
NGINX
Cookbook
Advanced Recipes for High-Performance
Load Balancing

Derek DeJonghe

Compliments of

Cost
Savings

Over 80% cost savings
compared to hardware
application delivery
controllers and WAFs,
with all the perform-
ance and features
you expect.

Advanced
Security

NGINX App Protect offers
4x the performance and
10x the throughput as
open source alternatives
like ModSecurity, while
providing even more
comprehensive controls.

Enterprise
Ready

NGINX Plus and NGINX
App Protect deliver
enterprise requirements
for security, scalability,
and resiliency while
integrating with DevOps
and CI/CD environments.

Reduced
Complexity

The only all-in-one load
balancer, API gateway,
microservices proxy,
and web application
firewall helps reduce
infrastructure sprawl.

 Try NGINX Plus and
 NGINX App Protect Free

Get high-performance application delivery and security for
 microservices. NGINX Plus is a software load balancer,
API gateway, and microservices proxy. NGINX App Protect
 is a lightweight, fast web application firewall (WAF) built
on proven F5 technology and designed for modern apps
and DevOps environments.

Download at nginx.com/freetrial

https://www.nginx.com/
https://www.nginx.com/free-trial-request/

Derek DeJonghe

NGINX Cookbook
Advanced Recipes for High-Performance

Load Balancing

978-1-492-08702-1

[LSI]

NGINX Cookbook
by Derek DeJonghe

Copyright © 2021 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Gary O’Brien
Production Editor: Christopher Faucher
Copyeditor: Piper Editorial, LLC
Proofreader: nSight, Inc.

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: O’Reilly Media, Inc.

November 2020: First Edition

Revision History for the First Edition
2020-10-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492078487 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. NGINX Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492078487
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. xi

Preface. xiii

1. Basics. 1
1.0 Introduction 1
1.1 Installing on Debian/Ubuntu 1
1.2 Installing on RedHat/CentOS 2
1.3 Installing NGINX Plus 3
1.4 Verifying Your Installation 3
1.5 Key Files, Directories, and Commands 4
1.6 Serving Static Content 6
1.7 Graceful Reload 7

2. High-Performance Load Balancing. 9
2.0 Introduction 9
2.1 HTTP Load Balancing 10
2.2 TCP Load Balancing 11
2.3 UDP Load Balancing 13
2.4 Load-Balancing Methods 14
2.5 Sticky Cookie with NGINX Plus 16
2.6 Sticky Learn with NGINX Plus 17
2.7 Sticky Routing with NGINX Plus 18
2.8 Connection Draining with NGINX Plus 19
2.9 Passive Health Checks 20
2.10 Active Health Checks with NGINX Plus 21
2.11 Slow Start with NGINX Plus 23

v

3. Traffic Management. 25
3.0 Introduction 25
3.1 A/B Testing 25
3.2 Using the GeoIP Module and Database 27
3.3 Restricting Access Based on Country 29
3.4 Finding the Original Client 30
3.5 Limiting Connections 31
3.6 Limiting Rate 32
3.7 Limiting Bandwidth 34

4. Massively Scalable Content Caching. 37
4.0 Introduction 37
4.1 Caching Zones 37
4.2 Cache Locking 38
4.3 Caching Hash Keys 39
4.4 Cache Bypass 40
4.5 Cache Performance 41
4.6 Cache Purging with NGINX Plus 41
4.7 Cache Slicing 42

5. Programmability and Automation. 45
5.0 Introduction 45
5.1 NGINX Plus API 45
5.2 Using the Key-Value Store with NGINX Plus 49
5.3 Extending NGINX with a Common Programming Language 51
5.4 Installing with Puppet 54
5.5 Installing with Chef 55
5.6 Installing with Ansible 56
5.7 Installing with SaltStack 58
5.8 Automating Configurations with Consul Templating 59

6. Authentication. 61
6.0 Introduction 61
6.1 HTTP Basic Authentication 61
6.2 Authentication Subrequests 63
6.3 Validating JWTs with NGINX Plus 64
6.4 Creating JSON Web Keys 65
6.5 Validate JSON Web Tokens with NGINX Plus 66
6.6 Automatically Obtaining and Caching JSON Web Key Sets with NGINX

Plus 67
6.7 Authenticate Users via Existing OpenID Connect SSO with NGINX Plus 68

vi | Table of Contents

7. Security Controls. 71
7.0 Introduction 71
7.1 Access Based on IP Address 71
7.2 Allowing Cross-Origin Resource Sharing 72
7.3 Client-Side Encryption 74
7.4 Advanced Client-Side Encryption 75
7.5 Upstream Encryption 77
7.6 Securing a Location 77
7.7 Generating a Secure Link with a Secret 78
7.8 Securing a Location with an Expire Date 79
7.9 Generating an Expiring Link 80
7.10 HTTPS Redirects 82
7.11 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX 82
7.12 HTTP Strict Transport Security 83
7.13 Satisfying Any Number of Security Methods 84
7.14 NGINX Plus Dynamic Application Layer DDoS Mitigation 85
7.15 Installing and Configuring NGINX Plus App Protect Module 86

8. HTTP/2. 91
8.0 Introduction 91
8.1 Basic Configuration 91
8.2 gRPC 92
8.3 HTTP/2 Server Push 94

9. Sophisticated Media Streaming. 97
9.0 Introduction 97
9.1 Serving MP4 and FLV 97
9.2 Streaming with HLS with NGINX Plus 98
9.3 Streaming with HDS with NGINX Plus 99
9.4 Bandwidth Limits with NGINX Plus 100

10. Cloud Deployments. 101
10.0 Introduction 101
10.1 Auto-Provisioning on AWS 101
10.2 Routing to NGINX Nodes Without an AWS ELB 103
10.3 The NLB Sandwich 104
10.4 Deploying from the AWS Marketplace 106
10.5 Creating an NGINX Virtual Machine Image on Azure 107
10.6 Load Balancing Over NGINX Scale Sets on Azure 109
10.7 Deploying Through the Azure Marketplace 109
10.8 Deploying to Google Compute Engine 110

Table of Contents | vii

10.9 Creating a Google Compute Image 111
10.10 Creating a Google App Engine Proxy 112

11. Containers/Microservices. 115
11.0 Introduction 115
11.1 Using NGINX as an API Gateway 116
11.2 Using DNS SRV Records with NGINX Plus 120
11.3 Using the Official NGINX Image 121
11.4 Creating an NGINX Dockerfile 122
11.5 Building an NGINX Plus Docker Image 124
11.6 Using Environment Variables in NGINX 126
11.7 Kubernetes Ingress Controller 127
11.8 Prometheus Exporter Module 129

12. High-Availability Deployment Modes. 131
12.0 Introduction 131
12.1 NGINX Plus HA Mode 131
12.2 Load-Balancing Load Balancers with DNS 132
12.3 Load Balancing on EC2 132
12.4 NGINX Plus Configuration Synchronization 133
12.5 State Sharing with NGINX Plus and Zone Sync 136

13. Advanced Activity Monitoring. 139
13.0 Introduction 139
13.1 Enable NGINX Open Source Stub Status 139
13.2 Enabling the NGINX Plus Monitoring Dashboard 140
13.3 Collecting Metrics Using the NGINX Plus API 143

14. Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing. 147
14.0 Introduction 147
14.1 Configuring Access Logs 147
14.2 Configuring Error Logs 149
14.3 Forwarding to Syslog 150
14.4 Request Tracing 151
14.5 OpenTracing for NGINX 152

15. Performance Tuning. 155
15.0 Introduction 155
15.1 Automating Tests with Load Drivers 155
15.2 Keeping Connections Open to Clients 156
15.3 Keeping Connections Open Upstream 157

viii | Table of Contents

15.4 Buffering Responses 158
15.5 Buffering Access Logs 159
15.6 OS Tuning 159

16. Introduction to NGINX Controller. 161
16.0 Introduction 161
16.1 Setup Overview 161
16.2 Connecting NGINX Plus with Controller 163
16.3 Driving NGINX Controller with the API 164
16.4 Enable WAF Through Controller App Security 165

17. Practical Ops Tips and Conclusion. 169
17.0 Introduction 169
17.1 Using Includes for Clean Configs 169
17.2 Debugging Configs 170

Conclusion. 173

Index. 175

Table of Contents | ix

Foreword

Welcome to the 2020 edition of the NGINX Cookbook. O’Reilly has been publishing
the NGINX Cookbook for almost five years, and a lot has changed. However, one
thing hasn’t: every day, more and more of the world’s websites choose to run on
NGINX. Today there are over 445 million, nearly double the number when the cook‐
book was first released—and millions more than when NGINX was first released.

Since I wrote the first version of NGINX in 2002, it’s grown to become the load bal‐
ancer, web server, reverse proxy, and API gateway of choice for many websites and
organizations—and it’s still growing. NGINX is a Swiss Army Knife: it can be used in
almost any dataplane scenario, including as a content cache, web application firewall
(WAF), and content delivery network (CDN). Not to mention the fact that it’s fast
and reliable.

The NGINX Cookbook shows you how to get the most out of NGINX—whether
NGINX Open Source or NGINX Plus. You’ll find over 170 pages of easy-to-follow
recipes covering how to install NGINX, how to configure it for almost any use case,
along with debugging and troubleshooting.

This version includes updates to many sections to cover new functionality in NGINX,
as well as entirely new sections and chapters. With the introduction of NGINX App
Protect, we’ve expanded on security in NGINX, along with the expanded NGINX
Controller coverage in parallel to the stunning new features introduced to NGINX
Controller in 2020 (with more to come).

I hope you enjoy the NGINX Cookbook, and that it contributes to your success creat‐
ing and deploying applications with NGINX—fulfilling the vision I had all those
years ago.

—Igor Sysoev,
NGINX Author and Founder

xi

Preface

The NGINX Cookbook aims to provide easy-to-follow examples to real-world prob‐
lems in application delivery. Throughout this book, you will explore the many fea‐
tures of NGINX and how to use them. This guide is fairly comprehensive, and
touches on most of the main capabilities of NGINX.

Throughout this book, there will be references to both the free and open source
NGINX software, as well as the commercial products from NGINX, Inc., NGINX
Plus and NGINX Controller. Features and directives that are only available as part of
the paid subscription to NGINX Plus will be denoted as such. Because NGINX Plus is
an application delivery controller (ADC), and provides many advanced features, it’s
important to highlight these features to gain a full view of the possibilities of the
platform.

The book will begin by explaining the installation process of NGINX and NGINX
Plus, as well as some basic getting started steps for readers new to NGINX. From
there, the sections will progress to load balancing in all forms, accompanied by chap‐
ters about traffic management, caching, and automation. The security chapter covers
a lot of ground but is important, because NGINX is often the first point of entry for
web traffic to your application, and the first line of application-layer defense. There
are a number of chapters that cover cutting-edge topics such as HTTP/2, websockets,
media streaming, cloud and container environments—wrapping up with more tradi‐
tional operational topics such as monitoring, debugging, performance, and opera‐
tional tips. The book will end with an introduction to NGINX Controller, an
application-centric management platform.

I personally use NGINX as a multitool, and believe this book will enable you to do
the same. It’s software that I believe in and enjoy working with. I’m happy to share
this knowledge with you, and hope that as you read through this book you relate the
recipes to your real-world scenarios and will employ these solutions.

xiii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “NGINX Cookbook by
Derek DeJonghe (O’Reilly). Copyright 2021 O’Reilly Media, Inc., 978-1-492-07848-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xiv | Preface

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/NGINX-cookbook.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank Hussein Nasser and Gonzalo Josue Spina for their helpful and
detailed reviews of this title. I would also like to thank my wife for her support during
the writing process.

Preface | xv

http://oreilly.com
http://oreilly.com
https://oreil.ly/NGINX-cookbook
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1

Basics

1.0 Introduction
To get started with NGINX Open Source or NGINX Plus, you first need to install it
on a system and learn some basics. In this chapter, you will learn how to install
NGINX, where the main configuration files are, and commands for administration.
You will also learn how to verify your installation and make requests to the default
server.

1.1 Installing on Debian/Ubuntu
Problem
You need to install NGINX Open Source on a Debian or Ubuntu machine.

Solution
Create a file named /etc/apt/sources.list.d/nginx.list that contains the following
contents:

deb http://nginx.org/packages/mainline/OS/ CODENAME nginx
deb-src http://nginx.org/packages/mainline/OS/ CODENAME nginx

Alter the file, replacing OS at the end of the URL with ubuntu or debian, depending
on your distribution. Replace CODENAME with the code name for your distribu‐
tion; jessie or stretch for Debian, or trusty, xenial, artful, or bionic for
Ubuntu. Then, run the following commands:

wget http://nginx.org/keys/nginx_signing.key
apt-key add nginx_signing.key
apt-get update

1

apt-get install -y nginx
/etc/init.d/nginx start

Discussion
The file you just created instructs the advanced package tool (APT) package manage‐
ment system to utilize the Official NGINX package repository. Modifying the file to
provide the correct endpoint and code name for your distribution ensures that the
APT utility receives the correct .deb packages for your system. The following com‐
mands download the NGINX GPG package signing key and import it into APT. Pro‐
viding APT the signing key enables the APT system to validate packages from the
repository. The apt-get update command instructs the APT system to refresh its
package listings from its known repositories. After the package list is refreshed, you
can install NGINX Open Source from the Official NGINX repository. After you
install it, the final command starts NGINX.

1.2 Installing on RedHat/CentOS
Problem
You need to install NGINX Open Source on RedHat or CentOS.

Solution
Create a file named /etc/yum.repos.d/nginx.repo that contains the following contents:

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/mainline/OS/OSRELEASE/$basearch/
gpgcheck=0
enabled=1

Alter the file, replacing OS at the end of the URL with rhel or centos, depending on
your distribution. Replace OSRELEASE with 6 or 7 for version 6.x or 7.x, respectively.
Then, run the following commands:

yum -y install nginx
systemctl enable nginx
systemctl start nginx
firewall-cmd --permanent --zone=public --add-port=80/tcp
firewall-cmd --reload

Discussion
The file you just created for this solution instructs the YUM package management
system to utilize the Official NGINX Open Source package repository. The com‐
mands that follow install NGINX Open Source from the Official repository, instruct

2 | Chapter 1: Basics

systemd to enable NGINX at boot time, and tell it to start it now. The firewall com‐
mands open port 80 for the TCP protocol, which is the default port for HTTP. The
last command reloads the firewall to commit the changes.

1.3 Installing NGINX Plus
Problem
You need to install NGINX Plus.

Solution
Visit http://cs.nginx.com/repo_setup. From the drop-down menu, select the OS you’re
installing and then follow the instructions. The instructions are similar to the installa‐
tion of the open source solutions; however, you need to install a certificate in order to
authenticate to the NGINX Plus repository.

Discussion
NGINX keeps this repository installation guide up to date with instructions on instal‐
ling the NGINX Plus. Depending on your OS and version, these instructions vary
slightly, but there is one commonality. You must obtain a certificate and key from the
NGINX portal, and provide them to your system, in order to authenticate to the
NGINX Plus repository.

1.4 Verifying Your Installation
Problem
You want to validate the NGINX installation and check the version.

Solution
You can verify that NGINX is installed and check its version by using the following
command:

$ nginx -v
nginx version: nginx/1.15.3

As this example shows, the response displays the version.

You can confirm that NGINX is running by using the following command:

$ ps -ef | grep nginx
root 1738 1 0 19:54 ? 00:00:00 nginx: master process
nginx 1739 1738 0 19:54 ? 00:00:00 nginx: worker process

1.3 Installing NGINX Plus | 3

http://cs.nginx.com/repo_setup

The ps command lists running processes. By piping it to grep, you can search for
specific words in the output. This example uses grep to search for nginx. The result
shows two running processes, a master and worker. If NGINX is running, you will
always see a master and one or more worker processes. Note the master process is
running as root, as NGINX needs elevated privileges in order to function properly.
For instructions on starting NGINX, refer to the next section. To see how to start
NGINX as a daemon, use the init.d or systemd methodologies.

To verify that NGINX is returning requests correctly, use your browser to make a
request to your machine or use curl. When making the request, use the machine’s IP
address or hostname. If installed locally you can use localhost as follows:

curl localhost

You will see the NGINX Welcome default HTML site.

Discussion
The nginx command allows you to interact with the NGINX binary to check the ver‐
sion, list installed modules, test configurations, and send signals to the master pro‐
cess. NGINX must be running in order for it to serve requests. The ps command is a
surefire way to determine whether NGINX is running either as a daemon or in the
foreground. The configuration provided by default with NGINX runs a static-site
HTTP server on port 80. You can test this default site by making an HTTP request to
the machine at localhost as well as the host’s IP and hostname.

1.5 Key Files, Directories, and Commands
Problem
You need to understand the important NGINX directories and commands.

Solution

NGINX files and directories

/etc/nginx/
The /etc/nginx/ directory is the default configuration root for the NGINX server.
Within this directory you will find configuration files that instruct NGINX on
how to behave.

/etc/nginx/nginx.conf
The /etc/nginx/nginx.conf file is the default configuration entry point used by the
NGINX service. This configuration file sets up global settings for things like
worker process, tuning, logging, loading dynamic modules, and references to

4 | Chapter 1: Basics

other NGINX configuration files. In a default configuration, the /etc/nginx/
nginx.conf file includes the top-level http block, or context, which includes all
configuration files in the directory described next.

/etc/nginx/conf.d/
The /etc/nginx/conf.d/ directory contains the default HTTP server configuration
file. Files in this directory ending in .conf are included in the top-level http block
from within the /etc/nginx/nginx.conf file. It’s best practice to utilize
include statements and organize your configuration in this way to keep your
configuration files concise. In some package repositories, this folder is named
sites-enabled, and configuration files are linked from a folder named site-
available; this convention is deprecated.

/var/log/nginx/
The /var/log/nginx/ directory is the default log location for NGINX. Within this
directory you will find an access.log file and an error.log file. The access log con‐
tains an entry for each request NGINX serves. The error logfile contains error
events and debug information if the debug module is enabled.

NGINX commands

nginx -h

Shows the NGINX help menu.

nginx -v

Shows the NGINX version.

nginx -V

Shows the NGINX version, build information, and configuration arguments,
which shows the modules built into the NGINX binary.

nginx -t

Tests the NGINX configuration.

nginx -T

Tests the NGINX configuration and prints the validated configuration to the
screen. This command is useful when seeking support.

nginx -s signal

The -s flag sends a signal to the NGINX master process. You can send signals
such as stop, quit, reload, and reopen. The stop signal discontinues the
NGINX process immediately. The quit signal stops the NGINX process after it
finishes processing inflight requests. The reload signal reloads the configuration.
The reopen signal instructs NGINX to reopen logfiles.

1.5 Key Files, Directories, and Commands | 5

Discussion
With an understanding of these key files, directories, and commands, you’re in a
good position to start working with NGINX. With this knowledge, you can alter the
default configuration files and test your changes by using the nginx -t command. If
your test is successful, you also know how to instruct NGINX to reload its configura‐
tion using the nginx -s reload command.

1.6 Serving Static Content
Problem
You need to serve static content with NGINX.

Solution
Overwrite the default HTTP server configuration located in /etc/nginx/conf.d/
default.conf with the following NGINX configuration example:

server {
 listen 80 default_server;
 server_name www.example.com;

 location / {
 root /usr/share/nginx/html;
 # alias /usr/share/nginx/html;
 index index.html index.htm;
 }
}

Discussion
This configuration serves static files over HTTP on port 80 from the directory /usr/
share/nginx/html/. The first line in this configuration defines a new server block.
This defines a new context for NGINX to listen for. Line two instructs NGINX to lis‐
ten on port 80, and the default_server parameter instructs NGINX to use this
server as the default context for port 80. The listen directive can also take a range of
ports. The server_name directive defines the hostname or names of which requests
should be directed to this server. If the configuration had not defined this context as
the default_server, NGINX would direct requests to this server only if the HTTP
host header matched the value provided to the server_name directive. With the
default_server context set, you can omit the server_name directive if you do not
yet have a domain name to use.

6 | Chapter 1: Basics

The location block defines a configuration based on the path in the URL. The path,
or portion of the URL after the domain, is referred to as the uniform resource identi‐
fier (URI). NGINX will best match the URI requested to a location block. The
example uses / to match all requests. The root directive shows NGINX where to look
for static files when serving content for the given context. The URI of the request is
appended to the root directive’s value when looking for the requested file. If we had
provided a URI prefix to the location directive, this would be included in the
appended path, unless we used the alias directive rather than root. The location
directive is able to match a wide range of expressions. Visit the link in the Also See
section for more information. Lastly, the index directive provides NGINX with a
default file, or list of files to check, in the event that no further path is provided in the
URI.

Also See
NGINX HTTP Location Directive Documentation

1.7 Graceful Reload
Problem
You need to reload your configuration without dropping packets.

Solution
Use the reload method of NGINX to achieve a graceful reload of the configuration
without stopping the server:

nginx -s reload

This example reloads the NGINX system using the NGINX binary to send a signal to
the master process.

Discussion
Reloading the NGINX configuration without stopping the server provides the ability
to change configurations on the fly without dropping any packets. In a high-uptime,
dynamic environment, you will need to change your load-balancing configuration at
some point. NGINX allows you to do this while keeping the load balancer online.
This feature enables countless possibilities, such as rerunning configuration manage‐
ment in a live environment, or building an application- and cluster-aware module to
dynamically configure and reload NGINX to meet the needs of the environment.

1.7 Graceful Reload | 7

https://oreil.ly/-TNyO

CHAPTER 2

High-Performance Load Balancing

2.0 Introduction
Today’s internet user experience demands performance and uptime. To achieve this,
multiple copies of the same system are run, and the load is distributed over them. As
the load increases, another copy of the system can be brought online. This architec‐
ture technique is called horizontal scaling. Software-based infrastructure is increasing
in popularity because of its flexibility, opening up a vast world of possibilities.
Whether the use case is as small as a set of two for high availability, or as large as
thousands around the globe, there’s a need for a load-balancing solution that is as
dynamic as the infrastructure. NGINX fills this need in a number of ways, such as
HTTP, TCP, and user datagram protocol (UDP) load balancing, which we cover in
this chapter.

When balancing load, it’s important that the impact to the client’s experience is
entirely positive. Many modern web architectures employ stateless application tiers,
storing state in shared memory or databases. However, this is not the reality for all.
Session state is immensely valuable and vast in interactive applications. This state
might be stored locally to the application server for a number of reasons; for example,
in applications for which the data being worked is so large that network overhead is
too expensive in performance. When state is stored locally to an application server, it
is extremely important to the user experience that the subsequent requests continue
to be delivered to the same server. Another facet of the situation is that servers should
not be released until the session has finished. Working with stateful applications at
scale requires an intelligent load balancer. NGINX Plus offers multiple ways to solve
this problem by tracking cookies or routing. This chapter covers session persistence
as it pertains to load balancing with NGINX and NGINX Plus.

9

It’s important to ensure that the application that NGINX is serving is healthy. For a
number of reasons, upstream requests may begin to fail. It could be because of net‐
work connectivity, server failure, or application failure, to name a few. Proxies and
load balancers must be smart enough to detect failure of upstream servers (servers
behind the load balancer or proxy), and stop passing traffic to them; otherwise, the
client will be waiting, only to be delivered a timeout. A way to mitigate service degra‐
dation when a server fails is to have the proxy check the health of the upstream
servers. NGINX offers two different types of health checks: passive, available in the
open source version; and active, available only in NGINX Plus. Active health checks
at regular intervals will make a connection or request to the upstream server, and can
verify that the response is correct. Passive health checks monitor the connection or
responses of the upstream server as clients make the request or connection. You
might want to use passive health checks to reduce the load of your upstream servers,
and you might want to use active health checks to determine failure of an upstream
server before a client is served a failure. The tail end of this chapter examines moni‐
toring the health of the upstream application servers for which you’re load balancing.

2.1 HTTP Load Balancing
Problem
You need to distribute load between two or more HTTP servers.

Solution
Use NGINX’s HTTP module to load balance over HTTP servers using the upstream
block:

upstream backend {
 server 10.10.12.45:80 weight=1;
 server app.example.com:80 weight=2;
 server spare.example.com:80 backup;
}
server {
 location / {
 proxy_pass http://backend;
 }
}

This configuration balances load across two HTTP servers on port 80, and defines
one as a backup which is used when the primary two are unavailable. The weight
parameter instructs NGINX to pass twice as many requests to the second server, and
the weight parameter defaults to 1.

10 | Chapter 2: High-Performance Load Balancing

Discussion
The HTTP upstream module controls the load balancing for HTTP. This module
defines a pool of destinations—any combination of Unix sockets, IP addresses, and
DNS records, or a mix. The upstream module also defines how any individual request
is assigned to any of the upstream servers.

Each upstream destination is defined in the upstream pool by the server directive.
The server directive is provided a Unix socket, IP address, or a fully qualified domain
name (FQDN), along with a number of optional parameters. The optional parameters
give more control over the routing of requests. These parameters include the weight
of the server in the balancing algorithm; whether the server is in standby mode, avail‐
able, or unavailable; and how to determine if the server is unavailable. NGINX Plus
provides a number of other convenient parameters like connection limits to the
server, advanced DNS resolution control, and the ability to slowly ramp up connec‐
tions to a server after it starts.

2.2 TCP Load Balancing
Problem
You need to distribute load between two or more TCP servers.

Solution
Use NGINX’s stream module to load balance over TCP servers using the upstream
block:

stream {
 upstream mysql_read {
 server read1.example.com:3306 weight=5;
 server read2.example.com:3306;
 server 10.10.12.34:3306 backup;
 }

 server {
 listen 3306;
 proxy_pass mysql_read;
 }
}

The server block in this example instructs NGINX to listen on TCP port 3306 and
balance load between two MySQL database read replicas, and lists another as a
backup that will be passed traffic if the primaries are down.

This configuration is not to be added to the conf.d folder as that folder is included
within an http block; instead, you should create another folder named stream.conf.d,

2.2 TCP Load Balancing | 11

open the stream block in the nginx.conf file, and include the new folder for stream
configurations. An example follows:

In the /etc/nginx/nginx.conf configuration file:

user nginx;
worker_processes auto;
pid /run/nginx.pid;

stream {
 include /etc/nginx/stream.conf.d/*.conf;
}

In a file named /etc/nginx/stream.conf.d/mysql_reads.conf configuration file:

upstream mysql_read {
 server read1.example.com:3306 weight=5;
 server read2.example.com:3306;
 server 10.10.12.34:3306 backup;
}

server {
 listen 3306;
 proxy_pass mysql_read;
}

Discussion
The main difference between the http and stream context is that they operate at dif‐
ferent layers of the OSI model. The http context operates at the application layer, 7,
and stream operates at the transport layer, 4. This does not mean that the stream
context cannot become application-aware with some clever scripting, but that the
http context is specifically designed to fully understand the HTTP protocol, and the
stream context, by default, simply routes and load balances packets.

TCP load balancing is defined by the NGINX stream module. The stream module,
like the HTTP module, allows you to define upstream pools of servers and configure a
listening server. When configuring a server to listen on a given port, you must define
the port it’s to listen on, or optionally, an address and a port. From there, a destina‐
tion must be configured, whether it be a direct reverse proxy to another address or an
upstream pool of resources.

A number of options that alter the properties of the reverse proxy of the TCP connec‐
tion are available for configuration. Some of these include, SSL/TLS validation limita‐
tions, timeouts, and keepalives. Some of the values of these proxy options can be (or
contain) variables, such as the download rate and the name used to verify a SSL/TLS
certificate.

12 | Chapter 2: High-Performance Load Balancing

The upstream for TCP load balancing is much like the upstream for HTTP, in that it
defines upstream resources as servers, configured with Unix socket, IP, or FQDN, as
well as server weight, maximum number of connections, DNS resolvers, and connec‐
tion ramp-up periods; and if the server is active, down, or in backup mode.

NGINX Plus offers even more features for TCP load balancing. These advanced fea‐
tures offered in NGINX Plus can be found throughout this book. Health checks for
all load balancing will be covered later in this chapter.

2.3 UDP Load Balancing
Problem
You need to distribute load between two or more UDP servers.

Solution
Use NGINX’s stream module to load balance over UDP servers using the upstream
block defined as udp:

stream {
 upstream ntp {
 server ntp1.example.com:123 weight=2;
 server ntp2.example.com:123;
 }

 server {
 listen 123 udp;
 proxy_pass ntp;
 }
}

This section of configuration balances load between two upstream network time pro‐
tocol (NTP) servers using the UDP protocol. Specifying UDP load balancing is as
simple as using the udp parameter on the listen directive.

If the service over which you’re load balancing requires multiple packets to be sent
back and forth between client and server, you can specify the reuseport parameter.
Examples of these types of services are OpenVPN, Voice over Internet Protocol
(VoIP), virtual desktop solutions, and Datagram Transport Layer Security (DTLS).
The following is an example of using NGINX to handle OpenVPN connections and
proxy them to the OpenVPN service running locally:

stream {
 server {
 listen 1195 udp reuseport;
 proxy_pass 127.0.0.1:1194;

2.3 UDP Load Balancing | 13

 }
}

Discussion
You might ask, “Why do I need a load balancer when I can have multiple hosts in a
DNS A or service record (SRV record)?” The answer is that not only are there alter‐
native balancing algorithms with which we can balance, but we can load balance over
the DNS servers themselves. UDP services make up a lot of the services that we
depend on in networked systems, such as DNS, NTP, QUIC, HTTP/3, and VoIP. UDP
load balancing might be less common to some but just as useful in the world of scale.

You can find UDP load balancing in the stream module, just like TCP, and configure
it mostly in the same way. The main difference is that the listen directive specifies
that the open socket is for working with datagrams. When working with datagrams,
there are some other directives that might apply where they would not in TCP, such
as the proxy_response directive, which specifies to NGINX how many expected
responses can be sent from the upstream server. By default, this is unlimited until the
proxy_timeout limit is reached. The proxy_timeout directive sets the time between
two successive read-or-write operations on client or proxied server connections
before the connection is closed.

The reuseport parameter instructs NGINX to create an individual listening socket
for each worker process. This allows the kernel to distribute incoming connections
between worker processes to handle multiple packets being sent between client and
server. The reuseport feature works only on Linux kernels 3.9 and higher, DragonFly
BSD, and FreeBSD 12 and higher.

2.4 Load-Balancing Methods
Problem
Round-robin load balancing doesn’t fit your use case because you have heterogeneous
workloads or server pools.

Solution
Use one of NGINX’s load-balancing methods such as least connections, least time,
generic hash, random, or IP hash:

upstream backend {
 least_conn;
 server backend.example.com;
 server backend1.example.com;
}

14 | Chapter 2: High-Performance Load Balancing

This example sets the load-balancing algorithm for the backend upstream pool to be
least connections. All load-balancing algorithms, with the exception of generic hash,
random, and least-time, are standalone directives, such as the preceding exam‐
ple. The parameters to these directives are explained in the following discussion.

Discussion
Not all requests or packets carry equal weight. Given this, round robin, or even the
weighted round robin used in previous examples, will not fit the need of all applica‐
tions or traffic flow. NGINX provides a number of load-balancing algorithms that
you can use to fit particular use cases. In addition to being able to choose these load-
balancing algorithms or methods, you can also configure them. The following load-
balancing methods are available for upstream HTTP, TCP, and UDP pools.

Round robin
This is the default load-balancing method, which distributes requests in the order
of the list of servers in the upstream pool. You can also take weight into consider‐
ation for a weighted round robin, which you can use if the capacity of the
upstream servers varies. The higher the integer value for the weight, the more
favored the server will be in the round robin. The algorithm behind weight is
simply the statistical probability of a weighted average.

Least connections
This method balances load by proxying the current request to the upstream
server with the least number of open connections. Least connections, like round
robin, also takes weights into account when deciding which server to send the
connection to. The directive name is least_conn.

Least time
Available only in NGINX Plus, least time is akin to least connections in that it
proxies to the upstream server with the least number of current connections, but
favors the servers with the lowest average response times. This method is one of
the most sophisticated load-balancing algorithms and fits the needs of highly
performant web applications. This algorithm is a value-add over least connec‐
tions because a small number of connections does not necessarily mean the
quickest response. When using this algorithm, it is important to take into consid‐
eration the statistical variance of services’ request times. Some requests may natu‐
rally take more processing and thus have a longer request time, increasing the
range of the statistic. Long request times do not always mean a less performant or
overworked server. However, requests that require more processing may be can‐
didates for asynchronous workflows. A parameter of header or last_byte must
be specified for this directive. When header is specified, the time to receive the
response header is used. When last_byte is specified, the time to receive the full
response is used. The directive name is least_time.

2.4 Load-Balancing Methods | 15

Generic hash
The administrator defines a hash with the given text, variables of the request or
runtime, or both. NGINX distributes the load among the servers by producing a
hash for the current request and placing it against the upstream servers. This
method is very useful when you need more control over where requests are sent
or for determining which upstream server most likely will have the data cached.
Note that when a server is added or removed from the pool, the hashed requests
will be redistributed. This algorithm has an optional parameter, consistent, to
minimize the effect of redistribution. The directive name is hash.

Random
This method is used to instruct NGINX to select a random server from the
group, taking server weights into consideration. The optional two [method]
parameter directs NGINX to randomly select two servers and then use the pro‐
vided load-balancing method to balance between those two. By default the
least_conn method is used if two is passed without a method. The directive
name for random load balancing is random.

IP hash
This method works only for HTTP. IP hash uses the client IP address as the hash.
Slightly different from using the remote variable in a generic hash, this algorithm
uses the first three octets of an IPv4 address or the entire IPv6 address. This
method ensures that clients are proxied to the same upstream server as long as
that server is available, which is extremely helpful when the session state is of
concern and not handled by shared memory of the application. This method also
takes the weight parameter into consideration when distributing the hash. The
directive name is ip_hash.

2.5 Sticky Cookie with NGINX Plus
Problem
You need to bind a downstream client to an upstream server using NGINX Plus.

Solution
Use the sticky cookie directive to instruct NGINX Plus to create and track a cookie:

upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 sticky cookie
 affinity
 expires=1h
 domain=.example.com

16 | Chapter 2: High-Performance Load Balancing

 httponly
 secure
 path=/;
}

This configuration creates and tracks a cookie that ties a downstream client to an
upstream server. In this example, the cookie is named affinity, is set for
example.com, expires in an hour, cannot be consumed client-side, can be sent only
over HTTPS, and is valid for all paths.

Discussion
Using the cookie parameter on the sticky directive creates a cookie on the first
request that contains information about the upstream server. NGINX Plus tracks this
cookie, enabling it to continue directing subsequent requests to the same server. The
first positional parameter to the cookie parameter is the name of the cookie to be
created and tracked. Other parameters offer additional control, informing the
browser of the appropriate usage—like the expiry time, domain, path, and whether
the cookie can be consumed client-side or whether it can be passed over unsecure
protocols.

2.6 Sticky Learn with NGINX Plus
Problem
You need to bind a downstream client to an upstream server by using an existing
cookie with NGINX Plus.

Solution
Use the sticky learn directive to discover and track cookies that are created by the
upstream application:

upstream backend {
 server backend1.example.com:8080;
 server backend2.example.com:8081;

 sticky learn
 create=$upstream_cookie_cookiename
 lookup=$cookie_cookiename
 zone=client_sessions:2m;
}

This example instructs NGINX to look for and track sessions by looking for a cookie
named COOKIENAME in response headers, and looking up existing sessions by looking
for the same cookie on request headers. This session affinity is stored in a shared
memory zone of 2 MB that can track approximately 16,000 sessions. The name of the

2.6 Sticky Learn with NGINX Plus | 17

cookie will always be application specific. Commonly used cookie names, such as
jsessionid or phpsessionid, are typically defaults set within the application or the
application server configuration.

Discussion
When applications create their own session-state cookies, NGINX Plus can discover
them in request responses and track them. This type of cookie tracking is performed
when the sticky directive is provided: the learn parameter. Shared memory for
tracking cookies is specified with the zone parameter, with a name and size. NGINX
Plus is directed to look for cookies in the response from the upstream server via spec‐
ification of the create parameter, and searches for prior registered server affinity
using the lookup parameter. The value of these parameters are variables exposed by
the HTTP module.

2.7 Sticky Routing with NGINX Plus
Problem
You need granular control over how your persistent sessions are routed to the
upstream server with NGINX Plus.

Solution
Use the sticky directive with the route parameter to use variables about the request
to route:

map $cookie_jsessionid $route_cookie {
 ~.+\.(?P<route>\w+)$ $route;
}

map $request_uri $route_uri {
 ~jsessionid=.+\.(?P<route>\w+)$ $route;
}

upstream backend {
 server backend1.example.com route=a;
 server backend2.example.com route=b;

 sticky route $route_cookie $route_uri;
}

This example attempts to extract a Java session ID, first from a cookie by mapping the
value of the Java session ID cookie to a variable with the first map block, and second
by looking into the request URI for a parameter called jsessionid, mapping the
value to a variable using the second map block. The sticky directive with the route

18 | Chapter 2: High-Performance Load Balancing

parameter is passed any number of variables. The first nonzero or nonempty value is
used for the route. If a jsessionid cookie is used, the request is routed to backend1;
if a URI parameter is used, the request is routed to backend2. Although this example
is based on the Java common session ID, the same applies for other session technol‐
ogy like phpsessionid, or any guaranteed unique identifier your application gener‐
ates for the session ID.

Discussion
Sometimes, utilizing a bit more granular control, you might want to direct traffic to a
particular server. The route parameter to the sticky directive is built to achieve this
goal. Sticky route gives you better control, actual tracking, and stickiness, as opposed
to the generic hash load-balancing algorithm. The client is first routed to an upstream
server based on the route specified, and then subsequent requests will carry the rout‐
ing information in a cookie or the URI. Sticky route takes a number of positional
parameters that are evaluated. The first nonempty variable is used to route to a server.
Map blocks can be used to selectively parse variables and save them as other variables
to be used in the routing. Essentially, the sticky route directive creates a session
within the NGINX Plus shared memory zone for tracking any client session identifier
you specify to the upstream server, consistently delivering requests with this session
identifier to the same upstream server as its original request.

2.8 Connection Draining with NGINX Plus
Problem
You need to gracefully remove servers for maintenance or other reasons, while still
serving sessions with NGINX Plus.

Solution
Use the drain parameter through the NGINX Plus API, described in more detail in
Chapter 5, to instruct NGINX to stop sending new connections that are not already
tracked:

$ curl -X POST -d '{"drain":true}' \
 'http://nginx.local/api/3/http/upstreams/backend/servers/0'

{
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":
 "10s","slow_start":

2.8 Connection Draining with NGINX Plus | 19

 "0s",
 "route":"",
 "backup":false,
 "down":false,
 "drain":true
}

Discussion
When session state is stored locally to a server, connections and persistent sessions
must be drained before the server is removed from the pool. Draining connections is
the process of letting sessions to a server expire natively before removing the server
from the upstream pool. You can configure draining for a particular server by adding
the drain parameter to the server directive. When the drain parameter is set,
NGINX Plus stops sending new sessions to this server but allows current sessions to
continue being served for the length of their session. You can also toggle this configu‐
ration by adding the drain parameter to an upstream server directive, then reloading
the NGINX Plus configuration.

2.9 Passive Health Checks
Problem
You need to passively check the health of upstream servers.

Solution
Use NGINX health checks with load balancing to ensure that only healthy upstream
servers are utilized:

upstream backend {
 server backend1.example.com:1234 max_fails=3 fail_timeout=3s;
 server backend2.example.com:1234 max_fails=3 fail_timeout=3s;
}

This configuration passively monitors upstream health by monitoring the response of
client requests directed to the upstream server. The example sets the max_fails direc‐
tive to three, and fail_timeout to 3 seconds. These directive parameters work the
same way in both stream and HTTP servers.

Discussion
Passive health checking is available in the open source version of NGINX, and is con‐
figured by using the same server parameters for HTTP, TCP, and UDP load balanc‐
ing. Passive monitoring watches for failed or timed-out connections as they pass
through NGINX as requested by a client. Passive health checks are enabled by default;

20 | Chapter 2: High-Performance Load Balancing

the parameters mentioned here allow you to tweak their behavior. The default
max_fails value is 1, and the default fail_timeout value is 10s. Monitoring for
health is important on all types of load balancing, not only from a user-experience
standpoint, but also for business continuity. NGINX passively monitors upstream
HTTP, TCP, and UDP servers to ensure that they’re healthy and performing.

Also See
HTTP Health Check Admin Guide
TCP Health Check Admin Guide
UDP Health Check Admin Guide

2.10 Active Health Checks with NGINX Plus
Problem
You need to actively check your upstream servers for health with NGINX Plus.

Solution
For HTTP, use the health_check directive in a location block:

http {
 server {
 # ...
 location / {
 proxy_pass http://backend;
 health_check interval=2s
 fails=2
 passes=5
 uri=/
 match=welcome;
 }
 }
 # status is 200, content type is "text/html",
 # and body contains "Welcome to nginx!"
 match welcome {
 status 200;
 header Content-Type = text/html;
 body ~ "Welcome to nginx!";
 }
}

This health-check configuration for HTTP servers checks the health of the upstream
servers by making an HTTP GET request to the URI '/' every 2 seconds. The HTTP
method can’t be defined for health checks, only GET requests are performed, as other
methods may change the state of backend systems. The upstream servers must pass
five consecutive health checks to be considered healthy. They are considered

2.10 Active Health Checks with NGINX Plus | 21

https://oreil.ly/9xsNp
https://oreil.ly/_2MK5
https://oreil.ly/kEYQN

unhealthy if they fail two consecutive checks. The response from the upstream server
must match the defined match block, which defines the status code as 200, the header
Content-Type value as 'text/html', and the string "Welcome to nginx!" in the
response body. The HTTP match block has three directives: status, header, and
body. All three of these directives have comparison flags, as well.

Stream health checks for TCP/UDP services are very similar:

stream {
 # ...
 server {
 listen 1234;
 proxy_pass stream_backend;
 health_check interval=10s
 passes=2
 fails=3;
 health_check_timeout 5s;
 }
 # ...
}

In this example, a TCP server is configured to listen on port 1234, and to proxy to an
upstream set of servers, for which it actively checks for health. The stream
health_check directive takes all the same parameters as in HTTP, with the exception
of uri, and the stream version has a parameter to switch the check protocol to udp. In
this example, the interval is set to 10 seconds, requires two passes to be considered
healthy, and three fails to be considered unhealthy. The active-stream health check is
also able to verify the response from the upstream server. The match block for stream
servers, however, has just two directives: send and expect. The send directive is raw
data to be sent, and expect is an exact response or a regular expression to match.

Discussion
In NGINX Plus, passive or active health checks can be used to monitor the source
servers. These health checks can measure more than just the response code. In
NGINX Plus, active HTTP health checks monitor based on a number of acceptance
criteria of the response from the upstream server. You can configure active health-
check monitoring for how often upstream servers are checked, how many times a
server must pass this check to be considered healthy, how many times it can fail
before being deemed unhealthy, and what the expected result should be. For more
complex logic, a require directive for the match block enables the use of variables
whose value must not be empty or zero. The match parameter points to a match block
that defines the acceptance criteria for the response. The match block also defines the
data to send to the upstream server when used in the stream context for TCP/UDP.
These features enable NGINX to ensure that upstream servers are healthy at all times.

22 | Chapter 2: High-Performance Load Balancing

Also See
HTTP Health Check Admin Guide
TCP Health Check Admin Guide
UDP Health Check Admin Guide

2.11 Slow Start with NGINX Plus
Problem
Your application needs to ramp up before taking on full production load.

Solution
Use the slow_start parameter on the server directive to gradually increase the
number of connections over a specified time as a server is reintroduced to the
upstream load-balancing pool:

upstream {
 zone backend 64k;

 server server1.example.com slow_start=20s;
 server server2.example.com slow_start=15s;
}

The server directive configurations will slowly ramp up traffic to the upstream
servers after they’re reintroduced to the pool. server1 will slowly ramp up its number
of connections over 20 seconds, and server2 over 15 seconds.

Discussion
Slow start is the concept of slowly ramping up the number of requests proxied to a
server over a period of time. Slow start allows the application to warm up by populat‐
ing caches, initiating database connections without being overwhelmed by connec‐
tions as soon as it starts. This feature takes effect when a server that has failed health
checks begins to pass again and re-enters the load-balancing pool, and is only avail‐
able in NGINX Plus. Slow start can’t be used with hash, ip_hash, or random load-
balancing methods.

2.11 Slow Start with NGINX Plus | 23

https://oreil.ly/9xsNp
https://oreil.ly/_2MK5
https://oreil.ly/kEYQN

CHAPTER 3

Traffic Management

3.0 Introduction
NGINX and NGINX Plus are also classified as web-traffic controllers. You can use
NGINX to intelligently route traffic and control flow based on many attributes. This
chapter covers NGINX’s ability to split client requests based on percentages; utilize
the geographical location of the clients; and control the flow of traffic in the form of
rate, connection, and bandwidth limiting. As you read through this chapter, keep in
mind that you can mix and match these features to enable countless possibilities.

3.1 A/B Testing
Problem
You need to split clients between two or more versions of a file or application to test
acceptance or engagement.

Solution
Use the split_clients module to direct a percentage of your clients to a different
upstream pool:

split_clients "${remote_addr}AAA" $variant {
 20.0% "backendv2";
 * "backendv1";
}

The split_clients directive hashes the string provided by you as the first parameter
and divides that hash by the percentages provided to map the value of a variable pro‐
vided as the second parameter. The addition of “AAA” to the first parameter is to

25

demonstrate that this is a concatenated string that can include many variables, as
mentioned in the generic hash load-balancing algorithm. The third parameter is an
object containing key-value pairs where the key is the percentage weight and the
value is the value to be assigned. The key can be either a percentage or an asterisk.
The asterisk denotes the rest of the whole after all percentages are taken. The value of
the $variant variable will be backendv2 for 20% of client IP addresses and backendv1
for the remaining 80%.

In this example, backendv1 and backendv2 represent upstream server pools and can
be used with the proxy_pass directive as such:

location / {
 proxy_pass http://$variant
}

Using the variable $variant, our traffic will split between two different application
server pools.

To demonstrate the wide variety of uses split_clients can have, the following is an
example of splitting between two versions of a static site.

http {
 split_clients "${remote_addr}" $site_root_folder {
 33.3% "/var/www/sitev2/";
 * "/var/www/sitev1/";
 }
 server {
 listen 80 _;
 root $site_root_folder;
 location / {
 index index.html;
 }
 }
}

Discussion
This type of A/B testing is useful when testing different types of marketing and front‐
end features for conversion rates on ecommerce sites. It’s common for applications to
use a type of deployment called canary release. In this type of deployment, traffic is
slowly switched over to the new version by gradually increasing the percentage of
users being routed to the new version. Splitting your clients between different ver‐
sions of your application can be useful when rolling out new versions of code, to limit
the blast radius in the event of an error. Even more common is the blue-green deploy‐
ment style, where users are cut over to a new version and the old version is still avail‐
able while the deployment is validated. Whatever the reason for splitting clients
between two different application sets, NGINX makes this simple because of this
split_clients module.

26 | Chapter 3: Traffic Management

Also See
split_clients Documentation

3.2 Using the GeoIP Module and Database
Problem
You need to install the GeoIP database and enable its embedded variables within
NGINX to utilize the physical location of your clients in the NGINX log, proxied
requests, or request routing.

Solution
The Official NGINX Open Source package repository, configured in Chapter 2 when
installing NGINX, provides a package named nginx-module-geoip. When using
the NGINX Plus package repository, this package is named nginx-plus-module-
geoip. These packages install the dynamic version of the GeoIP module.

RHEL/CentOS NGINX Open Source:

yum install nginx-module-geoip

Debian/Ubuntu NGINX Open Source:

apt-get install nginx-module-geoip

RHEL/CentOS NGINX Plus:

yum install nginx-plus-module-geoip

Debian/Ubuntu NGINX Plus:

apt-get install nginx-plus-module-geoip

Download the GeoIP country and city databases and unzip them:

mkdir /etc/nginx/geoip
cd /etc/nginx/geoip
wget "http://geolite.maxmind.com/\
download/geoip/database/GeoLiteCountry/GeoIP.dat.gz"
gunzip GeoIP.dat.gz
wget "http://geolite.maxmind.com/\
download/geoip/database/GeoLiteCity.dat.gz"
gunzip GeoLiteCity.dat.gz

This set of commands creates a geoip directory in the /etc/nginx directory, moves to
this new directory, and downloads and unzips the packages.

3.2 Using the GeoIP Module and Database | 27

http://bit.ly/2jsdkw4

With the GeoIP database for countries and cities on the local disk, you can now
instruct the NGINX GeoIP module to use them to expose embedded variables based
on the client IP address:

load_module "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 geoip_country /etc/nginx/geoip/GeoIP.dat;
 geoip_city /etc/nginx/geoip/GeoLiteCity.dat;
...
}

The load_module directive dynamically loads the module from its path on the filesys‐
tem. The load_module directive is only valid in the main context. The geoip_country
directive takes a path to the GeoIP.dat file containing the database mapping IP
addresses to country codes and is valid only in the HTTP context.

Discussion
To use this functionality, you must have the NGINX GeoIP module installed, and a
local GeoIP county and city database. Installation and retrieval of these prerequisites
was demonstrated in this section.

The geoip_country and geoip_city directives expose a number of embedded vari‐
ables available in this module. The geoip_country directive enables variables that
allow you to distinguish the country of origin of your client. These variables include
$geoip_country_code, $geoip_country_code3, and $geoip_country_name. The
country code variable returns the two-letter country code, and the variable with a 3 at
the end returns the three-letter country code. The country name variable returns the
full name of the country.

The geoip_city directive enables quite a few variables. The geoip_city directive
enables all the same variables as the geoip_country directive, just with different
names, such as $geoip_city_country_code, $geoip_city_country_code3, and
$geoip_city_country_name. Other variables include $geoip_city, $geoip_lati
tude, $geoip_longitude, $geoip_city_continent_code, and $geoip_postal_code,
all of which are descriptive of the value they return. $geoip_region and
$geoip_region_name describe the region, territory, state, province, federal land, and
the like. Region is the two-letter code, where region name is the full name.
$geoip_area_code, only valid in the U.S., returns the three-digit telephone area code.

With these variables, you’re able to log information about your client. You could
optionally pass this information to your application as a header or variable, or use
NGINX to route your traffic in particular ways.

28 | Chapter 3: Traffic Management

Also See
NGINX GeoIP Module
GeoIP Update

3.3 Restricting Access Based on Country
Problem
You need to restrict access from particular countries for contractual or application
requirements.

Solution
Map the country codes you want to block or allow to a variable:

load_module
 "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 map $geoip_country_code $country_access {
 "US" 0;
 "RU" 0;
 default 1;
 }
 # ...
}

This mapping will set a new variable $country_access to a 1 or a 0. If the client IP
address originates from the US or Russia, the variable will be set to a 0. For any other
country, the variable will be set to a 1.

Now, within our server block, we’ll use an if statement to deny access to anyone not
originating from the US or Russia:

server {
 if ($country_access = '1') {
 return 403;
 }
 # ...
}

This if statement will evaluate True if the $country_access variable is set to 1. When
True, the server will return a 403 unauthorized. Otherwise the server operates as nor‐
mal. So this if block is only there to deny people who are not from the US or Russia.

3.3 Restricting Access Based on Country | 29

https://oreil.ly/zleE0
https://oreil.ly/rJp_a

Discussion
This is a short but simple example of how to only allow access from a couple of coun‐
tries. This example can be expounded on to fit your needs. You can utilize this same
practice to allow or block based on any of the embedded variables made available
from the GeoIP module.

3.4 Finding the Original Client
Problem
You need to find the original client IP address because there are proxies in front of
the NGINX server.

Solution
Use the geoip_proxy directive to define your proxy IP address range and the
geoip_proxy_recursive directive to look for the original IP:

load_module "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 geoip_country /etc/nginx/geoip/GeoIP.dat;
 geoip_city /etc/nginx/geoip/GeoLiteCity.dat;
 geoip_proxy 10.0.16.0/26;
 geoip_proxy_recursive on;
...
}

The geoip_proxy directive defines a classless inter-domain routing (CIDR) range in
which our proxy servers live and instructs NGINX to utilize the X-Forwarded-For
header to find the client IP address. The geoip_proxy_recursive directive instructs
NGINX to recursively look through the X-Forwarded-For header for the last client IP
known.

Standardization of the Forwarded Header

A header named Forwarded has become the standard header for
adding proxy information for proxied requests. The header used by
the NGINX GeoIP module is X-Forwarded-For and cannot be con‐
figured otherwise at the time of writing. While X-Forwarded-For is
not an official standard, it is still very widely used, accepted, and
set by most proxies.

30 | Chapter 3: Traffic Management

Discussion
You may find that if you’re using a proxy in front of NGINX, NGINX will pick up the
proxy’s IP address rather than the client’s. For this you can use the geoip_proxy
directive to instruct NGINX to use the X-Forwarded-For header when connections
are opened from a given range. The geoip_proxy directive takes an address or a
CIDR range. When there are multiple proxies passing traffic in front of NGINX, you
can use the geoip_proxy_recursive directive to recursively search through X-
Forwarded-For addresses to find the originating client. You will want to use some‐
thing like this when utilizing load balancers such as Amazon Web Services Elastic
Load Balancing (AWS ELB), Google’s load balancer, or Microsoft Azure’s load bal‐
ancer in front of NGINX.

3.5 Limiting Connections
Problem
You need to limit the number of connections based on a predefined key, such as the
client’s IP address.

Solution
Construct a shared memory zone to hold connection metrics, and use the
limit_conn directive to limit open connections:

http {
 limit_conn_zone $binary_remote_addr zone=limitbyaddr:10m;
 limit_conn_status 429;
 # ...
 server {
 # ...
 limit_conn limitbyaddr 40;
 # ...
 }
}

This configuration creates a shared memory zone named limitbyaddr. The prede‐
fined key used is the client’s IP address in binary form. The size of the shared mem‐
ory zone is set to 10 MB. The limit_conn directive takes two parameters:
a limit_conn_zone name, and the number of connections allowed. The
limit_conn_status sets the response when the connections are limited to a status of
429, indicating too many requests. The limit_conn and limit_conn_status direc‐
tives are valid in the HTTP, server, and location context.

3.5 Limiting Connections | 31

Discussion
Limiting the number of connections based on a key can be used to defend against
abuse and share your resources fairly across all your clients. It is important to be cau‐
tious with your predefined key. Using an IP address, as we are in the previous exam‐
ple, could be dangerous if many users are on the same network that originates from
the same IP, such as when behind a Network Address Translation (NAT). The entire
group of clients will be limited. The limit_conn_zone directive is only valid in the
HTTP context. You can utilize any number of variables available to NGINX within
the HTTP context in order to build a string on which to limit by. Utilizing a variable
that can identify the user at the application level, such as a session cookie, may be a
cleaner solution depending on the use case. The limit_conn_status defaults to 503,
service unavailable. You may find it preferable to use a 429, as the service is available,
and 500-level responses indicate server error whereas 400-level responses indicate cli‐
ent error.

Testing limitations can be tricky. It’s often hard to simulate live traffic in an alternate
environment for testing. In this case, you can set the limit_req_dry_run directive to
on, then use the variable $limit_req_status in your access log. The $limit_req_sta
tus variable will evaluate to either PASSED, DELAYED, REJECTED, DELAYED_DRY_RUN, or
REJECTED_DRY_RUN. With dry run enabled, you’ll be able to analyze the logs of live
traffic and tweak your limits as needed before enabling; providing you with assurance
that your limit configuration is correct.

3.6 Limiting Rate
Problem
You need to limit the rate of requests by a predefined key, such as the client’s IP
address.

Solution
Utilize the rate-limiting module to limit the rate of requests:

http {
 limit_req_zone $binary_remote_addr
 zone=limitbyaddr:10m rate=3r/s;
 limit_req_status 429;
 # ...
 server {
 # ...
 limit_req zone=limitbyaddr;
 # ...
 }
}

32 | Chapter 3: Traffic Management

This example configuration creates a shared memory zone named limitbyaddr. The
predefined key used is the client’s IP address in binary form. The size of the shared
memory zone is set to 10 MB. The zone sets the rate with a keyword argument. The
limit_req directive takes a required keyword argument: zone. zone instructs the
directive on which shared memory request–limit zone to use. Requests that exceed
the expressed rate are returned a 429 HTTP code, as defined by the limit_req_sta
tus directive. I advise to set a status in the 400-level range, as the default is a 503,
implying a problem with the server, when the issue is actually with the client.

Use optional keyword arguments to the limit_req directive to enable two-stage rate
limiting:

server {
 location / {
 limit_req zone=limitbyaddr burst=12 delay=9;
 }
}

In some cases, a client will need to make many requests all at once, and then will
reduce its rate for a period of time before making more. You can use the keyword
argument burst to allow the client to exceed its rate limit but not have requests rejec‐
ted. The rate exceeded requests will have a delay in processing to match the rate limit
up to the value configured. A set of keyword arguments alter this behavior: delay and
nodelay. The nodelay argument does not take a value, and simply allows the client to
consume the burstable value all at once, however, all requests will be rejected until
enough time has passed to satisfy the rate limit. In this example, if we used nodelay,
the client could consume 12 requests in the first second, but would have to wait 4 sec‐
onds after the initial to make another. The delay keyword argument defines how
many requests can be made up front without throttling. In this case, the client can
make nine requests up front with no delay, the next three will be throttled, and any
more within a 4-second period will be rejected.

Discussion
The rate-limiting module is very powerful for protecting against abusive rapid
requests, while still providing a quality service to everyone. There are many reasons
to limit rate of request, one being security. You can deny a brute-force attack by
putting a very strict limit on your login page. You can set a sane limit on all requests,
thereby disabling the plans of malicious users who might try to deny service to your
application or to waste resources. The configuration of the rate-limit module is much
like the preceding connection-limiting module described in Recipe 3.5, and much of
the same concerns apply. You can specify the rate at which requests are limited in
requests per second or requests per minute. When the rate limit is reached, the inci‐
dent is logged. There’s also a directive not in the example, limit_req_log_level,

3.6 Limiting Rate | 33

which defaults to error, but can be set to info, notice, or warn. In NGINX Plus, rate
limiting is now cluster-aware (see Recipe 12.5 for a zone sync example).

Testing limitations can be tricky. It’s often hard to simulate live traffic in an alternate
environment for testing. In this case, you can set the limit_conn_dry_run directive
to on, then use the variable $limit_conn_status in your access log. The
$limit_conn_status variable will evaluate to either PASSED, REJECTED, or REJEC
TED_DRY_RUN. With dry run enabled, you’ll be able to analyze the logs of live traffic
and tweak your limits as needed before enabling; providing you with assurance that
your limit configuration is correct.

3.7 Limiting Bandwidth
Problem
You need to limit download bandwidth per client for your assets.

Solution
Utilize NGINX’s limit_rate and limit_rate_after directives to limit the band‐
width of response to a client:

location /download/ {
 limit_rate_after 10m;
 limit_rate 1m;
}

The configuration of this location block specifies that for URIs with the prefix down‐
load, the rate at which the response will be served to the client will be limited after 10
MB to a rate of 1 MB per second. The bandwidth limit is per connection, so you may
want to institute a connection limit as well as a bandwidth limit where applicable.

Discussion
Limiting the bandwidth for particular connections enables NGINX to share its
upload bandwidth across all of the clients in a manner you specify. These two
directives do it all: limit_rate_after and limit_rate. The limit_rate_after
directive can be set in almost any context: HTTP, server, location, and if when the if
is within a location. The limit_rate directive is applicable in the same contexts as
limit_rate_after; however, it can alternatively be set by a variable named
$limit_rate.

34 | Chapter 3: Traffic Management

The limit_rate_after directive specifies that the connection should not be rate
limited until after a specified amount of data has been transferred. The limit_rate
directive specifies the rate limit for a given context in bytes per second by default.
However, you can specify m for megabytes or g for gigabytes. Both directives default
to a value of 0. The value 0 means not to limit download rates at all. This module
allows you to programmatically change the rate limit of clients.

3.7 Limiting Bandwidth | 35

CHAPTER 4

Massively Scalable Content Caching

4.0 Introduction
Caching accelerates content serving by storing request responses to be served again in
the future. Content caching reduces load to upstream servers, caching the full
response rather than running computations and queries again for the same request.
Caching increases performance and reduces load, meaning you can serve faster with
fewer resources. The scaling and distribution of caching servers in strategic locations
can have a dramatic effect on user experience. It’s optimal to host content close to the
consumer for the best performance. You can also cache your content close to your
users. This is the pattern of content delivery networks, or CDNs. With NGINX you’re
able to cache your content wherever you can place an NGINX server, effectively ena‐
bling you to create your own CDN. With NGINX caching, you’re also able to pas‐
sively cache and serve cached responses in the event of an upstream failure. Caching
features are only available within the http context.

4.1 Caching Zones
Problem
You need to cache content and need to define where the cache is stored.

Solution
Use the proxy_cache_path directive to define shared memory-cache zones and a
location for the content:

proxy_cache_path /var/nginx/cache
 keys_zone=CACHE:60m
 levels=1:2

37

 inactive=3h
 max_size=20g;
proxy_cache CACHE;

The cache definition example creates a directory for cached responses on the filesys‐
tem at /var/nginx/cache and creates a shared memory space named CACHE with 60 MB
of memory. This example sets the directory structure levels, defines the release of
cached responses after they have not been requested in 3 hours, and defines a maxi‐
mum size of the cache of 20 GB. The proxy_cache directive informs a particular con‐
text to use the cache zone. The proxy_cache_path is valid in the HTTP context and
the proxy_cache directive is valid in the HTTP, server, and location contexts.

Discussion
To configure caching in NGINX, it’s necessary to declare a path and zone to be used.
A cache zone in NGINX is created with the directive proxy_cache_path. The
proxy_cache_path designates a location to store the cached information and a shared
memory space to store active keys and response metadata. Optional parameters to
this directive provide more control over how the cache is maintained and accessed.
The levels parameter defines how the file structure is created. The value is a colon-
separated value that declares the length of subdirectory names, with a maximum of
three levels. NGINX caches based on the cache key, which is a hashed value. NGINX
then stores the result in the file structure provided, using the cache key as a file path
and breaking up directories based on the levels value. The inactive parameter
allows for control over the length of time a cache item will be hosted after its last use.
The size of the cache is also configurable with the use of the max_size parameter.
Other parameters relate to the cache-loading process, which loads the cache keys into
the shared memory zone from the files cached on disk.

4.2 Cache Locking
Problem
You don’t want NGINX to proxy requests that are currently being written to cache to
an upstream server.

Solution
Use the proxy_cache_lock directive to ensure only one request is able to write to the
cache at a time, where subsequent requests will wait for the response to be written:

proxy_cache_lock on;
proxy_cache_lock_age 10s;
proxy_cache_lock_timeout 3s;

38 | Chapter 4: Massively Scalable Content Caching

1 Any combination of text or variables exposed to NGINX can be used to form a cache key. A list of variables is
available in NGINX.

Discussion
The proxy_cache_lock directive instructs NGINX to hold requests, destined for a
cached element, that is currently being populated. The proxied request that is popu‐
lating the cache is limited in the amount of time it has before another request
attempts to populate the element, defined by the proxy_cache_lock_age directive,
which defaults to 5 seconds. NGINX can also allow requests that have been waiting a
specified amount of time to pass through to the proxied server, which will not
attempt to populate the cache by use of the proxy_cache_lock_timeout directive,
which also defaults to 5 seconds. You can think of the difference between the two
directives as, proxy_cache_lock_age: “You’re taking too long, I’ll populate the cache
for you,” and proxy_cache_lock_timeout: “You’re taking too long for me to wait, I’m
going to get what I need and let you populate the cache in your own time.”

4.3 Caching Hash Keys
Problem
You need to control how your content is cached and retrieved.

Solution
Use the proxy_cache_key directive along with variables to define what constitutes a
cache hit or miss:

proxy_cache_key "$host$request_uri $cookie_user";

This cache hash key will instruct NGINX to cache pages based on the host and URI
being requested, as well as a cookie that defines the user. With this you can cache
dynamic pages without serving content that was generated for a different user.

Discussion
The default proxy_cache_key, which will fit most use cases, is "$scheme$proxy_host
$request_uri". The variables used include the scheme, HTTP or HTTPS, the
proxy_host, where the request is being sent, and the request URI. All together, this
reflects the URL that NGINX is proxying the request to. You may find that there are
many other factors that define a unique request per application—such as request
arguments, headers, session identifiers, and so on—to which you’ll want to create
your own hash key.1

4.3 Caching Hash Keys | 39

https://oreil.ly/1ulD5

Selecting a good hash key is very important and should be thought through with
understanding of the application. Selecting a cache key for static content is typically
pretty straightforward; using the hostname and URI will suffice. Selecting a cache key
for fairly dynamic content like pages for a dashboard application requires more
knowledge around how users interact with the application and the degree of variance
between user experiences. Due to security concerns, you may not want to present
cached data from one user to another without fully understanding the context. The
proxy_cache_key directive configures the string to be hashed for the cache key. The
proxy_cache_key can be set in the context of HTTP, server, and location blocks, pro‐
viding flexible control on how requests are cached.

4.4 Cache Bypass
Problem
You need the ability to bypass the caching.

Solution
Use the proxy_cache_bypass directive with a nonempty or nonzero value. One way
to do this is by setting a variable within location blocks that you do not want cached
to equal 1:

proxy_cache_bypass $http_cache_bypass;

The configuration tells NGINX to bypass the cache if the HTTP request header
named cache_bypass is set to any value that is not 0. This example uses a header as
the variable to determine if caching should be bypassed—the client would need to
specifically set this header for their request.

Discussion
There are a number of scenarios that demand that the request is not cached. For this,
NGINX exposes a proxy_cache_bypass directive so that when the value is nonempty
or nonzero, the request will be sent to an upstream server rather than be pulled from
the cache. Different needs and scenarios for bypassing cache will be dictated by your
applications use case. Techniques for bypassing cache can be as simple as using a
request or response header, or as intricate as multiple map blocks working together.

For many reasons, you may want to bypass the cache. One important reason is
troubleshooting and debugging. Reproducing issues can be hard if you’re consistently
pulling cached pages or if your cache key is specific to a user identifier. Having the
ability to bypass the cache is vital. Options include, but are not limited to, bypassing
the cache when a particular cookie, header, or request argument is set. You can also

40 | Chapter 4: Massively Scalable Content Caching

turn off the cache completely for a given context, such as a location block, by setting
proxy_cache off;.

4.5 Cache Performance
Problem
You need to increase performance by caching on the client side.

Solution
Use client-side cache-control headers:

location ~* \.(css|js)$ {
 expires 1y;
 add_header Cache-Control "public";
}

This location block specifies that the client can cache the content of CSS and Java‐
Script files. The expires directive instructs the client that their cached resource will
no longer be valid after one year. The add_header directive adds the HTTP response
header Cache-Control to the response, with a value of public, which allows any
caching server along the way to cache the resource. If we specify private, only the cli‐
ent is allowed to cache the value.

Discussion
Cache performance has many factors, disk speed being high on the list. There are
many things within the NGINX configuration that you can do to assist with cache
performance. One option is to set headers of the response in such a way that the cli‐
ent actually caches the response and does not make the request to NGINX at all, but
simply serves it from its own cache.

4.6 Cache Purging with NGINX Plus
Problem
You need to invalidate an object from the cache.

Solution
Use the purge feature of NGINX Plus, the proxy_cache_purge directive, and a non‐
empty or zero-value variable:

map $request_method $purge_method {
 PURGE 1;

4.5 Cache Performance | 41

 default 0;
}
server {
 # ...
 location / {
 # ...
 proxy_cache_purge $purge_method;
 }
}

In this example, the cache for a particular object will be purged if it’s requested with a
method of PURGE. The following is a curl example of purging the cache of a file
named main.js:

$ curl -XPURGE localhost/main.js

Discussion
A common way to handle static files is to put a hash of the file in the filename. This
ensures that as you roll out new code and content, your CDN recognizes it as a new
file because the URI has changed. However, this does not exactly work for dynamic
content to which you’ve set cache keys that don’t fit this model. In every caching sce‐
nario, you must have a way to purge the cache. NGINX Plus has provided a simple
method of purging cached responses. The proxy_cache_purge directive, when passed
a nonzero or nonempty value, will purge the cached items matching the request. A
simple way to set up purging is by mapping the request method for PURGE. However,
you may want to use this in conjunction with the geo_ip module or simple authenti‐
cation to ensure that not anyone can purge your precious cache items. NGINX has
also allowed for the use of *, which will purge cache items that match a common URI
prefix. To use wildcards you will need to configure your proxy_cache_path directive
with the purger=on argument.

4.7 Cache Slicing
Problem
You need to increase caching efficiency by segmenting the file into fragments.

Solution
Use the NGINX slice directive and its embedded variables to divide the cache result
into fragments:

proxy_cache_path /tmp/mycache keys_zone=mycache:10m;
server {
 # ...
 proxy_cache mycache;

42 | Chapter 4: Massively Scalable Content Caching

 slice 1m;
 proxy_cache_key $host$uriis_argsargs$slice_range;
 proxy_set_header Range $slice_range;
 proxy_http_version 1.1;
 proxy_cache_valid 200 206 1h;

 location / {
 proxy_pass http://origin:80;
 }
}

Discussion
This configuration defines a cache zone and enables it for the server. The slice
directive is then used to instruct NGINX to slice the response into 1 MB file seg‐
ments. The cache files are stored according to the proxy_cache_key directive. Note
the use of the embedded variable named slice_range. That same variable is used as a
header when making the request to the origin, and that request HTTP version is
upgraded to HTTP/1.1 because 1.0 does not support byte-range requests. The cache
validity is set for response codes of 200 or 206 for 1 hour, and then the location and
origins are defined.

The Cache Slice module was developed for delivery of HTML5 video, which uses
byte-range requests to pseudostream content to the browser. By default, NGINX is
able to serve byte-range requests from its cache. If a request for a byte range is made
for uncached content, NGINX requests the entire file from the origin. When you use
the Cache Slice module, NGINX requests only the necessary segments from the ori‐
gin. Range requests that are larger than the slice size, including the entire file, trigger
subrequests for each of the required segments, and then those segments are cached.
When all of the segments are cached, the response is assembled and sent to the client,
enabling NGINX to more efficiently cache and serve content requested in ranges. The
Cache Slice module should be used only on large files that do not change. NGINX
validates the ETag each time it receives a segment from the origin. If the ETag on the
origin changes, NGINX aborts the cache population of the segment because the cache
is no longer valid. If the content does change and the file is smaller, or your origin can
handle load spikes during the cache fill process, it’s better to use the Cache Lock mod‐
ule described in the blog listed in the following Also See section. This module is not
built by default, and needs to be enabled by the --with-http_slice_module configu‐
ration when building NGINX.

Also See
Smart and Efficient Byte-Range Caching with NGINX & NGINX Plus

4.7 Cache Slicing | 43

http://bit.ly/2DxGo1M

CHAPTER 5

Programmability and Automation

5.0 Introduction
Programmability refers to the ability to interact with something through program‐
ming. The API for NGINX Plus provides just that: the ability to interact with the con‐
figuration and behavior of NGINX Plus through an HTTP interface. This API pro‐
vides the ability to reconfigure NGINX Plus by adding or removing upstream servers
through HTTP requests. The key-value store feature in NGINX Plus enables another
level of dynamic configuration—you can utilize HTTP calls to inject information that
NGINX Plus can use to route or control traffic dynamically. This chapter will touch
on the NGINX Plus API and the key-value store module exposed by that same API.

Configuration management tools automate the installation and configuration of
servers, which is an invaluable utility in the age of the cloud. Engineers of large-scale
web applications no longer need to configure servers by hand; instead, they can use
one of the many configuration management tools available. With these tools, engi‐
neers only need to write configurations and code once to produce many servers with
the same configuration in a repeatable, testable, and modular fashion. This chapter
covers a few of the most popular configuration management tools available and how
to use them to install NGINX and template a base configuration. These examples are
extremely basic but demonstrate how to get an NGINX server started with each
platform.

5.1 NGINX Plus API
Problem
You have a dynamic environment and need to reconfigure NGINX Plus on the fly.

45

Solution
Configure the NGINX Plus API to enable adding and removing servers through API
calls:

upstream backend {
 zone http_backend 64k;
}
server {
 # ...
 location /api {
 api [write=on];
 # Directives limiting access to the API
 # See chapter 7
 }

 location = /dashboard.html {
 root /usr/share/nginx/html;
 }
}

This NGINX Plus configuration creates an upstream server with a shared memory
zone, enables the API in the /api location block, and provides a location for the
NGINX Plus dashboard.

You can utilize the API to add servers when they come online:

$ curl -X POST -d '{"server":"172.17.0.3"}' \
 'http://nginx.local/api/3/http/upstreams/backend/servers/'

{
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":"10s",
 "slow_start":"0s",
 "route":"",
 "backup":false,
 "down":false
}

The curl call in this example makes a request to NGINX Plus to add a new server to
the backend upstream configuration. The HTTP method is a POST, a JSON object is
passed as the body, and a JSON response is returned. The JSON response shows the
server object configuration, note that a new id was generated, and other configura‐
tion settings were set to default values.

The NGINX Plus API is RESTful; therefore, there are parameters in the request URI.

46 | Chapter 5: Programmability and Automation

The format of the URI is as follows:

/api/{version}/http/upstreams/{httpUpstreamName}/servers/

You can utilize the NGINX Plus API to list the servers in the upstream pool:

$ curl 'http://nginx.local/api/3/http/upstreams/backend/servers/'
[
 {
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":"10s",
 "slow_start":"0s",
 "route":"",
 "backup":false,
 "down":false
 }
]

The curl call in this example makes a request to NGINX Plus to list all of the servers
in the upstream pool named backend. Currently, we have only the one server that we
added in the previous curl call to the API. The request will return an upstream
server object that contains all of the configurable options for a server.

Use the NGINX Plus API to drain connections from an upstream server, preparing it
for a graceful removal from the upstream pool. You can find details about connection
draining in Recipe 2.8:

$ curl -X PATCH -d '{"drain":true}' \
 'http://nginx.local/api/3/http/upstreams/backend/servers/0'
{
 "id":0,
 "server":"172.17.0.3:80",
 "weight":1,
 "max_conns":0,
 "max_fails":1,
 "fail_timeout":
 "10s","slow_start":
 "0s",
 "route":"",
 "backup":false,
 "down":false,
 "drain":true
}

In this curl, we specify that the request method is PATCH, we pass a JSON body
instructing it to drain connections for the server, and specify the server ID by
appending it to the URI. We found the ID of the server by listing the servers in the
upstream pool in the previous curl command.

5.1 NGINX Plus API | 47

NGINX Plus will begin to drain the connections. This process can take as long as the
length of the sessions of the application. To check in on how many active connections
are being served by the server you’ve begun to drain, use the following call and look
for the active attribute of the server being drained:

$ curl 'http://nginx.local/api/3/http/upstreams/backend'
{
 "zone" : "http_backend",
 "keepalive" : 0,
 "peers" : [
 {
 "backup" : false,
 "id" : 0,
 "unavail" : 0,
 "name" : "172.17.0.3",
 "requests" : 0,
 "received" : 0,
 "state" : "draining",
 "server" : "172.17.0.3:80",
 "active" : 0,
 "weight" : 1,
 "fails" : 0,
 "sent" : 0,
 "responses" : {
 "4xx" : 0,
 "total" : 0,
 "3xx" : 0,
 "5xx" : 0,
 "2xx" : 0,
 "1xx" : 0
 },
 "health_checks" : {
 "checks" : 0,
 "unhealthy" : 0,
 "fails" : 0
 },
 "downtime" : 0
 }
],
 "zombies" : 0
}

After all connections have drained, utilize the NGINX Plus API to remove the server
from the upstream pool entirely:

$ curl -X DELETE \
 'http://nginx.local/api/3/http/upstreams/backend/servers/0'
[]

The curl command makes a DELETE method request to the same URI used to update
the servers’ state. The DELETE method instructs NGINX to remove the server. This

48 | Chapter 5: Programmability and Automation

API call returns all of the servers and their IDs that are still left in the pool. Because
we started with an empty pool, added only one server through the API, drained it,
and then removed it, we now have an empty pool again.

Discussion
The NGINX Plus exclusive API enables dynamic application servers to add and
remove themselves to the NGINX configuration on the fly. As servers come online,
they can register themselves to the pool, and NGINX will start sending load to it.
When a server needs to be removed, the server can request NGINX Plus to drain its
connections, and then remove itself from the upstream pool before it’s shut down.
This enables the infrastructure, through some automation, to scale in and out
without human intervention.

Also See
NGINX Plus API Swagger Documentation

5.2 Using the Key-Value Store with NGINX Plus
Problem
You need NGINX Plus to make dynamic traffic management decisions based on
input from applications.

Solution
This section will use the example of a dynamic blocklist as a traffic management
decision.

Set up the cluster-aware key-value store and API, and then add keys and values:

keyval_zone zone=blocklist:1M;
keyval $remote_addr $blocked zone=blocklist;

server {
 # ...
 location / {
 if ($blocked) {
 return 403 'Forbidden';
 }
 return 200 'OK';
 }
}
server {
 # ...
 # Directives limiting access to the API
 # See chapter 6

5.2 Using the Key-Value Store with NGINX Plus | 49

https://oreil.ly/BsdN5

 location /api {
 api write=on;
 }
}

This NGINX Plus configuration uses the keyval_zone directory to build a key-value
store shared memory zone named blocklist and sets a memory limit of 1 MB. The
keyval directive then maps the value of the key, matching the first parameter
$remote_addr to a new variable named $blocked from the zone. This new variable is
then used to determine whether NGINX Plus should serve the request or return a 403
Forbidden code.

After starting the NGINX Plus server with this configuration, you can curl the local
machine and expect to receive a 200 OK response.

$ curl 'http://127.0.0.1/'
OK

Now add the local machine’s IP address to the key-value store with a value of 1:

$ curl -X POST -d '{"127.0.0.1":"1"}' \
 'http://127.0.0.1/api/3/http/keyvals/blocklist'

This curl command submits an HTTP POST request with a JSON object containing
a key-value object to be submitted to the blocklist shared memory zone. The key-
value store API URI is formatted as follows:

/api/{version}/http/keyvals/{httpKeyvalZoneName}

The local machine’s IP address is now added to the key-value zone named blocklist
with a value of 1. In the next request, NGINX Plus looks up the $remote_addr in the
key-value zone, finds the entry, and maps the value to the variable $blocked. This
variable is then evaluated in the if statement. When the variable has a value, the if
evaluates to True and NGINX Plus returns the 403 Forbidden return code:

$ curl 'http://127.0.0.1/'
Forbidden

You can update or delete the key by making a PATCH method request:

$ curl -X PATCH -d '{"127.0.0.1":null}' \
 'http://127.0.0.1/api/3/http/keyvals/blocklist'

NGINX Plus deletes the key if the value is null, and requests will again return 200
OK.

Discussion
The key-value store, an NGINX Plus exclusive feature, enables applications to inject
information into NGINX Plus. In the example provided, the $remote_addr variable is
used to create a dynamic blocklist. You can populate the key-value store with any key

50 | Chapter 5: Programmability and Automation

that NGINX Plus might have as a variable—a session cookie, for example—and pro‐
vide NGINX Plus an external value. In NGINX Plus R16, the key-value store became
cluster-aware, meaning that you have to provide your key-value update to only one
NGINX Plus server, and all of them will receive the information.

In NGINX Plus R19, the key-value store enabled a type parameter, which enables
indexing for specific types of keys. By default, the type is of value string, where ip,
and prefix are also options. The string type does not build an index and all key
requests must be exact matches, where prefix will allow for partial key matches pro‐
vided the prefix of the key is a match. An ip type enables the use of CIDR notation.
In our example, if we had specified the type=ip as a parameter to our zone, we could
have provided an entire CIDR range to block, such as 192.168.0.0/16 to block the
entire RFC 1918 private range block, or 127.0.0.1/32 for localhost which would
have rendered the same effect as demonstrated in the example.

Also See
Dynamic Bandwidth Limits

5.3 Extending NGINX with a Common Programming
Language
Problem
You need NGINX to perform some custom extension using a common programming
language.

Solution
Before preparing to write a custom NGINX module from scratch in C, first evaluate if
one of the other programming language modules will fit your use case. The C pro‐
gramming language is extremely powerful, and performant. There are, however,
many other languages available as modules that may enable the customization
required. NGINX has introduced NGINScript (njs), which exposes the power of Java‐
Script into the NGINX configuration by simply enabling a module. Lua and Perl
modules are also available.

To get started with njs, install the njs module and use the following njs script,
hello_world.js, to return “Hello World” when called:

function hello(request) {
 request.return(200, "Hello world!");
}

5.3 Extending NGINX with a Common Programming Language | 51

http://bit.ly/2qYPFII

Call the njs script using the following minimal NGINX configuration:

load_module modules/ngx_http_js_module.so;

events {}

http {
 js_include hello_world.js;

 server {
 listen 8000;

 location / {
 js_content hello;
 }
 }
}

The above NGINX configuration, enables the njs module, includes the njs library we
constructed named hello_world.js, and used the hello function to return a response
to the client. The hello function is called by the NGINX directive js_content. The
request object provided to the njs function has many attributes that describe the
request and are able to manipulate the response. The njs module is written and sup‐
ported by NGINX and is updated with every NGINX release. For an up-to-date refer‐
ence, view the njs Documentation link in the Also See section.

With these language modules, you either import a file including code, or define a
block of code directly within the configuration.

To use Lua, install the Lua module and the following NGINX configuration to define
a Lua script inline.

load_module modules/ngx_http_lua_module.so;

events {}

http {
 server {
 listen 8080;
 location / {
 default_type text/html;
 content_by_lua_block {
 ngx.say("hello, world")
 }
 }
 }
}

The Lua module provides its own NGINX API through an object defined by the
module named ngx. Like the request object in njs, the ngx object has attributes and
methods to describe the request and manipulate the response.

52 | Chapter 5: Programmability and Automation

With the Perl module installed, this example will use Perl to set an NGINX variable
from the runtime environment.

load_module modules/ngx_http_perl_module.so;

events {}

http {
 perl_set $app_endpoint 'sub { return $ENV{"APP_DNS_ENDPOINT"}; }';
 server {
 listen 8080;
 location / {
 proxy_pass http://$app_endpoint
 }
 }
 }
}

The prior example demonstrates that these language modules expose more function‐
ality than just returning a response. The perl_set directive sets an NGINX variable
to data returned from a Perl script. This limited example simply returns a system
environment variable, which is used as the endpoint to which to proxy requests.

Discussion
The capabilities enabled by the extendibility of NGINX are endless. NGINX is
extendable with custom code through C modules, which can be compiled into
NGINX when building from source, or dynamically loaded within the configuration.
Existing modules that expose the functionality and syntax of JavaScript (njs), Lua,
and Perl are already available. In many cases, unless distributing custom NGINX
functionality to others, these pre-existing modules can suffice. Many scripts built for
these modules already exist in the open source community.

This solution demonstrated basic usage of the njs, Lua, and Perl scripting languages
available in NGINX and NGINX Plus. Whether looking to respond, set a variable,
make a subrequest, or define a complex rewrite, these NGINX modules provide the
capability.

Also See
NGINScript Documentation
NGINX Plus njs Module Installation
NGINX Plus Lua Module Installation
NGINX Plus Perl Module Installation
NGINX Lua Module Documentation
NGINX Perl Module Documentation

5.3 Extending NGINX with a Common Programming Language | 53

https://oreil.ly/5NMAN
https://oreil.ly/OHtC_
https://oreil.ly/WUpBI
https://oreil.ly/_ym5V
https://oreil.ly/trDKl
https://oreil.ly/V3dh0

5.4 Installing with Puppet
Problem
You need to install and configure NGINX with Puppet to manage NGINX configura‐
tions as code and conform with the rest of your Puppet configurations.

Solution
Create a module that installs NGINX, manages the files you need, and ensures that
NGINX is running:

 class nginx {
 package {"nginx": ensure => 'installed',}
 service {"nginx":
 ensure => 'true',
 hasrestart => 'true',
 restart => '/etc/init.d/nginx reload',
 }
 file { "nginx.conf":
 path => '/etc/nginx/nginx.conf',
 require => Package['nginx'],
 notify => Service['nginx'],
 content => template('nginx/templates/nginx.conf.erb'),
 user=>'root',
 group=>'root',
 mode='0644';
 }
}

This module uses the package management utility to ensure the NGINX package is
installed. It also ensures that NGINX is running and enabled at boot time. The
configuration informs Puppet that the service has a restart command with the hasres
tart directive, and we can override the restart command with an NGINX reload.
The file resource will manage and template the nginx.conf file with the Embedded
Ruby (ERB) templating language. The templating of the file will happen after the
NGINX package is installed due to the require directive. However, the file resource
will notify the NGINX service to reload because of the notify directive. The
templated configuration file is not included. However, it can be simple to install a
default NGINX configuration file, or very complex if using ERB or Embedded Puppet
(EPP) templating language loops and variable substitution.

Discussion
Puppet is a configuration management tool based in the Ruby programming lan‐
guage. Modules are built in a domain-specific language and called via a manifest file
that defines the configuration for a given server. Puppet can be run in a client server

54 | Chapter 5: Programmability and Automation

relationship or standalone configuration. With Puppet, the manifest is run on the
server and then sent to the agent. This is important because it ensures that the agent
is only delivered the configuration meant for it and no extra configurations meant for
other servers. There are a lot of extremely advanced public modules available for
Puppet. Starting from these modules will help you get a jump start on your configu‐
ration. A public NGINX module from Vox Pupuli on GitHub will template out
NGINX configurations for you.

Also See
Puppet Documentation
Puppet Package Documentation
Puppet Service Documentation
Puppet File Documentation
Puppet Templating Documentation
Vox Pupuli NGINX Module

5.5 Installing with Chef
Problem
You need to install and configure NGINX with Chef to manage NGINX configura‐
tions as code and conform with the rest of your Chef configurations.

Solution
Create a cookbook with a recipe to install NGINX and define configuration files
through templating, and ensure NGINX reloads after the configuration is put in
place. The following is an example recipe:

package 'nginx' do
 action :install
end

service 'nginx' do
 supports :status => true, :restart => true, :reload => true
 action [:start, :enable]
end

template 'nginx.conf' do
 path "/etc/nginx.conf"
 source "nginx.conf.erb"
 owner 'root'
 group 'root'
 mode '0644'
 notifies :reload, 'service[nginx]', :delayed
end

5.5 Installing with Chef | 55

https://docs.puppet.com
http://bit.ly/2jfgpm4
http://bit.ly/2jMq2cx
http://bit.ly/2jMz4q3
http://bit.ly/2isqAlP
http://bit.ly/2jMspMn

The package block installs NGINX. The service block ensures that NGINX is
started and enabled at boot, then declares to the rest of Chef what the nginx service
will support as far as actions. The template block templates an ERB file and places it
at /etc/nginx.conf with an owner and group of root. The template block also sets the
mode to 644 and notifies the nginx service to reload, but waits until the end of the
Chef run declared by the :delayed statement. The templated configuration file is not
included. However, it can be as simple as a default NGINX configuration file or very
complex with ERB templating language loops and variable substitution.

Discussion
Chef is a configuration management tool based in Ruby. Chef can be run in a client
server relationship, or solo configuration, now known as Chef Zero. Chef has a very
large community with many public cookbooks called the Supermarket. Public cook‐
books from the Supermarket can be installed and maintained via a command-line
utility called Berkshelf. Chef is extremely capable, and what we have demonstrated is
just a small sample. The public NGINX Cookbook in the Supermarket is extremely
flexible and provides the options to easily install NGINX from a package manager or
from source, and the ability to compile and install many different modules as well as
template out the basic configurations.

Also See
Chef Documentation
Chef Package
Chef Service
Chef Template
Chef Supermarket for NGINX

5.6 Installing with Ansible
Problem
You need to install and configure NGINX with Ansible to manage NGINX configura‐
tions as code and conform with the rest of your Ansible configurations.

Solution
Create an Ansible playbook to install NGINX and manage the nginx.conf file. The fol‐
lowing is an example task file for the playbook to install NGINX. Ensure it’s running
and template the configuration file:

- name: NGINX | Installing NGINX
 package: name=nginx state=present

56 | Chapter 5: Programmability and Automation

https://docs.chef.io
https://docs.chef.io/resource_package.html
https://docs.chef.io/resource_service.html
https://docs.chef.io/resource_template.html
https://supermarket.chef.io/cookbooks/nginx

- name: NGINX | Starting NGINX
 service:
 name: nginx
 state: started
 enabled: yes

- name: Copy nginx configuration in place.
 template:
 src: nginx.conf.j2
 dest: "/etc/nginx/nginx.conf"
 owner: root
 group: root
 mode: 0644
 notify:
 - reload nginx

The package block installs NGINX. The service block ensures that NGINX is
started and enabled at boot. The template block templates a Jinja2 file and places the
result at /etc/nginx.conf with an owner and group of root. The template block also
sets the mode to 644 and notifies the nginx service to reload. The templated configu‐
ration file is not included. However, it can be as simple as a default NGINX configu‐
ration file or very complex with Jinja2 templating language loops and variable
substitution.

Discussion
Ansible is a widely used and powerful configuration management tool based in
Python. The configuration of tasks is in YAML, and you use the Jinja2 templating lan‐
guage for file templating. Ansible offers a server named Ansible Tower on a subscrip‐
tion model. However, it’s commonly used from local machines or to build servers
directly to the client or in a standalone model. Ansible will bulk SSH into servers and
run the configuration. Much like other configuration management tools, there’s a
large community of public roles. Ansible calls this the Ansible Galaxy. You can find
very sophisticated roles to utilize in your playbooks.

Also See
NGINX Provided Ansible Role
Ansible Documentation
Ansible Packages
Ansible Service
Ansible Template
Ansible Galaxy

5.6 Installing with Ansible | 57

https://galaxy.ansible.com/nginxinc/nginx
http://docs.ansible.com
https://oreil.ly/-cNmL
https://oreil.ly/r8xaB
https://oreil.ly/gf1H7
https://galaxy.ansible.com

5.7 Installing with SaltStack
Problem
You need to install and configure NGINX with SaltStack to manage NGINX configu‐
rations as code and conform with the rest of your SaltStack configurations.

Solution
Install NGINX through the package management module and manage the configura‐
tion files you desire. The following is an example state file (Salt State file [SLS]) that
will install the nginx package and ensure the service is running, enabled at boot, and
reload if a change is made to the configuration file:

nginx:
 pkg:
 - installed
 service:
 - name: nginx
 - running
 - enable: True
 - reload: True
 - watch:
 - file: /etc/nginx/nginx.conf

/etc/nginx/nginx.conf:
 file:
 - managed
 - source: salt://path/to/nginx.conf
 - user: root
 - group: root
 - template: jinja
 - mode: 644
 - require:
 - pkg: nginx

This is a basic example of installing NGINX via a package management utility and
managing the nginx.conf file. The NGINX package is installed and the service is run‐
ning and enabled at boot. With SaltStack, you can declare a file managed by Salt, as
seen in the example, and templated by many different templating languages. The tem‐
plated configuration file is not included. However, it can be as simple as a default
NGINX configuration file, or very complex with the Jinja2 templating language loops
and variable substitution. This configuration also specifies that NGINX must be
installed prior to managing the file because of the require statement. After the file is
in place, NGINX is reloaded because of the watch directive on the service, and
reloads, as opposed to restarts, because the reload directive is set to True.

58 | Chapter 5: Programmability and Automation

Discussion
SaltStack is a powerful configuration management tool that defines server states in
YAML. Modules for SaltStack can be written in Python. Salt exposes the Jinja2 tem‐
plating language for states as well as for files. However, for files, there are many other
options, such as Mako, Python itself, and others. SaltStack uses master minion termi‐
nology to represent the client-server relationship. The minion can be run on its own
as well. The master minion transport communication, however, differs from others
and sets SaltStack apart. With Salt, you’re able to choose ZeroMQ, TCP, or Reliable
Asynchronous Event Transport (RAET) for transmissions to the Salt agent; or you may
not use an agent, and the master can SSH instead. Because the transport layer is by
default asynchronous, SaltStack is built to be able to deliver its message to a large
number of minions with low load to the master server.

Also See
SaltStack NGINX Module
SaltStack Documentation
SaltStack Installed Packages
SaltStack Managed Files
SaltStack Templating with Jinja

5.8 Automating Configurations with Consul Templating
Problem
You need to automate your NGINX configuration to respond to changes in your
environment through use of Consul.

Solution
Use the consul-template daemon and a template file to template out the NGINX
configuration file of your choice:

upstream backend { {{range service "app.backend"}}
 server {{.Address}};{{end}}
}

This example is a Consul Template file that templates an upstream configuration
block. This template will loop through nodes in Consul identified as app.backend.
For every node in Consul, the template will produce a server directive with that
node’s IP address.

5.8 Automating Configurations with Consul Templating | 59

https://oreil.ly/h31DX
https://docs.saltstack.com
http://bit.ly/2jfxTyx
http://bit.ly/2ist5EN
http://bit.ly/2jrQfcM

The consul-template daemon is run via the command line and can be used to
reload NGINX every time the configuration file is templated with a change:

consul-template -consul consul.example.internal -template \
 template:/etc/nginx/conf.d/upstream.conf:"nginx -s reload"

This command instructs the consul-template daemon to connect to a Consul clus‐
ter at consul.example.internal and to use a file named template in the current
working directory to template the file and output the generated contents to /etc/
nginx/conf.d/upstream.conf, then to reload NGINX every time the templated file
changes. The -template flag takes a string of the template file, the output location,
and the command to run after the templating process takes place. These three vari‐
ables are separated by colons. If the command being run has spaces, make sure to
wrap it in double quotes. The -consul flag tells the daemon what Consul cluster to
connect to.

Discussion
Consul is a powerful service discovery tool and configuration store. Consul stores
information about nodes as well as key-value pairs in a directory-like structure and
allows for restful API interaction. Consul also provides a DNS interface on each cli‐
ent, allowing for domain name lookups of nodes connected to the cluster. A separate
project that utilizes Consul clusters is the consul-template daemon; this tool tem‐
plates files in response to changes in Consul nodes, services, or key-value pairs. This
makes Consul a very powerful choice for automating NGINX. With consul-
template you can also instruct the daemon to run a command after a change to the
template takes place. With this, we can reload the NGINX configuration and allow
your NGINX configuration to come alive along with your environment. With Consul
and consul-template, your NGINX configuration can be as dynamic as your envi‐
ronment. Infrastructure, configuration, and application information is centrally
stored, and consul-template can subscribe and retemplate as necessary in an event-
based manner. With this technology, NGINX can dynamically reconfigure in reaction
to the addition and removal of servers, services, application versions, and so on.

Also See
NGINX Plus Consul Integration
NGINX Consul Integration
Consul Home Page
Introduction to Consul Template
Consul Template GitHub

60 | Chapter 5: Programmability and Automation

https://oreil.ly/vYe0Z
https://oreil.ly/Z9gat
https://www.consul.io
https://oreil.ly/g-OAb
https://oreil.ly/dfHMm

CHAPTER 6

Authentication

6.0 Introduction
NGINX is able to authenticate clients. Authenticating client requests with NGINX
offloads work and provides the ability to stop unauthenticated requests from reaching
your application servers. Modules available for NGINX Open Source include basic
authentication and authentication subrequests. The NGINX Plus exclusive module
for verifying JSON Web Tokens (JWTs) enables integration with third-party authenti‐
cation providers that use the authentication standard OpenID Connect.

6.1 HTTP Basic Authentication
Problem
You need to secure your application or content via HTTP basic authentication.

Solution
Generate a file in the following format, where the password is encrypted or hashed
with one of the allowed formats:

comment
name1:password1
name2:password2:comment
name3:password3

The username is the first field, the password the second field, and the delimiter is a
colon. There is an optional third field, which you can use to comment on each
user. NGINX can understand a few different formats for passwords, one of which is
whether the password is encrypted with the C function crypt(). This function is

61

exposed to the command line by the openssl passwd command. With openssl
installed, you can create encrypted password strings by using the following
command:

$ openssl passwd MyPassword1234

The output will be a string that NGINX can use in your password file.

Use the auth_basic and auth_basic_user_file directives within your NGINX con‐
figuration to enable basic authentication:

location / {
 auth_basic "Private site";
 auth_basic_user_file conf.d/passwd;
}

You can use the auth_basic directives in the HTTP, server, or location contexts.
The auth_basic directive takes a string parameter, which is displayed on the basic
authentication pop-up window when an unauthenticated user arrives. The
auth_basic_user_file specifies a path to the user file.

To test your configuration, you can use curl with the -u or --user to build an
Authorization header for the request.

$ curl --user myuser:MyPassword1234 https://localhost

Discussion
You can generate basic authentication passwords a few ways, and in a few different
formats, with varying degrees of security. The htpasswd command from Apache can
also generate passwords. Both the openssl and htpasswd commands can generate
passwords with the apr1 algorithm, which NGINX can also understand. The pass‐
word can also be in the salted SHA-1 format that Lightweight Directory Access Protocol
(LDAP) and Dovecot use. NGINX supports more formats and hashing algorithms;
however, many of them are considered insecure because they can easily be defeated
by brute-force attacks.

You can use basic authentication to protect the context of the entire NGINX host,
specific virtual servers, or even just specific location blocks. Basic authentication
won’t replace user authentication for web applications, but it can help keep private
information secure. Under the hood, basic authentication is done by the server
returning a 401 unauthorized HTTP code with the response header WWW-

Authenticate. This header will have a value of Basic realm="your string". This
response causes the browser to prompt for a username and password. The username
and password are concatenated and delimited with a colon, then base64-encoded,
and then sent in a request header named Authorization. The Authorization request
header will specify a Basic and user:password encoded string. The server decodes

62 | Chapter 6: Authentication

the header and verifies against the provided auth_basic_user_file. Because the
username password string is merely base64-encoded, it’s recommended to use
HTTPS with basic authentication.

6.2 Authentication Subrequests
Problem
You have a third-party authentication system for which you would like requests
authenticated.

Solution
Use the http_auth_request_module to make a request to the authentication service
to verify identity before serving the request:

location /private/ {
 auth_request /auth;
 auth_request_set $auth_status $upstream_status;
}

location = /auth {
 internal;
 proxy_pass http://auth-server;
 proxy_pass_request_body off;
 proxy_set_header Content-Length "";
 proxy_set_header X-Original-URI $request_uri;
}

The auth_request directive takes a URI parameter that must be a local internal loca‐
tion. The auth_request_set directive allows you to set variables from the authentica‐
tion subrequest.

Discussion
The http_auth_request_module enables authentication on every request handled by
the NGINX server. The module will use a subrequest to determine if the request is
authorized to proceed. A subrequest is when NGINX passes the request to an alter‐
nate internal location and observes its response before routing the request to its desti‐
nation. The auth location passes the original request, including the body and headers,
to the authentication server. The HTTP status code of the subrequest is what deter‐
mines whether or not access is granted. If the subrequest returns with an HTTP 200
status code, the authentication is successful and the request is fulfilled. If the subre‐
quest returns HTTP 401 or 403, the same will be returned for the original request.

If your authentication service does not request the request body, you can drop the
request body with the proxy_pass_request_body directive, as demonstrated. This

6.2 Authentication Subrequests | 63

practice will reduce the request size and time. Because the response body is discarded,
the Content-Length header must be set to an empty string. If your authentication
service needs to know the URI being accessed by the request, you’ll want to put that
value in a custom header that your authentication service checks and verifies. If there
are things you do want to keep from the subrequest to the authentication service, like
response headers or other information, you can use the auth_request_set directive
to make new variables out of response data.

6.3 Validating JWTs with NGINX Plus
Problem
You need to validate a JWT before the request is handled with NGINX Plus.

Solution
Use NGINX Plus’s HTTP JWT authentication module to validate the token signature
and embed JWT claims and headers as NGINX variables:

location /api/ {
 auth_jwt "api";
 auth_jwt_key_file conf/keys.json;
}

This configuration enables validation of JWTs for this location. The auth_jwt direc‐
tive is passed a string, which is used as the authentication realm. The auth_jwt takes
an optional token parameter of a variable that holds the JWT. By default, the
Authentication header is used per the JWT standard. The auth_jwt directive can
also be used to cancel the effects of required JWT authentication from inherited con‐
figurations. To turn off authentication, pass the keyword to the auth_jwt directive
with nothing else. To cancel inherited authentication requirements, pass the off key‐
word to the auth_jwt directive with nothing else. The auth_jwt_key_file takes a
single parameter. This parameter is the path to the key file in standard JSON Web Key
(JWK) format.

Discussion
NGINX Plus is able to validate the JSON web-signature types of tokens, as opposed to
the JSON web-encryption type, where the entire token is encrypted. NGINX Plus is
able to validate signatures that are signed with the HS256, RS256, and ES256 algo‐
rithms. Having NGINX Plus validate the token can save the time and resources
needed to make a subrequest to an authentication service. NGINX Plus deciphers the
JWT header and payload, and captures the standard headers and claims into embed‐

64 | Chapter 6: Authentication

ded variables for your use. The auth_jwt directive can be used in the http, server,
location, and limit_except contexts.

Also See
RFC Standard Documentation of JSON Web Signature
RFC Standard Documentation of JSON Web Algorithms
RFC Standard Documentation of JSON Web Token
NGINX Plus JWT Authentication
Detailed NGINX Blog

6.4 Creating JSON Web Keys
Problem
You need a JSON Web Key (JWK) for NGINX Plus to use.

Solution
NGINX Plus utilizes the JWK format as specified in the RFC standard. This standard
allows for an array of key objects within the JWK file.

The following is an example of what the key file may look like:

{"keys":
 [
 {
 "kty":"oct",
 "kid":"0001",
 "k":"OctetSequenceKeyValue"
 },
 {
 "kty":"EC",
 "kid":"0002"
 "crv":"P-256",
 "x": "XCoordinateValue",
 "y": "YCoordinateValue",
 "d": "PrivateExponent",
 "use": "sig"
 },
 {
 "kty":"RSA",
 "kid":"0003"
 "n": "Modulus",
 "e": "Exponent",
 "d": "PrivateExponent"
 }
]
}

6.4 Creating JSON Web Keys | 65

https://oreil.ly/N2llP
https://oreil.ly/1PV1N
https://oreil.ly/gBlUC
https://oreil.ly/AdJGW
http://bit.ly/2f0Mjj0

The JWK file shown demonstrates the three initial types of keys noted in the RFC
standard. The format of these keys is also part of the RFC standard. The kty attribute
is the key type. This file shows three key types: the Octet Sequence (oct), the Elliptic‐
Curve (EC), and the RSA type. The kid attribute is the key ID. Other attributes to these
keys are specified in the standard for that type of key. Look to the RFC documenta‐
tion of these standards for more information.

Discussion
There are numerous libraries available in many different languages to generate the
JWK. It’s recommended to create a key service that is the central JWK authority to
create and rotate your JWKs at a regular interval. For enhanced security, it’s recom‐
mended to make your JWKs as secure as your SSL/TLS certifications. Secure your key
file with proper user and group permissions. Keeping them in memory on your host
is best practice. You can do so by creating an in-memory filesystem like ramfs. Rotat‐
ing keys on a regular interval is also important; you may opt to create a key service
that creates public and private keys and offers them to the application and NGINX
via an API.

Also See
RFC Standard Documentation of JSON Web Key

6.5 Validate JSON Web Tokens with NGINX Plus
Problem
You want to validate JSON Web Tokens with NGINX Plus.

Solution
Use the JWT module that comes with NGINX Plus to secure a location or server, and
instruct the auth_jwt directive to use $cookie_auth_token as the token to be
validated:

 location /private/ {
 auth_jwt "Google Oauth" token=$cookie_auth_token;
 auth_jwt_key_file /etc/nginx/google_certs.jwk;
 }

This configuration directs NGINX Plus to secure the /private/ URI path with JWT
validation. Google OAuth 2.0 OpenID Connect uses the cookie auth_token rather
than the default bearer token. Thus, you must instruct NGINX to look for the
token in this cookie rather than in the NGINX Plus default location. The

66 | Chapter 6: Authentication

https://oreil.ly/BrV8u

auth_jwt_key_file location is set to an arbitrary path, which is a step that we cover
in Recipe 6.6.

Discussion
This configuration demonstrates how you can validate a Google OAuth 2.0 OpenID
Connect JWT with NGINX Plus. The NGINX Plus JWT authentication module for
HTTP is able to validate any JWT that adheres to the RFC for JSON Web Signature
specification, instantly enabling any SSO authority that utilizes JWTs to be validated
at the NGINX Plus layer. The OpenID 1.0 protocol is a layer on top of the OAuth 2.0
authentication protocol that adds identity, enabling the use of JWTs to prove the
identity of the user sending the request. With the signature of the token, NGINX Plus
can validate that the token has not been modified since it was signed. In this way,
Google is using an asynchronous signing method and makes it possible to distribute
public JWKs while keeping its private JWK secret.

Also See
Authenticating API Clients with JWT and NGINX Plus

6.6 Automatically Obtaining and Caching JSON Web Key
Sets with NGINX Plus
Problem
You want NGINX Plus to automatically request the JSON Web Key Set (JWKS) from
a provider and cache it.

Solution
Utilize a cache zone and the auth_jwt_key_request directive to automatically keep
your key up to date:

proxy_cache_path /data/nginx/cache levels=1 keys_zone=foo:10m;

server {
 # ...

 location / {
 auth_jwt "closed site";
 auth_jwt_key_request /jwks_uri;
 }

 location = /jwks_uri {
 internal;
 proxy_cache foo;

6.6 Automatically Obtaining and Caching JSON Web Key Sets with NGINX Plus | 67

https://oreil.ly/5Yzjb

 proxy_pass https://idp.example.com/keys;
 }
}

In this example, the auth_jwt_key_request directive instructs NGINX Plus to
retrieve the JWKS from an internal subrequest. The subrequest is directed to /
jwks_uri, which will proxy the request to a identity provider. The request is cached
for a default of 10 minutes to limit overhead.

Discussion
In NGINX Plus R17, the auth_jwt_key_request directive was introduced. This fea‐
ture enables the NGINX Plus server to dynamically update its JWKs when a request
is made. A subrequest method is used to fetch the JWKs, which means the location
that the directive points to must be local to the NGINX Plus server. In the example,
the subrequest location was locked down to ensure that only internal NGINX Plus
requests would be served. A cache was also used to ensure the JWKs retrieval request
is only made as often as necessary, and does not overload the identity provider. The
auth_jwt_key_request directive is valid in the http, server, location, and
limit_except contexts.

Also See
Authenticating API Clients with JWT and NGINX Plus

6.7 Authenticate Users via Existing OpenID Connect SSO
with NGINX Plus
Problem
You want to integrate NGINX Plus with an OpenID Connect (OIDC) identity
provider.

Solution
This solution consists of a number of configuration aspects and a bit of NGINScript
code. The identity provider (IdP), must support OpenID Connect 1.0. NGINX Plus
will act as a relaying party of your OIDC in an Authorization Code Flow.

NGINX Inc., maintains a public GitHub repository containing configuration and
code as a reference implementation of OIDC integration with NGINX Plus. The
following link to the repository has up-to-date instructions on how to set up the ref‐
erence implementation with your own IdP.

68 | Chapter 6: Authentication

https://oreil.ly/5Yzjb

Discussion
This solution simply linked to a reference implementation to ensure that you, the
reader, have the most up-to-date solution. The reference provided configures NGINX
Plus as a relaying party to an authorization code flow for OpenID Connect 1.0. When
unauthenticated requests for protected resources are made to NGINX Plus in this
configuration, NGINX Plus first redirects the request to the IdP. The IdP takes the
client through its own login flow, and returns the client to NGINX Plus with an
authentication code. NGINX Plus then communicates directly with the IdP to
exchange the authentication code for a set of ID Tokens. These tokens are validated
using JWTs, and stored in NGINX Plus’s key-value store. By using the key-value
store, the tokens are made available to all NGINX Plus nodes in a highly available
(HA) configuration. During this process, NGINX Plus generates a session cookie for
the client that is used as the key to look up the token in the key-value store. The client
is then served a redirect with the cookie to the initial requested resource. Subsequent
requests are validated by using the cookie to look up the ID Token in NGINX Plus’s
key-value store.

This capability enables integration with most major identity providers, including
CA Single Sign‑On (formerly SiteMinder), ForgeRock OpenAM, Keycloak, Okta,
OneLogin, and Ping Identity. OIDC as a standard is extremely relevant in authentica‐
tion—the aforementioned identity providers are only a subset of the integrations that
are possible.

Also See
Detailed NGINX Blog on OpenID Connect
OpenID Connect
NGINX OpenID Connect Reference Implementation

6.7 Authenticate Users via Existing OpenID Connect SSO with NGINX Plus | 69

http://bit.ly/2fB704l
http://openid.net/connect
https://oreil.ly/sX86J

CHAPTER 7

Security Controls

7.0 Introduction
Security is done in layers, and there must be multiple layers to your security model
for it to be truly hardened. In this chapter, we go through many different ways to
secure your web applications with NGINX and NGINX Plus. You can use many of
these security methods in conjunction with one another to help harden security. The
following are a number of sections that explore security features of NGINX and
NGINX Plus that can assist in strengthening your application. You might notice that
this chapter does not touch upon one of the largest security features of NGINX, the
ModSecurity 3.0 NGINX module, which turns NGINX into a Web Application Fire‐
wall (WAF). To learn more about the WAF capabilities, download the ModSecurity
3.0 and NGINX: Quick Start Guide.

7.1 Access Based on IP Address
Problem
You need to control access based on the IP address of the client.

Solution
Use the HTTP or stream access module to control access to protected resources:

location /admin/ {
 deny 10.0.0.1;
 allow 10.0.0.0/20;
 allow 2001:0db8::/32;
 deny all;
}

71

http://bit.ly/2RZjUKM
http://bit.ly/2RZjUKM

The given location block allows access from any IPv4 address in 10.0.0.0/20 except
10.0.0.1, allows access from IPv6 addresses in the 2001:0db8::/32 subnet, and
returns a 403 for requests originating from any other address. The allow and deny
directives are valid within the HTTP, server, and location contexts, as well as in
stream and server context for TCP/UDP. Rules are checked in sequence until a match
is found for the remote address.

Discussion
Protecting valuable resources and services on the internet must be done in lay‐
ers. NGINX functionality provides the ability to be one of those layers. The deny
directive blocks access to a given context, while the allow directive can be used to
allow subsets of the blocked access. You can use IP addresses, IPv4 or IPv6, classless
inter-domain routing (CIDR) block ranges, the keyword all, and a Unix socket. Typ‐
ically, when protecting a resource, one might allow a block of internal IP addresses
and deny access from all.

7.2 Allowing Cross-Origin Resource Sharing
Problem
You’re serving resources from another domain and need to allow cross-origin
resource sharing (CORS) to enable browsers to utilize these resources.

Solution
Alter headers based on the request method to enable CORS:

map $request_method $cors_method {
 OPTIONS 11;
 GET 1;
 POST 1;
 default 0;
}
server {
 # ...
 location / {
 if ($cors_method ~ '1') {
 add_header 'Access-Control-Allow-Methods'
 'GET,POST,OPTIONS';
 add_header 'Access-Control-Allow-Origin'
 '*.example.com';
 add_header 'Access-Control-Allow-Headers'
 'DNT,
 Keep-Alive,
 User-Agent,
 X-Requested-With,

72 | Chapter 7: Security Controls

 If-Modified-Since,
 Cache-Control,
 Content-Type';
 }
 if ($cors_method = '11') {
 add_header 'Access-Control-Max-Age' 1728000;
 add_header 'Content-Type' 'text/plain; charset=UTF-8';
 add_header 'Content-Length' 0;
 return 204;
 }
 }
}

There’s a lot going on in this example, which has been condensed by using a map to
group the GET and POST methods together. The OPTIONS request method returns a
preflight request to the client about this server’s CORS rules. OPTIONS, GET, and POST
methods are allowed under CORS. Setting the Access-Control-Allow-Origin
header allows for content being served from this server to also be used on pages of
origins that match this header. The preflight request can be cached on the client for
1,728,000 seconds, or 20 days.

Discussion
Resources such as JavaScript make CORS when the resource they’re requesting is of a
domain other than its own. When a request is considered cross origin, the browser is
required to obey CORS rules. The browser will not use the resource if it does not have
headers that specifically allow its use. To allow our resources to be used by other sub‐
domains, we have to set the CORS headers, which can be done with the add_header
directive. If the request is a GET, HEAD, or POST with standard content type, and the
request does not have special headers, the browser will make the request and only
check for origin. Other request methods will cause the browser to make the preflight
request to check the terms of the server to which it will obey for that resource. If you
do not set these headers appropriately, the browser will give an error when trying to
utilize that resource.

7.2 Allowing Cross-Origin Resource Sharing | 73

7.3 Client-Side Encryption
Problem
You need to encrypt traffic between your NGINX server and the client.

Solution
Utilize one of the SSL modules, such as the ngx_http_ssl_module or
ngx_stream_ssl_module to encrypt traffic:

http { # All directives used below are also valid in stream
 server {
 listen 8443 ssl;
 ssl_certificate /etc/nginx/ssl/example.crt;
 ssl_certificate_key /etc/nginx/ssl/example.key;
 }
}

This configuration sets up a server to listen on a port encrypted with SSL/TLS, 8443.
The directive ssl_certificate defines the certificate, and optional chain that is
served to the client. The ssl_certificate_key directive defines the key used by
NGINX to decrypt requests and encrypt responses. A number of SSL/TLS negotia‐
tion configurations are defaulted to secure presets for the NGINX version release
date.

Discussion
Secure transport layers are the most common way of encrypting information in
transit. As of this writing, the TLS protocol is preferred over the SSL protocol. That’s
because versions 1 through 3 of SSL are now considered insecure. Although the pro‐
tocol name might be different, TLS still establishes a secure socket layer. NGINX ena‐
bles your service to protect information between you and your clients, which in turn
protects the client and your business. When using a CA-signed certificate, you need
to concatenate the certificate with the certificate authority chain. When you concate‐
nate your certificate and the chain, your certificate should be above the concatenated
chain file. If your certificate authority has provided multiple files as intermediate cer‐
tificates for the chain, there is an order in which they are layered. Refer to the certifi‐
cate provider’s documentation for the order.

Also See
Mozilla Server Side TLS Page
Mozilla SSL Configuration Generator
Test Your SSL Configuration with SSL Labs’ SSL Server Test

74 | Chapter 7: Security Controls

https://mzl.la/2OU4xS0
http://bit.ly/2fz7iIv
https://oreil.ly/aVWE2

7.4 Advanced Client-Side Encryption
Problem
You have advanced client-server encryption configuration needs.

Solution
The http and stream SSL modules for NGINX enable complete control of the
accepted SSL/TLS handshake. Certificates and keys can be provided to NGINX, by
way of file path, or variable value. NGINX presents the client with an accepted list of
protocols, ciphers, and key types, per its configuration. The highest standard between
the client and NGINX server is negotiated. NGINX can cache the result of client-
server SSL/TLS negotiation for a period of time.

The following intentionally demonstrates many options at once to illustrate the avail‐
able complexity of the client-server negotiation:

http { # All directives used below are also valid in stream
 server {
 listen 8443 ssl;
 # Set accepted protocol and cipher
 ssl_protocols TLSv1.2 TLSv1.3;
 ssl_ciphers HIGH:!aNULL:!MD5;

 # RSA certificate chain loaded from file
 ssl_certificate /etc/nginx/ssl/example.crt;
 # RSA encryption key loaded from file
 ssl_certificate_key /etc/nginx/ssl/example.pem;

 # Elliptic curve cert from variable value
 ssl_certificate $ecdsa_cert;
 # Elliptic curve key as file path variable
 ssl_certificate_key data:$ecdsa_key_path;

 # Client-Server negotiation caching
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 }
}

The server accepts the SSL protocol versions TLSv1.2 and TLSv1.3. The ciphers
accepted are set to HIGH, which is a macro for the highest standard, explicit denies are
demonstrated for aNULL and MD5 by denotation of the !.

Two sets of certificate-key pairs are used. The values passed to the NGINX directives
demonstrate different ways to provide NGINX certificate-key values. A variable is
interpreted as a path to a file. When prefixed with data: the value of a variable is
interpreted as a direct value. Multiple certificate-key formats may be provided to offer

7.4 Advanced Client-Side Encryption | 75

reverse compatibility to the client. The strongest standard capable by the client and
accepted by the server will be the result of the negotiation.

If the SSL/TLS key is exposed as a direct value variable, it has the
potential of being logged or exposed by the configuration. Ensure
you have strict change and access controls if exposing the key value
as a variable.

The SSL session cache and timeout allow NGINX worker processes to cache and
store session parameters for a given amount of time. The NGINX worker processes
share this cache between themselves as processes within a single instantiation, but not
between machines. There are many other session cache options that can help with
performance or security of all types of use cases. You can use session cache options in
conjunction with one another. However, specifying one without the default will turn
off the default built-in session cache.

Discussion
In this advanced example, NGINX provides the client with the SSL/TLS options of
TLS version 1.2 or 1.3, highly regarded cipher algorithms, and the ability to use RSA
or Elliptic Curve Cryptography (ECC) formatted keys. The strongest of the protocols,
ciphers, and key formats the client is capable of is the result of the negotiation. The
configuration instructs NGINX to cache the negotiation for a period of 10 minutes
with the available memory allocation of 10 MB.

In testing, ECC certificates were found to be faster than the equivalent-strength RSA
certificates. The key size is smaller, which results in the ability to serve more SSL/TLS
connections, and with faster handshakes. NGINX allows you to configure multiple
certificates and keys, and then serve the optimal certificate for the client browser. This
allows you to take advantage of the newer technology but still serve older clients.

NGINX is encrypting the traffic between itself and the client in this
example. The connection to upstream servers may also be encryp‐
ted, however. The negotiation between NGINX and the upstream
server is demonstrated in the Upstream Encryption recipe.

Also See
Mozilla Server Side TLS Page
Mozilla SSL Configuration Generator
Test Your SSL Configuration with SSL Labs SSL Server Test

76 | Chapter 7: Security Controls

https://mzl.la/2OU4xS0
http://bit.ly/2fz7iIv
https://oreil.ly/aVWE2

7.5 Upstream Encryption
Problem
You need to encrypt traffic between NGINX and the upstream service and set specific
negotiation rules for compliance regulations or the upstream service is outside of
your secured network.

Solution
Use the SSL directives of the HTTP proxy module to specify SSL rules:

location / {
 proxy_pass https://upstream.example.com;
 proxy_ssl_verify on;
 proxy_ssl_verify_depth 2;
 proxy_ssl_protocols TLSv1.2;
}

These proxy directives set specific SSL rules for NGINX to obey. The configured
directives ensure that NGINX verifies that the certificate and chain on the upstream
service is valid up to two certificates deep. The proxy_ssl_protocols directive speci‐
fies that NGINX will only use TLS version 1.2. By default, NGINX does not verify
upstream certificates and accepts all TLS versions.

Discussion
The configuration directives for the HTTP proxy module are vast, and if you need to
encrypt upstream traffic, you should at least turn on verification. You can proxy over
HTTPS simply by changing the protocol on the value passed to the proxy_pass
directive. However, this does not validate the upstream certificate. Other directives,
such as proxy_ssl_certificate and proxy_ssl_certificate_key, allow you to
lock down upstream encryption for enhanced security. You can also specify
proxy_ssl_crl or a certificate revocation list, which lists certificates that are no
longer considered valid. These SSL proxy directives help harden your system’s com‐
munication channels within your own network or across the public internet.

7.6 Securing a Location
Problem
You need to secure a location block using a secret.

7.5 Upstream Encryption | 77

Solution
Use the secure link module and the secure_link_secret directive to restrict access
to resources to users who have a secure link:

 location /resources {
 secure_link_secret mySecret;
 if ($secure_link = "") { return 403; }

 rewrite ^ /secured/$secure_link;
 }

 location /secured/ {
 internal;
 root /var/www;
 }

This configuration creates an internal and public-facing location block. The public-
facing location block /resources will return a 403 Forbidden unless the request URI
includes an md5 hash string that can be verified with the secret provided to the
secure_link_secret directive. The $secure_link variable is an empty string unless
the hash in the URI is verified.

Discussion
Securing resources with a secret is a great way to ensure your files are protected. The
secret is used in conjunction with the URI. This string is then md5 hashed, and the
hex digest of that md5 hash is used in the URI. The hash is placed into the link and
evaluated by NGINX. NGINX knows the path to the file being requested because it’s
in the URI after the hash. NGINX also knows your secret as it’s provided via
the secure_link_secret directive. NGINX is able to quickly validate the md5 hash
and store the URI in the $secure_link variable. If the hash cannot be validated, the
variable is set to an empty string. It’s important to note that the argument passed to
the secure_link_secret must be a static string; it cannot be a variable.

7.7 Generating a Secure Link with a Secret
Problem
You need to generate a secure link from your application using a secret.

Solution
The secure link module in NGINX accepts the hex digest of an md5 hashed string,
where the string is a concatenation of the URI path and the secret. Building on the
last section, Recipe 7.6, we will create the secured link that will work with the previ‐

78 | Chapter 7: Security Controls

ous configuration example given that there’s a file present at /var/www/secured/
index.html. To generate the hex digest of the md5 hash, we can use the Unix openssl
command:

$ echo -n 'index.htmlmySecret' | openssl md5 -hex
(stdin)= a53bee08a4bf0bbea978ddf736363a12

Here we show the URI that we’re protecting, index.html, concatenated with our secret,
mySecret. This string is passed to the openssl command to output an md5 hex digest.

The following is an example of the same hash digest being constructed in Python
using the hashlib library that is included in the Python Standard Library:

import hashlib
hashlib.md5.(b'index.htmlmySecret').hexdigest()
'a53bee08a4bf0bbea978ddf736363a12'

Now that we have this hash digest, we can use it in a URL. Our example will be
www.example.com making a request for the file /var/www/secured/index.html
through our /resources location. Our full URL will be the following:

www.example.com/resources/a53bee08a4bf0bbea978ddf736363a12/\
index.html

Discussion
Generating the digest can be done in many ways, in many languages. Things to
remember: the URI path goes before the secret, there are no carriage returns in the
string, and use the hex digest of the md5 hash.

7.8 Securing a Location with an Expire Date
Problem
You need to secure a location with a link that expires at some future time and is spe‐
cific to a client.

Solution
Utilize the other directives included in the secure link module to set an expire time
and use variables in your secure link:

location /resources {
 root /var/www;
 secure_link $arg_md5,$arg_expires;
 secure_link_md5 "$secure_link_expires$uri$remote_addrmySecret";
 if ($secure_link = "") { return 403; }
 if ($secure_link = "0") { return 410; }
}

7.8 Securing a Location with an Expire Date | 79

The secure_link directive takes two parameters separated with a comma. The first
parameter is the variable that holds the md5 hash. This example uses an HTTP argu‐
ment of md5. The second parameter is a variable that holds the time in which the link
expires in Unix epoch time format. The secure_link_md5 directive takes a single
parameter that declares the format of the string that is used to construct the md5
hash. Like the other configuration, if the hash does not validate, the $secure_link
variable is set to an empty string. However, with this usage, if the hash matches but
the time has expired, the $secure_link variable will be set to 0.

Discussion
This usage of securing a link is more flexible and looks cleaner than the
secure_link_secret shown in Recipe 7.6. With these directives, you can use any
number of variables that are available to NGINX in the hashed string. Using user-
specific variables in the hash string will strengthen your security, as users won’t be
able to trade links to secured resources. It’s recommended to use a variable like
$remote_addr or $http_x_forwarded_for, or a session cookie header generated by
the application. The arguments to secure_link can come from any variable you pre‐
fer, and they can be named whatever best fits. The conditions are: Do you have
access? Are you accessing it within the time frame? If you don’t have access: Forbid‐
den. If you have access but you’re late: Gone. The HTTP 410, Gone, works great for
expired links because the condition is to be considered permanent.

7.9 Generating an Expiring Link
Problem
You need to generate a link that expires.

Solution
Generate a timestamp for the expire time in the Unix epoch format. On a Unix sys‐
tem, you can test by using the date as demonstrated in the following:

$ date -d "2020-12-31 00:00" +%s --utc
1609372800

Next, you’ll need to concatenate your hash string to match the string configured with
the secure_link_md5 directive. In this case, our string to be used will be 1293771600/
resources/index.html127.0.0.1 mySecret. The md5 hash is a bit different than just
a hex digest. It’s an md5 hash in binary format, base64-encoded, with plus signs (+)
translated to hyphens (-), slashes (/) translated to underscores (_), and equal signs (=)
removed. The following is an example on a Unix system:

80 | Chapter 7: Security Controls

$ echo -n '1609372800/resources/index.html127.0.0.1 mySecret' \
 | openssl md5 -binary \
 | openssl base64 \
 | tr +/ -_ \
 | tr -d =
TG6ck3OpAttQ1d7jW3JOcw

Now that we have our hash, we can use it as an argument along with the expire date:

/resources/index.html?md5=TG6ck3OpAttQ1d7jW3JOcw&expires=1609372
 800'

The following is a more practical example in Python utilizing a relative time for the
expiration, setting the link to expire one hour from generation. At the time of writing
this example works with Python 2.7 and 3.x utilizing the Python Standard Library:

from datetime import datetime, timedelta
from base64 import b64encode
import hashlib

Set environment vars
resource = b'/resources/index.html'
remote_addr = b'127.0.0.1'
host = b'www.example.com'
mysecret = b'mySecret'

Generate expire timestamp
now = datetime.utcnow()
expire_dt = now + timedelta(hours=1)
expire_epoch = str.encode(expire_dt.strftime('%s'))

md5 hash the string
uncoded = expire_epoch + resource + remote_addr + mysecret
md5hashed = hashlib.md5(uncoded).digest()

Base64 encode and transform the string
b64 = b64encode(md5hashed)
unpadded_b64url = b64.replace(b'+', b'-')\
 .replace(b'/', b'_')\
 .replace(b'=', b'')

Format and generate the link
linkformat = "{}{}?md5={}?expires={}"
securelink = linkformat.format(
 host.decode(),
 resource.decode(),
 unpadded_b64url.decode(),
 expire_epoch.decode()
)
print(securelink)

7.9 Generating an Expiring Link | 81

Discussion
With this pattern, we’re able to generate a secure link in a special format that can be
used in URLs. The secret provides security through use of a variable that is never sent
to the client. You’re able to use as many other variables as you need to in order to
secure the location. md5 hashing and base64 encoding are common, lightweight, and
available in nearly every language.

7.10 HTTPS Redirects
Problem
You need to redirect unencrypted requests to HTTPS.

Solution
Use a rewrite to send all HTTP traffic to HTTPS:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 return 301 https://$host$request_uri;
}

This configuration listens on port 80 as the default server for both IPv4 and IPv6 and
for any hostname. The return statement returns a 301 permanent redirect to the
HTTPS server at the same host and request URI.

Discussion
It’s important to always redirect to HTTPS where appropriate. You may find that you
do not need to redirect all requests but only those with sensitive information being
passed between client and server. In that case, you may want to put the return state‐
ment in particular locations only, such as /login.

7.11 Redirecting to HTTPS Where SSL/TLS Is Terminated
Before NGINX
Problem
You need to redirect to HTTPS, however, you’ve terminated SSL/TLS at a layer before
NGINX.

82 | Chapter 7: Security Controls

Solution
Use the common X-Forwarded-Proto header to determine if you need to redirect:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 if ($http_x_forwarded_proto = 'http') {
 return 301 https://$host$request_uri;
 }
}

This configuration is very much like HTTPS redirects. However, in this configuration
we’re only redirecting if the header X-Forwarded-Proto is equal to HTTP.

Discussion
It’s a common use case that you may terminate SSL/TLS in a layer in front of NGINX.
One reason you may do something like this is to save on compute costs. However,
you need to make sure that every request is HTTPS, but the layer terminating
SSL/TLS does not have the ability to redirect. It can, however, set proxy headers. This
configuration works with layers such as the Amazon Web Services Elastic Load Bal‐
ancer (AWS ELB), which will offload SSL/TLS at no additional cost. This is a handy
trick to make sure that your HTTP traffic is secured.

7.12 HTTP Strict Transport Security
Problem
You need to instruct browsers to never send requests over HTTP.

Solution
Use the HTTP Strict Transport Security (HSTS) enhancement by setting the Strict-
Transport-Security header:

 add_header Strict-Transport-Security max-age=31536000;

This configuration sets the Strict-Transport-Security header to a max age of a
year. This will instruct the browser to always do an internal redirect when HTTP
requests are attempted to this domain, so that all requests will be made over HTTPS.

Discussion
For some applications, a single HTTP request trapped by a man-in-the-middle attack
could be the end of the company. If a form post containing sensitive information is

7.12 HTTP Strict Transport Security | 83

sent over HTTP, the HTTPS redirect from NGINX won’t save you; the damage is
done. This opt-in security enhancement informs the browser to never make an
HTTP request, and therefore the request is never sent unencrypted.

Also See
RFC-6797 HTTP Strict Transport Security
OWASP HSTS Cheat Sheet

7.13 Satisfying Any Number of Security Methods
Problem
You need to provide multiple ways to pass security to a closed site.

Solution
Use the satisfy directive to instruct NGINX that you want to satisfy any or all of the
security methods used:

location / {
 satisfy any;

 allow 192.168.1.0/24;
 deny all;

 auth_basic "closed site";
 auth_basic_user_file conf/htpasswd;
}

This configuration tells NGINX that the user requesting the location / needs to sat‐
isfy one of the security methods: either the request needs to originate from the
192.168.1.0/24 CIDR block or be able to supply a username and password that can be
found in the conf/htpasswd file. The satisfy directive takes one of two options: any
or all.

Discussion
The satisfy directive is a great way to offer multiple ways to authenticate to your
web application. By specifying any to the satisfy directive, the user must meet one
of the security challenges. By specifying all to the satisfy directive, the user must
meet all of the security challenges. This directive can be used in conjunction with the
http_access_module detailed in Recipe 7.1, the http_auth_basic_module detailed in
Recipe 6.1, the http_auth_request_module detailed in Recipe 6.2, and the
http_auth_jwt_module detailed in Recipe 6.3. Security is only truly secure if it’s done

84 | Chapter 7: Security Controls

https://oreil.ly/oLaZc
https://oreil.ly/AVn-g

in multiple layers. The satisfy directive will help you achieve this for locations and
servers that require deep security rules.

7.14 NGINX Plus Dynamic Application Layer DDoS
Mitigation
Problem
You need a dynamic Distributed Denial of Service (DDoS) mitigation solution.

Solution
Use NGINX Plus to build a cluster-aware rate limit and automatic blocklist:

limit_req_zone $remote_addr zone=per_ip:1M rate=100r/s sync;
 # Cluster-aware rate limit
limit_req_status 429;

keyval_zone zone=sinbin:1M timeout=600 sync;
 # Cluster-aware "sin bin" with
 # 10-minute TTL
keyval $remote_addr $in_sinbin zone=sinbin;
 # Populate $in_sinbin with
 # matched client IP addresses

server {
 listen 80;
 location / {
 if ($in_sinbin) {
 set $limit_rate 50; # Restrict bandwidth of bad clients
 }

 limit_req zone=per_ip;
 # Apply the rate limit here
 error_page 429 = @send_to_sinbin;
 # Excessive clients are moved to
 # this location
 proxy_pass http://my_backend;
 }

 location @send_to_sinbin {
 rewrite ^ /api/3/http/keyvals/sinbin break;
 # Set the URI of the
 # "sin bin" key-val
 proxy_method POST;
 proxy_set_body '{"$remote_addr":"1"}';
 proxy_pass http://127.0.0.1:80;
 }

 location /api/ {

7.14 NGINX Plus Dynamic Application Layer DDoS Mitigation | 85

 api write=on;
 # directives to control access to the API
 }
}

Discussion
This solution uses a synchronized rate limit by use of a synchronized key-value store
to dynamically respond to DDoS attacks and mitigate their effects. The sync parame‐
ter provided to the limit_req_zone and keyval_zone directives synchronizes the
shared memory zone with other machines in the active-active NGINX Plus cluster.
This example identifies clients that send more than 100 requests per second, regard‐
less of which NGINX Plus node receives the request. When a client exceeds the rate
limit, its IP address is added to a “sin bin” key-value store by making a call to the
NGINX Plus API. The sin bin is synchronized across the cluster. Further requests
from clients in the sin bin are subject to a very low bandwidth limit, regardless of
which NGINX Plus node receives them. Limiting bandwidth is preferable to rejecting
requests outright because it does not clearly signal to the client that DDoS mitigation
is in effect. After 10 minutes, the client is automatically removed from the sin bin.

7.15 Installing and Configuring NGINX Plus App Protect
Module
Problem
You need to install and configure the NGINX Plus App Protect Module.

Solution
Follow the NGINX Plus App Protect installation guide for your platform. Make sure
not to skip the portion about installing App Protect signatures from the separate
repository.

Ensure that the App Protect Module is dynamically loaded by NGINX Plus using the
load_module directive in the main context, and enabled by using the app_protect_*
directives.

user nginx;
worker_processes auto;

load_module modules/ngx_http_app_protect_module.so;

... Other main context directives

http {
 app_protect_enable on;

86 | Chapter 7: Security Controls

https://oreil.ly/jEOqg

 app_protect_policy_file "/etc/nginx/AppProtectTransparentPolicy.json";
 app_protect_security_log_enable on;
 app_protect_security_log "/etc/nginx/log-default.json"
 syslog:server=127.0.0.1:515;

 # ... Other http context directives
}

In this example, the app_protect_enable directive set to on enabled the module for
the current context. This directive, and all of the following, are valid within the HTTP
context, as well as the Server and Location contexts with HTTP. The app_pro
tect_policy_file directive points to an App Protect policy file which we will define
next; if not defined, the default policy is used. Security logging is configured next, and
requires a remote logging server. For the example, we’ve configured it to the local
syslog listener. The app_protect_security_log directive takes two parameters; the
first is a JSON file that defines the logging settings, and the second is a log stream
destination. The log settings file will be shown later in this section.

Build an App Protect Policy file, and name it /etc/nginx/AppProtectTransparentPo‐
licy.json:

{
 "policy": {
 "name": "transparent_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "transparent"
 }
}

This policy file configures the default NGINX App Protect policy by use of a tem‐
plate, setting the policy name to transparent_policy, and setting the enforcement
Mode to transparent, which means NGINX Plus will log but not block. Transparent
mode is great to test out new policies before putting them into effect.

Enable blocking by changing the enforcementMode to blocking. This policy file can
be named /etc/nginx/AppProtectTransparentPolicy.json. To switch between the files,
update the app_protect_policy_file directive in your NGINX Plus configuration.

{
 "policy": {
 "name": "blocking_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "blocking"
 }
}

7.15 Installing and Configuring NGINX Plus App Protect Module | 87

To enable some of the protection features of App Protect, enable some violations:

{
 "policy": {
 "name": "blocking_policy",
 "template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
 "applicationLanguage": "utf-8",
 "enforcementMode": "blocking",
 "blocking-settings": {
 "violations": [
 {
 "name": "VIOL_JSON_FORMAT",
 "alarm": true,
 "block": true
 },
 {
 "name": "VIOL_PARAMETER_VALUE_METACHAR",
 "alarm": true,
 "block": false
 }
]
 }
 }
}

The above example demonstrates adding two violations to our policy. Take note that
VIOL_PARAMETER_VALUE_METACHAR is not set to block, but only alarm; whereas
VIOL_JSON_FORMAT is set to block and alarm. This functionality enables the overriding
of the default enforcementMode when set to blocking. When enforcementMode is set
to transparent, the default enforcement setting takes precedence.

Set up an NGINX Plus logging file, named /etc/nginx/log-default.json:

{
 "filter":{
 "request_type":"all"
 },
 "content":{
 "format":"default",
 "max_request_size":"any",
 "max_message_size":"5k"
 }
}

This file was defined in the NGINX Plus configuration by the app_pro

tect_security_log directive and is necessary for App Protect logging.

88 | Chapter 7: Security Controls

Discussion
This solution demonstrates the basis of configuring the NGINX Plus App Protect
Module. The App Protect module enables an entire suite of Web Application Firewall
(WAF) definitions. These definitions derive from the Advanced F5 Application Secu‐
rity functionality in F5. This comprehensive set of WAF attack signatures has been
extensively field-tested and proven. By adding this to an NGINX Plus installation, it
renders the best of F5 Application Security with the agility of the NGINX Platform.

Once the module is installed and enabled, most of the configuration is done in a pol‐
icy file. The policy files in this section showed how to enable active blocking, passive
monitoring, transparent mode, as well as explained overrides to this functionality
with violations. Violations are only one type of protection offered. Other protections
include HTTP Compliance, Evasion Techniques, Attack Signatures, Server Technolo‐
gies, Data Guard, and many more. To retrieve App Protect logs, it’s necessary to use
the NGINX Plus logging format and send the logs to a remote listening service, a file,
or /dev/stderr.

If you’re using NGINX Controller ADC, you can enable NGINX App Protect WAF
capabilities through NGINX Controllers App Security component, and visualize the
WAF metrics through the web interface.

Also See
NGINX Controller Administration Guide
NGINX Controller Configuration Guide
NGINX Controller Declarative Policy Reference Documentation

7.15 Installing and Configuring NGINX Plus App Protect Module | 89

https://oreil.ly/jEOqg
https://oreil.ly/eoeq7
https://oreil.ly/Llu3a

CHAPTER 8

HTTP/2

8.0 Introduction
HTTP/2 is a major revision to the HTTP protocol. Much of the work done in this
version was focused on the transport layer, such as enabling full request and response
multiplexing over a single TCP connection. Efficiencies were gained through the use
of compression on HTTP header fields, and support for request prioritization was
added. Another large addition to the protocol was the ability for the server to push
messages to the client. This chapter details the basic configuration for enabling
HTTP/2 in NGINX as well as configuring Google’s open source remote procedure
call (gRPC) and HTTP/2 server push support.

8.1 Basic Configuration
Problem
You want to take advantage of HTTP/2.

Solution
Turn on HTTP/2 on your NGINX server:

server {
 listen 443 ssl http2 default_server;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 # ...
}

91

Discussion
To turn on HTTP/2, you simply need to add the http2 parameter to the listen
directive. The catch, however, is that although the protocol does not require the con‐
nection to be wrapped in SSL/TLS, some implementations of HTTP/2 clients support
only HTTP/2 over an encrypted connection. Another caveat is that the HTTP/2 spec‐
ification has blocked a number of TLS 1.2 cipher suites, and therefore will fail the
handshake. The ciphers NGINX uses by default are not on the blocklist. The
Application-Layer Protocol Negotiation of TLS allows the application layer to negoti‐
ate which protocol should be used over the secure connection to avoid additional
round trips. To test that your setup is correct, you can install a plug-in for Chrome
and Firefox browsers that indicates when a site is using HTTP/2, or on the command
line with the nghttp utility.

Also See
HTTP/2 RFC Blocked Ciphers
Chrome HTTP/2 and SPDY Indicator Plug-in
Firefox HTTP/2 Indicator Add-on

8.2 gRPC
Problem
You need to terminate, inspect, route, or load balance gRPC method calls.

Solution
Use NGINX to proxy gRPC connections.

server {
 listen 80 http2;

 location / {
 grpc_pass grpc://backend.local:50051;
 }
}

In this configuration, NGINX is listening on port 80 for unencrypted HTTP/2 traffic,
and proxying that traffic to a machine named backend.local on port 50051. The
grpc_pass directive instructs NGINX to treat the communication as a gRPC call. The
grpc:// in front of our backend server location is not necessary; however, it does
directly indicate that the backend communication is not encrypted.

92 | Chapter 8: HTTP/2

http://bit.ly/2Q7j4P0
http://bit.ly/2Kk8leA
https://mzl.la/2A4LT4o

To utilize TLS encryption between the client and NGINX, and terminate that encryp‐
tion before passing the calls to the application server, turn on SSL and HTTP/2, as
you did in the first section:

server {
 listen 443 ssl http2 default_server;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 location / {
 grpc_pass grpc://backend.local:50051;
 }
}

This configuration terminates TLS at NGINX and passes the gRPC communication
to the application over unencrypted HTTP/2.

To configure NGINX to encrypt the gRPC communication to the application server,
providing end-to-end encrypted traffic, simply modify the grpc_pass directive to
specify grpcs:// before the server information (note the addition of the s denoting
secure communication):

 grpc_pass grpcs://backend.local:50051;

You also can use NGINX to route calls to different backend services based on the
gRPC URI, which includes the package, service, and method. To do so, utilize the
location directive.

location /mypackage.service1 {
 grpc_pass grpc://$grpc_service1;
}
location /mypackage.service2 {
 grpc_pass grpc://$grpc_service2;
}
location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
}

This configuration example uses the location directive to route incoming HTTP/2
traffic between two separate gRPC services, as well as a location to serve static con‐
tent. Method calls for the mypackage.service1 service are directed to the value of the
variable grpc_service1 which may contain a hostname or IP and optional port. Calls
for mypackage.service2 are directed to the value of the variable grpc_service2. The
location / catches any other HTTP request and serves static content. This demon‐
strates how NGINX is able to serve gRPC and non-gRPC under the same HTTP/2
endpoint and route accordingly.

8.2 gRPC | 93

Load balancing gRPC calls is also similar to non-gRPC HTTP traffic:

upstream grpcservers {
 server backend1.local:50051;
 server backend2.local:50051;
}
server {
 listen 443 ssl http2 default_server;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 location / {
 grpc_pass grpc://grpcservers;
 }
}

The upstream block works the exact same way for gRPC as it does for other HTTP
traffic. The only difference is that the upstream is referenced by grpc_pass.

Discussion
NGINX is able to receive, proxy, load balance, route, and terminate encryption for
gRPC calls. The gRPC module enables NGINX to set, alter, or drop gRPC call head‐
ers, set timeouts for requests, and set upstream SSL/TLS specifications. As gRPC
communicates over the HTTP/2 protocol, you can configure NGINX to accept gRPC
and non-gRPC web traffic on the same endpoint.

8.3 HTTP/2 Server Push
Problem
You need to preemptively push content to the client.

Solution
Use the HTTP/2 server push feature of NGINX.

server {
 listen 443 ssl http2 default_server;

 ssl_certificate server.crt;
 ssl_certificate_key server.key;
 root /usr/share/nginx/html;

 location = /demo.html {
 http2_push /style.css;
 http2_push /image1.jpg;
 }
}

94 | Chapter 8: HTTP/2

Discussion
To use HTTP/2 server push, your server must be configured for HTTP/2, as is done
in Recipe 7.1. From there, you can instruct NGINX to push specific files preemptively
with the http2_push directive. This directive takes one parameter, the full URI path
of the file to push to the client.

NGINX can also automatically push resources to clients if proxied applications
include an HTTP response header named Link. This header is able to instruct
NGINX to preload the resources specified. To enable this feature, add
http2_push_preload on; to the NGINX configuration.

8.3 HTTP/2 Server Push | 95

CHAPTER 9

Sophisticated Media Streaming

9.0 Introduction
This chapter covers streaming media with NGINX in MPEG-4 (MP4) or Flash Video
(FLV) formats. NGINX is widely used to distribute and stream content to the masses.
NGINX supports industry-standard formats and streaming technologies, which will
be covered in this chapter. NGINX Plus enables the ability to fragment content on the
fly with the HTTP Live Stream (HLS) module, as well as the ability to deliver HTTP
Dynamic Streaming (HDS) of already fragmented media. NGINX natively allows for
bandwidth limits, and NGINX Plus’s advanced features offer bitrate limiting, ena‐
bling your content to be delivered in the most efficient manner while reserving the
servers’ resources to reach the most users.

9.1 Serving MP4 and FLV
Problem
You need to stream digital media, originating in MP4 or FLV.

Solution
Designate an HTTP location block to serve .mp4 or .flv videos. NGINX will stream
the media using progressive downloads or HTTP pseudostreaming and support
seeking:

http {
 server {
 # ...

 location /videos/ {

97

 mp4;
 }
 location ~ \.flv$ {
 flv;
 }
 }
}

The example location block tells NGINX that files in the videos directory are in MP4
format type and can be streamed with progressive download support. The second
location block instructs NGINX that any files ending in .flv are in FLV format and
can be streamed with HTTP pseudostreaming support.

Discussion
Streaming video or audio files in NGINX is as simple as a single directive. Progressive
download enables the client to initiate playback of the media before the file has fin‐
ished downloading. NGINX supports seeking to an undownloaded portion of the
media in both formats.

9.2 Streaming with HLS with NGINX Plus
Problem
You need to support HTTP Live Streaming (HLS) for H.264/AAC-encoded content
packaged in MP4 files.

Solution
Utilize NGINX Plus’s HLS module with real-time segmentation, packetization, and
multiplexing, with control over fragmentation buffering and more, like forwarding
HLS arguments:

location /hls/ {
 hls; # Use the HLS handler to manage requests

 # Serve content from the following location
 alias /var/www/video;

 # HLS parameters
 hls_fragment 4s;
 hls_buffers 10 10m;
 hls_mp4_buffer_size 1m;
 hls_mp4_max_buffer_size 5m;
}

This location block directs NGINX to stream HLS media out of the /var/www/video
directory, fragmenting the media into 4-second segments. The number of HLS buf‐

98 | Chapter 9: Sophisticated Media Streaming

fers is set to 10 with a size of 10 MB. The initial MP4 buffer size is set to 1 MB with a
maximum of 5 MB.

Discussion
The HLS module available in NGINX Plus provides the ability to transmultiplex MP4
media files on the fly. There are many directives that give you control over how your
media is fragmented and buffered. The location block must be configured to serve the
media as an HLS stream with the HLS handler. The HLS fragmentation is set in num‐
ber of seconds, instructing NGINX to fragment the media by time length. The
amount of buffered data is set with the hls_buffers directive specifying the number
of buffers and the size. The client is allowed to start playback of the media after a cer‐
tain amount of buffering has accrued, specified by the hls_mp4_buffer_size. How‐
ever, a larger buffer may be necessary because metadata about the video may exceed
the initial buffer size. This amount is capped by the hls_mp4_max_buffer_size.
These buffering variables allow NGINX to optimize the end-user experience. Choos‐
ing the right values for these directives requires knowing the target audience and
your media. For instance, if the bulk of your media is large video files, and your target
audience has high bandwidth, you may opt for a larger max buffer size and longer
length fragmentation. This will allow for the metadata about the content to be down‐
loaded initially without error and for your users to receive larger fragments.

9.3 Streaming with HDS with NGINX Plus
Problem
You need to support Adobe’s HTTP Dynamic Streaming (HDS) that has already been
fragmented and separated from the metadata.

Solution
Use NGINX Plus’s support for fragmented FLV files (F4F) module to offer Adobe
Adaptive Streaming to your users:

location /video/ {
 alias /var/www/transformed_video;
 f4f;
 f4f_buffer_size 512k;
}

The example instructs NGINX Plus to serve previously fragmented media from a
location on disk to the client using the NGINX Plus F4F module. The buffer size for
the index file (.f4x) is set to 512 KB.

9.3 Streaming with HDS with NGINX Plus | 99

Discussion
The NGINX Plus F4F module enables NGINX to serve previously fragmented media
to end users. The configuration of such is as simple as using the f4f handler inside of
an HTTP location block. The f4f_buffer_size directive configures the buffer size
for the index file of this type of media.

9.4 Bandwidth Limits with NGINX Plus
Problem
You need to limit bandwidth to downstream media streaming clients without affect‐
ing the viewing experience.

Solution
Utilize NGINX Plus’s bitrate-limiting support for MP4 media files:

location /video/ {
 mp4;
 mp4_limit_rate_after 15s;
 mp4_limit_rate 1.2;
}

This configuration allows the downstream client to download for 15 seconds before
applying a bitrate limit. After 15 seconds, the client is allowed to download media at a
rate of 120% of the bitrate, which enables the client to always download faster than
they play.

Discussion
NGINX Plus’s bitrate limiting allows your streaming server to limit bandwidth
dynamically, based on the media being served, allowing clients to download just as
much as they need to ensure a seamless user experience. The MP4 handler described
in Recipe 9.1 designates this location block to stream MP4 media formats. The rate-
limiting directives, such as mp4_limit_rate_after, tell NGINX to only rate-limit
traffic after a specified amount of time, in seconds. The other directive involved in
MP4 rate limiting is mp4_limit_rate, which specifies the bitrate at which clients are
allowed to download in relation to the bitrate of the media. A value of 1 provided to
the mp4_limit_rate directive specifies that NGINX is to limit bandwidth (1-to-1) to
the bitrate of the media. Providing a value of more than 1 to the mp4_limit_rate
directive will allow users to download faster than they watch so they can buffer the
media and watch seamlessly while they download.

100 | Chapter 9: Sophisticated Media Streaming

CHAPTER 10

Cloud Deployments

10.0 Introduction
The advent of cloud providers has changed the landscape of web application hosting.
A process such as provisioning a new machine used to take hours to months; now,
you can create one with as little as a click or an API call. These cloud providers lease
their virtual machines, called infrastructure as a service (IaaS), or managed software
solutions such as databases, through a pay-per-usage model, which means you pay
only for what you use. This enables engineers to build up entire environments for
testing at a moment’s notice and tear them down when they’re no longer needed.
These cloud providers also enable applications to scale horizontally based on perfor‐
mance need at a moment’s notice. This chapter covers basic NGINX and NGINX Plus
deployments on a couple of the major cloud-provider platforms.

10.1 Auto-Provisioning on AWS
Problem
You need to automate the configuration of NGINX servers on Amazon Web Services
(AWS) for machines to be able to automatically provision themselves.

Solution
Utilize EC2 UserData as well as a prebaked Amazon Machine Image (AMI). Create
an Amazon Machine Image with NGINX and any supporting software packages
installed. Utilize Amazon Elastic Compute Cloud (EC2) UserData to configure any
environment-specific configurations at runtime.

101

Discussion
There are three patterns of thought when provisioning on AWS:

Provision at boot
Start from a common Linux image, then run configuration management or shell
scripts at boot time to configure the server. This pattern is slow to start and can be
prone to errors.

Fully baked AMIs
Fully configure the server, then burn an AMI to use. This pattern boots very fast and
accurately. However, it’s less flexible to the environment around it, and maintaining
many images can be complex.

Partially baked AMIs
It’s a mix of both worlds. Partially baked is where software requirements are installed
and burned into an AMI, and environment configuration is done at boot time. This
pattern is flexible compared to a fully baked pattern, and fast compared to a
provision-at-boot solution.

Whether you choose to partially or fully bake your AMIs, you’ll want to automate
that process. To construct an AMI build pipeline, it’s suggested to use a couple of
tools:

Configuration management
Configuration management tools define the state of the server in code, such as what
version of NGINX is to be run and what user it’s to run as, what DNS resolver to use,
and who to proxy upstream to. This configuration management code can be source
controlled and versioned like a software project. Some popular configuration man‐
agement tools are Puppet, Chef, Ansible, and SaltStack, which were described in
Chapter 5.

Packer from HashiCorp
Packer is used to automate running your configuration management on virtually any
virtualization or cloud platform and to burn a machine image if the run is successful.
Packer basically builds a virtual machine (VM) on the platform of your choosing,
then will SSH into the VM, runs any provisioning you specify, and burns an image.
You can utilize Packer to run the configuration management tool and reliably burn a
machine image to your specification.

To provision environmental configurations at boot time, you can utilize the Amazon
EC2 UserData to run commands the first time the instance is booted. If you’re using
the partially baked method, you can utilize this to configure environment-based
items at boot time. Examples of environment-based configurations might be what
server names to listen for, resolver to use, domain name to proxy to, or upstream
server pool to start with. UserData is a base64-encoded string that is downloaded at
the first boot and run. UserData can be as simple as an environment file accessed by

102 | Chapter 10: Cloud Deployments

other bootstrapping processes in your AMI, or it can be a script written in any lan‐
guage that exists on the AMI. It’s common for UserData to be a bash script that speci‐
fies variables, or downloads variables, to pass to configuration management. Configu‐
ration management ensures the system is configured correctly, templates configura‐
tion files based on environment variables, and reloads services. After UserData runs,
your NGINX machine should be completely configured, in a very reliable way.

10.2 Routing to NGINX Nodes Without an AWS ELB
Problem
You need to route traffic to multiple active NGINX nodes or create an active-passive
failover set to achieve high availability without a load balancer in front of NGINX.

Solution
Use the Amazon Route 53 DNS service to route to multiple active NGINX nodes or
configure health checks and failover between an active-passive set of NGINX nodes.

Discussion
DNS has balanced load between servers for a long time; moving to the cloud doesn’t
change that. The Route 53 service from Amazon provides a DNS service with many
advanced features, all available through an API. All the typical DNS tricks are avail‐
able, such as multiple IP addresses on a single A record and weighted A records.
When running multiple active NGINX nodes, you’ll want to use one of these A-
record features to spread load across all nodes. The round-robin algorithm is used
when multiple IP addresses are listed for a single A record. A weighted distribution
can be used to distribute load unevenly by defining weights for each server IP address
in an A record.

One of the more interesting features of Route 53 is its ability to health check. You can
configure Route 53 to monitor the health of an endpoint by establishing a TCP con‐
nection or by making a request with HTTP or HTTPS. The health check is highly
configurable with options for the IP, hostname, port, URI path, interval rates, moni‐
toring, and geography. With these health checks, Route 53 can take an IP out of rota‐
tion if it begins to fail. You could also configure Route 53 to failover to a secondary
record in case of a failure, which would achieve an active-passive, highly available
setup.

Route 53 has a geological-based routing feature that will enable you to route your cli‐
ents to the closest NGINX node to them, for the least latency. When routing by geog‐
raphy, your client is directed to the closest healthy physical location. When running

10.2 Routing to NGINX Nodes Without an AWS ELB | 103

multiple sets of infrastructure in an active-active configuration, you can automatically
failover to another geological location through the use of health checks.

When using Route 53 DNS to route your traffic to NGINX nodes in an Auto Scaling
group, you’ll want to automate the creation and removal of DNS records. To auto‐
mate adding and removing NGINX machines to Route 53 as your NGINX nodes
scale, you can use Amazon’s Auto Scaling lifecycle hooks to trigger scripts within the
NGINX box itself or scripts running independently on Amazon Lambda. These
scripts would use the Amazon Command Line Interface (CLI) or software develop‐
ment kit (SDK) to interface with the Amazon Route 53 API to add or remove the
NGINX machine IP and configured health check as it boots or before it is terminated.

Also See
Amazon Route 53 Global Server Load Balancing

10.3 The NLB Sandwich
Problem
You need to autoscale your NGINX Open Source layer and distribute load evenly and
easily between application servers.

Solution
Create a network load balancer (NLB). During creation of the NLB through the con‐
sole, you are prompted to create a new target group. If you do not do this through the
console, you will need to create this resource and attach it to a listener on the NLB.
You create an Auto Scaling group with a launch configuration that provisions an EC2
instance with NGINX Open Source installed. The Auto Scaling group has a configu‐
ration to link to the target group, which automatically registers any instance in the
Auto Scaling group to the target group configured on first boot. The target group is
referenced by a listener on the NLB. Place your upstream applications behind another
network load balancer and target group and then configure NGINX to proxy to the
application NLB.

Discussion
This common pattern is called the NLB sandwich (see Figure 10-1), putting NGINX
Open Source in an Auto Scaling group behind an NLB and the application Auto Scal‐
ing group behind another NLB. The reason for having NLBs between every layer is
because the NLB works so well with Auto Scaling groups; they automatically register
new nodes and remove those being terminated as well as run health checks and pass
traffic to only healthy nodes. It might be necessary to build a second, internal, NLB

104 | Chapter 10: Cloud Deployments

http://bit.ly/2BmMCQD

for the NGINX Open Source layer because it allows services within your application
to call out to other services through the NGINX Auto Scaling group without leaving
the network and re-entering through the public NLB. This puts NGINX in the middle
of all network traffic within your application, making it the heart of your application’s
traffic routing. This pattern used to be called the elastic load balancer sandwich; how‐
ever, the NLB is preferred when working with NGINX because the NLB is a Layer 4
load balancer, whereas ELBs and ALBs are Layer 7 load balancers. Layer 7 load bal‐
ancers transform the request via the PROXY Protocol and are redundant with the use
of NGINX. This pattern is needed only for NGINX Open Source because the feature
set provided by the NLB is available in NGINX Plus.

Figure 10-1. This image depicts NGINX in an NLB sandwich pattern with an internal
NLB for internal applications to utilize. A user makes a request to App-1, and App-1
makes a request to App-2 through NGINX to fulfill the user’s request.

10.3 The NLB Sandwich | 105

10.4 Deploying from the AWS Marketplace
Problem
You need to run NGINX Plus in AWS with ease, with a pay-as-you-go license.

Solution
Deploy through the AWS Marketplace. Visit the AWS Marketplace and search
“NGINX Plus” (see Figure 10-2). Select the AMI that is based on the Linux distribu‐
tion of your choice; review the details, terms, and pricing; then click the Continue
link. On the next page you’ll be able to accept the terms and deploy NGINX Plus with
a single click, or accept the terms and use the AMI.

Figure 10-2. Searching for NGINX Plus on the AWS Marketplace

106 | Chapter 10: Cloud Deployments

https://oreil.ly/SZrQr

Discussion
The AWS Marketplace solution to deploying NGINX Plus provides ease of use and a
pay-as-you-go license. Not only do you have nothing to install, but you also have a
license without jumping through hoops like getting a purchase order for a year
license. This solution enables you to try NGINX Plus easily without commitment.
You can also use the NGINX Plus Marketplace AMI as overflow capacity. It’s a com‐
mon practice to purchase your expected workload worth of licenses and use the Mar‐
ketplace AMI in an Auto Scaling group as overflow capacity. This strategy ensures
you only pay for as much licensing as you use.

10.5 Creating an NGINX Virtual Machine Image on Azure
Problem
You need to create a virtual machine (VM) image of your own NGINX server config‐
ured as you see fit to quickly create more servers or to use in scale sets.

Solution
Create a VM from a Linux-based operating system of your choice. Once the VM is
booted, log in and install NGINX or NGINX Plus in your preferred way, either from
source or through the package-management tool for the distribution you’re running.
Configure NGINX as desired and create a new VM image. To create a VM image, you
must first generalize the VM. To generalize your VM, you need to remove the user
that Azure provisioned, connect to it over SSH, and run the following command:

$ sudo waagent -deprovision+user -force

This command deprovisions the user that Azure provisioned when creating the VM.
The -force option simply skips a confirmation step. After you’ve installed NGINX or
NGINX Plus and removed the provisioned user, you can exit your session.

Connect your Azure CLI to your Azure account using the Azure login command,
then ensure you’re using the Azure Resource Manager mode. Now deallocate your
VM:

$ azure vm deallocate -g <ResourceGroupName> \
 -n <VirtualMachineName>

Once the VM is deallocated, you will be able to generalize it with the azure vm
generalize command:

$ azure vm generalize -g <ResourceGroupName> \
 -n <VirtualMachineName>

10.5 Creating an NGINX Virtual Machine Image on Azure | 107

After your VM is generalized, you can create an image. The following command will
create an image and also generate an Azure Resources Manager (ARM) template for
you to use to boot this image:

$ azure vm capture <ResourceGroupName> <VirtualMachineName> \
 <ImageNamePrefix> -t <TemplateName>.json

The command line will produce output saying that your image has been created, that
it’s saving an ARM template to the location you specified, and that the request is com‐
plete. You can use this ARM template to create another VM from the newly created
image. However, to use this template Azure has created, you must first create a new
network interface:

$ azure network nic create <ResourceGroupName> \
 <NetworkInterfaceName> \
 <Region> \
 --subnet-name <SubnetName> \
 --subnet-vnet-name <VirtualNetworkName>

This command output will detail information about the newly created network inter‐
face. The first line of the output data will be the network interface ID, which you will
need to utilize the ARM template created by Azure. Once you have the ID, you can
create a deployment with the ARM template:

$ azure group deployment create <ResourceGroupName> \
 <DeploymentName> \
 -f <TemplateName>.json

You will be prompted for multiple input variables such as vmName, adminUserName,
adminPassword, and networkInterfaceId. Enter a name for the VM and the admin
username and password. Use the network interface ID harvested from the last com‐
mand as the input for the networkInterfaceId prompt. These variables will be
passed as parameters to the ARM template and used to create a new VM from the
custom NGINX or NGINX Plus image you’ve created. After entering the necessary
parameters, Azure will begin to create a new VM from your custom image.

Discussion
Creating a custom image in Azure enables you to create copies of your preconfigured
NGINX or NGINX Plus server at will. An Azure ARM template enables you to
quickly and reliably deploy this same server, time and time again as needed. With the
VM image path that can be found in the template, you can create different sets of
infrastructure such as VM scaling sets or other VMs with different configurations.

108 | Chapter 10: Cloud Deployments

Also See
Installing Azure Cross-platform CLI
Azure Cross-platform CLI Login
Capturing Linux Virtual Machine Images

10.6 Load Balancing Over NGINX Scale Sets on Azure
Problem
You need to scale NGINX nodes behind an Azure load balancer to achieve high avail‐
ability and dynamic resource usage.

Solution
Create an Azure load balancer that is either public-facing or internal. Deploy the
NGINX VM image created in the prior section, or the NGINX Plus image from the
Marketplace described in Recipe 10.7, into an Azure virtual machine scale set
(VMSS). Once your load balancer and VMSS are deployed, configure a backend pool
on the load balancer to the VMSS. Set up load-balancing rules for the ports and pro‐
tocols you’d like to accept traffic on, and direct them to the backend pool.

Discussion
It’s common to scale NGINX to achieve high availability or to handle peak loads
without overprovisioning resources. In Azure you achieve this with VMSS. Using the
Azure load balancer provides ease of management for adding and removing NGINX
nodes to the pool of resources when scaling. With Azure load balancers, you’re able
to check the health of your backend pools and only pass traffic to healthy nodes. You
can run internal Azure load balancers in front of NGINX where you want to enable
access only over an internal network. You may use NGINX to proxy to an internal
load balancer fronting an application inside of a VMSS, using the load balancer for
the ease of registering and deregistering from the pool.

10.7 Deploying Through the Azure Marketplace
Problem
You need to run NGINX Plus in Azure with ease and a pay-as-you-go license.

10.6 Load Balancing Over NGINX Scale Sets on Azure | 109

http://bit.ly/2n7QM5T
http://bit.ly/2BmmIfy
http://bit.ly/2TsZP17

Solution
Deploy an NGINX Plus VM image through the Azure Marketplace:

1. From the Azure dashboard, select the New icon, and use the search bar to search
for “NGINX.” Search results will appear.

2. From the list, select the NGINX Plus Virtual Machine Image published by
NGINX, Inc.

3. When prompted to choose your deployment model, select the Resource Manager
option, and click the Create button.

4. You will then be prompted to fill out a form to specify the name of your VM, the
disk type, the default username and password or SSH key-pair public key, which
subscription to bill under, the resource group you’d like to use, and the location.

5. Once this form is filled out, you can click OK. Your form will be validated.
6. When prompted, select a VM size, and click the Select button.
7. On the next panel, you have the option to select optional configurations, which

will be the default based on your resource group choice made previously. After
altering these options and accepting them, click OK.

8. On the next screen, review the summary. You have the option of downloading
this configuration as an ARM template so that you can create these resources
again more quickly via a JSON template.

9. Once you’ve reviewed and downloaded your template, you can click OK to move
to the purchasing screen. This screen will notify you of the costs you’re about to
incur from this VM usage. Click Purchase and your NGINX Plus box will begin
to boot.

Discussion
Azure and NGINX have made it easy to create an NGINX Plus VM in Azure through
just a few configuration forms. The Azure Marketplace is a great way to get NGINX
Plus on demand with a pay-as-you-go license. With this model, you can try out the
features of NGINX Plus or use it for on-demand overflow capacity of your already
licensed NGINX Plus servers.

10.8 Deploying to Google Compute Engine
Problem
You need to create an NGINX server in Google Compute Engine to load balance or
proxy for the rest of your resources in Google Compute or App Engine.

110 | Chapter 10: Cloud Deployments

Solution
Start a new VM in Google Compute Engine. Select a name for your VM, zone,
machine type, and boot disk. Configure identity and access management, firewall,
and any advanced configuration you’d like. Create the VM.

Once the VM has been created, log in via SSH or through the Google Cloud Shell.
Install NGINX or NGINX Plus through the package manager for the given OS type.
Configure NGINX as you see fit and reload.

Alternatively, you can install and configure NGINX through the Google Compute
Engine startup script, which is an advanced configuration option when creating a
VM.

Discussion
Google Compute Engine offers highly configurable VMs at a moment’s notice. Start‐
ing a VM takes little effort and enables a world of possibilities. Google Compute
Engine offers networking and compute in a virtualized cloud environment. With a
Google Compute instance, you have the full capabilities of an NGINX server wher‐
ever and whenever you need it.

10.9 Creating a Google Compute Image
Problem
You need to create a Google Compute Image to quickly instantiate a VM or create an
instance template for an instance group.

Solution
Create a VM as described in Recipe 10.8. After installing and configuring NGINX on
your VM instance, set the auto-delete state of the boot disk to false. To set the auto-
delete state of the disk, edit the VM. On the Edit page under the disk configuration is
a checkbox labeled “Delete boot disk when instance is deleted.” Deselect this check‐
box and save the VM configuration. Once the auto-delete state of the instance is set to
false, delete the instance. When prompted, do not select the checkbox that offers to
delete the boot disk. By performing these tasks, you will be left with an unattached
boot disk with NGINX installed.

After your instance is deleted and you have an unattached boot disk, you can create a
Google Compute Image. From the Image section of the Google Compute Engine con‐
sole, select Create Image. You will be prompted for an image name, family, descrip‐
tion, encryption type, and the source. The source type you need to use is disk; and for

10.9 Creating a Google Compute Image | 111

the source disk, select the unattached NGINX boot disk. Select Create, and Google
Compute Cloud will create an image from your disk.

Discussion
You can utilize Google Cloud Images to create VMs with a boot disk identical to the
server you’ve just created. The value in creating images is being able to ensure that
every instance of this image is identical. When installing packages at boot time in a
dynamic environment, unless using version locking with private repositories, you run
the risk of package version and updates not being validated before being run in a pro‐
duction environment. With machine images, you can validate that every package
running on this machine is exactly as you tested, strengthening the reliability of your
service offering.

Also See
Create, Delete, and Depreciate Private Images

10.10 Creating a Google App Engine Proxy
Problem
You need to create a proxy for Google App Engine to context switch between applica‐
tions or serve HTTPS under a custom domain.

Solution
Utilize NGINX in Google Compute Cloud. Create a VM in Google Compute Engine,
or create a virtual machine image with NGINX installed and create an instance tem‐
plate with this image as your boot disk. If you’ve created an instance template, follow
up by creating an instance group that utilizes that template.

Configure NGINX to proxy to your Google App Engine endpoint. Make sure to
proxy to HTTPS because Google App Engine is public, and you’ll want to ensure you
do not terminate HTTPS at your NGINX instance and allow information to travel
between NGINX and Google App Engine unsecured. Because App Engine provides
just a single DNS endpoint, you’ll be using the proxy_pass directive rather than
upstream blocks in the open source version of NGINX because the open source ver‐
sion is not able to resolve DNS names of upstream servers. When proxying to Google
App Engine, make sure to set the endpoint as a variable in NGINX, then use that
variable in the proxy_pass directive to ensure NGINX does DNS resolution on every
request. For NGINX to do any DNS resolution, you’ll need to also utilize the
resolver directive and point to your favorite DNS resolver. Google makes the IP
address 8.8.8.8 available for public use. If you’re using NGINX Plus, you’ll be able to

112 | Chapter 10: Cloud Deployments

http://bit.ly/2jEp2mK

use the resolve flag on the server directive within the upstream block, keepalive
connections, and other benefits of the upstream module when proxying to Google
App Engine.

You may choose to store your NGINX configuration files in Google Storage, then use
the startup script for your instance to pull down the configuration at boot time. This
will allow you to change your configuration without having to burn a new image.
However, it will add to the startup time of your NGINX server.

Discussion
You want to run NGINX in front of Google App Engine if you’re using your own
domain and want to make your application available via HTTPS. At this time, Google
App Engine does not allow you to upload your own SSL certificates. Therefore, if
you’d like to serve your app under a domain other than appspot.com with encryption,
you’ll need to create a proxy with NGINX to listen at your custom domain. NGINX
will encrypt communication between itself and your clients, as well as between itself
and Google App Engine.

Another reason you may want to run NGINX in front of Google App Engine is to
host many App Engine apps under the same domain and use NGINX to do URI-
based context switching. Microservices are a popular architecture, and it’s common
for a proxy like NGINX to conduct the traffic routing. Google App Engine makes it
easy to deploy applications, and in conjunction with NGINX, you have a full-fledged
application delivery platform.

10.10 Creating a Google App Engine Proxy | 113

CHAPTER 11

Containers/Microservices

11.0 Introduction
Containers offer a layer of abstraction at the application layer, shifting the installation
of packages and dependencies from the deploy to the build process. This is important
because engineers are now shipping units of code that run and deploy in a uniform
way regardless of the environment. Promoting containers as runnable units reduces
the risk of dependency and configuration snafus between environments. Given this,
there has been a large drive for organizations to deploy their applications on con‐
tainer platforms. When running applications on a container platform, it’s common to
containerize as much of the stack as possible, including your proxy or load balancer.
NGINX and NGINX Plus containerize and ship with ease. They also include many
features that make delivering containerized applications fluid. This chapter focuses
on building NGINX and NGINX Plus container images, features that make working
in a containerized environment easier, and deploying your image on Kubernetes and
OpenShift.

When containerizing, it’s often common to decompose services into smaller applica‐
tions. When doing so, they’re tied back together by an API gateway. The first section
in this chapter provides a common case scenario of using NGINX as an API gateway
to secure, validate, authenticate, and route requests to the appropriate service.

A couple of architecture considerations about running NGINX or NGINX Plus in a
container should be called out. When containerizing a service, to make use of the
Docker log driver, logs must be output to /dev/stdout and error logs directed to /dev/
stderr. By doing so, the logs are streamed to the Docker log driver which is able to
route them to consolidated logging servers natively.

Load balancing methods are also of consideration when using NGINX Plus in a con‐
tainerized environment. The least_time load-balancing method was designed with

115

containerized networking overlays in mind. By favoring low response time, NGINX
Plus will pass the incoming request to the upstream server with the fastest average
response time. When all servers are adequately load balanced and performing equally,
NGINX Plus can optimize by network latency, preferring servers in closest network
proximity.

11.1 Using NGINX as an API Gateway
Problem
You need an API gateway to validate, authenticate, manipulate, and route incoming
requests for your use case.

Solution
Use NGINX or NGINX Plus as an API gateway. An API gateway provides an entry
point to one or more application programming interfaces (APIs). NGINX fits this
role very well. This section will highlight some core concepts and reference other sec‐
tions within this book for more detail on specifics. It’s also important to note that
NGINX has published an entire ebook on this topic: Deploying NGINX Plus as an API
gateway.

Start by defining a server block for your API gateway within its own file. A name such
as /etc/nginx/api_gateway.conf will do.

server {
 listen 443 ssl;
 server_name api.company.com;
 # SSL Settings Chapter 7

 default_type application/json;
}

Add some basic error-handling responses to your server definition:

proxy_intercept_errors on;

error_page 400 = @400;
location @400 { return 400 '{"status":400,"message":"Bad request"}\n'; }

error_page 401 = @401;
location @401 { return 401 '{"status":401,"message":"Unauthorized"}\n'; }

error_page 403 = @403;
location @403 { return 403 '{"status":403,"message":"Forbidden"}\n'; }

error_page 404 = @404;
location @404 { return 404 '{"status":404,"message":"Resource not found"}\n'; }

116 | Chapter 11: Containers/Microservices

https://oreil.ly/75l-m
https://oreil.ly/75l-m

The above section of NGINX configuration can be added directly to the server block
in /etc/nginx/api_gateway.conf or a separate file, and imported via an include direc‐
tive. The include directive is covered in Recipe 17.1.

Use an include directive to import this server configuration into the main nginx.conf
file within the http context:

include /etc/nginx/api_gateway.conf;

You now need to define your upstream service endpoints. Chapter 2 covers load bal‐
ancing, which discusses the upstream block. As a reminder, upstream is valid within
the http context, and not within server context. The following must be included or
set outside of the server block.

upstream service_1 {
 server 10.0.0.12:80;
 server 10.0.0.13:80;
}
upstream service_2 {
 server 10.0.0.14:80;
 server 10.0.0.15:80;
}

Depending on the use case, you may want to declare your services inline, as an
included file, or included per services. A case also exists where services should be
defined as proxy location endpoints, in this case it’s suggested to define the endpoint
as a variable for use throughout. Chapter 5, Programmability and Automation, dis‐
cusses ways to automate adding and removing machines from upstream blocks.

Build an internally routable location within the server block for each service:

location = /_service_1 {
 internal;
 # Config common to service
 proxy_pass http://service_1/$request_uri;
}
location = /_service_2 {
 internal;
 # Config common to service
 proxy_pass http://service_2/$request_uri;
}

By defining internal routable locations for these services, configuration that is com‐
mon to the service can be defined once, rather than repeatedly.

From here, we need to build up location blocks that define specific URI paths for a
given service. These blocks will validate, and route the request appropriately. An API
gateway can be as simple as routing requests based on path, and as detailed as defin‐
ing specific rules for every single accepted API URI. In the latter, you’ll want to devise

11.1 Using NGINX as an API Gateway | 117

a file structure for organization and use NGINX includes to import your configura‐
tion files. This concept is discussed in Recipe 17.1.

Create a new directory for the API gateway:

mkdir /etc/nginx/api_conf.d/

Build a specification of a service use case by defining location blocks within a file at
a path that makes sense for your configuration structure. Use the rewrite directive to
direct the request to the prior configured location block that proxies the request to a
service. The rewrite directive used below instructs NGINX to reprocess the request
with an altered URI. The following defines rules specific to an API resources, restricts
HTTP methods, then uses the rewrite directive to send the request to the prior
defined internal common proxy location for the service.

location /api/service_1/object {
 limit_except GET PUT { deny all; }
 rewrite ^ /_service_1 last;
}
location /api/service_1/object/[^/]*$ {
 limit_except GET POST { deny all; }
 rewrite ^ /_service_1 last;
}

Repeat this step for each service. Employ logical separation by means of file and
directory structures to organize effectively for the use case. Use any and all informa‐
tion provided in this book to configure API location blocks to be as specific and
restrictive as possible.

If separate files were used for the above location or upstream blocks, ensure they’re
included in your server context:

server {
 listen 443 ssl;
 server_name api.company.com;
 # SSL Settings Chapter 7

 default_type application/json;

 include api_conf.d/*.conf;
}

Enable authentication to protect private resources, by using one of the many methods
discussed in Chapter 6, or something as simple as preshared API keys as follows (note
the map directive is only valid in the http context):

map $http_apikey $api_client_name {
 default "";

 "j7UqLLB+yRv2VTCXXDZ1M/N4" "client_one";
 "6B2kbyrrTiIN8S8JhSAxb63R" "client_two";

118 | Chapter 11: Containers/Microservices

 "KcVgIDSY4Nm46m3tXVY3vbgA" "client_three";
}

Protect backend services from attack with NGINX by employing learnings from
Chapter 2 to limit usage. In the http context, define one or many request limit
shared–memory zones.

limit_req_zone $http_apikey
 zone=limitbyapikey:10m rate=100r/s;
limit_req_status 429;

Protect a given context with rate limits and authentication:

location /api/service_2/object {
 limit_req zone=limitbyapikey;

 # Consider writing these if's to a file
 # and using an include were needed.
 if ($http_apikey = "") {
 return 401;
 }
 if ($api_client_name = "") {
 return 403;
 }

 limit_except GET PUT { deny all; }
 rewrite ^ /_service_2 last;
}

Test out some calls to your API gateway:

curl -H "apikey: 6B2kbyrrTiIN8S8JhSAxb63R" \
 https://api.company.com/api/service_2/object

Discussion
API gateways provide an entry point to an application programming interface (API).
That sounds vague and basic, so let’s dig in. Integration points happen at many differ‐
ent layers. Any two independent services that need to communicate (integrate)
should hold an API version contract. Such version contracts define the compatibility
of the services. An API gateway enforces such contracts—authenticating, authorizing,
transforming, and routing requests between services.

This section demonstrated how NGINX can function as an API gateway by validat‐
ing, authenticating, and directing incoming requests to specific services and limiting
their usage. This tactic is popular in microservice architectures, where a single API
offering is split among different services.

Implore all of your learnings thus far to construct an NGINX server configuration to
the exact specifications for your use case. By weaving together the core concepts
demonstrated in this text, you have the ability to authenticate and authorize the use of

11.1 Using NGINX as an API Gateway | 119

URI paths, route or rewrite requests based on any factor, limit usage, and define what
is and is not accepted as a valid request. There will never be a single solution to an
API gateway, as each is intimately and infinitely definable to the use case it provides.

An API gateway provides an ultimate collaboration space between operations and
application teams to form a true DevOps organization. Application development
defines validity parameters of a given request. Delivery of such a request is typically
managed by what is considered IT, (networking, infrastructure, security, and middle‐
ware teams). An API gateway acts as an interface between those two layers. The con‐
struction of an API gateway requires input from all sides. Configuration of such
should be kept in some sort of source control. Many modern-day source-control
repositories have the concept of code owners. This concept allows you to require spe‐
cific users’ approval for certain files. In this way, teams can collaborate but verify
changes specific to a given department.

Something to keep in mind when working with API gateways is the URI path. In the
example configuration, the entire URI path is passed to the upstream servers. This
means the service_1 example needs to have handlers at the /api/service_1/* path.
To perform path-based routing in this way, it’s best that the application doesn’t have
conflicting routes with another application.

If conflicting routes do apply, there are a few things you can do. Edit the code to
resolve the conflicts, or add a URI prefix configuration to one or both applications to
move one of them to another context. In the case of off-the-shelf software that can’t
be edited, you can rewrite the requests URI upstream. However, if the application
returns links in the body, you’ll need to use regular expressions (regex) to rewrite the
body of the request before providing it to the client—this should be avoided.

Also See
Deploying NGINX Plus as an API gateway EBook

11.2 Using DNS SRV Records with NGINX Plus
Problem
You’d like to use your existing DNS SRV record implementation as the source for
upstream servers with NGINX Plus.

Solution
Specify the service directive with a value of http on an upstream server to instruct
NGINX to utilize the SRV record as a load-balancing pool:

120 | Chapter 11: Containers/Microservices

https://oreil.ly/75l-m

http {
 resolver 10.0.0.2 valid=30s;

 upstream backend {
 zone backends 64k;
 server api.example.internal service=http resolve;
 }
}

This feature is an NGINX Plus exclusive. The configuration instructs NGINX Plus to
resolve DNS from a DNS server at 10.0.0.2 and set up an upstream server pool with
a single server directive. This server directive specified with the resolve parameter
is instructed to periodically re-resolve the domain name base on the DNS record
TTL, or the valid override parameter of the resolver directive. The service=http
parameter and value tells NGINX that this is an SRV record containing a list of IPs
and ports, and to load balance over them as if they were configured with the server
directive.

Discussion
Dynamic infrastructure is becoming ever more popular with the demand and adop‐
tion of cloud-based infrastructure. Auto Scaling environments scale horizontally,
increasing and decreasing the number of servers in the pool to match the demand of
the load. Scaling horizontally demands a load balancer that can add and remove
resources from the pool. With an SRV record, you offload the responsibility of keep‐
ing the list of servers to DNS. This type of configuration is extremely enticing for
containerized environments because you may have containers running applications
on variable port numbers, possibly at the same IP address. It’s important to note that
UDP DNS record payload is limited to about 512 bytes.

11.3 Using the Official NGINX Image
Problem
You need to get up and running quickly with the NGINX image from Docker Hub.

Solution
Use the NGINX image from Docker Hub. This image contains a default configura‐
tion. You’ll need to either mount a local configuration directory or create a Dockerfile
and ADD in your configuration to the image build to alter the configuration. Here we
mount a volume where NGINX’s default configuration serves static content to
demonstrate its capabilities by using a single command:

$ docker run --name my-nginx -p 80:80 \
 -v /path/to/content:/usr/share/nginx/html:ro -d nginx

11.3 Using the Official NGINX Image | 121

The docker command pulls the nginx:latest image from Docker Hub if it’s not
found locally. The command then runs this NGINX image as a Docker container,
mapping localhost:80 to port 80 of the NGINX container. It also mounts the local
directory /path/to/content/ as a container volume at /usr/share/nginx/html/ as read
only. The default NGINX configuration will serve this directory as static content.
When specifying mapping from your local machine to a container, the local machine
port or directory comes first, and the container port or directory comes second.

Discussion
NGINX has made an official Docker image available via Docker Hub. This official
Docker image makes it easy to get up and going very quickly in Docker with your
favorite application delivery platform, NGINX. In this section, we were able to get
NGINX up and running in a container with a single command! The official NGINX
Docker image mainline that we used in this example is built from the Debian Jessie
Docker image. However, you can choose official images based on Alpine Linux. The
Dockerfile and source for these official images are available on GitHub. You can
extend the official image by building your own Dockerfile and specifying the official
image in the FROM command. You can also mount an NGINX configuration directory
as a Docker volume to override the NGINX configuration without modifying the
official image.

Also See
Official NGINX Docker image, NGINX
Docker repo on GitHub

11.4 Creating an NGINX Dockerfile
Problem
You need to create an NGINX Dockerfile in order to create a Docker image.

Solution
Start FROM your favorite distribution’s Docker image. Use the RUN command to install
NGINX. Use the ADD command to add your NGINX configuration files. Use the
EXPOSE command to instruct Docker to expose given ports, or do this manually when
you run the image as a container. Use CMD to start NGINX when the image is instanti‐
ated as a container. You’ll need to run NGINX in the foreground. To do this, you’ll
need to start NGINX with -g "daemon off;" or add daemon off; to your configura‐
tion. This example will use the latter with daemon off; in the configuration file
within the main context. You will also want to alter your NGINX configuration to log

122 | Chapter 11: Containers/Microservices

https://oreil.ly/8zvNE
https://oreil.ly/oUpJ9

to /dev/stdout for access logs and /dev/stderr for error logs; doing so will put your logs
into the hands of the Docker daemon, which will make them more easily available,
based on the log driver you’ve chosen to use with Docker:

FROM centos:7

Install epel repo to get nginx and install nginx
RUN yum -y install epel-release && \
 yum -y install nginx

add local configuration files into the image
ADD /nginx-conf /etc/nginx

EXPOSE 80 443

CMD ["nginx"]

The directory structure looks as follows:

.
├── Dockerfile
└── nginx-conf
 ├── conf.d
 │ └── default.conf
 ├── fastcgi.conf
 ├── fastcgi_params
 ├── koi-utf
 ├── koi-win
 ├── mime.types
 ├── nginx.conf
 ├── scgi_params
 ├── uwsgi_params
 └── win-utf

I chose to host the entire NGINX configuration within this Docker directory for ease
of access to all of the configurations with only one line in the Dockerfile to add all my
NGINX configurations.

Discussion
You will find it useful to create your own Dockerfile when you require full control
over the packages installed and updates. It’s common to keep your own repository of
images so that you know your base image is reliable and tested by your team before
running it in production.

11.4 Creating an NGINX Dockerfile | 123

11.5 Building an NGINX Plus Docker Image
Problem
You need to build an NGINX Plus Docker image to run NGINX Plus in a container‐
ized environment.

Solution
Use this Dockerfile to build an NGINX Plus Docker image. You’ll need to download
your NGINX Plus repository certificates and keep them in the directory with this
Dockerfile named nginx-repo.crt and nginx-repo.key, respectively. With that, this
Dockerfile will do the rest of the work installing NGINX Plus for your use and link‐
ing NGINX access and error logs to the Docker log collector.

FROM debian:stretch-slim

LABEL maintainer="NGINX <docker-maint@nginx.com>"

Download certificate and key from the customer portal
(https://cs.nginx.com) and copy to the build context

COPY nginx-repo.crt /etc/ssl/nginx/
COPY nginx-repo.key /etc/ssl/nginx/

Install NGINX Plus
RUN set -x \
 && APT_PKG="Acquire::https::plus-pkgs.nginx.com::" \
 && REPO_URL="https://plus-pkgs.nginx.com/debian" \
 && apt-get update && apt-get upgrade -y \
 && apt-get install \
 --no-install-recommends --no-install-suggests\
 -y apt-transport-https ca-certificates gnupg1 \
 && \
 NGINX_GPGKEY=573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62;\
 found=''; \
 for server in \
 ha.pool.sks-keyservers.net \
 hkp://keyserver.ubuntu.com:80 \
 hkp://p80.pool.sks-keyservers.net:80 \
 pgp.mit.edu \
 ; do \
 echo "Fetching GPG key $NGINX_GPGKEY from $server"; \
 apt-key adv --keyserver "$server" --keyserver-options \
 timeout=10 --recv-keys "$NGINX_GPGKEY" \
 && found=yes \
 && break;\
 done;\
 test -z "$found" && echo >&2 \
 "error: failed to fetch GPG key $NGINX_GPGKEY" && exit 1; \

124 | Chapter 11: Containers/Microservices

 echo "${APT_PKG}Verify-Peer "true";"\
 >> /etc/apt/apt.conf.d/90nginx \
 && echo \
 "${APT_PKG}Verify-Host "true";">>\
 /etc/apt/apt.conf.d/90nginx \
 && echo "${APT_PKG}SslCert \
 "/etc/ssl/nginx/nginx-repo.crt";" >> \
 /etc/apt/apt.conf.d/90nginx \
 && echo "${APT_PKG}SslKey \
 "/etc/ssl/nginx/nginx-repo.key";" >> \
 /etc/apt/apt.conf.d/90nginx \
 && printf \
 "deb ${REPO_URL} stretch nginx-plus" \
 > /etc/apt/sources.list.d/nginx-plus.list \
 && apt-get update && apt-get install -y nginx-plus \
 && apt-get remove --purge --auto-remove -y gnupg1 \
 && rm -rf /var/lib/apt/lists/*

Forward request logs to Docker log collector
RUN ln -sf /dev/stdout /var/log/nginx/access.log \
 && ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80
STOPSIGNAL SIGTERM

CMD ["nginx", "-g", "daemon off;"]

To build this Dockerfile into a Docker image, run the following in the directory that
contains the Dockerfile and your NGINX Plus repository certificate and key:

$ docker build --no-cache -t nginxplus .

This docker build command uses the flag --no-cache to ensure that whenever you
build this, the NGINX Plus packages are pulled fresh from the NGINX Plus reposi‐
tory for updates. If it’s acceptable to use the same version on NGINX Plus as the prior
build, you can omit the --no-cache flag. In this example, the new Docker image is
tagged nginxplus.

Discussion
By creating your own Docker image for NGINX Plus, you can configure your
NGINX Plus container however you see fit and drop it into any Docker environment.
This opens up all of the power and advanced features of NGINX Plus to your con‐
tainerized environment. This Dockerfile does not use the Dockerfile property ADD to
add in your configuration; you will need to add in your configuration manually.

Also See
NGINX blog on Docker images

11.5 Building an NGINX Plus Docker Image | 125

http://bit.ly/2crOMB6

11.6 Using Environment Variables in NGINX
Problem
You need to use environment variables inside your NGINX configuration in order to
use the same container image for different environments.

Solution
Use the ngx_http_perl_module to set variables in NGINX from your environment:

daemon off;
env APP_DNS;
include /usr/share/nginx/modules/*.conf;
...
http {
 perl_set $upstream_app 'sub { return $ENV{"APP_DNS"}; }';
 server {
 # ...
 location / {
 proxy_pass https://$upstream_app;
 }
 }
}

To use perl_set you must have the ngx_http_perl_module installed; you can do so
by loading the module dynamically or statically if building from source. NGINX by
default wipes environment variables from its environment; you need to declare any
variables you do not want removed with the env directive. The perl_set directive
takes two parameters: the variable name you’d like to set and a Perl string that renders
the result.

The following is a Dockerfile that loads the ngx_http_perl_module dynamically,
installing this module from the package management utility. When installing mod‐
ules from the package utility for CentOS, they’re placed in the /usr/lib64/nginx/
modules/ directory, and configuration files that dynamically load these modules are
placed in the /usr/share/nginx/modules/ directory. This is why in the preceding con‐
figuration snippet we include all configuration files at that path:

FROM centos:7

Install epel repo to get nginx and install nginx
RUN yum -y install epel-release && \
 yum -y install nginx nginx-mod-http-perl

add local configuration files into the image
ADD /nginx-conf /etc/nginx

126 | Chapter 11: Containers/Microservices

EXPOSE 80 443

CMD ["nginx"]

Discussion
A typical practice when using Docker is to utilize environment variables to change
the way the container operates. You can use environment variables in your NGINX
configuration so that your NGINX Dockerfile can be used in multiple, diverse envi‐
ronments.

11.7 Kubernetes Ingress Controller
Problem
You are deploying your application on Kubernetes and need an ingress controller.

Solution
Ensure that you have access to the ingress controller image. For NGINX, you can use
the nginx/nginx-ingress image from Docker Hub. For NGINX Plus, you will need to
build your own image and host it in your private Docker registry. You can find
instructions on building and pushing your own NGINX Plus Kubernetes Ingress
Controller on NGINX Inc’s GitHub.

Visit the Kubernetes Ingress Controller Deployments folder in the kubernetes-ingress
repository on GitHub. The commands that follow will be run from within this direc‐
tory of a local copy of the repository.

Create a namespace and a service account for the ingress controller; both are named
nginx-ingress:

$ kubectl apply -f common/ns-and-sa.yaml

Create a secret with a TLS certificate and key for the ingress controller:

$ kubectl apply -f common/default-server-secret.yaml

This certificate and key are self-signed and created by NGINX Inc. for testing and
example purposes. It’s recommended to use your own because this key is publicly
available.

Optionally, you can create a config map for customizing NGINX configuration (the
config map provided is blank; however, you can read more about customization and
annotation):

$ kubectl apply -f common/nginx-config.yaml

11.7 Kubernetes Ingress Controller | 127

http://bit.ly/2FHQQpQ
http://bit.ly/2R0brHt
http://bit.ly/2OPi1i1
http://bit.ly/2OPi1i1

If Role-Based Access Control (RBAC) is enabled in your cluster, create a cluster role
and bind it to the service account. You must be a cluster administrator to perform
this step:

$ kubectl apply -f rbac/rbac.yaml

Now deploy the ingress controller. Two example deployments are made available in
this repository: a Deployment and a DaemonSet. Use a Deployment if you plan to
dynamically change the number of ingress controller replicas. Use a DaemonSet to
deploy an ingress controller on every node or a subset of nodes.

If you plan to use the NGINX Plus Deployment manifests, you must alter the YAML
file and specify your own registry and image.

For NGINX Deployment:

$ kubectl apply -f deployment/nginx-ingress.yaml

For NGINX Plus Deployment:

$ kubectl apply -f deployment/nginx-plus-ingress.yaml

For NGINX DaemonSet:

$ kubectl apply -f daemon-set/nginx-ingress.yaml

For NGINX Plus DaemonSet:

$ kubectl apply -f daemon-set/nginx-plus-ingress.yaml

Validate that the ingress controller is running:

$ kubectl get pods --namespace=nginx-ingress

If you created a DaemonSet, port 80 and 443 of the ingress controller are mapped to
the same ports on the node where the container is running. To access the ingress con‐
troller, use those ports and the IP address of any of the nodes on which the ingress
controller is running. If you deployed a Deployment, continue with the next steps.

For the Deployment methods, there are two options for accessing the ingress control‐
ler pods. You can instruct Kubernetes to randomly assign a node port that maps to
the ingress controller pod. This is a service with the type NodePort. The other option
is to create a service with the type LoadBalancer. When creating a service of type
LoadBalancer, Kubernetes builds a load balancer for the given cloud platform, such
as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Compute.

To create a service of type NodePort, use the following:

$ kubectl create -f service/nodeport.yaml

To statically configure the port that is opened for the pod, alter the YAML and add
the attribute nodePort: {port} to the configuration of each port being opened.

128 | Chapter 11: Containers/Microservices

To create a service of type LoadBalancer for Google Cloud Compute or Azure, use
this code:

$ kubectl create -f service/loadbalancer.yaml

To create a service of type LoadBalancer for Amazon Web Services:

$ kubectl create -f service/loadbalancer-aws-elb.yaml

On AWS, Kubernetes creates a classic ELB in TCP mode with the PROXY Protocol
enabled. You must configure NGINX to use the PROXY Protocol. To do so, you can
add the following to the config map mentioned previously in reference to the file
common/nginx-config.yaml.

proxy-protocol: "True"
real-ip-header: "proxy_protocol"
set-real-ip-from: "0.0.0.0/0"

Then, update the config map:

$ kubectl apply -f common/nginx-config.yaml

You can now address the pod by its NodePort or by making a request to the load bal‐
ancer created on its behalf.

Discussion
As of this writing, Kubernetes is the leading platform in container orchestration and
management. The ingress controller is the edge pod that routes traffic to the rest of
your application. NGINX fits this role perfectly and makes it simple to configure with
its annotations. The NGINX Ingress project offers an NGINX Open Source ingress
controller out of the box from a Docker Hub image, and NGINX Plus through a few
steps to add your repository certificate and key. Enabling your Kubernetes cluster
with an NGINX Ingress controller provides all the same features of NGINX but with
the added features of Kubernetes networking and DNS to route traffic.

11.8 Prometheus Exporter Module
Problem
You are deploying NGINX into an environment using Prometheus monitoring and
need NGINX statistics.

Solution
Use the NGINX Prometheus Exporter to harvest NGINX or NGINX Plus statistics
and ship them to Prometheus.

11.8 Prometheus Exporter Module | 129

The NGINX Prometheus Exporter Module is written in GoLang and distributed as a
binary on GitHub and can be found as a prebuilt Docker Image on Docker Hub.

By default, the exporter will be started for NGINX and will only harvest the stub_sta
tus information. To run the exporter for NGINX Open Source, ensure stub status is
enabled. If it’s not, there is more information on how to do so in Recipe 13.1, then use
the following Docker command:

docker run -p 9113:9113 nginx/nginx-prometheus-exporter:0.8.0 \
 -nginx.scrape-uri http://{nginxEndpoint}:8080/stub_status

To use the exporter with NGINX Plus, a flag must be used to switch the exporter’s
context because much more data can be collected from the NGINX Plus API. You can
learn how to turn on the NGINX Plus API, in Recipe 13.2. Use the following Docker
command to run the exporter for an NGINX Plus environment.

docker run -p 9113:9113 nginx/nginx-prometheus-exporter:0.8.0 \
 -nginx.plus -nginx.scrape-uri http://{nginxPlusEndpoint}:8080/api

Discussion
Prometheus is an extremely common metric monitoring solution that is very preva‐
lent in the Kubernetes ecosystem. The NGINX Prometheus Exporter Module is a
fairly simple component, however, it enables prebuilt integration between NGINX
and common monitoring platforms. With NGINX, the stub status does not provide a
vast amount of data, but important data to provide insight into the amount of work
an NGINX node is handling. The NGINX Plus API enables many more statistics
about the NGINX Plus server, all of which the exporter ships to Prometheus. With
either case, the information gleaned is valuable monitoring data, and the work to ship
this data to Prometheus is already done; you just need to wire it up and take advan‐
tage of the insight provided by NGINX statistics.

Also See
NGINX Prometheus Exporter GitHub
Stub Status
NGINX Plus API
NGINX Plus Monitoring Dashboard

130 | Chapter 11: Containers/Microservices

https://oreil.ly/TmUEo
https://oreil.ly/mC_i9
https://oreil.ly/rnEgI
https://oreil.ly/rnEgI
https://oreil.ly/WaUDA
https://oreil.ly/vtP6k
https://oreil.ly/K6Rif
https://oreil.ly/55IGt

CHAPTER 12

High-Availability Deployment Modes

12.0 Introduction
Fault-tolerant architecture separates systems into identical, independent stacks. Load
balancers like NGINX are employed to distribute load, ensuring that what’s provi‐
sioned is utilized. The core concepts of high availability are load balancing over mul‐
tiple active nodes or an active-passive failover. Highly available applications have no
single points of failure; every component must use one of these concepts, including
the load balancers themselves. For us, that means NGINX. NGINX is designed to
work in either configuration: multiple active or active-passive failover. This chapter
details techniques on how to run multiple NGINX servers to ensure high availability
in your load-balancing tier.

12.1 NGINX Plus HA Mode
Problem
You need a highly available (HA) load-balancing solution.

Solution
Use NGINX Plus’s HA mode with keepalived by installing the nginx-ha-keepalived
package from the NGINX Plus repository.

Discussion
The nginx-ha-keepalived package is based on keepalived and manages a virtual IP
address exposed to the client. Another process is run on the NGINX server that
ensures that NGINX Plus and the keepalived process are running. Keepalived is a

131

process that utilizes the Virtual Router Redundancy Protocol (VRRP), sending small
messages, often referred to as heartbeats, to the backup server. If the backup server
does not receive the heartbeat for three consecutive periods, the backup server ini‐
tiates the failover, moving the virtual IP address to itself and becoming the primary.
The failover capabilities of nginx-ha-keepalived can be configured to identify cus‐
tom failure situations.

12.2 Load-Balancing Load Balancers with DNS
Problem
You need to distribute load between two or more NGINX servers.

Solution
Use DNS to round robin across NGINX servers by adding multiple IP addresses to a
DNS A record.

Discussion
When running multiple load balancers, you can distribute load via DNS. The A
record allows for multiple IP addresses to be listed under a single FQDN. DNS will
automatically round robin across all the IPs listed. DNS also offers weighted round
robin with weighted records, which works in the same way as weighted round robin
in NGINX as described in Chapter 2. These techniques work great. However, a pitfall
can be removing the record when an NGINX server encounters a failure. There are
DNS providers—Amazon Route 53 for one, and Dyn DNS for another—that offer
health checks and failover with their DNS offering, which alleviates these issues. If
you are using DNS to load balance over NGINX, when an NGINX server is marked
for removal, it’s best to follow the same protocols that NGINX does when removing
an upstream server. First, stop sending new connections to it by removing its IP from
the DNS record, then allow connections to drain before stopping or shutting down
the service.

12.3 Load Balancing on EC2
Problem
You’re using NGINX on AWS, and the NGINX Plus HA does not support Amazon
IPs.

132 | Chapter 12: High-Availability Deployment Modes

Solution
Put NGINX behind an AWS NLB by configuring an Auto Scaling group of NGINX
servers and linking the Auto Scaling group to a target group and then attach the tar‐
get group to the NLB. Alternatively, you can place NGINX servers into the target
group, manually by using the AWS console, command-line interface, or API.

Discussion
The HA solution from NGINX Plus based on keepalived will not work on AWS
because it does not support the floating virtual IP address, since EC2 IP addresses
work in a different way. This does not mean that NGINX can’t be HA in the AWS
cloud; in fact, the opposite is true. The AWS NLB is a product offering from Amazon
that will natively load balance over multiple, physically separated data centers called
availability zones, provide active health checks, and a DNS CNAME endpoint. A
common solution for HA NGINX on AWS is to put an NGINX layer behind the NLB.
NGINX servers can be automatically added to and removed from the target group as
needed. The NLB is not a replacement for NGINX; there are many things NGINX
offers that the NLB does not, such as multiple load-balancing methods, rate limiting,
caching, and Layer 7 routing. The AWS ALB does perform Layer 7 load balancing
based on the URI path and host header, but it does not by itself offer features that
NGINX does, such as WAF caching, bandwidth limiting, HTTP/2 server push, and
more. In the event that the NLB does not fit your need, there are many other options.
One option is the DNS solution: Route 53 from AWS offers health checks and DNS
failover.

12.4 NGINX Plus Configuration Synchronization
Problem
You’re running an HA NGINX Plus tier and need to synchronize configuration across
servers.

Solution
Use the NGINX Plus exclusive configuration synchronization feature. To configure
this feature, follow these steps:

Install the nginx-sync package from the NGINX Plus package repository.

For RHEL or CentOS:

$ sudo yum install nginx-sync

12.4 NGINX Plus Configuration Synchronization | 133

For Ubuntu or Debian:

$ sudo apt-get install nginx-sync

Grant the primary machine SSH access as root to the peer machines.

Generate an SSH authentication key pair for root, and retrieve the public key:

$ sudo ssh-keygen -t rsa -b 2048
$ sudo cat /root/.ssh/id_rsa.pub
ssh-rsa AAAAB3Nz4rFgt...vgaD root@node1

Get the IP address of the primary node:

$ ip addr
1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: mtu 1500 qdisc pfifo_fast state UP group default qlen \
 1000
 link/ether 52:54:00:34:6c:35 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.2/24 brd 192.168.1.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fe34:6c35/64 scope link
 valid_lft forever preferred_lft forever

The ip addr command will dump information about interfaces on the machine. Dis‐
regard the loopback interface, which is normally the first. Look for the IP address fol‐
lowing inet for the primary interface. In this example, the IP address is 192.168.1.2.

Distribute the public key to the root user’s authorized_keys file on each peer node,
and specify to authorize only from the primary IP address:

$ sudo echo ‘from=”192.168.1.2" ssh-rsa AAAAB3Nz4rFgt...vgaD \
 root@node1' >> /root/.ssh/authorized_keys

Add the following line to /etc/ssh/sshd_config and reload sshd on all nodes:

$ sudo echo 'PermitRootLogin without-password' >> \
 /etc/ssh/sshd_config
$ sudo service sshd reload

Verify that the root user on the primary node can ssh to each of the peer nodes
without a password:

$ sudo ssh root@node2.example.com

134 | Chapter 12: High-Availability Deployment Modes

Create the configuration file /etc/nginx-sync.conf on the primary machine with the
following configuration:

NODES="node2.example.com node3.example.com node4.example.com"
CONFPATHS="/etc/nginx/nginx.conf /etc/nginx/conf.d"
EXCLUDE="default.conf"

This example configuration demonstrates the three common configuration parame‐
ters for this feature: NODES, CONFIGPATHS, and EXCLUDE. The NODES parameter is set to
a string of hostnames or IP addresses separated by spaces; these are the peer nodes to
which the primary will push its configuration changes. The CONFIGPATHS parameter
denotes which files or directories should be synchronized. Lastly, you can use the
EXCLUDE parameter to exclude configuration files from synchronization. In our exam‐
ple, the primary pushes configuration changes of the main NGINX configuration file
and includes the directory /etc/nginx/nginx.conf and /etc/nginx/conf.d to peer nodes
named node2.example.comnode3.example.com and node4.example.com. If the syn‐
chronization process finds a file named default.conf, it will not be pushed to the peers,
because it’s configured as an EXCLUDE.

There are advanced configuration parameters to configure the location of the NGINX
binary, RSYNC binary, SSH binary, diff binary, lockfile location, and backup direc‐
tory. There is also a parameter that utilizes sed to template-given files. For more
information about the advanced parameters, see Configuration Sharing.

Test your configuration:

$ nginx-sync.sh -h # display usage info
$ nginx-sync.sh -c node2.example.com # compare config to node2
$ nginx-sync.sh -C # compare primary config to all peers
$ nginx-sync.sh # sync the config & reload NGINX on peers

Discussion
This NGINX Plus exclusive feature enables you to manage multiple NGINX Plus
servers in an HA configuration by updating only the primary node and synchroniz‐
ing the configuration to all other peer nodes. By automating the synchronization of
configuration, you limit the risk of mistakes when transferring configurations. The
nginx-sync.sh application provides some safeguards to prevent sending bad config‐
urations to the peers. They include testing the configuration on the primary, creating
backups of the configuration on the peers, and validating the configuration on the
peer before reloading. Although it’s preferable to synchronize your configuration by
using configuration management tools or Docker, the NGINX Plus configuration
synchronization feature is valuable if you have yet to make the big leap to managing
environments in this way.

12.4 NGINX Plus Configuration Synchronization | 135

http://bit.ly/2DR4aqt

12.5 State Sharing with NGINX Plus and Zone Sync
Problem
You need NGINX Plus to synchronize its shared memory zones across a fleet of
highly available servers.

Solution
Configure zone synchronization, then use the sync parameter when configuring an
NGINX Plus shared memory zone:

stream {
 resolver 10.0.0.2 valid=20s;

 server {
 listen 9000;
 zone_sync;
 zone_sync_server nginx-cluster.example.com:9000 resolve;
 # ... Security measures
 }
}
http {
 upstream my_backend {
 zone my_backend 64k;
 server backends.example.com resolve;
 sticky learn zone=sessions:1m
 create=$upstream_cookie_session
 lookup=$cookie_session
 sync;
 }

 server {
 listen 80;
 location / {
 proxy_pass http://my_backend;
 }
 }
}

Discussion
The zone_sync module is an NGINX Plus exclusive feature that enables NGINX Plus
to truly cluster. As shown in the configuration, you must set up a stream server con‐
figured as the zone_sync. In the example, this is the server listening on port 9000.
NGINX Plus communicates with the rest of the servers defined by the
zone_sync_server directive. You can set this directive to a domain name that
resolves to multiple IP addresses for dynamic clusters, or statically define a series of

136 | Chapter 12: High-Availability Deployment Modes

zone_sync_server directives, to avoid single points of failure. You should restrict
access to the zone sync server; there are specific SSL/TLS directives for this module
for machine authentication. The benefit of configuring NGINX Plus into a cluster is
that you can synchronize shared memory zones for rate limiting, sticky-learn ses‐
sions, and the key-value store. The example provided shows the sync parameter
tacked on to the end of a sticky learn directive. In this example, a user is bound to
an upstream server based on a cookie named session. Without the zone sync mod‐
ule if a user makes a request to a different NGINX Plus server, they could lose their
session. With the zone sync module, all of the NGINX Plus servers are aware of the
session and to which upstream server it’s bound.

12.5 State Sharing with NGINX Plus and Zone Sync | 137

CHAPTER 13

Advanced Activity Monitoring

13.0 Introduction
To ensure that your application is running at optimal performance and precision, you
need insight into the monitoring metrics about its activity. NGINX Plus offers an
advanced monitoring dashboard and a JSON feed to provide in-depth monitoring
about all requests that come through the heart of your application. The NGINX Plus
activity monitoring provides insight into requests, upstream server pools, caching,
health, and more. This chapter details the power and possibilities of the NGINX Plus
dashboard, the NGINX Plus API, and the open source stub status module.

13.1 Enable NGINX Open Source Stub Status
Problem
You need to enable basic monitoring for NGINX.

Solution
Enable the stub_status module in a location block within a NGINX HTTP server:

location /stub_status {
 stub_status;
 allow 127.0.0.1;
 deny all;
 # Set IP restrictions as appropriate
}

139

Test your configuration by making a request for the status:

$ curl localhost/stub_status
Active connections: 1
server accepts handled requests
 1 1 1
Reading: 0 Writing: 1 Waiting: 0

Discussion
The stub_status module enables some basic monitoring of the NGINX OSS server.
The information that is returned provides insight into the number of active connec‐
tions, as well as the total connections accepted, connections handled, and requests
served. The current number of connections being read, written, or in a waiting state
is also shown. The information provided is global and is not specific to the parent
server where the stub_status directive is defined. This means that you can host the
status on a protected server. For security reasons we blocked all access to the
monitoring feature except local traffic. This module provides active connection
counts as embedded variables for use in logs and elsewhere. These variables are
$connections_active, $connections_reading, $connections_writing, and $con
nections_waiting.

13.2 Enabling the NGINX Plus Monitoring Dashboard
Problem
You require in-depth metrics about the traffic flowing through your NGINX Plus
server.

Solution
Utilize the real-time activity monitoring dashboard:

server {
 # ...
 location /api {
 api [write=on];
 # Directives limiting access to the API
 # See chapter 7
 }

 location = /dashboard.html {
 root /usr/share/nginx/html;
 }
}

140 | Chapter 13: Advanced Activity Monitoring

The NGINX Plus configuration serves the NGINX Plus status monitoring dashboard.
This configuration sets up an HTTP server to serve the API and the status dashboard.
The dashboard is served as static content out of the /usr/share/nginx/html directory.
The dashboard makes requests to the API at /api/ in order to retrieve and display the
status in real time.

Discussion
NGINX Plus provides an advanced status monitoring dashboard. This status dash‐
board provides a detailed status of the NGINX system, such as number of active con‐
nections, uptime, upstream server pool information, and more. For a glimpse of the
console, see Figure 13-1.

NGINX Controller provides an app-centric view of monitoring a fleet of NGINX Plus
servers across different locations. The Infrastructure tab provides information and
metrics about servers, environments, and applications, in a single interface. For a
glimpse at the console, see Figure 13-2.

The landing page of the status dashboard provides an overview of the entire system.
Clicking into the HTTP Zones tab lists details about all HTTP servers configured in
the NGINX configuration, detailing the number of responses from 1XX to 5XX and
an overall total as well as requests per second and the current traffic throughput. The
HTTP Upstreams tab details upstream server status: if the server were in a failed
state, how many requests it has served, and a total of how many responses have been
served by status code, as well as other statistics such as how many health checks it has
passed or failed. The TCP/UDP Zones tab details the amount of traffic flowing
through the TCP or UDP streams and the number of connections. The TCP/UDP
Upstreams tab shows information about how much each of the upstream servers in
the TCP/UDP upstream pools is serving, as well as health check pass and fail details
and response times. The Caches tab displays information about the amount of space
utilized for cache; the amount of traffic served, written, and bypassed; as well as the
hit ratio. The NGINX status dashboard is invaluable in monitoring the heart of your
applications and traffic flow.

13.2 Enabling the NGINX Plus Monitoring Dashboard | 141

Figure 13-1. The NGINX Plus status dashboard

Figure 13-2. An NGINX Controller app-centric analytics dashboard

142 | Chapter 13: Advanced Activity Monitoring

Also See
NGINX Plus Status Dashboard Demo
NGINX Controller Product Page

13.3 Collecting Metrics Using the NGINX Plus API
Problem
You need API access to the detail metrics provided by the NGINX Plus status
dashboard.

Solution
Utilize the RESTful API to collect metrics. The examples pipe the output through
json_pp to make them easier to read:

$ curl "demo.nginx.com/api/3/" | json_pp
[
 "nginx",
 "processes",
 "connections",
 "ssl",
 "slabs",
 "http",
 "stream"
]

The curl call requests the top level of the API, which displays other portions of the
API.

To get information about the NGINX Plus server, use the /api/{version}/nginx
URI:

$ curl "demo.nginx.com/api/3/nginx" | json_pp
{
 "version" : "1.15.2",
 "ppid" : 79909,
 "build" : "nginx-plus-r16",
 "pid" : 77242,
 "address" : "206.251.255.64",
 "timestamp" : "2018-09-29T23:12:20.525Z",
 "load_timestamp" : "2018-09-29T10:00:00.404Z",
 "generation" : 2
}

To limit information returned by the API, use arguments:

$ curl "demo.nginx.com/api/3/nginx?fields=version,build" \
 | json_pp
{

13.3 Collecting Metrics Using the NGINX Plus API | 143

https://oreil.ly/20j1Q
https://oreil.ly/ty2Iu

 "build" : "nginx-plus-r16",
 "version" : "1.15.2"
}

You can request connection statistics from the /api/{version}/connections URI:

$ curl "demo.nginx.com/api/3/connections" | json_pp
{
 "active" : 3,
 "idle" : 34,
 "dropped" : 0,
 "accepted" : 33614951
}

You can collect request statistics from the /api/{version}/http/requests URI:

$ curl "demo.nginx.com/api/3/http/requests" | json_pp
{
 "total" : 52107833,
 "current" : 2
}

You can retrieve statistics about a particular server zone using the /api/{version}/
http/server_zones/{httpServerZoneName} URI:

$ curl "demo.nginx.com/api/3/http/server_zones/hg.nginx.org" \
 | json_pp
{
 "responses" : {
 "1xx" : 0,
 "5xx" : 0,
 "3xx" : 938,
 "4xx" : 341,
 "total" : 25245,
 "2xx" : 23966
 },
 "requests" : 25252,
 "discarded" : 7,
 "received" : 5758103,
 "processing" : 0,
 "sent" : 359428196
}

The API can return any bit of data you can see on the dashboard. It has depth and
follows a logical pattern. You can find links to resources at the end of this recipe.

Discussion
The NGINX Plus API can return statistics about many parts of the NGINX Plus
server. You can gather information about the NGINX Plus server, its processes, con‐
nections, and slabs. You can also find information about http and stream servers
running within NGINX, including servers, upstreams, upstream servers, and

144 | Chapter 13: Advanced Activity Monitoring

key-value stores, as well as information and statistics about HTTP cache zones. This
provides you or third-party metric aggregators with an in-depth view of how your
NGINX Plus server is performing.

With the NGINX Controller API, you can query metrics from multiple NGINX Plus
servers at once. The metrics provided by Controller offer a different, application-
centric view of your metrics.

Also See
NGINX HTTP API Module Documentation
NGINX API Swagger UI
NGINX Controller Product Page

13.3 Collecting Metrics Using the NGINX Plus API | 145

http://bit.ly/2BmMjFp
https://demo.nginx.com/swagger-ui
https://oreil.ly/ty2Iu

CHAPTER 14

Debugging and Troubleshooting
with Access Logs, Error Logs,

and Request Tracing

14.0 Introduction
Logging is the basis of understanding your application. With NGINX you have great
control over logging information meaningful to you and your application. NGINX
allows you to divide access logs into different files and formats for different contexts
and to change the log level of error logging to get a deeper understanding of what’s
happening. The capability of streaming logs to a centralized server comes innately to
NGINX through its Syslog logging capabilities. NGINX and NGINX Plus also enable
tracing of requests as they move through a system. In this chapter, we discuss access
and error logs, streaming over the Syslog protocol, and tracing requests end to end
with request identifiers generated by NGINX and OpenTracing.

14.1 Configuring Access Logs
Problem
You need to configure access log formats to add embedded variables to your request
logs.

Solution
Configure an access log format:

147

http {
 log_format geoproxy
 '[$time_local] $remote_addr '
 '$realip_remote_addr $remote_user '
 '$proxy_protocol_server_addr $proxy_protocol_server_port '
 '$request_method $server_protocol '
 '$scheme $server_name $uri $status '
 '$request_time $body_bytes_sent '
 '$geoip_city_country_code3 $geoip_region '
 '"$geoip_city" $http_x_forwarded_for '
 '$upstream_status $upstream_response_time '
 '"$http_referer" "$http_user_agent"';
 # ...
}

This log format configuration is named geoproxy and uses a number of embedded
variables to demonstrate the power of NGINX logging. This configuration shows the
local time on the server when the request was made, the IP address that opened the
connection, and the IP of the client, as NGINX understands it per geoip_proxy or
realip_header instructions.

The variables prefixed with $proxy_protocol_server_ provide information about
the server from the PROXY protocol header, when the proxy_protocol parameter is
used on the listen directive of the server. $remote_user shows the username of the
user, authenticated by basic authentication, followed by the request method and pro‐
tocol, as well as the scheme, such as HTTP or HTTPS. The server name match is
logged as well as the request URI and the return status code.

Statistics logged include the processing time in milliseconds and the size of the body
sent to the client. Information about the country, region, and city are logged. The
HTTP header X-Forwarded-For is included to show if the request is being forwarded
by another proxy. The upstream module enables some embedded variables that we’ve
used that show the status returned from the upstream server and how long the
upstream request takes to return. Lastly, we’ve logged some information about where
the client was referred from and what browser the client is using.

The log_format directive is only valid within the HTTP context. An optional escape
parameter can specify what type of escaping is done on the string; default, json, and
none, are escape values. The none value disables escaping. For default escaping,
characters “"”, “\”, and other characters with values less than 32 or above 126 are
escaped as “\xXX”. If the variable value is not found, a hyphen (“-”) will be logged.
For json escaping, all characters not allowed in JSON strings will be escaped: charac‐
ters “"” and “\” are escaped as “\"” and “\\”, characters with values less than 32 are
escaped as “\n”, “\r”, “\t”, “\b”, “\f”, or “\u00XX”.

This log configuration renders a log entry that looks like the following:

148 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

[25/Nov/2016:16:20:42 +0000] 10.0.1.16 192.168.0.122 Derek
GET HTTP/1.1 http www.example.com / 200 0.001 370 USA MI
"Ann Arbor" - 200 0.001 "-" "curl/7.47.0"

To use this log format, use the access_log directive, providing a logfile path and the
format name geoproxy as parameters:

server {
 access_log /var/log/nginx/access.log geoproxy;
 # ...
}

The access_log directive takes a logfile path and the format name as parameters.
This directive is valid in many contexts and in each context can have a different log
path and/or log format. Named parameters such as buffer, flush, and gzip config‐
ure how often logs are written to the logfile and if the file is gzipped or not. A param‐
eter named if exists and takes a condition; if the condition evaluates to 0 or empty
string, the access will not be logged.

Discussion
The log module in NGINX allows you to configure log formats for many different
scenarios to log to numerous logfiles as you see fit. You may find it useful to configure
a different log format for each context, where you use different modules and employ
those modules’ embedded variables, or a single, catchall format that provides all the
information you could ever want. It’s also possible to log in JSON or XML, provided
you construct the format string in that manner. These logs will aid you in under‐
standing your traffic patterns, client usage, who your clients are, and where they’re
coming from. Access logs can also aid you in finding lag in responses and issues with
upstream servers or particular URIs. Access logs can be used to parse and play back
traffic patterns in test environments to mimic real user interaction. There’s limitless
possibility for logs when troubleshooting, debugging, or analyzing your application
or market.

14.2 Configuring Error Logs
Problem
You need to configure error logging to better understand issues with your NGINX
server.

Solution
Use the error_log directive to define the log path and the log level:

error_log /var/log/nginx/error.log warn;

14.2 Configuring Error Logs | 149

The error_log directive requires a path; however, the log level is optional, and
defaults to error. This directive is valid in every context except for if statements.
The log levels available are debug, info, notice, warn, error, crit, alert, or emerg.
The order in which these log levels were introduced is also the order of severity from
least to most. The debug log level is only available if NGINX is configured with the
--with-debug flag.

Discussion
The error log is the first place to look when configuration files are not working cor‐
rectly. The log is also a great place to find errors produced by application servers like
FastCGI. You can use the error log to debug connections down to the worker, mem‐
ory allocation, client IP, and server. The error log cannot be formatted. However, it
follows a specific format of date, followed by the level, then the message.

14.3 Forwarding to Syslog
Problem
You need to forward your logs to a Syslog listener to aggregate logs to a centralized
service.

Solution
Use the error_log and access_log directives to send your logs to a Syslog listener:

error_log syslog:server=10.0.1.42 debug;

access_log syslog:server=10.0.1.42,tag=nginx,severity=info geoproxy;

The syslog parameter for the error_log and access_log directives is followed by a
colon and a number of options. These options include the required server flag that
denotes the IP, DNS name, or Unix socket to connect to, as well as optional flags such
as facility, severity, tag, and nohostname. The server option takes a port num‐
ber, along with IP addresses or DNS names. However, it defaults to UDP 514. The
facility option refers to the facility of the log message defined as one of the 23
defined in the RFC standard for Syslog; the default value is local7. The tag option
tags the message with a value. This value defaults to nginx. severity defaults to info
and denotes the severity of the message being sent. The nohostname flag disables,
adding the hostname field into the Syslog message header and does not take a value.

150 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

Discussion
Syslog is a standard protocol for sending log messages and collecting those logs on a
single server or collection of servers. Sending logs to a centralized location helps in
debugging when you’ve got multiple instances of the same service running on multi‐
ple hosts. This is called aggregating logs. Aggregating logs allows you to view logs
together in one place without having to jump from server to server, and mentally
stitch together logfiles by timestamp. A common log aggregation stack is Elastic‐
search, Logstash, and Kibana, also known as the ELK Stack. NGINX makes streaming
these logs to your Syslog listener easy with the access_log and error_log directives.

14.4 Request Tracing
Problem
You need to correlate NGINX logs with application logs to have an end-to-end
understanding of a request.

Solution
Use the request identifying variable and pass it to your application to log as well:

log_format trace '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent" '
 '"$http_x_forwarded_for" $request_id';
upstream backend {
 server 10.0.0.42;
}
server {
 listen 80;
 # Add the header X-Request-ID to the response to the client
 add_header X-Request-ID $request_id;
 location / {
 proxy_pass http://backend;
 # Send the header X-Request-ID to the application
 proxy_set_header X-Request-ID $request_id;
 access_log /var/log/nginx/access_trace.log trace;
 }
}

In this example configuration, a log_format named trace is set up, and the variable
$request_id is used in the log. This $request_id variable is also passed to the
upstream application by use of the proxy_set_header directive to add the request ID
to a header when making the upstream request. The request ID is also passed back to
the client through use of the add_header directive setting the request ID in a response
header.

14.4 Request Tracing | 151

Discussion
Made available in NGINX Plus R10 and NGINX version 1.11.0, the $request_id pro‐
vides a randomly generated string of 32 hexadecimal characters that can be used to
uniquely identify requests. By passing this identifier to the client as well as to the
application, you can correlate your logs with the requests you make. From the front‐
end client, you will receive this unique string as a response header and can use it to
search your logs for the entries that correspond. You will need to instruct your appli‐
cation to capture and log this header in its application logs to create a true end-to-end
relationship between the logs. With this advancement, NGINX makes it possible to
trace requests through your application stack.

14.5 OpenTracing for NGINX
Problem
You have a tracing server that supports OpenTracing and want to integrate NGINX or
NGINX Plus.

Solution
Ensure you have an OpenTrace compatible server available, and that the correct client
is installed on the NGINX or NGINX Plus node.

A plug-in configuration file for the specific OpenTrace compatible server will be
needed. This solution will demonstrate Jaeger and Zipkin.

A Jaeger plug-in configuration example named /etc/jaeger/jaeger-config.json is as fol‐
lows:

{
 "service_name": "nginx",
 "sampler": {
 "type": "const",
 "param": 1
 },
 "reporter": {
 "localAgentHostPort": "Jaeger-server-IP-address:6831"
 }
}

A Zipkin plug-in configuration example named /etc/zipkin/zipkin-config.json is as fol‐
lows:

{
 "service_name": "nginx",
 "collector_host": "Zipkin-server-IP-address",

152 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

 "collector_port": 9411
}

If NGINX Plus is being used, install the OpenTracing module from the NGINX Plus
repository by following the NGINX Plus Admin Guide.

If Open Source NGINX is being used, visit the NGINX OpenTracing Module Releases
page to find a prebuilt dynamic module compatible with your system, or compile the
module along with NGINX from source. Alternatively, in a docker environment, an
image named opentracing/nginx-opentracing is available on Docker Hub, and can
be used to jump-start your testing.

When using a dynamically loaded module, which includes the NGINX Plus installa‐
tion, ensure that you load it within your NGINX configuration by adding the follow‐
ing load_module directive, to tell NGINX where on the filesystem to find the module.
As a reminder, the load_module directive is valid only in the main (top-level) context.

load_module modules/ngx_http_opentracing_module.so;

Once an OpenTrace compatible server is listening, a client installed on the NGINX
node and plug-in configuration in place, and the NGINX module is loaded, NGINX
can be configured to start tracing requests. The following example provides examples
of loading a tracer and configuring NGINX to tag requests. The directive to load a
tracer plug-in is included; with default location for Jaeger and Zipkin plug-ins, and
the configuration files provided above. Uncomment the appropriate vendor example
for the use case.

Load a vendor tracer
#opentracing_load_tracer /usr/local/libjaegertracing_plugin.so
/etc/jaeger/jaeger-config.json;
#opentracing_load_tracer /usr/local/lib/libzipkin_opentracing_plugin.so
/etc/zipkin/zipkin-config.json;

Enable tracing for all requests
opentracing on;

Set additional tags that capture the value of NGINX variables
opentracing_tag bytes_sent $bytes_sent;
opentracing_tag http_user_agent $http_user_agent;
opentracing_tag request_time $request_time;
opentracing_tag upstream_addr $upstream_addr;
opentracing_tag upstream_bytes_received $upstream_bytes_received;
opentracing_tag upstream_cache_status $upstream_cache_status;
opentracing_tag upstream_connect_time $upstream_connect_time;
opentracing_tag upstream_header_time $upstream_header_time;
opentracing_tag upstream_queue_time $upstream_queue_time;
opentracing_tag upstream_response_time $upstream_response_time;

server {
 listen 9001;

14.5 OpenTracing for NGINX | 153

https://oreil.ly/coRQC
https://oreil.ly/9LYf3

 location / {
 # The operation name used for OpenTracing Spans defaults
 # to the name of the 'location' block,
 # but uncomment this directive to customize it.
 #opentracing_operation_name $uri;

 # Propagate the active Span context upstream,
 # so that the trace can be continued by the backend.
 opentracing_propagate_context;

 # Example application location service
 proxy_pass http://10.0.0.2:8080;
 }
}

Discussion
An OpenTracing setup is by no means trivial, but they do provide enormous value in
areas of distributed monitoring of performance and transactions. These tools enable
teams to effectively provide root cause, and dependency analysis to pinpoint problem
areas with data. It’s natural for NGINX to serve as an API gateway, routing and
authorizing requests between applications, and therefore has integral information to
tracing requests through a complex system.

NGINX can tag a request with any variable available to itself, which enables the trac‐
ing system user to have a full view of how a request behaves. This example provided a
limited sample of using OpenTracing for a proxied request. One can imagine the
amount of data that can be harvested from NGINX as the opentracing_tag directive
is valid in the HTTP, server, and location contexts.

Also See
OpenTracing NGINX Module
NGINX Plus OpenTracing Dynamic Module Admin Guide
Datadog OpenTracing NGINX Module Plug-In Guide
NGINX OpenTracing for NGINX and NGINX Plus Blog
NGINX OpenTracing for NGINX Ingress Controller Blog

154 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing

https://oreil.ly/DpqEY
https://oreil.ly/coRQC
https://oreil.ly/f4leF
https://oreil.ly/2WUJW
https://oreil.ly/GlqZL

CHAPTER 15

Performance Tuning

15.0 Introduction
Tuning NGINX will make an artist of you. Performance tuning of any type of server
or application is always dependent on a number of variable items, such as, but not
limited to, the environment, use case, requirements, and physical components
involved. It’s common to practice bottleneck-driven tuning, meaning to test until
you’ve hit a bottleneck, determine the bottleneck, tune for limitations, and repeat
until you’ve reached your desired performance requirements. In this chapter, we sug‐
gest taking measurements when performance tuning by testing with automated tools
and measuring results. This chapter also covers connection tuning for keeping con‐
nections open to clients as well as upstream servers, and serving more connections by
tuning the operating system.

15.1 Automating Tests with Load Drivers
Problem
You need to automate your tests with a load driver to gain consistency and repeatabil‐
ity in your testing.

Solution
Use an HTTP load-testing tool such as Apache JMeter, Locust, Gatling, or whatever
your team has standardized on. Create a configuration for your load-testing tool that
runs a comprehensive test on your web application. Run your test against your ser‐
vice. Review the metrics collected from the run to establish a baseline. Slowly ramp
up the emulated user concurrency to mimic typical production usage and identify

155

points of improvement. Tune NGINX and repeat this process until you achieve your
desired results.

Discussion
Using an automated testing tool to define your test gives you a consistent test to build
metrics from when tuning NGINX. You must be able to repeat your test and measure
performance gains or losses to conduct science. Running a test before making any
tweaks to the NGINX configuration to establish a baseline gives you a basis to work
from so that you can measure if your configuration change has improved perfor‐
mance or not. Measuring for each change made will help you identify where your
performance enhancements come from.

15.2 Keeping Connections Open to Clients
Problem
You need to increase the number of requests allowed to be made over a single con‐
nection from clients and increase the amount of time that idle connections are
allowed to persist.

Solution
Use the keepalive_requests and keepalive_timeout directives to alter the number
of requests that can be made over a single connection and change the amount of time
idle connections can stay open:

http {
 keepalive_requests 320;
 keepalive_timeout 300s;
 # ...
}

The keepalive_requests directive defaults to 100, and the keepalive_timeout
directive defaults to 75 seconds.

Discussion
Typically, the default number of requests over a single connection will fulfill client
needs because browsers these days are allowed to open multiple connections to a sin‐
gle server per FQDN. The number of parallel open connections to a domain is still
limited typically to a number less than 10, so in this regard, many requests over a sin‐
gle connection will happen. A trick for HTTP/1.1 commonly employed by content
delivery networks is to create multiple domain names pointed to the content server
and alternate which domain name is used within the code to enable the browser to

156 | Chapter 15: Performance Tuning

open more connections. You might find these connection optimizations helpful if
your frontend application continually polls your backend application for updates,
because an open connection that allows a larger number of requests and stays open
longer will limit the number of connections that need to be made.

15.3 Keeping Connections Open Upstream
Problem
You need to keep connections open to upstream servers for reuse to enhance your
performance.

Solution
Use the keepalive directive in the upstream context to keep connections open to
upstream servers for reuse:

proxy_http_version 1.1;
proxy_set_header Connection "";

upstream backend {
 server 10.0.0.42;
 server 10.0.2.56;

 keepalive 32;
}

The keepalive directive in the upstream context activates a cache of connections that
stay open for each NGINX worker. The directive denotes the maximum number of
idle connections to keep open per worker. The proxy modules directives used above
the upstream block are necessary for the keepalive directive to function properly for
upstream server connections. The proxy_http_version directive instructs the proxy
module to use HTTP version 1.1, which allows for multiple requests to be made in
serial over a single connection while it’s open. The proxy_set_header directive
instructs the proxy module to strip the default header of close, allowing the connec‐
tion to stay open.

Discussion
You want to keep connections open to upstream servers to save the amount of time it
takes to initiate the connection, allowing the worker process to instead move directly
to making a request over an idle connection. It’s important to note that the number of
open connections can exceed the number of connections specified in the keepalive
directive because open connections and idle connections are not the same. The num‐
ber of keepalive connections should be kept small enough to allow for other

15.3 Keeping Connections Open Upstream | 157

incoming connections to your upstream server. This small NGINX tuning trick can
save some cycles and enhance your performance.

15.4 Buffering Responses
Problem
You need to buffer responses between upstream servers and clients in memory to
avoid writing responses to temporary files.

Solution
Tune proxy buffer settings to allow NGINX the memory to buffer response bodies:

server {
 proxy_buffering on;
 proxy_buffer_size 8k;
 proxy_buffers 8 32k;
 proxy_busy_buffer_size 64k;
 # ...
}

The proxy_buffering directive is either on or off; by default it’s on. The
proxy_buffer_size denotes the size of a buffer used for reading the first part of the
response, headers, from the proxied server and defaults to either 4k or 8k, depending
on the platform. The proxy_buffers directive takes two parameters: the number of
buffers and the size of the buffers. By default, the proxy_buffers directive is set to a
number of 8 buffers of size either 4k or 8k, depending on the platform. The
proxy_busy_buffer_size directive limits the size of buffers that can be busy, sending
a response to the client while the response is not fully read. The busy buffer size
defaults to double the size of a proxy buffer or the buffer size. If proxy buffering is
disabled, the request cannot be sent to the next upstream server in the event of a fail‐
ure because the NGINX has already started sending the request body.

Discussion
Proxy buffers can greatly enhance your proxy performance, depending on the typical
size of your response bodies. Tuning these settings can have adverse effects and
should be done by observing the average body size returned and performing thor‐
ough and repeated testing. Extremely large buffers, set when they’re not necessary,
can eat up the memory of your NGINX box. You can set these settings for specific
locations that are known to return large response bodies for optimal performance.

158 | Chapter 15: Performance Tuning

Also See
NGINX proxy_request_buffering Documentation

15.5 Buffering Access Logs
Problem
You need to buffer logs to reduce the opportunity of blocks to the NGINX worker
process when the system is under load.

Solution
Set the buffer size and flush time of your access logs:

http {
 access_log /var/log/nginx/access.log main buffer=32k
 flush=1m gzip=1;
}

The buffer parameter of the access_log directive denotes the size of a memory
buffer that can be filled with log data before being written to disk. The flush parame‐
ter of the access_log directive sets the longest amount of time a log can remain in a
buffer before being written to disk. When using gzip, the logs are compressed before
being written to the log—values of level 1 (fastest, less compression), through 9
(slowest, best compression) are valid.

Discussion
Buffering log data into memory may be a small step toward optimization. However,
for heavily requested sites and applications, this can make a meaningful adjustment
to the usage of the disk and CPU. When using the buffer parameter to the
access_log directive, logs will be written out to disk if the next log entry does not fit
into the buffer. If using the flush parameter in conjunction with the buffer parame‐
ter, logs will be written to disk when the data in the buffer is older than the time
specified. When tailing the log, and with buffering enabled, you may see delays up to
the amount of time specified by the flush parameter.

15.6 OS Tuning
Problem
You need to tune your operating system to accept more connections to handle spike
loads or highly trafficked sites.

15.5 Buffering Access Logs | 159

https://oreil.ly/zL1LK

Solution
Check the kernel setting for net.core.somaxconn, which is the maximum number of
connections that can be queued by the kernel for NGINX to process. If you set this
number over 512, you’ll need to set the backlog parameter of the listen directive in
your NGINX configuration to match. A sign that you should look into this kernel set‐
ting is if your kernel log explicitly says to do so. NGINX handles connections very
quickly, and, for most use cases, you will not need to alter this setting.

Raising the number of open file descriptors is a more common need. In Linux, a file
handle is opened for every connection; and, therefore, NGINX may open two if
you’re using it as a proxy or load balancer because of the open connection upstream.
To serve a large number of connections, you may need to increase the file descriptor
limit system-wide with the kernel option sys.fs.file_max, or, for the system user,
NGINX is running as in the /etc/security/limits.conf file. When doing so, you’ll also
want to bump the number of worker_connections and worker_rlimit_nofile. Both
of these configurations are directives in the NGINX configuration.

Enable more ephemeral ports. When NGINX acts as a reverse proxy or load balancer,
every connection upstream opens a temporary port for return traffic. Depending on
your system configuration, the server may not have the maximum number of
ephemeral ports open. To check, review the setting for the kernel set‐
ting net.ipv4.ip_local_port_range. The setting is a lower- and upper-bound range
of ports. It’s typically OK to set this kernel setting from 1024 to 65535. 1024 is where
the registered TCP ports stop, and 65535 is where dynamic or ephemeral ports stop.
Keep in mind that your lower bound should be higher than the highest open listening
service port.

Discussion
Tuning the operating system is one of the first places you look when you start tuning
for a high number of connections. There are many optimizations you can make to
your kernel for your particular use case. However, kernel tuning should not be done
on a whim, and changes should be measured for their performance to ensure the
changes are helping. As stated before, you’ll know when it’s time to start tuning your
kernel from messages logged in the kernel log or when NGINX explicitly logs a mes‐
sage in its error log.

160 | Chapter 15: Performance Tuning

CHAPTER 16

Introduction to NGINX Controller

16.0 Introduction
NGINX Controller is an application-centric control plane for your application envi‐
ronments. Controller provides an interface that allows you to view and configure an
entire fleet of NGINX Plus servers, no matter their physical location. Controller
allows teams to focus less on the raw NGINX Plus configuration, and more on the
application they’re using NGINX Plus to deliver.

In this chapter, you’ll read an overview of the NGINX Controller setup, connect an
NGINX Plus server instance, and learn about using the NGINX Controller API.
NGINX Controller is an enterprise product that requires a license. You can request a
free trial from the NGINX Controller Product Page.

16.1 Setup Overview
Problem
You would like to set up an NGINX Controller environment.

Solution
Use the Official NGINX Controller Installation Guide for an up-to-date installation
process. The following are a few tips, observations, and callouts for items to look out
for throughout the setup guide.

NGINX Controller 3.x installs as a Kubernetes stack. It is important to review all of
the technical specifications before beginning. An external PostgreSQL database is
required. The Controller installer is provided as a tarball. Once unpacked, an
install.sh script will need to be run as a non-root user.

161

https://oreil.ly/Cbrjf
https://oreil.ly/jDegl
https://oreil.ly/cgaA9

Due to the way some OS images are distributed, there may be variance in the package
repositories, which can cause some difficulty with the installation. Ubuntu 18.04
seems to be the most consistent in my testing, and is my recommendation for trials
and exploration. Remember that NGINX Support is available to assist you in getting
NGINX Controller up and running quickly.

There are a number of tools the installer needs installed before it’s able to run cor‐
rectly. Most of the tools are standard on many operating systems, however the jq tool
is not. You will need to ensure all the required tools are installed on your system prior
to running any of the installer scripts.

A helper.sh script is provided in the installation package that can aid with installation,
or altering the base configuration once installed. For instance, the argument sup
portpkg will build a package of debug and log information for you to send to NGINX
Support to enable them to have a quick overview of your situation. The prereqs
argument will install required packages and set up Kubernetes. To view logs from
NGINX Controller, you can use ./helper.sh logs.

When the installer command is run, it will check the system for requirements and
install any that it may additionally need. The installer will prompt for database infor‐
mation. Currently PostgreSQL is supported and must be on a remote server. The user
information provided must be capable of creating databases. This information can be
passed as command-line arguments to the installer.

A time series database volume will need to be supplied. You can use the local disk, an
NSF volume, or an AWS EBS volume. If you choose to use an AWS EBS volume, the
system will need appropriate AWS IAM permissions to attach the volume to the
instance.

An end-user license agreement is presented and must be accepted to move forward.
After reading, press q to exit the agreement, then y to accept.

A SMTP server is needed to invite users via email as well as for email notifications. In
the event that an SMTP server is not yet available, these settings can be configured
later by using the helper.sh script. Provide some generic value to these prompts, set
the host to localhost, port to 25, decline authentication, and TLS. NGINX Control‐
ler will not be able to send email until SMTP is configured.

The FQDN is used when generating agent configuration, and should be set to a
domain that can be relied upon. The organization name prompt is a friendly name
used for labeling—a team or company name will suffice. When providing values for
the administrator user, note that the email is used for system login.

SSL/TLS certificate paths can be provided through command parameters of the
installer, or as environment variables. If these are not found, the installer will prompt
to generate self-signed certificates.

162 | Chapter 16: Introduction to NGINX Controller

Once the installation completes, the installer will provide a link to Controller. Follow
the link and login with the administrator credentials.

Discussion
NGINX Controller provides a single control plane for management of your applica‐
tions. The interface is sectioned into different views, Platform, Infrastructure, Serv‐
ices, and Analytics. By doing so, the view is clean and concise for the specific task at
hand.

The platform view is used for managing Controller and user access. The infrastruc‐
ture view provides details about the machines running the NGINX Controller agents.
The next section will describe adding an NGINX Plus server to Controller by instal‐
ling an agent.

In the services view, the application-centric attributes of NGINX Controller come to
light. Controller organizes your applications, environments, gateways, and APIs, to
enable you to reorganize and deploy rapidly.

Also See
Administrator Installation Guide
Technical Specification
Installing and Preparing PostgreSQL Database for NGINX Controller Knowledge
Base Article

16.2 Connecting NGINX Plus with Controller
Problem
You’ve installed Controller and need to connect an NGINX Plus instance with an
agent.

Solution
If you have not yet installed NGINX Plus, use Recipe 1.3 to get a NGINX Plus node
online.

The best way to find documentation for your Controller installation is to visit https://
{Controller-FQDN}/docs/infrastructure/agent. At this document location, you can find
information about the technical specifications needed to run the NGINX Controller
Agent, as well as how to install and manage.

Installing the Controller Agent to an existing NGINX Plus server is straightforward.
You will need to retrieve an installer script from the Controller API on port 8443, and

16.2 Connecting NGINX Plus with Controller | 163

https://oreil.ly/jDegl
https://oreil.ly/cgaA9
https://oreil.ly/Yb_zm
https://oreil.ly/Yb_zm

run it with an API key. The Controller UI provides simple copy and paste
instructions for your environment. After the install is finished, you must start the
Controller Agent by using the service manager for your system.

Once the Controller Agent service is running, you will see an instance running in the
Controller Infrastructure view.

Discussion
In this section, you added an NGINX Plus server to the NGINX Controller as an
instance. An inventory of the NGINX Plus systems is now shown in the Infrastruc‐
ture view as well as with a list request to the API. When you have one or more run‐
ning instances in NGINX Controller, you can monitor valuable server and NGINX
Plus metrics with the Graphs tab within the Infrastructure view. In the Platform view,
under the agents tab, there’s a setting to enable NGINX config analyzer. When turned
on, the Infrastructure view enables an analysis tab. The analysis tab provides infor‐
mation relevant to the NGINX Plus installation and its current configuration.

Now that you have a fresh NGINX Plus node with the Controller Agent installed, you
may want to take a bootable image of this machine, or build configuration manage‐
ment to support these installations, so that you can replicate the machine. With an
instance configured, you’re able to start setting up services, which consist of applica‐
tions, their environments, and how they’re served.

Also See
NGINX Controller Agent Installation Guide

16.3 Driving NGINX Controller with the API
Problem
You’ve learned how to configure NGINX Controller entities, and want to automate
these processes with the API.

Solution
Ensure you have network connectivity to Controller on the API port, which is by
default 8443.

NGINX Controller is 100% driven entirely through its API. The interface simply uses
that API to provide point-and-click access, and dashboards. Use the API Overview in
the documentation on your Controller installation by visiting https://{Controller-
FQDN}/docs/api/overview/. This will teach you the basis of the objects, permissions,

164 | Chapter 16: Introduction to NGINX Controller

https://oreil.ly/5rRhT

and how to authenticate. From there, the API Reference can be found at https://
{Controller-FQDN}/docs/api/api-reference/.

One way to jump-start your automation through using the API is to view already
configured entities in the NGINX Controller interface, edit the entity, and view the
API Spec. This API Spec will show you the method, path, and payload needed to cre‐
ate that object. With some variable substitution, you’re off to a good start on automat‐
ing your Controller environment.

Discussion
For some engineers, the API will be the main interaction they have with NGINX
Controller; for others, it will be the web interface. Either is valid and extremely pow‐
erful. The addition of showing the API call on the web interface lessens the frustra‐
tion of digging through API reference and quickens your task automation. An Ansi‐
ble collection for NGINX Controller exists to aid in Controller automation.

Also See
Getting Started with the Ansible Collection for NGINX Controller

16.4 Enable WAF Through Controller App Security
Problem
You’re using NGINX Controller ADC and would like to enable Web Application Fire‐
wall (WAF) capabilities for your applications.

Solution
If you have not already, follow the NGINX Plus App Protect Installation guide for
your platform to install the App Protect module on your NGINX Plus node.

Navigate to the configuration of an existing App Component in NGINX Controller.
Within the Security section, locate the WAF header or settings. Enable the WAF and
save.

The WAF is now processing requests for the App through the default WAF policy.
The default policy is set to alarm on all signatures, but will block for signatures that
are considered highly accurate. Accuracy is determined by an algorithm that deter‐
mines the probability of false positives. This means you can immediately start block‐
ing harmful requests while gathering data about security events that are reported by
the policy. Both flagged and blocked requests will show up in the NGINX Controller
UI, appropriately labeled. NGINX Controller ADC will display WAF statistics and
violation events for WAF violations triggered.

16.4 Enable WAF Through Controller App Security | 165

https://oreil.ly/VCdY7
https://oreil.ly/kgpHa

Ensure the application is handling some traffic. Test a request that would typically be
blocked or flagged by a WAF. The following is an extremely basic SQL Injection
request:

curl https://{appComponentEndpoint}/?query=9999999%20UNION%20SELECT%201%2C2

After a request is made that would be considered a security event, NGINX Controller
ADC will report security analytics data. Locate these metrics in the Security Analytics
section for this App and App Component. In Figure 16-1 you can see how NGINX
Controller displays metric information about requests flagged by the WAF.

Figure 16-1. An NGINX App Security WAF has flagged some requests

Once some flagged requests start to show up, you can also view the event on the Secu‐
rity Events page. This is where you’ll find detailed information about each request
flagged or blocked by NGINX App Security WAF.

Before enabling more strict policies, you should verify that your normal valid appli‐
cation traffic is not getting flagged. If normal behavior is flagged, inspect the reason‐
ing for the individual security event. If normal application traffic is being flagged, you
may have vulnerabilities in your application that need to be addressed. In Figure 16-2
all traffic observed by the WAF is displayed to show a pattern between regular traffic
and request that violated by WAF rules.

Figure 16-2. An example of statistics reported by Controller ADC with a WAF enabled

166 | Chapter 16: Introduction to NGINX Controller

Discussion
Controller App Security provides a simplistic WAF experience to secure your applica‐
tions. With the information provided by the monitoring, you can watch for trends
over time for security attacks, investigate further by looking at the detail of the event,
and decide what action must be taken.

Web Application Firewalls are extremely important in today’s web security architec‐
ture. Applications are constantly being bombarded with attempts to compromise
services with common vulnerabilities. By blocking these requests before they reach
your application services, you’re not only securing the web application, but reserving
resources for legitimate client requests.

A WAF is not only for external clients; you should consider using a WAF on internal
traffic as well, so that one compromised service does not affect another.

16.4 Enable WAF Through Controller App Security | 167

CHAPTER 17

Practical Ops Tips and Conclusion

17.0 Introduction
This last chapter will cover practical operations tips and is the conclusion to this
book. Throughout this book, we’ve discussed many concepts pertinent to operations
engineers. However, I thought a few more ideas might be helpful to round things out.
In this chapter, I’ll cover making sure your configuration files are clean and concise,
as well as debugging configuration files.

17.1 Using Includes for Clean Configs
Problem
You need to clean up bulky configuration files to keep your configurations logically
grouped into modular configuration sets.

Solution
Use the include directive to reference configuration files, directories, or masks:

http {
 include config.d/compression.conf;
 include sites-enabled/*.conf
}

The include directive takes a single parameter of either a path to a file or a mask that
matches many files. This directive is valid in any context.

169

Discussion
By using include statements you can keep your NGINX configuration clean and
concise. You’ll be able to logically group your configurations to avoid configuration
files that go on for hundreds of lines. You can create modular configuration files that
can be included in multiple places throughout your configuration to avoid duplica‐
tion of configurations. Take the example fastcgi_param configuration file provided in
most package management installs of NGINX. If you manage multiple FastCGI vir‐
tual servers on a single NGINX box, you can include this configuration file for any
location or context where you require these parameters for FastCGI without having
to duplicate this configuration. Another example is SSL configurations. If you’re run‐
ning multiple servers that require similar SSL configurations, you can simply write
this configuration once and include it wherever needed. By logically grouping your
configurations together, you can rest assured that your configurations are neat and
organized. Changing a set of configuration files can be done by editing a single file
rather than changing multiple sets of configuration blocks in multiple locations
within a massive configuration file. Grouping your configurations into files and using
include statements is good practice for your sanity and the sanity of your colleagues.

17.2 Debugging Configs
Problem
You’re getting unexpected results from your NGINX server.

Solution
Debug your configuration, and remember these tips:

• NGINX processes requests looking for the most specific matched rule. This
makes stepping through configurations by hand a bit harder, but it’s the most
efficient way for NGINX to work. There’s more about how NGINX processes
requests in the documentation link in the section “Also See” on page 171.

• You can turn on debug logging. For debug logging, you’ll need to ensure that
your NGINX package is configured with the --with-debug flag. Most of the
common packages have it; but if you’ve built your own or are running a minimal
package, you may want to at least double-check. Once you’ve ensured you
have debug, you can set the error_log directive’s log level to debug:
error_log /var/log/nginx/error.log debug.

• You can enable debugging for particular connections. The debug_connection
directive is valid inside the events context and takes an IP or CIDR range as a
parameter. The directive can be declared more than once to add multiple IP

170 | Chapter 17: Practical Ops Tips and Conclusion

addresses or CIDR ranges to be debugged. This may be helpful to debug an issue
in production without degrading performance by debugging all connections.

• You can debug for only particular virtual servers. Because the error_log direc‐
tive is valid in the main HTTP, mail, stream, server, and location contexts, you
can set the debug log level in only the contexts you need it.

• You can enable core dumps and obtain backtraces from them. Core dumps can
be enabled through the operating system or through the NGINX configuration
file. You can read more about this from the admin guide in the section “Also See”
on page 171.

• You’re able to log what’s happening in rewrite statements with the rewrite_log
directive on: rewrite_log on.

Discussion
The NGINX platform is vast, and the configuration enables you to do many amazing
things. However, with the power to do amazing things, there’s also the power to shoot
your own foot. When debugging, make sure you know how to trace your request
through your configuration; and if you have problems, add the debug log level to
help. The debug log is quite verbose but very helpful in finding out what NGINX is
doing with your request and where in your configuration you’ve gone wrong.

Also See
How NGINX Processes Requests
Debugging Admin Guide
Rewrite Log

17.2 Debugging Configs | 171

http://bit.ly/2crNKVM
http://bit.ly/2iQYNsZ
http://bit.ly/2j96jAH

Conclusion
This book has focused on high-performance load balancing, security, and deploying
and maintaining NGINX and NGINX Plus servers. The book has demonstrated some
of the most powerful features of the NGINX application delivery platform. NGINX
Inc. continues to develop amazing features and stay ahead of the curve.

This book has demonstrated many short recipes that enable you to better understand
some of the directives and modules that make NGINX the heart of the modern web.
The NGINX sever is not just a web server, nor just a reverse proxy, but an entire
application delivery platform, fully capable of authentication and coming alive with
the environments that it’s employed in.

Index

A
A/B testing, 25
access (see restricting access)
access_log directive

buffering logs, 159
forwarding logs to Syslog listener, 150

activity monitoring (see monitoring)
add_header directive

client-side caching, 41
cross-origin resource sharing, 73

Adobe Adaptive Streaming, 99
advanced package tool (APT) installation of

NGINX, 2
aggregating logs, 151

ELK Stack, 151
allow directive, 72
Amazon Auto Scaling lifecycle hooks, 104
Amazon Machine Image (AMI)

automating building of, 102
configuration automation, 101

Amazon Web Services (AWS)
Amazon Route 53 DNS

DNS automation, 104
health check, 103, 132, 133
load balancing, 103

AWS NLB, 133
configuration automation, 101
deploying NGINX Plus from Marketplace,

106
EC2

load balancing, 132
network load balancer, 104
UserData, 101, 102

Ansible

about, 57
documentation, 57
NGINX Controller resource, 165
NGINX installation and configuration, 56

Apache passwords (see htpasswd)
API gateways

about, 119
NGINX as, 116-120

documentation, 116, 120
App Protect Module

active blocking, 88
App Protect policy file, 87
documentation, 86, 89, 165
installation, 86

installation guide, 86, 165
Web Application Firewall, 89

application servers, adding/removing
upstream, 49

applications
high availability, 131

(see also high availability)
NGINX containerized, 115

(see also containers)
ramping up to full production load, 23

APT (advanced package tool) installation of
NGINX, 2

authentication
about NGINX authentication, 61
authentication subrequests, 63
HTTP basic

about, 62
HTTP basic (htpasswd), 61
JSON Web Key Set, 67
JSON Web Keys

175

about, 66
creating, 65
documentation, 66
dynamically updating, 68
JWT authentication key file path, 64
RFC standard, 66

JSON Web Token authentication, 61, 64, 66
documentation, 65, 67, 68
web-signature types of tokens, 64

OpenID Connect documentation, 69
OpenID Connect JWT, 61, 66, 68
OpenID Connect SSO, 68

repository, 68
password encryption

crypt function, 61
HTTP basic (htpasswd), 61

satisfy directive, 84
third-party authentication, 63

dropping request body, 63
auth_basic directive, 62

(see also htpasswd)
auth_jwt directive, 64

cookie as token to be validated, 66
auth_jwt_key_request directive, 67
auth_request directive

authentication subrequests, 63
auth_request_set directive for headers, 63

Auto Scaling group
horizontal scaling, 9
load balancing on EC2, 133
network load balancer creation, 104
NLB sandwich, 104

automation (see programmability)
Azure

deploying NGINX Plus from Marketplace,
109

load balancing over scale sets, 109
virtual machine image on, 107
virtual machine scale sets, 109

B
balancing load (see load balancing)
bandwidth limiting, 34

streaming media, 100
bitrate limiting, 100
block list, dynamic, 49

dynamic DDoS mitigation, 85
blue-green deployment, 26
bottleneck-driven tuning, 155

buffering logs, 159
buffering responses, 158

C
C programming language

crypt function encryption, 61
custom extensions, 51, 53

caching
about, 37
bypassing, 40
cache locking, 38
Cache Slice module, 43
client-side caching, 41

expires directive, 41
public versus private, 41

hash key caching, 39
path to cache, 37
purging object from cache, 41
segmenting file for efficiency, 42

canary release, 26
CentOS

installation of NGINX, 2
NGINX Plus configuration synchronization,

133
Perl dynamic installation, 126

certificates
certificate-key pairs, 75
ECC versus RSA, 76
SSL certificates

Google App Engine, 113
SSL module, 74

Chef
about, 56
documentation, 56
NGINX installation and configuration, 55
Supermarket public cookbooks, 56

CIDR (classless inter-domain routing)
connection debugging, 170
dynamic block list, 51
GeoIP proxies, 30
restricting access, 72

classless inter-domain routing (see CIDR)
client-side caching, 41

expires directive, 41
public versus private, 41

client-side encryption, 74
advanced, 75

cloud deployments
about cloud providers, 101

176 | Index

Amazon Route 53 DNS load balancer, 103
Amazon Web Services

configuration automation, 101
deploying NGINX Plus from Market‐

place , 106
provisioning, 102

Azure
deploying NGINX Plus from Market‐

place, 109
load balancing over scale sets, 109
virtual machine image on, 107

Google App Engine proxy, 112
Google Cloud Images, 111
Google Compute Engine

deploying NGINX to, 110
Google App Engine proxy, 112

network load balancer creation, 104
cluster-aware

Consul for configuration automation, 59
dynamic DDoS mitigation, 85
key-value store, 50
zone synchronization, 136

about, 136
command overview for NGINX, 5
configuration

about management, 45
access log format, 147

geoproxy, 148
automation

Consul, 59
Packer, 102

connection number maximized, 160
debugging, 170
error log for configuration file errors, 150
graceful reload, 7
include directives, 169
management tools (see configuration man‐

agement tools)
NGINX key files and directories, 4

Google Storage for, 113
OpenTracing

Jaeger, 152
Zipkin, 152

ramping up application, 23
serving static content, 6

configuration management tools
about, 45, 102
Amazon Web Services NGINX servers, 101
Ansible, 56

automation
Consul, 59
Packer, 102

Chef, 55
key-value store (see key-value store)
NGINX Plus HA configuration synchroni‐

zation, 133
about, 135

Puppet, 54
SaltStack, 58
servers added or removed on the fly, 46

connection debugging, 170
connection draining, 19

removing a server, 47
connections, maximum number, 160

(see also limiting connections)
Consul for configuration automation, 59

about Consul, 60
documentation, 60

containers
about, 115
API gateway

about containerizing, 115
NGINX as, 116-120

creating Dockerfile to create Docker image
NGINX, 122
NGINX Plus, 124-125

DNS SRV record for load balancing, 120
environment variables, 126
Kubernetes ingress controller, 127-129
NGINX containerization, 115
NGINX image from Docker Hub, 121
NGINX Plus Docker image creation,

124-125
Prometheus exporter module, 129

content caching (see caching)
content delivery networks (CDNs), 37
Controller (see NGINX Controller)
cookies

JSON Web Token validation, 66, 69
sticky cookies with NGINX Plus, 16
sticky learn with existing cookie, 17

cross-origin resource sharing (CORS), 72
crypt function encryption, 61
curl

adding a server, 46
authorization tests, 62
dashboard metrics via API, 143
draining server connections, 47

Index | 177

key-value store update via PATCH, 50
listing servers, 47
purging file from cache, 42
removing a server, 48
request testing, 4

custom extensions
language modules available, 51, 53
Lua Hello World, 52
njs Hello World, 51
Perl reading environment, 53

D
datagrams (see UDP)
DDoS (see Distributed Denial of Service)
Debian

configuration synchronization, 134
installation of NGINX, 1
NGINX Docker image, 122

debugging
configuration, 170
connections, 170
debug logging, 170
Debugging Admin Guide, 171
error log for, 150

(see also logging)
request tracing, 151

OpenTracing, 152
debug_connection directive, 170
default_server parameter, 6
deny directive, 72
deployment

blue-green, 26
canary release, 26
cloud (see cloud deployments)
containers as runnable units of code, 115
Kubernetes ingress controller, 128

directories and files
App Protect policy file, 87
basic authentication user file, 62
cache location, 37
CentOS Perl dynamic installation, 126
container Docker log driver output, 115
error log path, 149
JSON Web Tokens key file, 64, 66
key-value store, 50
monitoring dashboard for NGINX Plus, 141
NGINX image from Docker Hub, 122
NGINX key files, 4

Google Storage for, 113

streaming media, 98
Distributed Denial of Service (DDoS) mitiga‐

tion, 85
DNS

Amazon Route 53, 103
automating DNS record creation and

removal, 104
Dyn DNS health check, 132
Google App Engine proxy, 112
load balancing across load balancers, 132
SRV records, 120

Docker
creating Dockerfile to create Docker image

NGINX, 122
NGINX Plus, 124-125

environment variables, 127
ingress controller image, 127
log driver output to stdout and stderr, 115
NGINX image from Docker Hub, 121
Perl dynamic installation, 126

Dovecot password format, 62
drain parameter, 19
Dyn DNS health check, 132
dynamic block list, 49

dynamic DDoS mitigation, 85

E
EC2 (Amazon Web Services)

configuration automation via UserData,
101, 102

load balancing, 132
network load balancer, 104

ECC certificates versus RSA, 76
ELK (Elasticsearch, Logstash, and Kibana)

stack, 151
Embedded Ruby (ERB) templating language of

Puppet, 54
embedded variables in logs, 147
encryption

client-side encryption, 74
advanced, 75

gRPC, 93
HTTP/2 enabled, 92
password

crypt function, 61
HTTP basic, 61

upstream traffic, 77
env directive, 126
environment variables

178 | Index

Amazon EC2 for configuration manage‐
ment, 102

container images in different environments,
126

Docker and, 127
Perl script setting NGINX variable from, 53,

126
wiped from environment by default, 126

ephemeral ports, 160
error logging

about error log, 150
configuration, 149
forwarding logs to Syslog listener, 150

about Syslog, 151
error_log directive

debug logging, 170
forwarding logs to Syslog listener, 150
log path defined, 149

expire date for securing a location, 79
expires directive for client-side caching, 41
expiring link, 80

F
F4F module, 99
failover

health check
Amazon Route 53 DNS, 103, 132, 133
Dyn DNS, 132

keepalived of NGINX Plus HA mode, 131
files and directories

App Protect policy file, 87
basic authentication user file, 62
cache location, 37
CentOS Perl dynamic installation, 126
container Docker log driver output, 115
error log path, 149
JSON Web Tokens key file, 64, 66
key-value store, 50
monitoring dashboard for NGINX Plus, 141
NGINX image from Docker Hub, 122
NGINX key files, 4

Google Storage for, 113
streaming media, 98

firewall quick start guide, 71
FLV (Flash Video) streaming media, 97
forwarded header standardized for proxies, 30

G
generic hash load balancing, 16

GeoIP module and database, 27
proxies, 30

forwarded header standardized, 30
geoproxy, 149
Google App Engine proxy, 112
Google Cloud Image, 112
Google Compute Engine

deploying NGINX to, 110
Google App Engine proxy, 112

Google Compute Image, 111
Google OAuth 2.0 OpenID Connect (see

OpenID Connect)
Google Storage for configuration files, 113
gRPC method calls

about, 94
backend routing via location directive, 93
load balancing, 94
proxying gRPC connections, 92

H
hash key caching, 39

creating hash keys, 39
HDS (HTTP Dynamic Streaming) streaming

media, 99
header

forwarded standardized for proxies, 30
HTTP Strict Transport Security, 83
X-Forwarded-Proto, 83

health check
active check with NGINX Plus, 21
Amazon Route 53 DNS, 103, 132, 133
Dyn DNS, 132
keepalived heartbeats, 131
passive check, 20

heartbeats of keepalived, 131
Hello world

JavaScript, 51
Lua, 52

high availability (HA) deployment modes
about high availability, 131
load balancing

EC2, 132
load balancers via DNS, 132

NGINX Plus HA mode, 131
Amazon IPs and, 132, 133
keepalived package, 131, 133
synchronizing configurations, 133
zone synchronization, 136

Index | 179

HLS (HTTP Live Streaming) streaming media,
98

horizontal scaling, 9
htpasswd for passwords, 62
HTTP

redirecting to HTTPS, 82
SSL/TLS terminated before NGINX, 82

Strict Transport Security, 83
HTTP servers

caching features, 37
configuration

files and directories, 4
serving static content, 6

installation testing, 4
load balancing, 10

active health check, 21
IP hash, 16
passive health check, 20

monitoring
basic monitoring enabled, 139
NGINX Plus API returning metrics, 144

OSI model, 12
HTTP Strict Transport Security (HSTS), 83

documentation, 84
HTTP/2

about, 91
basic configuration, 91
gRPC method calls

backend routing via location directive,
93

connection proxies, 92
server push, 94
testing via browser plug-in, 92

HTTPS upstream
basic authentication, 63
custom domain application delivery, 113
proxying over, 77
redirecting unencrypted requests to, 82

SSL/TLS terminated before NGINX, 82
upstream encryption, 77

http_auth_request_module, 63

I
identity provider (IdP)

list of OIDC-compliant, 69
OpenID Connect for authentication, 68

repository, 68
idle connection persistence time, 156

include directives in configuration files, 169,
170

infrustructure as a service (IaaS), 101
ingress controller for Kubernetes, 127-129

about, 129
installation

containers as runnable units of code, 115
NGINX

Ansible, 56
CentOS, 2
Chef, 55
Debian, 1
image from Docker Hub, 121
Puppet, 54
RedHat, 2
SaltStack, 58
Ubuntu, 1
validation, 3

NGINX Controller, 161
NGINX Plus, 3

App Protect Module, 86
configuration synchronization, 133
deploying from AWS Marketplace, 106
deploying from Azure Marketplace, 109
validation, 3

ip addr command, 134
IP address

access based on, 71
restricting by country, 29

connection debugging, 170
DNS to load balance load balancers, 132
dynamic block list, 49
finding original client, 30
keepalived of NGINX Plus HA mode, 131,

133
limiting connections based on, 31

Network Address Translation and, 32
limiting rate of requests, 32
NGINX Plus HA and Amazon IPs, 132, 133

IP hash load balancing, 16

J
Jaeger plug-in configuration for OpenTrace,

152
JavaScript

cross-origin resource sharing, 73
getting started with, 51

Jinja2 templating language of SaltStack, 59
jq tool, 162

180 | Index

JSON Web Key Set (JWKS), 67
JSON Web Keys (JWKs)

about, 66
creating, 65
documentation, 66
dynamically updating, 68
JWT authentication key file path, 64
RFC standard, 66

JSON Web Tokens (JWTs)
authentication via NGINX Plus module, 61,

64, 66, 68
web-signature types of tokens, 64, 67

documentation, 65, 67
OpenID Connect identity provider, 68

js_content directive, 52

K
keepalive directive, 157
keepalived

EC2 IP addresses, 133
NGINX Plus HA mode, 131

keepalive_requests directive, 156
keepalive_timeout directive, 156
kernel setting for maximum connections, 160
key-value store

about, 45, 50
cluster-aware, 50
dynamic block list, 49

updating or deleting key, 50
dynamic DDoS mitigation, 86
JSON Web Token validation, 69
keyval_zone directory, 50

Kubernetes
about, 129
ingress controller, 127-129

about, 129
Deployment versus DaemonSet, 128
repository, 127
Role-Based Access Control, 128

NGINX Controller installing as stack, 161
Prometheus prevalence, 130

L
language modules

available, 51, 53
JavaScript Hello world, 51
Lua Hello world, 52
Perl reading environment, 53

least connections load balancing, 15

least time load balancing, 15
Lightweight Directory Access Protocol (LDAP),

62
limiting bandwidth, 34
limiting connections per predefined key, 31

IP address, 32
testing tricky, 32

limiting rate of requests
based on predefined key, 32

testing tricky, 34
burst keyword argument, 33
security aspect, 33

listen directive
connection number maximized, 160
gRPC connection proxies, 92
health check of servers, 22
HTTP/2 enabled, 92
port encrypted with SSL/TLS, 74, 75
ports to listen on, 6
redirect to HTTPS, 82, 83
TCP port, 11

TCP load balancing, 12
UDP load balancing, 13, 14

load balancing
about, 9, 131
Azure load balancer, 109
cloud deployment

Amazon Route 53 DNS, 103
network load balancer creation, 104

containerized environment, 115
EC2, 132
ephemeral ports, 160
generic hash, 16
gRPC calls, 94
health check

active check with NGINX Plus, 21
Amazon Route 53 DNS, 103
passive check, 20

high availability
about, 131
EC2, 132
load balancers via DNS, 132

HTTP servers, 10
IP hash, 16
least connections, 15
least time, 15
load balancers load balanced, 132
methods for, 14
NGINX Plus

Index | 181

active health check, 21
containerized environment, 115
DNS SRV records, 120
least time, 15

random, 16
round-robin, 15
session state and, 9
TCP servers, 11
UDP servers, 13
upstream server failure, 10

load testing automated, 155
load_module directive

App Protect Module installation, 86
GeoIP, 28
OpenTracing, 153

location block
restricting access on IP address, 71
security

expire date, 79
multiple methods, 84
secret for, 77

serving static content, 7
streaming media, 98, 98

HLS media, 99
location directive, 93
logging

about, 147
access log format configuration, 147

geoproxy, 148
aggregating logs, 151

ELK stack, 151
App Protect security logging, 87
buffering logs, 159
debug logging, 170
default location for log files, 5
Docker log driver output, 115
embedded variables, 147
error logging

about error log, 150
configuration, 149

forwarding to Syslog listener, 150
about Syslog, 151

kernel log and number of connections, 160
request tracing, 151

OpenTracing, 152
request identifiers, 152

rewrite log, 171
viewing logs in NGINX Controller, 162

log_format directive, 148

Lua
getting started with, 52

documentation, 53
language module available, 51
module documentation, 53
ngx object for NGINX API, 52

M
man-in-the-middle attack, 83
map directive

authentication, 118
cache purge, 41
country codes, 29
cross-origin resource sharing, 72
GET and POST grouping, 73
persistent session control, 18

ModSecurity firewall module, 71
monitoring

about, 139
App Protect security logging, 87

Web Application Firewall, 167
basic monitoring enabled, 139
kernel log and number of connections, 160
load testing automated, 155
NGINX Plus monitoring dashboard

about, 139-141
API access to detail metrics, 143
demo online, 143
enabling, 140

request tracing, 151
OpenTracing, 152
request identifiers, 152

MP4 (MPEG-4) streaming media, 97
bandwidth limits, 100

N
Network Address Translation (NAT), 32
network load balancer (NLB)

AWS NLB, 133
creating, 104
NGINX behind AWS NLB, 133

network time protocol (NTP) servers, 13
NGINScript (see njs)
NGINX

about, xi
command overview, 5
configuration

Consul for automation, 59
debugging, 170

182 | Index

files and directories, 4
graceful reload, 7
include directives, 169
serving static content, 6

containerizing with ease, 115
(see also containers)

installation
Ansible, 56
CentOS, 2
Chef, 55
Debian, 1
image from Docker Hub, 121
Puppet, 54
RedHat, 2
SaltStack, 58
Ubuntu, 1
validation, 3

key files and directories, 4
master process as root, 4
NLB sandwich, 104
request processing, 170, 171

NGINX Controller
about, 141, 145, 161, 163

product page, 143
ADC to enable Web Application Firewall,

89, 165
agent connecting NGINX Plus, 163
API automating processes, 164
documentation

API references, 164
installation guide, 161, 163
NGINX Controller Agent, 163, 164
PostgreSQL database, 163
technical specs, 161, 163

installation, 161
Kubernetes stack, 161
PostgreSQL database required, 161, 162

documentation, 163
setup, 161
SMTP server needed, 162

NGINX Plus
API

metrics collection, 143
RESTful, 47

application delivery controller, xiii
authentication

cookie auth_token, 66
JSON Web Key creation, 65
JSON Web Key Set, 67

JSON Web Token validation, 61, 64, 66
JWT authentication documentation, 65
OpenID Connect JWT, 61, 66
OpenID Connect SSO, 68
web-signature types of tokens, 64, 67

cloud deployment
AWS Marketplace, 106
Azure Marketplace, 109

configuration synchronization, 133
about, 135

containerizing with ease, 115
(see also containers)

Controller (see NGINX Controller)
high availability mode, 131

Amazon IPs and, 132, 133
keepalived package, 131, 133
synchronizing configurations, 133
zone synchronization, 136

installation, 3
App Protect Module, 86
configuration synchronization, 133
deploying from AWS Marketplace, 106
deploying from Azure Marketplace, 109
validation, 3

key-value store, 50
Kubernetes Ingress Controller, 127
load balancing

active health check, 21
containerized environment, 115
DNS SRV records, 120
least time, 15

monitoring dashboard
about, 139-141
API access to detail metrics, 143
demo online, 143
enabling, 140

request processing, 170, 171
servers added or removed on the fly, 46
stateful applications at scale

draining connections gracefully, 19, 47
load balancing and, 9
persistent session control, 18
sticky cookies, 16
sticky learn with existing cookie, 17

streaming media
bandwidth limiting dynamically, 100
dynamic streaming, 97, 99
fragmenting on the fly, 97, 98

ngx for Lua NGINX API, 52

Index | 183

njs
documentation, 53
getting started with, 51

documentation, 53
JavaScript enabler, 51
js_content, 52
NGINScript formerly, 51
OpenID Connect for authentication, 68

NLB sandwich, 104

O
open file descriptors, 160
OpenID Connect (OIDC)

authentication via identity provider, 68
repository, 68

documentation, 69
JSON Web Token authentication, 61, 66, 68

openssl command
md5 hex digest, 79
passwd, 61

OpenTracing, 152
installation, 153
plug-in configuration

Jaeger example, 152
Zipkin example, 152

opentracing_tag directive, 153, 154
operating system for connections

open file descriptors, 160
operating system tuning for connections, 159

ephemeral ports, 160
OSI model, http versus stream, 12

P
package management system

APT for installation, 2
NGINX installation

Chef, 56
Puppet, 54
SaltStack, 58

Packer (HashiCorp), 102
password encryption

crypt function, 61
HTTP basic (htpasswd), 61

path
basic authentication user file, 62
cache location, 37
container Docker log driver output, 115
error log, 149
JSON Web Tokens key file, 64

monitoring dashboard for NGINX Plus, 141
NGINX image from Docker Hub, 122

pay-per-usage model, 101
AWS Marketplace NGINX Plus deployment,

106
Azure Marketplace NGINX Plus deploy‐

ment, 109
performance tuning

about, 155
bottleneck-driven tuning, 155
buffering logs, 159
buffering responses, 158
idle connection persistence time, 156
load testing automated, 155
operating system for connections, 159

ephemeral ports, 160
open file descriptors, 160

requests over a single connection, 156
upstream server connections kept open, 157

Perl
dynamic installation, 126
installation documentation, 53
language module available, 51

documentation, 53
perl_set to NGINX variable, 53, 126
runtime environment to NGINX variable,

53, 126
physical location of clients, 27
PostgreSQL database for Controller, 161, 162

documentation, 163
preflight requests, 73
programmability

about, 45
Consul for configuration automation, 59
custom extensions, 51

language modules available, 51, 53
Lua Hello World, 52
njs Hello World, 51
Perl reading environment, 53

dynamic block list, 49
load testing automated, 155
NGINX Controller via API, 164
NGINX installation and configuration

Ansible, 56
Chef, 55
Puppet, 54
SaltStack, 58

upstream servers added/removed on the fly,
46

184 | Index

progressive download, 98
Prometheus exporter module, 129

about Prometheus, 130
proxies

finding original client IP address, 30
forwarded header standardized, 30
Google App Engine proxy, 112
upstream server failure, 10

proxy_buffering directive, 158
proxy_buffers directive, 158
proxy_cache_bypass directive, 40
proxy_cache_key directive, 39
proxy_cache_lock directive, 38
proxy_cache_path directive, 37
proxy_cache_purge directive, 41
proxy_pass directive, 112
proxy_pass_request_body directive, 63
proxy_ssl_protocols directive, 77
ps command

installation validation, 4
NGINX as daemon or foreground, 4

Puppet
about, 54
documentation, 55
Embedded Puppet (EPP) templating lan‐

guage, 54
NGINX installation and configuration, 54

templating tool, 55
Python

Ansible using, 57
hash digest construction, 79
link that expires, 81
SaltStack using, 59

R
random load balancing, 16
rate limit for DDoS mitigation, 85
RedHat installation of NGINX, 2
redirecting to HTTPS, 82, 82
reload method, 7
repositories

Kubernetes Ingress Controller Deploy‐
ments, 127

NGINX installation, 2
NGINX Plus

installation, 3
OpenID Connect integration, 68

request body dropped, 63
request processing by NGINX, 170, 171

request tracing, 151
OpenTracing, 152
request identifiers, 152

requests allowed over single connection, 156
resolver directive, 112, 121
resources

Ansible documentation, 57
NGINX Controller, 165

API gateway documentation, 116, 120
Chef documentation, 56
Consul documentation, 60
Debugging Admin Guide, 171
JSON Web Key documentation, 66
JSON Web Token documentation, 65, 67, 68
language module documentation, 53
NGINX Controller

API references, 164
installation guide, 161, 163
NGINX Controller Agent, 163, 164
PostgreSQL database, 163
technical specs, 161, 163

OpenID Connect documentation, 69
Puppet

configuration templating tool, 55
documentation, 55

SaltStack documentation, 59
SSL

configuration generator, 74, 76
testing configuration, 74, 76

stub status documentation on enabling, 130
TLS protocol, 74, 76
Web Application Firewall guide, 71

RESTful
API access to dashboard metrics, 143
NGINX Plus API, 47

restricting access
based on IP address, 71

by country, 29
multiple methods, 84
secure links, 78

secure link that expires, 80
RFC standard

JSON Web Keys, 66
JSON Web Signature, 67

RHEL configuration synchronization, 133
Role-Based Access Control (RBAC), 128
root privileges for master process, 4
round-robin load balancing, 15

load balancing load balancers, 132

Index | 185

route parameter with sticky directive, 18
RSA certificates versus ECC, 76
Ruby programming language

Chef using, 56
Embedded Ruby (ERB) templating lan‐

guage, 54
Puppet using, 54

S
SaltStack

about, 59
documentation, 59
NGINX installation and configuration, 58

templating tools, 58
satisfy directive, 84
scale sets

horizontal scaling, 9
load balancing, 109
virtual machine scale sets, 109

secrets
about securing resources, 78
location block security via, 77
secure links generated with, 78

secure links
expire date, 79
generating a link that expires, 80
generating with a secret, 78
restricting access to having, 78

secure_link directive, 80
secure_link_secret directive, 78
security

about, 71
access based on IP address, 71

by country, 29
App Protect Module

App Protect policy file, 87
documentation, 89
installation, 86
Web Application Firewall, 71, 89, 165

authentication (see authentication)
certificate-key pairs, 75
client-side encryption, 74

advanced, 75
SSL versus TLS protocol, 74
SSL/TLS handshake control, 75

cross-origin resource sharing, 72
dynamic DDoS mitigation solution, 85
encrypting upstream traffic, 77
finding original client, 30

HTTP Strict Transport Security, 83
HTTPS redirects, 82

SSL/TLS terminated before NGINX, 82
limiting rate of requests, 33
location block

expire date, 79
secret for, 77

multiple ways to pass security, 84
restricting access

based on IP address, 71
by country, 29
secure links, 78
secure links that expire, 80

SSL directives to specify SSL rules, 77
Web Application Firewall

App Protect Module, 89
NGINX Controller enabling, 165
quick start guide, 71

server block
location block, 7
serving static content, 6

server directive, 121
servers

adding or removing on the fly, 46
connection draining, 19
pushing content to client, 94

serving static content, 6
session state

draining connections gracefully, 19
removing a server, 47

load balancing and, 9
persistent session control, 18
sticky cookies with NGINX Plus, 16
sticky learn with existing cookie, 17

slice directive, 42
slow_start parameter, 23
SMTP server for NGINX Controller, 162
split_client module, 26
SRV records, 120
SSL certificates

Google App Engine, 113
SSL module for, 74

SSL modules
client-side encryption, 74
configuration generator, 74, 76
configuration test site, 74, 76
directives to specify SSL rules, 77
gRPC connection proxies, 92
HTTP/2 enabled, 92

186 | Index

SSL session cache and timeout, 76
SSL/TLS handshake control, 75
SSL/TLS terminated before NGINX, 82
TLS protocol versus SSL, 74

ssl_certificate directive, 74
ssl_certificate_key directive, 74
standardization of forwarded header, 30
state

session state
draining connections gracefully, 19, 47
load balancing and, 9
persistent session control, 18
sticky cookies with NGINX Plus, 16
sticky learn with existing cookie, 17

state sharing and zone synchronization, 136
static content served, 6
stderr for Docker log driver output, 115
stdout for Docker log driver output, 115
sticky cookies with NGINX Plus, 16
sticky directive route parameter, 18
sticky learn with existing cookie, 17
stream servers

monitoring with NGINX Plus API, 144
zone synchronization, 136

streaming media
about, 97
bandwidth limits, 100
Cache Slice file segmenting, 43
FLV (Flash Video), 97
HDS (HTTP Dynamic Streaming), 99
HLS (HTTP Live Streaming), 98
MP4 (MPEG-4), 97
progressive download, 98

Strict-Transport-Security header, 83
stub status

documentation on enabling, 130
enabling basic monitoring, 139
Prometheus Exporter, 130

Syslog listener
about, 151
forwarding logs to, 150

T
TCP servers

load balancing, 11
active health check, 22
passive health check, 20

OSI model, 12
timestamps

relative time, 81
Unix epoch format, 80

TLS protocol
Application-Layer Protocol Negotiation, 92
documentation, 74, 76
gRPC connection proxies, 92
HTTP/2 enabled, 92
SSL versus, 74
SSL/TLS handshake control, 75
SSL/TLS terminated before NGINX, 82

traffic management
cloud DNS load balancer, 103
dynamic blocklist, 49
NLB sandwich, 104
web-traffic controllers

A/B testing, 25
about, 25

tuning (see performance tuning)

U
Ubuntu

configuration synchronization, 134
installation of NGINX, 1

UDP
datagrams, 14
load balancing, 13

active health check, 22
passive health check, 20

Unix epoch format timestamp, 80
URI (uniform resource identifier) for location

block, 7

V
validating installation, 3
variables

embedded variables in logs, 147
environment variables (see environment

variables)
perl_set to NGINX variable, 53, 126

video via slicing, 43
virtual machine (VM)

deploying NGINX Plus from Azure Market‐
place, 109

deploying NGINX to Google Compute
Engine, 110
highly configurable with little effort, 111

Google Cloud Images to create, 112
Google Compute Image, 111
load balancing over Azure scale sets, 109

Index | 187

virtual machine scale sets, 109
VM image on Azure, 107

virtual machine scale sets (VMSS), 109
Virtual Router Redundancy Protocol (VRRP),

131

W
Web Application Firewall (WAF)

App Protect Module, 89
NGINX Controller enabling, 165
quick start guide, 71

web-traffic controllers
A/B testing, 25
about, 25

dynamic routing via key-value store, 45
weighted round-robin load balancing, 15

X
X-Forwarded-For header (see standardization

of forwarded header)
X-Forwarded-Proto header, 83

Z
Zipkin plug-in configuration for OpenTrace,

152
zone synchronization, 136

about, 136

188 | Index

About the Author
Derek DeJonghe has a passion for technology. His background and experience in
web development, system administration, and networking give him a well-rounded
understanding of modern web architecture. Derek leads a team of site reliability and
cloud solution engineers and produces self-healing, autoscaling infrastructure for
numerous applications. While designing, building, and maintaining highly available
applications for clients, he consults for larger organizations as they embark on their
journey to the cloud. Derek and his team are on the forefront of a technology tidal
wave and are engineering cloud best practices every day. With a proven track record
for resilient cloud architecture, Derek pioneers cloud deployments for security and
maintainability that are in the best interest of his clients.

Colophon
The animal on the cover of NGINX Cookbook is the Eurasian lynx (Lynx lynx), the
largest of the lynx species, found in a broad geographical range from Western Europe
to Central Asia.

This wild cat has striking vertical tufts of dark fur atop its ears, with rough long hair
on its face. Its fur is yellow-gray to gray-brown, with white coloring on the under‐
belly. This lynx is spattered with dark spots, with northern-dwelling variants tending
to be grayer and less spotted than their southern counterparts.

Unlike other lynx species, the Eurasian Lynx preys on larger ungulates—hooved ani‐
mals—such as wild deer, moose, and even domesticated sheep. Adults require two to
five pounds of meat each day and will feed on a single source of food for up to a week.

The Eurasian lynx came close to extinction in the mid-twentieth century but subse‐
quent conservation efforts have brought the cat’s conservation status to Least Con‐
cern. Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

Color illustration by Karen Montgomery, based on a black and white engraving from
Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	NGINX
	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Basics
	1.0 Introduction
	1.1 Installing on Debian/Ubuntu
	Problem
	Solution
	Discussion

	1.2 Installing on RedHat/CentOS
	Problem
	Solution
	Discussion

	1.3 Installing NGINX Plus
	Problem
	Solution
	Discussion

	1.4 Verifying Your Installation
	Problem
	Solution
	Discussion

	1.5 Key Files, Directories, and Commands
	Problem
	Solution
	Discussion

	1.6 Serving Static Content
	Problem
	Solution
	Discussion
	Also See

	1.7 Graceful Reload
	Problem
	Solution
	Discussion

	Chapter 2. High-Performance Load Balancing
	2.0 Introduction
	2.1 HTTP Load Balancing
	Problem
	Solution
	Discussion

	2.2 TCP Load Balancing
	Problem
	Solution
	Discussion

	2.3 UDP Load Balancing
	Problem
	Solution
	Discussion

	2.4 Load-Balancing Methods
	Problem
	Solution
	Discussion

	2.5 Sticky Cookie with NGINX Plus
	Problem
	Solution
	Discussion

	2.6 Sticky Learn with NGINX Plus
	Problem
	Solution
	Discussion

	2.7 Sticky Routing with NGINX Plus
	Problem
	Solution
	Discussion

	2.8 Connection Draining with NGINX Plus
	Problem
	Solution
	Discussion

	2.9 Passive Health Checks
	Problem
	Solution
	Discussion
	Also See

	2.10 Active Health Checks with NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	2.11 Slow Start with NGINX Plus
	Problem
	Solution
	Discussion

	Chapter 3. Traffic Management
	3.0 Introduction
	3.1 A/B Testing
	Problem
	Solution
	Discussion
	Also See

	3.2 Using the GeoIP Module and Database
	Problem
	Solution
	Discussion
	Also See

	3.3 Restricting Access Based on Country
	Problem
	Solution
	Discussion

	3.4 Finding the Original Client
	Problem
	Solution
	Discussion

	3.5 Limiting Connections
	Problem
	Solution
	Discussion

	3.6 Limiting Rate
	Problem
	Solution
	Discussion

	3.7 Limiting Bandwidth
	Problem
	Solution
	Discussion

	Chapter 4. Massively Scalable Content Caching
	4.0 Introduction
	4.1 Caching Zones
	Problem
	Solution
	Discussion

	4.2 Cache Locking
	Problem
	Solution
	Discussion

	4.3 Caching Hash Keys
	Problem
	Solution
	Discussion

	4.4 Cache Bypass
	Problem
	Solution
	Discussion

	4.5 Cache Performance
	Problem
	Solution
	Discussion

	4.6 Cache Purging with NGINX Plus
	Problem
	Solution
	Discussion

	4.7 Cache Slicing
	Problem
	Solution
	Discussion
	Also See

	Chapter 5. Programmability and Automation
	5.0 Introduction
	5.1 NGINX Plus API
	Problem
	Solution
	Discussion
	Also See

	5.2 Using the Key-Value Store with NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	5.3 Extending NGINX with a Common Programming Language
	Problem
	Solution
	Discussion
	Also See

	5.4 Installing with Puppet
	Problem
	Solution
	Discussion
	Also See

	5.5 Installing with Chef
	Problem
	Solution
	Discussion
	Also See

	5.6 Installing with Ansible
	Problem
	Solution
	Discussion
	Also See

	5.7 Installing with SaltStack
	Problem
	Solution
	Discussion
	Also See

	5.8 Automating Configurations with Consul Templating
	Problem
	Solution
	Discussion
	Also See

	Chapter 6. Authentication
	6.0 Introduction
	6.1 HTTP Basic Authentication
	Problem
	Solution
	Discussion

	6.2 Authentication Subrequests
	Problem
	Solution
	Discussion

	6.3 Validating JWTs with NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	6.4 Creating JSON Web Keys
	Problem
	Solution
	Discussion
	Also See

	6.5 Validate JSON Web Tokens with NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	6.6 Automatically Obtaining and Caching JSON Web Key Sets with NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	6.7 Authenticate Users via Existing OpenID Connect SSO with NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	Chapter 7. Security Controls
	7.0 Introduction
	7.1 Access Based on IP Address
	Problem
	Solution
	Discussion

	7.2 Allowing Cross-Origin Resource Sharing
	Problem
	Solution
	Discussion

	7.3 Client-Side Encryption
	Problem
	Solution
	Discussion
	Also See

	7.4 Advanced Client-Side Encryption
	Problem
	Solution
	Discussion
	Also See

	7.5 Upstream Encryption
	Problem
	Solution
	Discussion

	7.6 Securing a Location
	Problem
	Solution
	Discussion

	7.7 Generating a Secure Link with a Secret
	Problem
	Solution
	Discussion

	7.8 Securing a Location with an Expire Date
	Problem
	Solution
	Discussion

	7.9 Generating an Expiring Link
	Problem
	Solution
	Discussion

	7.10 HTTPS Redirects
	Problem
	Solution
	Discussion

	7.11 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX
	Problem
	Solution
	Discussion

	7.12 HTTP Strict Transport Security
	Problem
	Solution
	Discussion
	Also See

	7.13 Satisfying Any Number of Security Methods
	Problem
	Solution
	Discussion

	7.14 NGINX Plus Dynamic Application Layer DDoS Mitigation
	Problem
	Solution
	Discussion

	7.15 Installing and Configuring NGINX Plus App Protect Module
	Problem
	Solution
	Discussion
	Also See

	Chapter 8. HTTP/2
	8.0 Introduction
	8.1 Basic Configuration
	Problem
	Solution
	Discussion
	Also See

	8.2 gRPC
	Problem
	Solution
	Discussion

	8.3 HTTP/2 Server Push
	Problem
	Solution
	Discussion

	Chapter 9. Sophisticated Media Streaming
	9.0 Introduction
	9.1 Serving MP4 and FLV
	Problem
	Solution
	Discussion

	9.2 Streaming with HLS with NGINX Plus
	Problem
	Solution
	Discussion

	9.3 Streaming with HDS with NGINX Plus
	Problem
	Solution
	Discussion

	9.4 Bandwidth Limits with NGINX Plus
	Problem
	Solution
	Discussion

	Chapter 10. Cloud Deployments
	10.0 Introduction
	10.1 Auto-Provisioning on AWS
	Problem
	Solution
	Discussion

	10.2 Routing to NGINX Nodes Without an AWS ELB
	Problem
	Solution
	Discussion
	Also See

	10.3 The NLB Sandwich
	Problem
	Solution
	Discussion

	10.4 Deploying from the AWS Marketplace
	Problem
	Solution
	Discussion

	10.5 Creating an NGINX Virtual Machine Image on Azure
	Problem
	Solution
	Discussion
	Also See

	10.6 Load Balancing Over NGINX Scale Sets on Azure
	Problem
	Solution
	Discussion

	10.7 Deploying Through the Azure Marketplace
	Problem
	Solution
	Discussion

	10.8 Deploying to Google Compute Engine
	Problem
	Solution
	Discussion

	10.9 Creating a Google Compute Image
	Problem
	Solution
	Discussion
	Also See

	10.10 Creating a Google App Engine Proxy
	Problem
	Solution
	Discussion

	Chapter 11. Containers/Microservices
	11.0 Introduction
	11.1 Using NGINX as an API Gateway
	Problem
	Solution
	Discussion
	Also See

	11.2 Using DNS SRV Records with NGINX Plus
	Problem
	Solution
	Discussion

	11.3 Using the Official NGINX Image
	Problem
	Solution
	Discussion
	Also See

	11.4 Creating an NGINX Dockerfile
	Problem
	Solution
	Discussion

	11.5 Building an NGINX Plus Docker Image
	Problem
	Solution
	Discussion
	Also See

	11.6 Using Environment Variables in NGINX
	Problem
	Solution
	Discussion

	11.7 Kubernetes Ingress Controller
	Problem
	Solution
	Discussion

	11.8 Prometheus Exporter Module
	Problem
	Solution
	Discussion
	Also See

	Chapter 12. High-Availability Deployment Modes
	12.0 Introduction
	12.1 NGINX Plus HA Mode
	Problem
	Solution
	Discussion

	12.2 Load-Balancing Load Balancers with DNS
	Problem
	Solution
	Discussion

	12.3 Load Balancing on EC2
	Problem
	Solution
	Discussion

	12.4 NGINX Plus Configuration Synchronization
	Problem
	Solution
	Discussion

	12.5 State Sharing with NGINX Plus and Zone Sync
	Problem
	Solution
	Discussion

	Chapter 13. Advanced Activity Monitoring
	13.0 Introduction
	13.1 Enable NGINX Open Source Stub Status
	Problem
	Solution
	Discussion

	13.2 Enabling the NGINX Plus Monitoring Dashboard
	Problem
	Solution
	Discussion
	Also See

	13.3 Collecting Metrics Using the NGINX Plus API
	Problem
	Solution
	Discussion
	Also See

	Chapter 14. Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing
	14.0 Introduction
	14.1 Configuring Access Logs
	Problem
	Solution
	Discussion

	14.2 Configuring Error Logs
	Problem
	Solution
	Discussion

	14.3 Forwarding to Syslog
	Problem
	Solution
	Discussion

	14.4 Request Tracing
	Problem
	Solution
	Discussion

	14.5 OpenTracing for NGINX
	Problem
	Solution
	Discussion
	Also See

	Chapter 15. Performance Tuning
	15.0 Introduction
	15.1 Automating Tests with Load Drivers
	Problem
	Solution
	Discussion

	15.2 Keeping Connections Open to Clients
	Problem
	Solution
	Discussion

	15.3 Keeping Connections Open Upstream
	Problem
	Solution
	Discussion

	15.4 Buffering Responses
	Problem
	Solution
	Discussion
	Also See

	15.5 Buffering Access Logs
	Problem
	Solution
	Discussion

	15.6 OS Tuning
	Problem
	Solution
	Discussion

	Chapter 16. Introduction to NGINX Controller
	16.0 Introduction
	16.1 Setup Overview
	Problem
	Solution
	Discussion
	Also See

	16.2 Connecting NGINX Plus with Controller
	Problem
	Solution
	Discussion
	Also See

	16.3 Driving NGINX Controller with the API
	Problem
	Solution
	Discussion
	Also See

	16.4 Enable WAF Through Controller App Security
	Problem
	Solution
	Discussion

	Chapter 17. Practical Ops Tips and Conclusion
	17.0 Introduction
	17.1 Using Includes for Clean Configs
	Problem
	Solution
	Discussion

	17.2 Debugging Configs
	Problem
	Solution
	Discussion
	Also See

	Conclusion
	Index
	About the Author

