
Queries on the interface, indicating that there are no PIM neighbors on that subnet.

Example 5-3 Router Steel Is Querying for Neighbors on Interfaces E0, E1, 
and S1.708. It Is Hearing from Neighbors on E1 and S1.708

Steel#debug ip pim

PIM debugging is on

Steel#

PIM: Received v2 Hello on Ethernet1 from 172.16.6.3

PIM: Received Router-Query on Serial1.708 from 172.16.2.242

PIM: Send v2 Hello on Ethernet1

PIM: Send v2 Hello on Ethernet0

PIM: Send Router-Query on Serial1.708  (dual PIMv1v2)

PIM: Received v2 Hello on Ethernet1 from 172.16.6.3

PIM: Received Router-Query on Serial1.708 from 172.16.2.242



PIM: Send v2 Hello on Ethernet1

PIM: Send v2 Hello on Ethernet0

PIM: Send Router-Query on Serial1.708  (dual PIMv1v2)

PIM: Received v2 Hello on Ethernet1 from 172.16.6.3

In Example 5-4, the debug ip packet detail command is used (linked to an access list to filter 
uninteresting packets) to get a closer look at the PIM messages. Here, you can see that the PIMv2 
messages are sent to 224.0.0.13 and use protocol number 103, whereas the PIMv1 messages are 
sent to 224.0.0.2 and use protocol number 2.

Example 5-4 This debug Capture Shows the Multicast Destination Addresses 
and the Protocol Numbers Used by PIMv1 and PIMv2

Steel#debug ip packet detail 101

IP packet debugging is on (detailed) for access list 101

Steel#

IP: s=172.16.6.3 (Ethernet1), d=224.0.0.13, len 38, rcvd 0, proto=103

IP: s=172.16.2.241 (local), d=224.0.0.2 (Serial1.708), len 35, sending

broad/multicast, proto=2

IP: s=172.16.2.242 (Serial1.708), d=224.0.0.2, len 32, rcvd 0, proto=2

IP: s=172.16.6.1 (local), d=224.0.0.13 (Ethernet1), len 30, sending broad/multicast,

proto=103

IP: s=172.16.5.1 (local), d=224.0.0.13 (Ethernet0), len 30, sending broad/multicast,

proto=103

IP: s=172.16.6.3 (Ethernet1), d=224.0.0.13, len 38, rcvd 0, proto=103

IP: s=172.16.2.241 (local), d=224.0.0.2 (Serial1.708), len 35, sending

broad/multicast, proto=2

IP: s=172.16.2.242 (Serial1.708), d=224.0.0.2, len 32, rcvd 0, proto=2

IP: s=172.16.6.1 (local), d=224.0.0.13 (Ethernet1), len 30, sending broad/multicast,

proto=103

IP: s=172.16.5.1 (local), d=224.0.0.13 (Ethernet0), len 30, sending broad/multicast,

proto=103

In Example 5-5, the command show ip pim neighbor is used to observe the resulting PIM neighbor 
table.

Example 5-5 The PIM Neighbor Table Records the Neighbors Heard from in 
Example 5-3



Steel#show ip pim neighbor

PIM Neighbor Table

Neighbor Address  Interface          Uptime    Expires   Ver  Mode

172.16.6.3        Ethernet1          01:57:22  00:01:29  v2   Dense  (DR)

172.16.2.242      Serial1.708        04:55:56  00:01:05  v1   Dense

Steel#

When a source begins sending multicast packets, PIM-DM uses flood-and-prune to build the multicast 
tree. As each PIM-DM router receives a multicast packet, the router adds an entry to its multicast 
forwarding table. Ultimately, the packets are flooded to all leaf routers—that is, all routers that have 
no downstream PIM neighbors. If a leaf router receives a multicast packet for which it has no 
attached group members, the router must prune itself from the multicast tree. It does this by 
sending a Prune message to the upstream neighbor toward the source. The destination address of 
the Prune message is 224.0.0.13, and the address of the upstream router is encoded within the 
message. If that upstream neighbor has no attached members of the packet's group, and either has 
no other downstream neighbors or has received prunes from all of its downstream neighbors, it sends 
a Prune message to its own upstream neighbor toward the source.

Referring back to the bulleted list of PIMv2 message types earlier in this section, you will see that 
there is no "Prune" message type. Instead, there is a Join/Prune. This is a single message type that 
has separate fields for listing groups to be joined and groups to be pruned. This section continues to 
use "Prune message" and "Join message" for clarity, but you should be aware that a Prune message 
is actually a Join/Prune with a group address listed in the prune section. Likewise, a Join message is 
a Join/Prune message with a group address in the Join field.

Example 5-6 shows a forwarding table entry for multicast group 239.70.49.238. You can observe the 
(S, G) pair, showing the source to be 172.16.1.1. The router has consulted its unicast routing table 
for the upstream interface to the source, which is S1.708, and the upstream neighbor toward the 
source, which is 172.16.2.242. That information is entered into the multicast forwarding table and is 
used for the RPF check. As with DVMRP, if a packet with a source address of 172.16.1.1 and a 
destination address of 239.70.49.238 arrives on any interface other than S1.708, the RPF check fails 
and the packet is dropped.

NOTE

Example 5-6 does not show all the information in the forwarding table pertaining to 
this group; some information has been deleted for clarity. Chapter 6 presents the 
forwarding table in more detail.

Example 5-6 The show ip mroute Command Displays the Multicast 
Forwarding Table

Steel#show ip mroute 239.70.49.238

IP Multicast Routing Table



Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

 (172.16.1.1, 239.70.49.238), 01:56:27/00:02:59, flags: CT

  Incoming interface: Serial1.708, RPF nbr 172.16.2.242

  Outgoing interface list:

    Ethernet1, Prune/Dense, 01:40:23/00:00:39

    Ethernet0, Forward/Dense, 00:00:46/00:00:00

Steel#

Associated with the (S, G) entry are two timers. The first timer indicates how long the entry has been 
in the table. The second timer indicates the expiration time of the entry. If a multicast packet is not 
forwarded for this (S, G) within 2 minutes and 59 seconds, the entry is deleted.

NOTE

Cisco IOS Software uses an expiration timer of 2.5 minutes, whereas the Internet 
Draft recommends an expiration timer of 3.5 minutes.

There are also two flags associated with the entry in Example 5-6. The first flag (C) indicates that 
there is a group member on a directly connected subnet of the router. The second flag (T) indicates 
that the router is an active member of the shortest path tree (SPT)—in CBT parlance, it is "on-tree."

NOTE

PIM calls source-based trees shortest path trees, and shared trees rendezvous point 
trees (RPTs). SPT is a descriptive name, because as you will see in a subsequent 
section, these trees sometime traverse a shorter path to the source than do the 
RPTs.

Two interfaces appear on the outgoing interface list in Example 5-6. The first interface, E1, is in 
prune state and dense mode. Therefore, you know that the downstream neighbor on this interface 
has sent a Prune message. The timers show that the interface has been up for 1 hour, 40 minutes, 
and 23 seconds, and that the prune state expires in 39 seconds. When a Prune message is received, 
a 210-second expiration timer is started. The prune state is maintained until the timer expires, at 



which time the state is changed to "forward" and packets are again forwarded downstream. It is up 
to the downstream router to again send a Prune message to its upstream neighbor; this behavior is 
the same as what you saw for DVMRP.

The second interface, E0, is in forward state. Recall from Example 5-3 that the router is sending 
Hellos on E0 but is receiving no Hellos from neighbors on that interface. Based on that information 
and the information in Example 5-6, you know that the router is forwarding on E0 because there is a 
group member on that subnet. Example 5-7 confirms this conclusion. Notice in Example 5-6 that 
there is an uptime associated with the interface, but no expiration time. This is because there is no 
neighbor state to expire. Instead, the router deletes the interface from the forwarding table when 
IGMP tells it that there are no longer group members on the subnet, or when the expiration timer 
shown in Example 5-7 reaches 0.

Example 5-7 The show ip igmp group Command Displays the Connected 
Group Members Recorded in the IGMP Membership Table

Steel#show ip igmp group 239.70.49.238

IGMP Connected Group Membership

Group Address    Interface            Uptime    Expires   Last Reporter

239.70.49.238    Ethernet0            01:52:23  00:02:34  172.16.5.2

Steel#

Example 5-8 shows the forwarding table of the next router upstream toward the source. RPF checks 
are performed for (172.16.1.1, 239.70.49.238) against interface S1.803 and upstream neighbor 
172.16.2.254, and there is only one downstream interface. Comparing the flag for this entry against 
the flags in Example 5-6, you can see that this router is on the shortest path tree but that it has no 
directly connected group members.

Example 5-8 The Flags for This Entry Indicate That the Router Is on the SPT 
but That It Has No Directly Connected Group Members

Nickel#show ip mroute 239.70.49.238

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set

Timers: Uptime/Expires

 (172.16.1.1/32, 239.70.49.238), uptime 02:05:23, expires 0:02:58, flags: T

  Incoming interface: Serial1.803, RPF neighbor 172.16.2.254

  Outgoing interface list:

    Serial1.807, Forward state, Dense mode, uptime 02:05:24, expires 0:02:34

Nickel#



NOTE

The output in Example 5-8 is formatted slightly differently from the preceding 
forwarding table. This is due to a different Cisco IOS Software Release. However, 
you can readily see that the information is the same.

Moving upstream again, Example 5-9 shows another forwarding table for the group. The flags again 
indicate "Connected," but what is connected in this instance is not a group member. Notice that the 
incoming interface, E0/0, shows an RPF neighbor address of 0.0.0.0. This indicates that the 
connected device is the source for the group.

Example 5-9 This Router Is Connected to the Source 172.16.1.1, as 
Indicated by the RPF Neighbor Address of 0.0.0.0

Bronze#show ip mroute 239.70.49.238

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop, State/Mode

 (172.16.1.1/32, 239.70.49.238), 02:10:43/00:02:59, flags: CT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial0/1.305, Prune/Dense, 02:10:43/00:01:28

    Serial0/1.308, Forward/Dense, 02:10:43/00:00:00

Bronze#

Example 5-9 also shows two outgoing interfaces (172.16.1.1, 239.70.49.238). One is in forwarding 
state, and the other is in prune state. Like all flood-and-prune protocols, PIM-DM must maintain 
prune state for all interfaces. The reason for this requirement is so that a router that has pruned 
itself from a multicast tree can graft itself back onto the tree when necessary.

For example, Example 5-10 shows a router's entry for (172.16.1.1, 239.70.49.238) in which there 
are no attached group members and no downstream neighbors. As a result, the outgoing interface 
list is null. The P flag indicates that the router has sent a Prune message to the upstream neighbor 
172.16.2.246. If a connected host now sends an IGMP message requesting a join to the group, the 
router sends a PIM Graft message upstream toward the source. But the only way the router knows 



the address of the group's source is via the initial flood of multicast packets. Hence, prune state must 
be maintained as shown in the example.

Example 5-10 This Router Has a Null Outgoing Interface List for the (S,G) 
Pair (172.16.1.1, 239.70.49.238) and So Has Pruned Itself from That 
Source Tree

Lead#show ip mroute 239.70.49.238

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set

Timers: Uptime/Expires

Interface state: Interface, Next-Hop, State/Mode

 (172.16.1.1/32, 239.70.49.238), 02:32:42/0:00:17, flags: PT

  Incoming interface: Serial1.605, RPF nbr 172.16.2.246

  Outgoing interface list: Null

Lead#

The Graft message is unicast to the upstream neighbor on the group tree. When the upstream router 
receives the Graft message, it adds the interface on which the message was received to its outgoing 
interface list. The interface is put into forward state, and a Graft Ack message is immediately unicast 
to the new downstream neighbor. If the router is already forwarding packets to other downstream 
neighbors, nothing else must be done. If the router has also pruned itself from the tree, however, it 
too must send a Graft to its upstream neighbor. When a router sends a Graft message, it waits 3 
seconds for a Graft Ack. If the acknowledgement is not received within that time, the router 
retransmits the Graft message.

This PIM-DM flood-and-prune mechanism is very similar to that of DVMRP; however, there is one 
significant difference. Recall from the section "The DVMRP Routing Table" that DVMRP signals route 
dependencies to upstream neighbors using a poison reverse mechanism. The dependency tells an 
upstream DVMRP router that a particular downstream router is depending on it to forward packets 
from a particular source. All this can happen even before the source begins forwarding packets, 
because of DVMRP's built-in routing protocol. As a result, in some topologies DVMRP can limit the 
scope of its flooding. PIM-DM does not have this capability, because it does not have a built-in 
routing protocol. Therefore, PIM-DM always floods to the entire PIM domain. The protocol designers 
state the following in the specification:

We choose to accept the additional overhead in favor of the simplification and 
flexibility gained by not depending on a specific type of topology discovery protocol.

Prune Overrides

Another advantage of DVMRP's downstream dependency mechanism is apparent during the prune 
process. In Figure 5-50, a single router has multiple downstream neighbors. The upstream router, 
Mercury, is flooding a group's multicast packets onto the LAN connecting the three routers. Copper 



has a null outgoing interface list and therefore sends a Prune to Mercury. Silver, however, has an 
attached group member and therefore wants to receive the multicast traffic.

Figure 5-50. Copper Has Sent a Prune Message for (172.16.1.1, 
238.70.49.238) Because Its Outgoing Interface List for That (S, G) Pair Is 

Empty. But Silver Has a Member of the Group and Wants to Continue 
Receiving the Traffic

If the three routers are running DVMRP, there is no problem. Mercury knows its downstream 
dependencies for the group's source, and it knows it has received a Prune only from Copper, so it 
continues to forward traffic for Silver.

Suppose, however, that the routers in Figure 5-50 are running PIM-DM. Mercury certainly knows that 
it has two neighbors, based on the Hello messages, but nothing in the Hello messages describe 
dependencies. So when Copper sends a Prune message, Mercury does not know whether or not to 
prune the LAN interface.

PIM-DM circumvents this problem with a process called prune override. Copper sends the Prune 
message to Mercury, but Mercury's address is encoded in the message itself. The IP packet carrying 
the message is addressed to the ALL PIM Routers address 224.0.0.13. When Mercury receives the 
message, it does not immediately prune the interface. Instead, it sets a 3-second timer. At the same 
time, Silver also has received the Prune message because of the multicast destination address. It 
sees that the Prune is for a group it wants to continue receiving, and that the message has been sent 
to its upstream neighbor forwarding the group traffic. So Silver sends a Join message to Mercury, as 
illustrated by Figure 5-51. The result is that Silver overrides the Prune sent by Copper. As long as 



Mercury receives a Join before its 3-second timer expires, no interruption in traffic occurs.

Figure 5-51. Silver Overrides Copper's Prune with a Join Message

Example 5-11 shows a prune override in action. Debugging is used to capture PIM activity on Mercury 
in Figures 5-50 and 5-51. The first message shows that a Prune (a Join/Prune message with 
239.70.49.238 listed in its Prune field) has been received on interface E0 from Copper (172.16.3.2) 
for the (S, G) pair (172.16.1.1, 239.70.49.238). Notice that the first line indicates that the message 
is "to us." This is an indicator that Mercury has recognized its own address encoded in the message.

Example 5-11 The Router Mercury in Figure 5-51 Has Received a Prune 
from Copper (172.16.3.2). Silver (172.16.3.3) Then Sends a Join, 
Overriding Copper's Prune

Mercury#debug ip pim

PIM debugging is on

Mercury#

PIM: Received Join/Prune on Ethernet0 from 172.16.3.2, to us

PIM: Prune-list: (172.16.1.1/32, 239.70.49.238)

PIM: Schedule to prune Ethernet0 for (172.16.1.1/32, 239.70.49.238)



PIM: Received Join/Prune on Ethernet0 from 172.16.3.3, to us

PIM: Join-list: (172.16.1.1/32, 239.70.49.238)

PIM: Add Ethernet0/172.16.3.3 to (172.16.1.1/32, 239.70.49.238), Forward state

The second and third lines show that Mercury has scheduled the (S, G) entry to be pruned from 
interface E0. That is, the 3-second timer has started. On the fourth line, Mercury has received a Join 
from Silver (172.16.3.3). On lines 5 and 6, E0 has been put into forward state for the (S, G) pair. 
Copper's Prune has been overridden.

Unicast Route Changes

When a topology changes, the unicast routing table also changes. And if the unicast route changes 
affect the route to a source, PIM-DM must also change. An obvious case would be one in which a 
topology change results in a different previous-hop router on the path to a source.

When a source's RPF router changes, PIM-DM first sends a Prune message to the old router. A Graft 
message is then sent to the new RPF router to build the new tree.

PIM-DM-Designated Routers

PIM-DM elects a designated router on multiaccess networks. The protocol itself does not need a DR, 
but recall that IGMPv1 does not have a querier process and relies on the routing protocol to elect a 
DR to manage IGMP queries. This is the role of the PIM-DM (and PIM-SM) designated router.

The DR election process is quite simple. As you already know, every PIM-DM router sends a PIMv2 
Hello message or a PIMv1 Query message every 30 seconds for neighbor discovery. On multiaccess 
networks, the PIM-DM router with the highest IP address becomes the DR, as illustrated by the 
output in Example 5-12. The other routers monitor the DR's Hello packets; if none are heard within 
105 seconds, the DR is declared dead, and a new DR is elected.

Example 5-12 The PIM Neighbor Table of Mercury in Example 5-11 
Indicates That Silver, with the Highest Attached IP Address of 172.16.3.3, 
Is the Designated Router

Mercury#show ip pim neighbor

PIM Neighbor Table

Neighbor Address  Interface          Uptime    Expires   Ver  Mode

172.16.3.3        Ethernet0          2d23h     00:01:17  v1v2 Dense    (DR)

172.16.3.2        Ethernet0          2d23h     00:01:21  v1   Dense

172.16.2.250      Serial1.503        09:15:11  00:01:17  v1   Dense

Mercury#

PIM Forwarder Election



In Figure 5-52, both Mercury and Copper have a route to source 172.16.1.1. They also have 
downstream interfaces to a member of group 239.70.49.238 that are connected to a common 
multiaccess network. Both Mercury and Copper are receiving copies of the same multicast packets 
from the source, but it would obviously be inefficient for both routers to forward the packets onto the 
same network.

Figure 5-52. Both Copper and Mercury Are Receiving Copies of the Multicast 
Packets Sent by Source 172.16.1.1, but Only One Router Should Forward 

the Packets onto Subnet 172.16.3.0/24

To prevent such a situation, PIM routers select a single forwarder on the shared network. Recall that 
DVMRP has a similar function, the designated forwarder. DVMRP-designated forwarders are selected 
as part of the route exchange across the multiaccess network. Because PIM does not have its own 
routing protocol, however, it instead uses Assert messages to select the forwarder.

When a router receives a multicast packet on an outgoing multiaccess interface, it sends an Assert 
message on the network. The Assert message includes the source and group address, the metric of 
the unicast route to the source, and the metric preference (in Cisco terms, the administrative 
distance) of the unicast protocol used to discover the route. The routers producing the duplicate 
packets compare the messages and determine the forwarder based on the following criteria:

●     The router advertising the lowest metric preference (administrative distance) is the 



forwarder. The routers would advertise only different metric preferences if their routes to the 
source have been discovered via different unicast routing protocols.

●     If the metric preferences are equal, the router advertising the lowest metric is the forwarder. 
In other words, if the routers are running the same unicast routing protocol, the router 
metrically closest to the source becomes the forwarder.

●     If both the metric preferences and the metrics are equal, the forwarder is the router with the 
highest IP address on the network.

The forwarder continues forwarding group traffic onto the multiaccess network. The other routers 
stop forwarding that group's traffic and remove the multiaccess interface from their outgoing 
interface list.

When the multicast source in Figure 5-52 first begins sending packets to group 239.70.49.238, for 
example, both Copper and Mercury receive copies of the packets, and both routers forward the 
packets onto subnet 172.16.3.0/24, as illustrated in Part A of Figure 5-53. When Copper receives a 
packet from Mercury for (172.16.1.1, 239.70.49.238) on its Ethernet interface, it sees that the 
interface is on the outgoing interface list for that (S, G) pair. As a result, it sends an Assert message 
on the subnet. When Mercury receives a multicast packet from Copper on the same interface, it takes 
the same action, as illustrated in Part B of Figure 5-53.

Figure 5-53. When Copper and Mercury Detect Packets for (172.16.1.1, 
239.70.49.238) on Their Downstream Multiaccess Interfaces, They 

Originate Assert Messages to Determine the Forwarder for the Group

Example 5-13 shows Silver's unicast routing table and its multicast forwarding table. The unicast 
table indicates equal-cost OSPF paths to the source 172.16.1.1 via either Copper (172.16.3.2) or 
Mercury (172.16.3.1). Because routes are OSPF, they have an equal administrative distance of 110. 
And because both routes have an OSPF cost of 74, the forwarder is the router with the highest IP 



address.

Example 5-13 Silver's Unicast Routing Table Shows Two Next-Hop Routers 
to the Subnet of Source 172.16.1.1. The Multicast Routing Table Shows That 
the Next-Hop Router with the Highest IP Address Has Been Chosen as the 
Forwarder

Silver#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is not set

     172.16.0.0/16 is variably subnetted, 8 subnets, 2 masks

O       172.16.2.252/30 [110/138] via 172.16.3.1, 00:02:16, Ethernet1

                        [110/138] via 172.16.3.2, 00:02:16, Ethernet1

O       172.16.2.248/30 [110/74] via 172.16.3.1, 00:02:16, Ethernet1

O       172.16.2.244/30 [110/74] via 172.16.3.2, 00:02:16, Ethernet1

                        [110/74] via 172.16.3.1, 00:02:16, Ethernet1

O       172.16.2.240/30 [110/138] via 172.16.3.1, 00:02:16, Ethernet1

O       172.16.2.236/30 [110/74] via 172.16.3.1, 00:02:16, Ethernet1

C       172.16.5.0/24 is directly connected, Ethernet0

O       172.16.1.0/24 [110/84] via 172.16.3.1, 00:02:16, Ethernet1

                      [110/84] via 172.16.3.2, 00:02:16, Ethernet1

C       172.16.3.0/24 is directly connected, Ethernet1

Silver#

Silver#show ip mroute 172.16.1.1 239.70.49.238

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode



(172.16.1.1, 239.70.49.238), 00:02:02/00:02:59, flags: CT

  Incoming interface: Ethernet1, RPF nbr 172.16.3.2

  Outgoing interface list:

    Ethernet0, Forward/Dense, 00:01:50/00:00:00

Silver#



 
  
Operation of Protocol Independent Multicast, Sparse Mode 
(PIM-SM)

You learned earlier how shared trees are more scalable in sparsely populated multicast 
internetworks, and how they can even be used in densely populated internetworks. The discussion 
may have left you with the impression that shared multicast trees are always preferable over source-
based trees. Such is not the case.

Figure 5-54 shows a situation in which a source-based tree might be preferred over a shared tree. In 
this topology, the source and destination are closer to each other than they are to the core router at 
which the shared tree is rooted. A source-based tree directly between the source and destination is 
preferable, if only the associated overhead could be reduced.

Figure 5-54. A Source-Based Tree Might Be Preferable to the Shared Tree in 
This Internetwork

Unlike CBT, PIM-SM supports both shared and source-based trees, which is the primary reason it is 
presently the multicast routing protocol of choice in most modern internetworks.

PIM-SM is described in RFC 2362.[13]



PIM-SM Basics

PIM-SM uses seven PIMv2 messages:

●     Hello
●     Bootstrap
●     Candidate-RP-Advertisement
●     Join/Prune
●     Assert
●     Register
●     Register-Stop

Notice that three of the messages (Hello, Join/Prune, and Assert) also are used by PIM-DM. There are 
four messages unique to PIM-SM, just as there are two messages (Graft and Graft-Ack) used only by 
PIM-DM.

Several functions are common to PIM-SM and PIM-DM:

●     Neighbor discovery through exchange of Hello messages
●     Recalculation of the RPF interface when the unicast routing table changes
●     Election of a designated router on multiaccess networks
●     The use of Prune Overrides on multiaccess networks
●     Use of Assert messages to elect a designated forwarder on multiaccess networks

These functions are all described in the PIM-DM section and so are not described again here.

Unlike PIM-DM, PIM-SM uses explicit joins, making the creation of both shared and source-based 
multicast trees more efficient.

Finding the Rendezvous Point

As you have already learned, a shared tree is rooted at a router somewhere in the multicast 
internetwork rather than at the source. CBT calls this router the core, and PIM-SM calls it the 
rendezvous point (RP). Before a shared tree can be established, the joining routers must know how 
to find the RP. The router can learn the address of the RP in three ways:

●     The RP address can be statically configured on all routers.
●     An open-standard bootstrap protocol can be used to designate and advertise the RP.
●     The Cisco-proprietary Auto-RP protocol can be used to designate and advertise the RP.

The use of all three methods is demonstrated in Chapter 6.

As with static routes, statically configuring RP addresses on all routers has the advantage of providing 
very specific control of the internetwork, but at the cost of high administrative overhead. Static RP 
configuration is generally only feasible on small multicast internetworks.

The Bootstrap Protocol

The bootstrap protocol, first supported in Cisco IOS Software Release 11.3T, is essentially the same 
protocol used by CBT to advertise core routers, with a few changes in message names and formats. 
To run the bootstrap protocol, candidate bootstrap routers (C-BSRs) and candidate rendezvous points 
(C-RPs) are administratively designated in the internetwork. Typically, the same set of routers is 
configured as both C-BSRs and C-RPs. The C\_BSRs and C-RPs identify themselves by means of an IP 



address, which is typically configured to be the address of a loopback interface.

The first step is for a bootstrap router (BSR) to be elected from the C-BSRs. Each C-BSR is assigned 
a priority between 0 and 255 (the default is 0) and a BSR IP address. When a router is configured as 
a candidate BSR, it sets a bootstrap timer to 130 seconds and listens for a Bootstrap message.

Bootstrap messages advertise the originator's priority and BSR IP address. When a C-BSR receives a 
Bootstrap message, it compares the originator's priority with its own priority. If the originator has a 
higher priority, the receiver resets its bootstrap timer and continues to listen. If the receiver's priority 
is higher, it declares itself the BSR and begins sending Bootstrap messages every 60 seconds. If the 
priorities are equal, the higher BSR IP address is the tiebreaker.

If a C-BSR's 130-second bootstrap timer expires, the router assumes that there is no BSR, declares 
itself the BSR, and begins sending Bootstrap messages every 60 seconds.

Bootstrap messages use the All_PIM_Routers destination address of 224.0.0.13 and have a TTL of 1. 
When a PIM router receives a Bootstrap message, it sends a copy out all interfaces except the one on 
which the message was received. This procedure not only ensures that the Bootstrap messages are 
flooded throughout the multicast domain, it also ensures that every PIM router receives a copy and 
thus knows which router is the BSR.

A C-RP is configured with an RP IP address and a priority between 0 and 255. The router can be 
configured to be a candidate RP for only certain multicast groups, or it can be the C\_RP for all 
groups. When the BSR is known by reception of Bootstrap messages, the C\_RP begins unicasting 
Candidate-RP-Advertisement messages to the BSR. These messages contain the originator's RP 
address, the group addresses for which the originator is a candidate RP, and its priority.

The BSR compiles the C-RPs, their respective priorities, and their corresponding groups into an RP-
Set, and it advertises the RP-Set throughout the PIM domain in Bootstrap messages. Also included in 
the Bootstrap message is an 8-bit hash-mask. Again, all PIM routers receive the Bootstrap messages 
because of the destination address 224.0.0.13.

When a router must join a shared tree as the result of receiving either an IGMP message or a PIM 
Join message, it examines the RP-Set learned from the BSR via Bootstrap messages.

●     If there is only one C-RP for the group, that router is selected as the RP.
●     If there are multiple C-RPs for the group, each with different priorities, the router with the 

lowest priority number is chosen as the RP.
●     If there are multiple C-RPs for the group with equally low priorities, a hash function is run. 

The input of the function is the group prefix, the hash-mask, and the C-RP address, and the 
output is some numeric value. The C-RP with the highest resulting value becomes the RP.

●     If the hash function returns the same value for more than one C-RP, the C-RP with the 
highest IP address becomes the RP.

NOTE

The hash function, if you must know, is as follows:

Value(G,M,C) = (1103515245 * ((11035515245 * (G&M) + 12345) 
XOR C) + 12345) mod 231

where:

G = Group prefix



M = Hash-mask

C = C-RP address

This set of procedures ensures that all routers in the domain select the same RP for the same group. 
The only reason the hash function is necessary is to incorporate the hash-mask, which allows some 
number of consecutive group addresses to be mapped to the same RP. The use of the hash-mask is 
demonstrated in Chapter 6.

The Auto-RP Protocol

Auto-RP was first supported in Cisco IOS Software Release 11.1(6). It was developed by Cisco to 
provide automatic discovery of the RP before the bootstrap protocol was specified for PIM-SM. As 
with bootstrap, candidate RPs (C-RPs) are designated in the PIM-SM domain and are identified by 
designated IP addresses, usually the address of a loopback interface. One or more RP mapping 
agents, routers that play a role similar to BSRs, also are designated. The four major differences from 
the bootstrap protocol are as follows:

●     Auto-RP is Cisco proprietary and usually cannot be used in multivendor topologies. However, 
some other vendors now support Auto-RP.

●     RP mapping agents are designated rather than elected from a set of candidates as BSRs are.
●     RP mapping agents map groups to RPs instead of advertising an RP-Set and distributing the 

selection process throughout the domain.
●     Rather than the multicast address 224.0.0.13 used by bootstrap and understood by all PIM 

routers, Auto-RP uses two reserved multicast addresses: 224.0.1.39 and 224.0.1.40.

When a Cisco PIM-SM router is configured to be a candidate RP for one or more groups, it advertises 
itself and the groups for which it is a C-RP in RP-Announce messages. These messages are multicast 
every 60 seconds to the reserved Cisco-RP-Announce address 224.0.1.39. The configured mapping 
agents for the domain listen for this address. From all the received RP-Announce messages, the 
mapping agent selects an RP for a group based on the numerically highest IP address of all the 
group's C-RPs.

The RP mapping agent then advertises the complete list of group-to-RP mappings in RP-Discovery 
messages. These messages are sent every 60 seconds to the reserved Cisco-RP-Discovery address 
224.0.1.40. All Cisco PIM-SM routers listen for this address and thus learn the correct RP to use for 
each known group.

PIM-SM and Shared Trees

The major difference between a shared tree route entry and a source-based or SPT route entry is 
that the shared tree entry is not source-specific—in keeping with the fact that many sources share 
the same tree. Therefore, the entry is a (*, G) pair, where the asterisk is a wildcard representing any 
and all source addresses sending to the group G.

When a PIM-SM DR receives an IGMP Membership Report from a host requesting a join to a multicast 
group, it first checks to see whether there is already an entry in the multicast table for the group. If 
there is an entry for the group, the interface on which the IGMP message was received is added to 
the entry as an outgoing interface. No other action is necessary.



If no entry exists, a (*, G) entry is created for the group, and the outgoing interface is added. The 
router then looks up the group-to-RP mapping for this group (as demonstrated in Example 5-14), the 
unicast routing table is consulted for the route to the specified RP, and the upstream interface to the 
RP is added to the incoming (RPF) interface.

Example 5-14 The show ip pim rp mapping Command Displays a Router's 
Group-to-RP Mappings. Here, All Multicast Groups Are Mapped to the RP 
172.16.224.1

Iron#show ip pim rp mapping

PIM Group-to-RP Mappings

Group(s): 224.0.0.0/4, Static

    RP: 172.16.224.1 (?)

Iron#

Example 5-15 shows an example of a (*, G) route entry at router Iron in Figure 5-55.

Figure 5-55. Router Brass Is the RP for This PIM-SM Domain. Its RP 
Address, 172.16.224.1, Is Configured on Its Loopback Interface

Example 5-15 This (*, G) Entry Indicates That the Upstream Neighbor on 
the Shared Tree for Group 236.82.134.23 Is 172.16.224.1, Reachable Out 
Interface S1.708, and That the RP for the Group Is 172.16.224.1. The Flags 
Associated with the Entry Indicate Sparse Mode and That There Is a 



Connected Member (on Interface E0)

Iron#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:08:58/00:02:59, RP 172.16.224.1, flags: SC

  Incoming interface: Serial1.708, RPF nbr 172.16.2.242

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:08:59/00:02:47

Iron#

The router then sends a Join/Prune message out the upstream interface to 224.0.0.13, as illustrated 
by Figure 5-56. The message includes the address of the group to be joined and the address of the 
RP. The prune section of the message is empty. Two flags also are set—the wildcard bit (WC-bit) and 
the RP-tree bit (RPT-bit):

Figure 5-56. A Join/Prune Message Is Multicast Hop by Hop to the RP



●     The WC-bit = 1 indicates that the join address is an RP address rather than a source address.
●     The RPT-bit = 1 indicates that the message is being propagated along a shared tree to the 

RP.

When the upstream router receives the Join/Prune, one of four situations and associated actions 
holds true:

●     The router is not the RP, and it is on the shared tree. The router adds the interface on which 
it received the Join/Prune to the outgoing interface list for the group.

●     The router is not the RP, and it is not on the tree. The router creates a (*, G) entry and sends 
its own Join/Prune upstream toward the RP.

●     The router is the RP, and it has an entry for the group. The router adds the interface on 
which it received the Join/Prune to the outgoing interface list for the group.

●     The router is the RP, and it has no entry for the group. The router creates a (*, G) entry and 
adds the receiving interface to the outgoing interface list for the group.

The implication of the last bullet is that a group does not have to have a source for a tree to be built 
from members of the RP.

Once the shared tree is established, routers periodically send Join/Prune messages to upstream 
neighbors as a keepalive. The Join/Prune lists all route entries for which the destination neighbor is 
the previous-hop router. The default period is 60 seconds. This can be changed with the Cisco IOS 
Software command ip pim message-interval. The holdtime is 3 times the Join/Prune interval, or 3 
minutes by default, and it is advertised in the Join/Prune message. If a PIM-SM router does not hear 
a Join/Prune for a known group from a downstream neighbor within the holdtime, it prunes the 
downstream router from the outgoing interface list of the group entry. Example 5-16 shows the entry 
for group 236.82.134.23 in router Tin of Figure 5-55. The outgoing interface to router Iron, S1.805, 
indicates that the interface will be pruned if a Join/Prune is not received from Iron within 2 minutes, 
11 seconds.

Example 5-16 The Entry for Group 236.82.134.23 at Tin in Figure 5-55 



Shows the Remaining Holdtime Associated with Downstream Router Iron. 
Notice That There Is No C Flag Set for This Entry, Because Tin Has No 
Directly Connected Group Members

Tin#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set

Timers: Uptime/Expires

(*, 236.82.134.23), 00:09:39/0:02:56, RP 172.16.224.1, flags: S

  Incoming interface: Serial1.805, RPF neighbor 172.16.2.237

  Outgoing interface list:

    Serial1.807, Forward state, Sparse mode, uptime 00:09:39, expires 0:02:11

Tin#

Pruning occurs in the same manner. When a router wants to prune itself from a shared tree because 
it no longer has any directly connected group members or downstream neighbors, it sends a 
Join/Prune message out the RPF interface to the upstream neighbor. The group and RP address are 
listed in the Prune section, and the WC-bit and RPT-bit are set. The upstream router then removes 
the receiving interface from the outgoing interface list for the group. If that router has no more 
downstream neighbors and no connected group members, it also prunes itself.

NOTE

The Prune Override mechanism, as described in the PIM-DM section, is used to 
ensure that downstream neighbors on multiaccess networks are not inadvertently 
pruned.

Source Registration

The fundamental concept of shared trees, mentioned several times already, is that the multicast tree 
is rooted at a core or rendezvous point rather than at the source. The question arises, then, of how 
the source delivers multicast packets to the RP for delivery over the branches of the tree. Recall that 
CBT resolves the question by using bidirectional trees—packets can flow both down a branch from the 
core and up the branch toward the core. The source's directly connected router joins the shared tree 
to the core and then sends its traffic up the branch to the core. The problem with bidirectional trees 
is that it is very hard to ensure a loop-free topology, because RPF checks cannot be performed when 
there is no distinct "upstream" and "downstream."

Unlike CBT, PIM-SM uses RPF checks. Therefore, its trees must be unidirectional—that is, traffic can 



flow only down tree branches from the RP. The unidirectional traffic ensures a clearly defined 
incoming or RPF interface. If traffic flows only from the RP outward, however, how does a source 
deliver its multicast traffic to the RP?

When a PIM-SM router first receives a multicast packet from a directly connected source, it looks in 
its group-to-RP mappings to find the correct RP for the destination group, as demonstrated in the 
output in Example 5-17. This step is the same as when a member signals a group join with an IGMP 
message.

Example 5-17 The Group-to-RP Mapping of Router Aluminum in Figure 5-55. 
Compare This to Example 5-14; Iron Has a Static RP Napping, Whereas 
Aluminum Has Learned the RP Address Dynamically

Aluminum#show ip pim rp mapping

PIM Group-to-RP Mappings

Group(s) 224.0.0.0/4, uptime: 00:02:39, expires: 00:02:17

    RP 172.16.224.1 (?), PIMv2 v1

    Info source: 172.16.2.245 (?)

Aluminum#

After the group's RP is determined, the router encapsulates the multicast packet in a PIM Register 
message and sends the message to the RP. Instead of multicasting, the Register message is unicast 
to the RP address, as illustrated by Figure 5-57.

Figure 5-57. The First Multicast Packet Is Encapsulated in a PIM Register 
Message and Is Unicast to the RP



When the RP receives the Register message, the multicast packet is decapsulated. If the multicast 
routing table already has an entry for the group, copies of the multicast packet are forwarded out all 
interfaces on the outgoing interface list, as illustrated by Figure 5-58.

Figure 5-58. The Multicast Packet Is Removed from the Register Message 
and Is Forwarded Out All Interfaces on the Group's Outgoing Interface List



If there is a significant amount of multicast traffic to be sent to the RP, it is inefficient to continue 
encapsulating the packets in Register messages to get them to the RP. Therefore, the RP creates an 
(S, G) entry in its multicast table and initiates an SPT to the source DR by multicasting a Join/Prune 
message, as illustrated by Figure 5-59. In this message, the source address is included, WC-bit = 0, 
and RPT-bit = 0 to indicate that the path is a source-based SPT rather than a shared RPT.

Figure 5-59. The RP Creates a Source-Based, Shortest Path Tree to the 
Source's DR

Once the SPT is established and the RP is receiving the group traffic over that tree, it sends a 
Register Stop message to the source's DR to tell the router to stop sending the multicast packets in 
Register messages, as illustrated by Figure 5-60.

Figure 5-60. The RP Sends a Register Stop Message to Stop the Register 
Messages. The Source's Multicast Packets Are Now Sent to the RP Over the 

SPT



If there are no group members when the source begins sending multicast traffic to the RP, the RP 
does not build an SPT. Instead, it just sends a Register Stop to the source's DR, telling it to stop 
sending the encapsulated multicast packets in Register messages. The RP has a (*, G) entry for the 
group, and when a member joins, the RP can then initiate the SPT.

A mechanism known as Register Suppression helps protect against the DR continuing to send packets 
to a failed RP. When a DR receives a Register Stop, it starts a 60-second Register-Suppression timer. 
When the timer expires, the router again sends its multicast packets to the RP in Register messages. 
However, 5 seconds before this occurs, the DR sends a Register message with a flag set, called the 
Null-Register bit, and with no encapsulated packets. If this message triggers a Register Stop from the 
RP, the Register-Suppression timer is reset.

The debug messages in Example 5-18 show the sequence of events that occurs when router 
Aluminum begins sending multicast traffic to group 236.82.134.23. In this particular case, no 
members have yet joined the group. As a result, the RP (Brass) immediately sends a Register Stop 
message to Aluminum in response to the Register.

Example 5-18 This RP Has No Members for Group 236.82.134.23. As a 
Result, It Immediately Replies to the Register Message from Aluminum 
(172.16.2.233) with a Register Stop Message. Notice That Both Messages 
Are Unicast Rather Than Multicast

Brass#debug ip pim 236.82.134.23

PIM debugging is on

Brass#

PIM: Received Register on Serial1.509 from 172.16.2.233 for 172.16.1.1, group

236.82.134.23



PIM: Send Register-Stop to 172.16.2.233 for 172.16.1.1, group 236.82.134.23

Example 5-19 shows the route entry for the group. Notice that there are both (*, G) and (S, G) 
entries for the group. The (*, G) entry shows a null incoming interface and an RPF neighbor of 
0.0.0.0, indicating that this router is the root of the shared tree. The (S, G) entry shows that router 
Platinum (172.16.2.246), the upstream neighbor toward the source, is the RPF neighbor. There are 
no interfaces on the outgoing interface list, so the entry is pruned.

Example 5-19 The Routing Entry for Group 236.82.134.23 at the RP. No 
Members Have Joined the Group

Brass#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:07:38/00:02:59, RP 172.16.224.1, flags: S

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial1.509, Forward/Sparse, 00:03:06/00:02:50

(172.16.1.1, 236.82.134.23), 00:07:38/00:01:21, flags: P

  Incoming interface: Serial1.509, RPF nbr 172.16.2.246

  Outgoing interface list: Null

Brass#

Example 5-20 shows the route entries for the group at Aluminum, the source's DR. Here, the (*, G) 
entry also exists, with the Ethernet interface connecting to the source in the outgoing interface list. 
The incoming interface list is null. The (S, G) entry shows the same Ethernet interface on the 
incoming interface list. The entries have two flags in common: One flag indicates that the source is 
directly connected; the other (F) indicates that the router must send a Register message for the 
group traffic.

Example 5-20 The Corresponding Route Entry at the Source's DR Shows a 
Pruned SPT Entry

Aluminum#show ip mroute 236.82.134.23



IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop, State/Mode

(*, 236.82.134.23), 00:15:30/00:02:59, RP 172.16.224.1, flags: SJCF

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse, 00:15:23/00:02:28

(172.16.1.1/32, 236.82.134.23), 00:00:29/00:02:30, flags: PCFT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list: Null

Aluminum#

The T flag on the (S, G) entry indicates that the entry represents an SPT, and the P entry indicates 
that there are no interfaces on the outgoing interface list. If there were an RPF neighbor, the router 
would send a Prune message to it for the group.

The final flag of interest is the J flag on the (*, G) entry. This flag indicates that the router switches 
to the SPT when a packet is received on the shared tree. Just how PIM-SM routers switch from 
shared trees to SPTs is the subject of the following section.

The debug messages in Example 5-21 show the sequence of events that occurs when the host 
attached to router Iron joins the group. The Join/Prune message, which was generated by Iron and 
multicast hop by hop to the RP, is received from Tin. The interface to Tin is added to the (*, G) entry; 
the interface is also added to the (S, G) entry, because the SPT to Aluminum will be used. Next, an 
SPT Join message is sent to Aluminum.

Example 5-21 These debug Messages Show the Member Attached to Router 
Iron Joining Group 236.82.134.23

Brass#debug ip pim 236.82.134.23

PIM debugging is on

Brass#

PIM: Received v2 Join/Prune on Serial1.508 from 172.16.2.238, to us

PIM: Join-list: (*, 236.82.134.23) RP 172.16.224.1, RPT-bit set, WC-bit set, S-bit

set



PIM: Add Serial1.508/172.16.2.241 to (*, 236.82.134.23), Forward state

PIM: Add Serial1.508/172.16.2.241 to (172.16.1.1/32, 236.82.134.23)

PIM: Building Join/Prune message for 236.82.134.23

PIM: For 172.16.2.246, Join-list: 172.16.1.1/32

PIM: Send periodic Join/Prune to 172.16.2.246 (Serial1.509)

Example 5-22 shows the resulting route entries at the RP, and Example 5-23 shows the resulting 
route entries at the source's DR.

Example 5-22 When a Group Member Joins, Its Interface Is Added to the 
(*, G) Entry. It Also Is Added to the (S, G) Entry Because of the SPT to 
Aluminum

Brass#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:29:58/00:03:05, RP 172.16.224.1, flags: S

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial1.509, Forward/Sparse, 00:29:58/00:02:52

    Serial1.508, Forward/Sparse, 00:24:36/00:03:05

(172.16.1.1, 236.82.134.23), 00:24:54/00:02:59, flags: T

  Incoming interface: Serial1.503, RPF nbr 172.16.2.246

  Outgoing interface list:

    Serial1.508, Forward/Sparse, 00:24:36/00:02:35

Brass#

Example 5-23 The Interface Toward the RP Has Been Added to the Outgoing 
Interface List of Aluminum's (S, G) Entry, and the Entry Is No Longer in 
Prune State



Aluminum#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop, State/Mode

(*, 236.82.134.23), 00:00:47/00:02:59, RP 172.16.224.1, flags: SJCF

  Incoming interface: Serial0/1.309, RPF nbr 172.16.2.245

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse, 00:00:01/00:02:58

(172.16.1.1/32, 236.82.134.23), 00:00:47/00:02:59, flags: CFT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial0/1.309, Forward/Sparse, 00:00:34/00:02:58

Aluminum#

PIM-SM and Shortest Path Trees

In Figure 5-61, router Lead has been added to the PIM-SM domain, and Lead has a group member 
attached. Under basic shared-tree rules, Lead would join the shared tree rooted at Brass. It is 
obvious in the illustration, however, that the direct link to Aluminum is a more efficient path for the 
multicast packets from the source to Lead's group member.

Figure 5-61. The Direct Link Between Lead and Aluminum Is a More 
Efficient Route for Multicast Packets to Lead's Attached Group Member Than 

the Aluminum-Platinum-Brass-Lead Path



You already have seen how PIM-SM can build an SPT between the RP and the source DR. The 
protocol also allows SPTs to be built all the way from a router with attached group members to the 
source DR, to alleviate inefficiencies in topologies, such as the one in Figure 5-61.

Example 5-24 shows Lead building an SPT after its group member requests a join via IGMP. First, the 
router sends a Join to the RP (out S1.605), as expected. When the multicast packets begin arriving, 
the router can observe the IP address of the source. Consulting its unicast routing table, it sees that 
the source IP address is reachable via a different interface (S1.603) than the interface to the RP. 
Lead sends a Join to Aluminum, and an SPT is built directly between those two routers. When Lead 
begins receiving the multicast traffic for (172.16.1.1, 236.82.134.23) over the SPT, it sends a Prune 
message to the RP removing itself from the shared tree.

Example 5-24 Lead Joins the Shared RPT. After It Begins Receiving the 
Multicast Traffic, It Joins the SPT Directly from the Source DR and Prunes 
Itself from the RPT

Lead#debug ip pim 236.82.134.23

PIM debugging is on

Lead#

PIM: Check RP 172.16.224.1 into the (*, 236.82.134.23) entry

PIM: Send v2 Join on Serial1.605 to 172.16.2.254 for (172.16.224.1/32,

236.82.134.23), WC-bit, RPT-bit, S-bit

PIM: Building batch join message for 236.82.134.23

PIM: Send Join on Serial1.603 to 172.16.2.250 for (172.16.1.1/32, 236.82.134.23),



S-bit

PIM: Send v2 Prune on Serial1.605 to 172.16.2.254 for (172.16.1.1/32,

236.82.134.23), RPT-bit, S-bit

Lead#

Example 5-25 shows the multicast route entries for group 236.82.134.23 at Lead. The (*, G) entry 
for the shared tree still exists, and it continues to exist as long as the router has members or 
downstream neighbors for the group. Notice, however, that the (S, G) entry indicates a different 
incoming interface and a different RPF neighbor.

Example 5-25 Lead's Route Entries for Group 236.82.134.23 Show That the 
Router Has Switched from the RPT to the SPT

Lead#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:26:26/00:02:58, RP 172.16.224.1, flags: SJC

  Incoming interface: Serial1.605, RPF nbr 172.16.2.254

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:26:26/00:02:12

(172.16.1.1, 236.82.134.23), 00:26:26/00:02:36, flags: CJT

  Incoming interface: Serial1.603, RPF nbr 172.16.2.250

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:26:26/00:02:12

Lead#

Example 5-26 shows the route entries for Aluminum, and Example 5-27 shows the route entries for 
Brass. You can observe that Aluminum is forwarding on SPT trees to both Lead and Brass. At Brass, 
the interface to Lead is not in the outgoing interface list of the (S, G) entry, because the RP is not 
forwarding to that router.

Example 5-26 Aluminum's Multicast Route Entry for Group 236.82.134.23, 
Showing an SPT to Both Lead and Brass



Aluminum#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop, State/Mode

(*, 236.82.134.23), 00:08:17/00:02:59, RP 172.16.224.1, flags: SJCF

  Incoming interface: Serial0/1.309, RPF nbr 172.16.2.234

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse, 00:07:33/00:02:30

(172.16.1.1/32, 236.82.134.23), 00:08:17/00:02:59, flags: CFT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial0/1.309, Forward/Sparse, 00:08:07/00:02:48

    Serial0/1.306, Forward/Sparse, 00:06:55/00:02:59

Aluminum#

Example 5-27 Brass's Route Entries for Group 236.82.134.23. The Interface 
to Lead (S1.506) Remains on the Outgoing Interface List of the (*, G) Entry 
but Is Not on the Outgoing Interface List of the (S, G) Entry

Brass#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:13:13/00:03:20, RP 172.16.224.1, flags: S

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial1.508, Forward/Sparse, 00:13:04/00:03:20



    Serial1.509, Forward/Sparse, 00:12:30/00:02:18

    Serial1.506, Forward/Sparse, 00:11:52/00:02:33

(172.16.1.1, 236.82.134.23), 00:13:14/00:02:59, flags: T

  Incoming interface: Serial1.509, RPF nbr 172.16.2.246

  Outgoing interface list:

    Serial1.508, Forward/Sparse, 00:13:05/00:02:49

Brass#

RFC 2362 specifies that a router should switch from the RPT to an SPT when "the data rate is high." 
What, then, constitutes a high data rate? The answer is rather arbitrary. It might depend on the 
cumulative available bandwidth across the route, the congestion along the route, the performance of 
the routers, or any number of other factors. You, as the network administrator, must make the 
determination based on the unique characteristics of your own internetwork.

Cisco uses a simple default. Cisco routers join the SPT immediately after receiving the first packet on 
the shared tree for a given (S, G). This default can be changed with the command ip pim spt-
threshold, in which the threshold for switching to the SPT is specified in kilobits per second (the 
default represents 0 Kbps). The router measures the arrival rate of packets once every second. If 
packets for either any group or a specified group arrive at a rate exceeding the threshold, the router 
switches. When a router switches to the SPT, it monitors the arrival rate on the source tree. If the 
group's rate falls below the configured threshold for more than 60 seconds, the router attempts to 
switch back to the shared tree for that group.

The keyword infinity also can be used with the command to prevent a router from ever switching to 
the SPT.

Interestingly, a router switches to an SPT even if the shortest route to the source is through the RP. 
In the previous examples, router Iron stayed on the RPT. The reason is that, to simplify the 
introduction to PIM-SM tree behavior, the statement ip pim spt-threshold infinity was added to 
Iron's configuration. Example 5-28 displays Iron's route entry for group 236.82.134.23. The 
command is then removed from the router's configuration, and the route is observed again. You can 
see that the router, after the SPT threshold is set back to the default, immediately switched to the 
SPT. The route entries at the RP remain as they appear in Example 5-27, because the interface 
toward Iron is already on the outgoing interface list of the (S, G) entry.

Example 5-28 Iron's Entries for Group 236.82.134.23, Before and After the 
SPT Switching Threshold Has Been Reset to the Default

Iron#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires



Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:00:57/00:02:59, RP 172.16.224.1, flags: SC

  Incoming interface: Serial1.708, RPF nbr 172.16.2.242

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:00:57/00:02:02

Iron#conf t

Enter configuration commands, one per line.  End with CNTL/Z.

Iron(config)#no ip pim spt-threshold infinity

Iron(config)#^Z

Iron#

2d01h: %SYS-5-CONFIG_I: Configured from console by console

Iron#show ip mroute 236.82.134.23

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 236.82.134.23), 00:01:23/00:02:59, RP 172.16.224.1, flags: SJC

  Incoming interface: Serial1.708, RPF nbr 172.16.2.242

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:01:23/00:02:34

(172.16.1.1, 236.82.134.23), 00:00:11/00:02:59, flags: CJT

  Incoming interface: Serial1.708, RPF nbr 172.16.2.242

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:00:12/00:02:47

Iron#

In Example 5-28 and in several previous figures, a J flag is associated with either the (*, G) entry, 
the (S, G) entry, or both. This is the Join SPT flag. When associated with a (*, G) entry, it indicates 
that traffic flowing down the shared tree exceeds the SPT threshold. If the SPT has not already been 
joined, it will be following the next received group packet. When associated with an (S, G) entry, the 
J flag indicates that the SPT has been joined because the RPT traffic has exceeded the SPT threshold.



Table 5-11 lists and describes all the flags that may be associated with an mroute. This list is taken 
directly from the Cisco IOS Software Command Reference.

Table 5-11. mroute Flags

Flag Description 

D-Dense Entry is operating in dense mode. 

S-Sparse Entry is operating in sparse mode. 

C-Connected A member of the multicast group is present on the directly 
connected interface. 

L-Local The router itself is a member of the group. 

P-Pruned The route has been pruned. 

R-RP-bit set Indicates that the (S, G) entry is pointing toward the RP. This is 
typically prune state along the shared tree for a particular source. 

F-Register flag Indicates that the software is registering for a multicast source. 

T-SPT-bit set Indicates that packets have been received on the shortest path 
tree. 

J-Join SPT For (*, G) entries, indicates that the rate of traffic flowing down the shared tree 
is exceeding the SPT-Threshold set for the group. (The default SPT-Threshold 
setting is 0 Kbps.) When the J-Join SPT flag is set, the next (S, G) packet 
received down the shared tree triggers an (S, G) join in the direction of the 
source, thereby causing the router join the source tree.

For (S, G) entries, indicates that the entry was created because the SPT-
Threshold for the group was exceeded. When the J-Join SPT flag is set for (S, 
G) entries, the router monitors the traffic rate on the source tree and attempts 
to switch back to the shared tree for this source if the traffic rate on the source 
tree falls below the group's SPT-Threshold for more than 1 minute.

PIMv2 Message Formats

PIMv2 messages are encapsulated in IP packets with a protocol number of 103. Except for the cases 
in which the messages are unicast, the IP destination address is the reserved multicast address 
224.0.0.13, and the TTL is set to 1. Both the multicast address and the TTL ensure that the 
messages are forwarded only to neighboring routers.

Although version 2 is the current version, PIMv1 is still common. That version uses an IP protocol 
number of 2, making it a subset of the IGMP protocol. Version 1 uses a multicast address of 
224.0.0.2.

Cisco IOS supports PIMv2 beginning with 11.3(2)T. It provides backward compatibility with PIMv1 by 
automatically switching to that version on any interface on which a version neighbor is detected. An 



interface also can be manually set to PIMv1 or PIMv2 with the ip pim version command.

For the sake of space, only PIMv2 message formats are covered in this book. For PIMv1 formats, 
refer to the appropriate Internet drafts.

You will notice that several message types have field labels that refer to encoded addresses. For 
more information on the encoding formats and details of these fields, see section 4.1 of RFC 2362.

All Reserved fields in the following messages are set to all zeros and are ignored upon receipt.

PIMv2 Message Header Format

All PIM messages have a standard header, shown in Figure 5-62.

Figure 5-62. The PIMv2 Message Header

The fields for the PIMv2 message header are defined as follows:

●     Version specifies the version number. The current version number is 2, although PIMv1 is still 
in common usage.

●     Type specifies the type of PIM message encapsulated behind the header. Table 5-12 lists the 
PIMv2 message types.

Table 5-12. PIMv2 Message Types

Type Message 

0 Hello 

1 Register (used in PIM-SM only) 

2 Register-Stop (used in PIM-SM only) 

3 Join/Prune 

4 Bootstrap (used in PIM-SM only) 

5 Assert 

6 Graft (used in PIM-DM only) 

7 Graft-Ack (used in PIM-DM only) 

8 Candidate-RP-Advertisement (used in PIM-SM only) 



●     Checksum is a standard IP-style checksum, using a 16-bit one's complement of the one's 
complement of the PIM message, excluding the data portion of the Register message.

PIMv2 Hello Message Format

PIMv2 Hello messages, the format of which is illustrated in Figure 5-63, are used for neighbor 
discovery and neighbor keepalives. The messages are sent every 30 seconds by default, and the 
period can be changed with the command ip pim query-interval.

Figure 5-63. The PIMv2 Hello Message Format

The fields for the PIMv2 Hello message are defined as follows:

●     Option Type specifies the type of option in the Option Value field. Presently, only Option Type 
1 is used. This specifies that the Option Value field is a holdtime. Values 2 through 16 are 
reserved.

●     Option Length specifies the length, in bytes, of the Option Value field. When the Option Value 
is a holdtime (Option Type = 1), the Option Length is 2.

●     Option Value is a variable-length field carrying the value of whatever option is specified by 
the Option Type. Holdtime (Option Type = 1, Option Length =2) is the time that a router 
waits to hear a Hello message from a PIM neighbor before declaring the neighbor dead. The 
holdtime is 3.5 times the Hello interval.

The format shows that multiple option TLVs (type/length/value) can be carried in a single Hello 
message.

PIMv2 Register Message Format

Register messages, the format of which is illustrated in Figure 5-64, used only by PIM-SM, are 
unicast from the source's DR to the RP, and they carry the initial multicast packets from the source. 
That is, Register messages are used to tunnel multicast traffic from the source to the RP when an 



SPT has not yet been established from the source's DR to the RP.

Figure 5-64. The PIMv2 Register Message Format

The fields for the PIMv2 Register message are defined as follows:

●     Checksum, in Register messages, is calculated only on the message header. The data packet 
portion is excluded.

●     B is the Border bit. The bit is set to 0 if the originator is a DR with a directly connected 
source. The bit is set to 1 if the source is a PIM Multicast Border Router (PMBR). PMBRs, and 
other interdomain multicast issues, are discussed in Chapter 7.

●     N is the Null-Register bit. A DR that is probing the RP before expiring its local Register-
Suppression timer sets this bit to 1.

●     Multicast Data Packet is a single packet from the source that is being tunneled to the RP in 
the Register message.

PIMv2 Register Stop Message Format

The Register Stop message, the format of which is illustrated in Figure 5-65, is sent by an RP to a DR 
originating Register messages. The packet is used in one of two situations:

Figure 5-65. The PIMv2 Register Stop Message Format



●     The RP is receiving the sourced multicast packets over the SPT and no longer needs to 
receive them encapsulated in Register messages.

●     There are no group members, either directly attached or over SPTs or RPTs, for the RP to 
forward the packets to.

The fields for the PIMv2 Register Stop message are defined as follows:

●     Encoded Group Address is the multicast group IP address for which the receiver should stop 
sending Register messages.

●     Encoded Unicast Source Address is the IP address of the multicast source. This field can also 
specify the wildcard source for (*, G) entries by setting the address to all zeros.

PIMv2 Join/Prune Message Format

Join/Prune messages, the format of which is illustrated in Figure 5-66, are sent upstream to either 
RPs or sources and are used to join and prune both RPTs and SPTs. The message consists of a list of 
one more multicast groups. For each multicast address, there is a list of one or more source 
addresses. Together, these lists specify all (S, G) and (*, G) entries to be joined or pruned.

Figure 5-66. The PIMv2 Join/Prune Message Format



The fields for the PIMv2 Join/Prune message are defined as follows:

●     Encoded Unicast Upstream Neighbor Address is the IP address of the RPF or upstream 
neighbor to which the message is being sent.

●     Number of Groups specifies the number of multicast groups contained in the message.
●     Encoded Multicast Group Address specifies an IP address of a multicast group.
●     Number of Joined Sources specifies the number of Encoded Joined Source Addresses listed 

under this multicast group address.
●     Number of Pruned Sources specifies the number of Encoded Pruned Source Addresses listed 

under this multicast group address.
●     Encoded Joined Source Address specifies the source address for an (S, G) pair or a wildcard 

for a (*, G) pair. The two wildcards in a (*, *, RP) triple (described in Chapter 7) can also be 
specified in this field. In addition to the source address, three flags are encoded into this 
field:

- S is the Sparse bit. The bit is set to 1 for PIM-SM and is used for version 1 
compatibility.



- W is the wildcard (WC) bit. If it's set to 1, the Encoded Joined Source Address 
represents the wildcard in a (*, G) or (*, *, RP) entry. When it's set to 0, the 
Encoded Joined Source Address represents the source address in an (S, G) entry. 
When a join is sent to an RP, the W bit must be set to 1.

- R is the RPT bit. When the bit is set to 1, the join is sent to the RP. When the bit is 
set to 0, the join is sent to the source.

●     Encoded Pruned Source Address specifies the address of a pruned source. The encoding is the 
same as for the Encoded Joined Source Address field, and the S, W, and R bits apply to the 
pruned address as they do to the joined address.

PIMv2 Bootstrap Message Format

Bootstrap messages, the format of which is illustrated in Figure 5-67, are originated by bootstrap 
routers (BSRs) every 60 seconds and are flooded throughout a PIM-SM domain to ensure that all 
routers determine the same RPs for the same groups. The message contains a list of one or more 
multicast group addresses. For each of these group addresses, there is a list of Candidate RPs (C-
RPs) and their priorities. This list is the RP-Set for that group. Receiving routers use a common 
algorithm to determine, from the list of C-RPs, the RP for the group. The algorithm is designed to 
ensure that all routers in the PIM domain derive the same RP address. Bootstrap messages also are 
used to elect a BSR, as described in the section "The Bootstrap Protocol."

Figure 5-67. The PIMv2 Bootstrap Message Format



The fields for the PIMv2 Boostrap message are defined as follows:

●     Fragment Tag is used when a Bootstrap message must be divided into fragments because the 
message length exceeds the maximum packet size. The fragment tag is a randomly 
generated number that is assigned to all fragments of the same message. That is, all 
fragments of any unique Bootstrap message will have the same number in the Fragment Tag 
field.

●     Hash Mask Length describes the mask to be used in the hash algorithm. The length of the 
mask is set using the ip pim bsr-candidate command.

●     BSR Priority is a number between 0 and 255 that specifies the priority of the originating 
candidate BSR. The C-BSR with the highest priority becomes the BSR. This priority is set 
using the ip pim bsr-candidate command.

●     Encoded Unicast BSR Address is the IP address of the domain's BSR.
●     Encoded Group Address specifies an IP address of a multicast group.
●     RP Count specifies the number of C-RPs listed for the given multicast group—that is, the size 

of the RP-Set. The description of the size of the RP-Set is important, because if the Bootstrap 
message is fragmented and one of the fragments is lost, the determination of the RP may 



become inconsistent across the PIM domain. Therefore, if the number of RPs in the received 
RP-Set does not match the RP count, the entire set is discarded.

●     Fragment RP Count specifies the number of C-RPs included in this fragment for this group.
●     Encoded Unicast RP Address is the IP address of a C-RP.
●     RP Holdtime is the time a BSR should wait to hear a Candidate-RP-Advertisement message 

from a C-RP before deleting the C-RP from the RP-Set. The holdtime is 150 seconds.
●     RP Priority is a number between 0 and 255 used in the RP selection algorithm. The "highest" 

priority is 0.

The PIMv2 Assert Message Format

The PIMv2 Assert message, the format of which is illustrated in Figure 5-68, is used to elect a 
designated forwarder on multiaccess networks. When a PIM router receives a multicast packet on an 
interface that is on the outgoing interface for the packet's group, the router assumes that there must 
be another router connected to that data link forwarding for the group. The router sends an Assert so 
that other routers sharing the multiaccess network can decide which of them will forward packets for 
the group.

Figure 5-68. The PIMv2 Assert Message Format

The fields for the PIMv2 Assert message are defined as follows:

●     Encoded Group Address is the multicast IP destination address of the packet that triggered 
the Assert.

●     Encoded Unicast Source Address is the IP source address of the multicast packet that 
triggered the Assert.

●     Metric Preference is a preference value assigned to the unicast routing protocol that provided 
the route to the source. This value is used in the same way an administrative distance is 
used, to provide a consistent metric when comparing routes from diverse routing protocols.

●     Metric is the metric associated with the route to the source in the originator's unicast routing 
table.

The PIMv2 Graft Message Format

A PIM-DM router sends a PIMv2 Graft message to its upstream neighbor to request a rejoin to a 
previously pruned tree. The format of the message is the same as the Join/Prune message shown in 
Figure 5-66, except that the Type = 6.



The PIMv2 Graft-Ack Message Format

A PIM-DM router sends a Graft-Ack message to a downstream neighbor in response to a Graft 
message. The format of the Graft-Ack message is the same as the Join/Prune message shown in 
Figure 5-66, except that the Type = 7.

The Candidate-RP-Advertisement Message Format

Candidate RPs (C-RPs) periodically unicast Candidate-RP-Advertisement messages to BSRs. The BSR 
uses the information in the message to build its RP-Set, which is in turn advertised to all PIM-SM 
routers in the domain within Bootstrap messages. Figure 5-69 shows the format of the Candidate-RP-
Advertisement message.

Figure 5-69. The Candidate-RP-Advertisement Message Format

The fields for the Candidate-RP-Advertisement message are defined as follows:

●     Prefix Count specifies the number of multicast group addresses included in the message. If 
the originator is a C-RP for all multicast groups in the domain, the Prefix Count is 0.

●     Priority is a number between 0 and 255, specifying the priority of the originating C\_RP. This 
number is used in the algorithm for selecting an RP. Priorities are represented inverse to the 
value of the priority number; 0 is the highest priority, and 255 is the lowest.

●     Holdtime specifies the amount of time the message is valid.
●     Encoded Unicast RP Address is the C-RP address. This address is the IP address of one of the 

router's interfaces; typically, the address of a loopback interface is used.
●     Encoded Group Address specifies one or more multicast group addresses for which the 

originator is a candidate RP.



 
  
Looking Ahead

Of all the IP routing protocols examined in the two volumes of this book, the multicast protocols are 
the most unfamiliar to the most people. Although this chapter provides a reasonable overview of the 
five protocols and the relevant supporting protocols, it is by no means exhaustive. There is much 
more to IP multicast that cannot be covered within the confines of this book; for more extensive 
coverage, refer to "Recommended Reading."

Now that you have some understanding of how the five protocols work, Chapter 6 provides Cisco-
specific examples of how to configure and troubleshoot IP multicast routing.

You can think of the protocols covered in this chapter as multicast IGPs. All the protocols operate 
within a single multicast domain. In Chapter 7, you examine the protocols used for inter-AS multicast 
routing.



 
  
Recommended Reading

Beau Williamson, Developing IP Multicast Networks. Indianapolis, IN, Cisco Press, 2000.



 
  
Command Summary

Table 5-13 lists and describes the commands discussed in this chapter.

Table 5-13. Command Summary

Command Description 

clear ip cgmp [type number] Causes a CGMP Leave message to be sent, 
clearing all multicast group entries from the 
caches of receiving Catalyst switches. 

debug ip igmp Displays IGMP messages received and sent, as 
well as IGMP-host-related events. 

debug ip packet [access-list-
number | detail] 

Displays IP packets received and sent. The 
optional access list is used to filter uninteresting 
packets from the display. 

debug ip pim [group] Displays PIM messages received and sent, as well 
as PIM-related events. 

ip igmp query-interval 
seconds 

Changes the interval at which IGMP queries are 
sent from the default 60 seconds. 

ip igmp query-max-
response-time seconds 

Changes the Max Response Time advertised in 
IGMP queries from the default 10 seconds. 

ip igmp query-timeout 
seconds 

Changes the default time the router waits to hear 
an IGMP query from the DR or querier before 
taking over as the DR or querier. The default is 2 
times the query interval. 

ip igmp version {1 | 2} Sets the IGMP version on an interface. The 
default is 2. 

ip multicast use-functional Enables the mapping of IP multicast addresses to 
the Token Ring functional address 
0xC000.0004.0000. 

ip pim bsr-candidate type 
number hash-mask-length 
[priority] 

Configures the router to announce itself as a 
C\_BSR. 

ip pim message-interval 
seconds 

Changes the interval at which sparse-mode Join-
Prune messages are sent from the default 60 
seconds. 



ip pim query-interval 
seconds 

Changes the interval at which PIMv2 Hello or 
PIMv1 Router Query messages are sent from the 
default 30 seconds. 

ip pim spt-threshold {kbps | 
infinity} [group-list access-
list-number] 

Specifies the receive rate at which a PIM-SM 
router switches from the RPT to the SPT. The 
default is to switch after the first multicast packet 
is received. 

ip pim version [1 | 2] Sets an interface to use PIMv1 or PIMv2. The 
default is 2. 

show ip igmp groups [group-
name | group-address | type 
number] 

Displays the list of multicast groups for which 
there are directly connected members, learned 
via IGMP. 

show ip mroute [group-name 
| group-address] [source] 
[summary] [count] [active 
kbps] 

Displays the contents of the IP multicast routing 
table. 

show ip pim neighbor [type 
number] 

Displays the list of neighbors discovered by 
PIMv1 Router Query messages or PIMv2 Hellos. 

show ip pim rp [group-name 
| group-address | mapping] 

Displays the active RPs associated with multicast 
groups or mroutes. 

show ip route [address 
[mask] [longer-prefixes]] | 
[protocol [process-id]] 

Displays routes in the unicast IP routing table. 



 
  
Review Questions

1: Give several reasons why replicated unicast is not a practical substitution for true multicast in 
a large network.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: What range of addresses is reserved for IP multicast?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: How many subnets can be created from a single Class D prefix?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: In what way do routers treat packets with destination addresses in the range 
224.0.0.1–224.0.0.255 differently from other multicast addresses?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



5: Write the Ethernet MAC addresses that correspond to the following IP addresses: 

a.  239.187.3.201

b.  224.18.50.1

c.  224.0.1.87

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: What multicast IP address or addresses are represented by the MAC address 
0100.5E06.2D54?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: Why is Token Ring a poor medium for delivering multicast packets?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

8: What is join latency?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



9: What is leave latency?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

10: What is a multicast DR (or querier)?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

11: What device sends IGMP Query messages?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

12: What device sends IGMP Membership Report messages?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

13: How is an IGMP Membership Report message used?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



14: What is the functional difference between a General IGMP Query and a Group-Specific IGMP 
Query?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

15: Is IGMPv2 compatible with IGMPv1?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

16: What IP protocol number signifies IGMP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

17: What is the purpose of the Cisco Group Membership Protocol (CGMP)?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

18: What is the advantage of using IP Snooping rather than CGMP? What is the possible 
disadvantage?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



19: What devices send CGMP messages: routers, Ethernet switches, or both?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

20: What is Reverse Path Forwarding?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

21: How many hosts constitute a dense topology, and how many hosts constitute a sparse 
topology?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

22: What is the primary advantage of explicit joins over implicit joins?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

23: What is the primary structural difference between a source-based multicast tree and a shared 
multicast tree?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



24: What is multicast scoping?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

25: What are the two methods of IP multicast scoping?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

26: From the perspective of a multicast router, what is meant by upstream and what is meant by 
downstream?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

27: What is an RPF check?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

28: What is a prune? What is a graft?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



29: What is a prune lifetime? What happens when a prune lifetime expires?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

30: What is a route dependency? How does DVMRP signal a route dependency?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

31: Is DVMRP a dense-mode protocol or a sparse-mode protocol?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

32: Is MOSPF a dense-mode protocol or a sparse-mode protocol?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

33: What is the name and type number of the LSA used exclusively by MOSPF?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



34: Can an MOSPF router establish an adjacency with an OSPF router that does not support 
MOSPF?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

35: Define the following MOSPF router types: 

a.  Interarea multicast forwarder

b.  Inter-AS multicast forwarder

c.  Wildcard multicast receiver

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

36: Is CBT a dense-mode protocol or a sparse-mode protocol?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

37: What are a CBT parent router and a CBT child router?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



38: Describe the two ways a CBT DR can deliver packets from a source to the core and the 
circumstances under which each method is used.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

39: What is a PIM prune override?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

40: What is a PIM forwarder? How is a forwarder selected?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

41: What criteria does PIM use to select a DR?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

42: What is a PIM SPT? What is a PIM RPT?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



43: What two mechanisms are available for Cisco routers to automatically discover PIM-SM RPs?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

44: Of the mechanisms in Question 43, which should be used in multivendor router topologies?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

45: What is a C-RP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

46: What is a BSR?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

47: What is an RP mapping agent?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



48: What is the difference between an (S, G) mroute entry and a (*, G) mroute entry?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

49: What is the major drawback with a bidirectional CBT tree between the source and core, as 
opposed to a PIM-SM unidirectional tree from the RP to the source?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

50: What is PIM-SM source registration?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

51: When does a Cisco router switch from a PIM-SM RPT to an SPT?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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Chapter 6. Configuring and Troubleshooting 
IP Multicast Routing

●     Configuring IP Multicast Routing— This section presents the basics of configuring both 
PIM-DM and PIM-SM using Cisco IOS Software and presents case studies to further 
understand the configuration of these protocols.

●     Troubleshooting IP Multicast Routing— This section examines some of the tools available 
for troubleshooting IP multicast with Cisco IOS Software and provides some troubleshooting 
tips.

You examined various IP multicast routing protocols in Chapter 5, "Introduction to IP Multicast 
Routing," and you learned that the protocol of choice for Cisco and for most router vendors presently 
is PIM, whether dense mode or sparse mode. Now that you have an understanding of the basics of 
PIM operation, this chapter looks at the procedures to configure and troubleshoot both PIM-DM and 
PIM-SM using Cisco IOS Software.



 
  
Configuring IP Multicast Routing

Before you can configure a particular IP multicast routing protocol, you must set up the router for 
general, protocol-neutral multicast routing.

NOTE

"Protocol-independent" would be a better term than "protocol-neutral," but it would 
cause confusion in light of PIM.

Example 6-1 shows a configuration containing some of the commands you might use. Out of all the 
commands shown, ip multicast-routing is the only required one. Just as the default (and therefore 
hidden) ip routing enables unicast IP routing, this command enables the support of all IP multicast 
routing functions.

Example 6-1 The Command ip multicast-routing Is Required to Enable 
Multicast Routing Support; Other Commands in This Basic Configuration 
Might Be Required by Specific Implementations

version 12.1

!

hostname Stovepipe

!

ip multicast-routing

ip dvmrp route-limit 20000

!

interface Ethernet0

 ip address 172.17.1.1 255.255.255.0

 ip igmp version 1

!

interface Ethernet1

 ip address 172.17.2.1 255.255.255.0

 ip cgmp

!

interface Serial0

 ip address 172.18.1.254 255.255.255.252



 no ip mroute-cache

!

interface TokenRing0

 ip address 172.16.2.1 255.255.255.0

 ip multicast use-functional

 ring-speed 16

!

interface TokenRing1

 ip address 172.16.1.1 255.255.255.0

 ring-speed 16

Of some interest in this configuration is the fact that there are no commands evident enabling 
Internet Group Management Protocol (IGMP). When IP multicast routing is enabled on the router, 
IGMPv2 is automatically enabled on the LAN interfaces. The only IGMP command in this configuration 
is ip igmp version on interface E0, changing the default to IGMPv1. Table 6-1 lists all the IGMP 
commands that change the default values in a given interface. Other IGMP commands are 
demonstrated later in this chapter.

Table 6-1. IGMP Interface Commands

Command DefaultValue Description 

ip igmp query-interval 
seconds 

60 The frequency at which the 
router queries for group 
members on the interface. 

ip igmp query-max-
response-time seconds 

10 The Max-Response-Time value 
advertised in IGMP query 
messages, telling hosts how long 
the router waits before deleting 
the group. The command is valid 
only for IGMPv2. 

ip igmp query-timeout 
seconds 

2x query interval The time the router waits to hear 
a query from another router 
before taking over as the 
querier. 

ip igmp version {1 | 2} 2 Sets the interface to either 
IGMPv1 or IGMPv2. 

The configuration of interface E1 in Example 6-1 includes the ip cgmp command, which causes Cisco 
Group Management Protocol (CGMP) messages to be originated for an attached Catalyst switch. 
Another option is ip cgmp proxy, which can be used when there are other routers on the subnet that 
are not CGMP-capable. This command tells the router to advertise those non-CGMP routers in its 
CGMP messages. If you configure a Cisco router as a CGMP proxy, you must ensure that that router 



is elected as the IGMP querier.

The next command of interest in Example 6-1 is no ip mroute-cache on S0. This command disables 
fast switching of IP multicast packets in the same way that no ip route-cache disables fast switching 
of unicast IP packets. You would disable the fast switching of multicast IP packets for the same 
reasons you would disable fast switching of unicast packets—for example, to enable per-packet load 
sharing across parallel paths rather than per-destination load sharing.

The configuration of interface TO0 includes the ip multicast use-functional command, whereas the 
configuration of TO1 does not. The result is that TO0 maps multicast IP packets to the Token Ring 
functional address 0xC000.0004.0000. TO1, on the other hand, maps multicast IP addresses to the 
broadcast address 0xFFFF.FFFF.FFFF.

Case Study: Configuring Protocol-Independent Multicast, Dense Mode (PIM-
DM)

After you have enabled IP multicast routing on a Cisco router, you can very simply enable PIM-DM by 
adding the command ip pim dense-mode to all the router's interfaces. Figure 6-1 shows a simple 
PIM-DM topology, and Example 6-2 shows the configuration of router Porkpie. The other router 
configurations are similar to that of Porkpie.

Figure 6-1. This Topology Is Used to Demonstrate Basic PIM-DM 
Functionality



Two important considerations when configuring PIM-DM are reflected in Example 6-2. The first and 
most obvious is that a unicast routing protocol—in this case, OSPF—must be running. Without it, PIM 
has no mechanism for determining the Reverse Path Forwarding (RPF) interface. The second 
consideration can be observed by comparing the configuration in Example 6-2 with the topology 
diagram in Figure 6-1. When configuring PIM, the protocol should be enabled on every interface. 
Otherwise, you run the risk of inadvertent RPF failures.

Example 6-2 The ip pim dense-mode Command Enables PIM-DM on an 
Interface

hostname Porkpie

!

ip multicast-routing

!

interface Ethernet0

 ip address 10.1.2.1 255.255.255.0

 ip pim dense-mode

 ip cgmp

!

interface Serial1

 no ip address

 encapsulation frame-relay

 no ip mroute-cache

!

interface Serial1.605 point-to-point

 description PVC to Fedora

 ip address 10.2.4.1 255.255.255.0

 ip pim dense-mode

 no ip mroute-cache

 frame-relay interface-dlci 605

!

interface Serial1.609 point-to-point

 description PVC to Stetson

 ip address 10.2.3.2 255.255.255.0

 ip pim dense-mode

 no ip mroute-cache

 frame-relay interface-dlci 609



!

router ospf 1

 network 10.0.0.0 0.255.255.255 area 0

!

Example 6-3 shows Porkpie's mroute entry for group 228.13.20.216 after source 10.1.1.88 has 
begun transmitting, and after member 10.1.2.113 has joined. The PIM-DM section of Chapter 5 
showed only the (S, G) mroute entry in its examples for the sake of clarity. In reality, a (*, G) entry 
is created in addition to the (S, G). The (*, G) entry is not part of PIM-DM specification and is not 
used for packet forwarding. Rather, Cisco IOS Software creates the entry as a "parent" data structure 
of (S, G). All interfaces connected to PIM neighbors, and all interfaces with directly connected group 
members, are added to the outgoing interface list of the (*, G) entry. The incoming interface list of 
this entry, when only PIM-DM is running, is always empty. The incoming and outgoing interfaces in 
the (S, G) entry are then taken from this list.

NOTE

Cisco IOS Software Release 12.1 was released during the initial writing of this 
chapter and was installed on the demonstration routers. As a result, you will notice 
some differences in the field formats of commands such as show ip mroute and 
show ip route from earlier chapters.

Example 6-3 Porkpie's mroute Entry for Group 228.13.20.21

Porkpie#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 20:06:06/00:02:59, RP 0.0.0.0, flags: DJC

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Ethernet0, Forward/Dense, 20:05:25/00:00:00

    Serial1.609, Forward/Dense, 00:03:32/00:00:00



    Serial1.605, Forward/Dense, 00:03:32/00:00:00

(10.1.1.88, 228.13.20.216), 00:03:21/00:02:59, flags: CT

  Incoming interface: Serial1.605, RPF nbr 10.2.4.2

  Outgoing interface list:

    Ethernet0, Forward/Dense, 00:03:21/00:00:00

    Serial1.609, Prune/Dense, 00:03:21/00:00:03

Porkpie#

In Example 6-3, you can see that E0, S1.609, and S1.605 are on the (*, G) outgoing interface list. 
S1.605 is then entered as the RPF interface in the (S, G) entry, and packets are being forwarded out 
E0. S1.609 is also on the outgoing list, but is pruned.

As discussed in Chapter 5, PIM (and any other multicast protocol that uses RPF checks) can have only 
one incoming interface. Example 6-4 shows Porkpie's unicast routing table. There are two equal-cost 
paths to source subnet 10.1.1.0/24, so PIM breaks the tie by choosing the interface to the neighbor 
with the numerically higher IP address as the RPF interface. In Example 6-4, this address is 10.2.4.2 
on interface S1.605. A look back at Example 6-3 verifies that this interface is on the incoming 
interface list.

Example 6-4 Porkpie's Unicast Routing Table

Porkpie#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - static IS-IS level-2, ia - IS-IS inter area

       * - candidate default, U - per-user route, o - ODR

       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 6 subnets

O       10.2.1.0 [110/128] via 10.2.4.2, 00:15:07, Serial1.605

C       10.1.2.0 is directly connected, Ethernet0

O       10.2.2.0 [110/128] via 10.2.3.1, 00:15:07, Serial1.609

O       10.1.1.0 [110/138] via 10.2.4.2, 00:15:07, Serial1.605



                 [110/138] via 10.2.3.1, 00:15:07, Serial1.609

C       10.2.3.0 is directly connected, Serial1.609

C       10.2.4.0 is directly connected, Serial1.605

Porkpie#

In Figure 6-2, another router has been added to the internetwork. This router, Bowler, is connected 
to the Ethernet switch and so is sharing a multiaccess link with Porkpie. The rules for IGMP queriers, 
PIM-designated routers, and PIM forwarders discussed in Chapter 5 all come into play here:

Figure 6-2. Router Bowler Has Joined the Internetwork of Figure 6-1; 
Bowler, Porkpie, and the Group Member Are Connected to a Multiaccess 

Network Through the Catalyst Switch

●     The router with the lowest IP address becomes the IGMPv2 querier.
●     The router with the highest IP address becomes the PIM-designated router. The DR is 

important only when IGMPv1 is running on the subnet.
●     The PIM forwarder is the router whose route to the source has the lowest administrative 

distance. If the administrative distances are equal, the router whose route to the source has 
the lowest metric is the forwarder. If both the administrative distances and the metrics are 
equal, the router with the highest IP address is the forwarder.

Example 6-5 shows that the IGMPv2 querier and PIM-designated router rules have been applied. 
Porkpie (10.1.2.1) has the lower IP address on the subnet, so it is the IGMP querier. Bowler 
(10.2.1.25) has the higher IP address, so it is the designated router. Porkpie and Bowler are both 
running IGMPv2, so the DR has no importance here.

Example 6-5 Porkpie (10.1.2.1) Is the IGMP Querier, but Bowler Is the PIM 



Designated Route

Bowler#show ip igmp interface ethernet 0

Ethernet0 is up, line protocol is up

  Internet address is 10.1.2.25/24

  IGMP is enabled on interface

  Current IGMP version is 2

  CGMP is enabled on interface

  IGMP query interval is 60 seconds

  IGMP querier timeout is 120 seconds

  IGMP max query response time is 10 seconds

  Last member query response interval is 1000 ms

  Inbound IGMP access group is not set

  IGMP activity: 6 joins, 2 leaves

  Multicast routing is enabled on interface

  Multicast TTL threshold is 0

  Multicast designated router (DR) is 10.1.2.25 (this system)

  IGMP querying router is 10.1.2.1

  No multicast groups joined

Bowler#

Example 6-6 shows the unicast routes to source subnet 10.1.1.0/24 at both Porkpie and Bowler. 
Knowing that the internetwork of Figure 6-2 is running OSPF exclusively, it comes as no surprise that 
both routes have an administrative distance of 110. You also can readily see that both routes have an 
OSPF cost of 138. Therefore, the PIM forwarder for (10.1.1.88, 228.13.20.216) on the attached 
subnet 10.1.2.0/24 is the router with the highest IP address: Bowler. Example 6-7 proves it. 
Comparing Porkpie's (S, G) entry with the one in Example 6-3, notice that interface E0 has now been 
pruned. Bowler's E0 interface is in forward mode, indicating that it is now forwarding the group traffic 
onto the subnet.

Example 6-6 The Unicast Routes to Source Subnet 10.1.1.0/24 in Porkpie 
and Bowler Have Equal Administrative Distances and Metrics; Therefore, the 
Router with the Highest IP Address Will Be the PIM Forwarder for Subnet 
10.1.2.0/24

Porkpie#show ip route 10.1.1.0

Routing entry for 10.1.1.0/24

  Known via "ospf 1", distance 110, metric 138, type intra area

  Redistributing via ospf 1



  Last update from 10.2.3.1 on Serial1.609, 01:01:30 ago

  Routing Descriptor Blocks:

  * 10.2.4.2, from 10.1.1.1, 01:01:30 ago, via Serial1.605

      Route metric is 138, traffic share count is 1

    10.2.3.1, from 10.1.1.1, 01:01:30 ago, via Serial1.609

      Route metric is 138, traffic share count is 1

Porkpie#

_______________________________________________________________________

Bowler#show ip route 10.1.1.0

Routing entry for 10.1.1.0/24

  Known via "ospf 1", distance 110, metric 138, type intra area

  Redistributing via ospf 1

  Last update from 10.2.5.2 on Serial1.705, 01:02:22 ago

  Routing Descriptor Blocks:

  * 10.2.5.2, from 10.1.1.1, 01:02:22 ago, via Serial1.705

      Route metric is 138, traffic share count is 1

Bowler#

Example 6-7 Comparing the mroutes for (10.1.1.88, 228.13.20.216) Shows 
that Bowler Is Now the Forwarder for the Group onto Subnet 10.1.2.0/24

Porkpie#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 23:51:13/00:02:59, RP 0.0.0.0, flags: DJC



  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial1.609, Forward/Dense, 03:48:39/00:00:00

    Serial1.605, Forward/Dense, 03:48:39/00:00:00

    Ethernet0, Forward/Dense, 01:18:18/00:00:00

(10.1.1.88, 228.13.20.216), 00:03:06/00:02:53, flags: PCT

  Incoming interface: Serial1.605, RPF nbr 10.2.4.2

  Outgoing interface list:

    Serial1.609, Prune/Dense, 00:03:06/00:00:18

    Ethernet0, Prune/Dense, 00:03:06/00:02:53

Porkpie#

_______________________________________________________________________

Bowler#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 01:47:12/00:02:59, RP 0.0.0.0, flags: DJC

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Ethernet0, Forward/Dense, 01:26:34/00:00:00

    Serial1.705, Forward/Dense, 01:47:12/00:00:00

(10.1.1.88, 228.13.20.216), 01:27:43/00:02:59, flags: CTA

  Incoming interface: Serial1.705, RPF nbr 10.2.5.2

  Outgoing interface list:



    Ethernet0, Forward/Dense, 01:26:34/00:00:00

Bowler#

Interestingly, Porkpie is querying for group members on the subnet, while Bowler is forwarding the 
multicast packets for group 228.13.20.216. Reviewing the rules for IGMPv2 in Chapter 5, there is no 
conflict. Queries from Porkpie result in IGMP Membership Reports from the group member, addressed 
to the group address. Bowler hears the Membership Report and begins forwarding the group traffic. If 
the member wants to leave the group, it sends IGMP Leave messages addressed to the All Multicast 
Routers address 224.0.0.2, as illustrated by Example 6-8, which are also heard by Bowler.

Example 6-8 Although Porkpie (10.1.2.1) Is the IGMP Querier, Bowler Still 
Hears the IGMP Leave Message from the Attached Group Member; as the 
Forwarder for This Group, It Deletes the Interface from the Outgoing 
Interface List for the Group

Bowler#debug ip igmp

IGMP debugging is on

Bowler#

IGMP: Received Leave from 10.1.2.113 (Ethernet0) for 228.13.20.216

IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)

IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)

IGMP: Deleting 228.13.20.216 on Ethernet0

Bowler#

Referring back to Example 6-5, show ip igmp interface shows that Bowler's E0 is using the default 
IGMP query interval of 60 seconds and the default IGMP querier timeout interval of 120 seconds. 
Porkpie is using the same defaults. The debugging messages with time stamps in Example 6-9 show 
these timers in action. The first three messages show Porkpie faithfully sending an IGMP query every 
60 seconds. But then something happens and the queries stop. The fourth and fifth messages show 
that at 120 seconds, Bowler takes over as querier and immediately sends a query of its own. 
Subsequent queries are then sent at 60-second intervals. The last two messages show that Porkpie 
has returned and is again sending queries. Because that router has a lower IP address, Bowler 
recognizes Porkpie as the querier and goes silent.

Example 6-9 Debugging Is Used to Show What Happens When the IGMP 
Querier Fails and Then Returns

Bowler#debug ip igmp

IGMP debugging is on

Bowler#

*Mar  5 23:41:36.318: IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)

*Mar  5 23:42:36.370: IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)



*Mar  5 23:43:36.422: IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)

*Mar  5 23:45:36.566: IGMP: Previous querier timed out, v2 querier for Ethernet0 is

this system

*Mar  5 23:45:36.570: IGMP: Send v2 Query on Ethernet0 to 224.0.0.1

*Mar  5 23:46:05.602: IGMP: Send v2 Query on Ethernet0 to 224.0.0.1

*Mar  5 23:47:05.654: IGMP: Send v2 Query on Ethernet0 to 224.0.0.1

*Mar  5 23:48:05.706: IGMP: Send v2 Query on Ethernet0 to 224.0.0.1

*Mar  5 23:48:36.698: IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)

*Mar  5 23:49:36.742: IGMP: Received v2 Query from 10.1.2.1 (Ethernet0)

Bowler#

Remember from Chapter 5 that PIM sends hellos to its neighbors by default every 30 seconds, and 
the holdtime is 3.5 times the hello interval. If a hello is not heard from a neighbor within the 
holdtime, the neighbor is declared dead. This final example begins with both Bowler and Porkpie 
online and with Bowler forwarding packets onto the Ethernet for group 228.13.20.216. Example 6-10 
shows what happens when Bowler fails.

Example 6-10 Porkpie Takes Over as PIM Forwarder for Group 
228.13.20.216 After Failing to Hear Any PIM Hellos from Bowler for the 
Prescribed Holdtime

Porkpie#debug ip pim 228.13.20.216

PIM debugging is on

Porkpie#

PIM: Neighbor 10.1.2.25 (Ethernet0) timed out

PIM: Changing DR for Ethernet0, from 10.1.2.25 to 10.1.2.1 (this system)

PIM: Building Graft message for 228.13.20.216, Serial1.609: no entries

PIM: Building Graft message for 228.13.20.216, Serial1.605: no entries

PIM: Building Graft message for 228.13.20.216, Ethernet0: no entries

Porkpie#

Porkpie has not heard a hello from Bowler within the holdtime, and it knows that it must take over 
the PIM forwarder duties. It assumes the role of the DR and sends PIM Graft messages to its 
neighbors. Comparing Porkpie's entry for (10.1.1.88, 228.13.20.216) in Example 6-11 with that at 
the top of Example 6-7, Porkpie is now forwarding the multicast packets onto the Ethernet whereas it 
had pruned the interface before becoming the forwarder. Notice also that the pruned flag, present in 
the entry in Example 6-7, is no longer in the entry in Example 6-11.

Example 6-11 After the Failure of Bowler, Porkpie Is Forwarding Group 
Traffic onto the Ethernet



Porkpie#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 1d01h/00:02:59, RP 0.0.0.0, flags: DJC

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial1.609, Forward/Dense, 05:16:35/00:00:00

    Serial1.605, Forward/Dense, 05:16:35/00:00:00

    Ethernet0, Forward/Dense, 00:06:14/00:00:00

(10.1.1.88, 228.13.20.216), 00:23:10/00:02:59, flags: CT

  Incoming interface: Serial1.605, RPF nbr 10.2.4.2

  Outgoing interface list:

    Serial1.609, Prune/Dense, 00:23:10/00:01:44

    Ethernet0, Forward/Dense, 00:06:14/00:00:00

Porkpie#

Configuring Protocol-Independent Multicast, Sparse Mode (PIM-SM)

It is probably obvious to you, after seeing the configuration statement for enabling PIM-DM on an 
interface, how PIM-SM is enabled. It is accomplished, quite simply, by using the ip pim sparse-
mode command. This much of the configuration of PIM-SM is uninteresting and requires no 
standalone examples. The unique requirement of PIM-SM, and the more interesting aspect of its 
configuration, is the identification of the rendezvous points (RPs). You learned in Chapter 5 that RPs 
can be statically configured, or they can be dynamically discovered using either Cisco's Auto-RP or 
the open-standard bootstrap protocol. The following case studies demonstrate all three methods.

Case Study: Statically Configuring the RP

Figure 6-3 is the same internetwork you have been observing in this chapter, but now the routers are 



configured to run PIM-SM. Stetson has been chosen as the RP, and all routers are statically 
configured with that information. The illustration shows that Stetson's RP address is 10.224.1.1. This 
address can exist on any interface, as long as it is advertised by the unicast routing protocol so that 
the other routers know how to reach it. In practice, you should use the loopback interface. A minor 
reason for this is so that the RP address can be more easily managed, but the major reason is so that 
the RP address is not linked to any physical interface that might fail. This is the same reason that the 
loopback interface is recommended for IBGP peering endpoints.

Figure 6-3. The Internetwork Is Now Running PIM-SM, with the RP Located 
at 10.224.1.1

Example 6-12 shows Bowler's configuration. Notice that the interfaces that were configured for dense 
mode are now configured for sparse mode.

Example 6-12 The Configuration of Bowler in Figure 6-3

hostname Bowler

!

ip multicast-routing

!

interface Ethernet0

 ip address 10.1.2.25 255.255.255.0

 ip pim sparse-mode

 ip cgmp

!



interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.705 point-to-point

 description PVC to Fedora

 ip address 10.2.5.1 255.255.255.0

 ip pim sparse-mode

 no ip mroute-cache

 frame-relay interface-dlci 705

!

router ospf 1

 network 10.0.0.0 0.255.255.255 area 0

!

ip pim rp-address 10.224.1.1

!

The other point of interest in Example 6-12 is the command ip pim rp-address 10.224.1.1, which 
tells the router where to find the RP. When statically configuring the RP, all routers with attached 
group sources or members must have such a statement, in order for them to know where the RP is. 
Note that Stetson's loopback interface does not itself have to have PIM running on it, as indicated in 
Example 6-13. No PIM functionality is required of the interface, other than providing the RP address. 
That address is advertised to the internetwork by OSPF. However, the ip pim rp-address 
10.224.1.1 statement is present in the configuration, even though there are no attached sources or 
group members. The reason for this statement on this router, of course, is so that the router knows 
that it is the RP. In practice, it is wise to statically configure the RP address on all routers in the 
internetwork. It won't hurt if it isn't needed, and it prevents an accidentally missing statement where 
it is needed.

Example 6-13 The Configuration of Stetson, the RP, in Figure 6-3

hostname Stetson

!

ip multicast-routing

!

interface Loopback0

 ip address 10.224.1.1 255.255.255.255

!

interface Serial1



 no ip address

 encapsulation frame-relay

!

interface Serial1.903 point-to-point

 description PVC to R3

 ip address 10.2.2.2 255.255.255.0

 ip pim sparse-mode

 frame-relay interface-dlci 903

!

interface Serial1.906 point-to-point

 description PVC to 906

 ip address 10.2.3.1 255.255.255.0

 ip pim sparse-mode

 frame-relay interface-dlci 906

!

router ospf 1

 network 10.0.0.0 0.255.255.255 area 0

!

ip pim rp-address 10.224.1.1

In the PIM-DM section, you compared the mroute entries for group 228.13.20.216 in Porkpie and 
Bowler. The significance of the entries is that the routers share an Ethernet subnet with a group 
member, so issues such as IGMP querying and PIM forwarding arise. Example 6-14 again compares 
the two routers' mroute entries for the group. The entries here appear a little more ambiguous than 
the dense-mode entries in Example 6-7. For example, Porkpie's (*, G) entry shows E0 on the 
outgoing interface list and in forwarding state. The outgoing interface list of its (S, G) entry is empty. 
At Bowler, however, E0 is on the incoming interface list of the (*, G) entry, and the entry's outgoing 
interface list is empty. And E0 is on the outgoing interface list of the (S, G) entry and in forwarding 
state. What router is actually forwarding the group packets?

Example 6-14 Comparing the mroute Entries for Group 228.13.20.216 at 
Porkpie and Bowler

Porkpie#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP



Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 1d22h/00:02:59, RP 10.224.1.1, flags: SJC

  Incoming interface: Serial1.609, RPF nbr 10.2.3.1

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 02:36:43/00:02:31

(10.1.1.88, 228.13.20.216), 03:08:42/00:02:02, flags: PCRT

  Incoming interface: Serial1.609, RPF nbr 10.2.3.1

  Outgoing interface list: Null

Porkpie#

_______________________________________________________________________

Bowler#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 1d00h/00:02:59, RP 10.224.1.1, flags: SJPC

  Incoming interface: Ethernet0, RPF nbr 10.1.2.1

  Outgoing interface list: Null

(10.1.1.88, 228.13.20.216), 02:38:20/00:02:59, flags: CT

  Incoming interface: Serial1.705, RPF nbr 10.2.5.2

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 02:37:36/00:02:12



Bowler#

You know what router is forwarding the group packets if you carefully studied PIM-SM procedures in 
Chapter 5. First, you know that Bowler is the DR, because its IP address on subnet 10.1.2.0/24 is 
higher. You can verify the DR with the show ip pim interface command, as demonstrated in 
Example 6-15.

Example 6-15 The PIM Designated Router on Subnet 10.1.2.0/24 is Bowler 
(10.1.2.25)

Porkpie#show ip pim interface

Address          Interface          Version/Mode    Nbr   Query     DR

                                                    Count Intvl

10.1.2.1         Ethernet0          v2/Sparse        1    30     10.1.2.25

10.2.4.1         Serial1.605        v2/Sparse        1    30     0.0.0.0

10.2.3.2         Serial1.609        v2/Sparse        1    30     0.0.0.0

Porkpie#

When a host first requests a join to a group, the DR joins the shared RP tree (RPT). Examining 
Bowler's unicast routing table in Example 6-16, the route from Bowler to the RP is through Porkpie, 
via subnet 10.1.2.0/24. You now know why Porkpie's E0 interface is on the outgoing interface list of 
the (*, G) entry. This entry represents the RPT linking Bowler to Stetson. Bowler's (*, G) entry has 
an empty outgoing interface list and a pruned flag set because it is the endpoint of the RPT branch.

Example 6-16 The Shortest Route to the RP from Bowler Is Across Its 
Connected Ethernet to Porkpie

Bowler#show ip route 10.224.1.1

Routing entry for 10.224.1.1/32

  Known via "ospf 1", distance 110, metric 75, type intra area

  Redistributing via ospf 1

  Last update from 10.1.2.1 on Ethernet0, 01:03:56 ago

  Routing Descriptor Blocks:

  * 10.1.2.1, from 10.224.1.1, 01:03:56 ago, via Ethernet0

      Route metric is 75, traffic share count is 1

Bowler#



Next, you know that by default after the first multicast packet is received, a PIM-SM router with an 
attached member will try to switch to the shortest path tree (SPT) to the source, whether that path 
leads through the RP or not. Bowler's unicast routing table shows that the shortest route to source 
subnet 10.1.1.0/24 is through Fedora, as indicated in Example 6-17. Looking again at the mroutes in 
Example 6-14, Bowler's (S, G) entry indicates that Fedora, at 10.2.5.2, is the upstream or RPF 
neighbor. E0 is on the entry's outgoing interface list and in forward state, because packets are of 
course being forwarded to the group member. Porkpie is not forwarding packets for this group, so its 
(S, G) entry has an empty outgoing interface list and a pruned flag.

Example 6-17 Bowler's Shortest Path to Source Subnet 10.1.1.0/24 Is 
Through Fedora, Out Interface S1.705

Bowler#show ip route 10.1.1.0

Routing entry for 10.1.1.0/24

  Known via "ospf 1", distance 110, metric 138, type intra area

  Redistributing via ospf 1

  Last update from 10.2.5.2 on Serial1.705, 01:17:30 ago

  Routing Descriptor Blocks:

  * 10.2.5.2, from 10.1.1.1, 01:17:30 ago, via Serial1.705

      Route metric is 138, traffic share count is 1

Bowler#

You also can use debugging to see how the multicast packets are being forwarded. Example 6-18 
shows that Bowler is receiving the multicast packets for group 228.13.20.216 from source 10.1.1.88, 
via Fedora on interface S1.705. The packets are being forwarded out interface E0 to the connected 
group member.

Example 6-18 Using Debugging to Capture IP Multicast Packets (mpackets), 
You Can Observe That Bowler Is Receiving Packets for (10.1.1.88, 
228.13.20.216) on Interface S1.705 and Forwarding Them Out Interface E0

Bowler#debug ip mpacket 228.13.20.216

IP multicast packets debugging is on for group 228.13.20.216

Bowler#

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward



IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

IP: s=10.1.1.88 (Serial1.705) d=228.13.20.216 (Ethernet0) len 573, mforward

Using the same debugging command at Porkpie also presents interesting results, as demonstrated in 
Example 6-19. The debug messages show that the router is not receiving packets for group 
228.13.20.216 from either the RP or Fedora. Rather, it is receiving the packets that Bowler is 
forwarding onto the Ethernet subnet 10.1.2.0/24. Porkpie's mroute entries in Example 6-14 show the 
RPF interface for the group to be S1.609. Because the packets are being received on E0, the RPF 
check fails, and the packets are dropped.

Example 6-19 Porkpie Is Not Forwarding Any Packets for Group 
228.13.20.216

Porkpie#debug ip mpacket 228.13.20.216

IP multicast packets debugging is on for group 228.13.20.216

Porkpie#

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

IP: s=10.1.1.88 (Ethernet0) d=228.13.20.216 len 583, not RPF interface

So much of this example, as shown so far, depends on the fact that a Cisco router switches to the 
group's SPT after receiving the first multicast packet. You learned in Chapter 5 that you can change 
this default with the ip pim spt-threshold command. A threshold can be specified in kilobits per 
second, and the router will not switch to the SPT until the arrival rate of the group's packets exceeds 
the threshold. Alternatively, you can use the infinity keyword, and the router will never switch to the 
SPT. It is enlightening to see what happens when ip pim spt-threshold infinity is added to the 
configuration of Bowler in Figure 6-3 Example 6-20 shows the resulting mroute entries at Porkpie and 
Bowler after Bowler's reconfiguration. Bowler's RPT passes out its E0 interface, across subnet 
10.1.2.0/24, and through Porkpie. So Porkpie must now forward packets from the RP. But Bowler's 
E0 interface also is its RPF interface for the group, and a PIM router cannot forward a group's packets 
out that group's RPF interface. This is simply a multicast version of the split-horizon rule, which states 
that packets are not forwarded out the interface they arrived on. As a result, Bowler's (*, G) now 
sports a pruned flag. Porkpie is now forwarding the packets to the group member. Interestingly, even 
though Porkpie has assumed the forwarding duties because Bowler must use the RPT, Porkpie itself is 
under no such constraints and has switched to an SPT through Fedora rather than through the RP.

Example 6-20 After Bowler Is Configured to Never Switch to the SPT, the 



Forwarding Duties for Group 228.13.20.216 Pass to Porkpie

Porkpie#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 00:45:09/00:02:59, RP 10.224.1.1, flags: SJC

  Incoming interface: Serial1.609, RPF nbr 10.2.3.1

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:44:11/00:02:54

(10.1.1.88, 228.13.20.216), 00:44:30/00:02:59, flags: CT

  Incoming interface: Serial1.605, RPF nbr 10.2.4.2

  Outgoing interface list:

    Ethernet0, Forward/Sparse, 00:44:11/00:02:24

Porkpie#

_______________________________________________________________________

Bowler#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode



(*, 228.13.20.216), 00:45:31/00:02:07, RP 10.224.1.1, flags: SPC

  Incoming interface: Ethernet0, RPF nbr 10.1.2.1

  Outgoing interface list: Null

Bowler#

At times, you may need to assign different groups to different RPs. Typically this is done as the 
number of groups in the multicast domain grows, and you need to divide the RP duties to decrease 
the memory and CPU demands placed on any one router. Figure 6-4 shows the same internetwork 
you have been observing throughout this section, but now Fedora has also been designated as an RP, 
with an address of 10.244.1.2. With access lists, you can configure multiple RPs and specify what 
groups should use what RP.

Figure 6-4. Both Stetson and Fedora Are Rendezvous Points; Access Lists 
Are Used in Conjunction with the Static RP Addresses to Tell Each Router in 

the Domain Which RP to Use for a Particular Group

For example, consider the configuration in Example 6-21.

Example 6-21 Bowler's RP Filtering Configuration

ip pim rp-address 10.224.1.1 10

ip pim rp-address 10.224.1.2 5



!

access-list 5 permit 239.0.0.0 0.255.255.255

access-list 5 permit 228.13.20.0 0.0.0.255

access-list 10 permit 224.2.127.254

access-list 10 permit 230.253.0.0 0.0.255.255

Access list 5 specifies the groups that are permitted to use RP 10.224.1.2 (Fedora), and access list 10 
specifies the groups that are allowed to use RP 10.224.1.1 (Stetson). Any group whose address does 
not match one of these two access lists will not have an RP assigned, and therefore cannot join either 
shared tree. This configuration is added to Bowler, and Example 6-22 shows the results. A quick 
examination shows that the groups listed (which are active groups on the router) have been mapped 
to an RP according to the constraints of access lists 5 and 10.

Example 6-22 The show ip pim rp Command Displays the Groups Active on a 
Router and the RP to Which They Are Mapped

Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.2, v2, uptime 01:20:13, expires 00:02:08

Group: 228.13.20.216, RP: 10.224.1.2, v2, uptime 01:19:30, expires never

Group: 224.2.127.254, RP: 10.224.1.1, v2, uptime 01:20:05, expires never

Group: 230.253.84.168, RP: 10.224.1.1, v2, uptime 01:20:06, expires 00:01:48

Bowler#

Case Study: Configuring Auto-RP

In a stable PIM domain, static configuration of the RP is straightforward. As new routers are added, 
they are configured with the location of the RP or RPs. Static RP configuration becomes a problem 
under two circumstances:

●     The address of the RP must be changed, either on the existing RP or because a new RP is 
being installed. The network administrator must change the static configurations on all PIM 
routers, which in a large domain can involve significant downtime.

●     The RP fails. A statically configured PIM domain cannot easily handle a failover to an alternate 
RP.

Therefore, in all but the smallest PIM domains, the use of one of the two automatic RP discovery 
mechanisms, Auto-RP or bootstrap, is recommended for both ease of management and better 
redundancy. This case study demonstrates Auto-RP, and a following case study demonstrates the 
bootstrap protocol.

As discussed in Chapter 5, Auto-RP is a Cisco-proprietary protocol developed before the bootstrap 
protocol was proposed as part of PIMv2. Auto-RP must be used with any Cisco IOS Software Release 
prior to Release 11.3, in which PIMv2 is first supported.

Two steps are required to configure basic Auto-RP:



1.  All candidate-RPs must be configured.

2.  All mapping agents must be configured.

Candidate RPs (C-RPs) are configured by the ip pim send-rp-announce command. When you enter 
this command, you specify the interface from which the router takes its RP address, and a TTL value 
that is added to the advertisement messages. The TTL provides scoping so that packets do not travel 
outside the boundaries of the domain. When a router is configured as a candidate RP, it begins 
sending RP-Announce messages to the reserved address 224.0.1.39 every 60 seconds.

The mapping agent listens for RP-Announce messages from the C-RPs and selects the RPs. It then 
advertises the RPs to the rest of the PIM domain in RP-Discovery messages, sent to the reserved 
address 224.0.1.40 every 60 seconds.

Figure 6-5 shows a sample topology. Here, routers Stetson and Fedora are candidate RPs with 
addresses 10.224.1.1 and 10.224.1.2, respectively. Porkpie is the mapping agent, with an identifying 
address of 10.224.1.3.

Figure 6-5. Stetson and Fedora Are Candidate RPs, and Porkpie Is the 
Mapping Agent

Example 6-23 shows the relevant parts of Fedora's configuration.

Example 6-23 Configuring Fedora as a Candidate RP

interface Loopback0



 ip address 10.224.1.2 255.255.255.255

!

ip pim send-rp-announce Loopback0 scope 5

Stetson's configuration is similar. The RP address is taken from interface L0, and the scope keyword 
sets the TTL of the originated RP-Announce messages.

Example 6-24 shows the configuration establishing Porkpie as a mapping agent.

Example 6-24 Establishing Porkpie as a Mapping Agent

interface Loopback0

 ip address 10.224.1.3 255.255.255.255

 ip pim sparse-mode

!

ip pim send-rp-discovery Loopback0 scope 5

Again, L0 is used to derive the mapping agent address, and the TTL is set to 5. In the configuration in 
Example 6-24, notice that PIM-SM must be configured on the loopback interface. This must be 
performed on the mapping agents; if you fail to enable PIM-SM on the interface first, you will get an 
error message like the one in Example 6-25.

Example 6-25 Failing to Enable PIM-SM on a Mapping Agent's Loopback 
Interface Results in an Error Message

Porkpie(config)#ip pim send-rp-discovery Loopback0 scope 5

Non PIM interface ignored in accepted command.

Porkpie(config)#

The resulting configuration statement will look like the following:

ip pim send-rp-discovery scope 5

The interface specified was not accepted, and as a result, the mapping agent does not work. Unlike 
mapping agents, PIM does not have to be configured on the loopback interface of a C-RP. Of course, 
on both mapping agents and C-RPs, PIM-SM must still be configured on all physical interfaces 
connected to PIM neighbors.

When a Cisco router is first configured with PIM-SM, it begins listening for the address 224.0.1.40. If 
changes have to be made to either the C-RPs or the mapping agents, the changes are automatically 
advertised by the changed device, and the routers throughout the domain learn of the change. 
Perhaps the most important feature, however, is that you can configure multiple RPs for any or all 
groups. The mapping agent chooses the RP for a group based on the highest RP address. If that RP 



fails, the mapping agent selects the next-highest qualifying RP and advertises that.

Example 6-26 shows an example of an RP failover. Here, debug ip pim auto-rp is used to display all 
Auto-RP activity. You can see that Porkpie, the mapping agent in Figure 6-5, is receiving RP-
Announce messages from both Stetson (10.224.1.1) and Fedora (10.224.1.2). Because Fedora has 
the higher IP address, it is being advertised to the domain as the RP for all multicast groups 
(224.0.0.0/4). After the first reception of RP-Announce messages from Fedora, that router fails. 
When Porkpie has not heard another RP-Announce message from Fedora within 180 seconds (3 times 
the announcement interval), it declares the RP dead, selects Stetson as the new RP, and begins 
advertising the new RP. That sequence of events is highlighted at the bottom of the Debug messages.

Example 6-26 Debugging Is Used to Observe an RP Failover at the Mapping 
Agent in Figure 6-5

Porkpie#debug ip pim auto-rp

PIM Auto-RP debugging is on

Porkpie#

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Received RP-announce, from 10.224.1.2, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.2), PIMv2 v1

Auto-RP: Received RP-announce, from 10.224.1.2, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.2), PIMv2 v1

Auto-RP: Build RP-Discovery packet

Auto-RP:  Build mapping (224.0.0.0/4, RP:10.224.1.2), PIMv2 v1,

Auto-RP: Send RP-discovery packet on Loopback0 (1 RP entries)

Auto-RP: Send RP-discovery packet on Serial1.605 (1 RP entries)

Auto-RP: Send RP-discovery packet on Serial1.609 (1 RP entries)

Auto-RP: Send RP-discovery packet on Ethernet0 (1 RP entries)

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Build RP-Discovery packet

Auto-RP:  Build mapping (224.0.0.0/4, RP:10.224.1.2), PIMv2 v1,

Auto-RP: Send RP-discovery packet on Loopback0 (1 RP entries)

Auto-RP: Send RP-discovery packet on Serial1.609 (1 RP entries)



Auto-RP: Send RP-discovery packet on Ethernet0 (1 RP entries)

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Build RP-Discovery packet

Auto-RP:  Build mapping (224.0.0.0/4, RP:10.224.1.2), PIMv2 v1,

Auto-RP: Send RP-discovery packet on Loopback0 (1 RP entries)

Auto-RP: Send RP-discovery packet on Serial1.609 (1 RP entries)

Auto-RP: Send RP-discovery packet on Ethernet0 (1 RP entries)

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Received RP-announce, from 10.224.1.1, RP_cnt 1, ht 181

Auto-RP: Update (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1

Auto-RP: Mapping (224.0.0.0/4, RP:10.224.1.2) expired,

Auto-RP: Build RP-Discovery packet

Auto-RP:  Build mapping (224.0.0.0/4, RP:10.224.1.1), PIMv2 v1,

Auto-RP: Send RP-discovery packet on Loopback0 (1 RP entries)

Auto-RP: Send RP-discovery packet on Serial1.609 (1 RP entries)

Auto-RP: Send RP-discovery packet on Ethernet0 (1 RP entries)

Porkpie#

In Example 6-27, the show ip pim rp command is used at Bowler to display the groups that router 
is receiving for, and the RP that the group is mapped to. The first display is taken before Fedora fails, 
and shows that all groups are mapped to its RP address. The second display, taken after Fedora fails 
and the mapping agent advertises the new RP, shows that all groups are now mapped to Stetson.

Example 6-27 Before Fedora Fails, All of Bowler's Groups Are Mapped to 
That RP (10.224.1.2); After the Failure, Bowler's Groups Are Remapped, 
Based on Information from the Mapping Agent, to Stetson (10.224.1.1)

Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.2, v2, v1, uptime 00:08:07, expires 00:04:26

Group: 228.13.20.216, RP: 10.224.1.2, v2, v1, uptime 00:08:08, expires 00:04:26

Group: 224.2.127.254, RP: 10.224.1.2, v2, v1, uptime 00:08:07, expires 00:04:26

Group: 230.253.84.168, RP: 10.224.1.2, v2, v1, uptime 00:08:07, expires 00:04:26

Bowler#



Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.1, v2, v1, uptime 00:03:46, expires 00:02:56

Group: 228.13.20.216, RP: 10.224.1.1, v2, v1, uptime 00:03:46, expires 00:02:56

Group: 224.2.127.254, RP: 10.224.1.1, v2, v1, uptime 00:03:46, expires 00:02:56

Group: 230.253.84.168, RP: 10.224.1.1, v2, v1, uptime 00:03:46, expires 00:02:56

Bowler#

To change the 60-second default interval at which a C-RP sends RP-Announce messages, add the 
interval keyword to the ip pim send-rp-announce command. For example, the following causes 
Fedora to send RP-Announce messages every 10 seconds:

ip pim send-rp-announce Loopback0 scope 5 interval 10

The holdtime, the interval a mapping agent waits to hear an RP-Announce message from a C-RP, is 
always 3 times the announcement interval. So the result of the preceding command is to shorten the 
failover time of Fedora to 30 seconds, at the cost of 6 times as many RP-Announce messages 
originated by the router.

A C-RP advertises, in its RP-Announce messages, the groups for which it can act as the RP. The 
default is to announce 224.0.0.0/4, which represents all multicast groups. As with static RPs in the 
preceding case study, however, you will sometimes want to map different groups to different RPs. 
Suppose, for example, you want all groups 224.0.0.0 through 231.255.255.255 (224.0.0.0/5) to be 
mapped to Stetson, and all groups 232.0.0.0 through 239.255.255.255 (232.0.0.0/5) to be mapped 
to Fedora. The C-RP configurations of those two routers then look like Example 6-28.

Example 6-28 Configuring Stetson and Fedora as C-RPs

Stetson

ip pim send-rp-announce Loopback0 scope 5 group-list 20

!

access-list 20 permit 224.0.0.0 7.255.255.255

______________________________________________________________________

Fedora

ip pim send-rp-announce Loopback0 scope 5 group-list 30

!

access-list 30 permit 232.0.0.0 7.255.255.255

The group-list keyword ties the ip pim send-rp-announce statement to an access list. The access 
list then describes the groups for which router can become the RP. Example 6-29 shows the results at 



Bowler, after mapping agent Porkpie has advertised the RPs according to the constraints in their RP-
Announce messages. 239.255.255.254 is mapped to Fedora, while the other three groups, all of 
whose addresses fall within the 224.0.0.0/5 range, are mapped to Stetson.

Example 6-29 Bowler's Group-to-RP Mappings, Showing the Constraints 
Configured at Stetson and Fedora

Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.2, v2, v1, uptime 00:04:25, expires 00:02:56

Group: 228.13.20.216, RP: 10.224.1.1, v2, v1, uptime 00:11:05, expires 00:03:57

Group: 224.2.127.254, RP: 10.224.1.1, v2, v1, uptime 00:11:05, expires 00:03:57

Group: 230.253.84.168, RP: 10.224.1.1, v2, v1, uptime 00:11:05, expires 00:03:57

Bowler#

Suppose you also want groups 228.13.0.0 through 228.13.255.255 to be mapped to Fedora. The 
configuration for router Fedora would then look like Example 6-30.

Example 6-30 Configuring Fedora as the C-RP for Groups 228.13.0.0 
through 228.13.255.255

ip pim send-rp-announce Loopback0 scope 5 group-list 30

!

access-list 30 permit 232.0.0.0 7.255.255.255

access-list 30 permit 228.13.0.0 0.0.255.255

Example 6-31 shows the result at Bowler. Note that Stetson's configuration has not changed. That C-
RP is announcing 224.0.0.0/5 as its permitted group range, which includes 228.13.0.0/16. The 
mapping agent now has two C-RPs for groups in the 228.13.0.0/16 range and has chosen Fedora 
because its IP address is higher.

Example 6-31 Multicast Group 228.13.20.216, Which Was Mapped to RP 
10.224.1.1 in Example 6-29, Is Now Mapped to RP 10.224.1.2

Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.2, v2, v1, uptime 00:01:43, expires 00:04:16

Group: 228.13.20.216, RP: 10.224.1.2, v2, v1, uptime 00:01:43, expires 00:04:16

Group: 224.2.127.254, RP: 10.224.1.1, v2, v1, uptime 00:36:05, expires 00:02:47

Group: 230.253.84.168, RP: 10.224.1.1, v2, v1, uptime 00:36:05, expires 00:02:47

Bowler#



Several variants of the show ip pim rp command enable you to observe group-to-RP mappings. The 
command in its basic form, as used in the previous few examples, shows you only the active groups 
on a router and the RP to which each group address is matched. To observe the full range of groups 
that may be matched to an RP, use show ip pim rp mapping, as demonstrated in Example 6-32.

Example 6-32 Through the Reception of RP-Discovery Messages from the 
Mapping Agent 10.224.1.3, Bowler Has Mapped Three Ranges of Multicast 
Group Addresses to Two Different RPs

Bowler#show ip pim rp mapping

PIM Group-to-RP Mappings

Group(s) 224.0.0.0/5

  RP 10.224.1.1 (?), v2v1

    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 01:14:37, expires: 00:02:42

Group(s) 228.13.0.0/16

  RP 10.224.1.2 (?), v2v1

    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 00:43:15, expires: 00:02:37

Group(s) 232.0.0.0/5

  RP 10.224.1.2 (?), v2v1

    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 00:43:15, expires: 00:02:41

Bowler#

A similar command is show ip pim rp mapping in-use, as demonstrated in Example 6-33. In 
addition to the information displayed in Example 6-32, the group ranges that are currently in use on 
the router are displayed. Notice that the output in both Example 6-32 and 6-33 displays the source of 
the mapping agent, 10.224.1.3. This information proves useful when there are multiple mapping 
agents.

Example 6-33 The in-use Keyword Displays the Group Address Ranges That 
Are Currently in Use on the Router

Bowler#show ip pim rp mapping in-use

PIM Group-to-RP Mappings

Group(s) 224.0.0.0/5

  RP 10.224.1.1 (?), v2v1



    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 01:21:24, expires: 00:02:50

Group(s) 228.13.0.0/16

  RP 10.224.1.2 (?), v2v1

    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 00:50:02, expires: 00:02:49

Group(s) 232.0.0.0/5

  RP 10.224.1.2 (?), v2v1

    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 00:50:02, expires: 00:02:48

RPs in Auto-RP cache that are in use:

Group(s): 224.0.0.0/5,   RP: 10.224.1.1

Group(s): 232.0.0.0/5,   RP: 10.224.1.2

Group(s): 228.13.0.0/16,   RP: 10.224.1.2

Bowler#

On occasion, you may want to know what RP a particular group address will be mapped to, before 
that address is active on a router. Suppose, for example, you want to know what RP the group 
235.1.2.3 will be mapped to at Bowler. For this, you use the show ip pim rp-hash command, as 
demonstrated in Example 6-34. The result shows that group 235.1.2.3 will be mapped to RP 
10.224.1.2. The result is consistent with the access list constraints configured previously.

Example 6-34 The Command show ip pim rp-hash Enables You to Determine 
to Which RP a Particular Group Will Be Mapped

Bowler#show ip pim rp-hash 235.1.2.3

  RP 10.224.1.2 (?), v2v1

    Info source: 10.224.1.3 (?), via Auto-RP

         Uptime: 00:55:48, expires: 00:02:00

Bowler#

You can prevent your mapping agents from accepting unauthorized routers that may have been 
inadvertently or intentionally configured as C-RPs by setting up an RP announcement filter. Example 
6-35 demonstrates a sample configuration for Porkpie.

Example 6-35 Configuring Porkpie with an RP Announcement Filter



ip pim rp-announce-filter rp-list 1 group-list 11

ip pim send-rp-discovery Loopback0 scope 5

!

access-list 1 permit 10.224.1.2

access-list 1 permit 10.224.1.1

access-list 11 permit 224.0.0.0 15.255.255.255

The configuration in Example 6-35 establishes an RP announcement filter to accept only the C-RPs 
specified in access list 1, and to accept groups advertised by those C-RPs only if they are specified in 
access list 11. In this configuration, access list 1 permits Stetson and Fedora and permits those 
routers to be C-RPs for all multicast groups.

Throughout this case study, Stetson and Fedora in Figure 6-5 have been the C-RPs and Porkpie has 
been the mapping agent for the sake of clarity. In practice, however, it makes little sense to 
configure multiple C-RPs for redundancy but configure only a single mapping agent. If the mapping 
agent fails, no RPs are advertised to the domain, and PIM-SM fails. A more real-life approach would 
be to make Stetson and Fedora both C-RPs and mapping agents. The nature of Auto-RP ensures that 
both mapping agents will derive and advertise the same RPs, and if one router fails, the other is still 
in service to advertise RPs to the domain.

Case Study: Configuring Sparse-Dense Mode

A slight "cheat" was used in the examples of the preceding case study. Examining Figure 6-5, notice 
that the C-RPs are directly connected to the mapping agent, and the mapping agent is directly 
connected to Bowler. In Figure 6-6, Homburg is now configured as the Auto-RP mapping agent. This 
topology gives rise to an interesting dilemma: Homburg advertises the RPs to all routers in RP-
Discovery messages, using the reserve address 224.0.1.40. All PIM-SM routers listen for this address. 
In a sparse-mode environment, however, multicast packets must initially be forwarded on shared 
trees. That means the routers listening for 224.0.1.40 must notify their RP that they want to join that 
group, in order to receive the RP-Discovery messages. But how do the routers know where the RP is 
if they have not yet received the RP-Discovery messages?

Figure 6-6. Homburg Is Now the Mapping Agent



The same Catch-22 would apply to the C-RPs if they were not directly connected to the mapping 
agent. The mapping agent must receive RP-Announce messages from the C-RPs in order to select an 
RP, and to do this, it must join group 224.0.1.39. It cannot join this group, however, if it does not 
know where the RPs are, and it cannot know where the RPs are unless it receives RP-Announce 
messages.

PIM sparse-dense mode was created to overcome this problem. When an interface is configured in 
this mode, it uses sparse mode if an RP is known for the group. If no RP is known, it uses dense 
mode. In the case of 224.0.1.39 and 224.0.1.40, the groups are assumed to be in dense mode. 
Example 6-36 shows the sparse-dense mode configuration for Homburg.

Example 6-36 PIM Sparse-Dense Mode Configuration for Router Homburg

hostname Homburg

!

ip multicast-routing

!

interface Loopback0

 ip address 10.224.1.4 255.255.255.0

 ip pim sparse-mode

!

interface Ethernet0/0

 ip address 10.1.1.1 255.255.255.0



 ip pim sparse-dense-mode

 no ip mroute-cache

!

interface Serial0/1

 no ip address

 encapsulation frame-relay

 no ip mroute-cache

!

interface Serial0/1.305 point-to-point

 description PVC to R5

 ip address 10.2.1.1 255.255.255.0

 ip pim sparse-dense-mode

 no ip mroute-cache

 frame-relay interface-dlci 305

!

interface Serial0/1.309 point-to-point

 description PVC to R9

 ip address 10.2.2.1 255.255.255.0

 ip pim sparse-dense-mode

 no ip mroute-cache

 frame-relay interface-dlci 309

!

router ospf 1

 network 10.0.0.0 0.255.255.255 area 0

!

ip pim send-rp-discovery Loopback0 scope 5

!

The command ip pim sparse-dense-mode is used on all the physical interfaces, and it is configured 
similarly on all physical interfaces of all routers in the topology of Figure 6-6. The loopback interface 
is only in sparse mode, because it is needed only as the mapping agent address and never must 
make any sparse/dense determinations. Interface E0/0 could also be put into sparse mode, because 
it does not face any downstream routers and would not have to make sparse/dense decisions. 
However, it is good practice to place all interfaces in sparse-dense mode for consistency. In fact, it is 
commonly advised to use this mode in all modern PIM domains as long as all routers support the 
mode.

Example 6-37 shows the multicast routing table on Homburg after the reconfiguration. Notice that the 



entries for (*, 224.0.1.39) and (*, 224.0.1.40) have D flags, indicating that they are operating in 
dense mode. All other (*, G) entries are flagged as sparse.

Example 6-37 The Flags Associated with (*,224.0.1.39) and (*,224.0.1.40) 
in Homburg's mroute Table Show That Those Groups Are Operating in 
Dense Mode

Homburg#show ip mroute

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires

Interface state: Interface, Next-Hop, State/Mode

(*, 228.13.20.216), 00:20:42/00:02:59, RP 10.224.1.2, flags: SJCF

  Incoming interface: Serial0/1.305, RPF nbr 10.2.1.2

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:20:42/00:02:43

(10.1.1.88/32, 228.13.20.216), 00:20:42/00:02:59, flags: CFT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial0/1.305, Forward/Sparse-Dense, 00:20:04/00:02:47

(*, 224.2.127.254), 00:20:34/00:02:59, RP 10.224.1.2, flags: SJCF

  Incoming interface: Serial0/1.305, RPF nbr 10.2.1.2

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:20:34/00:02:42

(10.1.1.88/32, 224.2.127.254), 00:20:34/00:02:56, flags: CFT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Serial0/1.305, Forward/Sparse-Dense, 00:20:06/00:02:44

(*, 224.0.1.39), 00:20:32/00:00:00, RP 0.0.0.0, flags: DJCL

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:20:32/00:00:00

    Serial0/1.305, Forward/Sparse-Dense, 00:20:32/00:00:00

    Serial0/1.309, Forward/Sparse-Dense, 00:20:32/00:00:00

(10.224.1.1/32, 224.0.1.39), 00:20:32/00:02:27, flags: CLT



  Incoming interface: Serial0/1.309, RPF nbr 10.2.2.2

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:20:32/00:00:00

    Serial0/1.305, Forward/Sparse-Dense, 00:20:32/00:00:00

(10.224.1.2/32, 224.0.1.39), 00:19:54/00:02:05, flags: CLT

  Incoming interface: Serial0/1.305, RPF nbr 10.2.1.2

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:19:54/00:00:00

    Serial0/1.309, Forward/Sparse-Dense, 00:19:54/00:02:08

(*, 224.0.1.40), 00:20:13/00:00:00, RP 0.0.0.0, flags: DJCL

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:20:14/00:00:00

    Serial0/1.305, Forward/Sparse-Dense, 00:20:14/00:00:00

    Serial0/1.309, Forward/Sparse-Dense, 00:20:14/00:00:00

(10.224.1.4/32, 224.0.1.40), 00:20:06/00:02:48, flags: CLT

  Incoming interface: Loopback0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Ethernet0/0, Forward/Sparse-Dense, 00:20:06/00:00:00

    Serial0/1.305, Forward/Sparse-Dense, 00:20:06/00:00:00

    Serial0/1.309, Forward/Sparse-Dense, 00:20:06/00:00:00

Homburg#

Besides the two Auto-RP groups, sometimes you might want to have some groups operating in sparse 
mode and others operating in dense mode. By using the ip pim send-rp-announce group-list 
command at the C-RPs, as demonstrated in the preceding case study, you can regulate what groups 
are mapped to the RP, and hence operate in sparse mode. Any groups not mapped to an RP will 
operate in dense mode.

Case Study: Configuring the Bootstrap Protocol

When PIMv2 was first described in RFC 2117, the bootstrap protocol was specified as the mechanism 
for automatic RP discovery. Cisco first supported PIMv2 in Cisco IOS Software Release 11.3T, and the 
bootstrap protocol is included in that support.



The two steps to configure bootstrap are very similar to the two steps for configuring Auto-RP:

1.  All candidate RPs must be configured.

2.  All candidate bootstrap routers (C-BSRs) must be configured.

Figure 6-7 shows the same PIM topology used in the preceding two case studies, but now it is 
running bootstrap rather than Auto-RP. Stetson and Fedora are again the C-RPs, but now they are 
also C-BSRs in keeping with a more robust design, providing failover for both the RP and BSR 
function.

Figure 6-7. Stetson and Fedora Serve as Both Candidate RPs and Candidate 
BSRs

Example 6-38 shows the relevant configurations of Stetson and Fedora.

Example 6-38 Configuring Routers Stetson and Fedora as Both Candidate 
RPs and Candidate BSRs

Stetson

interface Loopback0

 ip address 10.224.1.1 255.255.255.255

!



ip pim bsr-candidate Loopback0 0

ip pim rp-candidate Loopback0

_______________________________________________________________________

Fedora

interface Loopback0

 ip address 10.224.1.2 255.255.255.255

!

ip pim bsr-candidate Loopback0 0

ip pim rp-candidate Loopback0

The command ip pim bsr-candidate sets the router as a C-BSR and specifies that the BSR address 
is to be taken from interface L0. The 0 at the end of the command specifies the hash-mask length, 
which is 0 by default on Cisco routers. Use of the hash-mask is demonstrated later in this case study. 
The command ip pim rp-candidate sets the router as a C-RP and specifies that the RP address also 
is to be taken from interface L0.

First, a BSR must be elected from the available C-BSRs. The C-BSRs send Bootstrap messages 
throughout the PIM domain, with the destination address 224.0.0.13, that contain the originator's 
BSR address and priority. In the configuration so far, the default priority of 0 and the default hash-
mask length of 0 remain unchanged, and therefore equal, on both C-BSRs. As a result, the higher 
BSR address is used as a tiebreaker. Fedora's BSR address (10.224.1.2) is higher than Stetson's 
(10.224.1.1), so Fedora is the BSR. Example 6-39 confirms the fact. By using show ip pim bsr-
router on any router in the domain, you can observe not only the active BSR, but also the BSR's 
address, uptime, priority, hash-mask length, and holdtime.

Example 6-39 The show ip pim bsr-router Command Displays the PIMv2 
Domain's BSR

Bowler#show ip pim bsr-router

PIMv2 Bootstrap information

  BSR address: 10.224.1.2 (?)

  Uptime:      00:17:35, BSR Priority: 0, Hash mask length: 0

  Expires:     00:01:56

Bowler#

When the C-RPs receive the Bootstrap messages and determine the address of the BSR, they unicast 
their Candidate-RP-Advertisement messages to the BSR. These messages contain the C-RP's address 
and priority. The BSR collects the C-RPs into an RP-Set, which is then included in its Bootstrap 
messages. This is where bootstrap diverges sharply from Auto-RP: Unlike the Auto-RP mapping 
agent, the BSR does not select RPs. The PIMv2 routers receive the Bootstrap messages, and they 
select the RP. The algorithm used to make the selection ensures that all routers select the same RPs 
for the same groups.



Example 6-40 shows the group-to-RP mappings at Bowler. You can see that the RP is Stetson, which 
is elected RP because of its lower RP address. (The C-RP priorities in this example are equal.)

Example 6-40 The Active Groups at Bowler Are All Mapped to Stetson. 
Unlike Auto-RP, the C-RP with the Lowest RP Address Is Elected as the RP

Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.1, v2, uptime 00:25:16, expires 00:02:40

Group: 228.13.20.216, RP: 10.224.1.1, v2, uptime 00:25:16, expires 00:02:40

Group: 224.2.127.254, RP: 10.224.1.1, v2, uptime 00:25:16, expires 00:02:40

Group: 230.253.84.168, RP: 10.224.1.1, v2, uptime 00:25:16, expires 00:02:40

Bowler#

Example 6-41 shows the complete group address range that is mapped to the RP. Compare this 
display to that of Example 6-33; of particular interest here is that the mapping is shown to be derived 
from bootstrap, and that the router knows all the C-RPs from the RP-Set.

Example 6-41 Bowler Indicates That It Is Aware of Both Stetson and Fedora 
as C-RPs

Bowler#show ip pim rp mapping

PIM Group-to-RP Mappings

Group(s) 224.0.0.0/4

  RP 10.224.1.1 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 00:29:07, expires: 00:02:30

  RP 10.224.1.2 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 00:29:07, expires: 00:02:17

Bowler#

The default behavior of both the BSR and the RP can be changed. In Example 6-39, for instance, the 
BSR is Fedora because its IP address is higher. If you want Stetson to be the BSR, with Fedora acting 
only as a backup in case Stetson fails, you can change Stetson's priority to something higher than the 
default of 0. To change Stetson's priority to 100, you need to configure Stetson as in Example 6-42.

Example 6-42 Configuring Stetson with a Priority of 100 to Make It the BSR

interface Loopback0



 ip address 10.224.1.1 255.255.255.255

!

ip pim bsr-candidate Loopback0 0 100

ip pim rp-candidate Loopback0

Example 6-43 shows the results of the new configuration. Bowler now shows Stetson as the BSR, 
with a priority of 100. Fedora assumes that role only if Stetson fails.

Example 6-43 Stetson (10.224.1.1), with a Priority of 100, Has Become the 
BSR

Bowler#show ip pim bsr-router

PIMv2 Bootstrap information

  BSR address: 10.224.1.1 (?)

  Uptime:      00:10:27, BSR Priority: 100, Hash mask length: 0

  Expires:     00:02:02

Bowler#

As with Auto-RP, you also can use access lists to distribute the RP duties among multiple RPs. 
Suppose, for example, that you want Fedora to be the RP for any groups whose addresses are in the 
228.13.0.0/16 range, and Stetson to be the RP for all other groups. You use the configurations in 
Example 6-44.

Example 6-44 Distributing RP Duties Between Fedora and Stetson

Stetson

interface Loopback0

 ip address 10.224.1.1 255.255.255.255

!

ip pim bsr-candidate Loopback0 0 100

ip pim rp-candidate Loopback0 group-list 20

!

access-list 20 deny   228.13.0.0 0.0.255.255

access-list 20 permit any

_______________________________________________________________________

Fedora

interface Loopback0



 ip address 10.224.1.2 255.255.255.255

!

ip pim bsr-candidate Loopback0 0

ip pim rp-candidate Loopback0 group-list 10

!

access-list 10 permit 228.13.0.0 0.0.255.255

Example 6-45 shows the results of these configurations. The BSR advertises the constraints in its 
Bootstrap messages, and Bowler maps its groups to the RPs based on those constraints. Of course, 
these configurations are not advised in a real internetwork. If one RP fails, the other can no longer 
assume a backup role. A more practical implementation would use access lists to distribute groups 
among multiple C-RPs, with at least two C-RPs for each group range created by the access lists.

Example 6-45 After the Access Lists Are Added to Constrain the RP 
Mappings at Stetson and Fedora, Bowler Has Mapped Group 228.13.20.216 
to Fedora and the Other Groups to Stetson

Bowler#show ip pim rp mapping

PIM Group-to-RP Mappings

Group(s) 224.0.0.0/4

  RP 10.224.1.1 (?), v2

    Info source: 10.224.1.1 (?), via bootstrap

         Uptime: 00:07:25, expires: 00:02:26

Group(s) 228.13.0.0/16

  RP 10.224.1.2 (?), v2

    Info source: 10.224.1.1 (?), via bootstrap

         Uptime: 00:07:25, expires: 00:02:54

Bowler#show ip pim rp

Group: 239.255.255.254, RP: 10.224.1.1, v2, uptime 00:07:30, expires 00:02:52

Group: 228.13.20.216, RP: 10.224.1.2, v2, uptime 00:07:30, expires 00:03:32

Group: 224.2.127.254, RP: 10.224.1.1, v2, uptime 00:07:30, expires 00:02:52

Group: 230.253.84.168, RP: 10.224.1.1, v2, uptime 00:07:30, expires 00:02:52

Bowler#

A better way to distribute the RP duties when using PIMv2 bootstrap is to use the hash-mask. The 
hash-mask is a 32-bit number assigned to the BSR, and it is used in a somewhat similar fashion to a 



standard IP address mask. The BSR advertises the hash-mask in its Bootstrap messages, and the 
receiving routers run a hash algorithm that assigns a consecutive number of group addresses to one 
C-RP and then assigns the next group of addresses to the next C-RP.

If the hash-mask is 30 bits, for example, it masks the first 30 bits of all IP multicast addresses. The 
last 2 bits describe a range of four group addresses that will be assigned to an RP. So the addresses 
225.1.1.0, 225.1.1.1, 225.1.1.2, and 225.1.1.3 are all part of one range and are assigned to one RP. 
The addresses 225.1.1.4, 225.1.1.5, 225.1.1.6, and 225.1.1.7 belong to the next range and are 
assigned to another RP. This "bundling" of group addresses continues throughout the entire IP 
multicast address range and across all available C-RPs. The result is that the IP multicast group 
addresses have been evenly distributed among the C-RPs. The mask gives you the flexibility to decide 
how many consecutive addresses are bundled into a single range so that related addresses are more 
likely to share the same RP. If the mask is 26 bits, for instance, 64 consecutive addresses are 
assigned to each range.

The hash-mask length is specified as part of the ip pim bsr-candidate command. As you have 
observed in previous examples in this case study, the default mask length is 0, meaning that there is 
a single bundle of group addresses spanning the entire range of the IP multicast address space. 
Example 6-46 shows the configurations to assign a hash-mask length of 30 for both Stetson and 
Fedora in Figure 6-7.

Example 6-46 Assigning a Hash-Mask Length of 30 to Routers Stetson and 
Fedora

Stetson

interface Loopback0

 ip address 10.224.1.1 255.255.255.255

!

ip pim bsr-candidate Loopback0 30

ip pim rp-candidate Loopback0

______________________________________________________________________

Fedora

interface Loopback0

 ip address 10.224.1.2 255.255.255.255

!

ip pim bsr-candidate Loopback0 30

ip pim rp-candidate Loopback0

In Example 6-47, the show ip pim rp-hash command is used to demonstrate the results. Beginning 
with 231.1.1.0, you can see that it and the next three consecutive group addresses are mapped to 
Fedora. Continuing the sequence, the next four addresses are mapped to Stetson. Across the entire 
range of IP multicast addresses, there should be a 50-50 distribution between the two RPs.

Example 6-47 The Hash Algorithm Distributes Group Addresses Evenly 
Among the Available C-RPs



Bowler#show ip pim rp-hash 231.1.1.0

  RP 10.224.1.2 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:14, expires: 00:02:29

Bowler#show ip pim rp-hash 231.1.1.1

  RP 10.224.1.2 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:19, expires: 00:02:24

Bowler#show ip pim rp-hash 231.1.1.2

  RP 10.224.1.2 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:22, expires: 00:02:21

Bowler#show ip pim rp-hash 231.1.1.3

  RP 10.224.1.2 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:28, expires: 00:02:15

Bowler#show ip pim rp-hash 231.1.1.4

  RP 10.224.1.1 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:31, expires: 00:02:13

Bowler#show ip pim rp-hash 231.1.1.5

  RP 10.224.1.1 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:35, expires: 00:02:10

Bowler#show ip pim rp-hash 231.1.1.6

  RP 10.224.1.1 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:38, expires: 00:02:06

Bowler#show ip pim rp-hash 231.1.1.7

  RP 10.224.1.1 (?), v2

    Info source: 10.224.1.2 (?), via bootstrap

         Uptime: 07:22:43, expires: 00:02:02



Case Study: Multicast Load Sharing

At times, you may want to balance multicast traffic over parallel equal-cost paths, either to more fully 
utilize available bandwidth or to prevent a single path from becoming congested by heavy multicast 
traffic. But the RPF check prevents multicast load balancing directly over physical links.

The problem is illustrated in Figure 6-8, where the same PIM topology used in the previous case 
studies is repeated, except that Bowler is removed and Homburg is both the Auto-RP mapping agent 
and the RP.

Figure 6-8. Two Equal-Cost Paths Exist between the Multicast Source and 
the Group Member

There are two equal-cost paths from the multicast source attached to Homburg and the group 
member attached to Porkpie: One path transits Fedora; the other transits Stetson. The problem 
exists because RPF must have only one incoming interface to work correctly. That means that if 
Fedora is chosen as the RPF neighbor, and group traffic arrives from Stetson, that traffic will not 
arrive on the RPF interface and will be dropped. Likewise, if Stetson is chosen as the RPF neighbor, 
traffic arriving from Fedora will fail the RPF check and be dropped. RPF requires all traffic to arrive on 
the same upstream interface.

The way to get around this problem is to use a tunnel, as shown in Figure 6-9. The tunnel is built 



between the loopback interfaces of Homburg and Porkpie, and all multicast traffic from the source to 
the group member is sent to this virtual tunnel interface rather than to either physical link. The 
multicast packets are then encapsulated and forwarded as regular IP packets. At this point, the 
encapsulated packets can be balanced across the two links, using either the default per-destination 
balancing or the optional per-packet balancing, as described in Volume I.

Figure 6-9. To Load Balance Over the Equal-Cost Paths, a Tunnel Is Created 
Between Homburg and Porkpie

NOTE

Per-packet load balancing is achieved by turning off fast switching or its equivalent 
with the command no ip route-cache on the necessary interfaces.

When the packets arrive at Porkpie, it does not matter whether they were received from Fedora or 
from Stetson, because their destination is the egress of the tunnel. At the virtual tunnel interface, the 
encapsulation is removed. From the perspective of the PIM process at Porkpie, the multicast packets 
appear to have all been received on the same interface, TU0, and to have been received from the 
same upstream neighbor, Homburg.

Example 6-48 shows the configurations of Homburg and Porkpie.

Example 6-48 Configuring a Tunnel Between Homburg and Porkpie to Load 
Balance Over Equal-Cost Paths



Homburg

hostname Homburg

!

ip multicast-routing

!

interface Loopback0

 ip address 10.224.1.4 255.255.255.0

 ip pim sparse-mode

!

interface Tunnel0

 ip address 10.224.2.1 255.255.255.252

 ip pim sparse-dense-mode

 tunnel source Loopback0

 tunnel destination 10.224.1.3

!

interface Ethernet0/0

 ip address 10.1.1.1 255.255.255.0

 ip pim sparse-dense-mode

!

interface Serial0/1

 no ip address

 encapsulation frame-relay

!

interface Serial0/1.305 point-to-point

 description PVC to R5

 ip address 10.2.1.1 255.255.255.0

 frame-relay interface-dlci 305

!

interface Serial0/1.309 point-to-point

 description PVC to R9

 ip address 10.2.2.1 255.255.255.0

 frame-relay interface-dlci 309

!



router ospf 1

 passive-interface Tunnel0

 network 10.0.0.0 0.255.255.255 area 0

!

ip pim send-rp-announce Loopback0 scope 5

ip pim send-rp-discovery scope 5

_______________________________________________________________________

Porkpie

hostname Porkpie

!

ip multicast-routing

!

interface Loopback0

 ip address 10.224.1.3 255.255.255.255

!

interface Tunnel0

 ip address 10.224.2.2 255.255.255.252

 ip pim sparse-dense-mode

 tunnel source Loopback0

 tunnel destination 10.224.1.4

!

interface Ethernet0

 ip address 10.1.2.1 255.255.255.0

 ip pim sparse-dense-mode

 ip cgmp

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.605 point-to-point

 description PVC to R5

 ip address 10.2.4.1 255.255.255.0



 frame-relay interface-dlci 605

!

interface Serial1.609 point-to-point

 description PVC to R9

 ip address 10.2.3.2 255.255.255.0

 frame-relay interface-dlci 609

!

router ospf 1

 passive-interface Tunnel0

 network 10.0.0.0 0.255.255.255 area 0

On both routers, the tunnel interface is configured with a source of the router's loopback interface 
and a destination of the other router's loopback interface. The tunnel is using generic route 
encapsulation (GRE) and is given an IP address so that the virtual interface appears to the routing 
processes to be a physical IP interface. Finally, PIM is enabled on the tunnel interfaces. Notice that 
PIM is not enabled on any of the subinterfaces connecting to Stetson and Fedora. And on those two 
routers, multicasting is not enabled at all. Example 6-49 shows that, with these configurations, 
Porkpie has established a PIM adjacency with Homburg over the tunnel.

Example 6-49 Porkpie Shows Homburg as a Neighbor Across the GRE 
Tunnel

Porkpie#show ip pim neighbor

PIM Neighbor Table

Neighbor Address  Interface          Uptime    Expires   Ver  Mode

10.224.2.1        Tunnel0            04:09:21  00:01:11  v1   Sparse-Dense

Porkpie#

There is a further RPF problem to be solved, however. When Porkpie receives packets from source 
10.1.1.88, it checks the unicast routing table for the upstream neighbor. Example 6-50 shows what 
the router finds.

Example 6-50 The Unicast Routing Table Still Shows 10.2.3.1 or 10.2.4.2 as 
the Next-Hop Addresses to Reach 10.1.1.88

Porkpie#show ip route 10.1.1.88

Routing entry for 10.1.1.0/24

  Known via "ospf 1", distance 110, metric 138, type intra area

  Redistributing via ospf 1

  Last update from 10.2.3.1 on Serial1.609, 01:13:30 ago



  Routing Descriptor Blocks:

  * 10.2.3.1, from 10.224.1.4, 01:13:30 ago, via Serial1.609

      Route metric is 138, traffic share count is 1

    10.2.4.2, from 10.224.1.4, 01:13:30 ago, via Serial1.605

      Route metric is 138, traffic share count is 1

Porkpie#

Porkpie's OSPF configuration has interface TU0 in passive mode to ensure that no unicast traffic 
crosses the tunnel—only multicast. Unfortunately, this means that OSPF still sees either Stetson 
(10.2.3.1) or Fedora (10.2.4.2) as the next hop toward 10.1.1.88. So when packets from 10.1.1.88 
arrive on the tunnel interface, the RPF check fails, as demonstrated in Example 6-51.

Example 6-51 The RPF Check Fails for Packets Arriving Over the Tunnel 
from 10.1.1.88 Because the Unicast Routing Table Does Not Show TU0 As 
an Upstream Interface to That Address

Porkpie#debug ip mpacket

IP multicast packets debugging is on

Porkpie#

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 len 569, not RPF interface

To overcome this second RPF problem, a static multicast route is used. Static mroutes are similar to 
static unicast routes in that they override any dynamic route entries. The difference is that static 
mroutes are not used for any forwarding. Instead, they are used to statically configure the RPF 
interface for a source, overriding the information in the unicast routing table. The command ip 
mroute is used along with an IP address and mask to specify an address or range of addresses. An 
RPF interface or RPF neighbor address also is specified, just as a static unicast route specifies either 
an outgoing interface or a next-hop neighbor. Example 6-52 shows the configuration for Porkpie with 
the static mroute.

Example 6-52 Configuring Porkpie with a Static mroute



hostname Porkpie

!

ip multicast-routing

!

interface Loopback0

 ip address 10.224.1.3 255.255.255.255

!

interface Tunnel0

 ip address 10.224.2.2 255.255.255.252

 ip pim sparse-dense-mode

 tunnel source Loopback0

 tunnel destination 10.224.1.4

!

interface Ethernet0

 ip address 10.1.2.1 255.255.255.0

 ip pim sparse-dense-mode

 ip cgmp

!

interface Serial1

 no ip address

 encapsulation frame-relay

!

interface Serial1.605 point-to-point

 description PVC to R5

 ip address 10.2.4.1 255.255.255.0

 frame-relay interface-dlci 605

!

interface Serial1.609 point-to-point

 description PVC to R9

 ip address 10.2.3.2 255.255.255.0

 frame-relay interface-dlci 609

!

router ospf 1



 passive-interface Tunnel0

 network 10.0.0.0 0.255.255.255 area 0

!

ip mroute 10.1.1.88 255.255.255.255 Tunnel0

Example 6-53 again uses debugging to verify that the multicast packets are now passing the RPF 
check at Porkpie and are being forwarded to the group member.

Example 6-53 Packets from Source 10.1.1.88 Arriving on the Tunnel 
Interface Are Now Passing the RPF Check and Are Being Forwarded

Porkpie#debug ip mpacket

IP multicast packets debugging is on

Porkpie#

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

IP: s=10.1.1.88 (Tunnel0) d=228.13.20.216 (Ethernet0) len 569, mforward

Example 6-54 shows the mroute entries for group 228.13.20.216. You can readily observe that 
Homburg is receiving multicast traffic from 10.1.1.88 on its E0/0 interface and forwarding the traffic 
on the tunnel. Porkpie is receiving the traffic on the tunnel and forwarding to the group member on 
its E0 interface.

Example 6-54 The mroute Entries for (10.1.1.88, 228.13.20.216) Indicate 
That the Traffic for That Group Is Being Forwarded Over the GRE Tunnel

Homburg#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

Timers: Uptime/Expires



Interface state: Interface, Next-Hop, State/Mode

(*, 228.13.20.216), 04:48:39/00:02:59, RP 10.224.1.4, flags: SJC

  Incoming interface: Null, RPF nbr 0.0.0.0

  Outgoing interface list:

    Tunnel0, Forward/Sparse-Dense, 01:35:18/00:02:01

    Ethernet0/0, Forward/Sparse-Dense, 04:48:39/00:02:59

(10.1.1.88/32, 228.13.20.216), 01:41:09/00:02:59, flags: CT

  Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0

  Outgoing interface list:

    Tunnel0, Forward/Sparse-Dense, 01:35:19/00:02:01

Homburg#

_______________________________________________________________________

Porkpie#show ip mroute 228.13.20.216

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned

       R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT

       M - MSDP created entry, X - Proxy Join Timer Running

       A - Advertised via MSDP

Outgoing interface flags: H - Hardware switched

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 228.13.20.216), 00:56:23/00:02:59, RP 10.224.1.4, flags: SJC

  Incoming interface: Tunnel0, RPF nbr 10.224.2.1, Mroute

  Outgoing interface list:

    Ethernet0, Forward/Sparse-Dense, 00:56:23/00:02:58

(10.1.1.88, 228.13.20.216), 00:13:37/00:02:59, flags: CJT

  Incoming interface: Tunnel0, RPF nbr 10.224.2.1, Mroute

  Outgoing interface list:

    Ethernet0, Forward/Sparse-Dense, 00:13:37/00:02:58



Porkpie#



 
  
Troubleshooting IP Multicast Routing

Your primary weapon when attacking problems in IP multicast internetworks is a solid understanding 
of the IP multicast protocols. Without that, no number of troubleshooting tools will help you wend 
your way through the often confusing, sometimes complex behaviors of IP multicast to the root of a 
particular problem. And understanding a single protocol is not enough. You also must understand 
how PIM, IGMP, and unicast routing all interact.

If you have been closely following the troubleshooting sections of each chapter of both Volume I and 
this volume, you should by now have a well-developed grasp of the approaches and techniques 
necessary for resolving problems in routed internetworks. So rather than present further case studies 
illustrating troubleshooting techniques, this section demonstrates the use of the several specialized 
tools provided for analyzing multicast internets.

Throughout this chapter, you have seen various show and debug commands that are useful for 
observing the behavior of IP multicast routing on Cisco routers. Table 6-2 lists the show commands 
available to you, and Table 6-3 lists the important multicast debug commands. Just as show ip 
route is the primary source of information when troubleshooting IP unicast routing, show ip mroute 
is the primary source of information when troubleshooting IP multicast routing.

Table 6-2. Important show Commands for Troubleshooting IP Multicast

Command Description 

show ip igmp groups [group-name | 
group-address | type number] 

Displays the addresses of groups that 
have members on the router's interfaces. 

show ip igmp interface [type 
number] 

Displays relevant details of the IGMP-
enabled interface. 

show ip mcache [group [source]] Displays the multicast contents of the 
fast-switching cache. 

show ip mroute [group-name | group-
address] [source] [summary] [count] 
[active kbps] 

Displays the contents of the multicast 
routing table. 

show ip pim bsr Displays information about PIM bootstrap 
routers. 

show ip pim interface [type number] 
[count] 

Displays relevant details of PIM-enabled 
interfaces. 

show ip pim neighbor [type number] Displays PIM neighbors. 

show ip pim rp [group-name | group-
address | mapping] 

Displays the known RPs, and the groups 
mapped to the RPs. 

show ip pim rp-hash group Displays the RP for the group specified. 



show ip rpf {source-address | name} Displays details of how the router is 
determining RPF information. 

Table 6-3. Important debug Commands for Troubleshooting IP Multicast

Command Description 

debug ip icmp [hostname | group_address] Displays IGMP protocol 
activity. 

debug ip mcache [hostname | group_address] Displays multicast caching 
operations. 

debug ip mpacket [standard_access_list | 
extended_access_list] [hostname | 
group_address][detail] 

Displays multicast packets 
transiting the router. 

debug ip mrouting [hostname | group_address] Displays multicast routing 
table activity. 

debug ip pim [hostname | group_address][auto-
rp][bsr] 

Displays PIM activity and 
events. 

Using mrinfo

The mrinfo command enables you to observe a router's multicast connections and the details of 
those connections. The command is a part of the tools originally made available as part of mrouted 
for testing routers in the MBone. Therefore, the command is very useful in multivendor domains. 
Take, for example, the topology in Figure 6-10.

Figure 6-10. This Topology Is Used Throughout the Troubleshooting 
Examples



In Example 6-55, mrinfo is used at router Sombrero. The first line of the output shows the address 
used as the source of the query, the Cisco IOS Software version running on the router, and a number 
of flags. Table 6-4 lists the possible flags and their meanings. The next two lines of output show 
multicast interfaces on the router and any peers that the router may have. On the second line, 
Sombrero's interface 192.168.10.1 has no peers, indicated by the 0.0.0.0. The 1/0 indicates that the 
interface has a metric of 1 and that there is no TTL threshold set. PIM is running on the interface, the 
router is an IGMP querier for the attached subnet, and the subnet is a leaf network (that is, no 
multicast traffic will transit the network to another multicast router). The third line shows that 
Sombrero's interface 192.168.200.1 has a peer at address 192.168.200.2 (router Beret), the metric 
of the interface is 1, there is no TTL threshold, and PIM is running.

Example 6-55 The IP Multicast Connection Information for Sombrero in 
Figure 6-10

Sombrero#mrinfo

192.168.10.1 [version  12.1] [flags: PMA]:

  192.168.10.1 -> 0.0.0.0 [1/0/pim/querier/leaf]

  192.168.200.1 -> 192.168.200.2 [1/0/pim]

Sombrero#

Table 6-4. Flags Associated with the mrinfo Command

Flag Definition 



P Prune-capable 

M mtrace-capable 

S SNMP-capable 

A Auto-RP-capable 

The true usefulness of mrinfo, however, is that you can use the command to query other routers in 
the domain. In Example 6-56, the command is used at Sombrero to query Boater, by specifying one 
of Boater's IP addresses (in this case, its loopback address). Note that the flags indicate that SNMP is 
enabled on this router, whereas it is not on Sombrero. The router has five multicast-enabled 
interfaces, two of which are on leaf networks and three of which have PIM peers. A check of Figure 6-
10 shows that this information is accurate.

Example 6-56 mrinfo Is Used at Sombrero to Query Boater About Its 
Multicast Peers

Sombrero#mrinfo 192.168.224.7

192.168.224.7 [version  12.1] [flags: PMSA]:

  192.168.14.1 -> 0.0.0.0 [1/0/pim/querier/leaf]

  192.168.15.1 -> 0.0.0.0 [1/0/pim/querier/leaf]

  192.168.203.1 -> 192.168.203.2 [1/0/pim]

  192.168.206.1 -> 192.168.206.2 [1/0/pim]

  192.168.204.1 -> 192.168.204.2 [1/0/pim]

Sombrero#

In Example 6-57, routers Derby and Fez are queried. These two routers share an Ethernet 
connection, and comparing the results of the queries shows that Derby (192.168.224.4) is the IGMP 
querier on that subnet.

Example 6-57 Derby (192.168.224.4) and Fez (192.168.224.5) Are Queried 
from Sombrero

Sombrero#mrinfo 192.168.224.4

192.168.224.4 [version  12.1] [flags: PMA]:

  192.168.12.2 -> 192.168.12.1 [1/0/pim/querier]

  192.168.205.1 -> 192.168.205.2 [1/0/pim]

  192.168.206.2 -> 192.168.206.1 [1/0/pim]

Sombrero#mrinfo 192.168.224.5



192.168.224.5 [version  12.1] [flags: PMA]:

  192.168.12.1 -> 192.168.12.2 [1/0/pim]

  192.168.205.2 -> 192.168.205.1 [1/0/pim]

  192.168.204.2 -> 192.168.204.1 [1/0/pim]

  192.168.201.2 -> 192.168.201.1 [1/0/pim]

Sombrero#

Using mtrace and mstat

Another useful tool is the mtrace command, which enables you to trace the RPF path from a 
specified destination to a specified source. Like mrinfo, mtrace is a UNIX-based MBone tool and can 
be used in multivendor domains. And also like mrinfo, you can issue the command from any router 
in the domain—you do not have to be on any router along the RPF path.

When the command is issued, you specify a source address and a destination address. A trace 
request is sent to the destination, which then uses a unicast trace to the source. The first-hop router 
on the path toward the source unicasts the results of the trace to the querying router.

Example 6-58 shows an example where a request is issued at Sombrero to trace the RPF path from 
Derby's 192.168.12.2 interface to Turban's 192.168.11.1 interface. Remember, because this is a 
reverse-path trace, Turban's interface is the source and Derby's interface is the destination. The 
output begins at the destination address and displays each intermediate router until the source is 
reached. The number of hops from the source is indicated, as is the multicast protocol used on that 
hop.

Example 6-58 mtrace Is Used to Examine the RPF Path from Destination 
192.168.12.2 to Source 192.168.11.1

Sombrero#mtrace 192.168.11.1 192.168.12.2

Type escape sequence to abort.

Mtrace from 192.168.11.1 to 192.168.12.2 via RPF

From source (?) to destination (?)

Querying full reverse path...

 0  192.168.12.2

-1  192.168.12.2 PIM  [192.168.11.0/24]

-2  192.168.206.1 PIM  [192.168.11.0/24]

-3  192.168.203.2 PIM  [192.168.11.0/24]

-4  192.168.11.1

Sombrero#

Aside from the obvious use of isolating multicast routing failures, mtrace has an additional use of 



enabling you to examine multicast behavior before you turn up live multicast traffic on your 
internetwork. Notice in Figure 6-10 that no multicast sources or group members are indicated. 
Suppose you are going to turn up a multicast source attached to Boater, with an address of 
192.168.14.35. This source will originate multicast traffic for group 235.100.20.18, and there will be 
group members at addresses 192.168.12.15, 192.168.10.8, and 192.168.11.102. Example 6-59 
shows the results.

Example 6-59 mtrace Can Be Used to Test the RPF for Source, Destination, 
and Group Addresses That Do Not Yet Exist in the Multicast Domain

Sombrero#mtrace 192.168.14.35 192.168.12.15 235.100.20.18

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.12.15 via group 235.100.20.18

From source (?) to destination (?)

Querying full reverse path...

 0  192.168.12.15

-1  192.168.201.2 PIM  [192.168.14.0/24]

-2  192.168.204.1 PIM  [192.168.14.0/24]

-3  192.168.14.35

Sombrero#mtrace 192.168.14.35 192.168.10.8 235.100.20.18

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.10.8 via group 235.100.20.18

From source (?) to destination (?)

Querying full reverse path...

 0  192.168.10.8

-1  192.168.10.1 PIM  [192.168.14.0/24]

-2  192.168.200.2 PIM  [192.168.14.0/24]

-3  192.168.202.2 PIM  [192.168.14.0/24]

-4  192.168.203.1 PIM  [192.168.14.0/24]

-5  192.168.14.35

Sombrero#mtrace 192.168.14.35 192.168.11.102 235.100.20.18

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.11.102 via group 235.100.20.18

From source (?) to destination (?)

Querying full reverse path...

 0  192.168.11.102



-1  192.168.202.2 PIM  [192.168.14.0/24]

-2  192.168.203.1 PIM  [192.168.14.0/24]

-3  192.168.14.35

Sombrero#

The traces in Example 6-59 specify the multicast group along with the source and destination 
addresses. Although the RPF path would normally be the same for all groups, specifying the group 
can prove useful in situations where scoping or RP filtering affects the path taken. When no group is 
specified, as in Example 6-58, the group address 224.2.0.1 (the MBone audio group address) is used 
by default.

mstat is an adaptation of mtrace and provides not only a trace of the path from a source to a group 
destination, but also provides statistics about the path. Example 6-60 shows an example where a 
trace is again requested from source 192.168.14.35 to destination 192.168.10.8 for group 
235.100.20.18. Comparing the output in Example 6-60 to the output for the same trace in Example 6-
59, you can see that mstat provides not only packet statistics but also a more detailed view of the 
entire path.

Example 6-60 mstat Provides a More-Detailed Trace of Group Traffic from a 
Source to a Destination

Sombrero#mstat 192.168.14.35 192.168.10.8 235.100.20.18

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.10.8 via group 235.100.20.18

From source (?) to destination (?)

Waiting to accumulate statistics......

Results after 10 seconds:

  Source        Response Dest    Packet Statistics For     Only For Traffic

192.168.14.35    192.168.200.1    All Multicast Traffic     From 192.168.14.35

     |       __/  rtt 47   ms   Lost/Sent = Pct  Rate     To 235.100.20.18

     v      /     hop 27   ms   ---------------------     --------------------

192.168.14.1

192.168.203.1   ?

     |     ^      ttl   0

     v     |      hop 5    ms    0/0 = --%      0 pps    0/0 = --%  0 pps

192.168.203.2

192.168.202.2   ?

     |     ^      ttl   1



     v     |      hop 7    ms    0/0 = --%      0 pps    0/0 = --%  0 pps

192.168.202.1

192.168.200.2   ?

     |     ^      ttl   2

     v     |      hop 4    ms    0/0 = --%      0 pps    0/0 = --%  0 pps

192.168.200.1

192.168.10.1    ?

     |      \__   ttl   3

     v         \  hop 0    ms        0         0 pps           0    0 pps

192.168.10.8    192.168.200.1

  Receiver      Query Source

Reading from bottom to top, the display in Example 6-60 shows the query source and response 
destination, which in this example are both 192.168.200.1 (Sombrero). Notice that there is an ASCII 
representation of arrows, showing that Sombrero has sent the query to 192.168.10.1 (in this case, 
its own interface). The reverse path is then traced to the interface on Boater to which the source 
would be attached, and the response to the query is then sent to Sombrero. At the far left of the 
display, ASCII arrows also indicate the path multicast traffic will take from the source to the 
destination. At each hop, the ttl and hop statistics can be a little misleading. ttl actually shows the 
number of hops from that point to the source, whereas hops shows the delay (in milliseconds) 
between hops. Notice that the round-trip time (rtt) is indicated below the response destination. 
Statistics are then shown for all multicast traffic and for the (S, G) pair specified in the command. 
The first statistic compares the number of packets dropped to the number of packets sent. The 
second statistic shows the total traffic rate in packets per second. In Example 6-59, all these 
statistics are zero, of course, because no traffic has passed from the source to the destination. In 
fact, the source and destination do not even exist yet.

In Example 6-61, the proposed hosts have been installed, the source is generating traffic, and the 
group member has joined. You can now observe the packet-per-second rates and the drop statistics. 
An important point to keep in mind when using mstat is that the delay times between routers are 
valid only if the routers' clocks are synchronized.

Example 6-61 The Same mstat Command Is Used After Multicast Traffic Has 
Begun Between the Source and Destination

Sombrero#mstat 192.168.14.35 192.168.10.8 235.100.20.18

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.10.8 via group 235.100.20.18

From source (?) to destination (?)

Waiting to accumulate statistics......

Results after 10 seconds:

  Source        Response Dest    Packet Statistics For     Only For Traffic



192.168.14.35    192.168.200.1    All Multicast Traffic     From 192.168.14.35

     |       __/  rtt 48   ms   Lost/Sent = Pct  Rate     To 235.100.20.18

     v      /     hop 48   ms   ---------------------     --------------------

192.168.14.1

192.168.203.1   ?

     |     ^      ttl   0

     v     |      hop 10   ms    0/82 = 0%      8 pps    0/81 = --%  8 pps

192.168.203.2

192.168.202.2   ?

     |     ^      ttl   1

     v     |      hop 6    ms    0/82 = 0%      8 pps    0/81 = 0%  8 pps

192.168.202.1

192.168.200.2   ?

     |     ^      ttl   2

     v     |      hop 4    ms    0/82 = 0%      8 pps    0/81 = 0%  8 pps

192.168.200.1

192.168.10.1    ?

     |      \__   ttl   3

     v         \  hop 0    ms        82         8 pps           81    8 pps

192.168.10.8    192.168.200.1

  Receiver      Query Source

Sombrero#

Example 6-62 shows what the display might look like if the clocks are not in sync. The trace 
information and packet rates are still valid, but the delay times for the individual hops are obviously 
nonsensical. Also in Example 6-62, you can see that one packet has been lost on the hop between 
Turban and Beret. This may or may not represent a problem; the only way to know is to run several 
iterations of mstat and observe whether the packet loss is consistent. If so, further investigation 
using debugging may be required.

Example 6-62 If the Routers' Clocks Are Not Synchronized, the Delays 
Shown for the Router Hops Are Meaningless

Sombrero#mstat 192.168.14.35 192.168.10.8 228.13.20.216

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.10.8 via group 228.13.20.216

From source (?) to destination (?)



Waiting to accumulate statistics......

Results after 10 seconds:

  Source        Response Dest    Packet Statistics For     Only For Traffic

192.168.14.35    192.168.200.1    All Multicast Traffic     From 192.168.14.35

     |       __/  rtt 44   ms   Lost/Sent = Pct  Rate     To 228.13.20.216

     v      /     hop 44   ms   ---------------------     --------------------

192.168.14.1

192.168.203.1   ?

     |     ^      ttl   0

     v     |      hop -222 s    0/82 = 0%      8 pps    0/81 = 0%  8 pps

192.168.203.2

192.168.202.2   ?

     |     ^      ttl   1

     v     |      hop 113  s    1/82 = 1%      8 pps    1/81 = 1%  8 pps

192.168.202.1

192.168.200.2   ?

     |     ^      ttl   2

     v     |      hop 108  s    0/80 = 0%      8 pps    0/80 = 0%  8 pps

192.168.200.1

192.168.10.1    ?

     |      \__   ttl   3

     v         \  hop 0    ms        80         8 pps           80    8 pps

192.168.10.8    192.168.200.1

  Receiver      Query Source

Lastly, you may encounter a situation in which mstat shows a negative number of lost packets such 
as, -3/85. The "negative packet loss" in fact represents a packet gain. In other words, extra packets 
have been received. This may signify a loop and warrants further investigation.



 
  
Looking Ahead

You now have a good grasp of the basics of configuring IP multicast routing. As with unicast routing, 
however, as the multicast domain grows you are presented with problems of scalability and control. 
Chapter 7, "Large-Scale IP Multicast Routing," introduces you to tools and strategies for addressing 
the problems of large-scale multicast routing, from scoping domains to interdomain multicasting.



 
  
Configuration Exercises

1: What global Cisco IOS Software command is required to enable IP multicast routing?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: Show the commands that enable PIM on an interface in dense mode, sparse mode, and sparse-
dense mode.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: Show the command to statically specify an RP with an address of 172.18.20.4.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: Write the configuration statements necessary to statically map groups 239.1.2.3 and 228.1.8.0 
through 228.1.8.255 to RP 192.168.15.5, and group 239.6.7.8 to RP 192.168.20.10. Map all other 
groups to RP 192.168.25.1.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



5: All router interfaces shown in Figure 6-11 are running in sparse-dense mode. Show the relevant 
configurations in order for R1 to be the RP for only groups whose addresses begin with 
226.13.0.0/24. R2 should only be the RP for groups whose addresses begin with 239.0.0.0/8. R3 
is the mapping agent; ensure that the mapping agent will recognize only R1 and R2 as RPs, and 
only for the specified groups. All Auto-RP messages should have a TTL of 20.

Figure 6-11. The Topology for Configuration Exercises 5–8

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: Given the configurations of Configuration Exercise 5, suppose a source originates traffic for group 
228.23.14.135, and a member requests a join to that group. What will happen?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: Again referring to Figure 6-11, write the necessary configurations to enable the bootstrap 
protocol, making R1 and R2 C-RPs for the same group addresses described in Configuration 
Exercise 5. Make R3 the BSR, and make R4 a backup BSR.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



8: Write configurations for the topology in Figure 6-11 that allow multicast load balancing between 
source 172.16.1.75 and group member 172.16.2.100. Use unnumbered addressing on the tunnel 
interfaces, referencing E0, and assume the IGP is advertising those addresses.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

9: Examine the configurations of Homburg and Porkpie shown in the case study "Multicast Load 
Sharing." Each router is running OSPF in passive mode on the tunnel interfaces. Why?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

10: What is the purpose of the command ip pim spt-threshold 100 group-list 25?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



 
  
Troubleshooting Exercises

1: What is the output of Example 6-63 telling you?

Example 6-63 The Output for Troubleshooting Exercise 1

R1#

Turban#debug ip mpacket

IP multicast packets debugging is on

R1#

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



2: What is the output of Example 6-64 telling you?

Example 6-64 The Output for Troubleshooting Exercise 2

R2#

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: What is the output of Example 6-65 telling you?

Example 6-65 The Output for Troubleshooting Exercise 3

R3#debug ip mpacket

IP multicast packets debugging is on

R3#

IP: s=172.16.3.50 (Serial0.405) d=224.0.1.40 (Serial0.407) len 52, mforward

IP: s=172.16.3.50 (Ethernet0) d=224.0.1.40 len 62, not RPF interface

IP: s=172.16.3.50 (Ethernet0) d=224.0.1.39 len 62, not RPF interface

IP: s=172.16.3.50 (Serial0.405) d=224.0.1.39 (Serial0.407) len 52, mforward

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



4: In Figure 6-12, which of the four routers is the PIM-designated router?

Figure 6-12. The Topology for Troubleshooting Exercises 4, 5, and 6

5: In Figure 6-12, which router is sending IGMPv2 queries to the group member?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



6: Table 6-5 shows the unicast routes to source 172.16.12.18 in Figure 6-12. Which router is the PIM 
forwarder?

Table 6-5. Unicast Routes to 172.16.12.18 in Figure 6-12

Router Next Hop Protocol Metric 

R1 172.16.50.5 OSPF 35 

R2 172.16.51.80 EIGRP 307200 

R3 172.16.13.200 EIGRP 2297856 

R4 172.16.44.1 OSPF 83 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: Example 6-66 shows an RPF trace taken from the PIM domain in Figure 6-10, which is running RIP-
2 as its unicast IGP. Does this trace indicate a possible problem?

Example 6-66 The mtrace for Troubleshooting Exercise 7

Sombrero#mtrace 192.168.14.35 192.168.10.8 235.1.2.3

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.10.8 via group 235.1.2.3

From source (?) to destination (?)

Querying full reverse path...

 0  192.168.10.8

-1  192.168.10.1 PIM  [192.168.14.0/24]

-2  192.168.200.2 PIM  [192.168.14.0/24]

-3  192.168.201.2 PIM  [192.168.14.0/24]

-4  192.168.204.1 PIM  [192.168.14.0/24]

-5  192.168.14.35

Sombrero#



 
  

Chapter 7. Large-Scale IP Multicast Routing
●     Multicast Scoping— This section examines the reasons for limiting the scope of IP multicast 

traffic, and the implementation of the two methods for multicast scoping: TTL scoping and 
administrative scoping.

●     Case Study: Multicasting Across Non-Multicast Domains— This case study introduces 
techniques for passing IP multicast traffic across routers that do not support IP multicast.

●     Connecting to DVMRP Networks— This section demonstrates strategies for connecting 
Cisco routers to DVMRP networks, and what parts of DVMRP are and are not supported by 
Cisco IOS Software.

●     Inter-AS Multicasting— This section introduces the issues and problems specific to routing 
IP multicast traffic between autonomous systems and discusses the operation of MBGP and 
MSDP as solutions to some of the problems.

●     Case Study: Configuring MBGP— This case study demonstrates the configuration of 
Multiprotocol BGP.

●     Case Study: Configuring MSDP— This case study demonstrates the configuration of MSDP.
●     Case Study: MSDP Mesh Groups— This case study demonstrates the configuration of 

MSDP mesh groups.
●     Case Study: Anycast RP— This case study demonstrates the configuration of Anycast RP.
●     Case Study: MSDP Default Peers— This case study demonstrates the configuration of 

MSDP default peers.

The preceding two chapters explained the present state of IP multicast routing protocols and the 
basics of configuring Cisco IOS Software for multicast routing. As with unicast protocols, however, 
you must take additional measures as your multicast domain grows to maintain stability, scalability, 
and controllability. This chapter examines some of the techniques and protocols available to you to 
accomplish those objectives.



 
  
Multicast Scoping

A primary consideration when working with large-scale multicast domains is controlling the scope of 
the domain. You have read the discussion of the subject in Chapter 5, "Introduction to IP Multicast 
Routing," and you know that there are two methods of scoping multicast domains:

●     TTL scoping
●     Administrative scoping

With TTL scoping, the TTL value of multicast packets is set in such a way that the packets can travel 
only a certain distance before the TTL is decremented to 0 and the packet is discarded. You can add 
some granularity to this rough method by setting boundaries on interfaces with the ip multicast ttl-
threshold command. For example, an interface might be configured with ip multicast ttl-
threshold 5. Only packets with TTL values greater than 5 are forwarded out of this interface. Any 
packets with TTL values of 5 or below are dropped. Table 7-1 shows an example of TTL scoping 
values. The values in this table, which is a repeat of Table 5-6, are a set of TTL values suggested for 
use with the MBone.

In Chapter 6, "Configuring and Troubleshooting IP Multicast Routing," you encountered several 
commands, such as the commands for enabling Auto-RP candidate RPs and mapping agents, that 
enable you to set the TTL values of the protocol messages for TTL scoping. You will encounter more 
commands in this chapter with the same option. However, you saw in Chapter 5 that TTL scoping 
lacks flexibility—a TTL boundary at an interface applies to all multicast packets. This is fine for an 
absolute boundary, but at times you will want some packets to be blocked and others to be 
forwarded.

Table 7-1. MBone TTL Thresholds

TTL Value Restriction 

0 Restricted to same host 

1 Restricted to same subnet 

15 Restricted to same site 

63 Restricted to same region 

127 Worldwide 

191 Worldwide limited bandwidth 

255 Unrestricted 

For this purpose, administrative scoping provides much more flexibility. Administrative scoping is just 
a procedure in which the multicast group address range 224.0.0.0–239.255.255.255 is partitioned in 
such a way that certain ranges of addresses are assigned certain scopes. Various domain boundaries 
can then be created by filtering on these address ranges. Administrative scoping is the subject of RFC 
2365[1], and Table 7-2 shows the partitions that RFC suggests. You have already seen how the link-
local scope of 224.0.0.0/24 is used. Packets with multicast addresses in this range—such as IGMP 
(224.0.0.1 and 224.0.0.2), OSPF (224.0.0.5 and 224.0.0.6), EIGRP (224.0.0.10), and PIM 



(224.0.0.13)—are never forwarded by a router and thus are restricted to the scope of the data link 
on which they were originated.

Table 7-2. RFC 2365 Administrative Partitions

Prefix Scope 

224.0.0.0/24 Link-local scope 

224.0.1.0–238.255.255.255 Global scope 

239.0.0.0/10 Unassigned 

239.64.0.0/10 Unassigned 

239.128.0.0/10 Unassigned 

239.192.0.0/14 Organization-local scope 

239.255.0.0/16 Unassigned 

Adding the ip multicast boundary command to an interface creates an administrative boundary. 
The command just references an IP access list, which specifies the group address range to be 
permitted or denied at the interface, as demonstrated in Example 7-1.

Example 7-1 Adding the ip multicast boundary Command to an Interface 
Creates an Administrative Boundary

interface Ethernet0

 ip address 10.1.2.3 255.255.255.0

  ip multicast boundary 10

!

interface Ethernet1

 ip address 10.83.15.5 255.255.255.0

 ip multicast boundary 20

!

access-list 10 deny   239.192.0.0 0.3.255.255

access-list 10 permit 224.0.0.0 15.255.255.255

access-list 20 permit 239.135.0.0 0.0.255.255

access-list 20 deny   224.0.0.0 15.255.255.255

Interface E0 marks a boundary at which organization-local packets, as defined in Table 7-2, are 
blocked, while global-scoped packets are passed. The boundary at E1 permits packets whose 
destination addresses fall within the 239.135.0.0/16 range and denies all other multicast packets. 



This address range falls within an undefined range in Table 7-2 and therefore has been given some 
special meaning by the local network administrator.



 
  
Case Study: Multicasting Across Non-Multicast Domains

One challenge you will face is connecting diverse multicast domains across domains in which 
multicast is not supported. This may certainly be the case when multicasting is required in only 
certain areas of a large routing domain. You would not want to enable multicast on every router in 
the unicast domain just to provide connectivity to a relatively small number of multicast routers. A 
second and very common example is connecting multicast domains across the decidedly unicast 
Internet.

In Figure 7-1, two PIM domains are separated by a unicast-only IP domain. The unicast domain 
might be the backbone of an enterprise network, or it might be the Internet itself. The important 
point is that the two multicast domains must have connectivity across it. The solution is a simple 
one: Create a tunnel between the two routers that can carry the PIM traffic.

Figure 7-1. PIM Domains Separated by a Unicast-Only IP Domain

Example 7-2 shows the tunnel configurations of the two routers depicted in Figure 7-1.

Example 7-2 Configuring Godzilla and Mothra to Provide Connectivity 
Between the Multicast Domains Through the Unicast-Only Domain

Godzilla

interface Tunnel0



 ip unnumbered Ethernet0

 ip pim sparse-dense-mode

 tunnel source Ethernet0

 tunnel destination 10.224.6.2

!

interface Ethernet0

 ip address 10.224.1.2 255.255.255.0

!

interface Serial0.407 point-to-point

 description PVC to R7

 ip address 192.168.50.1 255.255.255.0

 ip pim sparse-dense-mode

 frame-relay interface-dlci 407

!

router ospf 1

 passive-interface Tunnel0

 network 10.0.0.0 0.255.255.255 area 0

 network 192.168.0.0 0.0.255.255 area 0

!

ip mroute 172.16.0.0 255.255.0.0 Tunnel0

_______________________________________________________________________

Mothra

interface Tunnel0

 ip unnumbered Ethernet0

 ip pim sparse-dense-mode

 tunnel source Ethernet0

 tunnel destination 10.224.1.2

!

interface Ethernet0

 ip address 10.224.6.2 255.255.255.0

!

interface Serial1.506 point-to-point

 description PVC to R6



 ip address 172.16.35.1 255.255.255.0

 ip pim sparse-dense-mode

 frame-relay interface-dlci 506

!

router ospf 1

 passive-interface Tunnel0

 network 0.0.0.0 255.255.255.255 area 0

!

ip mroute 192.168.0.0 255.255.0.0 Tunnel0

You already have seen a tunnel used in Chapter 6 to provide for load sharing across equal-cost paths. 
The configuration here is similar. The tunnel source is the Ethernet interface on each router, but PIM 
is not configured on that physical interface—only on the tunnel. GRE encapsulation, the default tunnel 
mode, is used. OSPF is configured to run passively on TU0 to ensure that no unicast traffic traverses 
the tunnel. Finally, static multicast routes are configured, referencing all possible source addresses 
from the opposite domain and showing their upstream interface as TU0. Recall from Chapter 6 that 
this route is necessary to prevent RPF failures. Without it, RPF checks would use the OSPF routes and 
determine the upstream interface to be the routers' E0 interfaces. As a result, all packets arriving on 
TU0 would fail the RPF check.

NOTE

If the DVMRP routers do not support GRE encapsulation, you can use IP-in-IP.

Example 7-3 shows the results of the configuration.

Example 7-3 A PIM Adjacency Is Formed Across the GRE Tunnel

Godzilla#show ip pim neighbor

PIM Neighbor Table

Neighbor Address  Interface          Uptime    Expires   Ver  Mode

192.168.50.2      Serial0.407        01:08:51  00:01:27  v2

172.16.35.1       Tunnel0            01:03:31  00:01:16  v2

Godzilla#

_______________________________________________________________________

Mothra#show ip pim neighbor



PIM Neighbor Table

Neighbor Address  Interface          Uptime    Expires   Ver  Mode

172.16.35.2       Serial1.506        01:10:06  00:01:42  v2

192.168.50.1      Tunnel0            01:04:33  00:01:15  v2

Mothra#



 
  
Connecting to DVMRP Networks

You might, on occasion, have to connect your PIM router to a DVMRP router. This is not necessarily a 
large-scale multicast issue—routers that can speak only DVMRP can be encountered in an 
internetwork of any size. However, the most likely circumstance is when you are connecting to the 
MBone.

When you configure an interface on a Cisco router to run PIM, it listens for DVMRP Probe messages. 
When Probes are heard, as demonstrated in the output in Example 7-4, Cisco IOS Software 
automatically enables DVMRP on the interface. No special configuration is required. PIM routes are 
advertised to the DVMRP neighbor in DVMRP Report messages. DVMRP Report messages learned 
from the neighbor are kept in a separate DVMRP routing table shown in Example 7-5, but it is still 
PIM on the Cisco router that makes the multicast forwarding decisions. DVMRP Graft messages are 
sent and received normally, but it is the handling of Prunes and Probes that makes the Cisco IOS 
Software implementation of DVMRP different from a full implementation.

Example 7-4 This Router Is Receiving DVMRP Probe Messages on Interface 
E0 from Neighbor 10.224.1.1

Godzilla#debug ip dvmrp detail

DVMRP debugging is on

Godzilla#

DVMRP: Received Probe on Ethernet0 from 10.224.1.1

DVMRP: Aging routes, 0 entries expired

DVMRP: Received Probe on Ethernet0 from 10.224.1.1

DVMRP: Aging routes, 0 entries expired

DVMRP: Received Probe on Ethernet0 from 10.224.1.1

DVMRP: Aging routes, 0 entries expired

Example 7-5 The show ip dvmrp route Command Displays DVMRPSpecific 
Route Information 

Godzilla#show ip dvmrp route

DVMRP Routing Table - 7 entries

10.224.2.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]

10.224.3.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]

10.224.4.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]



10.224.5.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]

10.224.6.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]

172.16.70.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]

192.168.50.0/24 [0/1] uptime 00:04:21, expires 00:02:38

    via 10.224.1.1, Ethernet0, [version mrouted 3.255] [flags: GPM]

The first difference between a full implementation of DVMRP and a Cisco IOS Software-based 
implementation of DVMRP is the handling of Probes. As already mentioned, the detection of Probe 
messages is how a Cisco router discovers DVMRP neighbors. Suppose, however, that the DVMRP 
neighbor is on a multiaccess network, and more than one Cisco router is attached to the same 
network. If one of the Cisco routers were to originate a Probe, the neighboring Cisco routers would 
mistakenly assume the originator is a DVMRP router rather than a PIM router, as illustrated by Figure 
7-2. Therefore, Cisco routers listen for Probe messages but do not originate them.

Figure 7-2. If the Top Cisco Router Were to Generate a DVMRP Probe 
Message, the Bottom Cisco Router Would Mistakenly Record the Originator 
as a DVMRP Neighbor; Therefore, Cisco Routers Do Not Generate DVMRP 

Probes

The second difference is the handling of Prune messages. Recall from the DVMRP discussion in 
Chapter 5 that a DVMRP router is required to maintain state for each downstream neighbor. If a 
downstream neighbor sends a Prune message, only that neighbor's state is pruned. Traffic is still 
forwarded on the interface unless all DVMRP neighbors send a Prune. This addresses the situation in 
which there are multiple downstream neighbors on a multiaccess network, and it prevents a Prune 
from one neighbor causing an unwanted Prune from another neighbor.



NOTE

Also recall from Chapter 5 that PIM-DM uses a Prune override mechanism to address 
this problem, instead of requiring the maintenance of neighbor states.

However, Cisco routers do not maintain DVMRP neighbor state. Therefore, to avoid the problem of 
one downstream neighbor's Prunes pruning traffic needed by another downstream neighbor, Cisco 
routers ignore DVMRP Prune messages received on multiaccess interfaces. On point-to-point 
interfaces, Prunes are received and processed normally, because by definition there can be only one 
downstream neighbor. Cisco routers send Prune messages normally on both multiaccess and point-to-
point interfaces on which there are DVMRP neighbors.

The difficulty, as this approach stands, should be apparent to you. If DVMRP routers connected 
across a multiaccess network to upstream Cisco routers cannot prune themselves, the Cisco routers 
forward unwanted multicast traffic into the DVMRP domain. The solution to the difficulty is, once 
again, tunnels.

In Figure 7-3, a Cisco router is connected to two DVMRP routers across a multiaccess network. By 
creating tunnels to each of the DVMRP routers, Cisco IOS Software sees the DVMRP neighbors as 
connected via point-to-point links rather than a multiaccess link. The Cisco router then accepts 
prunes.

Figure 7-3. Tunnels Are Used to Create Point-to-Point Connections to the 
DVMRP Routers Across the Multiaccess Network, so DVMRP Pruning Works 

Correctly



Example 7-6 shows the configuration for the Cisco router in Figure 7-3.

Example 7-6 Configuring the Cisco Router in Figure 7-3 to Accept Prunes via 
Point-to-Point Links



interface Tunnel0

 ip unnumbered Ethernet0

 ip pim sparse-dense-mode

 tunnel source Ethernet0

 tunnel destination 10.1.1.2

 tunnel mode dvmrp

!

interface Tunnel1

 no ip address

 ip pim sparse-dense-mode

 tunnel source Ethernet0

 tunnel destination 10.1.1.4

 tunnel mode dvmrp

!

interface Ethernet0

 ip address 10.1.1.1 255.255.255.0

The only significant difference from the earlier tunnel configurations you have seen is that the tunnel 
mode is set to DVMRP rather than the default GRE. As with the earlier tunnel configurations, PIM is 
configured on the tunnels but not on the physical interface. If there were also Cisco PIM routers on 
the multiaccess network, just configure PIM on the Ethernet interface so that the DVMRP routers 
connect over the tunnels and the PIM routers connect over the Ethernet.

NOTE

Remember that if multicast sources are reachable via the DVMRP routers, you must 
configure static mroutes to avoid RPF failures.



 
  
Inter-AS Multicasting

A challenge facing any multicast routing protocol (or any unicast routing protocol, for that matter) is 
scaling efficiently to the set of hosts requiring delivery of packets. You have seen how dense mode 
protocols such as PIM-DM and DVMRP do not scale well; by definition, the protocols assume that 
most hosts in the multicast domain are group members. PIM-SM, being a sparse mode protocol, 
scales better because it assumes most hosts in the multicast domain are not group members. Yet the 
assumption of both dense mode and sparse mode protocols is that they span a single domain. In 
other words, all the IP multicast routing protocols you have examined so far can be considered 
multicast IGPs.

How, then, can multicast packets be delivered across AS boundaries while maintaining the autonomy 
of each AS?

The PIM-SM Internet Draft begins to address the issue by defining a PIM Multicast Border Router 
(PMBR). The PMBR resides at the edge of a PIM domain and builds special branches to all RPs in the 
domain, as illustrated in Figure 7-4. Each branch is represented by a (*,*,RP) entry, where the two 
wildcard components represent all source and group addresses that map to that RP. When an RP 
receives traffic from a source, it forwards the traffic to the PMBR, which then forwards the traffic into 
the neighboring domain. The PMBR depends on the neighboring domain to send it prunes for any 
unwanted traffic, and the PMBR then sends prunes to the RP.

Figure 7-4. A PIM Multicast Border Router Forms Multicast Branches to Each 
RP in Its Domain Called (*, *, RP) Branches. RPs Forward All Source Traffic 

to the PMBR Along These Branches

The shortcoming of the PMBR concept is this flood-and-prune behavior. In fact, PMBRs were proposed 
primarily to connect PIM-SM domains to DVMRP domains. Because of the poor scalability inherent in 
the approach, Cisco IOS Software does not support PMBRs.



Accepting that PIM-SM is the de facto standard IP multicast routing protocol, the question of how to 
route multicast traffic between autonomous systems can be reduced to a question of how to route 
between PIM-SM domains. Two issues must be addressed:

●     When a source is in one domain and group members are in other domains, RPF procedures 
must remain valid.

●     To preserve autonomy, a domain cannot rely on an RP in another domain.

PIM-SM is protocol-independent, so the first issue seems easy enough to resolve. Just as PIM uses 
the unicast IGP routes to determine RPF interfaces within a domain, it can use BGP routes to 
determine RPF interfaces to sources in other autonomous systems. When moving traffic between 
domains, however, you may want your multicast traffic to use different links from your unicast traffic, 
as shown in Figure 7-5. If a multicast packet arrives on link A, and BGP indicates that the unicast 
route to the packet's source is via link B, the RPF check fails. Static mroutes could be used to prevent 
RPF problems, but they are obviously not practical on a large scale. Instead, BGP must be extended 
so that it can indicate whether an advertised prefix is to be used for unicast routing, multicast RPF 
checks, or both.

Figure 7-5. Inter-AS Traffic Engineering Requirements May Dictate That 
Multicast Traffic Pass Over a Link Separate from Unicast Traffic



As it happens, PIM can take advantage of existing extensions to BGP. The extended version of BGP is 
called Multiprotocol BGP (MBGP) and is described in RFC 2283.[2] Although the extensions were 
created to allow BGP to carry reachability information for protocols such as IPv6 and IPX, the 
widespread application of MBGP is to advertise multicast sources. As a result, the "M" in MBGP is 
frequently and inaccurately thought to represent "multicast" rather than "multiprotocol."

The most common application of MBGP is for peer connections at NAPs among service providers that 
have agreed to exchange multicast traffic. As Figure 7-6 shows, the autonomous systems may be 
peered for unicast traffic but must share a separate peering point for multicast traffic. Some prefixes 
will be advertised over both the unicast and multicast NAPs, so MBGP is used to differentiate 
multicast RPF paths from unicast paths.

Figure 7-6. MBGP Is Used When Separate Peering Points Are Required for 
Multicast and Unicast

NOTE

Multicast NAPs are usually some nonswitched medium such as FDDI, as depicted in 
Figure 7-6.



The second inter-AS PIM issue (to preserve autonomy, a domain cannot rely on an RP in another 
domain) stems from the fact that an AS does not want to depend on an RP that it does not control. If 
each AS places its own RPs, however, there must be a protocol that each RP can use to share its 
source information with other RPs across AS boundaries and in turn discover sources known by other 
RPs, as illustrated in Figure 7-7. That protocol is the Multicast Source Discovery Protocol (MSDP).[3]

Figure 7-7. Multicast Source Discovery Protocol Is Spoken Between RPs and 
Allows Each RP to Discover Sources Known by Other RPs

The following two sections describe the MBGP extensions and the operation of MSDP.

Multiprotocol Extensions for BGP (MBGP)

RFC 2283 extends BGP for multiprotocol support by defining two new attributes:

●     Multiprotocol Reachable NLRI, or MP_REACH_NLRI (type 14)
●     Multiprotocol Unreachable NLRI, or MP_UNREACH_NLRI (type 15)

NOTE

See Chapter 2, Table 2-7, for a more complete list of BGP attribute type codes.



Both attributes are optional, nontransitive. Recall from Chapter 2, "Introduction to Border Gateway 
Protocol 4," that this means BGP speakers are not required to support the attributes, and BGP 
speakers that do not support the attributes do not pass them to their peers.

The MP_REACH_NLRI attribute advertises feasible routes, and MP_UNREACH_NLRI withdraws feasible 
routes. The Network Layer Reachability Information (NLRI) contained in the attributes is the protocol-
specific destination information. When MBGP is used for IP multicast, the NLRI is always an IPv4 
prefix describing one or more multicast sources. Remember that PIM routers do not use this 
information for packet forwarding but only for determining the RPF interface toward a particular 
source. These two new attributes provide the capability of signaling to a BGP peer whether a 
particular prefix is to be used for unicast routing, multicast RPF, or both.

The MP_REACH_NLRI consists of one or more [Address Family Information, Next Hop Information, 
NLRI] triples. The MP_UNREACH_NLRI consists of one or more [Address Family Information, 
Unfeasible Routes Length, Withdrawn Routes] triples.

NOTE

The complete format of the MP_REACH_NLRI is more complicated than is indicated 
here—some fields are irrelevant to IP multicast. For a complete description, see RFC 
2283.

The Address Family Information consists of an Address Family Identifier (AFI) and a Subsequent AFI 
(Sub-AFI). The AFI for IPv4 is 1, so it is always set to 1 for IP multicast.

The sub-AFI describes whether the NLRI is to be used for unicast routing only, multicast RPF 
information only, or both, as documented in Table 7-3.

Table 7-3. Subsequent Address Family Identifiers

Sub-AFI Description 

1 Unicast route information only 

2 Multicast RPF information only 

3 Prefix can be used for both unicast routing information and multicast 
RPF information 

Operation of Multicast Source Discovery Protocol (MSDP)

The purpose of MSDP is, as the name states, to discover multicast sources in other PIM domains. The 
advantage of running MSDP is that your own RPs exchange source information with RPs in other 
domains; your group members do not have to be directly dependent on another domain's RP.

NOTE



You will see in some subsequent case studies how MSDP can prove useful for sharing 
source information within a single domain, too.

MSDP uses TCP (port 639) for its peering connections. As with BGP, using point-to-point TCP peering 
means that each peer must be explicitly configured. When a PIM DR registers a source with its RP as 
illustrated in Figure 7-8, the RP sends a Source Active (SA) message to all of its MSDP peers.

Figure 7-8. RPs Advertise Sources to Their MSDP Neighbors with Source 
Active Messages

The SA contains the following:

●     The address of the multicast source
●     The group address to which the source is sending
●     The IP address of the originating RP

Each MSDP peer that receives the SA floods the SA to all of its own peers downstream from the 
originator. In some cases, such as the RPs in AS 6 and AS 7 of Figure 7-8, an RP may receive a copy 
of an SA from more than one MSDP peer. To prevent looping, the RP consults the BGP next-hop 
database to determine the next hop toward the SA's originator. If both MBGP and unicast BGP are 
configured, MBGP is checked first, and then unicast BGP. That next-hop neighbor is the RPF peer for 



the originator, and SAs received from the originator on any interface other than the interface to the 
RPF peer are dropped. The SA flooding process is, therefore, called peer RPF flooding. Because of the 
peer RPF flooding mechanism, BGP or MBGP must be running in conjunction with MSDP.

When an RP receives an SA, it checks to see whether there are any members of the SA's group in its 
domain by checking to see whether there are interfaces on the group's (*, G) outgoing interface list. 
If there are no group members, the RP does nothing. If there are group members, the RP sends an 
(S, G) join toward the source. As a result, a branch of the source tree is constructed across AS 
boundaries to the RP. As multicast packets arrive at the RP, they are forwarded down its own shared 
tree to the group members in the RP's domain. The members' DRs then have the option of joining 
the RPT tree to the source using standard PIM-SM procedures.

The originating RP continues to send periodic SAs for the (S, G) every 60 seconds for as long as the 
source is sending packets to the group. When an RP receives an SA, it has the option to cache the 
message. Suppose, for example, that an RP receives an SA for (172.16.5.4, 228.1.2.3) from 
originating RP 10.5.4.3. The RP consults its mroute table and finds that there are no active members 
for group 228.1.2.3, so it passes the SA message to its peers downstream of 10.5.4.3 without 
caching the message. If a host in the domain then sends a join to the RP for group 228.1.2.3, the RP 
adds the interface toward the host to the outgoing interface list of its (*, 224.1.2.3) entry. Because 
the previous SA was not cached, however, the RP has no knowledge of the source. Therefore, the RP 
must wait until the next SA message is received before it can initiate a join to the source.

If, on the other hand, the RP is caching SAs, the router will have an entry for (172.16.5.4, 228.1.2.3) 
and can join the source tree as soon as a host requests a join. The trade-off here is that in exchange 
for reducing the join latency, memory is consumed caching SA messages that may or may not be 
needed. If the RP belongs to a very large MSDP mesh, and there are large numbers of SAs, the 
memory consumption can be significant.

By default, Cisco IOS Software does not cache SAs. You can enable caching with the command ip 
msdp cache-sa-state. To help alleviate possible memory stress, you can link the command to an 
extended access list that specifies what (S, G) pairs to cache.

If an RP has an MSDP peer that is caching SAs, you can reduce the join latency at the RP without 
turning on caching by using SA Request and SA Response messages. When a host requests a join to 
a particular group, the RP sends an SA Request message to its caching peer(s). If a peer has cached 
source information for the group in question, it sends the information to the requesting RP with an SA 
Response message. The requesting RP uses the information in the SA Response but does not forward 
the message to any other peers. If a noncaching RP receives an SA Request, it sends an error 
message back to the requestor.

To enable a Cisco router to send SA Request messages, use the ip msdp sa-request command to 
specify the IP address or name of a caching peer. You can use the command multiple times to specify 
multiple caching peers.

MSDP Message Formats

MSDP messages are carried in TCP segments. When two routers are configured as MSDP peers, the 
router with the higher IP address listens on TCP port 639, and the router with the lower IP address 
attempts an active connect to port 639.

The MSDP messages use a TLV (Type/Length/Value) format and may be one of five types, shown in 
Table 7-4. The following sections detail the format of each message type.

Table 7-4. MSDP Message Types



Type Message 

1 Source Active 

2 Source Active Request 

3 Source Active Response 

4 Keepalive 

5 Notification 

Source Active TLV

When an MSDP RP receives a PIM Register message from an IP multicast source, it sends a Source 
Active message to its peers. Figure 7-9 shows the MSDP Source Active TLV format. SA messages are 
subsequently sent every 60 seconds until the source is no longer active. Multiple (S, G) entries can 
be advertised by a single SA.

Figure 7-9. The MSDP Source Active TLV Format



The fields for the MSDP Source Active TLV format are defined as follows:

●     Entry Count specifies the number of (S, G) entries being advertised by the specified RP 
address.

●     RP Address is the IP address of the originating RP.
●     Reserved is set to all zeroes.
●     Sprefix Length specifies the prefix length of the associated source address. This length is 

always 32.
●     Group Address is the multicast IP address to which the associated source is sending multicast 

packets.
●     Source Address is the IP address of the active source.

Source Active Request TLV

SA Request Messages, the format of which is shown in Figure 7-10, are used to request (S, G) 
information from MSPD peers that are caching SA state. SA Request messages should be sent only to 
caching peers (noncaching peers will return an error notification) and are sent only by RPs that are 
explicitly configured to do so.

Figure 7-10. The MSDP Source Active Request TLV Format



The fields for the MSDP Source Active Request TLV format are defined as follows:

●     Gprefix Length specifies the length of the group address prefix.
●     Group Address Prefix specifies the group address for which source information is requested.

Source Active Response TLV

SA Response messages, the format of which is shown in Figure 7-11, are sent by a caching peer in 
response to an SA Request message. They provide the requesting peer the source address and RP 
address associated with the specified group address. The format is the same as the SA message.

Figure 7-11. The MSPD Source Active Response TLV Format

Keepalive TLV

The active side (the peer with the lower IP address) of an MSDP connection tracks the passive side of 
the connection with a 75-second Keepalive timer. If no MSDP message is received from the passive 
side before the Keepalive timer expires, the active peer resets the TCP connection. If an MSDP 
message is received, the timer is reset. If the passive peer has no other MSDP messages to send, it 
sends a Keepalive message to prevent the active peer from resetting the connection. As Figure 7-12 
shows, the Keepalive message is a simple 24\_bit TLV consisting of a type and length field.



Figure 7-12. The MSDP Keepalive TLV Format

Notification TLV

A Notification message is sent when an error is detected. Figure 7-13 shows the Notification message 
format.

Figure 7-13. The MSDP Notification TLV Format

The fields for the MSDP Notification TLV format are defined as follows:

●     Length = x + 5 is the length of the TLV, where x is the length of the data field and 5 is the 
first 5 octets.

●     O is the open bit. If this bit is cleared, the connection must be closed upon receipt of the 
Notification. Table 7-5 shows the states of the O bit for different error subcodes. MC indicates 
must close; the O bit is always cleared. CC indicates can close; the O bit might be cleared.

●     Error code is a 7-bit unsigned integer indicating the Notification type. Table 7-5 lists the error 
codes.

●     Error Subcode is an 8-bit unsigned integer that may offer more details about the error code. 
If the error code has no subcode, this field is zero. Table 7-5 shows the possible error 
subcodes associated with the error codes.

●     Data is a variable-length field containing information specific to the error code and error 
subcode. The various data fields are not covered in this chapter; see the MSDP Internet Draft 
for more information on the possible contents of this field.



Table 7-5. MSDP Error Codes and Subcodes

Error 
Code 

Error Code 
Description 

Error 
Subcode 

Error Subcode 
Description 

O-Bit 
State 

1 Message header 
error 

0 Unspecific MC 

2 Bad message length MC 

3 Bad message type CC 

2 SA Request error 0 Unspecific MC 

1 Does not cache SA MC 

2 Invalid group MC 

3 SA message/SA 
response error 

0 Unspecific MC 

1 Invalid entry count CC 

2 Invalid RP address MC 

3 Invalid group address MC 

4 Invalid source 
address 

MC 

5 Invalid sprefix length MC 

6 Looping SA (self is 
RP) 

MC 

7 Unknown 
encapsulation 

MC 

8 Administrative scope 
boundary violated 

MC 

4 Hold timer expired 0 Unspecific MC 

5 Finite state 
machine error 

0 Unspecific MC 

1 Unexpected message 
type FSM error 

MC 

6 Notification 0 Unspecific MC 

7 Cease 0 Unspecific MC 



 
  
Case Study: Configuring MBGP

Figure 7-14 depicts three autonomous systems. AS 200 is advertising unicast prefixes 
172.16.226.0/24 and 172.16.227.0/24 to transit AS 100 and is used for normal inter-AS routing. AS 
200 also has several multicast sources. These are hosts at 172.16.224.1 and 172.16.225.50. 
Additionally, several multicast sources are on subnet 172.16.227.0/24, and that prefix is advertised 
not only as a unicast prefix but also as a multicast source prefix.

Figure 7-14. AS 200 Is Advertising Several Prefixes and Addresses; Some 
Are Unicast, Some Are Multicast, and One Is Both

Example 7-7 shows the configurations of Gorgo and Rodan in Figure 7-14.

Example 7-7 The MBGP Configurations of Gorgo and Rodan in Figure 7-14

Gorgo

router bgp 200

 no synchronization



 network 172.16.226.0 mask 255.255.255.0

 network 172.16.227.0 mask 255.255.255.0

 neighbor 192.168.1.2 remote-as 100

 no auto-summary

 !

 address-family ipv4 multicast

 neighbor 192.168.1.2 activate

 network 172.16.224.1 mask 255.255.255.255

 network 172.16.225.50 mask 255.255.255.255

 network 172.16.227.0 mask 255.255.255.0

 exit-address-family

_______________________________________________________________________

Rodan

router bgp 100

 no synchronization

 neighbor 192.168.1.1 remote-as 200

 neighbor 192.168.254.2 remote-as 100

 neighbor 192.168.254.2 update-source Loopback0

 neighbor 192.168.254.2 next-hop-self

 !

 address-family ipv4 multicast

 neighbor 192.168.1.1 activate

 neighbor 192.168.254.2 activate

 neighbor 192.168.254.2 next-hop-self

 exit-address-family

The unicast portion of both routers' BGP configurations is no different from the configurations you 
observed in Chapter 3, "Configuring and Troubleshooting Border Gateway Protocol 4." Neighbors and 
their AS numbers are identified, as are the two unicast prefixes that Gorgo is to advertise into AS 
100.

NOTE

This chapter assumes you are already familiar with unicast BGP configuration. If 
some of the IBGP tools such as next-hop-self and update-source are not clear to 
you, you are encouraged to review Chapter 3.



MBGP is activated with the address-family ipv4 multicast command. Recall from the section 
"Multiprotocol Extensions for BGP (MBGP)" that MBGP uses two new route 
attributes—MP_REACH_NLRI and MP_UNREACH_NLRI—and that the attributes' Address Family 
Indicator (AFI) code for IPv4 is 1. The multicast keyword sets the attributes' Sub-AFI to multicast. 
Following the address-family command, MBGP is configured very similarly to unicast BGP. MBGP 
neighbors are identified, and the prefixes to be advertised as multicast are identified. The activate 
keyword is used to show that MBGP is to be activated for that neighbor. The peer's AS number is 
specified only under BGP, not MBGP. Notice that IBGP configurations, such as next-hop-self, are 
used under MBGP just as they are with BGP. You also can configure policies separately for MBGP 
neighbors. The final command, exit-address-family, is entered automatically by Cisco IOS Software 
to mark the end of the MBGP configuration stanzas.

Enabling address-family ipv4 multicast implicitly enables the address-family ipv4 unicast 
command. Although the command is never displayed in the configuration, it is applied to the unicast 
BGP configuration. Its result is that the prefixes specified under that configuration section are given 
the MP_REACH_NLRI attribute and are assigned a unicast Sub-AFI. Notice that the prefix 
172.16.227.0/24 appears in Gorgo's configuration under both BGP and MBGP. This prefix is then 
advertised as both unicast and multicast (Sub-AFI = 3).

In Example 7-8, the show ip bgp ipv4 command is used to show the results of the configurations. 
First the unicast keyword is used, and then the multicast keyword is used, and the prefixes whose 
Sub-AFI matches the keyword are displayed. Notice again that 172.16.227.0/24 is included in both 
displays because it has been configured as both a unicast and a multicast prefix.

NOTE

The output of show ip bgp ipv4 unicast is the same as the output of show ip 
bgp.

Example 7-8 The show ip bgp ipv4 Command Displays Prefixes According to 
Their Sub-AFI Values

Rodan#show ip bgp ipv4 unicast

BGP table version is 7, local router ID is 192.168.254.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 172.16.226.0/24  192.168.1.1              0             0 200 i

*> 172.16.227.0/24  192.168.1.1              0             0 200 i



Rodan#show ip bgp ipv4 multicast

BGP table version is 10, local router ID is 192.168.254.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 172.16.224.1/32  192.168.1.1              0             0 200 i

*> 172.16.225.50/32 192.168.1.1              0             0 200 i

*> 172.16.227.0/24  192.168.1.1              0             0 200 i

Rodan#

The configurations of Megalon and Kong from Figure 7-14 are a bit more complicated, because 
separate links are used for unicast BGP and for MBGP. Example 7-9 shows the configurations for 
these two routers.

Example 7-9 Configuring Megalon and Kong to Use Separate Data Links for 
Multicast and Unicast

Megalon

router bgp 100

 no synchronization

 no bgp default ipv4-unicast

 neighbor 192.168.1.5 remote-as 300

 neighbor 192.168.1.5 activate

 neighbor 192.168.1.9 remote-as 300

 neighbor 192.168.254.1 remote-as 100

 neighbor 192.168.254.1 update-source Loopback0

 neighbor 192.168.254.1 activate

 neighbor 192.168.254.1 next-hop-self

 no auto-summary

 !

 address-family ipv4 multicast

 neighbor 192.168.1.9 activate

 neighbor 192.168.254.1 activate

 exit-address-family

_______________________________________________________________________



Kong

router bgp 300

 no synchronization

 no bgp default ipv4-unicast

 neighbor 192.168.1.6 remote-as 100

 neighbor 192.168.1.6 activate

 neighbor 192.168.1.10 remote-as 100

 no auto-summary

 !

 address-family ipv4 multicast

 neighbor 192.168.1.10 activate

 exit-address-family

The MBGP configurations show that only the 192.168.1.8/30 subnet is used for MBGP peering, and 
there are some new commands under the unicast BGP section. Remember that when the address-
family ipv4 multicast command is invoked, the address-family ipv4 unicast command is invoked 
automatically and implicitly. In the case of subnet 192.168.1.8/30, unicast BGP traffic is unwanted. 
Therefore, the command no ip default ipv4-unicast is used to prevent this automatic behavior. 
Then, the neighbor activate command is used to explicitly enable unicast BGP on the desired links. 
Notice that the 192.168.2.1/30 and 192.168.1.4/30 subnets are activated for unicast, but the 
192.168.1.8/30 subnet is not. This link has only the AS number specified under BGP so that peering 
can occur.

Example 7-10 shows the results of the configurations in Example 7-9. The output here looks similar 
to that in Example 7-8, in that the unicast and multicast prefixes are correctly classified. In this case, 
however, the next-hop address of the unicast prefixes is 192.168.1.6, and the next-hop address (RPF 
neighbor) of the multicast prefixes is 192.168.1.10.

Example 7-10 AS 300 Has Received the Prefixes Advertised by AS 200, 
Using the Correct Next-Hop Addresses for the Unicast-Only and Multicast-
Only Links Between Kong and Megalon

Kong#show ip bgp ipv4 unicast

BGP table version is 7, local router ID is 10.254.254.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 172.16.226.0/24  192.168.1.6                            0 100 200 i

*> 172.16.227.0/24  192.168.1.6                            0 100 200 i



Kong#show ip bgp ipv4 multicast

BGP table version is 10, local router ID is 10.254.254.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

*> 172.16.224.1/32  192.168.1.10                           0 100 200 i

*> 172.16.225.50/32 192.168.1.10                           0 100 200 i

*> 172.16.227.0/24  192.168.1.10                           0 100 200 i

Kong#

Example 7-11 shows the practical application of BGP versus MBGP advertisements. Using the 
172.16.227.0/24 prefix, which is advertised both as unicast and multicast, a route lookup is 
performed for 172.16.227.1. The display shows that the route carries a next-hop address of 
192.168.1.6, which is the unicast-only link in Figure 7-14. Next, an RPF lookup is performed on the 
same address. That lookup returns a next-hop address of 192.168.1.10, the multicast-only link. So 
the same address references two different links, depending on the function for which the address is 
being used.

Example 7-11 An IP Route Lookup for 172.16.227.1 Shows the Next Hop to 
Be 192.168.1.6, but an RPF Lookup of the Same Address Shows a Next Hop 
of 192.168.1.10

Kong#show ip route 172.16.227.1

Routing entry for 172.16.227.0/24

  Known via "bgp 300", distance 20, metric 0

  Tag 100, type external

  Last update from 192.168.1.6 04:10:21 ago

  Routing Descriptor Blocks:

  * 192.168.1.6, from 192.168.1.6, 04:10:21 ago

      Route metric is 0, traffic share count is 1

      AS Hops 2

Kong#show ip rpf 172.16.227.1

RPF information for ? (172.16.227.1)

  RPF interface: Serial1

  RPF neighbor: ? (192.168.1.10)



  RPF route/mask: 172.16.227.0/24

  RPF type: mbgp

  RPF recursion count: 0

  Doing distance-preferred lookups across tables

Kong#

It is worth emphasizing one last time that MBGP does not affect the forwarding of multicast traffic. 
Further configuration is needed in a situation such as the parallel links depicted in Figure 7-14 to 
force multicast traffic over the multicast-only link. MBGP just allows the dissemination of RPF 
information across AS boundaries.



 
  
Case Study: Configuring MSDP

Figure 7-15 again shows the routers from the preceding case study. Here, the four routers are also 
RPs for their respective autonomous systems, and the illustration shows their RP addresses.

Figure 7-15. MSDP Sessions Are Configured Between the Four RPs

MSDP is enabled quite simply with the command ip msdp peer, specifying the peer's IP address. 
Example 7-12 shows the MSDP configurations for the four routers in Figure 7-15.

Example 7-12 Configuring MSDP Sessions Between the Four RPs in Figure 7-
15

Gorgo

ip msdp peer 192.168.1.2

_______________________________________________________________________

Kong



ip msdp peer 192.168.1.10

_______________________________________________________________________

Rodan

ip msdp peer 192.168.1.1

ip msdp peer 192.168.254.2 connect-source Loopback0

_______________________________________________________________________

Megalon

ip msdp peer 192.168.254.1 connect-source Loopback0

ip msdp peer 192.168.1.9

The peering between Gorgo and Rodan, and between Kong and Megalon, is quite straightforward. 
Each has only a single link over which to peer, so the session is configured between the two physical 
interface addresses. Between Rodan and Megalon, however, the peering is between loopback 
addresses. As with IBGP peering, MSDP sessions between loopback interfaces provide more 
resiliency. If the link shown between Rodan and Megalon in Figure 7-15 should fail, and if there is 
another path between the routers (not shown in the illustration), the TCP session can be rerouted. By 
default, the source address of the TCP packets carrying the MSDP session is the address of the 
originating physical interface. For peering to an address that is not part of a directly connected 
subnet, the connect-source option is used to change the default source address.

Example 7-13 displays the status of Megalon's two MSDP sessions using the show ip msdp peer 
command. Such expected information as the state of the connection, uptime, and messages 
sent/received appears.

Example 7-13 The show ip msdp peer Command Displays the Status of 
MSDP Peering Sessions

Megalon#show ip msdp peer

MSDP Peer 192.168.254.1 (?), AS 100

Description:

  Connection status:

    State: Up, Resets: 0, Connection source: Loopback0 (192.168.254.2)

    Uptime(Downtime): 3d22h, Messages sent/received: 5683/5677

    Output messages discarded: 0

    Connection and counters cleared 3d22h    ago

  SA Filtering:

    Input filter: none, route-map: none

    Output filter: none, route-map: none



  SA-Requests:

    Input filter: none

    Sending SA-Requests to peer: disabled

  Peer ttl threshold: 0

  Input queue size: 0, Output queue size: 0

MSDP Peer 192.168.1.9 (?), AS 300

Description:

  Connection status:

    State: Up, Resets: 0, Connection source: none configured

    Uptime(Downtime): 3d22h, Messages sent/received: 5674/5694

    Output messages discarded: 0

    Connection and counters cleared 3d22h    ago

  SA Filtering:

    Input filter: none, route-map: none

    Output filter: none, route-map: none

  SA-Requests:

    Input filter: none

    Sending SA-Requests to peer: disabled

  Peer ttl threshold: 0

  Input queue size: 0, Output queue size: 0

Megalon#

Example 7-13 also shows fields for displaying filters that might have been configured for SA and SA 
Request messages. You have several options for filtering at an MSDP router to control and scope 
MSDP activity. You can do the following:

●     Control the local sources that are allowed to register with the RP.
●     Control the SA messages the RP sends to and receives from its MSDP peers.
●     Control the SA Request messages the RP sends to and receives from its peers.

Other options for larger-scale MSDP environments are the addition of descriptions for each peer and 
configurable TTL values for the MSDP messages. Example 7-14 shows a more elaborate configuration 
for router Megalon in Figure 7-15.

NOTE

The configuration shown here is for demonstration purposes only. No argument is 
made as to the practicality of the configuration.



Example 7-14 A More-Complex MSDP Configuration

ip pim rp-address 192.168.254.2

ip msdp peer 192.168.254.1 connect-source Loopback0

ip msdp description 192.168.254.1 Rodan in AS 100

ip msdp sa-filter out 192.168.254.1 list 101

ip msdp filter-sa-request 192.168.254.1 list 1

ip msdp sa-request 192.168.254.1

ip msdp ttl-threshold 192.168.254.1 5

ip msdp peer 192.168.1.9

ip msdp description 192.168.1.9 Kong in AS 300

ip msdp sa-filter in 192.168.1.9 list 101

ip msdp sa-filter out 192.168.1.9 list 103

ip msdp sa-request 192.168.1.9

ip msdp ttl-threshold 192.168.1.9 2

ip msdp cache-sa-state list 101

ip msdp redistribute list 102

!

access-list 1 permit 229.50.0.0 0.0.255.255

access-list 101 permit ip 10.254.0.0 0.0.255.255 224.0.0.0 31.255.255.255

access-list 102 permit ip 192.168.224.0 0.0.0.255 224.0.0.0 31.255.255.255

access-list 103 permit ip 172.16.0.0 0.0.255.255 230.0.0.0 0.255.255.255

access-list 103 permit ip 192.168.224.0 0.0.0.255 224.0.0.0 31.255.255.255

The two statements enabling MSDP to Rodan and Kong, as shown in Example 7-12, remain. But 
added to the configuration is a text description for each peer, using the ip msdp description 
command. The description always appears directly after the ip msdp peer command for a specific 
peer, and it is obviously useful when there are large numbers of MSDP peers.

SA caching is enabled with ip msdp cache-sa-state, and in this configuration, an optional access 
list is referenced. Access list 101 specifies that Megalon will cache only SA messages for (S, G) pairs 
whose source address begins with 10.254.0.0/16. The group can be any multicast address 
(224.0.0.0/3).

An ip msdp sa-request statement is entered for each of the two peers to further reduce join 
latency. If the router receives a join message for a particular group, it sends an SA Request message 
to the two neighbors. The assumption here, as previously discussed, is that the two neighbors are 
configured to cache SA messages.



SA Requests to Rodan (192.168.254.1) are further restricted with the ip msdp filter-sa-request 
command. This filter references access list 1, which allows only 229.50.0.0/16. The result is that 
Megalon will request only source information from Rodan for groups whose addresses fall under 
prefix 229.50.0.0/16.

Next, Megalon is configured to send only SA messages for a subset of the possible sources that might 
send PIM-SM Register messages to it. The ip msdp redistribute statement references access list 
102, which in turn permits source prefixes of 192.168.224.0/24 and group address prefixes of 
224.0.0.0/3 (all multicast groups). Any source can still register with the RP, within the limits of the 
RP's PIM-SM configuration, but only those sources whose first 24 address bits are 192.168.224 are 
advertised in SA messages.

The forwarding of SA messages to MSDP peers is regulated with the ip msdp sa-filter out 
command. This filter applies to all SA messages, whether locally originated or received from another 
MSDP peer, whereas the ip msdp redistribute command applies only to locally originated SA 
messages. Megalon has two of these statements. For neighbor Rodan (192.168.254.1), only 
messages from source prefix 10.254.0.0/16 are forwarded, as specified by access list 101. Megalon 
sends to Kong (192.168.1.9) only SA messages that are permitted by access list 103. This access list 
permits messages whose source prefix is 172.16.0.0/16 and whose group addresses belong to 
230.0.0.0/8, or sources whose prefix is 192.168.224.0/24 originating packets for any multicast 
group.

You can also filter incoming SA messages with the ip msdp sa-filter in command. Using this 
command, Megalon accepts SA messages from Kong only if the (S, G) pair is permitted by access list 
101. Notice that this is the same constraint that is placed on outgoing SA messages to Rodan.

Finally, the TTL values of the MSDP messages are regulated with the ip msdp ttl-threshold 
command. The TTL of messages sent to Rodan is set to 5, whereas the TTL of messages sent to Kong 
is set to 2.

Example 7-15 shows the results of this configuration. Compare this display with the display in 
Example 7-13, and you can see the descriptions, filters, and TTL thresholds that have changed.

Example 7-15 This Display Reflects the Changes Made to Megalon's MSDP 
Configuration

Megalon#show ip msdp peer

MSDP Peer 192.168.254.1 (?), AS 100

Description: Rodan in AS 100

  Connection status:

    State: Up, Resets: 0, Connection source: Loopback0 (192.168.254.2)

    Uptime(Downtime): 4d14h, Messages sent/received: 6624/6617

    Output messages discarded: 0

    Connection and counters cleared 4d14h    ago

  SA Filtering:

    Input filter: none, route-map: none

    Output filter: 101, route-map: none



  SA-Requests:

    Input filter: 1

    Sending SA-Requests to peer: enabled

  Peer ttl threshold: 5

  Input queue size: 0, Output queue size: 0

MSDP Peer 192.168.1.9 (?), AS 300

Description: Kong in AS 300

  Connection status:

    State: Up, Resets: 0, Connection source: none configured

    Uptime(Downtime): 4d14h, Messages sent/received: 6614/6634

    Output messages discarded: 0

    Connection and counters cleared 4d14h    ago

  SA Filtering:

    Input filter: 101, route-map: none

    Output filter: 102, route-map: none

  SA-Requests:

    Input filter: none

    Sending SA-Requests to peer: enabled

  Peer ttl threshold: 2

  Input queue size: 0, Output queue size: 0

Megalon#

In addition to access lists, you can link incoming and outgoing SA filters to route maps for even 
better granularity of control and application of policy. You also can use route maps in conjunction 
with MSDP redistribution, as well as AS path access lists.



 
  
Case Study: MSDP Mesh Groups

In the preceding case study, routers Rodan and Megalon are RPs in the same AS. Large multicast 
domains can frequently have many RPs to share the workload or to localize multicast trees. Although 
MSPD has been presented so far as a tool for sharing inter-AS source information, it also proves 
useful when there are multiple RPs in a single domain, and sources always register to certain RPs but 
members throughout the domain must find any source.

Every RP in the domain commonly has an MSDP peering session to every other RP in the domain, for 
redundancy and robustness. Figure 7-16 shows an example. The four RPs in the illustration are in the 
same AS, and each is peered to the other three. The four routers may or may not be directly 
connected and are probably physically remote from each other.

Figure 7-16. A Full MSDP Mesh Exists Between These Four Routers



Example 7-16 shows the configurations of the four routers in Figure 7-16.

Example 7-16 Configuring MSDP on the Four Routers in Figure 7-16

Frankenstein

ip pim rp-address 10.100.1.1

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

_______________________________________________________________________

Wolfman

ip pim rp-address 10.100.1.2

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

_______________________________________________________________________

Mummy

ip pim rp-address 10.100.1.3

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.4 connect-source Loopback0



ip msdp description 10.100.1.4 to Dracula

_______________________________________________________________________

Dracula

ip pim rp-address 10.100.1.4

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

The problem with the configuration as it stands is that an SA message generated by one router is 
flooded by all the other routers, causing large numbers of peer RPF flooding failures and resulting 
MSDP notification messages. If every RP has an MSDP connection to every other RP, however, no 
flooding is necessary. Every RP receives a copy of every SA directly from the originator. To remedy 
the flooding problem, an MSDP mesh group is built.

An MSDP mesh group is a set of fully meshed MSDP peers such as the ones shown in Figure 7-16, 
but no transiting of SA messages takes place. That is, when an RP receives an SA from a peer, it 
does not forward the message to any other peer.

Mesh groups are configured with the ip msdp mesh-group command. The group is given an 
arbitrary name (so that one RP can belong to more than one mesh group, if necessary), and the 
members of the mesh group are specified. The configurations in Example 7-17 add the RPs in Figure 
7-16 to a mesh group named Boogeymen.

Example 7-17 Adding the RPs in Figure 7-16 to Mesh Group Boogeymen

Frankenstein

ip pim rp-address 10.100.1.1

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

ip msdp mesh-group Boogeymen 10.100.1.3

ip msdp mesh-group Boogeymen 10.100.1.2

ip msdp mesh-group Boogeymen 10.100.1.4



_______________________________________________________________________

Wolfman

ip pim rp-address 10.100.1.2

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

ip msdp mesh-group Boogeymen 10.100.1.1

ip msdp mesh-group Boogeymen 10.100.1.3

ip msdp mesh-group Boogeymen 10.100.1.4

_______________________________________________________________________

Mummy

ip pim rp-address 10.100.1.3

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

ip msdp mesh-group Boogeymen 10.100.1.1

ip msdp mesh-group Boogeymen 10.100.1.2

ip msdp mesh-group Boogeymen 10.100.1.4

_______________________________________________________________________

Dracula

ip pim rp-address 10.100.1.4

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.3 connect-source Loopback0



ip msdp description 10.100.1.3 to Mummy

ip msdp mesh-group Boogeymen 10.100.1.1

ip msdp mesh-group Boogeymen 10.100.1.2

ip msdp mesh-group Boogeymen 10.100.1.3



 
  
Case Study: Anycast RP

Designers of large, geographically diverse PIM-SM domains must often wrestle with the dilemma of 
where to most efficiently place the RPs. PIM-SM allows only a single group-to-RP mapping, which 
presents several problems in large domains:[4]

●     Possible traffic bottlenecks
●     Lack of scalable register decapsulation (when using shared trees)
●     Slow failover when an active RP fails
●     Possible suboptimal forwarding of multicast packets
●     Dependence on remote RPs

You read in Chapters 5 and 6 about different schemes for alleviating some of these problems, such as 
the hashing algorithm used with the PIMv2 bootstrap protocol and Auto-RP filtering. None of these 
tools offer a completely acceptable solution. Anycast RP is a method of allowing the mapping of a 
single group to multiple RPs. The RPs can be distributed throughout the domain, and all use the same 
RP address. As a result, a "virtual RP" is created. MSDP is fundamental to the creation of a virtual RP.

NOTE

Generically, anycasting means that packets can be sent to a single address, and one 
of several devices can respond to the address.

Figure 7-17 shows an example where the same routers from the preceding case study are used, but 
all four routers are running Auto-RP and are announcing an RP address of 10.100.254.1. Source DRs 
within the domain know of just the one RP address and register with the closest physical RP. 
Normally, this causes partitioning of the PIM domain. Using an MSDP mesh group, however, the 
anycast RPs can exchange source information within the group.

Figure 7-17. The Four Routers Form a Virtual RP, Announcing a Single RP 
Address of 10.100.254.1, and Using MSDP to Exchange Information About 

Sources That Have Registered to Each Router



The unicast routing protocol of each anycast RP advertises the common RP address. From the 
perspective of source and group DRs, there is just a single RP at this address, with several routes to 
it. A DR chooses the shortest route, which in reality leads to the nearest anycast RP. If the anycast 
RP fails, the unicast protocol announces the route to the RP as unfeasible. The DR sees only the 
unfeasible route and chooses the next-best route, which in reality leads to the next-nearest anycast 
RP. As a result, RP failover is linked to and almost as fast as the unicast reconvergence time.

The MSDP peering takes place as before, between the LO0 interfaces; however, another loopback 
interface is used to configure the RP address that the routers announce. Normally, MSDP uses the RP 
address in its SA messages. Because all four routers are announcing the same RP address, MSDP 
must be configured to use a unique address in its SA messages. The ip msdp originator-id 
command accomplishes this. Example 7-18 shows the relevant configurations of the four routers, 
using mesh groups and ip msdp originator-id.

Example 7-18 Configuring Frankenstein, Wolfman, Mummy, and Dracula for 
Anycast RP

Frankenstein

interface Loopback0

 ip address 10.100.1.1 255.255.255.255

!

interface Loopback5

 ip address 10.100.254.1 255.255.255.255



 ip pim sparse-dense-mode

!

router ospf 1

 router-id 10.100.1.1

 network 0.0.0.0 255.255.255.255 area 0

!

router bgp 6500

 bgp router-id 10.100.1.1

 neighbor Boogeymen peer-group

 neighbor Boogeymen remote-as 6500

 neighbor Boogeymen update-source Loopback0

 neighbor 10.100.1.2 peer-group Boogeymen

 neighbor 10.100.1.3 peer-group Boogeymen

 neighbor 10.100.1.4 peer-group Boogeymen

 !

 address-family ipv4 multicast

 neighbor 10.100.1.2 activate

 neighbor 10.100.1.3 activate

 neighbor 10.100.1.4 activate

 exit-address-family

!

ip pim send-rp-announce Loopback5 scope 20

ip pim send-rp-discovery Loopback5 scope 20

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

ip msdp mesh-group Boogeymen 10.100.1.3

ip msdp mesh-group Boogeymen 10.100.1.2

ip msdp mesh-group Boogeymen 10.100.1.4

ip msdp cache-sa-state

ip msdp originator-id Loopback0



_______________________________________________________________________

Wolfman

interface Loopback0

 ip address 10.100.1.2 255.255.255.255

!

interface Loopback5

 ip address 10.100.254.1 255.255.255.255

 ip pim sparse-dense-mode

!

router ospf 1

 router-id 10.100.1.2

 network 0.0.0.0 255.255.255.255 area 0

!

router bgp 6500

 bgp router-id 10.100.1.2

 neighbor Boogeymen peer-group

 neighbor Boogeymen remote-as 6500

 neighbor Boogeymen update-source Loopback0

 neighbor 10.100.1.1 peer-group Boogeymen

 neighbor 10.100.1.3 peer-group Boogeymen

 neighbor 10.100.1.4 peer-group Boogeymen

 !

 address-family ipv4 multicast

 neighbor 10.100.1.1 activate

 neighbor 10.100.1.3 activate

 neighbor 10.100.1.4 activate

 exit-address-family

!

ip pim send-rp-announce Loopback5 scope 20

ip pim send-rp-discovery Loopback5 scope 20

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.3 connect-source Loopback0



ip msdp description 10.100.1.3 to Mummy

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

ip msdp mesh-group Boogeymen 10.100.1.1

ip msdp mesh-group Boogeymen 10.100.1.3

ip msdp mesh-group Boogeymen 10.100.1.4

ip msdp cache-sa-state

ip msdp originator-id Loopback0

_______________________________________________________________________

Mummy

interface Loopback0

 ip address 10.100.1.3 255.255.255.255

!

interface Loopback5

 ip address 10.100.254.1 255.255.255.255

 ip pim sparse-dense-mode

!

router ospf 1

 router-id 10.100.1.3

 network 0.0.0.0 255.255.255.255 area 0

!

router bgp 6500

 bgp router-id 10.100.1.3

 neighbor Boogeymen peer-group

 neighbor Boogeymen remote-as 6500

 neighbor Boogeymen update-source Loopback0

 neighbor 10.100.1.1 peer-group Boogeymen

 neighbor 10.100.1.2 peer-group Boogeymen

 neighbor 10.100.1.4 peer-group Boogeymen

 !

 address-family ipv4 multicast

 neighbor 10.100.1.1 activate

 neighbor 10.100.1.2 activate



 neighbor 10.100.1.4 activate

 exit-address-family

ip pim send-rp-announce Loopback5 scope 20

ip pim send-rp-discovery Loopback5 scope 20

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.4 connect-source Loopback0

ip msdp description 10.100.1.4 to Dracula

ip msdp mesh-group Boogeymen 10.100.1.1

ip msdp mesh-group Boogeymen 10.100.1.2

ip msdp mesh-group Boogeymen 10.100.1.4

ip msdp cache-sa-state

ip msdp originator-id Loopback0

_______________________________________________________________________

Dracula

interface Loopback0

 ip address 10.100.1.4 255.255.255.255

!

interface Loopback5

 ip address 10.100.254.1 255.255.255.255

 ip pim sparse-dense-mode

!

router ospf 1

 router-id 10.100.1.4

 network 0.0.0.0 255.255.255.255 area 0

!

router bgp 6500

 bgp router-id 10.100.1.4

 neighbor Boogeymen peer-group

 neighbor Boogeymen remote-as 6500

 neighbor Boogeymen update-source Loopback0



 neighbor 10.100.1.1 peer-group Boogeymen

 neighbor 10.100.1.2 peer-group Boogeymen

 neighbor 10.100.1.3 peer-group Boogeymen

 !

 address-family ipv4 multicast

 neighbor 10.100.1.1 activate

 neighbor 10.100.1.2 activate

 neighbor 10.100.1.3 activate

 exit-address-family

!

ip pim send-rp-announce Loopback5 scope 20

ip pim send-rp-discovery Loopback5 scope 20

ip msdp peer 10.100.1.1 connect-source Loopback0

ip msdp description 10.100.1.1 to Frankenstein

ip msdp peer 10.100.1.2 connect-source Loopback0

ip msdp description 10.100.1.2 to Wolfman

ip msdp peer 10.100.1.3 connect-source Loopback0

ip msdp description 10.100.1.3 to Mummy

ip msdp mesh-group Boogeymen 10.100.1.1

ip msdp mesh-group Boogeymen 10.100.1.2

ip msdp mesh-group Boogeymen 10.100.1.3

ip msdp cache-sa-state

ip msdp originator-id Loopback0

In Example 7-18, each of the four routers is configured as both an Auto-RP candidate RP and a 
mapping agent. You also can use static mapping or PIMv2 bootstrap with anycast RP. All four routers 
in this example are configured to cache SA messages.

Interface LO5 is used on each router to configure the virtual RP address, whereas LO0 is the endpoint 
of the MSDP sessions. Notice in the configurations that the Auto-RP commands reference LO5, 
whereas the ip msdp originator-id command references LO0. This is vital, because MSDP must 
have unique IP addresses at the endpoints of its peering sessions.

The OSPF and BGP stanzas are shown for an important reason. Recall that OSPF and BGP use the 
highest IP address configured on any loopback interface as its router ID. Unfortunately, the IP 
address on LO5 is higher on each router than the IP address on LO0. As a result, the OSPF and BGP 
processes on each router would by default use a router ID of 10.100.254.1. One of many undesirable 
results would be the thrashing of the OSPF databases as each router's LSAs try to override the other 
routers' LSAs. One solution is to always use a virtual RP address that is numerically lower than any 
other loopback address, but there are obvious impracticalities in this and some large vulnerabilities to 
inadvertent configuration mistakes. A better solution, used in this example, is to force each router to 



use its unique LO0 address with the router-id statement under the OSPF and BGP configurations.

Notice also that the LO0 interfaces are not running PIM. These interfaces are unnecessary to PIM 
functionality, and serve only to provide router-specific IP addresses for MSDP peering.



 
  
Case Study: MSDP Default Peers

If an AS is a stub or nontransit AS, and particularly if the AS is not multihomed, there is little or no 
reason to run BGP to its transit AS. A static default route at the stub AS, and a static route pointing 
to the stub prefixes at the transit AS, is generally sufficient. But what if the stub AS is also a 
multicast domain and its RP must peer with an RP in the neighboring domain? The overview of the 
MSDP operation explained that MSDP depends on the BGP next-hop database for its peer RPF checks.

You can disable this dependency on BGP with the ip msdp default-peer command. MSDP just 
accepts all SA messages from default peers. Figure 7-18 shows a simple example. Here, the stub AS 
is peered to the transit AS by a single link. RPF checks are not necessary, because there is only one 
path and therefore no possibility of loops.

Figure 7-18. BGP Is Typically Not Run Between a Stub AS and Its Transit 
AS, but This Can Cause a Problem for MSDP

Example 7-19 shows the MSDP configuration of the two routers.

Example 7-19 MSDP Configurations for Routers Jason and Freddy

Jason

ip msdp peer 172.16.224.1 connect-source Loopback0

ip msdp default-peer 172.16.224.1

_______________________________________________________________________

Freddy

ip msdp peer 192.168.1.1 connect-source Loopback0

ip msdp default-peer 192.168.1.1



A stub AS also might want to have MSDP peering with more than one RP for the sake of redundancy, 
as shown in Figure 7-19. SA messages cannot just be accepted from both default peers, because 
there is no RPF check mechanism. Instead, SA messages are accepted from only one peer. If that 
peer fails, messages are then accepted from the other peer. The underlying assumption here, of 
course, is that both default peers are sending the same SA messages.

Figure 7-19. Jason Is Connected to More Than One Default MSDP Peer

Example 7-20 shows the configuration for Jason.

Example 7-20 Configuring Jason to Have Redundant Peering with Both 
Freddy and Norman

ip msdp peer 172.16.224.1 connect-source Loopback0

ip msdp peer 172.16.224.2 connect-source Loopback0

ip msdp default-peer 172.16.224.1

ip msdp default-peer 172.16.224.2

Under normal circumstances, the active default peer is the first peer in the configuration—in this 
case, 172.16.224.1. SAs are not accepted from 172.16.224.2 unless 172.16.224.1 fails.

The RP in a transit AS is likely to have more than one default MSDP peer, as shown in Figure 7-20. 
Just listing the default peers, as was shown in the preceding example, does not work, because SAs 
would be accepted by only a single peer. To cause the RP to accept SA messages from multiple peers 
while still providing loop avoidance in the absence of a peer RPF check, BGP-style prefix lists are 
used. The RP then accepts SA messages from all of its default peers, but only for source prefixes 
allowed by each peer's associated prefix list. The underlying assumption here is that each AS is using 
distinct prefixes, so loop avoidance is ensured.

Figure 7-20. The RP in the Transit AS Has Three Default MSDP Peers



Example 7-21 shows the configuration for Freddy.

Example 7-21 Configuring an RP to Accept SA Messages from Multiple Peers

ip msdp peer 192.168.1.1 connect-source Loopback0

ip msdp peer 192.168.2.1 connect-source Loopback0

ip msdp peer 192.168.3.1 connect-source Loopback0

ip msdp default-peer 192.168.1.1 prefix-list AS1

ip msdp default-peer 192.168.2.1 prefix-list AS2

ip msdp default-peer 192.168.3.1 prefix-list AS3

!

ip prefix-list AS1 seq 5 permit 192.168.1.0/24 le 32

ip prefix-list AS2 seq 5 permit 192.168.2.0/24 le 32

ip prefix-list AS3 seq 5 permit 192.168.3.0/24 le 32





 
  
Command Summary

Table 7-6 lists and describes the commands discussed in this chapter.

Table 7-6. Command Summary

Command Description 

address-family {ipv4 | vpnv4} 
{multicast | unicast | vrf} 

Enables MBGP. 

exit-address-family Marks the end of the MBGP configuration 
stanzas. 

ip mroute source mask [protocol as-
number] {rpf-address | type number} 
[distance] 

Configures a static mroute used for RPF 
checks. 

ip msdp cache-sa-state [list access-
list-number] 

Enables SA caching. 

ip msdp default-peer ip-address | 
name [prefix-list list] 

Specifies an MSDP peer from which SA 
messages are accepted without 
performing an RPF check. 

ip msdp description {peer-name | 
peer-address} text 

Adds descriptive text to an MSDP peer 
configuration. 

ip msdp filter-sa-request {ip-
address | name} [list access-list-
number] 

Enables a filter for outgoing SA Request 
messages. 

ip msdp mesh-group name {ip-
address | name} 

Designates a peer to be a member of a 
mesh group. SA messages from a mesh 
group member are not forwarded to other 
mesh group members. 

ip msdp originator-id type number Changes the default RP address used in 
MSDP messages. 

ip msdp peer {peer-name | peer-
address} [connect-source type 
number] [remote-as as-number] 

Designates a router as an MSDP peer. 

ip msdp redistribute [list access-list-
name] [asn aspath-access-list-
number] [route-map map] 

Enables a filter for MSDP SA messages 
originated by the local router. 



ip msdp sa-filter in {ip-address | 
name} [list access-list-name] [route-
map map-tag] 

Enables a filter for incoming MSDP SA 
messages. 

ip msdp sa-filter out {ip-address | 
name} [list access-list-name] [route-
map map-tag] 

Enables a filter for outgoing MSDP 
messages. 

ip msdp sa-request {ip-address | 
name} 

Enables an RP to send MSDP SA Request 
messages to the designated caching peer. 

ip msdp ttl-threshold {ip-address | 
name} ttl 

Sets a TTL value for MSDP messages 
originated by the local router. 

ip multicast boundary access-list-
number 

Designates an interface as a multicast 
boundary for administrative scoping. 

ip multicast ttl-threshold ttl-value Designates an interface as a multicast 
boundary for TTL scoping. 

neighbor {ip-address | name} 
activate 

Specifies an MBGP neighbor to be 
activated for unicast, multicast, or both. 

no bgp default ipv4-unicast Disables the default designation of all BGP 
neighbors as unicast so that unicast 
neighbors can be individually activated. 

show ip msdp peer peer-address | 
name 

Displays detailed information about MSDP 
peers. 

show ip msdp sa-cache [group-address | 
source-address | group-name | source-name]

[group-address | source-address | group-
name | source-name] [autonomous-system-
number]

Displays information about SA state cached in the 
local router.

show ip msdp summary Displays summary information about 
MSDP peers. 



 
  
Looking Ahead

You have, at this point, invested a sizeable portion of your time to learning not only the ins and outs 
of IP routing, but also the problems presented by the growing complexity of routing in modern IP 
networks. Many of the solutions to these problems involve working with (or around) the limitations of 
IPv4 and its associated routing protocols. The next chapter shows how the newest version of the IP 
protocol, IPv6, has been created with the lessons of IPv4 firmly in mind. When most people think of 
IPv6, they think primarily of 128-bit addresses and the alleviation of the IPv4 addressing limitations. 
As you will see, however, IPv6 is much more. It is designed for better security, better inter-AS 
qualities, and better support for multicasting, while at the same time eliminating many of the 
unnecessary complexities of IPv4.



 
  
Review Questions

1: In the section "Multicast Scoping," a sample configuration is given for administrative scoping. 
The boundary at interface E0 blocks organization-local packets (destination addresses whose 
prefixes match 239.192.0.0/14) but passes packets with global scope. Will a packet with a 
group address 224.0.0.50 pass this boundary?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: How does Cisco IOS Software handle DVMRP Prune messages on point-to-point and 
multiaccess interfaces that are configured to run PIM?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: Why does Cisco IOS Software accept DVMRP Probe messages, but does not send them?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

4: What is a PIM (*,*,RP) entry?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



5: How does Multiprotocol BGP (MBGP) differ from normal BGP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: What is the MBGP AFI?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: Is the following statement true or false? MSDP carries information about multicast sources 
and group members between RPs in different PIM domains.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

8: What is the transport protocol for MSDP?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

9: What is an MSDP SA message?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



10: How does an MSDP RP determine whether an SA was received on an RPF interface?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

11: What is SA caching?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

12: Is there an alternative to reducing join latency without enabling SA caching?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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Chapter 8. IP Version 6
This chapter covers the following key topics:

●     Design Goals of IPv6— This section covers IPv6's design goals: enable scalable networks, 
ease configuration, and maintain security.

●     Current State of IPv6— This section covers the standards and drafts that are available, 
vendor support or announced support, and customer-driven applications that will begin 
demanding its implementation.

●     IPv6 Packet Format— This section covers the IPv6 packet format, which includes the large, 
hierarchical IPv6 addresses and headers that enable routers to efficiently process the packet.

●     IPv6 Functionality— This section covers IPv6 functionality, including automatic router 
discovery, dead neighbor detection, automatic host configuration, and multicasting 
capabilities.

●     Transition from IPv4 to IPv6— IPv4 will exist for a long time. This section covers 
transition mechanisms (including dual stacks, tunnels, and address/protocol translation) that 
ease the transition to IPv6 and enable coexistence.

IP version 6 (IPv6) is designed to be the new generation of the IP protocol, following IP version 4. 
The number 5 had already been assigned to another Internet protocol, the Internet Stream Protocol, 
version II, as defined in RFC 1190. A detailed description of all IPv6 components is beyond the scope 
of this book, but this chapter thoroughly summarizes the design goals of IPv6 and the current state 
of the protocol. This chapter also covers IPv6 packet format, IPv6 functionality, and methods to get 
from IPv4 internetworks to IPv6 internetworks. The Cisco router configurations shown in this chapter 
are created using beta software that is based on IOS 12.0. Commands may be modified, added, or 
deleted, and output may be modified in the final version of the code, although any changes will 
probably be minimal. Cisco has announced that the production code will be in a later version of Cisco 
IOS Software Release 12.1.



 
  
Design Goals of IPv6

The Internet has been a huge success, driving the success of corporate internetworks. Few 
businesses are without Web sites these days (URLs can even be found on the corks of wine bottles), 
and e-mail is as important a business tool as the telephone. But certain aspects of IPv4 place an 
upper limit on how large the Internet can grow. 32 bits of address space limits the number of globally 
routable hosts that can connect and also limits the amount of hierarchy that can be created. As you 
have observed throughout much of this book, scalable internetworks require hierarchical routing. 
Hierarchical routing must be strictly maintained to enable the network to scale beyond the uses that 
application developers and Internet users are dreaming of today. To maintain hierarchy, Internet-
connected sites must adhere to addressing and aggregation rules. Sites connected to an ISP or 
exchange usually must use addresses allocated to that ISP or exchange and reallocated to the site. 
This means that renumbering, with all the inherent difficulties described early in Chapter 2, 
"Introduction to Border Gateway Protocol 4," will remain an issue.

The success of the Internet also may increase data integrity, authenticity, and confidentiality 
requirements.

IPv4 network designers have alleviated some of these issues using a number of different techniques. 
As discussed in Chapter 4, "Network Address Translation," a network may use private addresses 
internally, using network address translation to communicate with theInternet or other companies, 
thereby mitigating the address space problem, allowing a huge number of nodes to access external 
internetworks. However, NAT is not always easy to implement and maintain. Some applications 
create excessive processing requirements on the NAT device, and other applications do not work at 
all. Furthermore, future Internet appliances, such as personal digital assistants, home security 
systems, or car maintenance computers, might require globally routable addresses so that they can 
be accessed from any Internet location.

The severe IPv4 hierarchy problems imposed by classful addresses were mitigated with the 
implementation of CIDR, as discussed in Chapter 2. CIDR enables you to group and divide more 
efficiently, but the total hierarchy is still limited to 32 bits of addressing space.

IPv6 addresses are so much bigger that there is enough address space for a large increase in globally 
routable addresses and for more layers of hierarchy. The size of the address space increased to 128 
bits. Hierarchy is designed into the format of globally routable addresses.

ISPs assign a range of addresses to their clients. If the client wants to change ISPs, it most likely has 
to re-address its network. IPv4 network designers have implemented Dynamic Host Configuration 
Protocol (DHCP) to ease the burden of re-addressing PCs. DHCP works and will likely continue to be 
used with IPv6. IPv6 hosts can use DHCP or the built-in autoconfiguration method to configure 
themselves. Both methods can utilize the capability of IPv6 hosts to use the new address for new 
connections and to continue using the old address for existing connections. This capability to 
maintain two addresses ensures a smooth migration to a new network prefix.

Improve Scalability

You saw in Chapter 2 how IPv4 addresses restrict the scalability of internetworks. This section recaps 
those scalability problems. The first IPv4 problem is the limit of 32 bits for addressing, one of the 
main drivers for designing a new protocol. Pundits assumed that without intervention, IPv4 addresses 
would be depleted by the mid-1990s. That did not happen. NAT prolonged the life of IPv4 by allowing 
enterprises to use private addresses that are hidden from the public Internet. IPv6's 128 bits of 
address space allows many more globally routable devices to connect to the Internet. Private address 
space is also defined in IPv6.



Another problem with IPv4 is the large size of the Internet routing tables. CIDR was introduced to 
minimize the table size by introducing more hierarchy by aggregating addresses. However, many 
addresses cannot be aggregated. Addresses that were assigned before CIDR and addresses used by 
networks with certain multihomed Internet connections, for instance, cannot be aggregated.

IPv6 is designed for scalability, ease of configuration, and security, drawing from the lessons learned 
with IPv4. It is not designed to solve the Internet routing table size explosion. With strict allocation 
rules and procedures initiated from the start, and adherence to the hierarchy format for aggregation, 
however, table size can be contained. The goal is to achieve as much aggregation as possible, and 
the defined format of the globally routable address space facilitates this goal.

Ease of Configuration

IPv6 introduces mechanisms to ease host-to-router communication management and host 
configuration. These mechanisms are essential to the success of IPv6. As more and more people, 
schools, and businesses want to connect to the Internet or build their own internetworks, the tasks 
involved in enabling them must be simplified. Not everyone wants to become a CCIE just so he or 
she can figure out how to run a network. They just want the networks to work. IPv6 has automatic 
configuration mechanisms that enable hosts to obtain IP addresses, discover neighbors and default 
routers, and effectively use multiple default routers for redundancy.

Large companies connected to the Internet want the flexibility to change service providers without 
creating turmoil within their own networks. Renumbering networks will still be required with IPv6, but 
renumbering is made easier with the ability to maintain multiple addresses on all nodes and to have 
two different address states—one for use with active addresses and the other for use when an 
address is being phased out. In addition, network prefixes are advertised by routers to hosts, 
enabling the hosts to automatically configure themselves with IPv6 addresses. A company that needs 
to re-address its network because it changed ISPs can configure the routers to advertise the new 
prefixes as well as the old prefix. Hosts that receive the advertisement can automatically configure 
themselves with the new prefix information and can begin using the new addresses when new IP 
connections are made. Existing connections will continue to use the old address.

Security

People and businesses do not want to worry about security either. They want their data to be secure 
without thinking much about it. Authentication and encryption are built into IPv6. IPv6 packets can 
now be secured at the network layer within the network protocol.



 
  
Current State of IPv6

For most organizations, IPv6 has not been much more than a new set of letters and numbers to toss 
around when talking about networking. Now, however, more of the specifications are becoming 
finalized, many are IETF draft standards, and many more are proposed draft standards. IANA 
allocated address space to the regional Internet registries (RIR), and the RIRs have begun allocating 
address space to Internet providers. Network and end-station equipment vendors have begun 
releasing software that supports IPv6, or have announcednear-term plans to offer support. A large 
test network, the 6bone, exists to allow organizations to try out their IPv6 implementations, to learn 
how to transition their networks, and to get used to managing them. A public production network, 
6REN, also exists for research and education institutions ready to deploy production IPv6 networks. 
Network planners may begin to think more about IPv6 as it becomes more readily available and 
easier to implement. CCIE candidates should be ready to tackle IPv6 as well.

IPv6 Specification (RFCs)

The IPv6 specification is now an approved draft standard. Companies have released (or prereleased) 
products based on the specifications. Current draft standards include the following:

●     RFC 2373: IP Version 6 Addressing Architecture
●     RFC 2374: An IPv6 Aggregatable Global Unicast Address Format
●     RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
●     RFC 2461: Neighbor Discovery for IP Version 6 (IPv6)
●     RFC 2462: IPv6 Stateless Address Autoconfiguration
●     RFC 2463: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 

(IPv6) Specification

Many components of IPv6 are currently proposed draft standards that are awaiting approval, 
including the following:

●     RFC 1886: DNS Extensions to Support IP Version 6
●     RFC 1887: An Architecture for IPv6 Unicast Address Allocation
●     RFC 1981: Path MTU Discovery for IP Version 6
●     RFC 2080: RIPng for IPv6
●     RFC 2473: Generic Packet Tunneling in IPv6 Specification
●     RFC 2526: Reserved IPv6 Subnet Anycast Addresses
●     RFC 2529: Transmission of IPv6 over IPv4 Domains Without Explicit Tunnels
●     RFC 2545: Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing
●     RFC 2710: Multicast Listener Discovery (MLD) for IPv6
●     RFC 2740: OSPF for IPv6

There are many other proposed draft standards and related draft documents, and many more are 
expected in the near future, making it impractical to list them all here. You can find the RFCs at 
www.isi.edu or at many other RFC repositories.

Vendor Support

The protocol development of IPv6 and related components is far enough along in the standards 
process that vendors have committed to many development and testing projects. Cisco routers 
currently support IPv6 in a beta version of IOS based on version 12.1. They have announced IOS 
support in a later 12.1 release. Microsoft and Sun have IPv6 stacks available for end stations. Not all 
vendors support all IPv6 components. Some are waiting for the standards to mature; others are 
waiting for more customer pressure before committing the development resources to it. Upcoming 

http://www.isi.edu/


large-scale applications, such as handheld wireless computers, may require IPv6, and vendors should 
at least have a plan for quickly implementing it. Cisco's IPv6 implementation currently supports the 
following features:

●     RIPv6
●     BGP-4+ for IPv6
●     IPv6 static routes
●     Traffic filtering
●     Automatic and static tunnels
●     EUI-64 addressing
●     Neighbor discovery
●     IPv6 over Ethernet, FDDI, Cisco HDLC, and ATM PVCs
●     Dual-stack support for Telnet, DNS, and TFTP
●     ICMPv6 and Ping
●     traceroute and debug commands

Implementations

There are two IPv6 implementations for public use. One, the 6bone, is used as a testbed for IPv6 
issues. Protocol implementations, IPv4 to IPv6 transitions, and operational procedures have all been 
tested using the 6bone network. The other network, IPv6 Research and Education Networks (6REN), 
provides organizations with operational IPv6 networks to transit to other IPv6 networks. Both 
implementations have been instrumental in the IPv6 development process, giving vendors and 
network architects large-scale platforms on which to test software, network configurations, and 
designs, and on which to gain understanding and familiarity with the protocol.

6bone

The 6bone is a worldwide IPv6 network used for testing and preproduction deployment of IPv6 
products and networks. It currently supports 260 organizations in 39 countries. The 6bone is 
designed to look like a global, hierarchical, IPv6 network. It contains pseudo top-level (Tier I) transit 
providers, pseudo next-level (Tier II) transit providers, and pseudo site-level organizations. The 
pseudo top-level providers are interconnected organizations around the world. Top-level providers 
communicate with each other using IPv6 extensions to BGP-4. Next-level providers connect to a 
regional top-level provider, also using BGP-4, and site-level organizations connect to the next-level 
providers. Site-level organizations can default route to their providers or use BGP-4. Connections 
were originally made by tunneling packets in IPv4 and transporting them over the Internet. 
Gradually, native IPv6 connections are now being made. The 6bone has proven to be a very 
instrumental testbed for IPv6 standards and products. Now it also is being used to test transitions 
and operational procedures. Figure 8-1 shows the 6bone backbone.

Figure 8-1. 6bone Backbone



6REN

The 6REN voluntary coordination initiative is a production IPv6 network designed to provide transit 
IPv6 services. As stated at the www.6ren.net/overview.htm Web site, the 6REN goal is as follows:

…provide production IPv6 transit service to facilitate high quality, high performance, 
and operationally robust IPv6 networks.

The transit services are available to research and educational institutions and for-profit and not-for-
profit organizations. Networks are interconnected with native IPv6 over ATM. 6REN provides 
connectivity to the 6bone participants as well.

http://www.6ren.net/overview.htm


 
  
IPv6 Packet Format

The IPv6 packet format includes a large, hierarchical IPv6 address and headers that enable routers to 
efficiently process the packet. The address is large enough to allow for considerable Internet growth 
and to provide many layers of hierarchy.

Some IPv4 header fields have been removed. Removal of the Options field and the requirement that 
all routers process the options has made the packet processing more efficient. The network options 
are still available; in most cases, however, the options need to be processed only by the destination 
node. IPv6 moves the options processing to extension headers that are processed only by the nodes 
that need the information.

The IPv6 address types, uses, and structure, as well as the IPv6 header, are discussed in detail in 
this section.

The IPv6 Address

When IP was first developed in the 1970s, the Internet world was very different. The Internet was 
used for research and education. An address space of 32 bits must have seemed like more than 
would ever be needed, at least for the lifetime of IP. The success of the Internet has been so great 
that IP is embedded into the operation of many businesses and homes. IP networks are integral parts 
of the day-to-day operations of many very successful organizations. As the organizations grow and 
the number of sites that want to connect to the Internet grows, the concern for a more scalable 
solution will grow. So many devices use (or will use in the near future) IP addresses to access 
internetworks that even the methods developed to prolong the depletion of IP addresses, such as 
NAT and CIDR, soon will not be enough. Cell phones, PDAs, e-mail appliances, home lighting 
systems, cars, and utility meters will all have IP addresses. The very success of IP is straining many 
aspects of its original design.

IPv6 addresses issues that are causing the strain. It increases the address size and defines more 
address hierarchy. It also defines rules governing allocation of the addresses to maintain the 
hierarchical aggregation capability.

Address Size

What is the appropriate size for an address that is so widely used? Should the address size be fixed 
or variable? Too small of an address limits scalability. Too large of an address creates too large of a 
header, making it difficult for routers (and people) to manage.

Variable-length addresses increase software complexity and can slow down packet processing. One 
proposal for the next generation of IP (IPng) suggested using network service access point (NSAP) 
addresses, which could vary between 1 and 20 octets in length. Another proposal suggested 64 bits 
of address space. Although 64 bits seemed like enough space to address IP nodes, more bits were 
added to account for the extra complexity that would result from the increase in the complexity of 
the Internet as its size increased. To allow future growth and address allocation hierarchy, 128 bits 
was chosen.

340,282,366,920,938,463,463,374,607,431,768,211,456 nodes can be theoretically addressed with 
128 bits. If the total human population of the world is 10 billion, that's roughly 3.4 * 1027 addresses 
per person. Even tomorrow's on-the-go, highly connected telecommuter, with an Internet cell phone, 
an IP watch, a home network with routable appliances and utility meters, and a networked car won't 
use that many addresses.



Text Representation of Addresses

The IPv6 address is 128 bits long, written as eight 16-bit pieces, separated by colons. Each piece is 
represented by four hexadecimal digits. Two addresses are shown here:

●     FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
●     1080:0000:0000:0000:0008:0800:200C:417A

These addresses are large, capable of addressing lots of nodes and providing hierarchical flexibility, 
but they are not very easy to write down, let alone remember. There are ways to compress the 
addresses to make them a bit easier for a mere human to manipulate.

An address is very likely to have many zeros. In any 16-bit field, you can remove the leading zeros, 
but at least one digit must be present in every field, with one exception. Address 1 in the preceding 
example does not have any leading zeros in any field and cannot compact. Address 2 can compact as 
follows:

1080:0:0:0:8:800:200C:417A

You can compact multiple contiguous fields of zero even further. This is the exception to the rule that 
at least one digit must be present in every field. You can replace multiple fields of zeros with double 
colons (::). Table 8-1 shows some address compactions.

Table 8-1. Examples of Address Compaction Show That Multiple Contiguous 
Fields of Zeros Can Be Compacted to ::

Address Before Compaction Address After Compaction 

1080:0000:0000:0000:0008:0800:200C:417A 1080::8:800:200C:417A 

1080:0000:0000:3245:0000:0000:200C:417A 1080:0:0:3245::200C:417A 

0000:0000:0000:0000:0000:0000:0000:0001 ::1 

0000:0000:0000:0000:0000:0000:0000:0000 :: 

Trailing or leading fields of zeros can be compacted. Note that :: can replace only one set of 
contiguous zero fields. Multiple ::s would make the address ambiguous. For example, the incorrectly 
written address 1080::3245::200c:417A does not provide sufficient information about the correct 
position in the address of the two octets Ox3245.

You can use another form of address in certain mixed IPv6 and IPv4 modes. This form combines the 
colon-separated hexadecimal fields of IPv6 with the dotted-decimal notation of IPv4, as follows:

X:X:X:X:X:X:d.d.d.d

X represents the hexadecimal digits of the IPv6 address and d.d.d.d notates the last 32 bits of the 
address in dotted-decimal notation. Table 8-2 shows some examples of this mixed-mode format.



Table 8-2. Text Representation of Addresses in a Mixed IPv6 and IPv4 
Environment

Expanded Format Compressed Format 

0:0:0:0:0:0:13.1.68.3 ::13.1.68.3 

0:0:0:0:0:0:129.144.52.38 ::129.144.52.38 

The mixed IPv6/IPv4 address representation provides a method for IPv6 and IPv4 nodes to coexist 
on the same network. The section "Transition from IPv4 to IPv6" later in this chapter discusses the 
transition and coexistence methods.

Text Representation of Address Prefixes

IPv6 address prefix representation is similar to IPv4 CIDR notation. IPv6 prefix notation is as follows:

IPv6-address/prefix-length

where:

IPv6-address is any valid address.

prefix-length is the number of contiguous bits that comprise the prefix.

The following prefixes are legal textual representations for the 56-bit prefix 200F00000000AB:

200F::AB00:0:0:0:0/56

200F:0:0:AB00::/56

Note that as with IPv6 host addresses, the double colon is used only once in each representation.

The following are not valid representations of the 56-bit prefix 200F00000000AB:

200F:0:0:AB/56

200F::AB00/56

200F::AB/56

The first notation is not valid because a trailing zero was dropped within one of the 16-bit fields, and 
the address is not a valid length. The IPv6 address on the left of the forward slash (/) must be a valid 
full-length or compacted IPv6 address. The second and third notations are valid compacted IPv6 
addresses, but they do not expand to the correct address. Instead of 
200F:0000:0000:AB00:0000:0000:0000:0000, they expand to 
200F:0000:0000:0000:0000:0000:0000:AB00 and 200F:0000:0000:0000:0000:0000:0000:00AB, 
respectively.

Address Type Allocation



Before CIDR, the high-order bits in an IPv4 address defined its type—Class A, B, C, D, or E. The type 
identified a fixed-length network portion and a host portion that the owner of the address was free to 
use as he pleased. This was the only defined structure in an IPv4 address. IPv6 addresses have more 
structure defined. The structure is discussed fully in the later section "Address Structure." The high-
order bits define IPv6 address types. The variable-length field comprising these bits is called the 
format prefix (FP). Table 8-3 shows the initial allocation of these prefixes.

Table 8-3. IPv6 Prefix Allocation

Allocation Prefix (Binary) 
Fraction of Address 
Space 

Reserved 0000 0000 1/256 

Unassigned 0000 0001 1/256 

Reserved for NSAP allocation 0000 001 1/128 

Reserved for IPX allocation 0000 010 1/128 

Unassigned 0000 011 1/128 

Unassigned 0000 1 1/32 

Unassigned 0001 1/16 

Aggregatable global unicast 
addresses 

001 1/8 

Unassigned 010 1/8 

Unassigned 011 1/8 

Unassigned 100 1/8 

Unassigned 101 1/8 

Unassigned 110 1/8 

Unassigned 1110 1/16 

Unassigned 1111 0 1/32 

Unassigned 1111 10 1/64 

Unassigned 1111 110 1/128 

Unassigned 1111 1110 0 1/512 

Link-local unicast addresses 1111 1110 10 1/1024 

Site-local unicast addresses 1111 1110 11 1/1024 

Multicast addresses 1111 1111 1/256 

Address space is allocated for aggregatable globally routable addresses, local-use addresses, and 



multicast addresses. Only about 15 percent of the address space is currently allocated.

Some space is reserved. Space is reserved for future implementations of NSAP and IPX routing. A 
portion of the reserved space, particularly 0x00, is used for special addresses, such as the loopback 
and unspecified addresses, which are discussed in the next section.

Much of the space is initially unassigned. It can be utilized in the future for expansion of existing use 
or for new uses.

Aggregatable global unicast addresses are analogous to globally routable IPv4 IP addresses. They are 
assigned in blocks to Internet providers and exchanges, who then assign portions of the addresses to 
businesses and end users. This type of address defines multiple levels of hierarchy and aggregation. 
This is the largest assigned address space, and it still utilizes only 1/8 of the available addresses.

From Table 8-3, you can see that multicast addresses begin with 0xFF. An address beginning with 
anything else is a unicast address. Table 8-4 is a quick reference for identifying a type of IP address.

Table 8-4. Digits that Define the Address Type

Defining First Digits Address Type 

00 Unspecified, loopback, IPv4-compatible 

2

3 

Aggregatable global unicast 

FE8 Link-local 

FEC Site-local 

FF Multicast 

Address Structure

IPv6 address structure is used for assignment and allocation. Packet forwarding is based on the 
longest matched prefix, as it is in IPv4. A unicast address may be either an aggregatable global 
address, a link-local, a site-local, or a special format address. An IPv6 interface may be assigned 
multiple addresses—unicast, anycast, or multicast. The following sections discuss individual address 
structure types.

Aggregatable Global Address Format

The aggregatable global addresses will be used to connect to the public Internet and for any other 
purpose that requires global uniqueness and routability. The address structure supports today's 
provider-based aggregation and a new type, exchange-based aggregation. Exchange-based 
aggregation allocates address space to exchanges that then subdivide the space and allocate it to 
their customers. An exchange is another name for a NAP, as discussed in Chapter 2. It is a Layer 2 
switch that interconnects ISPs and top-level service providers. A route arbitrator might be used on an 
exchange to collect routing information and provide a peering point between service providers. 
Experience with exchange-based aggregation is yet to be accomplished. Through these aggregation 
points, the defined format of the aggregatable global address enables the hierarchy required to scale 



the Internet. The hierarchy is discussed further in the next section.

Hierarchy

Aggregatable addresses are organized into three levels of hierarchy: public, site, and interface. The 
public topology comprises service providers that offer public Internet transit services, and exchanges. 
The very top level of the public topology makes up what is called the default-free zone—the Internet 
routers with no default route entry in their routing tables. These sites know explicitly how to reach all 
other network prefixes. Site topology is local to a site or organization that does not offer public 
transit services, although some smaller-scale private transit services may be offered. The interface 
topology identifies interfaces on the network. Figure 8-2 illustrates the Internet hierarchy of 
aggregatable addresses.

Figure 8-2. Internet Hierarchy

ISP1, ISP2, ISP3, and ISP4 represent the public space. They are interconnected directly and via 
exchanges. Smaller ISPs—P1 and P2—and end-user sites, shown as S1 through S5, make up the site 
space.

The defined format of the address, detailed in the next section, reflects this hierarchy.

Format

Figure 8-3 displays the aggregatable global unicast address format.

Figure 8-3. The Format of Aggregatable Global Unicast Addresses



The fields that make up the public level are the FP, TLA, RES, and NLA. SLA is the site level, and 
interface ID is the interface level. The network portion of the address makes up the first 64 bits. The 
node portion is the last 64 bits.

The fields of the address are defined as follows:

●     FP is the format prefix (001).
●     TLA ID is the top-level aggregation identifier.
●     RES is reserved for future use.
●     NLA ID is the next-level aggregation identifier.
●     SLA ID is the site-level aggregation identifier
●     Interface ID is the interface identifier

The format prefix is binary 001, identifying the aggregatable global unicast address. Figure 8-3 shows 
that the FP, TLA ID, RES, and NLA ID fields comprise the public topology. SLA ID makes up the site 
topology, and Interface ID is the interface identifier. Both the public topology and the site topology 
can be subdivided to create even more levels of hierarchy. The FP, TLA, NLA, and SLA make up the 
network portion of the address. The interface ID is the node portion. The following sections discuss 
each of the fields illustrated in Figure 8-3.

Top-Level Aggregation Identifier

The top-level aggregation identifiers (TLA ID) are the top levels in the routing hierarchy. Routers in 
the default-free zone must have a routing entry for every TLA ID and will probably have routing 
entries depicting their own topology as well. The TLA ID field is 13 bits. If more TLAs are needed, 
another FP can be assigned, or the TLA field can expand to the right into the reserved field.

Just as a range of addresses is given by the Internet Assigned Numbers Authority (IANA) to the 
various regional IP registries, ranges of IPv6 TLA IDs are given to the regional IP registries around 
the globe. The regional IP registries in turn assign TLA IDs to large ISPs. Particularly, the large ISPs 
that receive TLA IDs are transit providers and exchanges.

IANA has initially allocated the TLA 0x0001. It is subdivided to provide blocks of sub-TLAs to each of 
the RIRs. The RIRs allocate sub-TLAs from their assigned blocks to organizations that will provide 
IPv6 services—TLA registries. TLA 0x0001 has 13 bits of sub-TLA, followed by 6 sub-TLA reserved 
bits, 13 NLA bits, 16 SLA bits, and 64 Interface ID bits. Each sub-TLA initially has up to 13 bits of 
NLA ID to allocate to the NLA registries. When an organization has completely allocated its NLA 
space, it may request more addresses. An entire sub-TLA is reserved for an organization, but only 
one sub-TLA is allocated at any time. If an organization needs more, it needs to justify this with 
engineering documentation or deployment plans. The 6 reserved bits can be used to allocate more 
addresses within a sub-TLA.

For example, ARIN has been allocated 2001:0400::/23. ARIN can allocate 2001:0400::/29 through 
2001:05FF::/29 sub-TLAs. To encourage a slow-start addressing approach, however, the RIRs 
allocate addresses with a 35-bit prefix, such as 2001:0408::/35. The sub-TLA is actually 29 bits with 
6 bits of reserved NLA space. VBNS has been allocated 2001:0408::/35. VBNS has 13 bits of NLA 
space to allocate to its customers. It can allocate the space however it chooses. It may allocate 



2001:0408:0010::/40 to a smaller ISP customer. The ISP then has 2001:0408:0010::/48 through 
2001:0408:001F::/48 to allocate to its customers.

Reserved

The reserved field (RES) is not currently used, except in the case of TLA 0x0001, as described in the 
preceding section. All bits are set to zero. Future use could include growth of the TLA ID and NLA ID.

Next-Level Aggregation Identifier

An organization allocated a TLA ID creates address hierarchy and identifies sites using the NLA ID. 
Organizations that receive address allocation from the NLA space are called NLA registries. This is 
similar to a CIDR block of IPv4 address space given to a top-level ISP, which then gives blocks of 
address space with longer prefixes to its customer.

An organization given a TLA has 24 bits, and an organization given a sub-TLA has 13 bits of NLA to 
use in allocating address space to its own customers. Its customers may be ISPs (NLA registries) or 
end-user subscribers. The TLA registry may use the high-order NLA bits to create hierarchy and may 
assign the lower-order bits to the NLA registries. NLA registries will be allocated enough address 
space to provide their own customers addresses. The minimum size of address space that an NLA 
registry can assign is a prefix of 48 bits (/48), giving the customer at least 16 bits of SLA to use in its 
own subnetting scheme. A site can request more than /48 addresses; however, the customer must 
prove the need with current deployment statistics and engineering documents or deployment plans.

Site-Level Aggregation Identifier

A site is free to create as many levels of hierarchy within the SLA-ID as is appropriate. It could have 
a flat numbering scheme with no further subdivision, or it could further divide the SLA ID into 
subnets, creating a hierarchy of SLA ID addresses.

Interface Identifier

The interface identifier is used to identify interfaces on a specific link. It is unique to the link. All 
addresses with high-order bits between 001 and 111, excluding multicast, must have interface IDs in 
EUI-64 format. Currently, only the special-format addresses, NSAP-allocated address space, and IPX 
allocated address space do not fall into this range.

The EUI-64 format can be derived from the interface MAC address, if one exists. An FFFE is inserted 
between the company ID and the node ID, and the universal/local bit is set to 1 to indicate global 
value (see Figure 8-4).

Figure 8-4. MAC-to-EUI-64 Conversion



MAC address 0000:0C0A:2C51 is converted into EUI-64 address 0200:0CFF:FE0A:2C51 by inserting 
FFFE after the company identifier in the MAC and then setting the universal/local bit.[1]

Special-Format Addresses

Some addresses use a special format. The addresses are allocated from the reserved FP 0x00. The 
unspecified address, the loopback address, and the embedded IPv4 address are all examples of 
special-format addresses.

Unspecified

The unspecified address is made up of all zeros, 0:0:0:0:0:0:0:0. It must never be assigned to any 
node. It actually represents the absence of an address. One use for the unspecified address is in the 
source address field of an initializing host, before it has been assigned a valid address. The 
unspecified address must never be used as a destination address in IPv6 packets or IPv6 routing 
headers.

Loopback

The loopback address is 0:0:0:0:0:0:0:1. This address is analogous to the IPv4 loopback address 
127.0.0.1. A node uses this address to send IP packets to itself. It can never be assigned to any 
physical interface. Traffic destined to the loopback address must never leave the sending node.

IPv6 with Embedded IPv4 Addresses

One transition mechanism used when migrating from IPv4 to IPv6 is the use of automatic tunnels. 
IPv6 packets are automatically encapsulated into IPv4 packets for transfer over the IPv4 network. 
This mechanism requires special-format IPv6 unicast addresses. Nodes that use this technique are 
dual-stack nodes running both IPv4 and IPv6. The IPv6/IPv4 node that supports automatic tunneling 
must be assigned an IPv6 address, with the IPv4 address embedded in the low-order 32 bits. All 



other bits are zero. Addresses of this type are termed IPv4-compatible IPv6 addresses and have the 
following format:

::d.d.d.d

d.d.d.d is an IPv4 dotted-decimal address. IPv4-compatible addresses and automatic tunnels are 
discussed further in the section "Transition from IPv4 to IPv6."

Local-Use Addresses

Two types of addresses have local significance. A link-local address is meaningful only to nodes on a 
single link. A site-local address is meaningful only to nodes within a site. The addresses are not 
globally unique. They are unique only within their respective scope.

The Link-Local Address

A link-local address is used for nodes on a single link. Autoconfiguration, neighbor discovery, nodes 
on a routerless link, and even routing protocols use link-local addresses. Routers must not forward 
packets with either source or destination link-local addresses beyond the link. Therefore, any protocol 
that requires sending a packet to devices on a single link and that wants to ensure that the packets 
do not get routed beyond the local link can use a link-local address in the IP header. A link-local 
address is defined by the FP 1111111010, followed by 54 zeros and the interface ID. The address 
contains no TLA, NLA, or SLA information. There is no hierarchical information at all. Figure 8-5 
illustrates the format of the link-local address.

Figure 8-5. Link-Local Address Format

Every node assigns every active IPv6 interface a link-local address. They can be configured 
automatically, with autoconfiguration, or they can be manually configured.

The following are some examples of link-local addresses:

FE80::5ABC:01FF:FE01:1111

FE80::0060:08FF:FEB1:7EA2

FE80::200:CFF:FE0A:2C51

The Site-Local Address

A site is an organization or part of an organization. It could be a certain topological location, or it 
could be multiple topological locations interconnected in some way. A network configured with a site-
local address is not reachable from locations outside the site. The site's edge routers must be able to 
keep site-local traffic within the site and are responsible for controlling the route propagation. In 
addition to the site-local FP and Interface ID, site-local addresses have a subnet identification field. 
Note, however, that no TLA or NLA IDs exist. These addresses are designed to be used within a site 
only; no global prefix is required. Use of these addresses is identical to the private IPv4 addresses. 



The addresses are not globally unique. It is recommended that you use site-local addresses, not 
global aggregatable addresses, on router interfaces.

The site-local address is defined by FP 1111111011 and is followed by 38 zeros, a 16-bit subnet field, 
and the 64-bit Interface ID, as illustrated in Figure 8-6.

Figure 8-6. Site-Local Address Format

The subnet field can be utilized to create multiple networks within the site and to create a local 
hierarchy. The hierarchy can be used to aggregate addresses within the site. Site-local addresses 
must not be propagated beyond the site boundaries.

The following are some examples of site-local addresses:

FEC0::1:5ABC:1FF:FE01:1111

FEC0::CAB:60:8FF:FEB1:7EA2

Anycast Addresses

Anycast routing is a mechanism for addressing multiple interfaces, usually on different nodes, with 
the same IP address. Traffic destined to the address gets routed to the nearest node. The anycast 
functionality is discussed later, in the section "The Anycast Process." The anycast address has the 
same format as a unicast address. No special FP defines an anycast address.

Anycast addresses are assigned from the unicast address space. In fact, the addresses are taken 
from the Interface ID field. The Subnet-Router anycast address is predefined, and all router 
interfaces connected to a link must be assigned this address. It is a unicast address with an all-zero 
interface identifier. Figure 8-7 illustrates the Subnet-Router anycast address.

Figure 8-7. Subnet-Router Anycast Address

An example of a Subnet-Router anycast address is FEC0:0:0:A:: on a router interface assigned with 
the unicast address FEC0:0:0:A:200:CFF:FE0A:2C51.

The highest 128 interface IDs are reserved for assigned subnet anycast addresses. A reserved subnet 
anycast address is an anycast address that is available on every IPv6 subnet, regardless of the type 
or format of the prefix. Figure 8-8 illustrates the construction of reserved anycast addresses.

Figure 8-8. Anycast Address Construction



Figure 8-8 shows that the reserved anycast address space is taken completely from the Interface ID 
field. A reserved anycast address is reserved for every subnet. The top 128 interface IDs are 
reserved for anycast address allocation.The last 7 bits of the address identify the specific anycast 
address.

At the time of this writing, the only specified anycast address is the mobile IPv6 home-agents. It has 
an anycast identifier of binary 1111110. That is, on every IPv6 subnet, the address associated with 
the EUI-64 interface ID FDFF:FFFF:FFFF:FFFE is reserved for the mobile IPv6 home-agent anycast 
address. The mobile IPv6 home-agent on prefix FEC0:0:0:A::/64 uses the anycast address 
FEC0:0:0:A:FDFF:FFFF:FFFF:FFFE.

All the remaining anycast IDs, hexadecimal values 0-7D and 7F, are reserved for future use.

Because anycast addresses are syntactically indistinguishable from unicast addresses, an interface 
must be explicitly configured to recognize that its address is an anycast address.

Multicast Addresses

Multicast addresses identify groups of interfaces, each of which can contain multiple multicast 
addresses. Multicast addresses are distinguishable from unicast addresses because they always begin 
with 0xFF. There is no such thing as broadcasting at the network layer in IPv6. Broadcasting induced 
a lot of extra overhead on nodes that were not necessarily interested in the broadcast packet. All IP 
interfaces that received a broadcast packet had to process the packet to see whether it might be the 
intended recipient. Very often, the node was not the intended recipient. Every IPv6 interface knows 
the multicast groups to which it belongs. A multicast packet is processed only by those interfaces that 
belong to the multicast group. IPv6 uses multicasting rather than broadcasting.

IPv6 multicast addresses may be either assigned by an official addressing authority (well-known 
addresses) or transient—that is, locally assigned for nonglobal use. The initial assignment of IPv6 
multicast addresses was based on assigned IPv4 multicast addresses. All relevant IPv4 multicast 
addresses are converted to IPv6 multicast addresses. You can find a complete list of the currently 



assigned IPv6 multicast addresses in RFC 2375. Table 8-6, shown in a moment, lists some examples.

IPv6 multicast addresses are also scoped. The addresses have a field that identifies the scope as 
either local to the node, local to the link, local to the site, local to the organization, or global. 
Transient addresses defined within a particular scope are meaningful only to nodes within that scope. 
The same address may be defined in a different scope, or a different network, and have a completely 
different meaning.

Figure 8-9 illustrates the format of a multicast address.

Figure 8-9. Multicast Address Format

The leading octet, 11111111, identifies this address as multicast.

flgs is a set of 4 bits. The leading 3 bits are reserved and must be set to 0. The last bit indicates 
whether the multicast address is an address permanently assigned by the global Internet numbering 
authority or whether it is not permanently assigned, known as "transient." A value of 0 in the fourth 
bit indicates that the multicast address is "well- known." The global Internet numbering authority 
assigned it.

scop is a 4-bit value used to limit the scope of the multicast address. Table 8-5 lists the values.

Table 8-5. Multicast Address Scope Values

Value Description 

0 Reserved 

1 Node local scope 

2 Link local scope 

5 Site local scope 

8 Organization local scope 

e Global scope 

f Reserved 

Any of the scope values may exist with either well-known or transient addresses. Transient addresses 
within a given scope are valid only for that scope. They are meaningless under any other scope.

Group ID identifies the multicast group, either well-known or transient, within the given scope.

Table 8-6 lists some common multicast groups, along with their assigned addresses and scopes.



Table 8-6. Some IPv6 Well-Known Multicast Addresses

IPv6 Well-Known Multicast Address 
IPv4 Well-Known 
Multicast Address Multicast Group 

Node-Local Scope 

FF01:0:0:0:0:0:0:1 224.0.0.1 All-nodes address 

FF01:0:0:0:0:0:0:2 224.0.0.2 All-routers address 

Link-Local Scope 

FF02:0:0:0:0:0:0:1 224.0.0.1 All-nodes address 

FF02:0:0:0:0:0:0:2 224.0.0.2 All-routers address 

FF02:0:0:0:0:0:0:5 224.0.0.5 OSPFIGP 

FF02:0:0:0:0:0:0:6 224.0.0.6 OSPFIGP-
designated routers 

FF02:0:0:0:0:0:0:9 224.0.0.9 RIP routers 

FF02:0:0:0:0:0:0:D 224.0.0.13 All PIM routers 

Site-Local Scope 

FF05:0:0:0:0:0:0:2 224.0.0.2 All-routers address 

Any Valid Scope 

FF0X:0:0:0:0:0:0:101 224.0.1.1 Network Time 
Protocol (NTP) 

FF0X:0:0:0:0:0:0:127 224.0.1.39 cisco-rp-announce 

FF0X:0:0:0:0:0:0:128 224.0.1.40 cisco-rp-discovery 

Upon interface initialization and when multicast protocols and applications are initialized, nodes join 
the required multicast groups. Nodes join the all-nodes multicast addresses of FF01::1 and FF02::1. 
The address' formats indicate that the multicast addresses are well- known and have node-local and 
link-local scope, respectively. Routers join the all-routers multicast address of FF01::2, FF02::2, and 
FF05::2. These are well-known addresses with node-local, link-local, and site-local scope, 
respectively.

You can see from Table 8-6 that a multicast group capable of operating within multiple scopes has 
multiple IPv6 addresses. This is not the case with the well-known IPv4 addresses. These are not 
scoped. Two methods of multicast scoping with IPv4 were discussed in Chapter 5, "Introduction to IP 
Multicast Routing." TTL scoping requires the network administrator to set TTL thresholds on multicast 
boundaries. If the TTL value in a multicast packet is lower than the defined threshold when the 
packet reaches the boundary, the packet is discarded. One drawback to this approach is its 
inflexibility—an interface's TTL threshold applies to all multicast packets exiting the interface. Another 
drawback is that in a large network, it is difficult to predict what the correct TTL threshold value 
should be. The other type of scoping for IPv4, administrative scoping, defines a range of private-use 



multicast addresses that can be used to define scope within an enterprise. The reserved range is 
239.0.0.0–239.255.255.255. Suggested scoping ranges are 239.255.0.0/16 for local or site scope 
and 239.192.0.0/14 for organizationwide scope. These are just suggested ranges. Enterprises are 
free to use the addresses as they see fit. Administrative scoping might work fine within an 
organization, but it cannot work globally. The addresses are for private use only.

Multicast scoping is built into all IPv6 multicast addresses. Currently, five levels of scope are defined. 
Link-local scope is achieved in IPv4 with TTL scoping by setting the TTL value in all link-local 
multicast packets to 1. The rest of the IPv6 scopes create the potential for various levels of multicast 
containment. Multicast applications using IPv6 can be contained within a link, site, or organization. 
There are reserved addresses for future scopes. Scoped, well-known multicast addresses enable 
multicast containment while at the same time ensuring that the same address is not used for two 
different multicast groups. There is no danger of two companies using the same address for two 
different applications and then conflicting when the two companies later decide to merge.

A particular type of multicast address is the "solicited-node" address. Solicited-node multicast 
addresses are used by various IPv6 functions to communicate withIPv6 nodes. The functions' use of 
the address is discussed in the section "IPv6 Functionality." Solicited-node multicast addresses are 
created and assigned for every unicast and anycast address assigned to an interface, other than the 
link-local address. The solicited-node multicast address is created using the last 24 bits of the 
interface ID and appending it to the prefix FF02:0:0:0:0:1:FF00::/104. Figure 8-10 illustrates how a 
solicited-node multicast address is formed.

Figure 8-10. Solicited-Node Multicast Address Formation

An interface with the MAC address 0000.0C0A.2C51 forms EUI-64 interface ID ::200:CFF:FE0A:2C51, 
which then creates link-local address FE80::200:CFF:FE0A:2C51. The site-local prefix FEC0::/64 on 
subnet 0 creates site-local address FEC0::200:CFF: FE0A:2C51. A solicited-node multicast address is 
formed because the interface now has a site-local address. The solicited-node address takes the last 
24 bits of the interface ID, 0A:2C51, and appends it to the solicited-node prefix, forming 
FF02::1:FF0A:2C51.

Each interface may have multiple prefixes and multiple IPv6 addresses associated with it. The 
interface ID is likely the same for all addresses. Creating the solicited-node multicast address out of 
the final 24 bits of the interface ID minimizes the number of multicast addresses that the node must 



join.

Required Addresses for Nodes

Nodes are required to recognize multiple addresses as identifying themselves. IPv6 mechanisms 
require nodes to maintain these addresses in order to work correctly. The use of each address is 
discussed further with the particular IPv6 function.

A host is required to recognize the following addresses:

●     The link-local address for each interface
●     All assigned unicast addresses
●     The loopback address
●     All-nodes multicast addresses
●     The solicited-node multicast address for each of its assigned unicast and anycast addresses
●     The multicast addresses of all other groups to which the host belongs

In addition to all these addresses, a router also is required to recognize the following:

●     The subnet-router anycast address for each of its routing interfaces
●     All other anycast addresses configured on the router
●     The all-routers multicast address
●     Multicast addresses of all other groups to which the router belongs

Table 8-7 summarizes the address types.

Table 8-7. Address Types and Examples

Defining First Digits Example Address Type 

00 ::1 Unspecified

Loopback

IPv4-compatible

2

3

2001:0608:1000:: Aggregatable global unicast 

FE8 FE80::200:CFF:FE0A:2C51 Link-local 

FEC FEC0::200:CFF:FE0A:2C51 Site-local 

FF FF02::2 Multicast 

FF02:0:0:0:0:1:FF00:: FF02:0:0:0:0:1:FF0A:2c51 Solicited-node 

IPv6 Header



One of the design goals of IPv6 is to improve on the IPv4 header. It is simpler, more flexible, and 
more efficient when using options. Some of the IPv4 fields were removed; others were renamed. The 
address is four times as long, but the header is only twice as large. Option encoding changed to 
make processing more efficient and to offer greater flexibility in the size and addition of options.

Header Format

The header is simple. It has eight fields, including the Source and Destination fields. Figure 8-11 
shows the header.

Figure 8-11. IPv6 Header Format

The fields in the IPv6 header format are defined as follows:

●     Version indicates the IP version (in this case, 6).
●     Payload Length is the length of the IP packet, excluding this header, in octets. Extension 

headers, discussed in the next section, are considered part of the payload and are therefore 
included in this length.

●     Next Header is the value identifying the header immediately following the IPv6 header. The 
next header is either an upper-layer header (such as ICMP, TCP, or UDP) or it is an IPv6 
extension header, as discussed in the next section.

●     Hop Limit is decremented by each node the packet traverses. The packet is discarded if the 
hop limit reaches zero. Some IPv6 functions, such as Router Advertisements, Neighbor 



Advertisements and Solicitations, and IPv6 Redirects, are used only between devices on a 
single link. A technique used by IPv6 processes to validate that a packet was not sent by an 
off-link node (perhaps as an attempt to maliciously redirect traffic) is to require the hop limit 
to be set to 255, which is the maximum value for the hop limit. If the packet had traversed a 
router and was thus sent by an off-link node, the hop limit of the received packet would be 
something less than 255. An IPv6 node receiving this packet considers it invalid and drops it.

●     Source Address/Destination Address are 128-bit fields for the IPv6 source and destination 
addresses.

The Traffic Class and Flow Label fields are discussed later in this chapter, in the section "Quality of 
Service."

Figure 8-12 shows the IPv4 header for comparison. Only the fields that require processing by every 
IP node in the path remain in the IPv6 header. The rest of the fields contain information that may or 
may not be relevant to any given IP packet. This information has been moved to extension headers 
in IPv6.

Figure 8-12. IPv4 Header Format

Extension Headers

Optional network layer information is not included in the IPv6 header. It is included in separate 
headers that are encoded and placed between the IPv6 and the upper-layer header. The extension 



headers are not processed by every node along the packet's delivery path, with one exception. They 
are examined only by the node (or nodes in the case of multicast destinations) identified in the 
Destination Address field of the IP header. This improves the efficiency of options processing by not 
requiring every IP router to process information that is perhaps intended only for the destination 
node. The exception is the hop-by-hop option. The hop-by-hop option contains information that is 
intended for every router along the delivery path.

Extension Header Order

A node determines whether it must examine and process an extension header by looking at 
information that is contained in the preceding header. Therefore, extension headers must be 
processed in the order that they appear in the packet. If they all exist in a packet, they should be in 
the order shown in Table 8-8. The table shows the next-header value that identifies this header. The 
headers should be in the order shown in Table 8-8, but they might not be, except for the hop-by-hop 
header, which must always immediately follow the IPv6 header, if it exists at all. Nodes are required 
to process the headers, regardless of the order received.

Table 8-8. Headers and Next-Header Value

Header Previous Header's Next-Header Value 

Hop-by-Hop Options 0 

Destination Options 60 

Routing 43 

Fragment 44 

Authentication 51 

Encapsulating Security Payload 50 

Destination Options 60 

OSPF for IPv6 89 

The Destination Options header appears twice in Table 8-8. Its meaning differs in each location. 
When it occurs before a routing header, the header is to be examined by the first destination that 
appears in the Destination field of the IPv6 header, plus by all the subsequent addresses listed in the 
routing header. When the Destination Options header appears without a routing header, or after the 
routing header, the options are to be processed only by the final destination of the packet. Figure 8-
13 illustrateshow the extension headers are used.

Figure 8-13. The Use of Extension Headers



In each header, the next-header value identifies the following header. After reading the IPv6 header, 
if the processing node is not the final destination, and the next header is not the hop-by-hop header, 
the packet is forwarded. If the node is the destination, it processes each header in the order 
received.

Options

Two of the currently defined extension headers—Hop-by-Hop and Destination—are composed of a 
variable number of type-length-value (TLV) options. Options include a flag that indicates whether the 
data may change in transit. This has significance to the Authentication header. If the data may 
change, the Authentication header must treat the field as all zeros when computing the 
authentication information. Currently, only two options are defined—Pad1 and PadN. Both are used to 
pad the header so that the length is a multiple of eight octets, or to align subsequent options. Pad1 
inserts one octet of padding into the Options area of a header. PadN inserts two or more octets.

Hop-by-Hop Options Header

Information included in the Hop-by-Hop Options header must be examined by every router along the 
delivery path to the destination. The Hop-By-Hop Options header must be immediately follow the 
IPv6 header. This enables the routers along the path to examine the header without the need to 
process any other extension header.

Routing Header

Addresses listed in the Routing header identify nodes that must be visited en route to the destination. 
The IPv6 header contains the first node to be visited, and the Routing header contains the list of 
remaining nodes, including the final destination.

The Routing header contains Next-Header, Length, Type, Segments Left, and Address fields. The 
Type field has one defined value, type 0. The Segments Left field contains the number of explicitly 
listed nodes yet to be visited before reaching the destination.



The Routing header is processed by the node identified in the Destination Address field of the IP 
header. This node examines the Routing header. If there are nodes listed that have yet to be visited, 
the processing node identifies the next node to visit by comparing the total number of route header 
nodes to the number of segments left. The next node address is placed in the IP Destination Address 
field, the Segments Left value is decremented, and the packet is forwarded.

Fragment Header

A source node desiring to send a packet larger than what will fit in the path MTU to the destination 
uses the Fragment header. The source node is responsible for fragmenting the packet if any link MTU 
along the path is smaller than the packet. Routers do not fragment IPv6 packets. The source node 
fragments the packet and sends the fragments in multiple packets, to be reassembled by the 
destination. The source node can use a process called MTU path discovery to determine the minimum 
MTU along the path to the destination node. After it has learned the minimum MTU, the source knows 
the maximum size packet that can traverse the path. If the source is not running the MTU path 
discovery process, it assumes the maximum MTU it can use is the IPv6 minimum MTU of 1280 bytes. 
This process is covered in detail in the section "MTU Path Discovery." All the fragments of an 
individual packet are marked with an Identification value that is generated by the source node.

Destination Options Header

The Destination Options header contains options that must be examined by the destination(s) of an 
IPv6 packet. When the Destination Options header immediately precedes the Routing header, the 
option is processed by each node in the Routing header. When the Destination Options header 
immediately precedes the Upper-Layer Protocol header, it is processed by the final destination.

Authentication

An Authentication header (AH) has been added to IPv6. Its intent is to provide integrity and 
authentication for IP packets. All fields in the IP packet that do not change in transit to the 
destination are used to calculate the authentication information. Fields or options that do change, 
such as the hop limit, are considered to be zero when calculating the authentication information.

Encapsulating Security Payload

Integrity and confidentiality are provided by the Encapsulating Security Payload (ESP). You can use 
the Authentication header in conjunction with ESP to provide authentication. ESP encrypts the data to 
be protected and places the encrypted data into the Data portion of the ESP header. There are two 
encryption modes—Tunnel mode and Transport mode. In Tunnel mode, the ESP header encrypts the 
entire IPv6 packet, which it places in its encrypted field. The ESP header then gets placed in a new, 
unencrypted IPv6 header. In Transport mode, the ESP header encrypts only the transport layer 
segment (TCP, UDP, ICMP), places this encrypted data into its encrypted field, and is then placed in 
the original packet, just before the Transport Layer Protocol header.

Security mechanisms are beyond the scope of this book. For more information about IPv6 security, 
refer to RFCs 2401, 2402, and 2403.



 
  
IPv6 Functionality

A number of functions designed as a part of IPv6 must be implemented by any node said to support 
IPv6, including the following:

●     ICMPv6
●     Neighbor discovery
●     Stateless autoconfiguration
●     Anycast
●     Multicast
●     MTU path discovery (recommended)

These functions are the basis of IPv6, in most cases enhancing the capabilities of IPv4.

Another feature of IPv6 is the ability to assign multiple addresses to any interface, easing the 
problem of prefix renumbering. Not only can any IPv6 interface have multiple addresses in multiple 
prefixes, but two nodes on a link also can communicate together directly, regardless of the prefix to 
which they belong.

This functionality is discussed in detail in this section. Cisco routers are configured and command 
output is examined to help you understand the IPv6 functionality.

Enabling IPv6 Capability on a Cisco Router

IPv6 (disabled by default) is enabled on the Cisco router by issuing the following global command:

ipv6 unicast-routing [ table-count num]

Cisco's support enables multiple routing tables. One routing table is enabled by default. Multiple 
tables enable the network administrator to have more control over routing entry lookups. Longest 
match routing is no longer the only rule. If multiple tables are enabled, the forwarding algorithm 
searches the routing tables in increasing order until a usable route is found.

The next step in configuring IPv6 is to enable an IPv6 interface and enable autoconfiguration, or to 
configure an address. The following section discusses autoconfiguration.

The interface subcommand to enable the interface for IPv6 and configure the interface with an 
address is as follows:

ipv6 address ipv6address/prefix-length[link-local]

The interface subcommand to enable an interface without a specific address configured is as follows:

ipv6 enable



The router autoconfigures a link-local unicast address as part of enabling the interface.

Two routers, Falcon and Eagle, both reside on a single Ethernet link and have the configurations 
shown in Example 8-1.

Example 8-1 Enabling IPv6 on Two Routers That Reside on a Single 
Ethernet Link

Falcon

ipv6 unicast-routing

!

interface Ethernet0

 ipv6 enable

______________________________________________________________________

Eagle

ipv6 unicast-routing

!

interface Ethernet0

 ipv6 enable

Note that the configurations in Example 8-1 are identical.

The command to display the state of IPv6 on the interface, as well as relevant interface information, 
is as follows:

show ipv6 interface interface-type number

Example 8-2 shows partial output from the show ipv6 interface command, which displays the 
Ethernet interfaces' MAC addresses and the IPv6 state and link-local addresses automatically 
configured on the interfaces.

Example 8-2 show ipv6 interface ethernet 0 Is Used to View IPv6 Interface 
Information

Falcon#sh int e 0 

Ethernet0 is up, line protocol is up

  Hardware is Lance, address is 0000.0c0a.2c51 (bia 0000.0c0a.2c51)

Falcon#show ipv6 interface ethernet 0 



Ethernet0 is up, line protocol is up

  IPv6 is enabled, link-local address is FE80::200:CFF:FE0A:2C51

_______________________________________________________________________

Eagle#sh int e 0 

Ethernet0 is up, line protocol is up

  Hardware is Lance, address is 0000.0c76.5b7c (bia 0000.0c76.5b7c)

Eagle#show ipv6 interface ethernet 0 

Ethernet0 is up, line protocol is up

  IPv6 is enabled, link-local address is FE80::200:CFF:FE76:5B7C

Notice that Falcon's MAC address 0000.0C0A.2C51 creates the link-local address 
FE80::200:CFF:FE0A:2C51, and Eagle's MAC address 0000.0C76.5B7C creates the link-local address 
FE80::200:CFF:FE76:5B7C. Also note that IPv6 is enabled.

ICMPv6

ICMPv6 is integral to IPv6. Every node that implements IPv6 must fully implement ICMPv6. ICMPv6 is 
a modified version of ICMP for IPv4. Error reporting and many IPv6 functions, such as MTU path 
discovery and neighbor discovery, utilize ICMPv6. Error messages are discussed here.

The ICMPv6 packet follows the IPv6 header or one of the extension headers and is identified by the 
IPv6 Next-Header value of 58 in the immediately preceding header. (This is not the same value used 
by IP to identify ICMP for IPv4.) Informational and error messages are identified by the high-order bit 
in the ICMP Type field. An error message has a zero in the high-order bit of the ICMP Type field. An 
ICMP error message includes as much of the offending packet as possible without making the ICMP 
message larger than the minimum IPv6 MTU, 1280 bytes.

The following error messages are discussed:

●     Destination Unreachable
●     Packet Too Big
●     Time Exceeded
●     Parameter Problem

Destination Unreachable errors are sent when a node cannot forward the packet for some reason 
other than congestion. The node sends an error message to the source of the packet, with a code 
indicating the following:

●     No route to the destination (0)
●     Access is administratively prohibited (1)
●     Address unreachable (3)
●     Port unreachable (4)

A node sends a Packet Too Big message when the size of the packet exceeds the MTU on the link. In 
IPv6, fragmentation is not performed by routers, as it is in IPv4. Only the source node performs 
fragmentation. The MTU of the link that caused the error is included in the packet. The Packet Too 
Big message is sent regardless of whether the IPv6 destination is unicast or multicast. The message 
is used by the MTU path discovery process.



When the IPv6 hop limit reaches zero, an ICMP Time Exceeded message is sent. A zero hop limit 
usually indicates a routing loop.

An ICMP Parameter Problem message is sent if a node finds a problem with part of an IP header or 
an extension header. A pointer to the location in the offending header is included in the error 
message. An error code identifies the type of problem encountered:

●     Erroneous header field encountered (0)
●     Unrecognized next-header type encountered (1)
●     Unrecognized IPv6 option encountered (2)

Neighbor Discovery

The Neighbor Discovery (ND) protocol addresses many problems related to nodes on a single link. It 
provides the functionality for serverless automatic configuration, router discovery, prefix discovery, 
address resolution, neighbor unreachability detection, link MTU discovery, next-hop determination, 
and duplicate address detection. With IPv4, a combination of many protocols, including DHCP, ICMP 
router discovery, a routing protocol, and ARP, are required to provide only some of this functionality. 
ND uses ICMPv6 to perform these tasks. ND intended to improve on the IPv4 processes by 
integrating them all into ICMPv6, a required component of IPv6.

When a node is initialized, it must know a few things before it begins communicating:

●     It must know its own address.
●     It must know its own prefix information so that it can figure out how to send packets to 

nodes located in other prefixes.
●     It must know about any routers on the link.
●     It needs to know how to determine the next hop in the path to a destination.
●     It needs to know how to obtain the link-level address associated with a known network layer 

address.
●     It needs to know how large of a packet it can send.

To make communication run a lot smoother, a node should know some other things:

●     It should be able to detect when a neighbor is no longer reachable so that it does not send 
packets to that neighbor.

●     It should know about neighbors on its link.
●     It should know whether the address it is trying to use is in use already by another node on 

the link.
●     It needs to know what other prefixes are assigned to nodes on the same link.
●     It should be able to redirect traffic to a better next-hop node, if one exists, for any 

destination.

ND defines five ICMPv6 packets to provide IPv6 nodes with the information they must and should 
know before communicating:

●     Router Solicitation (RS)— Multicasted by a node when it wants routers to send a Router 
Advertisement immediately instead of waiting for the next scheduled advertisement. An 
initializing node may send the Router Solicitation so that it can immediately learn about 
configuration parameters and about the existence of routers on the link.

●     Router Advertisement (RA)— Sent periodically or in response to a solicitation. Routers 
advertise their presence, as well as provide information necessary for a node to configure 
itself.

●     Neighbor Solicitation (NS)— Enables a node to determine the link layer address of a 
neighbor or to determine whether the neighbor is still reachable via a cached link layer 



address. Also enables a node to determine whether a duplicate IP address exists on the link.
●     Neighbor Advertisement (NA)— Sent in response to Neighbor Solicitations, or unsolicited 

if a node's link layer address changes.
●     Redirect— Sent by routers to redirect traffic to a better first hop on the link.

Each message is an ICMP packet with a defining type. The ICMP packet contains type-specific 
information. Each type of message may also contain one or more TLV options.

ND provides the basis for stateless autoconfiguration—automatic configuration without a 
configuration server. Router Advertisements provide the information necessary for node 
configuration. Autoconfiguration is discussed fully in the section "Autoconfiguration."

Router Solicitation

Hosts send Router Solicitations when they want to receive a Router Advertisement right away—they 
do not want to wait for the periodic advertisement. An initializing host sends an RS so that it can 
quickly learn the information it needs for configuration.

An RS is an ICMP packet of type 133. Its source address is an address assigned to the sending host's 
interface. If no address has yet been assigned, it is the unspecified address, 0:0:0:0:0:0:0:0. The 
destination is typically the all-routers multicast address. The RS also may contain an option with the 
sender's link layer address. The link layer address must not be included if the source address is the 
unspecified address.

Router Advertisements

Routers advertise their presence on a link and provide the information necessary for a node to 
configure itself. The RA is multicast to the link-scope all-nodes multicast group.

An RA is an ICMP packet of type 134. Its source IP address is the link-local address of the sending 
router, and the destination address is either the address of a node that sent a Router Solicitation or 
the link-scope all-nodes multicast address. The hop limit must be set to 255. The hop limit is not 
used, in this case, to stop routers from forwarding the packet. A value of 1 ensures that the packet 
does not get forwarded, because a router that receives the packet decrements the hop limit and 
drops the packet when the hop limit reaches 0. The value of 255 ensures that no off-link device 
sends RAs in an attempt to disrupt traffic flow. If an off-link device does send an RA, the RA 
traverses a router, which automatically decrements the hop-limit value, rendering the packet invalid. 
One of the ways that the receiving node validates the packet is by verifying that the hop limit is 255. 
IPv4 does not use this method of ensuring that the packet could not possibly have traversed a router.

An RA contains a Router Lifetime. The Router Lifetime informs nodes how long they should consider 
the router as a default. The time is in units of seconds, with a maximum value of 18.2 hours. A value 
of 0 means that the router is not a default candidate and should not appear on any host's default 
router list.

A host receiving RAs builds a default router list. All routers that advertised RAs with non-zero valued 
Router Lifetimes appear in the default router list. The entry for a router's Router Lifetime value in the 
default list is updated with each subsequent RA received. If an RA contains a zero-valued Router 
Lifetime for an already listed router, the host immediately removes the router from the default list 
(an improvement over IPv4). IPv4 hosts have to be manually configured with default router lists. 
Some IPv4 hosts run a routing protocol, such as RIP, to dynamically learn this information, and some 
run the ICMP Router Discovery Protocol (IRDP). Neither RIP nor IRDP are implemented on all IPv4 
hosts, however.

An RA also contains a Reachable Time and a Retransmit Timer. The Reachable Time informs hosts 
how long to assume a neighbor is alive after receiving a reachability confirmation from that neighbor. 



This information is used in the Neighbor Unreachability detection process. The Retransmit Timer is 
the time, in milliseconds, between subsequent Neighbor Solicitation messages. It is used in the 
address resolution and the Neighbor Unreachability detection processes.

Two bits found in the RA packet, the Managed Address (M) bit and the Other Stateful Configuration 
(O) bit, inform a host how it should configure itself. If the M bit is set, the host configures its address 
using the stateful autoconfiguration protocol, such as DHCP, in addition to any addresses configured 
with stateless autoconfiguration. If the O bit is set, hosts use the stateful autoconfiguration protocol 
to configure other information besides the address. IPv4 hosts are manually configured to indicate 
whether they should learn their IP configuration information via DHCP. Automatically providing this 
information to hosts on a link via router advertisements minimizes the amount of static configuration 
information contained in hosts, easing future reconfiguration efforts. The autoconfiguration methods 
are discussed in the section "Autoconfiguration."

The options that may be present in the RA are the source link layer address, the MTU, and prefix 
information. Including the source link layer address of the router in the RA eliminates the need for 
hosts to perform the address resolution protocol on default routers. A router may elect not to include 
the link layer address. The MTU option enables centralized control of the MTU that hosts on a link 
use. This option is used mainly for links with a variable MTU but may be used on other links. The 
value is set in the router, which then enables the configuration of all the hosts on the link. The prefix 
information is used to inform other nodes of on-link prefixes and for address autoconfiguration. A 
host that knows of all the prefixes that are configured on a link forwards traffic more knowledgeably. 
A multihomed host can choose the closest interface to any known on-link destination prefix. A 
nonmultihomed host uses the prefix list to assist in next-hop detection.

The prefix information option contains data that is used for both on-link determination and stateless 
autoconfiguration. It contains the actual prefix and the length of the prefix, which is always from 1 to 
128 bits. It also contains bits that indicate whether the prefix is to be used for on-link determination 
or for address configuration. When the L bit is set, you can use the prefix for on-link determination. 
When it is not set, you can determine no information about on-link or off-link. The A bit, when set, 
indicates that you can use the prefix for stateless address configuration.

The prefix option also contains a Valid Lifetime value and a Preferred Lifetime value. The Valid 
Lifetime indicates, in seconds, how long a prefix is valid for purposes of on-link determination. The 
lifetime is relative to the time the packet was sent. An advertised Valid Lifetime value of zero 
indicates that the prefix is no longer valid. The Preferred Lifetime is the number of seconds that the 
address automatically configured from the prefix can remain "preferred." A preferred address on an 
interface is one that any node can actively use for communication. A Preferred Lifetime of zero means 
the addresses configured with the prefix must be deprecated. A deprecated address is one that is 
used to maintain existing connections, but it should not be used to initiate new connections if a 
preferred address exists. A lifetime of all ones indicates infinity. You can use a prefix for both on-link 
determination and configuration. The two types of addresses are discussed further in the section 
"Autoconfiguration."

Neighbor Solicitation

Neighbor Solicitation messages are used to obtain the link layer address of a neighbor, as well as to 
provide link layer addresses and to verify the reachability of a neighbor. It is an ICMP packet of type 
135. The source address of the IP packet is the link-local address of the soliciting node. The 
destination is the solicited-node multicast address associated with the target IP address in the case of 
link layer determination, and the unicast address of the target in the case of reachability verification. 
The hop limit is 255. As in the RA, a hop limit of 255 in the received NS ensures that the packet has 
not traversed a router. If the packet had traversed a router, the hop limit would be some value less 
than 255. A field indicating the target address is also included in the NS.

The source link layer address option may be included in the NS. If the NS is attempting to find a 
target link layer address, and the NS is therefore multicast on the link, the source link layer address 
must be included in the packet. This inclusion minimizes the occurrence of address resolution packets 



on the link.

Neighbor Advertisement

A Neighbor Advertisement is sent in response to an NS or is unsolicited to immediately propagate 
new information, such as a change in a node's link layer address. NA is an ICMP packet of type 136. 
The source address is any valid unicast address assigned to the sending interface. For solicited 
advertisements, the destination is the source address of the solicitation, or, if the solicitation's 
address is the unspecified address, it is the all-nodes multicast address. Unsolicited advertisements 
are typically sent to the all-nodes multicast address. The NA contains a Solicited flag (S) bit. It is set 
when the NA is in response to an NS. The hop limit is 255. The target address is the same target 
address from the solicitation. This is the address for which a link layer address is sought. For an 
unsolicited advertisement, this is the IP address whose link layer address has changed. The NA may 
include the target link layer address option. Unsolicited advertisements sent to inform nodes of the 
advertiser's new link layer address include this option with the value of the new link layer address. 
The solicited NA is analogous to the IPv4 ARP reply. The unsolicited NA, however, is an added 
feature. One NA multicast to the all-nodes address, informing other nodes of a link layer address 
change, replaces many ARP requests and replies broadcast on an IPv4 network when ARP caches 
time out and a new link layer address is sought for a well-used device.

Redirect

Routers send Redirect messages to inform a host of a better first hop to the destination. The better 
first hop could be a different router or it could be the destination itself. If the destination is a 
neighbor of the source, even if the source and destination nodes belong to different prefixes, the 
router can redirect the traffic so that they communicate directly (an enhancement of IPv4 ICMP). 
IPv4 ICMP Redirect messages are sent by a router when an alternative router on the same link as the 
source host has a better path to the destination host or network. It does not redirect traffic if the 
better first hop is the destination itself. This feature enables hosts on the same data link but assigned 
different prefixes to communicate directly, without having to hop through a router.

The Redirect message's source address is the link-local address of the router. The destination is the 
source address of the redirected packet. The hop limit is 255.

The target IP address and the destination address also are included in the ICMP packet. If the better 
first hop is a router, the target address is the link-local address of that router. If the better first hop 
is the actual destination, the target address is the IP address of that destination. The ICMP 
destination address is the destination IP address of the traffic being redirected. Note that if the better 
first hop is the destination itself, both these fields will contain the same address.

The Redirect message may contain the target link layer address option. This enables hosts to 
discover the link layer address without relying on address resolution.

Part of the IP packet that caused the Redirect message might be included as an option as well. The 
Redirect message includes as much of the IP packet as possible, without causing the Redirect packet 
to exceed 1280 bytes.

Next-Hop Discovery

A host that has a packet to send must first determine what next hop to use. If a packet was 
previously sent to the destination, the next hop might be stored in a destination cache. If this is the 
first packet to a destination, the next hop is discovered by comparing the destination address with 
the host's on-link prefix list. A packet to an on-link destination is sent directly to that destination 
node. An off-link destination is sent to a default router. An IPv4 node, however, must send all traffic 
destined to a subnet other than its own to a router. If the destination is on the same link as the 
source, but on a different subnet, the router forwards the traffic back onto the link. The traffic 



traverses the link twice.

Whether the next hop is the destination itself or a default router, the link layer address of the next 
hop must be identified.

Address Resolution

Address resolution is performed by nodes looking for a link layer address associated with a known IP 
address. The address resolution process uses Neighbor Solicitation and Neighbor Advertisement. A 
node with packets to send to a destination IP address first checks its neighbor cache to see whether 
an entry already exists. If it does not, the node creates an entry for the IP address, with a state of 
INCOMPLETE. The node then sends a Neighbor Solicitation to the solicited-node multicast address of 
the IP address in question. The source address of the solicitation is a unicast address and is either 
the source address of the node initiating the traffic or the source address of a router searching for the 
destination on a link remote from the source node. The packet also includes the source link-level 
address, if one is available.

A node that receives a Neighbor Solicitation from a unicast address, destined to an address that is 
assigned to its interface, responds with a Neighbor Advertisement indicating its own link-level 
address.

When the soliciting node receives a responding Neighbor Advertisement, it updates its neighbor 
cache entry with the target's link-level address and changes its state from INCOMPLETE to 
REACHABLE.

NOTE

For a complete description of the different possible reactions, see RFC 2461.[3]

Neighbor Unreachability Detection

If a node to which another is communicating fails, it is not very beneficial to detect the failure before 
the upper layers do. If a router in the path to the destination fails, however, there may be an 
alternative router to use, and it would be extremely helpful to be able to detect that failure before the 
upper-layer protocol does.

Neighbor reachability is verified in one of two ways—from hints from the upper-layer protocols or 
from responses to Neighbor Solicitations. Forward-direction communication must be possible for a 
neighbor to be reachable. Reachability is verified if forward progress is being made by an upper-layer 
protocol. If forward progress is being made in a TCP connection, for example, as indicated by new 
acknowledgements being received for data sent or by new data being received in response to a sent 
acknowledgement, reachability is verified. If forward progress is being made end to end, it also is 
being made to the next-hop router, and reachability to the router is confirmed.

Some upper-layer protocols do not provide such hints, such as UDP communications. If no 
verification can be received from upper-layer protocols, the node actively probes neighbors to 
determine their reachability state. A node sends Neighbor Solicitations to the cached link layer 
address of the neighbor in question and waits for Neighbor Advertisements. A node sends a Neighbor 
Advertisement with the solicited bit set only if it received a Neighbor Solicitation. If a node receives a 
Neighbor Advertisement with the solicited bit set, the node can be certain that its neighbor received 
the NS that it sent, and therefore forward-direction communication exists. These probes are sent in 



conjunction with traffic. If no traffic is being sent to a node, no probes are sent to the node.

A neighbor cache stores information about neighbors, including the IP address, link layer address, 
and reachability state. Table 8-9 lists the possible reachability states.

Table 8-9. Neighbor Reachability States

State Description 

INCOMPLETE Address resolution is in progress. An NS has been sent, but no reply 
has yet been received. 

REACHABLE Forward-direction communication has been verified within the past 
30 seconds. 

STALE An entry in the neighbor cache has not been verified as reachable 
within the past 30 seconds. An unsolicited Neighbor Advertisement 
message will add an entry to the cache for the sender of the 
message, with state STALE. No action is required until traffic is sent 
to the STALE entry. 

DELAY No reachable verification has been received within the past 30 
seconds, and a packet has been sent to the specified neighbor 
within the past 5 seconds. If no positive confirmation is received 
within 5 seconds of entering DELAY state, send an NS and change 
the state to PROBE. 

PROBE An NS has been sent to verify reachability. No NA has yet been 
received. 

An entry in the neighbor cache is INCOMPLETE initially. After the link layer address for the entry has 
been learned, and forward-direction communication has been verified, the state changes to 
REACHABLE. The state remains REACHABLE as long as the forward-direction communication 
continues to be verified.

When no reachability confirmation is received from a REACHABLE neighbor, its state changes to 
STALE. An unsolicited RA or NA received from a node puts an INCOMPLETE entry into the neighbor 
cache, which immediately transitions to STALE. An unsolicited advertisement does not provide any 
information about forward communication. The entries remain STALE until traffic is sent to that 
neighbor.

As soon as a packet is sent to the neighbor, its state changes to DELAY, and a timer is set to 5 
seconds in the neighbor cache for the entry. The packet is sent to the cached link layer address, even 
though it is STALE. If the timer expires before any reachability confirmation is received, the state 
changes to PROBE. If reachability is confirmed, the state changes to REACHABLE.

Upon entering PROBE state, an NS is sent to the cached link layer address of the neighbor. 
Solicitations continue to be sent every second in the absence of a response, even if no additional data 
packets are sent. If no response is received for 1 second after three solicitations have been sent, the 
entry should be deleted from the cache.

Example 8-3 shows output from the debug ipv6 icmp and debug ipv6 nd commands and shows a 



router's neighbor cache state going from INCOMPLETE to REACHABLE, through all the intermediate 
states. Example 8-3 also displays the output from the show ipv6 neighbor command, which 
displays the neighbor cache. The output of the show ipv6 neighbor command provides the IPv6 
address, its age, its link layer address (if known), its state, and the interface through which it is 
known.

Example 8-3 debug Output Showing Neighbor Reachability State Changes

Falcon#debug ipv6 icmp

ICMP packet debugging is on

Falcon#debug ipv6 nd

ICMP Neighbor Discovery events debugging is on

10:58:08: ICMPv6-ND: Received RA from FE80::200:CFF:FE76:5B7C on

  Ethernet010:58:08: ICMPv6-ND: INCMP created: FE80::200:CFF:FE76:5B7C

10:58:08: ICMPv6-ND: INCMP -> STALE: FE80::200:CFF:FE76:5B7C

Falcon#show ipv6 nei

IPv6 Address                         Age MAC Address    State Interface

FE80::200:CFF:FE76:5B7C                2 0000.0c76.5b7c STALE Ethernet0

11:01:13: ICMPv6: Received echo request from FE80::200:CFF:FE76:5B7C

11:01:13: ICMPv6: Sending echo reply to FE80::200:CFF:FE76:5B7C

11:01:13: ICMPv6-ND: STALE -> DELAY: FE80::200:CFF:FE76:5B7C

11:01:19: ICMPv6-ND: DELAY -> PROBE: FE80::200:CFF:FE76:5B7C

11:01:19: ICMPv6-ND: Sending NS for FE80::200:CFF:FE76:5B7C on Ethernet0

11:01:19: ICMPv6-ND: Received NA for FE80::200:CFF:FE76:5B7C on Ethernet0

  from FE80::200:CFF:FE76:5B7C

11:01:19: ICMPv6-ND: PROBE -> REACH: FE80::200:CFF:FE76:5B7C

Falcon#show ipv6 nei

IPv6 Address                         Age MAC Address    State Interface

FE80::200:CFF:FE76:5B7C                0 0000.0c76.5b7c REACH Ethernet0

Falcon receives an RA from Eagle's link-local address FE80::200:CFF:FE76:5B7C. An INCOMPLETE 
entry is created in Falcon's cache, which immediately turns STALE, because the RA is unsolicited. At 



this point, the neighbor cache is queried. The entry does indeed say the address is STALE. Eagle's 
link layer address is known.

A couple of minutes later, Eagle pings Falcon, as shown by the received echo request. Falcon replies 
to Eagle, sending the echo response to the stored link layer. Because a packet is forwarded by the 
router to a STALE entry, however, the router must change the state to DELAY to see whether it can 
verify the forward-direction communication path. The router cannot verify this with ICMP packets. So 
it changes the state to PROBE and sends an NS to see whether it can get reachability verification by 
probing Eagle. Eagle sends an NA. The debug does not show that the solicited bit is set in the NA. 
After receiving the NA and verifying communication, Falcon changes the state of Eagle's entry to 
REACH.

The neighbor unreachability detection process enables a host to redirect traffic to an alternative 
router if its default router fails. It detects the failure of the default router and then chooses another 
router to which to forward its traffic. Potentially, this can all occur before the upper-layer protocol or 
application times out. IPv4 hosts might never detect that the default router has failed. An upper-layer 
protocol or application will time out if the router fails. The IPv4 host will likely attempt to use the 
dead router to reestablish a connection. Some IPv4 hosts might know of multiple default routers and 
could choose the second router through which to reestablish the connection.

Default Router Selection

A host chooses one router (out of possibly many) from its default router list when the destination is 
off-link and there is no existing cached entry for the destination or when an existing default router 
appears to be failing. Normally, a default router is chosen the first time traffic to a particular 
destination requires it. The information is cached and used for subsequent traffic.

The default router selection process uses the default router list and the neighbor cache. Any router 
that is not known to be unreachable has preference when becoming the default router—that is, any 
router not in the INCOMPLETE state. If multiple routers are in any state other than INCOMPLETE, the 
router selection process either returns the same router or returns routers from this list in a round-
robin fashion, depending on the implementation.

If a next-hop router appears to be failing, the neighbor unreachability detection process will detect it. 
If it indeed has failed, the router entry is deleted from the neighbor cache. Next-hop detection and 
address resolution are repeated, and an available next-hop router is used.

Case Study: Default Router Failure and Communication Recovery

A host transfers a file from a remote server using FTP. The host sends the traffic to its on-link default 
router. The host continues to receive ACKs for data sent, so the host knows that its default router 
must be reachable. In mid-session, the router fails. The host stops receiving ACKs. The host can no 
longer verify forward-direction communication through hints from the TCP layer, so it changes the 
router's state to STALE. It still attempts to send packets, so the state changes to DELAY. After 5 
seconds, the host still has not received positive confirmation of the router's reachability state, so it 
changes the state to PROBE and sends NS. The router does not respond and therefore gets deleted 
from the host's neighbor cache.

The host still tries to send packets, but it no longer has a next-hop entry to which to send them. So it 
sees, the prefix of the destination is off-link and that retrieves a default router from its stored list. It 
puts the router into its neighbor cache with an INCOMPLETE state, if it does not already exist, and 
attempts to resolve its link layer address by sending an NS. When the new router responds with an 
NA, positive reachability is confirmed, and traffic begins flowing through the new router.

Duplicate Address Detection



All nodes perform duplicate address detection before assigning a unicast address to an interface. It is 
not performed for anycast addresses. This is performed regardless of whether the address is assigned 
via stateless, stateful, or manual configuration. It is performed before assigning an address to an 
interface and on an initializing interface. The address to be assigned to the interface is called 
"tentative" while the duplicate address detection process is taking place.

Before sending a solicitation, the interface joins the all-nodes multicast group to ensure that the node 
receives Neighbor Advertisements from any node already using the address and joins the solicited-
node multicast group for the tentative address to ensure that if another node is attempting to begin 
using the address, both nodes will learn of each other's presence.

The node sends a Neighbor Solicitation message, with the tentative IP address as the target. The 
source address is the unspecified address, and the destination is the tentative address's solicited-
node multicast address. By default, one solicitation is sent.

Any neighbor that is already assigned the address receives the solicitation and sends a Neighbor 
Advertisement in reply. The target specified in the advertisement is the tentative address. The 
destination address is the solicited-node address of the tentative address. If a node receives this 
Neighbor Advertisement, and the target address is the interface's tentative address, the address is a 
duplicate and must not be assigned to the interface. Some IPv4 hosts perform a duplicate address 
detection process before assigning an IP address to an interface. Not all do, however, allowing an 
interface with a duplicate address to potentially disrupt existing traffic flows.

Autoconfiguration

Because network manageability is so crucial to the success of any network, processes to facilitate it 
need to be built in to the protocol. Networks with hosts that have static configurations, manually 
entered, are difficult to manage when changes are necessary.Many tools ease the management 
burden of IPv4 networks, such as DHCP to minimize the amount of static configuration, but they are 
not required elements to the protocol. IPv6 nodes can automatically configure themselves, with or 
without the help of a DHCP server, making host configuration changes much easier.

Router Advertisements are used to tell hosts how to configure themselves. The RA contains two bits 
that tell the hosts whether to use a configuration server and, if so, whether information other than 
addresses should be obtained from the server. The Managed Address Configuration (M) bit, if set, 
tells hosts to use a stateful address configuration protocol to configure its address, such as DHCP. 
Stateless autoconfiguration of addresses also occurs on the host. The Other Stateful Configuration 
(O) bit tells the host to use the stateful configuration protocol to configure information other than the 
address. IPv4 hosts, on the other hand, are statically configured to use DHCP with a specific DHCP 
server if the IP address and other configuration are to be obtained dynamically. Otherwise, the 
configuration is all entered manually.

Stateless Autoconfiguration

Through a combination of what a node knows (its interface identifier) and what a router knows (the 
prefixes assigned to a link), a node can configure its own IP address. No server is needed to establish 
basic IP connectivity. This works on any multicast-capable interface.

Upon interface initialization, a node generates a link-local address for that interface. The link-local 
address is the interface's identifier concatenated with the well-known link-local prefix FE80::. The 
rightmost zeros of the link-local prefix are replaced with the interface ID, forming a 128-bit address. 
Note that interface IDs are typically 64 bits, but not always.

Link-local prefix FE80:0:0:0:0:0:0:0 and interface ID 200:CFF:FE0A.2C51 form link-local address 
FE80:0:0:0: 200:CFF:FE0A.2C51.



If the interface ID is more than 118 bits long, it cannot be concatenated with the link-local FP, which 
is 10 bits long. The autoconfiguration will fail, and the interface will have to be configured manually.

The node does not immediately assign the generated link-local address to the interface. First, it must 
determine whether a duplicate address exists. The node initiates the duplicate address detection 
process.

A node that learns that its generated address is not unique must be configured manually. One way to 
configure the node is to configure an alternate interface ID. This way, the node can still participate in 
the stateless autoconfiguration process and automatically configure each of its required addresses 
plus any assigned unicast and multicast addresses. The alternative to configuring an interface ID is to 
manually configure IPv6 addresses on the interface. Such a configuration could be a large 
administrative task, given the number of addresses that must be configured on the interface.

When the node is satisfied that no duplicate address exists, it assigns the address to the interface.

At this point, basic IP level connectivity exists. IPv6 hosts on a link with no router can now 
communicate with each other. No manual network layer configuration is required in the hosts to 
enable this communication.

Example 8-4 shows the minimal basic configurations for both Falcon and Eagle.

Example 8-4 Minimal Basic Configurations for Falcon and Eagle to Enable 
IPv6 Communication

Falcon

ipv6 unicast-routing

!

interface Ethernet0

 ipv6 enable 

_______________________________________________________________________

Eagle

ipv6 unicast-routing

!

interface Ethernet0 

 ipv6 enable 

Pinging Falcon's link-local address from Eagle shows that communication exists, as demonstrated by 
the output in Example 8-5.

Example 8-5 Verifying Communication Between Falcon and Eagle from 
Falcon's Link-Local Address

Eagle#ping ipv6 fe80::200:cff:fe0a:2c51 



Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to FE80::200:CFF:FE0A:2C51, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 60/68/80 ms

Both routers and hosts perform all the steps of the stateless autoconfiguration process discussed so 
far, to enable the basic IP connectivity. Every interface must create a link-local address. Duplicate 
address detection is performed for all unicast addresses prior to assigning them to an interface, 
regardless of whether the IPv6 address is configured via stateless autoconfiguration, stateful 
autoconfiguration, or manually, except as discussed in the following paragraph.

Hosts, not routers, continue the autoconfiguration process. The host sends an "all-routers" multicast 
solicitation to find a router on the link. All routers respond with Router Advertisements. The RA may 
tell the host to use stateful autoconfiguration to configure addresses and other information. The host 
uses the prefix information marked for address configuration to create a site-local address. To create 
a site-local address, the site-local FP, the prefix, and the interface ID are concatenated. A host is not 
required to perform the duplicate address detection process when assigning its site-local address. 
The theory is that the process just verified that the link-local address is unique. This means that the 
interface identifier is unique to the link. Because the site-local address assigns a different prefix to 
the same interface identifier, the site-local address is also unique. Globally aggregatable addresses 
are generated and assigned using the same method.

The RA also provides on-link prefix information. This information is a list of prefixes and prefix 
lengths, marked as on-link prefixes, that the host uses to build its prefix list. The prefix list is used by 
the host to determine whether a destination node is on-link or off, and therefore whether it needs to 
use a default router to send the traffic.

A host can configure its MTU size based on information contained in the RA also.

Stateful autoconfiguration is required to configure other information, such as the DNS server.

Use the following interface subcommands to configure a router to advertise a prefix with specific 
values, to set the managed configuration flag, and to set the other configuration flag:

ipv6 nd prefix-advertisement 2001:ABAB::/48 3000 3000 onlink autoconfig

ipv6 nd managed-config-flag

ipv6 nd other-config-flag

The prefix 2001:ABAB::/48 is advertised with a Valid Lifetime of 3000 seconds and a Preferred 
Lifetime of 3000 seconds, to be used as both an on-link advertisement and autoconfiguration.

The autoconfiguration process occurs on each interface of a node whenever the interface becomes 
enabled. A multihomed node performs autoconfiguration on each interface independently. An 
interface is enabled upon the following:

●     Initialization of the interface at system startup
●     The interface is re-enabled after an interface failure or after being temporarily disabled by a 

system administrator
●     The interface attaches to a link for the first time
●     The interface becomes enabled after being administratively down



Stateful Autoconfiguration

Stateful autoconfiguration may be used in conjunction with stateless autoconfiguration. DHCP 
provides stateful autoconfiguration for IPv4. A modified DHCP for IPv6 implementation could take 
advantage of a number of IPv6 features, enhancing the capabilities of DHCP.

NOTE

The Dynamic Host Configuration working group has published a draft for DHCP for 
IPv6 titled "draft-ietf-dhc-dhcpv6-15.txt."

A configuration server allocates addresses and other information, such as DNS server address, to 
requesting hosts. The addresses are associated with a Valid and Preferred Lifetime, just as are the 
prefixes used for stateless autoconfiguration. A server with the capability to request that all hosts 
revalidate their assigned addresses can use the lifetime values to renumber networks.

Renumbering

Site renumbering will still occur, even with the abundance of IP addresses. Address prefixes are 
strictly maintained, and an address assigned to a site might need to be recalled occasionally. Or the 
site might want to change ISPs, which would require a prefix change, just as it does today with IPv4 
if a company changes ISPs. IPv6 was not designed to eliminate this phenomenon, but it is designed 
to make renumbering easier.

An address is in one of two states: preferred or deprecated. A host should always attempt to 
communicate using a preferred address. A deprecated address should be used only as the source 
address if using a preferred address will cause an existing connection to be disrupted. If two hosts 
have a TCP connection established using preferred addresses, for example, and one host's address 
changes to deprecated, if the host switches to a new preferred address, the connection will fail.

Host renumbering is simplified by the use of preferred and deprecated addresses. The time that an 
address remains preferred is set and modified in Router Advertisements, which are periodically sent 
on the link and are processed by every node on the link. New prefixes can be added to the Router 
Advertisements, thus adding new addresses to the interfaces, and old ones can be deprecated and 
removed. A similar mechanism can be used to renumber hosts using a configuration server. The 
server may multicast a request to all nodes, asking them to reconfirm their assigned addresses. The 
hosts will query the configuration server and obtain addresses with modified lifetime values, 
deprecating existing addresses or assigning new preferred addresses. The robustness of this 
renumbering mechanism depends on the Router Advertisements and stateful messages reaching all 
hosts on a link. Consider the following case study taken from RFC 2641.

Case Study: Renumbering a Network

A prefix is advertised with a lifetime of two months. On August 1, it is determined that the prefix 
must be changed and not used by September 1. The prefix advertisement can be changed so that its 
lifetime is two weeks, and then made smaller as the date approaches September 1, until the prefix is 
eventually advertised with a lifetime of zero, thereby invalidating the address. Consider, however, 
that a host is disconnected from the network on July 31. If it is plugged in again after September 1, it 
still thinks the old prefix is valid until September 30. The only way to force a host to discontinue 
using a prefix that was previously advertised with a long lifetime is to send an RA with a shorter 



lifetime. The routers must continue to send the RA with the lifetime value of zero until October 1 to 
ensure that any host that is disconnected before the change and reconnected before its two-month 
lifetime expiration does not use the invalid prefix.

In general, a router should continue to advertise a zero lifetime until such a time as any host that 
was disconnected, when reconnected, will not use an old prefix. Note that infinite lifetimes advertised 
by routers cause a problem when trying to renumber links and when hosts are connected and 
disconnected frequently.

Renumbering routers takes a lot of planning if communication is to be maintained. Routers 
communicate together, and hosts communicate with routers via the router's link-local address. This 
communication is independent of any assigned prefix. The nodes will therefore continue to 
communicate with the routers' link-local addresses, regardless of what global address is assigned to 
the link.

DNS implications are the same for IPv6 as they are for renumbering under IPv4. Either the new 
addresses need to be manually entered into the DNS databases prior to the new addresses being 
usable, or dynamically updated DNS servers (DDNS) should be implemented.

Routing

The preceding section discussed how an IPv6 node discovers the information required to forward a 
packet to neighbors and to next-hop routers if the destination is not on-link. Now routing issues are 
discussed to show different ways the IPv6 packet can be routed through a larger network.

MTU Path Discovery

The MTU is required to be at least 1280 bytes long on every link in an IPv6 network. However, the 
recommended size is 1500 bytes or larger. Any link that cannot handle a packet this large is required 
to provide link-level fragmentation. IP-level fragmentation is performed only by the source node, not 
by routers along the packet's path. Nodes are not required to implement MTU path discovery, but it is 
recommended. A node not implementing MTU path discovery uses an MTU equal to the minimum 
IPv6 MTU, 1280 bytes. A source node that implements MTU path discovery can take advantage of the 
largest possible packet, and possibly gain higher performance. Path discovery works for both unicast 
and multicast destinations.

MTU path discovery utilizes ICMP Packet Too Big error messages. A node sending traffic initially 
assumes the path MTU (PMTU) is equal to the MTU of its attached link. Any node along the delivery 
path that detects that it cannot deliver the packet over a link with a smaller MTU sends a Packet Too 
Big ICMP error message, which includes the size of its link MTU, and drops the big packet. The source 
node receives the ICMP error and reduces the size of the packets it is sending to the MTU value 
included in the error message. The process is likely to be repeated with nodes further down the 
delivery path. Figure 8-14 demonstrates the PMTU discovery.

Figure 8-14. PMTU Discovery Process



The Token Ring-connected PC begins by sending a packet of size 4500 B. The packet reaches a 
router with an MTU of 1500 B on the link to the delivery path. The router sends an ICMP Packet Too 
Big message back to the host, includes its MTU of 1500 B, and drops the original packet. The PC 
creates a smaller packet, of size 1500 B. The first router passes it on. The next router's link to the 
delivery path has an MTU of 1280 B. It sends an ICMP Packet Too Big message back to the host and 
drops the packet. The PC then sends a packet of size 1280 B, which is forwarded through both 
routers.

MTU path discovery works with multicast destination addresses as well as unicast. A multicast packet 
branches off into many paths. Any node along any path may send the Packet Too Big message. The 
minimum value of the set of PMTUs determines the size of the packets sent.

RIPng

RIPng (ng stands for "next generation") is based on RIP version 2 (RIP-2). None of the operational 
procedures, timers, or stability functions have been changed. RIPng is RIP-2, modified to support the 
larger IP addresses and multiple addresses on each interface of IPv6. The UDP port number for RIPng 
is 521. RIPng does not support both IPv4 and IPv6 and is therefore not backward-compatible with 
RIP-2.

NOTE

Chapter 7, "Routing Information Protocol Version 2," of Routing TCP/IP, Volume I, 
discusses RIP version 2.

Figure 8-15 shows the RIPng message format. The basic structure is very similar to RIP-2.

Figure 8-15. RIPng Message Format



The RIPng message fields are defined as follows (with lengths shown in bytes):

●     Command is set to either 1, signifying a request, or 2, signifying a response.
●     Version is currently 1.

The rest of the message contains the list of route table entries (RTEs). Figure 8-16 shows the format 
of the RTEs.

Figure 8-16. RIPng Route Table Entry Format

The fields in the RTE format are defined as follows:

●     IPv6 Prefix is the 128-bit IPv6 address prefix.
●     Route Tag is identical to RIP-2, which provides a field for tagging external routes or routes 

that have been redistributed into the RIPng process.
●     Prefix Length specifies the significant part of the address prefix.
●     Metric is the same as in RIP-2, a hop count value between 1 and 15, inclusive.

The number of routes that a RIPng update can contain depends on the link MTU, the number of 
octets of header information preceding the RIPng message, the size of the RIPng header, and the 
size of a route table entry (RTE). The formula for determining the number of RTEs in a single update 
is as follows:



The number of RTEs directly relates to the link MTU and the length of the IP headers, UDP header, 
and RIPng header.

Each RIP-2 RTE contains a Next-Hop field associated with it, specifying a better next-hop address 
than the address of the advertising router. IPv6 addresses are so large that this would almost double 
the size of the RTE. RIPng specifies a single next-hop RTE that applies to all the following RTEs until 
the end of the message or until the existence of another next-hop RTE. The next-hop RTE in Figure 8-
17 shows that the Route-Tag field and prefix field must contain all zeros. The metric value will be 
0xFF. A value of 0:0:0:0:0:0:0:0 in the Address field indicates the next-hop is the originator of the 
RIPng advertisement.

Figure 8-17. Next-Hop RTE

The next-hop address must be the link-local address of the next-hop router. If the address is not a 
link-local address, the receiver of the advertisement treats the packet as if the address prefix value is 
0:0:0:0:0:0:0:0.

Periodic and triggered RIPng responses must remain local to a link—they must not traverse a router. 
Both periodic updates and triggered updates must have the router's link-local address as the source 
of the advertisement and the IPv6 hop limit equal to 255. The hop limit of 255 ensures that the 
advertisement has not traversed a router, because a router decrements the hop limit of every packet. 
The destination multicast address is the all-rip-routers multicast address FF02::9.

The Cisco router is capable of running multiple RIPng processes. The routing process is enabled as an 
interface subcommand:

ipv6 rip tag enable 

The command must be enabled on any interface addressed with a prefix that needs to be advertised 
in the RIPng update. Multiple processes are distinguished by the tag. Currently, up to four processes 
are supported. Each process must use a unique UDP port number. A single process can use the 
default value, 521. The port number must be modified for subsequent processes; otherwise, the new 
process will not start up. The global command to modify the UDP port number and the multicast 
address used by RIPng is as follows:

ipv6 rip tag port udp-port multicast-group multicast-address

More than one process can use the same multicast address. If this command is not given, the default 
port number, 521, and the default multicast address, FF02::9, are used.



Unlike RIP-2, for which the global command router rip is required to enable the routing protocol, no 
global commands are required to enable RIPng.

Optional global commands control the entire RIPng process, affecting all configured interfaces. Global 
commands are available to disable or enable split-horizon and poison reverse, modify UDP port 
numbers and RIPng multicast addresses, change default timers, change the administrative distance, 
and redistribute static routes. Most of these functions are also available with RIP-2.

Table 8-10 lists the available global commands.

Table 8-10. RIPng Global Commands

Command Description 

[no] ipv6 rip tag port udp-port 
multicast-group multicast-address 

Configures the RIP routing process to use 
the specified UDP port and multicast 
address. 

[no] ipv6 rip tag table table-number Assigns the specified routing table to the 
RIP process. Default is table 0. Note that 
only table0 will be used for IPv6 unicast 
packet forwarding. 

[no] ipv6 rip tag distance distance-
value 

Sets the administrative distance for this 
process. Default is 120. 

[no] ipv6 rip tag timers update 
expire holddown garbage-collect 

Modifies the RIPng timers for this process. 
The values indicate seconds. Default 
values are 30 180 180 120. 

[no] ipv6 rip tag redistribute static Advertises static routes into IPv6 as if 
they were directly connected. 

[no] ipv6 rip tag split-horizon Performs split-horizon processing of 
updates. This is on by default. 

[no] ipv6 rip tag poison-reverse Performs poison-reverse processing of 
updates. This is off by default. 

Additional RIPng interface subcommands are also available. There are interface subcommands to 
initiate the advertisement of default routes on updates out the specific interface, to summarize routes 
advertised out the interface, to apply input and output filters to updates received or sent from the 
interface, and to change the metric-offset for routes received on the interface. All these functions are 
available with RIP-2. Table 8-11 lists the interface subcommands.

Table 8-11. RIPng Interface Subcommands

Command Description 



[no] ipv6 rip tag enable Configures RIPng routing on an 
interface. 

[no] ipv6 rip tag default-information 
originate 

Originates the default route (0::0/0) 
and includes it in updates sent from this 
interface. 

[no] ipv6 rip tag default-information 
only 

Originates the default route (0::0/0). 
Suppresses sending any routes except 
the default route on this interface. 

[no] ipv6 rip tag summary-address 
prefix/length 

Summarizes routing information. If the 
first length bits of a route match the 
given prefix, the prefix will be 
advertised instead. Multiple routes are 
thus replaced by a single route whose 
metric is the lowest metric of the 
multiple routes. You may use this 
command multiple times. 

[no] ipv6 rip tag input-filter name Applies a simple access list to RIP 
routing updates received on the 
interface. 

[no] ipv6 rip tag output-filter name Applies a simple access list to RIP 
routing updates generated on the 
interface. 

[no] ipv6 rip tag metric-offset number Changes the metric-offset of a route 
entering the routing table. Default is 1. 
Value may be between 1 and 16. 

A simple network diagram along with the routers' configurations helps illustrate the minimal router 
configurations needed to run RIPng (see Figure 8-18).

Figure 8-18. Simple RIPng Network

RIPng is configured on both routers, on the Ethernet link and the serial link. Example 8-6 shows the 
router configurations.



Example 8-6 Configuring RIPng on Routers Falcon and Eagle

Falcon

ipv6 unicast-routing

no ipv6 rip birdbath split-horizon

!

!

interface Ethernet0

 no ip address

 no ip directed-broadcast

 ipv6 enable

 ipv6 address FEC0::/64 eui-64

 ipv6 address FEC0::1:0:0:0:0/64 eui-64

 ipv6 address FEC0::2:0:0:0:0/64 eui-64

 ipv6 rip birdbath enable 

!

_______________________________________________________________________

Eagle

ipv6 unicast-routing

no ipv6 rip birdbath split-horizon

!

!

interface Ethernet0 

 no ip address

 no ip directed-broadcast

 ipv6 address FEC0::/64 eui-64

 ipv6 address FEC0::2:0:0:0:0/64 eui-64

 ipv6 address FEC0::3:0:0:0:0/64 eui-64

 ipv6 rip birdbath enable

!

interface Serial1 

 ipv6 address FEC0::A:0:0:0:1/126 

 ipv6 rip birdbath enable 



!

The two routers share two common prefixes: FEC0::/64 and FEC0::2:0:0:0:0/64. Each also is 
configured with a third prefix. To enable the routers to advertise their noncommon prefix to each 
other, split-horizon has been disabled. RIPng is enabled on the Ethernet ports and on Eagle's serial1. 
The process name is birdbath.

Example 8-7 shows Falcon's routing table.

Example 8-7 IPv6 Routing Table Showing RIPng-Learned Routes

Falcon#show ipv6 route 

IPv6 Routing Table - 9 entries

Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP

Timers: Uptime/Expires

L FE80::/64 [0/0]

  via ::, Null0, 01:37:41/never

L FEC0::200:CFF:FE0A:2C51/128 [0/0]

  via FEC0::200:CFF:FE0A:2C51, Ethernet0, 01:20:58/never

C FEC0::/64 [0/0]

  via FEC0::200:CFF:FE0A:2C51, Ethernet0, 01:20:58/never

L FEC0::1:200:CFF:FE0A:2C51/128 [0/0]

  via FEC0::1:200:CFF:FE0A:2C51, Ethernet0, 01:01:36/never

C FEC0::1:0:0:0:0/64 [0/0]

  via FEC0::1:200:CFF:FE0A:2C51, Ethernet0, 01:01:36/never

L FEC0::2:200:CFF:FE0A:2C51/128 [0/0]

  via FEC0::2:200:CFF:FE0A:2C51, Ethernet0, 01:00:21/never

C FEC0::2:0:0:0:0/64 [0/0]

  via FEC0::2:200:CFF:FE0A:2C51, Ethernet0, 01:00:21/never

R FEC0::3:0:0:0:0/64 [120/2]

  via FE80::200:CFF:FE76:5B7C, Ethernet0, 00:00:08/00:02:51

R FEC0::A:0:0:0:0/126 [120/2]

  via FE80::200:CFF:FE76:5B7C, Ethernet0, 00:00:08/00:02:51

The routing table in Example 8-7 shows that the prefixes configured on Falcon's Ethernet port are 
connected. Eagle's Ethernet prefix FEC0::3:0:0:0:0/64 and serial prefix FEC0::A:0:0:0:0/126 are 
learned via the RIPng process.



RIPng is still a very easy protocol to implement, and the introduction of multiple processes adds a 
little more flexibility over RIP-2; however, the drawbacks still exist, as detailed in Chapter 7 of 
Volume I. For instance, it still has a small maximum hop count, limiting the size of network that can 
run the protocol.

OSPF for IPv6

OSPFv2 features many modifications designed to support the larger IPv6 address and changes in 
protocol semantics between IPv4 and IPv6. Cisco IOS does not yet support OSPF for IPv6. The 
fundamental mechanisms—flooding, DR election, area support, SPF, and so on—have remained 
unchanged. IPv6 OSPF operates directly over IPv6. The preceding header's next-header value is 89. 
The following functions have not changed in OSPF for IPv6:

●     Both versions of the protocol support the same packet types—namely, Hellos, Database 
Description, Link-State Request, Link-State Update, and Link-State Acknowledgement 
packets, although some, such as the Hello packet, have been modified.

●     Hello packets are exchanged to discover neighbor information.
●     Adjacency selection and establishment.
●     The interface state machine, including the states that interfaces traverse as well as 

designated router election process.
●     The neighbor state machine, including the states that neighbors traverse before becoming 

adjacent.
●     Link state database aging.

NOTE

Chapter 9, "Open Shortest Path First," of Routing TCP/IP, Volume I, discusses OSPF 
version 2.

Some mechanisms have changed. The changes result from the desire to make OSPF network-
protocol-independent (and therefore more extensible), the new address format, explicitly specified 
flooding scope, and interface support of multiple addresses and prefixes. The OSPF protocol has 
become network-protocol-independent. The version number has changed from 2 to 3, and so the 
protocol is referred to in the remainder of this chapter as OSPFv3. This section addresses the 
changes made to the protocol.

Links Rather Than Subnets

IPv6 nodes communicate over links, not subnets. They can have multiple addresses and prefixes 
configured on interfaces connected to the link and can communicate with other nodes on the link, 
independent of the subnet being used. OSPFv3 focuses on links rather than subnets as OSPFv2 does. 
A router interface sending an OSPF packet no longer needs to reside on the same subnet as the 
router interface receiving the packet, because IPv6 OSPF runs per link rather than per subnet.

Addressing Semantics Removed

Addressing semantics have been removed from OSPFv2 packets and LSAs, thus creating a network-
protocol-independent core within OSPFv3. This leads the way for a future multiprotocol OSPF. Many 
OSPFv2 packets and LSAs contain IPv4 addresses, representing router IDs, area IDs, or LSA link 
state IDs. OSPFv3 router IDs, area IDs, and LSA link state IDs are still expressed using 32 bits, so 
they cannot be represented by an IP address (although they can be represented by a portion of the 



address). OSPFv2 broadcast and NBMA networks list neighbors by IP address. OSPFv3 neighbors are 
known solely by their router IDs. Other OSPFv2 LSAs, such as Router-LSAs and Network-LSAs, 
contain IP addresses; the IP addresses are used to represent the network topology in the link state 
database. OSPFv3 Router-LSAs and Network-LSAs express topological information only; they 
describe the network topology in a network-protocol-independent manner. Instead of using IP 
addresses to identify links, IPv6 uses interface IDs. Every interface on a router is assigned a unique 
interface ID. Some implementations may use the MIB-II ifIndex. The MIB-II ifIndex is discussed in 
RFC 2233, "The Interfaces Group MIB using SMIv2." Neighbors and designated routers are identified 
by router IDs, which are no longer IP addresses. IPv6 addresses are contained only in the LSA 
payloads carried by Link-State Update packets.

LSA Flooding Scope and Unknown LSA Types

The flooding scope of LSA packets has been generalized. The LSA type determines the scope of 
OSPFv2 flooding. Each type is associated with its flooding scope. In OSPFv3, the flooding scope is 
explicitly configured in the LSA header. An OSPFv3 router that does not recognize the LSA type still 
knows how to flood the packet. The scope could be local-link, Area, or AS. OSPFv3 allows routers to 
have differing capabilities. Routers are no longer required to drop received LSAs with unknown types. 
Flooding scope, handling of unknown types, and LSA type are encoded in an expanded LSA Type field 
in the header. The upper 3 bits encode the flooding scope and the handling of unknown types. The 
handling bit informs the router to either flood the unknown LSA with link-local scope or to store and 
flood the LSA as if it were known. The router can do the latter because of the encoded flooding 
scope. Tables 8-12 and 8-13 display the flooding scope values and the values associated with the 
handling of unknown LSAs.

Table 8-12. Flooding Scope Values and Descriptions

Flooding Scope Value (Binary) Description 

00 Link-local scoping. Flooded only on the link it is 
originated on. 

01 Area scoping. Flood to all routers in the 
originating area. 

10 AS scoping. Flood to all routers in the AS. 

11 Reserved. 

Table 8-13. Values Indicating the Handling of Unknown LSA Types

Handling of Unknown LSA Value 
(binary) Description 

0 Treat the LSA as if it has link-local flooding 
scope. 

1 Store and flood the LSA as if the type is 
understood. 

Explicitly coded flooding scope facilitates the integration new OSPF features into an existing network.



Multiple OSPF Instances per Link

Multiple OSPFv3 protocol processes can run on a single link. This proves useful when multiple areas 
need to share a single link (see Figure 8-19). The instance ID in OSPFv3 packet headers enables this 
functionality.

Figure 8-19. Two Routers Share a Link, and Two Areas Need to Run on the 
Single Link; Multiple OSPF Protocol Processes per Link Enables This

In Figure 8-19, Area 1 has four routers and Area 2 has four routers. The two remote routers in Area 
1 have primary links to Router A, with backup links to Router B. The two remote routers in Area 2 
have just the opposite—primary links to Router B and backup links to Router A. Both Area 1 and Area 
2 must run between Routers A and B over a single Ethernet link. You can accomplish this with 
OSPFv3, but not with OSPFv2.

Another case is when multiple companies or independent subsidiaries of a company running OSPF 
share a single link and use the link to communicate with each other. The link may belong to one of 
the companies, which uses it to connect to all independent organizations. A subset of the companies 
may want to peer, excluding the other companies. A more common practice is to use BGP to 
interconnect the independent organizations. However, an organization with OSPF expertise and no 
BGP expertise may dictate that the interconnecting protocol be OSPF. Figure 8-20 illustrates this 
scenario.

Figure 8-20. OSPF Routers Share a Common Link; a Subset of the Routers 
Shares an OSPF Process



If Figure 8-20, routers Poodle and Lab peer and share a common OSPFv3 process. Routers Lab, 
Terrier, and Collie also peer, sharing a different OSPFv3 process. Lab's link is configured with both 
OSPFv3 process identifiers.

OSPF's Use of Link-Local Addresses

Because link-local addresses are configured on every active IPv6 router link, OSPFv3 uses these link-
local addresses as the source address of protocol packets and as contents of the Link-LSA (described 
in the section "New LSAs and LSA Changes"). Link-local addresses, by definition, all share the same 
IPv6 prefix (FE80::/64). OSPFv3 nodes can therefore easily communicate and form adjacencies 
regardless of the prefix assigned for their site-local or global aggregatable addresses. Link-local 
addresses are used within LSAs to identify links on a router without associating the link with a 
particular IP address, keeping the topology information independent of the network protocol in use.

Removal of Authentication

Authentication has been removed from OSPF for IPv6. IPv6 has integrity, authenticity, and 
confidentiality mechanisms built in to the network layer of the protocol. OSPFv3 operates directly on 
top of this layer. OSPFv3 improved its efficiency by removing the authentication information from its 
headers. Networks that do not require routing security no longer have to process the headers. 
Networks that do require routing security can use the Authentication and Security Encrypting Payload 
extension headers at the IP layer.

New LSAs and LSA Changes

Although most of the functionality has remained unchanged, some OSPFv2 LSA fields have been 
modified, and LSAs have been renamed in OSPFv3. New LSAs have been added to OSPF to carry IPv6 
addresses and next-hop information.

The OSPFv2 LSA header contained these fields: Age, Options, Type, Link State ID, Advertising 
Router, Sequence Number, Checksum, and Length. The OSPFv3 LSA removed the Options field from 
the header, expanded it from 8 to 24 bits, and moved it to the body of Router-LSAs, Network-LSAs, 
Inter-Area-Router-LSAs, and Link-LSAs. The Type field expanded to 16 bits, using the space 
originally occupied by the Options field. The rest of the header remains unchanged.

The LSA Type field is composed of unknown type handling, flooding scope, and LSA type bits. Figure 
8-21 displays the LSA Type field.

Figure 8-21. The OSPFv3 LSA Type Field



The U bit specifies the handling of unknown LSA types. S2 and S1 indicate the flooding scope.

Handling of unknown LSA types has changed. IPv4 OSPF discarded LSAs of unknown type. This 
discarding is undesirable in OSPFv3 because of the desire to mix routers of varying capabilities on a 
single link. If the designated router supports fewer options than other routers on the link, full 
functionality will not be available.

Table 8-14 lists the link type values for each LSA.

Table 8-14. Link Type Values for Each OSPFv3 LSA

LSA Function Code Value LSA Type 

1 0x2001 Router-LSA 

2 0x2002 Network-LSA 

3 0x2003 Inter-Area-Prefix-LSA 

4 0x2004 Inter-Area-Router-LSA 

5 0x4005 AS-External-LSA 

6 0x2006 Group-Membership-LSA 

7 0x2007 Type-7-LSA 

8 0x0008 Link-LSA 

9 0x2009 Intra-Area-Prefix-LSA 

From Table 8-14, you can see that the two OSPFv2 summary LSAs have been renamed, and there 
are two additional LSAs: Link-LSA and Intra-Area-Prefix-LSA. You also can see the flooding scope and 
handling of each type. All the listed types have a U bit set to 0, which indicates that if the type is 
unknown to any receiving router, it should treat the LSA as if it has link-local flooding scope. If the 
router does recognize the type, it floods the LSA according to the S2 and S1 bits. A Router-LSA type 
0x2001, for instance, has S2S1 value 01 (binary). The LSA gets flooded to all routers within the area. 
The AS-External-LSA has a value of 10 (binary) and gets flooded to all routers in the AS.

The type-3 Network Summary-LSAs of OSPFv2 have been renamed Inter-Area-Prefix-LSAs. 
Remember that these LSAs are used by an Area Border Router to advertise networks external to an 
area.

Type-4 ASBR Summary-LSAs have been renamed Inter-Area-Router-LSAs. These LSAs are advertised 
by the AS boundary router and advertise ASBRs external to an area.

The LSA Options field expanded from 8 to 24 bits in OSPFv3. The field is present in Hello packets, 



database description packets, and certain LSAs (Router-LSAs, Network-LSAs, Inter-Area-Router-
LSAs, Link-LSAs). The Options field enables routers to inform each other of their supported (or not 
supported) optional capabilities, allowing routers of mixed capabilities to exist within an OSPF routing 
domain. The action taken when routers do not support the same capabilities depends on the option.

The following 6 bits of the Options field have been defined:

●     V6— If the bit is clear, the router participates in topology distribution but is not used to 
forward transit IPv6 packets.

●     E— As in OSPFv2, E is set when the originating router is capable of accepting AS External 
LSA. E = 0 in all LSAs originated within a stub area. The bit also is used in Hello packets, 
indicating the interface's capability to send and receive AS External LSAs. Neighboring routers 
with mismatched E bits do not become adjacent, ensuring that all routers in an area support 
stub capabilities equally.

●     MC— The bit is set when the originating router is capable of forwarding IP multicast packets. 
MOSPF uses this bit.

●     N— Used only in Hello packets. A set N bit indicates the originating router's support for NSSA 
External LSAs. If N = 0, the originating router does not send or accept these NSSA External 
LSAs. Neighboring routers with mismatched N bits do not become adjacent, ensuring that all 
routers in an area support NSSA capabilities equally. If N = 1, E must be 0.

●     R— A set Router bit indicates that the router is active. If the R bit is clear, an OSPF speaker 
can participate in topology distribution without being used to forward transit traffic. This 
could be used by a multihomed node that wants to participate in routing but does not want to 
act as a router, forwarding packets between its interfaces. The V6 bit specializes the R bit. If 
the R bit is set, but the V6 bit is clear, the node does not forward IPv6 datagrams, but it does 
forward datagrams belonging to another protocol.

●     DC— This bit is set when the originating router is capable of supporting OSPF over demand 
circuits.

Comparing these bits to the 6 defined bits in the OSPFv2 Options field (T, E, MC, N/P, EA, DC), you 
can see that there have been some changes. Type of service (ToS) is not supported in OSPFv3, so 
the T bit has been replaced. The N bit is still used only in Hello packets. The P bit is part of another 
set of options in OSPFv3, the prefix options associated with each advertised prefix. The OSPFv2 EA 
bit indicates the support of External Attribute LSAs. External Attribute LSAs are proposed as an 
alternative to running Internal BGP (iBGP) to transport BGP information across an OSPF domain. 
External Attribute LSAs have not been implemented, nor have any drafts or RFCs been published. 
Even without the options bit to define the EA capability, however, External Attribute LSAs could still 
be supported by OSPFv3, as an additional LSA type, with specified flooding scope and unknown LSA 
type handling.

The new Link-LSA is used to exchange IPv6 prefix and address information between routers on a 
single link. It is also used by a router to advertise a set of options to associate with the Network-LSA 
that will be originated for the link. The Link-LSA provides the router's link-local address and the list of 
prefixes to associate with the link. The LSA is multicast to all routers on a link. The options that are 
advertised by the Network-LSA are the logical OR of the options sent by all routers in the Link-LSA.

There is another new LSA, called the Intra-Area-Prefix-LSA. This LSA carries IPv6 prefix information 
that in OSPFv2 was carried in Router-LSAs and Network-LSAs. It is used by a router to advertise 
address prefixes assigned to the router itself, such as attached stub networks and attached transit 
networks.

The OSPFv3 LSAs that contain prefix information always carry the prefix length, prefix options, and 
prefix address. The Prefix Options field is an 8-bit field describing capabilities associated with the 
prefix. The following four options are defined:

●     NU— A set "no-unicast" bit excludes the prefix from unicast routing calculations.
●     LA— The set "local-address" bit indicates that the prefix is actually an IPv6 address of the 

advertising router.
●     MC— A set "multicast-capable" bit indicates that the prefix should be included in multicast 



routing calculations.
●     P— The "propagate" bit is set on NSSA prefixes that should be re-advertised at the NSSA 

area border.

Each prefix is advertised with the 8-bit Prefix Options field that serves as input to the various routing 
calculations. The options could indicate that certain prefixes should be excluded or that others should 
not be propagated.

BGP-4 Multiprotocol Extensions

Additions made to BGP-4 are not specific to IPv6. They also include support for other protocols, such 
as IPX. The multiprotocol additions to BGP-4 are discussed here as they relate to IPv6. Multiprotocol 
BGP (MBGP) is discussed in Chapter 7, "Large-Scale IP Multicast Routing."

Three pieces of BGP-4 information are IPv4-specific:

●     The next-hop attribute
●     The AGGREGATOR attribute
●     The network layer reachability information (NLRI)

At the time of this writing, it is assumed that every BGP-4 speaker will maintain at least one IPv4 
address. The AGGREGATOR attribute will continue to use this address. Refer back to Chapter 2 for 
more information about the AGGREGATOR attribute. So, the additions to BGP-4 address the NEXT-
HOP attribute and the NLRI. Furthermore, because the next-hop information is used to forward 
packets to a set of destinations and is used only when adding NLRI, not when withdrawing routes, 
the next-hop information has been added to the reachable NLRI updates.

Two new attributes are defined to support multiple protocols over BGP. The multiprotocol-reachable 
NLRI (MP-REACH-NLRI) and the multiprotocol-unreachable NLRI (MP-UNREACH-NLRI). Both 
attributes are optional and nontransitive, meaning that a BGP process that does not recognize the 
attribute can quietly ignore the Update message in which it is included and not advertise the 
information to its other peers.

As the name suggests, the multiprotocol-reachable NLRI attribute describes the reachable 
destinations. The attribute contains information about the network layer protocol to which the 
addresses belong and the next-hop address used to forward packets destined for the contained list of 
destination prefixes. Each MP-REACH-NLRI Update message includes one next-hop address and a list 
of associated NLRIs. The NLRI is a 2-tuple of the form <length/prefix> in which length is the length 
of the prefix and prefix is the reachable IPv6 address prefix.

The next hop is the address to be used by BGP speakers when forwarding packets destined to an 
associated address prefix. Looking back at Chapter 2, the default rules for the next-hop attribute are 
as follows:

●     If the advertising router and receiving router are in different autonomous systems (external 
peers), the NEXT_HOP is the IP address of the advertising router's interface.

●     If the advertising router and the receiving router are in the same autonomous system 
(internal peers), and the NLRI of the update refers to a destination within the same 
autonomous system, the NEXT_HOP is the IP address of the neighbor that advertised the 
route.

●     If the advertising router and the receiving router are internal peers and the NLRI of the 
update refers to a destination in a different AS, the NEXT_HOP is the IP address of the 
external peer from which the route was learned.

For IPv6, the rules are more specific because of the defined scopes of IPv6 addresses. An IPv6 BGP 



router advertises the global address of the next-hop router, possibly followed by its link-local 
address. The link-local address is included only if the BGP speaker shares a common data link with 
both the node identified in the Next-Hop field and the peer to which the Update message is being 
sent. In all other cases, only the global address is included in the Next-Hop field.

A network diagram, router configuration, and command output illustrate that the configuration and 
output of commands for MBGP using IPv6 closely resemble those used for IPv4.

Figure 8-22 shows a simple BGP router topology.

Figure 8-22. Simple BGP Network

Maple and Aspen are E-BGP peers. Oak and Aspen are EBGP peers. All three routers are on the same 
Fast Ethernet segment. Oak and Pine are IBGP peers.

Aspen advertises NLRI, learned from Maple, to Oak. It includes Maple's address as the next-hop 
information, so Oak can send any traffic directly to Maple instead of making the extra hop through 
Aspen. Because the three routers share a Fast Ethernet segment, both Maple's global address and 
link-local addresses are included in the update.

Oak advertises Maple's NLRI information to Pine. The next-hop address is Maple's global address. The 
link-local address is removed. Example 8-8 shows the configuration of Oak and Aspen.

Example 8-8 BGP Router Configurations

Oak 

interface fastethernet 0

 description Oak to Aspen (e-bgp)

 ipv6 address 200A::2:0:0:0:1/64

!



interface serial 0

 description Oak to Pine (iBGP)

 ipv6 address 200A:0:0:10::1/124

!

interface serial 1

 description IGP link

 ipv6 address 200A:0:0:1::1/124

!

router bgp 100 

 neighbor 200A::2:0:0:0:2 remote-as 300 

 neighbor 200A:0:0:10::2 remote-as 100 

!

 address-family ipv6

 neighbor 200A::2:0:0:0:2 activate

 neighbor 200A:0:0:10::2 activate

 network 200a:0:0:1::/124

 exit-address-family

_______________________________________________________________________

Aspen

interface fastethernet 0

 description Oak to Aspen (e-bgp)

 ipv6 address 200A::2:0:0:0:2/64

!

router bgp 300

 neighbor 200A::2:0:0:0:1 remote-as 100

 !

 address-family ipv6 

 neighbor 200A::2:0:0:0:1 activate 

 exit-address-family 

Oak's FastEthernet address is 200A::2:0:0:0:1/64, as you can see in the interface subcommand, and 
is Aspen's EBGP neighbor.Oak also has an IGP link addressed with the 200A:0:0:1::/124 prefix. 
Example 8-9 displays the state of the BGP neighbors, a BGP update being sent from Oak to Aspen 
about the IGP prefix, and the entry in Aspen's routing table.

Example 8-9 Output from BGP Commands



Aspen#show bgp ipv6 nei 

BGP neighbor is 200A::2:0:0:0:1,  remote AS 100, external link

  BGP version 4, remote router ID 172.16.255.1

  BGP state = Established, up for 00:00:18

  Last read 00:00:18, hold time is 180, keepalive interval is 60 seconds

  Neighbor capabilities:

    Route refresh: advertised and received

    Address family IPv6 Unicast: advertised and received

  Received 40 messages, 0 notifications, 0 in queue

  Sent 51 messages, 0 notifications, 0 in queue

  Route refresh request: received 0, sent 0

  Minimum time between advertisement runs is 30 seconds

 For address family: IPv6 Unicast

  BGP table version 2, neighbor version 1

  Index 1, Offset 0, Mask 0x2

  1 accepted prefixes consume 64 bytes

  Prefix advertised 0, suppressed 0, withdrawn 0

  Connections established 4; dropped 3

  Last reset 00:00:43, due to User reset

Connection state is ESTAB, I/O status: 1, unread input bytes: 0

Local host: 200A::2:0:0:0:2, Local port: 11015

Foreign host: 200A::2:0:0:0:1, Foreign port: 179

You can see that the information displayed from the command output is very similar to that of IPv4. 
In fact, because this routing protocol is MBGP, and not a new version of BGP for IPv6, the only thing 
that you would expect to be added to the output is the address family type denoting IPv6 and IPv6 
address formats. The output shows this. The address family value has been added. The address types 
differ. The TCP port number is the same, 179.

The Anycast Process

Anycast is a mechanism used to route packets to one of many identically addressed nodes. The 
identically addressed nodes might be a group of servers offering a well-known service to clients, or a 
group of routers belonging to an ISP, which requires that traffic pass through one of its anycast-
addressed routers. A node addresses the IP packet to the single anycast address of the group. The 
node learns the next hop for the address just as it would for a unicast address. If the anycast address 



is on-link, the node performs the address resolution process. The first response is added to the 
neighbor cache. If the address is off-link, the packet is forwarded to the nearest destination based on 
the routing protocol's measure of distance. There will be a prefix that contains the set of anycast 
nodes in a domain. For instance, all nodes using the anycast address 
FEC0::A:FDFF:FFFF:FFFF:FFFE/64 reside within the FEC0:0:0:A::/64 prefix. All these anycast nodes 
must be advertised as host routes within the domain addressed with this prefix. A node uses the 
metric of the host route to determine the closest anycast node. You can see that if there are a lot of 
anycast groups and anycast nodes within the groups, and the containing domains are very large, 
routing tables within the domain could get very large.

Although anycasting is specified in IPv6, its use is currently very restricted. There is little experience 
using widespread anycasting services, and there are some known complications, such as ensuring all 
packets for a session reach the same anycast node, or requiring the anycast nodes to share state 
information[4]. More issues need to be resolved as experience is gained. The only defined anycast 
group, other than all anycast subnet-routers, is the Mobile IPv6 home-agent address. Until solutions 
to the problems are agreed upon, use of anycasting is restricted to routers only.

Multicast

IPv6 uses and facilitates the use of multicasting. Multicasting is used rather than broadcasting to 
minimize the impact of solicitations, advertisements, updates, and so forth on multicast-capable 
links. IPv6 facilitates the widespread use of multicasting through its support of scoped multicast 
addresses and its built-in support for a data-link group membership protocol, the Listener Discovery 
Protocol. The Protocol Independent Multicast (PIM) routing protocol enables the IPv6 hosts on a link 
to join a networkwide multicast group.

Scoped Addresses

Multicast scopes have been added to the IPv6 multicast address space. Applications and uses for 
multicast technology can be created for global, public use, for use within an organization or site, or 
for use on single links. Administrative policies have to be set to identify the boundaries of sites and 
organizations to utilize the scopes effectively. Well-known multicast groups can be contained within 
the defined scopes, making the containment of these multicast applications easier to control.

Listener Discovery

Derived from IGMPv2, the Multicast Listener Discovery (MLD) protocol enables routers to discover 
which nodes on a link want to receive multicast packets, and to which multicast groups those nodes 
belong. This information is then passed on to the multicast routing protocol in use on the network, 
such as PIM. MLD can be broken down into two groups of functions: the host functions and the router 
functions.

Host Functions

Host functions are similar to the host functions of IGMPv2, discussed in Chapter 5, "Introduction to IP 
Multicast Routing." Two types of Report messages are defined:

●     Membership Report
●     Done Report

When a host first begins listening to a particular multicast address on a link, it should immediately 
transmit a Report to inform the router that there is a listener on the link. It sends the Report to the 
address of the multicast group and also includes the address in the MLD Multicast Address field within 
the Report packet. The source address of the report is the host's link-local address. The presence of 
the link-local source address prevents the packet from traveling beyond the local link.



The router periodically sends queries to determine to which multicast groups hosts on the link 
belong. When a host hears a general query, which does not refer to any particular multicast address, 
it sets its delay timer for each of the multicast addresses to which it is listening, except the link-scope 
all-nodes multicast address and any multicast address with scope 0 (reserved) or 1 (node-local). 
When the host hears a query for a particular multicast address, it sets its delay timer for that 
particular address only. It sets the delay timers to a random value between 0 and the Max Response 
Time value that is sent as part of the query. The timer for each individual address is set to a different 
random value.

If the host does not hear any Reports from other hosts on the link for an address before that 
address's timer expires, the host sends its own Report. If it does hear a Report before the timer 
expiration, the host stops the timer and does not send a Report. The link is therefore not flooded with 
Reports from every member of the group, but the presence of at least one member is known.

When the router receives a Report for a particular multicast address, if the address is not already 
present in the router's list of multicast addresses, the router adds it to the list and informs the 
network's running multicast routing protocol of the addition. If the address is already in the list, the 
router resets the address's timer to the Multicast Listener Interval value. If this timer expires without 
hearing a Report for a particular address, the address is deleted from the router's list.

Figure 8-23 is a flowchart diagramming the host functions of the MLD process.

Figure 8-23. Host Functions of the MLD Process



When a host is finished listening to a multicast group, it should send a Done message. This is 
analogous to the IGMP2 Leave message. It is sent to the link-scope all-routers multicast group 
FF02::2. The Multicast Address field of the message carries the address to which the host is finished 
listening. A host does not need to send a Done message if its last Report for the address was 
interrupted by a Report from another node, because there is very likely still another node on the link 
listening to the same multicast address.

Router Functions

The router functions of MLD also are very similar to IGMPv2, as discussed in Chapter 5. The terms 
differ a little. The router sends a Multicast Listener Query, of which there are two subtypes:

●     General Query
●     Multicast-Address-Specific Query

The concepts of a querier and a nonquerier router still exist. A router assumes the state of querier or 
nonquerier for each of its multicast links. As with IGMPv2, an initializing router assumes it is the 
querier and immediately sends a General Query. If the router hears a query message from another 
router, it checks the received query's IPv6 source address. If the source address is numerically less 
than its own, the router relinquishes the role of querier to the other router. If its own address is 
lower, it remains the querier.

The querier router polls each of its attached links upon startup and periodically with the General 
Query to discover whether any group members are present. The router's link-local address is the 
source address of the query. The queries are sent to the link-scope all-nodes multicast address of 
FF02::1.

When a querier router receives a Done message, if the address referred to in the Done message is in 
its multicast list, it sends a Multicast-Address-Specific Query to the multicast address to determine 
whether any listeners remain on the link. If no host responds within the Maximum Response Delay, 
the router removes the address from the list and informs the multicast routing component.

Figure 8-24 shows the process flow of the MLD router function.

Figure 8-24. Router Functions of the MLD Process



PIM Multicast Routing

As with the unicast routing protocols, multicast routing protocols are modified to support IPv6. 
Functionally, the protocols operate in the same manner. The modifications mainly support the larger 
address space. PIM is currently the only multicast routing protocol with IPv6 modifications defined. 
PIM and other multicast routing protocols are discussed fully in Chapter 5.

The IPv6 modifications define addresses that must be used in PIM messages and identify an area of 
concern involving scoped multicast addresses and the centralized bootstrap mechanism.

With IPv4, each of the different PIM messages uses multicast or unicast addresses in its Destination 
field and its assigned interface IP address as the source. With the advent of scoped addresses in 
IPv6, and the multiple addresses assigned to each link, the choice of which address to use is further 
defined.

Most of the messages use the global IPv6 all-PIM-routers multicast address, FF02::D, as the IPv6 
destination, and the sending interface's link-local address as the source. Other messages use the 
specific global IPv6 unicast address of the service to which they need to communicate as the 
destination, and their own global unicast address as the source.

Hello messages are sent on multicast interfaces to discover PIM neighbors. The all-PIM-routers 
multicast address is the destination of these packets. The interface's link-local address is the source. 
The link-local address is therefore used in building neighbor tables and in electing the designated 
router.

Assert messages are sent when a multicast packet is received by a router through an interface that 
the router views as an outgoing interface for that (source, group) or (S, G) pair. Recall from Chapter 
5 that the multicast router maintains a multicast forwarding table with upstream and downstream 
interfaces for each particular source destined for a particular group (the (S, G) pair). If a router 
receives a multicast packet on an outgoing (downstream) interface for that (S, G) pair, the packet 
was forwarded by another router connected to that downstream link. Figure 8-25 illustrates this.



Figure 8-25. Multicast Packet Received on Downstream Interface

Router SJ's multicast forwarding table for the particular (S, G) pair indicates that E0 is downstream 
from the source and is therefore the outgoing interface. SJ receives a multicast packet for this (S, G) 
pair through its Ethernet interface. Assert messages are used to determine a single PIM forwarder for 
the multi-access network. The Assert message is sent by SJ in Figure 8-25 on the Ethernet network 
to determine which of the PIM routers should be the single PIM forwarder. The messages are sent to 
the all-PIM-routers multicast address and are sourced from the interface's link-local address. The 
value of the link-local address is used to break ties in the assert process, with the numerically highest 
link-local address becoming the forwarder. Downstream routers save the forwarder's link-local 
address to resolve any future RPF requirements.

The Join/Prune, Graft, and Graft-Ack messages, which are used to build and prune the multicast 
routers' forwarding tables, also use the all-PIM-router multicast address as the destination and the 
link-local address as the source. All these messages also contain an address for the upstream 
neighbor. The upstream neighbor address is set to the link-local address of that neighbor. An RPF 
lookup is used to obtain the address. If a link-local address for the neighbor cannot be obtained, a 
known global address for that neighbor is used.

Another message that uses the all-PIM-router mulitcast address destination and the link-local address 
source is the Bootstrap message. The Bootstrap message is multicast to all PIM routers by the 
bootstrap router (BSR). The bootstrap router address is contained within the message. Because this 
address must be accessible by all PIM routers, the address is the domainwide-reachable address of 
the bootstrap router.

The Register and the Register Stop messages are used in PIM Sparse mode. A source designated 
router (DR) wanting to send traffic to a multicast group initially encapsulates the multicast packets in 
a Register message and sends it to the rendezvous point (RP). An RP sends a Register Stop message 
to the DR, telling the source to stop encapsulating the multicast packets in the Register message. 



These events are not necessarily sequential. Chapter 5 describes the full sequence of these events. 
Both the Register and the Register Stop messages address packets to the domainwide reachable 
unicast address of the rendezvous point router. The source address is the domainwide-reachable 
unicast address of the DR. The source DR obtains the RP address from the RP-set information 
multicast to all-PIM-routers by the bootstrap router. The RP obtains the global IPv6 address of the DR 
from the source address of the Register message it received from the DR.

Each candidate RP unicasts a Candidate-RP-Advertisement message to the bootstrap router. The 
message contains the multicast group address for which the advertising router is a candidate RP. The 
message also contains the IPv6 address to be used as the RP address for this router. The destination 
address for the Candidate-RP-Advertisement is the domainwide-reachable unicast address of the 
BSR. The source address is a domainwide-reachable unicast address of the candidate RP. The BSR 
forms the RP-set from these advertisements.

Scoped multicast addresses solve the multicast containment problem; however, they bring up an 
issue involved with PIM and the bootstrap mechanism. The bootstrap process is a centralized process 
within a PIM-SM domain. Bootstrap messages from the centralized BSR are expected to reach all PIM 
routers. If the PIM domain is not a subset of the multicast scoped address domain, the bootstrap 
mechanism will not work. Multicast packets within one scoped address domain will not traverse to a 
second scoped address domain. The result is that to allow the bootstrap mechanism to work, the PIM 
domain must be a subset of the scoped address domain, or all multiple-hop messages must use 
globally reachable IPv6 addresses.

Quality of Service

No quality of service (QoS) functions are built into IPv6, such as procedures that describe ways you 
can queue and forward differing traffic classes through routers or ways you can prioritize multiple 
traffic flows, but there are mechanisms that allow such protocols to work with IPv6. The two such 
mechanisms are the Traffic Flow and Traffic Class fields of the IPv6 header, as defined in the 
following sections.

Traffic Flow

Nodes initiating traffic may want to request special handling of certain traffic flows. The node can 
label the flow, requesting that IPv6 routers provide nondefault QoS for that flow. For instance, a call 
center application requires very fast response time, so the call center representative using the 
application can give information obtained from a server to the person on the phone as she speaks. A 
node may label this flow, requesting that it obtain a different QoS from other traffic.

Traffic Class

The traffic class bits in the IPv6 header are provided for source nodes and/or intermediate routers to 
distinguish between different classes or priorities of IP packets. The bits can be used in the same way 
that the IPv4 type-of-service and precedence bits are experimentally being used today. Differentiated 
Services (DiffServ) redefines the Traffic Class field and calls it the DS field. The definition of the DS 
field is the same for IPv6 as for IPv4. The leftmost 6 bits are used by the DiffServ codepoint. Packets 
are marked with a codepoint at the edges of a network. The codepoint determines the behavior of 
each router when queuing and forwarding the packet. This behavior is called the per-hop behavior 
(PHB).



 
  
Transition from IPv4 to IPv6

A new routing protocol cannot be implemented if there is not a clear transition methodology. The 
easier the transition procedures, the more likely the new protocol will be implemented. It is 
imperative that IPv6 interoperate with IPv4. IPv6 nodes need to communicate with IPv4 nodes, at 
least initially, and more likely, indefinitely. The NGTRANS IETF working group developed a number of 
different methodologies to facilitate the transition and to ensure compatibility.

Compatibility with IPv4 is possible in a number of different ways. A node running a dual-stack 
implementation fully implements both IPv4 and IPv6. It may communicate using both IPv4 and IPv6. 
A node could encapsulate IPv6 packets into an IPv4 header, creating a tunnel over an existing IPv4 
network, allowing two IPv6 nodes to communicate. There are two tunneling mechanisms:

●     Automatic tunneling
●     Configured tunneling

An IPv4-compatible IPv6 address is defined such that the first 96 bits of the IPv6 address are all 
zero, and the remaining 32 bits compose an IPv4 address. For example, ::172.69.1.1 is an IPv4-
compatible address. A node configured with an IPv4-compatible address uses automatic tunneling.

For IPv4 and IPv6 to coexist on the same network, a mechanism must be in place to resolve names 
to IP addresses correctly. DNS modifications have been defined to enable the DNS servers to 
correctly return IPv4 or IPv6 addresses (or both). The capability to do this is crucial to the success of 
protocol coexistence.

Or, a network address translation - protocol translation (NAT-PT) device might be implemented on 
the network between the IPv6 network and the IPv4 network. Dual stack is discussed first.

Dual Stacks

One way for a node to implement IPv6 and remain compatible with IPv4 nodes is to fully implement 
both IPv6 and IPv4. A node that fully implements both stacks is called an IPv6/IPv4 node. An 
IPv6/IPv4 node can communicate with IPv6 nodes using IPv6 packets and with IPv4 nodes using IPv4 
packets.

An IPv6/IPv4 node must be configured with both an IPv6 and IPv4 address. The addresses may or 
may not be related. IPv4-compatible addresses may be viewed as single address that can be used as 
either an IPv6 address or an IPv4 address. The entire 128 bits represents the IPv6 address, whereas 
the low-order 32 bits represents the IPv4 address.

You can configure the addresses in many ways:

●     You can configure the IPv6 address using stateless or stateful (DHCP for IPv6) 
autoconfiguration. The address can be either an IPv4-compatible address or an IPv6-only 
IPv6 address.

●     You can use any IPv4 mechanism to acquire the node's IPv4 address.
●     You can configure an IPv4-compatible address using an IPv4 configuration mechanism to 

acquire the IPv4 part of the address. The node then maps the IPv4 address into an IPv4-
compatible address by prepending the 96-bit prefix 0:0:0:0:0:0. This method can prove 
particularly useful when an IPv6/IPv4 node is installed before IPv6 routers or address 
configuration servers are available.



A node with both an IPv4 and an IPv6 address must have some mechanism in place to determine 
which address to use. DNS provides this mechanism.

DNS

A new type of resource record is defined for IPv6—the AAAA record. This record provides name-to-
IPv6 address mapping. A DNS resolver on an IPv6/IPv4 node must be able to handle both IPv4 A 
resource records and IPv6 AAAA resource records. When a node queries the DNS server for an 
address, an A record or an AAAA record is returned. The type of address returned determines the 
protocol that is used. If an A record is returned, the node uses its IPv4 address and the IPv4 protocol 
for communication with the requested destination. If an AAAA address is returned, IPv6 is used.

When an IPv4-compatible address is assigned to an IPv6/IPv4 host, both an AAAA record and an A 
record are defined in the DNS. The AAAA record lists the full 128-bit IPv6 address, and the A record 
lists the low-order 32 bits of the address. Both types are listed so that IPv6-only nodes can query the 
server and receive an IPv6 address and IPv4-only nodes can receive the IPv4 address.

Now, if both AAAA and A type records are listed for an IPv4-compatible address, the DNS resolver 
has some choices on what to return, and what it returns affects which protocol is used in the 
communication:

●     Return only the IPv6 address to the application.
●     Return only the IPv4 address to the application.
●     Return both addresses to the application.

The address or the order of the addresses returned affects the type of IP traffic generated.

IPv6 Tunneled in IPv4

Most IPv6 implementations will be installed alongside IPv4 networks. IPv6 hosts will communicate 
over mostly IPv4 networks. IPv6 packet encapsulation into IPv4 packets supports this. You can create 
four types of tunnels:

●     Router to router
●     Host to router
●     Host to host
●     Router to host

IPv6/IPv4 routers can encapsulate IPv6 traffic for transmission over an IPv4 infrastructure. You can 
use this method for IPv6-only nodes that exist on either side of the routers, or for any 
communication that requires that this one segment of the end-to-end IPv6 path traverse an IPv4 
network. The source node sends an IPv6 packet to an IPv6 router. This router acts as the tunnel 
source point, encapsulates the packet into an IPv4 packet, and sends the IPv4 packet on to the 
tunnel endpoint. The router at the far end of the tunnel decapsulates the packet and forwards it on 
toward the IPv6 destination.

IPv6/IPv4 nodes can initiate a tunnel to an IPv6/IPv4 router. This tunnel is created for the first 
segment of the IPv6 path. The initiating node encapsulates the IPv6 packet into an IPv4 packet and 
sends the IPv4 packet to the tunnel endpoint router. The endpoint router decapsulates the packet 
and forwards the IPv6 packet toward its final destination.

An IPv6/IPv4 host can create a tunnel to another IPv6/IPv4 host. This is a complete end-to-end 
tunnel. The IPv6/IPv4 source node encapsulates the IPv6 packet in an IPv4 packet and forwards the 
packet over an all-IPv4 network to the destination host. The destination host receives the IPv4 
packet, decapsulates it, and processes the IPv6 packet.



A router-to-host tunnel is created on the final segment of the IPv6 path. A router receives an IPv6 
packet and creates a tunnel so that it can forward the packet toward the destination host over the 
connected IPv4 network. The destination host receives the IPv4 packet, decapsulates it, and 
processes the IPv6 packet.

The first two methods, router to router and host to router, are not tunneled all the way to the final 
destination. The far endpoint of the tunnel differs from the final destination of the packet. The 
address of the far endpoint of the tunnel differs from the address of the final destination. An IPv4 
address for the far end of the tunnel is required, and there is no way to obtain this information from 
the actual IPv6 destination address. These methods require configured tunnels.

In the second two methods, the far-end tunnel endpoint is the same as the final packet destination. 
The IPv4 address of the far end of the tunnel is contained in the low-order 32 bits of the IPv4-
compatible IPv6 destination address. You can create automatic tunnels in the second two tunneling 
methods.

Configured Tunnels

A tunnel is created between Cisco routers by creating tunnel interfaces in the routers that border the 
IPv6 and IPv4 networks. The tunnel's endpoints are defined in both routers. An IPv6 subnet is 
created for the tunnel, and both routers are assigned IPv6 addresses. If an IPv6 dynamic routing 
protocol is in use, such as RIPng or BGP, the protocol is enabled on the tunnel interface. Figure 8-26 
shows two IPv6 networks connected to an IPv4 network. A tunnel is configured between the IPv6 
networks to enable communication.

Figure 8-26. Network Diagram of IPv6 Networks Tunneled Over an IPv4 
Network

Tulip and Lily are IPv6-only routers. They communicate with each other via the IPv6-over -IPv4 
tunnel between Daisy and Rose.

Example 8-10 shows the configurations of Daisy and Rose.

Example 8-10 Configured Tunnel Router Configurations

Daisy 

ipv6 unicast-routing 

!



interface Tunnel0 

 description tunnel Daisy -> Rose

 no ip address 

 no ip directed-broadcast 

 ipv6 address FEC0::A:0:0:0:1/124 

 ipv6 rip flowerpot enable 

 tunnel source Serial1.503 

 tunnel destination 172.69.255.250 

 tunnel mode ipv6ip 

!

interface Ethernet0

 ipv6 address FEC0::1:0:0:0:0/64 eui-64

 ipv6 rip flowerpot enable

!

interface Serial1.503 point-to-point

 ip address 172.69.255.254 255.255.255.252

________________________________________________________________

Rose

ipv6 unicast-routing

!

interface Tunnel0

 description tunnel Rose -> Daisy

 no ip address

 no ip directed-broadcast 

 ipv6 address FEC0::A:0:0:0:2/124

 ipv6 rip flowerpot enable

 tunnel source Serial1.703

 tunnel destination 172.69.255.254

 tunnel mode ipv6ip

!

interface Ethernet1

 no ip address

 ipv6 address FEC0::2:0:0:0:0/64 eui-64

 ipv6 rip flowerpot enable



!

interface Serial1.703 point-to-point

 ip address 172.69.255.250 255.255.255.252

The tunnel interface is a generic tunnel, configured with ipv6ip mode.

The traceroute from Tulip to Lily in Example 8-11 shows the IPv6 packet traversing the tunnel.

Example 8-11 Displaying the IPv6 Packet Traversing the Tunnel from Tulip 
to Lily

Tulip#traceroute ipv6 fec0:0:0:2:210:7bff:fe3a:ce8a 

Type escape sequence to abort.

Tracing the route to FEC0::2:210:7BFF:FE3A:CE8A

  1 FEC0::1:200:CFF:FE0A:2AA9 8 msec *  4 msec

  2 FEC0::A:0:0:0:2 24 msec *  16 msec

  3 FEC0::2:210:7BFF:FE3A:CE8A 28 msec *  20 msec

The first address is Daisy's IPv6 Ethernet address. The second address is Rose's tunnel interface 
address. The third address is Lily's Ethernet address.

Configured tunnels offer a straightforward way to connect two IPv6 networks over an IPv4 network.

Automatic Tunnels

An encapsulating host configured for automatic tunnels extracts the IPv4 address from the 
destination's IPv4-compatible IPv6 address. This IPv4 address will be the automatic tunnel endpoint. 
The encapsulating host must have IPv4 connectivity to the address represented in the IPv4-
compatible address. The source host encapsulates the packet into an IPv4 header, with the extracted 
IPv4 address as the destination and the address extracted from its own IPv4-compatible address as 
the source. Routers between the hosts know nothing of the IPv6 payload.

Network Address Translation - Protocol Translation

Another way to allow IPv6 and IPv4 networks and hosts to coexist is with the use of network address 
translation - protocol translation (NAT-PT). IPv6/IPv4 routers do the translation for IPv6-only and 
IPv4-only hosts. When these hosts want to communicate, neither needs to know that they are not 
running the same version of IP. The NAT-PT-configured router does all the translation. Both source 
and destination addresses are translated between IPv6 and IPv4.

The same issues that exist with IPv4 NAT also exist with IPv6-to-IPv4 NAT-PT. Inbound and outbound 
traffic translated between IPv6 and IPv4 domains must traverse the same address translator. The 
address translator maintains state information about translated sessions. End-to-end security is not 



possible. IPSec does not work through a network address translator. Applications that carry IP 
addresses anywhere other than the IP header will not work unless application translation gateways 
are running on the translating router. DNS queries crossing the protocol domains must have request 
and response information within the DNS packet translated between IPv4 and IPv6.

One issue particular to translation between IPv4 and IPv6, besides the address, is the header 
information. IPv6 headers do not contain the same fields as IPv4 headers, as you learned in this 
chapter. Option handling is very different. Translating between the two domains is nontrivial, and you 
should use this method of coexistence only when no other method is available.



 
  
Looking Ahead

IPv6 enables the Internet to scale to an extremely large size. It also eases host configuration 
management. Much of the host configuration is accomplished through router configurations. Router 
management, as discussed in Chapter 9, "Router Management," will be needed as much as ever, to 
provide secure configurations and to keep the routers running reliably and optimally.



 
  
Recommended Reading

Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, New Jersey: Prentice Hall PTR; 
1996.

Although it's a little dated (many RFCs have become draft standards, many more have been written, 
some have been modified), this book offers very good technical discussions and insight into design 
decisions.



 
  
Review Questions

1: Which of the following are valid representations for the address 200A 0000 0000 0C00 0000 
0000 0000 0000 with a 60-bit prefix?

A.  200A:0000:0000:0C/60

B.  200A::0C00:0:0:0:0/60

C.  200A:0000:0000:0C00::/60

D.  200A::0C00::/60

E.  200A:0:0:C00::/60

F.  200A::0C/60

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: For what is the address 0:0:0:0:0:0:0:0 used?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: You configure your site border routers, connecting to an IPv6 public network, to advertise all 
your internal network numbers, including FEC0:0020:0:0100::/56. You get a nasty call from 
the IPv6 public network administrator. What is wrong?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



4: Which extension headers are processed by every IPv6 node in the path from source to 
destination?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

5: Which extension headers are used to specify a list of routers to visit before reaching the 
destination and to have each of those routers process the header?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

6: A router receives a packet larger than its outgoing link's MTU. Does it fragment the packet 
and forward the fragments toward the destination?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7: If set in a Router Advertisement, what affect does the Managed bit have?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

8: If a router advertises prefix information in its RAs, how is the information used?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

9: In what two states can a host's IP address reside, and what are the roles of the two states?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



10: What information does a router advertise in its RA to tell hosts to stop using a particular 
prefix when initiating IP sessions?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

11: If a node has a neighbor with state DELAY, can the node send the neighbor packets?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

12: A host is not running any routing protocol. It is sending data to a remote node using a default 
router. The default router fails. Will the host continue to send data into the black hole of the 
dead router until its TCP connection fails?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

13: What are the scope values for multicast packets, and for what are they used?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

14: What Cisco router command enables IPv6 routing?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



15: What interface subcommands enable IPv6 on an interface?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

16: What commands are used to enable a RIPng process?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

17: How is the BGP-for-IPv6 process enabled between neighbors?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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Chapter 9. Router Management
●     Policies and Procedure Definition— A clear policy and procedure definition is required to 

maintain any well-running network. Service Level Agreements, change management policies, 
and escalation procedures are all necessary.

●     Simple Network Management Protocol— SNMP provides the basis for network 
management applications. Understanding how it works is essential if you are going to use any 
network management application on the network.

●     RMON— RMON provides additional network management capabilities. Understanding how it 
works is essential if you are going to use any RMON-based network management application 
on the network.

●     Logging— Logging the information about events that occur on Cisco routers provides a 
valuable resource when you are researching a network issue that may relate to the router.

●     Syslog— Logging information to a syslog server creates a centralized repository of router 
event information that you can use to corrolate a network event to multiple network devices.

●     Network Time Protocol— The Network Time Protocol synchronizes the clocks on all 
participating network devices, easing the corrolation of past events.

●     Accounting— Accounting performed on network devices collects data that you can use to 
understand traffic flow as well as to bill network users based on the traffic flow.

●     Configuration Management— Configuration management is the set of tools, processes, 
and policies used to maintain working, valid configuration files.

●     Fault Management— Fault management systems notify the network manager of a failure 
somewhere in the network. The failure may be an event that causes some network services 
to be unavailable, or it may be an indication that performance may be affected.

●     Performance Management— Performance management systems collect data used for 
trending and capacity planning.

●     Security Management— Router security management ensures the integrity of routers. 
Various tools and configuration parameters are available to ensure that routers are not 
compromised.

●     Designing Servers to Support Management Processes— The servers that support 
management processes provide the eyes into the network and therefore need to be secure, 
robust, and redundantly accessible to the network devices they are managing.

●     Network Robustness— Network robustness requirements should include LANs and routing 
from the end node off the LAN to the rest of the network. HSRP provides default router 
redundancy, enabling end nodes configured with a single default gateway to utilize the 
robustness.

●     Lab— The network lab is used to test plans, designs, new hardware, new operating systems, 
new protocols, new procedures, and so on. The lab should mirror the production network as 
much as possible to enable valid testing to occur.

So far in this book, you have read about ways to forward IP packets through networks and routers. 
For the packet forwarding to be successfull the networks and routers have to be healthy, in good 
working condition, and always available. The network and routers need to be managed, both 
reactively and proactively, to ensure their health. It is also important to lab test and monitor the 
effect of the forwarding mechanisms—the routing protocols, the network address translation, 
multicasting, and quality of service—to make sure that the network and routers continue to run 
smoothly.

This chapter covers the necessity of clear operational policies and procedures, the basics of 
configuring SNMP and RMON on the router to monitor the network and routers, and essentials for 
successful performance, fault, and security management. Also discussed are ways to maintain router 
availability and general concepts of lab construction and use.



 
  
Policies and Procedure Definition

It is impossible to successfully manage routers without clear policies and procedures. The policies need to 
document who is responsible for various levels of management and when they are responsible. They 
need to document when changes can be made to router configurations. The procedures document how 
changes are made, including describing what changes are taking place and backout and testing 
procedures. The procedures specify steps to follow when a more skilled engineer needs to begin working 
on a problem and when management needs to get involved. It also is important to have a clear plan for 
disseminating updated policies and procedures so that everyone involved is aware of the changes.

Policies that specify the Quality of Service (QoS) the users can expect from the network should be in 
place, such as round-trip delay time, a minimum amount of throughput or the amount of network 
availability, along with the actions that will be taken if the service is not met. These are referred to as 
Service Level Agreements. This section describes Service Level Agreements, change management 
policies, escalation procedures, and the necessity of keeping the policies and procedures up to date.

Service Level Agreements

Service Level Agreements (SLAs) clearly define the quality and quantity of service that is to be provided, 
as well as when and by whom it will be provided. They specify quality, such as guaranteed response time 
and throughput, as well as maximum jitter. Quantity is expressed as a percentage of network availability. 
SLAs identify when the network will be available, the maximum amount of time for a single outage, 
scheduled outages, and who is providing the service. It is important to identify who is providing the 
service to avoid misconceptions about realms of responsibility. Avoid finger-pointing by defining which 
organizations are responsible for which network components and the level of service for which each 
organization is responsible. The SLA must be clearly defined so that both the organization providing the 
SLA and the organization receiving the SLA understand and agree on the contents. SLAs could be 
provided by outside organizations providing services to your business, such as ISPs or companies to 
which you are outsourcing your network. Or, they may be provided by internal IT departments providing 
service to business units within the company.

The most effective SLAs are written with business objectives in mind. Consider, for example, the 
following SLA statements:

●     Round-trip delay is less then 50ms, averaged over 1 hour, from site A to site B.
●     Link availability is no less than 95%.

These SLA statements are not very useful if the business objectives require 99.9999% availability but do 
not need anything faster than 400ms round-trip delay. Any provider that is offering specialized QoS to 
particular applications, end stations, or sites will include the guaranteed level of QoS in an SLA.

An SLA does not provide any benefit if the service is not monitored. The provider guaranteeing the QoS 
in the SLA will need to verify that the user or application is indeed receiving that QoS. An SLA that 
provides end-to-end guarantees must be monitored end to end. An SLA that states the following:

Round-trip delay is less than 200ms, averaged over 1 hour, from users at site A to 
servers at site B.

is measured differently from one that states the following:

Round-trip delay is less than 100ms, averaged over 1 hour, from site border routers at 
site A to site border routers at site B.

Both statements may be included in a service level contract, and both should be monitored. The collected 



data is reported to both the service provider and the service users. Both need to read the reports to 
verify the SLA has been satisfied.

Change Management

A network without change management policies is likely to be a network in chaos. Change management 
policies state when changes can be made, who can make them, how to document and publish upcoming 
changes, and how and where to document completed changes.

The change management policy specifies the procedure to use when any network or system change is 
going to take place. This includes router configuration changes, new design implementations, IOS 
upgrades, or even the implementation of new network applications. There should be an electronic form to 
fill out with some or all of the following information:

●     Who is requesting the change
●     Why the change is being made
●     What is the impact of the change (nondisruptive, maybe disruptive, disruptive)
●     When will the change take place
●     How long will it take to make the change
●     How long will the change remain in effect
●     What test procedures have been accomplished to test the change about to take place
●     Who performed the tests
●     Who will perform the change
●     What are the procedures to perform the change
●     What are the post-change test procedures to verify the change was successful
●     What are the backout procedures

A change control board (CCB) may look at all upcoming changes for any given week and approve or 
disapprove changes. The CCB should include a knowledgeable representative from each group that 
designs, operates, maintains, and manages the network. It also should include a representative for each 
group that uses the network, such as the various business units within an organization. If the network is 
an ISP, the network user representative may be a customer service representative, responsible for the 
well-being of groups of customers. The CCB review process ensures that all network architects, 
operators, administrators, managers and customer support personnel, and network users are aware of 
planned activities, know of potential impacts, and have an opportunity to consider other mitigating 
factors before changes are applied.

The requested change must be approved by all members of the CCB and signed by all relevant parties, 
indicating that they are aware of the change and potential risks.

Sometimes an emergency change is required—to solve a problem, for instance. The change policy also 
specifies what to do in the case of an emergency. The policy specifies who can make emergency 
changes, under what circumstances, and how to document the changes.

It is very important to document all changes. A table identifying when a change was made, what change 
was made, who made it, and a reference to the change description document (such as the sample shown 
in Table 9-1) enables someone to go back and know what changed, in the event of a future network or 
router problem.

Table 9-1. Change Policy Management Documentation

Change 
Date 
and 
Time 

Change 
Description 

Change 
Implementer Emergency 

Change Document Location, 
server:file 



6/3/00, 
1:00 
a.m. 

Modified 
BGP peer on 
router Taos 

Joe Smith No Pluto:changes\RtrTaos060300 

5/27/00, 
1:00 
a.m. 

Enabled 
custom 
queuing on 
router 
Aspen, on 
link to site 
Denver 

Jane Anders No Pluto:changes\RtrAspen052700 

If someone at site Denver calls the network operations center to report a problem with his connections to 
remote sites, and he says that the problems were first noticed early Monday morning, 5/29/00, the 
change log clearly shows that a change that affects Denver was made on Saturday night. This makes a 
clear starting point for troubleshooting the problem.

Strict change control policies should not be enforced only in enterprise networks. ISPs can benefit as 
much, if not more, from these policies. In enterprise networks, when changes are made that 
inadvertently affect a lot of people, business is disrupted, and there will be a lot of angry end users. A 
disruptive change made on an ISP network has the potential to affect many companies, causing a lot 
more disrupted business. Not only will there be a lot of angry people, these people have the option of 
switching to competing ISPs if they are not happy with the way the network operates. Strictly enforced 
policies minimize unscheduled disruptive changes and enable quicker recovery if problems are 
encountered.

Escalation Procedures

Clearly defined escalation procedures specify how long an engineer with a certain skill set works on a 
problem before handing the problem to a more skilled engineer. They specify who to turn the problem 
over to and how to turn it over. They also define how, when, and how often management is informed of 
issues, including how long a problem goes unresolved before it is brought to management's attention.

Updating Policies

No matter how well a policy is written, it eventually becomes outdated due to new technology or new 
organizations. The policies need to be updated to reflect changes. People who are responsible for 
implementing the policies and procedures need to be informed of and trained on the changes. Those 
whom the policies affect should be informed of all changes.



 
  
Simple Network Management Protocol

Network management software, such as CiscoWorks, uses the Simple Network Management Protocol 
(SNMP) to manage network devices. SNMP is the workhorse behind all those nice network diagrams, 
charts, and graphs. It queries the devices, collecting the data necessary to build the diagrams, 
charts, and graphs. SNMPv1[1] is supported on all Cisco routers. SNMPv2C is supported on all Cisco 
routers with IOS 11.3 or later. SNMPv2C supports bulk data transfers and more detailed error 
reporting than SNMPv1.

NOTE

SNMPv2C consists of SNMPv2, as defined in RFCs 1902 through 1907, and SNMPv2C, 
as defined in RFC 1901.[2]

Overview of SNMP

SNMP consists of managers and agents. The manager collects the data; the agent provides the data.

A manager can be part of a Network Management System (NMS) such as CiscoWorks. Agents reside 
on the device being managed, such as the router.

A relationship is set up between the manager and the agent so that the manager can get or set 
information on the agent. The manager sends SNMP messages to the agent requesting data or 
requesting that the agent set parameters with data specified by the manager. These messages are 
called gets and sets, respectively. The community of managers that can request data from the agent, 
or request it to set parameters, is defined using access control lists and a password. The password is 
called a community string. The manager includes the community string in all get and set requests. 
The agent, which is preconfigured with the community string, verifies that the requesting manager is 
allowed to perform gets and sets and that the community string is correct. The manager can request 
any parameter defined in the Management Information Bases (MIBs) supported by the platform 
running the agent. Figure 9-1 illustrates a manager requesting link status information from a router.

Figure 9-1. The Management Station Issues a Get Request, Looking for the 
Operational Status of the Router's Serial 0 Interface; The Router Responds 

with a Get Reply



The management station wants to find out the operational status of serial interface 0 on the router. 
The management station issues an SNMP get request, requesting the MIB variable 
ifEntry.ifOperStatus.1. ifEntry is the list of variables that can be polled for any interface on an agent. 
IfOperStatus is one of the variables. 0.1 is an index value, in this case identifying interface serial 0. 
The community string "restricted" is included in the get request. The router responds to the request. 
The response indicates that the value of the requested variable equals 1. The MIB defines 
ifOperStatus values 1, indicating the status is up; 2, indicating the status is down; and 3, indicating 
the status is testing. Link serial 0 in the figure is up.

NOTE

MIB II is supported on all SNMP-capable routers. Interface variables are defined in 
MIB II. RFC 1213 defines MIB II.[3]

SNMP operates over UDP. SNMP also runs as a lower priority than other processes on the router. If 
the router is very busy running higher-priority tasks, SNMP messages can be dropped. Most manager 
configurations specify that more than one lost poll must occur before any state changes display.

SNMP enables you to collect a lot of information. Just about every statistic for every network device 
(and components within a device) and every protocol at all layers of the protocol stack can be 
gathered via SNMP. Sometimes the statistic being collected changes rapidly, and the manager is 
gathering information about the changing data, such as the number of errors occurring every minute 
on a flaky interface. It is tempting to use SNMP extensively and frequently to get the most accurate 
statistical data. Excessive SNMP traffic can adversely affect network performance, however, and 
therefore the amount of SNMP traffic needs to be carefully managed. Before you enable any 
management application, the amount of SNMP traffic (and other traffic, as well) generated by the 
application should be thoroughly understood.

Trap messages are sent by the agent to a management station. The traps are unsolicited and occur 
as the result of some event. The event may be a link down, a BGP connection failure, an 



authentication failure, or any number of other things. When the event occurs, the router sends an 
SNMP trap to the management station, informing the station of the event. The configuration of the 
management station dictates what is done with the trap. It may cause a piece of the network 
diagram to change colors, a message may be displayed on the screen, or an e-mail or page could be 
sent to a network manager.

SNMP provides the foundation for network management platforms, such as CiscoWorks.

CiscoWorks

Cisco networks can be managed with the assistance of CiscoWorks. CiscoWorks runs on top of a 
network management platform, such as HP OpenView, IBM NetView, or Sun Net Manager. The 
management platform provides general network diagrams, charts, and graphs, and CiscoWorks adds 
Cisco-specific entities, such as chassis views and device configuration management.

CiscoView is one of the CiscoWorks applications. CiscoView provides real-time views of networked 
Cisco devices. These views deliver a continuously updated physical picture of device configuration 
and performance conditions. The chassis views show front- and back-panel views of Cisco devices, 
including LED status lights. If you click a port shown in the chassis view, you can bring up a table of 
statistics related to the port, such as utilization, input and output errors, queue drops, collisions, and 
ignored packets. CiscoView also provides a dashboard-type view, which displays system performance 
of the Cisco device, such as memory usage, buffer usage, and CPU utilization. CiscoView is run from 
a centralized network management site from which you can review, reconfigure, and monitor 
essential device data from a simple GUI (that displays information such as dynamic status reports, 
performance statistics, and network inquiries) without having to physically check connections for 
each device, module, or port at every different or remote location.

The network management platform of choice and CiscoWorks work together to perform fault 
management, performance management, and configuration management. The diagrams, charts, and 
graphs rely mainly on SNMP to remain up to date.

The agent being managed by CiscoWorks must be configured to accept polls and to send traps to the 
CiscoWorks workstation.

Router Configuration for SNMP

Various global SNMP commands enable the router to be managed by CiscoWorks. All the global 
snmp commands begin with snmp-server. No specific one enables SNMP. The first snmp-server 
command entered enables both versions of SNMP on the router.

The router must be configured to use the same SNMP version supported by the management station.

The command to create the management community is as follows:

[no] snmp-server community string [view view-name] [ro | rw][access-list number]

The community string acts as a password between the managers and the agent. The management 
stations may have read-only (RO) or read/write (RW) SNMP access to the router. The CiscoWorks 
management station requires RW access for full manageability, specifically for the capability to set 
parameters, reload routers, and update configurations. SNMP is a very powerful tool. Almost all 
configuration and state information about the router can be read via the SNMP MIBs. Information 
obtained via SNMP read access could be used to learn routing tables and ARP tables, making it easier 
for someone to learn about specific devices and therefore specific areas of attack. SNMP write access 



allows configurations to be changed and links and routers to be reset. To limit which devices are 
allowed to read and/or write information to the router, use the access-list option. The list is a simple 
access list, specifying the address of the management station or a range of addresses with permitted 
management stations.

The only required command when enabling SNMP is snmp-server community. All the other SNMP 
commands are optional and provide fine-tuning of the collectable or settable information.

The view option in the snmp-server community command is used in conjunction with the following 
command:

snmp-server view view-name oid-tree {included | excluded}

This command limits which MIB objects an SNMP manager can access. The oid-tree, or Object 
Identifier tree, identifies the MIB subtree to be included or excluded. To identify a subtree, specify 
the top of the desired subtree using a text string consisting of numbers, such as 1.3.6.2.4, or the 
word, such as "system." Specifying system means that all MIB values in the system subtree are 
included or excluded. 1.3.6.2.1.2 is the numeric representation of iso.org.dod.mgmt.mib2.interfaces.

NOTE

Refer to the RFCs defining each individual MIB and to RFC 1902, "Structure of 
Management Information for Version 2 of the Simple Network Management Protocol 
(SNMPv2)," for the numeric representations of all object identifiers.

SNMP managers can send messages to users on virtual terminals and the console. The SNMP request 
that sends the message also specifies the action to be taken after the message has been sent, such 
as shut down the system. This is a very powerful tool. To enable this function, you must configure 
the snmp-server system-shutdown command. If you do not configure this command, the 
mechanism is not enabled.

Another powerful tool is the capability for TFTP servers to save and load configuration files via SNMP. 
You can limit this to servers specified in an access list using the snmp-server tftp-server-list 
number command, where number is the access list number.

The command to specify the host to which the traps are sent, and what trap types are sent, is as 
follows:

snmp-server host host [version {1 | 2c}] community-string [udp-port port] [trap-type]

If no trap-type is specified, all trap types enabled on the router are sent to the host. The version 
defines the SNMP version of the management station. The udp-port option changes the default port 
number.

Before any traps are sent to the specified hosts, the traps must be enabled globally. Some traps are 
enabled by default. Others must be enabled by the following command:



snmp-server enable traps trap-type trap-option

The snmp-server enable traps command enables the trap mechanism on the router for the specific 
traps. It does not specify a host to which to send them. Use this command to enable or disable traps 
of a certain type. When disabling traps, this overrides traps specified per host.

Another command is available to control traps on an interface basis. The interface subcommand to 
enable or disable link status traps on the configured interface is [no] snmp trap link-status. The 
traps are enabled on all interfaces by default.

For a host to receive traps, the host's address must be specified using the snmp-server host 
command, and the trap must be enabled globally, through either the snmp-server enable traps 
command, some other command, such as snmp trap link-status, or by default. Some configuration 
examples follow.

The configuration in Example 9-1 allows read-only access to any SNMP manager using community 
string "access." BGP traps are enabled and sent to hosts 172.16.1.200 and 172.16.1.201.

Example 9-1 Allowing Read-Only Access to Any SNMP Manager and 
Enabling BGP Trap 

snmp-server community access RO

snmp-server enable traps bgp

snmp-server host 172.16.1.200 access

snmp-server host 172.16.1.201 access

A BGP external connection is established between routers 10.1.2.1 and 10.1.2.25. When the 
connection is cleared, traps are generated, as documented in Example 9-2.

Example 9-2 Clearing BGP External Connections Generates Traps

Bowler#clear ip bgp *

SNMP: Queuing packet to 172.16.1.200

SNMP: V1 Trap, ent bgp, addr 10.1.2.25

 bgpPeerEntry.14.10.1.2.1 = 00 00

 bgpPeerEntry.2.10.1.2.1 = 1

SNMP: Queuing packet to 172.16.1.201

SNMP: V1 Trap, ent bgp, addr 10.1.2.25

 bgpPeerEntry.14.10.1.2.1 = 00 00

 bgpPeerEntry.2.10.1.2.1 = 1



SNMP: Packet sent via UDP to 172.16.1.200

SNMP: Packet sent via UDP to 172.16.1.201

Version 1 traps are sent to both trap hosts. The router's address that is sending the traps is 
10.1.2.25, which is the address of the outbound interface used when sending the packet to the trap 
host. The value for the MIB OID bgpPeerEntry.14.10.1.2.1, which represents the last BGP error code 
seen by this peer, on the connection to the peer with address 10.1.2.1, is 00 00, meaning no error 
was seen. The OID bgpPeerEntry.2.10.1.2.1 represents the BGP peer state, as seen by this peer for 
the connection to peer 10.1.2.1. A value of 1 means the state is idle.

NOTE

To see a defined list of all supported Cisco MIBs, go to 
www.cisco.com/public/mibs/v1.

In the configuration in Example 9-3, host 172.16.1.201 has been upgraded to SNMP version 2c, and 
this host receives only BGP traps. 172.16.1.200 receives only TTY traps. In addition, the source IP 
address of all SNMP traps is configured to be the IP address of the loopback interface, 172.16.2.25.

Example 9-3 Enabling SNMPv2C Traps and Specifying the SNMP Source IP 
Address

snmp-server community access RO

snmp-server enable traps bgp tty

snmp-server host 172.16.1.200 access tty

snmp-server host 172.16.1.201 version 2c access bgp

snmp-server trap-source loopback 1

When a user logs out of the router, the router sends TTY connection traps, as indicated in Example 9-
4.

Example 9-4 Routers Send TTY Connection Traps When Users Log Out of the 
Router

#Telnet Boxer

Trying 10.1.1.1 … Open

http://www.cisco.com/public/mibs/v1


User Access Verification

Password:

Boxer>logout

[Connection to Boxer closed by foreign host]

Boxer#

SNMP: Queuing packet to 172.16.1.200

SNMP: V1 Trap, ent enterprises.9, addr 172.16.2.25

 ltsLineSessionEntry.1.66.1 = 5

 tcpConnEntry.1.10.1.1.1.23.10.1.10.1.11000 = 5

 ltcpConnEntry.5.10.1.1.1.23.10.1.10.1.11000 = 958

 ltcpConnEntry.1.10.1.1.1.23.10.1.10.1.11000 = 45

 ltcpConnEntry.2.10.1.1.1.23.10.1.10.1.11000 = 87

 ltsLineEntry.18.66 =

The trap type is enterprises.9, which is generated when a router reload takes place or a TCP 
connection is closed.

ltsLineSessionEntry.1 represents the line session type. A value of 5 means a Telnet session 
generated the trap.

tcpConnEntry.1 represents the state of the TCP connection. The value 5 means the connection is 
closed. The next digits are the IP addresses of Boxer and the device that performed the Telnet into 
Boxer.

ltcpConnEntry.5 represents the length of time that the TCP connection was established, in 
hundredths of a second. So this connection was open for 9.58 seconds. The next two OIDs represent 
the number of bytes input for this TCP connection, and the number of bytes output for the 
connection—45 bytes were input, 87 output. The ltsLineEntry.18 displays the TACACS username, if 
TACACS is enabled. Example 9-5 shows the SNMPv2C BGP trap sent to 172.16.1.201.

Example 9-5 SNMPv2C BGP Trap Includes More Information Than the 
SNMPv1 BGP Trap

SNMP: Queuing packet to 172.16.1.201

SNMP: V2 Trap

 sysUpTime.0 = 14423502

 internet.6.3.1.1.4.1.0 = bgp.7.2

 bgpPeerEntry.14.10.1.2.1 = 00 00

 bgpPeerEntry.2.10.1.2.1 = 1



The version 2c trap includes more information than the version 1 trap. The system uptime is the time 
in hundredths of a second since the network management portion of the system was last reinitialized. 
The internet.6.3.1.1.4.1.0 OID, with a value of bgp.7.2, represents the specific trap, 
bgpBackwardTransition, which is generated when the connection state transitions from a higher 
numbered state to a lower numbered state, such as from established to idle. The traps in Example 9-
6 show the BGP state entering the ESTABLISHED state.

Example 9-6 BGP State Enters ESTABLISHED

SNMP: V1 Trap, ent bgp, addr 172.16.2.25

 bgpPeerEntry.14.10.1.2.1 = 00 00

 bgpPeerEntry.2.10.1.2.1 = 6

SNMP: V2 Trap

 sysUpTime.0 = 14425396

 internet.6.3.1.1.4.1.0 = bgp.7.1

 bgpPeerEntry.14.10.1.2.1 = 00 00

 bgpPeerEntry.2.10.1.2.1 = 6

The internet.6.3.1.1.4.1.0 OID with value bgp.7.1 represents the bgpEstablished trap, and the 
peer entry value of 6 means the connection for the peer 10.1.2.1 is ESTABLISHED.

The configuration in Example 9-7 allows read-only access only to those IP addresses specified in 
access list 1, using community string "restricted." It also limits this host to view only a portion of the 
MIB, particularly the interface entries.

Example 9-7 Permitting Read-Only Access to IP Addresses Specified in an 
Access List

access-list 1 permit 172.16.1.200

snmp-server view interface_entries ifEntry included

snmp-server community restricted view interface_entries RO 1

No other SNMP manager can access the SNMP agent on this device with community string 
"restricted." If this is the only community string configured on the router, 172.16.1.200 is the only 
device that can read SNMP MIB variables; however, it cannot set variables. The view command 
configures the view named interface_entries and limits this view to the ifEntry variables only. The 
community command associates the defined view to the community string "restricted" and to access 
list 1.

Example 9-8 displays partial output from an SNMP walk on the ifEntry and the IP branches of the 
MIB.



Example 9-8 MIB Walk on ifEntry and IP Branches of MIB Before View 
Restrictions Are Placed on the Router

ObiWan:~# snmpwalk 172.16.1.7 restricted ifEntry

interfaces.ifTable.ifEntry.ifIndex.1 = 1

interfaces.ifTable.ifEntry.ifIndex.2 = 2

interfaces.ifTable.ifEntry.ifIndex.3 = 3

interfaces.ifTable.ifEntry.ifIndex.4 = 4

interfaces.ifTable.ifEntry.ifDescr.1 = Ethernet0

interfaces.ifTable.ifEntry.ifDescr.2 = Ethernet1

interfaces.ifTable.ifEntry.ifDescr.3 = Serial0

interfaces.ifTable.ifEntry.ifDescr.4 = Serial1

interfaces.ifTable.ifEntry.ifOperStatus.1 = down(2)

interfaces.ifTable.ifEntry.ifOperStatus.2 = up(1)

interfaces.ifTable.ifEntry.ifOperStatus.3 = down(2)

interfaces.ifTable.ifEntry.ifOperStatus.4 = up(1)

interfaces.ifTable.ifEntry.ifInOctets.1 = 720250042

interfaces.ifTable.ifEntry.ifInOctets.2 = 283245

interfaces.ifTable.ifEntry.ifInOctets.3 = 0

interfaces.ifTable.ifEntry.ifInOctets.4 = 761771001

interfaces.ifTable.ifEntry.ifOutOctets.1 = 779888827

interfaces.ifTable.ifEntry.ifOutOctets.2 = 228281

interfaces.ifTable.ifEntry.ifOutOctets.3 = 0

interfaces.ifTable.ifEntry.ifOutOctets.4 = 10994586

ObiWan:~# snmpwalk 172.16.1.7 restricted ip

ip.ipRouteTable.ipRouteEntry.ipRouteDest.172.16.1.0 = IpAddress: 172.16.1.0

ip.ipRouteTable.ipRouteEntry.ipRouteIfIndex.172.16.1.0 = 2

ip.ipRouteTable.ipRouteEntry.ipRouteMetric1.172.16.1.0 = 0

ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.172.16.1.0 = IpAddress: 172.16.1.7

ip.ipRouteTable.ipRouteEntry.ipRouteType.172.16.1.0 = direct(3)

ip.ipRouteTable.ipRouteEntry.ipRouteProto.172.16.1.0 = local(2)

ip.ipRouteTable.ipRouteEntry.ipRouteAge.172.16.1.0 = 0

ip.ipRouteTable.ipRouteEntry.ipRouteMask.172.16.1.0 = IpAddress: 255.255.255.0

ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaPhysAddress.2.172.16.1.2 =



  0:10:5a:e5:e:e3

ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaPhysAddress.2.172.16.1.7 =

  0:0:c:76:5b:7d

NOTE

The snmpwalk command reads an entire branch of the MIB tree, as compared to an 
snmp get, which reads a single entry.

Example 9-9 shows the same snmpwalk commands after the view limitations are imposed.

Example 9-9 MIB Walk on ifEntry and IP Branches of MIB After View 
Restrictions Are Placed on the Router

ObiWan:~# snmpwalk 172.16.1.7 restricted ifEntry

interfaces.ifTable.ifEntry.ifIndex.1 = 1

interfaces.ifTable.ifEntry.ifIndex.2 = 2

interfaces.ifTable.ifEntry.ifIndex.3 = 3

interfaces.ifTable.ifEntry.ifIndex.4 = 4

interfaces.ifTable.ifEntry.ifDescr.1 = Ethernet0

interfaces.ifTable.ifEntry.ifDescr.2 = Ethernet1

interfaces.ifTable.ifEntry.ifDescr.3 = Serial0

interfaces.ifTable.ifEntry.ifDescr.4 = Serial1

interfaces.ifTable.ifEntry.ifOperStatus.1 = down(2)

interfaces.ifTable.ifEntry.ifOperStatus.2 = up(1)

interfaces.ifTable.ifEntry.ifOperStatus.3 = down(2)

interfaces.ifTable.ifEntry.ifOperStatus.4 = up(1)

interfaces.ifTable.ifEntry.ifInOctets.1 = 720250042

interfaces.ifTable.ifEntry.ifInOctets.2 = 334364

interfaces.ifTable.ifEntry.ifInOctets.3 = 0

interfaces.ifTable.ifEntry.ifInOctets.4 = 761771405

interfaces.ifTable.ifEntry.ifOutOctets.1 = 779888827

interfaces.ifTable.ifEntry.ifOutOctets.2 = 268919

interfaces.ifTable.ifEntry.ifOutOctets.3 = 0



interfaces.ifTable.ifEntry.ifOutOctets.4 = 10995692

End of MIB

ObiWan:~# snmpwalk 172.16.1.7 restricted ip

End of MIB

ObiWan:~# logout

The management station cannot read any portion of the MIB that is not explicitly included in the view 
definition.



 
  
RMON

Remote Monitoring (RMON) enhances the capabilities provided by SNMP by enabling a management 
station to view more information about the node and its interaction with other nodes.

Overview of RMON

Like SNMP, RMON functionality is used in conjunction with a management station, or a RMON console 
and the managed agent. RMON data is stored in tables on the router and is sent, when requested or 
when an event is triggered to send a trap, to the RMON console. It reduces network traffic by 
minimizing the amount of data needing to be polled in regular SNMP packets. The RMON engine on a 
router polls the SNMP MIB variables locally. There are two thresholds: a rising threshold and a falling 
threshold. When the value of the MIB variable crosses a threshold, RMON creates a log entry and 
sends an SNMP trap. No more events are generated for that threshold until the opposite threshold is 
crossed. If the variable value rises and crosses the rising threshold, an event is triggered. No more 
events are triggered until the value falls below the falling threshold.

Routers ordered without the RMON option have alarm and event capability. The RMON option, 
available only on 2500 and AS5200 series routers, adds the other groups—statistics, history, hosts, 
hostTopN, matrix, filter, and capture.

Packet capture is available only on the Ethernet interfaces of 2500 series and AS5200 series routers, 
and only headers are captured. Packets can be captured in one of two ways:

●     Natively— Packets destined to the Ethernet interface of the router
●     Promiscuously— All packets on the Ethernet segment

The packet-capture mechanism can be very data- and processor-intensive. If enabled, the router 
performance and network traffic should be closely monitored.

Alarms and events, combined with existing MIB variables, enable you to define areas of proactive 
monitoring. You can set an alarm on any MIB object that resolves to a value of type integer, counter, 
gauge, or timetick.

NOTE

RFC 2819 fully defines all the groups of RMON and how they interact.

Router Configuration for RMON

The command to define an alarm table entry and the variable for which the alarm is being set is as 
follows:

rmon alarm number variable interval {delta | absolute} rising-threshold value [event-



number] falling-threshold value [event-number] [owner string]

The number uniquely identifies the entry in the alarm table. The variable is a MIB OID. The interval is 
the time between subsequent monitors of the MIB object. The delta or absolute keywords specify 
whether the alarm will test the change in MIB values over the specified interval or the actual MIB 
value. The rising-threshold value is the threshold at which an event is generated. If the sampled 
value is equal to or greater than this value, and the last sampled value was lower than this value, an 
event is generated. If an event-number is specified, this is the number of the event to trigger when 
the sampled value exceeds the rising threshold value. Another event is not generated until the 
sampled value falls below the falling-threshold value. The falling-threshold value is also a 
threshold at which an event is generated. If the sampled value is less than or equal to the falling-
threshold value, and the previous sampled value was greater than this value, an event is generated. 
Another event is not generated until the sampled value rises above the rising-threshold value.

The command to add or remove an event in the RMON event table is as follows:

rmon event number [log] [trap community] [description string] [owner string]

An event defined with this command is triggered when the alarm specifies an event-number and the 
rising or falling-threshold value is met or exceeded. A log entry or an SNMP trap (or both) may be 
generated when the event occurs. The snmp-server community and snmp-server host 
commands must be configured for the community specified in the rmon event command before an 
SNMP trap is sent.

Example 9-10 shows a configuration example enabling events and alarms for a high number of 
output errors on an interface and high CPU on the router. The MIB OID can be entered in full, such as 
1.3.6.1.2.1.2.2.1.20.4, which represents the MIBII value for ifOutErrors on index 4, or 
1.3.6.1.4.1.9.2.1.58.0, which represents the Cisco CPU MIB value for the 5-minute moving average 
of the CPU busy percentage. The router automatically converts the OID to that shown in Example 9-
10.

Example 9-10 Enabling Events and Alarms for a High Number of Output 
Errors on an Interface and High CPU on the Router

snmp-server community eventtrap RO

snmp-server enable traps

snmp-server host 172.16.1.2 eventtrap

snmp-server trap-source loopback 1

rmon event 1 log trap eventtrap description "High ifOutErrors"

rmon event 2 log trap eventtrap description "High 5-minute CPU" owner jsmith

rmon alarm 10 ifEntry.20.4 20 delta rising-threshold 15 1 falling-threshold 0

  owner jsmith

rmon alarm 11 lsystem.58.0 20 absolute rising-threshold 50 2 falling-threshold 25

  owner jsmith



RMON event 1 logs an event with the description "High ifOutErrors" associated with owner jsmith. 
The event also triggers an SNMP trap for community eventtrap. The event is created when an 
associated alarm occurs. RMON alarm number 10 is configured for the MIB variable ifEntry.20.4, 
which represents output errors on interface number 4. Interface number 4 in this case is serial 
interface 1. The alarm monitors the MIB variable every 20 seconds. If the value between polls rises 
by 15 or more, the alarm is triggered, triggering event number 1. If subsequent samples of the MIB 
OID indicate that there have been no output errors on the interface, the alarm is reset and can be 
triggered again.

Event 2 logs an event described as "High 5-minute CPU". The associated alarm, alarm 11, 
generates an event when the value sampled with the MIB OID lsystem.58.0 (AvgBusy5) is equal to 
or greater than 50. When the 5-minute average CPU busy percentage falls below 25, the alarm is 
reset and can be triggered again.

Example 9-11 shows an SNMP trap generated by event 1.

Example 9-11 SNMP Trap Generated by Event 1 Defined in Example 9-10

SNMP: Queuing packet to 172.16.1.2

SNMP: V1 Trap, ent rmon, addr 172.16.2.25

 alarmEntry.1.10 = 10

 alarmEntry.3.10 = ifEntry.20.4

 alarmEntry.4.10 = 2

 alarmEntry.5.10 = 20

 alarmEntry.7.10 = 15

RFC 2819 defines alarm entries.[4] Alarm entry 1 represents the alarm index. As indicated in 
Example 9-11, alarm index 10 generated this SNMP trap. Alarm entry 3 defines the object identifier 
being sampled. In this SNMP trap, the OID is ifEntry.20.4, the number of output errors on interface 
serial 1. Alarm entry 4 is the sample type. A value of 1 means the sample type is absolute. A value of 
2 indicates that the sample type is delta. Alarm entry 5 is the alarm value during the last sampling 
period. Alarm entry 7 is the defined rising threshold. In the SNMP trap in Example 9-11, the alarm 
value of 20 exceeds the rising threshold of 15, and therefore the event occurred.

RMON alarms and events are viewed using the show rmon alarms and show rmon events 
commands.

Example 9-12 displays the output from these two commands.

Example 9-12 Displaying RMON Alarm and Event Tables with the show 
rmon alarms and show rmon events Commands

Bowler#show rmon event alarms

Event 1 is active, owned by jsmith

 Description is High ifOutErrors

 Event firing causes log and trap to community eventtrap, last fired 1d00h



 Current log entries:

      index       time   description

         1      1d00h   High ifOutErrors

         2      1d00h   High ifOutErrors

Event 2 is active, owned by jsmith

 Description is High 5-minute CPU

 Event firing causes log and trap to community eventtrap, last fired 1d00h

 Current log entries:

      index       time   description

          1      1d00h   High 5-minute CPU

Alarm 10 is active, owned by jsmith

 Monitors ifEntry.20.4 every 20 second(s)

 Taking delta samples, last value was 20

 Rising threshold is 15, assigned to event 1

 Falling threshold is 0, assigned to event 0

 On startup enable rising or falling alarm

Alarm 11 is active, owned by jsmith

 Monitors lsystem.58.0 every 20 second(s)

 Taking absolute samples, last value was 60

 Rising threshold is 50, assigned to event 2

 Falling threshold is 25, assigned to event 0

 On startup enable rising or falling alarm

The time shown in the event and alarm table is the value of sysUpTime when the event was 
generated. sysUpTime is the amount of time since the router was last reset. The output in Example 9-
12 shows a value of 1 day and 0 hours.



 
  
Logging

When logging is enabled on a router, messages for certain events that occur on the router are 
created and stored. The log may reside on the router, or it may be an external log, residing on a 
server somewhere in the network.

Routers send output from debug commands and system error messages to the logging process. The 
logging process distributes the messages to the various logging devices and files, depending on the 
router configuration. Messages are sent to the logging buffer, to terminal lines, and/or to a UNIX 
syslog server. The logging buffer is maintained on the router. It is a circular buffer, with the oldest 
messages replaced by the newest messages. The oldest entry appears first when you are viewing the 
log.

NOTE

The syslog format is compatible with 4.3 BSD UNIX.

The following commands enable the log to be buffered, show the contents of the log, and clear the 
log:

●     logging buffered [size]
●     show logging
●     clear logging

Messages sent to a syslog service are stored in files on a server. The messages are sent directly to 
the syslog process running on the server, which stores the messages in the appropriate files.

The logging host command enables logging to the syslog server and specifies the IP address of that 
server.

When you Telnet to a router, normally you do not see any log messages. To enable the router to 
send log messages to the Telnet session, enter the EXEC command terminal monitor. You do not 
need to enter the command if you connect to a router via the console port. The default configuration 
is to send logging messages to the console port.

The router will send all messages, from the debugging level to emergencies, to the Telnet session, 
which is extremely useful when troubleshooting problems. Log all information sent and received over 
the Telnet session, and you will have a good record of debugging activity and events that occurred on 
the router while you were connected to it.

NOTE

Log the information via the Telnet application's logging or capture facility.



Time stamps must be enabled and the clock set to make the information in the logs meaningful.

Example 9-13 displays the output of the show logging command with no time stamps enabled.

Example 9-13 Output of the show logging Command

Seattle#show logging

Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

    Console logging: level debugging, 9 messages logged

    Monitor logging: level debugging, 0 messages logged

    Buffer logging: level debugging, 9 messages logged

    Trap logging: level informational, 13 message lines logged

Log Buffer (4096 bytes):

%LINK-5-CHANGED: Interface TokenRing0, changed state to administrative

ly down

%LINK-5-CHANGED: Interface Serial0, changed state to administratively

down

%LINK-3-UPDOWN: Interface Serial1, changed state to down

%SYS-5-CONFIG_I: Configured from console by console

There is no reference to the time that any of the events occurred.

Using the service timestamps log uptime command displays the time stamp with the time since 
the system was last rebooted. Example 9-14 displays the same log output with service timestamps 
log uptime enabled.

Example 9-14 Output of the show logging Command with service 
timestamps log uptime Enabled

Seattle#show logging

Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

    Console logging: level debugging, 9 messages logged

    Monitor logging: level debugging, 0 messages logged

    Buffer logging: level debugging, 9 messages logged

    Trap logging: level informational, 13 message lines logged



Log Buffer (4096 bytes):

00:00:39: %LINK-5-CHANGED: Interface TokenRing0, changed state to administratively

down

00:00:39: %LINK-5-CHANGED: Interface Serial0, changed state to administratively

down

00:00:39: %LINK-3-UPDOWN: Interface Serial1, changed state to down

1d07h: %SYS-5-CONFIG_I: Configured from console by console

The events are time stamped. You can see that the first three events occurred at the same time. In 
fact, they all occurred 39 seconds after router startup. The fourth event occurred 1 day and 7 hours 
after the router startup.

To display the actual date and time, as known by the router, enter the following command:

service timestamps log datetime [msec] [localtime] [show-timezone]

This time can include milliseconds and can be displayed as the router's local time. The time zone can 
be displayed. Some routers do not maintain calendars, so when they reboot, their clock resets. If no 
network time protocol is being used, you need to set the clocks manually by using the following EXEC 
command:

clock set hh:mm:ss day month year

When you are recording log information from multiple routers, consistent time stamp information 
makes event correlation much easier. When troubleshooting problems, and looking for messages that 
were reported from multiple routers due to a particular event, it is useful to have all routers time 
stamp their messages using a single time zone—that is, do not specify localtime. If each router is 
time stamping the message with its localtime, you should specify show-timezone for clarification. 
Syslog daemons log the date and time in the file based on their own clocks at the time a message 
arrives. You can limit the messages logged by specifying the severity level of messages. Table 9-2 
lists the message logging levels.

Table 9-2. Message Logging Levels

Message Severity Level Value Translation 

Emergencies 0 System unusable 

Alerts 1 Immediate action needed 

Critical 2 Critical condition 



Errors 3 Error condition 

Warnings 4 Warning condition 

Notifications 5 Normal but significant condition 

Informational 6 Informational message only 

Debugging 7 Debugging message 

If you specify a level of messages to see in a particular log, you get that level and all levels above. If 
you specify debugging, for instance, you get all levels of messages. If you specify warnings, you also 
get errors, critical, alerts, and emergencies.

Specify the level using the following configuration commands:

●     logging console level— Limits messages logged to the console
●     logging monitor level— Limits messages logged to the terminal lines
●     logging trap level— Limits messages logged to the syslog servers

Software and hardware malfunctions display at the levels warning through emergencies. Interface 
up/down transitions and system restart messages display at the notifications level. Reload requests 
and low-process stack messages display at the informational level, and debug output displays at the 
debugging level.

Example 9-15 shows the configuration of a router located in Seattle, in the Pacific time zone.

Example 9-15 Configuring Logging of a Router in Seattle (Pacific Time 
Zone)

service timestamp debug datetime localtime show-timezone

service timestamp log datetime localtime show-timezone

clock timezone PST –8

clock summer-time PDT recurring

logging buffered

The router's system clock is based on Coordinated Universal Time (UTC), which is the same as 
Greenwich mean time. Pacific standard time is 8 hours earlier than UTC.

Example 9-16 displays the router's log after the configuration referenced in Example 9-15 has been 
implemented.

Example 9-16 Display of the Logging Buffer After the Configuration Listed 
in Example 9-15 Is Implemented

Seattle>show logging

Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)



    Console logging: level debugging, 8 messages logged

    Monitor logging: level debugging, 0 messages logged

    Buffer logging: level debugging, 8 messages logged

    Trap logging: level informational, 12 message lines logged

Log Buffer (4096 bytes):

*Nov 28 16:00:39 PST: %LINK-5-CHANGED: Interface TokenRing0, changed state to

administratively down

*Nov 28 16:00:39 PST: %LINK-3-UPDOWN: Interface Serial1, changed state to down

*Nov 28 16:00:39 PST: %LINK-5-CHANGED: Interface Serial0, changed state to

administratively down

*Nov 30 12:00:39 PST: %SYS-5-CONFIG_I: Configured from console by console

Although the logging buffer is very useful if no syslog server is available, it has some drawbacks. 
Searching for an event requires either paging through the entire file or saving the file to another 
system and using the system's search facilities. If you are looking for a very recent event, you have 
to page through the entire file (or again, save the file to another system), because the oldest events 
display first. Logging to syslog automatically creates a file on the UNIX server, which offers better 
search and file maintenance techniques.



 
  
Syslog

Syslog is a process, or daemon, that runs on UNIX servers. The process collects information and 
stores it in log files. File management systems on the server are used to maintain the files.

Overview of Syslog

Messages are sent from various services running on the UNIX server, or from other network nodes. 
The service that sends the message indicates its facility type. The syslog daemon utilizes the 
indicated facility type when determining how to log the message. Table 9-3 lists the various facility 
types.

Table 9-3. Syslog Facility Types

Facility Type Service 

Auth Authorization system 

Cron Cron facility 

Daemon System daemon 

Kern Kernel 

Local0-7 Locally defined messages 

Lpr Printer system 

Mail Mail system 

News USENET news 

Sys9-14 System use 

Syslog System log 

User User process 

Uucp UNIX-to-UNIX copy system 

A syslog daemon is configured by updating a file on the server in the /etc directory called syslog.conf. 
The syslog daemon reads this file upon startup to determine how to handle incoming messages. The 
file contains lines such as the following:

local7.debugging     /user/adm/logs/cisco.log

The preceding line indicates that local7 facility messages, with level debugging or higher, will get 
logged to the file cisco.log, located in the /user/adm/logs directory. The entries in the file are case-
sensitive.



Any configuration file change requires the UNIX administrator to force the syslog daemon to reread 
the file.

Router Configuration for Syslog

Cisco routers use the local7 facility by default when sending messages to a syslog server. If this 
facility is being used by another process sending messages to the syslog server, you can change the 
facility type on the Cisco router using the following configuration command:

logging facility facility-type

The router configuration in Example 9-17 enables syslog logging to the specified host. Messages with 
level notifications and above are logged.

Example 9-17 Enabling Syslog Logging to a Specified Host

logging 172.16.1.2

logging trap notifications

Include a line such as the following in the /etc/syslog.conf file on the UNIX server:

local7.notice     /usr/adm/logs/cisco.log

NOTE

Refer to the User Manual pages for your particular server, syslog configuration file, 
and syslog daemon for specific information.

local7 specifies the logging facility, and notifications is the logging level. All information is stored in 
the file cisco.log in the /usr/adm/logs directory. The file must already exist, and the syslog daemon 
must have permission to write to it. Verify that the syslog daemon is running and that it has reread 
the configuration file after any configuration changes.

NOTE

Processes are forced to reread configuration files with the UNIX kill command, along 
with specific signals. Refer to the UNIX system's User Manual pages for the kill 
command for details.



Some routers support the capability to send syslog messages via SNMP to the SNMP network 
manager. Enable this by entering the router command snmp-server enable traps syslog and 
specifying the level of logs to be sent using the command logging history level.

Example 9-18 shows a syslog message sent in an SNMP packet from the router.

Example 9-18 A Syslog Message Generated as the Result of a Configuration 
Change Is Sent via SNMP

Cascade#conf t

Cascade(config)#snmp-server enable traps syslog

Cascade(config)#logging history notification

Cascade(config)#^Z

SNMP: V1 Trap, ent ciscoSyslogMIB.2, addr 10.2.1.1

 clogHistoryEntry.2.65 = SYS

 clogHistoryEntry.3.65 = 6

 clogHistoryEntry.4.65 = CONFIG_I

 clogHistoryEntry.5.65 = Configured from console by console

 clogHistoryEntry.6.65 = 30249161

The syslog message is generated as the result of a router configuration modification. The 65 at the 
end of each HistoryEntry line is the index identifying the particular event. The syslog history entries 
range from values 1 through 6. A 2 indicates that the value of the OID is the facility that generated 
the message. The facility in Example 9-18 is SYS. 3 is the severity of the message. A value of 6 
indicates notification. History entry 4 is a textual identification for the message type. History entry 5 
is the actual text of the message. History entry 6 is the value of sysUpTime when this message was 
generated.

NOTE

The syslog MIB is fully defined at www.cisco.com/public/mibs/v1/ CISCO-SYSLOG-
MIB-V1SMI.my.

Sending the syslog message to the SNMP management station simplifies data management by 
collecting the data on a single server, under a single system.

http://www.cisco.com/public/mibs/v1/


 
  
Network Time Protocol

The Network Time Protocol (NTP) enables you to synchronize system clocks with a centralized time source. 
Troubleshooting network problems rarely involves a single system. Searching through log files—looking for 
error messages that were recorded at a particular time of day as a result of a particular event—is made much 
simpler when all the systems potentially involved in the event use the same clock time to time stamp the 
error messages.

Overview of NTP

NTP synchronizes timekeeping among distributed devices. Each device makes peer associations with the time 
sources. The reliability of the time sources is defined by stratum levels. A stratum 1 server is directly 
connected to a reliable time source, such as radio clocks, GPS satellite timing receivers, or atomic clocks. 
Stratum 2 servers obtain their time from a stratum 1 source. The stratum 2 server may connect to a publicly 
available stratum 1 server via the Internet. You can find a list of public NTP servers and information about 
using them at www.eecis.udel.edu/~ntp/ (from the University of Delaware).

A couple of reliable NTP servers configured in an organization could associate with the stratum 2 public NTP 
servers and then provide time services to all the routers in the organization's network. A router can be the 
NTP server as well. In fact, if no Internet connection is available, or the NTP protocol is not permitted through 
the firewall to the Internet, routers can be configured to be the authoritative NTP server. The router uses its 
own system clock as the time reference. Only a router that maintains its time after a reset—a router with a 
calendar—can be used as an authoritative time source. Any other router will not have a valid reference clock. 
If NTP is running on a router with a calendar system, and the router is obtaining time via NTP, the calendar 
may be updated by NTP to compensate for the inherent drift in the calendar time. It may not be quite as 
accurate as an atomic clock, but at least all the routers in the network will have synchronized times, which 
eases troubleshooting problems.

NTP is very efficient. One packet per minute allows two devices to synchronize within 10 milliseconds.

Router Configuration for NTP

When configuring NTP, first create an association. Use the following commands to initiate the creation of the 
associations:

ntp server ip_address [version number] [key keyid] [source interface] [prefer]

ntp peer ip_address [version number] [key keyid] [source interface] [prefer]

Create a server association if this router is going to synchronize its clock to another NTP clock source. Create 
a peer association if this router is willing to synchronize to another device or allow another device to 
synchronize to it.

The default version number is 3. No authentication keyid is configured, and the source IP address is that of 
the outgoing interface, by default. The prefer keyword tells the IOS to prefer this peer for synchronization.

To control access to the router's NTP services, use the following command:

ntp access-group {query-only | serve-only | serve | peer} access-list-number

Use the query-only option to allow only NTP control queries from the listed IP addresses. Control queries are 
used in lieu of an SNMP management station to monitor the NTP process.

http://www.eecis.udel.edu/~ntp/


The serve-only option allows only time requests from the IP addresses listed in the access list. This router 
will not synchronize its clock to the remote system.

The serve option allows time requests and control queries. This system will still not synchronize its clock to 
the remote system.

The peer option allows both time requests and control queries, and it does allow this router to synchronize 
its clock to the remote system.

The configuration in Example 9-19 permits one router, Seattle, to synchronize its clock to a secondary public 
time source. Another router, Tacoma, in the same network as Seattle, is allowed to synchronize with Seattle.

Example 9-19 Synchronizing the Seattle Router Clock to a Secondary Public Time 
Source; the Tacoma Router Synchronizes with Seattle

Seattle

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 2 permit 128.105.39.11

ntp access-group peer 2

ntp access-group serve 1

ntp server 128.105.39.11

_____________________________________________________________________________________________

Tacoma

ntp server 172.16.1.5

Seattle is permitted to synchronize its clock with only 128.105.39.11. Any node with an address in the range 
172.16.0.0/16 can synchronize its clock with Seattle's clock.

A router can be configured as the master time source if no external time source is available. The router must 
have an internal calendar that maintains the date and time through a reboot or power cycle. To enable this 
calendar as the authoritative time source for the router, configure the clock calendar-valid command.

To configure the Cisco IOS Software as an NTP master clock to which peers synchronize, use the ntp master 
[stratum] command. Configure a high stratum number to ensure that this router does not override the clock 
on another system with a lower stratum number (and therefore a more reliable clock). The default stratum is 
8. The router with NTP master configured still attempts to find a server with a lower stratum number. If it 
cannot, the router will becomes synchronized at the configured stratum number. After it has been 
synchronized, other systems can synchronize to it.

NTP time is UTC. If you want a router to maintain a different time zone, you can still use the following 
commands to maintain local time:

clock timezone PST -8

clock summer-time PDT recurring

To update a router's calendar with the time obtained via NTP, use the ntp update-calendar command.

The NTP protocol can use authentication. The following configuration commands enable authentication:



ntp authenticate

ntp authentication-key number md5 key

ntp trusted-key number

ntp server ip-address key number

The ntp authenticate command is required on both the NTP server and the router requesting time 
synchronization. It globally enables authentication. The ntp authentication-key command also is required 
on both routers. This command defines an authentication string and assigns it a number.

The router requesting time synchronization is configured with the ntp trusted-key command. This command 
lists key numbers that have already been defined with the ntp authentication-key command, which the 
server must include in its NTP packets, before this router will synchronize to it. The ntp trusted-key 
command is therefore only required on the client router.

The key number option must also be included in the client's ntp server command. This adds the key to the 
NTP packets from the client to the server. When the server sees the key, if the key has been defined on the 
server, the server includes it in its NTP packets to the client.

Authentication is enabled between Seattle and Tacoma in the configurations in Example 9-20.

Example 9-20 Enabling Authentication Between Routers Seattle and Tacoma

Seattle

ntp authenticate

ntp authentication-key 10 md5 ntpkey

_____________________________________________________________________________________________

Tacoma

ntp authenticate

ntp authentication-key 10 md5 ntpkey

ntp trusted-key 10

ntp server seattle key 10

Tacoma's ntp server seattle key 10 command specifies that the server, Seattle, must provide key number 
10 in its NTP packets, before Tacoma will synchronize its clock with Seattle's clock. Seattle sees the key 10 in 
the NTP packets from Tacoma. Seattle's ntp authentication-key 10 md5 ntpkey enables Seattle to include 
the authentication key 10 in its reply back to Tacoma. To illustrate the authentication, the authentication-
key command is left out of the server's configuration. Example 9-21 displays the output of the debug ntp 
packet command. Initially, the time server, Seattle, is not configured for authentication. The client router, 
Tacoma, requires authentication before it will synchronize its clock with the time server.

Example 9-21 1NTP Packet Exchange with No Authentication Key Configured on 
the NTP Server

Seattle

ntp clock-period 17179873



ntp server 128.105.39.11

_____________________________________________________________________________________________

NTP: xmit packet to 172.16.1.105:

leap 3, mode 3, version 3, stratum 0, ppoll 64

rtdel 1813 (94.040), rtdsp 3E25 (242.752), refid AC100169 (172.16.1.105)

ref BDD13136.BEAD46C0 (15:04:06.744 Eastern Thu Nov 30 2000)

org BDD13580.2FF266EC (15:22:24.187 Eastern Thu Nov 30 2000)

rec BDD13580.272011D4 (15:22:24.152 Eastern Thu Nov 30 2000)

xmt BDD13580.BD318A8C (15:22:24.739 Eastern Thu Nov 30 2000)

Authentication key 10

NTP: rcv packet from 172.16.1.105 to 172.16.1.106 on Ethernet0:

leap 0, mode 4, version 3, stratum 3, ppoll 64

rtdel 0FD1 (61.783), rtdsp 080C (31.433), refid 8069270B (128.105.39.11)

ref BDD1355B.9F07E00F (15:21:47.621 Eastern Thu Nov 30 2000)

org BDD13580.BD318A8C (15:22:24.739 Eastern Thu Nov 30 2000)

rec BDD13580.CB4EBD34 (15:22:24.794 Eastern Thu Nov 30 2000)

xmt BDD13580.CB6623DA (15:22:24.794 Eastern Thu Nov 30 2000)

inp BDD13580.C5C23E0A (15:22:24.772 Eastern Thu Nov 30 2000)

The debug packet transmitted from Tacoma to Seattle displays the authentication key 10. Tacoma expects 
this key to be included in the NTP packet received from Seattle. It is not. Therefore, as shown in Example 9-
22, the NTP status remains unsynchronized.

Example 9-22 Display of show ntp status and show ntp association detail 
Commands with Incorrect Authentication

Tacoma#show ntp status

Clock is unsynchronized, stratum 16, no reference clock

nominal freq is 250.0000 Hz, actual freq is 249.9999 Hz, precision is 2**19

reference time is BDD13136.BEAD46C0 (15:04:06.744 Eastern Thu Nov 30 2000)

clock offset is 5.8229 msec, root delay is 94.04 msec

root dispersion is 242.74 msec, peer dispersion is 70.86 msec

Tacoma#show ntp association detail

172.16.1.105 configured, insane, invalid, unsynced, stratum 16

Only the first line of the show ntp association detail command is shown. It reveals that the peer is 
manually configured and that the peer did not pass a basic sanity check (authentication failed). The time is 
therefore invalid, the peers are unsynchronized, and the stratum level is the default level, 16.



Now, the commands ntp authentication-key 10 md5 ntpkey and ntp authenticate are added to the 
Seattle configuration. Examples 9-23 and 9-24 display the debug ntp packet and the show ntp status and 
show ntp association detail output, respectively.

Example 9-23 NTP Packet Exchange with Correct Authentication Key Configured 
on NTP Server and Client

Seattle(config)#ntp authentication

Seattle(config)#ntp authentication-key 10 md5 ntpkey

Seattle(config)#^Z

______________________________________________________________________________________

Tacoma#

NTP: xmit packet to 172.16.1.105:

leap 3, mode 3, version 3, stratum 0, ppoll 64

rtdel 1813 (94.040), rtdsp 3E25 (242.752), refid AC100169 (172.16.1.105)

ref BDD13136.BEAD46C0 (15:04:06.744 Eastern Thu Nov 30 2000)

org BDD13600.B85D38DF (15:24:32.720 Eastern Thu Nov 30 2000)

rec BDD13600.B5E44B24 (15:24:32.710 Eastern Thu Nov 30 2000)

xmt BDD13640.CED09281 (15:25:36.807 Eastern Thu Nov 30 2000)

Authentication key 10

NTP: rcv packet from 172.16.1.105 to 172.16.1.106 on Ethernet0:

leap 0, mode 4, version 3, stratum 3, ppoll 64

rtdel 10CE (65.643), rtdsp 0821 (31.754), refid 8069270B (128.105.39.11)

ref BDD1361B.9EC9B021 (15:24:59.620 Eastern Thu Nov 30 2000)

org BDD13640.CED09281 (15:25:36.807 Eastern Thu Nov 30 2000)

rec BDD13640.DAE3EC4F (15:25:36.855 Eastern Thu Nov 30 2000)

xmt BDD13640.DB1FC317 (15:25:36.855 Eastern Thu Nov 30 2000)

inp BDD13640.D7686AD0 (15:25:36.841 Eastern Thu Nov 30 2000)

Authentication key 10

NTP: 172.16.1.105 reachable

NTP: sync change

NTP: peer stratum change

Seattle included the expected authentication key in its NTP packet to Tacoma. The peer became reachable 
within NTP, the peer status changed from unsynchronized state and the stratum changed from the default 
value. Example 9-24 displays the new NTP status.

Example 9-24 Output of show ntp status and show ntp association detail After 
Valid Authentication



Tacoma#show ntp status

Clock is synchronized, stratum 4, reference is 172.16.1.105

nominal freq is 250.0000 Hz, actual freq is 249.9999 Hz, precision is 2**19

reference time is BDD13640.D7686AD0 (15:25:36.841 Eastern Thu Nov 30 2000)

clock offset is 30.8433 msec, root delay is 98.30 msec

root dispersion is 15937.61 msec, peer dispersion is 15875.02 msec

Tacoma#show ntp association detail

172.16.1.105 configured, authenticated, our_master, sane, valid, stratum 3

The clock is now synchronized, the stratum changed from the default of 16 to 4, the peer has become 
authenticated, and the peer time is believed to be valid.



 
  
Accounting

Sometimes it proves useful to collect statistics on traffic flows, to account for network usage. This 
process may be useful for traffic engineering, as well as for billing network users based on usage.

You can enable basic IP accounting on router interfaces. Packet source and destination are listed, as 
well as the number of bytes and packets transmitted between the two nodes. NetFlow offers a more 
thorough accounting functionality. In addition to source, destination, packet, and byte count, protocol 
and AS information is included. The NetFlow data can be aggregated in various ways, including by 
autonomous system, by subnet prefixes, and by protocol type. NetFlow is discussed further in the 
section titled "NetFlow."

IP Accounting

IP accounting provides basic accounting services. Packets that traverse the router are counted and 
are maintained on a source/destination basis. Packets that are sourced from or destined to the router 
itself are not counted. The accounting occurs on outbound interfaces. IP accounting disables 
autonomous switching and SSE switching on the interface. Packets that pass access lists and are 
actually routed through the router are counted. Optionally, accounting can be enabled for packets 
that do not pass access lists. A large number of access list violations may indicate an attempted 
network attack or a misconfigured router.

You can enable accounting on outbound interfaces using the ip accounting command.

To display the results of enabling accounting on outbound interfaces, use the show ip accounting 
[checkpoint] [access-violations] command.

Example 9-25 displays IP accounting data collected on an Ethernet interface.

Example 9-25 IP Accounting Is Enabled on an Ethernet Interface; the show 
ip accounting Command Displays Multicast Packets Being Sent Out the 
Interface

Bowler(config)#int e 0

Bowler(config-if)#ip accounting

Bowler(config-if)#^Z

Bowler#show ip accounting

   Source           Destination              Packets              Bytes

 10.1.1.88        228.13.20.216                   45              24611

Accounting data age is 0

Bowler#show ip accounting

   Source           Destination              Packets              Bytes

 10.1.1.88        224.2.127.254                    1                229



 10.1.1.88        228.13.20.216                  133              73689

Accounting data age is 0

Bowler#show ip accounting

   Source           Destination              Packets              Bytes

 10.1.1.88        224.2.127.254                    1                229

 10.1.1.88        228.13.20.216                  173              95952

Accounting data age is 0

IP accounting is enabled on Ethernet 0 of router Bowler. Packets routing out the Ethernet port are 
counted. Three subsequent displays of the accounting table show the source address 10.1.1.88 
multicasting packets to both 224.2.127.254 and 228.13.20.216.

You can clear the accounting table with the clear ip accounting command.

IP accounting can provide valuable information about traffic exiting an interface. Note, however, that 
performance degradation may occur when you implement it. Because IP accounting disables 
autonomous switching and SSE switching on the interface, the packets will be switched through the 
interface using a less-efficient mechanism than may have been designed into the network. In 
addition, maintaining the accounting database utilizes the router's memory. Do not enable IP 
accounting if the router is running low on memory.

The command ip accounting-threshold threshold defines the number of entries that can be stored 
in an accounting database. The default value is 512 source/destination pairs. This default results in a 
maximum of 12,928 bytes of memory usage for each of the databases, active and check pointed. If 
you modify and set the threshold too high, all the available memory could be consumed.

Enabling IP accounting on an interface is a quick way to view outbound traffic by source and 
destination address, but there is no built-in mechanism to get the data to a server that can parse the 
data and make it useful over time. NetFlow provides this functionality, in addition to providing more 
information about the traffic flows.

NetFlow

NetFlow switching identifies traffic flows and performs switching and access list processing within a 
router. In addition, because the flows are identified, statistics regarding the flows can be exported to 
an accounting server. While the flow is active, data about the flow is maintained in a NetFlow cache. 
When the flow expires, it can be added to an aggregation cache and can be exported to a 
management station. The default size of the NetFlow cache can contain 64 K flow cache entries.

NOTE

NetFlow switching consumes more memory and CPU resources than other switching 
modes. Understand the resources required on your router before enabling NetFlow.



To enable NetFlow switching, use the interface subcommand ip route-cache flow.

To define the IP address and UDP port number of the flow collector that receives the data, use the 
following global commands:

ip flow-export destination ip-address udp-port

ip flow-export [version 1 | version 5 [origin-as | peer-as]]

The version number must match the version that the flow collector is expecting. version 1 is the 
default.

The origin-as option specifies that the exported data include the BGP origin AS for the source and 
destination.

The peer-as option specifies that the exported data include the BGP peer AS of the router collecting 
the data, rather than the traffic's actual AS for the source and destination.

Figure 9-2 shows a simple network running BGP and collecting NetFlow data on router Hummer.

Figure 9-2. BGP Network Running NetFlow for Flow Accounting

NetFlow is enabled on router Hummer. The router is configured to collect information on flows on 



both interfaces. Example 9-26 shows the configuration for Hummer.

Example 9-26 Configuring Router Hummer in Figure 9-2 to Collect 
Information on Flows on Both Ethernet Interfaces

interface Ethernet1/2

 ip address 1.1.7.5 255.255.255.0

 ip route-cache flow

!

interface Ethernet1/3

 ip address 1.1.5.5 255.255.255.0

 ip route-cache flow

!

ip flow-export version 5 peer-as

ip flow-export destination 1.1.3.250 125

In the configuration in Example 9-26, the data includes the peer AS, rather than the origin AS.

The show ip flow export command displays the data exporting parameters, whereas the show ip 
cache flow command displays the flow cache.

Example 9-27 shows the flow export parameters and a sample of the flow cache of router Hummer.

Example 9-27 NetFlow Flow Information Displayed Using Commands show 
ip flow export and show ip cache flow

Hummer#show ip flow export

Flow export is enabled

  Exporting flows to 1.1.3.250 (125)

  Exporting using source IP address 1.1.7.5

  Version 5 flow records, peer-as

  527 flows exported in 18 udp datagrams

  0 flows failed due to lack of export packet

  0 export packets were sent up to process level

  0 export packets were dropped due to no fib

  0 export packets were dropped due to adjacency issues

Hummer#show ip cache flow



IP packet size distribution (51719 total packets):

   1-32   64  96  128  160  192  224  256  288  320  352  384  416 448  480

   .131 .000 .034 .000 .000 .000 .490 .000 .000 .000 .000 .000 .000 .000 .000

    512  544  576 1024 1536 2048 2560 3072 3584 4096 4608

   .000 .000 .000 .000 .343 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 4456704 bytes

  68 active, 65468 inactive, 1080 added

  22140 ager polls, 0 flow alloc failures

  Active flows timeout in 30 minutes

  Inactive flows timeout in 15 seconds

  last clearing of statistics 00:08:35

Protocol         Total    Flows   Packets Bytes  Packets Active(Sec) Idle(Sec)

--------         Flows     /Sec     /Flow  /Pkt     /Sec     /Flow    /Flow

TCP-Telnet          19      0.0        90    70      3.3       0.0   15.5

TCP-WWW            596      1.1        40   220     46.7       0.0   15.4

UDP-DNS            397      0.7         3    28      2.3       0.0   15.5

Total:            1012      1.9        26   201     52.4       0.0   15.4

SrcIf         SrcIPaddress    DstIf         DstIPaddress    Pr SrcP  DstP  Pkts

Et1/3         1.1.2.13        Et1/2         1.1.3.13        06 0403 0015    17K

Et1/3         1.1.2.12        Et1/2         1.1.3.12        06 042D 0017    90

Et1/3         1.1.2.11        Et1/2         1.1.3.11        06 099E 0050    40

Et1/3         1.1.2.21        Et1/2         1.1.3.21        11 07D3 0035     3

Et1/3         1.1.2.21        Et1/2         1.1.3.21        11 07D2 0035     3

Et1/3         1.1.2.21        Et1/2         1.1.3.21        11 07D1 0035     3

Et1/3         1.1.2.21        Et1/2         1.1.3.21        11 07D0 0035     3

You can see how much more information is included with NetFlow than with IP accounting—packet 
size distribution, summary information, information by protocol, and by individual flows.

You can aggregate and group flow information in various ways: into groups based on autonomous 
system numbers, source and destination prefixes, and by protocol ports. Aggregation caches enable 
the router to aggregate some of the NetFlow data before it is exported to a flow collector. The flow 
data is entered in each of the enabled aggregation caches as they expire in the main NetFlow cache.



Flow aggregation uses a NetFlow version 8 aggregation cache only. Version 8 allows the aggregated 
caches to be exported. A version 5 main cache needs to be configured with the peer-as or origin-as 
option specified.

Cisco Express Forwarding (CEF) and NetFlow switching must be enabled before configuring flow 
aggregation. Enabling CEF populates the forwarding cache with source and destination addresses of 
the packets, which are used in the aggregation data.

NOTE

See Cisco Express Forwarding Overview in the 12.1 Configuration Guide, switching 
services configuration guide, on CCO, for more information on CEF.

Globally enabling CEF using the ip cef command enables CEF route-cache on all interfaces that 
support it. The following global command defines an aggregation cache:

ip flow-aggregation cache {autonomous_system | destination-prefix | prefix |

  protocol-port | source-prefix}

Table 9-4 documents some commands that you can apply to the cache. All these commands are 
entered in the aggregation cache configuration mode.

Table 9-4. cache Commands

Command What It Does 

cache entries number_of_entries Sets the maximum number of cache 
entries, which ranges from 1024 to 
524,288. The default is 4096. 

cache timeout inactive seconds Defines the number of seconds that an 
inactive entry remains in the cache 
before timing out. The range is from 10 
to 600 seconds. The default is 15 
seconds. 

cache timeout active minutes Defines the number of minutes that an 
active entry remains active. The range 
is from 1 to 60 minutes. The default is 
30 minutes. 



export destination ip_address udp_port Specifies the export destination under 
the aggregation cache configuration 
mode, and specifies the IP address and 
UDP port number of the aggregation 
cache flow collector. This collector will 
receive the version 8 flow records. 

enabled Enables the aggregation cache. 

AS aggregation groups flows with the same source BGP AS, destination BGP AS, input interface, and 
output interface. The number of flows, packets, and bytes summarized by the aggregated record is 
included in the exported data.

Example 9-28 shows Hummer configured with AS aggregation.

Example 9-28 Router Hummmer from Figure 9-2 Is Configured with AS 
Aggregation

ip cef

!

ip flow-export version 5 origin-as

ip flow-export destination 1.1.3.250 125

ip flow-aggregation cache as

 cache entries 2046

 cache timeout inactive 200

 cache timeout active 45

 export destination 1.1.3.250 9991

 enabled

!

Example 9-29 shows the AS aggregation cache, using the command show ip cache flow 
aggregation as.

Example 9-29 Contents of the AS Aggregation Cache as Viewed with the 
Command show ip cache flow aggregation as

Hummer#show ip cache flow aggregation as

IP Flow Switching Cache, 135048 bytes

  1 active, 2043 inactive, 3 added

  167 ager polls, 0 flow alloc failures



  Active flows timeout in 45 minutes

  Inactive flows timeout in 200 seconds

Src If       Src AS  Dst If       Dst AS  Flows   Pkts  B/Pk  Active

 Et1/3        400    Et1/2         100     357     42K   848   407.6

There are 357 flows associated with source interface Ethernet 1/3, source AS 400, destination 
interface Ethernet 1/2, and destination AS 100.

Enable prefix aggregation to take this a step further. Prefix aggregation groups traffic based on the 
same data as AS aggregation, source and destination BGP AS, and input and output interface, and 
further groups it by source and destination prefix and source and destination prefix masks.

Destination-prefix aggregation groups data flows with the same destination prefix, destination prefix 
mask, destination BGP AS, and output interface. Use this to examine traffic traversing a NetFlow 
router by destination information.

The configuration in Example 9-30 is added to Hummer.

Example 9-30 Configuring Router Hummer from Figure 9-2 with Destination-
Prefix Aggregation

ip flow-aggregation cache destination-prefix

 cache entries 2046

 cache timeout inactive 200

 cache timeout active 45

 export destination 1.1.3.250 9991

 enabled

Example 9-31 displays the destination prefix aggregation cache.

Example 9-31 The Destination Prefix Aggregation Cache Is Viewed with the 
Command show ip cache flow aggregation destination-prefix

Hummer#show ip cache flow aggregation destination-prefix

IP Flow Switching Cache, 135048 bytes

  1 active, 2045 inactive, 1 added

  240 ager polls, 0 flow alloc failures

  Active flows timeout in 45 minutes



  Inactive flows timeout in 200 seconds

Dst If         Dst Prefix      Msk  AS    Flows  Pkts B/Pk  Active

Et1/2          1.1.3.0         /24  100    324    11K  442   239.5

There are 324 flows associated with destination interface Ethernet 1/2, destination prefix 1.1.3.0, 
mask /24, and destination AS 100.

You also can examine traffic by source information, using the source-prefix aggregation scheme. This 
scheme groups data by source prefix, source prefix mask, source BGP AS, and input interface.

The configuration in Example 9-32 is added to Hummer.

Example 9-32 Configuring Router Hummer from Figure 9-2 with Source-
Prefix Aggregation

ip flow-aggregation cache source-prefix

 cache entries 2046

 cache timeout inactive 200

 cache timeout active 45

 export destination 1.1.3.250 9991

 enabled

Example 9-33 shows the source prefix aggregated flows.

Example 9-33 The Source Prefix Aggregation Cache Is Viewed with the 
Command show ip cache flow aggregation source-prefix

Hummer#show ip cache flow aggregation source-prefix

IP Flow Switching Cache, 135048 bytes

  2 active, 2044 inactive, 3 added

  440 ager polls, 0 flow alloc failures

  Active flows timeout in 45 minutes

  Inactive flows timeout in 200 seconds

Src If         Src Prefix      Msk  AS    Flows  Pkts B/Pk  Active

Et1/3          1.1.2.0         /24  400    181  4813   200    42.0



Et1/2          1.1.7.0         /24  0        1    1    44     0.0

There are 181 flows associated with the source interface Ethernet 1/3, source prefix 1.1.2.0, mask 
/24, and source AS 400.

If you want to examine flows by traffic type, enable protocol-port aggregation. Flows with the same 
IP protocol, source port number, and destination port number are grouped.

To configure protocol-port aggregation, add the configuration in Example 9-34 to Hummer.

Example 9-34 Configuring Router Hummer from Figure 9-2 with Protocol-
Port Aggregation

ip flow-aggregation cache protocol-port

 cache entries 2046

 cache timeout inactive 200

 cache timeout active 45

 export destination 1.1.3.250 9991

 enabled

Example 9-35 displays the protocol-port aggregation cache.

Example 9-35 Protocol Port Aggregation Cache Is Viewed with the 
Command show ip cache flow aggregation protocol-port

Hummer#show ip cache flow aggregation protocol-port

IP Flow Switching Cache, 135048 bytes

  14 active, 1972 inactive, 74 added

  882 ager polls, 0 flow alloc failures

  Active flows timeout in 45 minutes

  Inactive flows timeout in 200 seconds

Protocol  Source Port  Dest Port  Flows  Packets  Bytes/Packet  Active

  0x06       0x0401      0x0017      1       90        70          0.0

  0x06       0x0400      0x0017      1       90        70          0.0

  0x11       0x0404      0x0035      1        3        28          0.0

  0x11       0x0405      0x0035      1        3        28          0.0

  0x11       0x0406      0x0035      1        3        28          0.0



  0x11       0x0407      0x0035      1        3        28          0.0

  0x11       0x0400      0x0035      1        3        28          0.0

  0x11       0x0414      0x0035      1        3        28          0.0

  0x11       0x0415      0x0035      1        3        28          0.0

  0x06       0x040B      0x0050      1       40       220          0.0

  0x06       0x0408      0x0050      1       40       220          0.0

  0x06       0x0409      0x0050      1       40       220          0.0

  0x06       0x0436      0x0050      1       40       220          0.0

  0x06       0x0437      0x0050      1       40       220          0.0

There are 14 different protocol port flows. They are grouped by IP protocol, source ports, and 
destination ports.

The various aggregation caches provide a lot of flexibility with the way data about traffic flows is 
aggregated. This information can facilitate traffic analysis and even billing.

Table 9-5 lists the maximum number of flow records per UDP datagram and the maximum UDP 
packet size for each aggregation scheme.

Table 9.5. A Listing of the Maximum Number of Flow Records and Maximum 
UDP Packet Sizes for Each NetFlow Aggregation Scheme

Aggregation Scheme 

Maximum Number of 
Flow Records per UDP 
Datagram 

Maximum UDP Packet 
Size 

BGP autonomous system 51 1456 bytes 

Destination-prefix 44 1436 bytes 

Prefix 35 1428 bytes 

Protocol-port 51 1456 bytes 

Source-prefix 44 1436 bytes 

Cisco NetFlow FlowCollector is an application that collects and reports on the NetFlow data. 
FlowCollector aggregates data coming from multiple Cisco routers (and switches) exporting NetFlow 
data. You can filter and group the data to suit the needs of the network manager.

NOTE

You can find detailed information about Cisco FlowCollector on CCO at 
www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/nfc_3_0/nfc_ug/index.htm

http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/nfc_3_0/nfc_ug/index.htm




 
  
Configuration Management

Configurations maintained in a database, downloaded from all network devices regularly (nightly, 
weekly), ensure that a very recent configuration can be restored to a router in need. Configuration 
files may need to be restored if an existing router needs to be replaced, loses its configuration, or 
becomes misconfigured.

CiscoWorks provides the capability to download configuration files from a router via TFTP. In fact, 
configuration can be downloaded from the router to any TFTP server. Many organizations use UNIX 
TFTP servers and Perl scripts, which are run on a regularly scheduled basis to perform their 
configuration management. An organization's policy may be to store configuration files for 7 days. 
The filenames may be routername.current and routername.1, routername.2, routername.3, and so 
on, representing 7 days of configurations. A simple script run nightly could copy the file 
routername.N to file routername.N+1 (as long as N is 1 through 6), copy the file routername.current 
to file routername.1, connect to the router to initiate the TFTP configuration file download into file 
routername.current, and log out of the router. The script could loop through a list of routers in the 
network.

NOTE

You can find more information about Perl in the following two books: Learning Perl, 
Second Edition, by Randal L. Schwartz, Tom Christiansen, and Steve Talbot (Editor) 
(O'Reilly & Associates, Inc., July 1997), and Programming Perl, by Larry Wall, Jon 
Orwant, and Tom Christiansen (O'Reilly & Associates, Inc., July 2000).

You should store old configurations for some period of time, at least a week, preferably a month, for 
restoring known working configurations to routers and for troubleshooting problems that may have 
occurred as a result of a past configuration change. With the combination of daily configuration files 
and change management logs, a working configuration can easily be restored to a router.



 
  
Fault Management

A dependable network requires that a fault management system be in place. Potential and existing 
problems need to be detected as soon as possible so that you can take immediate action to resolve 
the issues. A fault management system detects problems with devices and links, hopefully before end 
users notice the outage.

An SNMP-configured router sends traps to the management station when it detects a failure. Because 
SNMP uses UDP to send traps, however, there is no guarantee that the message describing the fault 
will reach the management station. A fault management system cannot rely solely on traps, but also 
must poll the routers for information about the state of lines, interfaces, and router components. In 
addition to polling routers for component information, the management station polls the router itself, 
sometimes using ICMP pings, to make sure it is accessible. To ensure that the IP address of the 
router is accessible via any active interface, it is a good idea to use a loopback address as the 
identifying IP address on the router. A management station polling or pinging the loopback address 
can use any available routed path to reach the router. A management station polling or pinging a 
nonloopback interface address on the router will declare the router inaccessible if that interface is 
down, even if the router can be reached via an alternative path. You should configure traps to use 
the loopback address as the source address of the packet, and configure the management stations to 
poll the router via the loopback address.

As with many protocols, a trade-off exists between how fast a management station can detect an 
outage and the amount of network traffic generated. If the management station misses a trap, and 
needs to rely on its polling or pinging to detect an outage, the outage may not be detected for quite a 
while. If the failed device is a router, and the management station is configured to ping the router 
every 5 minutes, and declare it dead if it misses three pings, it will take up to 15 minutes to detect 
the failure. A link or other component failure is detected sooner. The management station does not 
rely on the absence of a response to detect these outages, but rather asks the router for the state of 
the component. The router responds with the state information.

For example, Figure 9-3 shows a management station polling a router for the state of its interfaces.

Figure 9-3. Management Station Is Polling the Router for Interface States



The management station polls the router for the state of its interfaces using the ifEntry.ifOperStatus 
object ID in the MIB. The router responds. Three interfaces are up, and one is down.

A fault management system detects failures. The failures are reported to the network operators by 
visual or audible alerts or are sent by e-mail or pager. The method used for sending alerts is 
customized to the user's environment. If someone is in front of the management console 7x24, 
audible and visual alerts suffice. If the console is not manned all the time, e-mail or pager alerts are 
sent when no one is at the console. The failure indicates link, router, or router component outages. 
The alerts occur after the problem has occurred. The fault management station also attempts to alert 
operators before failures occur.

Many times, specific events lead to a failed component. For instance, a serial line may report high 
error counts or carrier transitions before it fails completely. A router may report memory problems 
before it fails. Fault management stations maintain threshold information. When the threshold has 
been exceeded, an alarm is sent to the network operator. You can configure thresholds for any 
number of variables. To configure the values of the thresholds, the network is first baselined. The 
baseline takes place over a period of time, such as a week, when the network is running normally. 
The normal values of the variables are obtained. You then can configure thresholds at some level 
(say 20%) above normal.

Some MIB variables that provide useful threshold information include the following:

●     Amount of free memory
●     Average CPU utilization
●     Buffer misses
●     Interface input and output rate
●     Interface input and output errors
●     Interface input and output queue drops
●     Interface packets ignored
●     Interface resets



●     Serial interface CRC, abort, and frame errors
●     Frame Relay FECN/BECN
●     Serial interface carrier transitions
●     Ethernet collisions
●     Ethernet runts, giants, and frame errors
●     Token Ring line and burst errors
●     Token Ring internal errors
●     Token Ring token and soft errors
●     Token Ring signal losses

Some of the items listed occur in a perfectly normal network. When they exceed a threshold, 
however, performance can be degraded, and a more serious problem may be brewing. The 
management station polls the routers for the value of these variables periodically. If the change in 
values between polling periods exceeds the threshold, an alarm is generated.

You also can use RMON for thresholding. With RMON, the management station does not have to poll 
for the variables. The RMON agent on the router polls the variables locally and sends a trap to the 
management station when the threshold is exceeded. The management station receives the trap and 
generates the alarm. The trade-off here is network usage versus router processing. Enabling RMON 
minimizes network traffic but increases the amount of processing done on the router.



 
  
Performance Management

Performance management is used for trending and capacity planning. Data is collected and analyzed. 
Network engineers and managers review it, looking for trends that may indicate the need to increase 
or decrease network capacity. Link utilization, Frame Relay FECN and BECNs, and router CPU are 
some items that may indicate a change in capacity is required. Response time, measured regularly 
between routers on the edges of networks, as close to end users as possible, directly shows the 
impact of the over- or underutilized network components. It also shows the improvement when the 
capacity has been modified.

The performance management station is continuously collecting data. It collects data via SNMP, 
polling for groups of variables on regular short intervals, such as every 5 minutes. The data is stored 
in raw form for historical research. It also is processed and reported as minimum, maximum, and 
average values on an hourly basis. The data may be processed during the day for previous hours, 
providing almost up-to-the-minute reports and graphs, or it may be processed at some time during 
the night, providing reports detailing the preceding day's numbers.

The system also should report on the amount of time during the day that the values fell into certain 
ranges.

Consider link utilization, for example. It is helpful to know how much time during the day the 
utilization fell into the following ranges: 0–20%, 20–40%, 40–60%, 60–80%, 80–90%, and 
90–100%.

After a few days of collecting and processing data, the system processes the data further, reporting 
on minimum, maximum, average per day, and ranges for the time period. If the time period is a 
week, the minimum, maximum, and average should be reported for each day, and the amount of 
time during the week spent in each range should be reported.

The performance management system needs to be up and collecting data uninterrupted. Trend 
analysis is meaningful on the collected data only after collecting data for an extended period of time. 
Projecting the trends into the future helps to determine when breaking points are likely to occur.

Flexibility makes the performance management system more valuable. Configurable time periods in 
which to view data, with reports as near to real time as possible, make this a very valuable tool for 
quickly identifying the need for capacity changes.



 
  
Security Management

If a network is to be secure, the routers themselves must be secured. Passwords are one way to 
control access to the routers. You can configure passwords on the routers, or you can use 
authentication servers such as TACACS+ or RADIUS. In addition to password protection, you should 
limit interactive access to the routers to necessary protocols and users. Enable only the protocols that 
are required for the proper functionality and manageability of the router and restrict access to the 
routers to those IP subnets that you know are secure. Even with access controlled, it is possible for 
mischievous network users to attempt to prevent the routers from functioning. Take steps to reduce 
the chance of these denial-of-service attacks on the routers. The next few sections discuss router 
configuration parameters needed to provide secure and properly functioning routers.

Password Types and Encryption

You should control all access by some authentication mechanism. If you cannot use TACACS+ or 
RADIUS, you should protect privileged EXEC mode router access with the enable secret password 
type. Do not use the older enable password, because it has a weak encryption algorithm. The 
enable secret password command provides better security by storing the enable secret password 
using a nonreversible cryptographic function. The added layer of security encryption provided proves 
useful in environments where the configuration file, and therefore the password, crosses the network 
or is stored on a TFTP server. Encrypt all passwords, including username passwords, authentication 
key passwords, the privileged command password, console and virtual terminal line access passwords, 
and BGP neighbor passwords using service password-encryption to prevent an onlooker from 
seeing passwords when you display the router configuration.

Controlling Interactive Access

You should control interactive access to the router. You can limit access to specified network numbers 
by using the following command:

access-class access-list_1-199_or_1300-2699 {in | out}

The access-list argument specifies the source network number allowed to connect to the line (with the 
keyword in), or the network number to which a connection is permitted (with the keyword out).

Ensure that there are no access holes by permitting only the remote access protocol desired, such as 
the following:

transport input telnet ssh

List the protocols that are permitted. Everything else is denied.

You should password protect all modems connected to the router, in addition to the login required on 
the console and auxiliary ports.

If the modems are to be used for dial-in purposes only, so administrators can access the router from 
home, disable the capability to use reverse Telnet to connect to the modem from the network and dial 
out to another location. Reverse Telnet provides the capability to specify a port number along with the 
IP address to connect to a device off of an asynchronous port on the router. Disable reverse Telnet on 



any port connected to an asynchronous terminal or modem that should not be used to dial out by 
issuing the transport input none command on the modem-connected line.

Example 9-36 illustrates a router configuration with all the access control methods discussed so far.

Example 9-36 Controlling Interactive Access on a Router

access-list 1 permit 172.16.0.0 0.0.255.255

line con 0

 transport input none

line aux 0

 transport input none

line vty 0 4

 access-class 1 in

 transport input telnet ssh

Telnet and Secure Shell access are the only remote protocols permitted, and those who can use the 
protocols to connect to the router are limited to source IP addresses in the range 172.16.0.0/16.

Minimizing Risks of Denial-of-Service Attacks

Denial-of-service (DoS) attacks deny access to some resource. Someone can perform a DoS attack in 
many ways. You can take some actions, however, to minimize the risks of an attack aimed at the 
router.

A limited number of vty ports are available on a router. Once they are all in use, no more remote 
sessions are permitted to the router, opening up the potential for a DoS attack. An intruder can block 
all vty ports, denying access to the administrator. Configure a very restrictive access-class command 
on the last vty port. Permit only a specific management station. This way, at least one port will be 
accessible. Configure exec-timeout also, to prevent idle sessions from consuming the vty indefinitely. 
The service tcp-keepalives-in command configures TCP keepalive messages on incoming 
connections to guard against malicious attacks and "orphaned" sessions caused by remote system 
crashes.

A specific DoS attack uses directed broadcasts. ICMP packets are sent to a directed broadcast address 
with a falsified source address, and all machines on the LAN reply, sending a large stream of traffic to 
the falsified source address. The real node addressed with the source IP address gets flooded with 
data. The command no ip directed-broadcast configured on all LAN interfaces thwarts this attack. 
no ip directed-broadcast is the default on IOS 12.0 and later.

IP packets with the source-route option specify routers that the packet must traverse between the 
source and destination. Return packets also must traverse the specified routers. A spoofed source 
address in a source-routed packet can cause a node to bypass routing tables and send data to a 
spoofed address. There is rarely ever a valid use for source-routed packets. Configure the routers to 
drop packets with the source-route option using the global command no ip source-route.

Very fast floods of packets may cause the router to spend so much time responding to interrupts from 
interfaces that it cannot do anything else. The command scheduler interval milliseconds tells the 
router to stop handling interrupts and attend to other business at regular intervals. Newer platforms 



may use scheduler allocate interrupt-time process-time instead.

The interrupt-time argument is the maximum number of microseconds the router spends on fast 
switching within any one network-interrupt context. The process-time argument is the minimum 
number of microseconds the router spends at the process level when network interrupts are disabled.

The routers run small servers used for diagnostic purposes. In reality, these are rarely used. The TCP 
services are Echo, Chargen, Discard, and Daytime. The UDP services are Echo, Chargen, and Discard. 
An attacker can flood traffic to these services, impacting the capability of the router to route. The 
following commands disable these services:

no service tcp-small-servers

no service udp-small-servers

The services are disabled by default in Cisco IOS Software Release 12.0 and later.

Some other services that should be disabled are Finger and the Async Line BOOTP Server, if they are 
not being used. Use the following commands to disable these services:

no service finger

no ip bootp server

The Finger service allows Finger protocol requests to the router. A Finger protocol request is equivalent 
to issuing a remote show users command, which displays information about active lines on the 
router.

The router offers BOOTP services to hosts connected to asynchronous lines. The command no ip 
bootp server disables these BOOTP services.

The configuration in Example 9-37 illustrates minimizing the DoS risks using the previously discussed 
commands.

Example 9-37 Minimizing DoS Attacks

enable secret jj15Qp

service tcp-keepalives-in

scheduler interval 500

no server tcp-small-servers

no server udp-small-servers

no service finger

no ip bootp server

no ip source-route

int e 0



 no ip directed-broadcast

access-list 10 permit 172.16.1.2

line vty 4

 access-class 10 in

 transport input telnet

Configure a remote authentication and authorization server, such as TACACS+, to secure the router 
further.

TACACS+

Terminal Access Controller Access Control System Plus (TACACS+) provides centralized validation of 
users attempting to gain access to routers or network access servers. A TACACS+ application resides 
on a server, runs as a daemon, and stores information about access privileges in a database. When a 
user logs in to a router configured with TACACS+, the TACACS+ client on the router and the TACACS+ 
daemon communicate to send the user login and password prompts and to exchange authentication 
and authorization information. The router also sends accounting information to the TACACS+ daemon. 
All communication between the router and the TACACS+ daemon is encrypted, although the 
communication between the user and the router may not be.

TACACS+ provides authentication, authorization, and accounting information:

●     TACACS+ authentication requires the user to enter a login ID and password. The 
authentication service also can send messages to logged-in users, such as a request to change 
their password.

●     TACACS+ authorization fine-tunes what the logged-in user can do. Authorization may 
automatically perform commands upon login, provide access control, or limit session duration. 
Authorization also can limit which commands a user is permitted to perform while logged in to 
the router.

●     TACACS+ accounting collects information used for billing, auditing, and reporting and sends it 
to the TACACS+ server. The accounting records include information about user identities, start 
and stop times, executed commands, number of packets, and number of bytes. The 
information is useful in a security audit and for billing purposes. When TACACS+ is used to 
control user access to a network access server, which then enables the user to use services on 
the network, billing information may be desirable.

TACACS+ Authentication Configuration

The router uses AAA to enable TACACS+. The command aaa new-model enables AAA.

The command that defines a list of authentication methods is as follows:

aaa authentication login {default |list_name} group auth_type [auth_type ...]

The authentication methods are tacacs+, radius, kerberos, local, line password, enable 
password, and none.

After the authentication list has been defined, it is applied to lines. The keyword default automatically 
applies the list to all lines. When you are first configuring authentication, it is a good idea to specify a 
list name and manually apply the list to lines. By doing so, you can test your configuration in a 



controlled manner, without locking yourself out of the router.

To apply the list to lines, use the following commands:

line type number

login authentication list_name

You also need to specify the location of the TACACS+ server. Use the tacacs-server host ip_address 
command to specify the IP address of the server.

Example 9-38 demonstrates a router configuration for TACACS+ authentication.

Example 9-38 Configuring a Router for TACACS+ Authentication

aaa new-model

aaa authentication login tac tacacs+  enable

tacacs-server host 172.16.1.2

line vty 0 1

 login authentication tac

!line vty 2 4

! login authentication tac

!line con 0

! login authentication tac

!line aux 0

! login authentication tac

The authentication list tac first attempts to authenticate using the TACACS+ server, 172.16.1.2. If the 
server is unreachable, the second method, enable password authentication, is used. The second 
method allows access to the router in the event that the TACACS+ server becomes unreachable. The 
list is traversed only if a method is unavailable, not if the method returns a failure. If the TACACS+ 
server is down, for instance, enable password is used. If TACACS+ server is up, but the user ID 
entered is not correct, a failed message is returned and no more methods are attempted.

Notice that the authentication list in Example 9-38 is applied only to line vty 0 and 1. This is for testing 
purposes. If TACACS+ is misconfigured, the router can still be accessed via the other vty lines and the 
console port. Make sure the configuration is correct and working as you expect before applying the list 
to all lines. When the configuration is correct, apply the authentication to all lines.

You can define a TACACS+ shared encryption key using tacacs-server key key.

You must define the same key in the TACACS+ configuration file on the server.



You can use TACACS+ when entering the enable mode on the router as well. Use the command aaa 
authentication enable default group auth_type [auth_type].

The configuration commands in Example 9-39 are added to router Seattle to specify enable-level 
authentication and a TACACS+ shared key.

Example 9-39 Specifying Enable-Level Authentication and a TACACS+ Shared 
Key on Router Seattle

aaa new-model

aaa authentication login tac tacacs+  enable

aaa authentication enable default group  tacacs+ enable

tacacs-server host 172.16.1.2

tacacs-server key mykey

line vty 0 4

 login authentication tac

Example 9-40 shows the TACACS+ server configuration file that corresponds with the router 
configuration in Example 9-39.

Example 9-40 TACACS+ Server Configuration File for Seattle Configuration in 
Example 9-39

Key = "mykey"

User = agnes

{

                    login = cleartext "agnes password"

}

user = admin

{

                    login = cleartext "encrypted"

}

user = $enab15$

{

                    login = cleartext "secret"

}

Two regular users are configured, agnes and admin. The user $enab15$ is used for the enable-level 
authentication, at privilege level 15, which is the default. A side effect of the enable authentication is 
that a user named $enab15$ is created. Someone can log in to the router with this user ID, if he 



knows the password.

With the configuration in Example 9-39, access to the router requires a username and a password. The 
normal router login IDs are used only if the TACACS+ server is unreachable. The username is included 
in certain log messages as a result.

The following log message shows the username, the user's IP address, and the date and time of a 
configuration change:

Jun 20 16:42:32 UTC: %SYS-5-CONFIG_I: Configured from console by agnes on

  vty0 (10.1.2.25)

The preceding represents a very basic configuration. You can do much more with TACACS+, including 
defining groups and specifying privileges based on group membership using DES-encrypted passwords 
or using a UNIX password file.

NOTE

Refer to the TACACS+ User Guide for full implementation specifications. Passwd(5) is 
the supported password file type for the UNIX password file.

TACACS+ Authorization Configuration

You can configure TACACS+ to authorize what users are permitted to do on the router. Access lists can 
be applied, commands can be limited, or PPP and SLIP access can be permitted. A profile is set up on 
the TACACS+ server for each user. The profile specifies what the user is authorized to do. When the 
user logs in to the router, all his actions must be authorized by the contents of the user profile.

The following commands define the authorization methods list and apply the list to lines on the router:

aaa authorization {network | exec | commands level | reverse-access} {default | list-

name} [method1 [method2...]]

line type number

 authorization {arap | exec | commands level | reverse-access} {default | list-name}

The user profile must be configured on the TACACS+ server. The same warning that applied to 
authentication applies here. Make sure to test the authorization configuration well, and configure a 
user who has unrestricted access before using the default list, which gets applied to all lines and 
interfaces, or before applying a named list to all lines. Authorization is applied to the router as soon as 
the command is entered, and it affects even the existing connections. Also, the TACACS+ configuration 
file defaults to no authorization allowed. If TACACS+ authorization is configured on the router and 
applied to all lines, but nothing is specifically permitted in the configuration file, you may find yourself 
unable to perform any commands.



The server configuration file in Example 9-41 limits the commands available to Agnes but provides no 
restrictions on user Admin.

Example 9-41 TACACS+ Server Configuration File Providing Restrictions 
Based on the User

Key = "mykey"

User = agnes

{

           login = cleartext "agnes password"

           cmd = show {

                      permit .*

           }

}

user = admin

{

           default service = permit

           login = cleartext "encrypted"

}

user = $enab15$

{

           login = cleartext "secret"

}

Agnes is permitted to perform any show commands. Nothing else is permitted.

Example 9-42 shows the router commands required to make use of the TACACS+ configuration in 
Example 9-41.

Example 9-42 Router Authorization Configuration Associated with the 
TACACS+ Server Authorization in Example 9-41

aaa authorization commands 1 restrict group tacacs+

aaa authorization commands 15 restrict group tacacs+

line vty 0 1

           authorization commands 1 restrict

           authorization commands 15 restrict

! line vty 2 4



!           authorization commands 1 restrict

!           authorization commands 15 restrict

Remember not to apply the authorization list to all vty ports until after you have fully tested it.

Like TACACS+ authentication, you can do much more with authorization. I have illustrated a very 
simple use of the TACACS+ authorization feature. Access lists can be applied. Autocommands can be 
enforced. Telnet restrictions can be applied.

TACACS+ accounting shows information about what the user connected to the router is doing.

TACACS+ Accounting Configuration

TACACS+ accounting is used to record information about user connections, including the length of 
their connections, commands they entered, and the destination and length of outbound connections. 
This information can prove useful for billing or for a security audit. You enable accounting by using 
AAA accounting commands on the router and by specifying the accounting filename in the TACACS+ 
configuration file on the server.

The following commands define the type of accounting associated with the named list:

aaa accounting {system | network | exec | connection | commands level} {default | list-

name} {start-stop | wait-start | stop-only | none} [method1 [method2...]]

line type number

 accounting {arap | exec | connection | commands level} {default | list-name}

Information about system-level events, such as the system rebooting or accounting configured, is 
enabled with system accounting. Information about PPP, SLIP, or ARAP sessions, including packet and 
byte counts, is provided with network accounting. EXEC accounting provides information about the 
EXEC terminal sessions on the router. The information includes username data, as well as start and 
stop times of the session. Connections accounting provides information about connections made from 
the router. The connection could be telnet, LAT, tn3270, PAD, or rlogin. The data includes 
destination address, protocol, start and stop times, username, and packets and bytes transferred. 
Command accounting provides information about commands entered. The commands are normally 
either level 1 or level 15 commands. Level 1 commands are those that you can enter at any login 
level. Level 15 commands are available only at the enable level. The actual command entered is 
recorded. Even configuration commands are recorded.

To apply the list to lines, use the line subcommand accounting [type] list-name.

To configure accounting on the TACACS+ server, add the command accounting file = filename, as 
demonstrated in Example 9-43.

Example 9-43 Configuring Accounting on the TACACS+ Server

Key = "mykey"

Accounting file = tacacs.acct



User = agnes

{

           login = cleartext "agnes password"

           cmd = show {

                      permit .*

           }

}

user = admin

{

           default service = permit

           login = cleartext "encrypted"

}

user = $enab15$

{

           login = cleartext "secret"

}

Example 9-44 shows the router commands that enable command and EXEC accounting.

Example 9-44 Enabling Command and EXEC Accounting

aaa accounting commands 1 default stop-only group tacacs+

aaa accounting commands 15 default stop-only group tacacs+

aaa accounting exec default start-stop group tacacs+

The line vty subcommands are not needed in this configuration because the default list is used. The 
default list is automatically applied to all lines and interfaces.

Example 9-45 shows the content of an accounting log.

Example 9-45 The Accounting Log Shows Commands and an EXEC Record

ObiWan:/tacacs# more tacacs.acct

Tue Jun 20 10:33:06 2000        172.16.1.7      agnes   tty2  10.1.2.25

stop    task_id=2       start_time=961520711    timezone=UTC service=shell

  priv-lvl=15     cmd=debug aaa accounting <cr>

Tue Jun 20 10:33:57 2000        172.16.1.7      agnes   tty3  10.1.2.25



stop    task_id=4       start_time=961520761    timezone=UTC    service=shell

  priv-lvl=15     cmd=write terminal <cr>

Tue Jun 20 10:34:08 2000        172.16.1.7      agnes   tty3  10.1.2.25

stop    task_id=5       start_time=961520773    timezone=UTC    service=shell

  priv-lvl=15     cmd=configure terminal <cr>

Tue Jun 20 10:34:22 2000        172.16.1.7      agnes   tty3  10.1.2.25

stop    task_id=6       start_time=961520786    timezone=UTC    service=shell

  priv-lvl=15     cmd=interface Serial 1 <cr>

Tue Jun 20 10:34:24 2000        172.16.1.7      agnes   tty3  10.1.2.25

stop    task_id=7       start_time=961520789    timezone=UTC    service=shell

  priv-lvl=15     cmd=shutdown <cr>

Tue Jun 20 10:34:42 2000        172.16.1.7      agnes   tty3  10.1.2.25

stop    task_id=3       start_time=961520734    timezone=UTC    service=shell

  disc-cause=1    disc-cause-ext=1020     elapsed_time=73 nas-rx-speed=0

  nas-tx-speed=0

The accounting log shows commands entered and an EXEC session record. From the log, you can see 
that Agnes shut down serial interface 1 at 10:34:24 on Tuesday, June 20. She terminated her EXEC 
session at 10:34:42 on the same day. Her session lasted for 73 seconds.

You can use accounting for security audits, when the need arises to see what people have been doing 
on the router. You also can use it for billing. Assuming that this information comes from a network 
access server (NAS), and the users are accessing network resources via the NAS, the data shows that 
Agnes was connected for 73 seconds. You could bill her for 73 seconds of network usage.

RADIUS

Remote Access Dial-In User Service (RADIUS) provides the same functionality as TACACS+, with a few 
differences. RADIUS is designed to be used as an authentication, authorization, and accounting server 
for dial-in access to a network. The RADIUS client resides on the router or NAS and communicates 
with a RADIUS server on the network. The main functional difference is that RADIUS does not allow 
users to control which commands can be executed on a router, as TACACS+ does. This makes 
TACACS+ a better choice for controlling access to a router if the network administrator wants to create 
tight control of commands available to various users.

RADIUS was developed by Livingston Enterprises. Its source code is publicly available, and there are 
no use restrictions. There are many server implementations, and the client is supported in many 
different vendor devices.

RADIUS is configured on the Cisco router in the same way that TACACS+ is enabled, via the AAA 
commands. A RADIUS server and a TACACS+ server may both be in the network, authenticating, 
authorizing, and providing accounting for the same router or NAS.

For example, a design goal may be to use the RADIUS server to authenticate users. If the RADIUS 



server is unavailable, the TACACS+ server authenticates. Example 9-46 shows the router configuration 
to enable RADIUS as the primary authentication server and TACACS+ in case of an unavailable 
RADIUS server.

Example 9-46 Enabling RADIUS and TACACS+ on a Router

aaa new-model

aaa authentication login remoteauth radius tacacs+  enable

tacacs-server host 172.16.1.2

radius-server host 172.16.1.2

tacacs-server key mytackey

radius-server key myradkey

line vty 0 4

 login authentication remoteauth

You enable RADIUS in the same way that you enable TACACS+.

Secure Shell

Secure Shell (SSH) enables a user to make a secure, encrypted connection to a router. The 
connection's functionality is similar to an inbound Telnet session. Unlike Telnet, the connection is 
encrypted, providing a huge benefit over Telnet, which sends all data between the client and server 
(the router, in this case) in clear text, readable by any network analyzer collecting data along the 
traffic's path. Telnet's method means that if you are using Telnet to access the router, the passwords 
that you have purposely encrypted on the router are passed in clear text over the network. SSH 
encrypts the connection, so no data is exchanged in clear text between the client and router. RSA 
authentication for the SSH connection is not supported on routers, although it is supported in some 
clients. Authentication is performed by user ID and password only.

SSH is supported on 7200, 75000, and 12000 series routers only, and it is supported on DES and triple 
DES data encryption software images only. IOS supports SSH version 1 only.

To enable SSH on a router, you must perform the following steps:

Step 1. Configure a host name and domain name on your router.

Step 2. Generate an RSA key-pair.

Step 3. Enable local or AAA authentication.

Step 4. If you are using AAA authentication, disable it on the console port.

Step 5. Configure optional SSH parameters.

Host name and domain name are configured using the following commands:

hostname hostname



ip domain-name domainname

If these commands are not configured, errors report when you generate the RSA key-pair.

SSH is automatically enabled when the RSA key-pair is generated. It is disabled when the RSA key-
pair is deleted.

The command crypto key generate rsa generates the RSA key-pair and enables SSH. SSH can use 
either local authentication, enabled using the username command, or AAA authentication. AAA must 
be disabled on the console port.

The SSH parameters modify the default connection behavior. You can modify the timeout value that 
applies to the SSH negotiation phase or you can specify the number of authentication retries. The 
timeout value must not exceed 120 seconds. The default is 120. The number of retries must not 
exceed 5; the default is 5. Use the following command to modify the parameters:

ip ssh {[timeout seconds] | [authentication-retries integer]}

Example 9-47 demonstrates a basic SSH configuration.

Example 9-47 SSH Configuration

hostname Seattle

ip domain-name thecompany.com

crypto key generate rsa

aaa authentication login tacauth tacacs+ local enable

aaa authentication login aaanone none

username agnes password 0 agnespassword

ip ssh time-out 60

ip ssh authentication-retries 2

tacacs-server host 172.16.1.2

tacacs-server key secret

line con 0

 login authentication aaanone

 transport input none

line aux 0

 login authentication tacauth

line vty 0 4

 login authentication tacauth



Note that the AAA authentication list aaanone, which has no AAA authentication method defined, is 
applied to the console port. The other authentication list, tacauth, is applied to all vty ports and the 
auxiliary port.



 
  
Designing Servers to Support Management Processes

Servers supporting management processes should be robust and secure. They have been put in place 
to collect and process data that is required to maintain the integrity of the network. You should place 
the servers in physically secure locations where they can run without being interrupted. The 
operating systems must be secured, and remote access to the servers should be extremely limited. 
Remember that the management stations have access to all the routers in the network, so the 
management stations must be very secure.

The sizing of the servers is based on the vendor recommendations. Use the conservative numbers to 
make sure that there will be enough processing power, memory, and disk space to last well into the 
future, even as the amount of data collected grows.

The servers need to have redundant access to the network devices. They must be able to collect data 
even in the event of a router or link failure. Running a network without visibility about its operating 
condition can be a trying experience.



 
  
Network Robustness

A robust network can withstand outages and keep applications running smoothly.

Router redundancy on LAN segments is required to maintain communication in the event of a router failure. Hosts on the IPv4 
LAN, however, are very likely to rely on a single default router to communicate to hosts on a remote segment. If the default 
router fails, the host is not informed, and therefore sends traffic to a black hole. Router redundancy protocols, such as the 
Virtual Router Redundancy Protocol (VRRP) and Cisco's Hot Standby Routing Protocol (HSRP), alleviate this problem. Both 
protocols enable multiple routers to share a single IP address. Therefore, when hosts are configured with the IP address of the 
default gateway, the shared address is used. One of the routers sharing the address is active. If the active router fails, a 
backup resumes receiving and sending traffic. Hosts have no knowledge of the failure, or even that multiple routers are 
forwarding its traffic off the LAN segment. VRRP is an open standard based on Cisco's HSRP. Cisco IOS Software does not 
support VRRP, so this book does not discuss it. HSRP is further discussed in the following section.

NOTE

RFC 2338 defines VRRP.

HSRP

HSRP allows multiple routers on a single LAN (Ethernet, Token Ring, FDDI) or ISL-encapsulated VLAN to share an IP and MAC 
address. A group of routers is configured as an HSRP group. Each router in the group is configured with the group IP address 
and a priority. One router is active and accepts all packets being forwarded to the group IP/MAC address. If the active router 
fails, another router in the group becomes active and begins accepting the packets.

The router with the highest priority is considered active. The default priority is 100. If more than one router has the same 
priority, the one with the numerically highest IP address on the HSRP interface is active. The router with the second-highest 
priority is the standby router. It becomes active if the active router fails to advertise its presence or begins advertising a lower 
priority. Figure 9-4 illustrates HSRP.

Figure 9-4. HSRP

Router Monet is configured with an interface IP address 172.16.1.100 and an HSRP group 1 IP address 172.16.1.201. Router 
Monet advertises an HSRP priority, for HSRP group 1, as 120. This is higher than the default priority of Picasso. Monet, 



therefore, is the active router for group 1. When Wks1 wants to send a packet toward its default gateway, it ARPs for the HSRP 
group 1 address. Monet responds with the HSRP group 1 MAC address. Wks1 then sends its packets to the HSRP group 1 MAC 
address, which Monet accepts.

The routers in an HSRP group exchange multicast hello packets, advertising priorities. The hello messages are exchanged over 
the link for which the HSRP group is configured. The routers send hello messages, by default, every 3 seconds. If the active 
router fails to send a hello within a configurable period of time, called the holdtime (the default holdtime is every 10 seconds), 
the standby router with the highest priority becomes active and begins accepting the packets destined to the group's MAC 
address.

Multigroup HSRP

Multigroup HSRP (MHSRP) enables an interface to be configured with multiple HSRP groups. You use MHSRP when you want to 
distribute the active router functionality among multiple routers on the same LAN. Some end nodes default route to the IP 
address of one group; other nodes default route to the IP address of a second group. If either default router fails, the other 
resumes the packet forwarding. MHSRP is not supported on Ethernet interfaces that are not allowed to be associated with 
multiple MAC addresses. (Those routers that use Lance Ethernet hardware [1000, 2500, 3000, and 4000] do not support 
multiple groups on a single Ethernet.) Ethernet and FDDI support up to 255 MHSRP groups. Token Ring supports up to three 
groups (group numbers 0, 1, 2). MHSRP is supported over Inter-Switch Link (ISL) encapsulation. Figure 9-5 illustrates MHSRP.

Figure 9-5. MHSRP Groups Can Be Configured on Router Interfaces to Balance Load

In Figure 9-5, Monet is the active router for group 1; Picasso is the active router for group 2. Wks1 defaults to 172.16.1.201, 
group 1; Wks2 defaults to 172.16.1.202, group 2. If Monet stops receiving the HSRP hello messages for group 2, Monet 
becomes the active router for group 2 in addition to group 1.

Configuring HSRP

To enable HSRP, enter the following interface subcommand:

standby [group-number] ip [ip-address [secondary]]

You must specify the IP address on at least one router in the HSRP group. If you do not specify the IP address on a router, the 
address is learned via HSRP hello messages.

The following commands affect how the router participates in HSRP:

standby [group-number] timers hellotime holdtime

standby [group-number] priority priority [preempt [delay delay]]



standby [group-number] [priority priority] preempt [delay delay]

standby [group-number] track type number [interface-priority]

standby [group-number] authentication string

standby use-bia [scope interface]

The timers command modifies the time between hello packets and the maximum elapsed time before a standby router 
considers the active router dead. The default hello time is 3 seconds. The default holdtime is 10 seconds.

The priority and preempt command modifies the HSRP router's priority. preempt enables the router with the highest priority 
to take over the active role, even if the current active router is not having problems. The delay option causes the router to 
postpone preempting the active role for the specified number of seconds before becoming active. The range is from 0 to 3600 
seconds. The default is 0.

A router's LAN interface may be active, and the router itself is operating fine, but the interfaces used to forward packets out of 
the router may have failed. In this case, packets forwarded to the router have to be redirected back to the other router, as 
illustrated in Figure 9-6.

Figure 9-6. HSRP Without Interface Tracking

The workstation sends a packet toward its default gateway, which is the active router, Monet. Monet's outbound interfaces have 
both failed. Monet consults its routing table and forwards the packets back onto the Ethernet and to Picasso for further 
forwarding.

The track command enables HSRP to track the state of outbound interfaces, causing the router to lower its priority and 
possibly transition out of its active state if the interface fails. When the tracked interface fails, the router changes the priority it 
is advertising. If the new priority is lower than a standby router's priority, and the standby router is configured to preempt an 
active router with a lower priority, the standby router becomes active for the group. The router's priority for the group is 
decremented by the amount specified in the interface-priority field. The default value is 10. Multiple interfaces can be tracked. 
If more than one interface is tracked, and each is configured with an interface-priority value, when more than one interface 
fails, the decremented priority amount is cumulative. If no interface-priority value is set on tracked interfaces, and more than 
one goes down, the priority value is decremented by the default 10 but is not cumulative.

The authentication command enables the routers to include an authentication string in the HSRP messages. You must 
configure all routers in a group with the same authentication string, or no string at all. The first router enabled with HSRP 
becomes active. If the authentication strings on subsequently activated routers do not match, the newly activated routers 
remain in a learning state. No router becomes the standby router.

Example 9-48 shows the HSRP configurations from routers Monet and Picasso, illustrated in Figure 9-7 (single-group HSRP).

Figure 9-7. Network Illustrating Single-Group HSRP



Example 9-48 HSRP Configurations for Routers Monet and Picasso in Figure 9-7

Router Monet

interface Ethernet 1

 ip address 172.16.1.100 255.255.255.0

 standby 1 priority 120 preempt delay 10

 standby 1 authentication secret

 standby 1 ip 172.16.1.201

______________________________________________________________________________________

Router Picasso

interface Ethernet 0

 ip address 172.16.1.101 255.255.255.0

 standby 1 authentication secret

 standby 1 ip

Picasso learns the IP address and timers from the HSRP function.

The output from the show standby command on Picasso in Example 9-49 shows the learned information.

Notice that Picasso's state is Standby, with priority 100. The active router address is 172.16.1.100, Monet. The HSRP address is 
172.16.1.201. The HSRP MAC address that is associated with this address is 0000.0c07.ac01.

Example 9-49 show standby Command Output Shows the IP Address and Timer Information 
Picasso Learns from the HSRP Function

Picasso#show standby

Ethernet0 - Group 1

  Local state is Standby, priority 100

  Hellotime 3 holdtime 10



  Next hello sent in 00:00:00.340

  Hot standby IP address is 172.16.1.201

  Active router is 172.16.1.100 expires in 00:00:10

  Standby router is local

  Standby virtual mac address is 0000.0c07.ac01

  4 state changes, last state change 00:02:57

Pings to the HSRP address from a workstation in Example 9-50 illustrate the failure of the active router and recovery by the 
standby router.

Example 9-50 Pings to the HSRP Address Indicate Active Router Failure and Standby Router 
Recovery

ObiWan:~# ping 172.16.1.201

PING 172.16.1.201 (172.16.1.201): 56 data bytes

64 bytes from 172.16.1.201: icmp_seq=0 ttl=255 time=5.7 ms

64 bytes from 172.16.1.201: icmp_seq=1 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=2 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=3 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=4 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=5 ttl=255 time=3.4 ms

64 bytes from 172.16.1.201: icmp_seq=6 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=17 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=18 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=19 ttl=255 time=3.5 ms

64 bytes from 172.16.1.201: icmp_seq=20 ttl=255 time=3.4 ms

64 bytes from 172.16.1.201: icmp_seq=21 ttl=255 time=3.4 ms

The workstation is sending pings every second. Packets 1–6 succeeded. Packets 7–16 failed. As you can see, it took 10–11 
seconds for the standby router to begin accepting packets for the HSRP MAC address. The standby router stopped receiving 
hello messages from the active router when its LAN interface failed. It waits for its hold period of 10 seconds and then begins 
accepting packets.

The additions to the configuration illustrated in Example 9-51 enable HSRP interface tracking on Monet. Figure 9-8 illustrates 
the benefits of HSRP interface tracking. Monet's Serial 1 and Ethernet 0 lead to remote resources, which are also accessible via 
Picasso. The design goal is to allow workstations on the LAN to default route to Monet, as long as one or more outbound 
interfaces (Serial 1 and Ethernet 0) are up. If both fail, the workstations default to Picasso instead.

Figure 9-8. Network Illustrating HSRP Interface Tracking



Example 9-51 Enabling HSRP Interface Tracking on Router Monet

Monet

interface Ethernet1

 standby 1 track Ethernet0 15

 standby 1 track Serial1 15

____________________________________________________________________________________________________________

Picasso

interface Ethernet0

 standby 1 priority 100 preempt delay 10

Note that Monet is tracking both Serial 1 and Ethernet 0. If only one tracked interface goes down, Monet's priority is 105, still 
higher than Picasso's, so Monet continues to be active. If both interfaces fail, Monet begins advertising its priority as 90 rather 
than 120. After waiting the preempt delay time, Picasso sends an HSRP coup message, indicating to Monet that it is taking over 
as the active router. Monet resigns as active router and listens for other HSRP messages to determine whether it is to become 
the standby router. You must add the preempt statement to Picasso's HSRP configuration to enable the takeover. When one of 
Monet's interfaces becomes active again, its priority rises to 105. Monet has preempt and delay configured, so Monet waits 10 
seconds before taking over as the active router for group 1.

Configuring MHSRP

Figure 9-9 illustrates Multigroup HSRP.

Figure 9-9. Network Illustrating MHSRP



The configurations in Example 9-52 are for MHSRP on routers Monet and Picasso.

Example 9-52 Configuring MHSRP on Routers Monet and Picasso

Router Monet

interface Ethernet 1

 ip address 172.16.1.100 255.255.255.0

 standby 1 priority 120 preempt delay 10

 standby 1 authentication secret

 standby 1 ip 172.16.1.201

 standby 2 authentication secret

 standby 2 ip

____________________________________________________________________________________________________________

Router Picasso

interface Ethernet 0

 ip address 172.16.1.101 255.255.255.0

 standby 1 authentication secret

 standby 1 ip

 standby 2 priority 120 preempt delay 10

 standby 2 authentication secret

 standby 2 ip 172.16.1.202

Monet is the active router for group 1, with HSRP IP address 172.16.1.201; Picasso is the active router for group 2, with HSRP 
IP address 172.16.1.202. To achieve load balancing, configure half the workstations on the LAN with default gateway 
172.16.1.201 and the other half with default gateway 172.16.1.202.



 
  
Lab

A network lab provides a platform on which to test new configurations, IOS versions, and features.

Because a lab's purpose is to test anything new before implementing it in the live network, the lab's 
construction reflects the live network. An effective lab does not have to be a full-scale reproduction of 
the live network, but it is composed of the same type of routers, interfaces, and Cisco IOS Software. 
It runs the same routing protocols and routing features. Anything that is implemented in the live 
network can be reproduced in the lab.

The lab is isolated from the production network, but those who need to use it can easily access it. 
One way to keep the functionality of the lab isolated from the production network while still enabling 
access to the lab from the network is to use a terminal server. The terminal server's LAN interface 
connects to the production network. Its asynchronous ports connect to the console ports of the lab 
routers. Most terminal servers allow reverse Telnet connections to devices connected to their 
asynchronous ports. Each async port is associated with a protocol port number. If you Telnet to the 
IP address of the TS and specify the appropriate protocol port for the desired async port, you connect 
to the async device connected to that port. Figure 9-10 illustrates the interconnection of the 
production and lab networks using a terminal server.

Figure 9-10. Terminal Server Provides Access to an Isolated Lab from the 
Production Network

The information in Figure 9-10 shows that by Telneting to 172.16.1.254 port 2001 from the 
production network, the terminal server connects you to the device connected to async port 1, router 
R1.

A configuration entry on the terminal server associates host R1 to IP address and port number 
172.16.1.254 2001. A Telnet session initiated from the terminal server to R1 connects to router R1 
via async port 1.

A lab is used to test all network designs and changes taking place in the network, including 
configuration changes, router additions, IOS upgrades, and new feature additions. Lab testing is an 
integral part of a good change policy. A successful test ensures that the network change will be 



successful and will not present any negative surprises. The test assures business units that due 
diligence is being performed by the network engineers and every effort is being made to keep the 
network running optimally.

It is particularly important to thoroughly test new designs, feature additions, and Cisco IOS Software 
upgrades. These are considered major upgrades to any network.

Tests may not work out as expected, and the results may not be valid if you do not have a good test 
plan. A test plan describes the item to be tested and defines how it will be tested. Writing a clear test 
plan before beginning the test saves you time. You clarify exactly what needs to be tested, as well as 
define the steps necessary to perform the test. Very precisely define the steps. In fact, the plan 
should be so well-defined that anyone can follow it, and that any two people following the plan 
perform the exact same steps and get the same results.

Labs also provide an area of the network where you can just play around with the commands, testing 
the effect of misconfigurations and practicing troubleshooting. The lab can be used in this way for 
training and CCIE preparation. Only with a lab can you thoroughly experiment with configurations, 
break things to see what happens, and determine what symptoms identify misconfigurations. The 
depth of knowledge you need in the CCIE lab test requires that you have this kind of experience with 
Cisco IOS Software.
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Looking Ahead

This chapter concludes the in-depth look at routing TCP/IP with exterior routing protocols and other 
techniques used in interdomain routing. You should know this material thoroughly before taking the 
CCIE exam. Routing TCP/IP is not the only topic covered on the exam, however. You need to study 
other protocols, such as SNA, IPX, and AppleTalk. If you have not already done so, you also need to 
study LAN and WAN switching.



 
  
Command Summary

Table 9-6 provides a list and description of the commands discussed in this chapter.

Table 9-6. Command Summary

Command Description 

snmp-server community community-
string [view view-name] [ro | rw][access-
list number] 

Defines the community string, what 
predefined view is available using this 
community string, the type of access 
this community string allows (ro or 
rw), and an associated access list, 
specifying the devices allowed to use 
this community string. 

snmp-server view view-name oid-tree 
{included | excluded} 

Limits which MIB objects an SNMP 
manager can access. 

snmp-server system-shutdown Enables an SNMP manager to send a 
message to users logged in to the 
router, and to then reboot the router, 
via SNMP. 

snmp-server tftp-server-list access-
list_number 

Limits the capability for TFTP servers 
to load configuration files via SNMP to 
those specified in the access list. 

snmp-server host host [version {1 | 
2c}] community-string [udp-port port] 
[trap-type] 

Specifies a host to which to send 
traps. 

snmp-server enable traps trap-type 
trap-option 

Makes traps of the listed types 
available for sending. 

snmp trap link-status Enables link up/down traps on the 
interface. 

show snmp Shows SNMP statistics. 

rmon alarm number variable interval 
{delta | absolute} rising-threshold 
value [event-number] falling-threshold 
value [event-number] [owner string] 

Defines an alarm and specifies when 
the alarm is triggered and cleared and 
what event the alarm triggers. 

rmon event number [log] [trap 
community] [description string] [owner 
string] 

Defines an RMON event and specifies 
where to log the event when it is 
triggered by an alarm. 



show rmon alarms Displays information about the defined 
alarms. 

show rmon events Displays the event table. 

logging buffered [size] Enables buffered logging on the router 
and specifies the size of the log. 

show logging Displays the buffered log. 

clear logging Clears the buffered log. 

logging host Specifies the host name or IP address 
of the host that will receive syslog 
messages. 

terminal monitor Sends log information to the current 
terminal line. 

service timestamps log uptime Adds time stamps to the log. 

service timestamps log datetime 
[msec] [localtime] [show-timezone] 

Adds time stamps to the log. 

logging console level Limits messages logged to the 
console. 

logging monitor level Limits messages logged to the 
terminal line. 

logging trap level Limits messages logged to the syslog 
servers. 

logging facility facility-type Defines the facility type used when 
sending log messages to a syslog 
server. 

snmp-server enable traps syslog Enables SNMP traps for syslog 
messages. 

logging history level Specifies the level of syslog messages 
to be sent via SNMP. 

ntp server ip_address [version number] 
[key keyid] [source interface] [prefer] 

Creates a server association so that 
this router can synchronize its clock to 
another NTP clock source. 

ntp peer ip_address [version number] 
[key keyid] [source interface] [prefer] 

Creates a peer association so that this 
router can synchronize its clock to 
another device, or so that another 
device can synchronize to it. 

ntp access-group {query-only | serve-
only | serve | peer} access-list-number 

Controls access to the router's NTP 
services. 

clock calendar-valid Enables the router's calendar as an 
authoritative time source. 



ntp master [stratum] Configures the IOS as an NTP master 
clock to which peers synchronize. 

ntp update-calendar Updates the router's calendar with the 
time/date learned via NTP. 

ntp authenticate Globally enables NTP authentication. 

ntp authentication-key number md5 
key 

Defines the NTP authentication key. 

ntp trusted-key number Lists key numbers, which have already 
been defined with the ntp 
authentication-key command, which 
the server must include in its NTP 
packets before this router will 
synchronize to it. 

ip accounting Enables IP accounting on an interface. 

ip accounting-threshold threshold Sets the maximum number of entries 
that can be stored in the accounting 
table. 

show ip accounting [checkpoint] 
[access-violations] 

Displays IP accounting data. 

clear ip accounting Clears IP accounting data. 

ip route-cache flow Enables NetFlow on an interface. 

ip flow-export destination ip-address 
udp-port 

Specifies the IP address and UDP port 
number for the host receiving NetFlow 
data. 

ip flow-export [version 1 | version 5 
[origin-as | peer-as ]] 

Specifies the NetFlow version to use 
when sending data to the flow 
collector and which AS number to 
send, the traffic's origin AS or the 
router's peer AS. 

show ip flow export Displays information about how the 
data is exported. 

show ip cache flow Displays the data to be exported. 

ip cef Enables CEF globally and on all 
interfaces that support it. 

ip flow-aggregation cache {as | 
destination-prefix | prefix | protocol-port | 
source-prefix} 

Defines an aggregated NetFlow cache. 

cache entries number_of_entries Specifies the maximum number of 
entries in the aggregated cache. 



cache timeout inactive seconds Specifies the timeout value for 
inactive entries in the aggregated 
cache. 

cache timeout active minutes Modifies the number of minutes that 
an active aggregated cache entry 
remains active. 

export destination ip_address udp_port Specifies the export destination for the 
aggregated cache. 

enabled Enables the aggregated cache. 

show ip cache flow aggregation as Displays the AS cache data. 

show ip cache flow aggregation 
destination-prefix 

Displays the destination-prefix cache 
data. 

show ip cache flow aggregation 
source-prefix 

Displays the source-prefix cache data. 

show ip cache flow aggregation 
protocol-port 

Displays the protocol port cache data. 

enable –secret password Defines the enable-level password. 

service password-encryption Encrypts passwords when viewing the 
configuration. 

access-class access-list_1-199_or_1300-
2699 [in | out] 

Specifies an access list to use before 
permitting an incoming or outgoing 
terminal session. 

transport input telnet ssh Limits the protocols permitted to 
establish terminal sessions. 

transport input none Disables all terminal protocols on the 
configured line. 

exec-timeout Defines the timeout value for inactive 
terminal sessions. 

service tcp-keepalives-in Enables TCP keepalive messages on 
incoming connections. 

no ip directed-broadcast Disables IP directed broadcasts on 
interfaces. 

no ip source-route Globally disables the forwarding of 
packets that include source-route 
information. 

scheduler interval milliseconds Configures the interval for the router 
to stop handling interrupts and attend 
to other business. 



scheduler allocate interrupt-time 
process-time 

Defines the maximum amount of time 
the router spends on fast switching 
within any one network interrupt 
context, and the minimum amount of 
time the router spends at the process 
level when network interrupts are 
disabled. 

no service tcp-small-servers Disables the TCP small servers. 

no service udp-small-servers Disables the UDP small servers. 

no service finger Disables the Finger server. 

no ip bootp server Disables the BOOTP server. 

aaa new-model Enables AAA. 

aaa authentication login {default | 
list_name} group auth_type [auth_type 
…] 

Defines an AAA authentication method 
list. 

login authentication list_name Specifies which defined AAA 
authentication method list to use 
when authenticating a connecting 
user. 

tacacs-server host ip_address Specifies the TACACS server. 

radius-server host ip_address Specifies the RADIUS server. 

tacacs-server key key Defines a shared key to use between 
the router and TACACS server. 

radius-server key key Defines a shared key to use between 
the router and RADIUS server. 

aaa authentication enable default 
group auth_type [auth_type] 

Defines the type of authentication to 
use for enable-level access. 

aaa authorization {network | exec | 
commands level | reverse-access} 
{default | list-name} [method1 
[method2…]] 

Defines an AAA authorization method 
list. 

authorization {arap | exec | 
commands level | reverse-access} 
{default | list-name} 

Specifies which defined AAA 
authorization method list to use for 
connecting users. 

aaa accounting {system | network | 
exec | connection | commands level} 
{default | list-name} {start-stop | wait-
start | stop-only | none} [method1 
[method2…]] 

Defines an AAA accounting method list 
and defines what type of information 
to account. 



accounting {arap | exec | connection | 
commands level} {default | list-name} 

Specifies which defined AAA 
accounting method list to use for 
connecting user sessions. 

hostname hostname Defines the router's hostname, 
required for RSA crypto generation. 

ip domain-name domainname Defines the router's domain name, 
required for RSA crypto generation. 

crypto key generate rsa Generates an RSA crypto key (and 
enables SSH). 

ip ssh {[timeout seconds] | 
[authentication-retries integer]} 

Modifies SSH parameters. 

standby [group-number] ip [ip-address 
[secondary]] 

Defines the HSRP address for the 
specified standby group. 

standby [group-number] timers 
hellotime holdtime 

Modifies the timers for the specified 
standby group. 

standby [group-number] priority priority 
[preempt [delay delay]] 

Modifies the priority of the router in 
the specified standby group. Also 
specifies the preemption 
characteristics. 

standby [group-number] [priority 
priority] preempt [delay delay] 

Specifies the preemption 
characteristics. Also modifies the 
priority of the router in the specified 
standby group. 

standby [group-number] track type 
number [interface-priority] 

Identifies a standby tracked interface. 

standby [group-number] authentication 
string 

Defines a standby authentication 
string. 

standby use-bia [scope interface] Specifies that the burnt-in address is 
to be used as the standby MAC 
address. 

show standby Displays current HSRP properties. 



 
  
Review Questions

1: Explain the difference between SNMP polls and traps.

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

2: If you specify the severity level of messages logged to be errors, what other levels of 
messages are logged?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

3: You look at a router interface and see that there are unusual traffic patterns. Normally, all 
traffic is inbound, but now there is outbound traffic. How can you quickly determine the 
source and destination of the traffic?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________



 
  
Configuration Exercises

1: Configure a router to accept polls from management stations 172.16.1.2 and 172.16.1.3 
only. Do not allow write access to the stations. Allow the stations to read information 
about the SNMP MIB II interface entries only. Allow station 172.16.1.4 to read any MIB 
variable and allow it to load and save configuration files via SNMP. Send logging 
information at the Notification level, via SNMP, to 172.16.1.4.

2: Configure the router to send an SNMP trap to 172.16.1.4 when the 5-minute average CPU 
exceeds 90%. Send the trap whenever the CPU goes from below 85% to above 90% in 
any 60-second interval.

3: Configure a router to use NTP to update its own time and date based on clock information 
from router 172.16.100.100. Do not allow the other router to update its clock based on 
information from your router.

4: Configure a NetFlow aggregation cache, grouping data based on the source and 
destination prefix. Use the peer AS in the data, and export the data to 172.16.1.4.

5: Configure two routers on an Ethernet segment to provide backup for each other. Router A 
is primary, and router B takes over when A fails. When A recovers, it becomes the 
primary router again. Router A has two serial links, serial 0 and serial 1, that forward 
traffic to various destinations. If either link fails, router B takes over as the primary 
router.
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Appendix A. The show ip bgp neighbors 
Display
This appendix explains the details of the large amount of information returned by the show ip bgp 
neighbors command. Some of the information is self-explanatory, and much of the information has 
been discussed in various chapters in this book.

Example A-1 shows a typical neighbor display, with each line numbered for easy reference. Table A-1 
analyzes this sample display one line at a time.

Example A-1 Typical Display from the show ip bgp neighbors Command

TeddyBear#show ip bgp neighbors 10.100.1.1

1. BGP neighbor is 10.100.1.1,  remote AS 6500, internal link

2.  Member of peer-group Pooh for session parameters

3.   BGP version 4, remote router ID 10.100.1.1

4.   BGP state = Established, up for 00:04:06

5.   Last read 00:00:07, hold time is 180, keepalive interval is 60 seconds

6.   Neighbor capabilities:

7.     Route refresh: advertised and received

8.     Address family IPv4 Unicast: advertised and received

9.     Address family IPv4 Multicast: advertised and received

10.   Received 7 messages, 0 notifications, 0 in queue

11.   Sent 7 messages, 0 notifications, 0 in queue

12.   Route refresh request: received 0, sent 0

13.   Minimum time between advertisement runs is 5 seconds

14.  For address family: IPv4 Unicast

15.   BGP table version 1, neighbor version 1

16.   Index 1, Offset 0, Mask 0x2

17.   Pooh peer-group member

18.   0 accepted prefixes consume 0 bytes

19.   Prefix advertised 0, suppressed 0, withdrawn 0

20.  For address family: IPv4 Multicast



21.   BGP table version 1, neighbor version 1

22.   Index 1, Offset 0, Mask 0x2

23.   0 accepted prefixes consume 0 bytes

24.   Prefix advertised 0, suppressed 0, withdrawn 0

25.   Connections established 1; dropped 0

26.   Last reset 00:04:17, due to Address family activated

27. Connection state is ESTAB, I/O status: 1, unread input bytes: 0

28. Local host: 10.100.1.2, Local port: 11012

29. Foreign host: 10.100.1.1, Foreign port: 179

30. Enqueued packets for retransmit: 0, input: 0  mis-ordered: 0 (0 bytes)

31. Event Timers (current time is 0x3ABFA00):

32. Timer          Starts    Wakeups            Next

33. Retrans             8          0             0x0

34. TimeWait            0          0             0x0

35. AckHold             7          5             0x0

36. SendWnd             0          0             0x0

37. KeepAlive           0          0             0x0

38. GiveUp              0          0             0x0

39. PmtuAger            0          0             0x0

40. DeadWait            0          0             0x0

41. iss: 2227710177  snduna: 2227710341  sndnxt: 2227710341     sndwnd:  16221

42. irs: 1632859231  rcvnxt: 1632859395  rcvwnd:      16221  delrcvwnd:    163

43. SRTT: 540 ms, RTTO: 3809 ms, RTV: 1364 ms, KRTT: 0 ms

44. minRTT: 8 ms, maxRTT: 300 ms, ACK hold: 200 ms

45. Flags: higher precedence, nagle

46. Datagrams (max data segment is 536 bytes):

47. Rcvd: 11 (out of order: 0), with data: 7, total data bytes: 163

48. Sent: 14 (retransmit: 0), with data: 7, total data bytes: 163

TeddyBear#



Table A-1. Line-by-Line Explanation of show ip bgp neighbors Command 
Output

Line # Syntax Explanation 

1 BGP neighbor is 
10.100.1.1, remote AS 
6500, internal link 

This line is probably the most self-
explanatory of the entire display. The IP 
address shown is the remote end point of 
the TCP connection between the BGP 
peers. The remote peer is in AS 6500, and 
the peer is internal—that is, this is an IBGP 
connection. 

2 Member of peer-group 
Pooh for session 
parameters 

A peer group named Pooh has been 
configured on this router, and this 
neighbor is a member of the peer group. 

3 BGP version 4, remote 
router ID 10.100.1.1 

BGP-4 is running on this peering session. 
Recall from Chapter 2, "Introduction to 
Border Gateway Protocol 4," that BGP 
automatically negotiates the version with 
its peers, beginning with the most recent 
version supported. The BGP router ID of 
this peer is 10.100.1.1, which in this case 
is the same as the remote end point 
address—due to the fact that the peering 
is between loopback interfaces, which also 
are used to determine the router ID. If the 
peering end points were between physical 
interface addresses, the router ID would 
likely not be the same. 

4 BGP state = Established, 
up for 00:04:06 

The neighbor state is established, which 
indicates a full adjacency. The session has 
been up for 4 minutes and 6 seconds. 

5 Last read 00:00:07, hold 
time is 180, keepalive 
interval is 60 seconds 

BGP last read a message from this peer 7 
seconds ago. The holdtime is 180 seconds, 
and the keepalive interval is 60 seconds. 
These are the default values; recall from 
Chapter 2 that BGP neighbors can 
negotiate these times. 

6 Neighbor capabilities: The lines indented below this line 
summarize the capabilities of the peer. 



7 Route refresh: advertised 
and received 

The local router and the peer support the 
BGP Soft Reset Enhancement. (The 
capability has been advertised by the local 
router and received from the peer.) This 
feature was released with IOS 12.0. It 
allows policy changes to automatically be 
advertised to the peer without having to 
configure neighbor soft-
reconfiguration. 

8 Address family IPv4 
Unicast: advertised and 
received 

The local router and the peer are both 
running Multiprotocol BGP (MBGP). The 
peers have been activated to support 
unicast NLRI. See Chapter 7, "Large-Scale 
IP Multicast Routing," for a discussion of 
MBGP and address family indicators. As 
with the preceding line, the capability has 
been advertised to the peer and has been 
received from the peer. 

9 Address family IPv4 
Multicast: advertised and 
received 

Both peers are activated to support MBGP 
multicast NLRI. 

10 Received 7 messages, 0 
notifications, 0 in queue 

Seven BGP messages, including 
keepalives, have been received from this 
peer. No notification messages have been 
received, and no received messages are in 
the queue. 

11 Sent 7 messages, 0 
notifications, 0 in queue 

Seven BGP messages, including 
keepalives, have been sent to this peer. No 
notification messages have been sent, and 
no messages to be sent are in the queue. 

12 Route refresh request: 
received 0, sent 0 

No route refresh requests (for the BGP 
Soft Reset Enhancement) have been 
received from or sent to this peer. 

13 Minimum time between 
advertisement runs is 5 
seconds 

Update messages can be sent no closer 
than 5 seconds apart. 

14 For address family: IPv4 
Unicast 

The indented lines beneath this line pertain 
to the unicast BGP routing table. 

15 BGP table version 1, 
neighbor version 1 

The neighbor has been updated with 
version 1 of the unicast BGP routing table, 
and the local router has been updated with 
version 1 of the peer's unicast BGP table. 



16 Index 1, Offset 0, Mask 
0x2 

Internal indices to reference the specific 
peer. These fields have significance only to 
Cisco personnel who have access to the 
source code. 

17 Pooh peer-group member The neighbor is a member of the unicast 
peer group Pooh. 

18 0 accepted prefixes 
consume 0 bytes 

This line specifies how many unicast 
prefixes have been accepted from the peer 
and how many bytes of memory the 
prefixes have consumed. In this case, no 
prefixes have been received. 

19 Prefix advertised 0, 
suppressed 0, withdrawn 
0 

No unicast prefixes have been advertised 
to, suppressed from, or withdrawn from 
this peer. 

20 For address family: IPv4 
Multicast 

The indented lines beneath this line pertain 
to the multicast BGP routing table. 

21 BGP table version 1, 
neighbor version 1 

The neighbor has been updated with 
version 1 of the multicast BGP routing 
table, and the local router has been 
updated with version 1 of the peer's 
multicast BGP table. 

22 Index 1, Offset 0, Mask 
0x2 

Internal indices to reference the specific 
peer. These fields have significance only to 
Cisco personnel who have access to the 
source code. 

23 0 accepted prefixes 
consume 0 bytes 

This line specifies how many multicast 
prefixes have been accepted from the peer 
and how many bytes of memory the 
prefixes have consumed. In this case, no 
prefixes have been received. 

24 Prefix advertised 0, 
suppressed 0, withdrawn 
0 

No multicast prefixes have been advertised 
to, suppressed from, or withdrawn from 
this peer. 

25 Connections established 
1; dropped 0 

A BGP connection and adjacency have 
been established with this peer only once, 
and no connection to this peer has ever 
been dropped. 

26 Last reset 00:04:17, due 
to Address family 
activated 

The last reset of the peer session occurred 
4 minutes and 17 seconds ago, when 
MBGP was activated. 



27 Connection state is 
ESTAB, I/O status: 1, 
unread input bytes: 0 

Connection state is the state of the peer 
connection—essentially, a repeat of the 
state shown on line 4. I/O status describes 
the internal status of the connection. 
Unread input bytes is the number of bytes 
not yet processed by BGP. 

28 Local host: 10.100.1.2, 
Local port: 11012 

This line is the local IP socket, consisting 
of the IP address and the local TCP port 
number. 

29 Foreign host: 10.100.1.1, 
Foreign port: 179 

This is the socket of the peer, consisting of 
the peer's IP address and TCP port. 
Comparing line 28 with this line, you can 
see that the local router initiated the TCP 
connection, because it uses an ephemeral 
port and connects to the well-known BGP 
port 179. 

30 Enqueued packets for 
retransmit: 0, input: 0 mis-
ordered: 0 (0 bytes) 

The number of packets waiting in a queue 
for retransmit, for input, or misordered 
packets. 

31 Event Timers (current 
time is 0x3ABFA00): 

This line is the header for the event timers 
that follow. 

32 Timer, Starts, Wakeups, 
Next 

The column headers for the event timers. 

33 Retrans Determines how long a transmitted frame 
can remain unacknowledged before the 
Cisco IOS Software polls for an 
acknowledgment. 

34 TimeWait Determines how long the local TCP 
connection waits to be sure that the 
remote TCP host has received the 
acknowledgment of its connection-
termination request. 

35 AckHold Number of times the system failed to 
piggyback data required on a TCP 
acknowledgment. Such piggybacking can 
significantly reduce network traffic. 

36 SendWnd Timers for sending 0 window probes. 
Essentially, this field reflects how often 
users overload the remote host with data 
and how long it takes users to send it. For 
most normal Cisco IOS Software 
applications, this value should be 0. 



37 KeepAlive Determines the frequency (in seconds) at 
which the Cisco IOS Software sends 
messages to itself (Ethernet and Token 
Ring) or to the other end (serial) to ensure 
that a network interface is alive. The 
keepalive interface configuration 
command is used to set this timer. 

41 iss: 2227710177 snduna: 
2227710341 sndnxt: 
2227710341 sndwnd: 
16221 

These are sequence numbers used by the TCP 
connection.

iss = The initial send sequence number.

snduna = The send unanswered sequence number; 
the last sequence number the local host sent but 
has not received an acknowledgment for.

sndnxt = The sequence number the local router will 
send next.

sndwnd = The TCP window size of the remote peer.

42 irs: 1632859231 rcvnxt: 
1632859395 rcvwnd: 
16221 delrcvwnd: 163 

These sequence numbers apply to the remote side 
of the TCP connection.

irs = The initial receive sequence number.

rcvnxt = The last receive sequence number 
the local router has acknowledged.

rcvwnd = The local router's TCP window size.

delrcvwnd = Delayed receive window—data 
the local host has read from the connection 
but has not yet subtracted from the receive 
window the host has advertised to the remote 
host. The value in this field gradually 
increases until it is larger than a full-sized 
packet, at which point it is applied to the 
rcvwnd field.



43 SRTT: 540 ms, RTTO: 
3809 ms, RTV: 1364 ms, 
KRTT: 0 ms 

These figures pertain to the latency of the 
connection between the peer.

SRTT = The calculated smooth round-trip time.

RTTO: The round-trip timeout.

RTV = The variance of the round-trip time.

KRTT = The Karn round-trip time; new round-trip 
timeout (using the Karn algorithm). This field 
separately tracks the round-trip time of packets 
that have been retransmitted.

44 minRTT: 8 ms, maxRTT: 
300 ms, ACK hold: 200 ms 

These values are a continuation of the performance 
values begun on line 43.

minRTT = The smallest recorded round-trip time.

maxRTT = The largest recorded round-trip time.

ACK hold = The time the local router will delay an 
acknowledgment so that it can piggyback data onto 
it.

45 Flags: higher precedence, 
nagle 

IP precedence of the BGP packets. 

46 Datagrams (max data 
segment is 536 bytes): 

This is the header for the next two lines, 
which provide statistics about BGP Updates 
sent to and received from the peer. It also 
shows that the maximum TCP segment 
size is 536 bytes. 

47 Rcvd: 11 (out of order: 0), 
with data: 7, total data 
bytes: 163 

Statistics on received updates, including 
total received, datagrams with data, and 
total bytes. 

48 Sent: 14 (retransmit: 0), 
with data: 7, total data 
bytes: 163 

Statistics of BGP updates sent to the peer, 
including total sent, number of updates 
containing data, and total bytes. 



 
  

Appendix B. A Regular-Expression Tutorial
This tutorial follows the excellent presentation made by Jeffrey E. F. Friedl in his book Mastering 
Regular Expressions. The book is listed as recommended reading at the end of this appendix, 
although almost everything you need to know about regular expressions (regex) to work with Cisco 
IOS Software is covered in the very first chapter of the book. Nonetheless, the book recommendation 
stands because you are very likely to find regular expressions useful in a wide variety of applications 
within the data communications and data processing industry. Friedl presents the subject clearly and 
with a liberal dose of humor.



 
  
Literals and Metacharacters

A typical AS_PATH filter might look like this:

ip as-path access-list 83 permit ^1_701_(_5646_|_1240_).*

The string of characters following the permit keyword is a regular expression. The regex is 
composed of literals and metacharacters. Literals are just text characters that describe what the 
regex will try to match. In this example, 1, 701, 5646, and 1240 are literals describing autonomous 
system numbers.

Metacharacters are special regular-expression characters that act as operators, telling the regex how 
to perform matches. Table B-1 shows the metacharacters available for use with Cisco IOS; the 
remainder of this appendix describes how each of the metacharacters are used.

Table B-1. Regular-Expression Metacharacters Relevant to AS_PATH Access 
Lists

Metacharacter What It Matches 

. Any single character, including white space. 

[] Any character listed between the brackets. 

[^] Any character except those listed between the brackets. (The 
caret is placed before the sequence of literals.) 

- (Hyphen) Any character in the range between the two literals 
separated by the hyphen. 

? Zero or one instances of the character or pattern. 

* Zero or more instances of the character or pattern. 

+ One or more instances of the character or pattern. 

^ Start of a line. 

$ End of a line. 

| Either of the literals separated by the metacharacter. 

_ (Underscore) A comma, the beginning of the line, the end of the 
line, or a space. 



 
  
Delineation: Matching the Start and End of Lines

Consider the following AS_PATH filter:

ip as-path access-list 20 permit 850

This filter matches any AS_PATH that includes the string 850. Examples of matching AS_PATHs are 
(850), (23, 5, 850, 155), and (3568, 5850, 310). A match is found whether the string is alone in 
the attribute, one of several AS numbers in the attribute, or even a part of a larger AS number in the 
attribute.

Suppose, however, that you want to match only an AS_PATH that contains the single AS number 
850. For this, you must be able to delineate the beginning and end of a line. A caret (^) matches the 
beginning of a line, and a dollar sign ($) matches the end of a line. So,

ip as-path access-list 20 permit ^850$

tells the regex to match the beginning of the line, followed immediately by the string 850, followed 
immediately by the end of the line.

You also can use the two metacharacters to match an empty AS_PATH:

ip as-path access-list 21 permit ^$

In this case, the regex matches the beginning of a line followed immediately by the end of the line; if 
any other characters exist between the beginning and end of the line, no match is made.



 
  
Bracketing: Matching a Set of Characters

Brackets enable you to specify a range of single characters. For example:

ip as-path access-list 22 permit ^85[0123459]$

This filter matches AS_PATHs with any single AS number 850, 851, 852, 853, 854, 855, or 859.

If the range of characters is contiguous, you can specify just the beginning and end character in the 
sequence:

ip as-path access-list 23 permit ^85[0-5]$

This filter matches the same group of AS numbers as the preceding filter, with the exception of 859.



 
  
Negating: Matching Everything Except a Set of Characters

When a caret is used inside a bracket, it negates the range specified in the bracket. As a result, the 
regex matches on everything except the range. For example:

ip as-path access-list 24 permit ^85[^0-5]$

This filter looks like the preceding filter, with the exception of the added caret inside the bracket, 
signifying "not 0–5." The regex will therefore match an AS_PATH with a single AS number in the 
range 856–859.



 
  
Wildcard: Matching Any Single Character

A dot (.) matches any single character. Interestingly, the single character may be a space. Consider 
the following filter:

ip as-path access-list 24 permit ^85.

This filter matches an AS_PATH that begins with an AS number in the range 850–859. And because 
the dot also matches white space, AS number 85 will match.



 
  
Alternation: Matching One of a Set of Characters

A bar (|) is used to specify an OR operation. That is, a literal on one or the other side of the bar can 
be matched. For example:

ip as-path access-list 25 permit ^(851 | 852)$

This filter matches an AS_PATH in which there is a single AS number, which is either 851 or 852. You 
may extend the OR function to check for more than two possible matches:

ip as-path access-list 26 permit ^(851 | 852 | 6341 | 53)$



 
  
Optional Characters: Matching a Character That May or May 
Not Be There

The question mark (?) matches zero or one instances of a literal. For example:

ip as-path access-list 27 permit ^(850)?$

This filter matches an AS_PATH in which there is either a single AS number 850 or an empty list. 
Note the use of parentheses here, to show that the metacharacter applies to the entire AS number. If 
the expression 850? is used, the metacharacter applies only to the last character. The expression 
would match 85 or 850.



 
  
Repetition: Matching a Number of Repeating Characters

You can use two metacharacters to match repeating literals: The asterisk (*) matches zero or more 
instances of a literal, and the plus (+) matches one or more instances. For example:

ip as-path access-list 28 permit ^(850)*$

This filter matches an AS_PATH in which there are no AS numbers, or in which one or more AS 
numbers 850 exist. That is, the AS path could be (850), (850, 850), (850, 850, 850), and so on.

The following filter is similar, except that there must be at least one AS number 850 in the AS_PATH:

ip as-path access-list 29 permit ^(850)+$



 
  
Boundaries: Delineating Literals

The underscore (_) is used when you want to specify a string of literals and must specify their 
separation. Suppose, for example, that you want to match on the specific AS_PATH (5610, 148, 284, 
13). The filter is as follows:

ip as-path access-list 30 permit ^5610_148_284_13$

The underscore matches a beginning of line, an end of line, a comma, or a space. Notice the 
difference between the preceding filter and this filter:

ip as-path access-list 31 permit _5610_148_284_13_

Because the first filter specified the beginning and end of the line, only AS_PATH (5610, 148, 284, 
13) matches. In this second filter, the specified sequence must be included in the AS_PATH, but it is 
not necessarily the only AS numbers in the attribute. So, AS_PATHs (5610, 148, 284, 13), (23, 15, 
5610, 148, 284, 13), and (5610, 148, 284, 13, 3005) all match.



 
  
Putting It All Together: A Complex Example

The real power of regular expressions comes into play when the metacharacters are used in 
combination to match some complex string of literals. Consider the following filter:

ip as-path access-list 10 permit ^(550)+_[880|2304]?_1805_.*

This filter looks for AS_PATHs in which the last AS before the route was received was 550. The caret 
preceding that number specifies that 550 is the first number in the list. The plus sign following the 
number means that there must be at least one instance of 550, but there can be more. By allowing 
for more than one instance of the number, the filter has allowed for the possibility that AS 550 is 
practicing path prepending, as discussed in Chapter 3, "Configuring and Troubleshooting Border 
Gateway Protocol 4."

Following the one or more instances of 550, there may or may not be a single instance of either 880 
or 2304. Next, there must be a single instance of 1805. The last part of the expression specifies that 
after 1805, the AS_PATH can consist of any number of subsequent AS numbers, including none.



 
  
Recommended Reading

Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol, California: O'Reilly & Associates; 
1997.



 
  

Appendix C. Reserved Multicast Addresses
The following is a list of the most recent reserved multicast addresses at the time this book was 
written. The list is taken directly from ftp://ftp.isi.edu/in-notes/iana/assignments/multicast-
addresses. For the most recent list, consult that site.

ftp://ftp.isi.edu/in-notes/iana/assignments/multicast-addresses
ftp://ftp.isi.edu/in-notes/iana/assignments/multicast-addresses


 
  
Internet Multicast Addresses

Host Extensions for IP Multicasting [RFC 1112] specifies the extensions required of a host 
implementation of the Internet Protocol (IP) to support multicasting. The multicast addressess are in 
the range 224.0.0.0 through 239.255.255.255. Current addresses are listed in the following text.

The range of addresses between 224.0.0.0 and 224.0.0.255, inclusive, is reserved for the use of 
routing protocols and other low-level topology discovery or maintenance protocols, such as gateway 
discovery and group membership reporting. Multicast routers should not forward any multicast 
datagram with destination addresses in this range, regardless of its TTL.

224.0.0.0 Base Address (Reserved) [RFC1112,JBP] 

224.0.0.1 All Systems on this 
Subnet 

[RFC1112,JBP] 

224.0.0.2 All Routers on this 
Subnet 

[JBP] 

224.0.0.3 Unassigned [JBP] 

224.0.0.4 DVMRP Routers [RFC1075,JBP] 

224.0.0.5 OSPFIGP OSPFIGP All 
Routers 

[RFC2328,JXM1] 

224.0.0.6 OSPFIGP OSPFIGP 
Designated Routers 

[RFC2328,JXM1] 

224.0.0.7 ST Routers [RFC1190,KS14] 

224.0.0.8 ST Hosts [RFC1190,KS14] 

224.0.0.9 RIP2 Routers [RFC1723,GSM11] 

224.0.0.10 IGRP Routers [Farinacci] 

224.0.0.11 Mobile-Agents [Bill Simpson] 

224.0.0.12 DHCP Server / Relay 
Agent 

[RFC1884] 

224.0.0.13 All PIM Routers [Farinacci] 

224.0.0.14 RSVP-ENCAPSULATION [Braden] 

224.0.0.15 all-cbt-routers [Ballardie] 

224.0.0.16 designated-sbm [Baker] 

224.0.0.17 all-sbms [Baker] 



224.0.0.18 VRRP [Hinden] 

224.0.0.19 IPAllL1ISs [Przygienda] 

224.0.0.20 IPAllL2ISs [Przygienda] 

224.0.0.21 IPAllIntermediate 
Systems 

[Przygienda] 

224.0.0.22 IGMP [Deering] 

224.0.0.23 GLOBECAST-ID [Scannell] 

224.0.0.24 Unassigned [JBP] 

224.0.0.25 router-to-switch [Wu] 

224.0.0.26 Unassigned [JBP] 

224.0.0.27 Al MPP Hello [Martinicky] 

224.0.0.28 ETC Control [Polishinski] 

224.0.0.29 GE-FANUC [Wacey] 

224.0.0.30 indigo-vhdp [Caughie] 

224.0.0.31 shinbroadband [Kittivatcharapong] 

224.0.0.32 digistar [Kerkan] 

224.0.0.33 ff-system-management [Glanzer] 

224.0.0.34 pt2-discover [Kammerlander] 

224.0.0.35 DXCLUSTER [Koopman] 

224.0.0.36-224.0.0.250 Unassigned [JBP] 

224.0.0.251 mDNS [Cheshire] 

224.0.0.252-
224.0.0.255 

Unassigned [JBP] 

224.0.1.0 VMTP Managers Group [RFC1045,DRC3] 

224.0.1.1 NTP Network Time 
Protocol 

[RFC1119,DLM1] 

224.0.1.2 SGI-Dogfight [AXC] 

224.0.1.3 Rwhod [SXD] 

224.0.1.4 VNP [DRC3] 



224.0.1.5 Artificial Horizons - 
Aviator 

[BXF] 

224.0.1.6 NSS - Name Service 
Server 

[BXS2] 

224.0.1.7 AUDIONEWS - Audio 
News Multicast 

[MXF2] 

224.0.1.8 SUN NIS+ Information 
Service 

[CXM3] 

224.0.1.9 MTP Multicast Transport 
Protocol 

[SXA] 

224.0.1.10 IETF-1-LOW-AUDIO [SC3] 

224.0.1.11 IETF-1-AUDIO [SC3] 

224.0.1.12 IETF-1-VIDEO [SC3] 

224.0.1.13 IETF-2-LOW-AUDIO [SC3] 

224.0.1.14 IETF-2-AUDIO [SC3] 

224.0.1.15 IETF-2-VIDEO [SC3] 

224.0.1.16 MUSIC-SERVICE [Guido van Rossum] 

224.0.1.17 SEANET-TELEMETRY [Andrew Maffei] 

224.0.1.18 SEANET-IMAGE [Andrew Maffei] 

224.0.1.19 MLOADD [Braden] 

224.0.1.20 any private experiment [JBP] 

224.0.1.21 DVMRP on MOSPF [John Moy] 

224.0.1.22 SVRLOC [Veizades] 

224.0.1.23 XINGTV [Gordon] 

224.0.1.24 microsoft-ds <arnoldm@microsoft.com> 

224.0.1.25 nbc-pro <bloomer@birch.crd.ge.com> 

224.0.1.26 nbc-pfn <bloomer@birch.crd.ge.com> 

224.0.1.27 lmsc-calren-1 [Uang] 

224.0.1.28 lmsc-calren-2 [Uang] 

224.0.1.29 lmsc-calren-3 [Uang] 

224.0.1.30 lmsc-calren-4 [Uang] 

mailto:arnoldm@microsoft.com
mailto:bloomer@birch.crd.ge.com
mailto:bloomer@birch.crd.ge.com


224.0.1.31 ampr-info [Janssen] 

224.0.1.32 mtrace [Casner] 

224.0.1.33 RSVP-encap-1 [Braden] 

224.0.1.34 RSVP-encap-2 [Braden] 

224.0.1.35 SVRLOC-DA [Veizades] 

224.0.1.36 rln-server [Kean] 

224.0.1.37 proshare-mc [Lewis] 

224.0.1.38 dantz [Zulch] 

224.0.1.39 cisco-rp-announce [Farinacci] 

224.0.1.40 cisco-rp-discovery [Farinacci] 

224.0.1.41 gatekeeper [Toga] 

224.0.1.42 iberiagames [Marocho] 

224.0.1.43 nwn-discovery [Zwemmer] 

224.0.1.44 nwn-adaptor [Zwemmer] 

224.0.1.45 isma-1 [Dunne] 

224.0.1.46 isma-2 [Dunne] 

224.0.1.47 telerate [Peng] 

224.0.1.48 ciena [Rodbell] 

224.0.1.49 dcap-servers [RFC2114] 

224.0.1.50 dcap-clients [RFC2114] 

224.0.1.51 mcntp-directory [Rupp] 

224.0.1.52 mbone-vcr-directory [Holfelder] 

224.0.1.53 heartbeat [Mamakos] 

224.0.1.54 sun-mc-grp [DeMoney] 

224.0.1.55 extended-sys [Poole] 

224.0.1.56 pdrncs [Wissenbach] 

224.0.1.57 tns-adv-multi [Albin] 

224.0.1.58 vcals-dmu [Shindoh] 



224.0.1.59 zuba [Jackson] 

224.0.1.60 hp-device-disc [Albright] 

224.0.1.61 tms-production [Gilani] 

224.0.1.62 sunscalar [Gibson] 

224.0.1.63 mmtp-poll [Costales] 

224.0.1.64 compaq-peer [Volpe] 

224.0.1.65 iapp [Meier] 

224.0.1.66 multihasc-com [Brockbank] 

224.0.1.67 serv-discovery [Honton] 

224.0.1.68 mdhcpdisover [RFC2730] 

224.0.1.69 MMP-bundle-discovery1 [Malkin] 

224.0.1.70 MMP-bundle-discovery2 [Malkin] 

224.0.1.71 XYPOINT DGPS Data 
Feed 

[Green] 

224.0.1.72 GilatSkySurfer [Gal] 

224.0.1.73 SharesLive [Rowatt] 

224.0.1.74 NorthernData [Sheers] 

224.0.1.75 SIP [Schulzrinne] 

224.0.1.76 IAPP [Moelard] 

224.0.1.77 AGENTVIEW [Iyer] 

224.0.1.78 Tibco Multicast1 [Shum] 

224.0.1.79 Tibco Multicast2 [Shum] 

224.0.1.80 MSP [Caves] 

224.0.1.81 OTT (One-way Trip Time) [Schwartz]] 

224.0.1.82 TRACKTICKER [Novick] 

224.0.1.83 dtn-mc [Gaddie] 

224.0.1.84 jini-announcement [Scheifler] 

224.0.1.85 jini-request [Scheifler] 

224.0.1.86 sde-discovery [Aronson] 



224.0.1.87 DirecPC-SI [Dillon] 

224.0.1.88 B1RMonitor [Purkiss] 

224.0.1.89 3Com-AMP3 dRMON [Banthia] 

224.0.1.90 imFtmSvc [Bhatti] 

224.0.1.91 NQDS4 [Flynn] 

224.0.1.92 NQDS5 [Flynn] 

224.0.1.93 NQDS6 [Flynn] 

224.0.1.94 NLVL12 [Flynn] 

224.0.1.95 NTDS1 [Flynn] 

224.0.1.96 NTDS2 [Flynn] 

224.0.1.97 NODSA [Flynn] 

224.0.1.98 NODSB [Flynn] 

224.0.1.99 NODSC [Flynn] 

224.0.1.100 NODSD [Flynn] 

224.0.1.101 NQDS4R [Flynn] 

224.0.1.102 NQDS5R [Flynn] 

224.0.1.103 NQDS6R [Flynn] 

224.0.1.104 NLVL12R [Flynn] 

224.0.1.105 NTDS1R [Flynn] 

224.0.1.106 NTDS2R [Flynn] 

224.0.1.107 NODSAR [Flynn] 

224.0.1.108 NODSBR [Flynn] 

224.0.1.109 NODSCR [Flynn] 

224.0.1.110 NODSDR [Flynn] 

224.0.1.111 MRM [Wei] 

224.0.1.112 TVE-FILE [Blackketter] 

224.0.1.113 TVE-ANNOUNCE [Blackketter] 

224.0.1.114 Mac Srv Loc [Woodcock] 



224.0.1.115 Simple Multicast [Crowcroft] 

224.0.1.116 SpectraLinkGW [Hamilton] 

224.0.1.117 dieboldmcast [Marsh] 

224.0.1.118 Tivoli Systems [Gabriel] 

224.0.1.119 pq-lic-mcast [Sledge] 

224.0.1.120 HYPERFEED [Kreutzjans] 

224.0.1.121 Pipesplatform [Dissett] 

224.0.1.122 LiebDevMgmg-DM [Velten] 

224.0.1.123 TRIBALVOICE [Thompson] 

224.0.1.124 UDLR-DTCP [Cipiere] 

224.0.1.125 PolyCom Relay1 [Coutiere] 

224.0.1.126 Infront Multi1 [Lindeman] 

224.0.1.127 XRX DEVICE DISC [Wang] 

224.0.1.128 CNN [Lynch] 

224.0.1.129 PTP-primary [Eidson] 

224.0.1.130 PTP-alternate1 [Eidson] 

224.0.1.131 PTP-alternate2 [Eidson] 

224.0.1.132 PTP-alternate3 [Eidson] 

224.0.1.133 ProCast [Revzen] 

224.0.1.134 3Com Discp [White] 

224.0.1.135 CS-Multicasting [Stanev] 

224.0.1.136 TS-MC-1 [Sveistrup] 

224.0.1.137 Make Source [Daga] 

224.0.1.138 Teleborsa [Strazzera] 

224.0.1.139 SUMAConfig [Wallach] 

224.0.1.140 Unassigned  

224.0.1.141 DHCP-SERVERS [Hall] 

224.0.1.142 CN Router-LL [Armitage] 



224.0.1.143 EMWIN [Querubin] 

224.0.1.144 Alchemy Cluster [O'Rourke] 

224.0.1.145 Satcast One [Nevell] 

224.0.1.146 Satcast Two [Nevell] 

224.0.1.147 Satcast Three [Nevell] 

224.0.1.148 Intline [Sliwinski] 

224.0.1.149 8x8 Multicast [Roper] 

224.0.1.150 Unassigned [JBP] 

224.0.1.151 Intline-1 [Sliwinski] 

224.0.1.152 Intline-2 [Sliwinski] 

224.0.1.153 Intline-3 [Sliwinski] 

224.0.1.154 Intline-4 [Sliwinski] 

224.0.1.155 Intline-5 [Sliwinski] 

224.0.1.156 Intline-6 [Sliwinski] 

224.0.1.157 Intline-7 [Sliwinski] 

224.0.1.158 Intline-8 [Sliwinski] 

224.0.1.159 Intline-9 [Sliwinski] 

224.0.1.160 Intline-10 [Sliwinski] 

224.0.1.161 Intline-11 [Sliwinski] 

224.0.1.162 Intline-12 [Sliwinski] 

224.0.1.163 Intline-13 [Sliwinski] 

224.0.1.164 Intline-14 [Sliwinski] 

224.0.1.165 Intline-15 [Sliwinski] 

224.0.1.166 marratech-cc [Parnes] 

224.0.1.167 EMS-InterDev [Lyda] 

224.0.1.168 itb301 [Rueskamp] 

224.0.1.169 rtv-audio [Adams] 

224.0.1.170 rtv-video [Adams] 



224.0.1.171 HAVI-Sim [Wasserroth] 

224.0.1.172-
224.0.1.255 

Unassigned [JBP] 

224.0.2.1 "rwho" Group (BSD) 
(unofficial) 

[JBP] 

224.0.2.2 SUN RPC 
PMAPPROC_CALLIT 

[BXE1] 

224.0.2.064-
224.0.2.095 

SIAC MDD Service [Tse] 

224.0.2.096-
224.0.2.127 

CoolCast [Ballister] 

224.0.2.128-
224.0.2.191 

WOZ-Garage [Marquardt] 

224.0.2.192-
224.0.2.255 

SIAC MDD Market 
Service 

[Lamberg] 

224.0.3.000-
224.0.3.255 

RFE Generic Service [DXS3] 

224.0.4.000-
224.0.4.255 

RFE Individual 
Conferences 

[DXS3] 

224.0.5.000-
224.0.5.127 

CDPD Groups [Bob Brenner] 

224.0.5.128-
224.0.5.191 

SIAC Market Service [Cho] 

224.0.5.192-
224.0.5.255 

Unassigned [IANA] 

224.0.6.000-
224.0.6.127 

Cornell ISIS Project [Tim Clark] 

224.0.6.128-
224.0.6.255 

Unassigned [IANA] 

224.0.7.000-
224.0.7.255 

Where-Are-You [Simpson] 

224.0.8.000-
224.0.8.255 

INTV [Tynan] 

224.0.9.000-
224.0.9.255 

Invisible Worlds [Malamud] 

224.0.10.000-
224.0.10.255 

DLSw Groups [Lee] 



224.0.11.000-
224.0.11.255 

NCC.NET Audio [Rubin] 

224.0.12.000-
224.0.12.063 

Microsoft and MSNBC [Blank] 

224.0.13.000-
224.0.13.255 

UUNET PIPEX Net News [Barber] 

224.0.14.000-
224.0.14.255 

NLANR [Wessels] 

224.0.15.000-
224.0.15.255 

Hewlett Packard [van der Meulen] 

224.0.16.000-
224.0.16.255 

XingNet [Uusitalo] 

224.0.17.000-
224.0.17.031 

Mercantile & Commodity 
Exchange 

[Gilani] 

224.0.17.032-
224.0.17.063 

NDQMD1 [Nelson] 

224.0.17.064-
224.0.17.127 

ODN-DTV [Hodges] 

224.0.18.000-
224.0.18.255 

Dow Jones [Peng] 

224.0.19.000-
224.0.19.063 

Walt Disney Company [Watson] 

224.0.19.064-
224.0.19.095 

Cal Multicast [Moran] 

224.0.19.096-
224.0.19.127 

SIAC Market Service [Roy] 

224.0.19.128-
224.0.19.191 

IIG Multicast [Carr] 

224.0.19.192-
224.0.19.207 

Metropol [Crawford] 

224.0.19.208-
224.0.19.239 

Xenoscience, Inc. [Timm] 

224.0.19.240-
224.0.19.255 

HYPERFEED [Felix] 

224.0.20.000-
224.0.20.063 

MS-IP/TV [Wong] 

224.0.20.064-
224.0.20.127 

Reliable Network 
Solutions 

[Vogels] 



224.0.20.128-
224.0.20.143 

TRACKTICKER Group [Novick] 

224.0.20.144-
224.0.20.207 

CNR Rebroadcast MCA [Sautter] 

224.0.21.000-
224.0.21.127 

Talarian MCAST [Mendal] 

224.0.22.000-
224.0.22.255 

WORLD MCAST [Stewart] 

224.0.252.000-
224.0.252.255 

Domain Scoped Group [Fenner] 

224.0.253.000-
224.0.253.255 

Report Group [Fenner] 

224.0.254.000-
224.0.254.255 

Query Group [Fenner] 

224.0.255.000-
224.0.255.255 

Border Routers [Fenner] 

224.1.0.0-
224.1.255.255 

ST Multicast Groups [RFC1190,KS14] 

224.2.0.0-
224.2.127.253 

Multimedia Conference 
Calls 

[SC3] 

224.2.127.254 APv1 Announcements [SC3] 

224.2.127.255 SAPv0 Announcements 
(deprecated) 

[SC3] 

224.2.128.0-
224.2.255.255 

SAP Dynamic 
Assignments 

[SC3] 

224.252.0.0-
224.255.255.255 

DIS transient groups [Joel Snyder] 

225.0.0.0-
225.255.255.255 

MALLOC (temp - renew 
1/01) 

[Handley] 

232.0.0.0-
232.255.255.255 

VMTP transient group see 
single-source-multicast 
file 

[DRC3] 

233.0.0.0-
233.255.255.255 

Static Allocations (temp - 
renew 6/01) 

[Meyer2] 

239.000.000.000-
239.255.255.255 

Administratively Scoped [IANA,RFC2365] 

239.000.000.000-
239.063.255.255 

Reserved [IANA] 



239.064.000.000-
239.127.255.255 

Reserved [IANA] 

239.128.000.000-
239.191.255.255 

Reserved [IANA] 

239.192.000.000-
239.251.255.255 

Organization-Local Scope [Meyer,RFC2365] 

239.252.000.000-
239.252.255.255 

Site-Local Scope 
(reserved) 

[Meyer,RFC2365] 

239.253.000.000-
239.253.255.255 

Site-Local Scope 
(reserved) 

[Meyer,RFC2365] 

239.254.000.000-
239.254.255.255 

Site-Local Scope 
(reserved) 

[Meyer,RFC2365] 

239.255.000.000-
239.255.255.255 

Site-Local Scope [Meyer,RFC2365] 

239.255.002.002 rasadv [Thaler] 

There is a concept of relative addresses to be used with the scoped multicast addresses. These 
relative addresses are listed here:

Relative Description Reference 

0 SAP Session Announcement Protocol [Handley] 

1 MADCAP Protocol [RFC2730] 

2 SLPv2 Discovery [Guttman] 

3 MZAP [Thaler] 

4 Multicast Discovery of DNS Services [Manning] 

5 SSDP [Goland] 

6 DHCP v4 [Hall] 

7 AAP [Hanna] 

8-252 Reserved - To be assigned by the IANA  

253 Reserved  

254-255 Reserved - To be assigned by the IANA  

These addresses are listed in the Domain Name Service under MCAST.NET and 224.IN-ADDR.ARPA.

Note that when used on an Ethernet or IEEE 802 network, the 23 low-order bits of the IP Multicast 
address are placed in the low-order 23 bits of the Ethernet or IEEE 802 net multicast address 
1.0.94.0.0.0. See the section on "IANA ETHERNET ADDRESS BLOCK."
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Answers to Chapter 1 Review Questions

1: What is the current version of EGP?

A: The current version of EGP is 2.

2: What is an EGP interior neighbor? An EGP exterior neighbor?

A: An EGP gateway's neighbor is interior if it is within the same AS. An exterior neighbor is 
in a different AS.

3: What is the primary difference between an EGP stub gateway and an EGP core gateway?

A: Stub gateways can advertise only networks that are interior to their own AS. Core 
gateways can advertise both interior and exterior networks.

4: Why does EGP use the concept of a core, or backbone, AS?

A: EGP has no mechanisms for detecting loops. Therefore, a loop-free topology must be 
engineered physically so that inter-AS traffic must traverse a backbone.

5: What is the difference between an active EGP neighbor and a passive EGP neighbor?

A: An active neighbor initiates the peer relationship and sends Hellos to maintain it. Passive 
neighbors respond to Hellos with I-Heard-You messages.

6: What is the purpose of an EGP Poll message?

A: A Poll message is a request to a neighbor for an Update.

7: What is an indirect, or third-party, neighbor?

A: An indirect neighbor is a gateway that shares a common data link with another gateway 
and can reach certain networks through that gateway but is not peered directly with the 
gateway. Rather, it learns its reachability information from yet another gateway on the 
data link.

8: How does EGP use its metrics to calculate the best path to a destination?

A: Although EGP has a metric, it has no mechanism for determining best paths. Therefore, 
the metric is used only for indicating an unreachable network.



 
  
Answers to Chapter 2 Review Questions

1: What is the most important difference between BGP-4 and earlier versions of BGP?

A: BGP-4 is classless. Earlier versions are classful.

2: What two problems was CIDR developed to alleviate?

A: CIDR was developed to alleviate the explosion of Internet routing tables and to slow the depletion of 
Class B network addresses.

3: What is the difference between classful and classless IP routers?

A: Classful IP routers perform routing table lookups on the major class network address first and then 
match the subnet. Classless IP routers ignore the class of the destination address and try to make a 
longest match on the address prefix.

4: What is the difference between classful and classless IP routing protocols?

A: Classful IP routing protocols advertise only a network or subnet address, without any information 
about the prefix length. As a result, routers receiving the advertisement must make certain 
assumptions about the address prefix. Classless IP routing protocols include information that allows 
the receiving router to parse the address prefix. As a result, VLSM and summarization are possible 
with classless protocols.

5: Given the addresses 172.17.208.0/23, 172.17.210.0/23, 172.17.212.0/23, and 172.17.214.0/23, 
summarize the addresses with a single aggregate, using the longest possible address mask.

A: 172.17.208.0/21

6: What is an address prefix?

A: An IP address prefix is the part of an IP address that a router considers when making routing 
decisions. In a classful environment, the prefix is a major class network address or one of its 
subnets. In a classless environment, the prefix can be any number of leading bits in the 32-bit 
address.

7: The routing table in Example 2-16 is taken from a classless router. To what next-hop address does 
the router forward packets with each of the following destination addresses?

172.20.3.5

172.20.1.67

172.21.255.254

172.16.50.50

172.16.0.224

172.16.51.50

172.17.40.1



172.17.41.1

172.30.1.1

Example 2-16 The Routing Table for Review Question 7

Stratford#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

     172.20.0.0 is variably subnetted, 6 subnets, 2 masks

D       172.20.0.0 255.255.0.0 [90/409600] via 172.20.5.2, 00:01:50, Ethernet0

D       172.20.2.0 255.255.255.0

           [90/409600] via 172.20.6.2, 00:01:50, Ethernet1

D       172.20.3.0 255.255.255.0

           [90/5401600] via 172.20.6.2, 00:01:50, Ethernet1

C       172.20.5.0 255.255.255.0 is directly connected, Ethernet0

C       172.20.6.0 255.255.255.0 is directly connected, Ethernet1

C       172.20.7.0 255.255.255.0 is directly connected, Ethernet2

     172.16.0.0 is variably subnetted, 3 subnets, 2 masks

D       172.16.50.0 255.255.255.0

           [90/409600] via 172.20.6.2, 00:01:50, Ethernet1

D       172.16.0.0 255.255.255.0

           [90/460800] via 172.20.6.2, 00:01:51, Ethernet1

D       172.16.0.0 255.255.0.0 [90/409600] via 172.20.7.2, 00:01:51, Ethernet2

     172.17.0.0 is subnetted (mask is 255.255.255.0), 1 subnets

D       172.17.40.0 [90/2841600] via 172.20.7.2, 00:01:52, Ethernet2

D    172.16.0.0 (mask is 255.240.0.0) [90/409600] via 172.20.5.2, 00:01:52, Ethernet0

Stratford#



A: [click here]

Destination Address Next-Hop Address

172.20.3.5 172.20.6.2

172.20.1.67 172.20.5.2

172.21.255.254 172.20.5.2

172.16.50.50 172.20.6.2

172.16.0.224 172.20.6.2

172.16.51.50 172.20.7.2

172.17.40.1 172.20.7.2

172.17.41.1 172.20.5.2

172.30.1.1 Dropped

8: Explain how summarization helps hide network instabilities.

A: Member addresses, or destination addresses that are summarized by an aggregate address, are not 
advertised past the summarization point. So if the state of one of the member addresses changes, 
the change is not advertised past the summarization point.

9: Explain how summarization can cause asymmetric traffic patterns.

A: Summarization hides the details of the internetwork behind the summarization point. If a summary 
address is advertised by more than one router, the routers beyond the summarization points select 
only the closest summarizing router.

10: Is asymmetric traffic undesirable?

A: The answer is subjective. Asymmetric traffic can make baselining and troubleshooting more difficult, 
and if the internetwork is geographically large, delay-sensitive traffic can be affected. On the other 
hand, the benefits of summarization might outweigh these problems.

11: What is a NAP?

A: A network access point is a LAN or switch through which service providers may interconnect. From 
the perspective of Internet traffic flow, NAPs are the hierarchically highest points in the Internet 
topology.

12: What is a route server?

A: A route server is a server with which routers may peer via some routing protocol. Each router sends 
its updates to the route server rather than to the other peers. The route server applies the 
appropriate routing policies and then sends the updates to the other peers. Route servers are useful 
when many routers must peer across a common data link, as in a NAP, by reducing the number of 
peering sessions each router must establish. This can be especially important if the routers are using 
a unicast protocol such as BGP, in which a separate packet must be sent to each peer. A route 
server is not a router, because it performs no packet forwarding.

13: What is a provider-independent address space, and why can it be advantageous to have one?



A: A provider-independent address space is assigned by the regional IP address registry rather than as 
part of a service provider's CIDR block. It proves useful if an AS is multihomed to different service 
providers. It is also useful because it is portable. That is, the owner of the address space can change 
ISPs without having to re-address.

14: Why can it be a problem to have a /21 provider-independent address space?

A: Some national service providers do not accept IP prefixes longer than a /19. As a result, a /21 might 
not be advertised to all parts of the Internet.

15: What is a routing policy?

A: A routing policy is a predefined set of rules for handling incoming and outgoing routes. Typical tools 
for setting routing policies are redistribution, route filters, and route maps.

16: What is the underlying protocol that BGP uses to reliably connect to its neighbors?

A: BGP uses TCP port 179.

17: What are the four BGP message types, and how is each one used?

A: The four BGP message types are Open, Keepalive, Update, and Notification. Open messages are 
used to initially identify a BGP speaker to its neighbor and begin a peering session. Keepalives 
maintain the peer connection. Updates are used to advertise routes, and Notification messages 
advise peers of errors.

18: In what state or states can BGP peers exchange Update messages?

A: BGP peers can exchange Update messages only when both are in the Established state.

19: What is NLRI?

A: Network Layer Reachability Information is the IP address prefix or prefixes advertised in a BGP 
Update.

20: What is a path attribute?

A: A path attribute is a characteristic of a BGP route.

21: What are the four categories of BGP path attributes?

A: The four categories of BGP path attributes are Well-known Mandatory, Well-known Discretionary, 
Optional Transitive, and Optional Nontransitive.

22: What is the purpose of the AS_PATH attribute?

A: The AS_PATH attribute describes the AS numbers that a received Update has crossed after it left the 
originating router. This information can be used to determine the shortest inter-AS path, and it is 
also used to detect routing loops.

23: What are the different types of AS_PATH?

A: AS_PATH types are AS_SEQUENCE, AS_CONFED_SEQUENCE, AS_SET, and AS_CONFED_SET. 
AS_SEQUENCE is an ordered set of AS numbers, and AS_SET is an unordered set of AS numbers. 
AS_CONFED_SEQUENCE and AS_CONFED_SET are the same as AS_SEQUENCE and AS_SET but are 
used only within BGP confederations.



24: What is the purpose of the NEXT_HOP attribute?

A: The NEXT_HOP attribute describes the IP address of the next-hop router that packets should be 
forwarded to in order to reach the destination advertised as the NLRI in a BGP Update.

25: What is the purpose of the LOCAL_PREF attribute?

A: If multiple IBGP speakers are advertising the same route within an AS, the LOCAL_PREF attribute 
can be used to identify the preferred route. The higher the LOCAL_PREF value, the more preferred 
the route.

26: What is the purpose of the MULTI_EXIT_DISC attribute?

A: When multiple links exist between two autonomous systems, EBGP speakers can use the MED to 
inform the neighboring AS of the preferred link for incoming traffic.

27: What attribute or attributes are useful if a BGP speaker originates an aggregate route?

A: THE ATOMIC_AGGREGATE informs downstream routers that a loss of route information has occurred 
due to aggregation. The AGGREGATOR attribute identifies the router that originated the aggregate.

28: What is a BGP administrative weight?

A: A BGP administrative weight is a Cisco-specific parameter that can be assigned to routes within a 
single router. The higher the weight, the more preferable the route. Weights are local to the router 
and are not advertised to peers.

29: Given an EBGP route and an IBGP route to the same destination, which route will a BGP router 
prefer?

A: If the weights, LOCAL_PREFs, AS_PATH lengths, ORIGIN codes, and MEDs are equal, EBGP routes 
are preferred over IBGP routes.

30: A router has two IBGP routes to the same destination. Path A has a LOCAL_PREF of 300 and three 
AS numbers in the AS_PATH. Path B has a LOCAL_PREF of 200 and two AS numbers in the 
AS_PATH. Assuming no other differences, which path will the router choose?

A: LOCAL_PREF has a higher priority in the BGP decision process than AS_PATH, so path A is chosen.

31: What is route dampening?

A: Route dampening is a mechanism by which BGP routes are assigned a penalty for changing state. 
The more often the state changes (the route flaps), the greater the accumulated penalties. If the 
penalties exceed a certain threshold, the route is suppressed for a time. As a result, unstable routes 
have less adverse effect on the BGP internetwork.

32: Define the penalty, suppress limit, reuse limit, and half-life as they apply to route dampening.

A: The penalty is a value assigned to a route by the route-dampening mechanism each time the route 
changes state. The suppress limit is a threshold that, if exceeded by a route's accumulated 
penalties, signifies that the route should not be advertised. Reuse limit is a threshold that, if a 
suppressed route's accumulated penalties falls below it, signifies that the route can again be 
advertised. The half-life is the rate at which a route's accumulated penalties are reduced. At the end 
of each half-life, the penalty is reduced by half.

33: What is IGP synchronization, and why is it important?



A: IGP synchronization is a rule whereby a BGP router cannot advertise a transit route to an EBGP peer 
unless the route is found in the IGP routing table. If a BGP router forwards a transit packet to an 
IBGP peer via an IGP router, and the IGP router does not know the route, the packet is dropped.

34: Under what circumstances can you safely disable IGP synchronization?

A: You can safely turn off IGP synchronization if the IBGP peers in an AS are fully meshed, or when the 
AS is not a transit AS.

35: What is a BGP peer group?

A: A BGP peer group is a group of BGP peers that have been identified on a single router to share 
common routing policies. Peer groups simplify configuration by allowing route policies to be applied 
to the group rather than to each individual member.

36: What is a BGP community?

A: A BGP community is a group of routes that share common routing policies. They work by setting a 
common COMMUNITY attribute in the routes; peers receiving those routes can recognize the 
COMMUNITY attribute and apply the appropriate policy.

37: What is a route reflector? What is a route reflection client? What is a route reflection cluster?

A: A route reflector is similar to a route server in that it permits IBGP routers to peer with it rather than 
with each other. Routes from one peer are advertised, or reflected, to the other peers. As a result, 
the number of peering sessions is reduced from what would be required if the IBGP peers were fully 
meshed. Route reflectors differ from route servers in that the route reflector is also a router. A route 
reflection client is an IBGP router that has peered with a route reflector. A route reflection cluster is 
a route reflector and its clients. A cluster can have more than one route reflector, but all the clients 
in the cluster must be peered with all the route reflectors in the cluster.

38: What is the purpose of the ORIGINATOR_ID and the CLUSTER_LIST path attributes?

A: The ORIGINATOR_ID and CLUSTER_LIST attributes prevent routing loops when route reflectors are 
being used.

39: What is a BGP confederation?

A: A BGP confederation is a large AS that has been subdivided into a group of smaller autonomous 
systems for easier manageability.

40: Can route reflectors be used within confederations?

A: Yes.

41: What is the purpose of the next-hop-self function? Are there any reasonable alternatives to using 
this function?

A: next-hop-self tells a router to change the NEXT_HOP attribute of routes received from an external 
peer to its own IP address. This function is used when the IGP has no knowledge of the external 
next-hop address. An alternative method is to run the IGP passively on the external link so that it 
knows the subnet on which the external next-hop address resides.



 
  
Answers to Chapter 5 Review Questions

1: Give several reasons why replicated unicast is not a practical substitution for true 
multicast in a large network.

A: Replicated unicast places a processing burden on the source and can cause severe 
bottlenecks at the source interface, data link, and connected router. The source also 
must hold state to remember what addresses to send the replicated packets, and there 
must be some potentially complex mechanism for members to signal joins and leaves to 
the source. Finally, replicated unicast can cause queuing problems and unacceptable 
latency between packets.

2: What range of addresses is reserved for IP multicast?

A: The Class D addresses, in which the first four bits are 1110. This address range is 
224.0.0.0–239.255.255.255.

3: How many subnets can be created from a single Class D prefix?

A: No subnets are created from a Class D prefix. IP multicast uses only single addresses, 
not subnets.

4: In what way do routers treat packets with destination addresses in the range 
224.0.0.1–224.0.0.255 differently from other multicast addresses?

A: Routers do not forward packets with destination addresses in the range 224.0.0.1 
through 224.0.0.255.

5: Write the Ethernet MAC addresses that correspond to the following IP addresses: 

a.  239.187.3.201

b.  224.18.50.1

c.  224.0.1.87

A: [click here]

a.  0100.5E3B.03C9

b.  0100.5E12.3201

c.  0100.5E00.0157



6: What multicast IP address or addresses are represented by the MAC address 
0100.5E06.2D54?

A: The MAC address 0100.5E06.2D54 can represent any of 32 IP addresses in which the 
first octet is 1 of 15 numbers in the range 224–239, the second octet is either 134 or 6, 
the third octet is always 45, and the last octet is always 87.

7: Why is Token Ring a poor medium for delivering multicast packets?

A: Token Ring is a poor medium for delivery of IP multicast packets because of the Token 
Ring frame's little-endian format, which prevents an easy encoding of the multicast IP 
address into the MAC address. Instead, either a reserved functional MAC address or a 
broadcast MAC address must be used, either of which can sharply reduce efficiency on 
the data link.

8: What is join latency?

A: Join latency is the time between when a host first signals a desire to join a group and 
the time the host begins receiving group traffic.

9: What is leave latency?

A: Leave latency is the time between when a host first leaves a group and the time the 
host is removed from the group.

10: What is a multicast DR (or querier)?

A: A multicast querier is the router on a subnet responsible for querying the attached hosts 
for group membership.

11: What device sends IGMP Query messages?

A: IGMP Query messages are sent by routers. If more than one router is attached to the 
subnet, the router with the lowest IP address is the querier.

12: What device sends IGMP Membership Report messages?

A: Hosts send IGMP Membership Report messages.

13: How is an IGMP Membership Report message used?

A: An IGMP Membership Report is sent by a host to inform the local router that it wants to 
join a group.

14: What is the functional difference between a General IGMP Query and a Group-Specific 
IGMP Query?

A: A router sends a General IGMP Query to discover members of any and all groups. A 
Group-Specific IGMP Query is sent to discover members of a specific group, usually after 
the reception of a Leave Group message.

15: Is IGMPv2 compatible with IGMPv1?



A: IGMPv2 is mostly compatible with IGMPv1, although if there is an IGMPv1 router on a 
subnet, all routers should be set to IGMPv1.

16: What IP protocol number signifies IGMP?

A: IGMP uses protocol number 2.

17: What is the purpose of the Cisco Group Membership Protocol (CGMP)?

A: CGMP is a protocol by which Ethernet switches can discover which ports group members 
are connected to and thereby avoid having to forward IP multicast frames out all ports.

18: What is the advantage of using IP Snooping rather than CGMP? What is the possible 
disadvantage?

A: Unlike CGMP, IP Snooping is not proprietary and therefore may be preferable in a mixed-
vendor environment. Its potential disadvantage is that if IP Snooping is supported on a 
switch only in software, it can affect performance.

19: What devices send CGMP messages: routers, Ethernet switches, or both?

A: Only routers send CGMP messages. Switches listen for CGMP messages.

20: What is Reverse Path Forwarding?

A: RPF is the basic forwarding mechanism of IP multicast routing. Because the routers find 
the shortest paths to the source rather than the destination, when multicast packets are 
forwarded toward the destination (or, more accurately, away from the source), they are 
forwarded in the reverse direction along the shortest path.

21: How many hosts constitute a dense topology, and how many hosts constitute a sparse 
topology?

A: There is no set number differentiating sparse and dense topologies.

22: What is the primary advantage of explicit joins over implicit joins?

A: The primary advantage of explicit joins over implicit joins is that routers do not have to 
hold state for interfaces that are not upstream from any group members.

23: What is the primary structural difference between a source-based multicast tree and a 
shared multicast tree?

A: A source-based tree is rooted at the source subnet or source router, whereas a shared 
tree is rooted at some common rendezvous point or core and can be, by definition, 
shared by multiple sources.

24: What is multicast scoping?

A: Multicast scoping is the practice of limiting the range of certain multicast packets to a 
determined topological area.



25: What are the two methods of IP multicast scoping?

A: The two methods of IP multicast scoping are TTL scoping and administrative scoping.

26: From the perspective of a multicast router, what is meant by upstream and what is 
meant by downstream?

A: Upstream is the direction toward a multicast source, and downstream is the direction 
away from the source.

27: What is an RPF check?

A: An RPF check is a verification that a multicast packet from a particular source has 
arrived on the upstream interface toward that source and no other interface.

28: What is a prune? What is a graft?

A: A prune is the action of removing a router from a multicast tree. A graft is the action of 
adding a router to a multicast tree.

29: What is a prune lifetime? What happens when a prune lifetime expires?

A: A prune lifetime, used by implicit join protocols, is the amount of time that a router 
holds an interface in prune state. When a prune lifetime expires, the router again 
forwards packets on the interface until the downstream neighbor again requests a 
prune.

30: What is a route dependency? How does DVMRP signal a route dependency?

A: A route dependency is a dependency a router has on an upstream neighbor to forward 
packets for a particular group. DVMRP routers signal a route dependency by using a 
poison reverse route, in which the metric is the advertised hop count to the source plus 
32.

31: Is DVMRP a dense-mode protocol or a sparse-mode protocol?

A: DVMRP is a dense-mode protocol.

32: Is MOSPF a dense-mode protocol or a sparse-mode protocol?

A: MOSPF is a dense-mode protocol.

33: What is the name and type number of the LSA used exclusively by MOSPF?

A: The LSA used exclusively by MOSPF is the Group Membership LSA, which is type 6.

34: Can an MOSPF router establish an adjacency with an OSPF router that does not support 
MOSPF?

A: Yes, although only neighbors whose MC bits are set in their Database Description 
packets exchange Group Membership LSAs.



35: Define the following MOSPF router types: 

a.  Interarea multicast forwarder

b.  Inter-AS multicast forwarder

c.  Wildcard multicast receiver

A: (a) An interarea multicast forwarder forwards IP multicast packets between areas and is 
similar to a unicast OSPF ABR.

(b) An inter-AS multicast forwarder forwards IP multicast packets outside of 
the MOSPF domain and is similar to a unicast OSPF ASBR.

(c) A wildcard multicast receiver is a router to which all multicast packets are 
forwarded.

36: Is CBT a dense-mode protocol or a sparse-mode protocol?

A: CBT is a sparse-mode protocol.

37: What are a CBT parent router and a CBT child router?

A: A CBT parent router is an upstream router, and a CBT child router is a downstream 
router.

38: Describe the two ways a CBT DR can deliver packets from a source to the core and the 
circumstances under which each method is used.

A: If a directly connected source is a member source, its packets are forwarded on the 
tree. If the source is a nonmember source, a tunnel to the core is created, and the 
packets are forwarded over the tunnel.

39: What is a PIM prune override?

A: A prune override is a Join message sent to an upstream router on a multiaccess network 
to cancel a prune requested by another router on the same network.

40: What is a PIM forwarder? How is a forwarder selected?

A: When multiple upstream routers are connected to the same multiaccess network and 
are receiving packets for the same group, the PIM forwarder is the router that forwards 
the packets onto the network. The forwarder is elected by the lowest administrative 
distance advertised in an Assert message. If the administrative distances are equal, the 
lowest route metric is used. If the metrics are the same, the lowest IP address is the 
tiebreaker.

41: What criteria does PIM use to select a DR?



A: The PIM router with the highest IP address (according to the PIM Hello messages) is the 
DR.

42: What is a PIM SPT? What is a PIM RPT?

A: A shortest path tree is a source-based tree, and a rendezvous point tree is a shared tree 
rooted at a rendezvous point.

43: What two mechanisms are available for Cisco routers to automatically discover PIM-SM 
RPs?

A: PIM-SM RPs can be automatically discovered using either Auto-RP or the bootstrap 
protocol.

44: Of the mechanisms in Question 43, which should be used in multivendor router 
topologies?

A: Auto-RP may not be supported by other vendors, so bootstrap protocol should be used.

45: What is a C-RP?

A: A C-RP is a Candidate RP, or a router that is eligible to become an RP for either all 
groups or a specified set of groups.

46: What is a BSR?

A: When the bootstrap protocol is used, a bootstrap router advertises C\_RPs throughout 
the PIM-SM domain in an RP-Set.

47: What is an RP mapping agent?

A: When Auto-RP is used, an RP mapping agent advertises group-to-RP mappings.

48: What is the difference between an (S, G) mroute entry and a (*, G) mroute entry?

A: An (S, G) entry refers to an SPT, whereas a (*, G) entry refers to an RPT.

49: What is the major drawback with a bidirectional CBT tree between the source and core, 
as opposed to a PIM-SM unidirectional tree from the RP to the source?

A: It is difficult to guarantee a loop-free path with bidirectional trees, because there is no 
distinct upstream and downstream.

50: What is PIM-SM source registration?

A: Source registration is a mechanism whereby a router forwards packets from a multicast 
source to an RP in PIM Register messages. If there is significant traffic from the source, 
the RP builds an SPT and then sends a Register Stop.

51: When does a Cisco router switch from a PIM-SM RPT to an SPT?



A: Cisco routers switch from an RPT to an SPT immediately after receiving the first packet 
for a particular (S, G) on the RPT, or when the arrival rate of the packets for the (S, G) 
exceeds a threshold specified with the command ip pim spt-threshold.



 
  
Answers to Chapter 7 Review Questions

1: In the section "Multicast Scoping," a sample configuration is given for administrative 
scoping. The boundary at interface E0 blocks organization-local packets (destination 
addresses whose prefixes match 239.192.0.0/14) but passes packets with global scope. 
Will a packet with a group address 224.0.0.50 pass this boundary?

A: Packets with a destination address of 224.0.0.50 pass this boundary only if the local 
router originates them. Although 224.0.0.50 is permitted by access list 10, it is in the 
link-local range and so is not forwarded by any next-hop router.

2: How does Cisco IOS Software handle DVMRP Prune messages on point-to-point and 
multiaccess interfaces that are configured to run PIM?

A: DVMRP Prunes are ignored on multiaccess interfaces and are processed normally on 
point-to-point interfaces.

3: Why does Cisco IOS Software accept DVMRP Probe messages, but does not send them?

A: The reception of DVMRP Probes is necessary to detect DVMRP neighbors. Probes are not 
sent because another Cisco PIM router on a multiaccess network would mistake the 
originator for a DVMRP-only router.

4: What is a PIM (*,*,RP) entry?

A: A (*,*,RP) entry is to a PIM Multicast Border Router. MBRs are not supported by Cisco 
IOS.

5: How does Multiprotocol BGP (MBGP) differ from normal BGP?

A: MBGP is extended with two route attributes: MP_REACH_NLRI and MP_UNREACH_NLRI.

6: What is the MBGP AFI?

A: The AFI is the Address Family Identifier. When MBGP is used for multicasting, the AFI is 
always set to 1 (for IPv4), and the sub-AFI will indicate whether the related NLRI is to 
be used for multicast, unicast, or both.

7: Is the following statement true or false? MSDP carries information about multicast 
sources and group members between RPs in different PIM domains.

A: False. MSDP only communicates information about multicast sources, not group 
members.

8: What is the transport protocol for MSDP?

A: MSDP uses TCP port 639.

9: What is an MSDP SA message?



A: An SA is a Source Active message. When a source's DR registers with an RP, if the RP is 
running MSDP, it advertises the (S,G) pair to its peers in SA messages.

10: How does an MSDP RP determine whether an SA was received on an RPF interface?

A: It checks the BGP next-hop database (MBGP first, and then unicast BGP) for the correct 
upstream interface.

11: What is SA caching?

A: SA caching is the storage of (S,G) state information learned from SA messages. SA 
caching trades some memory in the router for reduced join latency. By default, SA 
caching is disabled in Cisco IOS Software.

12: Is there an alternative to reducing join latency without enabling SA caching?

A: Yes. If an MSDP peer is caching, you can configure an RP to use SA Request messages 
to request (S,G) information from the peer as soon as a join is received.



 
  
Answers to Chapter 8 Review Questions

1: Which of the following are valid representations for the address 200A 0000 0000 0C00 
0000 0000 0000 0000 with a 60-bit prefix?

A.  200A:0000:0000:0C/60

B.  200A::0C00:0:0:0:0/60

C.  200A:0000:0000:0C00::/60

D.  200A::0C00::/60

E.  200A:0:0:C00::/60

F.  200A::0C/60

A: B, C, E. A is not a complete address. D is ambiguous, with two sets of ::. F doesn't 
expand to the correct address.

2: For what is the address 0:0:0:0:0:0:0:0 used?

A: This is the unspecified address. It represents the absence of an address. If this is the 
source address of a packet, the interface has not yet been assigned an address. It is 
attempting to discover whether its tentative address is being used by another node.

3: You configure your site border routers, connecting to an IPv6 public network, to 
advertise all your internal network numbers, including FEC0:0020:0:0100::/56. You get 
a nasty call from the IPv6 public network administrator. What is wrong?

A: FEC0:0020:0:0100::/56 is a site-local address. It must never be advertised beyond the 
boundaries of a site.

4: Which extension headers are processed by every IPv6 node in the path from source to 
destination?

A: Hop-by-Hop.

5: Which extension headers are used to specify a list of routers to visit before reaching the 
destination and to have each of those routers process the header?

A: Destination Options header followed by the Routing header.

6: A router receives a packet larger than its outgoing link's MTU. Does it fragment the 
packet and forward the fragments toward the destination?



A: No. It drops the packet and sends an ICMP Packet Too Big message back to the source. 
The source uses these ICMP packets to perform path MTU discovery. It is the sole 
responsibility of the source to fragment the packet.

7: If set in a Router Advertisement, what affect does the Managed bit have?

A: The router sends the RA to all hosts on a link. If the Managed bit is set, the hosts obtain 
an address from a stateful configuration server.

8: If a router advertises prefix information in its RAs, how is the information used?

A: Prefix information included in RAs tells hosts which prefixes are on-link and/or which 
prefixes to use when they autoconfigure their addresses.

9: In what two states can a host's IP address reside, and what are the roles of the two 
states?

A: Preferred and deprecated. A preferred address can be used to initiate any IP session. A 
deprecated address should be used only to maintain an existing connection, not to 
initiate a new connection, if a preferred address exists.

10: What information does a router advertise in its RA to tell hosts to stop using a particular 
prefix when initiating IP sessions?

A: Either a Valid Lifetime or Preferred Lifetime of value 0. Valid Lifetime 0 says the prefix is 
no longer valid. Preferred Lifetime 0 says to deprecate the prefix.

11: If a node has a neighbor with state DELAY, can the node send the neighbor packets?

A: Yes. A neighbor with state DELAY has not been verified reachable, but the node will 
send packets to its cached link layer address for the neighbor.

12: A host is not running any routing protocol. It is sending data to a remote node using a 
default router. The default router fails. Will the host continue to send data into the black 
hole of the dead router until its TCP connection fails?

A: No. The neighbor unreachability process, default router list, and address resolution 
processes will assist the host in discovering the dead router and finding a new one.

13: What are the scope values for multicast packets, and for what are they used?

A: Node, link, site, organization, global. The scope values are used to limit the meaning of 
a multicast group and to control how far a multicast packet can travel.

14: What Cisco router command enables IPv6 routing?

A: ipv6 unicast-routing

15: What interface subcommands enable IPv6 on an interface?

A: ipv6 enable, ipv6 address address prefix [eui-64]



16: What commands are used to enable a RIPng process?

A: Interface subcommand: ipv6 rip process-name enable

17: How is the BGP-for-IPv6 process enabled between neighbors?

A: [click here]

router bgp local-AS

 neighbor neighbor-ipv6-address remote-as remote-as-number

 !

 address-family ipv6

 neighbor neighbor-ipv6-address activate



 
  
Answers to Chapter 9 Review Questions

1: Explain the difference between SNMP polls and traps.

A: A management station requesting information from a router is polling the router. A router 
that sends unsolicited information about an event that occurred sends a trap.

2: If you specify the severity level of messages logged to be errors, what other levels of 
messages are logged?

A: Emergencies, Alerts, Critical

3: You look at a router interface and see that there are unusual traffic patterns. Normally, 
all traffic is inbound, but now there is outbound traffic. How can you quickly determine 
the source and destination of the traffic?

A: Enable IP accounting on the interface. Use the show ip accounting command repeatedly 
to see which source/destination pair is sending the traffic.
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Answers to Chapter 1 Configuration Exercises

1: Autonomous System 65531 in Figure 1-14 is a core AS.

Figure 1-14. The Internetwork for Configuration Exercise 1

Configure EGP on RTA and RTB, with the following constraints:

- The data link interior to the AS is not advertised to any exterior neighbor.

- RTA advertises the network attached to its S1 interface to RTB; with this exception, no 
other inter-AS link is advertised between RTA and RTB.

- RTA and RTB advertise a default route to their exterior neighbors in addition to networks 
learned from other autonomous systems. Neither gateway advertises a default route to its 
internal neighbor.



A: The configurations of RTA and RTB are as follows:

hostname RTA

!

interface Ethernet0

 ip address 192.168.1.1 255.255.255.0

!

interface Serial0

 ip address 192.168.2.1 255.255.255.0

!

interface Serial1

 ip address 192.168.3.1 255.255.255.0

!

interface Serial2

 ip address 192.168.4.1 255.255.255.0

!

autonomous-system 65531

!

router egp 0

 network 192.168.3.0

 neighbor 192.168.1.2

 neighbor any

 default-information originate

 distribute-list 1 out Ethernet0

!

access-list 1 deny   0.0.0.0

access-list 1 permit any

__________________________________________________________________

hostname RTB

!

interface Ethernet0

 ip address 192.168.1.2 255.255.255.0

!

interface Serial0

 ip address 192.168.5.1 255.255.255.0

!



autonomous-system 65531

!

router egp 0

 neighbor any

 default-information originate

 distribute-list 1 out Ethernet0

!

access-list 1 deny   0.0.0.0

access-list 1 permit any

2: Example 1-26 shows the route table of RTC in Figure 1-15.

Example 2-26 The Route Table of RTC in Figure 1-15

RTC#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

I    192.168.105.0 [100/8976] via 192.168.6.2, 00:01:00, Serial1

I    192.168.110.0 [100/8976] via 192.168.6.2, 00:01:00, Serial1

I    192.168.100.0 [100/8976] via 192.168.10.2, 00:01:00, Serial2

I    192.168.120.0 [100/8976] via 192.168.10.2, 00:01:01, Serial2

C    192.168.2.0 is directly connected, Serial0

C    192.168.6.0 is directly connected, Serial1

C    192.168.10.0 is directly connected, Serial2

RTC#

Figure 1-15. The Internetwork for Configuration Exercise 2



Using redistribution, configure RTC to advertise all EGP-learned networks into AS 65510, and all 
internal networks except 192.168.105.0 to the core AS. Protect against route feedback by 
ensuring that none of the networks internal to AS 65510 are advertised back via EGP. The process 
ID in this configuration is the same as the local AS number.

A: The relevant configuration of RTC is as follows:

autonomous-system 65510

!

router igrp 65510

 redistribute egp 65531 metric 1544 100 255 1 1500

 network 192.168.6.0

!

router egp 65531

 redistribute igrp 65510

 neighbor 192.168.2.1

 distribute-list 10 out Serial0

 distribute-list 20 in Serial0

!

access-list 10 deny   192.168.105.0

access-list 10 permit any

access-list 20 deny   192.168.105.0

access-list 20 deny   192.168.110.0



access-list 20 deny   192.168.100.0

access-list 20 deny   192.168.120.0

access-list 20 deny   192.168.10.0

access-list 20 deny   192.168.6.0

access-list 20 permit any

Notice that no metric is specified for the redistribution into EGP; EGP adds a default 
metric of 3. In this example, the distribute-list command is used to filter routes, 
although a route map could also be used for the same purpose. Of particular interest is 
the filter that blocks internal network addresses if they are included in incoming EGP 
updates. Even though 192.168.105.0 is not being advertised out of the AS, the address 
is included in access list 20. This guards against the possibility of the network's finding 
its way into the EGP domain by some other means and then being routed back into AS 
65510. It also guards against the possibility of a duplicate network address entering the 
AS.

3: Example 1-27 shows the route table of RTD in Figure 1-15.

Example 1-27 The Route Table of RTD in Figure 1-15

RTD#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C    192.168.3.0 is directly connected, Serial0

C    192.168.7.0 is directly connected, Serial1

R    192.168.230.0 [120/1] via 192.168.7.2, 00:00:14, Serial1

R    192.168.200.0 [120/2] via 192.168.7.2, 00:00:15, Serial1

R    192.168.220.0 [120/1] via 192.168.7.2, 00:00:15, Serial1

R    192.168.210.0 [120/2] via 192.168.7.2, 00:00:15, Serial1

RTD#

Configure RTD with the following parameters:

- Only 192.168.220.0 and 192.168.230.0 are to be advertised to AS 65531.

- No routing protocol is redistributed into EGP.

- EGP is redistributed into the IGP of AS 65515.



- 192.168.3.0 is advertised into AS 65515 with a metric of 1.

- 192.168.100.0, from RTC, is advertised into AS 65515 with a metric of 1.

- 192.168.120.0, from RTC, is advertised into AS 65515 with a metric of 3.

- All other routes are advertised into AS 65515 with a metric of 5.

A: The relevant configuration of RTD is as follows:

autonomous-system 65515

!

router rip

 redistribute egp 65531 route-map EXTERNAL

 network 192.168.7.0

 network 192.168.3.0

 default-metric 5

!

router egp 65531

 network 192.168.220.0

 network 192.168.230.0

 neighbor 192.168.3.1

!

access-list 10 permit 192.168.100.0

access-list 20 permit 192.168.120.0

access-list 30 permit any

!

route-map EXTERNAL permit 10

 match ip address 10

 set metric 1

!

route-map EXTERNAL permit 20

 match ip address 20

 set metric 3

!

route-map EXTERNAL permit 30

 match ip address 30



4: Example 1-28 shows the route table of RTE in Figure 1-15.

Example 1-28 The Route Table of RTE in Figure 1-15

RTE#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

Gateway of last resort is not set

O    192.168.125.0/28 [110/74] via 192.168.130.6, 00:01:03, Serial1

C    192.168.4.0/24 is directly connected, Serial0

     192.168.225.0/28 is subnetted, 1 subnets

O E2    192.168.225.160 [110/50] via 192.168.130.18, 00:01:04, Ethernet0

     192.168.215.0/24 is variably subnetted, 3 subnets, 3 masks

O       192.168.215.161/32 [110/65] via 192.168.130.6, 00:01:04, Serial1

O E2    192.168.215.192/26 [110/50] via 192.168.130.18, 00:01:04, Ethernet0

O E1    192.168.215.96/28 [110/164] via 192.168.130.6, 00:01:04, Serial1

     192.168.130.0/24 is variably subnetted, 7 subnets, 4 masks

D       192.168.131.192/27 [90/2195456] via 192.168.130.6, 00:16:49, Serial1

D       192.168.131.96/27 [90/409600] via 192.168.130.18, 00:16:49, Ethernet0

O       192.168.131.97/32 [110/11] via 192.168.130.18, 00:01:05, Ethernet0

D       192.168.131.64/27 [90/409600] via 192.168.130.18, 00:15:01, Ethernet0

D       192.168.131.8/30 [90/2195456] via 192.168.130.6, 00:16:49, Serial1

C       192.168.131.4/30 is directly connected, Serial1

C       192.168.131.16/28 is directly connected, Ethernet0

RTE#

Configure RTE with the following parameters:

- No IGP is redistributed into EGP.

- EGP is not redistributed into any IGP.

- All the internal networks of AS 65520 are advertised to AS 65531.



- The internal routers of AS 65520 can forward packets to any network advertised by RTA.

- All process IDs are the same as the AS number.

- All OSPF interfaces are in area 0.

A: The relevant configuration of RTE is as follows:

autonomous-system 65520

!

router eigrp 65520

 redistribute static

 network 192.168.130.0

 default-metric 1000 100 255 1 1500

 no auto-summary

!

router ospf 65520

 redistribute static metric 10 subnets

 network 192.168.130.4 0.0.0.3 area 0

 network 192.168.130.16 0.0.0.15 area 0

!

router egp 65531

 network 192.168.125.0

 network 192.168.131.0

 network 192.168.215.0

 network 192.168.225.0

 neighbor 192.168.4.1

!

ip route 0.0.0.0 0.0.0.0 192.168.4.1



5: In Figure 1-16, AS 65525 has been added to the internetwork of the previous exercises. RTF's 
Ethernet interface has an IP address of 192.168.1.3/24.

Figure 1-16. The Internetwork for Configuration Exercise 5

Configure this router to peer only with RTB and make any necessary configuration changes to 
support third-party neighbors.



A: The configurations of RTF and RTB are as follows:

RTF

autonomous-system 65525

!

router egp 65531

 network 192.168.50.0

 neighbor 192.168.1.2

________________________________________________________________

RTB

autonomous-system 65531

!

router egp 0

 neighbor 192.168.1.1

 neighbor 192.168.1.1 third-party 192.168.1.3 external

 neighbor 192.168.1.3

 neighbor 192.168.1.3 third-party 192.168.1.1

 neighbor any

 default-information originate

 distribute-list 1 out Ethernet0

!

access-list 1 deny   0.0.0.0

access-list 1 permit any



 
  
Answers to Chapter 3 Configuration Exercises

Table 3-4 shows the routers and addresses used for Configuration Exercises 1–13.

Table 3-4. Routers/Addresses for Configuration Exercises 1–13

Autonomous System Router Interface IP Address/Mask 

1 R1 L0 10.255.255.1/32 

S0 192.168.100.1/30 

E0 192.168.100.5/30 

E1 192.168.100.13/30 

R2 L0 10.255.255.2/32 

S0 192.168.100.9/30 

S1 192.168.100.57/30 

E0 192.168.100.6/30 

E1 192.168.100.17/30 

R3 L0 10.255.255.3/32 

S0 192.168.100.25/30 

E0 192.168.100.18/30 

E1 192.168.100.21/30 

R4 L0 10.255.255.4/32 

S0 192.168.100.29/30 

S1 192.168.100.33/30 

E0 192.168.100.22/30 

E1 192.168.100.14/30 

2 R5 S0 192.168.100.2 /30 

E0 192.168.1.129/26 

R6 S0 192.168.100.10/30 

E0 192.168.1.130/26 

3 R7 L0 10.255.255.7/32 

S0 192.168.100.26/30 

S1 192.168.100.41/30 

E0 192.168.100.37/30 



E1 172.16.1.1/24 

4 R8 L0 10.255.255.8/32 

  S0 192.168.100.30/30 

 S1 192.168.100.45/30 

 E0 192.168.100.38/30 

 E1 172.16.2.1/24 

5 R9 L0 10.255.255.9/32 

S0 192.168.100.42/30 

E0 192.168.9.1/24 

E1 192.168.150.1/24 

R10 L0 10.255.255.10/32 

S0 192.168.100.46/30 

E0 192.168.10.1/24 

E1 192.168.100.53/30 

E2 192.168.150.2/24 

R11 L0 10.255.255.11/32 

S0 192.168.100.34/30 

E0 192.168.100.54/30 

E1 192.168.11.1/24 

6 R12 L0 192.168.255.1/32 

S0 192.168.100.58/30 

E0 192.168.16.83/27 

Table 3-4 lists the autonomous systems, routers, interfaces, and addresses used in Configuration Exercises 
1–13. All interfaces of the routers are shown. For each exercise, if the table indicates that the router has a 
loopback interface, that interface should be the source of all IBGP connections. EBGP connections should always 
be between physical interface addresses unless otherwise specified in the exercise. Hint: Draw the 
internetwork, based on the subnets listed in the table, before attempting the exercises.

1: AS 1 in Table 3-4 is a transit AS, and the IGP is OSPF. Area 0 spans the entire AS. No networks 
internal to the AS are advertised outside of the AS. None of the subnets over which EBGP is run 
should be advertised into AS 1. Write BGP configurations for the routers in AS 1, putting all 
internal neighbors in a peer group called LOCAL. For R3 only, EBGP peering should be performed 
between loopback interfaces. Authenticate all IBGP connections with the password ExeRCise1.



A: [click here]

R1

router ospf 1

 network 10.255.255.1 0.0.0.0 area 0

 network 192.168.100.5 0.0.0.0 area 0

 network 192.168.100.13 0.0.0.0 area 0

!

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.2 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.2 remote-as 2

__________________________________________________________________

R2

router ospf 1

 network 10.255.255.2 0.0.0.0 area 0

 network 192.168.100.6 0.0.0.0 area 0

 network 192.168.100.17 0.0.0.0 area 0

!

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.1 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.10 remote-as 2

 neighbor 192.168.100.58 remote-as 6

__________________________________________________________________



R3

router ospf 1

 network 10.255.255.3 0.0.0.0 area 0

 network 192.168.100.18 0.0.0.0 area 0

 network 192.168.100.21 0.0.0.0 area 0

!

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor REMOTE peer-group

 neighbor REMOTE ebgp-multihop 2

 neighbor REMOTE update-source Loopback0

 neighbor 10.255.255.1 peer-group LOCAL

 neighbor 10.255.255.2 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.26 peer-group REMOTE

 neighbor 192.168.100.26 remote-as 3

_________________________________________________________________

R4

router ospf 1

 network 10.255.255.4 0.0.0.0 area 0

 network 192.168.100.14 0.0.0.0 area 0

 network 192.168.100.22 0.0.0.0 area 0

!

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.1 peer-group LOCAL

 neighbor 10.255.255.2 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.30 remote-as 4



 neighbor 192.168.100.34 remote-as 5

2: AS 2 in Table 3-4 is a stub (nontransit) AS, and its IGP is EIGRP. Configure the routers in AS 2 to 
speak EBGP to any external peers and to redistribute any EIGRP routes into BGP. Redistribute BGP-
learned routes into EIGRP. Implement any necessary filters to prevent incorrect routes from being 
redistributed.

A: [click here]

R5

router eigrp 2

 redistribute bgp 2 route-map External_Routes metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

 no auto-summary

!

router bgp 2

 redistribute eigrp 2 route-map Internal_Routes

 neighbor 192.168.100.1 remote-as 1

!

ip as-path access-list 1 deny _2_

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^$

!

route-map External_Routes permit 10

 match as-path 1

!

route-map Internal_Routes permit 10

 match as-path 2

__________________________________________________________________

R6

router eigrp 2

 redistribute bgp 2 route-map External_Routes metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

 no auto-summary



!

router bgp 2

 redistribute eigrp 2 route-map Internal_Routes

 neighbor 192.168.100.9 remote-as 1

!

ip as-path access-list 1 deny _2_

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^$

!

route-map External_Routes permit 10

 match as-path 1

!

route-map Internal_Routes permit 10

 match as-path 2

3: Networks 192.168.1.0, 192.168.2.0, 192.168.3.0, 192.168.4.0, and 192.168.5.0 exist within AS 
2. The administrator of this AS wants the neighboring AS to prefer R5 when sending traffic to 
192.168.1.0 and 192.168.3.0. The neighboring AS should prefer R6 when sending traffic to 
192.168.2.0 and 192.168.4.0. In each case, the less-preferred link serves as a backup to the 
more-preferred link. 192.168.5.0 is a private network and must not be advertised to any EBGP 
peer. Modify the configurations written in Exercise 2 to implement this policy.

A: Note that in these configurations, the AS_PATH filters from Exercise 2 remain. Although not 
entirely necessary due to the access lists filtering specific prefixes, in a real network they can act 
as an extra bit of insurance against the wrong routes being advertised.

R5

router eigrp 2

 redistribute bgp 2 route-map External_Routes metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

 no auto-summary

!

router bgp 2

 redistribute eigrp 2 route-map Internal_Routes

 neighbor 192.168.100.1 remote-as 1

!

ip as-path access-list 1 deny _2_

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^$



!

access-list 1 permit 192.168.1.0

access-list 1 permit 192.168.3.0

access-list 2 permit 192.168.2.0

access-list 2 permit 192.168.4.0

!

route-map External_Routes permit 10

 match as-path 1

!

route-map Internal_Routes permit 10

 match ip address 1

 match as-path 2

 set metric 50

!

route-map Internal_Routes permit 20

 match ip address 2

 match as-path 2

 set metric 150

__________________________________________________________________

R6

router eigrp 2

 redistribute bgp 2 route-map External_Routes metric 10000 100 255 1 1500

 passive-interface Serial0

 network 192.168.1.0

 network 192.168.100.0

 no auto-summary

!

router bgp 2

 redistribute eigrp 2 route-map Internal_Routes

 neighbor 192.168.100.9 remote-as 1

!

ip as-path access-list 1 deny _2_

ip as-path access-list 1 permit .*

ip as-path access-list 2 permit ^$

!

access-list 1 permit 192.168.2.0

access-list 1 permit 192.168.4.0



access-list 2 permit 192.168.1.0

access-list 2 permit 192.168.3.0

!

route-map External_Routes permit 10

 match as-path 1

!

route-map Internal_Routes permit 10

 match ip address 1

 match as-path 2

 set metric 50

!

route-map Internal_Routes permit 20

 match ip address 2

 match as-path 2

 set metric 150

4: Configure the EBGP neighbors of R5 and R6 to advertise a default route to AS 2. No other routes 
are to be advertised.

A: [click here]

R1

router ospf 1

 network 10.255.255.1 0.0.0.0 area 0

 network 192.168.100.5 0.0.0.0 area 0

 network 192.168.100.13 0.0.0.0 area 0

!

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.2 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.2 remote-as 2

 neighbor 192.168.100.2 default-originate



 neighbor 192.168.100.2 distribute-list 1 out

!

access-list 1 permit 0.0.0.0

access-list 1 deny any

__________________________________________________________________

R2

router ospf 1

 network 10.255.255.2 0.0.0.0 area 0

 network 192.168.100.6 0.0.0.0 area 0

 network 192.168.100.17 0.0.0.0 area 0

!

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.1 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.10 remote-as 2

 neighbor 192.168.100.10 default-originate

 neighbor 192.168.100.10 distribute-list 1 out

 neighbor 192.168.100.58 remote-as 6

!

access-list 1 permit 0.0.0.0

access-list 1 deny any

5: The administrator of AS 2's neighboring AS disagrees with part of the policy set in Exercise 2. He 
wants all routers in his AS to send traffic destined for 192.168.3.0 to R6, with R5 as a backup. All 
traffic destined for 192.168.4.0 should be sent to R5, with R6 as a backup. The rest of the policy 
set in Exercise 2 is acceptable. Write configurations to implement this policy.



A: Remember that LOCAL_PREF is considered ahead of MED in the BGP decision process. Therefore, 
changing the default LOCAL_PREF attributes of the appropriate routes on the appropriate routers 
in AS 2 overrides the routes' MEDs.

R1

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.2 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.2 remote-as 2

 neighbor 192.168.100.2 route-map SET_PREF in

 neighbor 192.168.100.2 default-originate

 neighbor 192.168.100.2 distribute-list 1 out

!

access-list 1 permit 0.0.0.0

access-list 1 deny any

access-list 2 permit 192.168.4.0

access-list 2 deny any

!

route-map SET_PREF permit 10

 match ip address 2

 set local-preference 200

!

route-map SET_PREF permit 20

__________________________________________________________________

R2

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self



 neighbor 10.255.255.1 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.10 remote-as 2

 neighbor 192.168.100.10 route-map SET_PREF in

 neighbor 192.168.100.10 default-originate

 neighbor 192.168.100.10 distribute-list 1 out

 neighbor 192.168.100.58 remote-as 6

!

access-list 1 permit 0.0.0.0

access-list 1 deny any

access-list 2 permit 192.168.3.0

access-list 2 deny any

!

route-map SET_PREF permit 10

 match ip address 2

 set local-preference 200

!

route-map SET_PREF permit 20

6: AS 3 in Table 3-4 is a stub AS, and AS 4 is a transit AS. The IGP of both autonomous systems is 
OSPF, and the internal interfaces of R7 and R8 are both in area 0. Write BGP and OSPF 
configurations for R7 and R8, advertise the internal addresses shown in Table 3-5 to all EBGP 
peers, and ensure that routers in the OSPF domains can reach any external destination. Do not 
redistribute routes in either direction. Also, ensure that the BGP router ID of R7 is 192.168.3.254.

A: The route-map STUB at R7 prevents routes received from an EBGP peer from being advertised to 
other EBGP peers, thus making the AS nontransit. R8 has no such route filter, so AS 4 is a transit 
AS.

R7

router ospf 3

 network 10.255.255.7 0.0.0.0 area 0

 network 172.16.1.1 0.0.0.0 area 0

 default-information originate

!

router bgp 3

 bgp router-id 192.168.3.254

 network 172.16.1.0 mask 255.255.255.0

 network 172.16.3.0 mask 255.255.255.0



 network 172.17.0.0

 network 192.168.6.128 mask 255.255.255.128

 neighbor 192.168.100.25 remote-as 1

 neighbor 192.168.100.25 ebgp-multihop 2

 neighbor 192.168.100.25 update-source Loopback0

 neighbor 192.168.100.25 route-map STUB out

 neighbor 192.168.100.38 remote-as 4

 neighbor 192.168.100.38 route-map STUB out

 neighbor 192.168.100.42 remote-as 5

 neighbor 192.168.100.42 route-map STUB out

 no auto-summary

!

ip route 0.0.0.0 0.0.0.0 Null0

!

ip as-path access-list 1 permit ^$

!

route-map STUB permit 10

 match as-path 1

__________________________________________________________________

R8

router ospf 4

 network 10.255.255.8 0.0.0.0 area 0

 network 172.16.2.1 0.0.0.0 area 0

 default-information originate

!

router bgp 4

 network 172.16.2.0 mask 255.255.255.0

 network 172.16.4.0 mask 255.255.255.0

 network 172.18.0.0

 network 192.168.6.0 mask 255.255.255.128

 neighbor 192.168.100.29 remote-as 1

 neighbor 192.168.100.37 remote-as 3

 neighbor 192.168.100.46 remote-as 5

 no auto-summary

!

ip route 0.0.0.0 0.0.0.0 Null0



Table 3-5. Destinations Internal to AS 3 and AS 4

AS 3 AS 4

172.16.1.0/24 172.16.2.0/24

172.16.3.0/24 172.16.4.0/24

172.17.0.0/16 172.18.0.0/16

192.168.6.128/25 192.168.6.0/25

7: Modify the configurations of Exercise 6 so that R7 and R8 speak OSPF across the link directly 
connecting them; remove BGP from the link. Traffic between subnets 172.16.3.0/24 and 
172.16.4.0/24 should prefer this direct link and should use any EBGP links only as backup. Traffic 
between the other addresses internal to AS 3 and AS 4 should use the EBGP links and should use 
the direct link only as a backup. Additionally, traffic from other autonomous systems can use the 
direct link as a backup route. If an EBGP link to AS 4 fails, for example, the neighboring AS can 
send traffic destined for AS 4 to AS 3, to be forwarded to AS 4 across the direct link.

A: [click here]

R7

router ospf 3

 network 10.255.255.7 0.0.0.0 area 0

 network 172.16.1.1 0.0.0.0 area 0

 network 192.168.100.37 0.0.0.0 area 0

 default-information originate

!

router bgp 3

 bgp router-id 192.168.3.254

 network 172.16.1.0 mask 255.255.255.0

 network 172.16.3.0 mask 255.255.255.0 backdoor

 network 172.17.0.0

 network 192.168.6.128 mask 255.255.255.128

 neighbor 192.168.100.25 remote-as 1

 neighbor 192.168.100.25 ebgp-multihop 2

 neighbor 192.168.100.25 update-source Loopback0

 neighbor 192.168.100.25 route-map STUB out

 neighbor 192.168.100.42 remote-as 5

 neighbor 192.168.100.42 route-map STUB out

 no auto-summary

!

ip route 0.0.0.0 0.0.0.0 Null0



!

ip as-path access-list 1 permit ^$

!

route-map STUB permit 10

 match as-path 1

__________________________________________________________________

R8

router ospf 4

 network 10.255.255.8 0.0.0.0 area 0

 network 172.16.2.1 0.0.0.0 area 0

 network 192.168.100.38 0.0.0.0 area 0

 default-information originate

!

router bgp 4

 network 172.16.2.0 mask 255.255.255.0

 network 172.16.4.0 mask 255.255.255.0 backdoor

 network 172.18.0.0

 network 192.168.6.0 mask 255.255.255.128

 neighbor 192.168.100.29 remote-as 1

 neighbor 192.168.100.46 remote-as 5

 no auto-summary

!

ip route 0.0.0.0 0.0.0.0 Null0

8: AS 5 in Table 3-4 is a transit AS, and its IGP is IS-IS. The Level 2 area 47.0001 spans the entire 
AS. The internal networks are 192.168.9.0, 192.168.10.0, 192.168.11.0, and 192.168.12.0. Write 
IS-IS and BGP configurations for R9, R10, and R11. Ensure that all external routes are known by 
the routers in the IS-IS domain and that all internal networks are advertised to all EBGP peers. Do 
not redistribute IS-IS routes into BGP.



A: These configurations use next-hop-self, although alternatively you could run IS-IS in passive 
mode on the external interfaces.

R9

router isis

 net 47.0001.0000.1234.abcd.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 network 192.168.12.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.10 peer-group LOCAL

 neighbor 10.255.255.11 peer-group LOCAL

 neighbor 192.168.100.41 remote-as 3

__________________________________________________________________

R10

router isis

 net 47.0001.0000.5678.ef01.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 network 192.168.12.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self



 neighbor 10.255.255.9 peer-group LOCAL

 neighbor 10.255.255.11 peer-group LOCAL

 neighbor 192.168.100.45 remote-as 4

__________________________________________________________________

R11

router isis

 net 47.0001.0000.4321.dcba.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 network 192.168.12.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.9 peer-group LOCAL

 neighbor 10.255.255.10 peer-group LOCAL

 neighbor 192.168.100.33 remote-as 1

9: Modify the configurations written in Exercise 8 so that network 192.168.12.0 is known only by AS 
4, and no other autonomous system.

A: The network statement for 192.168.12.0 is removed from the configurations of R9 and R11 so 
that they do not advertise that network. At R10, the NO_EXPORT community is added to the route 
to 192.168.12.0 so that it is not advertised beyond AS 4.

R9

router isis

 net 47.0001.0000.1234.abcd.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0



 network 192.168.10.0

 network 192.168.11.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.10 peer-group LOCAL

 neighbor 10.255.255.11 peer-group LOCAL

 neighbor 192.168.100.41 remote-as 3

__________________________________________________________________

R10

router isis

 net 47.0001.0000.5678.ef01.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 network 192.168.12.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.9 peer-group LOCAL

 neighbor 10.255.255.11 peer-group LOCAL

 neighbor 192.168.100.45 remote-as 4

 neighbor 192.168.100.45 send-community

 neighbor 192.168.100.45 route-map EXPORT_COMMUNITY out

!

access-list 1 permit 192.168.12.0

!

route-map EXPORT_COMMUNITY permit 10

 match ip address 1

 set community no-export

!



route-map EXPORT_COMMUNITY permit 20

__________________________________________________________________

R11

router isis

 net 47.0001.0000.4321.dcba.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.9 peer-group LOCAL

 neighbor 10.255.255.10 peer-group LOCAL

 neighbor 192.168.100.33 remote-as 1

10: Modify the configurations written in Exercise 9 so that AS 3 and AS 4 prefer the path through AS 1 
to reach network 192.168.11.0.

A: Network 192.168.11.0 is advertised normally by R11 but is prepended by R9 and R10.

R9

router isis

 net 47.0001.0000.1234.abcd.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0



 neighbor LOCAL next-hop-self

 neighbor 10.255.255.10 peer-group LOCAL

 neighbor 10.255.255.11 peer-group LOCAL

 neighbor 192.168.100.41 remote-as 3

 neighbor 192.168.100.41 route-map PREPEND out

!

access-list 1 permit 192.168.11.0

!

route-map PREPEND permit 10

 match ip address 1

 set as-path prepend 5 5

!

route-map PATH permit 20

__________________________________________________________________

R10

router isis

 net 47.0001.0000.5678.ef01.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 network 192.168.12.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.9 peer-group LOCAL

 neighbor 10.255.255.11 peer-group LOCAL

 neighbor 192.168.100.45 remote-as 4

 neighbor 192.168.100.45 send-community

 neighbor 192.168.100.45 route-map EXPORT_COMMUNITY out

!

access-list 1 permit 192.168.12.0

access-list 2 permit 192.168.11.0



!

route-map EXPORT_COMMUNITY permit 10

 match ip address 1

 set community no-export

!

route-map EXPORT_COMMUNITY permit 20

 match ip address 1

 set as-path prepend 5 5

!

route-map EXPORT_COMMUNITY permit 30

__________________________________________________________________

R11

router isis

 net 47.0001.0000.4321.dcba.00

 is-type level-2-only

 redistribute bgp 5 metric 0 metric-type external level-2

!

router bgp 5

 network 192.168.9.0

 network 192.168.10.0

 network 192.168.11.0

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 5

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.9 peer-group LOCAL

 neighbor 10.255.255.10 peer-group LOCAL

 neighbor 192.168.100.33 remote-as 1

11: The networks internal to AS 6 in Table 3-4 are 192.168.16.0, 192.168.17.0, 192.168.18.0, and 
192.168.19.0. Write a BGP configuration for R12 that advertises these networks to the 
neighboring AS and that also advertises a summary route for the networks. The neighboring AS 
should advertise only the summary to other autonomous systems.



A: [click here]

router bgp 6

 network 192.168.16.0

 network 192.168.17.0

 network 192.168.18.0

 network 192.168.19.0

 aggregate-address 192.168.16.0 255.255.252.0

 neighbor 192.168.100.57 remote-as 1

 neighbor 192.168.100.57 send-community

 neighbor 192.168.100.57 route-map AGGREGATE out

!

access-list 101 permit ip host 192.168.16.0 host 255.255.252.0

!

route-map AGGREGATE permit 10

 match ip address 101

 set community none

!

route-map AGGREGATE permit 20

 set community no-export

12: Modify the most recent configuration you wrote for R12's EBGP neighbor so that the neighbor does 
not accept prefixes that do not belong to the aggregate being advertised by R12, does not accept 
prefixes longer than 24 bits, and does not accept more than five prefixes.

A: [click here]

R2

router bgp 1

 neighbor LOCAL peer-group

 neighbor LOCAL remote-as 1

 neighbor LOCAL password 7 15371309360922372D62

 neighbor LOCAL update-source Loopback0

 neighbor LOCAL next-hop-self

 neighbor 10.255.255.1 peer-group LOCAL

 neighbor 10.255.255.3 peer-group LOCAL

 neighbor 10.255.255.4 peer-group LOCAL

 neighbor 192.168.100.10 remote-as 2



 neighbor 192.168.100.10 route-map SET_PREF in

 neighbor 192.168.100.10 default-originate

 neighbor 192.168.100.10 distribute-list 1 out

 neighbor 192.168.100.58 remote-as 6

 neighbor 192.168.100.58 maximum-prefix 5

 neighbor 192.168.100.58 route-map PREFIX_LIMIT in

!

access-list 1 permit 0.0.0.0

access-list 1 deny any

access-list 2 permit 192.168.3.0

access-list 2 deny any

!

ip prefix-list AS6 seq 5 permit 192.168.16.0/22 le 24

!

route-map SET_PREF permit 10

 match ip address 2

 set local-preference 200

!

route-map SET_PREF permit 20

!

route-map PREFIX_LIMIT permit 10

 match ip address prefix-list AS6

13: Example 3-164 shows a BGP configuration for R7 in Table 3-4. The internal prefixes shown in 
Table 3-5 are advertised by OSPF.

Example 3-164 BGP Configuration of Router R7

router bgp 3

 redistribute ospf 1

 neighbor NEIGHBORS peer-group

 neighbor NEIGHBORS ebgp-multihop 2

 neighbor NEIGHBORS update-source Loopback0

 neighbor NEIGHBORS route-map EX13 out

 neighbor 10.255.255.8 remote-as 4

 neighbor 10.255.255.8 peer-group NEIGHBORS

 neighbor 10.255.255.9 remote-as 5



 neighbor 10.255.255.9 peer-group NEIGHBORS

 neighbor 10.255.255.3 remote-as 1

 neighbor 10.255.255.3 peer-group NEIGHBORS

 no auto-summary

!

ip classless

ip as-path access-list 1 permit ^1 2$

!

access-list 1 permit 172.16.1.0

access-list 2 permit 172.16.3.0

!

route-map EX13 permit 10

 match ip address 1

 set as-path prepend 2

!

route-map EX13 permit 20

 match ip address 2

 set as-path prepend 1

!

route-map EX13 permit 30

 match as-path 1

 set as-path prepend 4 5

!

route-map EX13 deny 40

Explain the effects of route map EX13.

A: Term 10 of the route map matches prefix 172.16.1.0 and prepends 2 to the AS_PATH. As a result, 
routers in AS 2 will reject the prefix. Term 20 matches prefix 172.16.2.0 and prepends 1 to the 
AS_PATH, so the route is rejected by routers in AS 1. Term 30 matches routes that have an 
AS_PATH of [1, 2], meaning routes that are originated in AS 2 and have been advertised by AS 1. 
That term prepends 4 and 5 to the AS_PATH of these routes, so they are rejected by AS 4 and AS 
5. Term 40 suppresses the advertisement of any other routes.



14: Router R1 in Figure 3-36 is a route reflector for routers R2, R3, and R4 and is connected to those 
neighbors via Frame Relay PVCs. Write a BGP configuration for R1 that provides full connectivity 
for the networks attached to the four routers. The cluster ID is 6500.

Figure 3-36. The Route Reflection Cluster for Configuration Exercise 14

A: [click here]

router bgp 6500

 no synchronization

 bgp cluster-id 6500

 network 172.20.0.0

 neighbor 172.16.1.1 remote-as 6500

 neighbor 172.16.1.1 route-reflector-client

 neighbor 172.16.1.2 remote-as 6500

 neighbor 172.16.1.2 route-reflector-client

 neighbor 172.16.1.3 remote-as 6500

 neighbor 172.16.1.3 route-reflector-client



 
  
Answers to Chapter 4 Configuration Exercises

Refer to Figure 4-28 for Configuration Exercises 1–5.

Figure 4-28. The Internetwork for Configuration Exercises 1–5

1: ISP1 in Figure 4-28 has assigned the address block 201.50.13.0/24 to AS 3. ISP2 has assigned 
the address block 200.100.30.0/24 to AS 3. RTR1 and RTR2 are accepting full BGP routes from 
the ISP routers but do not transmit any routes to the ISPs. They run IBGP between them and 
OSPF on all Ethernet interfaces. No routes are redistributed between BGP and OSPF. The 
addresses of the router interfaces are as follows:

RTR1, E0: 172.16.3.1/24

RTR1, E1: 172.16.2.1/24

RTR1, S0: 201.50.26.13/30

RTR2, E0: 172.16.3.2/24

RTR2, E1: 172.16.1.1/24

RTR2, S0: 200.100.29.241/30



SVR1 is the DNS server authoritative for AS 3; its address is 172.16.3.3. DNS1 reaches SVR1 at 
201.50.13.1, whereas DNS2 reaches the same server at 200.100.30.254. Write routing and NAT 
configurations for RTR1 and RTR2, translating inside addresses appropriately for each ISP's 
assigned address block. Any inside device must be able to reach either ISP, but no packets can 
leave AS 3 with a private source address under any circumstance.

A: [click here]

RTR1

interface Loopback0

 ip address 172.16.255.2 255.255.255.255

!

interface Ethernet0

 ip address 172.16.3.1 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 172.16.2.1 255.255.255.0

 ip nat inside

!

interface Serial0

 description to ISP1

 ip address 201.50.26.13 255.255.255.252

 ip access-group 101 out

 ip nat outside

!

autonomous-system 3

!

router ospf 1

 redistribute static

 network 172.16.0.0 0.0.255.255 area 0

 default-information originate

!

router bgp 3

 neighbor 172.16.255.1 remote-as 3

 neighbor 172.16.255.1 update-source Loopback0

 neighbor 201.50.26.14 remote-as 1

!

ip nat pool ISP1Pool 201.50.13.2 201.50.13.254 netmask 255.255.255.0

ip nat inside source list 1 pool ISP1Pool



ip nat inside source static 172.16.3.3 201.50.13.1

!

ip route 0.0.0.0 0.0.0.0 201.50.26.14

ip route 201.50.0.0 255.255.192.0 201.50.26.14

!

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 101 deny   ip 172.16.0.0 0.0.255.255 any

access-list 101 permit ip any any

__________________________________________________________________

RTR2

interface Loopback0

 ip address 172.16.255.1 255.255.255.255

!

interface Ethernet0

 ip address 172.16.3.2 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 172.16.1.1 255.255.255.0

 ip nat inside

!

interface Serial0

 description to ISP2

 ip address 200.100.29.241 255.255.255.252

 ip access-group 101 out

 ip nat outside

!

autonomous-system 3

!

router ospf 1

 redistribute static

 network 172.16.0.0 0.0.255.255 area 0

 default-information originate

!

router bgp 3

 neighbor 172.16.255.2 remote-as 3



 neighbor 172.16.255.2 update-source Loopback0

 neighbor 200.100.29.242 remote-as 2

!

ip nat pool ISP2Pool 200.100.30.1 200.100.30.253 netmask 255.255.255.0

ip nat inside source list 1 pool ISP2Pool

ip nat inside source static 172.16.3.3 200.100.30.254

!

ip route 0.0.0.0 0.0.0.0 200.100.29.242

ip route 200.100.0.0 255.255.224.0 200.100.29.242

!

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 101 deny ip 172.16.0.0 0.0.255.255 any

access-list 101 permit ip any any

2: The address of SVR2 in Figure 4-28 is 172.16.2.2, and the address of SVR3 is 172.16.2.3. Modify 
the configurations of Configuration Exercise 1 so that devices within ISP1's AS connect to the 
servers round-robin at the address 201.50.13.3.

A: Notice that in addition to the new commands, ISP1Pool has been modified to no longer include the 
address 201.50.13.3.

RTR1

ip nat pool ISP1Pool 201.50.13.4 201.50.13.254 netmask 255.255.255.0

ip nat pool SVRs 172.16.2.2 172.16.2.3 netmask 255.255.0.0 type rotary

ip nat inside source list 1 pool ISP1Pool

ip nat inside source static 172.16.3.3 201.50.13.1

ip nat inside destination list 2 pool SVRs

!

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 2 permit 201.50.13.3

3: HTTP packets sent to 200.100.30.50 from ISP2 are sent to SVR2 in Figure 4-28. SMTP packets 
sent to 200.100.30.50 from ISP2 are sent to SVR3. Modify the configurations of the previous 
exercises to implement these translations.



A: The IG address falls in the middle of the ISP2Pool range, so in addition to the static NAT 
mappings, ISP2Pool must be reconfigured.

RTR2

ip nat pool ISP2Pool netmask 255.255.255.0

 address 200.100.30.1 200.100.30.49

 address 200.100.30.51 200.100.30.253

ip nat inside source list 1 pool ISP2Pool

ip nat inside source static tcp 172.16.2.3 24 200.100.30.50 25 extendable

ip nat inside source static tcp 172.16.2.2 80 200.100.30.50 80 extendable

ip nat inside source static 172.16.3.3 200.100.30.254

!

access-list 1 permit 172.16.0.0 0.0.255.255

4: Five outside devices in Figure 4-28, 201.50.12.67–201.50.12.71, must appear to devices within 
AS 3 as having addresses 192.168.1.1–192.168.1.5, respectively. Add the appropriate NAT 
configurations to the previously created configurations.

A: [click here]

RTR1

ip nat pool ISP1Pool 201.50.13.2 201.50.13.254 netmask 255.255.255.0

ip nat pool SVRs 172.16.2.2 172.16.2.3 netmask 255.255.255.0 type rotary

ip nat inside source list 1 pool ISP1Pool

ip nat inside source static 172.16.3.3 201.50.13.1

ip nat inside destination list 2 pool SVRs

ip nat outside source static 201.50.12.71 192.168.1.5

ip nat outside source static 201.50.12.70 192.168.1.4

ip nat outside source static 201.50.12.69 192.168.1.3

ip nat outside source static 201.50.12.68 192.168.1.2

ip nat outside source static 201.50.12.67 192.168.1.1

!

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 2 permit 201.50.13.1

5: Devices in AS 3 of Figure 4-28 with addresses in the 172.16.100.0/24 subnet should all appear to 
have the IG address 200.100.30.75 when sending packets to ISP2. Modify the configurations of 
the previous exercises to accommodate this.



A: The solution is to configure PAT. Unlike the PAT example shown in this chapter, however, the 
address to be used here is not the address of the outgoing interface. So, an address pool is 
configured on RTR2 that consists of a single address. Notice also that access list 1 is modified so 
that the IL addresses used for PAT are not translated to the ISP2Pool range.

RTR2

ip nat pool ISP2Pool netmask 255.255.255.0

 address 200.100.30.1 200.100.30.49

 address 200.100.30.51 200.100.30.253

ip nat pool PATPool 200.100.30.75 200.100.30.75 netmask 255.255.0.0

ip nat inside source list 1 pool ISP2Pool

ip nat inside source list 3 pool PATPool overload

ip nat inside source static tcp 172.16.2.3 24 200.100.30.50 25 extendable

ip nat inside source static tcp 172.16.2.2 80 200.100.30.50 80 extendable

ip nat inside source static 172.16.3.3 200.100.30.254

!

access-list 1 deny 172.16.100.0 0.0.0.255

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 3 permit 172.16.100.0 0.0.0.255

6: In Figure 4-29, redundant links have been added so that RTR1 and RTR2 each have connections to 
both ISPs, and each accept full BGP routes from both ISPs. The address of RTR1, S1 is 
200.100.29.137/30, and the address of RTR2, S1 is 201.50.26.93/30. Write configurations for the 
two routers, ensuring that all features added in the previous exercises still work correctly.

Figure 4-29. The Internetwork for Configuration Exercise 6



A: [click here]

RTR1

interface Loopback0

 ip address 172.16.255.2 255.255.255.255

!

interface Ethernet0

 ip address 172.16.3.1 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 172.16.2.1 255.255.255.0

 ip nat inside

!

interface Serial0

 description to ISP1

 ip address 201.50.26.13 255.255.255.252

 ip access-group 101 out

 ip nat outside

!



interface Serial1

 description to ISP2

 ip address 200.100.29.137 255.255.255.252

 ip access-group 101 out

 ip nat outside

!

autonomous-system 3

!

router ospf 1

 redistribute static

 network 172.16.0.0 0.0.255.255 area 0

 default-information originate

!

router bgp 3

 neighbor 172.16.255.1 remote-as 3

 neighbor 172.16.255.1 update-source Loopback0

 neighbor 200.100.29.138 remote-as 2

 neighbor 201.50.26.14 remote-as 1

!

ip nat pool ISP1Pool 201.50.13.2 201.50.13.254 netmask 255.255.255.0

ip nat pool ISP2Pool netmask 255.255.255.0

 address 200.100.30.1 200.100.30.49

 address 200.100.30.51 200.100.30.253

ip nat pool PATPool 200.100.30.75 200.100.30.75 netmask 255.255.0.0

ip nat pool SVRs 172.16.2.2 172.16.2.3 netmask 255.255.255.0 type rotary

ip nat inside source route-map ISP1 pool ISP1Pool

ip nat inside source route-map ISP2 pool ISP2Pool

ip nat inside source list 3 pool PATPool overload

ip nat inside source static tcp 172.16.2.3 24 200.100.30.50 25 extendable

ip nat inside source static tcp 172.16.2.2 80 200.100.30.50 80 extendable

ip nat inside source static 172.16.3.3 201.50.13.1

ip nat inside destination list 2 pool SVRs

ip nat outside source static 201.50.12.71 192.168.1.5

ip nat outside source static 201.50.12.70 192.168.1.4

ip nat outside source static 201.50.12.69 192.168.1.3

ip nat outside source static 201.50.12.68 192.168.1.2

ip nat outside source static 201.50.12.67 192.168.1.1



!

access-list 1 deny 172.16.100.0 0.0.0.255

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 2 permit 201.50.13.1

access-list 3 permit 172.16.100.0 0.0.0.255

access-list 4 permit 200.100.29.138

access-list 5 permit 201.50.26.14

access-list 101 deny   ip 172.16.0.0 0.0.255.255 any

access-list 101 permit ip any any

!

route-map ISP1 permit 10

 match ip address 1

 match ip next-hop 5

!

route-map ISP2 permit 10

 match ip address 1

 match ip next-hop 4

__________________________________________________________________

RTR2

interface Loopback0

 ip address 172.16.255.1 255.255.255.255

!

interface Ethernet0

 ip address 172.16.3.2 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 172.16.1.1 255.255.255.0

 ip nat inside

!

interface Serial0

 description to ISP2

 ip address 200.100.29.241 255.255.255.252

 ip access-group 101 out

 ip nat outside

!



interface Serial1

 description to ISP1

 ip address 201.50.26.93 255.255.255.252

 ip access-group 101 out

 ip nat outside

autonomous-system 3

!

router ospf 1

 redistribute static

 network 172.16.0.0 0.0.255.255 area 0

 default-information originate

!

router bgp 3

 neighbor 172.16.255.2 remote-as 3

 neighbor 172.16.255.2 update-source Loopback0

 neighbor 200.100.29.242 remote-as 2

 neighbor 201.50.26.94 remote-as 1

!

ip nat pool ISP1Pool 201.50.13.2 201.50.13.254 netmask 255.255.255.0

ip nat pool ISP2Pool netmask 255.255.255.0

 address 200.100.30.1 200.100.30.49

 address 200.100.30.51 200.100.30.253

ip nat pool PATPool 200.100.30.75 200.100.30.75 netmask 255.255.0.0

ip nat pool SVRs 172.16.2.2 172.16.2.3 netmask 255.255.255.0 type rotary

ip nat inside source route-map ISP1 pool ISP1Pool

ip nat inside source route-map ISP2 pool ISP2Pool

ip nat inside source list 3 pool PATPool overload

ip nat inside source static tcp 172.16.2.3 24 200.100.30.50 25 extendable

ip nat inside source static tcp 172.16.2.2 80 200.100.30.50 80 extendable

ip nat inside source static 172.16.3.3 200.100.30.254

ip nat inside destination list 2 pool SVRs

ip nat outside source static 201.50.12.71 192.168.1.5

ip nat outside source static 201.50.12.70 192.168.1.4

ip nat outside source static 201.50.12.69 192.168.1.3

ip nat outside source static 201.50.12.68 192.168.1.2

ip nat outside source static 201.50.12.67 192.168.1.1

!



access-list 1 deny 172.16.100.0 0.0.0.255

access-list 1 permit 172.16.0.0 0.0.255.255

access-list 2 permit 201.50.13.1

access-list 3 permit 172.16.100.0 0.0.0.255

access-list 4 permit 200.100.29.242

access-list 5 permit 201.50.26.94

access-list 101 deny ip 172.16.0.0 0.0.255.255 any

access-list 101 permit ip any any

!

route-map ISP1 permit 10

 match ip address 1

 match ip next-hop 5

!

route-map ISP2 permit 10

 match ip address 1

 match ip next-hop 4



 
  
Answers to Chapter 6 Configuration Exercises

1: What global Cisco IOS Software command is required to enable IP multicast routing?

A: ip multicast-routing

2: Show the commands that enable PIM on an interface in dense mode, sparse mode, and sparse-
dense mode.

A: [click here]

ip pim dense-mode

ip pim sparse-mode

ip pim sparse-dense mode

3: Show the command to statically specify an RP with an address of 172.18.20.4.

A: ip pim rp-address 172.18.20.4

4: Write the configuration statements necessary to statically map groups 239.1.2.3 and 228.1.8.0 
through 228.1.8.255 to RP 192.168.15.5, and group 239.6.7.8 to RP 192.168.20.10. Map all other 
groups to RP 192.168.25.1.

A: [click here]

ip pim rp-address 192.168.15.5 1

ip pim rp-address 192.168.20.10 2

ip pim rp-address 192.168.25.1

!

access-list 1 permit 239.1.2.3 0.0.0.0

access-list 1 permit 228.1.8.0 0.0.0.255

access-list 2 permit 239.6.7.8 0.0.0.0



5: All router interfaces shown in Figure 6-11 are running in sparse-dense mode. Show the relevant 
configurations in order for R1 to be the RP for only groups whose addresses begin with 
226.13.0.0/24. R2 should only be the RP for groups whose addresses begin with 239.0.0.0/8. R3 
is the mapping agent; ensure that the mapping agent will recognize only R1 and R2 as RPs, and 
only for the specified groups. All Auto-RP messages should have a TTL of 20.

Figure 6-11. The Topology for Configuration Exercises 5–8

A: [click here]

R1

ip pim send-rp-announce Loopback0 scope 20 group-list 1

!

access-list 1 permit 226.13.0.0 0.0.0.255

__________________________________________________________________

R2

ip pim send-rp-announce Loopback0 scope 20 group-list 1

!

access-list 1 permit 239.0.0.0 0.255.255.255

__________________________________________________________________

R3

ip pim rp-announce-filter rp-list 10 group-list 11

ip pim rp-announce-filter rp-list 20 group-list 21

ip pim send-rp-discovery Loopback0 scope 20

!

access-list 10 permit 172.16.50.1



access-list 11 permit 226.13.0.0 0.0.0.255

access-list 20 permit 172.16.50.2

access-list 21 permit 239.0.0.0 0.255.255.255

6: Given the configurations of Configuration Exercise 5, suppose a source originates traffic for group 
228.23.14.135, and a member requests a join to that group. What will happen?

A: Neither R1 nor R2 is configured to become the RP for that group. Because all interfaces are 
running in sparse-dense mode, however, dense mode is invoked for the group, and an SPT is built 
between the source and member.

7: Again referring to Figure 6-11, write the necessary configurations to enable the bootstrap 
protocol, making R1 and R2 C-RPs for the same group addresses described in Configuration 
Exercise 5. Make R3 the BSR, and make R4 a backup BSR.

A: [click here]

R1

ip pim rp-candidate Loopback0 group-list 1

!

access-list 1 permit 226.13.0.0 0.0.0.255

__________________________________________________________________

R2

ip pim rp-candidate Loopback0 group-list 1

!

access-list 1 permit 239.0.0.0 0.255.255.255

__________________________________________________________________

R3

ip pim bsr-candidate Loopback0 50

_________________________________________________________________

R4

ip pim bsr-candidate Loopback0 0

8: Write configurations for the topology in Figure 6-11 that allow multicast load balancing between 
source 172.16.1.75 and group member 172.16.2.100. Use unnumbered addressing on the tunnel 
interfaces, referencing E0, and assume the IGP is advertising those addresses.



A: [click here]

R6

interface Tunnel0

 ip unnumbered Ethernet0

 ip pim sparse-dense mode

 tunnel source Loopback0

 tunnel destination 172.16.50.7

!

ip mroute 172.16.1.75 255.255.255.255 Tunnel0

__________________________________________________________________

R7

interface Tunnel0

 ip unnumbered Ethernet0

 ip pim sparse-dense mode

 tunnel source Loopback0

 tunnel destination 172.16.50.6

9: Examine the configurations of Homburg and Porkpie shown in the case study "Multicast Load 
Sharing." Each router is running OSPF in passive mode on the tunnel interfaces. Why?

A: By putting the unicast protocol (in this case, OSPF) into passive mode, the protocol is aware of the 
interface addresses, necessary for the multicast RPF function, while at the same time preventing 
unicast traffic from using the tunnel.

10: What is the purpose of the command ip pim spt-threshold 100 group-list 25?

A: When the arrival rate of packets for the group address or addresses specified in access list 25 
exceeds 100 Kbps, the PIM-SM router switches from the shared tree to the shortest path tree.



 
  
Answers to Chapter 9 Configuration Exercises

1: Configure a router to accept polls from management stations 172.16.1.2 and 172.16.1.3 only. 
Do not allow write access to the stations. Allow the stations to read information about the SNMP 
MIB II interface entries only. Allow station 172.16.1.4 to read any MIB variable and allow it to 
load and save configuration files via SNMP. Send logging information at the Notification level, 
via SNMP, to 172.16.1.4.

A: [click here]

access-list 1 permit 172.16.1.2 0.0.0.1

access-list 2 permit 172.16.1.4

snmp-server view interface_entries ifEntry included

snmp-server community anystring view interface_entries RO 1

snmp-server community restricted RO 2

snmp-server tftp-server-list 2

snmp-server enable traps syslog

logging history notification

2: Configure the router to send an SNMP trap to 172.16.1.4 when the 5-minute average CPU 
exceeds 90%. Send the trap whenever the CPU goes from below 85% to above 90% in any 60-
second interval.

A: [click here]

snmp-server community eventtrap RO

snmp-server enable traps

snmp-server host 172.16.1.4 eventtrap

rmon event 1 trap eventtrap description "High 5-minute CPU" owner smith

rmon alarm 10 lsystem.58.0 60 absolute rising-threshold 90 1 falling-threshold 85

owner smith

3: Configure a router to use NTP to update its own time and date based on clock information from 
router 172.16.100.100. Do not allow the other router to update its clock based on information 
from your router.



A: [click here]

ntp server 172.16.100.100

4: Configure a NetFlow aggregation cache, grouping data based on the source and destination 
prefix. Use the peer AS in the data, and export the data to 172.16.1.4.

A: [click here]

ip cef

!

ip flow-export version 5 peer-as

ip flow-export destination 172.16.1.4 125

ip flow-aggregation cache prefix

 cache entries 2046

 cache timeout inactive 200

 cache timeout active 45

 export destination 172.16.1.4 9991

 enabled

!

5: Configure two routers on an Ethernet segment to provide backup for each other. Router A is 
primary, and router B takes over when A fails. When A recovers, it becomes the primary router 
again. Router A has two serial links, serial 0 and serial 1, that forward traffic to various 
destinations. If either link fails, router B takes over as the primary router.

A: [click here]

Router A

interface Ethernet 0

 ip address 172.16.1.100 255.255.255.0

 standby 1 priority 120 preempt

 standby 1 ip 172.16.1.201

 standby 1 track Serial0 25

 standby 1 track Serial1 25

__________________________________________________________________

Router B

interface Ethernet 0



 ip address 172.16.1.101 255.255.255.0

 standby 1 ip

 standby 1 priority 100 preempt



 
  

Appendix F. Answers to Troubleshooting 
Exercises

Answer to Chapter 1 Troubleshooting Exercise

Answers to Chapter 3 Troubleshooting Exercises

Answers to Chapter 4 Troubleshooting Exercises

Answers to Chapter 6 Troubleshooting Exercises



 
  
Answer to Chapter 1 Troubleshooting Exercise

1: In Figure 1-17, router RTG has been added to the internetwork.

Figure 1-17. The Internetwork for Troubleshooting Exercise 1

Although it is peering with RTB and exchanging reachability information, there is a configuration 
error. Based on the information in Example 1-29, what is the error?

Example 1-29 The EGP Tables of RTB and RTG in Figure 1-17

RTB#show ip egp

Local autonomous system is 65531

 EGP Neighbor       FAS/LAS  State    SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.1.1     65531/65531 UP     4      2      6    60   180   2 Perm, Pass

*192.168.1.3     65525/65531 UP     4      2    492    60   180   2 Perm, Pass

*192.168.5.2     65505/65531 UP     3      2     33    60   180   3 Temp, Pass

 EGP Neighbor     Third Party



*192.168.1.1      192.168.1.3(e)

*192.168.1.3      192.168.1.1

RTB#

_______________________________________________________________________

RTG#show ip egp

Local autonomous system is 65505

 EGP Neighbor       FAS/LAS  State    SndSeq RcvSeq Hello  Poll j/k Flags

*192.168.5.1     65505/65505 UP     9     36      3    60   180   4 Perm, Act

RTG#

A: The EGP configuration of RTG is router egp 65505 rather than router egp 65531.



 
  
Answers to Chapter 3 Troubleshooting Exercises

Figure 3-37 shows the internetwork diagram for Troubleshooting Exercises 1 through 6.

Figure 3-37. The Internetwork for Troubleshooting Exercises 1 through 6

1: Example 3-165 shows the BGP configuration of router R2 in Figure 3-37.

Example 3-165 BGP Configuration of Router R2

router bgp 10

 no synchronization

 network 0.0.0.0

 neighbor 172.16.254.2 remote-as 10

 neighbor 172.16.254.2 next-hop-self

 neighbor 172.16.254.6 remote-as 10

 neighbor 172.16.254.6 next-hop-self

 no auto-summary

!

ip classless



ip route 0.0.0.0 0.0.0.0 Ethernet10

Example 3-166 shows the BGP table and routing table for R2. Although there are routes to the 
destinations in the autonomous systems shown in Figure 3-37, pings to those destinations fail. 
Why?

Example 3-166 The BGP and Routing Tables of R2 in Figure 3-37

R2#show ip bgp

BGP table version is 7, local router ID is 10.1.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 0.0.0.0          0.0.0.0                0         32768 i

*>i172.17.0.0       172.16.255.21          0    100      0 60 i

*>i172.18.0.0       172.16.255.9           0    100      0 30 i

*>i172.19.0.0       172.16.255.5           0    100      0 20 i

*>i172.20.0.0       172.16.255.13          0    100      0 40 i

*>i172.21.0.0       172.16.255.17          0    100      0 50 i

R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

     10.0.0.0 255.255.255.0 is subnetted, 1 subnets

C       10.1.1.0 is directly connected, Ethernet11

B    172.20.0.0 [200/0] via 172.16.255.13, 00:01:15

B    172.21.0.0 [200/0] via 172.16.255.17, 00:01:16

     172.16.0.0 255.255.255.252 is subnetted, 2 subnets

C       172.16.254.0 is directly connected, Ethernet12

C       172.16.254.4 is directly connected, Ethernet13

B    172.17.0.0 [200/0] via 172.16.255.21, 00:01:16

B    172.18.0.0 [200/0] via 172.16.255.9, 00:00:59

B    172.19.0.0 [200/0] via 172.16.255.5, 00:00:59

S*   0.0.0.0 0.0.0.0 is directly connected, Ethernet10



R2#ping 172.17.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.17.1.1, timeout is 2 seconds:

.....

Success rate is 0 percent (0/5)

R2#

A: R2 has no routes to the next-hop addresses referenced in the BGP table. R1 and R3 must 
advertise routes to these addresses or use the neighbor next-hop-self command.

2: Example 3-167 shows debug output from routers R1 and R5 in Figure 3-37. What problem do the 
messages indicate?

Example 3-167 debug Output from R1 and R5 in Figure 3-37

R1#debug ip bgp

BGP debugging is on

R1#

BGP: 172.16.255.5 open active, local address 172.16.255.6

BGP: 172.16.255.5 sending OPEN, version 4

BGP: 172.16.255.5 received NOTIFICATION 2/2 (peer in wrong AS) 2 bytes 000A

BGP: 172.16.255.5 closing

__________________________________________________________________________________

R5#

6d08h: BGP: 172.16.255.6 open active, delay 28272ms

6d08h: BGP: 172.16.255.6 open active, local address 172.16.255.5

6d08h: BGP: 172.16.255.6 sending OPEN, version 4

6d08h: BGP: 172.16.255.6 OPEN rcvd, version 4

6d08h: BGP: 172.16.255.6 bad OPEN, remote AS is 10, expected 30

6d08h: BGP: 172.16.255.6 sending NOTIFICATION 2/2 (peer in wrong AS) 2 bytes 000A

6d08h: BGP: 172.16.255.6 remote close, state CLOSEWAIT

6d08h: BGP: 172.16.255.6 closing

A: R5's BGP configuration contains the statement neighbor 172.16.255.6 remote-as 30, when the 
statement should be neighbor 172.16.255.6 remote-as 10.



3: Example 3-168 shows the BGP tables of R1 and R3 in Figure 3-37. The first table indicates that 
172.17.0.0/24 can be reached either via R6 (172.16.255.25) or R3 (172.16.254.9). Which path is 
R1 using, and why?

Example 3-168 BGP Tables from R1 and R3 in Figure 3-37

R1#show ip bgp

BGP table version is 8, local router ID is 172.20.7.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*>i0.0.0.0          172.16.254.1           0    100      0 i

* i172.17.0.0       172.16.254.9           0    100      0 60 i

*>                  172.16.255.25          0             0 60 i

*> 172.18.0.0       172.16.255.9           0             0 30 i

*> 172.19.0.0       172.16.255.5           0             0 20 i

*>i172.20.0.0       172.16.254.9           0    100      0 40 i

*>i172.21.0.0       172.16.254.9           0    100      0 50 i

R1#

___________________________________________________________________________________

R3#show ip bgp

BGP table version is 5, local router ID is 172.16.255.22

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop            Metric LocPrf Weight Path

* i0.0.0.0          172.16.254.5             0    100      0 i

* i172.17.0.0       172.16.254.10            0    100      0 60 i

*>                  172.16.255.21            0             0 60 i

* i172.18.0.0       172.16.254.10            0    100      0 30 i

* i172.19.0.0       172.16.254.10            0    100      0 20 i

*> 172.20.0.0       172.16.255.13            0             0 40 i

*> 172.21.0.0       172.16.255.17            0             0 50 i

R3#

A: R1 is using the path through R6, because EBGP paths are preferred over IBGP paths.



4: Example 3-169 shows the BGP and IGP configurations for R1, R3, R6, and R7 in Figure 3-37.

Example 3-169 BGP and IGP Configurations for Routers R1, R3, R6, and 
R7

R1

router bgp 10

 neighbor 172.16.254.1 remote-as 10

 neighbor 172.16.254.1 next-hop-self

 neighbor 172.16.254.9 remote-as 10

 neighbor 172.16.254.9 next-hop-self

 neighbor 172.16.255.5 remote-as 20

 neighbor 172.16.255.9 remote-as 30

 neighbor 172.16.255.25 remote-as 60

_______________________________________________________________________

R3

router bgp 10

 neighbor 172.16.254.5 remote-as 10

 neighbor 172.16.254.5 next-hop-self

 neighbor 172.16.254.10 remote-as 10

 neighbor 172.16.254.10 next-hop-self

 neighbor 172.16.255.13 remote-as 40

 neighbor 172.16.255.17 remote-as 50

 neighbor 172.16.255.21 remote-as 60

 neighbor 172.16.255.21 next-hop-self

_______________________________________________________________________

R6

router eigrp 60

 redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0

 neighbor 172.16.255.26 remote-as 10

_______________________________________________________________________

R7

router eigrp 60



 redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0

 neighbor 172.16.255.22 remote-as 10

Example 3-168 shows the BGP tables for R1 and R3. For each of the following destinations, what 
next-hop address does R6 use? Explain why R6 uses the addresses you name.

Destinations:

172.20.7.102

172.18.58.35

10.53.12.6

A: 172.20.7.102: Next-hop 172.17.1.1

172.18.58.35: Next-hop 172.16.255.26

10.53.12.6: Packet is dropped

Neither R1 nor R3 has synchronization turned off. As a result, each advertises only the 
addresses it has learned from EBGP neighbors. R6 has learned 172.18.0.0/24 from R1, 
but R1 does not advertise 172.20.0.0/24, which it learned from an IBGP neighbor. R3 
advertises that route to R7, which advertises it to R6 via EIGRP. Both R1 and R3 have 
learned the default route from IBGP neighbor R2, so neither router advertises the 
default.

5: Example 3-170 shows the BGP configurations for R1 and R3 in Figure 3-37.

Example 3-170 BGP Configurations for Routers R1 and R3

R1

router bgp 10

no synchronization

aggregate-address 172.16.0.0 255.255.248.0 summary-only

neighbor 172.16.254.1 remote-as 10

neighbor 172.16.254.1 next-hop-self

neighbor 172.16.254.9 remote-as 10

neighbor 172.16.254.9 next-hop-self

neighbor 172.16.255.5 remote-as 20

neighbor 172.16.255.9 remote-as 30

neighbor 172.16.255.25 remote-as 60



_______________________________________________________________________

R3

router bgp 10

 no synchronization

 aggregate-address 172.16.0.0 255.255.248.0 summary-only

 neighbor 172.16.254.5 remote-as 10

 neighbor 172.16.254.5 next-hop-self

 neighbor 172.16.254.10 remote-as 10

 neighbor 172.16.254.10 next-hop-self

 neighbor 172.16.255.13 remote-as 40

 neighbor 172.16.255.17 remote-as 50

 neighbor 172.16.255.21 remote-as 60

 neighbor 172.16.255.21 next-hop-self

The objective is to suppress all the more-specific routes and advertise only an aggregate. R8's 
BGP table, in Example 3-171, still shows the more-specific routes. What is wrong?

Example 3-171 The BGP Table of R8 in Figure 3-37

R8#show ip bgp

BGP table version is 163, local router ID is 172.21.1.1

Status codes: s suppressed, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path

*> 0.0.0.0          172.16.255.18                        0 10 i

*> 172.17.0.0       172.16.255.18                        0 10 60 i

*> 172.18.0.0       172.16.255.18                        0 10 30 i

*> 172.19.0.0       172.16.255.18                        0 10 20 i

*> 172.20.0.0       172.16.255.18                        0 10 40 i

*> 172.21.0.0       0.0.0.0                0         32768 i

R8#

A: The mask specified in the aggregate-address command should be 255.248.0.0. The aggregate 
specified does not match anything in the routing tables of R1 or R3 and so is not advertised.



6: Packets from AS 60 destined for any of the other autonomous systems shown in Figure 3-37 
should be forwarded across the link between R6 and R1. The link between R7 and R3 should be 
used only as a backup for this traffic, although packets destined for the Internet can still use this 
link. To implement this policy, R3 should advertise only the default route and the aggregate 
172.16.0.0/13. R1 should advertise the more-specific routes. Example 3-172 shows the 
configurations for R1, R3, R6, and R7.

Example 3-172 Configurations for Routers R1, R3, R6, and R7

R1

router bgp 10

no synchronization

neighbor 172.16.254.1 remote-as 10

neighbor 172.16.254.1 next-hop-self

neighbor 172.16.254.9 remote-as 10

neighbor 172.16.254.9 next-hop-self

neighbor 172.16.255.5 remote-as 20

neighbor 172.16.255.9 remote-as 30

neighbor 172.16.255.25 remote-as 60

_______________________________________________________________________

R3

router bgp 10

 no synchronization

 aggregate-address 172.16.0.0 255.248.0.0 summary-only

 neighbor 172.16.254.5 remote-as 10

 neighbor 172.16.254.5 next-hop-self

 neighbor 172.16.254.10 remote-as 10

 neighbor 172.16.254.10 next-hop-self

 neighbor 172.16.255.13 remote-as 40

 neighbor 172.16.255.17 remote-as 50

 neighbor 172.16.255.21 remote-as 60

 neighbor 172.16.255.21 next-hop-self

_______________________________________________________________________

R6

redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0



 neighbor 172.16.255.26 remote-as 10

_______________________________________________________________________

R7

router eigrp 60

 redistribute bgp 60 metric 1000 100 255 1 1500

 network 172.17.0.0

!

router bgp 60

 network 172.17.0.0

 neighbor 172.16.255.22 remote-as 10

Example 3-173 shows R7's routing table. Has the objective been accomplished? If not, why not?

Example 3-173 R7's Routing Table for Troubleshooting Exercise 6

R7#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

       U - per-user static route, o - ODR

       T - traffic engineered route

Gateway of last resort is 172.16.255.22 to network 0.0.0.0

     172.17.0.0/24 is subnetted, 3 subnets

C       172.17.1.0 is directly connected, Ethernet0

D       172.17.3.0 [90/409600] via 172.17.1.2, 09:18:50, Ethernet0

C       172.17.2.0 is directly connected, Ethernet1

     172.16.0.0/30 is subnetted, 1 subnets

C       172.16.255.20 is directly connected, Serial0

D EX 172.19.0.0/16 [170/2611200] via 172.17.1.2, 00:19:08, Ethernet0

D EX 172.18.0.0/16 [170/2611200] via 172.17.1.2, 00:19:08, Ethernet0

B*   0.0.0.0/0 [20/0] via 172.16.255.22, 00:18:37

B    172.16.0.0/13 [20/0] via 172.16.255.22, 00:18:09

R7#



A: The objective has not been fully accomplished. The routes to 172.18.0.0/24 and 172.19.0.0/24 
are correct, but the routes to 172.20.0.0 and 172.21.0.0/24 are not in the routing table. The 
aggregate-address command at R3 has suppressed the advertisement of more-specific routes not 
only to R3's EBGP peers, but also to its IBGP peers. As a result, R1 does not know about 
172.20.0.0/24 and 172.21.0.0/24.

7: Reexamine Figure 3-19 and Example 3-98 and the associated discussion. Meribel advertises its 
local route 172.17.0.0 to its EBGP peers with an ORIGIN of Incomplete, whereas Lillehammer 
advertises the route back to Meribel with an ORIGIN of IGP. Will this cause Meribel to prefer the 
route from Lillehammer, thereby causing a routing loop?

A: No. Although an ORIGIN of IGP takes precedence over an ORIGIN of Incomplete in the BGP 
decision process, administrative weight takes precedence over ORIGIN. By default, Meribel 
assigns a weight of 32768 to locally originated routes and a weight of 0 to learned routes, so the 
local route is preferred.

8: Example 3-174 shows the configuration for the router named Colorado in Figure 3-24.

Example 3-174 Configuration for Router Colorado in Figure 3-24

router bgp 100

 network 10.1.11.0 mask 255.255.255.0

 network 10.1.12.0 mask 255.255.255.0

 neighbor CLIENTS peer-group

 neighbor CLIENTS ebgp-multihop 2

 neighbor CLIENTS update-source Loopback2

 neighbor CLIENTS filter-list 2 in

 neighbor CLIENTS filter-list 1 out

 neighbor 10.1.255.2 remote-as 200

 neighbor 10.1.255.2 peer-group CLIENTS

 neighbor 10.1.255.3 remote-as 300

 neighbor 10.1.255.3 peer-group CLIENTS

 neighbor 10.1.255.4 remote-as 400

 neighbor 10.1.255.4 peer-group CLIENTS

 neighbor 10.1.255.5 remote-as 500

 neighbor 10.1.255.5 peer-group CLIENTS

 neighbor 10.1.255.6 remote-as 600

 neighbor 10.1.255.6 peer-group CLIENTS

 no auto-summary

!

ip classless

ip route 10.1.255.2 255.255.255.255 Serial0/1.305

ip route 10.1.255.3 255.255.255.255 Serial0/1.306



ip route 10.1.255.4 255.255.255.255 Serial0/1.307

ip route 10.1.255.5 255.255.255.255 Serial0/1.308

!

ip as-path access-list 1 permit ^$

ip as-path access-list 2 permit ^[2-6]00$

All router IDs shown in Figure 3-24 are configured on loopback interfaces, and no routing protocol 
other than BGP is running on any of the routers. Assuming that all the links shown in the figure 
are functioning properly, are all the other five routers EBGP peers of Colorado? If not, why not?

A: No. Router NewHampshire is not a peer, because there is no static route entry at Colorado for 
10.1.255.6/32.

9: Refer to the configuration shown in Troubleshooting Exercise 8 for router Colorado in Figure 3-24. 
What will be the result of removing the no auto-summary statement from the configuration?

A: Removing the statement has no effect on the topology shown in Figure 3-82, because all the 
router IDs and all the addresses of all the autonomous systems are subnets of 10.0.0.0.

10: Refer again to the configuration shown in Troubleshooting Exercise 8. What routes does the 
incoming route filter permit?

A: The incoming route filter refers to AS_PATH list 2. The one line of that list permits any route 
whose AS_PATH meets the following criteria:

●     The route's AS_PATH consists of a single AS number.
●     The decimal representation of the AS number must be three digits.
●     The first digit must be a number between 2 and 6, inclusive.
●     The second and third digits must be 0s.

11: Refer to Figure 3-24 and the configuration for router Colorado in Troubleshooting Exercise 8. 
What subnets, other than those local to its own AS or the inter-AS links, can a host on subnet 
10.1.3.0/24 ping?

A: Only subnets 10.1.11.0/24, 10.1.12.0/24, and 10.1.255.1/32. The outgoing route filter at 
Colorado prevents its EBGP peers from learning of any routes other than local routes.



 
  
Answers to Chapter 4 Troubleshooting Exercises

1: Identify the mistake in the configuration in Example 4-33.

Example 4-33 Configuration for Troubleshooting Exercise 1

ip nat pool EX1 192.168.1.1 192.168.1.254 netmask 255.255.255.0 type match-host

ip nat pool EX1A netmask 255.255.255.240

 address 172.21.1.33 172.21.1.38

 address 172.21.1.40 172.21.1.46

ip nat inside source list 1 pool EX1

ip nat inside source static 10.18.53.210 192.168.1.1

ip nat outside source list 2 pool EX1A

!

access-list 1 permit 10.0.0.0 0.255.255.255

access-list 2 permit 192.168.2.0 0.0.0.255

A: The IG address in the static mapping overlaps with the pool EX1.

2: RTR1 in Figure 4-30 connects two internetworks with overlapping addresses.

Figure 4-30. The Internetwork for Troubleshooting Exercise 2

NAT is implemented on the router as configured in Example 4-34, but devices cannot 
communicate across the router. What is wrong?

Example 4-34 Configuration for Troubleshooting Exercise 2



interface Ethernet0

 ip address 172.16.10.1 255.255.255.0

 ip nat inside

!

interface Ethernet1

 ip address 172.16.255.254 255.255.255.0

 ip nat outside

!

router ospf 1

 redistribute static metric 10 metric-type 1 subnets

 network 10.0.0.0 0.255.255.255 area 0

!

ip nat translation timeout 500

ip nat pool NET1 10.1.1.1 10.1.255.254 netmask 255.255.0.0

ip nat pool NET2 192.168.1.1 192.168.255.254 netmask 255.255.0.0

ip nat inside source list 1 pool NET1

ip nat outside source list 1 pool NET2

!

ip classless

!

ip route 10.1.0.0 255.255.0.0 Ethernet0

ip route 192.168.0.0 255.255.0.0 Ethernet1

!

access-list 1 permit 172.16.0.0 0.0.255.255

A: The problem is not with the NAT itself, but with routing. All translations are dynamic, and there is 
no way for a host on either side to determine the initial address to which packets must be sent to 
reach the other side.

3: Refer to the configurations of Cozumel and Guaymas in Figure 4-21. If the first line of access list 1 
in both configurations is removed, what is the result? Can Guaymas and Cozumel still ping each 
other?

A: When either router sends a packet to the other sourced from its E1 interface, the source address 
is translated to an address out of the IG pool. The two routers can still ping each other even if the 
source address is translated. If Cozumel pings Guaymas, for example, its source address of 
10.255.13.254 might be translated to 206.100.176.50. Although Guaymas does not recognize this 
address as part of its directly connected subnet, it has a route to 206.100.176.0/20 pointing to 
Cozumel. When it sends a response to the ping, the response is forwarded to Cozumel, which 
translates the destination address back to 10.255.13.254.





 
  
Answers to Chapter 6 Troubleshooting Exercises

1: What is the output of Example 6-63 telling you?

Example 6-63 The Output for Troubleshooting Exercise 1

R1#

Turban#debug ip mpacket

IP multicast packets debugging is on

R1#

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

IP: s=192.168.14.35 (Serial0/1.307) d=228.13.20.216 len 573, mrouting disabled

A: Multicast packets are being dropped because multicast routing is not enabled on the router.

2: What is the output of Example 6-64 telling you?

Example 6-64 The Output for Troubleshooting Exercise 2

R2#

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface



IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

IP: s=192.168.13.5 (Ethernet0) d=227.134.14.26 len 583, not RPF interface

A: Packets for group 227.134.14.26, sourced by 192.168.13.5, are being received on interface E0. 
This interface is apparently not the upstream interface toward the source, however. Therefore, it 
is not the RPF interface, and the packets are failing the RPF check and are being dropped.

3: What is the output of Example 6-65 telling you?

Example 6-65 The Output for Troubleshooting Exercise 3

R3#debug ip mpacket

IP multicast packets debugging is on

R3#

IP: s=172.16.3.50 (Serial0.405) d=224.0.1.40 (Serial0.407) len 52, mforward

IP: s=172.16.3.50 (Ethernet0) d=224.0.1.40 len 62, not RPF interface

IP: s=172.16.3.50 (Ethernet0) d=224.0.1.39 len 62, not RPF interface

IP: s=172.16.3.50 (Serial0.405) d=224.0.1.39 (Serial0.407) len 52, mforward

A: A router at address 172.16.3.50 is both a C-RP (224.0.1.39) and a mapping agent (224.0.1.40). 
The Auto-RP messages are being received on interface S0.405 and are being forwarded out 
interface S0.407. The messages also are being received on interface E0 and are failing the RPF 
check. Therefore, interface S0.405 is the upstream interface to 172.16.3.50.

4: In Figure 6-12, which of the four routers is the PIM-designated router?

Figure 6-12. The Topology for Troubleshooting Exercises 4, 5, and 6



A: The PIM DR is the router with the highest IP address. Therefore, RT4 is the PIM DR.

5: In Figure 6-12, which router is sending IGMPv2 queries to the group member?

A: The IGMPv2 querier is the router with the lowest IP address. Therefore, RT2 is the querier.

6: Table 6-5 shows the unicast routes to source 172.16.12.18 in Figure 6-12. Which router is the PIM 
forwarder?

Table 6-5. Unicast Routes to 172.16.12.18 in Figure 6-12 

Router Next Hop Protocol Metric

R1 172.16.50.5 OSPF 35

R2 172.16.51.80 EIGRP 307200

R3 172.16.13.200 EIGRP 2297856

R4 172.16.44.1 OSPF 83



A: The PIM forwarder is the router with the lowest administrative distance. Given equal 
administrative distances, the forwarder is the router with the lowest metric. The administrative 
distance of EIGRP is 90, and the distance of OSPF is 110, so EIGRP is lower. Between the two 
EIGRP routes, R2's route has a lower metric, so R2 is the PIM forwarder.

7: Example 6-66 shows an RPF trace taken from the PIM domain in Figure 6-10, which is running RIP-
2 as its unicast IGP. Does this trace indicate a possible problem?

Example 6-66 The mtrace for Troubleshooting Exercise 7

Sombrero#mtrace 192.168.14.35 192.168.10.8 235.1.2.3

Type escape sequence to abort.

Mtrace from 192.168.14.35 to 192.168.10.8 via group 235.1.2.3

From source (?) to destination (?)

Querying full reverse path... 0  192.168.10.8

-1  192.168.10.1 PIM  [192.168.14.0/24]

-2  192.168.200.2 PIM  [192.168.14.0/24]

-3  192.168.201.2 PIM  [192.168.14.0/24]

-4  192.168.204.1 PIM  [192.168.14.0/24]

-5  192.168.14.35

Sombrero#

A: Yes. There are equal-cost paths between Beret and Boater via either Turban or Fez. Beret can 
have only one RPF neighbor, so it picks the neighbor with the highest IP address. In this case, 
Turban has the highest IP address, but the trace shows that the path through Fez is used. 
Therefore, there is an apparent problem between Beret and Turban.
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RP Count field

    PIMv2 Bootstrap messages  

(*, G) state

    multicast routing protocols:(*, G) state

        group membership:(*, G) state;membership:(*, G) state  

6REN

    IPv6:6REN

        implementing:IPv6:6REN  2nd  
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A (Address) records  

ABRs:inter-area multicast forwarders

    routers:ABRs:inter-area multicast forwarders  

access lists

    alternation  

    BGP

        filtering by AS_PATH   2nd  

        filtering by NLRI   

    bracketing  

    delineation  

    wildcards  

accounting

    traffic:accounting  2nd  

accounting:IP accounting

    traffic:IP accounting

        IP accounting  2nd  

accuracy of summarization  

active gateways:EGP

    passive gateways:EGP  

adding:multicast addresses to CAM table

    multicast addresses:adding to CAM table  

address family ipv4 command

    commands:address family ipv4  

address leaking  

Address Length field

    CBT messages  

address overloading  

address translation table:clearing entries

    clearing:entries from address translation table

        NAT:address translation table:clearing entries  2nd  

address-family ipv-4 command

    commands:address-family ipv-4  

addressing:IPv6:text representation

    IPv6:addressing:text representation  2nd  

Adj-RIBs-In:feasible routes

    feasible routes:Adj-RIBs-In  

administrative distance

    BGP



        filtering multiple routes to the same destination learned from different routing 

protocols   2nd  

    manipulating to affect BGP route  2nd  

administrative scoping  

    IP multicast:administrative scoping  

        scoping:administrative  

administrative weight

    BGP

        filtering multiple routes to the same destination   2nd  

    BGP:administrative weight

        routes:administrative weight;parameters:BGP routes:administrative weight  

advertisements

    ND protocol  2nd  

advertising  [See also route maps]

    BGP aggregate routes  2nd  3rd  4th  5th  6th  

Advertising Router fields

    Group Membership LSAs  

AFI (Address Family Identifier)

    Sub-AFI

        NLRI:AFI;NLRI:Sub-AFI  

agent (SNMP)

    SNMP:agent

        network management:SNMP:agents  2nd  

aggregatable global addresses:interface identifier

    interface identifier:aggregatable global addresses

        unicast addresses:aggregatable global addresses:interface identifier  2nd  

aggregatable global addresses:reserved field

    reserved field (aggregatable global addresses)

        unicast addresses:aggregatable global addresses:reserved field  

aggregatable global addresses:SLAID

    SLAID (site-level aggregation identifier)

        unicast addresses:aggregatable global addresses:SLAID;site-level aggregation 

identifier (SLAID)  

aggregatable global addresses:TLAID

    unicast addresses:aggregatable global addresses:TLAID  2nd  

aggregate-address command  

    commands:aggregate-address  2nd  3rd  4th  

aggregation  [See route aggregation]

aggregation:BGP:case study

    case studies:aggregate routes

        summarization:case study;BGP:aggregation:case study  2nd  3rd  4th  5th  6th  7th  
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8th  9th  10th  11th  12th  13th  14th  

aggregation:BGP:loss of path information

    loss of path information:in BGP aggregates

        BGP:aggregation:loss of path information  2nd  

aggregation:BGP:suppressing more-specific routes

    BGP:aggregation:suppressing more-specific routes  2nd  

aggregation:BGP:using static routes

    static routes:BGP:configuring aggregation  2nd  

AH (Authentication Header)

    IPv6  

allsystemsonthissubnet group

    multicast groups:allsystemsonthissubnet group

        IP multicast:group membership:allsystemsonthissubnet 

group;membership:allsystemsonthissubnet group;g  

Anycast RP

    IP multicast:Anycast RP

        configuring:Anycast RP;large-scale IP multicast routing:Anycast RP  2nd  3rd  

anycasting  

APNIC (Asia Pacific Network Information Center)  

applications:CiscoWorks

    CiscoWorks

        network management:CiscoWorks  

applying

    BGP access lists

        filtering by AS_PATH attribute   2nd  

        filtering by NLRI  2nd  3rd  4th  

    BGP route maps

        AS_PATH prepending  2nd  

        filtering multiple routes to same destination   2nd  

        filtering multiple routes to same destination learned from different routing protocols 

  2nd  

        filtering with LOCAL_PREF  2nd  

        filtering with MULTI_EXIT_DISC attribute  

        route taggin  2nd  

applying:BGP access lists:filtering with route maps

    access lists:BGP:filtering with route maps

        route maps:BGP:applying;route filters (BGP):filtering with route maps;routing 

policies (BGP):route m  2nd  3rd  

applying:route attributes to MBGP

    MBGP:route attributes:applying

        attributes:MBGP routes:applying   



ARIN (American Registry for Internet Numbers)  

AS (autonomous system)

    BGP routing policies  

AS (autonomous system):multi-homing to multiple AS

    inter-AS topologies (BGP):multi-homing to multiple AS

        BGP:inter-AS topologies:multi-homing to multiple AS;topologies:BGP:multi-homing 

to multiple AS  2nd  3rd  

AS (autonomous system):multi-homing to single AS

    inter-AS topologies (BGP):multi-homing to single AS

        BGP:inter-AS topologies:multi-homing to single AS;topologies:BGP:multi-homing to 

single AS  2nd  3rd  4th  

AS (autonomous system):single-homed

    single-homed autonomous systems

        inter-AS topologies (BGP):single-homing;BGP:inter-AS topologies:single-

homing;topologies:BGP:single-  2nd  

AS numbers  

AS path prepending  

AS-External LSAs:flooding outside OSPF domains

    flooding:AS-External LSAs outside OSFP domains

        LSAs:As-External LSAs:flooding outside OSPF domains  2nd  

AS:multihomed:NAT

    multihomed AS:NAT  2nd  

AS:physical links

    physical links:between ASs

        BGP:ASs:physical links  

ASBR (Autonomous System Boundary Router)

    routers:ASBRs (Autonomous System Boundary Routers)  

ASICs (application-specific integrated circuits)

    application-specific integrated circuits (ASICs)  

Ask Neighbor messages:DVMRP:format

    DVMRP:Ask Neighbor messages:format

        format:DVMRP messages:Ask Neighbor  

ASs:transit traffic:configuring IBGP without an IGP

    transit AS traffic:configuring IBGP without an IGP  2nd  3rd  4th  5th  6th  

Assert messages:PIMv2

    messages:PIMv2:Assert  2nd  

assigning

    policies to BGP communities  2nd  3rd  4th  

assigning:unique router IDs to BGP routers

    BGP:assigning unique router IDs

        router IDs:assigning to BGP routers  



asterisk (*):in regular expressions

    plus (+):in regular expressions  

attributes (BGP)

    LOCAL_PREF

        manipulating route preference within local AS   2nd  

    MULTI_EXIT_DISC

        applying external metric   

        filtering between confederations  2nd  3rd  4th  

authentication:MD5

    MD5 (message digest 5) authentication

        cryptographic checksum  

Auto-RP:configuring

    configuring:Auto-RP  

autoconfiguration:IPv6:renumbering

    IPv6:autoconfiguration:renumbering

        site renumbering:IPv6;host renumbering:IPv6  

        site renumbering:IPv6;host renumbering:IPv6;deprecated addresses:IPv6;preferred 

addresses:IPv6  

autoconfiguration:IPv6:stateful

    IPv6:autoconfiguration:stateful

        stateful autoconfiguration:IPv6  

autoconfiguration:IPv6:stateless

    IPv6:autoconfiguration:stateless

        stateless autoconfiguration:IPv6  2nd  3rd  

automatic tags

    route tagging:automatic tags

        BGP:route tagging:automatic tags  

automatic tunnels  
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backdoor routes

    BGP

        filtering multiple routes to the same destination   2nd  

best routes:BGP:selection process

    selection process:BGP best routes  

BGP  [See also large-scale BGP]

    route maps

        filtering routes with LOCAL_PREF attribute  2nd  

        filtering routes with MULTI_EXIT_DISC attribute  

        multiple routes to same destination learned from different routing protocols   2nd  

BGP (Border Gateway Protocol)  2nd  [See also MBGP ]

bgp always-compare med command

    commands:bgp always-compare med  

bgp bestpath as-path ignore command

    commands:bgp bestpath as-path ignore  

bgp bestpath med confed command

    commands:bgp bestpath med confed  

bgp cluster-id command

    commands:bgp cluster-id  

bgp confederation identifier command

    commands:bgp confederation identifier  

bgp confederation peers command

    commands:bgp confederation peers  

bgp dampening command

    commands:bgp dampening  

bgp deterministic-med command

    commands:bgp deterministic-med  

bgp router-id command

    commands:bgp router-id  

BGP-4:assessing need for

    routing protocols:BGP-4:assessing need for

        assessing need for BGP-4;necessity of BGP-4  2nd  

BGP:aggregation:based on more-specific routes

    aggregation:BGP:based on more-specific routes  2nd  

BGP:Attribute Type codes

    Type codes:BGP attributes

        attributes (BGP):Type codes  

BGP:automatic summarization:disabling
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    disabling:BGP automatic summarization

        automatic summarization:BGP:disabling;turning off:BGP automatic summarization  

BGP:confederations

    confederations (BGP)

        large-scale BGP:confederations;managing:large-scale BGP:confederations  2nd  3rd  

4th  5th  6th  7th  8th  9th  

BGP:EBGP multihop:configuring

    configuring:EBGP multihop

        EBGP multihop:configuring;case studies:EBGP multihop  2nd  3rd  

BGP:equal-cost paths

    routing protocols:BGP:equal cost paths to destination  

BGP:FSM (Finite State Machine)

    FSM (Finite State Machine):BGP

        routing protocols:BGP:FSM  

BGP:FSM (Finite State Machine):Active state

    FSM (Finite State Machine):BGP:Active state

        routing protocols:BGP:FSM;Active state (BGP)  2nd  

BGP:FSM (Finite State Machine):Connect state

    FSM (Finite State Machine):BGP:Connect state

        routing protocols:BGP:FSM;Connect state (BGP)  

BGP:FSM (Finite State Machine):Established state

    FSM (Finite State Machine):BGP:Established state

        routing protocols:BGP:FSM;Established state (BGP)  

BGP:FSM (Finite State Machine):Idle state

    FSM (Finite State Machine):BGP:Idle state

        routing protocols:BGP:FSM;Idle state (BGP)  

BGP:FSM (Finite State Machine):OpenConfirm state

    FSM (Finite State Machine):BGP:OpenConfirm state

        routing protocols:BGP:FSM;OpenSConfirm state (BGP)  

BGP:FSM (Finite State Machine):OpenSent state

    FSM (Finite State Machine):BGP:OpenSent state

        routing protocols:BGP:FSM;OpenSent state (BGP)  

BGP:Keepalive message:format

    Keepalive message (BGP):format

        format:Keepalive message (BGP);messages:BGP:Keepalive message  

BGP:local routes

    local BGP routes  

BGP:loopback interfaces:configuring

    configuring:BGP:loopback interfaces

        loopback interfaces:BGP:configuring  2nd  

BGP:Notification message:fields



    Notification message (BGP):fields

        fields:Notification messages (BGP);messages:BGP:Notification message  

BGP:Open message:fields

    Open message (BGP):fields

        fields:Open message (BGP);messages:BGP:Open message  

BGP:path attributes

    path attributes (BGP)

        routing protocols:BGP:path attributes  

    path attributes:BGP

        routing protocols:BGP:path attributes   

BGP:peering

    peering:BGP

        routing protocols:BGP:peering  2nd  

BGP:peering:during neighbor authentication

    peering:BGP:during neighbor authentication  

BGP:RIB (Routing Information Base)

    RIB (Routing Information Base)

        databases:RIB (Routing Information Base);decision-making process:BGP;routing 

protocols:BGP:decision-  2nd  3rd  

BGP:route dampening

    route dampening

        flapping routes:BGP  2nd  

BGP:route dampening:configuring

    configuring:BGP:route dampening

        route dampening;flapping routes:route dampening;interfaces:flapping:route 

dampening;penalizing:flapp  2nd  3rd  

BGP:route maps:multiple routes to same destination

    route maps:BGP:multiple routes to same destination

        route filters (BGP):filtering with route maps:multiple routes to the same destination  

2nd  3rd  4th  5th  

BGP:route tagging

    route tagging

        configuring:BGP:route tagging  2nd  3rd  4th  5th  

BGP:routes:tie-breaking process

    tie-breaking process:BGP routes

        routes:BGP:tie-breaking;routing protocols:BGP:tie-breaking process  2nd  

BGP:routing table:invalid routes

    invalid routes:in BGP routing table

        routing tables:BGP:invalid routes  

BGP:Update message:fields

    Update message (BGP):fields



        fields:Update message (BGP);messages:BGP:Update message  2nd  

big-endian  

bilateral peering agreement)  

black holes

    EGP

        troubleshooting  

Bootstrap messages

    messages:PIMv2:Bootstrap  2nd  

bootstrap protocol

    PIM-SM:bootstrap protocol

        sparse mode (PIM):bootstrap protocol;IP multicast routing protocols:PIM-

SM:bootstrap protocol  2nd  3rd  

bootstrap protocol:configuring

    configuring:bootstrap protocol  2nd  3rd  4th  5th  

brackets ([])

    in regular expressions  

broadcast-and-prune protocols

    flood-and-prune protocols  

        multicast routing protocols:broadcast-and-prune protocols;multicast routing 

protocols:flood-and-prun  

BSR Priority field

    PIMv2 Bootstrap messages  
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C-RPs (candidate rendezvous points)  2nd  

C-RPs (candidate RPs)  

CAM (content addressable memory)

    content addressable memory (CAM)

        memory:CAM (content addressable memory)  

CAM (content addressable memory) table

    Catalyst:CAM (content addressable memory) table

        switches (Catalyst):CAM (content addressable memory)  

CAM table (CGMP)

    CGMP:CAM table

        Catalyst:CAM table (CGMP);switches:Catalyst:CAM table;IP multicast:CGMP:CAM 

table  

candidate core routers  

Candidate-RP-Advertisement messages

    messages:PIMv2:Candidate-RP-Advertisement  2nd  

Capabilities field

    DVMRP Probe messages  

carets (^):in regular expressions

    regular expressions:carets (^)

        access lists:regular expressions:negation  

case studies

    BGP

        applying route maps   2nd  

case studies:BGP:injecting IGP routes

    BGP:injecting IGP routes:case study

        injecting:IGP routes into BGP:case study;IGP:injecting routes into BGP:case study  

2nd  3rd  4th  5th  

case studies:IGPs:injecting BGP routes

    BGP:injecting routes intoIGPs:case study

        injecting:IGP routes into BGP:case study;IGPs:injecting BGP routes:case study  2nd  

3rd  4th  5th  6th  

case studies:ISP multihoming with NAT

    NAT:ISP multihoming:case study

        multihoming:with NAT:case study  2nd  3rd  4th  

case studies:load balancing

    load balancing

        traffic:load balancing  

case studies:multicasting across non-multicast domains



    IP multicast:across non-multicast domains

        PIM:tunneling between routers;IP multicast:PIM:tunneling between 

routers;routers:PIM:tunneling;tunne  2nd  

case studies:service distribution

    service distribution:case study  2nd  

CBT (Core-Based Trees)

    IP multicast routing protocols:CBT (core-based trees)  2nd  

CBT:JOIN_REQUEST messages

    JOIN_REQUEST messages

        IP multicast routing protocols:CBT:JOIN_REQUEST 

messages;messages:CBT:JOIN_REQUEST  2nd  

CBT:QUIT_NOTIFICATION messages

    messages:CBT:QUIT_NOTIFICATION

        QUIT_NOTIFICATION messages:CBT  2nd  

CC-sets (candidate core)

    candidate core sets

        messages:Candidate Core;IP multicast routing protocols:CBT:Candidate Core 

messages;messages:CBT:Cand  

CCBs (change control boards)

    change management:CCBs (change control boards)  

CGMP (Cisco Group Membership Protocol)  2nd  

    group membership:CGMP

        membership:CGMP;multicast groups:CGMP;IP multicast:CGMP  2nd  

CGMP:operation of

    IP multicast:CGMP:operation of

        group membership:CGMP:operation of;membership:CGMP:operation of  2nd  3rd  

character classes

    literals  

characteristics of confederation EBGP  2nd  

Checksum field

    CBT messages  

    DVMRP messages  

Checksum field (IGMP messages)  

child interfaces

    CBT:child interfaces

        IP multicast routing protocols:CBT:child interface  

CIDR (classless interdomain routing)  

CIDR (Classless Interdomain Routing)  

CIDR (classless interdomain routing);  

CIDR blocks  

CIDR:depletion of address space



    address space depletion:CIDR

        depletion of address spaces  

CIDR:troubleshooting

    troubleshooting:CIDR

        portability:CIDR  2nd  

Cisco routers:IPv6 capability:enabling

    enabling:IPv6 capability on Cisco routers

        routers:enabling IPv6 capability;IPv6:enabling on Cisco routers  2nd  

CiscoView  

CiscoWorks

    configuration management  

CiscoWorks:router management

    applications:CiscoWorks:router management

        router management:CiscoWorks;SNMP:router management  2nd  3rd  4th  5th  6th  

7th  

Class D IP addresses

    IP multicasting:addresses  

classless routing

    address prefix

        routing protocols:classless  

    routing protocols:classless  2nd  

classless routing protocols

    BGP-4  

clear cam command

    commands:clear cam

        clear config command;commands:clear config  

clear ip bgp command

    commands:clear ip bgp  2nd  

clear ip bgp dampening command

    commands:clear ip bgp dampening  

clear ip bgp flap-statistics command

    commands:clear ip bgp flap-statistics  

clear ip cgmp command

    commands:clear ip cgmp  

clear ip nat translations command

    commands:clear ip nat translations  2nd  

clusters

    route reflectors:clusters

        BGP:route reflectors:clusters  

CNAME (Canonical Name) records  

Code field



    DVMRP messages  

colons:in IP addresses

    IPv6:addressing:colons  

Command field

    RIPng messages  

commands:fields:format

    format of command fields

        field (commands):format  

commands:ip mdsp

    ip mdsp command  

commands:ip multicast routing

    ip multicast routing command  2nd  

community lists

    access lists:community lists

        route filtering:access lists:community lists  

community lists:standard

    standard community lists

        extended community lists;community lists:extended  2nd  3rd  

community strings:SNMP

    SNMP:community strings

        network management:SNMP:community strings  

compacting:IP addresses

    IPv6:addresses:compacting

        addresses:IPv6:compacting;octets:compacting;leading zeros:compacting in IP 

addresses;zeros:in IP add  

confederation EBGP

    EBGP:confederation EBGP  2nd  3rd  4th  

confederations  [See also route reflectors ]

configuration exercises:NAT

    NAT:configuration exercises  2nd  3rd  

configuration management  

configuring  [See also manual configuration ]

    BGP

        automatic tags  2nd  

        unique router IDs  2nd  

    IP multicast

        fast switching, disabling  2nd  

    multicast over Token Ring  2nd  

    NAT

        for network mergers  2nd  3rd  4th  

        for TCP load balancing  2nd  3rd  



        ISP multihoming  2nd  3rd  4th  

    RIPng  2nd  

    SNMP on routers  2nd  

    TTL scoping  2nd  3rd  

configuring:BGP:AS_PATH prepending

    BGP:AS_PATH prepending

        AS_PATH attribute:prepending;prepending the AS_PATH;attributes 

(BGP):AS_PATH:prepending  2nd  3rd  

configuring:BGP:IBGP over an IGP

    BGP:IBGP over an IGP:configuring  2nd  3rd  4th  5th  6th  

configuring:BGP:IBGP without an IGP:BGP:IBGP without an IGP:configuring

    IBG::without and IGP:configuring  2nd  3rd  4th  5th  6th  

configuring:BGP:importance of

    misconfiguration of BGP:ramifications of

        BGP:misconfiguration:ramifications of  

configuring:NAT:dynamic NAT

    dynamic NAT:configuring:case study

        case studies:configuring dynamic NAT  2nd  3rd  4th  

configuring:NAT:static NAT

    static NAT:configuring:case study

        case studies:configuring static NAT  2nd  3rd  4th  5th  6th  

connections

    BGP  [See peer connections]

connections:BGP:resetting

    resetting:BGP connections

        BGP:resetting connections;neighbors:BGP:connections, resetting;clearing:BGP 

connections  2nd  3rd  

conserving:IP addresses:NAT

    IP addresses:conserving:NAT

        NAT:IP address conservation  2nd  

convergence:EGP:troubleshooting

    troubleshooting:EGP:convergence

        EGP:convergence:troubleshooting;topologies:EGP:convergence  2nd  

Count field

    CGMP packets  

creating

    BGP peer groups  2nd  
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databases

    RADB (Routing Arbiter Database)  

dead neighbors:EGP

    EGP:dead neighbors  

debug ip packet detail command

    commands:debug ip packet detail  

debug ip pim auto-rp command

    commands:debug ip pim auto-rp  

debug ipv6 command

    commands:debug ipv6  2nd  

debugging

    captured multicast packets  2nd  

default distances of BGP:modifying

    modifying:default distances of BGP

        BGP:default distances:modifying  

default-free zone

    routers:default-free zone  

default-metric command

    commands:default-metric  

dense mode  [See also sparse-dense mode ]

deprecated addresses  

Destination Options header

    IPv6 packets  

Destination Options header (IPv6)  

Destination Unreachable messages (ICMPv6)

    ICMPv6:Destination Unreachable messages

        messages:ICMPv6:Destination Unreachable  

detecting:BGP routing loops

    BGP:routing loops:detecting

        routing loops:BGP:detecting  

directly connected networks (BGP):external metric, applying

    networks:directly connected:applying external metric  2nd  3rd  4th  

displaying:BGP peer groups, statistics

    viewing:BGP peer group statistics

        peer groups:displaying statistics  

displaying:group-to-RP mappings

    viewing:group-to-rp mappings



        group-to-rp mappings:viewing  2nd  

displaying:MSDP session status

    MDSP:session status, displaying

        viewing:MDSP session status  

Distance Vector Multicast Routing Protocol  [See DVMRP ]

distribute list command

    commands:distribute list  

DNS

    NAT translation  2nd  3rd  

DNS:zone transfers

    zone transfers  

documenting

    network changes  2nd  3rd  

dot (.)

    in regular expressions  

dotted decimal notation

    IPv6 addresses  

downstream interfaces

    upstream interfaces  

DRs (designated routers):CBT

    CBT:DRs

        multicast routing protocols:CBT:DRs;routers:DRs:CBT  2nd  

DRs (designated routers):PIM-DM:relationship to IGMP querier

    routers:DR (PIM-DM):relationship to IGMP querier  2nd  3rd  

dual-stack nodes  

DVMRP (Distance Vector Multicast Routing Protocol)

    multicast routing protocols:DVMRP

        IP multicast:DVMRP  2nd  

DVMRP (Distance Vector Multicast Routing Protocol):neighbor discovery

    multicast routing protocols:DVMRP:neighbor discovery

        IP multicast:DVMRP;neighbor discovery;neighbor 

discovery:DVMRP;maintaining:DVMRP neighbors;discovery  2nd  3rd  

DVMRP:message formats

    messages:DVMRP:formats  2nd  3rd  4th  5th  

        multicast routing protocols:DVMRP:message format;fields:DMVRP messages  2nd  

3rd  4th  5th  6th  7th  

DVMRP:mgated

    DVMRP:mrouted  

DVMRP:packet forwarding

    packet forwarding:DVMRP  

        multicast routing protocols:DVMRP:packet forwarding  



DVMRP:Probe messages:format

    Probe messages:DVMRP:format

        format:DVMRP messages:Probe messages  2nd  3rd  

DVMRP:Probes

    Probes  

DVMRP:prune lifetime

    prune lifetime:DVRMP

        multicast routing protocols:DVMRP:prune lifetime  2nd  

DVMRP:routing table

    routing table:DVMRP

        multicast routing protocols:DVMRP:routing table  2nd  
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EBGP:confederation EBGP

    confederation EBGP  

ECHO_REPLY messages

    CBT  

ECHO_REQUEST messages (CBT)

    ECHO_REPLY messages (CBT)  

ECHO_REQUEST messages:CBT

    messages:CBT:ECHO_REQUEST

        CBT:ECHO_REQUEST messages  

EGP:configuring

    configuring:EGP  

EGP:core gateway:configuring

    configuring:EGP:core gateway

        core gateway:EGP:configuring  2nd  3rd  

EGP:default routes:configuring

    configuring:EGP:default routes

        default routes:EGP:configuring  2nd  

EGP:indirect neighbors

    indirect neighbors:EGP  

EGP:indirect neighbors:configuring

    configuring:EGP:indirect neighbors

        indirect neighbors:EGP:configuring  2nd  

EGP:limitations of

    shortcomings of EGP

        limitations of EGP  2nd  

EGP:Neighbor Acquisition Protocol

    Neighbor Acquisition Protocol (EGP)  2nd  3rd  

EGP:Neighbor Reachability Protocol

    Neighbor Reachability Protocol (EGP)  2nd  

EGP:Network Reachability Protocol

    Network Reachability Protocol (EGP)  2nd  3rd  4th  

EGP:operation

    routing protocols:EGP:operation  

EGP:origins of

    origins of EGP  

EGP:stub gateway:configuring

    configuring:EGP:stub gateway



        stub gateway:EGP:configuring  2nd  3rd  4th  

EGP:topology

    routing protocols:EGP:topology

        topology:EGP  2nd  

EGP:troubleshooting

    troubleshooting:EGP  

EGP:troubleshooting:interpreting the neighbor table

    troubleshooting:EGP:interpreting the neighbor table

        neighbor table (EGP):interpreting;interpreting:EGP neighbor table  2nd  

EIGRP:automatic summarization:disabling

    disabling:EIGRP automatic summarization

        automatic summarization:EIGRP:disabling;turning off:EIGRP automatic 

summarization  

enabling:RIPng routing process

    RIPng:routing process, enabling  

Encoded Group Address field

    Candidate-RP-Advertisement messages  

    PIMv2 Assert messages  

Encoded Multicast Group Address field

    PIMv2 Bootstrap messages  

Encoded Unicast Group Address field

    PIMv2 Bootstrap messages  

Encoded Unicast RP Address field

    Candidate-RP-Advertisement messages  

    PIMv2 Bootstrap messages  

Encoded Unicast Source Address field

    PIMv2 Assert messages  

enterprise networks:scalability:role of NAT in

    scalability:of enterprise networks:role of NAT in

        NAT:role in scaling enterprise networks  

ESP (Encapsulation Security Payload)

    IPv6:security:ESP

        security:ESP (Encapsulating Security Payload:IPv6  

exchanges  [See also NAPs ]

exterior routing protocols  

external metric  

    applying  



  
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] 

[U] [V] [W] 

F  

fault management

    performance:fault management  2nd  

        redundant systems:  [See fault management]

fault management:thresholds

    performance:fault management:thresholds  

feasible routes (BGP):preference level

    preference:for feasible routes  

fields

    Candidate-RP-Advertisement messages  

    IPv6 packets  

    PIMv2 Assert messages  2nd  

    PIMv2 Bootstrap messages  2nd  

fields:CBT messages

    messages:CBT:fields

        CBT:messages:fields;IP multicast routing protocols:CBT:message fields  2nd  3rd  

4th  5th  

fields:CGMP packets

    packets: CGMP:fields  

fields:Update messages (EGP)

    EGP:Update messages:fields  

filtering:MEDs between confederations

    MULTI_EXIT_DISC attribute:filtering between confederations

        conferations:MEDs, filtering  2nd  3rd  4th  

filtering:SA messages

    MSDP:SA messages:filtering

        SA messages:filtering  

FLUSH_TREE messages (CBT)

    messages:CBT:FLUSH_TREE

        CBT:FLUSH_TREE messages;IP multicast routing protocols:CBT:FLUSH_TREE 

messages  2nd  

FLUSH_TREE messages:CBT

    CBT:FLUSH_TREE messages

        messages:CBT:FLUSH_TRE  

        messages:CBT:FLUSH_TREE  

format

    IGMP messages

file:///E|/Temp/sa/team_fos/1578700892/d1e86964.html#d1e86964


        comparing versions 1 and 2  2nd  

format:of aggregatable addresses

    aggregatable global unicast addresses:format  

format:of MP_REACH_NLRI

    MP_UNREACH)_NLRI:format  

FP (Format Prefix)

    unicast addresses:aggregatable global addresses:FP

        aggregatable global addresses:FP  

Fragment header (IPv6)  

Fragment RP Count field

    PIMv2 Bootstrap messages  

Fragment Tag field

    PIMv2 Bootstrap messages  

Freedman, Avi  

FTP

    NAT translation  2nd  

full DVMRP implementation

    comparing to Cisco IOS implementation  2nd  

functional MAC addresses

    MAC addresses:functional  

functional multicast addresses

    multicast addresses:functional

        IP multicast:functional addresses  

functionality

    IPv6  2nd  

functions of multicast routing protocols  2nd  
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gateways

    EGP  

GDA field

    CGMP packets  

General Queries:differences in versions

    IGMPv2:General Queries:comparing to version 1  

Generation ID field

    DVMRP Probe messages  

get requests (SNMP)

    SNMP:get requests

        network management:SNMP:get requests  

gets (SNMP)

    sets (SNMP)  

GGP (Gateway-to-Gateway Protocol)  

global commands:RIPng

    RIPng:global commands  2nd  

GMRP (GARP Multicast Registration Protocol)

    GARP Multicast Registration Protocol (GMRP)  

Graft Acknowledgmentmessages:DVMRP:format

    DVMRP:Graft Acknowledgment messages:format

        format:DVMRP messages:Graft Acknowledgment  

graft messages

    messages:graft

        multicast routing protocols:graft messages  

Graft messages

    PIM-SM  

Graft messages:DVMRP:format

    DVMRP:Graft messages:format

        format:DVMRP messages:Graft  

Graft messages:PIMv2

    messages:PIMv2:Graft  

Graft-Ack messages:PIMv2

    messages:PIMv2:Graft-Ack  

GRE (generic route encapsulation)

    on tunnel interfaces  2nd  3rd  

GRE (generic route encapsulation):between PIM routers

    encapsulation:GRE:between PIM routers  

Group Address field



    CBT JOIN_REQUEST messages  

Group Address field (IGMP messages)  

Group Membership Interval

    Membership Reports:Group Membership Interval

        IBMP:Membership Reports:Group Membership Interval  

Group Membership LSAs

    flooding  

    LSAs:Group Membership LSAs  

Group Membership LSAs:fields

    LSAs:Group Membership LSAs:fields  

group membership:CBT:member sources

    CBT:member sources

        IP multicast routing protocols:CBT:member sources;member sources (CBT)  2nd  

group membership:CGMP:MAC addresses

    membership:CGMP:MAC addresses

        multicast addresses:CGMP:MAC addresses  2nd  3rd  

group membership:IGMPv2:message format

    membership:IGMPv2:message format  2nd  

group membership:IGMPv3

    membership:IGMPv3

        multicast groups:IGMPv3;IP multicast:IGMPv3  2nd  
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hash function

    RPs:hash function  2nd  

Hash Mask Length field

    PIMv2 Bootstrap messages  

hash-mask

    BSR:hash-mask

        PIMv2 bootstrap:hash-mask  

header format:DVMRP messages

    ;fields:DVMRP messages  2nd  

header format:PIMv2 messages

    messages:PIMv2:header format  2nd  

headers

    IPv6 packets  

headers:checksums

    packets:headers:checksums

        checksums  

headers:EGP messages:fields

    fields:in EGP message headers

        headers:EGP messages:fields;EGP:messages:header fields  

Hello interval:EGP messages

    messages:EGP:Hello interval

        EGP:messages:Hello interval  

Hello messages

    CBT

        format  2nd  

Hello messages:PIMv2

    messages:PIMv2:Hello  

hierarchical routing

    local ISPs

        ISPs:local  

hierarchical structure

    aggregatable addresses  

Holdtime field

    Candidate-RP-Advertisement messages  

hop count:DVMRP

    DVMRP:hop count

        metrics:DVMRP;multicast routing protocols:DVMRP:metric  

Hop Limit field



    IPv6 header  

Hop-by-Hop options header (IPv6)  

HSRP:configuring

    fault tolerance:HSRP:configuring

        robustness:HSRP:configuring;configuring:HSRP  2nd  3rd  4th  
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IANA (Internet Assigned Numbers Authority)  

IBGP (internal BGP)

    peering:BGP

        BGP:peering;routing protocols:BGP:peering  

IBGP:over IGP:case study

    case studies:IBGP over an IGP  2nd  3rd  4th  5th  6th  

ICMPv6

    IPv6:ICMPv6

        packets:ICMPv6;error messages:ICMPv6  

        packets:ICMPv6;error messages:ICMPv6;functionality:of IPv6:ICMP  

IG (inside global) addresses  

IGMP (Internet Group Management Protocol)  2nd  

    version 1  2nd  

    version 2

        host functions  2nd  

        router functions  2nd  

    version 3  2nd  

IGMP (Internet Group Management Protocol):version 2:router functions

    group membership:IGMPv2 router functions

        membership:IGMPv2 router functions;IP multicast:group membership:IGMPv2 

router functions;multicast g  2nd  3rd  

IGMP (Internet Group Management Protocol)v2:comparing to IGMPv1

    comparing:IGMPv1 and IGMPv2

        multicast groups:comparing IGMPv1 and IGMPv2;group membership:comparing 

IGMPv2 and IGMPv1;membership  2nd  

IGMP snooping  

IGMP Snooping  

IGPs (interior gateway protocols)  

IL (inside local) addresses  

implementing:IP multicast

    IP multicast:implementing  

implementing:TTL scoping

    TTL scoping:implementing

        scoping multicast addresses:TTL scoping:implementation  

inbound soft reconfiguration  

    traffic:BGP:inbound soft reconfiguration  

initiating



    new BGP sessions  

inter-area MOSPF:ABRs

    ABRs

        MOSPF:inter-area:ABRs;routers:ABRs  

inter-area multicast forwarders;  

Inter-Area-Prefix-LSAs  

INTER_AS METRIC  

interactive multicast applications

    group members  

internal peers

    BGP  

Internet:address leakage

    leaking addresses to Internet

        addresses:leaking to Internet;ISPs:address leakage  

Internet:scalability

    scalability:of Internet  2nd  

interoperability

    of internetworks  

Intra-Area-Prefix-LSAs  

IOS  [See Cisco IOS ]

ip bgp-community new-format command

    commands:ip bgp-community new-format  2nd  

ip cgmp command

    commands:ip cgmp  

ip classless command

    commands:ip classless  

ip default-gateway command

    commands:ip default-gateway  

ip dense-mode command

    commands:ip dense-mode  

ip igmp query-interval command

    commands:ip igmp query-interval  

ip igmp query-max-response-time commands

    commands:ip igmp query-max-response-time  

ip igmp query-timeout command

    commands:ip igmp query-timeout  

ip igmp version command

    commands:ip igmp version  2nd  

ip mdsp cache-sa-state command

    commands:ip mdsp cache-sa-state  

ip mdsp command



    commands:ip mdsp  2nd  3rd  4th  5th  

ip mroute command

    commands:ip mroute  

IP multicast  [See also multicast addresses ]

ip multicast boundary command

    commands:ip multicast boundary  2nd  

ip multicast use-functional command

    commands:ip multicast use-functional  2nd  

IP multicast:configuring

    configuring:IP multicast  2nd  3rd  

IP multicast:group membership

    group membership (IP multicast)

        multicast groups;membership:multicast groups  

IP multicast:group membership:leaving

    group membership (IP multicast):leaving

        multicast groups:leaving;membership (multicast groups):leaving;leaving multicast 

groups  2nd  

IP multicast:inter-AS

    inter-AS multicasting

        ASs:inter-AS multicasting  

IP multicast:leave latency

    leave latency  

IP multicast:over Ethernet

    IP multicast:over FDDI

        multicast addresses  

IP multicast:PIM-DM:configuring

    configuring:IP multicast:PIM-DM

        PIM-DM (Protocol Independent Multicast-Dense Mode):configuring;dense 

mode:configuring  2nd  3rd  4th  5th  

        PIM-DM (Protocol Independent Multicast-Dense Mode):configuring;dense 

mode:configuring;rules:for PIM-  

        PIM-DM (Protocol Independent Multicast-Dense Mode):configuring;rules:for PIM-DM  

IP multicast:PIM-DM:RPF checks

    PIM-DM:RPF checks

        RPF checks:in PIM-DM;dense mode:RPF checks  

IP multicast:PIM-SM:bootstrap protocol, configuring

    configuring:PIM-SM:bootstrap protocol

        bootstrap protocol:configuring;sparse mode:bootstrap protocol:configuring;PIM-

SM:bootstrap protocol:  2nd  3rd  4th  5th  

IP multicast:PIM-SM:configuring

    configuring:IP multicast:PIM-SM



        PIM-SM (Protocol Independent Multicast-Sparse Mode):Auto-RP:configuring;Auto-

RP:configuring;RPs:PIM-  2nd  3rd  4th  5th  6th  7th  

        PIM-SM (Protocol Independent Multicast-Sparse Mode):configuring  2nd  3rd  4th  

5th  6th  7th  8th  9th  10th  11th  

        PIM-SM (Protocol Independent Multicast-Sparse Mode):configuring;sparse 

mode:configuring  

IP multicast:PIM:sparse-dense mode

    sparse-dense mode:configuring

        PIM:sparse-dense mode:configuring;configuring:IP multicast:sparse-dense mode  

2nd  3rd  4th  

IP multicast:requirements

    requirements:for IP multicast  2nd  3rd  

IP multicast:troubleshooting

    troubleshooting:IP multicast  

IP multicast:troubleshooting:mrinfo command

    troubleshooting:IP multicast:mrinfo command  2nd  

IP multicast:troubleshooting:mstat command

    troubleshooting:IP multicast:mstat command  2nd  3rd  4th  5th  

IP multicast:troubleshooting:mtrace command

    troubleshooting:IP multicast:mtrace command  2nd  3rd  4th  

IP multicasting:broadcast domains

    broadcast domains

        group membership:broadcast domains;membership:broadcast domains  

IP multicasting:many-to-many applications

    many-to-many applications:of IP multicasting  

IP multicasting:multicast scoping

    large-scale IP multicast routing:multicast routing

        TTL scoping;IP multicast:TTL scoping  

ip nat inside command

    commands:ip nat inside  

ip nat inside source command

    commands:ip nat inside source  

ip nat outside source static command

    commands:ip nat outside source static  

ip nat pool command

    commands:ip nat pool  

ip nat translation command

    commands:ip nat translation  

ip nat translation timeout command

    commands:ip nat translation timeout  2nd  

ip pim bsr-candidate command



    commands:ip pim bsr-candidate  2nd  3rd  

ip pim query-interval command

    commands:ip pim query-interval  

ip pim rp-candidate command

    commands:ip pim rp-candidate  

ip pim send-rp-announce command

    commands:ip pim send-rp-announce  2nd  

ip pim sparse-dense-mode command

    commands:ip pim sparse-dense-mode  

ip pim sparse-mode command

    commands:ip pim sparse-mode  

ip pim spt-threshold command

    commands:ip pim spt-threshold  

ip pim version command

    commands:ip pim version  

IPng (IP Next Generation)  

IPv4 compatible IPv6 addresses

    addresses:IPv4 compatible IPv6 addresses  

IPv4:transition to IPv6

    transitioning IPv4 to IPv6

        migration:IPv4 to IPv6  2nd  

IPv4:transition to IPv6:DNS

    transitioning IPv4 to IPv6:DNS

        migration:IPv4 to IPv6:DNS;DNS:IPv4/IPv6 

compatibility;compatibility:IPv4/IPv6:DNS  2nd  

IPv4:transition to IPv6:dual stacks

    transitioning IPv4 to IPv6:dual stacks

        migration:IPv4 to IPv6:dual stacks;dual stacks:IPv4/IPv6 

compatibility;compatibility:IPv4/IPv6:dual   

IPv4:transition to IPv6:NAT-PT

    transitioning IPv4 to IPv6:NAT-PT

        migration:IPv4 to IPv6:NAT-PT;NAT-PT (Network Address Translation-Protocol 

Translation)  2nd  

IPv4:transition to IPv6:tunneling

    transitioning IPv4 to IPv6:tunneling

        migration:IPv4 to IPv6:tunneling;tunneling:IPv6 in IPv4  2nd  3rd  

IPv6

    broadcasting  

    functionality  2nd  

IPv6 Research & Education Networks (6REN)

    6REN (IPv6 Research and Education Networks  



IPv6:6bone

    6bone

        implementing:IPv6:6bone  2nd  3rd  

IPv6:address prefixes:text representation

    prefixes (IP addresses):text representation

        text representation:IP address prefixes  

IPv6:address type allocation

    addresses:IPv6:address type allocation

        FP (format prefix)  2nd  3rd  

IPv6:addresses:embedded IPv4 addresses

    addresses:IPv6:embedded IPv4 addresses

        special format addresses:IPv6:embedded IPv4 addresses;embedded IPv4 

addresses:IPv6  

IPv6:addresses:loopback

    addresses:IPv6:loopback

        special format addresses:IPv6:loopback;loopback addresses:IPv6  

IPv6:addresses:unspecified

    addresses:IPv6:unspecified

        special format addresses:IPv6:unspecified;unspecified addresses:IPv6  

IPv6:addressing:size

    addressing:IPv6:size

        depletion of IP addresses:address space of IPv6  

IPv6:anycasting

    anycasting  2nd  

IPv6:compabitibilty with IPv4

    compatibility:IPv4 and IPv6  

IPv6:design goals

    design goals of IPv6  2nd  

IPv6:design goals:ease of configuration

    design goals of IPv6:ease of configuration

        comparing:host configuration of IPv4 and IPv6;host configuration:comparing IPv4 

and IPv6  2nd  

IPv6:design goals:improve scalability

    design goals of IPv6:improve scalability

        scalability:IPv6;comparing:scalability of IPv4 and IPv6  

IPv6:design goals:security

    design goals of IPv6:security

        comparing:security of IPv4 and IPv6  

IPv6:functionality

    functionality:IPv6  2nd  

IPv6:multicasting:MLD



    MLD (Multicast Listener Discovery):IPv6

        listener discovery:IPv6 multicast addresses  2nd  3rd  

IPv6:multicasting:PIM routing

    IP multicast:IPv6:PIM routing

        PIM:IPv6 multicast routing  2nd  3rd  

IPv6:multicasting:scoped addressses

    IP multicast:IPv6

        scoping:IPv6 multicast addresses  

IPv6:packets

    packets:IPv6  2nd  

IPv6:packets:headers

    packet:IPv6:headers

        headers:IPv6  2nd  

        headers:IPv6:extension headers;extension headers:IPv6  2nd  3rd  4th  

        headers:IPv6:format;format:IPv6 headers  

IPv6:QoS

    QoS:IPv6  

IPv6:routing:BGP-4 multiprotocol extensions

    BGP-4 multiprotocol exensions:IPv6

        routing:BGP-4 multiprotocol extensions  2nd  3rd  

IPv6:routing:MTU path discovery

    MTU path discovery:IPv6

        routing:IPv6  2nd  

IPv6:routing:OSPFv2

    OSPFv2:IPv6

        routing:OSPFv2;OSPFv2;link-state routing protocols:OSPFv2  2nd  3rd  4th  5th  

6th  7th  

IPv6:routing:RIPng

    RIPng:IPv6

        routing:IPv6;RIPng  2nd  3rd  4th  5th  6th  

IPv6:vendor support

    vendor support:IPv6

        implementing:IPv6:vender support  
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join latency

    IP multicast:join latency  2nd  

Join messages:PIMv2

    Prune messages:PIMv2

        messages:PIMv2:Join;messages:PIMv2:Prune  2nd  

Join packets (CGMP)

    Leave packets (CGMP)

        packets:CGMP;CGMP:packets;IP multicast:CGMP:packets;multicast 

groups:CGMP:packets  2nd  

JOIN_ACK messages:CBT

    CBT:JOIN_ACK messages

        messages:CBT:JOIN_ACK  

JOIN_REQUEST messages:fields

    messages:CBT:JOIN_REQUEST

        CBT:JOIN_REQUEST messages:fields  
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Keepalive TLV format

    MDSP:messages:Keepalive TLV format

        messages:MDSP:Keepalive TLV format  2nd  

keepalive:BGP:configuring

    configuring:BGP:keepalive

        hold time interval:BGP:configuring;BGP:keepalive:configuring;BGP:hold time 

interval:configuring;conf  
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large-scale BGP

    managing:large-scale BGP  2nd  

large-scale BGP peering

    peering:BGP:large-scale

        BGP:peering:large-scale;managing:large-scale BGP peering  

large-scale BGP peering:managing:with communities

    peering:BGP:large-scale

        BGP:large-scale peering:managing with communities;managing:large-scale BGP 

peering:with communities;  

large-scale BGP peering:managing:with confederations

    peering:BGP:large-scale

        BGP:large-scale peering:managing with confederations;managing:large-scale BGP 

peering:with confedera  2nd  

large-scale BGP peering:managing:with peer groups

    peering:BGP:large-scale

        BGP:large-scale peering:managing with peer groups;managing:large-scale BGP 

peering:with peer groups;  

large-scale BGP peering:managing:with route reflectors

    peering:BGP:large-scale

        BGP:large-scale peering:managing with route reflectors;managing:large-scale BGP 

peering:with route r  2nd  3rd  4th  

large-scale BGP:peer groups

    managing:large-scale BGP:peer groups

        peer groups;BGP:peer groups;configuring:BGP:peer groups  2nd  3rd  

large-scale IP multicast routing

    MBGP

        configuring  2nd  3rd  4th  5th  6th  

    MDSP

        configuring  2nd  3rd  4th  5th  6th  7th  

        message formats  2nd  3rd  

Layer 2 switches:exchanges

    exchanges

        devices:exchanges  

leaf networks

    subnets:leaf networks

        multicast routing protocols:leaf networks  

Link State ID field



    Group Membership LSAs  

links:backdoor routes

    backdoor routes

        private links:backdoor routes;traffic:over backdoor routes  2nd  3rd  

links:multiple OPSFv2 process handling

    OSPFv2:links:multiple process handling  2nd  

little-endian  

load balancing:BGP

    BGP:load balancing

        traffic:BGP:load balancing;routing protocols:BGP:load balancing  

Loc-RIB

    Adj-RIBs-Out  

local addresses

    global addresses  

local group database:MOSPF

    MOSPF:local group database  

LOCAL_AS attribute

    BGP:LOCAL_AS attribute

        attributes (BGP):LOCAL_AS  

LOCAL_PREF attribute

    manipulating route preference within local AS  2nd  

logging

    performance:logging

        routers:logging  2nd  3rd  4th  5th  

loopback interfaces:tunneling

    tunneling:between loopback interfaces  2nd  3rd  

loss of routing precision:troubleshooting

    troubleshooting:loss of routing precision  2nd  

LSAs: Router LSAs

    Router LSAs  2nd  

LSAs:flooding

    flooding:LSAs  

LSAs:OSPFv2

    OSPFv2:LSAs

        advertisements:LSAs:OSPFv2  2nd  3rd  4th  
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MAC addresses:Token Ring

    Token Ring:MAC addresses  

MAC addresses:USA (Unicast Source Address)

    MAC addresses:GDA  

    MAC addresses:GDA (Group Destination Address)

        GDA (Group Destination Address);USA (Unicast Source Address);CGMP:MAC 

addresses  2nd  3rd  

MAE (Metropolitan Area Ethernet)  

maintaining

    loop-free multicast topologies  2nd  

management processes:server design

    servers:management processes:designing for  

manager (SNMP)

    SNMP:manager

        network management:SNMP:manager  2nd  

managing:large-scale BGP:communities

    large-scale BGP:communities

        communities (BGP);attributes (BGP):communities;BGP:COMMUNITY 

attribute;configuring:BGP:communities  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

managing:large-scale BGP:private AS numbers

    large-scale BGP:assigning private AS numbers  2nd  

managing:large-scale BGP:route reflectors

    route reflectors:configuring

        configuring:BGP:route reflectors;large-scale BGP:route reflectors  2nd  3rd  4th  5th  

manual configuration of switched multicast trees  

many-to-one applications:NAT

    applications:many-to-one:NAT

        NAT:many-to-one applications  

mapping agents:holdtime

    holdtime:for mapping agents

        PIM-SM:mapping agents:holdtime;sparse mode:mapping agent:holdtime  

mapping:single multicast groups to multiple RPs

    RPs:mapping to multicast group

        multicast groups:mapping to RPs  2nd  3rd  

match interface command

    commands:match interface

        match ip next-hop command;commands:match ip next-hop  

match ip address command



    commands:match ip address  

Max Response Time

    queries:Max Response Time  

Max Response Time field (IGMP messages)  

Max Response Time value:General Query messages

    General Query messages:Max Response Time

        messages:General Query:Max Response Time;IGMP:General Query messages:Max 

Response Time  

maximum suppress limit  2nd  

maximum-paths command

    commands:maximim-paths  

    commands:maximum-paths  

MBBGP (Multiprotocol Extensions for BGP)

    IP multicast:MBGP (Multicast extensions for BGP)  2nd  

MBGP (Multiprotocol BGP);  

MBGP:configuring

    configuring:MBGP

        IP multicast:MBGP:configuring  2nd  3rd  4th  5th  6th  

MBone

    Multicast Backbone

        IP multicast:Multicast Backbone;UUCast  

MDSP:configuring

    configuring:MDSP

        IP multicast:MDSP:configuring  2nd  3rd  4th  5th  6th  7th  8th  9th  

MDSP:default peers

    IP multicast:MDSP:default peers

        large-scale IP multicasting:MDSP:default peers;configuring:MDSP:default 

peers;default peers (MDSP):c  2nd  

MDSP:mesh groups:configuring

    mesh groups (MDSP):configuring

        IP multicast:MDSP:mesh groups;configuring:MDSP:mesh groups  2nd  

mergers (network):case study

    case studies:network mergers

        NAT:network mergers:case study  2nd  3rd  

messages

    IPv6 PIM routing  

    PIM-SM

        RP-Discovery  

    PIMv2  2nd  3rd  4th  5th  6th  7th  

messages:BGP:Keepalive

    Keepalive messages (BGP)



        BGP:Keepalive message;routing protocols:BGP:Keepalive message  

messages:BGP:Notification

    Notification messages (BGP)

        BGP:Notification message;routing protocols:BGP:Notification message  

messages:BGP:Open

    Open messages (BGP)

        BGP:Open message;routing protocols:BGP:Open message  

messages:BGP:Update

    Update messages (BGP)

        BGP:Update message;routing protocols:BGP:Update message  2nd  

messages:EGP:Error

    Error messages (EGP)

        EGP:messages:Error  2nd  

messages:EGP:Neighbor Acquisition

    Neighbor Acquisition messages (EGP)

        EGP:messages:Neighbor Acquisition  2nd  

messages:EGP:Neighbor Reachability

    Neighbor Reachability messages (EGP)

        EGP:messages:Neighbor Reachability  

messages:EGP:Poll

    Poll messages (EGP)

        EGP:messages:Poll  

messages:EGP:sequence number

    sequence number:EGP messages

        EGP:messages:sequence number  

messages:EGP:TTL

    TTL (time-to-live:EGP messages

        messages:EGP:TTL  

messages:EGP:Update

    Update messages (EGP)

        EGP:messages:Update  2nd  

messages:Group-Specific Queries

    Group-Specific queries

        IGMP:Group-Specific queries;multicast groups:IGMP Group-Specific queries  

messages:IGMPv2:fields

    fields:IGMPv2 messages

        IGMPv2:messages:fields  2nd  

messages:Leave Group

    Leave Group messages  2nd  

messages:SA requests/responses

    SA requests/responses  



metacharacters  

metric

    external

        applying   

Metric field

    PIMv2 Assert messages  

Metric Preference field

    PIMv2 Assert messages  

mgated

    mrouted

        IP multicast:mgated;IPmulticast:mrouted  

MHSRP (Multigroup HSRP)  

MHSRP:configuring

    fault tolerance:MHSRP:configuring

        robustness:MHSRP:configuring;configuring:MHSRP  2nd  

MIBs (management information bases)

    community strings (SNMP)

        messages:SNMP;SNMP:messages  

MIBs:threshold-related

    thresholds:MIBs  

Minor Version field:DVMRP messages

    Major Version field:DVMRP messages  

MLPA (multilateral peering agreement)  

modifying:attributes of BGP aggregates

    aggregation:BGP:modifying attributes of routes

        aggregation:BGP:modifying attributes of routes  2nd  3rd  

modifying:BGP local preference

    LOCAL_PREF attribute:modifying

        attributes (BGP):LOCAL_PREF:modifying  

MOSPF (Multicast OSPF)  

    multicast routing protocols:MOSPF  2nd  3rd  4th  

MOSPF (Multicast OSPF):inter-area

    multicast routing protocols:MOSPF:inter-area

        inter-area MOSPF  2nd  3rd  

MOSPF (Multicast OSPF):inter-AS

    multicast routing protocols:MOSPF:inter-AS

        inter-AS MOSPF;ASs:inter-AS MOSPF  2nd  

MOSPF (Multicast OSPF):inter-AS:extension formats

    multicast routing protocols:MOSPF:inter-AS

        inter-AS MOSPF:extension formats;ASs:inter-AS MOSPF:extension 

formats;extension formats:MOSPF  2nd  



MOSPF:explicit joins:Group Membership LSA-based

    explicit joins:Membership LSA-based  

MP-REACH-NLRI attribute (BGP)

    MP_UNREACH_NLRI attribute (BGP)

        reachability:BGP attributes  2nd  3rd  

MP_REACH_NLRI

    applying to attribute to MBGP  

MP_REACH_NLRI attribute

    MP_UNREACH_NLRI attribute  

mrinfo command

    commands:mrinfo  2nd  3rd  

MSDP (Multicast Source Discovery Protocol)

    discovery of multicast sources:MSDP

        IP Multicast:MSDP (Multicast Source Discovery Protocol)  

    IP multicast:MSDP (Multicast Source Discovery Protocol)  2nd  

MSDP:caching, enabling

    IP multicast:MSDP:caching

        caching:enabling for MSDP  

MSDP:mesh groups:applying to anycast RPs

    mesh groups:applying to anycast RPs  2nd  

MSDP:messages

    messages:MDSP

        format:of MSDP messages;IP multicast:MDSP:message format  

mtrace command

    commands:mtrace

        mstat command;commands:mstat  2nd  3rd  4th  5th  

MTU path discovery

    IPv6:source nodes:MTU path discovery

        source nodes:IPv6:MTU path discovery  

multicast  [See IP multicast]

multicast addresses:Multicast over Token Ring

    Token Ring:multicast addresses

        IP multicast:over Token Ring  2nd  3rd  

multicast addresses:TTL scoping

    TTL scoping:IPv6 multicast addresses

        scoping multicast addresses:IPv6  

multicast addresses:well-known

    well-known multicast addresses  2nd  

multicast addresses:well-known addresses

    permanent multicast groups:well-known addresses  

multicast forwarding  2nd  



multicast load sharing  

    IP multicast:multicast load sharing

        traffic:multicast load sharing;bandwidth:multicast load sharing;congestion:multicast 

load sharing;ca  2nd  3rd  4th  5th  

Multicast OSPF  [See MOSPF ]

multicast routing  

multicast routing protocols

    shared trees  2nd  

    source-based trees  

multicast routing protocols:explicit joins

    multicast routing protocols:implicit joins

        explicit joins;implicit joins  2nd  

multicast routing protocols:shared trees

    shared trees  2nd  

multicast routing protocols:topologies

    topologies:multicast routing

        comparing:sparse and dense topologies  2nd  

multicast scoping

    scoping

        multicast addresses:scoping  2nd  

multicast scoping:administrative scoping

    scoping multicast addresses:administrative scoping

        administrative scoping  

multicast scoping:TTL scoping

    scoping multicast addresses:TTL scoping

        TTL scoping  2nd  

multicast storms

    packets:multicast storms  

multihoming  

mutual redistribution:between IGP and BGP

    BGP:mutual redistribution

        routing policies (BGP):mutual redistribution  2nd  3rd  4th  

MX (Mail Exchange) records  
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NA (Neighbor Advertisement) packets  

name servers

    DNS:name servers

        primary DNS servers;secondary DNS servers  

NAPs (network access points):multicast

    multicast NAPs  

NAPT (network address and port translation)

    IP masquerading  

NAT  [See also PAT ]

    address types  

    PAT (port address translation)  2nd  

    protocol-specific issues  

        DNS  2nd  3rd  

        FTP  2nd  3rd  

        ICMP  

        routing protocols  

        SMTP  

        SNMP  

        traceroute  2nd  

NAT:address translation table

    address translation table:NAT  

NAT:command summary

    command summary:NAT  

NAT:ISP migration

    enterprise networks:ISP migration

        ISPs:migration  2nd  

NAT:security weaknesses

    security:NAT, weaknesses in

        vulnerabilities:in NAT security  

NAT:TCP load distribution

    TCP load distribution

        traffic:load distribution:NAT-based  

NAT:troubleshooting

    troubleshooting:NAT  2nd  3rd  

native packet capture

    capturing:packets

        packets:capturing;promiscuous packet capture  

ND (Neighbor Discovery)



    IPv6:ND (Neighbor Discovery)

        functionality:of IPV6:ND  2nd  3rd  

        functionality:of IPV6:ND;nodes;IPv6:ND  2nd  

ND (Neighbor Discovery):address resolution

    IPv6:ND (Neighbor Discovery):address resolution

        functionality:of IPV6:ND;address resolution:ND protocol  2nd  

ND (Neighbor Discovery):default router selection

    IPv6:ND (Neighbor Discovery):default router selection

        functionality:of IPV6:ND;default router selection:ND protocol;routers:default router 

selection (ND)  2nd  3rd  

ND (Neighbor Discovery):duplicate router selection

    IPv6:ND (Neighbor Discovery):duplicate router selection

        functionality:of IPV6:ND;duplicate router selection:ND protocol;routers:duplicate 

router selection (  2nd  

ND (Neighbor Discovery):NA (neighbor advertisement)

    IPv6:ND (Neighbor Discovery):NA

        functionality:of IPV6:ND;NA (neighbor advertisement):ND;advertisements:NA  2nd  

ND (Neighbor Discovery):neighbor unreachability detection

    IPv6:ND (Neighbor Discovery):neighbor unreachability detection

        functionality:of IPV6:ND;neighbor unreachability detection:ND protocol  2nd  3rd  

ND (Neighbor Discovery):next-hop discovery

    IPv6:ND (Neighbor Discovery):next-hop discovery

        functionality:of IPV6:ND;Redirect messages;next-hop discovery  

ND (Neighbor Discovery):NS (neighbor solicitation)

    IPv6:ND (Neighbor Discovery):RA

        functionality:of IPV6:ND;NS (neighbor solicitation):ND  

ND (Neighbor Discovery):RA (router advertisement)

    IPv6:ND (Neighbor Discovery):RA

        functionality:of IPV6:ND;RA (Router Advertisement):ND;advertisments:RA  2nd  

3rd  

ND (Neighbor Discovery):Redirect messages

    IPv6:ND (Neighbor Discovery):Redirect messages

        functionality:of IPV6:ND;Redirect messages;messages:Redirect  

ND (Neighbor Discovery):RS (router solicitation)

    IPv6:ND (Neighbor Discovery):router solicitation

        functionality:of IPV6:ND;RS (Router Solicitation:ND  

Neighbor 2 messages:DVMRP:format

    DVMRP:Neighbor 2 messages:format

        format:DVMRP messages:Neighbor 2  

neighbor activate command

    commands:neighbor activate  



Neighbor Address field

    DVMRP Probe messages  

neighbor default-originate command

    commands:neighbor default-originate  

neighbor description command

    commands:neighbor description  2nd  

neighbor distribute-list command

    commands:neighbor distribute-list  2nd  3rd  

neighbor ebgp-multihop command

    commands:ebgp-multihop  

    commands:neighbor ebgp-multihop  

neighbor maximum-prefix command

    commands:neighborhood maximum-prefix  

neighbor next-hop-self command

    commands:neighbor next-hop-self  2nd  

neighbor remove-private-AS command

    commands:neighbor remove-private-AS  

neighbor shutdown command

    commands:neighbor shutdown  

neighbor state (DVMRP)

    in Cisco IOS DVMRP implementation  

neighbor version command

    commands:neighbor version  

neighbors

    BGP

        peer groups  2nd  3rd  

NetFlow switching

    accounting:NetFlow switching

        traffic:accounting:NetFlow switching  2nd  3rd  4th  5th  6th  7th  

network labs

    lab testing

        testing before implementing:labs;production networks:lab testing  2nd  

network management:SNMP

    SNMP (Simple Network Management Protocol)  

Network Summary LSAs:flooding outside MOSPF areas

    MOSPF:Network Summary LSAs:flooding outside areas

        flooding:Network Summary LSAs outside areas;LSAs:Network Summary 

LSAs:flooding outside MOSPF areas  

Next Header field

    IPv6 header  

next-hop-self  



NEXT_HOP attribute (BGP)  

NICs

    multicast group members  

    Token Ring

        identifying functional addresses  2nd  

NLA registries  

NLAIDs (next-level aggregation identifiers)  

NLRI (Network Layer Reachability Information)

    BGP-4  2nd  3rd  

    reachability:NLRI

        BGP:attributes:NLRI;attributes (BGP):NLRI  2nd  

no ip mroute-cache command

    commands:no ip mroute-cache  

NO_ADVERTISE community attribute  2nd  

NO_EXPORT community attribute  2nd  3rd  

nonmember sources (CBT)

    CBT:nonmember sources

        IP multicast routing protocols:CBT:nonmember sources  

Notification TLV format

    MDSP:messages:Notification TLV format

        messages:MDSP:Notification TLV format  

NTP (Network Time Protocol)

    synchronization:NTP

        time synchronization:NTP  2nd  

NTP (Network Time Protocol):configuring

    synchronization:NTP:configuring

        time synchronization:NTP:configuring;configuring:NTP;routers:NTP:configuring  2nd  

3rd  4th  5th  
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OG (outside global) addresses  

OL (outside local) addresses  

Old Host Present Timer

    timers:Old Host Present Timer

        Group Membership:Old Host Present Timer;membership:Old Host Present Timer;IP 

multicast:multicast gro  2nd  

one-to-many applications:of multicasting

    IPO multicasting:one-to-many applications  

Option Length field

    CBT Hello messages  

Option Type field

    CBT Hello messages  

Option Value field

    CBT Hello messages  

optional nontransitive attributes (BGP)

    BGP:attributes

        attributes (BGP)  

optional transitive attributes (BGP)

    optional nontransitive attributes (BGP)

        well-known mandatory attributes (BGP);well-known discretionary attributes (BGP)   

Options header (IPv6)  

Originating Router field

    CBT JOIN_REQUEST messages  

ORIGINATOR_ID path attribute:applying to route reflectors

    CLUSTER_LIST path attribute:applying to route reflectors  2nd  

origins of EGP

    EGP:origins of  

oscillating routes  

OSPF

    multicast extensions  

        Extended Options field format  

        Extended Router LSA format  

        Group Membership LSA format  

OSPFv2:authentication

    authentication:OSPFv2

        security:authentication:OSFPv2  

OSPFv2:link-local addresses



    link-local addresses:in OSPFv2  

OSPFv2:links

    links:OSPFv2  

OSPFv2:LSA flooding scope

    LSAs:OSPF:flooding scope  2nd  

Other Querier Present Interval  

outbound policies:implementing

    routing policies:outbound:implementing

        implementing:outbound routing policies;route filters:outbound:implementing  2nd  

overloading

    PAT:overloading  
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Packet Too Big error messages:MTU Path Discovery

    ICMP:Packet Too Big messages:MTU Path Discovery  

Packet Too Big messages (ICMPv6)

    ICMPv6:Packet Too Big messages

        messages:ICMPv6:Packet Too Big  

packets:CGMP:format

    format:CGMP packets

        CGMP:packets:format  2nd  

packets:fragmentation

    fragmentation  2nd  

packets:IP multicast:capturing

    capturing:IP multicast packets

        IP multicast:packets:capturing  2nd  

packets:IP multicast:disabling fast switching

    disabling:fast switching of IP multicast packets

        IP multicast:fast switching, disabling;fast switching:multicast packets:disabling  2nd  

Parameter Problem messages (ICMPv6)

    ICMPv6:Parameter Problem messages

        messages:ICMPv6:Parameter Problem  

parent interface

    CBT:parent interface

        IP multicast routing protocols:CBT:parent interface  

passive opens  

PAT (port address translation)  

PAT (Port Address Translation)

    NAT:PAT

        configuring:NAT:PAT  2nd  

path attributes (BGP):AGGREGATOR

    AGGREGATOR attribute (BGP)

        BGP:path attributes:AGGREGATOR;optional transitive attributes 

(BGP):AGGREGATOR  2nd  

path attributes (BGP):AS_PATH

    AS_PATH attribute (BGP)

        BGP:path attributes (BGP):AS_PATH;well-known mandatory attributes 

(BGP):AS_PATH  2nd  

path attributes (BGP):ATOMIC_AGGREGATE

    ATOMIC_AGGREGATE attribute (BGP)



        BGP:path attributes:ATOMIC_AGGREGATE;well-known discretionary attributes 

(BGP):ATOMIC_AGGREGATE  2nd  

path attributes (BGP):CLUSTER_LIST

    CLUSTER_LIST attribute (BGP)

        BGP:path attributes:CLUSTER_LIST;optional nontransitive attributes 

(BGP):CLUSTER_LIST  2nd  

path attributes (BGP):COMMUNITY

    COMMUNITY attribute (BGP)

        BGP:path attributes:COMMUNITY;optional transitive attributes (BGP):COMMUNITY  

path attributes (BGP):LOCAL_PREF

    LOCAL_PREF attribute (BGP)

        BGP:path attributes:LOCAL_PREF;well-known discretionary attributes 

(BGP):LOCAL_PREF  2nd  

path attributes (BGP):MULTI_EXIT_DISC

    MULTI_EXIT_DISC attribute (BGP)

        BGP:path attributes:MULTI_EXIT_DISC;optional transitive attributes 

(BGP):MULTI_EXIT_DISC  2nd  

path attributes (BGP):NEXT_HOP

    NEXT_HOP attribute (BGP)

        BGP:path attributes:NEXT-HOP;well-known mandatory attributes (BGP):NEXT_HOP  

2nd  

path attributes (BGP):ORIGIN

    ORIGIN attribute (BGP)

        BGP:path attributes (BGP):ORIGIN;well-known mandatory attributes (BGP):ORIGIN  

path attributes (BGP):ORIGINATOR_ID

    ORIGINATOR_ID attribute (BGP)

        BGP:path attributes:ORIGINATOR_ID;optional nontransitive attributes 

(BGP):ORIGINATOR_ID  2nd  

path discovery  [See MTU path discovery]

path vector routing protocols

    routing protocols:path vector  

Payload Length field

    IPv6 header  

peer connections

    BGP

        resetting  2nd  3rd  

peer connections:BGP:managing

    managing:BGP peer connections

        BGP:peer connections:managing;configuring:BGP:peer connections  2nd  3rd  4th  

peer RPF flooding

    flooding:peer RPF flooding



        RPF:peer RPF flooding  

peering

    BGP

        route reflectors   2nd  

    MDSP

        configuring  2nd  

peering agreements  

penalties:for flapping routes

    flapping routes:penalties

        half-life:flapping routes  

per-destination balancing  

per-packet load balancing

    load balancing:per-packet

        traffic:per-packet load balancing  

performance management  

Perl

    programming languages:Perl  

permanent multicast groups

    IP multicast:permanent multicast groups

        multicast addresses:permanent multicast groups  

PHB (per-hop behavior)

    per-hop behavior (PHB)  

PIM  2nd  

PIM-DM

    flood-and-prune mechanism  

    IP multicast routing protocols:PIM-DM

        dense mode (PIM)  2nd  3rd  4th  5th  6th  7th  

PIM-DM:(*, G) entry

    dense mode:(*, G) entry

        IP multicast:PIM-DM:(*, G) entry  2nd  

PIM-DM:DRs

    IP multicast routing protocols:PIM-DM:DRs

        dense mode (PIM):DRs;DRs:PIM-DM  

PIM-DM:PIM forwarder election

    IP multicast routing protocols:PIM-DM:PIM forwarder election

        dense mode (PIM):PIM forwarder election;election process:PIM-DM forwarders  

        dense mode (PIM):PIM forwarder election;election process:PIM-DM 

forwarders;forwarders (PIM-DM):elect  2nd  

PIM-DM:prune overrides

    IP multicast routing protocols:PIM-DM:prune overrides

        dense mode (PIM):prune overrides  2nd  



PIM-DM:unicast route changes

    IP multicast routing protocols:PIM-DM:unicast routing changes

        dense mode (PIM):unicast routing changes  2nd  

PIM-SM  

    sparse mode (PIM)

        IP multicast routing protocols:PIM-SM  

PIM-SM:Auto-RP

    sparse mode (PIM):Auto-RP

        IP multicast routing protocols:PIM-SM:Auto-RP  

PIM-SM:routing between domains

    IP multicast:PIM-SM:routing between domains  2nd  

PIM-SM:shared trees

    shared trees:PIM-SM  2nd  

        IP multicast routing protocols:PIM-SM:shared trees;sparse mode (PIM):shared 

trees  2nd  3rd  

PIM-SM:source registration

    source registration:PIM-SM

        IP multicast routing protocols:PIM-SM:source registration;sparse mode (PIM):source 

registration  2nd  3rd  4th  

PIM-SM:SPTs

    SPTs:PIM-SIM

        IP multicast routing protocols:PIM-SM:SPTs;sparse mode (PIM):SPTs  2nd  3rd  4th  

PMBR (PIM Multicast Border Router)

    routers:PMBR (PIM Multicast Border Router)

        PIM:PMBR (PIM Multicast Border Router);IP multicast:PIM:PMBR  

point-to-point interfaces

    Cisco IOS DVMRP implementation

        Prune messages  

Policy Routes

    Cisco Policy Routes

        static routes:Cisco Policy Routes  

Poll messages

    messages:Poll

        Update messages;messages:Update  

POP (Point of Presence)

    NAPs (network access points)

        LANs:  

portable address space

    provider-independent address space  

Preference field

    CBT Hello messages  



preferred addresses

    addresses:preferred  

Preferred Lifetime  

Prefix Count field

    Candidate-RP-Advertisement messages  

prepending AS_PATH  [See also route tagging ]

Priority field

    Candidate-RP-Advertisement messages  

private AS numbers  [See also confederations]

    ASs:private numbers

        conserving:AS numbers;depletion of AS numbers:assigning private AS 

numbers;BGP:private AS numbers;co  2nd  

private peering  

Probe packets

    DVMRP:Probe packets  

Probes (DVMRP)

    in Cisco IOS DMVRP implementation  

prune messages

    messages:prune

        multicast routing protocols:prune messages  

Prune messages:DVMRP:format

    DVMRP:Prune messages:format

        format:DVMRP messages:Prune  

Prune messages:in Cisco IOS DVMRP implementation

    messages:Prunes:in Cisco IOS DVMRP implementation  

pseudo transit providers:6bone

    top-level providers:6bone

        next-level providers:6bone;site-level providers:6bone  

PTR (Pointer) records  

public topology:aggregatable addresses

    site topology:aggregatable addresses

        interface topology:aggregatable addresses  2nd  
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QoS:SLAs (Service Level Agreements)

    router management:SLAs (Service Level Agreements)

        SLAs (Service Level Agreements);performance:SLAs (Service Level Agreements)  

2nd  

queries:IGMP:rules for

    IGMP:queries:rules for

        routers:PIM:rules for;forwarders:PIM:rules for  2nd  

        rules:for IGMP queries  

question mark (?)

    in regular expressions  

QUIT_NOTIFICATION messages (CBT)

    CBT:QUIT_NOTIFICATION messages

        messages:CBT:QUIT_NOTIFICATION  
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RA (Router Advertisement) packets  

RA (Routing Arbiter) project

    NSF:RA (Routing Arbiter) project  

RADIUS (Remote Dial-In User Service)

    security management:RADIUS  

reachability:maintaining during ISP migration

    addresses:reachability:maintaining during ISP migration  

Redirect packets  

redistribute command

    commands:redistribute  

redistribution:BGP

    BGP:redistribution:configuring

        configuring:BGP:redistribution  

redundancy  

regional IP registries  

regional service providers

    network service providers  

Register messages:PIMv2

    messages:PIMv2:Register  2nd  

Register Stop messages:PIMv2

    messages:PIMv2:Register Stop  

regular expression tutorial:alternation

    alternation:in regular expressions  

regular expression tutorial:boundaries

    boundaries:in regular expressions  

regular expression tutorial:bracketing

    brackets:in regular expressions  

regular expression tutorial:delineation

    delineation:in regular expressions  

regular expression tutorial:literals and metacharacters

    literals:in regular expressions

        metacharacters:in regular expressions  

regular expression tutorial:negation

    negation:in regular expressions  

regular expression tutorial:optional characters

    optional characters:in regular expressions  

regular expression tutorial:repetition



    repetition:in regular expressions  

regular expression tutorial:wildcards

    wildcards:in regular expressions  

regular expressions

    metacharacters

        literals  

replicated unicast

    unicast:replicated unicast  

report messages

    messages:reports

        IP multicast:reports  2nd  

reports:Route Report Interval

    Route Report Interval  

Reserved field

    CGMP packets  

reserved multicast addresses

    multicasting:reserved addresses  2nd  3rd  4th  5th  6th  7th  8th  9th  

reuse limit

    flapping routes  

reverse lookups

    DNS:reverse lookups  

reverse path forwarding  

RFC 827

    scalability of ARPANET  

RIPE (Resaux IP Europens)  

RIPng:interface subcommands

    interface subcommands:RIPng  2nd  

RMON

    SNMP:RMON  

RMON:router configuration

    configuring:RMON

        routers:RMON:configuring  2nd  3rd  4th  

robustness

    networks:robustness

        fault tolerance:robustness  

robustness:HSRP

    networks:robustness:HSRP

        fault tolerance:robustness:HSRP;HSRP  2nd  3rd  4th  5th  6th  

Rosen, Eric  

route aggregation

    summarization  



route dependencies  

route expiration time  

route filters  [See also routing policies]

    routing policies:filtering routes by NLRI

        BGP:routing policies:route filtering by NLRI  2nd  3rd  

route filters (BGP)

    filtering with route maps

        AS_PATH prepending   2nd  

        LOCAL_PREF attribute   2nd  

        MULTI_EXIT_DISC attribute   

        multiple routes to the same destination learned from different routing protocols   

2nd  

        route tagging   2nd  

route filters (BGP):filtering by AS_PATH

    routing policies (BGP):filtering routes by AS_PATH

        BGP:route filtering:by AS_PATH;case studies:BGP route filtering:by 

AS_PATH;AS_PATH attribute:route f  2nd  3rd  4th  

route filters (BGP):filtering by NLRI

    routing policies (BGP):filtering routes by NLRI

        BGP:route filtering:by NLRI;case studies:BGP route filtering:by NLRI  2nd  

route maps  

    BGP

        AS_PATH prepending   2nd  

        filtering routes with LOCAL_PREF   2nd  

        filtering routes with MULTI_EXIT_DISC attribute   

        multiple routes to same destination learned from different routing protocols   2nd  

        route tagging   2nd  

route oscillation  

Route Report Messages:DVMRP:format

    DVMRP:Route Report messages:format

        format:DVMRP messages:Route Report  

route servers  

router management  [See also network management ]

router management:change management

    change management

        performance:change management;policies:change management  2nd  3rd  

router management:escalation procedures

    escalation procedures

        troubleshooting:escalation procedures;policies:escalation procedures  

router management:policies, updating

    updating policies



        policies:updating  

routers

    configuring as C-RP  

    querying  2nd  

routers:DVMRP

    IP multicast:DVMRP

        large-scale multicast routing:DVMRP;DVMRP:Cisco IOS implementation;Cisco 

IOS:DVMRP implementation;im  2nd  3rd  

routers:POPs

    devices:routers:POPs  

routes:aggregate:AS_SET attribute

    aggregation:AS_SET attribute

        path attributes (BGP):AS_PATH:AS_SET;AS_PATH attribute 

(BGP):AS_SET;attributes (BGP):AS_PATH:AS_SET  2nd  

routes:BGP:selection process

    BGP:routes:selection process

        selection process:BGP routes  

Routing header (IPv6)  

routing policies  2nd  

    BGP:routing policies  2nd  

    misconfiguration

        ramifications of  

    soft reconfiguration  2nd  

routing policies:enforcing

    enforcing:routing policies

        policies:routing:enforcing  

routing protocols

    NAT translation  

routing tables:BGP:directly-connected links

    directly connected l inks:in BGP routing table

        BGP:routing table:directly connected links  

RP Holdtime field

    PIMv2 Bootstrap messages  

RP mapping agents;  

RP Priority field

    PIMv2 Bootstrap messages  

RP-failover

    example  

RPB (reverse path broadcasting)

    reverse path broadcasting (RPB)  

RPF check:DVMRP



    DVMRP:RPF check

        multicast routing protocols:DVMRP:RPF check  

RPF peers

    neighbor state:RPF peers  

RPM (reverse path multicast)

    reverse path multicast (RPM)

        multicast routing protocols:RPM (reverse path multicast)  

RPs  [See also Anycast RP]

RPs (rendezvous points)

    PIM-SM:RPs (rendezvous points)

        sparse mode (PIM):RPs;IP multicast routing protocols:PIM-SM:RPs  2nd  3rd  4th  

RPs:groups, assigning

    assigning:groups to RPs

        groups:assigning to RPs  2nd  

RPs:static configuration

    PIM-SM:RPs:static configuration

        static RP configuration;sparse mode:RPs:static configuration;configuring:PIM-

SM:RPs;IP multicast:PIM  2nd  3rd  4th  5th  6th  7th  

RRs (resource records)

    DNS:RRs  

RS (Router Solicitation) packets  

RSA Data Security, Inc.  

RTEs (route table entries):RIPng

    RPng:RTEs (route table entries)

        link-state routing protocols:RIPng:RTEs  

rule of synchronization  
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scalability:ARPANET

    ARPANET:scalability  

scalability:of explicit joins

    explicit joins:scalability  2nd  

scope  

scoped multicast addresses

    relative addresses  

scoping

    administrative  

    TTL  

scripts

    Perl  

SDR (Session Description Protocol)  

secure hash  

security management  2nd  

security management:controlling interactive access

    controlling:interactive access  2nd  

security management:DoS attacks, preventing

    preventing:DoS attacks

        attacks:DoS:preventing;DoS attacks:preventing  2nd  

security management:passwords

    encryption

        security:encryption  

security management:SSH

    SSH (Secure Shell)

        remote access:SSH  2nd  3rd  

security management:TACACS+

    TACACS+

        authentication:TACACS+  2nd  3rd  4th  5th  6th  7th  

selecting

    PIM-DM forwarders  2nd  

selecting:routes with specified community attributes

    finding routes with specified community attributes  2nd  

semantics:OSPFv2 addressing

    OSPFv2:addressing semantics  

Service Level Agreements  [See SLAs ]

sessions:BGP:clearing

    BGP:sessions:clearing



        resetting:BGP sessions  

sessions:BGP:configuring

    configuring:BGP

        BGP:configuring;case studies:BGP:configuring  2nd  3rd  

set as-path prepend command

    commands:set as-path prepend  

set as-path tag command  

    commands:set as-path tag  

set automatic-tag command

    commands:set automatic-tag  

set comm-list delete command

    commands:set comm-list delete  2nd  

set gmrp enable command

    commands:set gmrp enable  

set igmp enable command

    commands:set igmp enable  

set local-preference command

    commands:set local-preference  

shared trees  

shared trees:scalability:multicast routing protocols:shared trees:scalability

    scalability:shared trees  2nd  

shortage of IP addresses  [See also NAT]

shortest-path trees

    PIM:shortest-path trees

        RPTs (rendezvous point trees)  

show ip bgp command

    commands:show ip bgp  2nd  

show ip bgp community no-export command

    commands:show ip bgp community no-export  2nd  3rd  

show ip bgp community-list command

    commands:show ip bgp community-list  

show ip bgp flap-statistics command

    commands:show ip bgp flap-statistics

        show ip bgp dampened-paths command;commands:show ip bgp dampened-paths  

show ip bgp ipv4 command

    commands:show ip bgp4  

show ip bgp neighbors command

    commands:show ip bgp neighbors  2nd  

        viewing:BGP neighbor information;displaying:BGP neighbor 

information;BGP:neighbors:displaying inform  

show ip bgp peer-groups command
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    commands:show ip bgp peer-groups  

show ip egp command

    commands:show ip egp  2nd  3rd  

show ip igmp group command

    commands:show ip igmp group  

show ip igmp groups command

    commands:show ip igmp groups  

show ip igmp interface command

    commands:show ip igmp interface  

show ip mdsp peer command

    commands:show ip mdsp peer  

show ip nat statistics command

    commands:show ip nat statistics

        statistics:NAT:displaying;displaying:NAT statistics;viewing:NAT statistics  

show ip pim bsr-router command

    commands:show ip pim bsr-router  

show ip pim interface command

    commands:show ip pim interface  

show ip pim neighbor command

    commands:show ip pim neighbor  

show ip pim rp command

    commands:show ip pim rp  2nd  

show ip pim rp-hash command

    commands:show ip pim rp-hash  

show ip pim sp-hash command

    commands:show ip pim sp-hash  

show ip route command

    commands:show ip route  

show ipv6 interface command

    commands:show ipv6 interface  2nd  

SMTP

    NAT translation  

SNMP

    NAT translation  

snmp-server command

    commands:snmp-server  

snmp-server community command

    commands:snmp-server community  

SNMP:trap messages

    messages:SNMP:traps

        trap messages;network management:SNMP:traps  2nd  



SOA (Start-of-Authority) records  

sockets

    PAT (port address translation)  

soft reconfiguration  

    BGP:soft reconfiguration

        routing policies:BGP:soft reconfiguration;peer connections:BGP:soft reconfiguration  

solicited-node addresses

    multicast addresses:solicite-node  

Source Active Request TLV format

    MDSP:messages:Source Active Request TLV format

        messages:MDSP:Source Active Request TLV format  

Source Active Response TLV format

    MDSP:messages:Source Active Response TLV format

        messages:MDSP:Source Active Response TLV format  

Source Active TLV format

    MDSP:messages:Source Active TLV format

        messages:MDSP:Source Active TLV format  

Source Address field:IPv6 header

    Destination Address field:IPv6 header  

source-based trees  

    multicast routing protocols:source-based trees  

speakers (BGP)

    router ID, configuring;  

specifications of IPv6

    IPv6:specifications

        RFCs:relating to IPv6;standards:IPv6  2nd  

specifying:management station address (SNMP)

    SNMP:management station:specifying address  

stateless autoconfiguration  

static address translation table entries (NAT)

    dynamic address translation table entries (NAT)  

static mroutes

    IP multicast:static mroutes  2nd  

static routes

    in EBGP multihop configuration  2nd  

statistics

    BGP neighbors

        displaying  

structure:IPv6 addresses

    IPv6:addresses:structure

        addresses:IPv6:structure  



structure:IPv6 addresses:aggregatable global address format

    IPv6:addresses:structure

        addresses:IPv6:structure;aggregatable global addressstructure  2nd  3rd  

        addresses:IPv6:structure;aggregatable global addressstructure;unicast 

addresses:aggregatable global   2nd  

structure:IPv6 addresses:anycast addresses

    IPv6:addresses:structure

        addresses:IPv6:structure;anycast addresses:IPv6  

structure:IPv6 addresses:local-use addresses

    IPv6:addresses:link-local addresses

        addresses:IPv6:link-local addresses;local-use addresses (IPv6):link-local 

addresses;link-local addre  

    IPv6:addresses:structure

        addresses:IPv6:structure;local-use addresses:IPv6  2nd  

structure:IPv6 addresses:multicast addresses

    IPv6:addresses:structure

        addresses:IPv6:structure;multicast addresses:IPv6  2nd  

        addresses:IPv6:structure;multicast addresses:IPv6;IP multicast:IPv6 multicast 

addresses  

structure:IPv6 addresses:required node addresses

    IPv6:addresses:structure

        addresses:IPv6:structure;required node addresses:IPv6;node addresses:IPv6  

structure:IPv6 addresses:site-local addresses

    IPv6:addresses:site-local addresses

        addresses:IPv6:site-local addresses;local-use addresses (IPv6):site-local 

addresses;site-local addre  

structure:IPv6 addresses:special-format addresses

    IPv6:addresses:structure

        addresses:IPv6:structure;special format addresses:IPv6  

Subnet-Router anycast addresses  

summarization

    route aggregation

        routing protocols:summarization  2nd  

summarization:asymmetric traffic patterns

    route aggregation:asymmetric traffic patterns  

summarization:CIDR

    route aggregation:CIDR  

summarization:precision of

    route aggregation:precision of;  

suppress limit

    BGP:suppress limit



        BGP:reuse limit;reuse limit;half-life:of route penalties;penalizing:BGP routes:half-

life  

    flapping routes  

suppressing

    BGP routes  2nd  3rd  

SWIP (Shared WHOIS Project)

    RWHOIS (Referral WHOIS)  

switched multicast traffic:controlling

    controlling:switched multicast traffic

        IP multicast:switched traffic:controlling;traffic:switched multicast:controlling  2nd  

synchronization  

synchronization:disabling

    disabling:synchronization  2nd  

synchronization:IBGP/IGP

    IBGP:synchronization with IGP

        IGP:synchronization with IBGP;BGP:IBGP/IGP synchronization  2nd  3rd  

        IGP:synchronization with IBGP;BGP:IBGP/IGP synchronization;rule of 

synchronization  2nd  

syntax

    timers egp command  
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table-map command

    commands:table-map  

tags  [See route tagging ]

Target Router field

    CBT JOIN_REQUEST messages  

Time Exceeded messages (ICMPv6)

    ICMPv6:Time Exceeded messages

        messages:ICMPv6:Time Exceeded  

timers bgp command

    commands:timers bgp  2nd  

timers egp command

    commands:timer egp  

    commands:timers egp  2nd  

timers:DVMRP:Graft Retransmission timer

    Graft Retransmission timer (DVMRP)

        DVMRP:Graft Retransmission timer;multicast routing protocols:DVMRP:Graft 

Retransmission timer  

TLAID (top-level aggregation identifiers)

    top-level aggregation identifiers (TLAID)  2nd  

TLV (Type/Length/Value) formats

    MSDP  

TLV (Type/Length/Value) formats (MSDP)

    Keepalive TLV  

    Notification TLVs  

    Source Active Request TLV  

    Source Active Response TLV  

    Source Active TLV  

Token Ring

    functional addresses  

topologies:full-mesh:MSDP

    full-mesh topologies:MSDP  2nd  

trace command

    commands:trace  

traceroute

    NAT translation  2nd  

traffic

    BGP



        inbound soft reconfiguration  

traffic:asymmetric

    asymmetric traffic  

traffic:multicast:behavior, analyzing

    analyzing:multicast traffic behavior  2nd  3rd  

traffic:SNMP:effect on network performance

    SNMP:traffic:effect on network performance  

transient addresses  2nd  

transient join state

    CBT:transient join state  

transient multicast groups

    IP multicast:transient multicast groups  

translation timeout

    NAT:translated timeout  

troubleshooting:IBGP

    IBGP:troubleshooting  

troubleshooting:static RP configuration

    RPs:static configuration:troubleshooting

        static configuration:RPs:troubleshooting  

TRPB (truncated reverse path broadcast)

    truncated reverse path broadcast (TRPB)

        multicast routing protocols:TRPB (truncated reverse path broadcast)  

tunneling:between DVMRP routers

    routers:DVMRP:tunneling  

tuples  

tutorial

    regular expressions  2nd  

Type field

    CBT messages  

    CGMP packets  

    DVRMP messages  

Type field (IGMP messages)  
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underscore (_)

    in regular expressions  

unicast routing table:example

    routing tables:unicast  

unicasting

    broadcasting  

UNIX:syslog

    syslog

        logging:syslog;performance:logging:syslog  2nd  

UNIX:syslog:configuring

    syslog:router configuration

        logging:syslog:configuring;performance:logging:syslog;configuring:syslog;routers:syslog:configuring  

2nd  

unreachable addresses

    from ISP migration  

updates

    RIPng  

USA field

    CGMP packets  
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Valid Lifetime  

Version field

    CBT messages  

    CGMP packets  

    IPv6 header  

    RIPng messages  

Vertex Type field

    Group Membership LSAs  

VLANs (virtual LANs)  

VPNs

    IPSec encryption  
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weight  [See administrative weight]

well-known path attributes  

well-known reserved multicast addresses

    IP multicast:well-known reserved addresses  

        reserved multicast addresses;multicast addresses:reserved  

wildcard multicast receiver

    devices:wildcard multiaccess receivers

        MOSPF:wildcard multicast receivers  

    devices:wildcard multicast receivers

        MOSPF:wildcard multicast receivers  
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