
www.it-ebooks.info

http://www.it-ebooks.info/

Nginx Essentials

Excel in Nginx quickly by learning to use its most
essential features in real-life applications

Valery Kholodkov

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Nginx Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1170715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-953-8

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Valery Kholodkov

Reviewers
Markus Jelsma

Jesse Estill Lawson

Daniel Parraz

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Usha Iyer

Content Development Editor
Nikhil Potdukhe

Technical Editor
Manali Gonsalves

Copy Editor
Roshni Banerjee

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Valery Kholodkov is a seasoned IT professional with a decade of experience
in creating, building, scaling, and maintaining industrial-grade web services,
web applications, and mobile application backends. Throughout his career, he
has worked for well-known brands, such as Yandex, Booking.com, and AVG. He
currently works for his own consultancy firm. Valery has a deep understanding
of technology and is able to express its essence, advantages, and risks to a layman,
which makes him an accomplished author of technology books.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Markus Jelsma is CTO and co-owner at Openindex B.V., a Dutch company
specializing in open source search and crawl solutions. As a committer and PMC
member of Apache Nutch, he's an expert in search engine technology and web
crawl solutions.

Jesse Estill Lawson is a computer scientist and social science researcher who
works in higher education. He has consulted with dozens of colleges across the
country to help them design, develop, and deploy computer information systems
on everything from Windows and Apache to Nginx and node servers, and he
centers his research on the coexistence of data science and sociology. In addition
to his technological background, Jesse holds an MA in English and is currently
working on his PhD in education. You can learn more about him on his website at
http://lawsonry.com.

Daniel Parraz is a Linux systems administrator with 15 years of experience in
high-volume e-retailer sites, large system storage, and security enterprises. He is
currently working with a managed services provider, where he is responsible for all
aspects of Unix-like systems in the organization. Daniel was also a technical editor
for Learning Nagios 4, Packt Publishing, and has co-written training material for the
IBM DS8000 storage server.

I would like to thank my family, friends, and mentors for their
constant support through the years.

www.it-ebooks.info

http://lawsonry.com
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with Nginx 1

Installing Nginx 1
Installing Nginx on Ubuntu 2

Alternatives 2
Installing Nginx on Red Hat Enterprise Linux or CentOS/Scientific Linux 3
Installing Nginx from source files 4

Downloading the Nginx source files 5
Building Nginx 6
Copying the source code configuration from prebuilt packages 7

The structure of the Nginx installation 8
The Nginx configuration folder 8
The default virtual host folder 8
The virtual hosts configuration folder 9
The log folder 9
The temporary folder 9

Configuring Nginx 9
Value types 10
Variables 10
Inclusions 12
Sections 13
The http section 13
The server section 13
The upstream section 14
The location section 14

Simple 14
Exact 15
Regular expression locations 15

The if section 15
The limit_except section 18

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Other section types 18
Configuration settings' inheritance rules 18
The First sample configuration 21
Configuration best practices 22

Summary 23
Chapter 2: Managing Nginx 25

The Nginx connection processing architecture 26
Starting and stopping Nginx 28
Control signals and their usage 30

Fast shutdown 31
Graceful shutdown 31
Reconfiguration 32
Reopening the log file 34
Nginx binary upgrade 35
Graceful worker shutdown 37
Finalizing the upgrade procedure 38
Handling difficult cases 39

Distribution-specific startup scripts 40
Allocating worker processes 40
Setting up Nginx to serve static data 42
Installing SSL certificates 44

Creating a Certificate Signing Request 44
Installing an issued SSL certificate 45
Permanently redirecting from a nonsecure virtual host 46

Managing temporary files 47
Communicating issues to developers 49

Creating a binary with debugging information 50
Summary 50

Chapter 3: Proxying and Caching 51
Nginx as a reverse proxy 51
Setting up Nginx as a reverse proxy 52

Setting the backend the right way 53
Adding transparency 54
Handling redirects 55
Handling cookies 57
Using SSL 58
Handling errors 59
Choosing an outbound IP address 60
Accelerating downloads 61

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Caching 61
Configuring caches 61
Enabling caching 63
Choosing a cache key 64
Improving cache efficiency and availability 66
Handling exceptions and borderline cases 68

Summary 70
Chapter 4: Rewrite Engine and Access Control 71

The basics of the rewrite engine 71
More about rewrite rules 74
Patterns 76
Captures and positional parameters 77
Other functionalities of the rewrite engine 77
Assigning variables 77
Evaluating predicates using if sections 78
Replying with a specified HTTP status code 79

Access control 80
Restricting access by IP address 80
Using the geo directive to restrict access by IP address 82
Using basic authentication for access restriction 85
Authenticating users with a subrequest 88
Combining multiple access restriction methods 90

Summary 91
Chapter 5: Managing Inbound and Outbound Traffic 93

Managing inbound traffic 93
Limiting the request rate 94
Limiting the number of simultaneous connections 96
Limiting the transfer rate of a connection 97
Applying multiple limitations 98

Managing outbound traffic 99
Declaring upstream servers 99
Using upstream servers 101
Choosing a request distribution strategy 103
Configuring backup servers 106
Determining whether a server is available 107
Enabling persistent connections 109
Limiting the transfer rate of an upstream connection 110

Summary 110

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 6: Performance Tuning 111
Optimizing static file retrieval 111
Enabling response compression 114
Optimizing buffer allocation 116
Enabling SSL session reuse 120
Worker processes allocation on multi-core systems 123
Summary 124

Index 125

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
2006 was an exciting year. The disappointment that surrounded the dot-com crash
had pretty much been superseded by a renewed and more confident growth of Web
2.0 and inspired a search for technologies of a new age.

At that time, I was looking for a web server to power my projects that would do
many things in a different way. After getting some experience in large-scale online
projects, I knew that the popular LAMP stack was suboptimal and sometimes did
not solve certain challenges, such as efficient uploads, geo-dependent rate limiting,
and so on.

After trying and rejecting a number of options, I came to know about Nginx and
immediately felt that my search was over. It is small yet powerful, with a clean
code base, good extensibility, relevant set of features, and a number of architectural
challenges solved. Nginx definitely stood out from the crowd!

I immediately got inspired and felt some affinity to this project. I tried participating
in the Nginx community, learned, shared my knowledge, and contributed as much
as I could.

With time, my knowledge of Nginx grew. I started to get consultancy requests and
have been capable of addressing quite sophisticated cases. After some time, I realized
that some of my knowledge might be worth sharing with everyone. That's how I
started a blog at www.nginxguts.com.

A blog turned out to be an author-driven medium. A more reader-focused and
more thorough medium was in demand, so I set aside some time to assemble my
knowledge in the more solid form of a book. That's how the book you're holding in
your hands right now came into existence.

www.it-ebooks.info

www.nginxguts.com
http://www.it-ebooks.info/

Preface

[vi]

What this book covers
Chapter 1, Getting Started with Nginx, gives you the most basic knowledge about
Nginx, including how to carry out the very basic installation and get Nginx up and
running quickly. A detailed explanation of the structure of the configuration file is
given so that you know where exactly code snippets from the rest of the book apply.

Chapter 2, Managing Nginx, explains how to manage an operating Nginx instance(s).

Chapter 3, Proxying and Caching, explains how to turn Nginx into a powerful web
proxy and cache.

Chapter 4, Rewrite Engine and Access Control, explains how to use the rewrite engine to
manipulate URLs and secure your web resources.

Chapter 5, Managing Inbound and Outbound Traffic, describes how to apply various
restrictions to inbound traffic, and how to use and manage upstream.

Chapter 6, Performance Tuning, explains how to squeeze the most out of your
Nginx server.

What you need for this book
A good knowledge of Unix-like operating systems is required, presumably Linux,
along with some web master experience.

Who this book is for
This book intends to enrich web masters' and site reliability engineers' knowledge of
subtleties known to those who have a deep understanding of the Nginx core. At the
same time, this book is a from the start guide that allows beginners to easily switch to
Nginx under experienced guidance.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, dummy
URLs, and user input, are shown as follows: "We can include other contexts through
the use of the include directive."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

A block of code is set as follows:

types {
 text/html html htm shtml;
 text/css css;
 text/xml xml;
 image/gif gif;
 image/jpeg jpeg jpg;
 application/x-javascript js;
 application/atom+xml atom;
 application/rss+xml rss;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

types {
 text/html html htm shtml;
 text/css css;
 text/xml xml;
 image/gif gif;
 image/jpeg jpeg jpg;
 application/x-javascript js;
 application/atom+xml atom;
 application/rss+xml rss;
}

Any command-line input or output is written as follows:

cp /usr/local/nginx/nginx.conf.default

 /etc/nginx/nginx.conf

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Elisions of sections of configuration files are shown as […] or with a comment
[… this part of the configuration file is up to you ...]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Getting Started with Nginx
Nginx has emerged as a robust and scalable general-purpose web server in the last
decade. It is a choice of many webmasters, startup founders, and site reliability
engineers because of its simple yet scalable and expandable architecture, easy
configuration, and light memory footprint. Nginx offers a lot of useful features,
such as on-the-fly compression and caching out of the box.

Nginx integrates with existing web technologies such as Apache web server and
PHP, and helps solving day-to-day problems in an easy way. Nginx is backed by a
large, active community as well as a consulting company funded by venture capital.
Therefore, it is actively supported.

This book will help you get started with Nginx and learn skills necessary to turn it into
a powerful tool, a workhorse that will help you to solve your day-to-day challenges.

Installing Nginx
Before you can dive into specific features of Nginx, you need to learn how to install
Nginx on your system.

It is strongly recommended that you use prebuilt binary packages of Nginx if they are
available in your distribution. This ensures best integration of Nginx with your system
and reuse of best practices incorporated into the package by the package maintainer.
Prebuilt binary packages of Nginx automatically maintain dependencies for you and
package maintainers are usually fast to include security patches, so you don't get any
complaints from security officers. In addition to that, the package usually provides a
distribution-specific startup script, which doesn't come out of the box.

Refer to your distribution package directory to find out if you have a prebuilt
package for Nginx. Prebuilt Nginx packages can also be found under the download
link on the official Nginx.org site.

www.it-ebooks.info

Nginx.org
http://www.it-ebooks.info/

Getting Started with Nginx

[2]

In this chapter, we will quickly go through most common distributions that contain
prebuilt packages for Nginx.

Installing Nginx on Ubuntu
The Ubuntu Linux distribution contains a prebuilt package for Nginx. To install it,
simply run the following command:

$ sudo apt-get install nginx

The preceding command will install all the required files on your system, including
the logrotate script and service autorun scripts. The following table describes the
Nginx installation layout that will be created after running this command as well as
the purpose of the selected files and folders:

Description Path/Folder
Nginx configuration files /etc/nginx

Main configuration file /etc/nginx/nginx.conf

Virtual hosts configuration files (including
default one)

/etc/nginx/sites-
enabled

Custom configuration files /etc/nginx/conf.d

Log files (both access and error log) /var/log/nginx

Temporary files /var/lib/nginx

Default virtual host files /usr/share/nginx/html

Default virtual host files will be placed into /usr/share/nginx/
html. Please keep in mind that this directory is only for the default
virtual host. For deploying your web application, use folders
recommended by Filesystem Hierarchy Standard (FHS).

Now you can start the Nginx service with the following command:

$ sudo service nginx start

This will start Nginx on your system.

Alternatives
The prebuilt Nginx package on Ubuntu has a number of alternatives. Each of them
allows you to fine tune the Nginx installation for your system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Installing Nginx on Red Hat Enterprise Linux
or CentOS/Scientific Linux
Nginx is not provided out of the box in Red Hat Enterprise Linux or CentOS/Scientific
Linux. Instead, we will use the Extra Packages for Enterprise Linux (EPEL) repository.
EPEL is a repository that is maintained by Red Hat Enterprise Linux maintainers, but
contains packages that are not a part of the main distribution for various reasons. You
can read more about EPEL at https://fedoraproject.org/wiki/EPEL.

To enable EPEL, you need to download and install the repository
configuration package:

• For RHEL or CentOS/SL 7, use the following link:
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/
epel-release.html

• For RHEL/CentOS/SL 6 use the following link:
http://download.fedoraproject.org/pub/epel/6/i386/repoview/
epel-release.html

• If you have a newer/older RHEL version, please take a look at the
How can I use these extra packages? section in the original EPEL wiki
at the following link:
https://fedoraproject.org/wiki/EPEL

Now that you are ready to install Nginx, use the following command:

yum install nginx

The preceding command will install all the required files on your system, including
the logrotate script and service autorun scripts. The following table describes the
Nginx installation layout that will be created after running this command and the
purpose of the selected files and folders:

Description Path/Folder
Nginx configuration files /etc/nginx
Main configuration file /etc/nginx/nginx.conf

Virtual hosts configuration files (including default one) /etc/nginx/conf.d

Custom configuration files /etc/nginx/conf.d

Log files (both access and error log) /var/log/nginx

Temporary files /var/lib/nginx

Default virtual host files /usr/share/nginx/html

www.it-ebooks.info

https://fedoraproject.org/wiki/EPEL
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
https://fedoraproject.org/wiki/EPEL
http://www.it-ebooks.info/

Getting Started with Nginx

[4]

Default virtual host files will be placed into /usr/share/nginx/
html. Please keep in mind that this directory is only for the default
virtual host. For deploying your web application, use folders
recommended by FHS.

By default, the Nginx service will not autostart on system startup, so let's enable it.
Refer to the following table for the commands corresponding to your CentOS version:

Function Cent OS 6 Cent OS 7
Enable Nginx startup at
system startup

chkconfig nginx on systemctl enable nginx

Manually start Nginx service nginx start systemctl start nginx

Manually stop Nginx service nginx stop systemctl start nginx

Installing Nginx from source files
Traditionally, Nginx is distributed in the source code. In order to install Nginx from
the source code, you need to download and compile the source files on your system.

It is not recommended that you install Nginx from the source code. Do
this only if you have a good reason, such as the following scenarios:

• You are a software developer and want to debug or extend Nginx
• You feel confident enough to maintain your own package
• A package from your distribution is not good enough for you
• You want to fine-tune your Nginx binary

In either case, if you are planning to use this way of installing for real use, be
prepared to sort out challenges such as dependency maintenance, distribution,
and application of security patches.

In this section, we will be referring to the configuration script. Configuration script
is a shell script similar to one generated by autoconf, which is required to properly
configure the Nginx source code before it can be compiled. This configuration script
has nothing to do with the Nginx configuration file that we will be discussing later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Downloading the Nginx source files
The primary source for Nginx for an English-speaking audience is Nginx.org. Open
http://nginx.org/en/download.html in your browser and choose the most recent
stable version of Nginx. Download the chosen archive into a directory of your choice
(/usr/local or /usr/src are common directories to use for compiling software):

$ wget -q http://nginx.org/download/nginx-1.7.9.tar.gz

Extract the files from the downloaded archive and change to the directory
corresponding to the chosen version of Nginx:

$ tar xf nginx-1.7.9.tar.gz

$ cd nginx-1.7.9

To configure the source code, we need to run the ./configure script included in
the archive:

$./configure

checking for OS

 + Linux 3.13.0-36-generic i686

checking for C compiler ... found

+ using GNU C compiler

[...]

This script will produce a lot of output and, if successful, will generate a Makefile
file for the source files.

Notice that we showed the non-privileged user prompt $ instead of the root # in the
previous command lines. You are encouraged to configure and compile software as
a regular user and only install as root. This will prevent a lot of problems related to
access restriction while working with the source code.

Troubleshooting
The troubleshooting step, although very simple, has a couple of common
pitfalls. The basic installation of Nginx requires the presence of OpenSSL and
Perl-compatible Regex (PCRE) developer packages in order to compile. If these
packages are not properly installed or not installed in locations where the Nginx
configuration script is able to locate them, the configuration step might fail.

Then, you have to choose between disabling the affected Nginx built-in modules
(rewrite or SSL, installing required packages properly, or pointing the Nginx
configuration script to the actual location of those packages if they are installed.

www.it-ebooks.info

Nginx.org
http://nginx.org/en/download.html
http://www.it-ebooks.info/

Getting Started with Nginx

[6]

Building Nginx
You can build the source files now using the following command:

$ make

You'll see a lot of output on compilation. If build is successful, you can install the
Nginx file on your system. Before doing that, make sure you escalate your privileges
to the super user so that the installation script can install the necessary files into
the system areas and assign necessary privileges. Once successful, run the make
install command:

make install

The preceding command will install all the necessary files on your system.
The following table lists all locations of the Nginx files that will be created after
running this command and their purposes:

Description Path/Folder
Nginx configuration files /usr/local/nginx/conf

Main configuration file /usr/local/nginx/conf/nginx.conf

Log files (both access and error log) /usr/local/nginx/logs

Temporary files /usr/local/nginx

Default virtual host files /usr/local/nginx/html

Unlike installations from prebuilt packages, installation from source
files does not harness Nginx folders for the custom configuration files
or virtual host configuration files. The main configuration file is also
very simple in its nature. You have to take care of this yourself.

Nginx must be ready to use now. To start Nginx, change your working directory
to the /usr/local/nginx directory and run the following command:

sbin/nginx

This will start Nginx on your system with the default configuration.

Troubleshooting
This stage works flawlessly most of the time. A problem can occur in the
following situations:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

• You are using nonstandard system configuration. Try to play with the
options in the configuration script in order to overcome the problem.

• You compiled in third-party modules and they are out of date or
not maintained.

Switch off third-party modules that break your build or contact the developer
for assistance.

Copying the source code configuration from
prebuilt packages
Occasionally you might want to amend Nginx binary from a prebuilt packages with
your own changes. In order to do that you need to reproduce the build tree that was
used to compile Nginx binary for the prebuilt package.

But how would you know what version of Nginx and what configuration script
options were used at the build time? Fortunately, Nginx has a solution for that.
Just run the existing Nginx binary with the -V command-line option. Nginx will
print the configure-time options. This is shown in the following:

$ /usr/sbin/nginx -V

nginx version: nginx/1.4.6 (Ubuntu)

built by gcc 4.8.2 (Ubuntu 4.8.2-19ubuntu1)

TLS SNI support enabled

configure arguments: --with-cc-opt='-g -O2 -fstack-protector --param=ssp-
buffer-size=4 -Wformat -Werror=format-security -D_FORTIFY_SOURCE=2'
--with-ld-opt='-Wl,-Bsymbolic-functions -Wl,-z,relro' …

Using the output of the preceding command, reproduce the entire build environment,
including the Nginx source tree of the corresponding version and modules that were
included into the build.

Here, the output of the Nginx -V command is trimmed for simplicity.
In reality, you will be able to see and copy the entire command line
that was passed to the configuration script at the build time.

You might even want to reproduce the version of the compiler used in order to
produce a binary-identical Nginx executable file (we will discuss this later when
discussing how to troubleshoot crashes).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[8]

Once this is done, run the ./configure script of your Nginx source tree with
options from the output of the -V option (with necessary alterations) and follow
the remaining steps of the build procedure. You will get an altered Nginx
executable on the objs/ folder of the source tree.

The structure of the Nginx installation
When Nginx is installed, we can quickly study the structure of the installation.
This will help you to know your installation better and manage it more confidently.

For each installation method, we have a set of generic locations and default paths.
Let's see what these default locations contain.

The Nginx configuration folder
This folder contains the main configuration file and a set of parameter files. The
following table describes the purpose of each of the default parameter files:

File name Description
mime.types This contains the default MIME type map for converting

file extensions into MIME types.
fastcgi_params This contains the default FastCGI parameters required for

FastCGI to function.
scgi_params This contains the default SCGI parameters required for

SCGI to function.
uwsgi_params This contains the default UWCGI parameters required for

UWCGI to function.
proxy_params This contains the default proxy module parameters. This

parameter set is required for certain web servers when
they are behind Nginx, so that they can figure out they are
behind a proxy.

naxsi.rules (optional) This is the main rule set for the NAXSI web application
firewall module.

koi-utf, koi-win, and
win-utf

These are the Cyrillic character set conversion tables.

The default virtual host folder
The default configuration contains references to this site as root. It is not
recommended that you use this directory for real sites, as it is not a good practice
for the Nginx folders hierarchy to contain the site hierarchy. Use this directory for
testing purposes or for serving auxiliary files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The virtual hosts configuration folder
This is the location of virtual host configuration files. The recommended structure of
this folder is to have one file per virtual host in this folder or one folder per virtual
host, containing all files related to this virtual host. In this way, you will always
know which files were used and which are now being used, and what each of the
files contain and which files can be purged.

The log folder
This is the location for Nginx log files. The default access log file and error log file will
be written to this location. For installation from source files, it is not recommended that
you use the default location /usr/local/nginx/logs for real sites. Instead, make sure
all your log files are stored in the system log file location, such as /var/log/nginx, to
provide better overview and management of your log files.

The temporary folder
Nginx uses temporary files for receiving large request bodies, and proxies large files
from upstream. Files that are created for this purpose can be found in this folder.

Configuring Nginx
Now that you know how to install Nginx and the structure of its installation, we
can study how to configure Nginx. Simplicity of configuration is one of the reasons
Nginx is popular among webmasters, because this saves them a lot of time.

In a nutshell, Nginx configuration files are simply sequences of directives that can
take up to eight space-separated arguments, for example:

gzip_types text/plain text/css application/x-javascript text/xml
application/xml application/xml+rss text/javascript;

In the configuration file, the directives are delimited by a semicolon (;) from one
another. Some of the directives may have a block instead of a semicolon. A block is
delimited by curly brackets ({}). A block can contain arbitrary text data, for example:

types {
 text/html html htm shtml;
 text/css css;
 text/xml xml;
 image/gif gif;

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[10]

 image/jpeg jpeg jpg;
 application/x-javascript js;
 application/atom+xml atom;
 application/rss+xml rss;
}

A block can also contain a list of other directives. In this case, the block is called a
section. A section can enclose other sections, thus establishing a hierarchy of sections.

Most important directives have short names; this reduces the effort required to
maintain the configuration file.

Value types
In general, a directive can have arbitrary quoted or unquoted strings as arguments.
But many directives have arguments that have common value types. To help you
quickly get your head around the value types I listed them in the following table:

Value type Format Example of a value
Flag [on|off] on, off
Signed integer -?[0-9]+ 1024

Size [0-9]+([mM]|[kK])? 23M, 12348k
Offset [0-9]+([mM]|[kK]|[gG])? 43G, 256M
Milliseconds [0-9]+[yMwdhms]? 30s, 60m

Variables
Variables are named objects that can be assigned a textual value. Variables can only
appear inside the http section. A variable is referred to by its name, prefixed by the
dollar ($) symbol. Alternatively, a variable reference can enclose a variable name in
curly brackets to prevent merging with surrounding text.

Variables can be used in any directive that accepts them, as shown here:

proxy_set_header Host $http_host;

This directive sets the HTTP header host in a forwarded request to HTTP host
name from the original request. This is equivalent to the following:

proxy_set_header Host ${http_host};

With the following syntax, you can specify the host name:

proxy_set_header Host ${http_host}_squirrel;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

The preceding command will append a string _squirrel to the value of the
original host name. Without curly brackets, the string _squirrel would have
been interpreted as a part of the variable name, and the reference would have
pointed to a variable "http_host_squirrel" rather than http_host.

There are also special variable names:

• Variables from $1 to $9 refer to the capture arguments in the regular
expressions, as shown here:
 location ~ /(.+)\.php$ {
 [...]
 proxy_set_header X-Script-Name $1;
 }

The preceding configuration will set the HTTP header X-Script-Name in
the forwarded request to the name of the PHP script in the request URI.
The captures are specified in a regular expression using round brackets.

• Variables that start with $arg_ refer to the corresponding query argument
in the original HTTP request, as shown here:
 proxy_set_header X-Version-Name $arg_ver;

The preceding configuration will set the HTTP header X-Version-Name
in the forwarded request to the value of the ver query argument in the
original request.

• Variables that start with $http_ refer to the corresponding HTTP header
line in the original request.

• Variables that start with $sent_http_ refer to the corresponding HTTP
header line in the outbound HTTP request.

• Variables that start with $upstream_http_ refer to the corresponding
HTTP header line in the response received from an upstream.

• Variables that start with $cookie_ refer to the corresponding cookie
in the original request.

• Variables that start with $upstream_cookie_ refer to the corresponding
cookie in the response received from an upstream.

Variables must be declared by Nginx modules before they can be used in the
configuration. Built-in Nginx modules provide a set of core variables that allow
you to operate with the data from HTTP requests and responses. Refer to the
Nginx documentation for the complete list of core variables and their functions.

Third-party modules can provide extra variables. These variables have to be
described in the third-party module's documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[12]

Inclusions
Any Nginx configuration section can contain inclusions of other files via the include
directive. This directive takes a single argument containing a path to a file to be
included, as shown here:

/*
 * A simple relative inclusion. The target file's path
 * is relative to the location of the current configuration file.
 */
include mime.types;

/*
 * A simple inclusion using an absolute path.
 */
include /etc/nginx/conf/site-defaults.conf;

Once specified, the include directive instructs Nginx to process the contents of the
file or files specified by the argument of this directive as if they were specified in
place of the include directive.

Relative paths are resolved with respect to the path of the
configuration file the directive is specified in. This is good
to keep in mind when the include directive is specified
in another included file, such as when a virtual host
configuration file contains a relative include directive.

The include directive can also contain a globbed path with wild cards, either
relative or absolute. In this case, the globbed path is expanded and all files
matching the specified pattern are included in no particular order. Take a look
at the following code:

/*
 * A simple glob inclusion. This will include all files
 * ending on ".conf" located in /etc/nginx/sites-enabled
 */
include /etc/nginx/sites-enabled/*.conf;

The include directive with wild cards is an obvious solution for including site
configurations, as their number can vary greatly. Using the include directive, you
can properly structure the configuration file or reuse certain parts multiple times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Sections
A section is a directive that encloses other directives in its block. Each section's
delimiters must be located in the same file, while the content of a section can
span multiple files via the include directive.

It is not possible to describe every possible configuration directive in this chapter.
Refer to the Nginx documentation for more information. However, I will quickly
go over the Nginx configuration section types so that you can orient in the structure
of the Nginx configuration files.

The http section
The http section enables and configures the HTTP service in Nginx. It has the server
and upstream declarations. As far as individual directives are concerned, the http
section usually contains those that specify defaults for the entire HTTP service.

The http section must contain at least one server section in order to process
HTTP requests. Here is a typical layout of the http section:

 http {
 [...]
 server {
 [...]
 }
 }

Here and in other examples of this book, we use […] to refer to omitted irrelevant
parts of the configuration.

The server section
The server section configures an HTTP or HTTPS virtual host and specifies listening
addresses for them using the listen directive. At the end of the configuration stage,
all listening addresses are grouped together and all listening addresses are activated
at startup.

The server section contains the location sections, as well as sections that can be
enclosed by the location section (see description of other sections types for details).
Directives that are specified in the server section itself go into the so-called default
location. In that regard, the server section serves the purpose of the location
section itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[14]

When a request comes in via one of the listening addresses, it is routed to the
server sections that match a virtual host pattern specified by the server_name
directive. The request is then routed further to the location that matches the path
of the request URI or processed by the default location if there is no match.

The upstream section
The upstream section configures a logical server that Nginx can pass requests to for
further processing. This logical server can be configured to be backed by one or more
physical servers external to Nginx with concrete domain names or IP addresses.

Upstream can be referred to by name from any place in the configuration file where
a reference to a physical server can take place. In this way, your configuration can be
made independent of the underlying structure of the upstream, while the upstream
structure can be changed without changing your configuration.

The location section
The location section is one of the workhorses in Nginx. The location directive
takes parameters that specify a pattern that is matched against the path of the
request URI. When a request is routed to a location, Nginx activates configuration
that is enclosed by that location section.

There are three types of location patterns: simple, exact, and regular expression
location patterns.

Simple
A simple location has a string as the first argument. When this string matches the
initial part of the request URI, the request is routed to that location. Here is an
example of a simple location:

 location /images {
 root /usr/local/html/images;
 }

Any request with a URI that starts with /images, such as /images/powerlogo.png,
/images/calendar.png, or /images/social/github-icon.png will be routed to
this location. A URI with a path that equals to /images will be routed to this location
as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Exact
Exact locations are designated with an equals (=) character as the first argument and
have a string as the second argument, just like simple locations do. Essentially, exact
locations work just like simple locations, except that the path in the request URI has
to match the second argument of the location directive exactly in order to be routed
to that location:

 location = /images/empty.gif {
 emptygif;
 }

The preceding configuration will return an empty GIF file if and only if the
URI /images/empty.gif is requested.

Regular expression locations
Regular expression locations are designated with a tilde (~) character or ~*
(for case-insensitive matches) as the first argument and have a regular expression
as the second argument. Regular expression locations are processed after both simple
and exact locations. The path in the request URI has to match the regular expression
in the second argument of the location directive in order to be routed to that
location. A typical example is as follows:

 location ~ \.php$ {
 [...]
 }

According to the preceding configuration, requests with URIs that end with .php
will be routed to this location.

The location sections can be nested. For that, you just need to specify a location
section inside another location section.

The if section
The if section encloses a configuration that becomes active once a condition
specified by the if directive is satisfied. The if section can be enclosed by the
server and location sections, and is only available if the rewrite module
is present.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[16]

A condition of an if directive is specified in round brackets and can take the
following forms:

• A plain variable, as shown here:
if ($file_present) {
 limit_rate 256k;
}

If the variable evaluates to true value in runtime, the configuration
section activates.

• A unary expression that consists of an operator and a string with variables,
as shown here:
if (-d "${path}") {
 try_files "${path}/default.png" "${path}/default.jpg";
}

The following unary operators are supported:

Operator Description Operator Description
-f True if specified file exists !-f True if specified file does not

exist
-d True if specified directory

exists
!-d True if specified directory does

not exist
-e True if specified file exists

and is a symbolic link
!-e True if specified file does not

exist or is not a symbolic link
-x True if specified file exists

and is executable
!-x True if specified file does not

exist or is not executable

• A binary expression that consists of a variable name, an operator, and a
string with variables. The following binary operators are supported:

Operator Description Operator Description
= True if a variable matches a

string
!= True if a variable does not

match a string
~ True if a regular expression

matches the value of a
variable

!~ True if a regular expression
does not match the value of a
variable

~* True if a case-insensitive
regular expression matches
the value of a variable

!~* True if a case-insensitive
regular expression does not
match the value of a variable

Let's discuss some examples of the if directive.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

This one adds a prefix /msie/ to the URL of any request that contains MSIE in the
user-agent field:

if ($http_user_agent ~ MSIE) {
 rewrite ^(.*)$ /msie/$1 break;
}

The next example sets the variable $id to the value of the cookie named id,
if it is present:

if ($http_cookie ~* "id=([^;]+)(?:;|$)") {
 set $id $1;
}

The next one returns HTTP status 405 ("Method Not Allowed") for every request
with the method POST:

if ($request_method = POST) {
 return 405;
}

Finally, the configuration in the following example limits the rate to 10 KB whenever
the variable $slow evaluates to true:

if ($slow) {
 limit_rate 10k;
}

The if directive seems like a powerful instrument, but it must be used with caution.
This is because the configuration inside the if section is not imperative, that is, it
does not alter the request processing flow according to the order of the if directives.

Because of the nonintuitive behavior of the if directive, its use
is discouraged.

Conditions are not evaluated in the order they are specified in the configuration file.
They are merely applied simultaneously and configuration settings from the sections
for which conditions were satisfied are merged together and applied at once.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[18]

The limit_except section
The limit_except section activates the configuration that it encloses if the request
method does not match any from the list of methods specified by this directive.
Specifying the GET method in the list of methods automatically assumes the HEAD
method. This section can only appear inside the location section, as shown here:

limit_except GET {
 return 405;
}

The preceding configuration will respond with HTTP status 405 ("Method Not
Allowed") for every request that is not made using the GET or HEAD method.

Other section types
Nginx configuration can contain other section types, such as main and server in the
main section, as well as section types provided by third-party modules. In this book,
we will not pay close attention to them.

Refer to the documentation of the corresponding modules for information about
these types of configuration sections.

Configuration settings' inheritance rules
Many Nginx configuration settings can be inherited from a section of outer level
to a section of inner level. This saves a lot of time when you configure Nginx.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

The following figure illustrates how inheritance rules work:

All settings can be attributed to three categories:

• Those that make sense only in the entire HTTP service (marked red)
• Those that make sense in the virtual host configuration (marked blue)
• Those that make sense on all levels of configuration (marked green)

The settings from the first category do not have any inheritance rules, because they
cannot inherit values from anywhere. They can be specified in the http section only
and can be applied to the entire HTTP service. These are settings set by directives,
such as variables_hash_max_size, variables_hash_bucket_size, server_names_
hash_max_size, and server_names_hash_bucket_size.

The settings from the second category can inherit values only from the http section.
They can be specified both in the http and server sections, but the settings applied
to a given virtual host are determined by inheritance rules. These are settings set by
directives, such as client_header_timeout, client_header_buffer_size, and
large_client_header_buffers.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[20]

Finally, the settings from the third category can inherit values from any section up to
http. They can be specified in any section inside the HTTP service configuration, and
the settings applied to a given context are determined by inheritance rules.

The arrows on the figure illustrate value propagation paths. The colors of the arrows
specify the scope of the setting. The propagation rules along a path are as follows:

When you specify a value for a parameter at a certain level of the configuration,
it overrides the value of the same parameter at the outer levels if it is set, and
automatically propagates to the inner levels of the configuration. Let's take a
look at the following example:

location / {
 # The outer section
 root /var/www/example.com;
 gzip on;

 location ~ \.js$ {
 # Inner section 1
 gzip off;

 }
 location ~ \.css$ {
 # Inner section 2
 }
 [...]
}

The value of the root directive will propagate to the inner sections, so there is no
need to specify it again. The value of the gzip directive in the outer section will
propagate to the inner sections, but will be overridden by the value of the gzip
directive inside the first inner section. The overall effect of that will be that gzip
compression will be enabled everywhere in the other section, except for the first
inner section.

When a value for some parameter is not specified in a given configuration section,
it is inherited from a section that encloses the current configuration section. If the
enclosing section does not have this parameter set, the search goes to the outer level
and so on. If a value for a certain parameter is not specified at all, a built-in default
value is used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

The First sample configuration
By this point in the chapter, you might have accumulated a lot of knowledge without
having an idea of what a complete working configuration looks like. We will study
a short but functioning configuration that will give you an idea of what a complete
configuration file might look like:

error_log logs/error.log;

events {
 use epoll;
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;

 server {
 listen 80;
 server_name example.org www.example.org;

 location / {
 proxy_pass http://localhost:8080;
 include proxy_params;
 }

 location ~ ^(/images|/js|/css) {
 root html;
 expires 30d;
 }
 }
}

This configuration first instructs Nginx to write the error log to logs/error.log.
Then, it sets up Nginx to use the epoll event processing method (use epoll) and
allocates memory for 1024 connections per worker (worker_connections 1024).
After that, it enables the HTTP service and configures certain default settings for the
HTTP service (include mime.types, default_type application/octet-stream).
It creates a virtual host and sets its names to example.org and www.example.org
(server_name example.org www.example.org). The virtual host is made available
at the default listening address 0.0.0.0 and port 80 (listen 80).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Nginx

[22]

We then configure two locations. The first location passes every request routed to
it into a web application server running at http://localhost:8080 (proxy_pass
http://localhost:8080). The second location is a regular expression location. By
specifying it we effectively exclude a set of paths from the first location. We use this
location to return static data such as images, JavaScript files, and CSS files. We set the
base directory for our media files as html (root html). For all media files, we set the
expiration date as 30 days (expires 30d).

To try out this configuration, back up your default configuration file and replace
the content of the default configuration file with the preceding configuration.

Then, restart Nginx for the settings to take effect. After this is done, you can
navigate to the URL http://localhost/ to check out your new configuration.

Configuration best practices
Now that you know more about the elements and structure of the Nginx configuration
file, you might be curious about what best practices exist in this area. Here is a list of
recommendations that will help you to maintain your configuration more efficiently
and make it more robust and manageable:

• Structure your configuration well. Observe which common parts of the
configuration are used more often, move them to separate files, and reuse
them using the include directive. In addition to that, try to make each file
in your configuration file hierarchy of a reasonable length, ideally no more
than two screens. This will help you to read your files quicker and navigate
over them efficiently.

It is important to know exactly how your configuration
works to successfully manage it. If the configuration doesn't
work the way you expect, you might run into issues due to
wrong settings being applied, for example, unavailability of
arbitrary URIs, unexpected outages, and security loopholes.

• Minimize use of the if directive. The if directive has a nonintuitive behavior.
Try to avoid using it whenever possible to make sure configuration settings are
applied to the incoming requests as you expect.

• Use good defaults. Experiment with inheritance rules and try to come up
with defaults for your settings so that they result in the least number of
directives to be configured. This includes moving common settings from
location to the server level and further to the HTTP level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Summary
In this chapter, you learned how to install Nginx from a number of available
sources, the structure of Nginx installation and the purpose of various files, the
elements and structure of the Nginx configuration file, and how to create a minimal
working Nginx configuration file. You also learned about some best practices for
Nginx configuration.

In the next chapter, you will learn how to put Nginx into operation and how to
manage it in action.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[25]

Managing Nginx
In a web server running at full scale, thousands of events are occurring each second.
Micromanaging these events is obviously not possible, yet even small glitches are
able to cause serious deterioration of quality of service and affect user experience.

To prevent theses glitches from happening, a dedicated webmaster or site reliability
engineer must be able to understand and properly manage the processes behind
the scenes.

In this chapter, you will learn how to manage an Nginx instance in operation,
and we will discuss the following topics:

• Starting and stopping Nginx
• Reloading and reconfiguring processes
• Allocating worker processes
• Other management questions

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[26]

The Nginx connection processing
architecture
Before you study the management procedures of Nginx, you need to get some
idea of how Nginx processes connections. In the full-scale mode, a single Nginx
instance consists of the master process and worker processes, as shown in the
following figure:

The master process spawns worker processes and controls them by sending and
forwarding signals and listening for quit notifications from them. Worker processes
wait on listening sockets and accept incoming connections. The operating system
distributes incoming connections among worker processes in a round-robin fashion.

The master process is responsible for all startup, shutdown, and maintenance tasks
such as the following:

• Reading and re-reading configuration files
• Opening and reopening log files
• Creating listening sockets
• Starting and restarting worker processes
• Forwarding signals to the worker processes
• Starting a new binary

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

The master process thus ensures continuous operation of an Nginx instance
in the face of various changes in the environment and occasional crashes of
worker processes.

Worker processes are responsible for serving connections and accepting new ones.
Worker processes can run certain maintenance tasks as well. For instance, they
reopen log files on their own after the master process has ensured that this operation
is safe. Each worker process handles multiple connections. This is achieved by
running an event loop that pulls events that occurred on open sockets from the
operating system via a special system call, and quickly processing all pulled events
by reading from and writing to active sockets. Resources required to maintain a
connection are allocated when a worker process starts. The maximum number of
connections that a worker process can handle simultaneously is configured by the
worker_connections directive and defaults to 512.

In a clustered setup, a special routing device such as a load balancer or another
Nginx instance is used to balance incoming connections among a set of identical
Nginx instances, each of them consisting of a master process and a collection of
worker processes. This is shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[28]

In this setup, the load balancer routes connections only to those instances that are
listening for incoming connections. The load balancer ensures that each of the active
instances gets an approximately equal amount of traffic, and routes traffic away from
an instance if it shows any connectivity problems.

Because of the difference in the architecture, the management procedures for
a clustered setup are slightly different than for a standalone instance. We will
discuss these differences soon.

Starting and stopping Nginx
In the previous chapter, you learned a bit about how to start your Nginx instance.
On Ubuntu, Debian, or Redhat-like systems you can run the following command:

service nginx start

In the absence of startup scripts, you can simply run the binary using the
following command:

sbin/nginx

Nginx will read and parse the configuration file, create a PID file (a file containing
its process ID), open log files, create listening sockets, and start worker processes.
Once worker processes have started, a Nginx instance is able to respond to incoming
connections. This is what a running Nginx instance looks like in the process list:

ps -C nginx -f

UID PID PPID C STIME TTY TIME CMD

root 2324 1 0 15:30 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 2325 2324 0 15:30 ? 00:00:00 nginx: worker process

www-data 2326 2324 0 15:30 ? 00:00:00 nginx: worker process

www-data 2327 2324 0 15:30 ? 00:00:00 nginx: worker process

www-data 2328 2324 0 15:30 ? 00:00:00 nginx: worker process

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Every Nginx process sets its process title such that it conveniently reflects the role
of the process. Here, for example, you see the master process of the instance with
process ID 2324 and four worker processes with process IDs 2325, 2326, 2327, and
2328. Note how the parent process ID (PPID) column points at the master process.
We will refer to the ID of the master process further in this section.

If you can't find your instance in the process list or you see an error message on the
console upon startup, something is preventing Nginx from starting. The following
table lists potential issues and their solutions:

Message Issue Resolution
[emerg] bind() to
x.x.x.x:x failed (98:
Address already in
use)

Conflicting listening
endpoint

Make sure endpoints
specified by the listen
directive do not conflict with
other services

[emerg] open() "<path
to file>" failed
(2: No such file or
directory)

Invalid path to a file Make sure all paths in
your configuration point to
existing directories

[emerg] open() "<path
to file>" failed (13:
Permission denied)

Insufficient privileges Make sure all paths in
your configuration point to
directories that Nginx has
access to

To stop Nginx, you can run the following command if a startup script is available:

service nginx stop

Alternatively, you can send the TERM or INT signal to the master process of your
instance to trigger a fast shutdown or the QUIT signal to trigger a graceful shutdown,
as shown here:

kill -QUIT 2324

The preceding command will trigger the graceful shutdown procedure on the
instance and all processes will eventually quit. Here, we refer to the process ID
of the master process from the preceding process list.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[30]

Control signals and their usage
Nginx, like any other Unix background service, is controlled by signals. Signals
are asynchronous events that interrupt normal execution of a process and activate
certain functions. The following table lists all signals that Nginx supports and the
functions that they trigger:

Signal Function
TERM, INT Fast shutdown
QUIT Graceful shutdown
HUP Reconfiguration
USR1 Log file reopening
USR2 Nginx binary upgrade
WINCH Graceful worker shutdown

All signals must be sent to the master process of an instance. The master process of
an instance can be located by looking it up in the process list:

ps -C nginx -f

UID PID PPID C STIME TTY TIME CMD

root 4754 3201 0 11:10 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 4755 4754 0 11:10 ? 00:00:00 nginx: worker process

www-data 4756 4754 0 11:10 ? 00:00:00 nginx: worker process

www-data 4757 4754 0 11:10 ? 00:00:00 nginx: worker process

www-data 4758 4754 0 11:10 ? 00:00:00 nginx: worker process

In this listing, the master process has a process ID 4754 and four worker processes.
The process ID of the master process can be also obtained by examining the content
of the PID file:

cat /var/run/nginx.pid

4754

Note: The path of nginx.pid might vary in different systems.
You can use the /usr/sbin/nginx -V command to find out
the exact path.

To send a signal to an instance, use the kill command and specify the process ID of
the master process as the last argument:

kill -HUP 4754

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Alternatively, you can use command substitution to take the process ID of the master
process directly from the PID file:

kill -HUP `cat /var/run/nginx.pid`

You can also use the following command:

kill - HUP $(cat /var/run/nginx.pid)

The preceding three commands will trigger reconfiguration of the instance. We will
now discuss each of the functions that signals trigger in Nginx.

Fast shutdown
The TERM and INT signals are sent to the master process of an Nginx instance to
trigger the fast shutdown procedure. All resources such as connections, open files
and log files that each worker process is in possession of are immediately closed.
After that, each worker process quits and the master process gets notified. Once all
worker processes quit, the master process quits and shutdown is completed.

A fast shutdown obviously causes visible service outage. Therefore, it must be used
either in emergency situations or when you are absolutely sure that nobody is using
your instance.

Graceful shutdown
Once Nginx receives the QUIT signal, it enters graceful shutdown mode. Nginx closes
listening sockets and accepts no new connections from then on. Existing connections
are still served until no longer needed. Therefore, graceful shutdown might take a
long time to complete, especially if some of the connections are in the middle of a
long download or upload.

After you have signaled graceful shutdown to Nginx, you can monitor your process
list to see which Nginx worker processes are still running and keep track of the
progress of your shutdown procedure:

ps -C nginx -f
UID PID PPID C STIME TTY TIME CMD
root 5813 3201 0 12:07 ? 00:00:00 nginx: master process /
usr/sbin/nginx
www-data 5814 5813 11 12:07 ? 00:00:01 nginx: worker process is
shutting down

In this listing, you can see an instance after a graceful shutdown has been triggered.
A single worker process has an is shutting down label and its process title is
marking a process that is currently shutting down.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[32]

Once all connections handled by a worker are closed, the worker process quits and
the master process gets notified. Once all worker processes quit, the master process
quits and shutdown is completed.

In a clustered or load-balanced setup, graceful shutdown is a typical way of putting
an instance out of operation. Using graceful shutdown ensures that there are no
visible outages of your service due to server reconfiguration or maintenance.

In a single instance, graceful shutdown can only make sure that existing
connections are not closed abruptly. Once graceful shutdown is triggered on
a single instance, the service will immediately be unavailable for new visitors.
To ensure continuous availability on a single instance, use maintenance procedures
such as reconfiguration, log file reopening, and Nginx binary update.

Reconfiguration
The HUP signal can be used to signal Nginx to reread the configuration files and
restart worker processes. This procedure cannot be performed without restarting
worker processes, as configuration data structures cannot be changed while a worker
process is running.

Once the master process receives the HUP signals, it tries to reread the configuration
files. If the configuration files can be parsed and contain no errors, the master process
signals all the existing worker process to gracefully shut down. After signaling,
it starts new worker processes with the new configuration.

As with graceful shutdown, the reconfiguration procedure might take a long time
to complete. After you have signaled the reconfiguration to Nginx, you can monitor
your process list to see which old Nginx worker processes are still running and keep
track of the progress of your reconfiguration.

If another reconfiguration is triggered during a running
reconfiguration procedure, Nginx will start a new collection of
worker processes—even though worker processes from the past
two rounds have not finished. This, in principle, might lead to
excessive process table usage, so it's recommended that you wait
until the current reconfiguration procedure is finished before
starting a new one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Here is an example of a reconfiguration procedure:

ps -C nginx -f

UID PID PPID C STIME TTY TIME CMD

root 5887 3201 0 12:14 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 5888 5887 0 12:14 ? 00:00:00 nginx: worker process

www-data 5889 5887 0 12:14 ? 00:00:00 nginx: worker process

www-data 5890 5887 0 12:14 ? 00:00:00 nginx: worker process

www-data 5891 5887 0 12:14 ? 00:00:00 nginx: worker process

This listing shows an operating Nginx instance. The master process has a process ID
of 5887. Let's send an HUP signal to the master process of the instance:

kill -HUP 5887

The instance will change in the following way:

ps -C nginx -f

UID PID PPID C STIME TTY TIME CMD

root 5887 3201 0 12:14 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 5888 5887 5 12:14 ? 00:00:07 nginx: worker process is
shutting down

www-data 5889 5887 0 12:14 ? 00:00:01 nginx: worker process is
shutting down

www-data 5890 5887 0 12:14 ? 00:00:00 nginx: worker process is
shutting down

www-data 5891 5887 0 12:14 ? 00:00:00 nginx: worker process is
shutting down

www-data 5918 5887 0 12:16 ? 00:00:00 nginx: worker process

www-data 5919 5887 0 12:16 ? 00:00:00 nginx: worker process

www-data 5920 5887 0 12:16 ? 00:00:00 nginx: worker process

www-data 5921 5887 0 12:16 ? 00:00:00 nginx: worker process

As you can see, the old worker processes with process IDs 5888, 5889, 5890, and
5891 are currently shutting down. The master process has re-read the configuration
files and spawned a new collection of worker processes with process IDs 5918, 5919,
5920, and 5921.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[34]

After a while, old worker processes will terminate and the instance will look like it
did before:

ps -C nginx -f

UID PID PPID C STIME TTY TIME CMD

root 5887 3201 0 12:14 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 5918 5887 1 12:16 ? 00:00:01 nginx: worker process

www-data 5919 5887 3 12:16 ? 00:00:02 nginx: worker process

www-data 5920 5887 6 12:16 ? 00:00:03 nginx: worker process

www-data 5921 5887 3 12:16 ? 00:00:02 nginx: worker process

The new worker processes have picked up the new configuration now.

Reopening the log file
Reopening the log file is simple yet extremely important for the continuous operation
of your server. When log file reopening is triggered with the USR1 signal, the master
process of an instance takes the list of configured log files and opens each of them. If
successful, it closes the old log files and signals worker processes to reopen the log
files. Worker processes can now safely repeat the same procedure, and after that the
log output is redirected to the new files. After that, worker processes close all old log
file descriptors that they currently hold open.

The paths to log files do not change during this procedure. Nginx
expects that the old log files are renamed before triggering this
function. That's why while opening log files with same paths,
Nginx effectively creates or opens new files.

The steps of the log file reopening procedure are as follows:

1. Log files are renamed or moved to new locations via an external tool.
2. You send Nginx the USR1 signal. Nginx closes the old files and opens

new ones.
3. Old files are now closed and can be archived.
4. New files are now active and being used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

A typical tool for managing Nginx log files is logrotate. The logrotate tool is a
quite common tool that can be found in many Linux distributions. Here is an
example configuration file for logrotate that automatically performs the log file
rotation procedure:

/var/log/nginx/*.log {
 daily
 missingok
 rotate 7
 compress
 delaycompress
 notifempty
 create 640 nginx adm
 sharedscripts
 postrotate
 [-f /var/run/nginx.pid] && kill -USR1 `cat
/var/run/nginx.pid`
 endscript
}

The preceding script daily rotates each log file it can find in the /var/log/nginx
folder. The log files are kept until seven files have accumulated. The delaycompress
options specify that the log files should not be compressed immediately after rotation
to avoid a situation where Nginx keeps writing to a file being compressed.

Problems in log file rotation procedure can lead to losses of data. Here is a checklist
that will help you to configure your log file rotation procedure correctly:

• Make sure the USR1 signal is delivered only after log files are moved. Failure
to do so will make Nginx write to rotated files instead of new ones.

• Make sure Nginx has enough rights to create files in the log folder. If Nginx
is not able to open new log files, the rotation procedure will fail.

Nginx binary upgrade
Nginx is capable of updating its own binary while operating. This is done by
passing listening sockets to a new binary and listing to them in a special
environment variable.

This function can be used to safely upgrade your binary on-the-fly to a new version
or try out new features if you use a custom binary with plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[36]

With other web servers, this operation would require
stopping your server completely and starting it again with
a new binary. Your service would be unavailable for a brief
period. The Nginx binary upgrade function is used to avoid
interruption of your service and provides a fall-back option
if something goes wrong with the new binary.

To upgrade you binary, first make sure it has the same source code configuration
as the old binary. Refer to the Copying source code configuration from pre-built packages
section in Chapter 1, Getting Started with Nginx, to learn how to build a binary with
source code configuration from another binary.

When the new binary is built, rename the old one and put the new binary into
its place:

mv /usr/sbin/nginx /usr/sbin/nginx.old

mv objs/nginx /usr/sbin/nginx

The preceding sequence assumes your current working directory contains a Nginx
source code tree.

Next, send the USR2 signal to the master process of the running instance:

kill -USR2 12995

The master process will rename its PID file by adding an .oldbin suffix and start the
new binary that will create a new master process. The new master process will read
and parse the configuration and spawn new worker processes. The instance now
looks like this:

UID PID PPID C STIME TTY TIME CMD

root 12995 1 0 13:28 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 12996 12995 0 13:28 ? 00:00:00 nginx: worker process

www-data 12997 12995 0 13:28 ? 00:00:00 nginx: worker process

www-data 12998 12995 0 13:28 ? 00:00:00 nginx: worker process

www-data 12999 12995 0 13:28 ? 00:00:00 nginx: worker process

root 13119 12995 0 13:30 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 13120 13119 2 13:30 ? 00:00:00 nginx: worker process

www-data 13121 13119 0 13:30 ? 00:00:00 nginx: worker process

www-data 13122 13119 0 13:30 ? 00:00:00 nginx: worker process

www-data 13123 13119 0 13:30 ? 00:00:00 nginx: worker process

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

In the preceding code, we can see two master processes: one for the old binary
(12995) and one for the new binary (13119). The new master process inherits the
listening sockets from the old master process, and workers of both instances accept
incoming connections.

Graceful worker shutdown
In order to fully test-drive the new binary, we need to ask the old master process to
gracefully shut down its worker processes. Once the new binary has started and the
working processes of the new binary are running, send the master process of the old
instance the WINCH signal using the following command:

kill -WINCH 12995

Then, connections will be accepted only by workers of the new instance. The worker
processes of the old instance will gracefully shut down:

UID PID PPID C STIME TTY TIME CMD

root 12995 1 0 13:28 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 12996 12995 2 13:28 ? 00:00:17 nginx: worker process is
shutting down

www-data 12998 12995 1 13:28 ? 00:00:13 nginx: worker process is
shutting down

www-data 12999 12995 2 13:28 ? 00:00:18 nginx: worker process is
shutting down

root 13119 12995 0 13:30 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 13120 13119 2 13:30 ? 00:00:18 nginx: worker process

www-data 13121 13119 2 13:30 ? 00:00:16 nginx: worker process

www-data 13122 13119 2 13:30 ? 00:00:12 nginx: worker process

www-data 13123 13119 2 13:30 ? 00:00:15 nginx: worker process

Finally, the worker processes of the old binary will quit and only the worker
processes of the new binary will remain:

UID PID PPID C STIME TTY TIME CMD

root 12995 1 0 13:28 ? 00:00:00 nginx: master process /
usr/sbin/nginx

root 13119 12995 0 13:30 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 13120 13119 3 13:30 ? 00:00:20 nginx: worker process

www-data 13121 13119 3 13:30 ? 00:00:20 nginx: worker process

www-data 13122 13119 2 13:30 ? 00:00:16 nginx: worker process

www-data 13123 13119 2 13:30 ? 00:00:17 nginx: worker process

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[38]

Now, only the worker processes of the new binary are accepting and processing
incoming connections.

Finalizing the upgrade procedure
Once only the workers of the new binary are running, you have two choices.

If the new binary is working well, the old master process can be terminated by
sending the QUIT signal:

kill -QUIT 12995

The old master process will remove its PID file and the instance is now ready for the
next upgrade. Later, if you find any issues with the new binary, you can downgrade
to the old binary by repeating the whole binary upgrade procedure.

If the new binary is not working properly, you can restart the worker processes of
the old master process by sending the HUP signal:

kill -HUP 12995

The old master process will restart its working processes without re-reading the
configuration files, and workers of both old and new binaries will now accept
incoming connections:

ps -C nginx -f

UID PID PPID C STIME TTY TIME CMD

root 12995 1 0 13:28 ? 00:00:00 nginx: master process /
usr/sbin/nginx

root 13119 12995 0 13:30 ? 00:00:00 nginx: master process /
usr/sbin/nginx

www-data 13120 13119 4 13:30 ? 00:01:25 nginx: worker process

www-data 13121 13119 4 13:30 ? 00:01:29 nginx: worker process

www-data 13122 13119 4 13:30 ? 00:01:21 nginx: worker process

www-data 13123 13119 4 13:30 ? 00:01:27 nginx: worker process

www-data 13397 12995 4 14:02 ? 00:00:00 nginx: worker process

www-data 13398 12995 0 14:02 ? 00:00:00 nginx: worker process

www-data 13399 12995 0 14:02 ? 00:00:00 nginx: worker process

www-data 13400 12995 0 14:02 ? 00:00:00 nginx: worker process

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

The processes of the new binary can be gracefully shut down by sending the new
master process the QUIT signal:

kill -QUIT 13119

After that, you need to return the old binary back to its location:

mv /usr/sbin/nginx.old /usr/sbin/nginx

The instance is now ready for the next upgrade.

If a worker process is taking too long to quit for some reason,
you can force it to quit by directly sending it the KILL signal.

If the new binary is not working properly and you need an urgent solution, you can
urgently shut down the new master process by sending the TERM signal:

kill -TERM 13119

The processes of the new binary will immediately quit. The old master process will
be notified and it will start new worker processes. The old master process will also
move its PID file back to its original location so that it replaces the PID file of the new
binary. After that, you need to return the old binary back to its original location:

mv /usr/sbin/nginx.old /usr/sbin/nginx

The instance is now ready for further operation or the next upgrade.

Handling difficult cases
In extremely rare cases, you might run into a difficult situation. If a worker process
does not shut down when asked to in a reasonable time, there might be a problem
with it. Typical signs of such problems are as follows:

• A process spends too much time in the running state (R) and does
not shut down

• A process spends too much time in the noninterruptible sleep state (D)
and does not shut down

• A process is sleeping (S) and does not shut down

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[40]

In each of these cases, you can force the worker process to shut down by first sending
the TERM signal directly to the worker process. If the worker process does not react
within 30 seconds, you can force the process to quit by sending it the KILL signal.

Distribution-specific startup scripts
On Ubuntu, Debian, and RHEL, the startup script automates the preceding control
sequences. By using the startup script, you don't need to remember the exact
sequence of the commands and signal names. The following table illustrates
the use of the startup script:

Command Equivalent to
service nginx start sbin/nginx
service nginx stop TERM, wait 30 seconds, then KILL
service nginx restart service nginx stop and service nginx start
service nginx configtest nginx -t <config file>

service nginx reload service nginx configtest and HUP
service nginx rotate USR1

service nginx upgrade USR2 and QUIT to the old master
service nginx status show status of the instance

The binary upgrade procedure is limited to starting the new binary and signaling the
old master process to gracefully shut down, so you don't have an option to test-drive
the new binary in this case.

Allocating worker processes
We now consider recommendations on allocating worker processes. First, let's
discuss a little bit about the background. Nginx is an asynchronous web server,
which means actual input/output operations run asynchronously with the execution
of a worker process. Each worker process runs an event loop that fetches all file
descriptors that need processing using a special system call, and then services each of
these file descriptors using nonblocking I/O operations. Hence, each worker process
serves multiple connections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

In this situation, the time between an event occurs on a file descriptor, and this
file descriptor can be serviced (that is latency) depends on how soon a full event
processing cycle can be completed. Therefore, in order to achieve higher latency
it makes sense to penalize the competition for CPU resources between worker
processes in favor of more connections per process, because this would reduce the
number of context switches between worker processes.

Therefore, on the systems that are CPU-bound, it makes sense to allocate as many
worker processes as there are CPU cores in the system. For example, consider
this output of the top command (this output can be obtained by pressing 1 on the
keyboard after top starts):

top - 10:52:54 up 48 min, 2 users, load average: 0.11, 0.18, 0.27

Tasks: 273 total, 2 running, 271 sleeping, 0 stopped, 0 zombie

%Cpu0 : 1.7 us, 0.3 sy, 0.0 ni, 97.7 id, 0.3 wa, 0.0 hi, 0.0 si,
0.0 st

%Cpu1 : 0.7 us, 0.3 sy, 0.0 ni, 94.7 id, 4.0 wa, 0.0 hi, 0.3 si,
0.0 st

%Cpu2 : 1.7 us, 1.0 sy, 0.0 ni, 97.3 id, 0.0 wa, 0.0 hi, 0.0 si,
0.0 st

%Cpu3 : 3.0 us, 1.0 sy, 0.0 ni, 95.0 id, 1.0 wa, 0.0 hi, 0.0 si,
0.0 st

%Cpu4 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si,
0.0 st

%Cpu5 : 0.3 us, 0.3 sy, 0.0 ni, 99.3 id, 0.0 wa, 0.0 hi, 0.0 si,
0.0 st

%Cpu6 : 0.3 us, 0.0 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si,
0.0 st

%Cpu7 : 0.0 us, 0.3 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si,
0.0 st

This system has eight independent CPU cores. The maximum number of worker
processes that will not compete for CPU cores on this system is therefore eight. To
configure Nginx to start a specified number of worker processes, you can use the
worker_processes directive in the main configuration file:

worker_processes 8;

The preceding command will instruct Nginx to start eight worker processes to serve
the incoming connections.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[42]

If the number of worker processes is set to a number lower
than the number of CPU cores, Nginx will not be able to take
advantage of all parallelism available in your system.

To extend the maximum number of connections that can be processed by a worker
process, use the worker_connections directive:

events {
 worker_connections 10000;
}

The preceding command will extend the total number of connection that can be
allocated to 10,000. This includes both inbound (connections from clients) and
outbound connections (connections to proxied servers and other external resources).

On disk I/O-bound systems, in the absence of the AIO facility, additional latency
might be introduced into the event cycle due to blocking disk I/O operations.
While a worker process is waiting for a blocking disk I/O operation to complete
on a certain file descriptor, the other file descriptors cannot be serviced. However,
other processes can use the available CPU resources. Therefore, adding worker
processes past the number of available I/O channels might not lead to an
improvement in performance.

On systems with mixed resource demands, a worker process allocation
strategy other than the previously mentioned two might be needed to achieve
better performance. Try varying the numbers of workers in order to obtain the
configuration that works best. This can range from one worker to hundreds
of workers.

Setting up Nginx to serve static data
Now that you are more proficient in installing, configuring, and managing Nginx,
we can proceed with some practical questions. Let's see how we can set up Nginx to
serve static data such as images, CSS, or JavaScript files.

First, we will take the sample configuration from the previous chapter and make it
support multiple virtual hosts using wild card inclusion:

error_log logs/error.log;

worker_processes 8;

events {
 use epoll;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

 worker_connections 10000;
}

http {
 include mime.types;
 default_type application/octet-stream;

 include /etc/nginx/site-enabled/*.conf;
}

We have set up Nginx to take advantage of eight processor cores and include all
configurations files located in /etc/nginx/site-enabled.

Next, we will configure a virtual host static.example.com for serving static data.
The following content goes into the file /etc/nginx/site-enabled/static.
example.com.conf:

server {
 listen 80;
 server_name static.example.com;

 access_log /var/log/nginx/static.example.com-access.log main;

 sendfile on;
 sendfile_max_chunk 1M;
 tcp_nopush on;
 gzip_static on;

 root /usr/local/www/static.example.com;
}

This file configures virtual host static.example.com. The virtual host root location
is set as /usr/local/www/static.example.com. To enable more efficient retrieval
of static files, we encourage Nginx to use the sendfile() system call (sendfile on)
and set the maximum sendfile chunk to 1 MB. We also enable the "TCP_NOPUSH"
option to improve TCP segment utilization when using sendfile() (tcp_nopush on).

The gzip_static on directive instructs Nginx to check for gzipped copies of static
files, such as main.js.gz for main.js and styles.css.gz for styles.css. If they
are found, Nginx will indicate the presence of the .gzip content encoding, and use
the content of the compressed files instead of the original one.

This configuration is suitable for virtual hosts that serve small-to-medium size
static files.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[44]

Installing SSL certificates
Today, more than 60 percent of the HTTP traffic on the Internet is protected by SSL.
In the presence of sophisticated attacks such as cache poisoning and DNS hijacking,
SSL is mandatory if your web content has any value.

Nginx has high-class SSL support and makes it easy for you to configure. Let's walk
over the installation procedure of an SSL virtual host.

Before we start, make sure the openssl package is installed on your system:

apt-get install openssl

This will insure that you have the necessary tools to go over the SSL certificate
issuing procedure.

Creating a Certificate Signing Request
You need an SSL certificate in order to set up an SSL virtual host. In order to
obtain a real certificate, you need to contact a certification authority to issue an
SSL certificate. A certification authority will usually charge you a fee for that.

To issue an SSL certificate, a certification authority needs a Certificate Signing
Request (CSR) from you. A CSR is a message created by you and sent to a
certification authority containing your identification data, such as distinguished
name, address, and your public key.

To generate a CSR, run the following command:

openssl req -new -newkey rsa:2048 -nodes -keyout your_domain_name.key
-out your_domain_name.csr

This will start the process of generating two files: a private key for the decryption
of your SSL certificate (your_domain_name.key) and a certificate signing request
(your_domain_name.csr) used to apply for a new SSL certificate.

This command will ask you for your identification data:

• Country name (C): This is a two-letter country code, for example, NL or US.
• State or province (S): This is the full name of the state you or your company

is in, for example, Noord-Holland.
• Locality or city (L): This is the city or town you or your company is in, for

example, Amsterdam.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

• Organization (O): If your company or department has &, @, or any other
symbol using the Shift key in its name, you must spell out the symbol or omit
it to enroll. For example, XY & Z Corporation would be XYZ Corporation or
XY and Z Corporation.

• Organizational Unit (OU): This field is the name of the department or
organization unit making the request.

• Common name (CN): This is the full name of the host you are protecting.

The last field is of particular importance here. It must match the full name of the
host you are protecting. For instance, if you registered a domain example.com and
users will connect to www.example.com, you must enter www.example.com into the
common name field. If you enter example.com into that field, the certificate will not
be valid for www.example.com.

Do not fill in optional attributes such as e-mail address, challenge
password, or the optional company name when generating the CSR.
They do not add much value, but just expose more personal data.

Your CSR is ready now. After you save your private key to some secure place,
you can proceed with contacting a certification authority and enrolling for an SSL
certificate. Present your CSR once requested.

Installing an issued SSL certificate
Once your certificate is issued, you can proceed with setting up your SSL server.
Save your certificate under a descriptive name such as your_domain_name.crt.
Move it to a secure directory that only Nginx and superuser have access to.
We will use /etc/ssl for simplicity as an example of such a directory.

Now, you can start adding configuration for your secure virtual host:

server {
 listen 443;
 server_name your.domain.com;
 ssl on;
 ssl_certificate /etc/ssl/your_domain_name.crt;
 ssl_certificate_key /etc/ssl/your_domain_name.key;
 [… the rest of the configuration ...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[46]

The name of the domain in the server_name directive must match the value of the
common name field in your certificate signing request.

After the configuration is saved, restart Nginx using the following command:

service nginx restart

Navigate to https://your.domain.com to open a secure connection to your
server now.

Permanently redirecting from a nonsecure
virtual host
The preceding configuration handles only requests issued to the HTTPS service
(port 443) of your server. Most of the time, you will be running the plain HTTP
service (port 80) next to the secure one.

For a number of reasons, it's unwise to have different configurations for the
plain HTTP and HTTPS services for the same host name. If certain resources are
available over plain HTTP but not over SSL or the other way around, this might
lead to bad references if a URL pointing to one of your resources is treated in a
scheme-agnostic way.

Likewise, if certain resources are made available over both plain HTTP and SSL
by mistake, then it is a security error because the resource can be obtained and
interacted with in a nonsecure way by simply changing the https:// scheme
to http://.

To avoid these problems and to simplify your configuration, you can set up a simple
permanent redirect from the non-SSL virtual host to the SSL virtual host:

server {
 listen 80;
 server_name your.domain.com;

 rewrite ^/(.*)$ https://your.domain.com/$1 permanent;
}

This ensures that all requests over plain HTTP to any resource on your web site will
be redirected to the identical resource on the SSL virtual host.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Managing temporary files
Managing temporary files is usually not a big deal, but you must be aware of it.
Nginx uses temporary files to store transient data such as the following:

• Large request bodies received from users
• Large response bodies received from proxied servers or via FastCGI, SCGI,

or UWCGI protocols.

In the Installing Nginx section of Chapter 1, Getting Started with Nginx, you saw
the default location of temporary folders for these files. The following table lists
the configuration directives that specify temporary folders for various Nginx
core modules:

Directive Purpose
client_body_temp_path Specifies temporary path for client request body data
proxy_temp_path Specifies temporary path for responses from proxied servers
fastcgi_temp_path Specifies temporary path for responses from FastCGI servers
scgi_temp_path Specifies temporary path for responses from SCGI servers
uwsgi_temp_path Specifies temporary path for responses from UWCGI servers

The arguments of the preceding directives are as follows

proxy_temp_path <path> [<level1> [<level2> [<level3>]]]

In the preceding code, <path> specifies the path to the directory that contains
temporary files, and the levels specify the number of characters in each level of
hashed directories.

What is a hashed directory? In UNIX, a directory in the file system is essentially a
file that simply contains a list of entries of that directory. So, imagine one of your
temporary directories contains 100,000 entries. Each search in this directory routinely
scans all of these 100,000 entries, which is not very efficient. To avoid this, you
can split your temporary directory into a number of subdirectories, each of them
containing a limited set of temporary files.

By specifying levels, you instruct Nginx to split your temporary directory into a
set of subdirectories, each having a specified number of characters in its name, for
example, a directive:

proxy_temp_path /var/lib/nginx/proxy 2;

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[48]

The preceding line of code instructs Nginx to store a temporary file named
3924510929 under the path /var/lib/nginx/proxy/29/3924510929.

Likewise, the directive proxy_temp_path /var/lib/nginx/proxy 1 2 instructs
Nginx to store a temporary file named 1673539942 under the path /var/lib/
nginx/proxy/2/94/1673539942.

As you can see, the characters that constitute the names of the intermediary
directories are extracted from the tail of the temporary file name.

Both hierarchical and nonhierarchical temporary directory structures have to be
purged from time to time. This could be achieved by walking the directory tree and
removing all files residing in those directories. You can use a command like the
following one:

find /var/lib/nginx/proxy -type f -regex '.+/[0-9]+$' | xargs -I '{}' rm
"{}"

You can use the command from the interactive shell. This command will find all files
ending with digits located in the temporary directory and remove each of these files
by running rm. This command will prompt the removal if it finds something strange.

For the noninteractive mode, you can use a more dangerous command:

find /var/lib/nginx/proxy -type f -regex '.+/[0-9]+$' | xargs -I '{}' rm
-f "{}"

This command will not prompt the removal of files.

This command is dangerous as it blindly removes a broadly-specified
set of files. To avoid data loss, stick to the following principles when
managing temporary directories:

• Never store anything but temporary files inside
temporary directories

• Always use absolute paths in the first argument of a
find command

• If possible, check what you are about to remove by
substituting rm with echo in order to print the list of files to
be supplied to rm

• Make sure Nginx stores temporary files under a
specially-designated user such as nobody or www-data,
and never under the superuser

• Make sure the command above runs under a
specially-designated user such as nobody or
www-data, and never under the superuser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Communicating issues to developers
If you are running nonstable versions of Nginx for trial or using your own or
third-party modules for Nginx, your instance might occasionally experience crashes.
If you decide to communicate these issues to developers, here is a guide that will
help you to do it most efficiently.

Developers usually don't have access to production systems, but knowing the
environment your Nginx instance is running in is crucial to trace the cause of
the problem.

Therefore, you need to provide detailed information about the issue. Detailed
information about a crash can be found in the core file that was created after
the crash.

Warning!
The core file contains a memory dump of a worker process
at the moment of a crash and therefore can contain sensitive
information, such as passwords, keys, or private data. Therefore,
never share core files with people you don't trust.

Instead, use the following procedure to obtain detailed information about a crash:

1. Get a copy of the Nginx binary that you run with debugging information
(see following instructions)

2. If a core file is available, run gdb on the binary with the debugging
information:
gdb ./nginx-binary core

3. If the run is successful, this will open the gdb prompt. Type bt full in it:

(gdb) bt full

[… produces a dump …]

The preceding command will produce a long dump of the stack at the moment
of the crash and it's usually sufficient to debug a wide variety of problems. Make
a summary of the configuration that resulted in a crash and send it over to the
developer along with the full stack trace.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Nginx

[50]

Creating a binary with debugging information
A detailed stack trace can be obtained only from a binary with debugging
information. You don't necessarily need to run a binary with debugging information.
It's only necessary to have a binary that is identical to the one that you run, but with
extra debugging information on top of it.

It is possible to produce such a binary from the source code of the binary that you are
running by configuring the source tree with an extra –with-debug option. The steps
are as follows:

1. First, obtain configuration script arguments from the binary your instance
is running:
$ /usr/sbin/nginx -V

2. Add the –with-debug option in front of the argument string and run the
configuration scripts:

$./configure –with-debug --with-cc-opt='-g -O2 -fstack-protector
--param=ssp-buffer-size=4 -Wformat -Werror=format-security -D_
FORTIFY_SOURCE=2' --with-ld-opt='-Wl,-Bsymbolic-functions -Wl,-
z,relro' …

Follow the remaining steps of the build procedure (refer to the previous chapter for
details). Once you finish, a binary identical to the one that you are running but with
debugging information appears in the objs directory of your source tree:

$ file objs/nginx

objs/nginx: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.32, BuildID[sha1
]=7afba0f9be717c965a3cfaaefb6e2325bdcea676, not stripped

Now, you can use this binary to obtain a full stack trace from the core file produced
by its twin binary.

Refer to the previous section in order to learn how to produce a stack trace.

Summary
In this chapter, you learned a lot of Nginx management techniques. We covered
almost the full circle of Nginx operation, except for problem-dependent details.
In the next and further chapters, you will start learning about particular features
of Nginx and how to apply them. This will add some more flesh to your Nginx
core skills.

www.it-ebooks.info

http://www.it-ebooks.info/

[51]

Proxying and Caching
Designed as a web accelerator and a frontend server, Nginx has powerful tools
to delegate complex tasks to upstream servers while focusing on heavy lifting.
Reverse proxy is one such tool that turns Nginx into an essential component of
any high-performance web service.

By abstracting away complexities of HTTP and handling them in a scalable and
efficient manner, Nginx allows web applications to focus on solving the problem
they are designed to solve without stumbling upon low-level details.

In this chapter, you will learn:

• How to set up Nginx as a reverse proxy
• How to make proxying transparent for the upstream server and the end user
• How to handle upstream errors
• How to use Nginx cache

You will find out how to use all features of Nginx reverse proxy and turn it into a
powerful tool for accelerating and scaling your web service.

Nginx as a reverse proxy
HTTP is a complex protocol that deals with data of different modality and has
numerous optimizations that—if implemented properly—can lead to a significant
increase in web service performance.

At the same time, web application developers have less time to deal with low-level
issues and optimizations. The mere idea of decoupling a web application server
from a frontend server shifts the focus on managing incoming traffic to the frontend,
while shifting the focus on functionality, application logic, and features to the web
application server. This is where Nginx comes into play as a decoupling point.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[52]

An example of a decoupling point is SSL termination: Nginx receives and processes
inbound SSL connections, it forwards the request over plain HTTP to an application
server, and wraps the received response back into SSL. The application server no
longer needs to take care of storing certificates, SSL sessions, handling encrypted
and unencrypted transmission, and so on.

Other examples of decoupling are as follows:

• Efficient handling of static files and delegating the dynamic part to
the upstream

• Rate, request, and connection limiting
• Compressing responses from the upstream
• Caching responses from the upstream
• Accelerating uploads and downloads

By shifting these functions to a Nginx-powered frontend, you are essentially
investing in the reliability of your website.

Setting up Nginx as a reverse proxy
Nginx can be easily configured to work as a reverse proxy:

location /example {
 proxy_pass http://upstream_server_name;
}

In the preceding code, upstream_server_name is the host name of the upstream
server. When a request for location is received, it will be passed to the upstream
server with a specified host name.

If the upstream server does not have a host name, an IP address can be used instead:

location /example {
 proxy_pass http://192.168.0.1;
}

If the upstream server is listening on a nonstandard port, the port can be added to
the destination URL:

location /example {
 proxy_pass http://192.168.0.1:8080;
}

The destination URL in the preceding examples does not have a path. This makes
Nginx pass the request as is, without rewriting the path in the original request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

If a path is specified in the destination URL, it will replace a part of the path from the
original request that corresponds to the matching part of the location. For example,
consider the following configuration:

location /download {
 proxy_pass http://192.168.0.1/media;
}

If a request for /download/BigFile.zip is received, the path in the destination URL
is /media and it corresponds to the matching /download part of the original request
URI. This part will be replaced with /media before passing to the upstream server,
so the passed request path will look like /media/BigFile.zip.

If proxy_pass directive is used inside a regex location, the matching part cannot be
computed. In this case, a destination URI without a path must be used:

location ~* (script1|script2|script3)\.php$ {
 proxy_pass http://192.168.0.1;
}

The same applies to cases where the request path was changed with the rewrite
directive and is used by a proxy_pass directive.

Variables can be a part of the destination URL as well:

location ~* ^/(index|content|sitemap)\.html$ {
 proxy_pass http://192.168.0.1/html/$1;
}

In fact, any part or even the whole destination URL can be specified by a variable:

location /example {
 proxy_pass $destination;
}

This gives enough flexibility in specifying the destination URL for the upstream
server. In Chapter 5, Managing Inbound and Outbound Traffic, we will find out how to
specify multiple servers as an upstream and distribute connections among them.

Setting the backend the right way
The right way to configure a backend is to avoid passing everything to it. Nginx has
powerful configuration directives that help you ensure that only specific requests are
delegated to the backend.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[54]

Consider the following configuration:

location ~* \.php$ {
 proxy_pass http://backend;
 [...]
}

This passes every request with a URI that ends with .php to the PHP interpreter.
This is not only inefficient due to the intensive use of regular expressions, but also
a serious security issue on most PHP setups because it may allow arbitrary code
execution by an attacker.

Nginx has an elegant solution for this problem in the form of the try_files
directive. The try_files directive takes a list of files and a location as the last
argument. Nginx tries specified files in consecutive order and if none of them
exists, it makes an internal redirect to the specified location. Consider the
following example:

location / {
 try_files $uri $uri/ @proxy;
}

location @proxy {
 proxy_pass http://backend;
}

The preceding configuration first looks up a file corresponding to the request URI,
looks for a directory corresponding to the request URI in the hope of returning an
index of that directory, and finally makes an internal redirect to the named location
@proxy if none of these files or directories exist.

This configuration makes sure that whenever a request URI points to an object in
the filesystem it is handled by Nginx itself using efficient file operations, and only
if there is no match in the filesystem for the given request URI is it delegated to
the backend.

Adding transparency
Once forwarded to an upstream server, a request loses certain properties of the
original request. For example, the virtual host in a forwarded request is replaced by
the host/port combination of the destination URL. The forwarded request is received
from an IP address of the Nginx proxy, and the upstream server's functionality based
on the client's IP address might not function properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

The forwarded request needs to be adjusted so that the upstream server can obtain
the missing information of the original request. This can be easily done with the
proxy_set_header directive:

proxy_set_header <header> <value>;

The proxy_set_header directive takes two arguments, the first of which is the name
of the header that you want to set in the proxied request, and the second is the value
for this header. Again, both arguments can contain variables.

Here is how you can pass the virtual host name from the original request:

location @proxy {
 proxy_pass http://192.168.0.1;
 proxy_set_header Host $host;
}

The variable $host has a smart functionality. It does not simply pass the virtual
host name from the original request, but uses the name of the server the request is
processed by if the host header of the original request is empty or missing. If you
insist on using the bare virtual host name from the original request, you can use the
$http_host variable instead of $host.

Now that you know how to manipulate the proxied request, we can let the
upstream server know the IP address of the original client. This can be done
by setting X-Real-IP and/or the X-Forwarded-For headers:

location @proxy {
 proxy_pass http://192.168.0.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}

This will make the upstream server aware of the original client's IP address via
X-Real-IP or the X-Forwarded-For header. Most application servers support this
header and take appropriate actions to properly reflect the original IP address in
their API.

Handling redirects
The next challenge is rewriting redirects. When the upstream server issues a
temporary or permanent redirect (HTTP status codes 301 or 302), the absolute URI
in the location or refresh headers needs to be rewritten so that it contains a proper
host name (the host name of the server the original request came to).

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[56]

This can be done using the proxy_redirect directive:

location @proxy {
 proxy_pass http://localhost:8080;
 proxy_redirect http://localhost:8080/app http://www.example.com;
}

Consider a web application that is running at http://localhost:8080/app, while
the original server has the address http://www.example.com. Assume the web
application issues a temporary redirect (HTTP 302) to http://localhost:8080/
app/login. With the preceding configuration, Nginx will rewrite the URI in the
location header to http://www.example.com/login.

If the redirect URI was not rewritten, the client would be redirected to http://
localhost:8080/app/login, which is valid only within a local domain, so the web
application would not be able to work properly. With the proxy_redirect directive,
the redirect URI will be properly rewritten by Nginx, and the web application will be
able to perform the redirect properly.

The host name in the second argument of the proxy_redirect directive can
be omitted:

location @proxy {
 proxy_pass http://localhost:8080;
 proxy_redirect http://localhost:8080/app /;
}

The preceding code can be further reduced to the following configuration
using variables:

location @proxy {
 proxy_pass http://localhost:8080;
 proxy_redirect http://$proxy_host/app /;
}

The same transparency option can be applied to cookies. In the preceding example,
consider cookies are set to the domain localhost:8080, since the application server
replies at http://localhost:8080. The cookies will not be returned by the browser,
because the cookie domain does not match the request domain.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Handling cookies
To make cookies work properly, the domain name in cookies needs to be rewritten
by the Nginx proxy. To do this, you can use the proxy_cookie_domain directive as
shown here:

location @proxy {
 proxy_pass http://localhost:8080;
 proxy_cookie_domain localhost:8080 www.example.com;
}

In the preceding example, Nginx replaces the cookie domain localhost:8080 in the
upstream response with www.example.com. The cookies set by the upstream server
will refer to the domain www.example.com and the browser will return cookies in
subsequent requests.

If cookie path needs to be rewritten as well due to application server being rooted
at a different path, you can use the proxy_cookie_path directive as shown in the
following code:

location @proxy {
 proxy_pass http://localhost:8080;
 proxy_cookie_path /my_webapp/ /;
}

In this example, whenever Nginx detects a cookie with a prefix specified in the first
argument of the proxy_cookie_path directive (/my_webapp/), it replaces this prefix
with the value in the second argument of the proxy_cookie_path directive (/).

Putting everything together for the www.example.com domain and the web
application running at localhost:8080, we get the following configuration:

location @proxy {
 proxy_pass http://localhost:8080;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_redirect http://$proxy_host/app /;
 proxy_cookie_domain $proxy_host www.example.com;
 proxy_cookie_path /my_webapp/ /;
}

The preceding configuration ensures transparency for a web application server so
that it doesn't even need to know which virtual host it is running on.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[58]

Using SSL
If the upstream server supports SSL, connections to the upstream server can be
secured by simply changing the destination URL scheme to https:

location @proxy {
 proxy_pass https://192.168.0.1;
}

If the authenticity of the upstream server needs to be verified, this can be enabled
using the proxy_ssl_verify directive:

location @proxy {
 proxy_pass https://192.168.0.1;
 proxy_ssl_verify on;
}

The certificate of the upstream server will be verified against certificates of
well-known certification authorities. In Unix-like operating systems, they are
usually stored in /etc/ssl/certs.

If an upstream uses a trusted certificate that cannot be verified by well-known
certification authorities or a self-signed certificate, it can be specified and declared
as trusted using the proxy_ssl_trusted_certificate directive. This directive
specifies the path to the certificate of the upstream server or a certificate chain
required to authenticate the upstream server in PEM format. Consider the
following example:

location @proxy {
 proxy_pass https://192.168.0.1;
 proxy_ssl_verify on;
 proxy_ssl_trusted_certificate /etc/nginx/upstream.pem;
}

If Nginx needs to authenticate itself to the upstream server, the client certificate
and the key can be specified using the proxy_ssl_certificate and proxy_ssl_
certificate_key directives. The directive proxy_ssl_certificate specifies the
path to the client certificate in PEM format, while proxy_ssl_certificate_key
specifies the path to the private key from the client certificate in PEM format.
Consider the following example:

location @proxy {
 proxy_pass https://192.168.0.1;
 proxy_ssl_certificate /etc/nginx/client.pem;
 proxy_ssl_certificate_key /etc/nginx/client.key;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The specified certificate will be presented while setting up the secure connection to
the upstream server, and its authenticity will be verified by specified private key.

Handling errors
If Nginx experiences a problem contacting the upstream server or the upstream
server returns an error, there is an option to take certain actions.

The upstream server connectivity errors can be handled using the error_page
directive:

location ~* (script1|script2|script3)\.php$ {
 proxy_pass http://192.168.0.1;
 error_page 500 502 503 504 /50x.html;
}

This will make Nginx return the document from the file 50x.html once an upstream
connectivity error has occurred.

This will not change the HTTP status code in the response. To change the HTTP
status code to successful, you can use the following syntax:

location ~* (script1|script2|script3)\.php$ {
 proxy_pass http://192.168.0.1;
 error_page 500 502 503 504 =200 /50x.html;
}

A more sophisticated action can be taken upon failure of an upstream server using
an error_page directive that points to a named location:

location ~* (script1|script2|script3)\.php$ {
 proxy_pass http://upstreamA;
 error_page 500 502 503 504 @retry;
}

location @retry {
 proxy_pass http://upstreamB;
 error_page 500 502 503 504 =200 /50x.html;
}

In the preceding configuration, Nginx first tries to fulfill the request by forwarding
it to the upstreamA server. If this results in an error, Nginx switches to a named
location @retry in an attempt to try with the upstreamB server. Request an URI
while switching so that the upstreamB server will receive an identical request.
If this doesn't help either, Nginx returns a static file 50x.html pretending no
error occurred.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[60]

If an upstream has replied but returned an error, it can be intercepted rather than
passed to the client using the proxy_intercept_errors directive:

location ~* (script1|script2|script3)\.php$ {
 proxy_pass http://upstreamA;
 proxy_intercept_errors on;
 error_page 500 502 503 504 403 404 @retry;
}

location @retry {
 proxy_pass http://upstreamB;
 error_page 500 502 503 504 =200 /50x.html;
}

In the preceding configuration, the upstreamB server will be called even when the
upstreamA server replies but returns erroneous HTTP status code, such as 403
or 404. This gives upstreamB an opportunity to fix the soft errors of upstreamA,
if necessary.

However, this configuration pattern must not proliferate too much. In Chapter 5,
Managing Inbound and Outbound Traffic, we will find out how to handle such
situations in a more elegant way, without sophisticated configuration structures.

Choosing an outbound IP address
Sometimes, when your proxy server has multiple network interfaces, it becomes
necessary to choose which IP address should be used as outbound address for
upstream connections. By default, the system will choose the address of the interface
that adjoins the network containing the host used as destination in the default route.

To choose a particular IP address for outbound connections, you can use the
proxy_bind directive:

location @proxy {
 proxy_pass https://192.168.0.1;
 proxy_bind 192.168.0.2;
}

This will make Nginx bind outbound sockets to the IP address 192.168.0.2 before
making a connection. The upstream server will then see connections coming from IP
address 192.168.0.2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Accelerating downloads
Nginx is very efficient at heavy operations, such as handling large uploads and
downloads. These operations can be delegated to Nginx using built-in functionality
and third-party modules.

To accelerate download, the upstream server must be able to issue the X-Accel-
Redirect header that points to the location of a resource which needs to be
returned, instead of the response obtained from the upstream. Consider the
following configuration:

location ~* (script1|script2|script3)\.php$ {
 proxy_pass https://192.168.0.1;
}

location /internal-media/ {
 internal;
 alias /var/www/media/;
}

With the preceding configuration, once Nginx detects the X-Accel-Redirect header
in the upstream response, it performs an internal redirect to the location specified
in this header. Assume the upstream server instructs Nginx to perform an internal
redirect to /internal-media/BigFile.zip. This path will be matched against the
location /internal-media. This location specifies the document root at /var/www/
media. So if a file /var/www/media/BigFile.zip exists, it will be returned to the
client using efficient file operations.

For many web application servers, this feature provides an enormous speed
up—both because they might not handle large downloads efficiently and because
proxying reduces efficiency of large downloads.

Caching
Once Nginx is set up as a reverse proxy, it's logical to turn it into a caching proxy.
Fortunately, this can be achieved very easily with Nginx.

Configuring caches
Before you can enable caching for a certain location, you need to configure a cache.
A cache is a filesystem directory containing files with cached items and a shared
memory segment where information about cached items is stored.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[62]

A cache can be declared using the proxy_cache_path directive:

proxy_cache_path <path> keys_zone=<name>:<size> [other
parameters...];

The preceding command declares a cache rooted at the path <path> with a shared
memory segment named <name> of the size <size>.

This directive has to be specified in the http section of the configuration. Each
instance of the directive declares a new cache and must specify a unique name
for a shared memory segment. Consider the following example:

http {
 proxy_cache_path /var/www/cache keys_zone=my_cache:8m;
 [...]
}

The preceding configuration declares a cache rooted at /var/www/cache with a
shared memory segment named my_cache, which is 8 MB in size. Each cache item
takes around 128 bytes in memory, thus the preceding configuration allocates space
for around 64,000 items.

The following table lists other parameters of proxy_cache_path and their meaning:

Parameter Description
levels Specifies hierarchy levels of the cache directory
inactive Specifies the time after which a cache item will be removed from the

cache if it was not used, regardless of freshness
max_size Specifies maximum size (total size) of all cache items
loader_files Specifies the number of files a cache loader process loads in

each iteration
loader_sleep Specifies the time interval a cache loader process sleeps between

each iteration
loader_threshold Specifies the time limit for each iteration of a cache loader process

Once Nginx starts, it processes all configured caches and allocates shared memory
segments for each of the caches.

After that, a special process called cache loader takes care of loading cached items
into memory. Cache loader loads items in iterations. The parameters loader_files,
loader_sleep, and loader_threshold define the behavior of the cache loader
process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

When running, a special process called cache manager monitors the total disk space
taken by all cache items and evicts less requested items if the total consumed space is
larger than specified in the max_size parameter.

Enabling caching
To enable caching for a location, you need to specify the cache using the
proxy_cache directive:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
}

The argument of the proxy_cache directive is the name of a shared memory
segment that points to one of the caches configured using the proxy_cache_path
directive. The same cache can be used in multiple locations. The upstream response
will be cached if it is possible to determine the expiration interval for it. The primary
source for the expiration interval for Nginx is the upstream itself. The following table
explains which upstream response header influences caching and how:

Upstream response header How it influences caching
X-Accel-Expires This specifies the cache item expiration interval in seconds.

If the value starts from @, then the number following it is
UNIX timestamp when the item is due to expire. This header
has the higher priority.

Expires This specifies the cache item expiration time stamp.
Cache-Control This enables or disables caching
Set-Cookie This disables caching
Vary The special value * disables caching.

It is also possible to explicitly specify an expiration interval for various response
codes using the proxy_cache_valid directive:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
 proxy_cache_valid 200 301 302 1h;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[64]

This sets the expiration interval for responses with codes 200, 301, 302 to 1h (1 hour).
Note that the default status code list for the proxy_cache_valid directive is 200,
301, and 302, so the preceding configuration can be simplified as follows:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
 proxy_cache_valid 10m;
}

To enable caching for negative responses, such as 404, you can extend the status
code list in the proxy_cache_valid directive:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
 proxy_cache_valid 200 301 302 1h;
 proxy_cache_valid 404 1m;
}

The preceding configuration will cache 404 responses for 1m (1 minute). The
expiration interval for negative responses is deliberately set to much lower values
than that of the positive responses. Such an optimistic approach ensures higher
availability by expecting negative responses to improve, considering them as
transient and assuming a shorter expected lifetime.

Choosing a cache key
Choosing the right cache key is important for the best operation of the cache. The
cache key must be selected such that it maximizes the expected efficiency of the
cache, provided that each cached item has valid content for all subsequent requests
that evaluate to the same key. This requires some explanation.

First, let's consider efficiency. When Nginx refers to the upstream server in order
to revalidate a cache item, it obviously stresses the upstream server. With each
subsequent cache hit, Nginx reduces the stress on the upstream server in comparison
to the situation when requests were forwarded to the upstream without caching.
Thus, the efficiency of the cache can be represented as Efficiency = (Number hits +
Number misses) / Number misses.

Thus, when nothing can be cached, each request leads to a cache miss and the
efficiency is 1. But when we get 99 subsequent cache hits for each cache miss,
the efficiency evaluates to (99 + 1) / 1 = 100, which is 100 times larger!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Second, if a document is cached but it is not valid for all requests that evaluate to the
same key, clients might see content that is not valid for their requests.

For example, the upstream analyses the Accept-Language header and returns the
version of the document in the most suitable language. If the cache key does not
include the language, the first user to request the document will obtain it in their
language and trigger the caching in that language. All users that subsequently
request this document will see the cached version of the document, and thus they
might see it in the wrong language.

If the cache key includes the language of the document, the cache will contain
multiple separate items for the same document in each requested language,
and all users will see it in the proper language.

The default cache key is $scheme$proxy_host$request_uri.

This might not be optimal because of the following reasons:

• The web application server at $proxy_host can be responsible for
multiple domains

• The HTTP and HTTPS versions of the website can be identical ($scheme
variable is redundant, thus duplicating items in the cache)

• Content can vary depending on query arguments

Thus, considering everything described previously and given that HTTP
and HTTPS versions of the website are identical and content varies
depending on query arguments, we can set the cache key to a more optimal
value $host$request_uriis_argsargs. To change the default cache item
key, you can use the proxy_cache_key directive:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
 proxy_cache_key "$host$uriis_argsargs";
}

This directive takes a script as its argument which is evaluated into a value of a cache
key at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[66]

Improving cache efficiency and availability
The efficiency and availability of the cache can be improved. You can prevent
an item from being cached until it gets a certain minimum number of requests.
This could be achieved using the proxy_cache_min_uses directive:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
 proxy_cache_min_uses 5;
}

In the preceding example, the response will be cached once the item gets no less than
five requests. This prevents the cache from being populated by infrequently used
items, thus reducing the disk space used for caching.

Once the item has expired, it can be revalidated without being evicted. To enable
revalidation, use the proxy_cache_revalidate directive:

location @proxy {
 proxy_pass http://192.168.0.1:8080;
 proxy_cache my_cache;
 proxy_cache_revalidate on;
}

In the preceding example, once a cache item expires, Nginx will revalidate it by
making a conditional request to the upstream server. This request will include the
If-Modified-Since and/or If-None-Match headers as a reference to the cached
version. If the upstream server responds with a 304 Not Modified response, the
cache item remains in the cache and the expiration time stamp is reset.

Multiple simultaneous requests can be prohibited from filling the cache at the
same time. Depending on the upstream reaction time, this might speed up cache
population while reducing the load on the upstream server at the same time. To
enable this behavior, you can use the proxy_cache_lock directive:

location @proxy {
 proxy_pass http://backend;
 proxy_cache my_cache;
 proxy_cache_lock on;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Once the behavior is enabled, only one request will be allowed to populate a cache
item it is related to. The other requests related to this cache item will wait until either
the cache item is populated or the lock timeout expires. The lock timeout can be
specified using the proxy_cache_lock_directive directive.

If higher availability of the cache is required, you can configure Nginx to reply with
stale data when a request refers to a cached item. This is very useful when Nginx acts
as an edge server in a distribution network. The users and search engine crawlers
will see your web site available, even though the main site experiences connectivity
problems. To enable replying with stale data, use the proxy_cache_use_stale
directive:

location @proxy {
 proxy_pass http://backend;
 proxy_cache my_cache;
 proxy_cache_use_stale error timeout http_500 http_502 http_503
http_504;
}

The preceding configuration enables replying with stale data in case of connectivity
error, upstream error (502, 503, or 504), and connection timeout. The following table
lists all possible values for arguments of the proxy_cache_use_stale directive:

Value Meaning
error A connection error has occurred or an error during sending a request

or receiving a reply has occurred
timeout A connection timed out during setup, sending a request or receiving

a reply
invalid_header The upstream server has returned an empty or invalid reply
updating Enables stale replies while the cache item is being updated
http_500 The upstream server returned a reply with HTTP status code 500

(Internal Server Error)
http_502 The upstream server returned a reply with HTTP status code 502

(Bad Gateway)
http_503 The upstream server returned a reply with HTTP status code 503

(Service Unavailable)
http_504 The upstream server returned a reply with HTTP status code 504

(Gateway Timeout)
http_403 The upstream server returned a reply with HTTP status code 403

(Forbidden)
http_404 The upstream server returned a reply with HTTP status code 404

(Not Found)
off Disables use of stale replies

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[68]

Handling exceptions and borderline cases
When caching is not desirable or not efficient, it can be bypassed or disabled.
This can happen in the following instances:

• A resource is dynamic and varies depending on external factors
• A resource is user-specific and varies depending on cookies
• Caching does not add much value
• A resource is not static, for example a video stream

When bypass is forced, Nginx forwards the request to the backend without looking
up an item in the cache. The bypass can be configured using the proxy_cache_
bypass directive:

location @proxy {
 proxy_pass http://backend;
 proxy_cache my_cache;
 proxy_cache_bypass $do_not_cache $arg_nocache;
}

This directive can take one or more arguments. When any of them evaluate to true
(nonempty value and not 0), Nginx does not look up an item in the cache for a given
request. Instead, it directly forwards the request to the upstream server. The item can
still be stored in the cache.

To prevent an item from being stored in the cache, you can use the proxy_no_cache
directive:

location @proxy {
 proxy_pass http://backend;
 proxy_cache my_cache;
 proxy_no_cache $do_not_cache $arg_nocache;
}

This directive works exactly like the proxy_cache_bypass directive, but prevents
items from being stored in the cache. When only the proxy_no_cache directive is
specified, the items can still be returned from the cache. The combination of both
proxy_cache_bypass and proxy_no_cache disables caching completely.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Now, let's consider a real-world example when caching needs to be disabled for all
user-specific pages. Assume that you have a website powered by WordPress and
you want to enable caching for all pages but disable caching for all customized
or user-specific pages. To implement this, you can use a configuration similar to
the following:

location ~* wp\-.*\.php|wp\-admin {
 proxy_pass http://backend;

 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
}

location / {
 if ($http_cookie ~* "comment_author_|wordpress_|wp-postpass_") {
 set $do_not_cache 1;
 }

 proxy_pass http://backend;

 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;

 proxy_cache my_cache;
 proxy_cache_bypass $do_not_cache;
 proxy_no_cache $do_not_cache;
}

In the preceding configuration, we first delegate all requests pertaining to the
WordPress administrative area to the upstream server. We then use the if directive
to look up WordPress login cookies and set the $do_not_cache variable to 1 if they
are present. Then, we enable caching for all other locations but disable caching
whenever the $do_not_cache variable is set to 1 using the proxy_cache_bypass
and proxy_no_cache directives. This disables caching for all requests with
WordPress login cookies.

The preceding configuration can be extended to extract no-cache flags from
arguments or HTTP headers, to further tune your caching.

www.it-ebooks.info

http://www.it-ebooks.info/

Proxying and Caching

[70]

Summary
In this chapter, you learned how to work with proxying and caching—some of the
most important Nginx features. These features practically define Nginx as a web
accelerator and being proficient in them is essential to get the most out of Nginx.

In the next chapter, we'll look into how to rewrite engine works in Nginx and the
basics of access control.

www.it-ebooks.info

http://www.it-ebooks.info/

[71]

Rewrite Engine and
Access Control

The World Wide Web and HTTP as its building block operate in URLs. Since URLs
are so fundamental, the ability of a server to manipulate URLs is essential.

Nginx allows you to manipulate URLs using a built-in rewrite engine. The Nginx
rewrite engine has a broad functionality and is very easy to configure, which makes
it a very powerful tool. We'll walk through the entire rewrite engine in this chapter.

Another topic that we are going to explore in this chapter is access control. This
is, obviously, an essential function of every software system that keeps the system
secure and reliable. We'll walk through access control methods available in Nginx
and explore their subtleties, and you'll learn how to combine them.

The basics of the rewrite engine
The rewrite engine allows you to manipulate the request URI of inbound requests.

The rewrite engine is configured using rewrite rules. Rewrite rules are used when
the request URI needs to undergo transformation before further processing. Rewrite
rules instruct Nginx to match the request URI with a regular expression and substitute
the request URI with a specified pattern whenever a match has been scored.

Rewrite rules can be specified inside server, location, and if sections of
the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[72]

Let's study some examples of rewrite rules in action. Consider a simple case when
one resource needs to be substituted by another:

location / {
 rewrite ^/css/default\.css$ /css/styles.css break;
 root /var/www/example.com;
}

With the preceding configuration, every request to /css/default.css will have
its URI rewritten to /css/styles.css and will fetch this resource instead. The
rewrite directive specifies a pattern that has to match the request URI in order to
fire the rule and a substitution string that says how the request URI must look after
transformation. The third argument, break, is a flag that instructs Nginx to stop
processing rewrite rules once a match for this rule has been scored.

The preceding configuration can be extended to work with multiple resources as
well. For that, you need to use captures (round brackets in the first argument) and
positional parameters (variables with numbers that refer to captures):

location / {
 rewrite ^/styles/(.+)\.css$ /css/$1.css break;
 root /var/www/example.com;
}

With the preceding configuration, every request to any CSS file in /styles/ will
have its URI rewritten to the corresponding resource in /css/.

In the last two examples, we used the break flag in order to stop rewrite rules from
processing as soon as a match is found (assuming more rules can be added to those
configurations). If we want to combine those two examples, we need to drop the
break flag and allow the cascading application of rewrite rules:

location / {
 rewrite ^/styles/(.+)\.css$ /css/$1.css;
 rewrite ^/css/default\.css$ /css/styles.css;
 root /var/www/example.com;
}

Now, every request to style sheets in /styles/ will be redirected to the corresponding
resource in /css/, and /css/default.css will be rewritten to /css/styles.css.
A request to /styles/default.css will undergo two rewrites, as it sequentially
matches both rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

Notice that all URI transformations are performed by Nginx internally. This means
that for an external client, the original URIs return ordinary resources, thus the
previous configurations will externally look like a series of documents with identical
content (that is, /css/default.css will be identical to /css/styles.css).

This is not a desirable effect in the case of ordinary web pages, as search engines
might penalize your website for duplicate content.

To avoid this problem, it is necessary to replace copies of a resource with permanent
redirects to the master resource, as shown in the following configuration:

location / {
 rewrite ^/styles/(.+)\.css$ /css/$1.css permanent;
 root /var/www/example.com;
}

This works well for whole sections of a website:

location / {
 rewrite ^/download/(.+)$ /media/$1 permanent;
 root /var/www/example.com;
}

It also works for an entire virtual host:

server {
 listen 80;
 server_name example.com;
 rewrite ^/(.*)$ http://www.example.com/$1 permanent;
}

The preceding configuration for any URL requested performs a permanent redirect
from a top-level domain example.com to the www sub domain, making it the primary
entry point of the website.

The next powerful application of rewrite rules is translating a semantic URL into a
URL with a query (section of a URL after the ? character). This functionality has its
primary application in Search Engine Optimization (SEO) and website usability,
and it is driven by a need to obtain semantic URLs for each and every resource and
to deduplicate the content.

You can find more information about semantic URLs at
https://en.wikipedia.org/wiki/Semantic_URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[74]

Consider the following configuration:

server {
 [...]
 rewrite ^/products/$ /products.php last;
 rewrite ^/products/(.+)$ /products.php?name=$1 last;
 rewrite
 ^/products/(.+)/(.+)/$ /products.php?name=$1&page=$2 last;
 [...]
}

The preceding configuration transforms URLs consisting of a number of path
sections starting with /products into a URL starting with /products.php and
arguments. In this way, it is possible to hide implementation details from users
and search engines, and generate semantic URLs.

Note that the flags of the rewrite directives are now set to last. This makes
Nginx seek a new location for a rewritten URL and process request with a
newly-found location.

Now that you have studied some examples of rewrite rules in action, you
can learn more about the nitty-gritty details in order to master the rewrite rule.
The following sections take a deeper look at its syntax and functionality.

More about rewrite rules
Now, let's discuss some of interesting details of the rewrite rules. Here's the complete
syntax of the rewrite directive:

rewrite <pattern> <substitution> [<flag>];

The first argument of this directive, <pattern>, is a regular expression that needs
to match the request URI in order to activate the substitution. The <substitution>
argument is a script that is evaluated once a match has been scored and the value
produced by evaluation replaces the request URI. Special variables $1...$9 can be
used to cross-reference a pattern and its substitution by referring to a capture with
the specified position. The <flag> argument affects the behavior of the rewrite
directive. The following table lists all possible flags of the rewrite directive and
their functions:

Flag Function
break Interrupts processing of rewrite rules
last Interrupts processing of rewrite rules and looks up a

location for the new request URI

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

Flag Function
redirect Returns a temporary redirect (HTTP status 302) to the

new request URI
permanent Returns a permanent redirect (HTTP status 301) to the

new request URI

The rewrite engine makes multiple passes before a location for the request is
found, and then in the request location and subsequent locations that the request
is redirected to (such as those that are invoked by the error_page directive).

Rewrite rules specified directly in the server section are processed in the first
pass, while rewrite rules in the location, if, and other sections within the server
section are processed at subsequent passes. Consider the following example:

server {
 <rewrite rules here are processed in the first pass>;

 location /a {
 <rewrite rules here are processed in subsequent passes>;
 }
 location /b {
 <rewrite rules here are processed in subsequent passes>;
 }
}

After the first pass is complete, Nginx searches for a location that matches the
rewritten request URI if a rewrite was performed, or a location that matches the
original request URI (if no rewrite took place). The subsequent passes alter the
request URI without changing the location.

Rewrite rules at each pass are processed in order of appearance. Once a match
is scored, the substitution is applied and processing resumes with subsequent
rewrite rules—unless a flag is specified to interrupt processing.

If the resulting request URI starts with http:// or https://, it is treated as absolute
and Nginx returns a temporary (302 "Found") or a permanent (301 "Moved
Permanently") redirect to the resulting location.

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[76]

Patterns
Now, let's go back to the <pattern> argument and see how a match pattern can be
specified. The following table gives a brief overview of regular expression syntax
used in rewrite rules:

Pattern Examples Description
<pattern A>
<pattern B>

Ab, (aa)(bb) Following

<pattern A> |
<pattern B>

a|b, (aa)|(bb) Alternative

<pattern>? (\.gz)? Option
<pattern>* A*, (aa)* Repetition of <pattern> from 0 to infinity
<pattern>+ a+, (aa)+ Repetition of <pattern> from 1 to infinity
<pattern>{n} a{5}, (aa){6} Repetition of <pattern> n times
<pattern>{n,} a{3,}, (aa){7,} Repetition of <pattern> from n to infinity
<pattern>{,m} a{,6}, (aa){,3} Repetition of <pattern> from 0 to m
<pattern>{n,m} a{5,6}, (aa)

{1,3}
Repetition of <pattern> from n to m

(<pattern>) (aa) Grouping or parameter capture
 . .+ Any character
^ ^/index Start of line
$ \.php$ End of line
[<characters>] [A-Za-z] Any character from the specified set
[^<characters>] [^0-9] Any character outside of the specified set

The patterns are listed in increasing priority order. That is, the pattern aa|bb will be
interpreted as a(a|b)b, while the pattern a{5}aa{6} will be interpreted as (a{5})
(a)(a{6}) and so on.

To specify characters that are themselves part of regular expression syntax, you can
use the backslash character \, for example * will match an asterisk *, \. will match
a dot character ., \\ will match the backslash character itself and \{ will match an
opening curly bracket {.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

More information about regular expression syntax in rewrite rules can be found on
the PCRE website www.pcre.org.

Captures and positional parameters
Captures are designated with round brackets and mark sections of matched URLs
that need to be extracted. Positional parameters refer to substrings of the matched
URLs extracted by corresponding capture, that is, if the pattern is as follows:

^/users/(.+)/(.+)/$

Also, if the request URL is like this:

/users/id/23850/

The positional parameters $1 and $2 will evaluate to id and 23850, respectively.
Positional parameters can be used in any order within the substitution string and
this is how you connect it with the match pattern.

Other functionalities of the rewrite engine
The rewrite engine can also be used to perform other tasks:

• Assigning variables
• Evaluating predicates using the if directive
• Replying with specified HTTP status code

A combination of these operations and rewrite rules can be performed at every
pass of the rewrite engine. Note that if sections are separate locations, so it is
still possible that the location will change at the location rewrite pass.

Assigning variables
Variables can be assigned using the set directive:

set $fruit "apple";

Variable values can be scripts with text and other variables:

set $path "static/$arg_filename";

Once set on the rewrite phase, variables can be used in any directive in the rest of
the configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[78]

Evaluating predicates using if sections
You have probably figured out from the title that if sections are part of the rewrite
engine. This is true. The if sections can be used to conditionally apply selected
rewrite rules:

if ($request_method = POST) {
 rewrite ^/media/$ /upload last;
}

In the preceding configuration, any attempt to make a POST request to the URL /
media/ will result in rewriting it to the URL /upload, while requests with other
methods to the same URL will result in no rewrites. Multiple conditions can also
be combined. Let's look at the following code:

set $c1 "";
set $c2 "";

if ($request_method = POST) {
 set $c1 "yes";
}

if ($scheme = "https") {
 set $c2 "yes";
}

set $and "${c1}_${c2}";

if ($and = "yes_yes") {
 rewrite [...];
}

The preceding configuration applies the rewrite only when both if conditions are
fulfilled, that is, when the request method is POST and the request URL scheme
is https.

Now that you know how you can use the if section, let's talk about its side effects.
Remember that conditions in the if directives are evaluated in the course of the
rewrite directive processing. What it means is that when the if section contains
directives that are not part of the rewrite engine, the behavior of the if section
becomes non-intuitive. This was discussed in Chapter 1, Getting Started with Nginx.
Consider the following configuration:

if ($request_method = POST) {
 set $c1 "yes";
 proxy_pass http://localhost:8080;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

}

if ($scheme = "https") {
 set $c2 "yes";
 gzip on
}

Each individual if section contains an atomic set of configuration settings.
Assume Nginx receives a POST request with the https URL scheme such that both
conditions evaluate to true. All set directives will be correctly processed by the
rewrite engine and will be assigned to proper values. However, Nginx cannot merge
other configuration settings and cannot have multiple configurations active at once.
When rewrite processing is finished, Nginx simply switches configuration to the last
if section with its conditions evaluated to true. Because of that, in the preceding
configuration, compression will be switched on but the request will not be proxied
according to proxy_pass directive. This is not something you might expect.

To avoid this non-intuitive behavior, stick to the following best practices:

• Minimize the usage of the if directive
• Combine the if evaluations using the set directive
• Take actions only in the last if section.

Replying with a specified HTTP status code
If a definite reply with a specified HTTP status code is required in a certain location,
you can use the return directive to enable this behavior and specify the status
code, a reply body, or a redirect URL. Let's look at the following code:

location / {
 return 301 "https://www.example.com$uri";
}

The preceding configuration will execute a permanent redirect (301) to the secure
part of domain www.example.com and the URI path identical to the URI path in the
original request. Thus, the second argument of the return directive will be treated as
a redirect URI. The other status codes that treat the second argument of the return
directive as a redirect URI are 302, 303 and 307.

Performing a redirect with the return directive is much faster than
doing so with the rewrite directive, because it does not run any
regular expressions. Use the return directive in your configuration
instead of the rewrite directive whenever possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[80]

The status code 302 is quite common, so the return directive has a simplified syntax
for temporary redirects:

location / {
 return "https://www.example.com$uri";
}

As you can see, if the return directive has a single argument, it is treated as redirect
URI and makes Nginx perform a temporary redirect. This argument must start from
http:// or https:// to trigger such behavior.

The return directive can be used to return a reply with a specified body. To trigger
such behavior, the status code must simply be other than 301, 302, 303 or 307. The
second argument of the return directive specified the content of the response body:

location /disabled {
 default_type text/plain;
 return 200 "OK";
}

The preceding configuration will return HTTP status 200 (OK) with the specified
response body. To assert correct processing of the body content, we set response
content type to text/plain using the default_type directive.

Access control
Access control restrictions are essential to day-to-day operation. Nginx includes a
group of modules that let you allow or deny access depending on various conditions.
Nginx denies access to a resource by returning a 403 (Forbidden HTTP) status or 401
(Unauthorized) if accessing the resource requires authentication. This 403 (Forbidden)
status code can be intercepted and customized using the error_page directive.

Restricting access by IP address
Nginx allows you to permit or deny access to a virtual host or a location by IP address.
For that, you can use the directives allow and deny. They have the following format:

allow <IP address> | <IP address>/<prefix size> | all;
deny <IP address> | <IP address>/<prefix size> | all;

Specifying an IP address allows or denies access to a single IP address within
a location, while specifying an IP address with a prefix size (for example
192.168.0.0/24 or 200.1:980::/32) allows or denies access to a range of IP addresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

The allow and deny directives are processed in order of appearance within a location.
The remote IP address of a requesting client is matched against the argument of
each directive. Once an allow directive with a matching address is found, access is
immediately allowed. Once a deny directive with a matching address is found, access
is immediately denied. Once Nginx reaches the allow or deny directive with the all
argument, access is immediately allowed or denied, regardless of client's IP address.

This, obviously, allows some variation. Here are some simple examples:

server {
 deny 192.168.1.0/24;
 allow all;
 [...]
}

The preceding configuration makes Nginx deny access to IP addresses 192.168.1.0
to 192.168.1.255, while allowing access to everyone else. This happens because the
deny directive is processed first and if matched, is immediately applied. The entire
server will be forbidden for specified IP addresses.

server {
 […]
 location /admin {
 allow 10.132.3.0/24;
 deny all;
 }
}

The preceding configuration makes Nginx allow access to location /admin only
to IP addresses in the range 10.132.3.0 to 10.132.3.255. Assuming this range of IP
addresses corresponds to some privileged group of users, this configuration makes
perfect sense, as only they can access the administrative area of this web application.

Now, we can improve on that and make the configuration more complicated.
Assume that more networks need access to this web application's administrative
interface, while the IP address 10.132.3.55 needs to be denied access due to technical
or administrative reasons. Then, we can extend the preceding configuration as follows:

server {
 […]
 location /admin {
 allow 10.129.1.0/24;
 allow 10.144.25.0/24;

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[82]

 deny 10.132.3.55;
 allow 10.132.3.0/24;
 deny all;
 }
}

As you can see, the directives allow and deny are quite intuitive to use. Use them
as long as the list of IP addresses to match is not too long. Nginx processes these
directives in sequential order, so the time taken to check the client's IP address
against the list is on average proportional to the length of the list no matter which
directive the address is matched against.

If you need to match client's IP address against a larger list of addresses, consider
using the geo directive.

Using the geo directive to restrict access by
IP address
With the geo directive, you can transform an IP address into a literal or numerical
value that can later be used to trigger some actions while processing a request.

The geo directive has the following format:

geo [$<source variable>] $<target variable> { <address mapping> }

If the source variable is omitted, the $remote_addr variable is used instead. The
address mapping is a list of key/value pairs, separated by whitespace. A key is
usually an IP address or an IP address with a prefix size specifying a subnet. A value
is an arbitrary string of character or a number. Let's look at the following code:

geo $admin_access {
 default deny;
 10.129.1.0/24 allow;
 10.144.25.0/24 allow;
 10.132.3.0/24 allow;
}

The value of the source variable is used as a key to look up an entry in the address
mapping. Once found, the target variable is assigned to the looked-up value.
Otherwise, the default value is used.

With the preceding configuration, the variable $admin_access will be assigned the
value allow if the remote client's IP address originates from the subnet 10.129.1.0/24,
10.144.25.0/24 or 10.132.3.0/24, and deny otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

The geo directive builds an efficient succinct data structure to look
up the values by IP address in memory. It can handle hundreds of
thousands of IP addresses and subnets. To accelerate the startup
time, specify IP addresses to the geo directive in ascending order,
for example, 1.x.x.x to 10.x.x.x, 1.10.x.x to 1.30.x.x.

The address mapping section can contain directives that affect the behavior of geo
address mapping. The following table lists those directives along with their functions:

Directive Function
default Specifies a value that is returned when no match is found in

the IP address mapping.
proxy Specifies the address of a proxy server. If a request originates

from an address specified by one of the proxy directives,
geo will use the last address from the "X-Forwarded-For"
header and not from the source variable.

proxy_recursive If a request originates from an address specified by one
of proxy directives, geo will process addresses in the
"X-Forwarded-For" header from right-to-left in search of an
address outside of the list specified by the proxy directive.
In other words, this directive makes geo make a better effort
in the search for a real IP address.

ranges Enables IP address ranges in the mapping list.
delete Removes the specified sub network from the mapping.

Let's take a look at some examples.

Consider Nginx receives HTTP traffic from an application-level load balancer or
an inbound proxy located at IP 10.200.0.1. Since all requests will originate from this
IP, we need to examine the "X-Forwarded-For" header in order to obtain the real IP
address of the client. We then need to change the preceding configuration as follows:

geo $example {
 default deny;
 proxy 10.200.0.1;
 10.129.1.0/24 allow;
 10.144.25.0/24 allow;
 10.132.3.0/24 allow;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[84]

If the server is behind a chain of proxies, the real IP address can be obtained by
specifying the proxy_recursive directive and listing all proxies in the chain:

geo $example {
 default deny;
 proxy 10.200.0.1;
 proxy 10.200.1.1;
 proxy 10.200.2.1;
 proxy_recursive;
 10.129.1.0/24 allow;
 10.144.25.0/24 allow;
 10.132.3.0/24 allow;
}

In the preceding example, proxies have IP addresses 10.200.0.1, 10.200.1.1
and 10.200.2.1. The order the addresses are listed in is not important, as Nginx
simply iterates over the addresses specified in the "X-Forwarded-For" header from
right-to-left and checks their presence in the geo block. The first address outside of
the proxy list becomes the real IP address of the client.

If IP addresses need to be specified as ranges instead or in addition to subnets,
you can enable this by specifying the ranges directive:

geo $example {
 default deny;
 ranges;
 10.129.1.0-10.129.1.255 allow;
 10.144.25.0-10.144.25.255 allow;
 10.132.3.0/24 allow;
}

Finally, with the help of the delete directive, we can define the IP address mapping
that allows us to implement an access control procedure analogous to allow and
deny directives on a larger scale:

geo $admin_access {
 default deny;
 10.129.1.0/24 allow;
 10.144.25.0/24 allow;
 10.132.3.0/24 allow;
 delete 10.132.3.55;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

To put this configuration in action, we need to use the if section to forbid request
those client's IP address do not fall in the allow range of the geo directive:

server {
 […]
 geo $admin_access {
 default deny;
 10.129.1.0/24 allow;
 10.144.25.0/24 allow;
 10.132.3.0/24 allow;
 delete 10.132.3.55;
 }

 location /admin {
 if($admin_access != allow) {
 return 403;
 }
 [...]
 }
}

As you can see, the geo directive is a powerful and very scalable tool, and access
restriction is one of many applications that it can be put to.

Using basic authentication for access
restriction
You can configure Nginx to allow access only to those users who can provide
the correct combination of a username and a password. Username/password
verification is enabled using the auth_basic directive:

auth_basic <realm name> | off;

Realm name specifies the name of a realm (an authenticated area). This argument
is usually set to a string that helps users to identify the area they are trying to access
(for example Administrative area, Web mail, and so on). This string will be passed
to the browser and displayed in the username/password entry dialog. In addition
to the realm name, you need to specify a file containing a user database using the
auth_basic_user_file directive:

auth_basic_user_file <path to a file>;

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[86]

This file must contain authentication information with a username and a password
in each line:

username1:encrypted_password1
username2:encrypted_password2
username3:encrypted_password3
username4:encrypted_password4
username5:encrypted_password5

This file presumably must be placed outside of document root of any website you
are hosting. The access rights must be set up such that Nginx can only read this file,
never write or execute.

Passwords must be encrypted using one of the following algorithms:

Algorithms Comments
CRYPT Unix DES-based password encryption algorithm
SSHA Salted Secure Hash Algorithm 1
Deprecated: Do not use
MD5 Message Digest 5 algorithm
SHA Unsalted Secure Hash Algorithm 1

The password file can be managed using the htpasswd utility from Apache web
server. Here are some examples:

Instruction Command
Create a password
file and add
user john to the
password file

$ htpasswd -b -d -c /etc/nginx/auth.d/auth.pwd
john test

Add user thomas
to the password file

$ htpasswd -b -d /etc/nginx/auth.d/auth.pwd thomas
test

Replace John's
password

$ htpasswd -b -d /etc/nginx/auth.d/auth.pwd john
test

Remove user john
from the password
file

$ htpasswd -D /etc/nginx/auth.d/auth.pwd john

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

The option -d forces encryption of passwords using the CRYPT algorithm, which is
relatively less secure than SSHA (Salted SHA). To encrypt passwords using SSHA
and achieve higher security of your passwords you can use the slappasswd utility
from the slapd package:

$ sudo apt-get install slapd

$ slappasswd -s test

{SSHA}ZVG7uXWXQVpITwohT0F8yMDGWs0AbYd3

Copy the output of slappasswd into the password file. The password file now
looks like this:

john:{SSHA}ZVG7uXWXQVpITwohT0F8yMDGWs0AbYd3

This can be further automated using the echo command:

echo "john:"$(slappasswd -s test) > /etc/nginx/auth.d/auth.pwd

Once the password file is ready, we can configure password authentication:

location /admin {
 auth_basic "Administrative area";
 auth_basic_user_file /etc/nginx/auth.d/auth.pwd;
 [...]
}

Password authentication is now enabled; you can navigate to location /admin
and see the password prompt:

Access to the protected resource will be granted only when a valid combination of
username and password is entered into the password prompt.

Nginx reads and parses the password file every time a request to
protected resources is made. This is scalable only when the number
of entries in the password file does not exceed a few hundred.

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[88]

Authenticating users with a subrequest
User authentication can be delegated to another web server using the auth request
module. This module must first be enabled at the source code configuration stage
using the –with-http_auth_request_module command-line switch:

$./configure –with-http_auth_request_module

$ make

$ make install

Now the auth_request module is ready to be used. The delegation can be
configured as follows:

location /example {
 auth_request /auth;
 [...]
}

location = /auth {
 internal;
 proxy_pass http://backend;
 proxy_set_header Content-Length "";
 proxy_pass_request_body off;
}

With the preceding configuration, Nginx will execute a subrequest to location
/auth. This location will pass the subrequest to an external web application (using
the proxy_pass directive). As the original request might have a request body that
the authentication application does not expect, we discard it by specifying
proxy_pass_request_body off and nullifying the "Content-Length" header
using proxy_set_header.

In order to reply to a subrequest issued by auth request module, you need to create
an application that analyzes data from the original request and replies with HTTP
status 401 (Unauthorized) or 403 (Forbidden) in order to block access, and with a
successful HTTP status 200 to 299 in order to allow access. Here is an example of
such an application in node.js:

var http = require('http');
var express = require('express')
var cookieParser = require('cookie-parser')

var app = express()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

app.use(cookieParser())

app.get('/auth', function(req, res) {
 if(req.cookies.uid) {
 res.sendStatus(200);
 }
 else {
 res.sendStatus(403);
 }
})

app.listen(3000)

This application allows access as long a cookie names uid is present, and forbids
access otherwise.

To run this application, create a directory, create a file named auth.js in this
directory, and put the preceding source code into this file. After that, install the
required modules express and cookie-parser using npm:

$ npm install express cookie-parser

After that, you can run the application:

$ node auth.js

The application will start listening on port 3000. The following Nginx configuration
can be used in order to try the application:

location /example {
 auth_request /auth;
}

location = /auth {
 internal;
 proxy_pass http://localhost:3000;
 proxy_set_header Content-Length "";
 proxy_pass_request_body off;
}

The subrequest will be delegated to port 3000 of the host, where Nginx is running,
and the application will reply to that request.

If the application needs to examine the original request URI, it can be passed using
the proxy_set_header directive:

proxy_set_header X-Auth-URI $request_uri;

www.it-ebooks.info

http://www.it-ebooks.info/

Rewrite Engine and Access Control

[90]

The original IP address and other original request parameters can be passed to the
authenticating application in the same way.

This is how more sophisticated authentication logic can be implemented in Nginx.
If you make the application always reply with HTTP status 200, it can be used for
purposes other than authentication, such as logging or data injection.

Combining multiple access restriction
methods
Multiple access restriction methods can be combined together. For that, they must be
both configured and enabled. By default, all configured access restriction methods
must be satisfied in order to allow the request. If any of the access restriction methods
are not satisfied, Nginx rejects the request with 403 Forbidden HTTP status.

This behavior can be changed using the satisfy directive:

satisfy all | any;

Specifying satisfy any in a location makes Nginx accept the request if any of the
enabled access restriction methods are satisfied, while specifying satisfy all (the
default) makes Nginx accept the request only if all enabled access restriction methods
are satisfied. To demonstrate how it works, let's extend the preceding example:

server {
 […]
 location /admin {
 auth_basic "Administrative area";
 auth_basic_user_file /etc/nginx/auth.d/admin.users;
 allow 10.132.3.0/24;
 deny all;
 satisfy any;
 }
}

This configuration enables and configures both password authentication and IP
address restriction. With satisfy set to any, a user needs to either enter a correct
username/password combination or originate from IP address range 10.132.3.0
to 10.132.3.255. This makes users from this network somehow more trusted, as
they are not required to enter their username and password in order to access the
administrative area.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Summary
In this chapter, you learned how to use the rewrite engine and access control
functions. These are essential tools of every web master and site reliability engineer.
Excelling in configuring and using these features will help you to solve day-to-day
problems more efficiently.

In the next chapter, we will talk about managing inbound and outbound traffic.
You will learn how to set various limitations on inbound traffic, how to configure
upstream, and how to apply various options to outbound traffic.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[93]

Managing Inbound and
Outbound Traffic

The Internet is an open medium where it is easy and cheap to use someone else's
resources. The low cost of usage makes systems vulnerable to intended and
unintended abuses and resource usage spikes. The modern Internet is full of
dangers such as bots, abusive crawlers, denial of service, and distributed denial
of service attacks.

This is where Nginx comes in handy, with a range of features for inbound and
outbound traffic management that allows you to stay in control of the quality of
your web service.

In this chapter, you will learn:

• How to apply various limitation to inbound traffic
• How to configure upstreams
• How to use various options for outbound connection management

Managing inbound traffic
Nginx has various options for managing inbound traffic. This includes the following:

• Limiting the request rate
• Limiting the number of simultaneous connections
• Limiting the transfer rate of a connection

These features are very useful for managing the quality of your web service and to
prevent and mitigate abuses.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[94]

Limiting the request rate
Nginx has a built-in module for limiting the request rate. Before you can enable it,
you need to configure a shared memory segment (also known as a zone) in the http
section using the limit_req_zone directive. This directive has the following format:

limit_req_zone <key> zone=<name>:<size> rate=<rate>;

The <key> argument specifies a single variable or a script (since version 1.7.6) to
which the rate limiting state is bound. In simple terms, by specifying the <key>
argument, you are creating a number of small pipes for each value of the <key>
argument evaluated at runtime, each of them with its request rate limited with
<rate>. Each request for a location where this zone is used will be submitted to the
corresponding pipe and if the rate limit is reached, the request will be delayed so
that the rate limit within the pipe is satisfied.

The <name> argument defines the name of the zone and the <size> argument defines
the size of the zone. Consider the following example:

http {
 limit_req_zone $remote_addr zone=rate_limit1:12m rate=30r/m;
 [...]
}

In the preceding code, we define a zone named primary that is 12 MB in size and
has a rate limit of 30 requests per minute (0.5 request per second). We use the
$remote_addr variable as a key. This variable evaluates into a symbolic value
of the IP address the request came from, which can take up to 15 bytes per IPv4
address and even more per IPv6 address.

To conserve space occupied by the key, we can use the variable $binary_remote_
addr that evaluates into a binary value of the remote IP address:

http {
 limit_req_zone $binary_remote_addr zone=rate_limit1:12m
rate=30r/m;
 [...]
}

To enable request rate limiting in a location, use the limit_req directive:

location / {
 limit_req zone=rate_limit1;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

Once a request is routed to location /, a rate-limiting state will be retrieved
from the specified shared memory segment and Nginx will apply the Leaky Bucket
algorithm to manage the request rate, as shown in the following figure:

The Leaky Bucket algorithm

According to this algorithm, incoming requests can arrive at an arbitrary rate, but the
outbound request rate will never be higher than the specified one. Incoming requests
"fill the bucket" and if the "bucket" overflows, excessive requests will get the HTTP
status 503 (Service Temporarily Unavailable) response.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[96]

Limiting the number of simultaneous
connections
Although very practical, request rate limiting cannot help mitigate abuses in case of
long-running requests, such as long uploads and downloads.

In this situation, limiting the number of simultaneous connections comes in handy.
In particular, it is advantageous to limit the number of simultaneous connections
from a single IP address.

Enabling the simultaneous connections limit starts from configuring a shared
memory segment (a zone) for storing state information, just like when limiting
the request rate. This is done in the http section using the limit_conn_zone
directive. This directive is similar to the limit_req_zone directive and has the
following format:

limit_conn_zone <key> zone=<name>:<size>;

In the preceding command, the <key> argument specifies a single variable or a script
(since version 1.7.6) to which the connection limiting state is bound. The <name>
argument defines the name of the zone and the <size> argument defines the size
of the zone. Consider the following example:

http {
 limit_conn_zone $remote_addr zone=conn_limit1:12m;
 [...]
}

To conserve the space occupied by the key, we can again use the variable $binary_
remote_addr. It evaluates into a binary value of the remote IP address:

http {
 limit_conn_zone $binary_remote_addr zone=conn_limit1:12m;
 [...]
}

To enable simultaneous connection limiting in a location, use the limit_conn
directive:

location /download {
 limit_conn conn_limit1 5;
}

The first argument of the limit_conn directive specifies the zone used to store
connection limiting state information, and the second argument is the maximum
number of simultaneous connections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

For each connection with an active request routed to location /download, the
<key> argument is evaluated. If the number of simultaneous connections sharing
the same value of the key surpasses 5, the server will reply with HTTP status 503
(Service Temporarily Unavailable).

Note that the size of the shared memory segment that the limit_conn_
zone directive allocates is fixed. When the allocated shared memory
segment gets filled, Nginx returns HTTP status 503 (Service Temporarily
Unavailable). Therefore, you have to adjust the size of the shared memory
segment to account for the potential inbound traffic of your server.

Limiting the transfer rate of a connection
The transfer rate of a connection can also be limited. Nginx has a number of options
for this purpose. The limit_rate directive limits the transfer rate of a connection in
a location to the value specified in the first argument:

location /download {
 limit_rate 100k;
}

The preceding configuration will limit the download rate of any request for
location /download to 100 KBps. The rate limit is set per request. Therefore,
if a client opens multiple connections, the total download rate will be higher.

Setting the rate limit to 0 switches off transfer rate limiting. This is helpful when a
certain location needs to be excluded from the rate limit restriction:

server {
 [...]
 limit_rate 1m;

 location /fast {
 limit_rate 0;
 }
}

The preceding configuration limits the transfer rate of each request to a given virtual
host to 1 MBps, except for location /fast, where the rate is unlimited.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[98]

The transfer rate can also be limited by setting the value of the variable
$limit_rate. This option can be elegantly used when rate-limiting needs
to be enabled upon a particular condition:

if ($slow) {
 set $limit_rate 100k;
}

There is also an option to postpone the rate restriction until a certain amount of data
has been transferred. This can be achieved by using the limit_rate_after directive:

location /media {
 limit_rate 100k;
 limit_rate_after 1m;
}

The preceding configuration will enforce the rate limit only after the first megabyte
of request data has been sent. Such behavior is useful, for example, when streaming
video, as the initial part of the stream is usually prebuffered by the video player.
Returning the initial part faster improves video startup time without clogging the
disk I/O bandwidth of the server.

Applying multiple limitations
The limitations described in the previous section can be combined to produce more
sophisticated traffic management strategies. For example, you can create two zones
for limiting the number of simultaneous connections with different variables and
apply multiple limits at once:

http {
 limit_conn_zone $binary_remote_addr zone=conn_limit1:12m;
 limit_conn_zone $server_name zone=conn_limit2:24m;
 […]
 server {
 […]
 location /download {
 limit_conn conn_limit1 5;
 limit_conn conn_limit2 200;
 }
 }
}

The preceding configuration will limit the number of simultaneous connections per
IP address to five; at the same time the total number of simultaneous connections per
virtual host will not exceed 200.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

Managing outbound traffic
Nginx also has a variety of options for outbound traffic management:

• Distributing outbound connections among multiple servers
• Configuring backup servers
• Enabling persistent connections with backend servers
• Limiting transfer rate while reading from backend servers

To enable most of these functions, the first thing you need is to declare your
upstream servers explicitly.

Declaring upstream servers
Nginx allows you to declare upstream servers explicitly. You can then refer to
them multiple times as a single entity from any part of the http configuration. If
the location of your server or servers changes, there is no need to go over the entire
configuration and adjust it. If new servers join a group, or existing servers leave a
group, it's only necessary to adjust the declaration and not the usage.

An upstream server is declared in the upstream section:

http {
 upstream backend {
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
 }
 [...]
}

The upstream section can only be specified inside the http section. The preceding
configuration declares a logical upstream named backend with three physical
servers. Each server is specified using the server directive. The server directive has
the following syntax:

server <address> [<parameters>];

The <address> parameter specifies an IP address or a domain name of a physical
server. If a domain name is specified, it is resolved at the startup time and the
resolved IP address is used as the address of a physical server. If the domain name
resolves into multiple IP addresses, a separate entry is created for each of the
resolved IP addresses. This is equivalent to specifying a server directive for
each of these addresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[100]

The address can contain optional port specification, for example, server1.example.
com:8080. If this specification is omitted, port 80 is used. Let's look at an example of
upstream declaration:

upstream numeric-and-symbolic {
 server server.example.com:8080;
 server 127.0.0.1;
}

The preceding configuration declares an upstream named numeric-and-symbolic.
The first server in the server list has a symbolic name and its port changed to 8080.
The second server has the numerical address 127.0.0.1 that corresponds to the local
host and the port is 80.

Let's look at another example:

upstream numeric-only {
 server 192.168.1.1;
 server 192.168.1.2;
 server 192.168.1.3;
}

The preceding configuration declares an upstream named numeric-only, which
consists of three servers with three different numerical IP addresses listening on the
default port.

Consider the following example:

upstream same-host {
 server 127.0.0.1:8080;
 server 127.0.0.1:8081;
}

The preceding configuration declares an upstream named same-host, which consists
of two servers with the same address (127.0.0.1) that listen on different ports.

Let's look at the following example:

upstream single-server {
 server 192.168.0.1;
}

The preceding configuration declares an upstream named single-server,
which consists of only one server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

The following table lists the optional parameters of the server directive and
their description:

Syntax Description
weight=<number> This specifies the numerical weight of the server. It is used for

distributing connections among the servers. The default value is 1.
max_
fails=<number>

This specifies the maximum number of connection attempts
after which the server is considered as unavailable. The default
value is 1.

fail_
timeout=<number>

This specifies the time after which a failing server will be marked as
unavailable. The default value is 10 seconds.

backup This labels a server as a backup server.
down This labels a server as unavailable.
max_
conns=<number>

This limits the number of simultaneous connections to the server.

resolve This instructs Nginx to automatically update the P addresses of a
server specified using a symbolic name and apply these addresses
without restarting Nginx.

Using upstream servers
Once an upstream server is declared, it can be used in the proxy_pass directive:

http {
 upstream my-cluster {
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
 }
 […]
 server {
 […]
 location @proxy {
 proxy_pass http://my-cluster;
 }
 }
}

The upstream can be referred multiple times from the configuration. With the
preceding configuration, once the location @proxy is requested, Nginx will pass
the request to one of the servers in the server list of the upstream.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[102]

The algorithm for resolving the final address of an upstream server is shown in the
following figure:

An algorithm for resolving the address of an upstream server

Because a destination URL can contain variables, it is evaluated at runtime and
parsed as HTTP URL. The server name is extracted from the evaluated destination
URL. Nginx looks up an upstream section that matches the server name and if
such exists, forwards the request to one of the servers from the upstream server list
according to a request distribution strategy.

If an upstream section that matches the server name exists, Nginx checks if the
server name is an IP address. If so, Nginx uses the IP address as the final address of
the upstream server. If the server name is symbolic, Nginx resolves the server name
in DNS into an IP address. If successful, the resolved IP address is used as the final
address of the upstream server.

The address of the DNS server or servers can be configured using the
resolver directive:

resolver 127.0.0.1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

The preceding directive takes a list of IP addresses of the DNS servers as its
arguments. If a server name cannot be successfully resolved using the configured
resolver, Nginx returns HTTP status 502 (Bad Gateway).

When an upstream contains more than one server in the server list, Nginx distributes
requests among these servers in an attempt to split the load among the available
servers. This is also called clustering, as multiple servers act as one—altogether they
are called a cluster.

Choosing a request distribution strategy
By default, Nginx uses Round-robin algorithm while distributing requests among
available upstream servers, as shown in the following figure:

Round-robin cyclic distribution algorithm

According to this algorithm, incoming requests are assigned to servers from the
upstream server list in equal proportions and cyclic order. This ensures equal
distribution of incoming requests among available servers, but does not ensure
equal distribution of the load among servers.

If servers in the upstream server list have varying capacities, the distribution
algorithm can be changed to account for that. This is what the parameter weight is
used for. This parameter specifies the relative weight of a server in comparison to
other servers. Consider an installation where one of the servers is twice as capable
as the other two. We can configure Nginx for this installation as follows:

upstream my-cluster {
 server server1.example.com weight=2;
 server server2.example.com;
 server server3.example.com;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[104]

The first server is configured to have twice as high a weight as the other servers
and the request distribution strategy changes accordingly. This is shown in the
following figure:

Weighted round-robin

In the preceding figure, we can see that two out of four incoming requests will go to
server 1, one will go to server 2, and another one will be going to server 3.

The round-robin strategy does not guarantee that requests from the same client will
be always forwarded to the same server. The latter might be a challenge for web
applications that expect the same client to be served by the same server or at least
need some affinity of users to servers to perform efficiently.

With Nginx, you can solve this by using the IP hash request distribution strategy.
With the IP hash distribution strategy, each request from a given IP address will
be forwarded to the same backend server. This is achieved by hashing the client's
IP address and using the numerical value of the hash to choose the server from the
upstream server list. To enable the IP hash request distribution strategy, use the
ip_hash directive in the upstream section:

upstream my-cluster {
 ip_hash;
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
}

The preceding configuration declares an upstream with three underlying servers and
enables the IP hash request distribution strategy for each of them. A request from a
remote client will be forwarded to one of the servers from this list and it is always
the same for all requests from the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

If you add or remove a server from the list, the correspondence between IP addresses
and servers will change and your web application will have to deal with this
situation. To make this problem somehow easier to handle, you can mark a server as
unavailable using the down parameter. Requests to this server will be forwarded to
the next available server:

upstream my-cluster {
 ip_hash;
 server server1.example.com;
 server server2.example.com down;
 server server3.example.com;
}

The preceding configuration declares the server2.example.com server unavailable
and once a request is targeted to this server, the next available server will be chosen
(server1.example.com or server3.example.com).

If an IP address is not a convenient input for the hash function, you can use the hash
directive instead of ip_hash to choose an input that is more convenient. The only
argument of this directive is a script, which is evaluated at runtime and produces a
value used as the input for the hash function. This script can contain, for example,
a cookie, an HTTP header, a combination of an IP address and a user agent, an IP
address and a proxied IP address, and so on. Take a look at the following example:

upstream my-cluster {
 hash "$cookie_uid";
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
}

The preceding configuration uses a cookie named uid as input for the hash function.
If the cookie stores a unique ID of a user, each user's requests will be forwarded to
a fixed server in the upstream server list. If a user does not have a cookie yet, the
variable $cookie_uid evaluates to an empty string and produces a fixed hash value.
Therefore, all requests from users without the uid cookie are forwarded to a fixed
server from the preceding list.

In the next example, we will use a combination of a remote IP address and the user
agent field as input for the hash function:

upstream my-cluster {
 hash "$remore_addr$http_user_agent";
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[106]

The preceding configuration relies on the diversity of user agent field and prevents a
concentration of users from proxied IP addresses on a single server.

Configuring backup servers
Some servers in the server list can be marked as backup. By doing so, you tell Nginx
that these servers should not be normally used and used only when all non-backup
servers do not respond.

To illustrate the use of backup servers, imagine that you run a Content Distribution
Network (CDN) where a number of geographically distributed edge servers handle
user traffic and a set of centralized content servers generate and distribute content to
the edge servers. This is shown in the following figure.

A Content Distribution Network

The edge servers are co-located with a set of highly-available caches that do not alter
the content obtained from the content servers, but simply store it. The caches have to
be used as long as any of them is available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

However, when none of the caches are available for some reason, the edge server
can contact the content servers—although it is not desirable. Such behavior (called
degradation) can remedy the situation until the outage of caches is resolved, while
keeping the service available.

Then, the upstream on the edge server can be configured as follows:

upstream my-cache {
 server cache1.mycdn.com;
 server cache2.mycdn.com;
 server cache3.mycdn.com;

 server content1.mycdn.com backup;
 server content2.mycdn.com backup;
}

The preceding configuration declares the servers cache1.mycdn.com, cache2.
mycdn.com and cache3.mycdn.com as primary servers to contact. They will be
used as long as any of them is available.

We then list the content1.mycdn.com and content2.mycdn.com servers as backup
by specifying the backup parameter. These servers will be contacted only if none of
the primary servers are available. This feature of Nginx provides flexibility in the
way the availability of your system is managed.

Determining whether a server is available
How do you define that a server is available? For most applications, connectivity
errors are hard signs of an unavailable server, but what if an error is software
generated? It might be worth trying the next server if a server is available on the
transport layer (over TCP/IP) but returns HTTP errors such as 500 (Internal Server
Error) and 503 (Service Unavailable) or even softer errors such as 403 (Forbidden)
or 404 (Not found). If the upstream server is a proxy itself, it might be necessary to
handle HTTP errors 502 (Bad Gateway) and 504 (Gateway Timeout).

Nginx allows you to specify availability and retrial conditions using the directives
proxy_next_upstream, fastcgi_next_upstream, uwsgi_next_upstream, scgi_
next_upstream, and memcached_next_upstream. Each of these directives receives
a list of conditions that will be treated as errors while communicating with an
upstream server, and make Nginx retry with another server. In addition to that, if
the number of unsuccessful interaction attempts with a server is larger than the value
of the max_fails parameter for the server (the default value is 1), the server will
be marked as unavailable for a period specified by the fail_timeout directive (the
default value is 10 seconds).

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[108]

The following table lists all possible values for the arguments of the directives
proxy_next_upstream, fastcgi_next_upstream, uwsgi_next_upstream, scgi_
next_upstream, and memcached_next_upstream:

Value Meaning
error A connection error has occurred or an error during sending a request

or receiving a reply has occurred
timeout A connection timed out during setup, sending a request or receiving

a reply
invalid_header The upstream server has returned an empty or invalid reply
http_500 The upstream server returned a reply with HTTP status code 500

(Internal Server Error)
http_502 The upstream server returned a reply with HTTP status code 502

(Bad Gateway)
http_503 The upstream server returned a reply with HTTP status code 503

(Service Unavailable)
http_504 The upstream server returned a reply with HTTP status code 504

(Gateway Timeout)
http_403 The upstream server returned a reply with HTTP status code 403

(Forbidden)
http_404 The upstream server returned a reply with HTTP status code 404

(Not Found)
off Disables passing requests to the next server

The default value for the preceding directives is error timeout. This makes
Nginx retry a request with another server only if a connectivity error or a timeout
has occurred.

Here is an example of a configuration that uses the proxy_next_upstream directive:

location @proxy {
 proxy_pass http://backend;
 proxy_next_upstream error timeout http_500 http_502 http_503
http_504;
}

The preceding configuration extends the default retrial and availability option and
enables retrying with the next server in case of connectivity error, upstream error
(502, 503, or 504) or a connection timeout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Enabling persistent connections
By default, Nginx does not keep connections with upstream servers open. Keeping
the connections open can significantly improve the performance of your system. This
is because persistent connections eliminate the connection setup overhead every time
a request is made to a given upstream server.

To enable persistent connections for an upstream, use the keepalive directive in the
upstream section:

upstream my-cluster {
 keepalive 5;
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
}

The only argument of the keepalive directive specifies the minimum number of
inactive persistent connections in the connection pool of this upstream. If the number
of inactive persistent connections grows beyond this number, Nginx closes as many
connections as needed to stay within this number. This guarantees that a specified
number of hot and ready-to-go connections are always available for use. At the same
time, these connections consume the resources of backend servers, so this number
must be chosen cautiously.

To use persistent connections with HTTP proxying, further tweaks are required:

location @proxy {
 proxy_pass http://backend;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
}

In the preceding configuration, we change the HTTP version to 1.1 so that persistent
connections are expected by default. We also clear the Connection header so that the
Connection header from the original request does not influence the proxied request.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Inbound and Outbound Traffic

[110]

Limiting the transfer rate of an upstream
connection
The transfer rate of a connection with an upstream can be limited. This feature can be
used to reduce stress on the upstream server. The proxy_limit_rate directive limits
the transfer rate of an upstream connection in a location to the value specified in the
first argument:

location @proxy {
 proxy_pass http://backend;
 proxy_buffering on;
 proxy_limit_rate 200k;
}

The preceding configuration will limit the rate of connections with the specified
backend to 200 KBps. The rate limit is set per request. If Nginx opens multiple
connections to the upstream server, the total rate will be higher.

Rate limiting works only if proxy response buffering is switched
on using the proxy_buffering directive.

Summary
In this chapter, you learned about a number of tools for inbound and outbound
traffic management. These tools will help you to ensure the reliability of your web
service and implement complex caching schemes.

In the next chapter, you'll learn how to squeeze the most performance out of your
web server and optimize resource usage—performance tuning.

www.it-ebooks.info

http://www.it-ebooks.info/

[111]

Performance Tuning
Performance tuning is the improvement of system performance. In our context, it is
the performance of an entire web service or an individual web server. The need for
such activity arises when there is a real or anticipated performance problem, such
as excessive response latency, insufficient upload or download rate, lack of system
scalability, or excessive use of computer system resources for seemingly low
service usage.

In this chapter, we will look at a number of topics that deal with performance
problems using features of Nginx. Each section explains when and how a solution
is applicable; that is, what kind of performance problems it addresses.

In this chapter you will learn about:

• How to optimize static file retrieval
• How to set up response compression
• How to optimize data buffer allocation
• How to accelerate SSL by enabling session caching
• How to optimize worker process allocation on multi-core systems

Optimizing static file retrieval
Static file retrieval performance directly affects visitors' perceived website
performance. This happens because web pages usually contain numerous references
to dependent resources. These resources need to be quickly retrieved before the
entire page can be rendered. The faster the web server can start returning a static file
(lower latency) and the higher the parallelism of retrieval, the higher the perceived
performance of the website.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[112]

When the latency is the driving factor, it is important that files are returned
predominantly from the main memory, as it has much lower latency compared
to hard drives.

Fortunately, the operating system already takes very good care of that through
filesystem cache. You only need to stimulate cache usage by specifying some
advisory parameters and eliminating waste:

location /css {
 sendfile on;
 sendfile_max_chunk 1M;
 [...]
}

By default, Nginx reads the content of a file into the user space before sending to the
client. This is suboptimal and can be avoided by using the sendfile() system call if
it is available. The sendfile() function implements a zero-copy transfer strategy by
copying data from one file descriptor to another bypassing user space.

We enable sendfile() by specifying the sendfile on parameter in code. We limit
the maximum amount of data that sendfile() can send in one invocation to 1
MB using the sendfile_max_chunk directive. In this way, we prevent a single fast
connection from occupying the whole worker process.

Response body filters such as the .gzip compressor require response
data in the user space. They cannot be combined with a zero-copy
strategy and consequently with sendfile(). When enabled, they
cancel the effect of sendfile().

The preceding configuration is optimized for latency. Compare it to the example
from the Setting up Nginx to serve static data section in Chapter 2, Managing Nginx. You
will see that the tcp_nopush directive is gone. The off state of this option will make
network utilization a bit less efficient, but will deliver data—including the HTTP
header—to the client as soon as possible.

With tcp_nopush set to on, the first packet of the response will be sent as soon as the
chunk of data is obtained by sendfile().

Another aspect of static file retrieval is large file download. In this case, the startup
time is not as important as the download throughput or, in other words, the
download speed that a server can attain while returning a large file. Caching stops
being desirable for large files. Nginx reads them sequentially, so cache hits are much
less likely for them. Cached segments of a large file would therefore simply pollute
the cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

On Linux, caching can be bypassed by using Direct I/O. With Direct I/O enabled,
the operating system translates read offsets into the underlying block device
addresses, and queues read requests directly into the underlying block device
queue. The following configuration shows how to enable Direct I/O:

location /media {
 sendfile off;
 directio 4k;
 output_buffers 1 256k;
 [...]
}

The directio directive takes a single argument that specifies the minimum size a file
must have in order to be read with Direct I/O. In addition to specifying direction,
we extend the output buffer using the output_buffers directive in order to increase
system call efficiency.

Note that Direct I/O blocks the worker processes during reads. This reduces
parallelism and throughput of file retrieval. To avoid blocking and increase
parallelism, you can enable Asynchronous I/O (AIO):

location /media {
 sendfile off;
 aio on;
 directio 4k;
 output_buffers 1 256k;
 [...]
}

On Linux, AIO is available as of kernel version 2.6.22 and it is non-blocking
only in combination with Direct I/O. AIO and Direct I/O can be combined
with sendfile():

location /media {
 sendfile on;
 aio on;
 directio 4k;
 output_buffers 1 256k;
 [...]
}

In this case, files smaller than the size specified in directio will be send using
sendfile(), or else with AIO plus Direct I/O.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[114]

As of Nginx version 1.7.11, you can delegate file read operations to a pool of threads.
This makes perfect sense if you are not limited by memory or CPU resources.
As threads do not require Direct I/O, enabling them on large files will lead to
aggressive caching:

location /media {
 sendfile on;
 aio threads;
 [...]
}

Threads are not compiled by default (at the moment of writing this chapter),
so you have to enable them using the with-threads configuration switch. In
addition to that, threads can work only with epoll, kqueue, and eventport
event processing methods.

With threads, both higher parallelism and caching can be attained without blocking
the worker process, although threads and communication between threads require
some additional resources.

Enabling response compression
Performance of your website can be improved by enabling response compression
using GZIP. Compression reduces the size of a response body, reduces the
bandwidth required to transfer the response data, and ultimately makes sure
the resources of your website are delivered to the client side sooner.

Compression can be enabled using the gzip directive:

location / {
 gzip on;
 [...]
}

This directive is valid in the http, server, location, and if sections. Specifying
off as the first argument of this directive disables compression in the corresponding
location if it was enabled in outer sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

By default, only documents with MIME type text/HTML are compressed. To enable
compression for other types of documents, use the gzip_types directive:

location / {
 gzip on;
 gzip_types
text/html text/plain text/css application/x-javascript text/xml
 application/xml application/xml+rss text/javascript;
 [...]
}

The preceding configuration enables compression for MIME types that hypertext
documents, cascading style sheets, and JavaScript files appear to be in. These are the
types of documents that benefit most from the compression, as text files and source
code files—if they are large enough—usually contain a lot of entropy.

Archives, images, and movies are not suitable for
compression, as they are usually already compressed.
Executable files are less suitable for compression, but can
benefit from it in some cases.

It makes sense to disable compression for small documents, as compression
efficiency might not be worth the efforts—or even worse—might be negative. In
Nginx, you can implement compression using the gzip_min_length directive. This
directive specifies the minimum length a document must be in order to be eligible
for compression:

location / {
 gzip on;
 gzip_min_length 512;
 [...]
}

With the preceding configuration, all documents smaller than 512 bytes will not be
compressed. The length information that is used to apply this restriction is extracted
from the Content-Length response header. If no such header is present, the response
will be compressed regardless of its length.

Response compression comes at a cost: it is CPU-intensive. You
need to consider that in your capacity planning and system
design. If CPU utilization becomes a bottleneck, try reducing the
compression level using the gzip_comp_level directive.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[116]

The following table lists some other directives that affect the behavior of compression:

Directive Function
gzip_disable <regex> If the User-Agent field of a request matches the specified

regular expression, the compression for that request will be
disabled.

gzip_comp_level
<level>

This specifies the GZIP compression level to use. The lowest
is 1 and the highest is 9. These values correspond to options
-1 … -9 of the gzip command.

The preceding directives can help you fine-tune the response compression in
your system.

The efficiency of response body compression can be monitored via the $gzip_ratio
variable. This variable indicates the attained compression ratio equal to the ratio of
the size of the original response body to the size of the compressed one.

The value of this variable can be written to the log file and later extracted and picked
up by your monitoring system. Consider the following example:

http {
 log_format gzip
'$remote_addr - $remote_user [$time_local] $status '
 '"$request" $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$host" $gzip_ratio';

 server {
 [...]
 access_log /var/log/nginx/access_log gzip;
 [...]
 }
}

The preceding configuration creates a log file format named gzip and uses this
format to log HTTP requests in one of the virtual hosts. The last field in the log file
will indicate the attained compression ratio.

Optimizing buffer allocation
Nginx uses buffers to store request and response data at various stages. Optimal
buffer allocation can help you spare memory consumption and reduce CPU usage.
The following table lists directives that control buffer allocation and the stages they
are applied to:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Directive Function
client_body_buffer_size
<size>

This specifies the size of the buffer that is used to receive
the request body from the client.

output_buffers <number>
<size>

This specifies the number and the size of buffers that are
used to send the response body to the client in case no
acceleration is used.

gzip_buffers <number>
<size>

This specifies the number and the size of the buffers that
are used to compress the response body.

proxy_buffers <number>
<size>

This specifies the number and the size of the buffers that are
used to receive the response body from a proxied server.
This directive makes sense only if buffering is enabled.

fastcgi_buffers
<number> <size>

This specifies the number and the size of the buffers that are
used to receive the response body from a FastCGI server.

uwcgi_buffers <number>
<size>

This specifies the number and the size of the buffers that are
used to receive the response body from a UWCGI server.

scgi_buffers <number>
<size>

This specifies the number and the size of the buffers that
are used to receive the response body from a SCGI server.

As you can see, most of the directives take two arguments: a number and a size.
The number argument specifies the maximum number of buffers that can be
allocated per request. The size argument specifies the size of each buffer.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[118]

The preceding figure illustrates how buffers are allocated for a data stream. Part
a shows what happens when an input data stream is shorter than the buffer size
specified in the directives above. The data stream occupies the entire buffer even
though the space for the whole buffer is allocated from the heap. Part b shows a data
stream that is longer than a single buffer, but shorter than the longest allowed chain
of buffers. As you can see, if the buffers are used in the most efficient way, some of
them will be fully used and the last one might be only partially used. Part c shows a
data stream that is much longer than the longest chain of buffers allowed. Nginx tries
to fill all available buffers with input data and flushes them once the data is sent.
After that, empty buffers wait until more input data becomes available.

New buffers are allocated as long as there are no free buffers at hand and input data
is available. Once the maximum number of buffers is allocated, Nginx waits until
used buffers are emptied and reuses them. This makes sure that no matter how
long the data stream, it will not consume more memory per request (the number of
buffers multiplied by the size) than specified by the corresponding directive.

The smaller the buffers, the higher the allocation overhead. Nginx needs to spend
more CPU cycles to allocate and free buffers. The larger the buffers, the larger
memory consumption overhead. If a response occupies only a fraction of a buffer,
the remainder of the buffer is not used—even though the entire buffer has to be
allocated from the heap.

The minimum portion of the configuration that the buffer size directives can be
applied to is a location. This means that if mixtures of large and small responses
share the same location, the combined buffer usage pattern will vary.

Static files are read into buffers controlled by the output_buffers directive unless
sendfile is set to on. For static files, multiple output buffers don't make much
sense, as they are filled in the blocking mode anyway (this means a buffer cannot be
emptied while the other one is being filled). However, larger buffers lead to lower
system call rate. Consider the following example:

location /media {
 output_buffers 1 256k;
 [...]
}

If the output buffer size is too large without threads or AIO, it can lead to long
blocking reads that will affect worker process responsiveness.

When a response body is pipelined from a proxied server, FastCGI, UWCGI, or SCGI
server, Nginx is able to read data into one part of the buffers and simultaneously
send the other part to the client. This makes the most sense for long replies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

Assume you tuned your TCP stack before reading this chapter. The total size of a
buffer chain is then connected to the kernel socket's read and write buffer sizes. On
Linux, the maximum size of a kernel socket read buffer can be examined using the
following command:

$ cat /proc/sys/net/core/rmem_max

While the maximum size of a kernel socket write buffer can be examined using the
following command:

$ cat /proc/sys/net/core/wmem_max

These settings can be changed using the sysctl command or via /etc/sysctl.conf
at system startup.

In my case, both of them are set to 163840 (160 KB). This is low for a real system, but
let's use it as an example. This number is the maximum amount of data Nginx can
read from or write to a socket in one system call without the socket being suspended.
With reads and writes going asynchronously, we need a buffer space no less than the
sum of rmem_max and wmem_max for optimal system call rate.

Assume that the preceding Nginx proxies long files with rmem_max and wmem_max
settings. The following configuration must yield the lowest system call rate with the
minimum amount of memory per request in the most extreme case:

location @proxy {
 proxy_pass http://backend;
 proxy_buffers 8 40k;
}

The same considerations apply to the fastcgi_buffers, uwcgi_buffers, and
scgi_buffers directives.

For short response bodies, the buffer size has to be a bit larger than the predominant
size of a response. In this case, all replies will fit into one buffer—only one allocation
per request will be needed.

For the preceding setup, assume that most of the replies fit 128 KB, while some span
up to dozens of megabytes. The optimal buffer configuration will be somewhere
between proxy_buffers 2 160k and proxy_buffers 4 80k.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[120]

In the case of response body compression, the size of the GZIP buffer chain must
be downscaled by the average compression ratio. For the preceding setup, assume
that the average compression ratio is 3.4. The following configuration must yield the
lowest system call rate with a minimal amount of memory per request in presence of
response body compression:

location @proxy {
 proxy_pass http://backend;
 proxy_buffers 8 40k;
 gzip on;
 gzip_buffers 4 25k;
}

In the preceding configuration we make sure that in the most extreme case, if half of
the proxy buffers are being used for reception, the other half is ready for compression.
GZIP buffers are configured in a way that makes sure that the compressor output for
half of the uncompressed data occupies half of the output buffers, while the other half
of the buffers with compressed data are sent to the client.

Enabling SSL session reuse
An SSL session is started by a handshake procedure that involves multiple round
trips (see the following figure). The client and server have to exchange four
messages with a latency of around 50 milliseconds each. In total, we have at least 200
milliseconds of overhead while establishing a secure connection. In addition to that,
both the client and the server need to perform public-key cryptographic operations
in order to share a common secret. These operations are computationally expensive.

Normal SSL handshake

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

The client can request an abbreviated handshake in effect (see the following figure),
saving a full round-trip of 100 milliseconds and avoiding the most expensive part of
the full SSL handshake:

Abbreviated handshake

The abbreviated handshake can be accomplished either through the session identifiers
mechanism defined by RFC 5246, or through the session tickets mechanism detailed in
RFC 5077.

To make abbreviated handshakes with session identifiers possible, the server needs
to store session parameters in a cache keyed by a session identifier. In Nginx, this
cache can be configured to be shared with all worker processes. When a client
requests an abbreviated handshake, it provides the server with a session identifier
so that it can retrieve session parameters from the cache. After that, the handshake
procedure can be shortened and public-key cryptography can be skipped.

To enable SSL session cache, use the ssl_session_cache directive:

http {
 ssl_session_cache builtin:40000;
 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[122]

This configuration enables SSL session caching with built-in OpenSSL session cache.
The number in the first argument (40000) specifies the size of the cache in sessions.
The built-in cache cannot be shared between worker processes. Consequently, this
reduces efficiency of SSL session reuse.

The following configuration enables SSL session caching with a cache shared
between worker processes:

http {
 ssl_session_cache shared:ssl:1024k;
 [...]
}

This creates a shared SSL session cache named ssl and enables SSL session reuse
with this cache. The size of the cache is now specified in bytes. Each session occupies
around 300 bytes in such cache.

It is possible to perform an abbreviated SSL handshake without the server state using
an SSL session tickets mechanism. This is done by packaging session parameters into
a binary object and encrypting it with a key known only to the server. This encrypted
object is called a session ticket.

A session ticket then can be safely transferred to the client. When the client wishes
to resume a session, it presents the session ticket to the server. The server decrypts it
and extracts the session parameters.

Session tickets are an extension of the TLS protocol and can be used with TLS 1.0 and
further (SSL is a predecessor of TLS).

To enable session tickets, use the ssl_session_tickets directive:

http {
 ssl_session_tickets on;
 [...]
}

Naturally, both mechanisms can be enabled at once:

http {
 ssl_session_cache shared:ssl:1024k;
 ssl_session_tickets on;
 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

For security reasons, cached session lifetime is limited so that session parameters
cannot be attacked while session is active. Nginx sets the default maximum SSL
session lifetime to 5 minutes. If security is not a big concern and visitors spend
considerable time on your website, you can extend the maximum session lifetime,
increasing the efficiency of SSL in effect.

The maximum SSL session lifetime is controlled by the ssl_session_timeout
directive:

http {
 ssl_session_cache shared:ssl:1024k;
 ssl_session_tickets on;
 ssl_session_timeout 1h;
 [...]
}

The preceding configuration enables both session reuse mechanisms and sets the
maximum SSL session lifetime to 1 hour.

Worker processes allocation on
multi-core systems
If your Nginx workload is CPU-bound, such as when using response compression
on proxied content, on systems with multiple processors or multiple processor cores,
it might be possible to obtain additional performance by associating each worker
process with its own processor/core.

In a multi-core processor, each core has its own instance of Translation Lookaside
Buffer (TLB) that is used by the memory-management unit to accelerate virtual
address translation. In a preemptive multitasking operating system, each process has
its own virtual memory context. When an operating system assigns an active process
to a processor core and the virtual memory context does not match the context that
filled the TLB of that processor core, the operating system has to flush the TLB as its
content is no longer valid.

The new active process then receives a performance penalty, because it has to fill the
TLB with new entries as it reads or writes memory locations.

Nginx has an option to "stick" a process to a processor core. On a system with a
single Nginx instance, worker processes will be scheduled most of the time. In such
circumstances, there is a very high probability that the virtual memory context does
not need to be switched and TLB does not need to be flushed. The "stickiness" of a
process then becomes useful. The "stickiness" is called CPU affinity.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tuning

[124]

Consider a system with four processor cores. The CPU affinity can be configured
as follows:

worker_processes 4;
worker_cpu_affinity 0001 0010 0100 1000;

This configuration assigns each worker to its own processor core. The configuration
directive worker_cpu_affinity receives many arguments as many worker process
are to be started. Each argument specifies a mask, where a bit with a value of 1
specifies affinity with the corresponding processor, and a bit with a value of 0
specifies no affinity with the corresponding processor.

CPU affinity does not guarantee an increase in performance,
but make sure to give it a try if your Nginx server is
performing CPU-bound tasks.

Summary
In this chapter, you learned a number of recipes that will help you tackle
performance and scalability challenges of your system. It is important to remember
that these recipes are not solutions for all possible performance problems and
represent mere trade-offs between different ways of using the resources of
your system.

Nevertheless, they are must-haves in the toolbox of a web master or a site reliability
engineer who wants to master Nginx and its performance and scalability features.

www.it-ebooks.info

http://www.it-ebooks.info/

[125]

Index
A
access control

about 80
access, restricting by IP address 80, 81
basic authentication, using for access

restriction 85-87
geo directive used, for restricting access by

IP address 82-85
multiple access restriction methods,

combining 90
users, authenticating with

subrequest 88, 89
algorithms, for password encryption

CRYPT 86
MD5 86
SHA 86
SSHA 86

Asynchronous I/O (AIO) 113

B
binary

creating, with debugging information 50
binary expression 16
binary operators

!= 16
!~ 16
!~* 16
= 16
~ 16
~* 16

break flag 72
buffer allocation

optimizing 116-120

C
cache loader process 62
cache manager 63
caching

about 61
border cases, handling 68, 69
cache availability, improving 66, 67
cache efficiency, improving 66
cache key, selecting 64, 65
caches, configuring 61-63
enabling 63, 64
exceptions, handling 68, 69
upstream response header 63

captures 77
Certificate Signing Request (CSR) 44
clustered setup 27
command, identification data

Common name (CN) 45
Country name (C) 44
Locality or city (L) 44
Organizational Unit (OU) 45
Organization (O) 45
State or province (S) 44

commands, CentOS version
defining 4

configuration directives
client_body_temp_path 47
fastcgi_temp_path 47
proxy_temp_path 47
scgi_temp_path 47
uwsgi_temp_path 47

Content Distribution Network (CDN) 106

www.it-ebooks.info

http://www.it-ebooks.info/

[126]

control signals
about 30
difficult cases, handling 39
fast shutdown mode 31
graceful shutdown mode 31
graceful worker shutdown 37
log file, reopening 34, 35
Nginx binary upgrade 35, 36
reconfiguration 32, 33
shutdown process 31
upgrade procedure, finalizing 38, 39
using 30

D
debugging information

binary, creating with 50
default directive 83
delete directive 83
developers

issues, communicating to 49
directives, buffer allocation

client_body_buffer_size <size> 117
fastcgi_buffers <number> <size> 117
gzip_buffers <number> <size> 117
output_buffers <number> <size> 117
proxy_buffers <number> <size> 117
scgi_buffers <number> <size> 117
uwcgi_buffers <number> <size> 117

directives, compression
gzip_comp_level <level> 116
gzip_disable <regex> 116

distribution-specific startup scripts
about 40
using 40

E
Extra Packages for Enterprise Linux (EPEL)

about 3
enabling 3
URL 3

F
Filesystem Hierarchy Standard (FHS) 2
flags, rewrite directive

break 74

last 74
permanent 75
redirect 75

G
geo directive

format 82
using 82

H
htpasswd utility

using 86
HUP signal 32

I
if directive 22
inbound traffic, managing

about 93
multiple limitations, applying 98
number of simultaneous connections,

limiting 96
request rate, limiting 94, 95
transfer rate of connection, limiting 97, 98

include directive
about 12
using 22

information
obtaining, on crash 49

inheritance rules
working 19

issues
communicating, to developers 49

L
location patterns

exact 15
regular expression 15
simple 14

log file reopening procedure
steps, defining 34

log file rotation procedure
checklist 35

logrotate 35

www.it-ebooks.info

http://www.it-ebooks.info/

[127]

M
master process

about 26
defining 26

multi-core systems
worker processes allocation,

used on 123, 124

N
Nginx

about 1, 35
building 6
configuration best practices 22
configuration settings' inheritance

rules 18-20
configuring 9
connection processing architecture 26-28
http section 13
if section 15-17
inclusions 12
installing 1
installing, from source files 4
installing, on CentOS/Scientific Linux 3, 4
installing, on Red Hat Enterprise Linux 3, 4
installing, on Ubuntu 2
issues 29
limit_except section 18
location section 14
other section types 18
sample configuration 21, 22
sections 13
server section 13
setting up, to serve static data 42, 43
solutions 29
starting 28, 29
stopping 28, 29
troubleshooting 7
upstream section 14
URL 1
value types 10
variables 10, 11

Nginx, as reverse proxy
about 51, 52
backend configuration, right way 53, 54

cookies, handling 57
downloads, accelerating 61
errors, handling 59, 60
outbound IP address, selecting 60
redirects, handling 55, 56
setting up 52, 53
SSL, using 58, 59
transparency, adding 54, 55

Nginx configuration
URL 22

Nginx files
locations 6

Nginx installation
structure 8

Nginx, on Ubuntu
alternatives 2

Nginx source files
downloading 5
troubleshooting 5
URL 5

O
outbound traffic, managing

about 99
backup servers, configuring 106, 107
persistent connections, enabling 109
request distribution strategy,

selecting 103-105
server availability, determining 107, 108
transfer rate of upstream connection,

limiting 110
upstream servers, declaring 99, 100
upstream servers, using 101, 102

P
parameter files, Nginx configuration folder

fastcgi_params 8
koi-utf 8
koi-win 8
mime.types 8
naxsi.rules (optional) 8
proxy_params 8
scgi_params 8
uwsgi_params 8
win-utf 8

www.it-ebooks.info

http://www.it-ebooks.info/

[128]

parent process ID (PPID) 29
PCRE

about 5
URL 77

performance tuning 111
plain variable 16
proxy_cache_path, parameters

inactive 62
levels 62
loader_files 62
loader_sleep 62
loader_threshold 62
max_size 62

proxy_cache_use_stale directive
values, for arguments 67

proxy directive 83
proxy_limit_rate directive 110
proxy_recursive directive 83

R
ranges directive 83
regular expression syntax

used, in rewrite rules 76
response compression

enabling 114-116
rewrite directive 72
rewrite engine

about 71-74
best practices 79
captures 77
functionalities 77
patterns 76, 77
positional parameters 77
predicates evaluating,

if sections used 78, 79
replying, with specified HTTP

status code 79
rewrite rules, defining 74, 75
using 77
variables, assigning 77

rewrite rules
about 71
defining 74, 75

RHEL/CentOS/SL 6
URL 3

S
Search Engine Optimization (SEO) 73
server directive

parameters 101
session tickets

about 122
enabling 122

signals, Nginx
HUP 30
QUIT 30
TERM, INT 30
USR1 30
USR2 30
WINCH 30

source code configuration
copying, from prebuilt packages 7, 8

SSL certificates
Certificate Signing Request (CSR),

creating 44
installing 44
issued SSL certificate, installing 45
redirecting, from nonsecure virtual host 46

SSL session reuse
enabling 120-123

standalone instance 28
static file retrieval

optimizing 111-114
structure, Nginx installation

default virtual host folder 8
log folder 9
Nginx configuration folder 8
temporary folder 9
virtual hosts configuration folder 9

T
temporary files

managing 47, 48
Translation Lookaside Buffer (TLB) 123

www.it-ebooks.info

http://www.it-ebooks.info/

[129]

U
Ubuntu

Nginx, installing 2
unary expression 16
unary operators

-d 16
!-d 16
-e 16
!-e 16

-f 16
!-f 16
-x 16
!-x 16

W
worker processes

about 26
allocating 40-42
allocating, on multi-core systems 123, 124

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Nginx Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Nginx HTTP Server
Second Edition
ISBN: 978-1-78216-232-2 Paperback: 318 pages

Make the most of your infrastructure and serve pages
faster than ever with Nginx

1. Complete configuration directive and
module reference.

2. Discover possible interactions between Nginx
and Apache to get the best of both worlds.

3. Learn to configure your servers and virtual
hosts efficiently.

4. A step-by-step guide to switching from Apache
to Nginx.

Mastering NGINX
ISBN: 978-1-84951-744-7 Paperback: 322 pages

An in-depth guide to configuring NGINX for
any situation, including numerous examples and
reference tables describing each directive

1. An in-depth configuration guide to help you
understand how to best configure NGINX for
any situation.

2. Includes useful code samples to help you
integrate NGINX into your application
architecture.

3. Full of example configuration snippets,
best-practice descriptions, and reference
tables for each directive.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Nginx Module Extension
ISBN: 978-1-78216-304-6 Paperback: 128 pages

Customize and regulate the robust Nginx web server,
and write your own Nginx modules efficiently

1. Install Nginx from its source on
multiple platforms.

2. Become acquainted with core Nginx modules
and their configuration options.

3. Explore optional and third party module
extensions along with configuration directives.

Docker for Web Developers
[Video]
ISBN: 978-1-78439-067-9 Duration: 01:31 hours

Accelerate your web development skills on real web
projects in record time with Docker

1. Supercharge your web development process
while ensuring that everything works
smoothly.

2. Win at 2048 using Docker's commit and restore
functionality.

3. Use the Docker Hub workflow to automate the
rebuilding of your web projects.

4. Full of realistic examples, this is a step-by-step
journey to becoming a Docker expert!.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Nginx
	Installing Nginx
	Installing Nginx on Ubuntu
	Alternatives

	Installing Nginx on Red Hat Enterprise Linux or CentOS/Scientific Linux
	Installing Nginx from source files
	Downloading the Nginx source files
	Building Nginx
	Copying the source code configuration from prebuilt packages

	The structure of the Nginx installation
	The Nginx configuration folder
	The default virtual host folder
	The virtual hosts configuration folder
	The log folder
	The temporary folder

	Configuring Nginx
	Value types
	Variables
	Inclusions
	Sections
	The http section
	The server section
	The upstream section
	The location section
	Simple
	Exact
	Regular expression locations

	The if section
	The limit_except section
	Other section types
	Configuration settings' inheritance rules
	The First sample configuration
	Configuration best practices

	Summary

	Chapter 2: Managing Nginx
	The Nginx connection processing architecture
	Starting and stopping Nginx
	Control signals and their usage
	Fast shutdown
	Graceful shutdown
	Reconfiguration
	Reopening the log file
	Nginx binary upgrade
	Graceful worker shutdown
	Finalizing the upgrade procedure
	Handling difficult cases

	Distribution-specific startup scripts
	Allocating worker processes
	Setting up Nginx to serve static data
	Installing SSL certificates
	Creating a Certificate Signing Request
	Installing an issued SSL certificate
	Permanently redirecting from a nonsecure virtual host

	Managing temporary files
	Communicating issues to developers
	Creating a binary with debugging information

	Summary

	Chapter 3: Proxying and Caching
	Nginx as a reverse proxy
	Setting up Nginx as a reverse proxy
	Setting the backend the right way
	Adding transparency
	Handling redirects
	Handling cookies
	Using SSL
	Handling errors
	Choosing an outbound IP address
	Accelerating downloads

	Caching
	Configuring caches
	Enabling caching
	Choosing a cache key
	Improving cache efficiency and availability
	Handling exceptions and borderline cases

	Summary

	Chapter 4: Rewrite Engine and Access Control
	The basics of the rewrite engine
	More about rewrite rules
	Patterns
	Captures and positional parameters
	Other functionalities of the rewrite engine
	Assigning variables
	Evaluating predicates using if sections
	Replying with a specified HTTP status code

	Access control
	Restricting access by IP address
	Using the geo directive to restrict access by IP address
	Using basic authentication for access restriction
	Authenticating users with a subrequest
	Combining multiple access restriction methods

	Summary

	Chapter 5: Managing Inbound and Outbound Traffic
	Managing inbound traffic
	Limiting the request rate
	Limiting the number of simultaneous connections
	Limiting the transfer rate of a connection
	Applying multiple limitations

	Managing outbound traffic
	Declaring upstream servers
	Using upstream servers
	Choosing a request distribution strategy
	Configuring backup servers
	Determining whether a server is available
	Enabling persistent connections
	Limiting the transfer rate of an upstream connection

	Summary

	Chapter 6: Performance Tuning
	Optimizing static file retrieval
	Enabling response compression
	Optimizing buffer allocation
	Enabling SSL session reuse
	Worker processes allocation on
multi-core systems
	Summary

	Index

