
Solving Identity
Management in
Modern Applications

Demystifying OAuth 2.0, OpenID Connect,
and SAML 2.0
—
Yvonne Wilson
Abhishek Hingnikar

Solving Identity
Management in Modern

Applications
Demystifying OAuth 2.0, OpenID

Connect, and SAML 2.0

Yvonne Wilson
Abhishek Hingnikar

Solving Identity Management in Modern Applications: Demystifying OAuth 2.0,
OpenID Connect, and SAML 2.0

ISBN-13 (pbk): 978-1-4842-5094-5 ISBN-13 (electronic): 978-1-4842-5095-2
https://doi.org/10.1007/978-1-4842-5095-2

Copyright © 2019 by Yvonne Wilson, Abhishek Hingnikar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250945. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Yvonne Wilson
San Francisco, CA, USA

Abhishek Hingnikar
London, UK

https://doi.org/10.1007/978-1-4842-5095-2

iii

About the Authors ��xvii

About the Technical Reviewers ��xix

Acknowledgments ��xxi

Introduction ���xxv

Table of Contents

Chapter 1: The Hydra of Modern Identity �� 1

Identity Challenges ��� 1

Objective ��� 3

Sample Application ��� 6

Design Questions �� 6

Summary��� 7

Key Points �� 7

Note��� 7

Chapter 2: The Life of an Identity ��� 9

Terminology �� 9

Events in the Life of an Identity��� 11

Provisioning ��� 11

Authorization ��� 12

Authentication ��� 12

Access Policy Enforcement ��� 13

Sessions �� 13

Single Sign-On (SSO) ��� 14

Stronger Authentication ��� 14

Logout �� 15

iv

Account Management and Recovery ��� 16

Deprovisioning ��� 17

Summary��� 17

Key Points �� 17

Chapter 3: Evolution of Identity �� 19

Identity Management Approaches �� 19

Per-Application Identity Silo �� 20

Centralized User Repository �� 20

Early SSO Servers �� 21

Federated Identity and SAML 2�0 �� 22

WS-Fed �� 23

OpenID ��� 24

OAuth 2�0 ��� 24

OpenID Connect (OIDC) �� 25

Standard Protocols �� 26

Summary��� 27

Key Points �� 27

Notes ��� 27

Chapter 4: Identity Provisioning ��� 29

Provisioning Options ��� 29

Self-Registration �� 30

Identity Migration �� 32

Administrative Account Creation ��� 36

Leverage Existing Identity Service �� 38

Selecting an External Identity Service �� 39

Self-Registered Identities �� 40

Organization Identities ��� 41

Government Identities ��� 41

Industry Consortium Identities �� 42

Identity Provider Selection �� 42

Table of ConTenTs

v

Choosing and Validating Identity Attributes �� 44

Suggestions ��� 46

Validating Critical Attributes �� 47

Summary��� 48

Key Points �� 48

Notes ��� 49

Chapter 5: OAuth 2�0 and API Authorization ��� 51

API Authorization ��� 51

OAuth 2�0 �� 53

Terminology �� 55

Roles �� 55

Confidential vs� Public Clients ��� 56

Client Profiles �� 56

Tokens and Authorization Code ��� 57

How It Works ��� 57

Authorization Code Grant ��� 57

Implicit Grant ��� 64

Resource Owner Password Credentials Grant ��� 67

Client Credentials Grant ��� 69

Calling an API ��� 71

Refresh Token �� 71

Guidance �� 73

Summary��� 74

Key Points �� 74

Notes ��� 75

Chapter 6: OpenID Connect ��� 77

Problem to Solve ��� 77

Terminology �� 79

Roles �� 79

Client Types ��� 79

Tokens and Authorization Code ��� 79

Table of ConTenTs

vi

Endpoints ��� 80

ID Token ��� 80

How It Works ��� 82

OIDC Flows �� 83

OIDC Authorization Code Flow ��� 83

OIDC Implicit Flow ��� 89

OIDC Hybrid Flow ��� 92

UserInfo Endpoint �� 94

Summary��� 95

Key Points �� 96

Notes ��� 96

Chapter 7: SAML 2�0 ��� 99

Problem to Solve ��� 99

Terminology �� 100

How It Works ��� 101

SP-Initiated SSO �� 102

Single Sign-On ��� 103

IdP-Initiated Flow �� 103

Identity Federation ��� 105

Authentication Brokers ��� 107

Configuration��� 108

Summary��� 109

Key Points �� 110

Notes ��� 111

Chapter 8: Authorization and Policy Enforcement �� 113

Authorization vs� Policy Enforcement�� 113

Levels of Authorization and Access Policy Enforcement ��� 114

User vs� Application Authorization �� 115

User Authorization ��� 116

Delivery ��� 117

Enforcement �� 119

Table of ConTenTs

vii

Application Authorization �� 119

Application Attributes �� 119

Authorization ��� 120

Delivery ��� 120

Enforcement �� 120

Summary��� 121

Key Points �� 121

Notes ��� 122

Chapter 9: Sample Application with Custom API �� 123

Background ��� 124

Application Requirements ��� 125

Platform, Framework, and Identity Provider �� 128

API ��� 129

Protect the API ��� 130

API Implementation ��� 132

Extensibility and Adding Custom Claims ��� 134

Front End ��� 136

Front-End Functions �� 136

Summary��� 140

Key Points �� 141

Note��� 141

Chapter 10: Sessions �� 143

Application Sessions ��� 143

Identity Provider Sessions ��� 145

Multiple Sessions �� 145

Session Duration ��� 146

Session Renewal ��� 148

Token Renewal �� 148

Table of ConTenTs

viii

Reconstituted Sessions �� 150

Summary��� 150

Key Points �� 150

Chapter 11: Single Sign-On �� 151

What Is SSO? �� 151

How SSO Works �� 152

SSO Session Attributes ��� 154

SSO Session Duration �� 154

Multiple Identity Providers ��� 155

Authentication Mechanisms �� 155

Login Page Branding ��� 156

Summary��� 156

Key Points �� 156

Note��� 157

Chapter 12: Stronger Authentication �� 159

The Problem with Passwords ��� 159

Stronger Forms of Authentication ��� 160

Multi-factor Authentication �� 161

Step-Up Authentication ��� 162

Session Timeouts �� 163

Requesting Authentication Mechanisms ��� 163

SAML 2�0 ��� 163

OIDC ��� 164

Step-Down Authentication �� 164

Deployment ��� 165

Summary��� 165

Key Points �� 165

Notes ��� 166

Table of ConTenTs

ix

Chapter 13: Logout ��� 167

Multiple Sessions �� 167

Logout Triggers ��� 169

Logout Options �� 170

Application Logout �� 172

OAuth 2�0 �� 172

OIDC �� 173

SAML 2�0 ��� 175

Session Termination �� 177

Logout and Multilevel Authentication �� 177

Redirect After Logout �� 177

Summary��� 178

Key Points �� 178

Notes ��� 179

Chapter 14: Account Management ��� 181

Identity Attributes �� 181

Credential Reset �� 183

Account Recovery ��� 183

Password Guidance �� 184

Helpdesk Reset ��� 184

Summary��� 185

Key Points �� 185

Notes ��� 186

Chapter 15: Deprovisioning �� 187

Account Termination ��� 187

Best Practices ��� 188

Just Do It! �� 188

Provide a Soft Delete Technique �� 188

Reserve Deprovisioned Identities �� 189

Table of ConTenTs

x

Preserve Account Record �� 189

Data Transfer ��� 190

Privacy Right to Erasure �� 191

Certificate of Deletion �� 191

Secure Delete �� 192

Consider Reprovisioning Requirements �� 193

Summary��� 193

Key Points �� 193

Notes ��� 194

Chapter 16: Troubleshooting ��� 195

Get Familiar with the Protocols ��� 195

Prepare Your Tools ��� 196

Test Environment ��� 196

Independent Browser Windows ��� 196

Capture HTTP Traces ��� 197

View HTTP Traces �� 197

Make API Calls ��� 198

View API Calls �� 198

View JWT and SAML 2�0 Tokens �� 198

Check the Simple Things �� 198

Gather Information �� 199

How Many Users Impacted? �� 199

Contributing Environmental Factors? �� 200

Which Applications Impacted? �� 200

Consistent or Intermittent Issue? �� 200

Worked Previously? ��� 200

Where Does Failure Occur? ��� 201

Replicate the Problem ��� 201

Analyzing an HTTP/Network Trace �� 201

Capture a Trace �� 201

Check Sequence of Interaction �� 202

Table of ConTenTs

xi

Check Parameters in Requests ��� 203

Check HTTP Status Codes ��� 203

Check Security Token Contents ��� 204

Check for Security Token Validation Errors �� 205

Collaborating with Others �� 205

Summary��� 206

Key Points �� 206

Note��� 206

Chapter 17: Exceptions ��� 207

Accounts ��� 207

Data Restore �� 207

Account Decommission ��� 208

Orphaned Account ��� 209

Account Takeover �� 209

Phone Lost, Damaged, or Stolen �� 210

Identity Providers �� 210

Account Recovery Requests �� 210

Brute Force Attacks ��� 211

Breached Passwords ��� 212

System Outages �� 212

Authentication System Outage �� 212

Admin Access �� 213

Provisioning Systems �� 213

Compromised Security Information �� 214

Compromised Personal Data ��� 214

Compromised Credentials ��� 215

Compromised Secrets ��� 215

Summary��� 216

Key Points �� 216

Notes ��� 217

Table of ConTenTs

xii

Chapter 18: Less Common Requirements ��� 219

People ��� 219

Family Accounts �� 219

Temporary Positions �� 220

Status Transition �� 220

No Email Address �� 220

Identity Defederation ��� 221

Accounts ��� 221

Mergers and Acquisitions �� 221

Account Linking ��� 222

Progressive Profiling ��� 224

Impersonation�� 224

Delegation ��� 225

Environment �� 225

Shared Workstations ��� 225

Identity Provider Discovery �� 226

Multitenant Applications �� 227

Summary��� 227

Key Points �� 228

Chapter 19: Failures ��� 229

Pay Attention to Process ��� 229

Beware of Phishy Emails ��� 230

Use Multi-factor Authentication �� 231

Stay on Top of Patches �� 231

Secure Your Cloud ��� 232

Encrypt Sensitive Data! ��� 232

Do Not Store Cleartext Passwords �� 233

Provide Security Training to Developers ��� 233

Vet Your Partners ��� 234

Insider Threat �� 235

Table of ConTenTs

xiii

Summary��� 236

Key Points �� 236

Notes ��� 237

Chapter 20: Compliance ��� 241

What Is Compliance? �� 241

Government-Mandated Compliance �� 242

Industry Compliance �� 243

Elective Compliance Frameworks ��� 244

Why Compliance ��� 244

Data Protection �� 244

Competitive Advantage �� 245

Reduce Penalties ��� 245

Efficiency ��� 245

Compliance Landscape ��� 246

Security Compliance �� 247

Privacy Compliance ��� 247

Assessment and Certification �� 248

How to Proceed ��� 249

Summary��� 250

Key Points �� 250

Notes ��� 251

Chapter 21: Looking into the Crystal Ball ��� 253

Continued Security Challenges ��� 254

Ongoing Breaches ��� 254

Evolving Targets ��� 254

Diversifying Motives �� 255

More Targets ��� 255

Homes and Businesses ��� 255

Cars ��� 256

Medical Implants and Monitoring �� 256

Table of ConTenTs

xiv

Robots ��� 257

Erosion of Perimeter Protection��� 258

Identity – Not Just for Humans ��� 258

Personal Agents ��� 259

Autonomous Vehicles �� 259

IoT Devices �� 260

Robots ��� 260

On the Horizon �� 260

e-Identity ��� 261

Stronger Authentication ��� 262

Solutions for Smaller Devices ��� 262

Easier Adoption �� 262

Summary��� 263

Key Points �� 263

Notes ��� 264

Chapter 22: Conclusion ��� 267

Appendix A: Glossary �� 269

Appendix B: Resources for Further Learning �� 273

OAuth 2�0 �� 273

JWT ��� 274

OIDC �� 274

SAML ��� 274

Multi-factor Authentication ��� 274

Background Information ��� 275

Privacy �� 275

Appendix C: SAML V2�0 Authentication Request and Response ��������������������������� 277

SAML V2�0 Authentication Request ��� 277

SAML V2�0 Authentication Response �� 279

Response ��� 281

Table of ConTenTs

xv

Appendix D: Public Key Cryptography �� 287

Appendix E: Troubleshooting Tools ��� 289

Capture an HTTP Trace �� 289

View a HAR File ��� 290

Capture a Network Trace ��� 291

View Security Tokens �� 291

Test APIs �� 292

Appendix F: Privacy Legislation ��� 293

European Union ��� 293

United States ��� 294

Other Countries ��� 296

Notes ��� 296

Appendix G: Security Compliance Frameworks �� 299

General Security Frameworks ��� 299

 Center for Internet Security – Top 20 Controls �� 299

 Cloud Security Alliance �� 299

 ISO 27000 �� 300

 PCI DSS �� 300

US Frameworks ��� 301

 CJIS Security Policy – Criminal Justice Information Services Security Policy �������������������� 301

 FFIEC Information Technology Examination Handbook and Cybersecurity
Assessment Tool �� 301

 FISMA – Federal Information Security Management Act ��� 301

 FedRAMP – Federal Risk and Authorization Management Program ����������������������������������� 302

 GLBA Safeguards Rule ��� 302

HIPAA ��� 302

 HITECH Act ��� 302

 NIST ��� 302

Table of ConTenTs

xvi

SOC (Service Organization Control) ��� 303

SOC1 �� 303

SOC2 �� 303

Notes ��� 303

Index ��� 305

Table of ConTenTs

xvii

About the Authors

Yvonne Wilson has had many roles in the software industry

related to security and identity management as a security

and identity architect; enterprise architect; director of

developer success working with identity customers; sr.

director of security governance, risk, and compliance; and

founder of cloud identity services. Yvonne was responsible

for IT security strategy and architecture at Sun Microsystems,

founded and designed the identity management services

offered through Oracle Managed Cloud Services, and

founded a developer success team for Auth0, working

with customers and overseeing the creation of an identity

management training program for customer-facing support and professional services

engineers.

In working with business teams at Sun, designing and deploying identity systems

for customers at Oracle, and while founding a developer success team at Auth0, Yvonne

had the opportunity of working with many customers, from small startups to large

enterprises. Her experience spans the implementation of SSO, identity federation,

directory services, adaptive knowledge-based authentication, and identity provisioning

as well as multilevel authentication systems with certificate-based authentication.

She has worked with OIDC, SAML 2.0, WS-Fed, OAuth2.0, and OpenID. From this

depth of experience, Yvonne realized the growing need for a basic overview of identity

management concepts that is understandable to business application owners as well as

architects and developers.

xviii

Abhishek Hingnikar is a Solutions Engineering Specialist

at Auth0. He has several years of experience designing and

demonstrating Identity Management solutions to customers

using Auth0 using OAuth 2.0, OpenID Connect and SAML

2.0. His current focus areas involve Consumer IoT, Device

Based Identity and designing solutions that explore web

based identity in peripheral domains.

abouT The auThors

xix

About the Technical Reviewers

Jared Hanson is a software engineer with experience

across the full stack of desktop, mobile, and server-

side application development. Jared is the developer of

Passport.js, the popular Node.js authentication framework,

and a contributor to the OpenID and OAuth family of

specifications. He has worked as an architect at both Auth0

and Okta, leading companies in the identity and access

management industry.

Carlos Mostek has over two decades of professional

experience developing software. He has a Master of Science in

Software Engineering and a Bachelor of Science in Aerospace

Engineering, both from the University of Minnesota. He has

had a wide breadth of software experience and expertise across

highly security-sensitive industries: defense contracting,

financial markets, and currently, identity and security.

Throughout his career, he has filled a variety of roles: test

engineer, developer, architect, manager, director, and solution

architect. Through most of his time at Auth0, he has worked

with a wide range of customers, providing him a unique view

of myriad identity-related use cases. He lives in Minnesota with

his wife and three extremely active kids. He loves spending quality time with his friends and

family, playing and coaching soccer, hiking, playing video games, and juggling fire.

xxi

Acknowledgments

The best way to find yourself is to lose yourself in the service of others.

—Mahatma Gandhi

This book would not have been possible without the generous help of many friends and

coworkers who have graciously shared their expertise and knowledge to review and

improve the original draft. It has been a pleasure working with each of them over the

years, and we are fortunate and much indebted for the knowledge, wisdom, and insights

they have shared with us as well as, on occasion, the laughs.

Massive, massive appreciation and heartfelt thanks to Carlos Mostek for careful

reviews of early and later drafts of this book and contributing many corrections,

insightful additions, and helpful advice from his trove of development and IAM wisdom

as well as his experience helping many customers solve their IAM challenges over the

years.

Immense, heartfelt thanks also to Peter Stromquist for thoroughly reviewing the

draft version of this book and adding many corrections, suggesting additional ideas we’d

left out, and adding wisdom from his valuable store of development and IAM expertise

developed while designing solutions for many, many customers.

Huge, sincere gratitude to Amaan Cheval for careful reviews of the draft for this book

and contributing many corrections, clarifications, and suggestions for additional content

from his keen knowledge of IAM topics, customer challenges, and broad development

experience.

Enormous and ardent thank you to Nicolas Philippe for thorough reviews from his

extensive identity, security, and development experience; suggesting clarifications,

additional topics requiring explanation; and adding wisdom from his years of experience

with IAM as well as application development.

Titanic, sincere thanks also to Nicolás Sabena for excellent, careful reviews and

contributing much valuable guidance on troubleshooting from his extensive expertise

in IAM and development, as well as his keen ability to solve even the most puzzling

customer issues.

xxii

Huge, grateful thanks to Jared Hanson for generously answering many questions and

for reviewing and contributing corrections to many chapters of this book from his deep

knowledge of identity protocols.

Massive gratitude and thanks as well to Vittorio Bertocci for graciously sharing his

extensive IAM knowledge in many forums, from which we and others have learned a

great deal, and for reviewing portions of this book with an eagle eye, providing valuable

critique on errors in content, logic, and flow as well as suggestions for improvements and

kind advice about writing.

Immense gratitude is due to Erin Richards for careful reviews, corrections, and

additions on compliance matters, adding wisdom and practical advice from her long

experience in this field as well as content on privacy and security frameworks.

Huge appreciation also to Adam Nunn for thorough reviews, corrections, and

suggestions for the compliance chapter based on his wisdom and experience in

technical audits and compliance.

Sincere gratitude to Bill Soley for commiseration during the project as well as review

and contributing suggestions and advice from his immense knowledge of security

matters.

Much appreciation also to Subra Kumaraswamy for reviewing a portion of this book

and contributing suggestions from his experience in both IAM and security.

Immeasurable and heartfelt gratitude to Laura Hill for insightful editorial reviews,

finding the logic disconnects in early drafts and making numerous suggestions for how

to cut out extraneous fluff and clarify explanations. Many thanks as well for patiently

listening and providing encouragement as this project took shape!

Colossal thanks to Terence Rabuzzi for his razor-sharp editorial reviews and advice

on everything from graphics to structure and approaches for evaluating the logic of

many sections.

Tremendous thanks to the creative eye, graphic talents, and technical knowledge of

Liliya Pustovoyt for creating diagrams to illustrate several of the concepts discussed in

the book.

We also owe a huge debt of gratitude to Rita Fernando, Susan McDermott, Laura

Berendson, and the rest of the Apress team for their patient advice, answering numerous

questions, clear guidance, and editing on the text and graphics for this project.

A final massive and heartfelt thank you is due to our dear friends and family for

their patience and support during this very long project. The kind words and voices

aCknowledgmenTs

xxiii

of encouragement throughout meant a lot during the long hours of research, writing,

development, and editing.

We are incredibly grateful to all who helped make this project possible by reviewing

early drafts and contributing suggestions, advice, corrections, and additions. The text has

been immeasurably improved by our reviewers’ careful attention and many insightful

comments. We could not have done this without them. That said, a line by Albert Camus

is appropriate here: “The only real progress lies in learning to be wrong all alone.” Any

errors in the final text are solely ours. Any errata we discover after the book is published

will be noted in the Apress GitHub repo for the book, accessible via https://www.

apress.com/us/book/9781484250945.

aCknowledgmenTs

https://www.apress.com/us/book/9781484250945
https://www.apress.com/us/book/9781484250945

xxv

Introduction

Every day you play with the light of the universe.

—Pablo Neruda, Chilean poet, politician, and diplomat,
from Twenty Love Poems and a Song of Despair (1925)

There is a significant and growing cybersecurity workforce gap. A Global Information

Security Workforce Study1 predicts a cybersecurity workforce gap of 1.8 million

individuals by 2022. At a time when the number of online services and devices that

need security is growing rapidly, this is nothing short of alarming. In order to fill this

gap, it is imperative to encourage more people to learn about this field and provide

adequate resources for them to efficiently come up to speed. Identity management is an

important component of security which is critical to protect the rapidly expanding array

of innovative online services, smart devices, bots, automated agents, and the like that are

being created.

The authors of this book are fortunate to have been a part of this field for some

time. Between the two of us, we have created and deployed a variety of different types

of applications, single sign-on, identity federation, provisioning systems for various

access control models, directory services, and various forms of strong authentication.

We have had the pleasure of working closely with many customers to understand their

unique requirements and help them design and deploy identity and access management

systems in both cloud and enterprise environments. We’ve learned many lessons from

these projects, some of them the hard way through the school of hard knocks!

We wrote this book to share what we’ve learned from our experiences. We hope to

provide others a head start based on the lessons we’ve learned. Our intent is to provide

an introduction for those who are new to identity management and inspire them to

continue learning more about this topic. We provide an overview of three identity

management protocols, namely, OIDC, OAuth 2.0, and SAML 2.0, that will be useful

for application developers who need to add authentication and authorization to their

1 www.prnewswire.com/news-releases/global-cybersecurity-workforce-shortage-to-reach-
18-million-as-threats-loom-larger-and-stakes-rise-higher-300469866.html

https://www.prnewswire.com/news-releases/global-cybersecurity-workforce-shortage-to-reach-18-million-as-threats-loom-larger-and-stakes-rise-higher-300469866.html
https://www.prnewswire.com/news-releases/global-cybersecurity-workforce-shortage-to-reach-18-million-as-threats-loom-larger-and-stakes-rise-higher-300469866.html

xxvi

applications and APIs. We’ve covered the problem each protocol is designed to solve,

how to initiate basic requests, and how to troubleshoot issues. A sample program

accompanies the book and illustrates some of the concepts. We’ve also provided

information on typical identity management requirements to help you identify what

to include in your project plan, things that can go wrong that should be planned for,

common mistakes, and how to approach compliance. These chapters will be valuable

for developers as well as architects, technical project managers, and members of security

teams involved with application development projects.

In terms of scope, the book is designed to provide an introduction to identity

management. We cover how the three identity protocols can be used to solve common

use cases for authentication and authorization that you will encounter in creating an

application. We don’t have space to cover every protocol, corner case, or every nuance

of the protocols. We also can’t cover every detail in the specifications for the protocols.

Our intent is to give you an overview that will help you get started and provide sufficient

background to help you more fully understand more in-depth materials.

We are extremely grateful to numerous colleagues who’ve generously contributed to

this book through reviewing original drafts and providing corrections and feedback on

what we missed, what might be misunderstood, and what is most valuable for people to

know. This project would not have been possible without their assistance and expertise,

as noted in the acknowledgements. That said, any errors are completely our own. Any

errata we discover after the book is published will be noted in the Apress GitHub repo for

the book, accessible via https://www.apress.com/us/book/9781484250945.

We hope this book and the sample code are useful to you and wish you luck and

security for your application projects!

InTroduCTIon

https://www.apress.com/us/book/9781484250945

1
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_1

CHAPTER 1

The Hydra of Modern
Identity

Wisdom is not a product of schooling but of the lifelong attempt to acquire it.

—Albert Einstein, theoretical physicist, from a letter dated March 24, 1954

So, you’re ready to bring your next big application idea to life. You’ve spent a lot of time

researching, developing, and perfecting the architecture, features, algorithms, and user

experience, and you’re excited to bring your solution to market. Then you start thinking

about users and realize your application needs some identity management! You start

looking into what it takes to create accounts, authenticate users, provide multi-factor

authentication, and make all this work smoothly across multiple devices. That’s when

you start to feel like you are fighting a Hydra, the mythical beast from Greek mythology

with nine heads. When any one of her heads was cut off, two more grew back in its place.

In the same way, solving one identity management challenge can lead to more if you

don’t have a good plan for how to approach identity management.

 Identity Challenges
While identity management is a simple concept in theory, many factors need to

work together for it to work well in practice. It requires careful planning, design, and

development to implement identity management for an application while balancing the

myriad expectations stemming from business requirements and security, not to mention

the need to provide a great user experience. Unfortunately, identity management isn’t a

one-size-fits-all proposition. There isn’t a master solution we can provide that fits every

use case.

2

To give you an example, here are a few of the many disparate challenges you might

need to think about. A consumer-facing application may have users who expect the

ability to log in quickly using a social provider like Facebook. They may even want

the ability to use multiple social providers to log in to your application and still be

recognized as the same person. You’ll want to handle this requirement gracefully,

otherwise users might abandon your application because it’s a hassle to sign up and log

in. On the other hand, employee users need to access corporate applications via their

work account, and they want the convenience of single sign-on. What’s more, corporate

organizations typically have complex authorization requirements, often based on roles,

to govern permissions for what the employees in the organization can do.

An application with sensitive content might require stronger forms of authentication

than a simple password, but this requires determining which forms of authentication

provide adequate security while still being convenient for users. There are many

options for strong authentication, varying from one-time passwords generated on a

device to push notifications sent to a mobile phone or hardware security tokens with

private cryptographic keys. You need solutions that are easy for users to adopt and use

because cumbersome solutions may result in users circumventing the solution or simply

abandoning the application entirely.

If you offer multiple applications, or even a support portal in addition to your

application, your users will likely want single sign-on so they can log in once and

access multiple applications. This provides convenience to users as well as a single

place to control authentication policy. However, authentication is the gateway to your

application. It must be highly available and capable of scaling up higher than your

application(s); otherwise, it will suddenly become an obstacle rather than a gateway.

Single sign-on is not a benefit if it impedes access to your applications!

Your application design may need to accommodate various constraints from your

delivery platform. On the Web, a user may expect a browser redirect to a sign-in page

for authentication. In contrast, users of native desktop applications may prefer login

flows embedded within the application or leveraging a session provided by the underlying

operating system. Different mobile applications may use different approaches. Some

may redirect you to an identity provider to log in, but others may still prompt for your

credentials directly in the application. You’ll need to weigh the different approaches and

design for a user experience appropriate for your application’s delivery platforms.

The design of identity management for your application needs to answer all these

questions and more while taking into account the sensitivity of your application and

satisfying all the relevant business requirements. An example might help to show how

Chapter 1 the hydra of Modern IdentIty

3

bad identity decisions can negatively impact a user’s experience with an application.

Imagine you just installed a brand-new application to look at cat pictures and the sign- up

process asks for a scan of your passport and a selfie video. This would doubtless seem a bit

suspicious because it’s hard to imagine why a cat picture application needs your passport

information! A bad sign-up and login experience can hurt the usability and adoption of your

application. On the other hand, for a financial application, the need to provide a passport

for identity validation would seem more reasonable. It might even be driven by regulatory

requirements. In fact, recording a video to verify your identity is part of an innovative

onboarding experience for a challenger bank application provided by Monzo.i If you are

making a cat picture application, a frictionless social login might be the perfect solution.

However, if you are building a banking application, you’ll need a more involved sign-up

process and identity validation as well as strong authentication. The identity management

solutions for an application must match the sensitivity and type of an application.

As if that wasn’t enough, another major concern when building an application is

privacy regulations that govern the handling and protection of sensitive identity data. With

legislation like the GDPR (General Data Privacy Regulation) in the European Union and

similar legislation being enacted elsewhere, applications that collect or process user data

must comply with privacy requirements as noncompliance may incur severe penalties

in the event of a breach. The challenges outlined in the preceding paragraphs are just a

sample of what you may face in designing identity management for your application.

 Objective
Our objective in writing this book is to provide you with an introduction to the topic of

identity management, based on our experience building and deploying applications.

The focus is particularly on aspects of identity management for software applications,

such as creating accounts, authentication, API authorization, single sign-on, account

management, and logging users out. To set realistic expectations, identity management

is a huge topic. One book cannot make you an expert or cover everything there is to

know. The specifications for the identity protocols we’ll discuss total over 800 pages, and

they represent only a portion of the information that you need to know. We cannot hope

to cover every aspect of these protocols or every identity management use case. What

we can reasonably do is provide an introductory overview that helps you understand

common aspects of identity management needed by a typical application project,

how three standard identity protocols solve basic use cases for you, and how a sample

program solves some real-world scenarios.

Chapter 1 the hydra of Modern IdentIty

4

We will cover three popular identity protocols, namely, OAuth 2.0, OIDC, and

SAML 2.0 – specifically, what problem each is designed to solve, how they work, how

to implement authentication and authorization requests for simple cases, and how to

troubleshoot issues. We can’t cover every parameter or use case, but you should come

away with a basic understanding of what each protocol does and how it works. We hope

the text and sample program that accompanies this book give you a helpful overview

of identity management for your application development projects. We also hope you

are inspired to explore this topic further to learn about more advanced use cases and

solutions.

Appropriately designed, an identity management solution can simplify your overall

architecture. It can allow your application to delegate some responsibilities to other

components, and it can provide a single view of the user and unify access control to

simplify access issues, provide critical auditing capabilities, and more.

We’ve organized the content around the events in the life of an identity. We start out

with a discussion of account provisioning and several options for getting users set up so

they can use your application. Then we dive into API authorization and authentication

and provide an overview of three popular protocols in use today, namely, OAuth

2.0, OpenID Connect (OIDC), and Security Assertion Markup Language (SAML) 2.0.

These chapters cover authenticating users and handling authorization for applications

and APIs. After covering the basic mechanics of the protocols, we have a chapter

that explains the sample program that accompanies this book and how it uses these

protocols.

The subsequent chapters cover what happens after the user logs in the first

time, with introductory information about sessions, single sign-on, stronger forms

of authentication, account management, logout, and deprovisioning. In case your

application doesn’t work perfectly the first time, we’ve included a chapter with guidance

on troubleshooting. We’ve also shared information on problematic scenarios that may

arise, and some more unusual use cases we’ve come across. We close with a quick

overview of compliance as well as some mistakes that have led to some very unfortunate

breaches. Might as well learn from the past!

We recommend reading the chapters in order, at least through Chapter 15, as many

of these chapters build on previous chapters. For the rebels in the crowd, we especially

recommend at least reading Chapters 4 through 9 in order as they have the most

dependencies on earlier content. The chapters after Chapter 15 can mostly be read in

any order. Chapter 16 on troubleshooting will be most relevant when you need to debug

Chapter 1 the hydra of Modern IdentIty

5

an issue. Chapter 18 on less common requirements might be valuable to read early on

in a project as it may help you identify items to include in your project plan. Chapters 17

and 19 cover different types of issues and will help you plan for or avoid mistakes.

In the chapters on OAuth 2.0 and OIDC, we’ve provided samples of HTTP requests

to be made by an application. We realize you may use a library or SDK to facilitate such

calls, and in fact we heartily encourage this. If so, the syntax will differ for your chosen

implementation. However, while every library or SDK will be different, the underlying

calls should be in alignment with the standard specifications. When it comes time

to troubleshoot your implementation, you’ll likely use a browser tool or debugger to

analyze the calls made, and at that point, an understanding of the underlying HTTP

requests such as we’ve shown will be useful. Even if you are merely configuring a

purchased application, an understanding of the basic requests and responses will be of

benefit for troubleshooting.

One note about naming is in order. The protocols we cover have each used different

terminology. This makes it difficult to use consistent terms for certain components. We

debated between several approaches and finally decided that in a chapter discussing a

specific protocol, we would use the terms used by that protocol, and in other chapters,

we would use more generic terms. For example, in the OAuth 2.0 chapter, we refer to an

authorization server; in the OIDC chapter, the OpenID Provider; and in the SAML 2.0

chapter, the identity provider. In the other, more general chapters, we use the term

identity provider for a service that authenticates a user for an application. One exception

is in our term for a client application. There are many names for a client application

across these protocols – client, relying party, service provider, client application. The

terms client and relying party mean different things in some specifications. To reduce

confusion for beginners, we’ve chosen to use the term “application” throughout, to

refer to an application making authentication or API authorization requests via OAuth

2.0, OIDC or SAML 2.0. This is not ideal as it ignores the fact that in more involved use

cases, OIDC and SAML 2.0 clients may not be applications but rather can also be

providers to other clients. Since our focus is on introductory, basic use cases, we decided

to make this trade-off for the sake of simplicity and consistency across chapters. We

occasionally use the term relying party where the entity referenced is a relying party

which could be a provider serving other clients rather than a simple application. We

also refer to end users as simply users, as we don’t need to differentiate between types of

users.

Chapter 1 the hydra of Modern IdentIty

6

 Sample Application
To complement the text, we’ve provided a sample application that uses the OIDC and

OAuth 2.0 protocols. Chapter 9 explains the sample application and how it was designed

to use the identity protocols as part of an identity management solution. We need to

give the usual caveat here. As sample code, the code samples in the book and sample

application omit various functions for the sake of simplicity. They are not production-

ready code and should not be used as a basis for production applications.

 Design Questions
To get started on your own application, we suggest thinking about the following

questions in preparation for reading through the following chapters:

• Who are your users: employees, consumers, or a business?

• How will users log in? Is there an existing account available to them

that they would like to reuse?

• Can your application be used anonymously or is authentication

needed?

• What kind of delivery – Web or native – does your application intend

to provide?

• Will your application need to call any APIs? If so, who owns the data

that your application will retrieve?

• How sensitive is the data that your application handles?

• What access control requirements are needed?

• How long should a user’s session last?

• Is there more than one application in your system? If so, will users

benefit from single sign-on? (Don’t forget a support forum!)

• What should happen when users log out?

• Are there any compliance requirements associated with this data?

Chapter 1 the hydra of Modern IdentIty

7

 Summary
Modern users expect a frictionless, well-designed experience when using an application.

Identity management should help them access an application quickly, not get in

their way. In order to achieve that, developers face a lot of questions and need to

sort through a wide range of options available to them when developing identity

management solutions for modern applications. The next chapter will help you

understand the components of an identity management solution by covering the events

in the life of an identity.

 Key Points
• Identity management poses many challenges to developers of

modern applications.

• Identity management solutions must be appropriate for the

sensitivity, desired user experience, and delivery platforms of an

application.

• Identity management is a huge topic, more than can be

covered completely in one book.

• We’ll provide an overview of identity management and typical

requirements for identity management for your application.

• We’ll cover three protocols – what they are used for, how they work,

and how to make a basic authentication or authorization request.

• We’ll provide a sample program that illustrates some of the topics

discussed.

 Note
 i. https://monzo.com/

Chapter 1 the hydra of Modern IdentIty

https://monzo.com/

9
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_2

CHAPTER 2

The Life of an Identity

That it will never come again is what makes life so sweet.

—Emily Dickinson in “That it will never come again” (1741)

To clarify the terms used in subsequent chapters, we need to describe what an identity is

and how it is used, as well as the most common events in the life of an identity.

 Terminology
The concepts of an identity, an identifier, and an account are closely related but subtly

different. We use the term “identifier” to refer to a single attribute whose purpose

is to uniquely identify a person or entity, within a specific context. Email addresses,

passport numbers, driver’s license numbers, and employee numbers are all examples of

identifiers used for people. Nonhuman entities, such as agents, bots, or devices, may be

identified by an alphanumeric string of characters assigned at their time of creation or

registration within a context where they will act. Identifiers allow us to refer to a specific

person or nonhuman entity and are essential to identity management.

The term “identity” is defined as a collection of attributes associated with a specific

person or entity in a particular context. An identity includes one or more identifiers and

may contain other attributes associated with a person or entity. Human identities may

include attributes such as name, age, address, phone number, eye color, and job title.

Nonhuman identities may include attributes such as an owner, IP address, and perhaps

a model or version number. The attributes which make up an identity may be used for

authentication and authorization as well as conveying information about the identity to

applications.

10

A given person may have more than one identity. Just as a person might take on

different personas in different social contexts, such as a parent, child, engineer, or coach,

a person can have multiple online identities as well. One might have a work identity

used to perform tasks for an employer. The identity attributes might include an identifier

issued by the employer, a department name, building location, and manager. One might

also have a variety of personal identities used for different purposes, including managing

a youth sports team or running a side business. These real-world examples demonstrate

the contextual aspect of our definition. An online identity consists of at least one

identifier and a set of attributes for a user or entity in a particular context, such as an

application or suite of applications.

An identity is associated with an account in each such context. We define an account

as a local construct within a given application or application suite that is used to perform

actions within that context. Identity attributes may be contained within an application’s

account object, or they may be stored separately and referenced from the account object.

An account may have its own identifier in addition to that of the identity associated with

it. Having an account identifier separate from the identity associated with the account

provides a degree of separation. The account identifier can be used in other application

records to make it easier for users to change the username or other identifier associated

with their account.

We will use the term “identity” when specifically referring to online identities as the

set of attributes about a person or entity. We will use the term account when referring to

an account as a construct within an application or service that has an identity associated

with it. It should be noted that an account can have more than one identity associated with

it through account linking which will be explained further in Chapter 18. To summarize,

a person logs in to use an account which has various identity attributes associated with it

and which enables them to perform actions within a system.

Nonhuman actors can certainly have identities as well. Software components

serving as agents or bots and smart devices can have identities and may interact with

other software or devices in ways that require authentication and authorization just

like human actors. In order to keep this book to a manageable size, however, we will

primarily discuss human actors and their online identities.

As you might guess, an Identity Management (IdM) System is a set of services that

support the creation, modification, and removal of identities and associated accounts,

as well as the authentication and authorization required to access resources. Identity

management systems are used to protect online resources from unauthorized access

and comprise an important part of a comprehensive security model.

Chapter 2 the Life of an identity

11

 Events in the Life of an Identity
With basic definitions out of the way, we can move on to the primary events in the life of

an identity, illustrated in Figure 2-1. We’ll outline the events in this chapter and then go

into each in more depth in subsequent chapters.

 Provisioning
The first step in the life of an identity is its creation. The act of creating an account and

associated identity information is often referred to as provisioning. Provisioning might

be done by having users register, importing identity information from a legacy system or

leveraging an external identity service. Regardless of the mechanism used, the objective

of the provisioning phase is to establish an account with associated identity data. This

Figure 2-1. Events in the Life of an Identity

Chapter 2 the Life of an identity

12

involves obtaining or assigning a unique identifier for the identity, optionally a unique

identifier for the account distinct from that of the identity, creating an account and

associating identity profile attributes with the account.

For example, a user named Alice wishes to use some online banking services. Alice

might establish an online account at a bank by filling out an account registration form.

Alice would provide identity information including a username, a password, her name,

home address, phone number, email address, and some form of tax ID. This data would be

used to provision an online account at the bank associated with Alice’s personal identity.

Alice could create multiple online accounts at the bank for different identities. In

addition to the personal account, Alice might establish a second identity as a small

business owner with a second online account using her business identity and tax ID. The

provisioning phase establishes an online identity and account, which are then used to

access online services.

 Authorization
When an account is created, it is often necessary to specify what the account can do, in

the form of privileges. We use the term authorization for the granting of privileges that

govern what an account is allowed to do.

When Alice creates her online account, the bank authorizes her account to access

the application to view checking accounts. If she does not have a brokerage account

at the bank, her account would not be authorized to access the bank’s stock trading

application. Needless to say, her account would also not be authorized to view account

information for the bank’s other customers! Alice’s authorization indicates the privileges

her account has been granted. Authorization for an account is typically done at the time

an account is created and may be updated over time.

 Authentication
To access online content that is not publicly available, a user needs to authenticate.

A user provides an identifier to signify the account they wish to use and enters

login credentials for the account. These are validated against credentials previously

registered during the account provisioning phase. The credentials may involve

something the user knows, something the user has, and/or something the user is. A

password is something the user knows. A numeric code generated from a previously

registered device, such as a mobile phone, involves something the user has. Biometric

Chapter 2 the Life of an identity

13

information such as a fingerprint is something the user is. Authentication with one

or more credentials which are validated against previously registered information

demonstrates, to some degree of confidence, a user’s right to use an account to access

protected resources.

After Alice establishes her online identity and account at the bank, she can access

the bank’s online services. To access protected resources, such as her checking

account balance, she will need to authenticate by entering the username and password

established during the registration step. The username indicates the account she wishes

to use, and knowledge of the password demonstrates her right to use the account.

 Access Policy Enforcement
Once a user has been authenticated and associated with an account, it is necessary

to enforce access policy to ensure any actions taken by the user are allowed by the

privileges they have been granted. We use the term access policy enforcement for the

enforcement of access policy specified by authorization. In other words, authorization

specifies what a user or entity is allowed to do, and access policy enforcement checks that

a user’s requested actions are allowed by the privileges they’ve been authorized to use.

When Alice logs in to the bank’s online retail banking application and makes a

request, the application will check she has the authorization to make the request. If

she attempts to access the stock trading services, she would be denied as she is not

authorized to access those services. In this case, the application might display a message

indicating she is not allowed to view that service, perhaps with information on how to

sign up for it.

 Sessions
Once a user has been authenticated and authorized, they will perform various actions

within an application. Some applications, typically traditional web applications and

sensitive applications, only allow a user to remain active for a limited period of time

before requiring the user to authenticate again. They do this by managing a session for

the user. A session tracks information such as whether the user has been authenticated,

and if so, typically also the authentication mechanism or strength level used, and when

authentication occurred, in addition to a user identifier. This enables an application to

know when the user should be prompted to reauthenticate.

Chapter 2 the Life of an identity

14

The length of time a user is allowed to remain active before reauthentication is known

as a session limit or session timeout. The session timeout settings will typically vary by

the sensitivity of the data in the application. Session limits help protect against users who

walk away from their screen without logging off and identity information that may have

changed since the session was created. A session limit that forces a user to periodically

reauthenticate provides a check that it is still the legitimate user at the keyboard. It can

also trigger a renewal of the user’s identity information and account status.

Alice’s retail banking application that provides access to her bank account may allow

only a relatively short session, measured in minutes. Another, less sensitive service

offered by the bank, such as an investment newsletter, may allow a longer session,

measured in hours or days. Each time Alice makes a request of either application, it is

necessary for the application to check if she has authenticated recently enough for the

requested transaction. If so, she can continue without authenticating again. If too much

time has elapsed since she last authenticated, she would have to authenticate again.

 Single Sign-On (SSO)
After a user accesses one application, they may wish to do something else involving

another application. Single sign-on (SSO) is the ability to log in once and then

access additional protected resources or applications with the same authentication

requirements, without having to reenter credentials.

When Alice accesses her bank’s web site, single sign-on would provide convenient

access to multiple banking services. If Alice signed up for the investment newsletter

service at her bank, she could log in to access first the retail banking application to view

her account balance and then access the investment newsletter without having to sign in

again.

Single sign-on is possible when a set of applications has delegated authentication

to the same entity. An authenticated session in that entity that can be used to access

multiple resources via single sign-on is often called an SSO session.

 Stronger Authentication
Step-up authentication and multi-factor authentication (MFA) both involve

authenticating a user with stronger forms of authentication. Some forms of

authentication, such as username-password authentication, are considered relatively

Chapter 2 the Life of an identity

15

weak because they involve a single factor, the password, which can be captured and

easily used by others. Stronger forms of authentication involve other factors, such as

something the user has and/or something the user is. Authentication that requires

multiple factors at the same time is known as multi-factor authentication. Multi-factor

authentication typically involves a password as well as possession of a device such as a

laptop or mobile phone or possibly a biometric factor such as a fingerprint or voiceprint.

Step-up authentication is the act of elevating an existing authentication session to

a higher level of assurance by authenticating with a stronger form of authentication.

For example, a user might initially log in with a username and password to establish an

authentication session. Later, upon accessing a more sensitive feature or application

with higher authentication requirements, the user would be prompted for additional

credentials, such as a one-time password generated on their mobile phone. Step-up

authentication may be required when a user accesses a more sensitive application or

when they attempt to perform more sensitive transactions, like withdrawing unusually

high amounts of money.

Alice might initially log in with a username and password and be able to view

her account balance on the bank’s web site. If she later attempts to transfer a large

amount of money out of her account, she might have to step up her session and enter

a stronger authentication factor, such as a special one-time use code generated by an

application on her phone. This elevates her session to a higher level of authentication

assurance which provides a higher degree of confidence that the user requesting access

or performing a transaction is the legitimate account owner.

 Logout
When a user is done with an application, they should terminate their session by logging

out. At a minimum, the act of logging out should terminate the user’s application

session. If they return to the application, they would have to authenticate again before

being granted access. In situations where single sign-on is used, there may be multiple

sessions to terminate, and it is a design decision as to which sessions should be

terminated when the user logs out of one application.

The act of logging out is slightly different than a session timing out. In the former

case, the user explicitly requests that their session be terminated. When a session times

out, an application may elect to keep the session in a suspended state and reconstitute

the session if the user authenticates again.

Chapter 2 the Life of an identity

16

In a scenario where Alice has logged into her bank’s web site and viewed her bank

balance as well as a recent investment newsletter, she would have a session in the retail

banking application, in the investment newsletter application, and in the bank’s SSO

service. If she is idle for a few minutes to take a phone call, her session in the retail

banking application may time out. When she finishes her phone call, she would have to

reauthenticate to continue. When she finishes viewing her account, she would click a

“Logout” link to terminate all of her open sessions.

 Account Management and Recovery
During the course of an identity’s lifetime, it may be necessary to change various

attributes of the user profile for the identity. For example, a user may need to update

their email address or phone number. A user may need to update their name in some

circumstances or to periodically change their password or mobile device used in the

authentication process. In a company, a user’s profile might be updated to reflect a new

position, address, or privileges such as roles. Account management consists of features

or processes which enable users and administrators to view and update user profile

attributes associated with an identity.

A user may also forget their password or lose a device that is required for an

authentication process. If this happens, a user needs to establish new credentials. This

requires an alternate means of establishing the user’s ownership of the account before

allowing them to set new credentials. Account recovery is a mechanism to validate a user

is the legitimate owner of an account through some secondary means and then allow the

user to establish new credentials.

If Alice goes on a trip and forgets her password after being gone for a while, she

would need a means of resetting her password. She may have to enter a code using an

alternate authentication mechanism she set up previously or she may be able to trigger

an account recovery link sent to her email that will enable her to reset her credentials.

Similarly, if Alice decides to move, she would need the ability to update her profile at

the bank to reflect her new address. Throughout the lifetime of an identity, various

changes may occur, requiring the ability to update the identity profile attributes and/or

reestablish new credentials.

Chapter 2 the Life of an identity

17

 Deprovisioning
There may come a time when it is necessary to close an account. In this case, the user’s

account and associated identity information must be deprovisioned so that it can no

longer be used. Deprovisioning may take the form of completely deleting the account

and associated identity information or simply disabling the account, to preserve

information for audit purposes.

If Alice decides at some point to terminate her relationship with the bank, she would

request that her accounts be closed. The bank would close out her checking and savings

accounts and terminate her online account so that she could no longer log in. The bank

would, however, need to keep sufficient information to meet tax reporting and audit

obligations.

 Summary
This chapter has introduced the concept of an account and an associated identity

and the most typical events that occur during their existence, from provisioning

and authorization to authentication and access policy enforcement, all the way to

deprovisioning. In the next chapters, we’ll dive into more detail for each event, starting

with a summarized history of approaches to identity management.

 Key Points
• Provisioning creates an account and associated identity.

• Authentication validates a user is entitled to use an account.

• Authorization specifies the privileges granted for an account.

• Access policy enforcement checks that requests are within the

privileges granted by authorization.

• A session and session limit are used to govern how long a user can

remain active without reauthenticating.

• Single sign-on allows a user to log in once and then access additional

protected resources without reentering credentials.

Chapter 2 the Life of an identity

18

• Multi-factor authentication requires authentication by multiple

forms of authentication, such as something the user knows

(a password), something the user has (such as a device), and/or

something the user is (such as a fingerprint).

• Step-up authentication is the elevation of an existing

authentication session to a higher authentication assurance level

when a user authenticates with a stronger form of authentication.

• Logout terminates an authenticated session, requiring

reauthentication to access a protected resource again.

• Account management features allow a user or administrator to

update account and identity profile attributes.

• Account recovery is required when a user loses the ability to

authenticate using previously established credentials.

• Deprovisioning is the removal or disabling of an account and

associated identity information.

Chapter 2 the Life of an identity

19
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_3

CHAPTER 3

Evolution of Identity

Progress is not an illusion; it happens, but it is slow and invariably
disappointing.

—George Orwell, from Inside the Whale and Other Essays (1940)

Over the years, there has been an ongoing evolution in how identity information is stored

and used to enable users to access applications and the functionality they provide. You’ll

see in this chapter that each bit of progress has solved some problems but given rise to new

ones, as technology and security challenges evolved. We’ll describe some past approaches

that have been used to manage identity information and provide authentication and

authorization. We’ve selected specific technologies to highlight specific advantages and

disadvantages of each approach that may help you evaluate solutions for your project.

We’ll also discuss why you should use an industry standard protocol instead of inventing

your own solution. Subsequent chapters will then cover specific protocols in more depth.

 Identity Management Approaches
It’s valuable to understand the advantages and drawbacks of approaches which have

been used in the past for managing identity data, authentication, and authorization.

Many of these approaches are still in use today. This will not be an exhaustive list of

every approach or technology, but rather a curated list to illustrate the practical, real-

world benefits and drawbacks of selected approaches. As you read about each one, pay

attention to the problems each solution was designed to solve as well as the benefits and

shortcomings of each. Knowing the advantages and disadvantages of each will help you

evaluate alternatives and more effectively advocate for use of newer solutions. We’ll start

by going back in time to when applications each implemented their own authentication

and user repository.

20

 Per-Application Identity Silo
In the Stone Age, relatively speaking, of computer applications, each application often

implemented its own identity repository, authentication, and authorization. A large

enterprise company typically had core business applications, such as finance and

inventory control systems, and perhaps a few productivity applications. Each application

often had its own dedicated database or other storage in which user identities,

credentials, and user profile data were stored, and each application prompted the user

to log in and then validated the user’s credentials against its own repository of user

information. This meant an employee might have a different username and password

to remember for each application. It also meant that if some element of a user’s profile

changed, the profile change had to be made in multiple applications. Of course, this did

not happen reliably if a company had many applications, so user profile data invariably

became out of sync across systems. User exasperation with data integrity issues and

having to remember numerous passwords was bad enough when there were just a few

applications. As the number of applications in an enterprise grew, however, having every

application implement its own siloed identity repository and authentication solution

quickly became untenable for businesses.

This siloed approach is still used today in many consumer-facing scenarios where

a user signs up by providing an application-specific username and password. If a user

reuses the same password across multiple sites, a compromise at any one site could

put the user’s data at other sites at risk. If a user specifies a different password for

every application, they have to remember or securely store the passwords or rely on

the security of an account recovery process provided by the application. Either way,

consumer users face some of the same inconvenience with this approach experienced

earlier by corporate users.

 Centralized User Repository
With time, more and more software was written for a wide swathe of business functions.

This drove a need for a better approach to identity management. Many companies

implemented directory services to house and centralize user identity information.

Directory services are optimized for information that is frequently read but infrequently

modified, which is often the case for user identity data. Applications were able to use a

directory service to store user data and credentials. It was also possible for an application

to prompt a user to log in and validate the entered credentials using information in a

Chapter 3 evolution of identity

21

directory service. Large, on-site commercial business applications targeted to enterprise

environments1 often included support for this approach. This centralized approach

offered a significant improvement over the siloed, per-application approach.

The centralization of identity administration and access with a directory service

provided many advantages. Directory replication capabilities enabled applications

hosted around the world to leverage the same identity information, eliminating

data inconsistency issues. The same username and password could be used across

applications. A centralized directory service also provided a single point of control at

which to implement password policy or quickly terminate an identity if necessary. As a

result, directory services became widely adopted, at least in larger companies.

For all their advantages, however, directory services also had some disadvantages.

A directory service by itself did not maintain any sort of session for a user. The

centralization of identity information in a directory service usually meant a user had only

one username and password to remember, but the user still had to enter the credentials

into each application’s login screen because each application needed to collect user

credentials and validate them using the directory service (in the absence of additional

technology). In addition to being an inconvenience, this exposed the user’s password to

the applications. A compromise at one application might put other applications at risk.

This was bad enough when all applications involved were inside a trusted corporate

network. As companies began using cloud applications, exposing directory passwords to

cloud applications owned by others would have posed an unacceptable risk. Once again,

a better solution was needed!

 Early SSO Servers
Several types of what became known as identity and access management (IAM)

or single sign-on (SSO) servers provided further improvement. Early SSO servers

leveraged the identity information in a directory service, but provided a layer on top

of the directory service that maintained a session to remember users that had already

authenticated. The way they worked varied, but in a typical approach, an application

could redirect a user’s browser to an SSO server to have the user authenticated there and

receive the authentication results in a secure, predetermined fashion. If a user accessed

a second application, shortly after they authenticated for the first application, the

1 Such as Oracle and SAP application suites.

Chapter 3 evolution of identity

22

second application redirected the user’s browser to the SSO server2 and the SSO server

would detect the user’s existing session and redirect them back to the application with a

success status without prompting the user for credentials again.

The introduction of single sign-on servers offered many advantages over directory

services. Users benefited from the ability to access multiple applications with a single

authentication. Security teams appreciated that the user’s static directory password

was only exposed to the SSO server, instead of to each application the user accessed.

IT departments were happy because it gave them a single place to implement

authentication policy and stronger authentication mechanisms.

Unfortunately, there were some disadvantages with early SSO servers in practice.

The interaction between applications and SSO servers was somewhat proprietary, and

SSO products were often time-consuming to implement. This meant their adoption

was more evident in larger companies with resources to integrate applications with SSO

servers. A more significant limitation was that single sign-on relied on cookies which,

due to browser restrictions on cookie access, meant the solutions worked within one

Internet domain such as www.mycompany.com. As many companies were becoming

interested in external Software-as-a-Service (SaaS) applications, this was a limiting

restriction.

 Federated Identity and SAML 2.0
The explosion of new SaaS applications created challenges for managing identities. In

the blink of an eye, business teams everywhere could thumb their noses at backlogged

IT departments and sign up for SaaS applications with a credit card. Unfortunately,

there was often no good way to manage employee identities in SaaS applications. It was

difficult for a company to track accounts its employees created in SaaS systems, and

users once again had to remember a password for every application. The single sign-on

they enjoyed across internal applications didn’t extend to external SaaS applications in

other domains.

Fortunately, a new industry standard, SAML 2.0 (Security Assertion Markup

Language), had been published in 2005.i It provided a solution for web single sign-on

across domains and federated identity. This happened to be perfect for enterprises with

2 As an optimization, an agent was sometimes installed in front of the application to check session
state with the SSO server and only redirect the user to the SSO server if the session state could
not be confirmed.

Chapter 3 evolution of identity

http://www.mycompany.com

23

SaaS applications. Although the SAML 2.0 technical overview focused on a consumer-

facing use case, SAML 2.0 provided an excellent solution for enterprises needing better

control over employee identities in SaaS applications.

With SAML 2.0, SaaS applications could redirect corporate users back to a corporate

authentication service, known as an identity provider (IdP), for authentication.

Identity federation provided a way to link an identity used in an application with an

identity at the identity provider. Companies could now have the advantages of single

sign-on with both internal and SaaS applications. Users benefited by having a single

username/password to remember. The enterprise had a centralized control point for

both internal and external identities and could shut off access quickly at the corporate

identity provider if needed. Password policy and multi-factor authentication could be

implemented in a single place. In this way, SAML 2.0 solved many identity headaches for

enterprises.

Despite being widely adopted, however, SAML 2.0 was no silver bullet. The protocol

was designed to cover many scenarios, making it complex to configure and implement.

While SAML 2.0 became widely adopted within enterprise environments, there was no

viable business model for it to address consumer-facing scenarios. Users were unlikely

to pay money for a consumer-facing identity service. As we’ll see later, this was solved by

making someone else entirely pay for the service! Another limitation was that SAML 2.0

only solved the problem of authentication. Applications were evolving to architectures

based on APIs. As typically implemented, SAML 2.0 solved the problem of authenticating

users but didn’t help with API authorization.

 WS-Fed
The Web Services Federation Language (WS-Fed) federation framework was created by

an industry coalition as part of a larger set of protocols known as the WS-∗ specifications.

The WS-Fed 1.2 specification was published as an OASIS standard in 2009ii and provided

mechanisms whereby “authorized access to resources managed in one realm can be

provided to security principals whose identities are managed in other realms.”iii It was

supported by Microsoft’s ADFS server as well as many other commercial SSO products

and provided similar functionality to SAML 2.0’s web single sign-on and federation

capability. It was taken up in many enterprise environments and, like SAML 2.0, is still in

use today in many corporate settings.

Chapter 3 evolution of identity

24

 OpenID
The original OpenID protocoliv is worth mentioning for its notion of user-centric identity.

With SAML 2.0 only adopted in employee-facing scenarios, consumer users were still

forced to register anew at each consumer-facing web site. A new industry group formed to

create a solution for what it termed “user-centric” identity, and this gave rise to a protocol

called OpenID. In addition to organization-controlled identity providers commonly used

with SAML 2.0 and WS-Fed, OpenID included the idea of user-controlled identity for the

consumer use case. Consumer users could even set up their own identity provider and

point applications to it for authentication. The original OpenID protocol didn’t become

widely used, but it did highlight the need for user- centric identity solutions and laid the

groundwork for another protocol named OpenID Connect, which we’ll cover shortly.

 OAuth 2.0
With Web 2.0 and the rise of social media, many consumer-facing web sites were created

that allowed users to upload content such as pictures. This gave rise to use cases where

an application needed to retrieve such content on the user’s behalf. For example, a

person who uploaded photos to a social media site might want to enable another web

site that printed photos (www.photos.com) to access their photos at the social media

site. In the absence of a better solution, the user would have to share their social media

credentials with the photo printing site. If the photo printing site were compromised, it

would put the user’s social media account at risk. The user also had no control over what

the photo printing site could do once it had the user’s password for the social media

site. A solution was needed that would allow a user to authorize an application at one

web site to retrieve their content from another web site’s API, without the user having to

expose their credentials to the first site.

The OAuth protocol provided a solution for this use case. The OAuth 2.0v version of

the specification allows a user to authorize one application, known as a client (the photo

printing site), to send a request to an API, known as a resource server (the social media

site), on the user’s behalf to retrieve data at the resource server owned by the user. To do

this, the application interacts with an authorization server which authenticates a user as

part of obtaining their consent for the application to access their resources. The application

receives a token which enables it to call the resource server on the user’s behalf. OAuth 2.0

solved an important API authorization use case. Given the lack of a consumer-facing

authentication solution like SAML 2.0 and WS-Fed, and the fact that authorization servers

Chapter 3 evolution of identity

http://www.photos.com

25

might need to authenticate users as part of obtaining the user’s authorization consent, it

may have been tempting to some to want to use it for more than this.

By this time, there were several social media sites on the Internet, such as Google

and LinkedIn, and they implemented OAuth 2.0 to enable consumer-facing applications

to retrieve information from a user’s Google or LinkedIn profile. The authentication step

performed by an OAuth 2.0 authorization server as part of obtaining a user’s consent

might have seemed to some like it could provide a handy authentication solution. There

had not been a viable business model earlier for general consumer-facing SAML 2.0

identity provider services. Neither the users, applications, nor anyone else were likely to

fund such services.

The rise of social media, however, provided a new possibility for a solution. Social

media providers already had to authenticate users for access to their site and when an

OAuth 2.0 authorization request was received that required authenticated user consent.

If they were to provide a general authentication service, it might attract more users to

their platform, and a consumer-facing authentication service would effectively be paid

for by the advertising that paid for the social media sites. There was one slight problem,

however. OAuth 2.0 was not designed as a general authentication service and could

not securely be used for this purpose, at least without proprietary additions to the pure

OAuth 2.0 features. (Several social providers that support OAuth 2.0 have implemented

such proprietary additions.) Another solution standard was needed.

 OpenID Connect (OIDC)
OpenID Connect (OIDC) was designed to provide a key feature needed for an

authentication service. Even if OAuth 2.0 authorization servers were capable of

authenticating users, the framework did not provide a standard way to securely convey

the identity of an authenticated user to an application. OIDC provided a solution for

this need. OIDC was devised as a layer on top of the OAuth 2.0 protocol to provide

information in a standard format to applications about the identity of an authenticated

user.vi This provided a solution for applications for user authentication as well as API

authorization. The implementation of OIDC by widely used social media/service

providers like Google, PayPal, and Yahoo provided a solution for consumer-facing

authentication services, but there was nothing in the protocol to limit it to consumer-

facing scenarios.

Chapter 3 evolution of identity

26

OIDC offers benefits to users, application developers, and identity providers. Web

site developers can delegate the work of implementing authentication and password

reset logic to an OIDC provider. Users benefit because they can leverage one account to

log in to many sites without exposing their account credentials to those other sites. Users

have fewer usernames and passwords to manage and enjoy single sign-on. Providers

may benefit if OIDC support attracts more users to their platform. OIDC provides the

web single sign-on benefits that were attractive in SAML 2.0 and, when combined with

OAuth 2.0, provides a solution with authentication as well as the API authorization

capabilities needed by modern applications.

The previous sections provided a brief history of different solutions for managing

identities and authenticating users. We’ll close with a few words on the benefits of

standard protocols.

 Standard Protocols
The next several chapters will describe three commonly used industry standard identity

protocols and how they work. But first, why use an industry standard protocol? First,

as open standards, these protocols have been scrutinized for flaws by many people, so

they are less likely to have vulnerabilities than something you’d invent yourself. Second,

these protocols are widely used, providing interoperability between your application

and service providers which support the protocols. Third, if you wish to access user

profile data from services such as Google, you will have to use the standard protocols as

implemented by these services. Similarly, if your application will be used by enterprises,

the enterprise may expect your application to use one of these protocols. Fourth,

the protocols designed for authentication support single sign-on which represents

convenience for your users. Finally, using an existing protocol can save you time as many

programming languages offer SDKs that support them. So, there you have five good

reasons to use industry standard identity protocols!

If you are new to the identity space, it may at first seem a little daunting to learn

these protocols and possibly tempting to invent a simpler authentication scheme of your

own. We have two words for that: “Just Don’t!” We hope this book will make it easier

for you to understand how to use these protocols. We hate to discourage innovation,

but innovation in the authentication space should be done with care. Your innovative

energies would be better spent on the core value proposition of your application!

Chapter 3 evolution of identity

27

 Summary
We’ve reviewed several approaches to identity management, authentication, and

authorization. The advantages and disadvantages of each are helpful to keep in mind

when evaluating the benefits of new designs. Before deciding upon the protocol(s) you

need, however, it’s helpful to consider where the information on your users will come

from and reside. This is part of identity provisioning which we’ll cover next.

 Key Points
• Identity management, authentication, and authorization approaches

have evolved over time.

• Early approaches often involved application-specific identities and

credentials.

• Centralization of identity data with directory services enabled a

single identity and credential, but this had to be entered by a user

into each application (in the absence of other complementary

technology).

• Single sign-on servers provided session management so users

could log in once and access multiple applications, within the same

domain, with one authentication.

• SAML 2.0 and WS-Fed provided single sign-on and federated identity

across domains.

• OAuth 2.0 provides a solution for authorizing applications to call APIs.

• OIDC provides a layer on top of OAuth 2.0 for authenticating users

and returning information to applications in a standard format about

the authenticated user.

 Notes
 i. http://saml.xml.org/saml-specifications

 ii. http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-

federation-1.2- spec- os.html

Chapter 3 evolution of identity

http://saml.xml.org/saml-specifications
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html

28

 iii. http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-

federation-1.2- spec- os.html

 iv. https://openid.net/specs/openid-authentication-1_1.html

 v. https://tools.ietf.org/html/rfc6749

 vi. https://openid.net/specs/openid-connect-core-1_0.html

Chapter 3 evolution of identity

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
https://openid.net/specs/openid-authentication-1_1.html
https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html

29
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_4

CHAPTER 4

Identity Provisioning

The more identities a man has, the more they express the person they
conceal.

—John le Carré, from Tinker, Tailor, Soldier, Spy (1974)

The first step in the life of an identity is its creation. If Descartes had lived in the time

of Internet identity, he might have quipped, “Ego signati sursum, ergo sum” (I signed

up, therefore I am). Provisioning is the act of establishing identities and accounts for

your application. As defined in Chapter 2, an identity includes at least one identifier

and various additional user profile attributes. An online account is associated with

an identity and can be used to access protected online resources. The objective of the

provisioning phase is the creation or selection of a repository of user accounts and

identity information that will be used in the authentication and authorization of users as

they access protected resources.

 Provisioning Options
For an application developer, the identity provisioning phase involves getting users and

creating accounts and identity profiles for them. One obvious approach for this is to have

users sign up for a local application account, but that isn’t the only possibility. A list of

approaches to consider includes

• A user creates a new identity by filling out a self-registration form.

• A special case of self-registration is sending select users an invitation

to sign up.

• User identities are transferred from a previously existing user

repository.

30

• An identity service with an existing repository of user identities is

leveraged.

• An administrator or automated process creates identities.

These approaches are not mutually exclusive; in some cases, a combination of

approaches might work best. We’ll describe each in more detail along with some

advantages and disadvantages for each.

 Self-Registration
One option is to have users create a new account for your application and specify their

identity information via self-service sign-up. This requires enticing users to your site,

having them fill out a registration form and then storing the collected information. This

is a common approach for consumer-facing sites and requires you to design and create

the sign-up form(s). It also necessitates privacy notices about the information you

are collecting and obtaining the user’s consent for the planned use of the information

collected. You should keep the information requested to a minimum as users may

abandon the registration process if too much data is required!

With a self-registration form, you control the user sign-up experience. You can

customize the information you collect and ask the user directly for information that

may not exist elsewhere. Self-registration is more scalable, at least compared to having

administrators create accounts. On the flip side, there is work to implement and

maintain a registration form, along with procedures for obtaining user consent for the

data collection and processing. In addition, having to fill out a registration form may

deter some users from signing up. Table 4-1 summarizes some of the advantages and

disadvantages of using a registration form.

Table 4-1. Self-Registration

Advantages Disadvantages

• Ability to collect user attributes that don’t exist

elsewhere.

• Control over user registration experience.

• Scalability through self-service.

• May deter some prospective new users

from signing up.

• Liability associated with storing login

credentials.

ChApter 4 IdentIty provISIonIng

31

 Progressive Profiling

You can reduce the information a user has to enter upon sign-up by using progressive

profiling, the practice of building up user profile attributes for an identity over time,

instead of requesting them all at once. With progressive profiling, a user is asked to

provide minimal attributes when they sign up. If the user later performs a transaction

that requires more information, it is collected at that time. Alternatively, additional

information can be gathered after a certain amount of time has passed or a set number

of logins. Progressive profiling reduces the sign-up friction that a lengthy initial sign-up

form would present. It is used more often in conjunction with self- registration sign-up,

but can be used with other provisioning options.

 Invite-Only Registration

A variant of the self-service registration approach is the invite-only registration flow. In

this scenario, specific users are invited to sign up. The invitation may be triggered by

another user. Some social networking sites use this approach to have users invite their

friends to join the site. The invited user gets a link which takes them to a sign-up form

where they can register. An invitation may also be triggered by an administrator of a site.

This case may involve a registration form for the user, or, if the administrator has already

provided all account data needed, it might only involve email address validation and/or

a password reset. This technique might be useful to invite specific users to test an early

access (alpha) version of an application or release.

With an invite-only sign-up, access to the registration form is restricted to a select

group of users who receive an invitation. The invitation can be delivered via channels

such as email or text message and contains a link that allows the user to register.

The registration page can lock the email address or phone number to that used in

the invitation so it cannot be changed at the time of registration, if it is important to

prevent an uninvited person from stealing someone else’s invitation and signing up as

themselves. The link in the invitation can also have an expiration associated with it, if

necessary, and each invitation is usually tracked so it can only be used once.

An invite-only flow can also be used for situations where you need to create an

account in order to assign privileges to it before sending the invitation. This approach

could be used to establish employee accounts for new hires or customer accounts for

access to early access (alpha) application environments. An administrator or automated

process can create the account, assign it privileges, and then trigger the sending of

ChApter 4 IdentIty provISIonIng

32

the invitation link to the new user. The user clicks the link and provides additional

information in a registration form if needed. The information entered by the user can be

associated with the previously created account. The account is then ready for the person

to use and has the privileges previously assigned to the account by the administrator.

The invite-only flow has similar considerations to the self-registration option

described previously. It can additionally protect against registrations by hackers and

bots, unless, of course, they find a way to finagle an invitation! An invite-only registration

flow obviously requires extra work to implement the invitation mechanism as well as

access control to limit access to the invitation distribution. It may require work by an

administrator to issue the invitations or to create an automated process to do this. Some

advantages and disadvantages of the invite-only sign-up approach are shown in Table 4-2.

 Identity Migration
If identities already exist elsewhere, they can be moved from one repository, such

as a legacy database, to another repository that can be used by the new application.

The advantage is that users don’t have to provide information they already entered

elsewhere, and the new repository can be quickly populated with users from the legacy

repository. While most user profile attributes can be extracted and moved, passwords

represent a challenge. Passwords are typically stored in a hashed format. Hashing

converts them to a string of random characters and this cannot be reversed to get the

original “cleartext” value. Each time the user logs in and enters their password, it is

hashed and the hashed value is compared to the password that was hashed and stored

when the user registered or last reset their password. Storing passwords in hashed

Table 4-2. Invite-Only Registration

Advantages Disadvantages

• Ability to collect user attributes that don’t

exist elsewhere.

• Control over user registration experience.

• Some protection against registration by

hackers and bots.

• Scalability through self-service if users

invite others.

• the work to implement invitation mechanism

and control access to it.

• the work to issue invitations.

• May deter some prospective new users from

signing up.

• Liability associated with storing login credentials.

ChApter 4 IdentIty provISIonIng

33

format allows validation of entered passwords but prevents administrators with access to

password repositories from seeing cleartext passwords and makes it difficult to use the

passwords if the storage repository is compromised or stolen.

There are different algorithms for hashing passwords and different inputs passed

to the hashing algorithms such as salts and iteration counts. As a result, a password

hashed in one system cannot necessarily be imported and used by another system. If

two different systems use different hashing algorithms or different inputs to the same

algorithm, it is not possible to move a hashed password from one system to the other

and have it be usable by the new system. In such circumstances, there are a few solutions

to consider for migrating identities to a new system.

 Support Legacy Hashing Algorithm

One solution is to update the new system to support the hashing algorithm(s) used by

the legacy system. This requires implementing in the new system the legacy system’s

hashing algorithm(s) and a means of determining which hashing algorithm to use with

each account. This will enable moving all identity data and hashed passwords from the

legacy system to the new system without requiring the users to reset a password. Table 4-3

summarizes some advantages and disadvantages of supporting legacy hashing algorithms.

 Bulk Identity Migration

Another solution is to extract the users’ identity data, minus the hashed passwords, from

the legacy system and import it into the new system. The new system would then need

to send each user a unique password reset link to establish a new password for their

account in the new system. This requires the identity information in the legacy system

to include a validated email address, and that a password reset link sent via email is

deemed adequately secure for the sensitivity of the information handled by the new

Table 4-3. Supporting Legacy Hashing Algorithms

Advantages Disadvantages

• Avoids need for password reset.

• transfers all accounts in a usable

state.

• Work to implement legacy hashing algorithm(s).

• Liability associated with storing login credentials.

• Inherits any weakness associated with legacy hashing

algorithms.

ChApter 4 IdentIty provISIonIng

34

system. If other forms of communication besides email are used, the same validation and

security requirements apply. Users should be notified in advance about the migration,

so they will know to expect the password reset message and not view it as an attempted

phishing attack! If forcing users to reset their passwords is acceptable, a bulk transfer

can be done all at once, making it possible to retire the legacy system after the transfer.

Table 4-4 summarizes some advantages and disadvantages of a bulk transfer of users.

 Gradual Migration of Users

An alternative to a bulk transfer of identities is to use a mechanism that transfers

identities gradually as they log in. This requires a login mechanism that prompts users

for credentials, validates them against the legacy repository, and if validated, retrieves

identity information from the legacy repository and stores it and the entered credentials in

the new repository. The password entered by the user, after validation against the legacy

system, is hashed by the new system using its hashing algorithm and stored in the user’s

new account. This option will only migrate users who log in and requires the new system

to have direct access to the legacy system to validate the entered password and retrieve

user profile information. This is more convenient for users because no password reset is

required, but it means the legacy system must remain operational until the identities have

been migrated. This solution will not transfer inactive accounts (users who don’t log in).

Table 4-4. Bulk Migration of Users

Advantages Disadvantages

• transfers all users at once.

• enables immediate shutdown of

legacy user repository.

• no latency added at login time to

check a legacy system for a user

account.

• Code to transfer identities can be

independent of application code.

• transfers all accounts, even inactive accounts, unless

they are filtered out during the transfer.

• requires all users to set new password via account

recovery, unless the new system can support the

legacy hashed passwords.

• Migrating all users at once can cause a widespread

outage if things go wrong with the migration and

there is no backup plan.

• If multiple applications use the legacy repository, they

must migrate at the same time if the legacy repository

is to be shut off after migration.

• Liability associated with storing login credentials.

ChApter 4 IdentIty provISIonIng

35

With the gradual migration approach, a subset of users may not log in and therefore

not have their identity information migrated. You can set a cutoff date for the migration

and decide what to do about any identities that have not been migrated by that date. One

possibility is to declare the unmigrated accounts inactive and abandon them. A common

approach is to use the bulk move option described previously on the inactive accounts

so you can decommission the old system. You may want to migrate only a subset of

identities that you have reason to believe will be active again in the future. If you do not

migrate all remaining identities, you should consider reserving the account identifiers

of unmigrated identities to prevent them from being used by new accounts in the future.

Chapter 15 explains why.

Of course, a user whose identity has not yet been migrated might forget their

password. The user could use the new system to enter their email and get a password

reset token or link. The user would confirm receipt of the email and be prompted to

enter a new password. The new system would create an account for the user in the new

system, with information retrieved from the legacy system for an account with matching

email address. The gradual migration of active identities, combined with bulk migration

of remaining identities and credential reset, provides a nice user experience for active

users while not abandoning infrequent users. Table 4-5 summarizes some advantages

and disadvantages of a gradual migration.

Table 4-5. Gradual Migration of Users

Advantages Disadvantages

• Inactive accounts can be weeded out.

• no password reset required (for users

who log in during migration).

• Spreads out risk of outages by

migrating identities gradually (no big

bang risk).

• Can support continued use of previous

sign-up mechanisms or applications

that use the legacy identity repository

during the gradual migration.

• requires that legacy identity store is accessible

from new application’s authentication mechanism.

• Legacy identity store must remain accessible until

enough identities are transferred.

• transfer mechanism must be maintained

throughout the gradual migration.

• A user’s first login after migration starts may have

some latency as identity data is transferred from

the legacy system.

• Implementation work cannot be easily decoupled

from the application team.

• Liability associated with storing login credentials.

ChApter 4 IdentIty provISIonIng

36

 Administrative Account Creation
Yet another solution to consider for creating accounts and identities is to have an

administrator or automated process create them. The best approach for a situation

should take into account

• The size of an organization

• The frequency with which new users need to be added

• Whether provisioning needs to be done across domains

The following sections provide a few variants of this solution to consider.

 Manual Account Creation

Having an administrator manually create accounts for new identities will only be

practical for very small organizations (low tens of users) with an infrequent need

to add new users and few applications. For very small organizations, the work to

implement account provisioning automation may not be justified. In the absence of

automation, written procedures and checklists can be used to ensure necessary account

provisioning steps are consistently followed. If passwords are used as credentials, the

account provisioning procedures should ensure that administrators do not know the

user’s password. This can be done by sending a password reset link to the user and/or

requiring a password reset upon initial login. If the organization grows or starts to need

more than a handful of applications, some form of automation will be beneficial for

consistency, accuracy, security, and trackability.

 Automated Account Creation

This approach is often used for employee identities. When a new employee joins a

company, the company can automatically create an account for the employee using

identity information from a Human Resources (HR) system. If large volumes of accounts

need to be created on an ongoing basis, workflow software or specialized account

provisioning software can be used to automate account creation and provide identity

attributes for accounts.

ChApter 4 IdentIty provISIonIng

37

 Cross-Domain Account Creation

In several situations, account provisioning may need to occur across domains. This can

occur when

• Maintaining employee accounts in external SaaS (Software as a

Service) applications

• Maintaining partner accounts in corporate identity repositories or

applications

• Maintaining business customer user accounts in business-facing

applications

• Maintaining guest professor or student accounts in collaborating

universities’ systems

Ideally, modern authentication protocols would convey user profile attributes to

applications in authentication tokens at the time of login, but provisioning or

synchronizing identity information across domains may still be needed if

• Applications are not designed to extract identity information from

authentication tokens.

• The identity profile information is too large to convey in

authentication tokens.

• User logins are not frequent enough to keep profile information

sufficiently up to date.

When needed, the provisioning of accounts and identity information across domains

is still commonly done using proprietary solutions, but an industry standard protocol,

SCIM (System for Cross-domain Identity Management),i was created in 2015 to provide a

more standard approach to sending and updating identity information from one domain

to another.

Table 4-6 shows some advantages and disadvantages of administrative account

provisioning.

ChApter 4 IdentIty provISIonIng

38

 Leverage Existing Identity Service
It’s also possible to leverage an identity that already exists for a user in an identity

provider service. This allows users to employ an account they already have such as at a

social provider like Facebook or Google, a corporate identity provider service operated

by their employer, or a government identity service. With this option, your application

delegates responsibility for authenticating users to an identity provider and receives

back a security token with information about the user’s authenticated session and,

optionally, attributes about the user.

Leveraging accounts in an existing identity provider service may mean less

work for users if it reduces the data they have to enter into a registration form. It also

usually means users don’t need to set up another password. This may translate to less

development work if you don’t have to implement a login form or account recovery

mechanism because all users authenticate via an identity provider service. It may also

reduce your risk somewhat if user passwords are not stored in your infrastructure. If

an identity provider service does not contain all the attributes your application needs

about the user, you can always collect additional data later. Of course, it’s a good idea to

vet an external identity service before trusting it, and use of an identity provider service

requires collaborative troubleshooting as described in Chapter 16. Table 4-7 summarizes

some advantages and disadvantages of using an external identity service.

Table 4-6. Administrative Account Creation

Advantages Disadvantages

• User doesn’t fill out registration form.

• Administrator can assign privileges so

account starts with needed permissions.

• Can be automated via workflow or identity

provisioning software.

• time-consuming if not automated.

• requires care to ensure that only the user

knows the password for the account created.

• Liability associated with storing login

credentials if stored locally.

ChApter 4 IdentIty provISIonIng

39

In addition to existing identity provider services, you can of course set up your own,

new identity provider service for use by your application. If you choose that route, many

cloud services are available to facilitate the task, and any of the previous provisioning

options could be used to populate the new identity provider service with users.

 Selecting an External Identity Service
If you choose to leverage an external identity service, it’s important to consider the

strength of the identity issued by a service as well as the suitability and availability of

a provider for a particular environment. The strength of an identity is one factor in

determining how much trust can be placed in the identity, and several factors influence

the strength of an identity:

• The validation of the information used to establish the identity

• The identity’s implementation that prevents it from being forged or

used by others

• Recognition of certain issuers of identities as authoritative for a

particular domain

Table 4-7. Leveraging an Existing Identity Service

Advantages Disadvantages

• Better user experience if it reduces

the data required to sign up.

• easier for user to remember

password if identity provider account

is used frequently.

• you may not have to implement

a login form or account recovery

mechanism if all users authenticate

via the identity provider service.

• Less risk if you do not store user

passwords.

• you may have to collect additional profile information

not available from the identity provider service.

• you need to evaluate the service and availability

levels of the external identity service to ensure it

meets your needs.

• May require additional development or configuration

work for each identity provider service to be used.

• May require configuration work at each identity

provider service for each application you have, unless

you use an authentication broker service (described

in Chapter 7).

• May require collaborative troubleshooting with

another organization when issues occur.

ChApter 4 IdentIty provISIonIng

40

Table 4-8 provides a comparison of characteristics of strong vs. weak identities.

The strength of an identity is based on the trustworthiness of the issuer, the

validation of identity data, the practices behind the issuing and distribution of the

identity, and in some cases, agreements, either implicit or explicit, between the issuer

and any entities trusting identity information from the issuer. The next sections provide

examples.

 Self-Registered Identities
A self-registered identity, such as a basic Gmail or Yahoo email account, is an example

of a weak identity. You can sign up for these accounts using any identifier that has not

already been taken, such as frodo_baggins@gmail.com or santa.claus@yahoo.com. You

do not have to supply true information in the sign-up form and the service provider

does not validate most of the identity data. Several social providers have added security

features to protect against unauthorized use of accounts, but self-registered accounts

are typically not considered authoritative for identity information due to the lack of

validation. Identity providers with self-registered accounts and little validation of

attributes are most suitable for consumer-facing applications that do not require strongly

validated identity data and would otherwise rely on self-registered information. Allowing

users to authenticate via such providers gives users convenience and the ability to reuse

a common profile.

Table 4-8. Characteristics of Strong vs. Weak Identities

Strong Identities Weak Identities

• Linked to a real person, who can be held accountable

for actions taken with the identity.

• Identity attributes are validated during account issuance

process.

• Issued by entity recognized as authoritative for a

particular context.

• Contains mechanisms to protect against forgery or

unauthorized use.

• Anonymous, cannot be linked to a

real person.

• Little validation of identity

attributes.

• Issued by an entity with little

recognized authority.

• Few protections against forgery or

unauthorized use.

ChApter 4 IdentIty provISIonIng

41

 Organization Identities
Many organizations, such as companies or universities, will issue an online identity

for their members, such as employees or students, respectively. These identities meet

some of the criteria for a strong identity. For example, in the United States, one must

show government-issued identity when starting a new job. This enables validation of the

identity attributes used to establish an online account within the company and ties the

account to a real person. Most companies implement measures in their identity service

such as minimum password length and possibly stronger forms of authentication,

to protect an account against unauthorized use. The corporate identity service is

authoritative for user login, at least within the domain of the issuing company. However,

a user typically cannot log in via their corporate identity service and access services

outside the organization and its contracted SaaS services. A user could not, for example,

expect to log in via their corporate identity service and access a government site to buy

stamps as the government site would not have any basis to trust the corporate identity

service. Organization identity services are primarily suitable for use by applications

selected by the organization to provide services to organization members.

 Government Identities
A government-issued online identity, such as those issued by the United Kingdom’s GOV.

UK,ii Belgian eID,iii or Estonian e-identity,iv is an example of a stronger identity. These

require supplying information that is checked by a validation process. Some require

applying in person at a government office, and some can be done online. Required

documentation includes government-issued identity documents and photos that clearly

show one’s face and may include fingerprints and financial questions. The resulting

identity contains validated information and employs several security mechanisms to

prevent unauthorized use.

The GOV.UK Verify service, for example, is used within the United Kingdom to access

government services. The Belgian eID program issues an electronic identity that can be

used for identification, digitally signing documents, and logging in to public services.

Estonia issues a mandatory, secure national digital identity and card which Estonians

use to travel within the EU, as well as access e-services such as voting and logging in

to bank accounts, access medical records, file taxes, and sign documents with a digital

signature. Government-issued identities provide more strongly validated identities,

ChApter 4 IdentIty provISIonIng

42

but may be limited to users from one country and may be limited to use at the issuing

government’s services. Wider use would need international standards similar to those

for passports as well as a model for funding the incremental service operation costs.

 Industry Consortium Identities
The Belgian Mobile IDv project is a consortium of financial institutions and mobile

network operators to provide a strongly validated identity for anyone with a Belgian-

issued eID and a mobile phone. It’s used to register at services, digitally sign documents,

and securely log in as well as confirm transactions. The service includes a mobile

application, “itsme,” which is used to authenticate without the need for passwords. The

service is used to access Belgian government services such as social security and tax

services as well as telecom and e-banking applications.

 Identity Provider Selection
If you are creating a consumer-facing application that does not require validated identity

information, allowing users to authenticate via an existing self-registered identity, such

as a social provider account, offers users convenience over signing up with the same self-

registered information at multiple sites.

If you are creating an employee-facing application, however, relying on social

identity provider accounts to access company applications can be problematic because

the user owns their identity and account at these providers. The credential standards of

the provider may not meet company needs, and when an employee leaves the company,

you could not delete their account to terminate their access. If, on the other hand, a

social provider account is linked to a local application account, to enable logging in to

the application via the social provider identity, the link can be removed and the local

account disabled if an employee leaves. In the absence of such account linking, access

would often need to be removed within individual applications, and one or more

applications might be missed. For employee-facing applications, therefore, it’s best to

use an identity service where the employing organization owns the accounts. The same

logic applies to other organizations, such as educational institutions.

An organization-controlled identity service provides a single place at which the

organization can provision accounts as well as shut off accounts if an employee or

member leaves the organization. It also gives a single point at which to enforce credential

ChApter 4 IdentIty provISIonIng

43

strength/policy and deploy multi-factor authentication as well as log authentication

activity. There are several cloud vendors that offer an identity service on a subscription

basis. Cloud services such as Google Apps, Azure AD, Auth0,1 Amazon Cognito, and Okta

offer cloud-based identity services. Organizations can provision employees or members

into these services and have complete control over the accounts including the ability to

quickly terminate or disable the accounts of anyone who leaves the organization.

If you are creating an application where your customers are businesses, you will likely

need to support a variety of different identity providers because each business may have its

own preferred identity provider service and want their users to sign in to your application

via their chosen identity provider. Your business-to-business (B2B) customers may ask

you to support authentication against cloud identity providers, such as those mentioned

in the previous sections, or private identity providers that they operate themselves on

their corporate network. It is best to do this via standard identity protocols such as OIDC

or SAML 2.0. Implementing authentication directly against a customer’s internally hosted

database or directory service would involve custom work for each customer and may expose

your staff to passwords or administrative access which increases your liability. Table 4-9

summarizes the types of identity providers that are most common for different scenarios.

Table 4-9. Identity Providers for Different Customer Types

Scenario Most Common Type(s) of Identity Provider

B2C: Business to consumer Social Identity providers2

Identity services such as Azure Ad or Auth0

Application-specific repository

B2e: Business to employee Identity services such as google Apps, Azure Ad, Auth0

Any oIdC or SAML 2.0-compliant identity provider

B2B: Business to business Identity services such as google Apps, Azure Ad, Auth0

Any oIdC or SAML 2.0-compliant provider controlled by the

business customer

1 Full disclosure: At the time of writing this book, the authors worked for Auth0.
2 Social Identity Providers are identity services such as are offered by Facebook, Twitter, Google,
GitHub, or LinkedIn.

ChApter 4 IdentIty provISIonIng

44

To recap, you should consider the target audience and strength of identity needed

by your application. If a strong identity is required, it must be issued by a process which

validates the information used to establish the identity and includes protections, such as

strong password requirements or multi-factor authentication, to prevent unauthorized

use of the identity. It must also be issued by an entity recognized as authoritative for the

application’s domain.

 Choosing and Validating Identity Attributes
The topic of provisioning invariably raises the contentious question of how to identify

a user. Email addresses have been widely adopted as identifiers, but such use is not

without issues. Using an email address as an identifier has the advantage that it includes

a domain name and thus provides built-in uniqueness across domains. This eliminates

the need for a user to find a name on each site that hasn’t been taken already. However,

users may need to change their email address for several reasons and still retain access

to their account. In addition, an email provider may reassign a previously used email

address to a new owner. For business-facing applications, some businesses do not

provide their employees with email accounts which can be an issue if an application

assumes the availability of an email address. Similarly, applications marketed to children

should recognize that some children may not have an email address.

Using a user-selected username also has advantages and disadvantages. A username

may make it easier for a person to set up multiple accounts if needed and is typically

shorter and therefore easier to type on mobile devices. A user must choose a unique

username, however, and if their favorite username is already taken on a site, they have

to choose another. It may be hard for users to remember which username was used at

each site, which may create a need for a forgotten username feature. When one company

acquires another, it often requires the merging of user repositories which may involve

eliminating duplicate usernames. Table 4-10 lists some common advantages and

disadvantages of different identifiers.

ChApter 4 IdentIty provISIonIng

45

Table 4-10. Advantages and Disadvantages of Account Identifiers

Advantages Disadvantages

Email:
globally unique.

no need to hunt for a name that isn’t taken

already.

May be easier to remember than a

username.

Email:
May need to be changed by user.

May be reassigned by email provider to new user.

May be reassigned by corporate provider to new user.

terminated by employer if user leaves.

not all companies issue email addresses.

Children may not have email addresses.

Family members may share an email address.

May expose personal information (user’s name).

exposure as display name may result in spam email.

Username:
easier to set up multiple accounts at a site.

May be shorter to type on mobile devices.

Can be used in searches, allowing other

attributes with personal data to be

encrypted.

Username:
only unique within an application domain.

Merging user repositories problematic after

acquisitions.

May be harder for a user to remember which

username was used at each site.

A user may want to change a username over time.

May expose personal information if used for display.

Phone number:
globally unique (with country code).

no need to hunt for a free identifier.

May be easier for a user to remember than

a username.

Phone number:
exposure as display name may cause spam calls.

Might be reassigned to a new user over time.

May involve a charge to obtain a phone number.

More difficult to set up multiple accounts at same site.

May be changed by user for various reasons.

May be terminated by phone provider.

ChApter 4 IdentIty provISIonIng

46

 Suggestions
Some of the disadvantages listed earlier stem from using the same attribute for multiple

purposes. They can be avoided by decoupling and using a different attribute for each of

the following purposes:

• Identifier for logging in

• Display name

• Notification/communication/account recovery

• Internal account implementation

• Linking an identity/account to application records

• Capturing user activity in log files

• Continuous identifier for a user over time for audit purposes

The last three in the list are used for internal account implementation and should

use a unique, internal account identifier that is not impacted by a user’s need to change

profile attributes such as their email address, phone number, or their legal name. In

addition, the following suggestions can avoid some of the other disadvantages outlined

in Table 4-9:

• Avoid exposing identifiers that may contain personal data.

• Use an internal account identifier in log files to avoid directly

exposing personal data in logs.

• Use an internal account identifier in application records.

• Allow users to specify a display name for use on screens/

printouts to protect privacy.

• Identifiers/attributes for logging in, display, and notification should

be distinct and changeable.

• Allow setting multiple attributes for notification purposes, such as a

primary and secondary email, in case one becomes inoperable.

ChApter 4 IdentIty provISIonIng

47

• Allowing a long username with special characters and which is

changeable by users would enable flexibility, including use of an

email address if that is easier for some users to remember, while

allowing other users to use other values. A separate profile attribute

besides the username should be used for notification/contact

information.

 Validating Critical Attributes
In addition to using different profile attributes for different functions, it is important

to validate email addresses and other profile attributes if used in activities that impact

security and privacy. This includes attributes used for

• Authorization decisions

• Account recovery

• Delivery of sensitive information to the user

For example, if a user profile includes an email address, and the email address

attribute is used in authorization decisions, you should implement email address

validation. Similarly, email address attributes used for notification in account recovery

or delivery of sensitive information should be validated. The same holds true if a phone

number is used for such purposes. If you import identities from elsewhere, you should

ensure email addresses or other critical attributes used for the listed functions have been

validated before accepting them.

Security and privacy-related issues can arise with unvalidated attributes. If users

can sign up using a fictitious, unvalidated email address and this attribute is used for

authorization, their fictitious email address may match authorization rules that grant

access to resources they are not really entitled to access. Validating email addresses

also prevents accidental entry of an incorrect address. Incorrect email addresses could

enable account takeover via account recovery mechanisms or result in the delivery of

sensitive information to the wrong recipient. For these reasons, it is critical to decouple

attributes for different purposes and validate any email addresses or other profile

attributes that are used in authorization decisions, account recovery mechanisms, or to

deliver sensitive information to users.

ChApter 4 IdentIty provISIonIng

48

 Summary
We’ve covered several approaches that can be used to establish accounts for the users

of your application, including self-registration, progressive profiling, transferring users

from elsewhere, administrative processes, and leveraging identity provider services. In

selecting a provisioning approach, you will want to consider the strength and suitability

of the identity offered by each option against the sensitivity and target audience of

your application. Once you have an idea how your users will be created, you can start

implementing authentication and access control. Modern applications are often

designed starting with APIs, so we’ll start off in the next chapter with OAuth 2.0, which is

designed for protecting APIs.

 Key Points
• Provisioning is the process of creating an account and associated

identity information.

• Applications can create new accounts for users or leverage identities

in existing identity provider services.

• Progressive profiling can be used to build up user profiles over time.

• Email addresses and other attributes used for notifications to users

must be validated.

• Identities can be classified as weak or strong depending on a

provider’s practices.

• Weak identities are created with unvalidated information.

• Strong identities are based on validated information, mechanisms

to prevent forgery and unauthorized use and are issued via secure

distribution mechanisms by authoritative providers.

• In choosing identity providers, a service should match the strength of

the identity offered by the provider with the identity validation and

strength requirements of an application.

• Application designers should decouple and designate appropriate

user profile attributes for each of several purposes, including login,

display, notification, and internal tracking.

ChApter 4 IdentIty provISIonIng

49

 Notes
 i. https://tools.ietf.org/html/rfc7644

 ii. www.postoffice.co.uk/identity/government-verify

 iii. https://eid.belgium.be/en/what-eid

 iv. https://e-estonia.com/solutions/e-identity/

 v. www.belgianmobileid.be/en

ChApter 4 IdentIty provISIonIng

https://tools.ietf.org/html/rfc7644
http://www.postoffice.co.uk/identity/government-verify
https://eid.belgium.be/en/what-eid
https://e-estonia.com/solutions/e-identity/
http://www.belgianmobileid.be/en

51
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_5

CHAPTER 5

OAuth 2.0 and API
Authorization

The possession of great power necessarily implies great responsibility.

—William Lamb, British Member of Parliament, Home Secretary, and
Prime Minister. From a speech in the House of Commons, 1817

Modern applications are often designed around APIs. APIs enable applications to reuse

logic and take advantage of innovative services. APIs provide access to valuable data or

services, so they typically need to restrict API access to authorized parties. Applications

therefore need authorization to call APIs. If an application wants to call an API on a

user’s behalf to access resources owned by the user, it needs the user’s consent. In the

past, a user often had to share their credentials with the application to enable such an

API call on their behalf. This gave the application an unnecessary amount of access, not

to mention the responsibility of safeguarding the credential! In this chapter, we will cover

how the OAuth 2.0 framework provides a better solution for authorizing applications to

call APIs.

 API Authorization
An application may need to call an API on behalf of a user, to access content owned

by the user, or on its own behalf if the application owns the desired content. Figure 5-1

illustrates these two cases using a sample scenario.

52

In this scenario, the application, WriteAPaper.com, is a specialized editor that helps

users write and edit research papers. It calls two APIs, both of which are owned by

different organizations. The first is famousquotes.com which provides validated quotes

for use in papers. The second API is at documents.com and provides a document storage

service. There is a second, mobile application that calls the documents.com API to

provide access to documents from a user’s mobile device.

When the WriteAPaper application calls the API at famousquotes.com, it does so on

its own behalf. The quotes content is not owned by the user, so the user’s consent isn’t

needed for this access. The application only needs to be a registered client authorized to

call the quotes API. When the application calls the API at documents.com, however, to

obtain a user’s documents, the request must be made on behalf of the user. In this case,

the content accessed belongs to the user, and the application must obtain the user’s

consent to retrieve the user’s documents. The client application has no right by itself to

access the user’s data at another site.

The mobile application provides read-only access to a user’s documents and

doesn’t offer access to the quotes service. It requires authorization from a user to call

the documents API and retrieve the user’s documents. We’ve included the mobile

application in the example because we’ll show in the following sections how OAuth 2.0

could enforce different privileges for the two applications.

Figure 5-1. API Authorization: User-Based vs. Client-Based Flow

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

53

 OAuth 2.0
The OAuth 2.0 Authorization Framework,i published in 2012, was designed to enable

an application to obtain authorization to call third-party APIs. With OAuth 2.0, an

application can obtain a user’s consent, to call an API on their behalf, and not need their

credentials for the API site. An application can also obtain authorization to call an API on

its own behalf if it owns the content to be accessed.

The primary use case involves a user, called a resource owner, who wishes to allow

an application to access a protected resource, owned by the resource owner, at a logically

separate site, known as the resource server. Using our example from Figure 5-1, the

resource owner (the user) has stored documents at a resource server (documents.com).

The resource owner is using the WriteAPaper application to write a paper based on

content they’ve uploaded to documents.com. The resource owner wants to grant the

WriteAPaper application access to their content at documents.com so it can retrieve the

content for use in their research paper.

Before OAuth 2.0, the usual solution involved some risks. The user had to give

the WriteAPaper application their documents.com credential so WriteAPaper could

retrieve their documents at documents.com. Once it had the user’s credentials, however,

WriteAPaper could retrieve anything from the user’s account and even modify or delete

documents as the user. There was no way for the user to restrict what the WriteAPaper

application could do! Furthermore, WriteAPaper might need to retain the password

in a decryptable form, or worse, in cleartext form, to access documents.com later. If

WriteAPaper were compromised, and the password decryption key or cleartext passwords

stolen, the user’s data at documents.com would be at risk. The user also had no way of

revoking WriteAPaper’s access to documents.com except by changing their credentials

which would revoke access for any other applications that needed access to documents.

com on their behalf. The scenario without OAuth 2.0 is depicted in Figure 5- 2.

Figure 5-2. Without OAuth 2.0

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

54

OAuth 2.0 was designed to provide a better solution. It enables a user to explicitly

authorize an application to call an API on the user’s behalf, without giving their

credentials for the API site to the application and in a way that limits what the application can

do. With OAuth 2.0, when an application needs to call an API on behalf of a user, it sends an

authorization request to an authorization server for the API. An authorization server handles

access requests for an API and returns a security token that can be used by the application

to access the API. In the authorization request, the application gives an indication (known

as the “scope”) of what it wants to request from the API. The authorization server evaluates

the request and, if authorized, returns a token to the application.

If the application asks for content owned by the user, the API’s authorization server

authenticates the user and then asks the user to give their consent for the application

to access the requested data. The authentication step ensures the user providing the

consent is the owner of the resource being accessed. If the user consents to the requested

access, the application receives a token to call the API on the user’s behalf. The token

is called an access token, and it enables the application to make API requests within

the scope of what the user authorized when they gave their consent for the request.

This solution eliminates the need for the user to share credentials with the application

and gives the user more control over what the application can access. (Note: The exact

process by which the application gets the access token is described here in a simplified

form but will be explained more accurately in subsequent sections.) Figure 5- 3 shows the

solution with OAuth2.0 in the picture.

Figure 5-3. With OAuth 2.0

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

55

To recap, the OAuth 2.0 protocol provides an authorization solution, not an

authentication solution. It enables an application to call an API on its own behalf

or a user’s behalf, with the call constrained to the scope of an authorized request.

The authentication step in OAuth 2.0 validates the user is entitled to give consent

to authorize an access request for a particular resource. The OAuth 2.0 access token is

only intended for API access and not to convey information about the authentication

event or the user. The use of OAuth 2.0 is therefore appropriate for authorizing API calls

but not as an authentication solution (at least in the absence of any proprietary additions

to the base protocol, which some providers have implemented). OIDC, described in

the next chapter, can be used to authenticate a user to an application, but this chapter

focuses on describing how OAuth2.0 works for the purpose of API authorization.

 Terminology
To describe OAuth 2.0 in more detail, we need to describe a few terms defined by OAuth 2.0.

 Roles
OAuth 2.0 defines four roles involved in an authorization request:

• Resource Server – A service (with an API) storing protected

resources to be accessed by an application.

• Resource Owner – A user or other entity that owns protected

resources at the resource server.

• Client – An application which needs to access resources at the

resource server, on the resource owner’s behalf or on its own

behalf. We’ll generally use the term application instead of client, for

consistency across chapters.

• Authorization Server – A service trusted by the resource server to

authorize applications to call the resource server. It authenticates

the application or resource owner and requests consent from the

resource owner if the application will make requests on the resource

owner’s behalf. With OAuth 2.0, the resource server (API) is a relying

party to the authorization server. The authorization server and

resource server may be operated by the same entity.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

56

 Confidential vs. Public Clients
OAuth2.0 defines two client types:

• Confidential Client – An application that runs on a protected server

and can securely store confidential secrets to authenticate itself

to an authorization server or use another secure authentication

mechanism for that purpose.

• Public Client – An application that executes primarily on the user’s

client device (native application) or in the client browser and cannot

securely store a secret or use other means to authenticate itself to an

authorization server.

 Client Profiles
OAuth 2.0 defines three profiles based on application topologies:

• Web Application – A confidential client with code executing on a

protected, back-end server. The server can securely store any secrets

needed for the client to authenticate itself as well as any tokens it

receives from the authorization server.

• User Agent-Based App – Assumed to be a public client with code

executing in the user’s browser. Example: A JavaScript-based single-

page application running in the browser.

• Native Application – Assumed to be a public client that is installed

and executed on the user’s device, such as a mobile application or

desktop application.

In practice, these definitions may overlap because a web application may serve up

HTML pages that contain some JavaScript, and single-page applications may have a

small back end. For further discussion on this, see the description in Chapter 6 of the

OIDC Hybrid flow.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

57

 Tokens and Authorization Code
OAuth 2.0 defines two security tokens and an intermediary authorization code:

• Authorization Code – An intermediary, opaque code returned to

an application and used to obtain an access token and optionally a

refresh token. Each authorization code is used once.

• Access Token – A token used by an application to access an API. It

represents the application’s authorization to call an API and has an

expiration.

• Refresh Token – An optional token that can be used by an

application to request a new access token when a prior access token

has expired.

 How It Works
The OAuth 2.0 Authorization Framework specification defines four methods by which

applications obtain authorization to call an API. Each method uses a different type of

credential to represent the authorization. These credentials are known as authorization

grants. The type of authorization grant to use depends on the use case and type

of application. The four authorization grant types are

• Authorization code grant

• Implicit grant

• Resource owner password credentials grant

• Client credentials grant

The following sections will describe how each of these work.

 Authorization Code Grant
The authorization code grant type uses two requests from the application to the

authorization server to obtain an access token. In the first request, the user’s browser

is redirected to the authorization endpoint at the authorization server with a request

to authorize an API call to be made on the user’s behalf. The browser redirect enables

the authorization server to interact with the user to authenticate them and obtain

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

58

their consent for the authorization request. After obtaining the user’s consent, the

authorization server redirects the user’s browser back to the application with an

authorization code. The application uses the authorization code to send a second,

backchannel request to the authorization server’s token endpoint to obtain an access

token. The authorization server responds with an access token issued to the application

which it can use to call the API. Figure 5-4 shows the sequence of steps.

 1. User (resource owner) accesses the application.

 2. Application redirects browser to the authorization server’s

authorize endpoint with an authorization request.

 3. Authorization server prompts the user for authentication and

consent.1

 4. User authenticates and provides consent for the request.

 5. Authorization server redirects the user’s browser back to the

application’s callback URL with an authorization code.

1 The mechanism by which a user is authenticated to provide consent is outside the OAuth 2.0
specification. It is shown in the diagram (steps 3 and 4) to show where it occurs in the sequence.

Figure 5-4. Authorization Code Grant Type + PKCE

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

59

 6. Application calls authorization server’s token endpoint, passing

the authorization code.

 7. The authorization server responds with an access token (and

optionally a refresh token).

 8. Application calls the resource server (API), using the access token.

The authorization code grant type was originally optimized for confidential clients.

The first (authorization) request redirects the user to the authorization server so it can

interact with the user. The second request could be made by the application’s back end

directly to the authorization server’s token endpoint. This enables an application back

end, which is assumed to be capable of securely managing an authentication secret,

to authenticate itself to the authorization server when exchanging the authorization

code for the access token. It also means that the response with the access token can be

delivered to the application back end, which will make the subsequent API calls. An

added side benefit is that the tokens are returned via secure backchannel response.

However, while originally optimized for confidential clients, the addition of PKCE

enables public clients to use this grant type as well.

 Authorization Code Grant Type + PKCE

The authorization code grant type diagram shows the use of Proof Key for Code

Exchange (PKCE).ii PKCE is a mechanism that can be used with authorization and token

requests to ensure that the application that requested an authorization code is the same

application that uses the authorization code to obtain an access token. PKCE protects

against a malicious process, especially on mobile devices and with public clients, that

could intercept an authorization code and use it to get an access token.

To use PKCE, the application creates a cryptographically random string, called a

code verifier, that is long enough to provide sufficient protection against guessing. The

application then computes a derived value, called a code challenge, from the code

verifier. When the application sends an authorization request in step 2 in the diagram, it

includes the code challenge, along with the method used to derive it.

When the application sends the authorization code to the authorization server’s

token endpoint to get the access token in step 6, it includes the code verifier. The

authorization server transforms the code verifier value using the transformation method

received in the authorization request and checks that the result matches the code

challenge sent with the authorization request. This enables an authorization server to

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

60

detect if a malicious application is trying to use a stolen authorization code. Only the

legitimate application will know the code verifier to pass in Figure 5-4’s step 6 that will

match the code challenge passed in step 2.

The PKCE specification lists two transform methods that can be used to derive the

code challenge from the code verifier, namely, “plain” and “S256.” With the “plain”

method, the code challenge and verifier are identical, so there is no protection against

the code challenge being compromised. Applications using the authorization code grant

with PKCE should use the S256 transform method which uses a base64 URL encoded

SHA256 hash of the code verifier to protect it.

 The Authorization Request

Here is a sample application's API authorization request with PKCE. It would be directed

to an authorization server’s authorization endpoint.2

GET /authorize?

response_type=code

& client_id=<client_id>

& state=<state>

& scope=<scope>

& redirect_uri=<callback uri>

& resource=<API identifier>

& code_challenge=<PKCE code_challenge>

& code_challenge_method=S256 HTTP/1.1

Host: authorizationserver.com

Table 5-1 shows common parameters for the authorization request.

2 The parameters for all of the examples may vary somewhat for your specific provider. See also
the OAuth2.0 specification for additional optional parameters.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

61

Table 5-1. Authorization Request Parameters

Parameter Meaning

response_type Indicates the Oauth 2.0 grant type. “code” is used for the authorization

code grant type.

client_id Identifier for the application, assigned when it registered with the

authorization server.

state a non-guessable string, unique for each call, opaque to the

authorization server, and used by the client to track state between

a corresponding request and response to mitigate the risk of CSrF

attacks. It should contain a value that associates the request with the

user’s session. this could be done by including a hash of the session

cookie or other session identifier concatenated with an additional

unique-per-request component. When a response is received, the

client should ensure the state parameter in the response matches the

state parameter for a request it sent from the same browser.

scope Indicates the scope of access privileges for which authorization is

requested. For example: “get:documents”

redirect_uri the authorization server sends its response with the authorization

code to this callback urL at the application. For example: https%3a%

2F%2Fclient%2eapplication%2ecom%2Fcallback

resource Identifier for a specific apI registered at authorization server for

which the access token is requested. this parameter is defined in the

resource Indicators for Oauth 2.0 extension.iii Some implementations

may use other names, such as “audience.” primarily used in

deployments with custom apIs. this parameter isn’t needed unless

there are multiple possible apIs.

code_challenge pKCe code challenge derived from the pKCe code verifier using the

code challenge method specified in the code_challenge_method

parameter, as described in Section 4.2 of the pKCe specification.iv

code_challenge_method “S256” or “plain.” applications capable of using S256 must use it.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

62

The scope parameter is used by an application to request a scope of access

privileges. Using our WriteAPaper application example from the beginning of the

chapter, the primary, single-page application would request a scope of “get:documents

update:documents,” whereas if the mobile client only needed read access to documents,

it would only request “get:documents.”

The resource parameter was not in the original OAuth 2.0 specification. Since that

time, authorization servers have been written to handle requests for multiple APIs and,

in such cases, may support an additional parameter to indicate a specific API for an

authorization request. This parameter may be called the “resource” or “audience.”

 Response

The authorization server sends a response like the following to the application’s

callback, specified in the redirect_uri parameter of the authorization request.

HTTP/1.1 302 Found

Location: https://clientapplication.com/callback?

code=<authorization code>

& state=<state>

Table 5-2 shows the response parameters.

 Calling the Token Endpoint

After receiving an authorization code, the application uses it in a second request to the

authorization server’s token endpoint to obtain the access token.

POST /token HTTP/1.1

Host: authorizationserver.com

Content-Type: application/x-www-form-urlencoded

Table 5-2. Authorization Response Parameters

Parameter Meaning

code the authorization code to be used by the application to request an access token.

state the state value, unmodified, sent in the authorization request. application must validate

that the state value in the response matches the state value sent with the initial request.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

63

grant_type=authorization_code

& code=<authorization_code>

& client_id=<client id>

& code_verifier=<code verifier>

& redirect_uri=<callback URI>

The parameters for this example request to the authorization server’s token endpoint

are shown in Table 5-3.

The response from the token endpoint will be similar to the following:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

 {

 "access_token":"<access_token_for_API>",

 "token_type":"Bearer",

 "expires_in":<token expiration>,

 "refresh_token":"<refresh_token>"

 }

Table 5-3. Token Request Parameters

Parameter Meaning

grant_type Must be “authorization_code” for the authorization code grant.

code the authorization code received in response to the authorization call.

client_id Identifier for the application, assigned when it registered with the authorization

server.

code_verifier the pKCe code verifier value from which the code challenge was derived. It

should be an unguessable, cryptographically random string between 43 and

128 characters in length, inclusive, using the characters a–z, a–z, 0–9, “-”, “.”,

“_”, and “~” and formed as described in Section 4.1 of the pKCe specification.v

redirect_uri the callback urI for the authorization server’s response. Should match the

redirect_uri value passed in the authorization request to the authorize endpoint.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

64

The parameters for the response are shown in Table 5-4.

 Implicit Grant
OAuth 2.0 defines an implicit grant type which was optimized for use with public clients

such as single-page applications. Use of this grant type returns an access token to an

application in one request. It was designed at a time when the CORS (Cross-Origin

Resource Sharing) standardvi was not widely supported in browsers so that web pages

could only “phone home.” In other words, they could only make calls to the domain

from which the page was loaded which meant they couldn’t call an authorization

server’s token endpoint. To compensate for this limitation, the implicit grant type has

the authorization server respond to an authorization request by returning tokens to

the application in a redirect with a URL hash fragment. The interaction for the implicit

grant type is shown in Figure 5-5.

Table 5-4. Token Endpoint Response Parameters

Parameter Meaning

access_token the access token to use in calling the apI. different authorization servers may

use different formats for access tokens.

token_type type of token issued. “Bearer,” for example.

expires_in how long the token will be valid.

refresh_token a refresh token is optional. It is up to an authorization server's discretion

whether to return a refresh token or not. See the refresh token section later in

this chapter for further information.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

65

 1. User (resource owner) accesses the application.

 2. Application redirects browser to the authorization server’s

authorize endpoint with authorization request.

 3. Authorization server prompts the user to authenticate and provide

consent.3

 4. The user authenticates and provides consent for the authorization

request.

 5. Authorization server redirects back to the application’s callback

URL with an access token.

 6. The application uses the access token to call the resource server (API).

Since the OAuth2.0 specification was originally published, CORS has become

supported by most browsers. Consequently, the implicit grant type isn’t needed

anymore for its original purpose. Furthermore, returning an access token in a URL hash

fragment exposes the access token to potential leakage via browser history or referer

headers. The implicit grant type with the access token returned in a URL hash fragment

3 The mechanism by which a user is authenticated to provide consent is outside the OAuth 2.0
specification. It is shown in the diagram (steps 3 and 4) to show where it occurs in the sequence.

Figure 5-5. OAuth 2.0 Implicit Grant Type

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

66

is no longer recommended for single-page applications needing an access token.4 The

authorization code grant type (with PKCE) should be used instead.

It should also be noted that after the release of the original OAuth 2.0 specification,

the OAuth 2.0 Multiple Response Type Encoding Practices specificationvii defined a new

“response_mode” parameter for authorization requests that would enable applications

to request that authorization server responses be returned in new ways. Subsequent

specifications defined new response mechanisms. The OAuth 2.0 Form Post Response

Modeviii encodes response parameters into an HTML form that is sent via HTTP-POST

to the application. At the time of writing, a draft specification exists for an OAuth 2.0

Web Message Response Modeix which leverages HTML 5 Web Messaging to return

an authorization response to an application. The implicit grant type with alternate

response modes provides new options to applications that can mitigate issues related to the

default response mode.

 The Authorization Request

A sample authorization request for the implicit grant type looks like the following, with

parameters similar to the previous grant type, but a response type of “token” which

indicates use of the implicit grant type, and response_mode set to form_post:

GET /authorize?

response_type=token

& response_mode=form_post

& client_id=<client_id>

& scope=<scope>

& redirect_uri=<callback uri>

& resource=<API identifier>

& state=<state> HTTP/1.1

Host: authorizationserver.com

A successful implicit grant type authorization request using the default response

mode will result in a redirect back to the application’s redirect URI with the access token,

token type, token expiration, and state values in a URL fragment which can be exposed

via referer headers and browser history. A request using the form_post response mode

4 https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.1.2

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.1.2

67

will result in the response encoded in an HTML form posted to the redirect_uri, avoiding

the URL fragment exposure.

 Resource Owner Password Credentials Grant
The resource owner password credentials grant type supports situations where an

application is trusted to handle end-user credentials and no other grant type is possible. For

this grant type, the application collects the user’s credentials directly instead of redirecting

the user to the authorization server. The application passes the collected credentials to the

authorization server for validation as part of its request to get an access token.

This grant type is discouraged because it exposes the user’s credentials to the

application. It has been used for legacy embedded login pages and user migration

scenarios. In either case, a vulnerability in the application can compromise the

credentials. In addition, this grant type does not involve a user consent step, so an

application can request any access it wishes using the user’s credentials. The user has no

way to prevent abuse of their credentials.

Consequently, this grant type is primarily recommended for user migration

use cases. If users need to be migrated from one identity repository to another with

incompatible password hashes, the new system can prompt a user for their credentials,

use the resource owner password grant to validate them against the old system, and if

valid, retrieve the user profile from the old system and store it and the credentials in the

new system. This can avoid the necessity for large-scale forced password resets when

migrating identity information. If this grant type is used, the client should throw away the

user credentials as soon as it has obtained the access token, to reduce the possibility of

compromised credentials.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

68

 1. User (resource owner) accesses the application.

 2. Application prompts the user for their credentials.5

 3. The user provides their credentials to the application.

 4. Application sends token request to the authorization server's

token endpoint, with the user’s credentials.

 5. Authorization server responds with an access token (and

optionally a refresh token).

 6. Application calls the resource server (API), using the access token.

This grant type has also been used in the past with mobile applications calling

first-party APIs. This was often done because login flows that redirected via browsers

on mobile devices were perceived as cumbersome. This has improved, and RFC 8252,

OAuth 2.0 for Native Apps,x now recommends the use of the authorization code grant,

combined with PKCE, for native applications using the system browser.

5 The mechanism by which the application obtains the user credentials is outside the OAuth 2.0
specification. It is shown in the diagram (steps 2 and 3) to provide a more complete picture of the
solution.

Figure 5-6. Resource Owner Password Credentials Grant Type

The interaction for resource owner password grant type is shown in Figure 5-6.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

69

 The Authorization Request

A sample token request for the resource owner password grant type looks like the

following, with parameters similar to previous grants, but a grant type of “password” and

the username and password collected from the user. The user credentials obtained by

the application serve as the authorization for the application, and are used to request an

access token from the token endpoint.

POST /token HTTP/1.1

Host: authorizationserver.com

Authorization: Basic <encoded application credentials>

Content-Type: application/x-www-form-urlencoded

grant_type=password

& scope=<scope>

& resource=<API identifier>

& username=<username>

& password=<password>

This sample has the application authenticate to the authorization server with HTTP

Basic authentication scheme and a client ID and secret, obtained from the authorization

server. A successful request will result in a response from the token endpoint similar to

that described in the previous section for the authorization code grant.

 Client Credentials Grant
The client credentials grant type is used when an application calls an API to access

resources the application owns. An example is shown in Figure 5-1 with the call to the

quote service. A quote is not owned by the individual user who needs the quote, so the

call can be made on the application’s behalf. The application uses the client credentials

grant type and authenticates to the authorization server with its own credentials to

obtain an access token. The sequence diagram for this grant type is shown in Figure 5-7.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

70

 1. Application sends authorization request including

application's credentials to the authorization server.

 2. Authorization server validates the credentials and responds with

an access token.

 3. Application calls resource server (API) using the access token.

 4–6. The steps repeat if the access token has expired by the next time

the application calls the API.

No end-user interaction with the authorization server is required for this flow. The

application credentials serve as the authorization for the application and are used to

request an access token from the token endpoint. Our sample uses a client ID and client

secret obtained when the application registered with the authorization server.

 The Authorization Request

A sample token request for the client credentials grant type follows, with parameter

definitions the same as those for previous grant types but with the grant_type set to

“client_credentials”. The application authenticates in this example with a client ID and

secret registered at the authorization server, one of several options.

Figure 5-7. Client Credentials Grant Type

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

71

POST /token HTTP/1.1

Host: authorizationserver.com

Authorization: Basic <encoded application credentials>

Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials

& scope=<scope>

& resource=<API identifier>

A successful client credentials grant request will result in a response from the token

endpoint similar to that described in the previous section for the authorization code

grant.

 Calling an API
Once an application receives an access token, it calls the resource server and passes

the access token. The exact call varies with the API, but a typical approach is to use the

HTTP “Authorization” request header field with a bearer authentication token type in the

authorization header and the access token as shown in the following snippet:

GET /api-endpoint HTTP/1.1

Host: api-server.com

Authorization: Bearer <access_token>

The access token has an expiration, so it can only be used for a limited time, but

it is not a one-time-use token. As a performance optimization, an access token can

be cached by an application and reused until it expires, to avoid making a call to the

authorization server for every API call. The access token must have been granted the

appropriate scope of privileges for the API calls. This should not, however, encourage the

use of overly broad scopes!

 Refresh Token
OAuth 2.0 access tokens have an expiration. When an access token expires, an application

could make a new authorization request, but OAuth 2.0 defined an alternative approach

for traditional web applications and native clients that involves a refresh token. A refresh

token can be obtained from an authorization server and used to obtain a new access

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

72

token when a previous access token expires. A refresh token can be used to enable

ongoing API access from native mobile applications, for example.

Refresh tokens are not used in all scenarios. There is no need for a refresh token

with the client credentials grant because an application can simply request an access

token programmatically at any time, without a need for user interaction. Static refresh

tokens are not used with public clients because they are sensitive tokens and public

clients are not capable of securely storing them. The OAuth 2.0 Threat Model and

Security Considerationsxi document proposed the notion of refresh token rotation to

detect if a refresh token has been stolen and is being used by two or more clients. This

scheme has the authorization server return a new refresh token with each access token

renewal request. The OAuth 2.0 Security Best Current Practice documentxii specifies

that authorization servers must use either refresh token rotation or sender-constrained

refresh tokens (bound to a particular client) with public clients to mitigate the risk of

compromised refresh tokens.

Refresh tokens provide a convenient way for traditional web applications and native

applications to obtain new access tokens. This facilitates use of access tokens with a

short duration, which minimizes the risk if an access token is compromised. It may be

tempting to automatically refresh an access token as soon as it expires, but in keeping

with the principle of least privilege, it is better to only refresh an access token when it is

needed, rather than always keeping a current access token on hand. In the same vein, an

application must store a refresh token securely as it is a sensitive credential.

The OAuth 2.0 specification did not include a mechanism for applications to request

refresh tokens, leaving the issuance at the discretion of authorization servers. The

handling of refresh tokens may therefore vary across individual authorization servers.

Some issue refresh tokens automatically, and others expect an application to explicitly

request a refresh token. (The OIDC specification, covered in the next chapter, includes a

mechanism for an application to request a refresh token for one specific use case.) The

ability to revoke access tokens is not a mandatory feature in the OAuth 2.0 specification,

so some authorization servers may not support it. The documentation for your chosen

authorization server should explain the implementation-specific details.

A sample call to an authorization server’s token endpoint to request a new access

token is shown in the following sample. The client must authenticate itself for the

request.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

73

POST /token HTTP/1.1

Host: authorizationserver.com

Authorization: Basic <encoded application credentials>

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token

& refresh_token=<refresh_token>

The access token will be returned in a response similar to that described in previous

sections. The scope parameter is optional, and if used, must be equal to, or lesser than,

the scope in the original authorization request, and the client credentials passed must be

those of the application which made the original authorization request.

 Guidance
The preceding sections covered an introduction to how an application requests API

authorization via OAuth 2.0. An SDK may abstract and simplify some of this interaction

or use different parameter names. You’ll need to check the documentation for your

authorization server for implementation-specific details. Even if you use an SDK,

however, it is valuable to know the form of the underlying calls for troubleshooting. In

addition, be sure to check the OAuth 2.0 specification as there are several additional

request parameters useful for more advanced use cases.

An access token is meant to be consumed by an API. The format of an access token

may vary, but an application should not depend on using data in the access token (in the

absence of proprietary extensions). An API that receives an access token must validate

it before processing the request it accompanies. The process for validating a token may

vary by authorization server implementation.

In general, it is recommended that access token duration be short-lived and a new

access token obtained when needed if the previous access token has expired. The exact

duration should be determined based on the sensitivity of the resources to be accessed.

Access tokens can be cached, for a period of time less than or equal to their expiration, as

a performance optimization and/or to avoid hitting rate limits with excessive calls to an

authorization server. It is important to note that access tokens and refresh tokens must

be stored securely as they are sensitive credentials. You should utilize the secure storage

options for your platform when storing these tokens.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

74

 Summary
The OAuth2.0 protocol enables an application to obtain authorization to call an API

on either a user’s behalf or on its own behalf. This eliminates the requirement for users

to share their credentials with the application. It also provides the user greater control

over what the application can do and a limit on the duration of API access. The user can

revoke API access for an individual application without impacting the ability of other

applications to call the API on their behalf. Once you have an application authorized to

call an API, you’ll want to authenticate users to that application, which is covered in the

next chapter.

 Key Points
• OAuth 2.0 enables applications to request authorization and obtain

an access token to call APIs.

• With OAuth 2.0, a user has control over API authorizations for

applications.

• Scopes are used to control the access an application has when calling

an API.

• The original OAuth 2.0 specification defined four grant types.

• The authorization code grant type with PKCE can be used by

traditional web applications, public applications, as well as native

applications.

• The OAuth 2.0 implicit grant type is not recommended to obtain an

access token with the default response mode as it exposes the access

token to potential compromise.

• The OAuth 2.0 resource owner password grant type is best restricted

to legacy user migration cases as it exposes user credentials to an

application.

• The client credentials grant type is for API calls where the application

owns the requested resource.

• A refresh token is used to obtain a new access token when the old

access token expires.

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

75

 Notes
 i. https://tools.ietf.org/html/rfc6749

 ii. https://tools.ietf.org/html/rfc7636

 iii. https://tools.ietf.org/html/draft-ietf-oauth-resource-

indicators-02

 iv. https://tools.ietf.org/html/rfc7636

 v. https://tools.ietf.org/html/rfc7636

 vi. https://www.w3.org/TR/cors/

 vii. https://openid.net/specs/oauth-v2-multiple-response-

types-1_0.html

 viii. https://openid.net/specs/oauth-v2-form-post-response-

mode-1_0.html

 ix. https://tools.ietf.org/html/draft-sakimura-oauth-wmrm-00

 x. https://tools.ietf.org/html/rfc8252

 xi. https://tools.ietf.org/html/rfc6819#section-5.2.2.3

 xii. https://tools.ietf.org/html/draft-ietf-oauth-security-

topics-13#section-4.12

Chapter 5 Oauth 2.0 and apI authOrIzatIOn

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/draft-ietf-oauth-resource-indicators-02
https://tools.ietf.org/html/draft-ietf-oauth-resource-indicators-02
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
https://www.w3.org/TR/cors/
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://tools.ietf.org/html/draft-sakimura-oauth-wmrm-00
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc6819#section-5.2.2.3
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-4.12
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-4.12

77
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_6

CHAPTER 6

OpenID Connect

In the social jungle of human existence, there is no feeling of being alive
without a sense of identity.

—Erik Erikson, German-American developmental psychologist and
psychoanalyst who coined the phrase “Identity crisis,”

from Identity: Youth and Crisis (1968)

As described in the previous chapter, OAuth 2.0 provides a framework for authorizing

applications to call APIs, but isn’t designed for authenticating users to applications.

The OpenID Connect (OIDC)i protocol provides an identity service layer on top of

OAuth 2.0, designed to allow authorization servers to authenticate users for applications

and return the results in a standard way. Some implementations of OAuth 2.0 added

proprietary additions to do this, but a standard solution was needed. In this chapter,

we’ll describe the problem OIDC solves in more detail and how an application can use

OIDC to authenticate a user.

 Problem to Solve
The scenario OIDC is designed to solve involves a user who needs to be authenticated

in order to access an application. OIDC enables an application to delegate user

authentication to an OAuth 2.0 authorization server and have it return to the application

claims about the authenticated user and authentication event in a standard format.

Figure 6-1 provides an illustration of how this works.

78

When a user accesses an application, it redirects the user’s browser to an

authorization server that implements OIDC. OIDC calls such an authorization server an

OpenID Provider so we’ll use that term in this chapter. The OpenID Provider interacts

with the user to authenticate them (assuming they haven’t logged in already). After

authentication, the user’s browser is redirected back to the application. The application

can request that claims about the authenticated user be returned in a security token

called an ID Token. Alternatively, it can request an OAuth 2.0 access token and use it

to call the OpenID Provider’s UserInfo endpoint to obtain the claims. Because OIDC is

a layer on top of OAuth 2.0, an application can use an OpenID Provider for both user

authentication and authorization to call the OpenID Provider’s API. We’ve glossed over

a few details in this first description just to convey the basic concept. The next section

will define some additional terms so we can provide further details and a more accurate

description.

Figure 6-1. OIDC Authentication

Chapter 6 OpenID COnneCt

79

 Terminology
OIDC defines the following terms.

 Roles
There are three different roles involved in the OIDC solution:

• End User – The end user is a subject to be authenticated. (We will use

the term “user” for simplicity and consistency across chapters.)

• OpenID Provider (OP) – The OpenID Provider is an OAuth 2.0

authorization server that implements OIDC and can authenticate

a user and return claims about the authenticated user and the

authentication event to a relying party (application).

• Relying Party (RP) – An OAuth 2.0 client which delegates user

authentication to an OpenID Provider and requests claims about

the user from the OpenID Provider. We will generally use the term

“application” for the relying party for consistency across chapters, but

a relying party could be another identity provider in more advanced

use cases.

 Client Types
The OIDC specification references the public and confidential application types

as described in the previous chapter as well as native applications, defined in the “OAuth

2.0 for Native Apps”ii best current practice document as applications installed on, and

run natively on, a user’s device.

 Tokens and Authorization Code
OIDC uses the authorization code, access token, and refresh token as described in the

previous chapter for OAuth 2.0 and defines an ID Token.

• ID Token – A token used to convey claims about an authentication

event and an authenticated user to a relying party (application).

Chapter 6 OpenID COnneCt

80

 Endpoints
OIDC utilizes the authorization and token endpoints described in the previous chapter

for OAuth 2.0 and adds the UserInfo endpoint.

• UserInfo Endpoint – Returns claims about an authenticated user.

Calling the endpoint requires an access token, and the claims

returned are governed by the access token.

 ID Token
An ID Token is a security token used by an OpenID Provider to convey claims to an

application about an authentication event and authenticated user. ID Tokens are

encoded in JSON Web Token (JWT)iii format. Figure 6-2 shows a sample ID Token.

JWT

Header (algorithm and type of token)
{“alg” : “RS256” ,
“Typ” : “JWT” }

Payload (claims)
{
“iss”: “http://openidprovider.com”,
"sub": "1234567890",
“aud” : “2fb3JsPMrDnQkwLEVNMDzUF”,
“nonce”:”47jglw0hmxo2hg0ewhg9582lf”,
“exp”: 1516239322,
"iat": 1516239022,
"name": ”Fred Doe",
"admin": true,
“auth_time”:1516239021,
“acr”:”1”,
“amr” : “pwd”

}

Signature

Courtesy of jwt.io

Figure 6-2. Sample ID Token

Chapter 6 OpenID COnneCt

81

The JWT format is designed to convey claims between two parties. As a JWT, an

ID Token consists of a header, a payload, and a signature. The header section of the

ID Token contains information on the type of object (JWT) and the specific signature

algorithm used to protect the integrity of the claims in the payload. Common signature

algorithms are HS256 (HMAC with SHA256) or RS256 (RSA Signature with SHA256).

The payload section contains the claims about a user and the authentication event. The

signature section contains a digital signature based on the payload section of the ID

Token and a secret key known to the OpenID Provider.

The OpenID Provider signs the JWT in accordance with the JSON Web Signature

(JWS) specification.iv A relying party application can validate the signature on the ID

Token to check the integrity of the claims in it. For confidentiality, the OpenID Provider

can optionally encrypt the JWT using JSON Web Encryption (JWE)v after it is signed. If

this is done, it produces a nested JWT.

The name:value pairs in the payload section of the ID Token JWT are the claims

about an authenticated user and authentication event. The OIDC specification (Section

2) defines a set of claims for ID Tokens applicable to all types of OIDC authentication

requests,vi shown in Table 6-1.

Table 6-1. OIDC Claims in ID Tokens for All OIDC Flows

Claim Meaning

iss Issuer of the ID token, identified in UrL format. the issuer is typically the OpenID

provider. the “iss” claim should not include UrL query or fragment components.

sub Unique (within the OpenID provider), case-sensitive string identifier for the

authenticated user or subject entity, no more than 255 aSCII characters long. the

identifier in the sub claim should never be reassigned to a new user or entity.

aud Client ID of the relying party (application) for which the ID token is intended. May be a

single, case-sensitive string or an array of the same if there are multiple audiences.

exp expiration time for the ID token, specified as the number of seconds since January 1st,

1970, 00:00:00 UtC to the time of token expiration. applications must consider an ID

token invalid after this time, with a few minutes of tolerance allowed for clock skew.

(continued)

Chapter 6 OpenID COnneCt

82

An ID Token can contain additional claims beyond those listed in Table 6-1.

Examples of additional standard claimsix which may be added are the user’s name,

given_name, family_name, email, email_verified, locale, and picture. A list of additional

standard claims can be found in Section 5.1 of the OIDC core specification.x Specific

types of OIDC requests (flows) may involve additional claims. Custom claims can also be

defined and added by an OpenID Provider.

 How It Works
OIDC defines three different flows by which an application can interact with an OpenID

Provider to make an authentication request.

Claim Meaning

iat time at which the ID token was issued, specified as the number of seconds since

January 1st, 1970, 00:00:00 UtC to the time of ID token issuance.

auth_time time at which the user was authenticated, specified as the number of seconds since

January 1st, 1970, 00:00:00 UtC to the time of authentication.

nonce Unguessable, case-sensitive string value passed in authentication request from the

relying party and added by an OpenID provider to an ID token to link the ID token to a

relying party application session and to facilitate detection of replayed ID tokens.

amr String containing an authentication method reference – used to indicate the method(s) of

authentication used to authenticate the subject of the ID token. the authentication Method

reference Values specificationvii defines a set of initial standard values for this claim.

acr String containing an authentication context class reference – used to indicate

authentication context class for the authentication mechanism used to authenticate

the subject of the ID token. Values may be decided by OpenID provider or agreed upon

between relying party and OpenID provider and might use standards such as the draft

OpenID Connect extended authentication profile aCr values.viii

azp Client ID of the authorized party to which the ID_token is issued. typically not used

unless the ID token only has a single audience in the “aud” claim and that audience

is different from the authorized party, though it can be used even if the audience and

authorized party are the same.

Table 6-1. (continued)

Chapter 6 OpenID COnneCt

83

 OIDC Flows
The OIDC flows are designed around the constraints of different types of applications

and bear some similarity to the grant types defined in OAuth 2.0. The original OIDC core

specification defines the following flows:

• Authorization Code Flow

• Implicit Flow

• Hybrid Flow

The following sections cover each of these flows in more detail.

 OIDC Authorization Code Flow
The OIDC Authorization Code Flow is similar to the OAuth 2.0 authorization code grant

in relying upon two requests and an intermediary authorization code. To authenticate

a user, an application redirects the user’s browser to an OpenID Provider. The OpenID

Provider authenticates the user and redirects the user’s browser back to the application

with an authorization code. The application uses the authorization code to obtain an ID

Token, access token, and optionally a refresh token, from the OpenID Provider’s token

endpoint. Figure 6-3 depicts this flow, assuming the application requested all three

security tokens and the user had no existing login session. This diagram also shows the

use of PKCE, as explained in Chapter 5.

Figure 6-3. OIDC Authorization Code Flow

Chapter 6 OpenID COnneCt

84

 1. User accesses application (relying party).

 2. User’s browser redirected to OpenID Provider with an

authentication request.

 3. OpenID Provider interacts with the user for authentication and to

obtain consent for scope of user info request.

 4. User authenticates and gives consent and the OpenID Provider

creates or updates an authentication session for the user.

 5. User’s browser redirected back to application with authorization code.

 6. The application sends token request to OpenID Provider, with the

authorization code.

 7. The OpenID Provider responds with an ID Token, access token

and optionally a refresh token.

 8. The application can use the access token at the OpenID Provider’s

UserInfo endpoint, described later in this chapter.

The second call to the token endpoint to obtain the security tokens assumes the

application has the ability to authenticate itself to the OpenID Provider. Public client

applications that cannot securely maintain a secret for such authentication can use

Proof Key for Code Exchange (PKCE) as described in the previous chapter. The use of

PKCE is designed to mitigate the risk of an authorization code being intercepted by an

unauthorized party. The following sample requests assume the use of PKCE.

 Authentication Request

An application redirects the user’s browser with an authentication request to the OpenID

Provider’s authorization endpoint such as:

GET /authorize?

response_type=code

& client_id=<client_id>

& state=<state_value>

& nonce=<nonce_value>

& scope=<scope>

& redirect_uri=<callback_url>

& code_challenge=<code_challenge>

Chapter 6 OpenID COnneCt

85

& code_challenge_method=<code_challenge_method> HTTP/1.1

Host: authorizationserver.com

 The parameters used in the example are described in Table 6-2, but may vary by

individual OpenID Provider.

Table 6-2. OIDC Authentication Request Parameters

Parameter Meaning

response_type the response type indicates which OIDC flow to use. “code” indicates

that the authorization Code Flow should be used.

response_mode an optional parameter used to request a non-default mechanism to be

used by authorization server to deliver response parameters to the client

application.

client_id the client ID for the relying party application, obtained when it

registered with the OpenID provider (authorization server).

state an unguessable value passed to the OpenID provider in the request. the

OpenID provider is supposed to return the exact same state parameter

and value in a success response. Used by the relying party application to

validate the response corresponds to a request it sent previously. this helps

protect against token injection and CSrF (Cross-Site request Forgery).

nonce an unguessable value passed to the OpenID provider in the request

and returned unmodified as a claim in the ID token if an ID token is

requested. Used to protect against token replay.

scope a string specifying the claims requested about the authenticated user.

example scope: “openid%20profile%20email”

redirect_uri UrI where the OpenID provider directs the response upon completion of

the authentication request. example: “https%3a%2F%2Fclient%2eexam

ple%2ecom%2Fcallback”

code_challenge pKCe code challenge derived from the pKCe code verifier using the code

challenge method specified in the code_challenge_method parameter,

as described in Section 4.2 of the pKCe specification.xi

code_challenge_method “S256” or “plain.” applications capable of using S256 (Sha256 hash)

must use it.

Chapter 6 OpenID COnneCt

86

The response_type parameter in the authentication request is used to indicate the

desired OIDC flow. The optional response_mode parameter governs the method by

which the response parameters are returned to the application. Unless otherwise noted,

the examples in this chapter do not include response_mode as they assume the use of

the default response mode for each flow, which returns the authorization code (and/

or security tokens, depending on the response_type) using a query parameter or hash

fragment to the redirect_uri specified in the authentication request.

The scope parameter in OAuth 2.0 is used to request API privileges to be granted

via an access token. With OIDC authentication requests, the scope is used to indicate

the use of OIDC and request particular claims about the authenticated user. OIDC

authentication requests must include the “openid” scope value. Adding “profile” to the

scope value requests a set of default user profile claims such as name, family name, and

given name. Adding “email” requests the user’s email address and whether that address

has been validated. When the response_type results in the issuance of an access token,

the scope applies to the claims returned by the OpenID Provider’s UserInfo endpoint.

If an access token is not issued, the requested claims will be included in the ID Token.

Additional details on requesting claims can be found in Sections 5.4 and 5.5 of the

OpenID Connect Core specification.xii

Another optional parameter, called “nonce,” is important to mention. The nonce

value should be included if an ID Token is requested. When an application makes an

authentication request to an OpenID Provider, it should specify a unique, non-guessable

nonce value that is tied to the session an application has started for the user. One option

is to generate a random value, store it securely in the user session, and use its hash as the

nonce. When the application receives an ID Token, it must check that the token contains

the exact nonce value specified in the authentication request and that the nonce

matches the hash of the value previously stored in the session. This links an ID Token

with a user’s application session and mitigates the risk of ID Tokens being replayed.

There are several additional, optional parameters which may be passed in an

authentication request to govern how and whether an OpenID Provider prompts a user

to authenticate and provide consent, to specify preferred language(s), to pass hints about

a user’s session or identifier, or to request specific user claims. See Section 3.1.2.1 of the

OpenID Core specificationxiii for further information.

Chapter 6 OpenID COnneCt

87

 Authentication Response

The OpenID Provider returns a response to the redirect URI specified in the

authentication request and which must be registered with the OpenID Provider. For

the authorization code flow, the default response mode returns the authorization code

using a query parameter to the redirect URI (callback) specified in the authentication

request. It also returns the exact state value that was passed in the authentication request.

HTTP/1.1 302 Found

Location: https://clientapplication.com/callback?

code=<authorization_code>

& state=<state_value>

The application should check to see if the response contains any error codes and if the

state value returned with a response matches the state value it sent in its authentication

request. It can then use the authorization code to make a token request. An application

should take care to only use each authorization code once as the server is obligated to

respond with an error if an authorization code has already been used.

Token Request

The authorization code returned by an OpenID Provider is used by an application in a

token request to the OpenID Provider’s token endpoint. The following sample request

assumes a confidential client application that was registered at the OpenID Provider to

authenticate with a client secret and HTTP Basic authentication.

POST /token HTTP/1.1

Host: authorizationserver.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic <encoded client credentials>

 grant_type=authorization_code

& code=<authorization_code>

& redirect_uri=<redirect_uri>

& code_verifier=<code_verifier>

The registration for an application at an OpenID Provider may specify one of

several authentication methods to be used with token requests. Further information

on the defined authentication methods can be found in Section 9 of the OIDC Core

specification.xiv The parameters for the sample token request are shown in Table 6-3.

Chapter 6 OpenID COnneCt

88

The OpenID Provider will respond with the requested tokens in JSON format. The

following shows a sample response:

HTTP/ 1.1 200 OK

Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

{

 "id_token" : <id_token>,

 "access_token" : <access_token value>,

 "refresh_token" : <refresh_token value>,

 "token_type" : "Bearer",

 "expires_in" : <token lifetime>

}

The sample response elements are described in Table 6-4.

Table 6-3. OIDC Parameters for Sample Token Request

Parameter Meaning

grant_type “authorization_code” is used when exchanging an authorization code for tokens.

code the authorization code received in response to the authentication request.

redirect_uri Callback location at application for OpenID provider’s response from this call.

code_verifier the pKCe code verifier value from which the code challenge in the authentication

request was derived. It should be an unguessable, cryptographically random string

between 43 and 128 characters in length, inclusive, using the characters a–Z, a–z,

0–9, “-”, “.”, “_”, and “~” and formed as described in Section 4.1 of the pKCe

specification.xv

Chapter 6 OpenID COnneCt

89

Before relying on claims in an ID Token, an application should validate the ID Token

following guidance provided by the issuing OpenID Provider and the validation steps in

the JWT specification.xvi The application can obtain claims about the authenticated user

from the ID Token or by using the access token to call the OpenID Provider’s UserInfo

endpoint.

 OIDC Implicit Flow
The implicit flow in OIDC has similarities to the OAuth 2.0 grant type of the same name.

As explained in Chapter 5, the use of the OAuth 2.0 implicit grant to obtain an access

token, at least with default response mode, is not recommended. However, that guidance

is based on the risk of exposing an access token in a URL fragment which can be leaked

via the browser history or referer header. An application that only needs to authenticate

users and can obtain user information via an ID Token does not need an access token.

In this case, the Implicit Flow may be acceptable. Figure 6-4 shows this flow with the

application receiving only an ID Token.

Table 6-4. Response Elements for Token Requests

Parameter Meaning

id_token the ID token with user claims.

access_token the access token for the OpenID provider’s UserInfo endpoint.

refresh_token a refresh token, if a refresh token was requested or is returned by default.

token type Bearer is typically used unless an OpenID provider has documented

another type.

expires_in the lifetime of the access token, in seconds.

Chapter 6 OpenID COnneCt

90

 1. User accesses the application (relying party).

 2. User’s browser redirected to OpenID Provider with authentication

request.

 3. OpenID Provider interacts with the user for authentication and to

obtain consent for scope of user info request.

 4. User provides login credentials and consent and the OpenID

Provider creates or updates an authentication session for the user.

 5. User’s browser redirected back to application with an ID Token.

 6. Application obtains user claims from ID Token and displays

suitable application content to the user.

An authentication request to authenticate a user with the Implicit Flow, and request

only an ID Token, will look similar to the following:

GET /authorize?

response_type=id_token

& client_id=<client_id>

& state=<state_value>

Figure 6-4. OIDC Implicit Flow

Chapter 6 OpenID COnneCt

91

& nonce=<nonce_value>

& scope=<scope_value>

& redirect_uri=<callback_url> HTTP/1.1

Host: authorizationserver.com

The parameters used in the Implicit Flow authentication request have the same

definition as shown in Table 6-2, with the exception of response_type values. For the

Implicit Flow, the allowed response_type values are

• “id_token” – Response contains only an ID Token.

• “id_token token” – Response contains an ID Token and access token.

By default, the Implicit Flow returns all tokens via front-channel browser interaction

to the redirect URI, using a URL fragment. The use of “id_token token” response_type is

not recommended with the default response mode as it would expose an access token

to potential compromise through a referer header or the browser’s history.1 Using the

Implicit Flow with the default response mode and “id_token” response_type to return

only an ID Token avoids this risk, assuming the ID Token does not contain sensitive data.

The use of the non-default form_post response mode for applications needing only an

ID Token should be considered as the response parameters are encoded in the body of a

post response. This avoids exposing the ID Token and data in it via a URL fragment, but

this response mode may not be feasible for some applications. Public clients needing

an access token and/or ID Token with sensitive elements should consider using the

Authorization Code Flow with PKCE instead.

 Response

The following shows a sample response to an Implicit Flow authentication request that

used “id_token” response type to request only an ID Token. This approach can be used if

the claims in the ID Token do not contain sensitive data.

HTTP/1.1 302 Found

Location: https://clientapplication.com/callback#

 id_token=<id_token>

& state = <state>

1 https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.1.2

Chapter 6 OpenID COnneCt

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.1.2

92

 OIDC Hybrid Flow
The OIDC Hybrid Flow includes elements of both the Authorization Code Flow and

Implicit Flow. It is designed for applications with both a secure back end and a front

end with client-side JavaScript executing in a browser. The Hybrid Flow enables models

such as returning an ID Token and authorization code in a front-channel response to the

application front end, leaving the application back end to obtain an access token (and

optional refresh token) from the token endpoint using the authorization code. This flow

is shown in Figure 6-5.

 1. User accesses the application (relying party).

 2. User’s browser redirected to the OpenID Provider with

authentication request.

 3. OpenID Provider interacts with user for authentication and to

obtain consent for scope of user info request.

Figure 6-5. OIDC Hybrid Flow

Chapter 6 OpenID COnneCt

93

 4. User authenticates and provides consent and the OpenID

Provider creates or updates an authentication session for the user.

 5. User’s browser redirected back to application front end with an

authorization code and ID Token.

 6. Client application validates ID Token, and if valid, back end calls

token endpoint with authorization code to get additional tokens.

 7. OpenID Provider token endpoint returns requested tokens.

 8. Client application can call OpenID Provider’s UserInfo endpoint

with access token.

The parameters for the authentication request are as defined in Table 6-2 with the

exception that the response_type for the Hybrid Flow uses three different values to govern

which tokens are returned in the response from the OpenID Provider’s authorization

endpoint. Additional tokens can be requested via the subsequent token request to the

token endpoint. Table 6-5 summarizes the possible values for response_type.

Table 6-5. OIDC Hybrid Flow Response Types

response_type Returned from Authorization Endpoint

“code id_token” authorization code, id_token

“code token” authorization code, access token – nOt recommended with default

response_mode

“code id_token token” authorization code, id_token, access token – nOt recommended with

default response_mode

The response_types which return an access token via front-channel response from

the authorization endpoint, namely, “code token” and “code id_token token”, are not

recommended for use with the default response mode as the access token would be

exposed as a URL fragment in the browser and possibly leaked via referer headers or

Chapter 6 OpenID COnneCt

94

browser history.2 If the default response mode is used, the “code id_token” response_

type should be used to return only the ID Token and authorization code using a front-

channel response to the browser. An access token, and optional refresh token, can

then be obtained from the OpenID Provider’s token endpoint via secure back-channel

interaction from the application’s back end. In practice, the hybrid flow is not widely

used. Using this flow requires an implementation that will provide both the front end

and back end information, such as nonce and state, with which to validate any responses

and security tokens they receive as well as prevent attacks such as CSRF or token

injection. Applications should consider using the Authorization Code Flow with PKCE

unless they have a specific use case that requires the hybrid flow.

A sample authentication request using the Hybrid Flow and “code id_token”

response type and default response mode is shown in the following example, with

parameter definitions similar to previous examples.

GET /authorize?

response_type=code%20id_token

&client_id=<client_identifier>

&redirect_uri=<callback_url>

&scope=<scope_value>

&state=<state_value>

&nonce=<nonce_value> HTTP/1.1

Host: authorizationserver.com

When the application receives the response, the application back end can use the

authorization code at the OpenID Provider’s token endpoint as described in the previous

section for Authorization Code Flow.

 UserInfo Endpoint
An application can retrieve claims about a user from the OpenID Provider’s UserInfo

endpoint. The UserInfo endpoint, is an OAuth2.0 API endpoint, and to call it requires

an access token issued by the OpenID Provider. When requesting the access token, an

application uses the scope parameter to indicate the desired claims about the user. The

2 https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.1.2

Chapter 6 OpenID COnneCt

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-3.1.2

95

OpenID Provider authenticates the user and obtains their consent for the requested claims

and then issues the access token with the authorized scope for the claims to the application.

The application then uses the access token to request the claims from the UserInfo

endpoint. A sample application request to the UserInfo endpoint looks like the following:

GET /userinfo HTTP/1.1

Host: authorizationserver.com

Authorization: Bearer <access_token>

The OpenID Provider’s UserInfo endpoint response returns claims with a JSON

object (unless signed or encrypted responses are used). The following sample response

assumes the requested scope was "openid profile email".

HTTP/1.1 200 OK

Content-Type: application/json

{

 "sub": "1234567",

 "name": "Fred Smith",

 "given_name": "Fred",

 "family_name": "Smith",

 "preferred_username": "fred.smith",

 "email": "fred.smith@example.com",

 "email_verified": true,

 "picture":"https://example.com/fred.smith/fred.smith.jpg",

 }

An application should perform any validation on responses recommended by its

specific OpenID Provider.

The UserInfo endpoint is primarily useful if the desired user profile claims are too

large for an ID Token returned via a URL fragment.

 Summary
The OpenID Connect protocol provides an identity layer on top of OAuth 2.0 that

supports authenticating users to applications and enables single sign-on. Adding to

OAuth 2.0, OIDC adds an ID Token and a UserInfo endpoint, which return claims

about an authentication event and the authenticated user to the application. Using

Chapter 6 OpenID COnneCt

96

OIDC allows applications to delegate user authentication to an OpenID Provider and

using OIDC and OAuth 2.0 together solves both authentication and API authorization.

However, even if you have both those bases covered, you may encounter customers that

ask you to support SAML 2.0, so we’ll cover an overview of that in the next chapter.

 Key Points
• OIDC provides an identity layer on top of OAuth 2.0 to authenticate

users.

• OIDC enables single sign-on.

• OIDC provides an ID Token and UserInfo endpoint to obtain user

profile info.

• OIDC defines a set of standard claims that can be obtained about a

user.

• OIDC allows for the use of additional, custom claims.

• OIDC defines three grant flows for different client profiles.

• OIDC provides several options for returning an authorization code

and/or security tokens via front-channel or back-channel response.

• Returning access tokens or refresh tokens via front-channel

responses should be avoided by using a back-channel response or

alternate response mode.

• Returning sensitive information in ID Tokens via front-channel

responses should be avoided by using a back-channel response or

the UserInfo endpoint or encrypting the ID Token if encryption is

supported.

 Notes
 i. https://openid.net/connect/

 ii. https://tools.ietf.org/html/rfc8252

 iii. https://tools.ietf.org/html/rfc7519

Chapter 6 OpenID COnneCt

https://openid.net/connect/
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc7519

97

 iv. https://tools.ietf.org/html/rfc7515

 v. https://tools.ietf.org/html/rfc7516

 vi. https://openid.net/specs/openid-connect-core-1_0.

html#IDToken

 vii. https://tools.ietf.org/html/draft-ietf-oauth-amr-

values-04

 viii. https://openid.net/specs/openid-connect-eap-acr-

values-1_0.html

 ix. https://openid.net/specs/openid-connect-core-1_0.

html#StandardClaims

 x. https://openid.net/specs/openid-connect-core-1_0.

html#StandardClaims

 xi. https://tools.ietf.org/html/rfc7636

 xii. https://openid.net/specs/openid-connect-core-1_0.

html#ScopeClaims

 xiii. https://openid.net/specs/openid-connect-core-1_0.

html#AuthRequest

 xiv. https://openid.net/specs/openid-connect-core-1_0.html#Cl

ientAuthentication

 xv. https://tools.ietf.org/html/rfc7636

 xvi. https://tools.ietf.org/html/rfc7519#section-7.2

Chapter 6 OpenID COnneCt

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://tools.ietf.org/html/draft-ietf-oauth-amr-values-04
https://tools.ietf.org/html/draft-ietf-oauth-amr-values-04
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://tools.ietf.org/html/rfc7636
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7519#section-7.2

99
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_7

CHAPTER 7

SAML 2.0

To be trusted is a greater compliment than to be loved.

—George MacDonald, from The Marquis of Lossie (1877)

The Security Assertion Markup Language (SAML) 2.0i is known for providing two

important features, cross-domain single sign-on (SSO) and identity federation. SAML 2.0

has been adopted in many enterprise environments because it enabled the enterprise

to have applications used by employees, customers, and partners delegate user

authentication to a centralized enterprise identity provider. This gave the enterprise a

central place to manage and control identities. If you are writing an application for large

enterprise customers, they may expect you to support authentication using SAML 2.0.

In this chapter, we’ll provide an overview of SAML 2.0, the problem it is designed to

solve, and the cross-domain single sign-on and identity federation features in SAML 2.0.

We’ll also provide a suggestion for how to leverage newer protocols like OIDC and still

efficiently implement support for SAML.1

 Problem to Solve
The most common use case for which SAML is used is cross-domain single sign-

on, in our experience. In this scenario, a user needs to access multiple applications

which reside in different domains, such as application1.com and application2.com.

Without cross-domain single sign-on, a user might have to establish an account in each

application and log in to each application individually. This means potentially many

different usernames and passwords for a user to remember. If the user is a corporate

1 All unqualified uses of the term “SAML” refer to SAML 2.0.

100

employee and the applications are SaaS applications, it would be difficult for the

enterprise to manage all the SaaS application accounts their employees might create.

SAML was designed as an “XML-based framework for describing and exchanging

security information between on-line business partners.”ii SAML enables applications

to delegate user authentication to a remote entity known as an identity provider. The

identity provider authenticates the user and returns to the application an assertion with

information about the authenticated user and authentication event. If the user accesses

a second application which delegates authentication to the same identity provider, the

user will be able to access the second application without being prompted again to log

in. This capability is single sign-on.

SAML also provides a mechanism for an application and identity provider to use a

common shared identifier for a user in order to exchange information about the user.

This is known as federated identity. The federated identity can use the same identifier

across systems or it can use an opaque, internal identifier which is mapped to the

identifier used by the user in each system. We’ll see more about how these features work

in the following sections, but first, we need to specify some terms we’ll use.

 Terminology
The SAML specifications define the following terms:

• Subject – An entity about which security information will be

exchanged. A subject usually refers to a person, but can be any entity

capable of authentication, including a software program. For the use

cases we’ll discuss, the subject is generally a user of an application.

• SAML Assertion – An XML-based message that contains security

information about a subject.

• SAML Profile – A specification that defines how to use SAML

messages for a business use case such as cross-domain single sign- on.

• Identity Provider – A role defined for the SAML cross-domain single

sign-on profile. An identity provider is a server which issues SAML

assertions about an authenticated subject, in the context of cross-

domain single sign-on.

Chapter 7 SaML 2.0

101

• Service Provider – Another role defined for the SAML cross-domain

single sign-on profile. A service provider delegates authentication to

an identity provider and relies on information about an authenticated

subject in a SAML assertion issued by an identity provider in the

context of cross-domain single sign-on.

• Trust Relationship – An agreement between a SAML service

provider and a SAML identity provider whereby the service provider

trusts assertions issued by the identity provider.

• SAML Protocol Binding – A description of how SAML message

elements are mapped onto standard communication protocols, such

as HTTP, for transmission between service providers and identity

providers. In practice, SAML request and response messages are

typically sent over HTTPS using either HTTP-Redirect or HTTP-POST,

using the HTTP-Redirect and HTTP-POST bindings, respectively.

 How It Works
The most common SAML scenario is cross-domain web single sign-on. In this scenario,

the subject is a user that wishes to use an application. The application acts as a SAML

service provider. The application delegates user authentication to a SAML identity

provider that may be in a different security domain. The identity provider authenticates

a user and returns a security token, known as a SAML assertion, to the application. A

SAML assertion provides information on the authentication event and the authenticated

subject. We will use the term application along with service provider, for consistency

across chapters, but should note that an entity acting as an identity provider can also act

as a service provider by further delegating authentication to another identity provider.

To establish the ability to do cross-domain web single sign-on, the organizations

owning the service provider (application) and identity provider exchange information,

known as metadata. The metadata information contains information such as URL

endpoints and certificates with which to validate digitally signed messages. This

data enables the two parties to exchange messages. The metadata is used to configure

and set up a trust relationship between the service provider and the identity provider

and must be done before the identity provider can authenticate users for the service

provider (application).

Chapter 7 SaML 2.0

102

Once mutual configuration of providers is in place, when a user accesses the service

provider (application), it redirects the user’s browser over to the identity provider

with a SAML authentication request message. The identity provider authenticates the

user and redirects them back to the application with a SAML authentication response

message. The response contains a SAML assertion with information about the user and

authentication event, or an error, if an error condition occurred. The identity provider

can tailor the identity claims in the assertion as needed for each service provider. Please

see Appendix C for a sample of SAML authentication request and response messages

and a description of commonly used elements within each.

 SP-Initiated SSO
The simplest form of cross-domain single sign-on is illustrated in Figure 7-1. In this

example, the user starts at the service provider (SP) (application) so it is known as

the “SP-initiated” flow. (The diagram depicts a scenario where the user does not

have an existing authentication session at the identity provider and therefore has to

authenticate.)

 1. User visits a service provider (application).

 2. Service provider redirects user’s browser to the identity provider

with a SAML authentication request.

 3. Identity provider interacts with user for authentication.

Figure 7-1. SAML SP-Initiated Single Sign-On

Chapter 7 SaML 2.0

103

 4. User authenticates. Identity provider validates credentials.

 5. Identity provider redirects user’s browser back to the service

provider with a SAML response containing a SAML authentication

assertion. The response is sent to the service provider’s Assertion

Consumer Service (ACS) URL.

 6. The service provider consumes and validates the SAML response

and responds to the user’s original request (assuming the user was

successfully authenticated and has sufficient privileges for the request).

 Single Sign-On
Figure 7-1 shows the user accessing a single application. Multiple service providers can

choose to delegate user authentication to the same identity provider. When this occurs,

a user can access a first application and authenticate to the identity provider to establish

an authentication session there, as shown in Figure 7-1. The user can then use the same

browser to access a second application which relies on the same identity provider, and

when redirected to the identity provider, the identity provider will recognize the user

already has a session and won’t ask them to authenticate again. The identity provider

will simply redirect the user’s browser back to the application with a successful SAML

authentication response. This is called single sign-on, and it will be covered in more

detail in Chapter 11.

 IdP-Initiated Flow
Figure 7-1 showed an interaction sequence with the user starting at the service provider

(application). This is called “SP-initiated” because the user initiates the interaction at

the service provider (SP). SAML also defined another flow, known as “IdP-initiated,”

where the user starts at the identity provider (IdP), and which is shown in Figure 7-2. In

this case, the identity provider redirects the user’s browser to the service provider with

a SAML response message without the service provider having sent any authentication

request. This flow is found in some enterprise environments where a user accesses

applications via a corporate portal.

When the user initially accesses the corporate portal, they are redirected to the

corporate identity provider to log in. After logging in, the user is returned to the portal

Chapter 7 SaML 2.0

104

and sees a menu of application links on the portal. Clicking one of these links redirects

the user to the identity provider, with the application URL as a parameter. The identity

provider detects the user already has an authenticated session and redirects the user’s

browser to the application, with a SAML response message as in the SP-initiated case.

The IdP-initiated flow does not require a portal, but we’ve chosen to show it as it is a

common way this flow is used.

The IdP-initiated flow with a portal is useful in enterprises because it provides single

sign-on and ensures users go to the correct URL for each application which reduces the

risk of users being phished. The IdP-initiated flow is shown in Figure 7-2. (This diagram

assumes the user does not have an existing authentication session.)

 1. User visits a corporate portal.

 2. Portal redirects user’s browser to the identity provider with a

SAML authentication request.

 3. Identity provider interacts with user for authentication.

 4. User authenticates. Identity provider validates credentials.

Figure 7-2. SAML IdP-Initiated Single Sign-On

Chapter 7 SaML 2.0

105

 5. Identity provider redirects user’s browser back to portal with

a SAML response for the portal (response #1) containing an

authentication assertion. User is logged into portal which displays

content to user, including a list of applications.

 6. The user clicks a link in the portal for an application. The link

directs the user’s browser to the identity provider with a parameter

indicating the desired service provider application. The IdP checks

the user’s session. This diagram assumes the user’s session is still

valid.

 7. The identity provider redirects the user’s browser to the service

provider’s Assertion Consumer Service (ACS) URL, with a new SAML

response (response #2) for that service provider (the application).

 8. The service provider (application) consumes the SAML response and

authentication assertion and renders an appropriate page for the user,

assuming their identity and privileges are sufficient for their request.

 Identity Federation
With SAML, identity federation establishes an agreed-upon identifier used between a

service provider (application) and an identity provider to refer to a subject (user). This

enables a service provider to delegate authentication of the user to an identity provider

and receive back an authentication assertion with identity claims that include an

identifier for the authenticated subject that will be recognizable by the service provider.

Figure 7-3 illustrates an example. A user named Ann Smith has an account in two

applications, application1 hosted at app1.com and application2 hosted at app2.com.

In application1, her account identifier is ann@corp.com, and in application2, her account

identifier is “ann”. Ann also has an account at a corporate identity provider where her

account identifier is ann@corp.com.

The administrators for application1 and the identity provider exchange metadata

about their environments and use it to set up federation information between

application1 and the identity provider. The same is done by the administrators of

application2 and the identity provider. In practice, the administrators of an identity

provider configure it to send assertions to each service provider that contain appropriate

identifiers and attributes for the service provider (application).

Chapter 7 SaML 2.0

106

When Ann accesses application1, it redirects her browser to her employer’s identity

provider at “corp.com”. The identity provider authenticates Ann and redirects her

browser back to application1 with an authentication assertion containing a naming

attribute identifying her as ann@corp.com. Application1 uses the same identifier for Ann,

so it recognizes her based on that identity.

When Ann accesses application2, it redirects her browser to the identity provider which

recognizes that she already has a session. If the identity provider returns an authentication

assertion identifying her as ann@corp.com, however, application2 will not recognize her as a

valid user by that name. The identity provider needs to return an appropriate identifier for

each service provider. In this case, when the identity provider delivers the authentication

assertion to application2, it needs to identify the subject of the assertion using “ann”.

The link between an identity at a service provider and an identity provider can

be set up in different ways. In practice, a user’s email address is often used as the

identifier for a user at both the service provider and identity provider, but this can

be problematic as a user may need to change their email address, and it can conflict

with privacy requirements. The use of a specific identifier attribute can be requested

dynamically in a request, or an identity provider can be configured to send a particular

identifier to a service provider. It is also possible for an identity provider and service

provider to exchange information using an opaque, internal identifier for a user, that is

mapped on each side to the user’s profile. Use of a unique identifier for each federation

is privacy-friendly and prevents correlation of user activity, but isn’t common in

Figure 7-3. Identity Federation

Chapter 7 SaML 2.0

107

practice. The approach to use is set up when the two parties exchange metadata and

configure their infrastructure to establish the relationship (often called a federation in

practice) between service provider and identity provider.

 Authentication Brokers
Authentication brokers can be used by applications to easily enable support for multiple

authentication protocols and mechanisms. If you are building a new application and plan

to use OIDC for authentication, you may receive requests to support SAML from business

customers who want their users authenticated at their corporate SAML identity provider.

SAML is a complex protocol, which would require significant work to implement and

support across many customers. Rather than implement SAML directly in your application

yourself, you can use an authentication broker to simplify the task of supporting SAML.2

An authentication broker allows your application to implement a newer identity protocol

like OIDC and rely on the authentication broker to communicate via different protocols to

a variety of identity providers. Figure 7-4 depicts an application implemented to use OIDC

and OAuth 2.0 with an authentication broker which communicates in turn with several

identity providers, each of which uses a different protocol. The use of an authentication

broker allows an application team to implement newer identity protocols in their

application and focus on the core features of their application instead of spending time

to directly implement and support older identity protocols requested by customers.

2 Full disclosure: At the time of writing, the authors of this book worked for Auth0, a vendor of an
authentication broker service.

Figure 7-4. Benefits of an Authentication Broker

Chapter 7 SaML 2.0

108

If you elect not to use an authentication broker, we recommend at least using a

SAML library rather than attempting to implement SAML yourself as it is a complex

protocol to implement.

 Configuration
Whether you use an authentication broker or a library, Tables 7-1 and 7-2 show the

elements that typically need to be configured at the service provider (application) and

identity provider and their meaning.

Table 7-1. Common Service Provider Configuration

Element Description

SSO UrL Single sign-on UrL of identity provider. this is where the service provider

will send its authentication requests.

Certificate Certificate(s) from identity provider. Used to validate signatures on SaML

responses/assertions from identity provider. also used if server provider

sends encrypted requests. Some providers allow different certificates for

the two uses.

protocol binding protocol binding to use when sending requests. http-redirect for simple

requests or http-pOSt if requests are signed, which is recommended.

request signing Whether to digitally sign SaML authentication requests and, if so, via which

signature algorithm. Signing is recommended.

request encryption Whether to digitally encrypt a SaML authentication request.

Chapter 7 SaML 2.0

109

You’ll need to consult the documentation for the authentication broker or SAML

library you’ve chosen for the specific details of where and how to configure the

preceding elements. Once both providers are configured and you have attempted a trial

authentication, it’s common for authentication to fail the first time. You can debug issues by

attempting an authentication, capturing a trace of the SAML request and response message,

and examining them. We’ve provided guidance for how to troubleshoot in Chapter 16 and

details on what to look for in the SAML request and response messages in Appendix C.

 Summary
SAML 2.0 provides an industry standard solution for web single sign-on and identity

federation. These key features enabled enterprises to use cloud applications and still

maintain centralized control of identities. The use of SAML eliminates exposure of

static password credentials to applications and provides users the convenience of single

sign-on. Many enterprises have implemented SAML identity providers and expect SaaS

application vendors to support it.

At this point, however, SAML is an older protocol compared to OIDC. Now that

OIDC and OAuth 2.0 exist, modern applications designed around APIs will benefit from

Table 7-2. Common Identity Provider Configuration

Element Description

aCS UrL assertionConsumerService UrL of service provider. this is where it will

receive SaML authentication responses from identity provider.

Certificate Certificate(s) from service provider. Used to validate signatures on SaML

requests. also needed if responses are to be encrypted. Some providers

allow different certificates for the two uses.

protocol binding protocol binding to use when sending response. http-pOSt is typcally

required to accommodate signed messages.

response signing Whether to digitally sign the SaML authentication response, the assertion,

or both and, if so, via which signature algorithm. Signing is mandatory.

response encryption Whether to digitally encrypt a SaML response.

Chapter 7 SaML 2.0

110

implementing these newer protocols, as they provide support for both authentication

and API authorization, respectively, and identity providers that support them exist for

both consumer- and corporate-facing scenarios.

If you need to support SAML, rather than implementing it in a new application

yourself, it is more efficient to use an authentication broker service that can take care

of the SAML implementation complexity for you.3 This will enable you to implement

your application with newer protocols, yet still support customers who require older

protocols such as SAML and WS-Fed. Alternatively, you can use a library for your chosen

platform to implement such protocols. Once authentication is solved, authorization and

policy enforcement are needed to govern what a user can do, and that’s coming up in the

very next chapter.

 Key Points
• SAML is an XML-based framework for exchanging security

information between business partners.

• SAML provided two features which became widely used: cross-

domain single sign-on and identity federation.

• A SAML service provider delegates user authentication to an identity

provider.

• A SAML identity provider authenticates a user and returns the

results of a user authentication event in an XML message called an

authentication response.

• An authentication response contains an authentication assertion

with claims about the authentication event and authenticated user.

• Identity federation establishes a common identifier for a user

between an identity provider and a service provider.

3 Full disclosure: At the time of writing, the authors of this book worked for Auth0, a vendor of an
authentication broker service.

Chapter 7 SaML 2.0

111

• Business customers of applications often want to use their corporate

identity providers to authenticate their users to applications.

• New applications should consider using an authentication broker

service or SAML library to simplify the task of supporting SAML.

 Notes
 i. https://wiki.oasis-open.org/security/FrontPage

 ii. www.oasis-open.org/committees/download.php/27819/sstc-

saml-tech- overview-2.0-cd-02.pdf (Section 2)

Chapter 7 SaML 2.0

https://wiki.oasis-open.org/security/FrontPage
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf

113
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_8

CHAPTER 8

Authorization and Policy
Enforcement

A people that values its privileges above its principles soon loses both.

—Dwight D. Eisenhower, 34th president of the United States,
from first inaugural address

The previous chapters covered the mechanics of authorizing an API call and

authenticating a user. This chapter will discuss authorization vs. the enforcement of

access policy and how identity protocols can be used to help implement them.

 Authorization vs. Policy Enforcement
In governing what a user or application can do, there are two distinct functions. We

use the term authorization for the granting of privileges. In contrast, access policy

enforcement is defined as the act of checking that someone has been granted the

necessary privilege before responding to a request for a protected resource. For

example, if you buy a theater ticket, the ticket constitutes your authorization to attend

the performance. On the night of the performance, the ticket taker at the door enforces

policy by checking to ensure that only authorized patrons (with tickets) enter the theater.

Authorization may be granted well in advance of a resource being requested or at the

time of requesting access. It may be done by the entity containing the requested resource

or by a trusted third party with the authorization information conveyed securely to the

policy enforcement point. Access policy enforcement is done at the time a resource

request is made and ideally at an enforcement point within or close to the protected

resource to reduce the possibility of it being bypassed.

114

 Levels of Authorization and Access Policy Enforcement
There are different levels at which authorization and access policy enforcement may be

specified and applied, respectively:

• Level 1 – Whether an entity can access an application or API at all

• Level 2 – What functions an entity can use in an application or API

• Level 3 – What data an entity can access or operate on

 Level 1 – Application or API Access

At the highest level, authorization and access policy enforcement can control whether an

entity has permission to access an application or API at all. This use case is often found

in corporate settings. For example, an employee in a marketing team probably has no

business accessing the corporate accounting system. This level of policy enforcement

may be handled within an application or by an entity in front of the application as shown

in Figure 8-1. The enforcement can be done external to an application by components

such as an authentication broker or a reverse proxy that works with an identity and

access management (IAM) system. Such systems can act as a high-level enforcement

point to deflect users who are not authorized to access an application at all. A similar

approach can be used with APIs and in both cases is useful to reduce policy enforcement

workload on target systems.

Figure 8-1. Application-Level Access Policy Enforcement

Chapter 8 authorization and poliCy enforCement

115

 Level 2 – Functional Access

Functional-level authorization and access policy enforcement govern what an entity

can do within an application or API. For example, a junior accounting clerk in the

finance department might be able to access the corporate accounting system and enter

individual journal entries but not perform a month-end close. This level of authorization

and access policy enforcement tends to be application specific. It may leverage

information about a user stored elsewhere, such as roles or groups in a directory service,

but is often enforced within an application or API.

 Level 3 – Data Access

A third level of authorization and access policy enforcement governs access to particular

subsets of data. If functional-level access policy enforcement defines the functions an

entity can do, data-level access policy further restricts access to specific data. For example,

in a sales order entry application, a user with the role “regional sales manager” may be

authorized at a functional level to view sales orders, but data-level access policy restricts

them to a specific region indicated in their user profile’s “Sales region” attribute. Data-level

access may be enforced within an application or API or in an underlying storage layer.

 User vs. Application Authorization
We will cover two situations that require authorization and access policy enforcement.

The first governs what a user (or entity) can do in an application, and the second controls

what an application can request of an API.

A user needs authorization to perform various functions within an application. The

application may render the application’s user interface based on a user’s authorized

privileges so it doesn’t display features a user cannot use. In addition, when a user makes

a request, the application back end or API must check that the user has the necessary

authorization for the request before executing it.

An application requires authorization to call a protected API. If the content at the

API is owned by the user of the application, the access requires the user’s authorization.

This scenario is often found in consumer-facing applications. If the content at the API

is accessed by the application on its own behalf, an authorization server grants the

authorization to the application based on permissions previously configured by the

administrator of the authorization server.

Chapter 8 authorization and poliCy enforCement

116

Regardless of the entity being authorized, there are three steps commonly involved

in controlling access:

• Authorization and the specification of access policy.

• Delivery of authorization information to enforcement point (if

needed)

• Enforcement of the access policy by the enforcement point

We will discuss these three steps first for users and then applications.

 User Authorization
The specification of authorization is a complex topic. So many schemes have been

invented for this over the years that covering them is outside the scope of this book.

We will assume that access policy is represented in a set of attributes associated with

a user or application and describe how OIDC and SAML 2.0 can be used to deliver

authorization information about a user to an application and how OAuth 2.0 can be

used to authorize access to APIs and how this supports access policy enforcement. The

attributes used to convey authorization for users can vary, but the most common fall into

two categories.

 User Profile Attributes

A user’s identity may be granted authorization based on roles which they’ve been

assigned in a role-based access control (RBAC)i model, membership in a group or access

control list (ACL), or individual user profile attributes evaluated by rules as part of an

attribute-based access control (ABAC)ii, iii model. These attributes are relatively static

factors that remain the same, regardless of where the user is or what device they are

using at the time of accessing a protected resource.

If such authorization information is specified outside an application, such as in

a corporate directory service or policy service, but accessible by the identity provider

authenticating a user, these attributes can be delivered to the application by the identity

provider. If authorization is specified in the application, the identity provider can deliver

an identifier for the authenticated user to the application so it can retrieve the necessary

authorization information about the user.

Chapter 8 authorization and poliCy enforCement

117

The authorization step to grant a user privileges is typically done in advance of

the user making a request in an application. For example, if a new employee joins

a company’s finance team, the business may authorize the employee to access its

accounting application by assigning the user roles in a corporate identity system on

the new hire’s first day. For a consumer-facing application, a user may be assigned

access- related user profile attributes when they purchase a particular subscription

level for the service.

 Transactional User Attributes

Authorization may also be based upon factors that are part of the user’s physical

environment at the time of authentication or accessing a protected resource. Such

factors can include the user’s geographic location, whether the user is inside or outside

a corporate firewall, or whether the user’s device is certified as adhering to certain

security configuration standards. The day of the week or time of day may be factors as

well as the strength of authentication mechanism used. These factors are captured at

the time of authentication rather than being part of the user’s profile. Such factors, if

captured by an identity provider, can also be provided to applications in the form of

claims in a security token.

 Delivery
For applications using OIDC, user authorization information can be delivered to

applications as claims in an ID Token or in the response from the OIDC provider’s

UserInfo Endpoint. Applications using SAML 2.0 can receive the information via

attribute statements in a SAML 2.0 assertion. User profile information such as a user’s

roles, groups, or a purchased subscription level, and factors such as a user’s IP address

or strength of authentication method, can be delivered to an application in this way.

An application can then use the information to perform access policy enforcement. An

example showing the delivery of user profile information via an ID Token to support

access enforcement is shown in Figure 8-2. In this example, the application is a movie

rental application where users can purchase different subscription levels (such as bronze,

silver, and gold) to get access to different selections of movies. The ID Token delivers to

the application the user’s purchased subscription level.

Chapter 8 authorization and poliCy enforCement

118

 1. User redirected to login at the OIDC OpenID Provider.

 2. The ID Token includes the user’s purchased subscription.

 3. Subscription data in ID Token is used to determine the list of

movies displayed.

 4. User selects a movie to view.

 5. Application back end checks the user has required subscription

level for their selected movie.

In the example, the information in the ID Token about a user’s subscription level is

used to display to the user the movies they are entitled to rent. It is also used to perform

access policy enforcement. Even though the front end restricted the list of movies to

what the user can view, a malicious user might find a way to get around this, so the

access policy enforcement check is made in the application back end where it cannot be

circumvented. This example uses OIDC, but applications using SAML 2.0 can follow a

similar model, obtaining authorization data from the SAML 2.0 assertion.

Figure 8-2. Delivering Authorization Attributes to an Application

Chapter 8 authorization and poliCy enforCement

119

 Enforcement
Before relying on any information in a security token, the application must validate the

token. In the case of an ID Token, validation steps include

• Validate the ID Token is a correctly formatted JWT (JSON Web Token)

• Validate the signature on the ID Token

• Check that the token has not expired

• Check the issuer is the correct OpenID Provider

• Check the intended audience for the token is the application

Be sure to check the documentation for your OpenID Provider for the exact

validation steps required for their implementation. Once the ID Token has been

validated, the application can use the claims within the token for access policy

enforcement.

 Application Authorization
The second case of authorization and policy enforcement is that of applications calling

APIs.

 Application Attributes
Application requests to call APIs on a user’s behalf are authorized by the user, but

requests to call APIs on their own behalf are authorized by an authorization server based

on configured policy. This policy is typically configured in advance of an application

calling an API. Unless the number of applications or APIs is quite large, the policy

specification is often expressed by indicating the specific applications authorized to call

specific APIs and which endpoints and actions can be accessed. If OAuth 2.0 is used, the

policy may be specified in terms of scopes, such as “get:documents”.

Chapter 8 authorization and poliCy enforCement

120

 Authorization
An application that makes an OAuth 2.0 request for authorization to call an API specifies

its requested scopes as a parameter to the authorization request. For example, an

application requesting an access token for an OpenID provider’s UserInfo Endpoint to

retrieve user attributes might use “scope = openid profile email”. An application calling a

custom API to retrieve a user’s documents might request a scope of “get:documents”.

With the authorization code and implicit grant types, the requested API resources are

owned by the user, so the OAuth 2.0 authorization server will prompt the user, displaying

the requested scopes, and obtain the user’s consent for the application’s request before

issuing an access token. With the client credentials grant, the requested API resources

are owned by the application, and the privileges granted to each application are

specified in the authorization server (or a policy server accessed from it), and it will use

that information to decide whether a request is allowed before issuing an access token.

 Delivery
Regardless of whether the protected resource is owned by the user or the application,

if the request is authorized, the authorization server will issue an access token to the

application for the requested API. An authorization server may allow adding additional

custom claims to an access token, such as claims about the user, including data on

privileges such as roles. Additional claims may be useful to an API in enforcing access.

Support for extensibility via custom claims and attributes about users may vary by

individual authorization server implementations.

 Enforcement
An API must validate an access token and perform access policy enforcement to make

sure the application’s request is permitted before responding. The steps to validate and

obtain information about an access token will vary depending on the authorization

server’s implementation for access tokens. You should check the authorization server

documentation for details about how to validate any tokens it issues. Once the access

token has been validated, the API can use the information in the token, including any

custom claims if allowed, to perform its access policy enforcement before responding to

the request.

Chapter 8 authorization and poliCy enforCement

121

 Summary
Authorization involves the granting of privileges, whereas access policy enforcement

is a check done at the time a resource is requested, to validate the requestor has

been granted the requisite privileges for the request. Authorization and access policy

enforcement may be used to govern what a user can do in an application as well as

whether an application can make a request to an API. User authorization may be

based on static factors in a user’s profile and/or dynamic factors evaluated at the

time of authentication, both of which can be delivered to an application in a security

token. Application authorization may be based on scopes approved by a user or an

authorization server and manifested in an access token delivered to an application and

used to call an API. In the next chapter, we’ll discuss a sample application and how it

uses OIDC and OAuth 2.0 together for authorizing access to APIs.

 Key Points
• Authorization is the granting of privileges to access protected

resources.

• Access policy enforcement is done when a request is made and

checks if a requestor has been granted sufficient authorization for the

request.

• Authorization and access policy enforcement apply to users as well

as applications calling APIs.

• Authorization policy for users may be based upon user profile

attributes or dynamic factors evaluated at the time a user

authenticates or makes a request.

• Authorization for applications to call APIs is granted by users or

authorization servers depending on the OAuth 2.0 grant type used.

• Authorization and access policy enforcement can be specified on

multiple levels.

• Claims in security tokens can be used as a basis for access policy

enforcement decisions in applications and APIs.

Chapter 8 authorization and poliCy enforCement

122

 Notes
 i. https://csrc.nist.gov/projects/role-based-access-control

 ii. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-162.pdf

 iii. https://csrc.nist.gov/Projects/Attribute-Based-Access-

Control

Chapter 8 authorization and poliCy enforCement

https://csrc.nist.gov/projects/role-based-access-control
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://csrc.nist.gov/Projects/Attribute-Based-Access-Control
https://csrc.nist.gov/Projects/Attribute-Based-Access-Control

123
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_9

CHAPTER 9

Sample Application
with Custom API

It’s not just what it looks like and feels like. Design is how it works.

—Steve Jobs, founder of Apple Computers, as quoted in “The Guts of a
New Machine,” New York Times Magazine

The past chapters covered how certain identity protocols provide a solution for

authentication, API authorization, and application authorization. Now we can bring

together the topics from the past few chapters and describe a sample program that solves

typical identity challenges using these protocols, specifically OIDC and OAuth 2.0.

In the past 3 decades, we have seen a lot of transformation in how applications

are designed and implemented. We went from traditional web applications rendering

user interfaces from the server and on-premise desktop applications to scalable

cloud services designed around APIs that talk to multiple user and machine facing

applications. A machine-first approach for the back end and experience-driven

front end is the modern standard for designing applications. From photo-browsing

applications like Imgur to banks like Monzo, we have seen the rise of highly scalable,

stateless, back-end APIs serving a user-centric front end.

We created a sample program to accompany the text and which uses OAuth 2.0 for

API authorization and OIDC to authenticate users. The following sections explain the

approach used to design the application and the rationale for identity-related design

decisions.

124

 Background
In order to keep the example simple, we chose to build a simple document-writing

app. This type of application allowed us to cover a decent set of the problems faced by

many applications today. The application involves a stateless back-end API serving a

single-page application (SPA) and native app. Discussing every detail of how to build

and deploy modern applications is far beyond the scope of this chapter, and thus we will

focus here solely on the identity-related aspects of the application.

The application offers the following features and services:

• Allows the user to write an article in Markdown.

• Renders the final text from the Markdown.

• Articles are owned by a single user.

• An article owner can share an article with others.

• Sharing is based on a simple attribute-based access control scheme.

• There are two levels of access to an article, reader and editor:

• Readers can view articles.

• Editors can create and update articles.

• When a new version of the article is created, it is published as a

versioned new document, to keep the program as simple as possible.

The sample application is similar to popular code-sharing web sites like JSFiddle or

Codepen. We made this choice so the application functionality would be familiar to most

developers which allowed us to keep the focus on demonstrating and explaining identity

management concepts.

Several measures have been taken to simplify the application. For example, the

application doesn’t support multiple users editing the same article at the same time.

Furthermore, each saved edit results in a new version. Thus if Jon created an article and

Jessie were to edit it, Jessie would get her own copy of the document. We kept the user

interface quite simple, and validation and error checking are also minimal for the sake of

simplicity. Now that we’ve covered the obligatory caveats about what isn’t included, we

can discuss what the application will do!

Chapter 9 Sample appliCation with CuStom api

125

 Application Requirements
In Chapter 1, we suggested several questions to ask about your project that would help

you better understand your identity management requirements. Let us now revisit those

questions for this sample application. We share the following answers to clarify the

application requirements.

 Who Are Your Users: Employees or Consumers?

For the sake of simplicity, our design assumes a consumer type of user, who may wish

to enable login via a social authentication provider to access their content. The sample

application wasn’t designed for typical enterprise needs, but if it were, employee-

facing or business-to-business scenarios could use enterprise authentication providers

in a similar fashion, instead of social authentication providers. We’ll want to attract

consumer users to our application and make it as easy as possible for them to start using

our application. This question helps us understand where users will come from which

helps us sort through the provisioning options discussed in Chapter 4.

 How Will Users Log In?

To demonstrate some common use cases, the application allows users to sign up for

a local account and then subsequently add the ability to link a social authentication

provider account to the local account. This enables users to log in via a social provider

account to access their documents. The application will maintain a local profile for

users and allow users to change their name, email address, and picture in the local

user profile. We want to use an industry standard protocol for authentication rather

than write custom code for every provider, so we’ll focus on OIDC for authentication,

as described in Chapter 6, and use our identity service to broker requests to social

identity providers as some aren’t compliant with this standard, and we don’t want to

write custom code for each one. This question helps us think through the authentication

protocols our application will need to support and that we’ll need a local repository of

user profile information.

Chapter 9 Sample appliCation with CuStom api

126

 Can Your App Be Used Anonymously?

Users can start out anonymously and create an anonymous document. To keep the

application simple, if a user subsequently signs in, their anonymous documents are not

converted to named-owner documents and are not visible to the named account. If an

anonymous document is edited, the application creates another copy of the document.

 Web-Based or Native App Format or Both?

The sample application will provide a web-based single-page application as well as a

native mobile application. This question helps us understand the scope of the project

and argues for creating an API that encapsulates the back-end business logic needed by

both front-end applications.

 Does Your Application Call APIs?

Our application will call our own custom, first-party API that provides access to users’

articles. There is no use of third-party APIs at this time. This leads us to realize we need a

scheme to authorize the applications to call the API. The use of OAuth 2.0, as described

in Chapter 5, will allow us to do this in a standard way that could also be used with third-

party clients in the future, if needed. Thinking about consent, our API is a first-party API to

our front-end applications which means we don’t need to obtain user consent to call the

API. The front end and API are logically part of the same entity. If we needed to call a third-

party API on the user’s behalf, our API authorization would need to obtain user consent,

but for our own API that is logically a part of the application, this is not necessary.

 Does Your Application Store Sensitive Data?

The sample application assumes that the data in a user’s article might be sensitive.

As a result, the web-based application will implement a session timeout, and both

applications will provide the ability for users to enable multi-factor authentication to

better protect access to their account.

 What Access Control Requirements Exist?

We first considered the capabilities of the two applications and decided that both would

offer the same functionality. Then we dove into the details of what users could do within

the applications.

Chapter 9 Sample appliCation with CuStom api

127

The goal of our application is to allow quick access to markdown documents with

features like pastebin. In order to do so, we would like to enable anonymous authors

with the ability to write and share documents. Obviously, this feature would be available

only for public documents, and such documents could be edited by the document

author or cloned and edited by someone else to create another public document. In

order to provide the ability to edit private articles, however, we’d need the user to sign up

for an account and log in to access private content.

Once logged in, users can edit their own private documents and share their

documents with others by specifying an email address domain. Each individual user can

access the documents they created as well as any documents which have been shared

with them individually or to a group to which they belong (based on email domain for

simplicity). Basing document sharing on a user’s email address’s Internet domain name

allows us to demonstrate a simple implementation of attribute-based access control

without much added complexity. A person with whom a document was shared can open

the document. If they edit it, they create another copy, of which they are the owner.

 How Long Should a User Session Last?

In order to protect users who are careless about leaving open sessions, we decided the

single-page application should have a 2-hour idle timeout and an 8-hour maximum

session timeout. After session timeout, a user needs to reauthenticate. The native

application does not implement a session timeout as we assumed it is run on a device

that is usually with the user, and we want to make it convenient for quick edits. Both

applications provide a means for a user to log out.

 Will Users Need Single Sign-On (If More Than One Application)?

In our sample scenario, there is only one application, so single sign-on is not needed.

If we had more than one application, or wanted single sign-on across the native and

single-page versions of our application, we could use the same identity provider for both

to provide single sign-on for users.

 What Should Happen When a User Logs Out?

When a user logs out, their application session should be terminated, and the user

should be returned to a home page from which they could log in again, if desired.

Chapter 9 Sample appliCation with CuStom api

128

 Are There Any Compliance Requirements?

To keep the example simple, we assume no compliance requirements. The sample does

not include a privacy notice, nor does it support any privacy requirements such as the

right to erasure. We can only do this because it’s a sample. Real applications have to

consider privacy requirements!

 Platform, Framework, and Identity Provider
In order to keep the applications simple and easy to understand, they are implemented

using the popular React Framework for the front end and Express.js on the back end. All

the code is written in JavaScript. This decision was made as the learnings here translate

to many frameworks in many different languages. The application components can be

easily deployed to a hosting platform such as Heroku1 or Ziet’s Now.2

The application was designed using a modern, API-first approach, so it has a custom

API for its back end. If an application delegates authentication to an OpenID Provider,

as described in Chapter 6, the access token it receives is for the OpenID Provider’s

API, specifically the UserInfo endpoint. To obtain an access token for our application’s

custom API, we need an authorization server we can configure to protect our own

API. We selected an identity provider service that supports OIDC and OAuth 2.0 so our

application can delegate authentication to it with OIDC and request authorization from

it using OAuth 2.0 to obtain access tokens for our custom API.

The identity provider service we chose can also function as an authentication

broker. Our application will delegate authentication to it, and it can in turn delegate

authentication to a variety of authentication services and return the results to our

application. Figure 7-4 in Chapter 7 shows this scenario. This allows us to efficiently

support SAML 2.0 identity providers, without having to implement SAML 2.0 directly

in our application. Our application can use the same provider to authenticate users via

OIDC and get access tokens for our custom API with OAuth 2.0.

1 www.heroku.com/
2 https://now.sh

Chapter 9 Sample appliCation with CuStom api

http://www.heroku.com/
https://now.sh

129

 API
In the old days, when starting to design an app, some people liked to start with the data

model and then build the app around it. One of the reasons to do so was to create proper

separation between the data model and control logic. The principle of abstraction is

still valuable today for good software architecture. Modern applications aim for strong

abstractions between the application front end and back end. One benefit of this is that

once the API contract has been somewhat established, it is possible to start developing

the back-end API and user-facing front end(s) independently. An API Server that

implements key business logic provides a back end that can serve multiple applications

on different platforms like iOS and Android. It could also facilitate integrations with

partners and external or internal developers writing agents and additional clients on top

of the API. With these ideas in mind, we started with the API and iterated from there.

With business logic implemented to be stateless and on a server, it can be protected

and scaled easily. We recognize that API Gateways are often used in modern application

deployment environments, but again, for the sake of simplicity, we decided not to

include such an element in the sample.

There are two major concerns for a back-end service:

• What actions need to be performed?

• For whom?

The former is focused on the business purpose and logic of the application. In our

case, this revolves around creating and viewing documents. As a starting point, we

usually like to look at our application specification and check if everything makes sense

without a user being in the picture. It’s not that we’re suggesting not having a user model.

The exercise of being able to write the application with as little application as possible

can help us align with the stateless RESTful principle and reduce the data required in

requests to the bare essentials.

Our API centers on one resource, namely, a user’s documents, and CRUD (Create,

Read, Update, Delete) operations on the documents. In keeping with the RESTful model,

our API has an endpoint for articles and supports standard HTTP “verbs” that map to

CRUD functions.

The application is fully functional without the notion of a user, as it allows creating

documents anonymously. This might entice users to try out the app who might

otherwise balk at having to sign up for an account first. However, if we enable a user to

Chapter 9 Sample appliCation with CuStom api

130

create documents anonymously and the user later signs in, documents created before

logging in will stay anonymous and public. The trade-off we made is that allowing a user

to start anonymously means that if they upgrade to a full user later, we miss out on the

ability to integrate the information about the user with content created anonymously.

If we required authentication from the beginning, this would not be an issue, but might

dissuade users from trying the app. We decided to allow anonymous use to encourage

users to try out the application with as little effort as possible.

 Protect the API
With the API designed, we needed a mechanism to protect the API so that it could

only be called by our application. The client application will use OAuth 2.0, described in

Chapter 5, to obtain an access token to call our custom API. This provided an industry

standard model that could support API authorization for our current applications and

could easily be expanded in the future to support the use of our API by external, third-

party partner applications if desired.

Both our single-page application and our native application use the OAuth 2.0

authorization code grant with PKCE for API authorization, as described in Chapter 5.

Our applications and API are owned by the same entity, so the applications are first-

party clients for the API and don’t need the user’s consent for the API call. However, our

API needs information in order to enforce access policy, including information about the

user. This brings us to the users of our applications.

We elected to use OIDC to delegate user authentication to the same authorization

server that protects our API. The front-end application can redirect the user to the

OpenID Provider and get back an ID Token with claims about the user. The application

needs information such as an identifier for the authenticated user for display purposes

and their email address for notification purposes. It can use the scope parameter in the

authentication request to specify what user profile claims it needs. In this case, it will use

“oidc profile email” to get basic profile attributes and email, as described in Chapter 6.

By using the same OpenID Provider for user authentication and API authorization

for our custom API, we can have the provider issue an access token with custom claims

to provide information about the user to our API. The custom API is a relying party to

the authorization server, and the custom claims in the access token will provide trusted

information to the API that it can use to enforce access policy for the users’ articles. This

brings us to the remaining scopes for the access token.

Chapter 9 Sample appliCation with CuStom api

131

 OAuth 2.0 Scopes – for API Authorization

OAuth 2.0 defines scopes as a means for an application to indicate the specific privileges

it requests for an API call. The single-page application and the native application enable

the same access and will therefore require the same scopes. We defined access scopes

for the applications around the API endpoints and functions the applications would

perform. This resulted in the following scopes that the applications can request:

• get:article

• post:article

• patch:article

• patch:profile

• get:author

Note that these are the privileges that the applications will use with the API, and not

privileges for users, which we’ll discuss in the next section. We registered our API in the

authorization server and defined these scopes for it. This takes care of the applications’

privileges.

 User Authorization

Once we have built the application’s business logic and enabled the applications to call

the API, the next major concern is “for whom” will the API actions be done. This is a

multifaceted question, as this includes “who is the user?”, “are they allowed to perform

this action?”, “at this time?”. Attributes needed to answer these questions must be present

in the API request in order for the API to know if it should perform the requested action.

Since all of this has to be present in the request, it is lucrative to standardize and reuse

the logic that drives this.

OIDC can deliver to our application information about an authenticated user, and

OAuth 2.0 can be used to obtain an access token for the API. The access token can

contain additional claims to augment the information provided to an API. We’ll use

additional claims to provide the API information about the user, so it can enforce access

policy at the level of individual users and ensure that a user can only access the articles

they’re allowed to view. The additional information could be put into additional, custom

claims in the access token, or it could be bundled into an existing claim. User privileges

are outside the scope of the OAuth 2.0 specification, so different OAuth 2.0 providers

Chapter 9 Sample appliCation with CuStom api

132

may offer different ways of handling this. We chose to use as our provider Auth0,3 which

uses the scope claim to represent the integration of delegated and granted permissions.

In any case, the API simply needs the logic to retrieve the necessary information from

the various claims in the access tokens it will receive. Different OAuth 2.0 providers

have used different access token formats, so a helper function in the API can be used to

extract the information from claims in the token or a token introspection endpoint at the

provider, depending on the format used. This helps us encapsulate all vendor-specific

logic for validating tokens and extracting or querying claims in one place.

 API Implementation
Going back to our original requirements, we ideally want the access token to have

information about the user requesting an article, such as a user identifier and

permissions. In order to keep things as flexible as possible, we added to the API two

helper functions.

function getUserId(token) {} - Takes a token and extracts the user_id

function hasPermission(token, permission) {} - Given a token and a set of

permissions, checks if the token has all the permissions

The first function helps the API identify the user, by retrieving the identity of the user

from the “sub” claim in the token. As recommended in Chapter 4, we use an internal,

application-specific identifier for a user in all application and API logic and use separate

attributes for display and notification. This enables a user to change attributes such as

their display name or notification email address without impacting articles tied to their

identity. To keep the program simple, we didn’t implement functionality to let them

actually make such changes.

The second helper function is to check if the application and specifically the user

have the permissions to perform the requested action.

Defining and abstracting these two functions has the advantage that it encapsulates

in one place the logic to deal with any changes in token formats or information over time

or if we have to change providers for some reason.

In addition, logic is needed to validate any tokens before using them. When building

your application or API, we recommend using standard libraries for your language,

3 Full disclosure: At the time of writing this book, the authors work for Auth0.

Chapter 9 Sample appliCation with CuStom api

133

framework, platform, or provider to implement these protocols as well as validate and

consume these tokens. This simplifies your application and may help isolate your code

from vendor changes.

 Processing Requests

When handling requests, we chose to have the API follow a middleware approach, which

is to handle the logic of processing a request in multiple parts. In our demo application,

we do this in the following order:

• IP-based rate limiting

• Check token’s validity

• Extract token information

• Extract request data

• Handle request

If using a reverse proxy or an API Gateway, you may find that the top 3 are done

for you. If not, you’ll have to implement the steps. Your OIDC/OAuth 2.0 provider may

provide libraries to help with validating and consuming tokens. For the remaining tasks,

you may have noticed that the middleware that checks for the token’s validity is early in

the list, allowing us to reject an unauthorized response as early as possible. For example,

if a user does not have a subscription that allows big files, the application can simply

respond with an error very early in the process.

It is essential for an API to validate an OAuth 2.0 access token received with a

request, before processing the request. The mechanism to validate an access token

will vary by provider and is influenced by the token format used by a provider. An

authorization server may provide a token introspection endpoint that can be used for

this purpose. Alternatively, an authorization server may use a JWT, CWT, or IronToken

access token format that supports independent validation by the resource server. The

documentation for an authorization server should indicate how an API should validate

access tokens it receives. This should include checking the issuer matches its chosen

authorization server, the expiration has not passed, and that the API is the intended

audience (recipient) for the access tokens.

There are cases where applications or APIs need meta information about a token

such as its validity, the scopes for which it was authorized, and possibly the context

surrounding issuance which includes the subject (user) who granted authorization

Chapter 9 Sample appliCation with CuStom api

134

and the client to which the token is issued. The original OAuth 2.0 specification did

not provide a means for this, but two approaches have been used, namely, a token

introspection endpoint and JWT-formatted tokens.

The OAuth 2.0 Token Introspection specificationi defines an Introspection endpoint

for authorization servers which resource servers can use to obtain token metadata.

This approach requires a call to the authorization server. Some providers have taken

an alternative approach using JWT-formatted access tokens. With a JWT access token

format, the resource server can obtain metadata about the token from claims within the

JWT payload, after validating the token. This eliminates the need to call the issuer to

validate each token. Our authorization server uses JWT-formatted access tokens so our

program can extract claims information from the access token.

 Extensibility and Adding Custom Claims
Somewhere along the line, you may have wondered how the custom claims will get

into the access token. This is made possible because the authorization server we chose,

Auth0, offers an extensibility feature which allows us to write custom code to tailor

the authentication and authorization process to the needs of our application. Other

providers offer similar features.

In the previous sections, we discussed the need for custom claims. In addition to

information about who the user is, we need information about the team a user belongs

to. Our application supports an access model that is loosely based on attribute-based

access control. Our application is primarily concerned with documents, and we store

permissions in the document metadata, similar to how files have permissions associated

with them in Unix-like operating systems.

In our current implementation, each file has an array in metadata with the following

shape:

{

 identifier: String,

 permission: String[],

}

Identifier is either an email address or a domain name, while permission is one or

more of the following, “read,” “write,” “share,” “owner.” In the current permission model,

a complete email will be matched in its entirety with the user’s email. In the interest of

Chapter 9 Sample appliCation with CuStom api

135

privacy, instead of sharing the full email, a salted hash is stored and acquired. We also

allow using @domain.com identifiers which must start with the @ symbol. These allow

users to share with anyone with a specific @domain.com email. Lastly, the creator of

the file has all four permissions. To keep things simple, only the owner of a file is able

to grant “share” privilege to others. This simple model was chosen so the program

can demonstrate how attributes can be included in claims to facilitate access policy

enforcement in APIs, as described in Chapter 8.

To add claims to an access token, we will have our authorization server add an extra

nonstandard claim “https://dev.doc/team.” This claim is added to the token if the user

is part of a team. For the sake of simplicity, the team is merely a domain name, which

is hashed and salted for privacy. The extensibility feature in our chosen authorization

server allows us to use code logic to augment the token. We used a snippet of code like

the following to add a claim:

async function (user, context, callback) {

 user.app_metadata = user.app_metadata || {};

 user.app_metadata.teamId = user.app_metadata.teamId || async

hash(getDomain(user.email));

 context.accessToken["https://dev.doc/team"] = user.app_metadata.teamId;

 callback(null, user, context);

}

We have found that access policy and logic vary quite a bit, and it is very common

for applications to have unique requirements in this area. We recommend checking for

some kind of extensibility feature when selecting your identity provider. If your identity

provider doesn’t support this, you’ll need to handle this logic on the back end or add this

in the provisioning step. However, since this is conveniently handled for us out of the

box in our provider, we can focus on our business logic. The same need for extensibility

applies to front-end customization as well, as most applications will want to customize

consent screens and need tailored consent management or approval logic. Having an

identity provider with some form of front-end extensibility for functions like login, sign-

up, and consent can reduce what you have to build in your application.

So far, we’ve described the API, delivering information to the API via an access token,

and how the access token is augmented with custom claims and processing the API

requests. This brings us now to the front end.

Chapter 9 Sample appliCation with CuStom api

https://dev.doc/team

136

 Front End
Separating the business logic in the API from the presentation layer allows us to build a

dynamic presentation layer to run on the client device. The advantage is that front- end

logic can focus on delivering a good user experience, while the business logic and sensitive

data are protected on the server. In the application, we use OpenID Connect (OIDC) to

delegate authentication to our authorization server. The application receives an ID Token

with claims about the user. The client can use this information about the user to tailor

the application user interface, as appropriate, based on the user’s profile and privileges.

It’s important to note that the use of user privileges on the client is purely for display

purposes. An important design assumption is that one cannot trust what happens on the

client device because developer tools, debuggers, and the like could potentially be used to

tamper with client-side logic. Information about the user’s privileges can be used to render

the user interface so it only shows features a user is allowed to use, but when the user takes

an action, the resulting requests to the server must be sanitized and validated on the server

to check if the user has the necessary permissions. Such validation and access policy

enforcement logic must execute on a protected server, where users cannot tamper with it.

 Front-End Functions
Keeping that in mind, on the front-end application client, the common problems to

solve are authenticating the user to the application, offering the user a graceful user

experience, and enabling logout. Thus the core tasks for the application front end are

authenticating the user, obtaining the ID Token and the access token, storing the tokens,

and then using the information acquired about the user to build the user experience.

Our application front-end therefore needs four basic functions:

• authenticate() – To authenticate the user using the identity provider

• getToken() – To get a token to call an API with specific scopes

• logout() – To revoke the session

• getUserProfile(audience, scope) – To get the user’s profile for a

specific API and scopes

There may be a need for additional helper functions depending on specific

application needs, but something akin to these four functions are commonly needed in

typical applications.

Chapter 9 Sample appliCation with CuStom api

137

The application uses OpenID Connect to authenticate users and acquire user

information from an ID Token. There are several well-designed libraries that provide

an implementation for OpenID Connect clients. In our case, we chose auth0-spa-js,

which is a library provided by our OIDC/OAuth 2.0 provider, as it offers some

convenience methods on top of the basic functionality of authenticating a user and

returning claims. We recommend using a library to handle protocol details for you

and simplify your application code.

 Authenticating the User

Both front-end clients use OIDC to delegate user authentication to the OpenID Provider.

There are some differences between the native app and single-page app in terms of how

they delegate authentication. On the Web, it is natural for the web-based single-page

application to redirect the user’s browser to the identity provider in order for the user to

authenticate there. However, with native applications, this may not be available, as such

applications do not run inside a browser-like runtime environment. Our native application

is designed for mobile devices and can use the underlying mobile device system’s shared

web browser to redirect the user to the identity provider to log in. Once the authentication

flow is completed, the application front end receives an ID Token and an access token.

The front end uses the information in the ID Token to obtain information about the

authenticated user, and it uses the access token for requests to the API. In addition, the

mobile app also requests and receives a refresh token which it uses to renew an access

token when it expires.

 Tokens

After the user has been authenticated, the application has an ID Token, an access

token, and in the case of the native app, a refresh token. The ID Token is decoded and

validated by the application before using any of the claims in it. Then the ID Token is

stored in memory cache on the single page application and in a local store on the mobile

application. This allows the application to quickly render the user interface elements that

require user information without having to repeatedly call out to the OpenID Provider.

The access token is not stored by either application, to minimize the risk of access token

exposure. Given the nature of the application, and since access tokens are created with a

short token duration, the need to make a second call to the API within the lifetime of an

access token is deemed unlikely.

Chapter 9 Sample appliCation with CuStom api

138

 Making Protected API Calls

As the user interacts with the application, it will make calls to the API, providing the

access token in the HTTP authorization header for the API request. In order to reduce the

risk if the access token were to be stolen, we configure the access token duration in the

authorization server to be short-lived. This is a trade-off between scalability and security.

A shorter duration access token means it may need to be renewed more frequently, but if

it is compromised, the window of time in which it can be used will be short.

 Sessions

There are two user sessions in our sample scenario, as there is an application session for

the user as well as an identity provider session for the user.

The single-page app relies on the identity provider session for a user and, as such,

does not store data locally, beyond storing the tokens it receives in the in-memory

cache. This simplifies the application but comes with the disadvantage that every time

the application is started in the browser, it has to check with the identity provider for the

status of the user’s session.

The native app takes a different approach. The design model for the native app

allows the user session to continue until the user explicitly logs out. The native

application can continue to run on the user’s device until it is shut down. When the

user interacts with the application, it may make an API call and only then will it need

an access token. The native app can make use of a refresh token to obtain a new access

token if the old one has expired when the native app needs to make an API call. In our

current implementation, the refresh token acquired during the initial authentication is

stored in the operating system–provided secure storage implementation.

As you will learn in Chapter 10, in a typical SSO deployment, a user may have

multiple sessions including an application session, identity provider session, and

an additional session in each of any other applications they’ve authenticated to via

the same identity provider. It is desirable in some cases to have a binding between

the session at an identity provider and all the relying parties it serves, so that a given

application can be aware of changes to the user’s session in the identity provider

and vice versa. Unfortunately, at the time of writing, there is no finalized standard

way of achieving this with OIDC. So far, there is only a draft specification for session

management which we elected not to use as it has not been approved.

Chapter 9 Sample appliCation with CuStom api

139

 Token Management

We abstract token management in the “getToken” method for the front end. When

the token is acquired, the application uses the “expires_in” element of the response

to compute an expected timeout for the token. This is stored along with the audience,

scope, and other metadata associated with the token. Later, when the application needs

an access token with specific scopes, the getToken method simply returns an access

token from the cache, until the token expires, at which point the application needs to

request a new access token.

The mechanism to obtain a new token varies by the type of application. The single-

page application cannot securely store a refresh token, so cannot use this method of

renewing an access token.4 It could redirect the user to the identity provider to obtain

a new token, but this can be disruptive to the user experience. To avoid this, it uses

a library from the OpenID Provider that implements a more sophisticated means of

interacting with the OpenID Provider based on HTML5 Web Messaging. It requests this

by using the web_message response_mode parameter in the authentication request.

The options available for renewing tokens may differ with your chosen identity provider.

We recommend using the method recommended by your provider. In our case, we

abstract getToken with auth0-spa-js’ getToken method. The auth0-spa-js offers a cache

implementation as well, so we do not reimplement it in the application.

On the native application, the implementation is slightly different as it can use a

refresh token. The native application uses a refresh token to call the OpenID Provider’s

token endpoint in order to obtain a new access token. The refresh token will be stored by

the native application using secure device storage, such as KeyChain on iOS.

 Logout

Logout is implemented differently on the two platforms. Both applications destroy any

tokens they’ve received during the user’s session as well as any cookies and session

state set by the application. In addition, the single-page application, when logging out,

redirects to the OpenID Provider’s logout endpoint. This terminates the identity provider

session as the provider will log the user out when the logout endpoint is invoked.

The implementation for logout and session termination is vendor specific, and we

recommend checking the vendor’s documentation for their specific implementation of

4 https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-4.12

Chapter 9 Sample appliCation with CuStom api

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-4.12

140

any logout-related features. The native app deletes any session data, including the ID

Token and access token, and it also revokes the refresh token with a call to the identity

provider. The native application could have opted to log the user out by calling the

identity provider’s logout endpoint, but we chose not to use this option as the user

experience is different on a mobile device and doing so can break other application

sessions relying on the same OpenID Provider.

There were two other considerations related to logout. As there is only one

application in our case, there is no single logout. The implementation for single logout,

if needed, or session revocation is vendor specific, and we recommend looking into the

vendor’s documentation for their specific implementation.

As mentioned previously, different identity providers may use different token

formats. With a JWT type of access token, it is not possible to revoke the access

tokens unless the issuing provider supports a blacklist feature. If not revoked or

blacklisted, the access tokens will stay valid until they expire. In practice, it’s often

more convenient to use a short token expiration than to call the provider for each

token to check for blacklisting. Our provider uses a JWT-format access token. The

access tokens for our API are configured in the authorization server to have a

sufficiently short expiration period so we can avoid the development work and

performance impact of checking for blacklisting. Again, it is necessary to check for the

recommendations from your chosen provider on how to terminate access associated

with security tokens it has issued.

 Summary
We’ve covered in this chapter how we designed and built a sample application that uses

OIDC for user authentication and OAuth 2.0 for API authorization for our custom API. In

this scenario, both functions are handled by the same OpenID Provider/OAuth 2.0

authorization server. We shared some key design decisions and implementation points

involved in creating the application. The following chapters will discuss additional

aspects of identity management that applications have to handle after the user has been

initially authenticated, starting with sessions.

Chapter 9 Sample appliCation with CuStom api

141

 Key Points
• OIDC is used to authenticate users and obtain an ID Token with

claims about the authenticated user.

• OAuth 2.0 is used to obtain an access token to authorize the

application to call our custom API.

• The access token returned by a social identity provider is for the

social identity provider’s API.

• To obtain access tokens for our custom API, we need to obtain and

configure our own authorization server to protect it.

• Our authorization server adds custom claims to the access token to

provide additional information to the API about the user.

• The custom claims enable the API to enforce user-level access policy.

• Both applications use the OIDC authorization code grant flow with

PKCE for a user’s initial authentication.

• The native application, implemented in Cordova, uses the device’s

system browser to redirect the user to the OpenID Provider.

• The single-page application uses the OIDC Implicit Flow with a

library that uses the web_message response mode for renewing

access tokens for a better user experience.

• The native application uses a refresh token to obtain a new access

token if the previous access token has expired.

• Each of the applications uses its own client identifier so the API can

distinguish between the two clients for access control and logging.

 Note
 i. https://tools.ietf.org/html/rfc7662

Chapter 9 Sample appliCation with CuStom api

https://tools.ietf.org/html/rfc7662

143
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_10

CHAPTER 10

Sessions

Everything measurable passes, everything that can be counted has an end.
Only three things are infinite: the sky in its stars, the sea in its drops of water,
and the heart in its tears.

—Gustave Flaubert, French novelist,
from The Letters of Gustave Flaubert (1980)

A user’s interaction with an application over a period of time is known as a session. Upon

authenticating to an application, a user expects to navigate through the application and

perform various transactions during their session without having to authenticate every

time they do something. In order to make this possible, an application needs a way to

track that a user has been authenticated. Data about whether, when, and how a user

has authenticated may be tracked by an application along with other information it

maintains during a user’s session. Sessions and session state may be handled differently

for web applications, single-page applications, and applications that run natively on a

device, such as mobile applications. In this chapter, we’ll describe where sessions exist,

session expiration, and renewing sessions.

 Application Sessions
During a user’s session, an application may need to track particular information such

as in-flight transactions or how long a session can continue. With traditional web

applications, the user’s session state may be maintained on the server by assigning it a

session identifier and storing it in memory, a filesystem, database or shared service like

Redis.1 The session identifier can be stored in a cookie set by the application, which is

1 https://redis.io/

https://redis.io/

144

then sent by the browser with each request to the application server. When a request is

received, the server can use the session identifier from the cookie to retrieve the user’s

session information and process the request. Sometimes, if the session data is small

enough, it may all be stored in the cookie, eliminating the need for server-side storage.

Traditional web applications often limit the time for which they retain a session.

Session information maintained on a server typically consumes server resources. If

a user abandons a session by forgetting to log off or a client loses its connection to a

session for some reason, server resources would be wasted. In addition, a session left

open and forgotten on a user’s computer invites some risk of potentially being taken

over by a malicious actor. As a result, traditional web applications often implement

a session timeout which effectively limits how long a user’s session can last. Session

timeout might occur after a period of inactivity and/ or a maximum period of time, with

the allowed session duration in either case often based in part on the sensitivity of the

application and data involved.

With single page applications and stateless back-end APIs, server-side sessions for

users are no longer required, but the concept of a session timeout persists for other

reasons. Applications are still vulnerable to the possibility that a session left open for an

extended period might be hijacked. This concern is especially relevant for applications

handling sensitive data, many business-facing applications, and applications accessed

from shared devices. Having a user reauthenticate when a session times out provides

some assurance that the authorized user is still in control of the device and session. As

applications increasingly leverage identity providers, a user’s reauthentication can renew

an identity provider session leveraged by many applications, meaning a user might not

have to actively reauthenticate to every application.

Native applications running on mobile devices have additional considerations.

The small form factor and input mechanisms on mobile phones make frequent

reauthentication a significant detractor to user experience. Especially for some

consumer-facing applications, it is desirable to remove barriers to usage and make it

easy for users to stay logged in as long as possible. Native applications often use stateless

APIs resulting in little server-side cost for allowing a user’s native application session

to continue for an extended period of time. Sensitive applications, such as banking

applications, often still implement a session timeout on mobile devices, but less-

sensitive native mobile applications may allow a session to continue for an extended

period, until a user explicitly logs out.

Chapter 10 SeSSionS

145

 Identity Provider Sessions
Identity providers also need to maintain a session for a user as a mechanism to

remember and recognize an authenticated user across multiple requests. One solution

is to create a session object with a session identifier and attributes such as an identifier

for the user, the authentication mechanism used, the time of authentication, and when

the session will expire. An identity provider can create a cookie in the user’s browser

that contains all the session information or just a session identifier that maps to a server-

side session data store. The browser then sends the identity provider cookie with every

request to the identity provider. When a user is redirected to the identity provider, it uses

data from the cookie to detect if a user already has an authenticated session.

This scheme helps an identity provider recognize users it has authenticated. After

successfully authenticating a user, the identity provider sets or updates in the user’s

browser a cookie with session information and returns a security token to the application.

The application may then create or update its own application session for the user. When

the application session expires, the application can check the status of the user’s session

at the identity provider. It may do this by redirecting the user’s browser to the identity

provider. Such a request will include any cookies set previously by the identity provider,

which contain the user’s session information. If the user’s session at the identity provider

is still valid, the identity provider returns a new security token to the application without

forcing the user to authenticate again. Some identity providers may support alternative

mechanisms for checking the status of the user’s session at the identity provider which

can enable an application to avoid a browser redirect when the user’s identity provider

session is still valid. Of course, if the identity provider session has expired and the user

needs to reauthenticate, the user will need to be redirected to the identity provider.

 Multiple Sessions
A user may have multiple sessions across different solution components. The user may

have a session in one or more applications. If an application delegated authentication to an

identity provider, the identity provider may also have a session for the user. If an application

delegates authentication to an authentication broker (explained in Chapter 7) that in turn

delegates authentication to a remote identity provider, such as a social identity provider or

corporate identity provider, there may be three architecture layers at which sessions exist.

Figure 10-1 shows three different architectural models and where authentication sessions

may exist. (Chapter 13 on Logout contains further discussion on sessions which may exist.)

Chapter 10 SeSSionS

146

 Session Duration
Each session established for a user can be terminated at different times and for various

reasons. Sessions may time out if they are established with a specific duration. A session

may have an idle timeout where the session is invalidated if the user has been inactive

for a period of time. A session may also have a maximum session time limit which ends

the session after a period of time regardless of the user’s activity level.

With an idle session timeout, if a user takes certain types of actions tracked by the

application, the idle session timer gets reset, which extends the session. Activity in

an application may reset an application session’s idle timer, but not be visible to an

identity provider and consequently not reset an idle timeout at the identity provider. The

identity provider’s idle timeout is typically only reset by requests visible to it, such as an

authentication request from an application.

If an application enforces an idle session timeout, it can be disruptive to a user to

suddenly lose an application session, especially if the user was in the middle of entering

a lot of data for a transaction! An application can mitigate the potential for bad user

experience by tracking the session duration, providing a warning to users before the

session times out, and resetting the idle timeout if the user indicates they wish to continue.

Proactively prompting the user when a session timeout approaches and letting them renew

their session can avoid bad user experience when enforcing an idle timeout is required.

Authenticated user session

Figure 10-1. Architectural Layers Where User Sessions May Exist

Chapter 10 SeSSionS

147

The appropriate session duration time for an application will vary based on

factors such as the sensitivity of the application or the delivery platform. For an idle

timeout, it may help to consider how long you would want to tolerate a user’s session

remaining open if the user walks away from their desk with the application open. For

applications on mobile phones carried around by their owners, it may be less likely

for an open application session to be physically accessible by others. For a maximum

session timeout, it may help to evaluate how frequently or infrequently the user should

reauthenticate to confirm they are still in control of the session as well as how frequently

user profile information might need refreshing. It’s a balance between protecting the

user and data they access and annoying the user by requiring them to authenticate too

frequently. The duration may differ for applications run on desktop/laptop computers

vs. mobile phones and for consumer-facing applications vs. enterprise applications as

well as for applications with data of different sensitivity levels. It can often take some trial

and error to get it just right.

Sessions may end for reasons other than a timeout. A user may explicitly log out.

This is covered in more detail in Chapter 13. An administrator may terminate a user’s

session at an identity provider for various reasons, such as in response to a report of a

compromised credential. A user’s session might be terminated if a server is restarted. A

user’s session might exist at a server, but be irretrievable if the user deleted the cookies in

their browser that contain information about their session. The possibilities for session

termination should be considered in application designs with appropriate actions

defined for each case.

With many ways for sessions to terminate, and multiple sessions in the mix, it

is important for application designers to specify or understand the impact on other

sessions when any session is terminated. For example, if an application session expires,

should it request the termination of the user’s session at an identity provider? If a user’s

identity provider session is terminated, should that trigger the immediate termination

of a session in a related application using the same identity provider? The options to

consider may be constrained by identity provider policy when an identity provider is

controlled by an external party, but designs should still enumerate what happens for

different session termination scenarios.

An application may want to periodically check the status of a user’s session at an

identity provider. This may be done so the application can terminate its own session

when the identity provider’s session has ended. This may also be done when an

application’s session for a user has timed out, with the application checking the state of

the user’s identity provider session as part of its own session renewal process.

Chapter 10 SeSSionS

148

 Session Renewal
When an application’s session for a user expires, the application may wish to enable

the user to renew the session. It can do this by redirecting the user back to the identity

provider. The identity provider can authenticate the user if it doesn’t have a valid

session for them and return new security tokens to the application per the parameters

in the application’s authentication request. If the user’s identity provider session is still

valid, the user would not need to reauthenticate, and the application would receive

new security tokens based on the user’s existing session. The application can then use

information in the new security tokens when renewing the user’s application session.

Applications can use parameters in an authentication request to suppress or

force active authentication. It may be desirable, for example, to have reauthentication

occur if a certain amount of time has passed since the user last actively authenticated.

With OIDC, the optional “prompt” parameter can be added to an authentication

request to force or suppress authentication at the OpenID Provider. The optional

“max_age” parameter can be used to control how long a user can go without actively

reauthenticating. Applications using max_age should still check the auth_time claim in

the ID Token to ensure the requested max_age was followed. Use of max_age and auth_

time is useful if an OpenID Provider has a relatively long maximum or idle timeout, and a

particular application wishes more frequent authentication. With SAML 2.0, applications

can use the “ForceAuthn” attribute of the authentication request to force the identity

provider to actively authenticate the user. Such authentication request parameters give

applications some measure of control over whether the user is actively reauthenticated

when they are redirected to the identity provider.

Individual identity providers may support alternative methods for checking the

status of a user’s session at the identity provider. If a user has a valid session at an

identity provider, such methods may enable renewing an application session without

requiring a browser redirect. If a user’s identity provider session is no longer valid, the

user can then be redirected to renew the identity provider session.

 Token Renewal
In addition to renewing a session, an application may need to periodically renew a security

token. The application may have received an ID Token and possibly an access token to

call an API. An application may wish to periodically request a new ID Token to ensure it

Chapter 10 SeSSionS

149

has up-to-date claims for an authenticated user. An application may wish to request a new

access token because it needs to call an API and the access token it requested previously

has expired. It is considered a best practice in many cases, and especially with public

clients, to issue access tokens with short expiration times, and renew the tokens when

needed, so the need for new tokens may occur throughout a user’s session’s existence.

During an application session, an application can renew an ID Token or access token

it previously obtained from an OpenID Provider using a couple different mechanisms,

based on the type of application. Traditional web applications and native applications

may be able to obtain a refresh token for use in renewing ID Tokens and/or access

tokens, but they are not required to do so. Using a refresh token to renew tokens avoids

the need to interrupt the user experience, but back channel requests with a refresh token

may not update the identity provider’s session cookie, resulting in a faster idle timeout.

Single-page applications implemented as public clients cannot securely store and

handle refresh tokens so must use an approach that doesn’t rely on refresh tokens unless

their authorization server implements measures against leaked refresh tokens such as

refresh token rotation or sender-constrained refresh tokens.2 Applications that do not

receive refresh tokens can redirect the user to the OpenID Provider when new tokens

are needed. If the user has a valid session, the application will receive new tokens. If the

user does not have a valid session, the request will trigger authentication and consent

as needed. Even applications with refresh tokens may want to use the redirect approach

periodically to update the identity provider’s session cookie and idle timeout.

Redirecting the user to the OpenID Provider and back, however, involves challenges

as it can interrupt the user experience. With single-page applications, this can result in

the loss of a user’s work unless the application saves it and restores it after the return

from the OpenID Provider. One improvement is to do the redirect using a hidden iframe

in the application and setting the “prompt” parameter to “none” to avoid interrupting

the user experience. If the user has a valid session, the application will receive new

tokens. If not, the application will receive an error response and can redirect the user

again without the “prompt=none” option to trigger authentication. An OpenID Provider

may provide an SDK to make this easier for applications.

2 The “OAuth 2.0 Security Best Current Practice” document specifies refresh token rotation and
sender-constrained refresh tokens as two mechanisms for this. https://tools.ietf.org/html/
draft-ietf-oauth-security-topics-13#section-4.12

Chapter 10 SeSSionS

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-4.12
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13#section-4.12

150

 Reconstituted Sessions
It can be disruptive to users to have their session time out frequently in heavily

used applications if they have to reenter several selections when they reauthenticate. An

application that needs a session timeout and falls in this category may want to provide

an improved user experience by offering a session that can be reconstituted after session

timeout. With this scheme, upon session timeout, the system invalidates the session for

further use, but retains a memory of the session and the identity associated with it, so that

the session state can be restored to its former state if the user actively reauthenticates.

Such a session is terminated and permanently deleted by an active user logout, not a

session timeout. That said, it is still desirable to have a limit for how long a session stays

in a dormant state, to reduce backward compatibility issues and to avoid storing session

data for sessions orphaned by events such as a user deleting session cookies.

 Summary
Applications maintain sessions for users during a user’s interaction with the application. If

applications delegate authentication to an external identity provider, there may be multiple

sessions for the user at different layers within the solution architecture. Each component

maintaining a session for a user may have one or more types of session timeout. Sessions are

a key enabler for single sign-on, which just so happens to be the topic of the next chapter.

 Key Points
• A user’s interaction with an application for a duration of time is a session.

• Session state may contain data about the user and authentication event.

• In solutions with single sign-on, a user may have multiple

authentication sessions.

• Sessions may be subject to an idle and maximum timeout.

• Session duration is typically based on the sensitivity of the resources

accessible from the session, the application delivery platform, and

the type of application.

• A continuous authentication session can be used to remember and

reconstitute user sessions which have expired.

Chapter 10 SeSSionS

151
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_11

CHAPTER 11

Single Sign-On

A ripple widening from a single stone

Winding around the waters of the world.

—Theodore Roethke, American poet, from The Far Field (1964)

Now that we’ve covered sessions, we can discuss single sign-on (SSO), starting with what

it is and why it is valuable. We’ll also cover how it works and considerations for attributes

of single sign-on sessions to help you design SSO for your projects.

 What Is SSO?
Single sign-on is the ability for a user to authenticate once and access multiple

applications without having to log in again. It is usually enabled by using an identity

provider. This chapter will focus on SSO and assumes a set of applications that use

either OIDC or SAML 2.0, use the same identity provider and are accessed via the same

browser, or, in the case of native applications, at least use the same browser when

delegating authentication to the identity provider. Once authenticated, a user enjoys

single sign-on access to applications as long as their identity provider session (SSO

session) has not expired or been terminated.

Single sign-on can aid a variety of scenarios. In consumer-facing environments,

for example, a user might enjoy single sign-on across multiple applications that allow

the user to log in via Google Sign-In.i In an enterprise environment, an employee

might enjoy single sign-on across internal and cloud applications that leveraged their

company identity provider for authentication. In universities, students, professors, and

administrators might enjoy single sign-on across university applications leveraging a

university identity provider.

https://www.goodreads.com/work/quotes/14197

152

Single sign-on offers many benefits. For users, single sign-on offers the convenience

of not having to authenticate as often, fewer usernames and passwords to remember,

and no exposure of their credentials to applications. Application owners can delegate

to the identity provider the work for implementing login pages, credential validation,

secure storage of credentials, and some account recovery features. For a business or

organization, single sign-on additionally provides a single place at which to implement

and enforce authentication policy, different forms of authentication, account recovery,

logging, and account termination. It’s easier to enforce best practices in a single place

than in many individual applications. SSO also improves security to the extent that users

with only one password to remember are less likely to write it down on the proverbial

sticky note or whiteboard.

There are, however, a few trade-offs with single sign-on. Implementing single

sign-on creates a gateway to your application with the potential to be a single point of

failure. A centralized service also provides a single point of attack. To mitigate these

risks, it’s essential to select an identity provider that is designed to be highly available

and implements security best practices. An identity provider also has greater visibility of

user activity and the ability to track users across sites, which can be a privacy concern.

When selecting an identity provider, users and businesses should perform due diligence

evaluation of the privacy features and security certifications of a provider before

entrusting their application’s authentication to it.

 How SSO Works
Single sign-on is possible with the authentication protocols discussed in this book

because an identity provider maintains a session for a user it has authenticated.

Using the example shown in Figure 11-1, a user visits application 1 which redirects

their browser to an identity provider with an authentication request. The identity

provider authenticates the user, establishes a session for the user, and creates a cookie

in the user’s browser with information about the session. Then it redirects the user’s

browser back to the application with security token(s) which contain data about the

authentication event and authenticated user. The application can then create or update

its own local session (and possibly a cookie) for the user as appropriate for the type of

application.

Chapter 11 Single Sign-On

153

If the user then visits application 2 with the same browser, the second application

detects that the user has not yet logged in to it and redirects the user to the identity

provider. The user’s browser includes the identity provider cookie with the request, so

the identity provider uses the cookie to detect the user already has an authenticated

session at the identity provider. It checks if the user’s session is still valid and, if so,

redirects the user’s browser back to the second application with the requested security

token(s) without prompting the user for credentials. The second application then creates

or updates a local session for the user (and possibly a cookie) as appropriate for the type

of application it is. The user can continue to access subsequent applications or come

back to the first two, without signing in again, as long as their session at the identity

provider, often called their SSO session, remains valid.

There are various reasons that the user’s session might become invalid. It might

have timed out as described in Chapter 10. Alternatively, the session might have been

terminated at the identity provider by an administrator or if the user logged out of the

identity provider. The user might have even logged out of another application that

triggered a logout request to end the identity provider session. We’ll cover more about

logout scenarios in Chapter 13. Regardless of the reason, if a user is redirected to an

identity provider with an authentication request and their session is no longer valid, the

Figure 11-1. Single Sign-On

Chapter 11 Single Sign-On

154

identity provider will prompt the user to reauthenticate (unless the request contained

authentication request parameters to suppress active authentication).

Even with a valid SSO session, there are situations where the user still has to interact

with the identity provider. If the user visits an application that requests API authorization

to call an API on the user’s behalf, and the identity provider is also the authorization

server for the API, the identity provider will prompt the user for consent for the API access.

If the user visits an application that requires a session with a stronger or different form of

authentication than that used to establish their existing session, the user will be prompted

to meet the new application’s authentication requirements. If an application includes

in its authentication request a parameter to force authentication, the user will need to

reauthenticate. Similarly, a parameter can be used to specify a maximum length of time

that can elapse between active authentications, and this may trigger a need for a user to

reauthenticate as well. In the absence of such special cases, SSO enables a user to access

multiple applications after authenticating once, until their authentication session expires.

 SSO Session Attributes
When implementing single sign-on with an identity provider you control, there are

several features to configure, from session duration to the strength of the authentication

mechanisms used as well as the login page branding and mechanisms available for

terminating sessions.

 SSO Session Duration
The length of the SSO session, often specified in terms of maximum and idle timeouts,

should be configured, keeping in mind the sensitivity of the applications relying on

the SSO session; however, it is possible to accommodate applications with different

requirements. If an application using OIDC requires a user to actively authenticate more

frequently than an identity provider session would require, the “max_age” parameter

in the authentication request can be used to specify the maximum allowed time, in

seconds, that can elapse since the user was last actively authenticated. The use of this

parameter requires the identity provider to actively authenticate the user again if the

value of max_age in an authentication request is less than the elapsed time since the

user last authenticated. Applications should still check the auth_time claim in the ID

Token to ensure the requested max_age was followed.

Chapter 11 Single Sign-On

155

An application can enable a user to remain active in the application without

reauthenticating for a longer time than an identity provider session by using a longer

application session timeout.

 Multiple Identity Providers
If SSO is implemented using an authentication broker that allows for the configuration

of multiple identity providers, the broker should be configured to ensure that users

from each identity provider can only log in to the applications appropriate for them.

For example, if a company has an authentication broker with one identity provider

configured for employees and another configured for partners, the configuration should

ensure that partners cannot get access to applications intended only for employees.

This scenario is illustrated in Figure 11-2. In this example, Application 1 should only be

accessed by users authenticated by Identity Provider A. Application 2 should only be

accessed by users authenticated by Identity Provider B. An SSO session established by a

user logging in to Identity Provider B should not enable access to Application 1.

 Authentication Mechanisms
An identity provider should be selected and configured to support the specific

authentication mechanisms required by the applications leveraging the session.

Applications can use parameters in the authentication request to specify desired classes

of authentication mechanisms. For example, one application might require only a

username/password login, whereas another application might require a stronger form

of authentication such as a one-time password. Stronger forms of authentication are

discussed in the next chapter.

Figure 11-2. Authentication Broker with Multiple Identity Providers

Chapter 11 Single Sign-On

156

 Login Page Branding
In terms of user experience, the login page for an SSO session should make it clear what

the user is logging in to. For example, if an employee is redirected to a corporate identity

provider, it is helpful for the login page to be branded to identify it as the corporate

login page. We’ll talk more about logout in Chapter 13, but it should be easy for users

to terminate the sessions created when they log in. If the user’s login creates an SSO

session, but the application only performs a local application logout, users may not

realize another step is needed to terminate the SSO session. In designing or configuring

login pages, it should be clear through branding and other means what the user is

logging in to and how to terminate any sessions when done.

 Summary
Single sign-on is the ability to log in once and access multiple applications that rely on

the same identity provider without having to reauthenticate for each application. Single

sign-on offers convenience to users and provides a centralized administration point

for authentication policy. Application owners should ensure the characteristics of a

single sign-on session at an identity provider are compatible with their requirements for

factors such as session duration and the strength of authentication required. Speaking of

authentication strength, the next chapter is going to discuss exactly that in more detail.

 Key Points
• Single sign-on is the ability for a user to authenticate once and

access multiple applications that delegate authentication to the

same identity provider without the user reauthenticating to each

application.

• Single sign-on with an identity provider avoids exposure of user

credentials to applications.

• The use of an identity provider may relieve developers of the work

to build login pages and account recovery mechanisms in each

application.

Chapter 11 Single Sign-On

157

• The use of an identity provider for single sign-on provides a single

place to administer authentication policy and a single account shut-

off point.

• Single sign-on can create a single point of failure if not designed to be

highly available as well as secure.

• Identity providers should be configured with session settings

appropriate for the applications relying on the identity provider.

 Note
 i. https://developers.google.com/identity/

Chapter 11 Single Sign-On

https://developers.google.com/identity/

159
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_12

CHAPTER 12

Stronger Authentication
Come, let us hasten to a higher plane,

Where dyads tread the fairy fields of Venn,

Their indices bedecked from one to n,

Commingled in an endless Markov chain!

—Stanislaw Lem, Polish author of science fiction, philosophy,
and satire, from The Cyberiad (1965)

Different methods of authentication are not considered equal. The static passwords

that still enable access to many Internet services are considered a relatively weak

authentication mechanism. Several stronger forms of authentication exist, and their

use is recommended to better protect online resources. In this chapter, we’ll discuss the

issues with static passwords and how stronger forms of authentication can be used for

multi-factor authentication and step-up authentication.

 The Problem with Passwords
A static password is a secret string of characters used repeatedly over time by a user

to authenticate to a particular protected resource. Static passwords are widely used

today but have several drawbacks. Short passwords may be guessed by brute force

attacks which try every possible password. Long passwords can be difficult for users

to remember, but writing them down makes them more prone to being stolen. If a

username and password are stolen, they can be used by someone far distant from the

account owner, who may not realize the password has been compromised until it is used

160

to do something unauthorized. Worse, if the compromised password has been used

across multiple sites, its theft can put them all at risk. The introduction of single sign-on

makes the use of static passwords more problematic in the sense that a stolen password

may grant access to many systems.

 Stronger Forms of Authentication
To avoid the weakness of static passwords, there are several stronger forms of

authentication that can be used. One widely used mechanism has been to send a

one-time password (OTP) to a user via SMS text message1 or email. The OTP is often a

numeric code and is generated and sent to the user at the time of authentication. The

OTP is then entered into a login screen by the user to complete the authentication.

Alternatively, a one-time password can be generated by an application on a user

device such as a mobile phone or by a specialized OTP hardware security token. As the

name implies, a one-time password can only be used once, making it difficult for an

unauthorized party to use a stolen OTP.

Another approach involves the use of a private cryptographic key that is securely

encapsulated in a device such as a smartcard, hardware security token, or mobile

phone. The entity wishing to authenticate the user sends a challenge nonce to the

authenticator device. The secret key encapsulated in the device is used to sign the

challenge nonce. With multi-factor authenticator devices, the user has to enter a PIN or

provide a biometric factor to unlock the device before it will sign the challenge nonce.

The authenticating entity receives a message back from the device with the signed

challenge nonce and validates the signature, using previously registered information,

to ascertain whether the user (subject) possesses the authenticator device. With this

approach, authentication is based on possession of the device with the key as well as a

factor to unlock the device.

Biometric factors such as fingerprints, facial scans, retinal scans, and voice prints

can serve as stronger forms of identification but have the drawback that if used for

authentication and compromised or damaged, they cannot be reissued. In other words,

a person cannot be issued a new finger if a hacker is able to capture their fingerprint

1 At the time of writing, the security of SMS codes sent to phones is threatened by attacks on
Signaling System No. 7 (SS7), a protocol layer in the infrastructure that provides connectivity
between mobile phone networks. Your projects should evaluate the current status of this issue
before deciding to rely on SMS codes.

Chapter 12 Stronger authentiCation

161

and use it with biometric fingerprint authentication. If a biometric authentication factor

is compromised, it is necessary to either change the factors used or change what the

authentication algorithm looks for in the existing factors.

It’s worth noting that knowledge-based authentication (KBA), which involves

answering security questions, has similar risks to passwords. Answers can be guessed

or stolen by a remote entity and used without the owner’s knowledge. The strength of

authentication methods can be classified, and one example classification scheme is the

NIST 800-63 Security standardi which defines criteria for three levels of authenticator

assurance.

 Multi-factor Authentication
Multi-factor authentication requires the use of multiple authentication factors in order to

authenticate. These typically include something you know as well as something you have

and/or something you are. The something you know can be a password or passphrase.

The something you have may be a device such as a mobile phone or a hardware security

token used for one of the authentication mechanisms described in the previous section.

The something you are can be a biometric factor such as a fingerprint, voiceprint, or

facial scan.

The use of multi-factor authentication reduces the risk if any one factor is

compromised. If authentication requires entering a static password as well as a one-time

password generated by a mobile phone, a hacker would have to steal a user’s password

and unlocked phone to impersonate the user and gain access to their account. Requiring

multiple factors for authentication therefore provides a stronger assurance that the

person authenticating is the legitimate account owner.

Authorization policy may require multi-factor authentication for certain situations.

It may be required at all times to access sensitive content such as administrative access

to production cloud servers. In other situations, multi-factor authentication may only be

required if an unusual situation is detected, such as a user attempting access from a new

device or an atypical geographic location. Some enterprise environments may require

multi-factor authentication for remote access or even in the office for more sensitive

resources.

The selection of authentication mechanisms for a solution should take into

account the sensitivity of the application and data involved as well as the usability of

the solution because users may try to circumvent mechanisms that are too onerous

or deemed overkill for a particular situation. Section 6 and specifically Section 6.2 of

Chapter 12 Stronger authentiCation

162

NIST publication 800-63-3 shows one example of how to approach the selection of an

appropriate authenticator assurance level for a deployment.ii (NIST Special Publication

800-63Biii has the accompanying list of types of authentication for each authentication

assurance level.)

 Step-Up Authentication
When a user authenticates, an authenticated session is created with a certain level

of authentication assurance that the user is the legitimate owner of the account. For

example, if a user logs in with a static password, there is some chance the password

was stolen and the account is being used by an imposter, so the user’s session might be

considered at “level one” in terms of authentication assurance. If a user subsequently

authenticates with a stronger form of authentication such as a one-time password

generated on their mobile phone, the confidence that the user logging in is the legitimate

account owner is much higher because it would be harder for someone to impersonate

the user when their phone is required for authentication. After authenticating with

the one-time password, the user’s session might then be considered at “level two” for

authentication assurance. (Our choice of levels and names is an arbitrary example for

purposes of illustration.) Step-up authentication is the process of authenticating with a

stronger form of authentication in order to elevate the authentication assurance level of

an existing authentication session.

Authorization policy may require authentication sessions to be at a specific

authentication assurance level in order for a user to access resources or execute

transactions that involve more risk. Applications with features that vary in sensitivity

can use step-up authentication to require stronger authentication for more sensitive

transactions. For example, a user might be able to browse a retail web site anonymously,

but have to elevate their session by authenticating with a password to access previously

stored address information for a purchase delivery. In an enterprise, a manager might be

able to access the accounts payable system with a password to run reports, but then have

to step up her session by authenticating with a one-time password in order to approve

a payment for a large amount. Step-up authentication facilitates a model where the

strength of the authentication mechanism required for a situation is commensurate with

the risk inherent in the protected resources involved.

Chapter 12 Stronger authentiCation

163

 Session Timeouts
An identity provider may allow the configuration of multiple forms of authentication

along with a classification or level of authentication assurance for each. A user’s

authentication session may then include information about the authentication

mechanism(s) used, an authentication assurance level or authentication context class,

and the session expiration. If an identity provider supports authentication sessions at

different authentication assurance levels, it may support shorter session timeouts for

elevated sessions which provide access to more sensitive resources. Shorter session

timeouts for more privileged sessions would reduce the chances of highly privileged

sessions being hijacked for malicious purposes and align with the security principle of

least privilege.

 Requesting Authentication Mechanisms
Applications may need a way to request an identity provider use a particular class of

authentication mechanism to achieve a desired level of authentication assurance. This

can be done with an authentication context class reference. An authentication context

involves several factors, such as the identification processes used to create an account,

the protections against credential compromise, and the authentication mechanism

used. An authentication context class represents a set of authentication methods. An

authentication context class reference is an identifier for an authentication context class.

The following sections explain how applications can request a particular authentication

context class and how identity providers can provide claims to convey the authentication

context class reference and/or authentication mechanism(s) used.

 SAML 2.0
A SAML 2.0 authentication request can specify an application’s desired authentication

context class using the <RequestedAuthnContext> element. A SAML 2.0 authentication

response will show the authentication context class used to authenticate a user in

the <AuthnContext> element of the authentication assertion, if the identity provider

provides this information. The application (service provider) and identity provider must

establish in advance the definitions for different authentication context classes. The

Chapter 12 Stronger authentiCation

164

document “Authentication Context for the OASIS Security Assertion Markup Language

(SAML) V2.0”v lists several predefined authentication context classes which may be used.

 OIDC
OIDC clients can request one or more authentication context classes, in order of

preference, using the following parameter to the authentication request:

• acr_values – Authentication context class reference

An ID Token issued to an application can contain the following parameters to convey

the authentication context class and authentication methods used to authenticate

the user (subject) referenced in the ID Token.

• acr – Authentication context class reference, an identifier for an

authentication context class

• amr – Authentication methods reference, the identifiers for one or

more methods used to authenticate a user

The application and OpenID Provider must establish the values and meaning

for acr and amr values used. At the time of writing, there are draft specifications for

standard values for these claims. The draft specification for OpenID Connect Extended

Authentication Profile (EAP) ACR Values 1.0vi lists acr values, and the draft specification

for Authentication Method Reference Valuesvii lists proposed amr values.

 Step-Down Authentication
To align with the security principle of “least privilege,” one should operate at the minimum

privilege level necessary for a particular task. In an environment where sessions can exist

with different assurance levels or authentication contexts, with higher- level sessions that

enable access to more sensitive resources, users would ideally be able to “step down”

their session’s authentication assurance level when they no longer need the elevated

privileges. This reduces the damage that can be done if a session is hijacked as well as the

risk from simple human error when operating at a higher privilege level. Step-down could

be implemented with an explicit mechanism, though we have not seen this done in our

experience. It is probably more practical to simply rely on short session timeouts for more

privileged sessions as well as user logout for immediate termination of a session.

Chapter 12 Stronger authentiCation

165

 Deployment
There are a few deployment considerations worth mentioning. Testing multi-factor

authentication mechanisms and the use of step-up authentication with users who are

representative of the target user population is valuable to identify any usability issues

before widespread rollout. Evaluating authentication devices for their durability, and

battery life if applicable, is helpful to avoid unexpected costs for replacing broken/

dead hardware devices. Depending on the type of authenticator chosen, you may have

to budget for replacing lost and damaged devices. When replacement is necessary,

you’ll also need a process for quickly but securely replacing lost or damaged devices to

restore a user’s ability to log in. Be sure to plan for secure distribution, replacement, and

revocation of authentication mechanisms as part of any deployment.

 Summary
Some forms of authentication are considered stronger than others. Passwords are a

relatively weak form of authentication, whereas the use of one-time passwords generated

on a device or multi-factor cryptographic authentication devices involves what are

considered stronger forms. Multi-factor authentication requires the use of multiple

authentication factors, typically something you have as well as something you know.

Step-up authentication is the act of authenticating with a stronger form of authentication

which elevates a previously existing authentication session to a higher level of

authentication assurance. Authorization policy may require a session to be at a specific

level in order to access sensitive resources. Both OIDC and SAML 2.0 allow applications

to request that an identity provider authenticate a user with a particular authentication

context class of authentication mechanisms and to receive information about the

authentication context class and/or authentication method(s) used to authenticate a user.

It is important to terminate higher-level sessions in a timely manner via shorter session

timeouts or logout, and conveniently, logout happens to be the topic of the next chapter.

 Key Points
• Static passwords are considered a weak form of authentication.

• The compromise of a static password may not be noticed until

damage is done.

Chapter 12 Stronger authentiCation

166

• It is harder for remote hackers to impersonate a user when

authentication requires physical devices in the user’s possession.

• Multi-factor authentication relies on multiple factors, such as

something you know, something you have, and/or something

you are.

• Step-up authentication involves authenticating with a stronger

form of authentication to elevate the authentication assurance level

of a session.

• Both SAML 2.0 and OIDC allow an application to request an

identity provider use a specified authentication context class when

authenticating users.

• To support the principle of least privilege, it may be desirable to have

shorter session timeouts for elevated sessions required to access

sensitive resources.

 Notes
 i. https://pages.nist.gov/800-63-3/sp800-63b.html

 ii. https://pages.nist.gov/800-63-3/sp800-63-3.html#sec6

 iii. https://pages.nist.gov/800-63-3/sp800-63b.html

 iv. www.w3.org/TR/webauthn/

 v. https://docs.oasis-open.org/security/saml/v2.0/saml-

authn-context-2.0- os.pdf

 vi. https://openid.net/specs/openid-connect-eap-acr-

values-1_0.html

 vii. https://tools.ietf.org/html/draft-ietf-oauth-amr-

values-04

Chapter 12 Stronger authentiCation

https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63-3.html#sec6
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.w3.org/TR/webauthn/
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://openid.net/specs/openid-connect-eap-acr-values-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-amr-values-04
https://tools.ietf.org/html/draft-ietf-oauth-amr-values-04

167
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_13

CHAPTER 13

Logout

Great is the art of beginning, but greater is the art of ending.

—Henry Wadsworth Longfellow, American poet and educator, from
“Elegiac Verse” (1881)

Logout is probably not something that you think about very often, if ever. It might not

even be on any of your project’s planned sprints, but it should be. Implementing logout

can be more complex to design and test in some cases than login.

For many applications, it’s important for users to have a way to terminate their

session. This is especially true for shared-device environments that are used to access

sensitive applications, like ATMs, kiosks employed on a manufacturing shop floor, or a

medical facility. Terminating a session if it is no longer needed eliminates the chance

that the session can be hijacked by others. This can complement other measures in

a comprehensive security strategy and is beneficial for situations where devices are

stolen or confiscated. In this chapter, we’ll cover why logout can be complicated, what to

include when designing logout, and some implementation options.

 Multiple Sessions
Logout can be complex to implement in environments with single sign-on, because

there may be multiple sessions to worry about. Figure 13-1 shows three different

scenarios with the resultant authentication sessions for the user in each one. At

minimum, a user has an application session (Model 1). If an application delegates

authentication to an identity provider (IdP), the identity provider may have an active

session for the user (Model 2). If an application uses an authentication broker, to

facilitate handling many different identity providers and protocols, the authentication

168

broker may also have an active session for the user (Model 3). This means that a user

could have sessions in up to three different tiers of the solution architecture after logging

in. It is possible for an identity provider to delegate authentication to another identity

provider, so there could be even more tiers involved, but that is not common.

Logout is further complicated because with single sign-on (SSO), there might be

even more sessions to consider. If a user can access multiple applications via SSO,

there could be an additional session in each of those applications. This possibility is

illustrated in Figure 13-2 which shows a scenario where applications A and B delegate

authentication to an authentication broker, which in turn delegates user authentication

to an identity provider. Application C delegates authentication directly to the identity

provider. If a user accesses applications A, B, and C in short order, the user would have

five active sessions.

Authenticated user session

Model 1:

Model 2:

Model 3:

Authenticated user session

Figure 13-1. Multiple User Sessions

Chapter 13 Logout

169

 Logout Triggers
The termination of any of a user’s sessions can be triggered by several different events.

The most obvious is when a user clicks a logout button in an application. A user may also

be able to trigger a logout of their session directly at an identity provider if it provides

such a feature. In addition to user-initiated logout, an administrator might terminate a

user’s session in either an application or identity provider. Another possibility is that a

user’s session times out if the user has been idle or logged in for too long. Then again, an

application or identity provider may receive a logout request from another component

in the environment. When any of these events occur, one or more of the user’s sessions

will be terminated. The question is – which ones should be terminated and under which

circumstances?

Figure 13-2. Sessions in Relying Parties

Chapter 13 Logout

170

 Logout Options
When there are multiple sessions for a user, it is necessary to decide what should happen

when any of the user’s sessions are terminated. Using the models depicted in Figure 13- 1,

if a user’s session in an application is terminated, it may be appropriate to terminate one

or more of the following, depending on where sessions exist:

• Application session

• Authentication broker session (if a broker is used)

• Identity provider session

In addition, if a user’s SSO session is terminated at an identity provider or

authentication broker, it may be appropriate to terminate one or more of the

• User sessions for the user at any relying parties (applications or other

providers)

For example, in Figure 13-2, when the user logs out of application A, the application

could send a logout request to the authentication broker. The authentication broker

may have other applications (relying parties) relying on its session for the user, such as

application B in the diagram. When it receives the logout request, the authentication

broker could send a logout request to application B to terminate the user’s session

there. In addition, the authentication broker could send a logout request to the identity

provider. The identity provider would see that application C relied on its session for the

user and could send a logout request to application C.

The same possibilities should be evaluated if a user’s session is terminated at an

identity provider or authentication broker for any reason. Again using Figure 13-2, if

the user’s session is terminated at the identity provider, it could send a logout request

to application C and the authentication broker because they are both relying parties to

the identity provider. Similarly, if the user’s session is terminated at the authentication

broker, it could send a logout request to the identity provider and/or to one or both of the

relying party applications A and B.

In designing logout, it is necessary to consider where sessions exist and which should be

terminated when a user initiates a logout or if their session is terminated for other reasons.

One factor in the decision is the entity owning the sessions. In enterprise environments,

corporate security policy may dictate that a logout in an application must trigger the

termination of an identity provider session and possibly all the user’s open sessions in other

applications. In a consumer-facing environment where a user logs in with a social provider,

Chapter 13 Logout

171

however, it may be less justified or impossible for an application logout to terminate the

user’s session at the social identity provider. Obviously, an identity provider or authentication

broker’s supported features for logout is another factor that will influence logout design.

User experience is an important factor as well. Care should be taken to avoid

surprises for users. Terminating all application and SSO sessions for a user with one

logout provides a convenient way to terminate all access at once. This may be desirable

in an enterprise environment because if users have to log out of each application

individually, they may forget one. However, if the impact of such a logout is not clear to

a user, this may “pull the rug out” from under the user’s other application sessions that

rely on the same SSO session. An example will help illustrate this.

Using the scenario in Figure 13-2, if a user is working simultaneously in the three

applications, A, B, and C, and a logout from application A triggers the termination

of their sessions everywhere, that may prevent the user from completing in-flight

transactions in application B or C. The abrupt termination of sessions in other

applications may cause a user to lose their work there. Whether the user can continue

working in the other applications depends on how logout is implemented.

One possibility is to have the logout in application A trigger an immediate logout of

the user in applications B and C. This would require that the termination of the user’s

session at application A triggers a logout request to the authentication broker, which

is configured to send, upon its session termination, a logout request to application B.

The authentication broker could also send a logout request to the identity provider,

which in turn could send a logout request to application C. These logout messages

would effectively terminate all the user’s sessions across the three applications, the

authentication broker, and the identity provider.

Alternatively, when application A sends a logout request to the authentication

broker, the broker could simply terminate its own session for the user. In this case, the

user can continue working in application B until the user’s session in application B times

out. Upon timeout, application B would check if the user’s session is valid at the SSO

server. If the user’s session in the SSO server had been terminated, the user would need

to log in again to continue to access application B.

The decision regarding which sessions to terminate is specific to each environment

and should take into account the entity that owns a session, the user experience, and

the sensitivity of the application and security benefits of not leaving sessions open if not

needed. Once logout is implemented, it should be thoroughly tested to make sure it works

as designed. The best advice we can give is to allow plenty of time in your project for both

designing and testing logout and to start early, as it may take more time than expected. As

Chapter 13 Logout

172

shown in Figure 13-1, other entities besides applications, such as authentication brokers,

may be relying parties to identity providers. In the subsequent sections, we’ll therefore use

the broader term “relying party” in places instead of “application” to recognize all types of

entities which may be impacted by logout.

 Application Logout
The simplest case to implement is local application logout, which terminates a user’s

session in one individual application. For application logout, when any of the logout

triggers described in an earlier section occur, the application needs to delete any

application session information, tokens, and browser cookies set by the application. If

using OAuth 2.0 access tokens from an authorization server that supports access token

revocation, they should be revoked via the authorization server’s revocation endpoint.

Refresh tokens, if used, should be revoked as well. Local application logout by itself

does not impact any other authenticated sessions the user might have established at an

identity provider or authentication broker, but an application can choose to send logout

request messages to such other components when local application logout is triggered.

 OAuth 2.0
OAuth 2.0 does not contain a logout endpoint because it is designed for authorizing an API

call, not authenticating users. Nevertheless, upon the termination of a user’s session, an

application should clean up security tokens related to the user if possible. An application

may have obtained access tokens for APIs and possibly refresh tokens as well. The OAuth

2.0 specification indicates that authorization servers SHOULD provide a mechanism

to revoke access tokens, and the OAuth2.0 Token Revocationi specification defines a

standard for this. Providing an access token revocation mechanism is not mandatory,

however, so some authorization server implementations may not support this.

If an authorization server supports access token revocation,i an application should

use its revocation endpoint to revoke access tokens authorized by a user for that

application when the user logs out or their session is terminated for any other reason. If

an access token cannot be revoked, an application that has refresh token(s) for renewing

Chapter 13 Logout

173

expired access tokens should revoke the refresh tokens. Without a refresh token, when a

previously issued access token expires, the application will not be able to obtain a new

access token.

Applications that cannot revoke access tokens must rely on the access token

expiration to terminate the application’s ability to call an API. This underscores a benefit

of access tokens with short expirations.

 OIDC
The original OIDC specification does not define an explicit logout mechanism for an

application to request termination of a user’s session at an OpenID Provider or a way

for an OpenID Provider to notify a relying party when the OpenID Provider’s session

has terminated. At the time of writing, however, there are draft specifications for

OIDC logout which bear watching, keeping in mind that draft specifications may fail to

gain approved status or may change before being approved. You should consult your

OIDC Provider’s documentation and plans regarding any draft specifications.

The draft OpenID Connect Session Management specificationii defines a relying

party-initiated logout flow, so that upon logout at a relying party, the relying party can

send a logout request to an OIDC provider to terminate its session for the user. An

OpenID Provider receiving a logout request may confirm with the user that he or she

wishes to log out of the OIDC provider session. This confirmation feature can help

prevent inadvertently terminating a session that may still be required by the user in other

applications.

The draft OpenID Connect Session Managementiii specification also offers a

solution for a relying party application to detect when an OpenID Provider session

has terminated. It is designed to use a hidden iframe loaded from an OpenID Provider

and which has access to browser state from the OpenID Provider. This iframe is polled

from another hidden iframe loaded from the relying party application and will receive

back a status of “changed” if the user’s session at the OpenID Provider has changed. If

this occurs, the relying party application can redirect the user to the OpenID Provider

with a new authentication request using prompt=none, and if this request receives

an error response, it indicates the user session at the OpenID Provider is no longer

valid. The application can then terminate its session for the user, if appropriate.

The draft proposal for an OpenID Connect Front-Channel logout facility iv proposes

a solution for an OpenID Provider to send logout requests to relying party applications

Chapter 13 Logout

174

which could be used to notify them when the OpenID Provider session has terminated.

Front-Channel logout relies on communicating between applications and an OpenID

Provider by redirecting the user’s browser between them. This is less likely to be blocked

by firewalls, but suffers from two disadvantages. If a user has navigated away from an

application in their browser, a Front-Channel logout request to the application will fail,

and the user’s session in the application will only be logged out if the user returns to

it using the browser’s back button. In addition, a failure in a sequence of redirects for

Front-Channel logout can halt the flow before all logouts are completed.

The draft OpenID Connect Back-Channel logoutv specification provides a solution

for an OpenID Provider to send logout requests to a relying party via back-channel

communication between servers rather than via front-channel browser redirects. This

may provide a more reliable logout option than Front-Channel logout when there are

many relying parties. For this solution, relying parties register a back-channel logout URI

with an OpenID Provider. The OpenID Provider remembers all relying parties to which a

user has logged in via their OpenID Provider session. When the OpenID Provider session

for the user is terminated, the OpenID Provider sends a logout request, formatted as

a JWT and called a Logout Token, to each of the relying parties the user visited during

the session. The Logout Token is sent via back-channel communication (server to

server) using an HTTP-POST to the relying party’s back-channel logout URI previously

registered with the OpenID Provider. Upon receiving and validating a Logout Token, a

relying party removes its session for the user and returns a status response to the OpenID

Provider. This solution requires direct connectivity between the OpenID Provider and

a relying party’s back-channel logout URI. This may be problematic for applications

residing in on-premise enterprise environments behind firewalls.

It is also possible for a relying party application to detect the termination of a

user’s session at an OpenID Provider by periodically polling the OpenID Provider by

redirecting a user’s browser to the OpenID Provider with the prompt parameter in

the authentication request set to “none.” If the user does not have a valid session at

the OpenID Provider, an error status response will be returned, and the application

can terminate the user’s session in the application or redirect the user again to

reauthenticate and renew their session. This approach has the drawback that the redirect

interrupts the user experience. Repeatedly polling an OpenID Provider may also run the

risk of hitting rate limits.

A common concern is the ability to quickly terminate a user’s access to an

application. This may be needed in corporate situations if an employee has been

Chapter 13 Logout

175

terminated against their will. If the OpenID Provider for an environment supports

a capability to notify relying parties when a user’s OpenID Provider session has

terminated, this can be used. In the absence of such single logout capabilities, an

application can poll an OpenID Provider periodically as previously described. If the

user’s account in the OpenID Provider has been disabled, the application will not receive

the successful response needed to renew the session. This should effectively terminate

the user’s ability to use the application, at least with a tolerance period equal to the

application’s polling frequency.

 SAML 2.0
With SAML 2.0, a service provider application can terminate a user’s session at an

identity provider by issuing a logout request message to the identity provider. Upon

receipt of the logout request message, the identity provider terminates the session it

holds for the user, identified by a subject identifier in the request and possibly a session

identifier for the session. The identity provider may also update or remove its session

cookie in the user’s browser. The identity provider then responds to the application with

a logout response message.

SAML 2.0 also provides a way for the identity provider to notify other relying parties

if a user’s session is terminated at the identity provider. Upon termination of the identity

provider session or receipt of a logout request message from a service provider, the

identity provider can send a logout request message to each of the other relying parties

with an active session for the user. The relying parties are supposed to terminate their

session and respond with a logout response message to the identity provider. If the

global logout was initiated by one service provider, the identity provider returns a logout

response message to the relying party that initiated the logout. This interaction is shown

in Figure 13-3.

Chapter 13 Logout

176

 1. User initiates logout at Application 1 (a relying party).

 2. Application 1 redirects user browser to Identity Provider with a

SAML Logout Request message.

 3. Identity Provider sends a SAML Logout Request message to other

relying parties, such as Application 2.

 4. Application 2 sends a SAML Logout Response message after

processing the logout.

 5. Identity Provider sends a SAML Logout Response message back to

the relying party that sent the original Logout Request.

 6. Application 1 acknowledges the logout.

Steps 3 and 4 in the preceding sequence are commonly sent via the user’s browser,

using front-channel interaction. Many SAML 2.0 identity providers reside behind

corporate firewalls, and using a front-channel implementation avoids issues with

firewalls. In a complicated logout scenario, however, with several relying parties, the

sequence may fail before it completes, leaving some sessions intact. The SAML 2.0

specification includes a back-channel logout mechanism which may be more reliable

if logout messages need to be sent to multiple parties. However, back-channel logout

Figure 13-3. SAML 2.0 Single Logout

Chapter 13 Logout

177

may not be implemented in all SAML 2.0 implementations, and back-channel logout

messages require direct connectivity between the identity provider and the relying

parties, which may be challenging for components behind corporate firewalls.

 Session Termination
There may be a need at times to quickly terminate a user’s SSO session as well as

application sessions. In corporate settings, this is often a requirement for situations

where an employee is terminated against their will. In the absence of single logout, a

user’s account can be disabled at an identity provider, but they may be able to remain

active in applications with open sessions until the applications next communicate

with the identity provider. In the case of OIDC or OAuth 2.0, this may be when the

application session and/or access token expires. In the case of SAML 2.0, it will be

when the application session expires. When this occurs, the application sends a new

authentication request to the identity provider, which will fail if the user’s account is

disabled. If user termination risk is a concern, application session duration and access

token expiration should be set considering the sensitivity of applications involved and

the availability of means to quickly terminate a user’s sessions.

 Logout and Multilevel Authentication
If step-up or multi-factor authentication is implemented such that it is possible for a

user’s session to be at different authentication assurance levels, based on the strength of

authentication mechanisms used, it should be clear what happens when a user logs out.

A common solution is for logout to completely terminate the user’s session, regardless of

the authentication level it was at. Whatever logout behavior is chosen, it is important that

its behavior be clear to users.

 Redirect After Logout
A final aspect of designing logout is deciding where to send the user after logout. If

you send the user to an application home page which redirects the user to an identity

provider where the user still has a valid session, the user will be returned right back into

the application with a new session created for them. This effectively breaks the logout

Chapter 13 Logout

178

process and can waste your help desk’s time with complaints that logout doesn’t work.

For a better user experience, you can redirect to a logout confirmation page or a home

page that doesn’t automatically redirect a user to an identity provider. In addition to

carefully selecting where to send a user after logout, you should ensure that redirection

is only done to a list of whitelisted URLs to avoid vulnerabilities stemming from open

redirects.vi, vii Planning appropriate redirect URLs for logout and whitelisting them will

provide a good user experience and avoid open redirect vulnerabilities.

 Summary
Implementing logout can be more complex to design and test than login. There may be

multiple authentication sessions for a user, and you need to decide which to terminate

when any user session is terminated or times out. In addition to the logout behavior,

designs should specify where to send a user after logout has occurred.

We’ve now covered all the events that happen as a user logs in and out of systems.

At some point in the life of an identity, changes may occur which require identity profile

attributes to be updated. Account management enables that and is the topic of the next

chapter.

 Key Points
• Logout often takes more time to design and test than login.

• Solution designs should specify which authentication sessions

should be terminated when a user logs out.

• Designs should specify where to redirect the user after logout.

• Single logout can be used to send a logout message to relying party

sessions associated with a user’s identity provider session.

• There are draft specifications for logout with OIDC.

• SAML 2.0 relying parties can send a logout request to terminate a

user’s session at an identity provider.

• SAML 2.0 supports single logout.

• The effect and scope of any logout should be clear to users.

Chapter 13 Logout

179

 Notes
 i. https://tools.ietf.org/html/rfc7009

 ii. https://openid.net/specs/openid-connect-session-1_0.html

 iii. https://openid.net/specs/openid-connect-session-1_0.html

 iv. https://openid.net/specs/openid-connect-

frontchannel-1_0.html

 v. https://openid.net/specs/openid-connect-backchannel-1_0.

html

 vi. https://github.com/OWASP/CheatSheetSeries/blob/master/

cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_

Sheet.md

 vii. https://cwe.mitre.org/data/definitions/601.html

Chapter 13 Logout

https://tools.ietf.org/html/rfc7009
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://cwe.mitre.org/data/definitions/601.html

181
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_14

CHAPTER 14

Account Management

And yet in our world, everybody thinks of changing humanity and nobody
thinks of changing himself.

—Leo Tolstoy, from “Three Methods of Reform”

It may be true, as suggested by Tolstoy, that people are unwilling to make deep internal

changes, but when it comes to identity information, it is quite common for there to be

changes! In this chapter, we’ll cover the need to support changes to an identity and its

attributes over time.

 Identity Attributes
A user’s identity information may change over time for multiple reasons. Some updates

will come from users themselves. You should assume that users may need to change

almost any attribute in their profile such as their email address, street address, phone

number, and even their name. Many privacy regulations, including Article 15 of the

GDPR (EU General Data Protection Regulation), mandate that users must be able to

access and correct data about themselves held by a data controller.i If you are a data

processor, you may need to help provide this capability to the data controllers who use

your service.

The need to support identity profile changes depends on where the information is

managed. If your application delegates authentication to social providers, the user may

need to update some profile attributes at the social provider. Similarly, if your application

delegates authentication to an enterprise provider, the user may need to update identity

information there. In addition to updates made by users themselves, administrators or

automated administrative processes may make updates to user identities. These updates

182

often impact attributes that are controlled by the owner of the identity provider instead

of the user and may involve attributes used for access control decisions in applications

such as a job level, department, and roles or group memberships.

If user profile data in an application comes from multiple sources, it must be clear

how and where to update each attribute. An application may pull some user attributes

from an identity provider and augment that data with additional data that is collected

and managed by the application. In this case, users need to know where to update

different attributes. Any administrative or support processes for the application will also

need to know how and where to update each attribute.

When user profile data from an identity provider is cached by an application,

the necessary frequency for updating the cache must be considered. When a user

authenticates, the application may receive user profile attributes from the authenticating

identity provider. The application will have the information during a user’s login session

and can cache the information in its own repository for use when the user is offline.

A cache, however, will become stale if information changes at the identity provider

and users do not log in frequently. If up-to-date information is needed in between user

logins, it may be possible for an application to query an API for updated information.

Otherwise, periodic synchronization may be needed. Historically, such synchronization

has been done with proprietary solutions, but the System for Cross-domain Identity

Management (SCIM) protocolii was created to standardize the synchronization of

identity updates across domains, typically between corporate identity providers and

relying parties.

A special case to accommodate is the situation where a user needs to update the

attribute which serves as an identifier for their account at a remote identity provider. If a

remote provider identifier is changed, the next time the user logs in, the application will

receive the new identifier. If the application account or data is tied to the old identifier,

and the user logs in with a new identifier, the user may not be able to access the account

or data associated with the old identifier. The issue can be avoided if the identity

provider delivers to applications an internal identifier that never changes, in addition to

other user profile attributes. Alternatively, if explicit account linking is used, as described

in Chapter 18, a user may be able to unlink the old identity before the change and relink

to the new identity after the change, but this requires forethought on the part of a user

which may not be realistic!

Chapter 14 aCCount ManageMent

183

 Credential Reset
Users may also need to update their credentials from time to time. An application that

delegates authentication to an identity provider does not have to store credentials or

implement credential reset functionality because the credentials are at the identity provider.

An application can simply provide a link or instructions that point to the credential reset

function at the appropriate provider. If you use an identity provider service, you should be

sure to select one that supports self-service credential update and account recovery.

 Account Recovery
A user may forget or lose the credential to an account. In the case of a password, the user

may forget it. In the case of authenticators such as a phone or hardware security token,

they may be lost, stolen, damaged, or broken. If this occurs, a user has to prove they are

the owners of an account, via some mechanism other than the original credential, before

being allowed to set a new credential.

In many cases, an application relying on an identity provider may be able to leverage

account recovery mechanisms provided by the identity provider. It then becomes

important to select provider(s) with reasonably secure self-service account recovery

mechanisms. Solutions that prompt a user for answers to previously established security

questions are problematic as the answers can often be looked up or guessed. They also

depend on the user remembering the answers, which is not always the case. Schemes

that require users to download recovery codes rely on users saving the codes in a secure

place, which also may not be dependable.

A solution that sends a password reset link to an email address previously registered

with the account avoids the drawbacks of the previous schemes. This depends, however,

on the owner of the account being able to access the email for the email address

associated with the account. Sending a one-time code via SMS to a previously registered

cellphone number in the user’s profile relies on the number being current and the

security of SMS messages. At the time of writing, vulnerabilities persist in Signaling

System 7, which connects different phone networks, that have enabled some researchers

and hackers to intercept SMS messages. Project owners should evaluate the current state

of that issue before deciding to use SMS messages. Enabling users to set up a primary

and one or more backup authentication mechanisms may provide the best defense

against any one of them becoming broken or compromised.

Chapter 14 aCCount ManageMent

184

 Password Guidance
If passwords are used, you may wish to provide guidance to your users on what

constitutes a good password and, where you have a choice, select identity providers

that enforce stronger password policy. Interesting new research by NIST has examined

the effectiveness of previous password guidelines.iii Security advice in the past has

recommended a mixture of lowercase and uppercase characters, numbers, and special

characters, the longer the better. Users were also advised to change their password

on a regular interval. This advice was designed to make a password hard to guess by

humans or discover by a brute force password guessing approach and mitigate risk from

compromised passwords. This research by NIST suggests that some elements of the past

guidance may not have been as effective as expected.

Their new guidance suggests that the size of a password matters more than the

password complexity as user-selected password complexity is somewhat predictable,

and rate limiting on failed password attempts may be a more effective approach. Users

are recommended to select a long passphrase that consists of several words but is

not a common or guessable phrase. Users are recommended to change a password

if there is evidence it has been compromised but rate limits on failed passwords and

checking for breached passwords may be more effective than forced periodic password

resets. Authentication services should implement rate limiting on failed login attempts

and check username/password combinations against databases of known breached

passwords to protect against brute force attacks and compromised passwords. You’ll

want to use identity providers that offer such features.

 Helpdesk Reset
A manual, helpdesk-assisted credential reset process is expensive to provide and

can expose sensitive information. It requires the helpdesk staff to have knowledge of

secret information with which to validate an account owner. Examples of secrets that

have been used in the past are a portion of a government-issued identity number,

information on recent transactions, or answers to secret questions. This process has the

advantage of providing human assistance, but may expose sensitive information to risk

of compromise. If the sensitive information used to validate an account owner is used at

other sites, a compromise of the information at one site may allow a malicious actor to

take over a person’s accounts elsewhere. For both cost savings and security, self-service

credential reset capability should be preferred for most scenarios.

Chapter 14 aCCount ManageMent

185

 Summary
Identity information may need to be updated over time. Privacy regulations often

require that users have the ability to view and correct personal information held about

them. Account updates can be handled by identity providers for information managed

by them. If identity information is maintained in both an identity provider and an

application, account update mechanisms must help users make updates in the right

place. Changes to the primary identifier for a user at an identity provider may impact a

user’s ability to access application accounts tied to the old identifier. Credentials need to

be reset if compromised, forgotten, or rendered inoperable, but a user must be validated

before being allowed to reset credentials. An application may delegate credential

reset and account recovery features to an identity provider, but the integrity of the

mechanisms used by the provider should be validated. This brings us in the next chapter

to the final event in the life of an identity, which is deprovisioning.

 Key Points
• User identity attributes may need to change over time.

• Privacy regulations may mandate a process for users to update

identity information.

• Account management may be delegated to identity providers when

the attributes to be changed reside at the identity provider.

• If a user changes their identifier at an identity provider, it may impact

their ability to access application accounts tied to an old identifier

unless a solution is provided for this scenario.

• Credential reset and account recovery may be delegated to identity

providers for many common scenarios, but exceptional cases such as

account takeover may need to involve application owners as well.

Chapter 14 aCCount ManageMent

186

 Notes
 i. https://eur-lex.europa.eu/legal-content/EN/TXT/

HTML/?uri=CELEX:02016R0679-20160504&from=EN

 ii. https://tools.ietf.org/html/rfc7644

 iii. https://pages.nist.gov/800-63-3/sp800-63b.html#appA

Chapter 14 aCCount ManageMent

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02016R0679-20160504&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02016R0679-20160504&from=EN
https://tools.ietf.org/html/rfc7644
https://pages.nist.gov/800-63-3/sp800-63b.html#appA

187
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_15

CHAPTER 15

Deprovisioning

The boundaries which divide Life from Death are at best shadowy and
vague. Who shall say where the one ends, and where the other begins?

—Edgar Allan Poe, American author, from The Premature Burial (1844)

The final event in the life of an identity is deprovisioning, when an account and

associated identity attributes are deleted or disabled so they can no longer be used.

When an account is terminated, there are several design points to consider related to

how to delete or disable accounts, what identity information to keep, and for

how long.

 Account Termination
An account may be terminated for several reasons. An account may be deleted by the

account owner if they no longer need to use a service. An account may also be deleted

by an administrator of a service if the account appears to have been abandoned or if

a customer has abused a service in violation of terms of service. With a paid service,

termination may result if a user fails to pay for the service. In a university setting, a

student’s account may be terminated when the student graduates. In a corporate

setting, an account may be terminated if an employee leaves the company’s employ.

Regardless of the reason, upon termination, it is necessary to render the account so

it can no longer be used to access resources. As we will see in the following sections,

simply deleting an account may not be an appropriate solution for this.

188

 Best Practices
Processes for the deprovisioning of accounts and identity information should be

designed with several best practices in mind. These range from ensuring it gets done

in a timely fashion to protecting against accidental account deletion and from enabling

customers to transfer data elsewhere to satisfying privacy rights and requests for secure

deletion. The exact requirements will vary by environment. This section will describe

many common requirements associated with deprovisioning to help you identify which

might be necessary for your projects.

 Just Do It!
The best practice for deprovisioning is to make sure it gets done! If an account is no

longer needed, it should be disabled so it cannot be hijacked by an unauthorized user.

Unfortunately, deprovisioning is notoriously overlooked in settings that lack mature

identity management. To minimize the possibility of abandoned or unused accounts, you

should implement automation to trigger periodic account review and deprovisioning. In

a company setting, an HR system may initiate a deprovisioning workflow when a user is

terminated. In a university environment, a student information system may trigger account

deprovisioning upon graduation, at least for access reserved for current students. Even the

best automation fails at some point, however, so a periodic audit of existing accounts is

essential to find accounts that are no longer appropriate so they can be deprovisioned. In

consumer-facing environments, it may be appropriate to consider deprovisioning accounts

which have had no activity for many years.

 Provide a Soft Delete Technique
Human beings make mistakes. If you provide a “delete account” button, it’s almost

guaranteed that someone will delete their account by mistake. To save yourself

the trouble of restoring customer data when that occurs, you can make it harder to

erroneously delete an account by implementing a soft delete. This can take the form of

a confirmation screen (“Caution: are you sure you want to delete your account? This

cannot be undone!”), and marking an account as deleted while providing a grace period

before the account is truly deleted. During the grace period, an “undelete account”

capability should be available. You can also send a confirmation email at the beginning

of the grace period explaining that the account is marked for removal and will be

Chapter 15 Deprovisioning

189

permanently deleted at the end of the grace period. While not foolproof, this may prevent

some accidental account removals and the work to restore mistakenly deleted accounts.

 Reserve Deprovisioned Identities
When deprovisioning accounts, it is best to preserve a list of deleted account identifiers

and prevent each identifier from being reused by a new owner in the future. If this is

not done, a new person could create an account with a previously used identifier and

might be able to request historical data associated with that identifier to get data that

belonged to the previous owner of the account. If a deleted account identifier was used

in a single sign-on scenario and was used to access multiple applications, the owner of

a new account with the same identifier might be able to access the previous person’s

data in those applications. This is especially important if an email address is used as the

sole identifier for an account. (See Chapter 4 for why this is problematic.) By reserving

previously used identifiers and checking all new identifiers for uniqueness against both

active and deprovisioned accounts, several issues can be avoided.

 Preserve Account Record
You never know when unauthorized activity might be detected. It could be weeks or

even months after the fact. Because a fraud investigation may arise at any time, even

after an account has been closed, you should consider whether information should be

kept for a reasonable period of time about deleted accounts, including transactions, the

time they were submitted, the accounts that performed them, identity data linked to the

accounts, and any other information needed for forensic evidence. When an account is

deleted, it may be appropriate to preserve some account identity information along with

the date, time, and reason why an account was disabled or terminated. If an account is

terminated due to abuse, keeping sufficient records may help identify if a user attempts

to open another account, at least with the same identity data.

One caveat is that privacy regulations require that data be kept only as long as

needed for legitimate business purposes, and users have the right to request that

personal data about them be erased. These rights may conflict with the need to have

backups and audit logs. In practice, approaches are being worked out to satisfy the

intent of privacy rights as well as operational system needs. Such approaches include

minimizing data that is retained, encrypting and restricting access to retained data, and

Chapter 15 Deprovisioning

190

following defined data retention policies and procedures. Such policies and procedures

should be created with guidance from legal and privacy advisors to ensure alignment

with best current practices.

 Data Transfer
It may be helpful or even required to provide customers a means to download or transfer

data out of your service. Users may have this right as part of privacy legislation, such as

the GDPR (General Data Privacy Regulation). Providing such a feature may also make

customers who worry about vendor lock-in more likely to sign up because they know

if they are unhappy, they can take their data and go elsewhere. Corporate customers

will often request the ability to periodically obtain an extract of all their data to protect

themselves against a vendor failure.

For consumer users, the most scalable option is to provide a self-service means

to download customer-owned data. The feature to download data can be shown in

the “Delete account” process as an option before the account is deleted. You should

consider the data formats that will be most useful to customers. For sensitive data,

you should have a procedure to validate the requestor before providing a data dump.

Requiring step-up authentication or at least reauthentication to obtain the data is

one good precaution. This protects a user’s data if they have walked away from their

keyboard without locking their screen.

For corporate or business customers, there are a few more points to consider. It

may make sense to require the involvement of two people from the customer in the

request process to prevent a lone actor from downloading sensitive corporate data for

unauthorized purposes. Once suitable customer validation is obtained for the download

request, it should be provided in the most direct, self-service manner to minimize the

service provider’s access to the customer’s data. For example, if a data dump were

done manually by the service provider, it might be downloaded to a person’s laptop or

transferred to the customer by a channel that introduces risk.

For corporate customer data that involves user identities and passwords, the

passwords should have been stored in a hashed format and may not be usable elsewhere

if different hashing functions are used. Chapter 4 discusses options for migrating user

identity data between systems. As with consumer users, thought should be given to

the data format for a transfer as well as the security of the transfer process. Even if a

customer is leaving, providing a good experience may keep a future opportunity open.

Chapter 15 Deprovisioning

191

 Privacy Right to Erasure
When a user deletes their account, it may not be enough to simply delete data your

own service holds about a user. Article 17 of the GDPR provides consumers the right

to erasure, commonly referred to as the right to be forgotten, which enables a user to

request that an organization delete the data it has about the user. Under Article 19 of

the GDPR, data controllers are obligated to communicate an erasure request to any

data processors to whom they’ve given personal data. Users who wish to delete their

account may wish to exercise their right to erasure, which may require deleting data in

an application’s user repository and possibly other data processor services.

It should be noted that the right of erasure does not nullify other obligations a

business or organization may have that require keeping records, including those which

contain personal information. Article 17, paragraph 3, of the GDPR outlines several

situations where the right of erasure does not apply. These include the fulfillment of legal

obligations on the part of a data controller or processor, supporting rights for freedom of

information and establishing, exercising, or defending legal claims. Financial institutions

may have legal obligations to retain records with personal information for a period of

time after an account is closed. Healthcare organizations often are required to retain

healthcare-related records for a period after the date of service. Even small businesses

have legal obligations to retain employment and tax records for a period of time.

Balancing privacy rights and other legal obligations can be complex, so organizations

should define a data retention policy and procedures for handling erasure requests, in

consultation with legal and privacy experts.

 Certificate of Deletion
In addition to having procedures for disabling and terminating individual user

accounts for privacy reasons, corporate customers that terminate their use of a service

may request that their corporate account be deleted. This can include the user data

of administrative users associated with the account, application data related to the

service, and user data. Customers may request a certificate of deletion that states that

all their data has been deleted. If sensitive data is involved, including data about users,

customers may request a certificate of secure deletion. This demonstrates due diligence

to ensure data they’ve given to vendors deleted when no longer needed, which helps

protect sensitive information.

Chapter 15 Deprovisioning

192

 Secure Delete
It can be surprisingly complex to “completely delete” data. Simply issuing a delete

command in a database or to delete a file may not completely delete the data. In some

cases, such a delete simply removes pointers to the data, but does not alter the space on

the disk where it was stored, allowing specially written tools to recover the data.

Various techniques have been employed to effect secure deletion. One approach

is to encrypt data and throw away the encryption key. This effectively deletes the data

because it can no longer be decrypted. This approach assumes the time required to

decrypt the data using brute force mechanisms is significantly longer than the time

during which the data is likely to be valuable to data thieves. Since it is impossible to

predict how long this assumption will be true, this is not a best option.

Another method of deleting data from a disk or other magnetic storage media

involves degaussing a disk. Information is stored on disks by magnetizing the surface of

the disk with small pulses of electricity as the read/write head of the disk passes over it.

A disk can be erased with a special tool called a degausser which generates a powerful

magnetic field that scrambles and removes magnetic fields on a disk. This method

may be feasible when all information on a disk needs to be removed, as when the disk

will be completely decommissioned from use. A drawback is that degaussing, as with

physical destruction of a disk, may render the disk unusable and contribute to e-waste.

Degaussing to remove only one customer’s data is also not feasible in a cloud service

where many customers’ data resides on the same disk.

When a disk stores data of many customers, one customer’s data can effectively be

erased by overwriting the data with random 0s and 1s. The question is how many times

the data must be overwritten in order to ensure that residual magnetic traces do not

allow data recovery. The US Department of Defense (DoD) 5220.22-M protocol has been

cited for this. The 1995 version of this standard indicated data should be overwritten

three times. This is now considered obsolete however.i For specific sanitization details,

it has been superceded by the National Institute of Standards and Technology’s (NIST)

“Special Publication 800-88: Guidelines for Media Sanitization” which indicates that for

most of today’s media, overwriting with a fixed pattern, such as all zeros, with at least one

pass is sufficient.ii This technique would require a service to create features to perform

the overwriting. Requirements for secure delete may vary by industry and country so

researching requirements for your target customer base will provide the best guidance

on secure account deletion expectations.

Chapter 15 Deprovisioning

193

 Consider Reprovisioning Requirements
It may be worth considering the likelihood of requests from customers to reprovision

their previously deprovisioned account and establishing policies for this. It would

constitute a security breach if an account were reprovisioned and given to someone

other than the authorized owner, so one option is to not support reprovisioning. If

reprovisioning is to be supported, you’ll need procedures for validating that a requestor

is an authorized owner of the account. Any practices to support this should also be

aligned with applicable privacy legislation.

 Summary
When a relationship with an employee or customer ends, you may need to do more than

just delete their account. You may need to preserve the identifier for the account and

prevent it from being used again by someone else. You should flag what data elements

are required for audit purposes and create a data retention plan in compliance with both

privacy and legal advice. You may also need to satisfy requirements for secure delete

procedures and provide certificates of deletion.

We’ve now covered the key events in the life of an identity that your implementation

will likely need to support. Since it is common during an implementation to need to

troubleshoot a few issues, the next chapter covers advice on troubleshooting techniques

for authentication and authorization issues.

 Key Points
• Deprovisioning deletes or disables an account and associated

identity information so it can no longer be used to access protected

resources.

• Deprovisioning may be initiated by either an account owner or the

owners of a service where the account resides.

• Automation and periodic account review should be used to help

identify accounts that are no longer needed.

• A soft delete feature can be used to reduce accidental account

deletion.

Chapter 15 Deprovisioning

194

• Identifiers for deprovisioned accounts should be reserved and not

used for new accounts.

• Data retention policies and procedures should be developed in

consultation with legal and privacy experts.

• Procedures may need to be created to enable customers to download

their data for use elsewhere, as part of account deprovisioning.

• It may be necessary to provide customers a certificate of deletion or

to follow secure delete procedures as part of account deprovisioning.

• Policies should be created for whether reprovisioning of accounts is

allowed and, if so, the procedures to follow.

 Notes
 i. www.dami.army.pentagon.mil/site/IndustSec/docs/5220.22m.pdf

 ii. https://csrc.nist.gov/publications/detail/sp/800-88/

rev-1/final

Chapter 15 Deprovisioning

https://www.dami.army.pentagon.mil/site/IndustSec/docs/5220.22m.pdf
https://csrc.nist.gov/publications/detail/sp/800-88/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-88/rev-1/final

195
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_16

CHAPTER 16

Troubleshooting

When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.

—Sir Arthur Conan Doyle, British author, from
The Sign of the Four (1890)

You’ve created your application, fired off your first authentication, and your hard work

blows up in a roaring flame of error messages… or worse, nothing happens, no error

messages are displayed, and you don’t have a clue where to start looking! Fear not, there

is a methodical approach to debugging authentication and authorization issues. We’ll

share an approach, tools, and techniques, and soon you’ll be solving authentication and

authorization issues with the mastery of Sherlock Holmes!

 Get Familiar with the Protocols
A working knowledge of the identity protocol(s) you are using for authentication and API

authorization is helpful. These protocols involve browser redirects and/or HTTP requests/

responses between several components. Troubleshooting will be easier if you are familiar

with the expected sequence of interaction for a particular scenario. You can capture

an HTTP or network trace for a situation and compare it to the expected interaction as

described in a protocol specification and/or identity provider documentation, to identify

where things are going wrong. It is particularly helpful to know

• The sequence of interaction for different scenarios

• The parameters expected by each protocol endpoint

• The responses and error codes returned by each endpoint

196

In addition to the protocol specifications, you should know the identity provider APIs

and SDKs you are using. Vendors may extend a specification when they implement a

protocol. Using an API testing tool to try out calls with various parameters and observing

the results can give you a better understanding of the identity provider and APIs you use,

which can help when debugging issues.

 Prepare Your Tools
The following tools will help you debug an issue:

• An environment where you can duplicate a problem and test

• Two independent browser windows

• Tools to capture and view HTTP traces

• A tool with which to test API calls

• Tools to capture and view network traces of back-end API calls

• Tools for viewing and creating JWT and SAML 2.0 tokens

The next few sections will explain why each tool is necessary in more detail.

 Test Environment
It is often helpful to have an environment in which to duplicate a problem. For some

issues, you may be able to use your production environment to collect all the data

you need. For others, you may need an environment where you can experiment and

change settings as part of your investigation. You’ll need a test environment with an

instance of the identity provider used and with an account for a test user. Ideally, you’ll

have administrative access so you can alter configuration settings or create users with

different profiles if needed. Having a test environment in which to test and debug an

issue avoids any impact to your production system from debugging activity.

 Independent Browser Windows
In addition to a test environment, it is helpful to bring up two independent browser

windows. You can use two different browsers or two windows for the same browser with

“Private” or “Incognito” browsing mode so they do not share cookies between them.

Chapter 16 troubleshooting

197

One browser window is for testing the broken login issue as an end user. The other

browser window is for accessing the administrative interface of your identity provider or

application to make configuration changes. Independent browser windows ensure that

activity in one window doesn’t impact the other window and give you confusing results.

It is also necessary to note how each browser handles sessions, particularly whether

it will save or reconstitute a previous session. When testing, it is best to start with a clean

browser session, unless the issue you are debugging does not occur with a new session.

A new browser session ensures that there are no cookies or state from a previous session

to confuse results. Browsers now offer the ability to restore state from a previous session

so it is best to use a new “Private” or “Incognito” browser session and start with a clean

slate each time.

 Capture HTTP Traces
You’ll need a browser with the ability to capture an HTTP trace. Google Chrome and

Firefox both offer dev tools features that provide a built-in ability to capture an HTTP

trace in the “Network” tab. Internet Explorer also has a built-in HTTP trace capability,

accessed by pressing F12. Safari’s Web Inspector, accessible via the “Develop” menu

option, enables you to capture network activity in the Network tab. Learn how to capture

an HTTP trace in every browser that your service officially supports so you are prepared

to debug issues on each browser.

If you are collaborating with others, it is convenient to be able to dump the HTTP

trace to an HTTP Archive format file (.har file). A .har file will capture everything,

including the cleartext value of any secret (client secret, password, API key, etc.)

entered or transmitted during the capture. If you can’t avoid capturing a secret by

limiting a trace to only a part of the interaction, you should reset the secrets after capture

so you don’t expose valid secret(s).

 View HTTP Traces
If you receive an HTTP Archive (.har) file from someone else, you’ll need a tool to view

it. A list of HTTP trace and .har file viewers as well as other useful debugging tools is

included in Appendix E. The ability to view traces sent by others is useful if you cannot

duplicate a problem yourself.

Chapter 16 troubleshooting

198

 Make API Calls
Another valuable tool is an API client explorer that allows you to create and send API

calls. This provides a convenient interface for learning, debugging, and testing API calls

for identity providers as well as your own APIs. Vendors of identity services (or authors

of other APIs) may provide ready-built packages with calls for their APIs that you can

import into such tools. Appendix E lists some current tools in this category. You can use

such tools to test and debug individual API calls which can facilitate finding the source of

problems.

 View API Calls
If you make API calls from a back-end application component or native application, you

will need a different mechanism to capture the calls as they do not go through a browser.

You can use a network web debugging proxy tool or a debugger. Appendix E lists a few

tools for this purpose.

 View JWT and SAML 2.0 Tokens
A tool to decode and view the security tokens received by your application is essential.

Appendix E lists a few sites which are useful for viewing JWTs and SAML 2.0 requests/

responses. These tools will allow you to inspect the contents of the tokens. They may also

provide you with a way to create test tokens for sending to APIs for tests. With these tools

in place, you’re ready to start debugging.

 Check the Simple Things
You may save yourself some time by checking a few simple things before diving into a

detailed analysis:

• Check the identity provider is accessible and not experiencing an

outage.

• Check the credentials supplied are correct for the environment (test

vs. production).

Chapter 16 troubleshooting

199

• Check the login account and credential are not disabled or expired by

logging in to the identity provider through another application.

• Check the application is using the correct URL for the identity

provider.

• Check the client ID in the application matches that registered in the

identity provider.

• Check the redirect/callback URL for the application matches the URL

registered in the identity provider.

• Find any error messages to see if they provide valuable clues.

Once you’ve checked the simple things, if the issue is reported by someone else, ask

questions to understand the problem so you can replicate it or focus your debugging on

the most likely spot. Start by asking for a general description of what happens, followed

by questions to elicit more details on what the user did so you can replicate the situation.

Be sure to ask about any error messages displayed on the screen or in any log files. Also

ask what the user expected, because sometimes users can have an incorrect expectation

of how a system is supposed to work!

 Gather Information
Troubleshooting is facilitated by knowing what questions to ask. Identity solutions

involve many components, including your application, the user’s browser, and an

identity provider. There may also be APIs or an authentication hub in the mix. Any of

these components could potentially contribute to a problem. The following questions

will give you useful information to replicate the problem and/or narrow down the

possible source of an issue.

 How Many Users Impacted?
Is the issue experienced by all users or just a few? If only a few users, the issue is most

likely caused by something unique to those users’ profiles or their environments, such

as browser configuration settings. On the other hand, if all users experience an issue, it

is probably caused by something in the components common to all users, such as the

application or the identity provider.

Chapter 16 troubleshooting

200

 Contributing Environmental Factors?
Does the issue occur with all browsers, devices, locations, or platforms or just one?

Testing with different browsers, devices, locations, and platforms can identify if there

are any environmental factors contributing to the issue. If an issue occurs in multiple

environments, it is probably not caused by an environmental factor, and debugging

should focus on other components such as the application or identity provider. If,

however, an issue occurs on only one browser or type of device, your inquiry should

focus on whether the browser or device could cause the issue.

 Which Applications Impacted?
How many applications does the issue affect? If there are multiple applications

involved in a scenario, it can be helpful to test each to see if the problem occurs in all

of them or just some applications. If all applications experience the issue, the problem

may be caused by an issue at the identity provider. If only one or some applications

experience the issue, it is probably caused by the application code/configuration or the

configuration for the application(s) at the identity provider.

 Consistent or Intermittent Issue?
Does the problem happen consistently or only intermittently? An intermittent problem

will be easier to debug if you can reduce it to a problem you can reliably reproduce. Try

checking where one instance of a component out of several could be misconfigured,

such as one application server or one firewall instance out of several. Shut them all down

and start them one at a time to see if the issue occurs consistently with one.

 Worked Previously?
Does the issue occur in an application that worked previously but suddenly stopped

working? If so, check for recent changes, such as the following:

• Identity provider outage

• Change to identity provider API or API used by the failing application

• Network connectivity issue

Chapter 16 troubleshooting

201

• User password expired

• Recent software upgrades

• Recent browser or device configuration changes

• Certificate expiration or key rotation

• Servers with incorrect time due to NTPi not running

These are common causes of failures of previously working systems.

 Where Does Failure Occur?
How much of the authentication and authorization sequence of interaction completes,

as observed during a login transaction or in an HTTP/network trace? Noting where the

interaction stopped often suggests which component to investigate first.

 Replicate the Problem
If the issue is reported by someone else, it is valuable to replicate the problem in your own

environment. This can determine if the other person’s environment contributes to the issue.

It also provides a test environment in which to try different things to gather more information

about what causes the problem to appear. This is particularly useful if the person reporting

the problem is unable or unwilling to test different scenarios to aid debugging.

 Analyzing an HTTP/Network Trace
An HTTP or network trace of a broken scenario is invaluable for debugging. In this

section, we’ll describe what to look for in a trace.

 Capture a Trace
A trace of HTTP and API calls will be one of the most valuable debugging aids. Using

a debugger or other tracing tool, perform the failing authentication, authorization, or

logout transaction starting from the beginning and going as far as you can through the

sequence. When done, stop the trace to minimize the capture of irrelevant data. If you

receive a trace captured by someone else, use a suitable tool to view it.

Chapter 16 troubleshooting

202

 Check Sequence of Interaction
The first thing to check is the sequence of redirects or API calls to see how much of the

expected interaction succeeded. The sequence diagrams in earlier chapters may be helpful

for this. For OIDC or OAuth 2.0, look first for a call to an “authorize” endpoint on the

authorization server. For SAML 2.0, look for a “SAMLRequest” message to the SSO URL of

the identity provider. Then look for the requests to prompt the user to log in and for a redirect

or response back to the application after the user has authenticated. For OIDC/OAuth 2.0,

this will be to one of the callback URLs configured in the authorization server. For SAML

2.0, this will be a SAMLResponse message to the ACS (Assertion Consumer Service) URL

configured in the identity provider. If you do not see the complete sequence of expected calls

and responses, the place where the interaction started to deviate from normal is a clue for

where to start looking for issues. Table 16-1 provides some symptoms and possible causes.

Table 16-1. Symptoms and Issues

Symptom Possible Causes

user never redirected to identity provider. application has incorrect url for identity provider.

user redirected to identity provider but no

login prompt.

application sent malformed request.

incorrect client iD or client secret.

error in identity provider login page configuration.

user prompted to log in but receives error. user error. test with a different account.

user password has expired.

Wrong password for environment.

user account does not exist.

identity provider lost connection to data store.

user logs in without error, but not

redirected back to application.

incorrect or invalid callback url for application at

authorization server (oauth 2.0/oiDC).

incorrect assertion Consumer service url for

application at identity provider (saMl 2.0).

user redirected back to application but

receives authorization error, or application

content doesn’t display.

tokens or assertions returned to application are

malformed or do not contain information expected by

application.

exchange of authorization code for token fails.

application not granted necessary scopes.

Chapter 16 troubleshooting

203

 Check Parameters in Requests
Check the parameters in a request. For OAuth 2.0 or OIDC, check the following:

• Request is sent to the correct endpoint at the authorization server.

• Correct response_type used for the desired grant type or flow.

• Scope parameter value is adequate for the requested action.

• Callback URL matches what is registered in the authorization server.

• A state parameter value is specified, if required by authorization server.

For SAML 2.0 requests, check the following:

• Request is sent to the correct URL at the identity provider.

• Request specifies the binding for a response, if required.

• The correct certificates and public keys have been configured.

 Check HTTP Status Codes
The next step is to check the HTTP status code on the response from the authorization

server or identity provider. Table 16-2 lists some common HTTP status codes for error

scenarios and some possible causes.

Table 16-2. HTTP Status Codes and Possible Causes

HTTP Status Code Possible Causes

400 Malformed request. Check your request has the correct parameters and valid

values for them.

401 unauthorized. Check the application or user has the necessary privileges for

the request.

403 Forbidden. Check the application or user has the necessary privileges for the

request.

500 internal server error. Check the configuration at the authorization server or

identity provider.

503 service unavailable. Check if the authorization server or identity provider service

is running and reachable.

Chapter 16 troubleshooting

204

 Check Security Token Contents
If the HTTP status code does not indicate there is an error, check the security token(s)

returned. Appendix E lists tools for viewing the contents of these security tokens. Check

the relevant security tokens to see if they are formatted correctly and they contain the

requisite information.

For ID Tokens, check

• ID Token contains the correct user information in the “sub” claim.

• ID Token contains any other claims expected by the application.

For Access Tokens that can be viewed, check

• Scopes granted to the application are adequate for the request.

• Access token contains any claims needed by an API.

• Audience for the token is correct for the intended recipient API.

• The access token is valid and has not expired.

For SAML 2.0 SAMLResponse messages:

• Subject, Name identifier element contains a user identifier expected

by the application.

• Additional attribute statements expected by the application exist.

An application may need information for authorization conveyed in custom claims.

If such authorization data is missing from an ID Token or SAML 2.0 assertion, the

user may get an “unauthorized” message or possibly a blank screen. If an API you call

requires custom claims in an access token, your program may get an error status from

the API. You should check the contents of the access token if possible. If the access

tokens are in JWT format, they can be viewed in a JWT viewer. If they are opaque strings,

however, you may need to use an introspection endpoint on the authorization server

to get information about the token. If the contents of the security tokens are correct,

another possible cause of issues is a problem validating a security token.

Chapter 16 troubleshooting

205

 Check for Security Token Validation Errors
After an application receives a security token, it must validate it. The security tokens

returned by OIDC and SAML 2.0 are digitally signed. They may also be digitally

encrypted. If an application cannot validate the signature on a security token (or decrypt

it if encrypted), it should log an error. Checking application logs for such errors can help

identify if this type of issue exists.

Errors with security tokens can also occur at identity providers. One identity provider

may delegate authentication for a user to another identity provider. If the first identity

provider does not receive a valid authentication token from the remote provider, it

should log the authentication failure. Identity provider logs should be consulted if errors

seem to originate at the identity provider as these logs will often have the most useful

information.

The previous sections describe a series of troubleshooting steps that will help you

solve many common causes of authentication and authorization issues. A frequent

complication with troubleshooting is that you may not own all the pieces. In such cases,

you need to collaborate with others.

 Collaborating with Others
If you are not able to test the application personally, or can’t replicate the problem, you

will need to ask someone who can replicate the problem to capture a trace of the issue. A

.har file or network trace can show interactions between an application and an identity

provider as well as an API if used. This can include the requests made, the parameters,

the timing of such interactions, and the responses received. Such traces are extremely

useful for debugging issues with authentication, SSO, and authorization. When you

receive a trace file, you’ll need a viewer suitable for the type of trace captured. Appendix

E includes a few such tools.

You should remember that a trace may capture sensitive data, including a username

and password typed by a user or sensitive security tokens returned to applications. If

someone sends you a trace file, you may wish to warn them about this so they can reset

a captured password or invalidate any sensitive tokens. This can reduce your liability.

Furthermore, invalidating any long-lived tokens captured and deleting trace files when

you are done troubleshooting is another good practice.

Chapter 16 troubleshooting

206

 Summary
This chapter described tools and approaches useful for troubleshooting many common

issues. It helps to know the protocols you are working with and to have debugging tools

that give you sufficient visibility into the authentication and authorization interactions

of your program. Collecting data about where and when the problem occurs can narrow

down the possible source of an issue. An HTTP trace, network trace, or debugger can

help you analyze the flow of traffic between components as well as the parameters in

the requests and responses. By obtaining the right tools, and asking the right questions,

you can speed up the process of debugging an issue. This completes the set of chapters

on building and debugging the code for your application. The next chapter covers some

things which can go wrong beyond the code and for which you should prepare.

 Key Points
• Develop a working knowledge of the specifications for the identity

protocols you use.

• Prepare a suite of debugging tools.

• Check the simple things first.

• Gather relevant information about the problem.

• Replicate the problem in your own environment if reported by

someone else.

• Use an HTTP or network trace to help identify where a problem

occurs.

• Check the list of symptoms and causes in this chapter.

• Check for error responses from identity providers.

• Check application and identity provider log files, if possible, for clues.

 Note
 i. www.ntp.org/ntpfaq/NTP-s-def.htm

Chapter 16 troubleshooting

https://www.ntp.org/ntpfaq/NTP-s-def.htm

207
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_17

CHAPTER 17

Exceptions

An ounce of prevention is worth a pound of cure.

—Benjamin Franklin, American founding father, inventor,
politician, diplomat, scientist, and printer, from a letter to

The Pennsylvania Gazette (1735)

The previous chapters have covered many cases where things happen as expected.

There are times, however, when failures occur or things don’t go as planned. Situations

involving exceptions require planning to handle them well. Examples include

accidentally deleted data, lost phones, system outages, or even a large-scale compromise

of user credentials. We can’t predict every problem your project may encounter, but

this chapter should provide you with a list of exception scenarios that might apply to

your environment. You can select which you’ll need to handle and define a process for

handling them. We recommend starting with the scenarios that are most likely as well

as those that would have the biggest negative impact if they were to occur. With a plan in

place, your team can respond quickly and effectively if one of these situations arises.

 Accounts
The cases in this section apply primarily to accounts and may require some human

involvement to assess risk or perform due diligence evaluation of a request.

 Data Restore
A customer may inadvertently delete their account data and then regret it. The likelihood

of this occurring can be reduced by requiring confirmation before deleting data and

implementing a soft delete as described in Chapter 15. If you support requests to restore

208

deleted accounts, you should develop policies and secure practices for such requests so

they don’t provide an opportunity for a social engineering exploit. Procedures should

include evaluating the requestor, the timing of the request, and the nature of the request.

The requestor should be validated as a legitimate registered owner or administrator of

the account in the request. Requests made weeks or months after the data was deleted

or to restore data into different accounts with different owners probably need higher

scrutiny. For business accounts with multiple administrators, it may be appropriate

to require confirmation of requests from a second person. The details will vary by

application, but you’ll want to define policy and procedures to ensure unauthorized

parties cannot get access to data via data restore requests.

 Account Decommission
A request to terminate an account carries risk similar to a data restore request. You

need a means to validate that the person initiating such a request is legitimately

entitled to terminate the account. For consumer-facing accounts, a self-service

account decommission feature may be sufficient. Such a feature may be needed as

part of supporting privacy requirements as well. For corporate accounts with multiple

administrators, it may be useful to require a request by two authorized administrators

or implement a delay coupled with confirmation notices to all administrators in order to

prevent an unauthorized, malicious action by one disgruntled employee. Chapter 15 has

further guidance for account decommissions accompanied by requests for account data

transfers.

Also in Chapter 15 is guidance to reserve the account identifier for accounts which

have been decommissioned. It should not be possible for someone to create a new

account with the same identifier as a previously deleted account and then request the

restoration of data from a time when the original account existed. The use of an email

address as account identifier does not mitigate the risk because email addresses have

been recycled by some providers in the past.i Reserving the account identifier for a

decommissioned account for a period longer than the data retention period for backups

of deleted account data mitigates this risk at least for the local system.

Chapter 17 exCeptions

209

 Orphaned Account
Although rare, the person who established an account may be terminated from a

company or decease. If they were the only person associated with the account, someone

not previously associated with the account may request access to it. The legitimacy of a

requestor making such a claim needs to be validated before they are given access to an

account. For a corporate account, it may require obtaining a contact from the company’s

web site to help in validating that a requestor is a legitimate representative for the

company and authorized to take over the account. Be sure to obtain requests in writing,

validate the authenticity and authorization of requestors through independent channels,

and keep records of all requests, validation steps, and actions.

When a user of a consumer-facing site has passed away, policies vary. Some social

media sites allow family members to request an account be terminated or memorialized.

Estate executors can direct the disposition of some types of accounts such as financial

accounts. Until legal guidelines and practices governing online data and digital

inheritance mature, you should obtain legal guidance for accounts involving financial

value. For other accounts, allowing a user to specify a contact authorized to take over an

account in the event of death may be helpful.

 Account Takeover
The legitimate owner of an account can be locked out of their account as a result of a

compromised password, stolen phone, social engineering, or software vulnerability. If a

user calls your helpdesk and claims their account has been taken over by someone else,

you will need a process for determining the legitimate owner of the account, bearing

in mind that an unauthorized user could have viewed account details and changed

user profile information as well as passwords after taking over the account. In this case,

the legitimate owner may look like an imposter because they won’t know the current

password or profile information. Maintaining a history of past profile information

such as email addresses, not displayed in the application user interface, may help in

validating a locked-out, legitimate account owner.

Chapter 17 exCeptions

210

 Phone Lost, Damaged, or Stolen
If your site uses an authentication mechanism that leverages a user’s mobile phone,

you will need a process to help customers whose phone is lost, stolen, or damaged.

Depending on the authentication mechanism, a user might need to deregister an old

phone and register a new one with their account and/or install an app on their new

phone. If a user’s phone is stolen and open at the time of the theft, the user’s account

may be accessible by the thief. For this case you’ll need a process to help the legitimate

owner of an account terminate the phone’s access to their account.

 Identity Providers
This section covers cases which may involve an identity provider.

 Account Recovery Requests
To assist users who’ve forgotten their password or lost a device needed to authenticate,

an identity provider may provide an account recovery mechanism. One option is

sending a “Magic Link” to a previously registered email address for the account. A magic

link is a non-guessable URL that is valid for a single use within a short time period and

allows a user to bypass authentication to access a credential reset feature. The use of

a magic link can be combined with a confirmation email indicating a credential was

reset, with instructions for what to do if this action was not taken by the legitimate

account owner. With a magic link, the user’s access to their email becomes a backup

authentication factor for account recovery.

Alternate forms of authentication can serve as a secondary authentication factor

as an alternative to relying on the security of a user’s email account. Sending one-time

codes via Short Message Service (SMS) text messages to a user’s previously registered

phone number has been a common solution. At the time of writing, however, there

have been some successful attacks based on intercepting SMS messages.ii, iii Future

projects should evaluate the threat posed by this issue before selecting an SMS-based

approach. Other approaches use a mobile app or a specialized device to generate a one-

time code. An identity provider that supports multiple authentication mechanisms and

having users set them up can improve your ability to quickly adapt if one mechanism

becomes compromised.

Chapter 17 exCeptions

211

An identity provider’s account recovery mechanism can open up other risks,

depending on how it is implemented. A password reset link which immediately

invalidates the current account password could enable a person to lock someone else

out of their account. If the legitimate owner of the account has not kept their email

address up to date, they will not receive the password reset link and be locked out of

their account. A password reset link could even be used by pranksters to trigger an

account recovery SMS message or phone call in the middle of the night to wake someone

up! If a user’s email account has been compromised, a hacker could use a password

reset feature to trigger password reset emails and gain control of the user’s accounts that

use that email address. Approaches to mitigating these risks include requiring some

information from the user before triggering an account recovery action, reminding users

to keep their notification information current and not invalidating a current credential

until a reset link has been activated.

 Brute Force Attacks
In a brute force attack, a hacker attempts to log in with many different username/

password combinations in hopes of guessing a user’s password. They may use common

or known breached passwords, and their attempts are often automated. An identity

provider can reduce the chances of brute force attacks succeeding by detecting a series

of many successive failed login attempts or failed password reset attempts against

one account from the same IP address. If either of these situations occurs, an identity

provider can slow down an attacker by techniques such as blocking an account for a

short time period or asking for multi-factor authentication (if configured). An alert can

be sent to the site administrator and an email sent to the owner of the account to alert

them about the attack. The email can indicate why the account was blocked and provide

a link for unblocking the account immediately in case the failed logins were caused by

the legitimate account owner.

If an identity provider detects a series of failed logins or failed password reset

attempts hitting multiple accounts from a single IP address, this is more suspicious, and

it may be appropriate to simply block that IP address immediately. However, corporate

customers with many users whose traffic comes from the same IP address due to

network address translation (NAT) are an exception. If enough users on the internal

network mistype their password in a set time period, it could trigger a false alarm for a

brute force attack. Whitelisting IP addresses for environments using NAT helps avoid

false alarms for brute force attacks in this case.

Chapter 17 exCeptions

212

One additional caution involves environments with an automated system that will

access a user’s account using their credentials. If the user changes their password, but

the update is not provided to the automated system, it could trigger the brute force

attack response. Reviewing an environment for such cases can prevent wasting time due

to false alarms.

 Breached Passwords
Breached passwords are being aggregated into massive databases that can be exploited

by hackers, including one discovered by breached identity curator 4iQ containing

1.4 billion breached, cleartext passwords.iv If a user’s password at your site is easily

guessable or has been compromised elsewhere, it could enable a hacker to take over the

user’s account on your site. Fortunately, there are databases on the Internet containing

information on breached passwords, such as “have i been pwned”v created by Troy Hunt.

An identity provider can check a user’s password against such databases when they sign

up for an account or reset their password. If the user’s password has been breached, the

identity provider can notify them and have them select a different password. An identity

provider can perform such checks when a password is initially set, at password reset, and

periodically when users log in to detect if a password has been compromised after being

set. These actions will help detect, and mitigate the risk of, breached passwords.

 System Outages
Evaluating the impact of identity system failures on support systems and administrative

access is recommended as part of business continuity planning.

 Authentication System Outage
It may be desirable to use the same authentication service for your primary web site

and a support site, so users have single sign-on (SSO) across the sites. However, if the

authentication service is unavailable, users will be locked out of both sites. It can be

annoying for customers if they are unable to access a web site and then realize they can’t

report the problem! If you have this scenario, you should plan for how to handle support

in the event of an outage to your authentication system.

Chapter 17 exCeptions

213

One approach is to rely on proactive outbound communication during an outage.

Some mechanisms to consider include a support phone number with a recorded

message to acknowledge the issue and provide updated information or a public

community support forum or status page where outage updates can be posted. In

designing processes for business continuity during an outage of an authentication

system, you’ll want to ensure that alternate processes do not rely on the primary

authentication system.

 Admin Access
It is helpful to evaluate your use of authentication services for your internal operations

and administrative access to your site. If single sign-on is used as a primary access

mechanism for administrative access, such access could be blocked during a failure of

the SSO system. You may need alternate authentication mechanisms to access critical

administrative functions during an outage. This includes administrative access to your

service, monitoring and alerting infrastructure, and the ability to post outage updates to

your customers. You should of course ensure an adequate level of security on all access

paths to administrative functions. Planning for an outage of authentication solutions

used for administrative access will help your team respond efficiently during an actual

outage.

 Provisioning Systems
Provisioning processes and systems may be less critical during an outage than

authentication systems, but if you have time-critical account provisioning or

deprovisioning processes, it may be necessary to define alternate processes for use

during an outage of a provisioning system. Once service is restored, it may be necessary

to validate that all in-flight transactions at the time of the outage were completed,

especially account removal or privilege removal transactions. A routine check after

an outage for incomplete deprovisioning transactions can help prevent incorrect

access privileges.

Chapter 17 exCeptions

214

 Compromised Security Information
The compromise of personal data, user credentials, and authentication secrets can have

significant consequences and requires a comprehensive response. Moreover, there may

be aggressive timeframes within which you must respond, so it is imperative to have a

response plan defined in advance.

 Compromised Personal Data
If the unthinkable happens and you experience a suspected or verified breach of personal

data, you need to act quickly. It is imperative that you are aware of any legal requirements

related to the exposure of personal data, have a plan worked out in advance, and have

retained any outside assistance needed to respond quickly. Your plan should define

• The owner accountable for leading the response

• The response team and responsibilities of each member

• Clear priorities and required timeframes for the response effort

• The steps to take, including preventing further damage, preserving

required evidence, assessing the damage, and identifying and fixing

the root cause as well as related damage

• The process to follow for user and regulatory notification

• The process to follow for public relations communications

If personal data is compromised, many privacy regulations require notification

to regulatory agencies within a certain time period. For organizations subject to the

General Data Protection Regulation (GDPR), Article 33 specifies that notification should

be made within 72 hours of becoming aware of a breach. Breach response procedures

require significant coordination. Notification may be required to multiple government

organizations, law enforcement, and users. You may need to coordinate press releases

and communications on social media. Communications may need to be vetted

internally with legal, security, and marketing teams and with a representative from your

cyber-insurance carrier if you have such a policy. The amount of communication and

collaboration for a well-coordinated, professional response can only be done in the

required timeframes by having a plan and process defined in advance, as well as training

staff on the plan along with templates, checklists, and contacts.

Chapter 17 exCeptions

215

 Compromised Credentials
If there is a large-scale compromise of your users’ authentication credentials, the

legitimate users need a way to reset their credentials and recover their accounts if thieves

have taken over the accounts. Relying on users calling a support center is costly and

difficult to scale and requires a secret the legitimate user and the support staff know that

the thief won’t know. Sending a password reset link to the user’s registered email address

or phone number may not work if significant time has passed between the breach and its

discovery because the thief may have altered authentication credentials and user profile

information, including notification attributes. You need a secure and scalable account

recovery process worked out in advance so that you can act in a timely manner if this

happens.

 Compromised Secrets
A related scenario is the compromise of other “secrets” such as OAuth 2.0 client secrets

or private keys used in the signing or decryption of security tokens. This can happen as a

result of human error, so it is wise to prepare for this possibility. An inventory should be

maintained of all such secrets used in your operations, how each is used, and recovery

steps needed if any are compromised.

Your application can facilitate recovery by dynamically retrieving the public keys

used to validate security tokens. This makes it easier to rotate them but may create

issues for caching. If your application caches dynamically retrieved public keys for

performance reasons, and invalidates the cache anytime a signature validation fails, this

could enable a denial-of-service (DoS) attack by someone sending counterfeit security

tokens with fake signatures. If caching is needed, it may be possible to reduce this risk

using a periodic refresh and by having applications only invalidate their cache upon

a validation failure once per a certain time period, rather than for each failure, and

triggering an alert for human intervention if a lot of invalid tokens are received.

If your solution includes the use of SAML 2.0 with other organizations and a private

key used to sign or decrypt SAML 2.0 messages is compromised, you need to update

configurations with new keys. If there is no dynamic mechanism to update federation

metadata, you may need to synchronize updates with another organization. You should

work out recovery processes in advance for the secrets in your environment so you can

execute quickly if needed.

Chapter 17 exCeptions

216

 Summary
We’ve covered several scenarios that involve some type of failure and the need to create

a response plan for them. Some, like forgotten passwords, are likely to occur. Others,

like a breach of personal data or user credentials, may never occur. The failures possible

in your environment may differ from those we outlined, but our list should help you

identify possibilities to consider. This enables you to create response plans, train your

team, and test your preparedness periodically to ensure you are ready if something

happens. Besides these failure/exception cases, there are also use cases that are simply

less common, and they are the topic of the next chapter.

 Key Points
• It’s essential to plan for what can go wrong in an environment.

• You may need a process for restoring accidentally deleted data.

• You need a process for customers who wish to decommission their

account.

• You should have a process to handle an orphaned account.

• Users may forget or lose credentials and need an account recovery

mechanism.

• You need a process to check for and fix accounts whose password has

been compromised.

• You need a process to identify the legitimate account owner if

account takeover has occurred.

• If your support system or administrative access depends on a single

sign-on system, you should plan for how to handle an outage.

• You should have a response plan in place for situations involving

compromised personal data, user credentials, or private keys.

Chapter 17 exCeptions

217

 Notes
 i. www.pcworld.com/article/2052586/microsoft-is-quietly-

recycling-outlook-email-accounts.html

 ii. https://usa.kaspersky.com/blog/ss7-hacked/17099/

 iii. www.theguardian.com/technology/2016/apr/19/ss7-hack-

explained-mobile-phone-vulnerability-snooping-texts-

calls

 iv. https://medium.com/4iqdelvedeep/1-4-billion-clear-text-

credentials-discovered-in-a-single-database-3131d0a1ae14

 v. https://haveibeenpwned.com

Chapter 17 exCeptions

https://www.pcworld.com/article/2052586/microsoft-is-quietly-recycling-outlook-email-accounts.html
https://www.pcworld.com/article/2052586/microsoft-is-quietly-recycling-outlook-email-accounts.html
https://usa.kaspersky.com/blog/ss7-hacked/17099/
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-3131d0a1ae14
https://haveibeenpwned.com

219
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_18

CHAPTER 18

Less Common
Requirements

Two roads diverged in a wood, and I— I took the one less traveled by, And
that has made all the difference.

—Robert Frost, American poet, from “The Road Not Taken” (1916)

Previous chapters covered common identity management use cases. In this chapter,

we’ll share some less common requirements that may apply to your project. Identifying

the need for them early in a project can help you avoid surprises and project delays.

We’ve organized these scenarios loosely around people, accounts, and environments.

 People
Several requirements stem from activities, changes, or relationships in the life of people.

 Family Accounts
With services that can be shared between members of a household, such as movie

streaming, it may be necessary to associate multiple family members with a family

account. This requirement can apply to insurance, digital libraries, cellular service

providers, healthcare, or other services traditionally shared among members of a

family or household. In addition, one family member may need to be informed about,

or communicate on behalf of, another person such as a minor child or an elderly

adult. For such family-oriented services, applications may need to recognize all family

members associated with an account as well as what each family member can do for

others.

220

 Temporary Positions
In corporate settings, temporary accounts are sometimes needed for contractors,

interns, or partner workers. If temporary accounts are not governed by a company’s

normal account management processes, they might not be terminated when the

temporary working relationship is over. A best practice is to set an expiration date for

temporary accounts and require the manager of a temporary worker to periodically

approve renewal of the temporary account. If the account is not renewed, it should be

disabled. The sensitivity of the privileges allowed by the temporary account’s access can

determine the appropriate frequency for account review and renewal.

 Status Transition
Another corporate requirement involves a person who transitions from working in

one capacity to another, such as a temporary contract worker transitioning to full-time

employee status or vice versa. If temporary workers are registered and administered

separately from employees, but all sources feed into one identity provider, it might be

possible for two accounts for the same person to exist at the same time which might

cause ambiguity at best, or unauthorized access at worst. If a person can transition from

one status to another, processes should be designed to avoid duplicate accounts for the

same person.

 No Email Address
Many applications expect an email address attribute in a user’s profile. There may be

cases, however, where users don’t have email addresses. Some businesses do not issue

email addresses to employees who have no need to read email on the job. Parents of

younger children may not allow them to have an email address. Some organizations may

provide their users an email address but have privacy guidelines that prohibit the use of

email addresses as account identifiers. Applications may need to accommodate users

who do not have email addresses or restrictions on where an email address can be used.

Chapter 18 Less Common requirements

221

 Identity Defederation
It may be necessary to support account defederation while otherwise leaving an account

intact. For example, when a person terminates their relationship with an employer, they

may need to use a personal account to access resources that they previously accessed

via an account at the employer’s identity provider. If a company provides to employees

a pension program, employees might sign in to the external pension web site via their

employer’s chosen identity provider. If an employee quits their job, however, their

account at the corporate identity provider will cease to exist. The user will need their

account at the pension system to be defederated from their employer’s identity provider

so they can log in with an individual account local to the pension system. In general,

defederation is needed when a user can sever a relationship with an organization, but

is still entitled to access resources there that they previously accessed via a federated

identity.

 Accounts
Another category of requirements is associated with users’ accounts.

 Mergers and Acquisitions
Mergers and acquisitions can create identity management challenges. It is advantageous

for a company to have a single identity repository against which all users are authenticated.

When a company acquires or merges with another company, it is common for the identity

repositories of the two companies to be merged, which may require resolving duplicate

usernames to achieve username uniqueness in the new merged entity.

Changing usernames to eliminate duplicates may impact applications. When a user

is authenticated by a centralized identity provider, an identifier for the user is passed to

applications. If an application maintains a user profile or data records that contain the

user’s identifier, the identifier passed to the application from an identity provider must

match the identifier for the user in the application. If a user’s identifier is changed as

part of a merger, (mary@domain1.com becomes mary@domain2.com or “mary” becomes

“mary.smith”), an identity provider may need to translate identifiers so the user can

authenticate with a new identifier but have their former identifier passed to legacy

applications still using the old identifier.

Chapter 18 Less Common requirements

222

Alternatively, user identifier changes can be implemented in applications. This

should be done with care, however, as it may require updating data records within the

application besides the user’s profile. This can become complicated, so it may be easiest

to have an identity provider pass old usernames to legacy applications until the legacy

systems are replaced.

 Account Linking
A common requirement, particularly in a consumer-facing environment, is to allow a user

to sign up for an application account, entering user profile information required by the

application, and then add the ability later for the user to log in to their local account via a

social identity provider. This requirement can come about for several reasons, including

• An application has a legacy data store of identities but wants to offer

users the convenience of logging in via a remote identity provider,

most commonly a social identity provider.

• A user wants to try out a new application without granting the

application access to their profile at a social identity provider. If they

like the application, the user would later want to leverage their social

identity provider account to log in to the application.

Applications typically want to remove as many barriers to usage as possible. Allowing

a user to log in via a remote identity provider means the user can log in with credentials

they may use frequently and are more likely to remember than an application-specific

credential. Furthermore, if the user has an existing authentication session with the

identity provider when they access the application, the user may get right into the

application via single sign-on, for even more convenience.

Account linking can be used to link remote accounts to a local application account.

Linking is useful because accounts are associated with a particular context. For example,

a local application account with identifier “mary@gmail.com” is a different account

than an account at a remote identity provider that uses the same identifier. If a user

signs up for an application account using identifier “mary@gmail.com” and then logs

in with the identifier and credentials specified at sign-up, she will access the local

application account created as a result of her signup. However, if Mary then signs in to

the application via a social identity provider, the application will receive a security token

with various claims about Mary. The claims might include an internal identifier specific

Chapter 18 Less Common requirements

223

to that provider and a claim about her email address. However, Mary might have used a

different identifier or email address at the social provider. Unless the application has a

way to associate the social provider account attributes with the user’s local account, the

user won’t be able to access their existing application account when they sign in via the

social provider. It is risky for an application to make an automatic association between

accounts based simply on matching attributes because a remote account may not have

validated user profile data. Therefore, it is best for any linking between accounts to be

made explicitly using a process such as the following, that requires a user to authenticate

to both accounts to prove ownership of them.

• The user logs in to a local application account, proving ownership of

that account.

• The local application provides a list of remote identity providers

supported for linking.

• The user selects the remote identity provider for a second account to

be linked, such as a social provider.

• The application triggers an authentication request to the remote

identity provider to authenticate the user.

• The user authenticates to the remote identity provider, proving

ownership of their account at the provider.

• The application receives a security token from the remote identity

provider with claims about the user.

• The application associates an identifier for the remote account with

the local account for the user.

• When a user authenticates, the application searches through both the

primary account identifier and any secondary linked identifiers in

the user profiles to find the account for the user.

In this example, the linking steps establish a link between a user’s account at a

social identity provider and their previously established, local account in an application.

The user must authenticate to both accounts to prove ownership of them and give the

application the user’s identifier at the remote identity provider. The authentication

to the accounts to be linked can be done in any order, but it must be done in order to

prevent the risk of account takeover via account linking. It’s important to note that

Chapter 18 Less Common requirements

224

automatic linking of accounts that have the same value for a profile attribute such as

email address, without the explicit dual authentication step, should be avoided, to

prevent the possibility of unauthorized account takeover. If automatic account linking

is done between accounts with unvalidated attributes, such as an email address,

accounts could be erroneously linked that belong to different people. Lastly, if account

linking is implemented, it should be possible for users to unlink accounts they have

previously linked, in case the user wishes to stop using a linked account for some reason.

Implemented properly, account linking can provide a convenience for users to log in via

different identity providers and still access the same account.

 Progressive Profiling
Progressive profiling can be used to avoid having to collect a lot of information from a

user at once. A user can sign up for an application account with minimal information,

and progressive profiling can then add to that data over time. The gathering of additional

profile attributes can be done upon subsequent uses of the application or when it is

needed for a specific type of transaction. A user can even sign in to an application using

a remote identity provider, and the application can create a local account for them with

information from the remote provider. A user can be prompted to supply additional

profile attributes either before or after they are redirected to that identity provider, with

information from both sources merged into the local application’s profile for the user.

 Impersonation
Impersonation is defined as the ability of one person to log in to an application as if they

were another person and perform any task as that person. The most common use case is

the need for support personnel to log in to an application as another user and see what the

user experiences in order to troubleshoot an issue. Unfortunately, such a capability has the

potential to be abused, and it can be challenging to retrofit secure, restricted impersonation

capabilities into an existing application. To reduce the risk of unauthorized activity by

impersonators, a separate troubleshooting application can be created that restricts access

to that needed for troubleshooting. For example, it could provide view access to customer

account configuration and data, for troubleshooting, but not the ability to modify customer

data. The application should log all activity and automatic monitoring of logs for anomalous

activity should be implemented. Ideally, consent should be obtained from account owners

Chapter 18 Less Common requirements

225

before the troubleshooting application allows access to an account. Needless to say, the

troubleshooting application should be protected with adequate security measures and

granted only to authorized staff, with the list of authorized users reviewed frequently. This

approach can reduce the risk of unauthorized insider activity.

 Delegation
Another use case sometimes referred to as delegation is when one user needs to grant

another user the ability to act on their behalf, for a specific subset of tasks or data. A

busy executive, for example, may delegate some chores to an executive assistant. The

executive’s assistant would be granted access to perform tasks on his or her behalf. A

variant of this is when an employee goes on vacation and needs to delegate ownership of

their tasks (such as support tickets) to another person while they are away. In both cases,

one user needs to be granted access to perform specific actions on behalf of another

user. Such capabilities are best designed into an application as the granting of delegation

privileges is quite application specific. For example, an executive may wish to delegate

to an assistant the ability to approve expense reports, but only up to a certain amount.

Application logging should be delegation-aware so that all activity done by delegatees is

logged and shows both the delegating and delegated identities involved, for a full audit

trail. The task-specific nature of delegation and need for audit logging makes it best

implemented within an application itself.

 Environment
Last but not least, we have a few use cases related to an application’s environment.

 Shared Workstations
There are some environments where users log in to shared kiosks or workstations.

Such environments provide a shared device that is used by many users. Examples can

be found on manufacturing shop floors, medical offices, and point-of-sale systems.

With the same device used by multiple people, it is important to have each user log

in when they start a session and log off when they complete a session. Having users

log in at the beginning of a session is easy enough, but ensuring that a user logs out is

more challenging because users may get distracted and forget to log out before walking

Chapter 18 Less Common requirements

226

away. Implementing a session timeout after a short period of inactivity can help protect

users. Bank ATM machines provide a good example, asking after every transaction if the

user wants to do another, and if there is no response within a short period of time, the

session is immediately terminated. For applications that run in a browser, it is helpful

to use a browser that supports ephemeral sessions and to set browser policy to force

ephemeral sessions so that information from previous users’ sessions is cleaned up.

If your application may be used on shared devices, it’s also important to consider if

information could be leaked through other means, such as temporary files, and mitigate

any risks found. Such steps can prevent user sessions and data from being compromised

on shared devices.

 Identity Provider Discovery
With an employee-facing environment, there is usually one identity provider to

authenticate all users. In other scenarios, such as a multitenant application used by

many businesses, each business may have its own identity provider configured, and the

application may need to determine the appropriate identity provider for a user needing

to log in. This has been called identity provider discovery or home realm discovery.

When there are multiple possible identity providers, mechanisms to identify which to

use for each user include

• User selects the appropriate identity provider from a list.

• User enters information, and a lookup is performed to determine the

correct identity provider.

• Derive the identity provider from an environment factor such as the

originating application or domain.

• Obtain the identity provider from information in a browser cookie, if

available, and revert to one of the previous methods if not.

If an application has multiple identity providers configured for authenticating users,

these options can help determine the correct identity provider for a user.

Chapter 18 Less Common requirements

227

 Multitenant Applications
Multitenant applications serve multiple tenants with a single running instance of the

application, where a tenant is a group of related users sharing access to a group of

resources managed by the application. While multitenant applications themselves are

quite common, they pose some unique challenges related to identity management.

Users are typically authorized to access specific tenants. If a given user is authorized

to access multiple tenants, the appropriate tenant can be determined by mechanisms

such as

• Requiring users to have a different identity for each tenant

• Providing a tenant selection mechanism before or after login

The first option may not be very convenient for users. The second option is often

achieved by including the tenant name in the URL by which a user accesses the

application or by providing a tenant selection mechanism for the user.

In addition to routing a user to a specific tenant, there may be a requirement

to enable different authentication policies across tenants. For a business-facing

application, it may be necessary to allow the administrators for each tenant to configure

different identity-related preferences, such as password strength requirements, the

identity provider(s) by which to authenticate users, or the allowed length of single sign-

on sessions. It may also be necessary to support the ability of customers to retrieve log

data but only for their tenant. In short, a multitenant application has to satisfy all the

usual identity-related requirements, but may have to provide the ability for each tenant

to have their own identity-related configuration settings.

 Summary
We’ve covered several less common use cases that might apply to your environment to

help you identify such requirements early in a project. In the next chapter, we’ll cover

some mistakes that have led to breaches to help you avoid a similar scenario.

Chapter 18 Less Common requirements

228

 Key Points
• Applications may need to accommodate family relationships,

temporary accounts, users changing status, and users who may need

to defederate their identity.

• Users in some scenarios may not have email accounts.

• Merging of identity repositories during company mergers may

require changing usernames and supporting legacy applications’

need for old usernames.

• Account linking allows users to link multiple remote identities to one

local account and authenticate with any of them to use that account.

• Progressive profiling enables an application to build up user profiles

over time.

• Impersonation for support purposes has potential for abuse which

can be mitigated with customized troubleshooting applications.

• If an application supports multiple identity providers, a discovery

mechanism is needed to determine the correct identity provider to

use for each user.

Chapter 18 Less Common requirements

229
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_19

CHAPTER 19

Failures

Those who cannot remember the past are condemned to repeat it.

—George Santayana, Spanish philosopher, poet, and novelist, from
The Life of Reason, vol. 1 (1905)

We have covered several aspects of identity management relevant to an application

development project. Writing an application with perfect identity management will be

for naught, however, if flaws in your environment or processes introduce a vulnerability,

especially one that compromises sensitive identity data. It is often said that one can learn a

lot from failure. When it comes to identity management, however, we think it is preferable

to learn from others’ failures rather than your own! Inspired by George Santayana’s advice

about the need to learn from the past, we’ve collected stories of past security breaches and

their causes to help you avoid making such mistakes in your environment.

This chapter describes failures that resulted in significant breaches or exposure of

identity data. There may be some wonderfully interesting and obscure cryptography bugs

that have caused a breach somewhere. We won’t be covering any here because, sadly, many

breaches have been caused by very simple failures. While there are many attack vectors,

the annual Verizon Data Breach Reporti provides some valuable statistics on the top causes

behind breaches. Hacking, malware, human error, and social engineering topped the list in

the 2018 and 2019 reports. You’ll see those and more in the following stories. Take note of

the root causes in each story and avoid them in your projects!

 Pay Attention to Process
Our first case doesn’t involve technology or a breach of identity data, but we included it

because it underscores the importance of securing not just technology but also processes.

In 2015, Edward Hornsey, an enterprising young businessman, hit upon the idea of

230

buying used iPhones, many of which were stolen, and returning them to Apple to take

advantage of their liberal return policy. He received shiny new replacement phones in

exchange, which he was then able to sell at a handsome profit. Surprisingly, he managed

to do this 51 times before Apple caught on! At the time, Apple did not check to see if a

returned phone had been reported stolen or was being returned by the registered owner

of the phone. Nor did Apple have any check on the number of phones returned by a single

person. This demonstrates the necessity of designing appropriate anti-fraud mechanisms

and identity checks into business processes. In case you are wondering, Apple did catch

on and fix its processes and Mr. Hornsey was duly convicted of fraud and sent to jail. Don't

try this at home!

Another classic example of an attack that involved no technology beyond charm and

chocolate, yes you read that correctly, chocolate, is the 2007 social engineering attack by

a perpetrator as yet uncaught, who purloined 21 million euros of jewels from safe deposit

boxes at ABN Amro bank in Belgium.ii The thief’s charm and gifts of chocolate were

apparently used to obtain safe deposit box keys and information about the diamonds.

Don’t shortcut security processes, even for charming, chocolate-bearing customers!

Another failure occurred in 2006 when office workers employed by The Boston Globe

newspaper mistakenly printed out lists of subscribers’ credit card and bank routing

numbers. Rather than shred the printouts, the workers placed them in a recycling bin. This

environmentally conscious newspaper used recycled paper for routing slips for the bundles

of newspapers they distribute to newspaper vendors. As you suspected, the recycled

printouts with customer credit card and bank information were used to wrap bundles

of newspapers that were then distributed all around the city of Boston.iii The newspaper

certainly earned an “A” for environmental awareness, but an “F” for data protection that

day. If you handle any identity information, avoid printing sensitive information except

where absolutely necessary. In addition, provide shredders and train all staff regularly on

data protection procedures, including shredding printouts with sensitive information.

 Beware of Phishy Emails
Don’t take the bait when someone is phishing! Continuing the unfortunate tale of breaches

is Anthem which suffered a breach in 2015 impacting 78.8 million records including social

security numbers, birthdays, addresses, email, and income data.iv, v, vi The Anthem breach

is suspected to have originated in a single employee inadvertently clicking a phishing

email containing malware. At the time, Anthem had on the order of 50,000 employees

Chapter 19 Failures

231

and a single person clicking a dodgy email opened up a door for hackers. Sadly, the list of

breaches caused by phishing attacks continues unabated. In 2018, UnityPoint Health fell

victim to a phishing attack, resulting in the exposure of 1.4 million patient records including

names, addresses, medical data, and possibly social security numbers and payment card

information.vii Aultman Health Foundation was compromised by phishing, impacting

over 42,000 patients.viii MedSpring Urgent Care in Austin Texas compromised over 13,000

patients’ data as a result of a successful phishing attack.ix This should underscore the

importance of security training, endpoint protection software, and procedures/tools

to help employees recognize phishing attacks which may come in the form of emails,

text messages, or even voicemails. Implementing a comprehensive program of security

measures, for defense in depth, may help reduce or contain the damage if someone falls for

a phishing attack, but preventing malware in the first place is preferable.

 Use Multi-factor Authentication
While the causes behind some breaches do not involve technology, there are certainly

many that do. In November 2015, JP Morgan announced they’d suffered a data breach

of 83 million customers’ accounts.x At the time, it was the largest data breach suffered by

an American financial institution. This breach was the result of an attack that began with

stealing an employee’s credentials and then gaining access to the bank’s network through

a lone server that did not require multi-factor authentication. The moral of this story is one

of attention to detail. Have accurate lists of servers, check that multi-factor authentication

is required for access to all access points and sensitive resources, and repeat the checks

regularly. Rather than rely on error-prone manual processes, use automated processes to

build servers with secure configuration and automate regular security scans to ensure all

servers remain configured to build standards. Scan networks and use device management

regularly to find any equipment that does not meet secure configuration standards.

 Stay on Top of Patches
While we’re on the topic of staying on top of things, we should cover the 2017 Equifax

breach. This breach exposed the personal data of 143 million people. The breach

was made possible when Equifax did not act on security vulnerability notices for its

technology stack. A vulnerability in the Apache Struts technology (CVE-2017-5638)xi was

Chapter 19 Failures

232

made public on March 6th, 2017.xii A patch was promptly made available by Apache.xiii

Installing a patch requires time to update the impacted software and thoroughly test

applications relying on the patched technology. Care must be taken to ensure the

installation of a patch doesn’t cause outages or other issues. In this case, however,

aggressive attempts to take advantage of the vulnerability were already being reported in

March.xiv Unfortunately, for the victims in this breach, Equifax failed to patch its systems

for this known vulnerability. Equifax reported that its systems were breached in May of

2017, two months after the patch for the vulnerability was provided.xv, xvi, xvii The lesson

here is the necessity of knowing your technology stack, monitoring the vulnerability

announcements for each technology used, and having a process to quickly triage and

apply patches for critical vulnerabilities.

Secure Your Cloud
Just because you use cloud services with rigorous security practices doesn’t give you

a free ride. If you use a cloud service, you must configure and use it securely. In 2018,

MBM, which runs a company called Limoges Jewelry (a Walmart partner), exposed

the personal information of 1.3 million customers via an improperly secured Amazon

S3 bucket. This S3 bucket contained a database backup file and left this information

publicly exposed for many weeks. The compromised information included names,

addresses, phone numbers, email addresses, plaintext passwords, and encrypted credit

card information.xviii, xix, xx A similar incident, in 2017, this time by a Verizon partner,

exposed personal information and PINs of up to 14 million Verizon customers via an

improperly secured S3 bucket.xxi Continuing the pattern, Uber exposed the personal

information of 57 million users in a vulnerable S3 bucket.xxii A Florida credit-repair

firm, National Credit Federation, exposed data including names, addresses, driver’s

licenses, dates of birth, social security numbers, and credit reports for tens of thousands

of customers in similar fashion.xxiii The moral of this story is to properly secure any S3

buckets or similar cloud storage services you use.

 Encrypt Sensitive Data!
Another critical lesson can be learned from the breach of Sony PlayStation Network. The

Sony attack involved 77 million accounts, 12 million of which had unencrypted data.

This resulted in the compromise of names, emails, passwords, addresses, and credit card

Chapter 19 Failures

233

numbers.xxiv, xxv The lesson here concerns the need to protect data. If you handle sensitive

data, and identity data is by definition considered sensitive, you should encrypt the data

at rest and in transit. This protection should extend to backups and log files. In addition,

logs should be scanned to ensure sensitive data isn’t leaked to log files. Twitter learned this

lesson the hard way when a bug inadvertently wrote out cleartext passwords to log files

and they didn’t discover the issue for months.xxvi Legislators around the world are reacting

to public outrage about data breaches and enacting privacy legislation with sanctions for

companies that fail to adequately protect personal data. In the event of a breach, these fines

may be avoided, or at least significantly reduced, if data is protected by proper encryption.

 Do Not Store Cleartext Passwords
It is risky to store passwords in cleartext. Unfortunately, numerous breaches of

cleartext passwords show that many sites have run this risk, to the detriment of their

customers. The third largest data breach in Finnish history resulted in the compromise

of usernames and cleartext passwords of 130,000 users of the New Business Center, a

site for entrepreneurs.xxvii, xxviii A breach of ClixSense, a site for viewing ads and surveys,

resulted from an unsecured older server with access to a primary database. This breach

exposed personal information such as names, email addresses, dates of birth, and IP

addresses as well as the cleartext passwords of 6.6 million users.xxix A service called “Teen

Safe,” designed to allow parents to track their children’s phone activity, compromised

the data of tens of thousands of customers. The data exposed included parent emails as

well as children’s Apple ID and cleartext password for the Apple ID. This incident was

caused by improperly secured servers in Amazon Cloud, but the impact of the breach

was compounded by passwords stored in cleartext.xxx, xxxi All we can say is, when it comes

to storing passwords in cleartext, just don’t!

 Provide Security Training to Developers
Secure infrastructure and practices won’t help if applications themselves contain coding

vulnerabilities. A good place to start for advice on secure coding practices is the

• OWASP Top 10 Application Security Risks – 2017xxxii

• OWASP Secure Coding Cheat Sheetxxxiii

• OWASP Secure Coding Practices Checklistxxxiv

Chapter 19 Failures

234

These documents contain advice about the most common coding vulnerabilities and

how to avoid them.

Heartland Payment Systems suffered a data breach in 2008 that exposed 134 million

credit cards and was caused by a SQL injection attack.xxxv, xxxvi This type of attack takes

advantage of applications that do not properly validate input that is subsequently used

to form queries against back-end data systems. The Heartland breach in 2008 might have

been prevented had they heeded the 2007 version of the OWASP Top 10, which showed

injection-style attacks as number two in the list.xxxvii They are easy attacks to perform and

automate but can be prevented with proper input validation. To reduce vulnerabilities in

application code, ensure that developers are thoroughly trained on the current OWASP

Top 10 Application Security Risks and how to prevent them.xxxviii In addition, to mitigate

the risk of human error, institute code reviews and automated software vulnerability

scanning to identify vulnerabilities in your application code.

 Vet Your Partners
Many companies today use a dizzying array of vendors, and if their access is not properly

managed and segregated, the results can be disastrous. The retail company Target

announced in 2014 that it had been attacked, resulting in the exposure of 40 million

card numbers and personal data of 70 million customers. This attack is suspected

to have originated in the compromise of Target’s HVAC (heating, ventilation, and

air conditioning) contractor via a phishing attack which installed a Citadel Trojan.

Unfortunately, there was inadequate separation between the network access granted to

the HVAC vendor and other systems on Target’s business network. The attackers were

able to leverage the access provided to the HVAC vendor to access vulnerable systems

on Target’s network and from there to access POS (point of sale) systems where they

collected credit and debit card data. While Target had installed security tools such as

FireEye and Symantec, key monitoring features were either turned off or not monitored.
xxxix The lesson to learn from this breach is to thoroughly validate the security practices of

all partners on an ongoing basis and ensure adequate network segregation between low

sensitivity systems and systems with highly sensitive data. Applying the principle of least

privilege by granting the minimum necessary access to each actor in an environment

can provide another layer of defense. Last but not least, ensure monitoring systems are

turned on and pay attention to alerts from security monitoring systems!

Chapter 19 Failures

235

There are several more examples of breaches related to business partners. [24]7.

ai, a customer service and chat vendor used by several retailers such as Sears, Kmart,

BestBuy, and Delta, caused a breach in 2018 resulting in exposure of personal data and

credit card information for hundreds of thousands of customers of each of these large

companies.xl In 2017, Deep Root Analytics, a small professional services company used

by the Republican National Committee, mistakenly put the data of 200 million voters on

a publicly accessible server.xli, xlii To avoid a repeat of these cases, make sure to track all

partners you use, vet their security practices, and ask if they share your data with any of

their partners and how they’ve vetted their partners.

 Insider Threat
Some breaches are caused by insiders. The Verizon Data Breach Report for 2018

indicates that 28% of attacks are perpetrated by insiders.xliii Perhaps the most infamous

example of insider threat was not conducted for monetary gain. Edward Snowden, a

systems administration contractor working at the US National Security Agency (NSA),

was able to exfiltrate thousands of top secret documents from a Defense Intelligence

Agency network. The exact scope of the breach may never be known, but the impact to

political strategy as well as to offensive national cybersecurity interests will be felt for

years. Snowden apparently accessed 1.7 million files using automated web-crawling

software on networks to which he was legitimately given access. He configured the

software to look for specific topics. His activity was apparently not detected because

he worked in a field office that had not yet upgraded systems to implement the latest

security controls which might have detected his activity.xliv, xlv, xlvi

The Snowden incident illustrates the threat of a malicious insider. Several lessons

can be learned from the Snowden incident. The first is to implement the classic security

principle of granting each person the least privilege required to do their job and to

design access models to enforce segregation of duties. Admittedly, this is challenging

in smaller organizations where each person has many responsibilities. A second

protection is to encrypt data at rest and in transit. A third technique is to employ security

monitoring software that can detect anomalous activity (especially high-volume data

retrieval). It usually takes significant time to tune such solutions so that they do not

generate a time-wasting volume of false positives. Data loss prevention (DLP) solutions,

which are designed to prevent exfiltration of data by detecting anomalous traffic out

Chapter 19 Failures

236

of a network or device, can also be used. Unfortunately, none of these techniques can

guarantee protection against data theft. However, if there is a breach and such solutions

are not in place, it will look much worse for the victimized organization.

 Summary
This chapter was a very sobering chapter to write. The number and magnitude of

breaches seem to continually get bigger and bigger. George Santayana, the Spanish

philosopher, poet, and novelist, said, “Those who cannot remember the past are

condemned to repeat it.” We hope the lessons from past breaches help you avoid

following in the footsteps of the many companies featured in the preceding sections. If

you are writing an application that contains or uses identity data, you have an obligation

to protect that data. Unlike the game of golf, there is unfortunately no handicapping

system to give beginners a break. If you are creating an application, you must follow

security best practices for the coding, deployment, and environment of the application

as well as people, processes, and partners involved in the project.

Furthermore, in today’s world, it’s not good enough to just implement

security technology. You need to be able to demonstrate diligent adherence to security-

and privacy-related policies and procedures, which is related to compliance, the topic of

our next chapter.

 Key Points
• Processes should be analyzed for vulnerabilities.

• Train users to recognize and avoid phishing attacks to reduce risk of

malware.

• Use multi-factor authentication to mitigate the risk of compromised

passwords.

• Monitor for software vulnerabilities and apply patches when

vulnerabilities are announced.

• Follow secure configuration guidelines for all cloud-hosted

components such as Amazon S3 buckets.

Chapter 19 Failures

237

• Encrypt sensitive data at rest and in transit, including backups and

log files.

• Avoid storing cleartext passwords.

• Provide security training for developers.

• Vet partners by checking certifications and conducting due diligence

evaluation of security practices.

• Mitigate the risk of insider threat by granting minimum needed

privileges and frequently reviewing access grants as well as logs.

 Notes
 i. https://enterprise.verizon.com/resources/reports/dbir/

 ii. www.darkreading.com/the-7-best-social-engineering-

attacks-ever/d/d-id/1319411?image_number=5

 iii. www.computerworld.com/article/2560335/security0/

security-snafu-at-boston-globe-exposes-subscriber-data.

html

 iv. www.nytimes.com/2015/02/06/business/experts-suspect-lax-

security-left-anthem-vulnerable-to-hackers.html

 v. https://money.cnn.com/2015/02/04/technology/anthem-

insurance-hack-data-security/

 vi. https://nakedsecurity.sophos.com/2019/05/13/two-chinese-

hackers-indicted-for-massive-anthem-breach/

 vii. www.identityforce.com/blog/2018-data-breaches

 viii. www.identityforce.com/blog/2018-data-breaches

 ix. www.identityforce.com/blog/2018-data-breaches

 x. https://dealbook.nytimes.com/2014/12/22/entry-point-of-

jpmorgan-data-breach-is-identified/

Chapter 19 Failures

https://enterprise.verizon.com/resources/reports/dbir/
http://www.darkreading.com/the-7-best-social-engineering-attacks-ever/d/d-id/1319411?image_number=5
http://www.darkreading.com/the-7-best-social-engineering-attacks-ever/d/d-id/1319411?image_number=5
https://www.computerworld.com/article/2560335/security0/security-snafu-at-boston-globe-exposes-subscriber-data.html
https://www.computerworld.com/article/2560335/security0/security-snafu-at-boston-globe-exposes-subscriber-data.html
https://www.computerworld.com/article/2560335/security0/security-snafu-at-boston-globe-exposes-subscriber-data.html
http://www.nytimes.com/2015/02/06/business/experts-suspect-lax-security-left-anthem-vulnerable-to-hackers.html
http://www.nytimes.com/2015/02/06/business/experts-suspect-lax-security-left-anthem-vulnerable-to-hackers.html
https://money.cnn.com/2015/02/04/technology/anthem-insurance-hack-data-security/
https://money.cnn.com/2015/02/04/technology/anthem-insurance-hack-data-security/
https://nakedsecurity.sophos.com/2019/05/13/two-chinese-hackers-indicted-for-massive-anthem-breach/
https://nakedsecurity.sophos.com/2019/05/13/two-chinese-hackers-indicted-for-massive-anthem-breach/
http://www.identityforce.com/blog/2018-data-breaches
http://www.identityforce.com/blog/2018-data-breaches
http://www.identityforce.com/blog/2018-data-breaches
https://dealbook.nytimes.com/2014/12/22/entry-point-of-jpmorgan-data-breach-is-identified/
https://dealbook.nytimes.com/2014/12/22/entry-point-of-jpmorgan-data-breach-is-identified/

238

 xi. https://nvd.nist.gov/vuln/detail/CVE-2017-5638

 xii. www.imperva.com/blog/cve-2017-5638-new-remote-code-

execution-rce-vulnerability-in-apache-struts/

 xiii. https://cwiki.apache.org/confluence/display/WW/S2-045

 xiv. www.imperva.com/blog/cve-2017-5638-new-remote-code-

execution-rce-vulnerability-in-apache-struts/

 xv. www.wired.com/story/equifax-breach-no-excuse/

 xvi. https://blog.blackducksoftware.com/equifax-apache-

struts-cve-2017-5638-vulnerability

 xvii. https://arstechnica.com/information-technology/2017/09/

massive-equifax-breach-caused-by-failure-to-patch-two-

month-old-bug/

 xviii. www.cyber.nj.gov/data-breach-alerts/20180323/walmart-

partner-mbm-company-exposes-data-on-13-million-customers

 xix. www.komando.com/happening-now/446247/breach-walmart-

exposed-personal-data-of-1-3-million-u-s-shoppers

 xx. https://threatpost.com/walmart-jewelry-partner-exposes-

personal-data-of-1-3m-customers/130486/

 xxi. https://threatpost.com/third-party-exposes-14-million-

verizon-customer-records/126798/

 xxii. https://blog.zwillgen.com/2017/09/05/s3-buckets-not-simple/

 xxiii. https://github.com/nagwww/s3-leaks

 xxiv. www.extremetech.com/gaming/84218-how-the-playstation-

network-was-hacked

 xxv. www.reuters.com/article/us-sony-stoldendata/

sony-playstation-suffers-massive-data-breach-

idUSTRE73P6WB20110427

 xxvi. www.zdnet.com/article/twitter-says-bug-exposed-

passwords-in-plaintext/

Chapter 19 Failures

https://nvd.nist.gov/vuln/detail/CVE-2017-5638
http://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
http://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
https://cwiki.apache.org/confluence/display/WW/S2-045
http://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
http://www.imperva.com/blog/cve-2017-5638-new-remote-code-execution-rce-vulnerability-in-apache-struts/
http://www.wired.com/story/equifax-breach-no-excuse/
https://blog.blackducksoftware.com/equifax-apache-struts-cve-2017-5638-vulnerability
https://blog.blackducksoftware.com/equifax-apache-struts-cve-2017-5638-vulnerability
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
http://www.cyber.nj.gov/data-breach-alerts/20180323/walmart-partner-mbm-company-exposes-data-on-13-million-customers
http://www.cyber.nj.gov/data-breach-alerts/20180323/walmart-partner-mbm-company-exposes-data-on-13-million-customers
http://www.komando.com/happening-now/446247/breach-walmart-exposed-personal-data-of-1-3-million-u-s-shoppers
http://www.komando.com/happening-now/446247/breach-walmart-exposed-personal-data-of-1-3-million-u-s-shoppers
https://threatpost.com/walmart-jewelry-partner-exposes-personal-data-of-1-3m-customers/130486/
https://threatpost.com/walmart-jewelry-partner-exposes-personal-data-of-1-3m-customers/130486/
https://threatpost.com/third-party-exposes-14-million-verizon-customer-records/126798/
https://threatpost.com/third-party-exposes-14-million-verizon-customer-records/126798/
https://blog.zwillgen.com/2017/09/05/s3-buckets-not-simple/
https://github.com/nagwww/s3-leaks
http://www.extremetech.com/gaming/84218-how-the-playstation-network-was-hacked
http://www.extremetech.com/gaming/84218-how-the-playstation-network-was-hacked
http://www.reuters.com/article/us-sony-stoldendata/sony-playstation-suffers-massive-data-breach-idUSTRE73P6WB20110427
http://www.reuters.com/article/us-sony-stoldendata/sony-playstation-suffers-massive-data-breach-idUSTRE73P6WB20110427
http://www.reuters.com/article/us-sony-stoldendata/sony-playstation-suffers-massive-data-breach-idUSTRE73P6WB20110427
http://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/
http://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/

239

 xxvii. https://securityaffairs.co/wordpress/71136/data-breach/

finnish-user-data-breach.html

 xxviii. https://thehackernews.com/2018/04/helsingin-

uusyrityskeskus-hack.html

 xxix. https://thehackernews.com/2016/09/plaintext-passwords-

leaked.html

 xxx. www.idownloadblog.com/2018/05/21/teensafe-data-breach/

 xxxi. www.theverge.com/2018/5/21/17375428/teensafe-app-breach-

security-data-apple-id

 xxxii. www.owasp.org/index.php/Top_10-2017_Top_10

 xxxiii. www.owasp.org/index.php/Secure_Coding_Cheat_Sheet

 xxxiv. www.owasp.org/index.php/OWASP_Secure_Coding_Practices_

Checklist

 xxxv. www.computerworld.com/article/2527185/security0/sql-

injection-attacks-led-to-heartland--hannaford-breaches.

html

 xxxvi. www.csoonline.com/article/2130877/data-breach/the-

biggest-data-breaches-of-the-21st-century.html

 xxxvii. www.owasp.org/index.php/Top_10_2007

 xxxviii. www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

 xxxix. https://arxiv.org/pdf/1701.04940.pdf

 xl. www.cybergrx.com/resources/blog/top-11-third-party-

breaches-of-2018-so-far-data-breach-report/

 xli. www.csoonline.com/article/3191947/data-breach/what-is-

a-supply-chain-attack-why-you-should-be-wary-of-third-

party-providers.html

 xlii. https://gizmodo.com/gop-data-firm-accidentally-leaks-

personal-details-of-ne-1796211612

 xliii. https://enterprise.verizon.com/resources/reports/dbir/

Chapter 19 Failures

https://securityaffairs.co/wordpress/71136/data-breach/finnish-user-data-breach.html
https://securityaffairs.co/wordpress/71136/data-breach/finnish-user-data-breach.html
https://thehackernews.com/2018/04/helsingin-uusyrityskeskus-hack.html
https://thehackernews.com/2018/04/helsingin-uusyrityskeskus-hack.html
https://thehackernews.com/2016/09/plaintext-passwords-leaked.html
https://thehackernews.com/2016/09/plaintext-passwords-leaked.html
http://www.idownloadblog.com/2018/05/21/teensafe-data-breach/
http://www.theverge.com/2018/5/21/17375428/teensafe-app-breach-security-data-apple-id
http://www.theverge.com/2018/5/21/17375428/teensafe-app-breach-security-data-apple-id
http://www.owasp.org/index.php/Top_10-2017_Top_10
http://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet
http://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist
http://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist
http://www.computerworld.com/article/2527185/security0/sql-injection-attacks-led-to-heartland--hannaford-breaches.html
http://www.computerworld.com/article/2527185/security0/sql-injection-attacks-led-to-heartland--hannaford-breaches.html
http://www.computerworld.com/article/2527185/security0/sql-injection-attacks-led-to-heartland--hannaford-breaches.html
http://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
http://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://arxiv.org/pdf/1701.04940.pdf
http://www.cybergrx.com/resources/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report/
http://www.cybergrx.com/resources/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report/
http://www.csoonline.com/article/3191947/data-breach/what-is-a-supply-chain-attack-why-you-should-be-wary-of-third-party-providers.html
http://www.csoonline.com/article/3191947/data-breach/what-is-a-supply-chain-attack-why-you-should-be-wary-of-third-party-providers.html
http://www.csoonline.com/article/3191947/data-breach/what-is-a-supply-chain-attack-why-you-should-be-wary-of-third-party-providers.html
https://gizmodo.com/gop-data-firm-accidentally-leaks-personal-details-of-ne-1796211612
https://gizmodo.com/gop-data-firm-accidentally-leaks-personal-details-of-ne-1796211612
https://enterprise.verizon.com/resources/reports/dbir/

240

 xliv. www.businessinsider.com/snowden-confirm-hacked-nsa-

files-2016-8

 xlv. www.theguardian.com/world/2014/may/22/pentagon-report-

snowden-leaks-national-security

 xlvi. www.nytimes.com/2014/02/09/us/snowden-used-low-cost-

tool-to-best-nsa.html

Chapter 19 Failures

http://www.businessinsider.com/snowden-confirm-hacked-nsa-files-2016-8
http://www.businessinsider.com/snowden-confirm-hacked-nsa-files-2016-8
http://www.theguardian.com/world/2014/may/22/pentagon-report-snowden-leaks-national-security
http://www.theguardian.com/world/2014/may/22/pentagon-report-snowden-leaks-national-security
http://www.nytimes.com/2014/02/09/us/snowden-used-low-cost-tool-to-best-nsa.html
http://www.nytimes.com/2014/02/09/us/snowden-used-low-cost-tool-to-best-nsa.html

241
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_20

CHAPTER 20

Compliance

“Compliance” is just a subset of “governance” and not the other way around.

—Pearl Zhu, from Digitizing Boardroom (2016)

Mention the word “Compliance” to an application development team, and you may get

some quizzical looks. What exactly is compliance and why does it matter to application

developers? This chapter will provide a brief overview of compliance, why it’s needed,

how it benefits application providers, and how to approach it.

 What Is Compliance?
Compliance is conforming to a rule, such as a specification, policy, standard, or law.

Organizations set goals for, and aspire to achieve, compliance to ensure that their

policies and practices are in conformance with relevant laws, policies, and regulations

or relevant standards. While compliance may be mandated and enforced differently

across the globe, it is designed to check that measures are in place to protect the privacy

of individuals and the confidentiality, availability, and integrity of services and data. One

way of categorizing different types of compliance is

• Compliance required by legislation

• Compliance required by an industry

• Elective compliance

For compliance that is required by legislation or a particular industry, you must

determine if the compliance requirements apply to your project and take steps to comply

if so. For elective compliance, you can determine if it is advantageous to you to comply.

A later section will explain why compliance can be beneficial for your project. If you are

242

part of a larger company, compliance requirements may be given to you by a compliance

team, possibly in conjunction with outside auditors. If you are part of a small startup

building a new application, you may wish to hire an auditor to help you understand the

requirements that apply for your type of project.

 Government-Mandated Compliance
Many governments have established legislation regarding privacy and data protection.i

Perhaps the most well known is the GDPR (General Data Protection Regulation).ii

Enacted in the European Union, it took effect in May of 2018. It contains 99 articles

which describe the principles underlying the GDPR, the specific provisions of the GDPR,

supervisory authorities, penalties for nonconformance, and practical matters related to

implementation. The GDPR describes a legal basis for processing personal data, outlines

the obligations of organizations which collect and process personal data, and establishes

the rights of data subjects whose personal data is being processed.

The scope of the GDPR is any product or service that processes (e.g., collects, stores,

uses, transmits, deletes) personal information (PI) of EU residents regardless of where

such information is held. This includes companies in countries outside the EU who

merely hold data about people in the EU. It applies to companies of any size, though

Article 30 of the GDPR outlines some recordkeeping exemptions for companies with

fewer than 250 employees and who meet additional criteria for data processing. The

GDPR also requires that the latest technology be used for developing applications,

privacy must be embedded into the design of the application, and the application is

released with privacy default settings. If your service is likely to be used by residents of

the EU, you need to understand and comply with the requirements stemming from this

legislation.

The GDPR is the most comprehensive change to data privacy legislation in over

20 years. Its effects are being felt globally, and other countries are establishing similar

changes. In the United States, the State of California passed the California Consumer

Privacy Act (CCPA), a bill that enhances consumer rights for residents residing in the

state. The CCPA goes into effect in January 2020 and entitles residents to know what

personal data is being collected, whether it’s sold or shared, the right to opt out to the

sale or sharing of their personal data, access to their data, and equal service and price

even if they exercise their opt-out choice. Other states, including Hawaii, Maryland,

Massachusetts, Mississippi, New Mexico, New York, Rhode Island, and Vermont, are

drafting their own consumer privacy acts.

Chapter 20 ComplianCe

243

At the US Federal level, the Federal Trade Commission (FTC) Fair Information

Practice Principles (FIPP)iii is designed to ensure that the practice of collecting

information is fair and provides adequate information privacy protection. It is based on

the principles of Notice/Awareness, Choice/Consent, Access/Participation, Integrity/

Security, and Enforcement/Redress. The FTC gives recommendations for maintaining

privacy-friendly, consumer-oriented data collection practices which are self-regulated.

These principles form the basis for many sectoral laws, including the Fair Credit

Reporting Act and the Right to Financial Privacy Act.

Similarly, HIPAA (Health Insurance Portability and Accountability)iv and HITECH

(Health Information Technology for Economic and Clinical Health)v are US legislation

which apply to the handling of healthcare-related data. These frameworks may apply to

you if you process, store, or transmit any electronic healthcare data for your customers.

These are just a few examples of government-mandated requirements.

 Industry Compliance
Compliance requirements can stem from an industry when a consortium of companies

in an industry creates a standard and a means of enforcing it. The payment card industry

requires all organizations that handle payment card data, including credit and debit

cards, to comply with a set of standards, known as PCI DSS (Payment Card Industry

Data Security Standard).vi This set of security standards was created by the PCI Security

Standards Council, which was founded by five international credit card companies

(AMEX, Discover, JCP, MasterCard, and Visa).vii The standards are designed to protect

payment card data held or processed by companies.

Compliance with PCI DSS is enforced by the individual payment brands (the

five financial institutions that founded the PCI DSS). The PCI DSS controls apply to

systems which process, store, or transmit cardholder data or authentication credentials

and also apply to any systems connected to an environment that directly contains or

processes such cardholder data. If your organization accepts, handles, or stores any type

of payment card data, or if you outsource payment processing to a third-party vendor

but can impact the security of the payment transactions in some way, you likely have

obligations under PCI DSS.

Chapter 20 ComplianCe

https://en.wikipedia.org/wiki/Information_privacy

244

 Elective Compliance Frameworks
There are other security-related standards for which compliance is elective. Companies

can choose to be audited against these standards to demonstrate their practices and

operations follow the standard. For example, a company can elect to comply with the

ISO 27000 (International Organization for Standardization 27000 family of standards for

information security management systems).viii Another elective security standard is from

the CSA STAR (Cloud Security Alliance Security Trust Assurance and Risk) Program.ix The

CSA STAR program provides a comprehensive list of controls known as the Cloud Controls

Matrix (CCM). Compliance with these or other elective standards is a choice. Companies

can weigh the cost and level of effort for compliance against the benefits, which can

include achieving competitive advantage, expanding into new markets or industries,

supporting a brand image, or responding to customer audit requests efficiently.

 Why Compliance
Compliance required by legislation or an industry is typically mandatory. Recent

years have seen the passage of privacy- and security-related legislation as a reaction

by governments to the alarming number of security breaches that have occurred. If

your project falls under the jurisdiction of legislation which requires compliance, you

must comply. Elective compliance, however, is a choice. There are several reasons why

companies choose to be certified against a set of security or privacy standards:

• Protect the sensitive data they process or hold

• Use certification as a competitive sales tool

• Show due diligence to minimize penalties in the event of a breach

• Cost savings and efficiency in handling customer audit requests

Each of these reasons can offer significant benefits, as described in the following

sections.

 Data Protection
The first reason for pursuing compliance with an elective standard is to ensure your

organization is doing its due diligence to protect the data for which you are under

contract to protect. This is essentially the “sleep well at night” argument for compliance.

Chapter 20 ComplianCe

245

The process of preparing for an audit initiates a thorough review of security- and

privacy-related practices. This identifies any lapses from policy or defined procedures

that might lead to vulnerabilities, so they can be fixed. Regular audits reinforce security

best practices as your organization grows and changes. Of course, passing an audit does

not guarantee an absence of security incidents. Target was certified against the PCI

DSS standard and unfortunately still suffered a significant breach.x However, a properly

implemented compliance framework and certification should reduce the risk of a

security incident and subsequent impact should an incident occur.

 Competitive Advantage
A second reason to obtain a compliance certification is because it can be used as a

competitive sales tool. With so many breaches in the news, and penalties for data

breaches increasing, customers are demanding more security assurances from their

vendors. Having a certification from an independent, third-party auditor can help

assuage customer concerns. This can reduce delays related to security concerns during

the sales cycle and may help close deals. Vendors with security-conscious customers

may find certification valuable for this reason.

 Reduce Penalties
Another good reason to obtain certification is to reduce penalties in the event of a

breach. For example, with the GDPR, the existence of a previously earned certification

is one factor taken into account when a fine is levied on an organization related to a

compromise of personal data. A certification is no guarantee against a breach, but if you

have audit evidence of due diligence in implementing best practices, you may receive

lower fines than if you do not have a certification in place.

 Efficiency
A final impetus to earn certification is efficiency and cost reduction. A given cloud

service today typically uses many components in its software stack and relies on a

number of cloud services. Many of the cloud services used by a company may have

visibility into its sensitive data including personal data of its customers. In order to

provide a secure service to customers, a company must ensure that every third party it

Chapter 20 ComplianCe

246

uses protects the data it shares with them. The challenge is how to obtain such assurance

efficiently from the vendors.

In the absence of any standards for privacy and security, each company would

need to define privacy and security standards and examine each of its vendors against

them. Such an examination would need to review policies and procedures for managing

employees, assets, access, physical and environmental security, software development,

operations, network security, incident management, and business continuity. The

examination would also need to check evidence that policies and procedures for

all those areas are being followed and the organization’s documented controls are

operating effectively. This is a lot of information to analyze!

The field work for such an audit can take a week or more. Even a small company

will typically have several vendors to review, and because there is always entropy in

organizations, it is wise to repeat audits at least annually. It would be very costly for a

company to conduct its own audits of every vendor it uses. From a vendor’s perspective,

it would be time-consuming to provide such evidence individually to each of their

customers. In the absence of standards, different customers would request different data

and perhaps in different formats, making the work to provide evidence to every customer

unmanageable.

Security- and privacy-related standards provide a standard list of practices and a

consistent expectation for evidence to demonstrate compliance with the standard. This

enables a company to hire an independent third-party auditor to conduct a review and

certify the company’s practices against a standard. A company’s customers can then

rely on the independent auditor’s assessment instead of conducting their own audit. A

vendor undergoes one audit (for each type of assessment) and can then share the official

audit report with all of its customers. Customers can use an auditor’s report as evidence

that they’ve done their due diligence to ensure they are using vendors who provide

an adequate level of data protection. The entire process is made more efficient and

manageable for vendors and customers alike.

 Compliance Landscape
Compliance frameworks are often divided into privacy and security categories, but

privacy frameworks often include some form of security requirements because security

is a prerequisite for privacy.

Chapter 20 ComplianCe

247

 Security Compliance
Security compliance frameworks are mandatory for some industries. Compliance

with PCI DSS is required for the Payment Card Industry. Compliance with HIPAA and

HITECH security rules is required in the United States for the healthcare industry.

FISMA is required for US government agencies and FedRAMP for cloud providers

providing services to US government agencies. Companies can also elect to be certified

for elective security compliance frameworks. A list of some security-related compliance

frameworks is provided in Appendix G.

Privacy depends on security, so it is common for privacy-related legislation to

contain security requirements. The GDPR contains articles that require security of data

and privacy by design. HIPAA in the United States has a “Security Rule” that similarly

requires data stewards to adequately protect healthcare data. When creating a security

compliance roadmap, be sure to include security requirements stemming from any

privacy-related obligations your project may have.

 Privacy Compliance
Many countries have now enacted privacy-related legislation to protect the rights of

individuals with respect to how their personal data is handled. In fact, over 100 countries

around the world have enacted some sort of privacy legislation.xi A few data privacy laws

and sources for identifying more are listed in Appendix F. Your project may be subject to

a region’s privacy laws if you receive, collect, process, or store data about people in that

country. In other words, you may need to comply with a country’s legislation, even if

your business does not have a legal presence in the country, as with the GDPR (General

Data Protection Regulation) in the EU.

The role you play in handling data influences your obligations. Privacy legislation

often differentiates between the responsibilities of a data controller and a data processor.

A data controller controls how personal data is used as documented in a contractual

agreement or policy. The data controller collects data from end users and has obligations

such as providing privacy notices, obtaining user consent for the use of their data, and

providing users with certain access to their data as well as the ability to correct it. A data

processor, on the other hand, processes data in accordance with instructions from a

data collector in a data processing agreement. Knowing your role as data controller or

processor is essential to understand your privacy obligations.

Chapter 20 ComplianCe

248

It is also important to determine privacy obligations early in the project cycle,

because they can impact the application design in order to give notice about the

purposes of data collection, obtain consent for how data is used, manage data retention,

and implement data correction and erasure features. Knowing such requirements early

in the project cycle is critical for a realistic project plan.

If you are writing an application that has any personal data about individuals, you

should understand the locations of your users and the privacy requirements that apply

for the jurisdictions applicable to your user population. You should also check security-

or privacy-related legislation for your industry. You need to know your role in the

handling of data, whether data collector or data processor, and the requirements for your

role. Once you have your compliance requirements, it’s time to prepare for and pursue

certification.

 Assessment and Certification
Some standards rely on self-assessment, but most require an audit by an independent

third-party organization certified to conduct the particular type of audit. Self-assessment

requires an organization to examine their policies and practices against the standard and

remedy any gaps. The CSA STAR framework’s first level of compliance is one example

that involves self-assessment. Even if insufficient for official certification, self-assessment

can be a useful first step in preparing for an independent, third-party audit.

For many other standards, an independent, third-party audit of policies, practices,

and operations against the standard is a requirement. The ISO 27000 family of standards,

for example, requires an independent audit for an organization to be considered

certified against these standards. When third-party assessment is required, the

organization creating a set of standards for compliance will typically certify auditors

or establish the standards for certifying them. Certified auditors then conduct the

assessments, in accordance with audit standards, to evaluate whether an organization

complies with the standards. Auditor certification ensures audits are carried out in a

rigorous, standard, and unbiased way and the use of certified auditors is required for

many certifications.

Chapter 20 ComplianCe

249

 How to Proceed
Once you’ve identified relevant compliance frameworks for your project, you need to

plan the work required to implement and demonstrate compliance. The following list of

activities can help you understand and organize the effort:

• Identify the national, state, or industry-specific privacy legislation

applicable for the regions in which your business operates.

• Research privacy and security requirements for the countries or

regions in which your users reside.

• Identify cybersecurity requirements applicable for your industry.

• If you supply services to public sector organizations or process

government data, check for applicable government requirements.

• Identify elective security standards which may be beneficial to

demonstrate your security practices to prospective customers.

• Consult with legal, privacy, or security experts if you have any

questions about which legislation or security requirements apply.

• Create a data map that describes the data elements of all data

repositories and data flows for all data you handle.

• Note all data elements in the map which involve personal data.

• Document the reason for collecting the data and the data processing

activities to be performed with the data.

• Review data processing to ensure your application collects the

minimum data required in accordance with your privacy statement.

• If available, use a self-assessment tool for a compliance standard to

identify gaps that must be mitigated before an official audit.

• Retain a secondary auditor for advice on what to expect or an

informal assessment before an official audit to help you prepare.

• Know the scope of evidence required for an audit. For some

certifications, a year’s worth of past evidence is required.

• Make a list of audit evidence required, and identify owners within

your organization for each category of evidence.

Chapter 20 ComplianCe

250

• Periodically check that owners understand the evidence required

and their teams are generating the evidence needed for an audit.

• Select a reputable third-party auditor with experience in your domain

and who will provide both an official audit result and an internal

report on recommended improvement activities.

• Prior to an audit, get the official list from the auditor of evidence

required. Work with owners to obtain the requested evidence.

• During the audit, additional information is often requested. Have

parties ready to gather additional evidence.

• Conduct a postaudit assessment after an audit to identify what went

well and how to improve the process for the next audit.

• Focus on one certification at a time.

 Summary
Privacy-related compliance is usually mandatory, by virtue of government legislation to

protect people’s privacy and personal data. Security-related compliance may be elective

in some cases, but is undertaken for several reasons: as a sales tool, to efficiently satisfy

customer demands for audits, to demonstrate due diligence and reduce penalties in the

event of a breach, or simply to help you sleep at night. There are myriad privacy laws

and security standards, but there is a lot of overlap across them. Once you’ve passed

a certification for one, you will likely be able to reuse some of the work to satisfy the

requirements of additional compliance frameworks. This chapter concludes our advice

for current projects, so in the last chapter, we’ll share our ideas about why we think

identity management will be even more important and necessary in the future.

 Key Points
• Compliance involves assessing and demonstrating adherence to a set

of controls.

• Privacy- and security-related compliance may be required by

legislation or industry.

Chapter 20 ComplianCe

251

• Security-related compliance can be chosen for security and business

advantage in scenarios where it is not mandatory.

• Privacy-related legislation is mandatory for entities which meet the

criteria set out in the legislation.

• Over 100 countries have enacted privacy-related legislation.xii

• In the United States, privacy-related legislation is being enacted by

many states.

• Certification against privacy- and security-related compliance

frameworks:

• Demonstrates due diligence in protecting data you manage

• Can be used as a competitive sales tool

• May lessen fines in the event of a breach

• Is an efficient way to respond to audit needs of individual

customers

• A critical first step for compliance is building an inventory of systems

and the data they contain, along with the reason for collecting any

personal data and how the data is processed.

 Notes
 i. https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom- Data- Protection-Laws.aspx

 ii. https://ec.europa.eu/commission/priorities/justice-and-

fundamental- rights/data-protection/2018-reform-eu-data-

protection-rules_en

 iii. http://ftc.gov/reports/privacy3/fairinfo.shtm

 iv. www.hhs.gov/hipaa/for-professionals/index.html

 v. www.hhs.gov/hipaa/for-professionals/special-topics/

hitech-act- enforcement-interim-final-rule/index.html

 vi. www.pcisecuritystandards.org/

Chapter 20 ComplianCe

https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
http://ftc.gov/reports/privacy3/fairinfo.shtm
https://www.hhs.gov/hipaa/for-professionals/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
https://www.pcisecuritystandards.org/

252

 vii. www.vantiv.com/vantage-point/safer-payments/history-of-

pci-data-security- standards

 viii. www.iso.org/isoiec-27001-information-security.html

 ix. https://cloudsecurityalliance.org/star/#_overview

 x. https://blogs.gartner.com/avivah-litan/2014/01/20/how-

pci-failed- target-and-u-s-consumers/

 xi. https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom- Data- Protection-Laws.aspx

 xii. https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom- Data- Protection-Laws.aspx

Chapter 20 ComplianCe

http://www.vantiv.com/vantage-point/safer-payments/history-of-pci-data-security-standards
http://www.vantiv.com/vantage-point/safer-payments/history-of-pci-data-security-standards
https://www.iso.org/isoiec-27001-information-security.html
https://cloudsecurityalliance.org/star/#_overview
https://blogs.gartner.com/avivah-litan/2014/01/20/how-pci-failed-target-and-u-s-consumers/
https://blogs.gartner.com/avivah-litan/2014/01/20/how-pci-failed-target-and-u-s-consumers/
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx

253
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_21

CHAPTER 21

Looking into the
Crystal Ball

The future cannot be predicted, but futures can be invented. It was man’s
ability to invent which has made human society what it is.

—Dennis Gabor, Hungarian physicist, 1971 Nobel prize winner in
physics for inventing holography, from Inventing the Future (1963)

If we had a crystal ball, what would it show for the future of identity management?

As the swirling mists part in our all-seeing globe, it would undoubtedly show identity

management becoming increasingly necessary in the future for several reasons. First, it

is unlikely that hackers will stop hacking, which means we’ll continue to need security

measures to protect against increasingly diverse and potentially more automated

threats. At the same time, there will be many innovative new services and devices that

will be beneficial in our lives, but they’ll need adequate identity management to reduce

the risk of them being used against us. We’ll also see a rise in autonomous entities

requiring identification, authentication, and authorization just like humans. The notion

of identity will need to spread from humans to all manner of devices, agents, and

robots acting on our behalf, and such entities will need identity management as part

of their defenses against malicious attacks. For all these reasons, the need for identity

management will be more important than ever before, and we’ll need to do a lot more to

make it easier to implement and manage effectively.

254

 Continued Security Challenges
For starters, it doesn’t take a crystal ball to predict that we will continue to face ever

more diverse security challenges in the future. The targets and type of cyber-attacks will

continue to diversify as hackers are inspired with new ways to obtain and take advantage

of stolen data and breached resources.

 Ongoing Breaches
The number of breaches and data records reported every year as compromised shows no

sign of letting up. The number of breaches covered by the Verizon Data Breach Reports

for 2015 to 2019 has hovered just over 2000.i The Gemalto Data Breach Index shows that

the incidence of identity theft in particular has increased in terms of number of records

compromised, from 707 million in 2015 to 3.3 billion in just the first half of 2018.ii It’s

important to remember that any statistics about security incidents and breaches depend

on the events being discovered and voluntarily reported and therefore likely do not

represent the whole picture. A large breach can also skew the numbers from one year to

the next. However, both common sense and the numbers reported each year indicate

that the need for cybersecurity is not going away anytime soon.

 Evolving Targets
The targets and methods by which stolen data is monetized have been evolving. As

one industry or avenue of theft comes under attack, consumers and service providers

implement mitigations, causing cybercriminals to pivot to easier targets. The financial

industry was an early target, but as financial institutions implemented more defenses,

the entertainment and retail industries came under increasing attack, often as a source

for stolen credit card data. Recent years have seen increased focus on healthcare and

small/medium-sized businesses as well.

With the introduction of an EMV microchip in credit cards, and increasing use of

multi-factor authentication in financial services, some hackers have shifted their focus

to stealing identity data and creating new ways to monetize it. Fraudsters have used

stolen identity data to obtain medical services, commit insurance fraud, apply for tax

refunds, and even redeem loyalty club points. Hackers have successfully exploited

vulnerabilities in the Signaling System 7 (SS7) system that allows interconnection

between phone networks, in order to intercept SMS text messages commonly used for

Chapter 21 Looking into the CrystaL BaLL

255

multi-factor authentication to protect access to financial accounts and other targets of

value.iii The constant adoption by attackers of new targets and techniques will require

commensurate ongoing evolution in security defenses, including identity management

mechanisms, to protect consumers and businesses.

 Diversifying Motives
While early hackers often hacked into systems for entertainment and bragging rights, the

motives for hackers have diversified over the years. Financial motives dominate today,

with the 2019 Verizon Data Breach Report indicating that financial motives were behind

71% of the breaches studied.iv Recent years have also seen attacks with other motives

including hacktivism, industrial espionage, cyber espionage by nation states, election

tampering for political gain, and cyberwarfare as a political tool or in support of physical

warfare. The development of comprehensive threat models and mitigation plans will

need to consider a widening array of actors and motives in addition to many new types

of targets.

 More Targets
There is a dizzying array of new technology available to benefit many aspects of our

life, which unfortunately also creates many new types of targets that require protection.

A wide offering of products, from home security cameras and baby monitors to smart

speakers and HVAC systems, as well as car entertainment systems, health monitoring

devices, and robots, has increased the possibility that malicious actors can threaten

our homes, businesses, cars, and even our bodies from afar. Better security, including

identity management, will be required to protect the devices in our homes and

businesses so they’re not used against us.

 Homes and Businesses
Smart devices for homes and businesses offer many conveniences, but require security

to prevent them from being used against their owners. Security cameras and baby

monitors have been hacked to spy on people in their homes.v Even smart dolls such

as the My Friend Cayla doll and Furby, designed to interact with children, have been

found to have significant privacy and security issues, being hackable via Bluetooth

Chapter 21 Looking into the CrystaL BaLL

256

connection.vi, vii Smart devices have also been used to enable attacks against other

resources on the same network. A particularly eye-opening example is the hack of a

network-attached sensor for an aquarium heater for a large fish tank in a Las Vegas

casino lobby.viii The sensor provided a conduit for hackers to infiltrate the casino’s

network and exfiltrate data. Without adequate security, the Internet makes it possible for

hackers anywhere in the world to leverage vulnerable network-attached devices, even

innocuous-seeming fish tank heaters, for malicious purposes.

 Cars
Cars now offer new infotainment systems with an increasing number of helpful services.

Passengers can view movies and play video games. Drivers benefit from onboard

navigation systems, and services like OnStar can provide communication, weather

information, emergency assistance, and remote diagnostics.ix Along with these valuable

services, however, has come a new attack surface, and security researchers have

demonstrated several exploits against it.

In July 2015, news broke of an attack against Jeep Cherokee where two security

researchers demonstrated taking control of a car driving down a highway 10 miles

away.x By exploiting a vulnerability in the Uconnect system which controls the car’s

entertainment system, they were able to send commands from their laptop to the

car’s dashboard, steering, brakes, and transmission.xi This incident was alarming by

demonstrating the potential for a security vulnerability to be exploited to inflict physical

harm on a car’s occupants. Since then, researchers have demonstrated additional

vulnerabilities by compromising a Tesla key fob to steal a Tesla, unlocking and remotely

starting cars with OnStar RemoteLink, and taking control of navigation systems in

Volkswagen and Audi vehicles.xii Cars and the services delivered to them will need to be

designed with adequate security to protect the privacy and physical safety of occupants.

 Medical Implants and Monitoring
A wide variety of medical devices help us treat chronic conditions and live fuller lives.

Remote patient monitoring (RPM) technologies can be used for monitoring factors such

as blood pressure and pulse, blood sugar levels for diabetes, and even heart function.xiii

Implanted cardiac devices, for example, connect to the heart and provide relief for

several heart conditions including hearts that beat too slowly, too fast, or unevenly.

Chapter 21 Looking into the CrystaL BaLL

257

A monitor often connects wirelessly to retrieve data from the device. Remote monitoring

with implanted cardiac devices provides the ability for doctors to assess patients without

physical visits and detect problems earlier. The technology designed to improve our

health, however, could potentially be used against us if not adequately secured.

In March 2019, a security vulnerability was announced for Medtronic implantable

cardiac devices (implantable cardioverter defibrillator).xiv The devices rely on

the Conexus protocol, which was not designed with any form of authentication,

authorization, or encryption. Data was transmitted in the clear, potentially allowing an

eavesdropper to gather information about a person’s condition. Most alarming, however,

was the possibility that an attacker within 20 feet could reprogram the cardiac device.

The small size of these devices means they may not have the memory or processing

power to run some of the security protocols used in less-constrained environments.

Further innovation and education will be needed to design and deploy efficient but

lightweight security protocols on extremely small capacity devices.

 Robots
Robots and industrial automation technologies are being designed for many industries

and offer promises of efficiency, accuracy, scale, and performing tasks in environments

dangerous to humans. Robots have been designed for surveillance, monitoring, routine

chores such as vacuuming, disaster response, education, entertainment, manufacturing,

medical applications, autonomous mobility, and research.xv The breadth of applications

for which robots have already been designed is incredible. However, security researchers

have also demonstrated security vulnerabilities in several types of robots.

Security research firm IOActive described a worrying list of security issues in robots

in a paper about a recent investigation they conducted.xvi They evaluated robots used

in homes, businesses, and industry settings, and despite it being a limited study, they

found almost 50 vulnerabilities, including inadequate authentication and authorization,

allowing unauthorized access to robots as well as the ability to install software on the

robots. Communications involving sensitive data were not secured, and encryption of

data was either missing or improperly implemented. The devices were often not secure

by default, and best practices such as changing default administrative passwords were

difficult.

Chapter 21 Looking into the CrystaL BaLL

258

Given the likely widespread use of robots in the future, this should be fairly alarming.

Microphones and cameras in robots can be taken over for cyber espionage purposes

to steal personal information or proprietary corporate information. The security of a

network can be threatened by vulnerable devices attached to the network, meaning

inadequately secured robots could potentially provide a conduit for attackers. Robots

could also be taken over and weaponized, disabled, or held for ransom. Significant

damage could be done if robotic technology is not hardened.

 Erosion of Perimeter Protection
The computing infrastructure used to deliver services to consumers and businesses

alike has been moving from individual data centers to cloud services and involves logic

running on myriad new types of devices and edge computing servers. This has bypassed

the layer of security once provided by enterprise network perimeters. As a result, identity

management services have become more important to protect the access to individual

infrastructure components. Organizations utilizing many services will need efficient

solutions to provision and manage identities and access privileges across a widening

portfolio of services and devices.

The combination of ongoing threats, evolving targets, a widening circle of actors

and motives, and the bypassing of traditional network perimeter protections result in

an increased need for effective identity management. At the same time, we’re seeing an

explosion in the number and types of entities which need an identity in order to securely

participate on the Internet and access services.

 Identity – Not Just for Humans
Most of the examples in this book have featured a human user, but there will be more

nonhuman devices and agents in our lives in the future. They will need identities and

the ability to authenticate themselves much like human users. They will also need to

authenticate the services with which they communicate. Some of them may need to

be associated with their owner’s identities, and identity management will be needed to

adequately secure them as well as the services they interact with. The following sections

provide a few examples.

Chapter 21 Looking into the CrystaL BaLL

259

 Personal Agents
Virtual personal assistants, customer assistants, and employee assistants will become

more capable and connected. Applications on smartphones can use virtual personal

assistants such as Siri or Google Assistant through APIs, enabling users to access app

features and shortcuts from the lock screen or in hands-free mode. Users will be able

to go beyond having assistants do simple tasks like taking notes, setting alarms, and

calling friends to enabling them to perform tasks in applications on their behalf, such as

making purchases or sending payments. Concierge applications might use information

about our habits and preferences to help with tasks like making dinner reservations or

purchasing airline tickets. Without requiring our interaction, smart applications could

help with routine chores like making preventive doctor appointments, regular purchases,

or texting a friend with whom we have a meeting to let them know we’re running late. In

corporate settings, virtual employee assistants could help with tasks such as scheduling

meetings, diagnosing problems, or analyzing data. As virtual personal assistants act

more autonomously, they may need to be authenticated and authorized just like a

human user to ensure they perform authorized tasks and not those of a hacker. They’ll

also need to be capable of authenticating the services with which they interact, to avoid

disclosing sensitive information to incorrect parties.

 Autonomous Vehicles
Autonomous vehicles will significantly change transportation, but lack of a driver will

shift some identity requirements from drivers to other entities. Humans may need to

identify and authenticate autonomous vehicles that give them a ride as part of mobility

as a service. Entrance gates to secured facilities may need reliable mechanisms to

authenticate autonomous vehicles, rather than drivers, when goods are delivered.

Smart cities may want to authenticate and monitor autonomous vehicles on bridges,

in tunnels, or near critical infrastructure. Autonomous vehicles may even need to

identify and authenticate each other and validate the integrity of software controlling a

nearby car, especially in tight spaces or at high speeds. Just as some networks only allow

managed devices with validated configuration to connect, cities or highways may want

to only allow authenticated and properly secured autonomous vehicles in sensitive

areas.

Chapter 21 Looking into the CrystaL BaLL

260

 IoT Devices
The potential applications for Internet of Things (IoT) devices are enormous. Smart

thermostats, cameras, TVs, lighting, appliances, toys, medical devices, and a fascinating

diversity of data-collecting sensors are just a few examples. IoT devices that have an

IP address with which to communicate on the Internet, will also need to authenticate

themselves to remote servers and use adequate transmission encryption before

transferring data to protect sensitive data as well as the integrity of uploaded remote

datasets. They will also need to authenticate requests coming from administrative

applications to mitigate the risk of malicious commands and software upload to

the devices. Without identity management and security measures, IoT devices can

potentially be used to spy on their environment and corrupt datasets or, worse, be

hijacked or rendered inoperable for malicious purposes.

 Robots
Robots will need identities for the same reason as other IoT devices. They will need

to authenticate themselves to services with which they interact, and they will need

to authenticate incoming requests to prevent the robot from being taken over for

unauthorized purposes. Robots will, in general, have significantly more capabilities and

processing power, and therefore the potential for how they can be turned to malicious

purposes may be greater than with smaller, simpler IoT devices like sensors. In addition

to being used for espionage, robots can potentially be taken over and weaponized to

cause physical harm.

 On the Horizon
There are several promising solutions which bear attention. Efforts by governments and

private consortiums to establish strongly validated identities, more standardized strong

authentication, and new protocols for constrained devices will be rolled out and tested

in real-world scenarios and will benefit identity management.

Chapter 21 Looking into the CrystaL BaLL

261

 e-Identity
We expect to see more electronic identity initiatives around the world. Governments

face the same pressures as businesses to deliver services more efficiently to distributed

populations, which typically drives pursuit of online delivery for services. At the same

time, many government services must be protected against fraud, which means their

online delivery requires well-validated electronic identity information and stronger

forms of authentication than simple passwords. This is likely to increase interest by

governments in government-issued electronic identities (e-identity) or public-private

sector collaboration for e-identities.

Several governments have already embarked on national e-identity initiatives.

Estonia has a well-established e-identity program that issues a digital identity to citizens

and residents and is used to streamline functions such as accessing government

services, paying taxes, coordinating healthcare, and voting.xvii Estonia is even working on

expanding this to create a digital nation, offering select services to remote e-residents.xviii

Belgium has issued a national digital identity which can be used for identification,

digital signature, and access with public services online.xix A consortium of mobile

phone network providers and banks in Belgium, called Belgian Mobile ID, have created

a mobile application called itsme that enables those with a Belgian e-identity (eID)

and mobile phone to register at participating web sites, authenticate, confirm payment

transactions, and digitally sign documents.xx In yet another model, Sweden offers access

to some public services via electronic identities issued by banks.xxi

Electronic identity programs will face some adoption challenges. Cultural distrust of

governments or the banking industry in some countries may hinder e-identity initiatives.

Privacy and security concerns will also need to be addressed. The constitutional validity

of India’s ambitious Aadhaar electronic identity program, for example, faced a lengthy

Supreme Court challenge which hinged on security and privacy concerns.xxii However,

the need for governments to deliver public services efficiently and securely, the desire

by some businesses to leverage more strongly validated identities, and the preference by

citizens and customers to conduct more transactions online will likely drive continued

efforts by governments and private sector consortiums for citizen/consumer-facing

e-identities. In addition to validated identity information, such identities will need to

support stronger forms of authentication.

Chapter 21 Looking into the CrystaL BaLL

262

 Stronger Authentication
We will doubtless see increased adoption of stronger forms of authentication to

mitigate the risks associated with static passwords. The recently finalized W3C

Web Authentication (webauthn) specification creates a more standardized level of

abstraction between applications and specific authenticators. Developers will be able

to implement authenticator-agnostic strong authentication, and users will gain the

ability to use authenticators of their own choosing, whether hardware security tokens

or biometric factors collected by their device. This standard is likely to facilitate the

adoption of stronger forms of authentication and reduce the use of passwords as a sole

authentication factor.

 Solutions for Smaller Devices
We anticipate ongoing evolution in solutions and protocols to support smaller,

constrained IoT devices that need protections such as authentication, authorization,

message integrity validation, and encryption. Devices with small amounts of RAM and

which need to minimize power consumption to conserve battery life need protocols that

are lightweight and use techniques such as minimizing round trips and overhead as well

as using cryptographic algorithms that enable the use of smaller keys and/or certificates.

Entities which need to validate the likes of security messages and certificates depend on

having accurate time as well as solutions for detecting certificate revocations, but existing

solutions may not work on constrained devices. The Constrained Application Protocol

(CoAP),xxiii Transport Layer Security (TLS) 1.3,xxiv and Datagram Transport Layer Security

(DTLS) 1.3xxv may prove useful for solutions involving such devices.

 Easier Adoption
We need better resources created to make correct implementation of identity

management easier for developers. The specifications we have discussed total over 800

pages. This is a lot for developers to absorb especially when you consider the number

of specifications involved, requiring developers to go back and forth between multiple

documents to coalesce advice and figure out how to apply the technology correctly in

their application and environment. Libraries will be needed that are well documented,

support a good user experience, and help developers implement the protocols/

frameworks correctly. To be successful, this will require collaboration between parties

Chapter 21 Looking into the CrystaL BaLL

263

creating or promoting specifications, platform/device vendors, user agent vendors

(for devices with browsers or other user agents), security analysts, and those creating

libraries and SDKs. A sentiment from John Dickinson’s 1768 “The Liberty Song” says it

best: “By uniting we stand, by dividing we fall.”xxvi

 Summary
The future will undoubtedly bring increased and more diverse challenges to our online

security. Perimeters that provided a layer of protection in times past, especially in

enterprises, are increasingly bypassed. New threats will arise from the use of many

innovative new services and Internet-connected devices that need to be secured. At

the same time, nonhuman, autonomous entities and agents will act on our behalf and

need to be authenticated, authorized, and monitored just like humans. We’ll need

more strongly validated identity, stronger authentication, and solutions for constrained

devices as well as better resources to help developers do the right thing quickly and

easily.

 Key Points
• Security challenges will continue with diversified targets, actors, and

motives.

• We will face more security and privacy risks from network-connected

devices in our lives such as smart home devices, car infotainment,

and medical monitoring.

• The number of nonhuman entities that will need identities

and identity management will grow substantially, considering

technologies such as personal agents, autonomous vehicles, and IoT

devices including robots.

• More governments and/or private consortiums will issue electronic

identities based on more strongly validated identity information.

• Passwords as a single authentication factor will continue to be

replaced with stronger forms of authentication.

Chapter 21 Looking into the CrystaL BaLL

264

• Security protocols will need to accommodate the small memory,

processing power, and power consumption requirements of small

IoT devices to better secure them.

• Identity management will become even more important in the future

to help protect innovative new services and devices.

 Notes
 i. https://enterprise.verizon.com/resources/reports/dbir/

 ii. https://breachlevelindex.com/

 iii. www.telegraph.co.uk/technology/2019/02/01/metro-bank-

hit-cyber-attack-used-empty-customer-accounts/

 iv. https://enterprise.verizon.com/resources/reports/

dbir/2019/summary-of-findings/

 v. www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-

baby-hurled-obscenities-at-couple-using-nest-camera-dad-

says/

 vi. www.bbc.com/news/technology-38222472

 vii. www.nytimes.com/2017/12/21/technology/connected-toys-

hacking.html

 viii. www.washingtonpost.com/news/innovations/wp/2017/07/21/

how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_

term=.a22c8c331869

 ix. www.onstar.com/us/en/articles/tips/top-10-reasons-

onstar-worth-it/

 x. www.nytimes.com/2015/07/25/business/fiat-chrysler-

recalls-1-4-million-vehicles-to-fix-hacking-issue.html

 xi. www.wired.com/2015/07/hackers-remotely-kill-jeep-

highway/

Chapter 21 Looking into the CrystaL BaLL

https://enterprise.verizon.com/resources/reports/dbir/
https://breachlevelindex.com/
http://www.telegraph.co.uk/technology/2019/02/01/metro-bank-hit-cyber-attack-used-empty-customer-accounts/
http://www.telegraph.co.uk/technology/2019/02/01/metro-bank-hit-cyber-attack-used-empty-customer-accounts/
https://enterprise.verizon.com/resources/reports/dbir/2019/summary-of-findings/
https://enterprise.verizon.com/resources/reports/dbir/2019/summary-of-findings/
http://www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-baby-hurled-obscenities-at-couple-using-nest-camera-dad-says/
http://www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-baby-hurled-obscenities-at-couple-using-nest-camera-dad-says/
http://www.cbsnews.com/news/nest-camera-hacked-hacker-spoke-to-baby-hurled-obscenities-at-couple-using-nest-camera-dad-says/
http://www.bbc.com/news/technology-38222472
http://www.nytimes.com/2017/12/21/technology/connected-toys-hacking.html
http://www.nytimes.com/2017/12/21/technology/connected-toys-hacking.html
http://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_term=.a22c8c331869
http://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_term=.a22c8c331869
http://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/?noredirect=on&utm_term=.a22c8c331869
http://www.onstar.com/us/en/articles/tips/top-10-reasons-onstar-worth-it/
http://www.onstar.com/us/en/articles/tips/top-10-reasons-onstar-worth-it/
http://www.nytimes.com/2015/07/25/business/fiat-chrysler-recalls-1-4-million-vehicles-to-fix-hacking-issue.html
http://www.nytimes.com/2015/07/25/business/fiat-chrysler-recalls-1-4-million-vehicles-to-fix-hacking-issue.html
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

265

 xii. www.zdnet.com/article/these-are-the-most-interesting-

ways-to-hack-internet-connected-vehicles/

 xiii. www.cchpca.org/about/about-telehealth/remote-patient-

monitoring-rpm

 xiv. www.fda.gov/medical-devices/safety-communications/

cybersecurity-vulnerabilities-affecting-medtronic-

implantable-cardiac-devices-programmers-and-home

 xv. https://robots.ieee.org/learn/types-of-robots/

 xvi. https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf

 xvii. www.newyorker.com/magazine/2017/12/18/estonia-the-

digital-republic

 xviii. https://e-resident.gov.ee/

 xix. https://eid.belgium.be/en/what-eid

 xx. www.belgianmobileid.be/en

 xxi. https://bolagsverket.se/en/fee/e-services/swedish-e-

identification-1.16393

 xxii. https://iapp.org/news/a/the-indian-supreme-courts-

aadhaar-judgement-a-privacy-perspective/

 xxiii. https://tools.ietf.org/html/rfc7252#section-9

 xxiv. https://tools.ietf.org/html/rfc8446

 xxv. https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/

 xxvi. http://archives.dickinson.edu/sundries/liberty-song-1768

Chapter 21 Looking into the CrystaL BaLL

http://www.zdnet.com/article/these-are-the-most-interesting-ways-to-hack-internet-connected-vehicles/
http://www.zdnet.com/article/these-are-the-most-interesting-ways-to-hack-internet-connected-vehicles/
http://www.cchpca.org/about/about-telehealth/remote-patient-monitoring-rpm
http://www.cchpca.org/about/about-telehealth/remote-patient-monitoring-rpm
http://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-implantable-cardiac-devices-programmers-and-home
http://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-implantable-cardiac-devices-programmers-and-home
http://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-affecting-medtronic-implantable-cardiac-devices-programmers-and-home
https://robots.ieee.org/learn/types-of-robots/
https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf
http://www.newyorker.com/magazine/2017/12/18/estonia-the-digital-republic
http://www.newyorker.com/magazine/2017/12/18/estonia-the-digital-republic
https://e-resident.gov.ee/
https://eid.belgium.be/en/what-eid
http://www.belgianmobileid.be/en
https://bolagsverket.se/en/fee/e-services/swedish-e-identification-1.16393
https://bolagsverket.se/en/fee/e-services/swedish-e-identification-1.16393
https://iapp.org/news/a/the-indian-supreme-courts-aadhaar-judgement-a-privacy-perspective/
https://iapp.org/news/a/the-indian-supreme-courts-aadhaar-judgement-a-privacy-perspective/
https://tools.ietf.org/html/rfc7252#section-9
https://tools.ietf.org/html/rfc8446
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/
http://archives.dickinson.edu/sundries/liberty-song-1768

267
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2_22

CHAPTER 22

Conclusion

I didn’t know I loved so many things and I had to wait until sixty to find it
out sitting by the window on the Prague-Berlin train watching the world
disappear as if on a journey of no return.

—Nâzim Hikmet, Turkish poet, from “Things I Didn’t Know
I Loved” (1962)

The world would be a strange place without identity. It’s woven through much of our

lives and enables us to establish trust relationships with others in order to conduct

transactions. When conducting those transactions online, identity management is a core

foundation of security which in turn is a prerequisite for privacy. The complexity of how

to handle identity management well in the face of evolving technology and business

requirements has continued to unfold over time, a bit like a Mandelbrot set. We hope

this book has provided a useful introduction to identity management for those building

applications. We hope you discover you enjoy the challenges presented by this field and

are inspired to learn more. Identity management is a broad topic, and there is a lot more

to learn beyond what we could cover in this book.

We started out by introducing the types of problems faced by developers related

to identity and how trying to solve them might seem like battling a many-headed

Hydra. We covered the key events in the life of an online identity, from provisioning to

deprovisioning, and everything in between, including authentication, authorization,

policy enforcement, step-up and multi-factor authentication, logging out, and account

management. We provided more information on each of these topics in subsequent

chapters to provide an overview on the identity management capabilities a typical

application might need. Our objective was to provide an introductory, practical overview

of such topics, specifically for developers building applications delivered via the Web or

268

to mobile devices. We hope we’ve provided sufficient background information to help

you get started and more easily understand other resources as you continue learning.

We’ve also shared some lessons learned based on our past experience, such as how

to approach troubleshooting and some of the typical things that can go wrong. We’ve

added some of the less common use cases we’ve come across so you can evaluate at

the beginning of your project if they might apply to your environment. Learning about

additional requirements near the end of a project is never conducive to delivering on

time!

There have unfortunately been many breaches that have compromised identity

information. We collected information on a variety of breaches and researched the

root causes to help you learn from the past. The root causes of many breaches are not

complex, but they do require diligence if they are to be avoided. Pursuing a compliance

certification can help instill the right practices to avoid oversights leading to security

incidents. We added the compliance chapter to help you identify privacy- or security-

related requirements you may need to comply with, why compliance can be a beneficial

exercise, and how to approach it.

We closed with a summary of why we think knowledge of identity management will

be even more important in the future. The need for identity management will expand to

all manner of devices, bots, agents, cars, and more. That means a lot more people need

to be familiar with the requirements for identity management and how to solve them. We

hope the information in this book and the sample program helps you understand some

of the scope of what identity management entails. Most of all, we hope this encourages

you to continue to learn more about the topic, to bring the knowledge gained to bear

on your projects, and to find ways to share any new learning or techniques with others.

Ongoing collaboration across the tech community to continually improve identity

management is essential to protect our data, privacy, reputations, and even our physical

safety with the services and devices we use.

Chapter 22 ConClusion

269
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX A

Glossary
The following is a list of terms and their definitions as they are used in this book.

Access Token – In the context of OAuth 2.0 and OIDC, a security token used by an

application to call an API.

Account – A construct within a software application or service that usually contains or

is associated with identity information and optionally privileges and which is used to

access features within the application or service.

Application – A software application that issues requests to a server.

Application Programming Interface (API) – A software service interface that allows a

client program to request resources or actions from the software service.

Authorization Code – In the context of OAuth 2.0 and OIDC, an intermediary, opaque

code returned to an application and which represents the application’s authorization by

the user to call an API on the user’s behalf. It is used to obtain security token(s).

Authorization Server – A service which implements the OAuth 2.0 protocol and enables

resource owners (users) to authorize applications to access content they own at resource

servers and which issues security tokens enabling the authorized access.

B2B (Business to Business) – A business model where services are targeted to businesses

that use the services in some way to deliver a service to their customers.

B2C (Business to Consumer) – A business model where services are targeted to

consumers who typically act on their own behalf.

B2E (Business to Employee) – A business model where services are targeted to

businesses where the users are the employees of the businesses and act on their

employer’s behalf.

https://doi.org/10.1007/978-1-4842-5095-2

270

Confidential Client – In the context of OAuth 2.0 and OIDC, an application that runs on

a protected server and can securely store confidential secrets with which to authenticate

itself to an authorization server.

Directory Server – A repository for storing, managing, and organizing information about

resources. Directory server products have often been optimized for storing information

that is frequently read but infrequently modified and used to store information about

entities such as users, access control privileges, application configurations, and network

printers. Information in directory services has been used for authentication and

authorization of users.

End User or User – A human subject using applications or services and who is

authenticated and authorized when accessing protected resources.

HS256 – Hash-based message authentication code (HMAC) using SHA256 hash

function. A symmetric cryptographic algorithm that can be used for creating and

validating a digital signature. It is one option for signing a JSON Web Token, but requires

both the issuer and validator of the token to know the same secret.

Identifier – A single identifying attribute that points to a unique individual user or entity,

within a particular context.

Identity – A set of attributes, including one or more identifiers, associated with a specific

user or entity, in a particular context.

Identity Proofing – The process of vetting a user’s identity and profile information.

Identity Provider (IdP) – (1) A general term for an entity providing an identity service

designed to authenticate users and provide assertions about an authenticated user and

the authentication event. (2) In the context of the SAML 2.0 cross-domain single sign-on

profile specification, a server which issues SAML 2.0 assertions about an authenticated

subject and authentication event.

Identity Repository – A collection of users stored in a computer storage system, such as

a database or directory service.

ID Token – In the context of OIDC, a token used to convey claims about an

authentication event and an authenticated entity to a relying party (application).

Appendix A GlossAry

271

Internet of Things (IoT) Device – A network-attached device that has an IP address and

is capable of transferring information over a network without human interaction. Usually

refers to dedicated-purpose devices such as sensors or smart appliances as opposed to

general computing devices such as computer servers.

Least Privilege – A security principle of granting the minimum privilege level required

for a task or operating at the lowest possible privilege level for a task.

Mobile Application – An application that executes on a mobile device as a native

application.

Multitenant Application – An application deployment shared by multiple independent

customers whose data is segmented into their own area of the application’s data storage.

The separation between different customers’ data is enforced by the application and its

storage, rather than the network.

Native Application – An application installed and run natively on a computing device.

OpenID Provider – In the context of OIDC, an OAuth 2.0 authorization server that

authenticates a user and returns claims about the user and authentication event to a

relying party (application) in accordance with the OIDC specification. Applications can

delegate user authentication to an OpenID Provider.

Public Client – In the context of OAuth 2.0 and OIDC, an application that executes

primarily on the user’s client device or in the client browser and cannot securely store

secrets with which to authenticate itself to an authorization server.

Refresh Token – In the context of OAuth 2.0 and OIDC, a token that can be used by

an application to request a new access token when a prior access token has expired or

become invalid. With OIDC, a refresh request can optionally return an ID Token as well.

Relying Party – An entity that delegates authentication to an Identity Provider or

OpenID Provider or delegates authorization to an authorization server and, in either

case, relies on the results, usually in the form of security tokens. With OAuth 2.0 an API is

a relying party and with OIDC and SAML V2.0, an application is a relying party.

Resource Owner – In the context of OAuth 2.0, a user that authorizes access to protected

resources hosted at a resource server.

Appendix A GlossAry

272

Resource Server – In the context of OAuth 2.0 and OIDC, an entity that contains

protected resources.

RS256 – RSA Signature with SHA256 hash algorithm. An asymmetric cryptographic

algorithm that can be used for creating and validating a digital signature. It is one option

for signing a JSON Web Token, and unlike HS256, does not require that the issuer and

validator of the token know the same secret.

Security Domain – A security domain is a logical construct that defines the boundaries

of one entity’s control or ownership.

Service Provider – (1) A general term for an entity providing a service, such as an

application, to a user. (2) In the context of the SAML 2.0 cross-domain single sign-

on profile specification, a client entity which requests SAML 2.0 assertions about an

authenticated subject and authentication event.

Single-Page Application (SPA) – An application with logic that executes primarily in a

browser, by dynamically altering the displayed web page, rather than making requests to

a server to render new pages to respond to user actions. A SPA is assumed to be a public

client, as defined by OAuth 2.0.

User – See the definition for end user.

Web Application or Traditional Web Application – An application with logic that

executes primarily from a protected server, by rendering new pages from the server to

respond to user actions. Traditional web applications are assumed to meet the definition

of a confidential client, as defined by OAuth 2.0.

Appendix A GlossAry

273
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX B

Resources for Further
Learning
This appendix lists resources which may be helpful for further learning.

 OAuth 2.0
OAuth 2.0 Authorization Framework:

https://tools.ietf.org/html/rfc6749

OAuth 2.0 Threat Model and Security Considerations:

https://tools.ietf.org/html/rfc6819

OAuth 2.0 for Browser-Based Apps (Draft as of this writing):

https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-01

OAuth 2.0 for Native Apps:

https://tools.ietf.org/html/rfc8252

OAuth 2.0 Security Best Current Practice (Draft as of this writing):

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12

OAuth 2.0 Device Authorization Grant (Draft as of this writing):

https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15

OAuth 2.0 Authorization Framework: Bearer Token Usage:

https://tools.ietf.org/html/rfc6750

Proof Key for Code Exchange by OAuth Public Clients:

https://tools.ietf.org/html/rfc7636

OAuth 2.0 Token Introspection:

https://tools.ietf.org/html/rfc7662

https://doi.org/10.1007/978-1-4842-5095-2
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-01
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7662

274

OAuth 2.0 Token Revocation:

https://tools.ietf.org/html/rfc7009

OAuth 2.0 Web Message Response Mode (Draft as of this writing):

https://tools.ietf.org/html/draft-sakimura-oauth-wmrm-00

 JWT
JSON Web Token (JWT):

https://tools.ietf.org/html/rfc7519

 OIDC
OIDC Specifications:

https://openid.net/connect/

 SAML
SAML specifications. See especially the core, bindings, and profile specifications:

https://wiki.oasis-open.org/security/FrontPage

Security Assertion Markup Language (SAML) V2.0 Technical Overview:

www.oasis-open.org/committees/download.php/27819/sstc-saml-tech- overview-

2.0-cd-02.pdf

SAML Security and Privacy Considerations for the OASIS Security Assertion Markup

Language (SAML) V2.0:

http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf

 Multi-factor Authentication
The FIDO Alliance:

https://fidoalliance.org/fido2/

WebAuthn:

www.w3.org/TR/2019/REC-webauthn-1-20190304/

Appendix B ResouRces foR fuRtheR LeARning

https://tools.ietf.org/html/rfc7009
https://tools.ietf.org/html/draft-sakimura-oauth-wmrm-00
https://tools.ietf.org/html/rfc7519
https://openid.net/connect/
https://wiki.oasis-open.org/security/FrontPage
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://fidoalliance.org/fido2/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/

275

 Background Information
An explanation of cookies, including security guidance:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Explanation of Cross-Origin Resource Sharing (CORS):

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Brief outline of different approaches to authorization and access control:

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7316.pdf

OWASP Top 10 – Critical security risks for web applications and how to avoid them:

www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

OWASP SAML Cheat Sheet:

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SAML_

Security_Cheat_Sheet.md

Two sites on open redirects:

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/

Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md

https://cwe.mitre.org/data/definitions/601.html

Checking for breached passwords – I’ve Just Launched “Pwned Passwords” V2:

www.troyhunt.com/ive-just-launched-pwned-passwords-version-2

 Privacy
A map showing the location and strength of privacy legislation around the world:

www.dlapiperdataprotection.com/

This web site presents the articles of the GDPR in a convenient fashion:

https://gdpr-info.eu/

Appendix B ResouRces foR fuRtheR LeARning

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7316.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SAML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SAML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://cwe.mitre.org/data/definitions/601.html
http://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/#cloudflareprivacyandkanonymity
https://www.dlapiperdataprotection.com/
https://gdpr-info.eu/

277
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX C

SAML V2.0 Authentication
Request and Response
SAML V2.0 authentication request and response messages contain a lot of information.

We’ve assumed that most developers are using an SDK or authentication broker rather

than implementing SAML V2.0 directly in their applications, and therefore their primary

need is to understand SAML V2.0 requests and responses for troubleshooting purposes.

As explained in Chapter 16, the best way to debug issues with SAML V2.0 is to capture

an HTTP trace, extract the SAML V2.0 request and/or response, and examine it. In the

following sections, we’ll explain which fields to examine and what to look for.

 SAML V2.0 Authentication Request
When an application needs a user authenticated by a SAML V2.0 identity provider

(IdP), the application redirects the user's browser to the identity provider with a

SAML V2.0 authentication request message. An authentication request message can vary

substantially as many elements are optional. A sample request without a signature might

look like the following (text in bolded italics has been substituted for the actual values):

<samlp:AuthnRequest

 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 Destination="IDP URL"

 ID="ID"

 IssueInstant="TIME ISSUED"

 ProtocolBinding=

 "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

https://doi.org/10.1007/978-1-4842-5095-2

278

 Version="2.0"

 ProviderName="SERVICE PROVIDER"

 AssertionConsumerServiceURL="ACS URL">

 <saml:Issuer>SERVICE PROVIDER</saml:Issuer>

</samlp:AuthnRequest>

The request elements we have found most useful to check when troubleshooting

SAML V2.0 are shown in Table C-1, along with an explanation for each. A given request

may have more or fewer elements, depending on a particular service provider’s

configuration or implementation.

Table C-1. Useful SAML V2.0 Authentication Request Elements

Name Purpose

AssertionConsumer

ServiceURL

URL at service provider to which the identity provider’s authentication

response message should be sent. Often called the “ACS” URL.

AuthnRequest Type of request. In this case, a request to authenticate a user.

Destination URL for the recipient of the request, in this case, the IdP. This element

was designed to prevent forwarding of messages to unintended

recipients. This value must match the URL at which the request was

received.

ForceAuthn Can be used by requestor to indicate the IdP should prompt the user

for credentials, regardless of the state of the user’s session at the IdP.

ID The ID is a unique identifier for each request. When an IDP responds,

the value of the InResponseTo element of the response should match

the ID for the request that triggered the response.

Issue Instant The time at which the request was issued. Identity providers should

reject requests that are outside a certain time tolerance.

Issuer Entity which generated the request, namely, the SAML V2.0 service

provider. The IdP should check to make sure a request’s Issuer

element matches a registered service provider.

NameIDPolicy Can be used by the service provider to specify the type of identifier to

use in identifying the authenticated user. Using an email address is

common, but can conflict with privacy requirements.

(continued)

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

279

A SAML V2.0 service provider (application) can send a SAML V2.0 request to an

identity provider using a few different bindings. These indicate the mechanism for

sending the message over underlying transport protocols. In practice, the HTTP- Redirect

and HTTP-POST bindings are commonly used because they do not require direct

network connectivity between the service provider and the identity provider. The HTTP-

Redirect binding can be used with SAML V2.0 requests that are not digitally signed, but

production environments are recommended to use signed requests to prevent request

tampering. If a request is digitally signed, it typically needs to be sent using the HTTP-

POST binding to avoid issues with browser URL size limits. The response or assertion

from the identity provider must be digitally signed. Due to the size of a signed response,

the HTTP-POST binding is typically used for responses.

 SAML V2.0 Authentication Response
When an identity provider receives an authentication request, it will authenticate the

user, if necessary, and return an authentication response to the service provider in

the form of a SAML V2.0 response message which contains a SAML V2.0 assertion.

Name Purpose

ProtocolBinding The requested mechanism by which the SAML response message

should be sent over an underlying transport protocol. In practice,

hTTP-POST is often used to avoid issues with browser URL size limits.

ProviderName human-readable name of entity issuing the SAML V2.0 request (the

service provider).

RequestedAuthnContext Can be used by requestor to specify requirements for the

authentication context used by IdP when authenticating the user. Can

be used to request a type or strength level of authentication, as agreed

between service provider and IdP.

Signature Signature information if request has been signed by issuer.

Subject Used to specify the desired subject (user) for the requested

authentication assertion.

Version The version should be “2.0” for SAML V2.0.

Table C-1. (continued)

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

280

In the case of an IdP-initiated flow, an IdP may send an unsolicited authentication

response to a service provider. The SAML V2.0 response is an XML message with several

components. The exact contents of the response can vary somewhat, depending on the

nature of the request, the IdP configuration, and the information returned. Figure C-1

shows the high-level anatomy of a typical SAML V2.0 authentication response message

to help you understand the structure of these often lengthy messages. (Note: A Signature

element can be associated with an Assertion, the Response, or both. We have shown it in

the Assertion for this sample.)

A sample SAML V2.0 authentication response is shown in the following sections.

We’ve replaced specific values with explanatory text in bolded italics and provided a

table after each snippet to indicate what’s useful to check when debugging.

Figure C-1. Structure of a Sample SAML V2.0 Authentication Response

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

281

 Response
A SAML V2.0 authentication response message starts off with “samlp:Response” and

includes the information shown in the snippet that follows and explained in Table C-2.

<samlp:Response

 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 ID="ID"

 InResponseTo="ID OF CORRESPONDING REQUEST"

 Version="2.0"

 IssueInstant="TIME ISSUED"

 Destination="ACS URL of Service Provider">

 <saml:Issuer

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

ISSUER OF RESPONSE – IDENTITY PROVIDER

 </saml:Issuer>

 <samlp:Status>

 <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

 </samlp:Status>

Table C-2. SAML V2.0 Authentication Response Elements Useful for

Troubleshooting

Element Description

InResponseTo This response element should match the ID of the authentication request which

triggered the response (for service provider–initiated cases).

IssueInstant Time at which the response was issued. This can be checked for correct time to

detect time skew issues. Service providers should reject responses that are older

than a configured time tolerance.

Destination The Assertion Consumer Service (ACS) URL where the service provider receives the

response. Service providers should validate that the Destination URL in the response

is where they received the response.

Issuer The issuer of the response. Should match the expected identity provider.

Status The Status element contains the result of the authentication request. Successful

authentication is required for a status of “Success.”

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

282

 Authentication Assertion (Beginning)

The beginning of the assertion element of a response contains an ID, the instant at which

the assertion itself was issued, and the identity of the assertion issuer as shown in the

following snippet and explained in Table C-3.

<saml:Assertion

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

 Version="2.0"

 ID="ID FOR ASSERTION"

 IssueInstant="TIME ASSERTION ISSUED">

 <saml:Issuer>ENTITY ISSUING ASSERTION</saml:Issuer>

 Digital Signature for Authentication Assertion

The digital signature provides integrity assurance for the signed element. The IdP

must sign either the assertion or the response when the HTTP-POST or HTTP-Redirect

binding is used, and can sign both. The typical elements to check are shown in Table C- 4.

Portions of this element are not shown for brevity.

<Signature

 xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 ...

 <SignatureMethod Algorithm=

 "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 ...

 </SignedInfo>

Table C-3. SAML V2.0 Authentication Assertion Elements Useful for

Troubleshooting

Element Description

IssueInstant Time at which the assertion was issued. This can be checked for correct time to

detect time skew issues. Service providers should reject responses that are older

than a configured time tolerance.

Issuer The issuer of the response. Should match the expected identity provider.

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

283

 <SignatureValue>DIGITAL SIGNATURE</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>CERTIFICATE</X509Certificate>

 </X509Data>

 </KeyInfo>

</Signature>

 Subject

The Subject element identifies the authenticated user. A very common issue is that an

identifier specified by the identity provider in the assertion is different from the identifier

expected by a service provider (application) for the user.

<saml:Subject>

 <saml:NameID

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">

USER IDENTIFIER

 </saml:NameID>

 <saml:SubjectConfirmation

 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

 <saml:SubjectConfirmationData

 NotOnOrAfter="EXPIRATION FOR SUBJECT DATA"

 Recipient="SERVICE PROVIDER ACS URL>"

 InResponseTo="ID FROM REQUEST"/>

 </saml:SubjectConfirmation>

</saml:Subject>

Table C-4. SAML V2.0 Assertion Signature Elements Useful for Troubleshooting

Element Description

SignatureMethod Check that the signature algorithm used by the IdP is an algorithm

accepted by the service provider implementation.

Certificate Check that the certificate shown is correct for the IdP and matches IdP

metadata configured at service provider.

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

284

 Conditions

The Conditions element contains conditions on the use of the assertion which should be

checked by a service provider.

<saml:Conditions

 NotBefore="BEGIN VALIDITY TIME"

 NotOnOrAfter="END VALIDITY TIME">

 <saml:AudienceRestriction>

 <saml:Audience>INTENDED RECIPIENT</saml:Audience>

 </saml:AudienceRestriction>

</saml:Conditions>

Table C-5. SAML V2.0 Subject Elements Useful for Troubleshooting

Element Description

NameID Contains an identifier for the authenticated user.

NotOnOrAfter Specified validity period for subject data. This time should not have already

passed when the assertion is received.

Recipient This element should match the ACS URL to which the response was delivered.

Used by a service provider to ensure it is the intended recipient of an assertion it

receives.

InResponseTo This element should match the ID of the authentication request which triggered

the response (for service provider–initiated cases).

Table C-6. SAML V2.0 Conditions Elements Useful for Troubleshooting

Element Description

NotBefore Start of validity period for assertion. This time should have passed when the

assertion is received.

NotOnOrAfter End of validity period for assertion. This time should not have already passed when

the assertion is received.

Audience Audience (intended recipient) of the assertion. May be specified in URN format.

Used by a service provider to ensure it is the intended recipient of an assertion it

receives.

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

285

 Authentication Statement

The AuthnStatement element indicates when authentication occurred, and

the AuthnContextClassRef can be used to return an indicator of the strength of

authentication mechanism used. This section of the response is not typically a frequent

cause of issues.

<saml:AuthnStatement

 AuthnInstant="2019-01-19T19:11:28.407Z"

 SessionIndex="SESSION INDEX">

 <saml:AuthnContext>

 <saml:AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified

 </saml:AuthnContextClassRef>

 </saml:AuthnContext>

</saml:AuthnStatement>

 Attribute Statements

Attribute statements are used to convey additional user profile attributes about the user.

A frequent cause of issues is a mismatch between attributes expected by an application

and the attributes delivered in a SAML assertion. The specific attributes will vary across

different applications and identity providers. We have shown two attributes in the

following snippet, one for a user identifier and one for a user’s email address. The list of

attribute statements in an assertion should be checked to ensure all attributes required

by an application are delivered in the assertion.

<saml:AttributeStatement

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Table C-7. SAML V2.0 AuthnStatement Elements Useful for Troubleshooting

Element Description

AuthnContextClassRef If a particular AuthnContextClassRef was requested, this can be

checked to see if it matches the requested value.

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

286

 <saml:Attribute

Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

 <saml:AttributeValue xsi:type="xs:string">

 USER IDENTIFIER

 </saml:AttributeValue>

 </saml:Attribute>

 <saml:Attribute

 Name=

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">

 <saml:AttributeValue xsi:type="xs:string">

 USER EMAIL ADDRESS

 </saml:AttributeValue>

 </saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

</samlp:Response>

APPENDIx C SAML V2.0 AUThENTICATION REqUEST AND RESPONSE

287
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX D

Public Key Cryptography
This appendix provides a brief description of how public and private keys are used to

encrypt and sign tokens in a public key cryptography scheme.

With public key cryptography, there is a private key and a public key. The private

key is a long string of random characters. A public key is generated from the private key.

The two keys are called a key pair. The owner of a key pair should keep the private key a

secret, but the public key is designed to be distributed to others and used as described in

the following.

To encrypt a message, the sender uses the public key of the intended recipient to

encrypt the message. Once it is encrypted, only the recipient, who holds the matching

private key, can decipher the message.

To digitally sign a message, the signer uses its private key to digitally sign the

message. The recipient of the message uses the sender’s public key to verify the signature

on the message.

https://doi.org/10.1007/978-1-4842-5095-2

289
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX E

Troubleshooting Tools
The following sections contain tools the authors have found useful for troubleshooting

issues with applications using identity protocols.

 Capture an HTTP Trace
An HTTP trace is essential for troubleshooting many scenarios. The following

instructions indicate how to access trace features in different browsers, at the time of

writing. A search for “How to capture an HTTP trace in <name of browser>” should

provide current instructions if the following instructions no longer apply:

Chrome

• Open Developer Tools.

• Click Network tab.

• Check the “Preserve Log” option, if not already checked.

• After capturing a trace, you can right-click to save the trace in a

.har file.

Firefox

• There is a nice extension called Live HTTP Headers that is handy

with Firefox.

• Alternatively, you can open a new tab in Firefox and type

“about:networking”.

• The default settings are usually fine, but can be adjusted.

• Click Start Logging, then do the actions which cause the issue.

• Click Stop Logging, noting the location of where Firefox will save the file.

https://doi.org/10.1007/978-1-4842-5095-2

290

Internet Explorer

• Press F12 to bring up Developer Tools.

• Click the Network tab.

• Reproduce the issue.

• Click the Save button.

Safari

• In Safari Preferences, Advanced, turn on “Show Develop Menu in

Menu bar.”

• When viewing a site, use the Develop ➤ Show Web Inspector to view.

• Click the Network tab.

• Turn on Preserve Log.

• Use “Export” to save the HTTP trace to a .har file.

 View a HAR File
If you can reproduce an authentication/authorization issue, you can view the HTTP

trace of the issue in your own browser. However, if you need to view an HTTP Archive file

captured by someone else, the following tools will be useful.

Caution Remember that HTTP trace files may contain sensitive information such
as passwords or security tokens.

If the tools listed as follows are no longer available, you should be able to find new

ones by searching for “HTTP Archive View” or “How to view a .har file.”

Chrome
The Chrome browser supports the ability to import a .har file.

• Open Chrome Developer Tools Network tab.

• Drag and drop your .har file onto the tab.

APPendix e TRoublesHooTing Tools

291

Google .har file analyzer
Google provides a web site which can be used to view HTTP Archive (.har) files.

https://toolbox.googleapps.com/apps/har_analyzer/

Fiddler
Fiddler, another useful network trace tool, can also be used to view .har files.

https://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats

 Capture a Network Trace
To capture API traffic originating from a back-end application component or native

application, you can rely on your favorite debugger or a network trace tool such as the

following:

Fiddler
https://docs.telerik.com/fiddler

Charles Proxy
www.charlesproxy.com/

 View Security Tokens
The ability to view security tokens issued by identity providers greatly aids the debugging

process. Table E-1 contains some of our favorites.

Table E-1. Useful Tools for Viewing Security Tokens

Tool Purpose

https://jwt.io Tool provided by Auth0 for viewing JWT tokens

https://samltool.com Tool provided by onelogin for viewing sAMl tokens

https://samltool.io Tool provided by Auth0 for viewing sAMl tokens

APPendix e TRoublesHooTing Tools

https://toolbox.googleapps.com/apps/har_analyzer/
https://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats
https://docs.telerik.com/fiddler/KnowledgeBase/ImportExportFormats
https://www.charlesproxy.com/
https://jwt.io
https://samltool.com
https://samltool.io

292

 Test APIs
A tool for testing API calls, without the added complexity of a client application, can aid

debugging. Table E-2 contains tools we’ve found helpful for testing calls to APIs.

Table E-2. API Debugging Tools

Tool Purpose

https://getpostman.com Tool for learning, debugging, and testing APi calls

https://insomnia.rest/ Tool for learning, debugging, and testing APi calls

APPendix e TRoublesHooTing Tools

https://getpostman.com
https://insomnia.rest/

293
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX F

Privacy Legislation
This section contains information on privacy-related legislation. Countries around the

world are recognizing the need to enact legislation to protect personal information. It

is beyond the scope of this book to provide a comprehensive list of privacy legislation

as the list is long and new legislation is being introduced on an ongoing basis. In fact, at

the time of writing, the privacy legislation in several countries is undergoing significant

revision, in some cases to align more closely with the GDPR.

We will provide resources in the following for learning more about the primary

privacy legislation applicable to the EU, namely, the GDPR, and legislation in the United

States, which takes a sectoral approach to privacy legislation. We’ve also provided

resources to help you find legislation applicable to other countries and to stay on top of

privacy changes around the world.

The information provided in the following does not constitute legal guidance, and

we recommend that organizations consult with legal and privacy professionals in the

development of any privacy compliance efforts.

 European Union
The European Union updated its 1996 Data Protection Directive with comprehensive

privacy legislation known as the EU GDPR, General Data Protection Regulation.i The

GDPR took effect in 2018 and applies to any entity that receives, stores, or processes data

about persons in the EU and includes stiff fines for noncompliance.

Note that individual countries within the EU may enact additional country-specific

legislation for implementation of the GDPR.

https://doi.org/10.1007/978-1-4842-5095-2

294

 United States
In the United States, there are several privacy-related laws rather than one single federal

privacy law. Privacy legislation in the United States uses a sectoral approach with

different laws for different industry sectors and for some individual states:

• GLBA (Gramm-Leach-Bliley Act)ii – Specifies privacy and security

requirements for the financial industry governing the handling and

protection of NPI (Non-Personal Information).

• HIPAA (Health Insurance Portability and Accountability Act)iii –

Specifies privacy and security requirements for the healthcare

industry, governing personal data as well as information about a

person’s healthcare, health status, and payment for healthcare.

• FTCA (Federal Trade Commission Act)iv – Protects consumers

against deceptive or unfair business practices, which may include

uses of personal data that do not conform to published privacy

notices.

• FCRA (Fair Credit Reporting Act)v and FACTA (Fair and Accurate
Credit Transactions Act)vi – Governs protection of personal data,

including a person’s credit score, capacity for credit, and any

personal characteristics related to credit worthiness. It also obligates

financial institutions to implement measures to detect and respond

to suspected instances of identity theft, via the Identity Theft Red

Flag Rule.

• CAN-SPAM (Controlling the Assault of Non-Solicited Pornography
and Marketing)vii – Governs the use of unsolicited commercial

emails whose primary purpose is advertisement or promotion of

commercial products or services.

• TCPA (Telephone Consumer Protection Act)viii – Governs

telemarketing calls and the use of automated calls, otherwise known

as robocalls.

Appendix F privAcy LegisLAtion

295

• COPPA (Children’s Online Privacy Protection Act)ix – Governs

the collection, use, and disclosure of information about children

under the age of 13 for protection from unfair or deceptive practices.

It places requirements on web sites or online services targeted to

children under 13 or which knowingly have personal data about

children under 13.

• VPPA (Video Privacy Protection Act)x – Originally established in

1988 and amended in 2012, it governs the protection of personal data

related to rental or sales of videos.

In addition, a patchwork of different privacy laws is being enacted in the absence of

national legislation in the United States. Two examples are

• California Consumer Privacy Act (CCPA)xi – California has enacted

the California Consumer Privacy Act (CCPA) which takes effect in

January 2020. The CCPA entitles California residents to know what

personal data is being collected, whether it’s sold or shared, the right

to opt out to the sale or sharing of their personal data, access to their

data, and equal service and price even if they exercise their opt-out

choice.

• Vermont Data Broker Privacy Lawxii – Vermont has enacted

legislation that applies to data brokers that collect, store, aggregate,

and sell data about data subjects. This applies to brokers who don’t

have a direct relationship with the data subjects. The law requires

data brokers to be transparent about their practices by registering

with the state, secure the data they hold, and to not use personal data

to harass or discriminate against data subjects. The Vermont law also

requires free credit freezes to protect consumers whose identity has

been stolen.

For information on other states, the International Association of Privacy

Professionals has prepared a chart comparing US states’ passage of comprehensive

privacy legislation.xiii

Appendix F privAcy LegisLAtion

296

 Other Countries
For information on privacy legislation in other countries, we have found the following

sites useful for identifying privacy laws in each location and tracking news on privacy

changes:

• DLA Piper – Data Protection Laws of the Worldxiv

• United Nations Conference on Trade and Development – Data

Protection and Privacy Legislationxv

• International Association of Privacy Professionals (IAPP) – (Some

content for members only)xvi

In reviewing privacy legislation, it is worth noting that in some countries, there is

different legislation for private sector businesses vs. public sector entities, and there may

be additional legislation enacted by regional governments or for specific industries. For

example, in Canada, the Personal Information Protection and Electronic Documents Act

(PIPEDA)xvii applies to private sector businesses in Canada, whereas the Privacy Actxviii

applies to federally regulated public bodies in Canada. In addition, some Canadian

provinces have enacted additional privacy legislation.

 Notes
 i. https://ec.europa.eu/commission/priorities/justice-and-

fundamental-rights/data-protection/2018-reform-eu-data-

protection-rules_en

 ii. www.ftc.gov/enforcement/statutes/gramm-leach-bliley-act

 iii. www.hhs.gov/hipaa/index.html

 iv. www.ftc.gov/enforcement/statutes/federal-trade-

commission-act

 v. www.ftc.gov/enforcement/rules/rulemaking-regulatory-

reform-proceedings/fair-credit-reporting-act

 vi. www.ftc.gov/enforcement/statutes/fair-accurate-credit-

transactions-act-2003

Appendix F privAcy LegisLAtion

https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://www.ftc.gov/enforcement/statutes/gramm-leach-bliley-act
https://www.hhs.gov/hipaa/index.html
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/fair-credit-reporting-act
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/fair-credit-reporting-act
https://www.ftc.gov/enforcement/statutes/fair-accurate-credit-transactions-act-2003
https://www.ftc.gov/enforcement/statutes/fair-accurate-credit-transactions-act-2003

297

 vii. www.ftc.gov/tips-advice/business-center/guidance/can-

spam-act-compliance-guide-business

 viii. www.fcc.gov/tags/telephone-consumer-protection-act-tcpa

 ix. www.ftc.gov/enforcement/rules/rulemaking-regulatory-

reform-proceedings/childrens-online-privacy-protection-

rule

 x. www.govinfo.gov/content/pkg/CRPT-112srpt258/html/CRPT-

112srpt258.htm

 xi. https://leginfo.legislature.ca.gov/faces/billTextClient.

xhtml?bill_id=201720180AB375

 xii. https://ago.vermont.gov/privacy-data-security/

 xiii. https://iapp.org/resources/article/state-comparison-

table/

 xiv. www.dlapiperdataprotection.com/

 xv. https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-

Legislation/eCom- Data- Protection-Laws.aspx

 xvi. https://iapp.org/

 xvii. www.priv.gc.ca/en/

 xviii. www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/

the-privacy-act/

Appendix F privAcy LegisLAtion

https://www.ftc.gov/tips-advice/business-center/guidance/can-spam-act-compliance-guide-business
https://www.ftc.gov/tips-advice/business-center/guidance/can-spam-act-compliance-guide-business
https://www.fcc.gov/tags/telephone-consumer-protection-act-tcpa
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.govinfo.gov/content/pkg/CRPT-112srpt258/html/CRPT-112srpt258.htm
https://www.govinfo.gov/content/pkg/CRPT-112srpt258/html/CRPT-112srpt258.htm
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://ago.vermont.gov/privacy-data-security/
https://iapp.org/resources/article/state-comparison-table/
https://iapp.org/resources/article/state-comparison-table/
https://www.dlapiperdataprotection.com/
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://unctad.org/en/Pages/DTL/STI_and_ICTs/ICT4D-Legislation/eCom-Data-Protection-Laws.aspx
https://iapp.org/
https://www.priv.gc.ca/en/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-privacy-act/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-privacy-act/

299
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

 APPENDIX G

Security Compliance
Frameworks
Security frameworks provide a list of controls that represent requirements that would

reasonably be expected of an organization to adequately secure systems and information

under its control. We list here some security frameworks we have had occasion to review,

in two sections. The first section contains general security frameworks that are not

specific to an individual country or government. The second section presents several

security requirements or frameworks that are specific to the United States.

 General Security Frameworks
The following is a list of security frameworks, in alphabetical order.

 Center for Internet Security – Top 20 Controls
The CIS Controlsi are a series of 20 foundational cybersecurity controls intended to

eliminate the most common attacks.

 Cloud Security Alliance
The Cloud Security Allianceii has a mission to promote best practices for security

assurance for cloud providers. CSA has a three-level certification program called CSA

STAR based on a published framework of security controls known as the Cloud Controls

Matrix (CCM).

https://doi.org/10.1007/978-1-4842-5095-2

300

 ISO 27000
ISO 27000xiii is a family of standards published by the ISO (International Organization for

Standardization) for information security management systems. Figure G-1 shows the

ISO/IEC 27000 family of requirements, guidelines, and standards.

Each of the standards/guidelines in the diagram may be purchased from ISO. A

certified, independent auditor is required to verify compliance with the framework

controls. After an audit of an organization’s evidence of compliance, a report is issued for

the audit period stating if the controls were met. Organizations that pass the audit can

place a certificate seal on their web site.

 PCI DSS
The PCI DSS (Payment Card Industry Data Security Standard) iv was created by the

payment card industry. Any vendor processing credit card data is expected to be

compliant with the PCI DSS standard. It also applies to other systems that can impact the

security of systems subject to PCI DSS.

Figure G-1. ISO/IEC 27000 ISMS Standards Family

Appendix G Security compliAnce FrAmeworkS

301

 US Frameworks
The following frameworks are applicable to the United States. They may be applicable

to private sector organizations or applicable to government agencies and those doing

business with them. Even if they are not mandatory for your project, a lot can be learned

about best practices by studying the requirements, which may be useful in preparing for

an audit or future requirements.

 CJIS Security Policyv – Criminal Justice Information Ser-
vices Security Policy
In the United States, the Criminal Justice Information Services (CJIS) Security Policy

governs the protections which must be provided for the handling of personal data

related to criminal justice, including fingerprints and criminal background records.

 FFIEC Information Technology Examination Handbook
and Cybersecurity Assessment Toolvi

The US Federal Financial Institutions Examination Council (FFIEC) unifies standards

and principles and provides security guidance for financial institutions. The FFIEC has

published the Information Technology Examination Handbook which consists of 11

booklets including one on Information Security. It has also published the Cybersecurity

Assessment Tool which includes principles and standards in the Examination

Handbook. The Cybersecurity Assessment Tool can be used as a self-assessment tool to

prepare for an examination or audit.

 FISMA – Federal Information Security Management Actvii

FISMA requires each US federal agency to develop, document, and implement

an agency-wide program to provide information security for the information and

information systems that support the operations and assets of the agency, including

those provided or managed by another agency, contractor, or other source. The FISMA

standards include NIST publications FIPS-199, FIPS-200, and the NIST 800 series.

Appendix G Security compliAnce FrAmeworkS

302

 FedRAMP – Federal Risk and Authorization Management
Programviii

FedRAMP defines a process for the evaluation, authorization, and monitoring of the

security of cloud service providers used by US federal agencies. FedRAMP approval is

required before a cloud service can be used by a federal agency (with a few very limited

exceptions).

 GLBA Safeguards Ruleix

This portion of GLBA (Gramm-Leach-Bliley Act) requires financial institutions to have

measures in place to protect personal data, including names, addresses, social security

numbers, bank account, and credit card information, as well as credit and income history.

 HIPAAx

In the United States, the Health Insurance Portability and Accountability Act has a

security component known as the HIPAA Security Rule. This rule establishes standards

for the protection of electronic personal health information. This includes personal data

related to healthcare, health status, and payment for healthcare.

 HITECH Actxi

In the United States, the HITECH (Health Information Technology for Economic and Clinical

Health) Act governs the adoption of technology for managing electronic health records.

Subtitle D of this act covers the security and privacy of electronic health information.

 NISTxii

The National Institute for Standards and Technology in the United States is a

government body that publishes standards. The NIST cybersecurity framework is a

voluntary framework of standards, guidelines, and best practices for cybersecurity.

This framework references the NIST 800 series of publications which provide guidelines

and technical specifications for cybersecurity.

Appendix G Security compliAnce FrAmeworkS

303

 SOC (Service Organization Control)
 SOC1
A SOC1 report focuses on a service organization’s controls that are likely to be relevant

to an audit of the entity’s financial statements. Control objectives are related to both

business process and information technology. SOC1 reports follow the Statement on

Standards for Attestation Engagements (SSAE) 18 standard.

 SOC2
Service Organization Control 2 is a set of controls against which a company is audited,

related to security, privacy, confidentiality, processing integrity, and/or availability. The

specific set of controls for SOC2 is defined by each company. As the SOC2 assessment

is not based on an open standard set of controls, information on the company-specific

controls is included in the SOC2 report, prepared by an auditor, after a SOC2 compliance

audit. The SOC2 report was created in part because of the rise of cloud computing and

business outsourcing of functions to service organizations. These are called user entities

in the SOC reports. Liability concerns have caused an increase in demand in assurance

of confidentiality and privacy of information processed by companies and organizations.

 Notes
 i. www.cisecurity.org/controls/

 ii. https://cloudsecurityalliance.org/star/#_overview

 iii. www.iso.org/isoiec-27001-information-security.html

 iv. www.pcisecuritystandards.org/pci_security/maintaining_

payment_security

 v. www.fbi.gov/services/cjis/cjis-security-policy-resource-

center

 vi. https://www.ffiec.gov/cybersecurity.htm

 vii. www.dhs.gov/cisa/federal-information-security-

modernization-act

Appendix G Security compliAnce FrAmeworkS

http://www.cisecurity.org/controls/
https://cloudsecurityalliance.org/star/#_overview
http://www.iso.org/isoiec-27001-information-security.html
http://www.pcisecuritystandards.org/pci_security/maintaining_payment_security
http://www.pcisecuritystandards.org/pci_security/maintaining_payment_security
http://www.fbi.gov/services/cjis/cjis-security-policy-resource-center
http://www.fbi.gov/services/cjis/cjis-security-policy-resource-center
https://www.ffiec.gov/cybersecurity.htm
http://www.dhs.gov/cisa/federal-information-security-modernization-act
http://www.dhs.gov/cisa/federal-information-security-modernization-act

304

 viii. www.fedramp.gov/

 ix. www.ftc.gov/enforcement/statutes/gramm-leach-bliley-act;

www.ftc.gov/enforcement/rules/rulemaking-regulatory-

reform-proceedings/safeguards- rule

 x. www.hhs.gov/hipaa/for-professionals/security/index.html

 xi. www.hhs.gov/hipaa/for-professionals/special-topics/

hitech-act- enforcement-interim-final-rule/index.html

 xii. www.nist.gov/cyberframework

Appendix G Security compliAnce FrAmeworkS

http://www.fedramp.gov/
http://www.ftc.gov/enforcement/statutes/gramm-leach-bliley-act
http://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/safeguards-rule
http://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/safeguards-rule
http://www.hhs.gov/hipaa/for-professionals/security/index.html
http://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
http://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html
http://www.nist.gov/cyberframework

305
© Yvonne Wilson, Abhishek Hingnikar 2019
Y. Wilson and A. Hingnikar, Solving Identity Management in Modern Applications,
https://doi.org/10.1007/978-1-4842-5095-2

Index

A, B
Access policy enforcement, 13, 113
Account requirements, 221

account linking, 222, 224
delegation, 225
impersonation, 224
mergers and acquisitions, 221
progressive profiling, 224

API, 129
add custom claims, 134, 135
authorization, 52
back-end API, 129
client application, 130
extensibility, 135
front end (see Front-end functions)
front-end application, 130
helper function, 132
Introspection specification, 134
JWT-formatted access, 133, 134
OAuth 2.0 scopes, 131
OpenID Provider, 130
processing request, 133
test, 292
user authorization, 131

Authentication, 12, 159
biometric factors, 160
deployment, 165
identity provider request, 163
knowledge-based authentication, 161
multi-factor authentication, 161

OIDC, 164
private cryptographic key, 160
SAML 2.0, 163
session timeouts, 163
static password, 159
step-down, 164
step-up, 162
stronger forms, 160

Authorization, 12
client applications, 119

attributes, 119
delivery, 120
enforcement, 120
OAuth 2.0 request, 120

policy enforcement, 113
application access, 114
data access, 115
functional access, 115

user authorization, 116
delivery, 117
enforcement, 119
profile attributes, 116
transactional attributes, 117

user vs. client application, 115

C
Center for Internet Security (CIS), 299
Centralized user repository, 20, 21
Cloud Controls Matrix (CCM), 299

https://doi.org/10.1007/978-1-4842-5095-2

306

Cloud Security Alliance (CSA), 299
Compliance

assessment and
certification, 248

competitive advantage, 245
data protection, 244
definition, 241
efficiency, 245
elective compliance

frameworks, 244
GDPR, 242
industry, 243
list of activities, 249
privacy compliance, 247
reduce penalties, 245
security compliance, 247
security/privacy standards, 244

Criminal Justice Information Services
(CJIS) Security Policy, 301

D
Deprovisioning, 17, 187

account termination, 187
certificate of deletion, 191
data transfer, 190
delete account, 188
preserve account record, 189
preserve identities, 189
reprovision requirements, 193
right to erasure, 191
secure deletion, 192

Document-writing app, 124
code-sharing web sites, 124
compliance requirements, 128
features and services, 124
frameworks, 128
identity provider service, 128

management requirements, 125
access controls, 127
anonymous document

creation, 126
API calls, 126
provisioning options, 125
sensitive data, 126
session timeout, 127
single sign-on, 127
user logs out, 127
users log in, 125
web-based single-page

application, 126
platform, 128

E
Environment requirements, 225

Identity Provider Discovery, 226
multitenant applications, 227
shared workstations, 225

Exceptions, 207
accounts, 207

authentication mechanism, 210
data restore, 207
decommission, 208
orphaned account, 209
takeover, 209

compromised security
information, 214

credentials, 215
personal data, 214
secrets, 215

identity provider, 210
account recovery

requests, 210
breached passwords, 212
brute force attack, 211

INDEX

307

system outage
administrative access, 213
authentication, 212
provisioning process, 213

External identity service, 39
characteristics, 40
customer types, 43
factors, 39
government-issued online identity, 41
industry consortium, 42
organization-controlled identity, 42
organizations, 41
self-registered identity, 40
social provider accounts, 42

F
Failures, 229

cleartext passwords, 233
encrypt sensitive data, 233
insiders threat, 235
multi-factor authentication, 231
pay attention to process, 229
phishy emails, 230–231
secure coding practices, 233
security vulnerability, 231
Target’s HVAC, 234

Federal Financial Institutions
Examination Council (FFIEC), 301

Federal Information Security
Management Act (FISMA), 301

Federal Risk and Authorization
Management Program
(FedRAMP), 302

Front-end functions, 136
API calls, 138
helper functions, 136
logout, 139

OpenID Connect, 137
sessions, 138
token management, 139
tokens, 137
user authentication, 137

G
General Data Protection

Regulation (GDPR), 242
Gramm-Leach-Bliley Act (GLBA), 302

H
Health Insurance Portability and

Accountability Act (HIPAA), 302
Health Information Technology for

Economic and Clinical
Health (HITECH), 302

HTTP Archive View (HAR file)
Chrome, 290
Google, 291
Fiddler, 291

HTTP trace
Chrome, 289
Firefox, 289
Internet Explorer, 290
Safari, 290

I, J, K
Identifier, 9
Identities, 258

access policy enforcement, 13
account management and recovery, 16
authentication, 12
authorization, 12
autonomous vehicles, 259

INDEX

308

definition, 9, 10
deprovisioning, 17
events in life of, 11–17
evolution of, 19–26
IoT devices, 260
logout, 15
multi-factor authentication, 15
personal agents, 259
provisioning, 11, 12
robots, 260
sessions, 13, 14
SSO, 14
step-up authentication, 15

Identity and Access Management (IAM)
System, 10, 114

Identity attributes, 44–45, 181
account recovery, 183
advantages/disadvantages, 44
credentials reset, 183
enterprise provider, 181
helpdesk reset, 184
password guidance, 184
SCIM protocol, 182
social providers, 181
user profile data, 182
validation, 47

Identity defederation, 221
Identity management, 19, 260

centralized user repository, 20, 21
design questions, 6
easier adoption, 262
e-identity initiatives, 261
federated identity and SAML 2.0, 22, 23
identity challenges, 1–5
OAuth 2.0, 24, 25
OIDC, 25
OpenID protocol, 24

per-application identity silo, 20
sample application, 6
smaller devices, 262
SSO servers, 21, 22
standard protocols, 26
stronger authentication, 262
WS-Fed, 23

Identity provisioning
administrative account creation, 36

automated account, 36
cross-domain account, 37
manual account, 36

approaches, 29
invite-only registration flow, 31
leverage external identity service, 38
migration, 32

bulk migration, 34
gradual migration approach, 35
supporting legacy hashing

algorithms, 33
progressive profiling, 31
self-registration, 30

L
Logout, 15, 167

application, 172
application session, 171
authentication broker, 171
in designing, 170
identity provider session, 170
multilevel authentication, 177
multiple user sessions, 167
OAuth 2.0, 172
OIDC

back-Channel, 174
front-channel, 173
specification, 173

Identities (cont.)

INDEX

309

redirects, 177
relying party client application, 174
SAML 2.0, 175
session termination, 177
SSO, 168
triggers, 169
user sessions, 170

M
Multi-factor authentication, 15

N
National Institute for Standards and

Technology (NIST), 302
Network trace tool, 291
No email address, 220

O
OAuth 2.0, 24, 25

access token, 73
API call, 71
with authorization, 54
authorization code grant, 57

authorization request, 60
+ PKCE, 58, 59
response, 62
token endpoint, 62

client credentials, 69
client profiles, 56
confidential vs. public clients, 56
implicit grant, 64

authorization request, 66
URL hash fragment, 65

overview, 53
refresh token, 71

resource owner password
credentials, 67–68

authorization request, 69
resource server, 53
roles, 55
tokens and authorization code, 57
without authorization, 53

OpenID Connect (OIDC)
protocol, 25, 77

authentication, 78
authorization code and tokens, 79
authorization code flow, 83

authentication request, 84
authentication response, 87
token requests, 87, 89

client types, 79
endpoints, 80
hybrid flow, 92–94

authentication request, 94
response_types, 93

ID Tokens, 80, 81
implicit flow, 89–91

authentication request, 90
authentication response, 91
parameters, 91

roles, 79
session management, 173–174
UserInfo endpoint, 94–95

OpenID protocol, 24

P, Q, R
Payment Card Industry Data Security

Standard (PCI DSS), 300
People requirements, 219

family account, 219
temporary accounts, 220

Per-application identity silo, 20

INDEX

310

Privacy legislation
European Union, 293
other countries, 296
United States, 294–295

Private key, 287
Proof Key for Code

Exchange (PKCE), 59
Provisioning phase, 11, 12

S
SAML 2.0, 96, 99–110

assertion, 282
attribute statements, 285–286
authentication broker, 107
authentication request, 277–278
authentication response, 279–281
AuthnStatement, 285
condition, 284
configuration, 108
digital signature, 282–283
federated identity, 22, 23
identity federation, 105
identity provider, 100
IdP-initiated flow, 103, 104
overview, 99
protocol binding, 101
SAML assertion, 100
SAML profile, 100
service provider, 101
SP-initiated flow, 102
SSO, 102, 103
subject, 100, 283–284
trust relationship, 101
working principles, 101

Security Assertion Markup Language
(SAML) 2.0 protocol,
See SAML 2.0

Security challenges, 254
diversifying motives, 255
evolving targets, 254
ongoing breaches, 254

Security frameworks
CIS controls, 299
CJIS Security Policy, 301
CSA, 299
FedRAMP, 302
FFIEC, 301
FISMA, 301
HIPAA, 302
HITECH, 302
GLBA, 302
ISO 27000, 300
NIST, 302
PCI DSS, 300
SOC, 303–304
US Frameworks, 301

Service Organization
Control (SOC), 303–304

Sessions, 13, 14, 143
application session, 143, 171
authentication broker, 171
continuous authentication, 150
duration, 146, 147
identity provider, 145, 170
multiple sessions, 145
relying parties, 169
renewal, 148
token renewal, 148

Single sign-on (SSO), 14, 151
authentication mechanisms, 155
benefits, 152
consumer-facing environments, 151
definition, 151
identity provider, 154
login page branding, 156

INDEX

311

multiple identity providers, 155
servers, 21, 22
session attributes, 154
session duration, 154
trade-offs, 152
working principles, 152

Status transitions, 220
Step-up authentication, 15
System for Cross-domain Identity

Management (SCIM)
protocol, 37, 182

T, U
Targets, 255

cars, 256
homes and business, 255
medical implants and monitoring, 256
perimeter protections, 258
robots, 257–258

Troubleshooting, 195
API calls, 198
application issue, 200
applications impact, 200
authentication/authorization, 201
capture HTTP traces, 197
cross checking, 198

environmental factors, 200
HTTP status code, 203
identity protocol, 195
independent browser windows, 196
intermittent problem, 200
JWTs and SAML tokens, 198
parameters in a request, 203
problem replication, 201, 205
sequence of interaction, 202
symptoms and issues, 202
test environment, 196
token contents, 204
tools, 196
trace of HTTP and API calls, 201
users impacted, 199
validation errors, 205
view HTTP traces, 197

V
View security tokens, 291

W, X, Y, Z
Web Services Federation

Language (WS-Fed), 23
WriteAPaper application, 52, 53

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: The Hydra of Modern Identity
	Identity Challenges
	Objective
	Sample Application
	Design Questions
	Summary
	Key Points

	Note

	Chapter 2: The Life of an Identity
	Terminology
	Events in the Life of an Identity
	Provisioning
	Authorization
	Authentication
	Access Policy Enforcement
	Sessions
	Single Sign-On (SSO)
	Stronger Authentication
	Logout
	Account Management and Recovery
	Deprovisioning

	Summary
	Key Points

	Chapter 3: Evolution of Identity
	Identity Management Approaches
	Per-Application Identity Silo
	Centralized User Repository
	Early SSO Servers
	Federated Identity and SAML 2.0
	WS-Fed
	OpenID
	OAuth 2.0
	OpenID Connect (OIDC)

	Standard Protocols
	Summary
	Key Points

	Notes

	Chapter 4: Identity Provisioning
	Provisioning Options
	Self-Registration
	Progressive Profiling
	Invite-Only Registration

	Identity Migration
	Support Legacy Hashing Algorithm
	Bulk Identity Migration
	Gradual Migration of Users

	Administrative Account Creation
	Manual Account Creation
	Automated Account Creation
	Cross-Domain Account Creation

	Leverage Existing Identity Service

	Selecting an External Identity Service
	Self-Registered Identities
	Organization Identities
	Government Identities
	Industry Consortium Identities

	Identity Provider Selection
	Choosing and Validating Identity Attributes
	Suggestions
	Validating Critical Attributes

	Summary
	Key Points

	Notes

	Chapter 5: OAuth 2.0 and API Authorization
	API Authorization
	OAuth 2.0
	Terminology
	Roles
	Confidential vs. Public Clients
	Client Profiles
	Tokens and Authorization Code

	How It Works
	Authorization Code Grant
	Authorization Code Grant Type + PKCE
	The Authorization Request
	Response
	Calling the Token Endpoint

	Implicit Grant
	The Authorization Request

	Resource Owner Password Credentials Grant
	The Authorization Request

	Client Credentials Grant
	The Authorization Request

	Calling an API
	Refresh Token
	Guidance

	Summary
	Key Points

	Notes

	Chapter 6: OpenID Connect
	Problem to Solve
	Terminology
	Roles
	Client Types
	Tokens and Authorization Code
	Endpoints
	ID Token

	How It Works
	OIDC Flows
	OIDC Authorization Code Flow
	Authentication Request
	Authentication Response
	Token Request

	OIDC Implicit Flow
	Response

	OIDC Hybrid Flow

	UserInfo Endpoint
	Summary
	Key Points

	Notes

	Chapter 7: SAML 2.0
	Problem to Solve
	Terminology
	How It Works
	SP-Initiated SSO
	Single Sign-On
	IdP-Initiated Flow
	Identity Federation

	Authentication Brokers
	Configuration
	Summary
	Key Points

	Notes

	Chapter 8: Authorization and Policy Enforcement
	Authorization vs. Policy Enforcement
	Levels of Authorization and Access Policy Enforcement
	Level 1 – Application or API Access
	Level 2 – Functional Access
	Level 3 – Data Access

	User vs. Application Authorization
	User Authorization
	User Profile Attributes
	Transactional User Attributes

	Delivery
	Enforcement

	Application Authorization
	Application Attributes
	Authorization
	Delivery
	Enforcement

	Summary
	Key Points

	Notes

	Chapter 9: Sample Application with Custom API
	Background
	Application Requirements
	Who Are Your Users: Employees or Consumers?
	How Will Users Log In?
	Can Your App Be Used Anonymously?
	Web-Based or Native App Format or Both?
	Does Your Application Call APIs?
	Does Your Application Store Sensitive Data?
	What Access Control Requirements Exist?
	How Long Should a User Session Last?
	Will Users Need Single Sign-On (If More Than One Application)?
	What Should Happen When a User Logs Out?
	Are There Any Compliance Requirements?

	Platform, Framework, and Identity Provider

	API
	Protect the API
	OAuth 2.0 Scopes – for API Authorization
	User Authorization

	API Implementation
	Processing Requests

	Extensibility and Adding Custom Claims

	Front End
	Front-End Functions
	Authenticating the User
	Tokens
	Making Protected API Calls
	Sessions
	Token Management
	Logout

	Summary
	Key Points

	Note

	Chapter 10: Sessions
	Application Sessions
	Identity Provider Sessions
	Multiple Sessions
	Session Duration
	Session Renewal
	Token Renewal
	Reconstituted Sessions
	Summary
	Key Points

	Chapter 11: Single Sign-On
	What Is SSO?
	How SSO Works
	SSO Session Attributes
	SSO Session Duration
	Multiple Identity Providers
	Authentication Mechanisms
	Login Page Branding

	Summary
	Key Points

	Note

	Chapter 12: Stronger Authentication
	The Problem with Passwords
	Stronger Forms of Authentication
	Multi-factor Authentication
	Step-Up Authentication

	Session Timeouts
	Requesting Authentication Mechanisms
	SAML 2.0
	OIDC

	Step-Down Authentication
	Deployment
	Summary
	Key Points

	Notes

	Chapter 13: Logout
	Multiple Sessions
	Logout Triggers
	Logout Options
	Application Logout
	OAuth 2.0
	OIDC
	SAML 2.0
	Session Termination
	Logout and Multilevel Authentication
	Redirect After Logout
	Summary
	Key Points

	Notes

	Chapter 14: Account Management
	Identity Attributes
	Credential Reset
	Account Recovery
	Password Guidance
	Helpdesk Reset
	Summary
	Key Points

	Notes

	Chapter 15: Deprovisioning
	Account Termination
	Best Practices
	Just Do It!
	Provide a Soft Delete Technique
	Reserve Deprovisioned Identities
	Preserve Account Record
	Data Transfer
	Privacy Right to Erasure
	Certificate of Deletion
	Secure Delete
	Consider Reprovisioning Requirements

	Summary
	Key Points

	Notes

	Chapter 16: Troubleshooting
	Get Familiar with the Protocols
	Prepare Your Tools
	Test Environment
	Independent Browser Windows
	Capture HTTP Traces
	View HTTP Traces
	Make API Calls
	View API Calls
	View JWT and SAML 2.0 Tokens

	Check the Simple Things
	Gather Information
	How Many Users Impacted?
	Contributing Environmental Factors?
	Which Applications Impacted?
	Consistent or Intermittent Issue?
	Worked Previously?
	Where Does Failure Occur?

	Replicate the Problem
	Analyzing an HTTP/Network Trace
	Capture a Trace
	Check Sequence of Interaction
	Check Parameters in Requests
	Check HTTP Status Codes
	Check Security Token Contents
	Check for Security Token Validation Errors
	Collaborating with Others

	Summary
	Key Points

	Note

	Chapter 17: Exceptions
	Accounts
	Data Restore
	Account Decommission
	Orphaned Account
	Account Takeover
	Phone Lost, Damaged, or Stolen

	Identity Providers
	Account Recovery Requests
	Brute Force Attacks
	Breached Passwords

	System Outages
	Authentication System Outage
	Admin Access
	Provisioning Systems

	Compromised Security Information
	Compromised Personal Data
	Compromised Credentials
	Compromised Secrets

	Summary
	Key Points

	Notes

	Chapter 18: Less Common Requirements
	People
	Family Accounts
	Temporary Positions
	Status Transition
	No Email Address
	Identity Defederation

	Accounts
	Mergers and Acquisitions
	Account Linking
	Progressive Profiling
	Impersonation
	Delegation

	Environment
	Shared Workstations
	Identity Provider Discovery
	Multitenant Applications

	Summary
	Key Points

	Chapter 19: Failures
	Pay Attention to Process
	Beware of Phishy Emails
	Use Multi-factor Authentication
	Stay on Top of Patches
	Secure Your Cloud
	Encrypt Sensitive Data!
	Do Not Store Cleartext Passwords
	Provide Security Training to Developers
	Vet Your Partners
	Insider Threat
	Summary
	Key Points

	Notes

	Chapter 20: Compliance
	What Is Compliance?
	Government-Mandated Compliance
	Industry Compliance
	Elective Compliance Frameworks

	Why Compliance
	Data Protection
	Competitive Advantage
	Reduce Penalties
	Efficiency

	Compliance Landscape
	Security Compliance
	Privacy Compliance
	Assessment and Certification

	How to Proceed
	Summary
	Key Points

	Notes

	Chapter 21: Looking into the Crystal Ball
	Continued Security Challenges
	Ongoing Breaches
	Evolving Targets
	Diversifying Motives

	More Targets
	Homes and Businesses
	Cars
	Medical Implants and Monitoring
	Robots
	Erosion of Perimeter Protection

	Identity – Not Just for Humans
	Personal Agents
	Autonomous Vehicles
	IoT Devices
	Robots

	On the Horizon
	e-Identity
	Stronger Authentication
	Solutions for Smaller Devices
	Easier Adoption

	Summary
	Key Points

	Notes

	Chapter 22: Conclusion
	Appendix A:Glossary
	Appendix B:Resources for Further Learning
	OAuth 2.0
	JWT
	OIDC
	SAML
	Multi-factor Authentication
	Background Information
	Privacy

	Appendix C:SAML V2.0 Authentication Request and Response
	SAML V2.0 Authentication Request
	SAML V2.0 Authentication Response
	Response
	Authentication Assertion (Beginning)
	Digital Signature for Authentication Assertion
	Subject
	Conditions
	Authentication Statement
	Attribute Statements

	Appendix D:Public Key Cryptography
	Appendix E:Troubleshooting Tools
	Capture an HTTP Trace
	View a HAR File
	Capture a Network Trace
	View Security Tokens
	Test APIs

	Appendix F:Privacy Legislation
	European Union
	United States
	Other Countries
	Notes

	Appendix G:Security Compliance Frameworks
	General Security Frameworks
	Center for Internet Security – Top 20 Controls
	Cloud Security Alliance
	ISO 27000
	PCI DSS

	US Frameworks
	CJIS Security Policyv – Criminal Justice Information Services Security Policy
	FFIEC Information Technology Examination Handbook and Cybersecurity Assessment Toolvi
	FISMA – Federal Information Security Management Actvii
	FedRAMP – Federal Risk and Authorization Management Programviii
	GLBA Safeguards Ruleix
	HIPAAx
	HITECH Actxi
	NISTxii

	SOC (Service Organization Control)
	SOC1
	SOC2

	Notes

	Index

