
Networking &
Kubernetes
A Layered Approach

James Strong
& Vallery Lancey

James Strong and Vallery Lancey

Networking and Kubernetes
A Layered Approach

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08165-4

[LSI]

Networking and Kubernetes
by James Strong and Vallery Lancey

Copyright © 2021 Strongjz tech and Vallery Lancey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Melissa Potter
Production Editor: Beth Kelly
Copyeditor: Kim Wimpsett
Proofreader: Piper Editorial Consulting, LLC

Indexer: Sam Arnold-Boyd
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2021: First Edition

Revision History for the First Edition
2021-09-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492081654 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Networking and Kubernetes, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492081654

Table of Contents

Preface. vii

1. Networking Introduction. 1
Networking History 1
OSI Model 4
TCP/IP 8

Application 10
Transport 13
Network 29
Internet Protocol 29
Link Layer 40
Revisiting Our Web Server 46

Conclusion 48

2. Linux Networking. 49
Basics 49
The Network Interface 53
The Bridge Interface 54
Packet Handling in the Kernel 57

Netfilter 57
Conntrack 60
Routing 63

High-Level Routing 64
iptables 64
IPVS 75
eBPF 78

Network Troubleshooting Tools 81

iii

Security Warning 81
ping 82
traceroute 83
dig 84
telnet 86
nmap 86
netstat 87
netcat 88
Openssl 89
cURL 90

Conclusion 92

3. Container Networking Basics. 93
Introduction to Containers 93

Applications 93
Hypervisor 94
Containers 95

Container Primitives 103
Control Groups 103
Namespaces 104
Setting Up Namespaces 106

Container Network Basics 112
Docker Networking Model 122
Overlay Networking 124
Container Network Interface 125

Container Connectivity 127
Container to Container 132
Container to Container Separate Hosts 134

Conclusion 135

4. Kubernetes Networking Introduction. 137
The Kubernetes Networking Model 138
Node and Pod Network Layout 141

Isolated Networks 141
Flat Networks 142
Island Networks 144
kube-controller-manager Configuration 145

The Kubelet 146
Pod Readiness and Probes 147
The CNI Specification 153
CNI Plugins 154

iv | Table of Contents

The IPAM Interface 155
Popular CNI Plugins 156

kube-proxy 161
userspace Mode 162
iptables Mode 162
ipvs Mode 164
kernelspace Mode 164

NetworkPolicy 165
NetworkPolicy Example with Cilium 168
Selecting Pods 173
Rules 176

DNS 180
IPv4/IPv6 Dual Stack 185
Conclusion 187

5. Kubernetes Networking Abstractions. 189
StatefulSets 191
Endpoints 193
Endpoint Slices 196
Kubernetes Services 200

NodePort 201
ClusterIP 205
Headless 211
ExternalName Service 212
LoadBalancer 214
Services Conclusion 220

Ingress 221
Ingress Controllers and Rules 222
Service Meshes 229
Conclusion 240

6. Kubernetes and Cloud Networking. 243
Amazon Web Services 243

AWS Network Services 244
Amazon Elastic Kubernetes Service 256
Deploying an Application on an AWS EKS Cluster 267

Google Compute Cloud (GCP) 275
GCP Network Services 275
GKE 279

Azure 282
Azure Networking Services 283

Table of Contents | v

Azure Kubernetes Service 292
Deploying an Application to Azure Kubernetes Service 297

Conclusion 309

Index. 311

vi | Table of Contents

Preface

Just Another Packet
Since the first two computers were joined together over a cable, networking has been
a crucial part of our infrastructure. Networks now have layers and layers of complex‐
ity to support a multitude of use cases, and the advent of containers and projects like
Mesosphere and Kubernetes have not changed that. While the contributors of Kuber‐
netes have attempted to abstract away this networking complexity for developers,
computer science is just that, abstraction upon abstraction. Kubernetes, and its net‐
working API, is another abstraction that makes it easier and faster to deploy applica‐
tions for consumption. What about the administrator who has to manage
Kubernetes? This book intends to dispel the mysticism around the abstractions
Kubernetes puts in place, guide administrators through the layers of complexity, and
help you realize Kubernetes is not just another packet.

Who This Book Is For
According to 451 Research, the global application container market is expected to
grow from USD 2.1 billion in 2019 to USD 4.2 billion by 2022 . This explosive growth
in the container market underscores the need for IT professionals to be knowledgea‐
ble in deploying, managing, and troubleshooting containers.

This book is intended to be read from beginning to end by new network, Linux, or
cluster administrators, and it can be used by more experienced DevOps engineers to
jump to specific topics for which they find themselves needing to be upskilled. Net‐
work, Linux, and cluster administrators need to be familiar with how to operate
Kubernetes at scale.

In this book, readers will find the information required to navigate the layers of com‐
plexity that come with running a Kubernetes network. This book will peel back the
abstractions that Kubernetes puts in place so that developers have a similar experi‐
ence across deployments on-premises, in the cloud, and with managed services.

vii

https://oreil.ly/2SlsD

Engineers responsible for production cluster operations and network uptime can use
this book to bridge the gap in their knowledge of those abstractions.

What You Will Learn
By the end of this book, the reader will understand the following:

• The Kubernetes networking model
• The Container Network Interface (CNI) project and how to choose a CNI project

for their clusters
• Networking and Linux primitives that power Kubernetes
• The relationship between the abstractions powering the Kubernetes network

Also, the reader will be able to do the following:

• Deploy and manage a production-scale network for Kubernetes clusters
• Troubleshoot underlying network-related application issues inside a Kubernetes

cluster

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

viii | Preface

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/strongjz/Networking-and-Kubernetes.

If you have a technical question, or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Networking and Kuber‐
netes by James Strong and Vallery Lancey (O’Reilly). Copyright 2021 Strongjz tech
and Vallery Lancey, 978-1-492-08165-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Preface | ix

https://github.com/strongjz/Networking-and-Kubernetes
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/NetKubernetes.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://youtube.com/oreillymedia.

Acknowledgments
The authors would like to thank the team at O’Reilly Media for helping them through
the process of writing their first book. Melissa Potter was instrumental in getting this
across the finish line. We would also like to recognize Thomas Behnken for aiding us
with his Azure expertise.

James: Karen, thank you for all your faith in me and for helping him believe in him‐
self even when he didn’t. Wink, you are the reason I started working in this field, and
I am forever grateful. Ann, I have come a long way since learning English is supposed
to be capitalized. James would also like to thank all the other teachers and coaches in
his life who supported him.

Vallery: I’d like to thank the friendly faces in SIG-Network for helping me get started
in upstream Kubernetes.

x | Preface

http://oreilly.com
https://oreil.ly/NetKubernetes
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Finally, the authors would like to thank the Kubernetes community; this book
wouldn’t exist without them. We hope it helps further the knowledge for all engineers
looking to adopt Kubernetes.

Preface | xi

CHAPTER 1

Networking Introduction

“Guilty until proven innocent.” That’s the mantra of networks and the engineers who
supervise them. In this opening chapter, we will wade through the development of
networking technologies and standards, give a brief overview of the dominant theory
of networking, and introduce our Golang web server that will be the basis of the net‐
working examples in Kubernetes and the cloud throughout the book.

Let’s begin…at the beginning.

Networking History
The internet we know today is vast, with cables spanning oceans and mountains and
connecting cities with lower latency than ever before. Barrett Lyon’s “Mapping the
Internet,” shown in Figure 1-1, shows just how vast it truly is. That image illustrates
all the connections between the networks of networks that make up the internet. The
purpose of a network is to exchange information from one system to another system.
That is an enormous ask of a distributed global system, but the internet was not
always global; it started as a conceptual model and slowly was built up over time, to
the behemoth in Lyon’s visually stunning artwork. There are many factors to consider
when learning about networking, such as the last mile, the connectivity between a
customer’s home and their internet service provider’s network—all the way to scaling
up to the geopolitical landscape of the internet. The internet is integrated into the fab‐
ric of our society. In this book, we will discuss how networks operate and how Kuber‐
netes abstracts them for us.

1

Figure 1-1. Barrett Lyon, “Mapping the Internet,” 2003

Table 1-1 briefly outlines the history of networking before we dive into a few of the
important details.

Table 1-1. A brief history of networking

Year Event
1969 ARPANET’s first connection test

1969 Telnet 1969 Request for Comments (RFC) 15 drafted

1971 FTP RFC 114 drafted

1973 FTP RFC 354 drafted

1974 TCP RFC 675 by Vint Cerf, Yogen Dalal, and Carl Sunshine drafted

1980 Development of Open Systems Interconnection model begins

1981 IP RFC 760 drafted

1982 NORSAR and University College London left the ARPANET and began using TCP/IP over SATNET

1984 ISO 7498 Open Systems Interconnection (OSI) model published

1991 National Information Infrastructure (NII) Bill passed with Al Gore’s help

1991 First version of Linux released

2015 First version of Kubernetes released

2 | Chapter 1: Networking Introduction

In its earliest forms, networking was government run or sponsored; in the United
States, the Department of Defense (DOD) sponsored the Advanced Research Projects
Agency Network (ARPANET), well before Al Gore’s time in politics, which will be
relevant in a moment. In 1969, ARPANET was deployed at the University of Califor‐
nia–Los Angeles, the Augmentation Research Center at Stanford Research Institute,
the University of California–Santa Barbara, and the University of Utah School of
Computing. Communication between these nodes was not completed until 1970,
when they began using the Network Control Protocol (NCP). NCP led to the devel‐
opment and use of the first computer-to-computer protocols like Telnet and File
Transfer Protocol (FTP).

The success of ARPANET and NCP, the first protocol to power ARPANET, led to
NCP’s downfall. It could not keep up with the demands of the network and the vari‐
ety of networks connected. In 1974, Vint Cerf, Yogen Dalal, and Carl Sunshine began
drafting RFC 675 for Transmission Control Protocol (TCP). (You’ll learn more about
RFCs in a few paragraphs.) TCP would go on to become the standard for network
connectivity. TCP allowed for exchanging packets across different types of networks.
In 1981, the Internet Protocol (IP), defined in RFC 791, helped break out the respon‐
sibilities of TCP into a separate protocol, increasing the modularity of the network. In
the following years, many organizations, including the DOD, adopted TCP as the
standard. By January 1983, TCP/IP had become the only approved protocol on
ARPANET, replacing the earlier NCP because of its versatility and modularity.

A competing standards organization, the International Organization for Standardiza‐
tion (ISO), developed and published ISO 7498, “Open Systems Interconnection Ref‐
erence Model,” which detailed the OSI model. With its publication also came the
protocols to support it. Unfortunately, the OSI model protocols never gained traction
and lost out to the popularity of TCP/IP. The OSI model is still an excellent learning
tool for understanding the layered approach to networking, however.

In 1991, Al Gore invented the internet (well, really he helped pass the National Infor‐
mation Infrastructure [NII] Bill), which helped lead to the creation of the Internet
Engineering Task Force (IETF). Nowadays standards for the internet are under the
management of the IETF, an open consortium of leading experts and companies in
the field of networking, like Cisco and Juniper. RFCs are published by the Internet
Society and the Internet Engineering Task Force. RFCs are prominently authored by
individuals or groups of engineers and computer scientists, and they detail their pro‐
cesses, operations, and applications for the internet’s functioning.

Networking History | 3

An IETF RFC has two states:

Proposed Standard
A protocol specification has reached enough community support to be consid‐
ered a standard. The designs are stable and well understood. A proposed stan‐
dard can be deployed, implemented, and tested. It may be withdrawn from
further consideration, however.

Internet Standard
Per RFC 2026: “In general, an internet standard is a stable specification and well
understood, technically competent, has multiple, independent, and interoperable
implementations with substantial operational experience, enjoys significant pub‐
lic support, and is recognizably useful in some parts of the internet.”

Draft standard is a third classification that was discontinued in
2011.

There are thousands of internet standards defining how to implement protocols for
all facets of networking, including wireless, encryption, and data formats, among oth‐
ers. Each one is implemented by contributors of open source projects and privately by
large organizations like Cisco.

A lot has happened in the nearly 50 years since those first connectivity tests. Net‐
works have grown in complexity and abstractions, so let’s start with the OSI model.

OSI Model
The OSI model is a conceptual framework for describing how two systems communi‐
cate over a network. The OSI model breaks down the responsibility of sending data
across networks into layers. This works well for educational purposes to describe the
relationships between each layer’s responsibility and how data gets sent over net‐
works. Interestingly enough, it was meant to be a protocol suite to power networks
but lost to TCP/IP.

Here are the ISO standards that outline the OSI model and protocols:

• ISO/IEC 7498-1, “The Basic Model”
• ISO/IEC 7498-2, “Security Architecture”
• ISO/IEC 7498-3, “Naming and Addressing”
• ISO/IEC 7498-4, “Management Framework”

4 | Chapter 1: Networking Introduction

The ISO/IEC 7498-1 describes what the OSI model attempts to convey:

5.2.2.1 The basic structuring technique in the Reference Model of Open Systems Inter‐
connection is layering. According to this technique, each open system is viewed as log‐
ically composed of an ordered set of (N)-subsystems…Adjacent (N)-subsystems
communicate through their common boundary. (N)-subsystems of the same rank (N)
collectively form the (N)-layer of the Reference Model of Open Systems Interconnec‐
tion. There is one and only one (N)-subsystem in an open system for layer N. An (N)-
subsystem consists of one or several (N)-entities. Entities exist in each (N)-layer.
Entities in the same (N)-layer are termed peer-(N)-entities. Note that the highest layer
does not have an (N+l)-layer above it, and the lowest layer does not have an (N-1)-
layer below it.

The OSI model description is a complex and exact way of saying networks have layers
like cakes or onions. The OSI model breaks the responsibilities of the network into
seven distinct layers, each with different functions to aid in transmitting information
from one system to another, as shown in Figure 1-2. The layers encapsulate informa‐
tion from the layer below it; these layers are Application, Presentation, Session,
Transport, Network, Data Link, and Physical. Over the next few pages, we will go
over each layer’s functionality and how it sends data between two systems.

Figure 1-2. OSI model layers

Each layer takes data from the previous layer and encapsulates it to make its Protocol
Data Unit (PDU). The PDU is used to describe the data at each layer. PDUs are also
part of TCP/IP. The applications of the Session layer are considered “data” for the
PDU, preparing the application information for communication. Transport uses ports
to distinguish what process on the local system is responsible for the data. The

OSI Model | 5

Network layer PDU is the packet. Packets are distinct pieces of data routed between
networks. The Data Link layer is the frame or segment. Each packet is broken up into
frames, checked for errors, and sent out on the local network. The Physical layer
transmits the frame in bits over the medium. Next we will outline each layer in detail:

Application
The Application layer is the top layer of the OSI model and is the one the end
user interacts with every day. This layer is not where actual applications live, but
it provides the interface for applications that use it like a web browser or Office
365. The single biggest interface is HTTP; you are probably reading this book on
a web page hosted by an O’Reilly web server. Other examples of the Application
layer that we use daily are DNS, SSH, and SMTP. Those applications are respon‐
sible for displaying and arranging data requested and sent over the network.

Presentation
This layer provides independence from data representation by translating
between application and network formats. It can be referred to as the syntax
layer. This layer allows two systems to use different encodings for data and still
pass data between them. Encryption is also done at this layer, but that is a more
complicated story we’ll save for “TLS” on page 25.

Session
The Session layer is responsible for the duplex of the connection, in other words,
whether sending and receiving data at the same time. It also establishes proce‐
dures for performing checkpointing, suspending, restarting, and terminating a
session. It builds, manages, and terminates the connections between the local and
remote applications.

Transport
The Transport layer transfers data between applications, providing reliable data
transfer services to the upper layers. The Transport layer controls a given connec‐
tion’s reliability through flow control, segmentation and desegmentation, and
error control. Some protocols are state- and connection-oriented. This layer
tracks the segments and retransmits those that fail. It also provides the acknowl‐
edgment of successful data transmission and sends the next data if no errors
occurred. TCP/IP has two protocols at this layer: TCP and User Datagram
Protocol (UDP).

Network
The Network layer implements a means of transferring variable-length data flows
from a host on one network to a host on another network while sustaining
service quality. The Network layer performs routing functions and might also
perform fragmentation and reassembly while reporting delivery errors. Routers
operate at this layer, sending data throughout the neighboring networks. Several

6 | Chapter 1: Networking Introduction

management protocols belong to the Network layer, including routing pro‐
tocols, multicast group management, network-layer information, error han‐
dling, and network-layer address assignment, which we will discuss further in
“TCP/IP” on page 8.

Data Link
This layer is responsible for the host-to-host transfers on the same network. It
defines the protocols to create and terminate the connections between two devi‐
ces. The Data Link layer transfers data between network hosts and provides the
means to detect and possibly correct errors from the Physical layer. Data Link
frames, the PDU for layer 2, do not cross the boundaries of a local network.

Physical
The Physical layer is represented visually by an Ethernet cord plugged into a
switch. This layer converts data in the form of digital bits into electrical, radio, or
optical signals. Think of this layer as the physical devices, like cables, switches,
and wireless access points. The wire signaling protocols are also defined at this
layer.

There are many mnemonics to remember the layers of the OSI
model; our favorite is All People Seem To Need Data Processing.

Table 1-2 summarizes the OSI layers.

Table 1-2. OSI layer details

Layer
number

Layer name Protocol data
unit

Function overview

7 Application Data High-level APIs and application protocols like HTTP, DNS, and SSH.

6 Presentation Data Character encoding, data compression, and encryption/decryption.

5 Session Data Continuous data exchanges between nodes are managed here: how much
data to send, when to send more.

4 Transport Segment,
datagram

Transmission of data segments between endpoints on a network, including
segmentation, acknowledgment, and multiplexing.

3 Network Packet Structuring and managing addressing, routing, and traffic control for all
endpoints on the network.

2 Data Link Frame Transmission of data frames between two nodes connected by a Physical
layer.

1 Physical Bit Sending and receiving of bitstreams over the medium.

OSI Model | 7

The OSI model breaks down all the necessary functions to send a data packet over a
network between two hosts. In the late 1980s and early 1990s, it lost out to TCP/IP as
the standard adopted by the DOD and all other major players in networking. The
standard defined in ISO 7498 gives a brief glimpse into the implementation details
that were considered by most at the time to be complicated, inefficient, and to an
extent unimplementable. The OSI model at a high level still allows those learning net‐
working to comprehend the basic concepts and challenges in networking. In addi‐
tion, these terms and functions are used in the TCP/IP model covered in the next
section and ultimately in Kubernetes abstractions. Kubernetes services break out each
function depending on the layer it is operating at, for example, a layer 3 IP address or
a layer 4 port; you will learn more about that in Chapter 4. Next, we will do a deep
dive into the TCP/IP suite with an example walk-through.

TCP/IP
TCP/IP creates a heterogeneous network with open protocols that are independent of
the operating system and architectural differences. Whether the hosts are running
Windows, Linux, or another OS, TCP/IP allows them to communicate; TCP/IP does
not care if you are running Apache or Nginx for your web server at the Application
layer. The separation of responsibilities similar to the OSI model makes that possible.
In Figure 1-3, we compare the OSI model to TCP/IP.

Figure 1-3. OSI model compared to TCP/IP

8 | Chapter 1: Networking Introduction

Here we expand on the differences between the OSI model and the TCP/IP:

Application
In TCP/IP, the Application layer comprises the communications protocols used
in process-to-process communications across an IP network. The Application
layer standardizes communication and depends upon the underlying Transport
layer protocols to establish the host-to-host data transfer. The lower Transport
layer also manages the data exchange in network communications. Applications
at this layer are defined in RFCs; in this book, we will continue to use HTTP, RFC
7231 as our example for the Application layer.

Transport
TCP and UDP are the primary protocols of the Transport layer that provide
host-to-host communication services for applications. Transport protocols are
responsible for connection-oriented communication, reliability, flow control, and
multiplexing. In TCP, the window size manages flow control, while UDP does
not manage the congestion flow and is considered unreliable; you’ll learn more
about that in “UDP” on page 28. Each port identifies the host process responsible
for processing the information from the network communication. HTTP uses
the well-known port 80 for nonsecure communication and 443 for secure com‐
munication. Each port on the server identifies its traffic, and the sender generates
a random port locally to identify itself. The governing body that manages port
number assignments is the Internet Assigned Number Authority (IANA); there
are 65,535 ports.

Internet
The Internet, or Network layer, is responsible for transmitting data between net‐
works. For an outgoing packet, it selects the next-hop host and transmits it to
that host by passing it to the appropriate link-layer. Once the packet is received
by the destination, the Internet layer will pass the packet payload up to the
appropriate Transport layer protocol.

IP provides the fragmentation or defragmentation of packets based on the maxi‐
mum transmission unit (MTU); this is the maximum size of the IP packet. IP
makes no guarantees about packets’ proper arrival. Since packet delivery across
diverse networks is inherently unreliable and failure-prone, that burden is with
the endpoints of a communication path, rather than on the network. The func‐
tion of providing service reliability is in the Transport layer. A checksum ensures
that the information in a received packet is accurate, but this layer does not vali‐
date data integrity. The IP address identifies packets on the network.

Link
The Link layer in the TCP/IP model comprises networking protocols that operate
only on the local network that a host connects to. Packets are not routed to non‐
local networks; that is the Internet layer’s role. Ethernet is the dominant protocol

TCP/IP | 9

at this layer, and hosts are identified by the link-layer address or commonly their
Media Access Control addresses on their network interface cards. Once deter‐
mined by the host using Address Resolution Protocol 9 (ARP), data sent off the
local network is processed by the Internet layer. This layer also includes protocols
for moving packets between two Internet layer hosts.

Physical layer
The Physical layer defines the components of the hardware to use for the net‐
work. For example, the Physical network layer stipulates the physical characteris‐
tics of the communications media. The Physical layer of TCP/IP details hardware
standards such as IEEE 802.3, the specification for Ethernet network media. Sev‐
eral interpretations of RFC 1122 for the Physical layer are included with the other
layers; we have added this for completeness.

Throughout this book, we will use the minimal Golang web server (also called Go)
from Example 1-1 to show various levels of networking components from tcpdump, a
Linux syscall, to show how Kubernetes abstracts the syscalls. This section will use it to
demonstrate what is happening at the Application, Transport, Network, and Data
Link layers.

Application
As mentioned, Application is the highest layer in the TCP/IP stack; it is where the
user interacts with data before it gets sent over the network. In our example walk-
through, we are going to use Hypertext Transfer Protocol (HTTP) and a simple
HTTP transaction to demonstrate what happens at each layer in the TCP/IP stack.

HTTP
HTTP is responsible for sending and receiving Hypertext Markup Language (HTML)
documents—you know, a web page. A vast majority of what we see and do on the
internet is over HTTP: Amazon purchases, Reddit posts, and tweets all use HTTP. A
client will make an HTTP request to our minimal Golang web server from
Example 1-1, and it will send an HTTP response with “Hello” text. The web server
runs locally in an Ubuntu virtual machine to test the full TCP/IP stack.

See the example code repository for full instructions.

10 | Chapter 1: Networking Introduction

https://oreil.ly/Jan5M

Example 1-1. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")
}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

In our Ubuntu virtual machine we need to start our minimal web server, or if you
have Golang installed locally, you can just run this:

go run web-server.go

Let’s break down the request for each layer of the TPC/IP stack.

cURL is the requesting client for our HTTP request example. Generally, for a web
page, the client would be a web browser, but we’re using cURL to simplify and show
the command line.

cURL is meant for uploading and downloading data specified with
a URL. It is a client-side program (the c) to request data from a
URL and return the response.

In Example 1-2, we can see each part of the HTTP request that the cURL client is
making and the response. Let’s review what all those options and outputs are.

Example 1-2. Client request

○ → curl localhost:8080 -vvv
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200 OK

TCP/IP | 11

https://curl.haxx.se

< Date: Sat, 25 Jul 2020 14:57:46 GMT
< Content-Length: 5
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
Hello* Closing connection 0

curl localhost:8080 -vvv: This is the curl command that opens a connection
to the locally running web server, localhost on TCP port 8080. -vvv sets the
verbosity of the output so we can see everything happening with the request.
Also, TCP_NODELAY instructs the TCP connection to send the data without delay,
one of many options available to the client to set.

Connected to localhost (::1) port 8080: It worked! cURL connected to the
web server on localhost and over port 8080.

Get / HTTP/1.1: HTTP has several methods for retrieving or updating informa‐
tion. In our request, we are performing an HTTP GET to retrieve our “Hello”
response. The forward slash is the next part, a Uniform Resource Locator (URL),
which indicates where we are sending the client request to the server. The last
section of this header is the version of HTTP the server is using, 1.1.

Host: localhost:8080: HTTP has several options for sending information about
the request. In our request, the cURL process has set the HTTP Host header. The
client and server can transmit information with an HTTP request or response.
An HTTP header contains its name followed by a colon (:) and then its value.

User-Agent: cURL/7.64.1: The user agent is a string that indicates the computer
program making the HTTP request on behalf of the end user; it is cURL in our
context. This string often identifies the browser, its version number, and its host
operating system.

Accept: */*: This header instructs the web server what content types the client
understands. Table 1-3 shows examples of common content types that can be
sent.

HTTP/1.1 200 OK: This is the server response to our request. The server responds
with the HTTP version and the response status code. There are several possible
responses from the server. A status code of 200 indicates the response was suc‐
cessful. 1XX means informational, 2XX means successful, 3XX means redirects,
4XX responses indicate there are issues with the requests, and 5XX generally
refers to issues from the server.

12 | Chapter 1: Networking Introduction

Date: Sat, July 25, 2020, 14:57:46 GMT: The Date header field represents
the date and time at which the message originated. The sender generates the
value as the approximate date and time of message generation.

Content-Length: 5: The Content-Length header indicates the size of the mes‐
sage body, in bytes, sent to the recipient; in our case, the message is 5 bytes.

Content-Type: text/plain; charset=utf-8: The Content-Type entity header
is used to indicate the resource’s media type. Our response is indicating that it is
returning a plain-text file that is UTF-8 encoded.

Hello* Closing connection 0: This prints out the response from our web
server and closes out the HTTP connection.

Table 1-3. Common content types for HTTP data

Type Description
application Any kind of binary data that doesn’t fall explicitly into one of the other types. Common examples include

application/json, application/pdf, application/pkcs8, and application/zip.

audio Audio or music data. Examples include audio/mpeg and audio/vorbis.

font Font/typeface data. Common examples include font/woff, font/ttf, and font/otf.

image Image or graphical data including both bitmap and vector such as animated GIF or APNG. Common examples are
image/jpg, image/png, and image/svg+xml.

model Model data for a 3D object or scene. Examples include model/3mf and model/vrml.

text Text-only data including human-readable content, source code, or text data. Examples include text/plain, text/
csv, and text/html.

video Video data or files, such as video/mp4.

This is a simplistic view that happens with every HTTP request. Today, a single web
page makes an exorbitant number of requests with one load of a page, and in just a
matter of seconds! This is a brief example for cluster administrators of how HTTP
(and for that matter, the other seven layers’ applications) operate. We will continue to
build our knowledge of how this request is completed at each layer of the TCP/IP
stack and then how Kubernetes completes those same requests. All this data is for‐
matted and options are set at layer 7, but the real heavy lifting is done at the lower
layers of the TCP/IP stack, which we will go over in the next sections.

Transport
The Transport layer protocols are responsible for connection-oriented communica‐
tion, reliability, flow control, and multiplexing; this is mostly true of TCP. We’ll
describe the differences in the following sections. Our Golang web server is a layer 7
application using HTTP; the Transport layer that HTTP relies on is TCP.

TCP/IP | 13

TCP
As already mentioned, TCP is a connection-oriented, reliable protocol, and it pro‐
vides flow control and multiplexing. TCP is considered connection-oriented because
it manages the connection state through the life cycle of the connection. In TCP, the
window size manages flow control, unlike UDP, which does not manage the conges‐
tion flow. In addition, UDP is unreliable, and data may arrive out of sequence. Each
port identifies the host process responsible for processing the information from the
network communication. TCP is known as a host-to-host layer protocol. To identify
the process on the host responsible for the connection, TCP identifies the segments
with a 16-bit port number. HTTP servers use the well-known port of 80 for nonse‐
cure communication and 443 for secure communication using Transport Layer Secu‐
rity (TLS). Clients requesting a new connection create a source port local in the range
of 0–65534.

To understand how TCP performs multiplexing, let’s review a simple HTML page
retrieval:

1. In a web browser, type in a web page address.
2. The browser opens a connection to transfer the page.
3. The browser opens connections for each image on the page.
4. The browser opens another connection for the external CSS.
5. Each of these connections uses a different set of virtual ports.
6. All the page’s assets download simultaneously.
7. The browser reconstructs the page.

Let’s walk through how TCP manages multiplexing with the information provided in
the TCP segment headers:

Source port (16 bits)
This identifies the sending port.

Destination port (16 bits)
This identifies the receiving port.

Sequence number (32 bits)
If the SYN flag is set, this is the initial sequence number. The sequence number of
the first data byte and the acknowledged number in the corresponding ACK is
this sequence number plus 1. It is also used to reassemble data if it arrives out of
order.

14 | Chapter 1: Networking Introduction

Acknowledgment number (32 bits)
If the ACK flag is set, then this field’s value is the next sequence number of the
ACK the sender is expecting. This acknowledges receipt of all preceding bytes (if
any). Each end’s first ACK acknowledges the other end’s initial sequence number
itself, but no data has been sent.

Data offset (4 bits)
This specifies the size of the TCP header in 32-bit words.

Reserved (3 bits)
This is for future use and should be set to zero.

Flags (9 bits)
There are nine 1-bit fields defined for the TCP header:

• NS–ECN-nonce: Concealment protection.
• CWR: Congestion Window Reduced; the sender reduced its sending rate.
• ECE: ECN Echo; the sender received an earlier congestion notification.
• URG: Urgent; the Urgent Pointer field is valid, but this is rarely used.
• ACK: Acknowledgment; the Acknowledgment Number field is valid and is

always on after a connection is established.
• PSH: Push; the receiver should pass this data to the application as soon as

possible.
• RST: Reset the connection or connection abort, usually because of an error.
• SYN: Synchronize sequence numbers to initiate a connection.
• FIN: The sender of the segment is finished sending data to its peer.

The NS bit field is further explained in RFC 3540, “Robust
Explicit Congestion Notification (ECN) Signaling with Non‐
ces.” This specification describes an optional addition to ECN
improving robustness against malicious or accidental conceal‐
ment of marked packets.

Window size (16 bits)
This is the size of the receive window.

Checksum (16 bits)
The checksum field is used for error checking of the TCP header.

TCP/IP | 15

Urgent pointer (16 bits)
This is an offset from the sequence number indicating the last urgent data byte.

Options

Variable 0–320 bits, in units of 32 bits.

Padding

The TCP header padding is used to ensure that the TCP header ends, and data
begins on a 32-bit boundary.

Data

This is the piece of application data being sent in this segment.

In Figure 1-4, we can see all the TCP segment headers that provide metadata about
the TCP streams.

Figure 1-4. TCP segment header

These fields help manage the flow of data between two systems. Figure 1-5 shows
how each step of the TCP/IP stack sends data from one application on one host,
through a network communicating at layers 1 and 2, to get data to the destination
host.

16 | Chapter 1: Networking Introduction

Figure 1-5. tcp/ip data flow

In the next section, we will show how TCP uses these fields to initiate a connection
through the three-way handshake.

TCP handshake
TCP uses a three-way handshake, pictured in Figure 1-6, to create a connection by
exchanging information along the way with various options and flags:

1. The requesting node sends a connection request via a SYN packet to get the
transmission started.

2. If the receiving node is listening on the port the sender requests, the receiving
node replies with a SYN-ACK, acknowledging that it has heard the requesting
node.

3. The requesting node returns an ACK packet, exchanging information and letting
them know the nodes are good to send each other information.

TCP/IP | 17

Figure 1-6. TCP three-way handshake

Now the connection is established. Data can be transmitted over the physical
medium, routed between networks, to find its way to the local destination—but how
does the endpoint know how to handle the information? On the local and remote
hosts, a socket gets created to track this connection. A socket is just a logical endpoint
for communication. In Chapter 2, we will discuss how a Linux client and server han‐
dle sockets.

TCP is a stateful protocol, tracking the connection’s state throughout its life cycle.
The state of the connection depends on both the sender and the receiver agreeing
where they are in the connection flow. The connection state is concerned about who
is sending and receiving data in the TCP stream. TCP has a complex state transition
for explaining when and where the connection is, using the 9-bit TCP flags in the
TCP segment header, as you can see in Figure 1-7.

The TCP connection states are:

LISTEN (server)
Represents waiting for a connection request from any remote TCP and port

SYN-SENT (client)
Represents waiting for a matching connection request after sending a connection
request

SYN-RECEIVED (server)
Represents waiting for a confirming connection request acknowledgment after
having both received and sent a connection request

ESTABLISHED (both server and client)
Represents an open connection; data received can be delivered to the user—the
intermediate state for the data transfer phase of the connection

FIN-WAIT-1 (both server and client)
Represents waiting for a connection termination request from the remote host

FIN-WAIT-2 (both server and client)
Represents waiting for a connection termination request from the remote TCP

18 | Chapter 1: Networking Introduction

CLOSE-WAIT (both server and client)
Represents waiting for a local user’s connection termination request

CLOSING (both server and client)
Represents waiting for a connection termination request acknowledgment from
the remote TCP

LAST-ACK (both server and client)
Represents waiting for an acknowledgment of the connection termination
request previously sent to the remote host

TIME-WAIT (either server or client)
Represents waiting for enough time to pass to ensure the remote host received
the acknowledgment of its connection termination request

CLOSED (both server and client)
Represents no connection state at all

Figure 1-7. TCP state transition diagram

TCP/IP | 19

Example 1-3 is a sample of a Mac’s TCP connections, their state, and the addresses for
both ends of the connection.

Example 1-3. TCP connection states

○ → netstat -ap TCP
Active internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp6 0 0 2607:fcc8:a205:c.53606 g2600-1407-2800-.https ESTABLISHED
tcp6 0 0 2607:fcc8:a205:c.53603 g2600-1408-5c00-.https ESTABLISHED
tcp4 0 0 192.168.0.17.53602 ec2-3-22-64-157..https ESTABLISHED
tcp6 0 0 2607:fcc8:a205:c.53600 g2600-1408-5c00-.https ESTABLISHED
tcp4 0 0 192.168.0.17.53598 164.196.102.34.b.https ESTABLISHED
tcp4 0 0 192.168.0.17.53597 server-99-84-217.https ESTABLISHED
tcp4 0 0 192.168.0.17.53596 151.101.194.137.https ESTABLISHED
tcp4 0 0 192.168.0.17.53587 ec2-52-27-83-248.https ESTABLISHED
tcp6 0 0 2607:fcc8:a205:c.53586 iad23s61-in-x04..https ESTABLISHED
tcp6 0 0 2607:fcc8:a205:c.53542 iad23s61-in-x04..https ESTABLISHED
tcp4 0 0 192.168.0.17.53536 ec2-52-10-162-14.https ESTABLISHED
tcp4 0 0 192.168.0.17.53530 server-99-84-178.https ESTABLISHED
tcp4 0 0 192.168.0.17.53525 ec2-52-70-63-25..https ESTABLISHED
tcp6 0 0 2607:fcc8:a205:c.53480 upload-lb.eqiad..https ESTABLISHED
tcp6 0 0 2607:fcc8:a205:c.53477 text-lb.eqiad.wi.https ESTABLISHED
tcp4 0 0 192.168.0.17.53466 151.101.1.132.https ESTABLISHED
tcp4 0 0 192.168.0.17.53420 ec2-52-0-84-183..https ESTABLISHED
tcp4 0 0 192.168.0.17.53410 192.168.0.18.8060 CLOSE_WAIT
tcp6 0 0 2607:fcc8:a205:c.53408 2600:1901:1:c36:.https ESTABLISHED
tcp4 0 0 192.168.0.17.53067 ec2-52-40-198-7..https ESTABLISHED
tcp4 0 0 192.168.0.17.53066 ec2-52-40-198-7..https ESTABLISHED
tcp4 0 0 192.168.0.17.53055 ec2-54-186-46-24.https ESTABLISHED
tcp4 0 0 localhost.16587 localhost.53029 ESTABLISHED
tcp4 0 0 localhost.53029 localhost.16587 ESTABLISHED
tcp46 0 0 *.16587 *.* LISTEN
tcp6 56 0 2607:fcc8:a205:c.56210 ord38s08-in-x0a..https CLOSE_WAIT
tcp6 0 0 2607:fcc8:a205:c.51699 2606:4700::6810:.https ESTABLISHED
tcp4 0 0 192.168.0.17.64407 do-77.lastpass.c.https ESTABLISHED
tcp4 0 0 192.168.0.17.64396 ec2-54-70-97-159.https ESTABLISHED
tcp4 0 0 192.168.0.17.60612 ac88393aca5853df.https ESTABLISHED
tcp4 0 0 192.168.0.17.58193 47.224.186.35.bc.https ESTABLISHED
tcp4 0 0 localhost.63342 *.* LISTEN
tcp4 0 0 localhost.6942 *.* LISTEN
tcp4 0 0 192.168.0.17.55273 ec2-50-16-251-20.https ESTABLISHED

Now that we know more about how TCP constructs and tracks connections, let’s
review the HTTP request for our web server at the Transport layer using TCP. To
accomplish this, we use a command-line tool called tcpdump.

20 | Chapter 1: Networking Introduction

tcpdump

tcpdump prints out a description of the contents of packets on a network interface that
matches the boolean expression.

—tcpdump man page

tcpdump allows administrators and users to display all the packets processed on the
system and filter them out based on many TCP segment header details. In the
request, we filter all packets with the destination port 8080 on the network interface
labeled lo0; this is the local loopback interface on the Mac. Our web server is running
on 0.0.0.0:8080. Figure 1-8 shows where tcpdump is collecting data in reference to the
full TCP/IP stack, between the network interface card (NIC) driver and layer 2.

Figure 1-8. tcpdump packet capture

A loopback interface is a logical, virtual interface on a device. A
loopback interface is not a physical interface like Ethernet interface.
Loopback interfaces are always up and running and always avail‐
able, even if other interfaces are down on the host.

The general format of a tcpdump output will contain the following fields: tos,TTL, id,
offset, flags, proto, length, and options. Let’s review these:

tos

The type of service field.

TTL

The time to live; it is not reported if it is zero.

id

The IP identification field.

TCP/IP | 21

offset

The fragment offset field; it is printed whether this is part of a fragmented data‐
gram or not.

flags

The DF, Don’t Fragment, flag, which indicates that the packet cannot be fragmen‐
ted for transmission. When unset, it indicates that the packet can be fragmented.
The MF, More Fragments, flag indicates there are packets that contain more frag‐
ments and when unset, it indicates that no more fragments remain.

proto

The protocol ID field.

length

The total length field.

options

The IP options.

Systems that support checksum offloading and IP, TCP, and UDP checksums are cal‐
culated on the NIC before being transmitted on the wire. Since we are running a
tcpdump packet capture before the NIC, errors like cksum 0xfe34 (incorrect ->
0xb4c1) appear in the output of Example 1-4.

To produce the output for Example 1-4, open another terminal and start a tcpdump
trace on the loopback for only TCP and port 8080; otherwise, you will see a lot of
other packets not relevant to our example. You’ll need to use escalated privileges to
trace packets, so that means using sudo in this case.

Example 1-4. tcpdump

○ → sudo tcpdump -i lo0 tcp port 8080 -vvv

tcpdump: listening on lo0, link-type NULL (BSD loopback),
capture size 262144 bytes

08:13:55.009899 localhost.50399 > localhost.http-alt: Flags [S],
cksum 0x0034 (incorrect -> 0x1bd9), seq 2784345138,
win 65535, options [mss 16324,nop,wscale 6,nop,nop,TS val 587364215 ecr 0,
sackOK,eol], length 0

08:13:55.009997 localhost.http-alt > localhost.50399: Flags [S.],
cksum 0x0034 (incorrect -> 0xbe5a), seq 195606347,
ack 2784345139, win 65535, options [mss 16324,nop,wscale 6,nop,nop,
TS val 587364215 ecr 587364215,sackOK,eol], length 0

08:13:55.010012 localhost.50399 > localhost.http-alt: Flags [.],
cksum 0x0028 (incorrect -> 0x1f58), seq 1, ack 1,

22 | Chapter 1: Networking Introduction

win 6371, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

v 08:13:55.010021 localhost.http-alt > localhost.50399: Flags [.],
cksum 0x0028 (incorrect -> 0x1f58), seq 1, ack
1, win 6371, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

08:13:55.010079 localhost.50399 > localhost.http-alt: Flags [P.],
cksum 0x0076 (incorrect -> 0x78b2), seq 1:79,
ack 1, win 6371, options [nop,nop,TS val 587364215 ecr 587364215],
length 78: HTTP, length: 78
GET / HTTP/1.1
Host: localhost:8080
User-Agent: curl/7.64.1
Accept: */*
08:13:55.010102 localhost.http-alt > localhost.50399: Flags [.],
cksum 0x0028 (incorrect -> 0x1f0b), seq 1,
ack 79, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

08:13:55.010198 localhost.http-alt > localhost.50399: Flags [P.],
cksum 0x00a1 (incorrect -> 0x05d7), seq 1:122,
ack 79, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 121: HTTP, length: 121
HTTP/1.1 200 OK
Date: Wed, 19 Aug 2020 12:13:55 GMT
Content-Length: 5
Content-Type: text/plain; charset=utf-8
Hello[!http]

08:13:55.010219 localhost.50399 > localhost.http-alt: Flags [.], cksum 0x0028
(incorrect -> 0x1e93), seq 79,
ack 122, win 6369, options [nop,nop,TS val 587364215 ecr 587364215], length 0

08:13:55.010324 localhost.50399 > localhost.http-alt: Flags [F.],
cksum 0x0028 (incorrect -> 0x1e92), seq 79,
ack 122, win 6369, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

08:13:55.010343 localhost.http-alt > localhost.50399: Flags [.],
cksum 0x0028 (incorrect -> 0x1e91), seq 122,
\ack 80, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

08:13:55.010379 localhost.http-alt > localhost.50399: Flags [F.],
cksum 0x0028 (incorrect -> 0x1e90), seq 122,
ack 80, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

08:13:55.010403 localhost.50399 > localhost.http-alt: Flags [.],
cksum 0x0028 (incorrect -> 0x1e91), seq 80, ack

TCP/IP | 23

123, win 6369, options [nop,nop,TS val 587364215 ecr 587364215],
length 0

 12 packets captured, 12062 packets received by filter
 0 packets dropped by kernel.

This is the start of the tcpdump collection with its command and all of its options.
The sudo packet captures the required escalated privileges. tcpdump is the
tcpdump binary. -i lo0 is the interface from which we want to capture packets.
dst port 8080 is the matching expression that the man page discussed; here we
are matching on all packets destined for TCP port 8080, which is the port the
web service is listening to for requests. -v is the verbose option, which allows us
to see more details from the tcpdump capture.

Feedback from tcpdump letting us know about the tcpdump filter running.

This is the first packet in the TCP handshake. We can tell it’s the SYN because the
flags bit is set with [S], and the sequence number is set to 2784345138 by cURL,
with the localhost process number being 50399.

The SYN-ACK packet is the the one filtered by tcpdump from the
localhost.http-alt process, the Golang web server. The flag is to [S.], so it is a
SYN-ACK. The packet sends 195606347 as the next sequence number, and ACK
2784345139 is set to acknowledge the previous packet.

The acknowledgment packet from cURL is now sent back to the server with the
ACK flag set, [.], with the ACK and SYN numbers set to 1, indicating it is ready
to send data.

The acknowledgment number is set to 1 to indicate the client’s SYN flag’s receipt
in the opening data push.

The TCP connection is established; both the client and server are ready for data
transmission. The next packets are our data transmissions of the HTTP request
with the flag set to a data push and ACK, [P.]. The previous packets had a length
of zero, but the HTTP request is 78 bytes long, with a sequence number of 1:79.

The server acknowledges the receipt of the data transmission, with the ACK flag
set, [.], by sending the acknowledgment number of 79.

This packet is the HTTP server’s response to the cURL request. The data push
flag is set, [P.], and it acknowledges the previous packet with an ACK number of

24 | Chapter 1: Networking Introduction

79. A new sequence number is set with the data transmission, 122, and the data
length is 121 bytes.

The cURL client acknowledges the receipt of the packet with the ACK flag set,
sets the acknowledgment number to 122, and sets the sequence number to 79.

The start of closing the TCP connection, with the client sending the FIN-ACK
packet, the [F.], acknowledging the receipt of the previous packet, number 122,
and a new sequence number to 80.

The server increments the acknowledgment number to 80 and sets the ACK flag.

TCP requires that both the sender and the receiver set the FIN packet for closing
the connection. This is the packet where the FIN and ACK flags are set.

This is the final ACK from the client, with acknowledgment number 123. The
connection is closed now.

tcpdump on exit lets us know the number of packets in this capture, the total
number of the packets captured during the tcpdump, and how many packets were
dropped by the operating system.

tcpdump is an excellent troubleshooting application for network engineers as well as
cluster administrators. Being able to verify connectivity at many levels in the cluster
and the network are valuable skills to have. You will see in Chapter 6 how useful
tcpdump can be.

Our example was a simple HTTP application using TCP. All of this data was sent over
the network in plain text. While this example was a simple Hello World, other
requests like our bank logins need to have some security. The Transport layer does
not offer any security protection for data transiting the network. TLS adds additional
security on top of TCP. Let’s dive into that in our next section.

TLS
TLS adds encryption to TCP. TLS is an add-on to the TCP/IP suite and is not consid‐
ered to be part of the base operation for TCP. HTTP transactions can be completed
without TLS but are not secure from eavesdroppers on the wire. TLS is a combination
of protocols used to ensure traffic is seen between the sender and the intended recipi‐
ent. TLS, much like TCP, uses a handshake to establish encryption capabilities and
exchange keys for encryption. The following steps detail the TLS handshake between
the client and the server, which can also be seen in Figure 1-9:

TCP/IP | 25

1. ClientHello: This contains the cipher suites supported by the client and a random
number.

2. ServerHello: This message contains the cipher it supports and a random number.
3. ServerCertificate: This contains the server’s certificate and its server public key.
4. ServerHelloDone: This is the end of the ServerHello. If the client receives a

request for its certificate, it sends a ClientCertificate message.
5. ClientKeyExchange: Based on the server’s random number, our client generates a

random premaster secret, encrypts it with the server’s public key certificate, and
sends it to the server.

6. Key Generation: The client and server generate a master secret from the premas‐
ter secret and exchange random values.

7. ChangeCipherSpec: Now the client and server swap their ChangeCipherSpec to
begin using the new keys for encryption.

8. Finished Client: The client sends the finished message to confirm that the key
exchange and authentication were successful.

9. Finished Server: Now, the server sends the finished message to the client to end
the handshake.

Kubernetes applications and components will manage TLS for developers, so a basic
introduction is required; Chapter 5 reviews more about TLS and Kubernetes.

As demonstrated with our web server, cURL, and tcpdump, TCP is a stateful and relia‐
ble protocol for sending data between hosts. Its use of flags, combined with the
sequence and acknowledgment number dance it performs, delivers thousands of
messages over unreliable networks across the globe. That reliability comes at a cost,
however. Of the 12 packets we set, only two were real data transfers. For applications
that do not need reliability such as voice, the overhead that comes with UDP offers an
alternative. Now that we understand how TCP works as a reliable connection-
oriented protocol, let’s review how UDP differs from TCP.

26 | Chapter 1: Networking Introduction

Figure 1-9. TLS handshake

TCP/IP | 27

UDP
UDP offers an alternative to applications that do not need the reliability that TCP
provides. UDP is an excellent choice for applications that can withstand packet loss
such as voice and DNS. UDP offers little overhead from a network perspective, only
having four fields and no data acknowledgment, unlike its verbose brother TCP.

It is transaction-oriented, suitable for simple query and response protocols like the
Domain Name System (DNS) and Simple Network Management Protocol (SNMP).
UDP slices a request into datagrams, making it capable for use with other protocols
for tunneling like a virtual private network (VPN). It is lightweight and straightfor‐
ward, making it great for bootstrapping application data in the case of DHCP. The
stateless nature of data transfer makes UDP perfect for applications, such as voice,
that can withstand packet loss—did you hear that? UDP’s lack of retransmit also
makes it an apt choice for streaming video.

Let’s look at the small number of headers required in a UDP datagram (see
Figure 1-10):

Source port number (2 bytes)
Identifies the sender’s port. The source host is the client; the port number is
ephemeral. UDP ports have well-known numbers like DNS on 53 or DHCP
67/68.

Destination port number (2 bytes)
Identifies the receiver’s port and is required.

Length (2 bytes)
Specifies the length in bytes of the UDP header and UDP data. The minimum
length is 8 bytes, the length of the header.

Checksum (2 bytes)
Used for error checking of the header and data. It is optional in IPv4, but manda‐
tory in IPv6, and is all zeros if unused.

UDP and TCP are general transport protocols that help ship and receive data
between hosts. Kubernetes supports both protocols on the network, and services
allow users to load balance many pods using services. Also important to note is that
in each service, developers must define the transport protocol; if they do not TCP is
the default used.

28 | Chapter 1: Networking Introduction

Figure 1-10. UDP header

The next layer in the TCP/IP stack is the Internetworking layer—these are packets
that can get sent across the globe on the vast networks that make up the internet. Let’s
review how that gets completed.

Network
All TCP and UDP data gets transmitted as IP packets in TCP/IP in the Network layer.
The Internet or Network layer is responsible for transferring data between networks.
Outgoing packets select the next-hop host and send the data to that host by passing it
the appropriate Link layer details; packets are received by a host, de-encapsulated,
and sent up to the proper Transport layer protocol. In IPv4, both transmit and
receive, IP provides fragmentation or defragmentation of packets based on the MTU;
this is the maximum size of the IP packet.

IP makes no guarantees about packets’ proper arrival; since packet delivery across
diverse networks is inherently unreliable and failure-prone, that burden is with the
endpoints of a communication path, rather than on the network. As discussed in the
previous section, providing service reliability is a function of the Transport layer.
Each packet has a checksum to ensure that the received packet’s information is accu‐
rate, but this layer does not validate data integrity. Source and destination IP
addresses identify packets on the network, which we’ll address next.

Internet Protocol
This almighty packet is defined in RFC 791 and is used for sending data across net‐
works. Figure 1-11 shows the IPv4 header format.

TCP/IP | 29

Figure 1-11. IPv4 header format

Let’s look at the header fields in more detail:

Version

The first header field in the IP packet is the four-bit version field. For IPv4, this is
always equal to four.

Internet Header Length (IHL)
The IPv4 header has a variable size due to the optional 14th field option.

Type of Service

Originally defined as the type of service (ToS), now Differentiated Services Code
Point (DSCP), this field specifies differentiated services. DSC Pallows for routers
and networks to make decisions on packet priority during times of congestion.
Technologies such as Voice over IP use DSCP to ensure calls take precedence
over other traffic.

Total Length

This is the entire packet size in bytes.

Identification

This is the identification field and is used for uniquely identifying the group of
fragments of a single IP datagram.

30 | Chapter 1: Networking Introduction

Flags

This is used to control or identify fragments. In order from most significant to
least:

• bit 0: Reserved, set to zero
• bit 1: Do not Fragment
• bit 2: More Fragments

Fragment Offset

This specifies the offset of a distinct fragment relative to the first unfragmented
IP packet. The first fragment always has an offset of zero.

Time To Live (TTL)

An 8-bit time to live field helps prevent datagrams from going in circles on a net‐
work.

Protocol

This is used in the data section of the IP packet. IANA has a list of IP protocol
numbers in RFC 790; some well-known protocols are also detailed in Table 1-4.

Table 1-4. IP protocol numbers
Protocol number Protocol name Abbreviation
1 Internet Control Message Protocol ICMP

2 Internet Group Management Protocol IGMP

6 Transmission Control Protocol TCP

17 User Datagram Protocol UDP

41 IPv6 Encapsulation ENCAP

89 Open Shortest Path First OSPF

132 Stream Control Transmission Protocol SCTP

Header Checksum (16-bit)
The IPv4 header checksum field is used for error checking. When a packet
arrives, a router computes the header’s checksum; the router drops the packet if
the two values do not match. The encapsulated protocol must handle errors in
the data field. Both UDP and TCP have checksum fields.

When the router receives a packet, it lowers the TTL field by
one. As a consequence, the router must compute a new
checksum.

TCP/IP | 31

Source address

This is the IPv4 address of the sender of the packet.

The source address may be changed in transit by a network
address translation device; NAT will be discussed later in this
chapter and extensively in Chapter 3.

Destination address

This is the IPv4 address of the receiver of the packet. As with the source address,
a NAT device can change the destination IP address.

Options

The possible options in the header are Copied, Option Class, Option Number,
Option Length, and Option Data.

The crucial component here is the address; it’s how networks are identified. They
simultaneously identify the host on the network and the whole network itself (more
on that in “Getting round the network” on page 35). Understanding how to identify
an IP address is critical for an engineer. First, we will review IPv4 and then under‐
stand the drastic changes in IPv6.

IPv4 addresses are in the dotted-decimal notation for us humans; computers read
them out as binary strings. Figure 1-12 details the dotted-decimal notation and
binary. Each section is 8 bits in length, with four sections, making the complete
length 32 bits. IPv4 addresses have two sections: the first part is the network, and the
second is the host’s unique identifier on the network.

Figure 1-12. IPv4 address

In Example 1-5, we have the output of a computer’s IP address for its network inter‐
face card and we can see its IPv4 address is 192.168.1.2. The IP address also has a
subnet mask or netmask associated with it to make out what network it is assigned.
The example’s subnet is netmask 0xffffff00 in dotted-decimal, which is
255.255.255.0.

32 | Chapter 1: Networking Introduction

Example 1-5. IP address

○ → ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=400<CHANNEL_IO>
 ether 38:f9:d3:bc:8a:51
 inet6 fe80::8f4:bb53:e500:9557%en0 prefixlen 64 secured scopeid 0x6
 inet 192.168.1.2 netmask 0xffffff00 broadcast 192.168.1.255
 nd6 options=201<PERFORMNUD,DAD>
 media: autoselect
 status: active

The subnet brings up the idea of classful addressing. Initially, when an IP address
range was assigned, a range was considered to be the combination of an 8-, 16-, or
24-bit network prefix along with a 24-, 16-, or 8-bit host identifier, respectively. Class
A had 8 bits for the host, Class B 16, and Class C 24. Following that, Class A had 2 to
the power of 16 hosts available, 16,777,216; Class B had 65,536; and Class C had 256.
Each class had a host address, the first one in its boundary, and the last one was des‐
ignated as the broadcast address. Figure 1-13 demonstrates this for us.

There are two other classes, but they are not generally used in IP
addressing. Class D addresses are used for IP multicasting, and
Class E addresses are reserved for experimental use.

Figure 1-13. IP class

Classful addressing was not scalable on the internet, so to help alleviate that scale
issue, we began breaking up the class boundaries using Classless Inter-Domain Rout‐
ing (CIDR) ranges. Instead of having the full 16 million-plus addresses in a class
address range, an internet entity gives only a subsection of that range. This effectively
allows network engineers to move the subnet boundary to anywhere inside the class

TCP/IP | 33

range, giving them more flexibility with CIDR ranges, and helping to scale IP address
ranges.

In Figure 1-14, we can see the breakdown of the 208.130.29.33 IPv4 address and the
hierarchy that it creates. The 208.128.0.0/11 CIDR range is assigned to ARIN from
IANA. ARIN further breaks down the subnet to smaller and smaller subnets for its
purposes, leading to the single host on the network 208.130.29.33/32.

Figure 1-14. CIDR example

The global coordination of the DNS root, IP addressing, and other
internet protocol resources is performed by IANA.

Eventually, though, even this practice of using CIDR to extend the range of an IPv4
address led to an exhaustion of address spaces that could be doled out, leading net‐
work engineers and IETF to develop the IPv6 standard.

In Figure 1-15, we can see that IPv6, unlike IPv4, uses hexadecimal to shorten
addresses for writing purposes. It has similar characteristics to IPv4 in that it has a
host and network prefix.

The most significant difference between IPv4 and IPv6 is the size of the address
space. IPv4 has 32 bits, while IPv6 has 128 bits to produce its addresses. To put that
size differential in perspective, here are those numbers:

IPv4 has 4,294,967,296.

IPv6 has 340,282,366,920,938,463,463,374,607,431,768,211,456.

34 | Chapter 1: Networking Introduction

1 “Autonomous System (AS) Numbers”. IANA.org. 2018-12-07. Retrieved 2018-12-31.

Figure 1-15. IPv6 address

Now that we understand how an individual host on the network is identified and
what network it belongs to, we will explore how those networks exchange informa‐
tion between themselves using routing protocols.

Getting round the network
Packets are addressed, and data is ready to be sent, but how do our packets get from
our host on our network to the intended hosted on another network halfway around
the world? That is the job of routing. There are several routing protocols, but the
internet relies on Border Gateway Protocol (BGP), a dynamic routing protocol used
to manage how packets get routed between edge routers on the internet. It is relevant
for us because some Kubernetes network implementations use BGP to route cluster
network traffic between nodes. Between each node on separate networks is a series of
routers.

If we refer to the map of the internet in Figure 1-1, each network on the internet is
assigned a BGP autonomous system number (ASN) to designate a single administra‐
tive entity or corporation that represents a common and clearly defined routing pol‐
icy on the internet. BGP and ASNs allows network administrators to maintain
control of their internal network routing while announcing and summarizing their
routes on the internet. Table 1-5 lists the available ASNs managed by IANA and other
regional entities.1

TCP/IP | 35

https://oreil.ly/Jgi2c

Table 1-5. ASNs available

Number Bits Description Reference
0 16 Reserved RFC 1930, RFC 7607

1–23455 16 Public ASNs

23456 16 Reserved for AS Pool Transition RFC 6793

23457–64495 16 Public ASNs

64496–64511 16 Reserved for use in documentation/sample code RFC 5398

64512–65534 16 Reserved for private use RFC 1930, RFC 6996

65535 16 Reserved RFC 7300

65536–65551 32 Reserved for use in documentation and sample code RFC 4893, RFC 5398

65552–131071 32 Reserved

131072–4199999999 32 Public 32-bit ASNs

4200000000–4294967294 32 Reserved for private use RFC 6996

4294967295 32 Reserved RFC 7300

In Figure 1-16 ,we have five ASNs, 100–500. A host on 130.10.1.200 wants to reach
a host destined on 150.10.2.300. Once the local router or default gateway for the
host 130.10.1.200 receives the packet, it will look for the interface and path for
150.10.2.300 that BGP has determined for that route.

Figure 1-16. BGP routing example

36 | Chapter 1: Networking Introduction

Based on the routing table in Figure 1-17, the router for AS 100 determined the
packet belongs to AS 300, and the preferred path is out interface 140.10.1.1. Rinse
and repeat on AS 200 until the local router for 150.10.2.300 on AS 300 receives that
packet. The flow here is described in Figure 1-6, which shows the TCP/IP data flow
between networks. A basic understanding of BGP is needed because some container
networking projects, like Calico, use it for routing between nodes; you’ll learn more
about this in Chapter 3.

Figure 1-17. Local routing table

Figure 1-17 displays a local route table. In the route table, we can see the interface
that a packet will be sent out is based on the destination IP address. For example, a
packet destined for 192.168.1.153 will be sent out the link#11 gateway, which is
local to the network, and no routing is needed. 192.168.1.254 is the router on the
network attached to our internet connection. If the destination network is unknown,
it is sent out the default route.

Like all Linux and BSD OSs, you can find more information on net
stat’s man page (man netstat). Apple’s netstat is derived from
the BSD version. More information can be found in the FreeBSD
Handbook.

Routers continuously communicate on the internet, exchanging route information
and informing each other of changes on their respective networks. BGP takes care of
a lot of that data exchange, but network engineers and system administrators can use

TCP/IP | 37

https://oreil.ly/YM0eQ
https://oreil.ly/YM0eQ

the ICMP protocol and ping command line tools to test connectivity between hosts
and routers.

ICMP

ping is a network utility that uses ICMP for testing connectivity between hosts on the
network. In Example 1-6, we see a successful ping test to 192.168.1.2, with five
packets all returning an ICMP echo reply.

Example 1-6. ICMP echo request

○ → ping 192.168.1.2 -c 5
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.052 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.089 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.142 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.050 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.050 ms
--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.050/0.077/0.142/0.036 ms

Example 1-7 shows a failed ping attempt that times out trying to reach host 1.2.3.4.
Routers and administrators will use ping for testing connections, and it is useful in
testing container connectivity as well. You’ll learn more about this in Chapters 2 and
3 as we deploy our minimal Golang web server into a container and a pod.

Example 1-7. ICMP echo request failed

○ → ping 1.2.3.4 -c 4
PING 1.2.3.4 (1.2.3.4): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
--- 1.2.3.4 ping statistics ---
4 packets transmitted, 0 packets received, 100.0% packet loss

As with TCP and UDP, there are headers, data, and options in ICMP packets; they are
reviewed here and shown in Figure 1-18:

Type

ICMP type.

Code

ICMP subtype.

38 | Chapter 1: Networking Introduction

Checksum

Internet checksum for error checking, calculated from the ICMP header and data
with value 0 substitutes for this field.

Rest of Header (4-byte field)
Contents vary based on the ICMP type and code.

Data

ICMP error messages contain a data section that includes a copy of the entire
IPv4 header.

Figure 1-18. ICMP header

Some consider ICMP a Transport layer protocol since it does not
use TCP or UDP. Per RFC 792, it defines ICMP, which provides
routing, diagnostic, and error functionality for IP. Although ICMP
messages are encapsulated within IP datagrams, ICMP processing
is considered and is typically implemented as part of the IP layer.
ICMP is IP protocol 1, while TCP is 6, and UDP is 17.

The value identifies control messages in the Type field. The code field gives additional
context information for the message. You can find some standard ICMP type num‐
bers in Table 1-6.

Table 1-6. Common ICMP type numbers

Number Name Reference
0 Echo reply RFC 792

3 Destination unreachable RFC 792

5 Redirect RFC 792

8 Echo RFC 792

Now that our packets know which networks they are being sourced and destined to, it
is time to start physically sending this data request across the network; this is the
responsibility of the Link layer.

TCP/IP | 39

Link Layer
The HTTP request has been broken up into segments, addressed for routing across
the internet, and now all that is left is to send the data across the wire. The Link layer
of the TCP/IP stack comprises two sublayers: the Media Access Control (MAC) sub‐
layer and the Logical Link Control (LLC) sublayer. Together, they perform OSI layers
1 and 2, Data Link and Physical. The Link layer is responsible for connectivity to the
local network. The first sublayer, MAC, is responsible for access to the physical
medium. The LLC layer has the privilege of managing flow control and multiplexing
protocols over the MAC layer to transmit and demultiplexing when receiving, as
shown in Figure 1-19. IEEE standard 802.3, Ethernet, defines the protocols for send‐
ing and receiving frames to encapsulate IP packets. IEEE 802 is the overarching stan‐
dard for LLC (802.2), wireless (802.11), and Ethernet/MAC (802.3).

Figure 1-19. Ethernet demultiplexing example

As with the other PDUs, Ethernet has a header and footers, as shown in Figure 1-20.

40 | Chapter 1: Networking Introduction

Figure 1-20. Ethernet header and footer

Let’s review these in detail:

Preamble (8 bytes)
Alternating string of ones and zeros indicate to the receiving host that a frame is
incoming.

Destination MAC Address (6 bytes)
MAC destination address; the Ethernet frame recipient.

Source MAC Address (6 bytes)
MAC source address; the Ethernet frame source.

VLAN tag (4 bytes)
Optional 802.1Q tag to differentiate traffic on the network segments.

Ether-type (2 bytes)
Indicates which protocol is encapsulated in the payload of the frame.

Payload (variable length)
The encapsulated IP packet.

Frame Check Sequence (FCS) or Cycle Redundancy Check (CRC) (4 bytes)
The frame check sequence (FCS) is a four-octet cyclic redundancy check (CRC)
that allows the detection of corrupted data within the entire frame as received on
the receiver side. The CRC is part of the Ethernet frame footer.

Figure 1-21 shows that MAC addresses get assigned to network interface hardware at
the time of manufacture. MAC addresses have two parts: the organization unit identi‐
fier (OUI) and the NIC-specific parts.

TCP/IP | 41

Figure 1-21. MAC address

The frame indicates to the recipient of the Network layer packet type. Table 1-7
details the common protocols handled. In Kubernetes, we are mostly interested in
IPv4 and ARP packets. IPv6 has recently been introduced to Kubernetes in the 1.19
release.

Table 1-7. Common EtherType protocols

EtherType Protocol
0x0800 Internet Protocol version 4 (IPv4)

0x0806 Address Resolution Protocol (ARP)

0x8035 Reverse Address Resolution Protocol (RARP)

0x86DD Internet Protocol version 6 (IPv6)

0x88E5 MAC security (IEEE 802.1AE)

0x9100 VLAN-tagged (IEEE 802.1Q) frame with double tagging

When an IP packet reaches its destination network, the destination IP address is
resolved with the Address Resolution Protocol for IPv4 (Neighbor Discovery Proto‐
col in the case of IPv6) into the destination host’s MAC address. The Address Resolu‐
tion Protocol must manage address translation from internet addresses to Link layer
addresses on Ethernet networks. The ARP table is for fast lookups for those known
hosts, so it does not have to send an ARP request for every frame the host wants to

42 | Chapter 1: Networking Introduction

send out. Example 1-8 shows the output of a local ARP table. All devices on the net‐
work keep a cache of ARP addresses for this purpose.

Example 1-8. ARP table

○ → arp -a
? (192.168.0.1) at bc:a5:11:f1:5d:be on en0 ifscope [ethernet]
? (192.168.0.17) at 38:f9:d3:bc:8a:51 on en0 ifscope permanent [ethernet]
? (192.168.0.255) at ff:ff:ff:ff:ff:ff on en0 ifscope [ethernet]
? (224.0.0.251) at 1:0:5e:0:0:fb on en0 ifscope permanent [ethernet]
? (239.255.255.250) at 1:0:5e:7f:ff:fa on en0 ifscope permanent [ethernet]

Figure 1-22 shows the exchange between hosts on the local network. The browser
makes an HTTP request for a website hosted by the target server. Through DNS, it
determines that the server has the IP address 10.0.0.1. To continue to send the
HTTP request, it also requires the server’s MAC address. First, the requesting com‐
puter consults a cached ARP table to look up 10.0.0.1 for any existing records of the
server’s MAC address. If the MAC address is found, it sends an Ethernet frame with
the destination address of the server’s MAC address, containing the IP packet
addressed to 10.0.0.1 onto the link. If the cache did not produce a hit for 10.0.0.2,
the requesting computer must send a broadcast ARP request message with a destina‐
tion MAC address of FF:FF:FF:FF:FF:FF, which is accepted by all hosts on the local
network, requesting an answer for 10.0.0.1. The server responds with an ARP
response message containing its MAC and IP address. As part of answering the
request, the server may insert an entry for requesting the computer’s MAC address
into its ARP table for future use. The requesting computer receives and caches the
response information in its ARP table and can now send the HTTP packets.

This also brings up a crucial concept on the local networks, broadcast domains. All
packets on the broadcast domain receive all the ARP messages from hosts. In addi‐
tion, all frames are sent all nodes on the broadcast, and the host compares the desti‐
nation MAC address to its own. It will discard frames not destined for itself. As hosts
on the network grow, so too does the broadcast traffic.

TCP/IP | 43

Figure 1-22. ARP request

We can use tcpdump to view all the ARP requests happening on the local network as
in Example 1-9. The packet capture details the ARP packets; the Ethernet type used,
Ethernet (len 6); and the higher-level protocol, IPv4. It also includes who is
requesting the MAC address of the IP address, Request who-has 192.168.0.1 tell
192.168.0.12.

Example 1-9. ARP tcpdump

○ → sudo tcpdump -i en0 arp -vvv
tcpdump: listening on en0, link-type EN10MB (Ethernet), capture size 262144 bytes
17:26:25.906401 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:27.954867 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:29.797714 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:31.845838 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:33.897299 ARP, Ethernet (len 6), IPv4 (len 4),

44 | Chapter 1: Networking Introduction

Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:35.942221 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:37.785585 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:39.628958 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.13, length 28
17:26:39.833697 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:41.881322 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:43.929320 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:45.977691 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:47.820597 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
^C
13 packets captured
233 packets received by filter
0 packets dropped by kernel

To further segment the layer 2 network, network engineers can use virtual local area
network (VLAN) tagging. Inside the Ethernet frame header is an optional VLAN tag
that differentiates traffic on the LAN. It is useful to use VLANs to break up LANs and
manage networks on the same switch or different ones across the network campus.
Routers between VLANs filter broadcast traffic, enable network security, and alleviate
network congestion. They are useful to the network administrator for those purposes,
but Kubernetes network administrators can use the extended version of the VLAN
technology known as a virtual extensible LAN (VXLAN).

Figure 1-23 shows how a VXLAN is an extension of a VLAN that allows network
engineers to encapsulate layer 2 frames into layer 4 UDP packets. A VXLAN increa‐
ses scalability up to 16 million logical networks and allows for layer 2 adjacency
across IP networks. This technology is used in Kubernetes networks to produce over‐
lay networks, which you’ll learn more about in later chapters.

Figure 1-23. VXLAN packet

TCP/IP | 45

2 In the movie Ender’s Game, they use the Ansible network to communicate across the galaxy instantly. Philotic
Parallax Instantaneous Communicator is the official name of the Ansible network.

Ethernet also details the specifications for the medium to transmit frames on, such as
twisted pair, coaxial cable, optical fiber, wireless, or other transmission media yet to
be invented, such as the gamma-ray network that powers the Philotic Parallax Instan‐
taneous Communicator.2 Ethernet even defines the encoding and signaling protocols
used on the wire; this is out of scope for our proposes.

The Link layer has multiple other protocols involved from a network perspective.
Like the layers discussed previously, we have only touched the surface of the Link
layer. We constrained this book to those details needed for a base understanding of
the Link layer for the Kubernetes networking model.

Revisiting Our Web Server
Our journey through all the layers of TCP/IP is complete. Figure 1-24 outlines all the
headers and footers each layer of the TCP/IP model produces to send data across the
internet.

Figure 1-24. TCP/IP PDU full view

Let’s review the journey and remind ourselves again what is going on now that we
understand each layer in detail. Example 1-10 shows our web server again, and
Example 1-11 shows the cURL request for it from earlier in the chapter.

46 | Chapter 1: Networking Introduction

Example 1-10. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")
}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

Example 1-11. Client request

○ → curl localhost:8080 -vvv
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Sat, 25 Jul 2020 14:57:46 GMT
< Content-Length: 5
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
Hello* Closing connection 0

We begin with the web server waiting for a connection in Example 1-10. cURL
requests the HTTP server at 0.0.0.0 on port 8080. cURL determines the IP address
and port number from the URL and proceeds to establish a TCP connection to the
server. Once the connection is set up, via a TCP handshake, cURL sends the HTTP
request. When the web server starts up, a socket of 8080 is created on the HTTP
server, which matches TCP port 8080; the same is done on the cURL client side with
a random port number. Next, this information is sent to the Network layer, where the
source and destination IP addresses are attached to the packet’s IP header. At the cli‐
ent’s Data Link layer, the source MAC address of the NIC is added to the Ethernet
frame. If the destination MAC address is unknown, an ARP request is made to find it.
Next, the NIC is used to transmit the Ethernet frames to the web server.

TCP/IP | 47

When the web server receives the request, it creates packets of data that contain the
HTTP response. The packets are sent back to the cURL process by routing them
through the internet using the source IP address on the request packet. Once received
by the cURL process, the packet is sent from the device to the drivers. At the Data
Link layer, the MAC address is removed. At the Network Protocol layer, the IP
address is verified and then removed from the packet. For this reason, if an applica‐
tion requires access to the client IP, it needs to be stored at the Application layer; the
best example here is in HTTP requests and the X-Forwarded-For header. Now the
socket is determined from the TCP data and removed. The packet is then forwarded
to the client application that creates that socket. The client reads it and processes the
response data. In this case, the socket ID was random, corresponding to the cURL
process. All packets are sent to cURL and pieced together into one HTTP response. If
we were to use the -O output option, it would have been saved to a file; otherwise,
cURL outputs the response to the terminal’s standard out.

Whew, that is a mouthful, 50 pages and 50 years of networking condensed into two
paragraphs! The basics of networking we have reviewed are just the beginning but are
required knowledge if you want to run Kubernetes clusters and networks at scale.

Conclusion
The HTTP transactions modeled in this chapter happen every millisecond, globally,
all day on the internet and data center network. This is the type of scale that the
Kubernetes networks’ APIs help developers abstract away into simple YAML. Under‐
standing the scale of the problem is our first in step in mastering the management of
a Kubernetes network. By taking our simple example of the Golang web server and
learning the first principles of networking, you can begin to wrangle the packets flow‐
ing into and out of your clusters.

So far, we have covered the following:

• History of networking
• OSI model
• TCP/IP

Throughout this chapter, we discussed many things related to networks but only
those needed to learn about using the Kubernetes abstractions. There are several
O’Reilly books about TCP/IP; TCP/IP Network Administration by Craig Hunt
(O’Reilly) is a great in-depth read on all aspects of TCP.

We discussed how networking evolved, walked through the OSI model, translated it
to the TCP/IP stack, and with that stack completed an example HTTP request. In the
next chapter, we will walk through how this is implemented for the client and server
with Linux networking.

48 | Chapter 1: Networking Introduction

https://oreil.ly/UIP62

CHAPTER 2

Linux Networking

To understand the implementation of networking in Kubernetes, we will need to
understand the fundamentals of networking in Linux. Ultimately, Kubernetes is a
complex management tool for Linux (or Windows!) machines, and this is hard to
ignore while working with the Kubernetes network stack. This chapter will provide
an overview of the Linux networking stack, with a focus on areas of note in Kuber‐
netes. If you are highly familiar with Linux networking and network management,
you may want to skim or skip this chapter.

This chapter introduces many Linux programs. Manual, or man,
pages, accessible with man <program>, will provide more detail.

Basics
Let’s revisit our Go web server, which we used in Chapter 1. This web server listens
on port 8080 and returns “Hello” for HTTP requests to / (see Example 2-1).

Example 2-1. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")

49

}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

Ports 1–1023 (also known as well-known ports) require root per‐
mission to bind to.
Programs should always be given the least permissions necessary to
function, which means that a typical web service should not be run
as the root user. Because of this, many programs will listen on port
1024 or higher (in particular, port 8080 is a common choice for
HTTP services). When possible, listen on a nonprivileged port, and
use infrastructure redirects (load balancer forwarding, Kubernetes
services, etc.) to forward an externally visible privileged port to a
program listening on a nonprivileged port.
This way, an attacker exploiting a possible vulnerability in your ser‐
vice will not have overly broad permissions available to them.

Suppose this program is running on a Linux server machine and an external client
makes a request to /. What happens on the server? To start off, our program needs to
listen to an address and port. Our program creates a socket for that address and port
and binds to it. The socket will receive requests addressed to both the specified
address and port - 8080 with any IP address in our case.

0.0.0.0 in IPv4 and [::] in IPv6 are wildcard addresses. They
match all addresses of their respective protocol and, as such, listen
on all available IP addresses when used for a socket binding.
This is useful to expose a service, without prior knowledge of what
IP addresses the machines running it will have. Most network-
exposed services bind this way.

There are multiple ways to inspect sockets. For example, ls -lah /proc/<server
proc>/fd will list the sockets. We will discuss some programs that can inspect sockets
at the end of this chapter.

The kernel maps a given packet to a specific connection and uses an internal state
machine to manage the connection state. Like sockets, connections can be inspected
through various tools, which we will discuss later in this chapter. Linux represents
each connection with a file. Accepting a connection entails a notification from the
kernel to our program, which is then able to stream content to and from the file.

50 | Chapter 2: Linux Networking

Going back to our Golang web server, we can use strace to show what the server is
doing:

$ strace ./main
execve("./main", ["./main"], 0x7ebf2700 /* 21 vars */) = 0
brk(NULL) = 0x78e000
uname({sysname="Linux", nodename="raspberrypi", ...}) = 0
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x76f1d000
[Content cut]

Because strace captures all the system calls made by our server, there is a lot of out‐
put. Let’s reduce it somewhat to the relevant network syscalls. Key points are high‐
lighted, as the Go HTTP server performs many syscalls during startup:

openat(AT_FDCWD, "/proc/sys/net/core/somaxconn",
O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
epoll_create1(EPOLL_CLOEXEC) = 4
epoll_ctl(4, EPOLL_CTL_ADD, 3, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET,
 {u32=1714573248, u64=1714573248}}) = 0
fcntl(3, F_GETFL) = 0x20000 (flags O_RDONLY|O_LARGEFILE)
fcntl(3, F_SETFL, O_RDONLY|O_NONBLOCK|O_LARGEFILE) = 0
read(3, "128\n", 65536) = 4
read(3, "", 65532) = 0
epoll_ctl(4, EPOLL_CTL_DEL, 3, 0x20245b0) = 0
close(3) = 0
socket(AF_INET, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_TCP) = 3
close(3) = 0
socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_TCP) = 3
setsockopt(3, SOL_IPV6, IPV6_V6ONLY, [1], 4) = 0
bind(3, {sa_family=AF_INET6, sin6_port=htons(0),
inet_pton(AF_INET6, "::1", &sin6_addr),
 sin6_flowinfo=htonl(0), sin6_scope_id=0}, 28) = 0
socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_TCP) = 5
setsockopt(5, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0
bind(5, {sa_family=AF_INET6,
sin6_port=htons(0), inet_pton(AF_INET6,
 "::ffff:127.0.0.1", &sin6_addr), sin6_flowinfo=htonl(0),
sin6_scope_id=0}, 28) = 0
close(5) = 0
close(3) = 0
socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_IP) = 3
setsockopt(3, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0
setsockopt(3, SOL_SOCKET, SO_BROADCAST, [1], 4) = 0
setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
bind(3, {sa_family=AF_INET6, sin6_port=htons(8080),
inet_pton(AF_INET6, "::", &sin6_addr),
 sin6_flowinfo=htonl(0), sin6_scope_id=0}, 28) = 0
listen(3, 128) = 0
epoll_ctl(4, EPOLL_CTL_ADD, 3,
{EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET, {u32=1714573248,
 u64=1714573248}}) = 0

Basics | 51

getsockname(3, {sa_family=AF_INET6, sin6_port=htons(8080),

inet_pton(AF_INET6, "::", &sin6_addr), sin6_flowinfo=htonl(0),
sin6_scope_id=0},
 [112->28]) = 0
accept4(3, 0x2032d70, [112], SOCK_CLOEXEC|SOCK_NONBLOCK) = -1 EAGAIN
 (Resource temporarily unavailable)
epoll_wait(4, [], 128, 0) = 0
epoll_wait(4,

Open a file descriptor.

Create a TCP socket for IPv6 connections.

Disable IPV6_V6ONLY on the socket. Now, it can listen on IPv4 and IPv6.

Bind the IPv6 socket to listen on port 8080 (all addresses).

Wait for a request.

Once the server has started, we see the output from strace pause on epoll_wait.

At this point, the server is listening on its socket and waiting for the kernel to notify it
about packets. When we make a request to our listening server, we see the “Hello”
message:

$ curl <ip>:8080/
Hello

If you are trying to debug the fundamentals of a web server with
strace, you will probably not want to use a web browser. Addi‐
tional requests or metadata sent to the server may result in addi‐
tional work for the server, or the browser may not make expected
requests. For example, many browsers try to request a favicon file
automatically. They will also attempt to cache files, reuse connec‐
tions, and do other things that make it harder to predict the exact
network interaction. When simple or minimal reproduction mat‐
ters, try using a tool like curl or telnet.

In strace, we see the following from our server process:

[{EPOLLIN, {u32=1714573248, u64=1714573248}}], 128, -1) = 1
accept4(3, {sa_family=AF_INET6, sin6_port=htons(54202), inet_pton(AF_INET6,
 "::ffff:10.0.0.57", &sin6_addr), sin6_flowinfo=htonl(0), sin6_scope_id=0},
 [112->28], SOCK_CLOEXEC|SOCK_NONBLOCK) = 5
epoll_ctl(4, EPOLL_CTL_ADD, 5, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET,
 {u32=1714573120, u64=1714573120}}) = 0
getsockname(5, {sa_family=AF_INET6, sin6_port=htons(8080),
 inet_pton(AF_INET6, "::ffff:10.0.0.30", &sin6_addr), sin6_flowinfo=htonl(0),

52 | Chapter 2: Linux Networking

 sin6_scope_id=0}, [112->28]) = 0
setsockopt(5, SOL_TCP, TCP_NODELAY, [1], 4) = 0
setsockopt(5, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0
setsockopt(5, SOL_TCP, TCP_KEEPINTVL, [180], 4) = 0
setsockopt(5, SOL_TCP, TCP_KEEPIDLE, [180], 4) = 0
accept4(3, 0x2032d70, [112], SOCK_CLOEXEC|SOCK_NONBLOCK) = -1 EAGAIN
 (Resource temporarily unavailable)

After inspecting the socket, our server writes response data (“Hello” wrapped in the
HTTP protocol) to the file descriptor. From there, the Linux kernel (and some other
userspace systems) translates the request into packets and transmits those packets
back to our cURL client.

To summarize what the server is doing when it receives a request:

1. Epoll returns and causes the program to resume.
2. The server sees a connection from ::ffff:10.0.0.57, the client IP address in

this example.
3. The server inspects the socket.
4. The server changes KEEPALIVE options: it turns KEEPALIVE on, and sets a 180-

second interval between KEEPALIVE probes.

This is a bird’s-eye view of networking in Linux, from an application developer’s point
of view. There’s a lot more going on to make everything work. We’ll look in more
detail at parts of the networking stack that are particularly relevant for Kubernetes
users.

The Network Interface
Computers use a network interface to communicate with the outside world. Network
interfaces can be physical (e.g., an Ethernet network controller) or virtual. Virtual
network interfaces do not correspond to physical hardware; they are abstract inter‐
faces provided by the host or hypervisor.

IP addresses are assigned to network interfaces. A typical interface may have one IPv4
address and one IPv6 address, but multiple addresses can be assigned to the same
interface.

Linux itself has a concept of a network interface, which can be physical (such as an
Ethernet card and port) or virtual. If you run ifconfig, you will see a list of all net‐
work interfaces and their configurations (including IP addresses).

The loopback interface is a special interface for same-host communication. 127.0.0.1
is the standard IP address for the loopback interface. Packets sent to the loopback
interface will not leave the host, and processes listening on 127.0.0.1 will be

The Network Interface | 53

accessible only to other processes on the same host. Note that making a process listen
on 127.0.0.1 is not a security boundary. CVE-2020-8558 was a past Kubernetes vul‐
nerability, in which kube-proxy rules allowed some remote systems to reach
127.0.0.1. The loopback interface is commonly abbreviated as lo.

The ip command can also be used to inspect network interfaces.

Let’s look at a typical ifconfig output; see Example 2-2.

Example 2-2. Output from ifconfig on a machine with one pysical network interface
(ens4), and the loopback interface

$ ifconfig
ens4: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1460
 inet 10.138.0.4 netmask 255.255.255.255 broadcast 0.0.0.0
 inet6 fe80::4001:aff:fe8a:4 prefixlen 64 scopeid 0x20<link>
 ether 42:01:0a:8a:00:04 txqueuelen 1000 (Ethernet)
 RX packets 5896679 bytes 504372582 (504.3 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 9962136 bytes 1850543741 (1.8 GB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 352 bytes 33742 (33.7 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 352 bytes 33742 (33.7 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Container runtimes create a virtual network interface for each pod on a host, so the
list would be much longer on a typical Kubernetes node. We’ll cover container net‐
working in more detail in Chapter 3.

The Bridge Interface
The bridge interface (shown in Figure 2-1) allows system administrators to create
multiple layer 2 networks on a single host. In other words, the bridge functions like a
network switch between network interfaces on a host, seamlessly connecting them.
Bridges allow pods, with their individual network interfaces, to interact with the
broader network via the node’s network interface.

54 | Chapter 2: Linux Networking

Figure 2-1. Bridge interface

You can read more about Linux bridging in the documentation.

In Example 2-3, we demonstrate how to create a bridge device named br0 and attach
a virtual Ethernet (veth) device, veth, and a physical device, eth0, using ip.

Example 2-3. Creating bridge interface and connecting veth pair

Add a new bridge interface named br0.
ip link add br0 type bridge
Attach eth0 to our bridge.
ip link set eth0 master br0
Attach veth to our bridge.
ip link set veth master br0

Bridges can also be managed and created using the brctl command. Example 2-4
shows some options available with brctl.

The Bridge Interface | 55

https://oreil.ly/4BRsA

Example 2-4. brctl options

$ brctl
$ commands:
 addbr <bridge> add bridge
 delbr <bridge> delete bridge
 addif <bridge> <device> add interface to bridge
 delif <bridge> <device> delete interface from bridge
 setageing <bridge> <time> set ageing time
 setbridgeprio <bridge> <prio> set bridge priority
 setfd <bridge> <time> set bridge forward delay
 sethello <bridge> <time> set hello time
 setmaxage <bridge> <time> set max message age
 setpathcost <bridge> <port> <cost> set path cost
 setportprio <bridge> <port> <prio> set port priority
 show show a list of bridges
 showmacs <bridge> show a list of mac addrs
 showstp <bridge> show bridge stp info
 stp <bridge> <state> turn stp on/off

The veth device is a local Ethernet tunnel. Veth devices are created in pairs, as shown
in Figure 2-1, where the pod sees an eth0 interface from the veth. Packets transmitted
on one device in the pair are immediately received on the other device. When either
device is down, the link state of the pair is down. Adding a bridge to Linux can be
done with using the brctl commands or ip. Use a veth configuration when name‐
spaces need to communicate to the main host namespace or between each other.

Example 2-5 shows how to set up a veth configuration.

Example 2-5. Veth creation

ip netns add net1
ip netns add net2
ip link add veth1 netns net1 type veth peer name veth2 netns net2

In Example 2-5, we show the steps to create two network namespaces (not to be con‐
fused with Kubernetes namespaces), net1 and net2, and a pair of veth devices, with
veth1 assigned to namespace net1 and veth2 assigned to namespace net2. These two
namespaces are connected with this veth pair. Assign a pair of IP addresses, and you
can ping and communicate between the two namespaces.

Kubernetes uses this in concert with the CNI project to manage container network
namespaces, interfaces, and IP addresses. We will cover more of this in Chapter 3.

56 | Chapter 2: Linux Networking

Packet Handling in the Kernel
The Linux kernel is responsible for translating between packets, and a coherent
stream of data for programs. In particular, we will look at how the kernel handles
connections because routing and firewalling, key things in Kubernetes, rely heavily
on Linux’s underlying packet management.

Netfilter
Netfilter, included in Linux since 2.3, is a critical component of packet handling. Net‐
filter is a framework of kernel hooks, which allow userspace programs to handle
packets on behalf of the kernel. In short, a program registers to a specific Netfilter
hook, and the kernel calls that program on applicable packets. That program could
tell the kernel to do something with the packet (like drop it), or it could send back a
modified packet to the kernel. With this, developers can build normal programs that
run in userspace and handle packets. Netfilter was created jointly with iptables, to
separate kernel and userspace code.

netfilter.org contains some excellent documentation on the design
and use of both Netfilter and iptables.

Netfilter has five hooks, shown in Table 2-1.

Netfilter triggers each hook under specific stages in a packet’s journey through the
kernel. Understanding Netfilter’s hooks is key to understanding iptables later in this
chapter, as iptables directly maps its concept of chains to Netfilter hooks.

Table 2-1. Netfilter hooks

Netfilter hook Iptables chain
name

Description

NF_IP_PRE_ROUTING PREROUTING Triggers when a packet arrives from an external system.

NF_IP_LOCAL_IN INPUT Triggers when a packet’s destination IP address matches this machine.

NF_IP_FORWARD NAT Triggers for packets where neither source nor destination matches the
machine’s IP addresses (in other words, packets that this machine is routing
on behalf of other machines).

NF_IP_LOCAL_OUT OUTPUT Triggers when a packet, originating from the machine, is leaving the machine.

NF_IP_POST_ROUTING POSTROUTING Triggers when any packet (regardless of origin) is leaving the machine.

Packet Handling in the Kernel | 57

https://netfilter.org

Netfilter triggers each hook during a specific phase of packet handling, and under
specific conditions, we can visualize Netfilter hooks with a flow diagram, as shown in
Figure 2-2.

Figure 2-2. The possible flows of a packet through Netfilter hooks

We can infer from our flow diagram that only certain permutations of Netfilter hook
calls are possible for any given packet. For example, a packet originating from a local
process will always trigger NF_IP_LOCAL_OUT hooks and then NF_IP_POST_ROUTING
hooks. In particular, the flow of Netfilter hooks for a packet depends on two things: if
the packet source is the host and if the packet destination is the host. Note that if a
process sends a packet destined for the same host, it triggers the NF_IP_LOCAL_OUT
and then the NF_IP_POST_ROUTING hooks before “reentering” the system and trigger‐
ing the NF_IP_PRE_ROUTING and NF_IP_LOCAL_IN hooks.

In some systems, it is possible to spoof such a packet by writing a fake source address
(i.e., spoofing that a packet has a source and destination address of 127.0.0.1). Linux
will normally filter such a packet when it arrives at an external interface. More
broadly, Linux filters packets when a packet arrives at an interface and the packet’s
source address does not exist on that network. A packet with an “impossible” source
IP address is called a Martian packet. It is possible to disable filtering of Martian
packets in Linux. However, doing so poses substantial risk if any services on the host
assume that traffic from localhost is “more trustworthy” than external traffic. This
can be a common assumption, such as when exposing an API or database to the host
without strong authentication.

58 | Chapter 2: Linux Networking

Kubernetes has had at least one CVE, CVE-2020-8558, in which
packets from another host, with the source IP address falsely set to
127.0.0.1, could access ports that should be accessible only locally.
Among other things, this means that if a node in the Kubernetes
control plane ran kube-proxy, other machines on the node’s net‐
work could use “trust authentication” to connect to the API server,
effectively owning the cluster.
This was not technically a case of Martian packets not being fil‐
tered, as offending packets would come from the loopback device,
which is on the same network as 127.0.0.1. You can read the
reported issue on GitHub.

Table 2-2 shows the Netfilter hook order for various packet sources and destinations.

Table 2-2. Key netfilter packet flows

Packet source Packet destination Hooks (in order)
Local machine Local machine NF_IP_LOCAL_OUT, NF_IP_LOCAL_IN

Local machine External machine NF_IP_LOCAL_OUT, NF_IP_POST_ROUTING

External machine Local machine NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN

External machine External machine NF_IP_PRE_ROUTING, NF_IP_FORWARD, NF_IP_POST_ROUTING

Note that packets from the machine to itself will trigger NF_IP_LOCAL_OUT and
NF_IP_POST_ROUTING and then “leave” the network interface. They will “reenter” and
be treated like packets from any other source.

Network address translation (NAT) only impacts local routing decisions in the
NF_IP_PRE_ROUTING and NF_IP_LOCAL_OUT hooks (e.g., the kernel makes no routing
decisions after a packet reaches the NF_IP_LOCAL_IN hook). We see this reflected in
the design of iptables, where source and destination NAT can be performed only in
specific hooks/chains.

Programs can register a hook by calling NF_REGISTER_NET_HOOK (NF_REGISTER_HOOK
prior to Linux 4.13) with a handling function. The hook will be called every time a
packet matches. This is how programs like iptables integrate with Netfilter, though
you will likely never need to do this yourself.

Packet Handling in the Kernel | 59

https://oreil.ly/A5HtN

There are several actions that a Netfilter hook can trigger, based on the return value:

Accept
Continue packet handling.

Drop
Drop the packet, without further processing.

Queue
Pass the packet to a userspace program.

Stolen
Doesn’t execute further hooks, and allows the userspace program to take owner‐
ship of the packet.

Repeat
Make the packet “reenter” the hook and be reprocessed.

Hooks can also return mutated packets. This allows programs to do things such as
reroute or masquerade packets, adjust packet TTLs, etc.

Conntrack
Conntrack is a component of Netfilter used to track the state of connections to (and
from) the machine. Connection tracking directly associates packets with a particular
connection. Without connection tracking, the flow of packets is much more opaque.
Conntrack can be a liability or a valuable tool, or both, depending on how it is used.
In general, Conntrack is important on systems that handle firewalling or NAT.

Connection tracking allows firewalls to distinguish between responses and arbitrary
packets. A firewall can be configured to allow inbound packets that are part of an
existing connection but disallow inbound packets that are not part of a connection.
To give an example, a program could be allowed to make an outbound connection
and perform an HTTP request, without the remote server being otherwise able to
send data or initiate connections inbound.

NAT relies on Conntrack to function. iptables exposes NAT as two types: SNAT
(source NAT, where iptables rewrites the source address) and DNAT (destination
NAT, where iptables rewrites the destination address). NAT is extremely common;
the odds are overwhelming that your home router uses SNAT and DNAT to fan traf‐
fic between your public IPv4 address and the local address of each device on the net‐
work. With connection tracking, packets are automatically associated with their
connection and easily modified with the same SNAT/DNAT change. This enables
consistent routing decisions, such as “pinning” a connection in a load balancer to a
specific backend or machine. The latter example is highly relevant in Kubernetes, due
to kube-proxy’s implementation of service load balancing via iptables. Without

60 | Chapter 2: Linux Networking

connection tracking, every packet would need to be deterministically remapped to the
same destination, which isn’t doable (suppose the list of possible destinations could
change…).

Conntrack identifies connections by a tuple, composed of source address, source
port, destination address, destination port, and L4 protocol. These five pieces of
information are the minimal identifiers needed to identify any given L4 connection.
All L4 connections have an address and port on each side of the connection; after all,
the internet uses addresses for routing, and computers use port numbers for applica‐
tion mapping. The final piece, the L4 protocol, is present because a program will bind
to a port in TCP or UDP mode (and binding to one does not preclude binding to the
other). Conntrack refers to these connections as flows. A flow contains metadata
about the connection and its state.

Conntrack stores flows in a hash table, shown in Figure 2-3, using the connection
tuple as a key. The size of the keyspace is configurable. A larger keyspace requires
more memory to hold the underlying array but will result in fewer flows hashing to
the same key and being chained in a linked list, leading to faster flow lookup times.
The maximum number of flows is also configurable. A severe issue that can happen is
when Conntrack runs out of space for connection tracking, and new connections
cannot be made. There are other configuration options too, such as the timeout for a
connection. On a typical system, default settings will suffice. However, a system that
experiences a huge number of connections will run out of space. If your host runs
directly exposed to the internet, overwhelming Conntrack with short-lived or incom‐
plete connections is an easy way to cause a denial of service (DOS).

Figure 2-3. The structure of Conntrack flows

Packet Handling in the Kernel | 61

Conntrack’s max size is normally set in /proc/sys/net/nf_conntrack_max, and the
hash table size is normally set in /sys/module/nf_conntrack/parameters/hashsize.

Conntrack entries contain a connection state, which is one of four states. It is impor‐
tant to note that, as a layer 3 (Network layer) tool, Conntrack states are distinct from
layer 4 (Protocol layer) states. Table 2-3 details the four states.

Table 2-3. Conntrack states

State Description Example
NEW A valid packet is sent or received, with no response seen. TCP SYN received.

ESTABLISHED Packets observed in both directions. TCP SYN received, and TCP SYN/ACK sent.

RELATED An additional connection is opened, where metadata indicates
that it is “related” to an original connection. Related connection
handling is complex.

An FTP program, with an ESTABLISHED
connection, opens additional data
connections.

INVALID The packet itself is invalid, or does not properly match another
Conntrack connection state.

TCP RST received, with no prior
connection.

Although Conntrack is built into the kernel, it may not be active on your system. Cer‐
tain kernel modules must be loaded, and you must have relevant iptables rules
(essentially, Conntrack is normally not active if nothing needs it to be). Conntrack
requires the kernel module nf_conntrack_ipv4 to be active. lsmod | grep nf_conn
track will show if the module is loaded, and sudo modprobe nf_conntrack will load
it. You may also need to install the conntrack command-line interface (CLI) in order
to view Conntrack’s state.

When Conntrack is active, conntrack -L shows all current flows. Additional Conn‐
track flags will filter which flows are shown.

Let’s look at the anatomy of a Conntrack flow, as displayed here:

tcp 6 431999 ESTABLISHED src=10.0.0.2 dst=10.0.0.1
sport=22 dport=49431 src=10.0.0.1 dst=10.0.0.2 sport=49431 dport=22 [ASSURED]
mark=0 use=1

<protocol> <protocol number> <flow TTL> [flow state>]
<source ip> <dest ip> <source port> <dest port> [] <expected return packet>

The expected return packet is of the form <source ip> <dest ip> <source port>
<dest port>. This is the identifier that we expect to see when the remote system
sends a packet. Note that in our example, the source and destination values are in
reverse for address and ports. This is often, but not always, the case. For example, if a
machine is behind a router, packets destined to that machine will be addressed to the
router, whereas packets from the machine will have the machine address, not the
router address, as the source.

62 | Chapter 2: Linux Networking

In the previous example from machine 10.0.0.2, 10.0.0.1 has established a TCP
connection from port 49431 to port 22 on 10.0.0.2. You may recognize this as being
an SSH connection, although Conntrack is unable to show application-level behavior.

Tools like grep can be useful for examining Conntrack state and ad hoc statistics:

grep ESTABLISHED /proc/net/ip_conntrack | wc -l

Routing
When handling any packet, the kernel must decide where to send that packet. In
most cases, the destination machine will not be within the same network. For exam‐
ple, suppose you are attempting to connect to 1.2.3.4 from your personal computer.
1.2.3.4 is not on your network; the best your computer can do is pass it to another
host that is closer to being able to reach 1.2.3.4. The route table serves this purpose
by mapping known subnets to a gateway IP address and interface. You can list known
routes with route (or route -n to show raw IP addresses instead of hostnames). A
typical machine will have a route for the local network and a route for 0.0.0.0/0.
Recall that subnets can be expressed as a CIDR (e.g., 10.0.0.0/24) or an IP address
and a mask (e.g., 10.0.0.0 and 255.255.255.0).

This is a typical routing table for a machine on a local network with access to the
internet:

route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.0.1 0.0.0.0 UG 303 0 0 eth0
10.0.0.0 0.0.0.0 255.255.255.0 U 303 0 0 eth0

In the previous example, a request to 1.2.3.4 would be sent to 10.0.0.1, on the eth0
interface, because 1.2.3.4 is in the subnet described by the first rule (0.0.0.0/0) and
not in the subnet described by the second rule (10.0.0.0/24). Subnets are specified
by the destination and genmask values.

Linux prefers to route packets by specificity (how “small” a matching subnet is) and
then by weight (“metric” in route output). Given our example, a packet addressed to
10.0.0.1 will always be sent to gateway 0.0.0.0 because that route matches a smaller
set of addresses. If we had two routes with the same specificity, then the route with a
lower metric wiould be preferred.

Some CNI plugins make heavy use of the route table.

Now that we’ve covered some key concepts in how the Linux kernel handles packets,
we can look at how higher-level packet and connection routing works.

Packet Handling in the Kernel | 63

High-Level Routing
Linux has complex packet management abilities. Such tools allow Linux users to cre‐
ate firewalls, log traffic, route packets, and even implement load balancing. Kuber‐
netes makes use of some of these tools to handle node and pod connectivity, as well as
manage Kubernetes services. In this book, we will cover the three tools that are most
commonly seen in Kubernetes. All Kubernetes setups will make some use of ipta
bles, but there are many ways that services can be managed. We will also cover IPVS
(which has built-in support in kube-proxy), and eBPF, which is used by Cilium (a
kube-proxy alternative).

We will reference this section in Chapter 4, when we cover services and kube-proxy.

iptables
iptables is staple of Linux sysadmins and has been for many years. iptables can be
used to create firewalls and audit logs, mutate and reroute packets, and even imple‐
ment crude connection fan-out. iptables uses Netfilter, which allows iptables to
intercept and mutate packets.

iptables rules can become extremely complex. There are many tools that provide a
simpler interface for managing iptables rules; for example, firewalls like ufw and
firewalld. Kubernetes components (specifically, kubelet and kube-proxy) generate
iptables rules in this fashion. Understanding iptables is important to understand
access and routing for pods and nodes in most clusters.

Most Linux distributions are replacing iptables with nftables, a
similar but more performant tool built atop Netfilter. Some distros
already ship with a version of iptables that is powered by
nftables.
Kubernetes has many known issues with the iptables/nftables
transition. We highly recommend not using a nftables-backed
version of iptables for the foreseeable future.

There are three key concepts in iptables: tables, chains, and rules. They are consid‐
ered hierarchical in nature: a table contains chains, and a chain contains rules.

Tables organize rules according to the type of effect they have. iptables has a broad
range of functionality, which tables group together. The three most commonly appli‐
cable tables are: Filter (for firewall-related rules), NAT (for NAT-related rules), and
Mangle (for non-NAT packet-mutating rules). iptables executes tables in a specific
order, which we’ll cover later.

64 | Chapter 2: Linux Networking

Chains contain a list of rules. When a packet executes a chain, the rules in the chain
are evaluated in order. Chains exist within a table and organize rules according to
Netfilter hooks. There are five built-in, top-level chains, each of which corresponds to
a Netfilter hook (recall that Netfilter was designed jointly with iptables). Therefore,
the choice of which chain to insert a rule dictates if/when the rule will be evaluated
for a given packet.

Rules are a combination condition and action (referred to as a target). For example,
“if a packet is addressed to port 22, drop it.” iptables evaluates individual packets,
although chains and tables dictate which packets a rule will be evaluated against.

The specifics of table → chain → target execution are complex, and there is no end of
fiendish diagrams available to describe the full state machine. Next, we’ll examine
each portion in more detail.

It may help to refer to earlier material as you progress through this
section. The designs of tables, chains, and rules are tightly inter‐
twined, and it is hard to properly understand one without under‐
standing the others.

iptables tables

A table in iptables maps to a particular capability set, where each table is “responsi‐
ble” for a specific type of action. In more concrete terms, a table can contain only spe‐
cific target types, and many target types can be used only in specific tables. iptables
has five tables, which are listed in Table 2-4.

Table 2-4. iptables tables

Table Purpose
Filter The Filter table handles acceptance and rejection of packets.

NAT The NAT table is used to modify the source or destination IP addresses.

Mangle The Mangle table can perform general-purpose editing of packet headers, but it is not intended for NAT. It can also
“mark” the packet with iptables-only metadata.

Raw The Raw table allows for packet mutation before connection tracking and other tables are handled. Its most
common use is to disable connection tracking for some packets.

Security SELinux uses the Security table for packet handling. It is not applicable on a machine that is not using SELinux.

We will not discuss the Security table in more detail in this book; however, if you use
SELinux, you should be aware of its use.

iptables executes tables in a particular order: Raw, Mangle, NAT, Filter. However,
this order of execution is broken up by chains. Linux users generally accept the man‐
tra of “tables contains chains,” but this may feel misleading. The order of execution is

High-Level Routing | 65

chains, then tables. So, for example, a packet will trigger Raw PREROUTING, Mangle
PREROUTING, NAT PREROUTING, and then trigger the Mangle table in either the INPUT
or FORWARD chain (depending on the packet). We’ll cover this in more detail in the
next section on chains, as we put more pieces together.

iptables chains

iptables chains are a list of rules. When a packet triggers or passes through a chain,
each rule is sequentially evaluated, until the packet matches a “terminating target”
(such as DROP), or the packet reaches the end of the chain.

The built-in, “top-level” chains are PREROUTING, INPUT, NAT, OUTPUT, and POSTROUT
ING. These are powered by Netfilter hooks. Each chain corresponds to a hook.
Table 2-5 shows the chain and hook pairs. There are also user-defined subchains that
exist to help organize rules.

Table 2-5. iptables chains and corresponding Netfilter hooks

iptables chain Netfilter hook

PREROUTIN NF_IP_PRE_ROUTING

INPUT NF_IP_LOCAL_IN

NAT NF_IP_FORWARD

OUTPUT NF_IP_LOCAL_OUT

POSTROUTING NF_IP_POST_ROUTING

Returning to our diagram of Netfilter hook ordering, we can infer the equivalent dia‐
gram of iptables chain execution and ordering for a given packet (see Figure 2-4).

Figure 2-4. The possible flows of a packet through iptables chains

66 | Chapter 2: Linux Networking

Again, like Netfilter, there are only a handful of ways that a packet can traverse these
chains (assuming the packet is not rejected or dropped along the way). Let’s use an
example with three machines, with IP addresses 10.0.0.1, 10.0.0.2, and 10.0.0.3,
respectively. We will show some routing scenarios from the perspective of machine 1
(with IP address 10.0.0.1). We examine them in Table 2-6.

Table 2-6. iptables chains executed in various scenarios

Packet description Packet source Packet
destination

Tables processed

An inbound packet, from another machine. 10.0.0.2 10.0.0.1 PREROUTING, INPUT

An inbound packet, not destined for this
machine.

10.0.0.2 10.0.0.3 PREROUTING, NAT, POSTROUTING

An outbound packet, originating locally,
destined for another machine.

10.0.0.1 10.0.0.2 OUTPUT, POSTROUTING

A packet from a local program, destined for
the same machine.

127.0.0.1 127.0.0.1 OUTPUT, POSTROUTING (then PRE
ROUTING, INPUT as the packet re-
enters via the loopback interface)

You can experiment with chain execution behavior on your own
using LOG rules. For example:

iptables -A OUTPUT -p tcp --dport 22 -j LOG
--log-level info --log-prefix "ssh-output"

will log TCP packets to port 22 when they are processed by the OUT
PUT chain, with the log prefix "ssh-output“. Be aware that log size
can quickly become unwieldy. Log on important hosts with care.

Recall that when a packet triggers a chain, iptables executes tables within that chain
(specifically, the rules within each table) in the following order:

1. Raw
2. Mangle
3. NAT
4. Filter

Most chains do not contain all tables; however, the relative execution order remains
the same. This is a design decision to reduce redundancy. For example, the Raw table
exists to manipulate packets “entering” iptables, and therefore has only PREROUTING
and OUTPUT chains, in accordance with Netfilter’s packet flow. The tables that contain
each chain are laid out in Table 2-7.

High-Level Routing | 67

Table 2-7. Which iptables tables (rows) contain which chains (columns)

Raw Mangle NAT Filter

PREROUTING ✓ ✓ ✓
INPUT ✓ ✓ ✓
FORWARD ✓ ✓
OUTPUT ✓ ✓ ✓ ✓
POSTROUTING ✓ ✓

You can list the chains that correspond to a table yourself, with iptables -L -t
<table>:

$ iptables -L -t filter
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

There is a small caveat for the NAT table: DNAT can be performed in PREROUTING or
OUTPUT`, and SNAT can be performed in only INPUT or POSTROUTING.

To give an example, suppose we have an inbound packet destined for our host. The
order of execution would be:

1. PREROUTING

a. Raw
b. Mangle
c. NAT

2. INPUT

a. Mangle
b. NAT
c. Filter

Now that we’ve learned about Netfilter hooks, tables, and chains, let’s take one last
look at the flow of a packet through iptables, shown in Figure 2-5.

68 | Chapter 2: Linux Networking

Figure 2-5. The flow of a packet through iptables tables and chains. A circle denotes a
table/hook combination that exists in iptables.

All iptables rules belong to a table and chain, the possible combinations of which
are represented as dots in our flow chart. iptables evaluates chains (and the rules in
them, in order) based on the order of Netfilter hooks that a packet triggers. For the
given chain, iptables evaluates that chain in each table that it is present in (note that
some chain/table combinations do not exist, such as Filter/POSTROUTING). If we trace
the flow of a packet originating from the local host, we see the following table/chains
pairs evaluated, in order:

1. Raw/OUTPUT
2. Mangle/OUTPUT
3. NAT/OUTPUT
4. Filter/OUTPUT
5. Mangle/POSTROUTING
6. NAT/POSTROUTING

High-Level Routing | 69

Subchains
The aforementioned chains are the top-level, or entry-point, chains. However, users
can define their own subchains and execute them with the JUMP target. iptables
executes such a chain in the same manner, target by target, until a terminating target
matches. This can be useful for logical separation or reusing a series of targets that
can be executed in more than one context (i.e., a similar motivation to why we might
organize code into a function). Such organization of rules across chains can have a
substantial impact on performance. iptables is, effectively, running tens or hundreds
or thousands of if statements against every single packet that goes in or out of your
system. That has measurable impact on packet latency, CPU use, and network
throughput. A well-organized set of chains reduces this overhead by eliminating
effectively redundant checks or actions. However, iptables’s performance given a
service with many pods is still a problem in Kubernetes, which makes other solutions
with less or no iptables use, such as IPVS or eBPF, more appealing.

Let’s look at creating new chains in Example 2-6.

Example 2-6. Sample iptables chain for SSH firewalling

Create incoming-ssh chain.
$ iptables -N incoming-ssh

Allow packets from specific IPs.
$ iptables -A incoming-ssh -s 10.0.0.1 -j ACCEPT
$ iptables -A incoming-ssh -s 10.0.0.2 -j ACCEPT

Log the packet.
$ iptables -A incoming-ssh -j LOG --log-level info --log-prefix "ssh-failure"

Drop packets from all other IPs.
$ iptables -A incoming-ssh -j DROP

Evaluate the incoming-ssh chain,
if the packet is an inbound TCP packet addressed to port 22.
$ iptables -A INPUT -p tcp --dport 22 -j incoming-ssh

This example creates a new chain, incoming-ssh, which is evaluated for any TCP
packets inbound on port 22. The chain allows packets from two specific IP addresses,
and packets from other addresses are logged and dropped.

Filter chains end in a default action, such as dropping the packet if no prior target
matched. Chains will default to ACCEPT if no default is specified. iptables -P

<chain> <target> sets the default.

70 | Chapter 2: Linux Networking

iptables rules
Rules have two parts: a match condition and an action (called a target). The match
condition describes a packet attribute. If the packet matches, the action will be exe‐
cuted. If the packet does not match, iptables will move to check the next rule.

Match conditions check if a given packet meets some criteria, for example, if the
packet has a specific source address. The order of operations from tables/chains is
important to remember, as prior operations can impact the packet by mutating it,
dropping it, or rejecting it. Table 2-8 shows some common match types.

Table 2-8. Some common iptables match types

Match type Flag(s) Description
Source -s, --src, --source Matches packets with the specified source address.

Destination -d, --dest, --destination Matches packets with the destination source address.

Protocol -p, --protocol Matches packets with the specified protocol.

In interface -i, --in-interface Matches packets that entered via the specified interface.

Out interface -o, --out-interface Matches packets that are leaving the specified interface.

State -m state --state
<states>

Matches packets from connections that are in one of the comma-
separated states. This uses the Conntrack states (NEW, ESTABLISHED,
RELATED, INVALID).

Using -m or --match, iptables can use extensions for match crite‐
ria. Extensions range from nice-to-haves, such as specifying multi‐
ple ports in a single rule (multiport), to more complex features
such as eBPF interactions. man iptables-extensions contains
more information.

There are two kinds of target actions: terminating and nonterminating. A terminating
target will stop iptables from checking subsequent targets in the chain, essentially
acting as a final decision. A nonterminating target will allow iptables to continue
checking subsequent targets in the chain. ACCEPT, DROP, REJECT, and RETURN are all
terminating targets. Note that ACCEPT and RETURN are terminating only within their
chain. That is to say, if a packet hits an ACCEPT target in a subchain, the parent chain
will resume processing and could potentially drop or reject the target. Example 2-7
shows a set of rules that would reject packets to port 80, despite matching an ACCEPT
at one point. Some command output has been removed for simplicity.

High-Level Routing | 71

Example 2-7. Rule sequence which would reject some previously accepted packets

```
$ iptables -L --line-numbers
Chain INPUT (policy ACCEPT)
num  target     prot opt source               destination
1    accept-all  all  --  anywhere             anywhere
2    REJECT     tcp  --  anywhere             anywhere
    tcp dpt:80 reject-with icmp-port-unreachable

Chain accept-all (1 references)
num  target     prot opt source               destination
1               all  --  anywhere             anywhere
```

Table 2-9 summarizes common target types and their behavior.

Table 2-9. Common iptables target types and behavior

Target type Applicable
tables

Description

AUDIT All Records data about accepted, dropped, or rejected packets.

ACCEPT Filter Allows the packet to continue unimpeded and without further modification.

DNAT NAT Modifies the destination address.

DROPs Filter Discards the packet. To an external observer, it will appear as though the packet was never
received.

JUMP All Executes another chain. Once that chain finishes executing, execution of the parent chain will
continue.

LOG All Logs the packet contents, via the kernel log.

MARK All Sets a special integer for the packet, used as an identifier by Netfilter. The integer can be used
in other iptables decisions and is not written to the packet itself.

MASQUER
ADE

NAT Modifies the source address of the packet, replacing it with the address of a specified network
interface. This is similar to SNAT, but does not require the machine’s IP address to be known
in advance.

REJECT Filter Discards the packet and sends a rejection reason.

RETURN All Stops processing the current chain (or subchain). Note that this is not a terminating target,
and if there is a parent chain, that chain will continue to be processed.

SNAT NAT Modifies the source address of the packet, replacing it with a fixed address. See also: MAS
QUERADE.

72 | Chapter 2: Linux Networking

Each target type may have specific options, such as ports or log strings, that apply to
the rule. Table 2-10 shows some example commands and explanations.

Table 2-10. iptables target command examples

Command Explanation
iptables -A INPUT -s 10.0.0.1 Accepts an inbound packet if the source address is 10.0.0.1.

iptables -A INPUT -p ICMP Accepts all inbound ICMP packets.

iptables -A INPUT -p tcp --dport 443 Accepts all inbound TCP packets to port 443.

iptables -A INPUT -p tcp --dport 22 -j DROP Drops all inbound TCP ports to port 22.

A target belongs to both a table and a chain, which control when (if at all) iptables
executes the aforementioned target for a given packet. Next, we’ll put together what
we’ve learned and look at iptables commands in practice.

Practical iptables

You can show iptables chains with iptables -L:

$ iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

There is a distinct but nearly identical program, ip6tables, for
managing IPv6 rules. iptables and ip6tables rules are completely
separate. For example, dropping all packets to TCP 0.0.0.0:22
with iptables will not prevent connections to TCP [::]:22, and
vice versa for ip6tables.
For simplicity, we will refer only to iptables and IPv4 addresses in
this section.

--line-numbers shows numbers for each rule in a chain. This can be helpful when
inserting or deleting rules. -I <chain> <line> inserts a rule at the specified line
number, before the previous rule at that line.

High-Level Routing | 73

The typical format of a command to interact with iptables rules is:

iptables [-t table] {-A|-C|-D} chain rule-specification

where -A is for append, -C is for check, and -D is for delete.

iptables rules aren’t persisted across restarts. iptables provides
iptables-save and iptables-restore tools, which can be used
manually or with simple automation to capture or reload rules.
This is something that most firewall tools paper over by automati‐
cally creating their own iptables rules every time the system
starts.

iptables can masquerade connections, making it appear as if the packets came from
their own IP address. This is useful to provide a simplified exterior to the outside
world. A common use case is to provide a known host for traffic, as a security bas‐
tion, or to provide a predictable set of IP addresses to third parties. In Kubernetes,
masquerading can make pods use their node’s IP address, despite the fact that pods
have unique IP addresses. This is necessary to communicate outside the cluster in
many setups, where pods have internal IP addresses that cannot communicate
directly with the internet. The MASQUERADE target is similar to SNAT; however, it does
not require a --source-address to be known and specified in advance. Instead, it
uses the address of a specified interface. This is slightly less performant than SNAT in
cases where the new source address is static, as iptables must continuously fetch the
address:

$iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables can perform connection-level load balancing or more accurately, connec‐
tion fan-out. This technique relies on DNAT rules and random selection (to prevent
every connection from being routed to the first DNAT target):

$ iptables -t nat -A OUTPUT -p tcp --dport 80 -d $FRONT_IP -m statistic \
--mode random --probability 0.5 -j DNAT --to-destination $BACKEND1_IP:80
$ iptables -t nat -A OUTPUT -p tcp --dport 80 -d $FRONT_IP \
-j DNAT --to-destination $BACKEND2_IP:80

In the previous example, there is a 50% chance of routing to the first backend. Other‐
wise, the packet proceeds to the next rule, which is guaranteed to route the connec‐
tion to the second backend. The math gets a little tedious for adding more backends.
To have an equal chance of routing to any backend, the nth backend must have a 1/n
chance of being routed to. If there were three backends, the probabilities would need
to be 0.3 (repeating), 0.5, and 1:

74 | Chapter 2: Linux Networking

Chain KUBE-SVC-I7EAKVFJLYM7WH25 (1 references)
target prot opt source destination
KUBE-SEP-LXP5RGXOX6SCIC6C all -- anywhere anywhere
 statistic mode random probability 0.25000000000
KUBE-SEP-XRJTEP3YTXUYFBMK all -- anywhere anywhere
 statistic mode random probability 0.33332999982
KUBE-SEP-OMZR4HWUSCJLN33U all -- anywhere anywhere
 statistic mode random probability 0.50000000000
KUBE-SEP-EELL7LVIDZU4CPY6 all -- anywhere anywhere

When Kubernetes uses iptables load balancing for a service, it creates a chain as
shown previously. If you look closely, you can see rounding errors in one of the prob‐
ability numbers.

Using DNAT fan-out for load balancing has several caveats. It has no feedback for the
load of a given backend and will always map application-level queries on the same
connection to the same backend. Because the DNAT result lasts the lifetime of the
connection, if long-lived connections are common, many downstream clients may
stick to the same upstream backend if that backend is longer lived than others. To
give a Kubernetes example, suppose a gRPC service has only two replicas and then
additional replicas scale up. gRPC reuses the same HTTP/2 connection, so existing
downstream clients (using the Kubernetes service and not gRPC load balancing) will
stay connected to the initial two replicas, skewing the load profile among gRPC back‐
ends. Because of this, many developers use a smarter client (such as making use of
gRPC’s client-side load balancing), force periodic reconnects at the server and/or cli‐
ent, or use service meshes to externalize the problem. We’ll discuss load balancing in
more detail in Chapters 4 and 5.

Although iptables is widely used in Linux, it can become slow in the presence of a
huge number of rules and offers limited load balancing functionality. Next we’ll look
at IPVS, an alternative that is more purpose-built for load balancing.

IPVS
IP Virtual Server (IPVS) is a Linux connection (L4) load balancer. Figure 2-6 shows a
simple diagram of IPVS’s role in routing packets.

High-Level Routing | 75

Figure 2-6. IPVS

iptables can do simple L4 load balancing by randomly routing connections, with
the randomness shaped by the weights on individual DNAT rules. IPVS supports
multiple load balancing modes (in contrast with the iptables one), which are out‐
lined in Table 2-11. This allows IPVS to spread load more effectively than iptables,
depending on IPVS configuration and traffic patterns.

Table 2-11. IPVS modes supported in Kubernetes

Name Shortcode Description
Round-robin rr Sends subsequent connections to the “next” host in a cycle. This increases the time

between subsequent connections sent to a given host, compared to random routing like
iptables enables.

Least connection lc Sends connections to the host that currently has the least open connections.

Destination
hashing

dh Sends connections deterministically to a specific host, based on the connections’
destination addresses.

Source hashing sh Sends connections deterministically to a specific host, based on the connections’ source
addresses.

Shortest expected
delay

sed Sends connections to the host with the lowest connections to weight ratio.

Never queue nq Sends connections to any host with no existing connections, otherwise uses “shortest
expected delay” strategy.

76 | Chapter 2: Linux Networking

IPVS supports packet forwarding modes:

• NAT rewrites source and destination addresses.
• DR encapsulates IP datagrams within IP datagrams.
• IP tunneling directly routes packets to the backend server by rewriting the MAC

address of the data frame with the MAC address of the selected backend server.

There are three aspects to look at when it comes to issues with iptables as a load
balancer:

Number of nodes in the cluster
Even though Kubernetes already supports 5,000 nodes in release v1.6, kube-
proxy with iptables is a bottleneck to scale the cluster to 5,000 nodes. One
example is that with a NodePort service in a 5,000-node cluster, if we have 2,000
services and each service has 10 pods, this will cause at least 20,000 iptables
records on each worker node, which can make the kernel pretty busy.

Time
The time spent to add one rule when there are 5,000 services (40,000 rules) is 11
minutes. For 20,000 services (160,000 rules), it’s 5 hours.

Latency
There is latency to access a service (routing latency); each packet must traverse
the iptables list until a match is made. There is latency to add/remove rules,
inserting and removing from an extensive list is an intensive operation at scale.

IPVS also supports session affinity, which is exposed as an option in services
(Service.spec.sessionAffinity and Service.spec.sessionAffinityConfig).
Repeated connections, within the session affinity time window, will route to the same
host. This can be useful for scenarios such as minimizing cache misses. It can also
make routing in any mode effectively stateful (by indefinitely routing connections
from the same address to the same host), but the routing stickiness is less absolute in
Kubernetes, where individual pods come and go.

To create a basic load balancer with two equally weighted destinations, run ipvsadm
-A -t <address> -s <mode>. -A, -E, and -D are used to add, edit, and delete virtual
services, respectively. The lowercase counterparts, -a, -e, and -d, are used to add,
edit, and delete host backends, respectively:

ipvsadm -A -t 1.1.1.1:80 -s lc
ipvsadm -a -t 1.1.1.1:80 -r 2.2.2.2 -m -w 100
ipvsadm -a -t 1.1.1.1:80 -r 3.3.3.3 -m -w 100

You can list the IPVS hosts with -L. Each virtual server (a unique IP address and port
combination) is shown, with its backends:

High-Level Routing | 77

ipvsadm -L
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 1.1.1.1.80:http lc
 -> 2.2.2.2:http Masq 100 0 0
 -> 3.3.3.3:http Masq 100 0 0

-L supports multiple options, such as --stats, to show additional connection
statistics.

eBPF
eBPF is a programming system that allows special sandboxed programs to run in the
kernel without passing back and forth between kernel and user space, like we saw
with Netfilter and iptables.

Before eBPF, there was the Berkeley Packet Filter (BPF). BPF is a technology used in
the kernel, among other things, to analyze network traffic. BPF supports filtering
packets, which allows a userspace process to supply a filter that specifies which pack‐
ets it wants to inspect. One of BPF’s use cases is tcpdump, shown in Figure 2-7. When
you specify a filter on tcpdump, it compiles it as a BPF program and passes it to BPF.
The techniques in BPF have been extended to other processes and kernel operations.

Figure 2-7. tcpdump

An eBPF program has direct access to syscalls. eBPF programs can directly watch and
block syscalls, without the usual approach of adding kernel hooks to a userspace pro‐
gram. Because of its performance characteristics, it is well suited for writing network‐
ing software.

78 | Chapter 2: Linux Networking

You can learn more about eBPF on its website.

In addition to socket filtering, other supported attach points in the kernel are as
follows:

Kprobes
Dynamic kernel tracing of internal kernel components.

Uprobes
User-space tracing.

Tracepoints
Kernel static tracing. These are programed into the kernel by developers and are
more stable as compared to kprobes, which may change between kernel versions.

perf_events
Timed sampling of data and events.

XDP
Specialized eBPF programs that can go lower than kernel space to access driver
space to act directly on packets.

Let’s return to tcpdump as an example. Figure 2-8 shows a simplified rendition of
tcpdump’s interactions with eBPF.

Figure 2-8. eBPF example

Suppose we run tcpdump -i any.

High-Level Routing | 79

http://ebpf.io

The string is compiled by pcap_compile into a BPF program. The kernel will then use
this BPF program to filter all packets that go through all the network devices we
specified, any with the -I in our case.

It will make this data available to tcpdump via a map. Maps are a data structure con‐
sisting of key-value pairs used by the BPF programs to exchange data.

There are many reasons to use eBPF with Kubernetes:

Performance (hashing table versus iptables list)
For every service added to Kubernetes, the list of iptables rules that have to be
traversed grows exponentially. Because of the lack of incremental updates, the
entire list of rules has to be replaced each time a new rule is added. This leads to a
total duration of 5 hours to install the 160,000 iptables rules representing
20,000 Kubernetes services.

Tracing
Using BPF, we can gather pod and container-level network statistics. The BPF
socket filter is nothing new, but the BPF socket filter per cgroup is. Introduced in
Linux 4.10, cgroup-bpf allows attaching eBPF programs to cgroups. Once
attached, the program is executed for all packets entering or exiting any process
in the cgroup.

Auditing kubectl exec with eBPF
With eBPF, you can attach a program that will record any commands executed in
the kubectl exec session and pass those commands to a userspace program that
logs those events.

Security

Seccomp
Secured computing that restricts what syscalls are allowed. Seccomp filters
can be written in eBPF.

Falco
Open source container-native runtime security that uses eBPF.

The most common use of eBPF in Kubernetes is Cilium, CNI and service implemen‐
tation. Cilium replaces kube-proxy, which writes iptables rules to map a service’s IP
address to its corresponding pods.

Through eBPF, Cilium can intercept and route all packets directly in the kernel,
which is faster and allows for application-level (layer 7) load balancing. We will cover
kube-proxy in Chapter 4.

80 | Chapter 2: Linux Networking

Network Troubleshooting Tools
Troubleshooting network-related issues with Linux is a complex topic and could
easily fill its own book. In this section, we will introduce some key troubleshooting
tools and the basics of their use (Table 2-12 is provided as a simple cheat sheet of
tools and applicable use cases). Think of this section as a jumping-off point for com‐
mon Kubernetes-related tool uses. Man pages, --help, and the internet can guide you
further. There is substantial overlap in the tools that we describe, so you may find
learning about some tools (or tool features) redundant. Some are better suited to a
given task than others (for example, multiple tools will catch TLS errors, but
OpenSSL provides the richest debugging information). Exact tool use may come
down to preference, familiarity, and availability.

Table 2-12. Cheat sheet of common debugging cases and tools

Case Tools
Checking connectivity traceroute, ping, telnet, netcat

Port scanning nmap

Checking DNS records dig, commands mentioned in “Checking Connectivity”

Checking HTTP/1 cURL, telnet, netcat

Checking HTTPS OpenSSL, cURL

Checking listening programs netstat

Some networking tools that we describe likely won’t be preinstalled in your distro of
choice, but all should be available through your distro’s package manager. We will
sometimes use # Truncated in command output where we have omitted text to avoid
examples becoming repetitive or overly long.

Security Warning
Before we get into tooling details, we need to talk about security. An attacker can uti‐
lize any tool listed here in order to explore and access additional systems. There are
many strong opinions on this topic, but we consider it best practice to leave the few‐
est possible networking tools installed on a given machine.

An attacker may still be able to download tools themselves (e.g., by downloading a
binary from the internet) or use the standard package manager (if they have sufficient
permission). In most cases, you are simply introducing some additional friction prior
to exploring and exploiting. However, in some cases you can reduce an attacker’s
capabilities by not preinstalling networking tools.

Linux file permissions include something called the setuid bit that is sometimes used
by networking tools. If a file has the setuid bit set, executing said file causes the file to

Network Troubleshooting Tools | 81

be executed as the user who owns the file, rather than the current user. You can
observe this by looking for an s rather than an x in the permission readout of a file:

$ ls -la /etc/passwd
-rwsr-xr-x 1 root root 68208 May 28 2020 /usr/bin/passwd

This allows programs to expose limited, privileged capabilities (for example, passwd
uses this ability to allow a user to update their password, without allowing arbitrary
writes to the password file). A number of networking tools (ping, nmap, etc.) may use
the setuid bit on some systems to send raw packets, sniff packets, etc. If an attacker
downloads their own copy of a tool and cannot gain root privileges, they will be able
to do less with said tool than if it was installed by the system with the setuid bit set.

ping
ping is a simple program that sends ICMP ECHO_REQUEST packets to networked devi‐
ces. It is a common, simple way to test network connectivity from one host to
another.

ICMP is a layer 4 protocol, like TCP and UDP. Kubernetes services support TCP and
UDP, but not ICMP. This means that pings to a Kubernetes service will always fail.
Instead, you will need to use telnet or a higher-level tool such as cURL to check con‐
nectivity to a service. Individual pods may still be reachable by ping, depending on
your network configuration.

Firewalls and routing software are aware of ICMP packets and can
be configured to filter or route specific ICMP packets. It is com‐
mon, but not guaranteed (or necessarily advisable), to have permis‐
sive rules for ICMP packets. Some network administrators,
network software, or cloud providers will allow ICMP packets by
default.

The basic use of ping is simply ping <address>. The address can be an IP address or
a domain. ping will send a packet, wait, and report the status of that request when a
response or timeout happens.

By default, ping will send packets forever, and must be manually stopped (e.g., with
Ctrl-C). -c <count> will make ping perform a fixed number before shutting down.
On shutdown, ping also prints a summary:

$ ping -c 2 k8s.io
PING k8s.io (34.107.204.206): 56 data bytes
64 bytes from 34.107.204.206: icmp_seq=0 ttl=117 time=12.665 ms
64 bytes from 34.107.204.206: icmp_seq=1 ttl=117 time=12.403 ms

--- k8s.io ping statistics ---

82 | Chapter 2: Linux Networking

2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 12.403/12.534/12.665/0.131 ms

Table 2-13 shows common ping options.

Table 2-13. Useful ping options

Option Description
-c <count> Sends the specified number of packets. Exits after the final packet is received or times out.

-i <seconds> Sets the wait interval between sending packets. Defaults to 1 second. Extremely low values are not
recommended, as ping can flood the network.

-o Exit after receiving 1 packet. Equivalent to -c 1.

-S <source address> Uses the specified source address for the packet.

-W <milliseconds> Sets the wait interval to receive a packet. If ping receives the packet later than the wait time, it will
still count toward the final summary.

traceroute
traceroute shows the network route taken from one host to another. This allows
users to easily validate and debug the route taken (or where routing fails) from one
machine to another.

traceroute sends packets with specific IP time-to-live values. Recall from Chapter 1
that each host that handles a packet decrements the time-to-live (TTL) value on
packets by 1, therefore limiting the number of hosts that a request can be handled by.
When a host receives a packet and decrements the TTL to 0, it sends a TIME_EXCEE
DED packet and discards the original packet. The TIME_EXCEEDED response packet
contains the source address of the machine where the packet timed out. By starting
with a TTL of 1 and raising the TTL by 1 for each packet, traceroute is able to get a
response from each host along the route to the destination address.

traceroute displays hosts line by line, starting with the first external machine. Each
line contains the hostname (if available), IP address, and response time:

$traceroute k8s.io
traceroute to k8s.io (34.107.204.206), 64 hops max, 52 byte packets
 1 router (10.0.0.1) 8.061 ms 2.273 ms 1.576 ms
 2 192.168.1.254 (192.168.1.254) 2.037 ms 1.856 ms 1.835 ms
 3 adsl-71-145-208-1.dsl.austtx.sbcglobal.net (71.145.208.1)
4.675 ms 7.179 ms 9.930 ms
 4 * * *
 5 12.122.149.186 (12.122.149.186) 20.272 ms 8.142 ms 8.046 ms
 6 sffca22crs.ip.att.net (12.122.3.70) 14.715 ms 8.257 ms 12.038 ms
 7 12.122.163.61 (12.122.163.61) 5.057 ms 4.963 ms 5.004 ms
 8 12.255.10.236 (12.255.10.236) 5.560 ms
 12.255.10.238 (12.255.10.238) 6.396 ms
 12.255.10.236 (12.255.10.236) 5.729 ms
 9 * * *

Network Troubleshooting Tools | 83

10 206.204.107.34.bc.googleusercontent.com (34.107.204.206)
64.473 ms 10.008 ms 9.321 ms

If traceroute receives no response from a given hop before timing out, it prints a *.
Some hosts may refuse to send a TIME_EXCEEDED packet, or a firewall along the way
may prevent successful delivery.

Table 2-14 shows common traceroute options.

Table 2-14. Useful traceroute options

Option Syntax Description
First TTL -f <TTL>, -M <TTL> Set the starting IP TTL (default value: 1). Setting the TTL to n will cause

traceroute to not report the first n-1 hosts en route to the destination.

Max TTL -m <TTL> Set the maximum TTL, i.e., the maximum number of hosts that traceroute
will attempt to route through.

Protocol -P <protocol> Send packets of the specified protocol (TCP, UDP, ICMP, and sometimes other
options). UDP is default.

Source
address

-s <address> Specify the source IP address of outgoing packets.

Wait -w <seconds> Set the time to wait for a probe response.

dig
dig is a DNS lookup tool. You can use it to make DNS queries from the command
line and display the results.

The general form of a dig command is dig [options] <domain>. By default, dig will
display the CNAME, A, and AAAA records:

$ dig kubernetes.io

; <<>> DiG 9.10.6 <<>> kubernetes.io
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51818
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1452
;; QUESTION SECTION:
;kubernetes.io. IN A

;; ANSWER SECTION:
kubernetes.io. 960 IN A 147.75.40.148

;; Query time: 12 msec
;; SERVER: 2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b#53
(2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b)

84 | Chapter 2: Linux Networking

;; WHEN: Mon Jul 06 00:10:35 PDT 2020
;; MSG SIZE rcvd: 71

To display a particular type of DNS record, run dig <domain> <type> (or dig -t
<type> <domain>). This is overwhelmingly the main use case for dig:

$ dig kubernetes.io TXT

; <<>> DiG 9.10.6 <<>> -t TXT kubernetes.io
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16443
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;kubernetes.io. IN TXT

;; ANSWER SECTION:
kubernetes.io. 3599 IN TXT
"v=spf1 include:_spf.google.com ~all"
kubernetes.io. 3599 IN TXT
"google-site-verification=oPORCoq9XU6CmaR7G_bV00CLmEz-wLGOL7SXpeEuTt8"

;; Query time: 49 msec
;; SERVER: 2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b#53
(2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b)
;; WHEN: Sat Aug 08 18:11:48 PDT 2020
;; MSG SIZE rcvd: 171

Table 2-15 shows common dig options.

Table 2-15. Useful dig options

Option Syntax Description
IPv4 -4 Use IPv4 only.

IPv6 -6 Use IPv6 only.

Address -b <address>[#<port>] Specify the address to make a DNS query to. Port can optionally be included,
preceded by #.

Port -p <port> Specify the port to query, in case DNS is exposed on a nonstandard port. The
default is 53, the DNS standard.

Domain -q <domain> The domain name to query. The domain name is usually specified as a
positional argument.

Record
Type

-t <type> The DNS record type to query. The record type can alternatively be specified
as a positional argument.

Network Troubleshooting Tools | 85

telnet
telnet is both a network protocol and a tool for using said protocol. telnet was
once used for remote login, in a manner similar to SSH. SSH has become dominant
due to having better security, but telnet is still extremely useful for debugging
servers that use a text-based protocol. For example, with telnet, you can connect to
an HTTP/1 server and manually make requests against it.

The basic syntax of telnet is telnet <address> <port>. This establishes a connec‐
tion and provides an interactive command-line interface. Pressing Enter twice will
send a command, which easily allows multiline commands to be written. Press Ctrl-J
to exit the session:

$ telnet kubernetes.io
Trying 147.75.40.148...
Connected to kubernetes.io.
Escape character is '^]'.
> HEAD / HTTP/1.1
> Host: kubernetes.io
>
HTTP/1.1 301 Moved Permanently
Cache-Control: public, max-age=0, must-revalidate
Content-Length: 0
Content-Type: text/plain
Date: Thu, 30 Jul 2020 01:23:53 GMT
Location: https://kubernetes.io/
Age: 2
Connection: keep-alive
Server: Netlify
X-NF-Request-ID: a48579f7-a045-4f13-af1a-eeaa69a81b2f-23395499

To make full use of telnet, you will need to understand how the application protocol
that you are using works. telnet is a classic tool to debug servers running HTTP,
HTTPS, POP3, IMAP, and so on.

nmap
nmap is a port scanner, which allows you to explore and examine services on your
network.

The general syntax of nmap is nmap [options] <target>, where target is a domain,
IP address, or IP CIDR. nmap’s default options will give a fast and brief summary of
open ports on a host:

$ nmap 1.2.3.4
Starting Nmap 7.80 (https://nmap.org) at 2020-07-29 20:14 PDT
Nmap scan report for my-host (1.2.3.4)
Host is up (0.011s latency).
Not shown: 997 closed ports
PORT STATE SERVICE

86 | Chapter 2: Linux Networking

22/tcp open ssh
3000/tcp open ppp
5432/tcp open postgresql

Nmap done: 1 IP address (1 host up) scanned in 0.45 seconds

In the previous example, nmap detects three open ports and guesses which service is
running on each port.

Because nmap can quickly show you which services are accessible
from a remote machine, it can be a quick and easy way to spot
services that should not be exposed. nmap is a favorite tool for
attackers for this reason.

nmap has a dizzying number of options, which change the scan behavior and level of
detail provided. As with other commands, we will summarize some key options, but
we highly recommend reading nmap’s help/man pages.

Table 2-16 shows common nmap options.

Table 2-16. Useful nmap options

Option Syntax Description
Additional detection -A Enable OS detection, version detection, and more.

Decrease verbosity -d Decrease the command verbosity. Using multiple d’s (e.g., -dd) increases the effect.

Increase verbosity -v Increase the command verbosity. Using multiple v’s (e.g., -vv) increases the effect.

netstat
netstat can display a wide range of information about a machine’s network stack and
connections:

$ netstat
Active internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 164 my-host:ssh laptop:50113 ESTABLISHED
tcp 0 0 my-host:50051 example-host:48760 ESTABLISHED
tcp6 0 0 2600:1700:2800:7d:54310 2600:1901:0:bae2::https TIME_WAIT
udp6 0 0 localhost:38125 localhost:38125 ESTABLISHED
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 13 [] DGRAM 8451 /run/systemd/journal/dev-log
unix 2 [] DGRAM 8463 /run/systemd/journal/syslog
[Cut for brevity]

Invoking netstat with no additional arguments will display all connected sockets on
the machine. In our example, we see three TCP sockets, one UDP socket, and a

Network Troubleshooting Tools | 87

multitude of UNIX sockets. The output includes the address (IP address and port) on
both sides of a connection.

We can use the -a flag to show all connections or -l to show only listening
connections:

$ netstat -a
Active internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:ssh 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:postgresql 0.0.0.0:* LISTEN
tcp 0 172 my-host:ssh laptop:50113 ESTABLISHED
[Content cut]

A common use of netstat is to check which process is listening on a specific port. To
do that, we run sudo netstat -lp - l for “listening” and p for “program.” sudo may
be necessary for netstat to view all program information. The output for -l shows
which address a service is listening on (e.g., 0.0.0.0 or 127.0.0.1).

We can use simple tools like grep to get a clear output from netstat when we are
looking for a specific result:

$ sudo netstat -lp | grep 3000
tcp6 0 0 [::]:3000 [::]:* LISTEN 613/grafana-server

Table 2-17 shows common netstat options.

Table 2-17. Useful netstat commands

Option Syntax Description
Show all sockets netstat -a Shows all sockets, not only open connections.

Show statistics netstat -s Shows networking statistics. By default, netstat shows stats from all protocols.

Show listening
sockets

netstat -l Shows sockets that are listening. This is an easy way to find running services.

TCP netstat -t The -t flag shows only TCP data. It can be used with other flags, e.g., -lt (show
sockets listening with TCP).

UDP netstat -u The -u flag shows only UDP data. It can be used with other flags, e.g., -lu (show
sockets listening with UDP).

netcat
netcat is a multipurpose tool for making connections, sending data, or listening on a
socket. It can be helpful as a way to “manually” run a server or client to inspect what
happens in greater detail. netcat is arguably similar to telnet in this regard, though
netcat is capable of many more things.

88 | Chapter 2: Linux Networking

nc is an alias for netcat on most systems.

netcat can connect to a server when invoked as netcat <address> <port>. netcat
has an interactive stdin, which allows you to manually type data or pipe data to net
cat. It’s very telnet-esque so far:

$ echo -e "GET / HTTP/1.1\nHost: localhost\n" > cmd
$ nc localhost 80 < cmd
HTTP/1.1 302 Found
Cache-Control: no-cache
Content-Type: text/html; charset=utf-8
[Content cut]

Openssl
The OpenSSL technology powers a substantial chunk of the world’s HTTPS connec‐
tions. Most heavy lifting with OpenSSL is done with language bindings, but it also has
a CLI for operational tasks and debugging. openssl can do things such as creating
keys and certificates, signing certificates, and, most relevant to us, testing TLS/SSL
connections. Many other tools, including ones outlined in this chapter, can test
TLS/SSL connections. However, openssl stands out for its feature-richness and level
of detail.

Commands usually take the form openssl [sub-command] [arguments] [options].
openssl has a vast number of subcommands (for example, openssl rand allows you
to generate pseudo random data). The list subcommand allows you to list capabili‐
ties, with some search options (e.g., openssl list --commands for commands). To
learn more about individual sub commands, you can check openssl <subcommand>
--help or its man page (man openssl-<subcommand> or just man <subcommand>).

openssl s_client -connect will connect to a server and display detailed informa‐
tion about the server’s certificate. Here is the default invocation:

openssl s_client -connect k8s.io:443
CONNECTED(00000003)
depth=2 O = Digital Signature Trust Co., CN = DST Root CA X3
verify return:1
depth=1 C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
verify return:1
depth=0 CN = k8s.io
verify return:1

Certificate chain
0 s:CN = k8s.io

Network Troubleshooting Tools | 89

i:C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
1 s:C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
i:O = Digital Signature Trust Co., CN = DST Root CA X3

Server certificate
-----BEGIN CERTIFICATE-----
[Content cut]
-----END CERTIFICATE-----
subject=CN = k8s.io

issuer=C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3

No client certificate CA names sent
Peer signing digest: SHA256
Peer signature type: RSA-PSS
Server Temp Key: X25519, 253 bits

SSL handshake has read 3915 bytes and written 378 bytes
Verification: OK

New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
Server public key is 2048 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
Early data was not sent
Verify return code: 0 (ok)

If you are using a self-signed CA, you can use -CAfile <path> to use that CA. This
will allow you to establish and verify connections against a self-signed certificate.

cURL
cURL is a data transfer tool that supports multiple protocols, notably HTTP and
HTTPS.

wget is a similar tool to the command curl. Some distros or
administrators may install it instead of curl.

cURL commands are of the form curl [options] <URL>. cURL prints the URL’s
contents and sometimes cURL-specific messages to stdout. The default behavior is to
make an HTTP GET request:

90 | Chapter 2: Linux Networking

$ curl example.org
<!doctype html>
<html>
<head>
 <title>Example Domain</title>
Truncated

By default, cURL does not follow redirects, such as HTTP 301s or protocol upgrades.
The -L flag (or --location) will enable redirect following:

$ curl kubernetes.io
Redirecting to https://kubernetes.io

$ curl -L kubernetes.io
<!doctype html><html lang=en class=no-js><head>
Truncated

Use the -X option to perform a specific HTTP verb; e.g., use curl -X DELETE

foo/bar to make a DELETE request.

You can supply data (for a POST, PUT, etc.) in a few ways:

• URL encoded: -d "key1=value1&key2=value2"
• JSON: -d '{"key1":"value1", "key2":"value2"}'
• As a file in either format: -d @data.txt

The -H option adds an explicit header, although basic headers such as Content-Type
are added automatically:

-H "Content-Type: application/x-www-form-urlencoded"

Here are some examples:

$ curl -d "key1=value1" -X PUT localhost:8080

$ curl -H "X-App-Auth: xyz" -d "key1=value1&key2=value2"
-X POST https://localhost:8080/demo

cURL can be of some help when debugging TLS issues, but more
specialized tools such as openssl may be more helpful.

cURL can help diagnose TLS issues. Just like a reputable browser, cURL validates the
certificate chain returned by HTTP sites and checks against the host’s CA certs:

$ curl https://expired-tls-site
curl: (60) SSL certificate problem: certificate has expired
More details here: https://curl.haxx.se/docs/sslcerts.html

Network Troubleshooting Tools | 91

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

Like many programs, cURL has a verbose flag, -v, which will print more information
about the request and response. This is extremely valuable when debugging a layer 7
protocol such as HTTP:

$ curl https://expired-tls-site -v
* Trying 1.2.3.4...
* TCP_NODELAY set
* Connected to expired-tls-site (1.2.3.4) port 443 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* successfully set certificate verify locations:
* CAfile: /etc/ssl/cert.pem
 CApath: none
* TLSv1.2 (OUT), TLS handshake, Client hello (1):
* TLSv1.2 (IN), TLS handshake, Server hello (2):
* TLSv1.2 (IN), TLS handshake, Certificate (11):
* TLSv1.2 (OUT), TLS alert, certificate expired (557):
* SSL certificate problem: certificate has expired
* Closing connection 0
curl: (60) SSL certificate problem: certificate has expired
More details here: https://curl.haxx.se/docs/sslcerts.html

Truncated

cURL has many additional features that we have not covered, such as the ability to
use timeouts, custom CA certs, custom DNS, and so on.

Conclusion
This chapter has provided you with a whirlwind tour of networking in Linux. We
focused primarily on concepts that are required to understand Kubernetes’ imple‐
mentation, cluster setup constraints, and debugging Kubernetes-related networking
problems (in workloads on Kubernetes, or Kubernetes itself). This chapter was by no
means exhaustive, and you may find it valuable to learn more.

Next, we will start to look at containers in Linux and how containers interact with the
network.

92 | Chapter 2: Linux Networking

CHAPTER 3

Container Networking Basics

Now that we’ve discussed networking basics and Linux networking, we’ll discuss how
networking is implemented in containers. Like networking, containers have a long
history. This chapter will review the history, discuss various options for running con‐
tainers, and explore the networking setup available. The industry, for now, has settled
on Docker as the container runtime standard. Thus, we’ll dive into the Docker net‐
working model, explain how the CNI differs from the Docker network model, and
end the chapter with examples of networking modes with Docker containers.

Introduction to Containers
In this section, we will discuss the evolution of running applications that has led us to
containers. Some, rightfully, will talk about containers as not being real. They are yet
another abstraction of the underlying technology in the OS kernel. Being technically
right misses the point of the technology and leads us nowhere down the road of solv‐
ing the hard problem that is application management and deployment.

Applications
Running applications has always had its challenges. There are many ways to serve
applications nowadays: in the cloud, on-prem, and, of course, with containers. Appli‐
cation developers and system administrators face many issues, such as dealing with
different versions of libraries, knowing how to complete deployments, and having old
versions of the application itself. For the longest time, developers of applications had
to deal with these issues. Bash scripts and deployment tools all have their drawbacks
and issues. Every new company has its way of deploying applications, so every new
developer has to learn these techniques. Separation of duties, permissions controls,
and maintaining system stability require system administrators to limit access to
developers for deployments. Sysadmins also manage multiple applications on the

93

same host machine to drive up that machine’s efficiency, thus creating contention
between developers wanting to deploy new features and system administrators want‐
ing to maintain the whole ecosystem’s stability.

A general-purpose OS supports as many types of applications as possible, so its kernel
includes all kinds of drivers, protocol libraries, and schedulers. Figure 3-1 shows one
machine, with one operating system, but there are many ways to deploy an applica‐
tion to that host. Application deployment is a problem all organizations must solve.

Figure 3-1. Application server

From a networking perspective, with one operating system, there is one TCP/IP
stack. That single stack creates issues with port conflicts on the host machine. System
administrators host multiple applications on the same machine to increase the
machine’s utilization, and each application will have to run on its port. So now, the
system administrators, the application developers, and the network engineers have to
coordinate all of this together. More tasks to add to the deployment checklist are cre‐
ating troubleshooting guides and dealing with all the IT requests. Hypervisors are a
way to increase one host machine’s efficiency and remove the one operating system/
networking stack issues.

Hypervisor
A hypervisor emulates hardware resources, CPU, and memory from a host machine
to create guest operating systems or virtual machines. In 2001, VMware released its
x86 hypervisor; earlier versions included IBM’s z/Architecture and FreeBSD jails. The
year 2003 saw the release of Xen, the first open source hypervisor, and in 2006
Kernel-based Virtual Machine (KVM) was released. A hypervisor allows system
administrators to share the underlying hardware with multiple guest operating sys‐
tems; Figure 3-2 demonstrates this. This resource sharing increases the host
machine’s efficiency, alleviating one of the sysadmins issues.

Hypervisors also gave each application development team a separate networking
stack, removing the port conflict issues on shared systems. For example, team A’s
Tomcat application can run on port 8080, while team B’s can also run on port 8080

94 | Chapter 3: Container Networking Basics

since each application can now have its guest operating system with a separate net‐
work stack. Library versions, deployment, and other issues remain for the application
developer. How can they package and deploy everything their application needs while
maintaining the efficiency introduced by the hypervisor and virtual machines? This
concern led to the development of containers.

Figure 3-2. Hypervisor

Containers
In Figure 3-3, we see the benefits of the containerization of applications; each con‐
tainer is independent. Application developers can use whatever they need to run their
application without relying on underlying libraries or host operating systems. Each
container also has its own network stack. The container allows developers to package
and deploy applications while maintaining efficiencies for the host machine.

Figure 3-3. Containers running on host OS

Introduction to Containers | 95

With any technology comes a history of changes, competitors, and innovations, and
containers are no different. The following is a list of terms that can be confusing
when learning about containers. First, we list the distinction between container run‐
times, discuss each runtime’s functionality, and show how they relate to Kubernetes.
The functionality of container runtimes breaks down to “high level” and “low level”:

Container
A running container image.

Image
A container image is the file that is pulled down from a registry server and used
locally as a mount point when starting a container.

Container engine
A container engine accepts user requests via command-line options to pull
images and run a container.

Container runtime
The container runtime is the low-level piece of software in a container engine
that deals with running a container.

Base image
A starting point for container images; to reduce build image sizes and complex‐
ity, users can start with a base image and make incremental changes on top of it.

Image layer
Repositories are often referred to as images or container images, but actually they
are made up of one or more layers. Image layers in a repository are connected in
a parent-child relationship. Each image layer represents changes between itself
and the parent layer.

Image format
Container engines have their own container image format, such as LXD, RKT,
and Docker.

Registry
A registry stores container images and allows for users to upload, download, and
update container images.

Repository
Repositories can be equivalent to a container image. The important distinction is
that repositories are made up of layers and metadata about the image; this is the
manifest.

Tag
A tag is a user-defined name for different versions of a container image.

96 | Chapter 3: Container Networking Basics

Container host
The container host is the system that runs the container with a container engine.

Container orchestration
This is what Kubernetes does! It dynamically schedules container workloads for a
cluster of container hosts.

Cgroups and namespaces are Linux primitives to create containers;
they are discussed in the next section.

An example of “low-level” functionality is creating cgroups and namespaces for con‐
tainers, the bare minimum to run one. Developers require more than that when
working with containers. They need to build and test containers and deploy them;
these are considered a “high-level” functionality. Each container runtime offers vari‐
ous levels of functionality. The following is a list of high and low functionality:

Low-level container runtime functionality
• Creating containers
• Running containers

High-level container runtime functionality
• Formatting container images
• Building container images
• Managing container images
• Managing instances of containers
• Sharing container images

Over the next few pages, we will discuss runtimes that implement the previous func‐
tionality. Each of the following projects has its strengths and weaknesses to provide
high- and low-level functionality. Some are good to know about for historical reasons
but no longer exist or have merged with other projects:

Low-level container runtimes

LXC
C API for creating Linux containers

runC
CLI for OCI-compliant containers

Introduction to Containers | 97

High-level container runtimes

containerd
Container runtime split off from Docker, a graduated CNCF project

CRI-O
Container runtime interface using the Open Container Initiative (OCI) spec‐
ification, an incubating CNCF project

Docker
Open source container platform

lmctfy
Google containerization platform

rkt
CoreOS container specification

OCI
OCI promotes common, minimal, open standards, and specifications for container
technology.

The idea for creating a formal specification for container image formats and runtimes
allows a container to be portable across all major operating systems and platforms to
ensure no undue technical barriers. The three values guiding the OCI project are as
follows:

Composable
Tools for managing containers should have clean interfaces. They should also not
be bound to specific projects, clients, or frameworks and should work across all
platforms.

Decentralized
The format and runtime should be well specified and developed by the commu‐
nity, not one organization. Another goal of the OCI project is independent
implementations of tools to run the same container.

Minimalist
The OCI spec strives to do several things well, be minimal and stable, and enable
innovation and experimentation.

Docker donated a draft for the base format and runtime. It also donated code for a
reference implementation to the OCI. Docker took the contents of the libcontainer
project, made it run independently of Docker, and donated it to the OCI project. That
codebase is runC, which can be found on GitHub.

98 | Chapter 3: Container Networking Basics

https://oreil.ly/A49v0

Let’s discuss several early container initiatives and their capabilities. This section will
end with where Kubernetes is with container runtimes and how they work together.

LXC
Linux Containers, LXC, was created in 2008. LXC combines cgroups and namespaces
to provide an isolated environment for running applications. LXC’s goal is to create
an environment as close as possible to a standard Linux without the need for a sepa‐
rate kernel. LXC has separate components: the liblxc library, several programming
language bindings, Python versions 2 and 3, Lua, Go, Ruby, Haskell, a set of standard
tools, and container templates.

runC
runC is the most widely used container runtime developed initially as part of Docker
and was later extracted as a separate tool and library. runC is a command-line tool for
running applications packaged according to the OCI format and is a compliant
implementation of the OCI spec. runC uses libcontainer, which is the same con‐
tainer library powering a Docker engine installation. Before version 1.11, the Docker
engine was used to manage volumes, networks, containers, images, etc. Now, the
Docker architecture has several components, and the runC features include the
following:

• Full support for Linux namespaces, including user namespaces
• Native support for all security features available in Linux

— SELinux, AppArmor, seccomp, control groups, capability drop, pivot_root,
UID/GID dropping, etc.

• Native support of Windows 10 containers
• Planned native support for the entire hardware manufacturer’s ecosystem
• A formally specified configuration format, governed by the OCI under the Linux

Foundation

containerd
containerd is a high-level runtime that was split off from Docker. containerd is a
background service that acts as an API facade for various container runtimes and
OSs. containerd has various components that provide it with high-level functionality.
containerd is a service for Linux and Windows that manages its host system’s com‐
plete container life cycle, image transfer, storage, container execution, and network
attachment. containerd’s client CLI tool is ctr, and it is for development and debug‐
ging purposes for direct communication with containerd. containerd-shim is the
component that allows for daemonless containers. It resides as the parent of the con‐
tainer’s process to facilitate a few things. containerd allows the runtimes, i.e., runC, to

Introduction to Containers | 99

exit after it starts the container. This way, we do not need the long-running runtime
processes for containers. It also keeps the standard I/O and other file descriptors
open for the container if containerd and Docker die. If the shim does not run, then
the pipe’s parent side would be closed, and the container would exit. containerd-shim
also allows the container’s exit status to be reported back to a higher-level tool like
Docker without having the container process’s actual parent do it.

lmctfy
Google started lmctfy as its open source Linux container technology in 2013. lmctfy
is a high-level container runtime that provides the ability to create and delete con‐
tainers but is no longer actively maintained and was porting over to libcontainer,
which is now containerd. lmctfy provided an API-driven configuration without
developers worrying about the details of cgroups and namespace internals.

rkt
rkt started at CoreOS as an alternative to Docker in 2014. It is written in Go, uses
pods as its basic compute unit, and allows for a self-contained environment for appli‐
cations. rkt’s native image format was the App Container Image (ACI), defined in the
App Container spec; this was deprecated in favor of the OCI format and specification
support. It supports the CNI specification and can run Docker images and OCI
images. The rkt project was archived in February 2020 by the maintainers.

Docker
Docker, released in 2013, solved many of the problems that developers had running
containers end to end. It has all this functionality for developers to create, maintain,
and deploy containers:

• Formatting container images
• Building container images
• Managing container images
• Managing instances of containers
• Sharing container images
• Running containers

Figure 3-4 shows us the architecture of the Docker engine and its various compo‐
nents. Docker began as a monolith application, building all the previous functionality
into a single binary known as the Docker engine. The engine contained the Docker
client or CLI that allows developers to build, run, and push containers and images.
The Docker server runs as a daemon to manage the data volumes and networks for
running containers. The client communicates to the server through the Docker API.

100 | Chapter 3: Container Networking Basics

It uses containerd to manage the container life cycle, and it uses runC to spawn the
container process.

Figure 3-4. Docker engine

In the past few years, Docker has broken apart this monolith into separate compo‐
nents. To run a container, the Docker engine creates the image and passes it to con‐
tainerd. containerd calls containerd-shim, which uses runC to run the container.
Then, containerd-shim allows the runtime (runC in this case) to exit after it starts the
container. This way, we can run daemonless containers because we do not need the
long-running runtime processes for containers.

Docker provides a separation of concerns for application developers and system
administrators. It allows the developers to focus on building their apps, and system
admins focus on deployment. Docker provides a fast development cycle; to test new
versions of Golang for our web app, we can update the base image and run tests
against it. Docker provides application portability between running on-premise, in
the cloud, or in any other data center. Its motto is to build, ship, and run anywhere. A
new container can quickly be provisioned for scalability and run more apps on one
host machine, increasing that machine’s efficiency.

CRI-O
CRI-O is an OCI-based implementation of the Kubernetes CRI, while the OCI is a set
of specifications that container runtime engines must implement. Red Hat started the
CRI project in 2016 and in 2019 contributed it to the CNCF. CRI is a plugin interface
that enables Kubernetes, via Kubelet, to communicate with any container runtime
that satisfies the CRI interface. CRI-O development began in 2016 after the

Introduction to Containers | 101

Kubernetes project introduced CRI, and CRI-O 1.0 was released in 2017. The CRI-O
is a lightweight CRI runtime made as a Kubernetes-specific high-level runtime built
on gRPC and Protobuf over a UNIX socket. Figure 3-5 points out where the CRI fits
into the whole picture with the Kubernetes architecture. CRI-O provides stability in
the Kubernetes project, with a commitment to passing Kubernetes tests.

Figure 3-5. CRI about Kubernetes

There have been many companies, technologies, and innovations in the container
space. This section has been a brief history of that. The industry has landed on mak‐
ing sure the container landscape remains an open OCI project for all to use across
various ways to run containers. Kubernetes has helped shaped this effort as well with
the adaption of the CRI-O interface. Understanding the components of the container
is vital to all administrators of container deployments and developers using contain‐
ers. A recent example of this importance is in Kubernetes 1.20, where dockershim
support will be deprecated. The Docker runtime utilizing the dockershim for admin‐
istrators is deprecated, but developers can still use Docker to build OCI-compliant
containers to run.

102 | Chapter 3: Container Networking Basics

The first CRI implementation was the dockershim, which provided
a layer of abstraction in front of the Docker engine.

Now we will dive deeper into the container technology that powers them.

Container Primitives
No matter if you are using Docker or containerd, runC starts and manages the actual
containers for them. In this section, we will review what runC takes care of for devel‐
opers from a container perspective. Each of our containers has Linux primitives
known as control groups and namespaces. Figure 3-6 shows an example of what this
looks like; cgroups control access to resources in the kernel for our containers, and
namespaces are individual slices of resources to manage separately from the root
namespaces, i.e., the host.

Figure 3-6. Namespaces and control groups

To help solidify these concepts, let’s dig into control groups and namespaces a bit
further.

Control Groups
In short, a cgroup is a Linux kernel feature that limits, accounts for, and isolates
resource usage. Initially released in Linux 2.6.24, cgroups allow administrators to
control different CPU systems and memory for particulate processes. Cgroups are
provided through pseudofilesystems and are maintained by the core kernel code in
cgroups. These separate subsystems maintain various cgroups in the kernel:

Container Primitives | 103

CPU
The process can be guaranteed a minimum number of CPU shares.

Memory
These set up memory limits for a process.

Disk I/O
This and other devices are controlled via the device’s cgroup subsystem.

Network
This is maintained by the net_cls and marks packets leaving the cgroup.

lscgroup is a command-line tool that lists all the cgroups currently in the system.

runC will create the cgroups for the container at creation time. A cgroup controls
how much of a resource a container can use, while namespaces control what pro‐
cesses inside the container can see.

Namespaces
Namespaces are features of the Linux kernel that isolate and virtualize system resour‐
ces of a collection of processes. Here are examples of virtualized resources:

PID namespace
Processes ID, for process isolation

Network namespace
Manages network interfaces and a separate networking stack

IPC namespace
Manages access to interprocess communication (IPC) resources

Mount namespace
Manages filesystem mount points

UTS namespace
UNIX time-sharing; allows single hosts to have different host and domain names
for different processes

UID namespaces
User ID; isolates process ownership with separate user and group assignments

A process’s user and group IDs can be different inside and outside a user’s namespace.
A process can have an unprivileged user ID outside a user namespace while at the
same time having a user ID of 0 inside the container user namespace. The process has
root privileges for execution inside the user namespace but is unprivileged for opera‐
tions outside the namespace.

104 | Chapter 3: Container Networking Basics

Example 3-1 is an example of how to inspect the namespaces for a process. All infor‐
mation for a process is on the /proc filesystem in Linux. PID 1’s PID namespace is
4026531836, and listing all the namespaces shows that the PID namespace IDs match.

Example 3-1. Namespaces of a single process

vagrant@ubuntu-xenial:~$ sudo ps -p 1 -o pid,pidns
 PID PIDNS
 1 4026531836

vagrant@ubuntu-xenial:~$ sudo ls -l /proc/1/ns
total 0
lrwxrwxrwx 1 root root 0 Dec 12 20:41 cgroup -> cgroup:[4026531835]
lrwxrwxrwx 1 root root 0 Dec 12 20:41 ipc -> ipc:[4026531839]
lrwxrwxrwx 1 root root 0 Dec 12 20:41 mnt -> mnt:[4026531840]
lrwxrwxrwx 1 root root 0 Dec 12 20:41 net -> net:[4026531957]
lrwxrwxrwx 1 root root 0 Dec 12 20:41 pid -> pid:[4026531836]
lrwxrwxrwx 1 root root 0 Dec 12 20:41 user -> user:[4026531837]
lrwxrwxrwx 1 root root 0 Dec 12 20:41 uts -> uts:[4026531838]

Figure 3-7 shows that effectively these two Linux primitives allow application devel‐
opers to control and manage their applications separate from the hosts and other
applications either in containers or by running natively on the host.

Figure 3-7. Cgroups and namespaces powers combined

The following examples use Ubuntu 16.04 LTS Xenial Xerus. If you want to follow
along on your system, more information can be found in this book’s code repo. The
repo contains the tools and configurations for building the Ubuntu VM and Docker
containers. Let’s get started with setting up and testing our namespaces.

Container Primitives | 105

Setting Up Namespaces
Figure 3-8 outlines a basic container network setup. In the following pages, we will
walk through all the Linux commands that the low-level runtimes complete for con‐
tainer network creation.

Figure 3-8. Root network namespace and container network namespace

The following steps show how to create the networking setup shown in Figure 3-8:

1. Create a host with a root network namespace.
2. Create a new network namespace.
3. Create a veth pair.
4. Move one side of the veth pair into a new network namespace.
5. Address side of the veth pair inside the new network namespace.
6. Create a bridge interface.
7. Address the bridge interface.
8. Attach the bridge to the host interface.
9. Attach one side of the veth pair to the bridge interface.

10. Profit.

The following are all the Linux commands needed to create the network namespace,
bridge, and veth pairs and wire them together:

106 | Chapter 3: Container Networking Basics

$ echo 1 > /proc/sys/net/ipv4/ip_forward
$ sudo ip netns add net1
$ sudo ip link add veth0 type veth peer name veth1
$ sudo ip link set veth1 netns net1
$ sudo ip link add veth0 type veth peer name veth1
$ sudo ip netns exec net1 ip addr add 192.168.1.101/24 dev veth1
$ sudo ip netns exec net1 ip link set dev veth1 up
$ sudo ip link add br0 type bridge
$ sudo ip link set dev br0 up
$ sudo ip link set enp0s3 master br0
$ sudo ip link set veth0 master br0
$ sudo ip netns exec net1 ip route add default via 192.168.1.100

Let’s dive into an example and outline each command.

The ip Linux command sets up and controls the network namespaces.

You can find more information about ip on its man page.

In Example 3-2, we have used Vagrant and VirtualBox to create a fresh installation of
Ubuntu for our testing purposes.

Example 3-2. Ubuntu testing virtual machine

$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/xenial64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'ubuntu/xenial64' version '20200904.0.0' is up to date...
==> default: Setting the name of the VM:
advanced_networking_code_examples_default_1600085275588_55198
==> default: Clearing any previously set network interfaces...
==> default: Available bridged network interfaces:
1) en12: USB 10/100 /1000LAN
2) en5: USB Ethernet(?)
3) en0: Wi-Fi (Wireless)
4) llw0
5) en11: USB 10/100/1000 LAN 2
6) en4: Thunderbolt 4
7) en1: Thunderbolt 1
8) en2: Thunderbolt 2
9) en3: Thunderbolt 3
==> default: When choosing an interface, it is usually the one that is
==> default: being used to connect to the internet.
==> default:
 default: Which interface should the network bridge to? 1
==> default: Preparing network interfaces based on configuration...

Container Primitives | 107

https://oreil.ly/jBKL7

 default: Adapter 1: nat
 default: Adapter 2: bridged
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection reset. Retrying...
 default:
 default: Vagrant insecure key detected. Vagrant will automatically replace
 default: this with a newly generated keypair for better security.
 default:
 default: Inserting generated public key within guest...
 default: Removing insecure key from the guest if it's present...
 default: Key inserted! Disconnecting and reconnecting using new SSH key...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Configuring and enabling network interfaces...
==> default: Mounting shared folders...
 default: /vagrant =>
 /Users/strongjz/Documents/code/advanced_networking_code_examples

Refer to the book repo for the Vagrantfile to reproduce this.

Vagrant is a local virtual machine manager created by HashiCorp.

After Vagrant boots our virtual machine, we can use Vagrant to ssh into this VM:

$± |master U:2 ?:2 ✗| → vagrant ssh
Welcome to Ubuntu 16.04.7 LTS (GNU/Linux 4.4.0-189-generic x86_64)

vagrant@ubuntu-xenial:~$

IP forwarding is an operating system’s ability to accept incoming network packets on
one interface, recognize them for another, and pass them on to that network accord‐
ingly. When enabled, IP forwarding allows a Linux machine to receive incoming
packets and forward them. A Linux machine acting as an ordinary host would not
need to have IP forwarding enabled because it generates and receives IP traffic for its
purposes. By default, it is turned off; let’s enable it on our Ubuntu instance:

vagrant@ubuntu-xenial:~$ sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 0
vagrant@ubuntu-xenial:~$ sudo echo 1 > /proc/sys/net/ipv4/ip_forward

108 | Chapter 3: Container Networking Basics

https://oreil.ly/o8Qo0

vagrant@ubuntu-xenial:~$ sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 1

With our install of the Ubuntu instance, we can see that we do not have any addi‐
tional network namespaces, so let’s create one:

vagrant@ubuntu-xenial:~$ sudo ip netns list

ip netns allows us to control the namespaces on the server. Creating one is as easy as
typing ip netns add net1:

vagrant@ubuntu-xenial:~$ sudo ip netns add net1

As we work through this example, we can see the network namespace we just created:

vagrant@ubuntu-xenial:~$ sudo ip netns list
net1

Now that we have a new network namespace for our container, we will need a veth
pair for communication between the root network namespace and the container net‐
work namespace net1.

ip again allows administrators to create the veth pairs with a straightforward com‐
mand. Remember from Chapter 2 that veth comes in pairs and acts as a conduit
between network namespaces, so packets from one end are automatically forwarded
to the other.

vagrant@ubuntu-xenial:~$ sudo ip link add veth0 type veth peer name veth1

Interfaces 4 and 5 are the veth pairs in the command output. We
can also see which are paired with each other, veth1@veth0 and
veth0@veth1.

The ip link list command verifies the veth pair creation:

vagrant@ubuntu-xenial:~$ ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP mode DEFAULT group default qlen 1000
 link/ether 02:8f:67:5f:07:a5 brd ff:ff:ff:ff:ff:ff
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:0f:4e:0d brd ff:ff:ff:ff:ff:ff
4: veth1@veth0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc
noop state DOWN mode DEFAULT group default qlen 1000
 link/ether 72:e4:03:03:c1:96 brd ff:ff:ff:ff:ff:ff
5: veth0@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc
noop state DOWN mode DEFAULT group default qlen 1000

Container Primitives | 109

 link/ether 26:1a:7f:2c:d4:48 brd ff:ff:ff:ff:ff:ff
vagrant@ubuntu-xenial:~$

Now let’s move veth1 into the new network namespace created previously:

vagrant@ubuntu-xenial:~$ sudo ip link set veth1 netns net1

ip netns exec allows us to verify the network namespace’s configuration. The out‐
put verifies that veth1 is now in the network namespace net:

vagrant@ubuntu-xenial:~$ sudo ip netns exec net1 ip link list
4: veth1@if5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state
DOWN mode DEFAULT group default qlen 1000
 link/ether 72:e4:03:03:c1:96 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Network namespaces are entirely separate TCP/IP stacks in the Linux kernel. Being a
new interface and in a new network namespace, the veth interface will need IP
addressing in order to carry packets from the net1 namespace to the root namespace
and beyond the host:

vagrant@ubuntu-xenial:~$ sudo ip netns exec
net1 ip addr add 192.168.1.100/24 dev veth1

As with host networking interfaces, they will need to be “turned on”:

vagrant@ubuntu-xenial:~$ sudo ip netns exec net1 ip link set dev veth1 up

The state has now transitioned to LOWERLAYERDOWN. The status NO-CARRIER points in
the right direction. Ethernet needs a cable to be connected; our upstream veth pair is
not on yet either. The veth1 interface is up and addressed but effectively still
“unplugged”:

vagrant@ubuntu-xenial:~$ sudo ip netns exec net1 ip link list veth1
4: veth1@if5: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500
qdisc noqueue state LOWERLAYERDOWN mode DEFAULT
group default qlen 1000 link/ether 72:e4:03:03:c1:96
brd ff:ff:ff:ff:ff:ff link-netnsid 0

Let’s turn up the veth0 side of the pair now:

vagrant@ubuntu-xenial:~$ sudo ip link set dev veth0 up
vagrant@ubuntu-xenial:~$ sudo ip link list
5: veth0@if4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UP mode DEFAULT group default qlen 1000
link/ether 26:1a:7f:2c:d4:48 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Now the veth pair inside the net1 namespace is UP:

vagrant@ubuntu-xenial:~$ sudo ip netns exec net1 ip link list
4: veth1@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UP mode DEFAULT group default qlen 1000
link/ether 72:e4:03:03:c1:96 brd ff:ff:ff:ff:ff:ff link-netnsid 0

110 | Chapter 3: Container Networking Basics

Both sides of the veth pair report up; we need to connect the root namespace veth
side to the bridge interface. Make sure to select the interface you’re working with, in
this case enp0s8; it may be different for others:

vagrant@ubuntu-xenial:~$ sudo ip link add br0 type bridge
vagrant@ubuntu-xenial:~$ sudo ip link set dev br0 up
vagrant@ubuntu-xenial:~$ sudo ip link set enp0s8 master br0
vagrant@ubuntu-xenial:~$ sudo ip link set veth0 master br0

We can see that the enp0s8 and veth0 report are part of the bridge br0 interface, mas
ter br0 state up.

Next, let’s test connectivity to our network namespace:

vagrant@ubuntu-xenial:~$ ping 192.168.1.100 -c 4
PING 192.168.1.100 (192.168.1.100) 56(84) bytes of data.
From 192.168.1.10 icmp_seq=1 Destination Host Unreachable
From 192.168.1.10 icmp_seq=2 Destination Host Unreachable
From 192.168.1.10 icmp_seq=3 Destination Host Unreachable
From 192.168.1.10 icmp_seq=4 Destination Host Unreachable

--- 192.168.1.100 ping statistics ---
4 packets transmitted, 0 received, +4 errors, 100% packet loss, time 6043ms

Our new network namespace does not have a default route, so it does not know
where to route our packets for the ping requests:

$ sudo ip netns exec net1
ip route add default via 192.168.1.100
$ sudo ip netns exec net1 ip r
default via 192.168.1.100 dev veth1
192.168.1.0/24 dev veth1 proto kernel scope link src 192.168.1.100

Let’s try that again:

$ ping 192.168.2.100 -c 4
PING 192.168.2.100 (192.168.2.100) 56(84) bytes of data.
64 bytes from 192.168.2.100: icmp_seq=1 ttl=64 time=0.018 ms
64 bytes from 192.168.2.100: icmp_seq=2 ttl=64 time=0.028 ms
64 bytes from 192.168.2.100: icmp_seq=3 ttl=64 time=0.036 ms
64 bytes from 192.168.2.100: icmp_seq=4 ttl=64 time=0.043 ms

--- 192.168.2.100 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2997ms

$ ping 192.168.2.101 -c 4
PING 192.168.2.101 (192.168.2.101) 56(84) bytes of data.
64 bytes from 192.168.2.101: icmp_seq=1 ttl=64 time=0.016 ms
64 bytes from 192.168.2.101: icmp_seq=2 ttl=64 time=0.017 ms
64 bytes from 192.168.2.101: icmp_seq=3 ttl=64 time=0.016 ms
64 bytes from 192.168.2.101: icmp_seq=4 ttl=64 time=0.021 ms

--- 192.168.2.101 ping statistics ---

Container Primitives | 111

4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.016/0.017/0.021/0.004 ms

Success! We have created the bridge interface and veth pairs, migrated one to the new
network namespace, and tested connectivity. Example 3-3 is a recap of all the com‐
mands we ran to accomplish that.

Example 3-3. Recap network namespace creation

$ echo 1 > /proc/sys/net/ipv4/ip_forward
$ sudo ip netns add net1
$ sudo ip link add veth0 type veth peer name veth1
$ sudo ip link set veth1 netns net1
$ sudo ip link add veth0 type veth peer name veth1
$ sudo ip netns exec net1 ip addr add 192.168.1.101/24 dev veth1
$ sudo ip netns exec net1 ip link set dev veth1 up
$ sudo ip link add br0 type bridge
$ sudo ip link set dev br0 up
$ sudo ip link set enp0s3 master br0
$ sudo ip link set veth0 master br0
$ sudo ip netns exec net1 ip route add default via 192.168.1.100

For a developer not familiar with all these commands, that is a lot to remember and
very easy to bork up! If the bridge information is incorrect, it could take down an
entire part of the network with network loops. These issues are ones that system
administrators would like to avoid, so they prevent developers from making those
types of networking changes on the system. Fortunately, containers help remove the
developers’ strain to remember all these commands and alleviate system admins’ fear
of giving devs access to run those commands.

These commands are all needed just for the network namespace for every con‐
tainer creation and deletion. The namespace creation in Example 3-3 is the con‐
tainer runtime’s job. Docker manages this for us, in its way. The CNI project
standardizes the network creation for all systems. The CNI, much like the OCI, is a
way for developers to standardize and prioritize specific tasks for managing parts of
the container’s life cycle. In later sections, we will discuss CNI.

Container Network Basics
The previous section showed us all the commands needed to create namespaces for
our networking. Let’s investigate how Docker does this for us. We also only used the
bridge mode; there several other modes for container networking. This section will
deploy several Docker containers and examine their networking and explain how
containers communicate externally to the host and with each other.

Let’s start by discussing the several network “modes” used when working with
containers:

112 | Chapter 3: Container Networking Basics

None
No networking disables networking for the container. Use this mode when the
container does not need network access.

Bridge
In bridge networking, the container runs in a private network internal to the
host. Communication with other containers in the network is open. Communi‐
cation with services outside the host goes through Network Address Translation
(NAT) before exiting the host. Bridge mode is the default mode of networking
when the --net option is not specified.

Host
In host networking, the container shares the same IP address and the network
namespace as that of the host. Processes running inside this container have the
same network capabilities as services running directly on the host. This mode is
useful if the container needs access to network resources on the hosts. The con‐
tainer loses the benefit of network segmentation with this mode of networking.
Whoever is deploying the containers will have to manage and contend with the
ports of services running this node.

The host networking driver works only on Linux hosts. Docker
Desktop for Mac and Windows, or Docker EE for Windows Server,
does not support host networking mode.

Macvlan
Macvlan uses a parent interface. That interface can be a host interface such as
eth0, a subinterface, or even a bonded host adapter that bundles Ethernet inter‐
faces into a single logical interface. Like all Docker networks, Macvlan networks
are segmented from each other, providing access within a network, but not
between networks. Macvlan allows a physical interface to have multiple MAC
and IP addresses using Macvlan subinterfaces. Macvlan has four types: Private,
VEPA, Bridge (which Docker default uses), and Passthrough. With a bridge, use
NAT for external connectivity. With Macvlan, since hosts are directly mapped to
the physical network, external connectivity can be done using the same DHCP
server and switch that the host uses.

Most cloud providers block Macvlan networking. Administrative
access to networking equipment is needed.

Container Network Basics | 113

IPvlan
IPvlan is similar to Macvlan, with a significant difference: IPvlan does not assign
MAC addresses to created subinterfaces. All subinterfaces share the parent’s
interface MAC address but use different IP addresses. IPvlan has two modes, L2
or L3. In IPvlan, L2, or layer 2, mode is analog to the Macvlan bridge mode. IPv‐
lan L3, or layer 3, mode masquerades as a layer 3 device between the subinterfa‐
ces and parent interface.

Overlay
Overlay allows for the extension of the same network across hosts in a container
cluster. The overlay network virtually sits on top of the underlay/physical net‐
works. Several open source projects create these overlay networks, which we will
discuss later in the chapter.

Custom
Custom bridge networking is the same as bridge networking but uses a bridge
explicitly created for that container. An example of using this would be a con‐
tainer that runs on a database bridge network. A separate container can have an
interface on the default and database bridge, enabling it to communicate with
both networks as needed.

Container-defined networking allows a container to share the address and network
configuration of another container. This sharing enables process isolation between
containers, where each container runs one service but where services can still com‐
municate with one another on 127.0.0.1.

To test all these modes, we need to continue to use a Vagrant Ubuntu host but now
with Docker installed. Docker for Mac and Windows does not support host network‐
ing mode, so we must use Linux for this example. You can do this with the provi‐
sioned machine in Example 1-1 or use the Docker Vagrant version in the book’s code
repo. The Ubuntu Docker install directions are as follows if you want to do it
manually:

$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/xenial64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box
'ubuntu/xenial64' version '20200904.0.0' is up to date...
==> default: Setting the name of the VM:
advanced_networking_code_examples_default_1600085275588_55198
==> default: Clearing any previously set network interfaces...
==> default: Available bridged network interfaces:
1) en12: USB 10/100 /1000LAN
2) en5: USB Ethernet(?)
3) en0: Wi-Fi (Wireless)
4) llw0
5) en11: USB 10/100/1000 LAN 2

114 | Chapter 3: Container Networking Basics

6) en4: Thunderbolt 4
7) en1: Thunderbolt 1
8) en2: Thunderbolt 2
9) en3: Thunderbolt 3
==> default: When choosing an interface, it is usually the one that is
==> default: being used to connect to the internet.
==> default:
 default: Which interface should the network bridge to? 1
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
 default: Adapter 2: bridged
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection reset. Retrying...
 default:
 default: Vagrant insecure key detected. Vagrant will automatically replace
 default: this with a newly generated keypair for better security.
 default:
 default: Inserting generated public key within guest...
 default: Removing insecure key from the guest if it's present...
 default: Key inserted! Disconnecting and reconnecting using new SSH key...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Configuring and enabling network interfaces...
==> default: Mounting shared folders...
 default: /vagrant =>
 /Users/strongjz/Documents/code/advanced_networking_code_examples
 default: + sudo docker run hello-world
 default: Unable to find image 'hello-world:latest' locally
 default: latest: Pulling from library/hello-world
 default: 0e03bdcc26d7:
 default: Pulling fs layer
 default: 0e03bdcc26d7:
 default: Verifying Checksum
 default: 0e03bdcc26d7:
 default: Download complete
 default: 0e03bdcc26d7:
 default: Pull complete
 default: Digest:
 sha256:4cf9c47f86df71d48364001ede3a4fcd85ae80ce02ebad74156906caff5378bc
 default: Status: Downloaded newer image for hello-world:latest
 default:
 default: Hello from Docker!
 default: This message shows that your
 default: installation appears to be working correctly.
 default:

Container Network Basics | 115

 default: To generate this message, Docker took the following steps:
 default: 1. The Docker client contacted the Docker daemon.
 default: 2. The Docker daemon pulled the "hello-world" image
 default: from the Docker Hub.
 default: (amd64)
 default: 3. The Docker daemon created a new container from that image
 default: which runs the executable that produces the output you are
 default: currently reading.
 default: 4. The Docker daemon streamed that output to the Docker
 default: client, which sent it to your terminal.
 default:
 default: To try something more ambitious, you can run an Ubuntu
 default: container with:
 default: $ docker run -it ubuntu bash
 default:
 default: Share images, automate workflows, and more with a free Docker ID:
 default: https://hub.docker.com
 default:
 default: For more examples and ideas, visit:
 default: https://docs.docker.com/get-started

Now that we have the host up, let’s begin investigating the different networking setups
we have to work with in Docker. Example 3-4 shows that Docker creates three net‐
work types during the install: bridge, host, and none.

Example 3-4. Docker networks

vagrant@ubuntu-xenial:~$ sudo docker network ls
NETWORK ID NAME DRIVER SCOPE
1fd1db59c592 bridge bridge local
eb34a2105b0f host host local
941ce103b382 none null local
vagrant@ubuntu-xenial:~$

The default is a Docker bridge, and a container gets attached to it and provisioned
with an IP address in the 172.17.0.0/16 default subnet. Example 3-5 is a view of
Ubuntu’s default interfaces and the Docker install that creates the docker0 bridge
interface for the host.

Example 3-5. Docker bridge interface

vagrant@ubuntu-xenial:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc
noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3:

116 | Chapter 3: Container Networking Basics

<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
 link/ether 02:8f:67:5f:07:a5 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::8f:67ff:fe5f:7a5/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8:
<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
 link/ether 08:00:27:22:0e:46 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.19/24 brd 192.168.1.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet 192.168.1.20/24 brd 192.168.1.255 scope global secondary enp0s8
 valid_lft forever preferred_lft forever
 inet6 2605:a000:160d:517:a00:27ff:fe22:e46/64 scope global mngtmpaddr dynamic
 valid_lft 604600sec preferred_lft 604600sec
 inet6 fe80::a00:27ff:fe22:e46/64 scope link
 valid_lft forever preferred_lft forever
4: docker0:
<NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group
default
 link/ether 02:42:7d:50:c7:01 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:7dff:fe50:c701/64 scope link
 valid_lft forever preferred_lft forever

This is the loopback interface.

enp0s3 is our NAT’ed virtual box interface.

enp0s8 is the host interface; this is on the same network as our host and uses
DHCP to get the 192.168.1.19 address of default Docker bridge.

The default Docker container interface uses bridge mode.

Example 3-6 started a busybox container with the docker run command and reques‐
ted that the Docker returns the container’s IP address. Docker default NATed address
is 172.17.0.0/16, with our busybox container getting 172.17.0.2.

Example 3-6. Docker bridge

vagrant@ubuntu-xenial:~$ sudo docker run -it busybox ip a
Unable to find image 'busybox:latest' locally
latest: Pulling from library/busybox
df8698476c65: Pull complete
Digest: sha256:d366a4665ab44f0648d7a00ae3fae139d55e32f9712c67accd604bb55df9d05a
Status: Downloaded newer image for busybox:latest

Container Network Basics | 117

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
7: eth0@if8: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

The host networking in Example 3-7 shows that the container shares the same net‐
work namespace as the host. We can see that the interfaces are the same as that of the
host; enp0s3, enp0s8, and docker0 are present in the container ip a command
output.

Example 3-7. Docker host networking

vagrant@ubuntu-xenial:~$ sudo docker run -it --net=host busybox ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever`
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
 link/ether 02:8f:67:5f:07:a5 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::8f:67ff:fe5f:7a5/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
 link/ether 08:00:27:22:0e:46 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.19/24 brd 192.168.1.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet 192.168.1.20/24 brd 192.168.1.255 scope global secondary enp0s8
 valid_lft forever preferred_lft forever
 inet6 2605:a000:160d:517:a00:27ff:fe22:e46/64 scope global dynamic
 valid_lft 604603sec preferred_lft 604603sec
 inet6 fe80::a00:27ff:fe22:e46/64 scope link
 valid_lft forever preferred_lft forever
4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
 link/ether 02:42:7d:50:c7:01 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:7dff:fe50:c701/64 scope link
 valid_lft forever preferred_lft forever

From the veth bridge example previously set up, let’s see how much simpler it is when
Docker manages that for us. To view this, we need a process to keep the container
running. The following command starts up a busybox container and drops into an sh
command line:

118 | Chapter 3: Container Networking Basics

vagrant@ubuntu-xenial:~$ sudo docker run -it --rm busybox /bin/sh
/#

We have a loopback interface, lo, and an Ethernet interface eth0 connected to veth12,
with a Docker default IP address of 172.17.0.2. Since our previous command only
outputted an ip a result and the container exited afterward, Docker reused the IP
address 172.17.0.2 for the running busybox container:

/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
11: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

Running the ip r inside the container’s network namespace, we can see that the con‐
tainer’s route table is automatically set up as well:

/ # ip r
default via 172.17.0.1 dev eth0
172.17.0.0/16 dev eth0 scope link src 172.17.0.2

If we open a new terminal and vagrant ssh into our Vagrant Ubuntu instance and
run the docker ps command, it shows all the information in the running busybox
container:

vagrant@ubuntu-xenial:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND
3b5a7c3a74d5 busybox "/bin/sh"

CREATED STATUS PORTS NAMES
47 seconds ago Up 46 seconds competent_mendel

We can see the veth interface Docker set up for the container veth68b6f80@if11 on
the same host’s networking namespace. It is a member of the bridge for docker0 and
is turned on master docker0 state UP:

vagrant@ubuntu-xenial:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default qlen 1000
 link/ether 02:8f:67:5f:07:a5 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3

Container Network Basics | 119

 valid_lft forever preferred_lft forever
 inet6 fe80::8f:67ff:fe5f:7a5/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default qlen 1000
 link/ether 08:00:27:22:0e:46 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.19/24 brd 192.168.1.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet 192.168.1.20/24 brd 192.168.1.255 scope global secondary enp0s8
 valid_lft forever preferred_lft forever
 inet6 2605:a000:160d:517:a00:27ff:fe22:e46/64 scope global mngtmpaddr dynamic
 valid_lft 604745sec preferred_lft 604745sec
 inet6 fe80::a00:27ff:fe22:e46/64 scope link
 valid_lft forever preferred_lft forever
4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default
 link/ether 02:42:7d:50:c7:01 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:7dff:fe50:c701/64 scope link
 valid_lft forever preferred_lft forever
12: veth68b6f80@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
master docker0 state UP group default
 link/ether 3a:64:80:02:87:76 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet6 fe80::3864:80ff:fe02:8776/64 scope link
 valid_lft forever preferred_lft forever

The Ubuntu host’s route table shows Docker’s routes for reaching containers running
on the host:

vagrant@ubuntu-xenial:~$ ip r
default via 192.168.1.1 dev enp0s8
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1
192.168.1.0/24 dev enp0s8 proto kernel scope link src 192.168.1.19

By default, Docker does not add the network namespaces it creates to /var/run
where ip netns list expects newly created network namespaces. Let’s work through
how we can see those namespaces now. Three steps are required to list the Docker
network namespaces from the ip command:

1. Get the running container’s PID.
2. Soft link the network namespace from /proc/PID/net/ to /var/run/netns.
3. List the network namespace.

120 | Chapter 3: Container Networking Basics

docker ps outputs the container ID needed to inspect the running PID on the host
PID namespace:

vagrant@ubuntu-xenial:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND
1f3f62ad5e02 busybox "/bin/sh"

CREATED STATUS PORTS NAMES
11 minutes ago Up 11 minutes determined_shamir

docker inspect allows us to parse the output and get the host’s process’s PID. If we
run ps -p on the host PID namespace, we can see it is running sh, which tracks our
docker run command:

vagrant@ubuntu-xenial:~$ sudo docker inspect -f '{{.State.Pid}}' 1f3f62ad5e02
25719
vagrant@ubuntu-xenial:~$ ps -p 25719
 PID TTY TIME CMD
25719 pts/0 00:00:00 sh

1f3f62ad5e02 is the container ID, and 25719 is the PID of the busybox container
running sh, so now we can create a symbolic link for the container’s network name‐
space created by Docker to where ip expects with the following command:

$ sudo ln -sfT /proc/25719/ns/net /var/run/netns/1f3f62ad5e02

When using the container ID and process ID from the examples,
keep in mind they will be different on your systems.

Now the ip netns exec commands return the same IP address, 172.17.0.2, that the
docker exec command does:

vagrant@ubuntu-xenial:~$ sudo ip netns exec 1f3f62ad5e02 ip a
1: lo:
<LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
13: eth0@if14:
<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

Container Network Basics | 121

We can verify with docker exec and run ip an inside the busybox container. The IP
address, MAC address, and network interfaces all match the output:

vagrant@ubuntu-xenial:~$ sudo docker exec 1f3f62ad5e02 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
13: eth0@if14: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

Docker starts our container; creates the network namespace, the veth pair, and the
docker0 bridge (if it does not already exist); and then attaches them all for every con‐
tainer creation and deletion, in a single command! That is powerful from an applica‐
tion developer’s perspective. There’s no need to remember all those Linux commands
and possibly break the networking on a host. This discussion has mostly been about a
single host. How Docker coordinates container communication between hosts in a
cluster is discussed in the next section.

Docker Networking Model
Libnetwork is Docker’s take on container networking, and its design philosophy is in
the container networking model (CNM). Libnetwork implements the CNM and
works in three components: the sandbox, endpoint, and network. The sandbox
implements the management of the Linux network namespaces for all containers
running on the host. The network component is a collection of endpoints on the
same network. Endpoints are hosts on the network. The network controller manages
all of this via APIs in the Docker engine.

On the endpoint, Docker uses iptables for network isolation. The container pub‐
lishes a port to be accessed externally. Containers do not receive a public IPv4
address; they receive a private RFC 1918 address. Services running on a container
must be exposed port by port, and container ports have to be mapped to the host port
so conflicts are avoided. When Docker starts, it creates a virtual bridge interface,
docker0, on the host machine and assigns it a random IP address from the private
1918 range. This bridge passes packets between two connected devices, just like a
physical bridge does. Each new container gets one interface automatically attached to
the docker0 bridge; Figure 3-9 represents this and is similar to the approach we
demonstrated in the previous sections.

122 | Chapter 3: Container Networking Basics

Figure 3-9. Docker bridge

The CNM maps the network modes to drives we have already discussed. Here is a list
of the networking mode and the Docker engine equivalent:

Bridge
Default Docker bridge (see Figure 3-9, and our previous examples show this)

Custom or Remote
User-defined bridge, or allows users to create or use their plugin

Overlay
Overlay

Null
No networking options

Bridge networks are for containers running on the same host. Communicating with
containers running on different hosts can use an overlay network. Docker uses the
concept of local and global drivers. Local drivers, a bridge, for example, are host-
centric and do not do cross-node coordination. That is the job of global drivers such
as Overlay. Global drivers rely on libkv, a key-value store abstraction, to coordinate
across machines. The CNM does not provide the key-value store, so external ones
like Consul, etcd, and Zookeeper are needed.

The next section will discuss in depth the technologies enabling overlay networks.

Container Network Basics | 123

Overlay Networking
Thus far, our examples have been on a single host, but production applications at
scale do not run on a single host. For applications running in containers on separate
nodes to communicate, several issues need to be solved, such as how to coordinate
routing information between hosts, port conflicts, and IP address management, to
name a few. One technology that helps with routing between hosts for containers is a
VXLAN. In Figure 3-10, we can see a layer 2 overlay network created with a VXLAN
running over the physical L3 network.

We briefly discussed VXLANs in Chapter 1, but a more in-depth explanation of how
the data transfer works to enable the container-to-container communication is war‐
ranted here.

Figure 3-10. VXLAN tunnel

A VXLAN is an extension of the VLAN protocol creating 16 million unique identifi‐
ers. Under IEEE 802.1Q, the maximum number of VLANs on a given Ethernet net‐
work is 4,094. The transport protocol over a physical data center network is IP plus
UDP. VXLAN defines a MAC-in-UDP encapsulation scheme where the original layer
2 frame has a VXLAN header added wrapped in a UDP IP packet. Figure 3-11 shows
the IP packet encapsulated in the UDP packet and its headers.

A VXLAN packet is a MAC-in-UDP encapsulated packet. The layer 2 frame has a
VXLAN header added to it and is placed in a UDP-IP packet. The VXLAN identifier
is 24 bits. That is how a VXLAN can support 16 million segments.

Figure 3-11 is a more detailed version of Chapter 1. We have the VXLAN tunnel end‐
points, VTEPs, on both hosts, and they are attached to the host’s bridge interfaces
with the containers attached to the bridge. The VTEP performs data frame encapsula‐
tion and decapsulation. The VTEP peer interaction ensures that the data gets forwar‐
ded to the relevant destination container addresses. The data leaving the containers is
encapsulated with VXLAN information and transferred over the VXLAN tunnels to
be de-encapsulated by the peer VTEP.

124 | Chapter 3: Container Networking Basics

Overlay networking enables cross-host communication on the network for contain‐
ers. The CNM still has other issues that make it incompatible with Kubernetes. The
Kubernetes maintainers decided to use the CNI project started at CoreOS. It is sim‐
pler than CNM, does not require daemons, and is designed to be cross-platform.

Figure 3-11. VXLAN tunnel detailed

Container Network Interface
CNI is the software interface between the container runtime and the network imple‐
mentation. There are many options to choose from when implementing a CNI; we
will discuss a few notable ones. CNI started at CoreOS as part of the rkt project; it is
now a CNCF project. The CNI project consists of a specification and libraries for
developing plugins to configure network interfaces in Linux containers. CNI is con‐
cerned with a container’s network connectivity by allocating resources when the con‐
tainer gets created and removing them when deleted. A CNI plugin is responsible for
associating a network interface to the container network namespace and making any
necessary changes to the host. It then assigns the IP to the interface and sets up the
routes for it. Figure 3-12 outlines the CNI architecture. The container runtime uses a
configuration file for the host’s network information; in Kubernetes, the Kubelet also
uses this configuration file. The CNI and container runtime communicate with each
other and apply commands to the configured CNI plugin.

Container Network Basics | 125

Figure 3-12. CNI architecture

There are several open source projects that implement CNI plugins with various fea‐
tures and functionality. Here is an outline of several:

Cilium
Cilium is open source software for securing network connectivity between appli‐
cation containers. Cilium is an L7/HTTP-aware CNI and can enforce network
policies on L3–L7 using an identity-based security model decoupled from net‐
work addressing. A Linux technology eBPF powers it.

Flannel
Flannel is a simple way to configure a layer 3 network fabric designed for Kuber‐
netes. Flannel focuses on networking. Flannel uses the Kubernetes cluster’s exist‐
ing etcd datastore to store its state information to avoid providing a dedicated
one.

Calico
According to Calico, it “combines flexible networking capabilities with run-
anywhere security enforcement to provide a solution with native Linux kernel
performance and true cloud-native scalability.” It has full network policy support
and works well in conjunction with other CNIs. Calico does not use an overlay
network. Instead, Calico configures a layer 3 network that uses the BGP routing
protocol to route packets between hosts. Calico can also integrate with Istio, a
service mesh, to interpret and enforce policy for workloads within the cluster,
both at the service mesh and the network infrastructure layers.

126 | Chapter 3: Container Networking Basics

AWS
AWS has its open source implementation of a CNI, the AWS VPC CNI. It pro‐
vides high throughput and availability by being directly on the AWS network.
There is low latency using this CNI by providing little overhead because of no
additional overlay network and minimal network jitter running on the AWS net‐
work. Cluster and network administrators can apply existing AWS VPC network‐
ing and security best practices for building Kubernetes networks on AWS. They
can accomplish those best practices because the AWS CNI includes the capability
to use native AWS services like VPC flow logs for analyzing network events and
patterns, VPC routing policies for traffic management, and security groups and
network access control lists for network traffic isolation. We will discuss more
about the AWS VPC CNI in Chapter 6.

The Kubernetes.io website offers a list of the CNI options available.

There are many more options for a CNI, and it is up to the cluster administrator, net‐
work admins, and application developers to best decide which CNI solves their busi‐
ness use cases. In later chapters, we will walk through use cases and deploy several to
help admins make a decision.

In our next section, we will walk through container connectivity examples using the
Golang web server and Docker.

Container Connectivity
Like we experimented with in the previous chapter, we will use the Go minimal web
server to walk through the concept of container connectivity. We will explain what is
happening at the container level when we deploy the web server as a container on our
Ubuntu host.

The following are the two networking scenarios we will walk through:

• Container to container on the Docker host
• Container to container on separate hosts

The Golang web server is hardcoded to run on port 8080, http.ListenAnd
Serve("0.0.0.0:8080", nil), as we can see in Example 3-8.

Container Connectivity | 127

https://oreil.ly/imDMP

Example 3-8. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")
}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

To provision our minimal Golang web server, we need to create it from a Dockerfile.
Example 3-9 displays our Golang web server’s Dockerfile. The Dockerfile contains
instructions to specify what to do when building the image. It begins with the FROM
instruction and specifies what the base image should be. The RUN instruction specifies
a command to execute. Comments start with #. Remember, each line in a Dockerfile
creates a new layer if it changes the image’s state. Developers need to find the right
balance between having lots of layers created for the image and the readability of the
Dockerfile.

Example 3-9. Dockerfile for Golang minimal web server

FROM golang:1.15 AS builder
WORKDIR /opt
COPY web-server.go .
RUN CGO_ENABLED=0 GOOS=linux go build -o web-server .

FROM golang:1.15
WORKDIR /opt
COPY --from=0 /opt/web-server .
CMD ["/opt/web-server"]

Since our web server is written in Golang, we can compile our Go server in a
container to reduce the image’s size to only the compiled Go binary. We start by
using the Golang base image with version 1.15 for our web server.

WORKDIR sets the working directory for all the subsequent commands to run
from.

128 | Chapter 3: Container Networking Basics

COPY copies the web-server.go file that defines our application as the working
directory.

RUN instructs Docker to compile our Golang application in the builder container.

Now to run our application, we define FROM for the application base image, again
as golang:1.15; we can further minimize the final size of the image by using
other minimal images like alpine.

Being a new container, we again set the working directory to /opt.

COPY here will copy the compiled Go binary from the builder container into the
application container.

CMD instructs Docker that the command to run our application is to start our web
server.

There are some Dockerfile best practices that developers and admins should adhere
to when containerizing their applications:

• Use one ENTRYPOINT per Dockerfile. The ENTRYPOINT or CMD tells Docker what
process starts inside the running container, so there should be only one running
process; containers are all about process isolation.

• To cut down on the container layers, developers should combine similar com‐
mands into one using & & and \. Each new command in the Dockerfile adds a
layer to the Docker container image, thus increasing its storage.

• Use the caching system to improve the containers’ build times. If there is no
change to a layer, it should be at the top of the Dockerfile. Caching is part of the
reason that the order of statements is essential. Add files that are least likely to
change first and the ones most likely to change last.

• Use multistage builds to reduce the size of the final image drastically.
• Do not install unnecessary tools or packages. Doing this will reduce the contain‐

ers’ attack surface and size, reducing network transfer times from the registry to
the hosts running the containers.

Let’s build our Golang web server and review the Docker commands to do so.

docker build instructs Docker to build our images from the Dockerfile instructions:

$ sudo docker build .
Sending build context to Docker daemon 4.27MB
Step 1/8 : FROM golang:1.15 AS builder
1.15: Pulling from library/golang

Container Connectivity | 129

57df1a1f1ad8: Pull complete
71e126169501: Pull complete
1af28a55c3f3: Pull complete
03f1c9932170: Pull complete
f4773b341423: Pull complete
fb320882041b: Pull complete
24b0ad6f9416: Pull complete
Digest:
sha256:da7ff43658854148b401f24075c0aa390e3b52187ab67cab0043f2b15e754a68
Status: Downloaded newer image for golang:1.15
 ---> 05c8f6d2538a
Step 2/8 : WORKDIR /opt
 ---> Running in 20c103431e6d
Removing intermediate container 20c103431e6d
 ---> 74ba65cfdf74
Step 3/8 : COPY web-server.go .
 ---> 7a36ec66be52
Step 4/8 : RUN CGO_ENABLED=0 GOOS=linux go build -o web-server .
 ---> Running in 5ea1c0a85422
Removing intermediate container 5ea1c0a85422
 ---> b508120db6ba
Step 5/8 : FROM golang:1.15
 ---> 05c8f6d2538a
Step 6/8 : WORKDIR /opt
 ---> Using cache
 ---> 74ba65cfdf74
Step 7/8 : COPY --from=0 /opt/web-server .
 ---> dde6002760cd
Step 8/8 : CMD ["/opt/web-server"]
 ---> Running in 2bcb7c8f5681
Removing intermediate container 2bcb7c8f5681
 ---> 72fd05de6f73
Successfully built 72fd05de6f73

The Golang minimal web server for our testing has the container ID 72fd05de6f73,
which is not friendly to read, so we can use the docker tag command to give it a
friendly name:

$ sudo docker tag 72fd05de6f73 go-web:v0.0.1

docker images returns the list of locally available images to run. We have one from
the test on the Docker installation and the busybox we have been using to test our
networking setup. If a container is not available locally, it is downloaded from the
registry; network load times impact this, so we need to have as small an image as
possible:

$ sudo docker images
REPOSITORY TAG IMAGE ID SIZE
<none> <none> b508120db6ba 857MB
go-web v0.0.1 72fd05de6f73 845MB
golang 1.15 05c8f6d2538a 839MB

130 | Chapter 3: Container Networking Basics

busybox latest 6858809bf669 1.23MB
hello-world latest bf756fb1ae65 13.3kB

docker ps shows us the running containers on the host. From our network name‐
space example, we still have one running busybox container:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND STATUS PORTS NAMES
1f3f62ad5e02 busybox "/bin/sh" Up 11 minutes determined_shamir

docker logs will print out any logs that the container is producing from standard
out; currently, our busybox image is not printing anything out for us to see:

vagrant@ubuntu-xenial:~$ sudo docker logs 1f3f62ad5e02
vagrant@ubuntu-xenial:~$

docker exec allows devs and admins to execute commands inside the Docker con‐
tainer. We did this previously while investigating the Docker networking setups:

vagrant@ubuntu-xenial:~$ sudo docker exec 1f3f62ad5e02 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
7: eth0@if8: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
valid_lft forever preferred_lft forever
vagrant@ubuntu-xenial:~$

You can find more commands for the Docker CLI in the
documentation.

In the previous section, we built the Golang web server as a container. To test the
connectivity, we will also employ the dnsutils image used by end-to-end testing for
Kubernetes. That image is available from the Kubernetes project at gcr.io/
kubernetes-e2e-test-images/dnsutils:1.3.

The image name will copy the Docker images from the Google container registry to
our local Docker filesystem:

$ sudo docker pull gcr.io/kubernetes-e2e-test-images/dnsutils:1.3
1.3: Pulling from kubernetes-e2e-test-images/dnsutils
5a3ea8efae5d: Pull complete
7b7e943444f2: Pull complete
59c439aa0fa7: Pull complete
3702870470ee: Pull complete
Digest: sha256:b31bcf7ef4420ce7108e7fc10b6c00343b21257c945eec94c21598e72a8f2de0

Container Connectivity | 131

https://oreil.ly/xWkad

Status: Downloaded newer image for gcr.io/kubernetes-e2e-test-images/dnsutils:1.3
gcr.io/kubernetes-e2e-test-images/dnsutils:1.3

Now that our Golang application can run as a container, we can explore the container
networking scenarios.

Container to Container
Our first walk-through is the communication between two containers running on the
same host. We begin by starting the dnsutils image and getting in a shell:

$ sudo docker run -it gcr.io/kubernetes-e2e-test-images/dnsutils:1.3 /bin/sh
/ #

The default Docker network setup gives the dnsutils image connectivity to the
internet:

/ # ping google.com -c 4
PING google.com (172.217.9.78): 56 data bytes
64 bytes from 172.217.9.78: seq=0 ttl=114 time=39.677 ms
64 bytes from 172.217.9.78: seq=1 ttl=114 time=38.180 ms
64 bytes from 172.217.9.78: seq=2 ttl=114 time=43.150 ms
64 bytes from 172.217.9.78: seq=3 ttl=114 time=38.140 ms

--- google.com ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 38.140/39.786/43.150 ms
/ #

The Golang web server starts with the default Docker bridge; in a separate SSH con‐
nection, then our Vagrant host, we start the Golang web server with the following
command:

$ sudo docker run -it -d -p 80:8080 go-web:v0.0.1
a568732bc191bb1f5a281e30e34ffdeabc624c59d3684b93167456a9a0902369

The -it options are for interactive processes (such as a shell); we must use -it to
allocate a TTY for the container process. -d runs the container in detached mode;
this allows us to continue to use the terminal and outputs the full Docker container
ID. The -p is probably the essential option in terms of the network; this one creates
the port connections between the host and the containers. Our Golang web server
runs on port 8080 and exposes that port on port 80 on the host.

docker ps verifies that we now have two containers running: the Go web server con‐
tainer with port 8080 exposed on the host port 80 and the shell running inside our
dnsutils container:

vagrant@ubuntu-xenial:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
906fd860f84d go-web:v0.0.1 "/opt/web-server" 4 minutes ago Up 4 minutes
25ded12445df dnsutils:1.3 "/bin/sh" 6 minutes ago Up 6 minutes

132 | Chapter 3: Container Networking Basics

PORTS NAMES
0.0.0.0:8080->8080/tcp frosty_brown
 brave_zhukovsky

Let’s use the docker inspect command to get the Docker IP address of the Golang
web server container:

$ sudo docker inspect
-f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}'
906fd860f84d
172.17.0.2

On the dnsutils image, we can use the Docker network address of the Golang web
server 172.17.0.2 and the container port 8080:

/ # wget 172.17.0.2:8080
Connecting to 172.17.0.2:8080 (172.17.0.2:8080)
index.html 100% |***|
 5 0:00:00 ETA
/ # cat index.html
Hello/ #

Each container can reach the other over the docker0 bridge and the container ports
because they are on the same Docker host and the same network. The Docker host
has routes to the container’s IP address to reach the container on its IP address and
port:

vagrant@ubuntu-xenial:~$ curl 172.17.0.2:8080
Hello

But it does not for the Docker IP address and host port from the docker run
command:

vagrant@ubuntu-xenial:~$ curl 172.17.0.2:80
curl: (7) Failed to connect to 172.17.0.2 port 80: Connection refused
vagrant@ubuntu-xenial:~$ curl 172.17.0.2:8080
Hello

Now for the reverse, using the loopback interface, we demonstrate that the host can
reach the web server only on the host port exposed, 80, not the Docker port, 8080:

vagrant@ubuntu-xenial:~$ curl 127.0.0.1:8080
curl: (7) Failed to connect to 127.0.0.1 port 8080: Connection refused
vagrant@ubuntu-xenial:~$ curl 127.0.0.1:80
Hellovagrant@ubuntu-xenial:~$

Now back on the dnsutils, the same is true: the dnsutils image on the Docker net‐
work, using the Docker IP address of the Go web container, can use only the Docker
port, 8080, not the exposed host port 80:

/ # wget 172.17.0.2:8080 -qO-
Hello/ #

Container Connectivity | 133

/ # wget 172.17.0.2:80 -qO-
wget: can't connect to remote host (172.17.0.2): Connection refused

Now to show it is an entirely separate stack, let’s try the dnsutils loopback address
and both the Docker port and the exposed host port:

/ # wget localhost:80 -qO-
wget: can't connect to remote host (127.0.0.1): Connection refused
/ # wget localhost:8080 -qO-
wget: can't connect to remote host (127.0.0.1): Connection refused

Neither works as expected; the dnsutils image has a separate network stack and does
not share the Go web server’s network namespace. Knowing why it does not work is
vital in Kubernetes to understand since pods are a collection of containers that share
the same network namespace. Now we will examine how two containers communi‐
cate on two separate hosts.

Container to Container Separate Hosts
Our previous example showed us how a container network runs on a local system,
but how can two containers across the network on separate hosts communicate? In
this example, we will deploy containers on separate hosts and investigate that and
how it differs from being on the same host.

Let’s start a second Vagrant Ubuntu host, host-2, and SSH into it as we did with our
Docker host. We can see that our IP address is different from the Docker host run‐
ning our Golang web server:

vagrant@host-2:~$ ifconfig enp0s8
enp0s8 Link encap:Ethernet HWaddr 08:00:27:f9:77:12
 inet addr:192.168.1.23 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fef9:7712/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:65630 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2967 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:96493210 (96.4 MB) TX bytes:228989 (228.9 KB)

We can access our web server from the Docker host’s IP address, 192.168.1.20, on
port 80 exposed in the docker run command options. Port 80 is exposed on the
Docker host but not reachable on container port 8080 with the host IP address:

vagrant@ubuntu-xenial:~$ curl 192.168.1.20:80
Hellovagrant@ubuntu-xenial:~$
vagrant@host-2:~$ curl 192.168.1.20:8080
curl: (7) Failed to connect to 192.168.1.20 port 8080: Connection refused
vagrant@ubuntu-xenial:~$

134 | Chapter 3: Container Networking Basics

The same is true if host-2 tries to reach the container on the containers’ IP address,
using either the Docker port or the host port. Remember, Docker uses the private
address range, 172.17.0.0/16:

vagrant@host-2:~$ curl 172.17.0.2:8080 -t 5
curl: (7) Failed to connect to 172.17.0.2 port 8080: No route to host
vagrant@host-2:~$ curl 172.17.0.2:80 -t 5
curl: (7) Failed to connect to 172.17.0.2 port 80: No route to host
vagrant@host-2:~$

For the host to route to the Docker IP address, it uses an overlay network or some
external routing outside Docker. Routing is also external to Kubernetes; many CNIs
help with this issue, and this is explored when looking at deploy clusters in Chapter 6.

The previous examples used the Docker default network bridge with exposed ports to
the hosts. That is how host-2 was able to communicate to the Docker container run‐
ning on the Docker host. This chapter only scratches the surface of container net‐
works. There are many more abstractions to explore, like ingress and egress traffic to
the entire cluster, service discovery, and routing internal and external to the cluster.
Later chapters will continue to build on these container networking basics.

Conclusion
In this introduction to container networking, we worked through how containers
have evolved to help with application deployment and advance host efficiency by
allowing and segmenting multiple applications on a host. We have walked through
the myriad history of containers with the various projects that have come and gone.
Containers are powered and managed with namespaces and cgroups, features inside
the Linux kernel. We walked through the abstractions that container runtimes main‐
tain for application developers and learned how to deploy them ourselves. Under‐
standing those Linux kernel abstractions is essential to deciding which CNI to deploy
and its trade-offs and benefits. Administrators now have a base understanding of how
container runtimes manage the Linux networking abstractions.

We have completed the basics of container networking! Our knowledge has expanded
from using a simple network stack to running different unrelated stacks inside our
containers. Knowing about namespaces, how ports are exposed, and communication
flow empowers administrators to troubleshoot networking issues quickly and prevent
downtime of their applications running in a Kubernetes cluster. Troubleshooting port
issues or testing if a port is open on the host, on the container, or across the network
is a must-have skill for any network engineer and indispensable for developers to
troubleshoot their container issues. Kubernetes is built on these basics and abstracts
them for developers. The next chapter will review how Kubernetes creates those
abstractions and integrates them into the Kubernetes networking model.

Conclusion | 135

CHAPTER 4

Kubernetes Networking Introduction

Now that we have covered Linux and container networking’s critical components, we
are ready to discuss Kubernetes networking in greater detail. In this chapter, we will
discuss how pods connect internally and externally to the cluster. We will also cover
how the internal components of Kubernetes connect. Higher-level network abstrac‐
tions around discovery and load balancing, such as services and ingresses, will be
covered in the next chapter.

Kubernetes networking looks to solve these four networking issues:

• Highly coupled container-to-container communications
• Pod-to-pod communications
• Pod-to-service communications
• External-to-service communications

The Docker networking model uses a virtual bridge network by default, which is
defined per host and is a private network where containers attach. The container’s IP
address is allocated a private IP address, which implies containers running on differ‐
ent machines cannot communicate with each other. Developers will have to map host
ports to container ports and then proxy the traffic to reach across nodes with Docker.
In this scenario, it is up to the Docker administrators to avoid port clashes between
containers; usually, this is the system administrators. The Kubernetes networking
handles this differently.

137

The Kubernetes Networking Model
The Kubernetes networking model natively supports multihost cluster networking.
Pods can communicate with each other by default, regardless of which host they are
deployed on. Kubernetes relies on the CNI project to comply with the following
requirements:

• All containers must communicate with each other without NAT.
• Nodes can communicate with containers without NAT.
• A container’s IP address is the same as those outside the container that it sees

itself as.

The unit of work in Kubernetes is called a pod. A pod contains one or more contain‐
ers, which are always scheduled and run “together” on the same node. This connec‐
tivity allows individual instances of a service to be separated into distinct containers.
For example, a developer may choose to run a service in one container and a log for‐
warder in another container. Running processes in distinct containers allows them to
have separate resource quotas (e.g., “the log forwarder cannot use more than 512 MB
of memory”). It also allows container build and deployment machinery to be separa‐
ted by reducing the scope necessary to build a container.

The following is a minimal pod definition. We have omitted many options. Kuber‐
netes manages various fields, such as the status of the pods, that are read-only:

apiVersion: v1
kind: Pod
metadata:
 name: go-web
 namespace: default
spec:
 containers:
 - name: go-web
 image: go-web:v0.0.1
 ports:
 - containerPort: 8080
 protocol: TCP

Kubernetes users typically do not create pods directly. Instead, users create a high-
level workload, such as a deployment, which manages pods according to some
intended spec. In the case of a deployment, as shown in Figure 4-1, users specify a
template for pods, along with how many pods (often called replicas) that they want to
exist. There are several other ways to manage workloads such as ReplicaSets and
StatefulSets that we will review in the next chapter. Some provide abstractions over an
intermediate type, while others manage pods directly. There are also third-party
workload types, in the form of custom resource definitions (CRDs). Workloads in

138 | Chapter 4: Kubernetes Networking Introduction

Kubernetes are a complex topic, and we will only attempt to cover the very basics and
the parts applicable to the networking stack.

Figure 4-1. The relationship between a deployment and pods

Pods themselves are ephemeral, meaning they are deleted and replaced with new ver‐
sions of themselves. The short life span of pods is one of the main surprises and chal‐
lenges to developers and operators familiar with more semipermanent, traditional
physical or virtual machines. Local disk state, node scheduling, and IP addresses will
all be replaced regularly during a pod’s life cycle.

A pod has a unique IP address, which is shared by all containers in the pod. The pri‐
mary motivation behind giving every pod an IP address is to remove constraints
around port numbers. In Linux, only one program can listen on a given address, port,
and protocol. If pods did not have unique IP addresses, then two pods on a node
could contend for the same port (such as two web servers, both trying to listen on
port 80). If they were the same, it would require a runtime configuration to fix, such
as a --port flag. Alternatively, it would take an ugly script to update a config file in
the case of third-party software.

In some cases, third-party software could not run on custom ports at all, which
would require more complex workarounds, such as iptables DNAT rules on the
node. Web servers have the additional problem of expecting conventional port num‐
bers in their software, such as 80 for HTTP and 443 for HTTPS. Breaking from these
conventions requires reverse-proxying through a load balancer or making down‐
stream consumers aware of the various ports (which is much easier for internal sys‐
tems than external ones). Some systems, such as Google’s Borg, use this model.
Kubernetes chose the IP per pod model to be more comfortable for developers to
adopt and make it easier to run third-party workloads. Unfortunately for us, allocat‐
ing and routing an IP address for every pod adds substantial complexity to a Kuber‐
netes cluster.

The Kubernetes Networking Model | 139

By default, Kubernetes will allow any traffic to or from any pod.
This passive connectivity means, among other things, that any pod
in a cluster can connect to any other pod in that same cluster. That
can easily lead to abuse, especially if services do not use authentica‐
tion or if an attacker obtains credentials.
See “Popular CNI Plugins” on page 156 for more.

Pods created and deleted with their own IP addresses can cause issues for beginners
who do not understand this behavior. Suppose we have a small service running on
Kubernetes, in the form of a deployment with three pod replicas. When someone
updates a container image in the deployment, Kubernetes performs a rolling upgrade,
deleting old pods and creating new pods using the new container image. These new
pods will likely have new IP addresses, making the old IP addresses unreachable. It
can be a common beginner’s mistake to reference pod IPs in config or DNS records
manually, only to have them fail to resolve. This error is what services and endpoints
attempt to solve, and this is discussed in the next chapter.

When explicitly creating a pod, it is possible to specify the IP address. StatefulSets are
a built-in workload type intended for workloads such as databases, which maintain a
pod identity concept and give a new pod the same name and IP address as the pod it
replaces. There are other examples in the form of third-party CRDs, and it is possible
to write a CRD for specific networking purposes.

Custom resources are extensions of the Kubernetes API defined by
the writer. It allows software developers to customize the installa‐
tion of their software in a Kubernetes environment. You can find
more information on writing a CRD in the documentation.

Every Kubernetes node runs a component called the Kubelet, which manages pods on
the node. The networking functionality in the Kubelet comes from API interactions
with a CNI plugin on the node. The CNI plugin is what manages pod IP addresses
and individual container network provisioning. We mentioned the eponymous inter‐
face portion of the CNI in the previous chapter; the CNI defines a standard interface
to manage a container’s network. The reason for making the CNI an interface is to
have an interoperable standard, where there are multiple CNI plugin implementa‐
tions. The CNI plugin is responsible for assigning pod IP addresses and maintaining
a route between all (applicable) pods. Kubernetes does not ship with a default CNI
plugin, which means that in a standard installation of Kubernetes, pods cannot use
the network.

Let’s begin the discussion on how the pod network is enabled by the CNI and the dif‐
ferent network layouts.

140 | Chapter 4: Kubernetes Networking Introduction

https://oreil.ly/vVcrE

Node and Pod Network Layout
The cluster must have a group of IP addresses that it controls to assign an IP address
to a pod, for example, 10.1.0.0/16. Nodes and pods must have L3 connectivity in
this IP address space. Recall from Chapter 1 that in L3, the Internet layer, connectiv‐
ity means packets with an IP address can route to a host with that IP address. It is
important to note that the ability to deliver packets is more fundamental than creating
connections (an L4 concept). In L4, firewalls may choose to allow connections from
host A to B but reject connections initiating from host B to A. L4 connections from A
to B, connections at L3, A to B and B to A, must be allowed. Without L3 connectivity,
TCP handshakes would not be possible, as the SYN-ACK could not be delivered.

Generally, pods do not have MAC addresses. Therefore, L2 connectivity to pods is
not possible. The CNI will determine this for pods.

There are no requirements in Kubernetes about L3 connectivity to the outside world.
Although the majority of clusters have internet connectivity, some are more isolated
for security reasons.

We will broadly discuss both ingress (traffic leaving a host or cluster) and egress (traf‐
fic entering a host or cluster). Our use of “ingress” here shouldn’t be confused with
the Kubernetes ingress resource, which is a specific HTTP mechanism to route traffic
to Kubernetes services.

There are broadly three approaches, with many variations, to structuring a cluster’s
network: isolated, flat, and island networks. We will discuss the general approaches
here and then get more in-depth into specific implementation details when covering
CNI plugins later this chapter.

Isolated Networks
In an isolated cluster network, nodes are routable on the broader network (i.e., hosts
that are not part of the cluster can reach nodes in the cluster), but pods are not.
Figure 4-2 shows such a cluster. Note that pods cannot reach other pods (or any other
hosts) outside the cluster.

Because the cluster is not routable from the broader network, multiple clusters can
even use the same IP address space. Note that the Kubernetes API server will need to
be routable from the broader network, if external systems or users should be able to
access the Kubernetes API. Many managed Kubernetes providers have a “secure clus‐
ter” option like this, where no direct traffic is possible between the cluster and the
internet.

That isolation to the local cluster can be splendid for security if the cluster’s work‐
loads permit/require such a setup, such as clusters for batch processing. However, it is
not reasonable for all clusters. The majority of clusters will need to reach and/or be

Node and Pod Network Layout | 141

reached by external systems, such as clusters that must support services that have
dependencies on the broader internet. Load balancers and proxies can be used to
breach this barrier and allow internet traffic into or out of an isolated cluster.

Figure 4-2. Two isolated clusters in the same network

Flat Networks
In a flat network, all pods have an IP address that is routable from the broader net‐
work. Barring firewall rules, any host on the network can route to any pod inside or
outside the cluster. This configuration has numerous upsides around network sim‐
plicity and performance. Pods can connect directly to arbitrary hosts in the network.

Note in Figure 4-3 that no two nodes’ pod CIDRs overlap between the two clusters,
and therefore no two pods will be assigned the same IP address. Because the broader
network can route every pod IP address to that pod’s node, any host on the network is
reachable to and from any pod.

This openness allows any host with sufficient service discovery data to decide which
pod will receive those packets. A load balancer outside the cluster can load balance
pods, such as a gRPC client in another cluster.

142 | Chapter 4: Kubernetes Networking Introduction

Figure 4-3. Two clusters in the same flat network

External pod traffic (and incoming pod traffic, when the connection’s destination is a
specific pod IP address) has low latency and low overhead. Any form of proxying or
packet rewriting incurs a latency and processing cost, which is small but nontrivial
(especially in an application architecture that involves many backend services, where
each delay adds up).

Unfortunately, this model requires a large, contiguous IP address space for each clus‐
ter (i.e., a range of IP addresses where every IP address in the range is under your
control). Kubernetes requires a single CIDR for pod IP addresses (for each IP family).
This model is achievable with a private subnet (such as 10.0.0.0/8 or 172.16.0.0/12);
however, it is much harder and more expensive to do with public IP addresses, espe‐
cially IPv4 addresses. Administrators will need to use NAT to connect a cluster run‐
ning in a private IP address space to the internet.

Aside from needing a large IP address space, administrators also need an easily pro‐
grammable network. The CNI plugin must allocate pod IP addresses and ensure a
route exists to a given pod’s node.

Node and Pod Network Layout | 143

Flat networks, on a private subnet, are easy to achieve in a cloud provider environ‐
ment. The vast majority of cloud provider networks will provide large private subnets
and have an API (or even preexisting CNI plugins) for IP address allocation and
route management.

Island Networks
Island cluster networks are, at a high level, a combination of isolated and flat
networks.

In an island cluster setup, as shown in Figure 4-4, nodes have L3 connectivity with
the broader network, but pods do not. Traffic to and from pods must pass through
some form of proxy, through nodes. Most often, this is achieved by iptables source
NAT on a pod’s packets leaving the node. This setup, called masquerading, uses SNAT
to rewrite packet sources from the pod’s IP address to the node’s IP address (refer to
Chapter 2 for a refresher on SNAT). In other words, packets appear to be “from” the
node, rather than the pod.

Sharing an IP address while also using NAT hides the individual pod IP addresses. IP
address–based firewalling and recognition becomes difficult across the cluster
boundary. Within a cluster, it is still apparent which IP address is which pod (and,
therefore, which application). Pods in other clusters, or other hosts on the broader
network, will no longer have that mapping. IP address-based firewalling and allow
lists are not sufficient security on their own but are a valuable and sometimes
required layer.

Now let’s see how we configure any of these network layouts with the kube-
controller-manager. Control plane refers to all the functions and processes that
determine which path to use to send the packet or frame. Data plane refers to all the
functions and processes that forward packets/frames from one interface to another
based on control plane logic.

144 | Chapter 4: Kubernetes Networking Introduction

Figure 4-4. Two in the “island network” configuration

kube-controller-manager Configuration
The kube-controller-manager runs most individual Kubernetes controllers in one
binary and one process, where most Kubernetes logic lives. At a high level, a control‐
ler in Kubernetes terms is software that watches resources and takes action to syn‐
chronize or enforce a specific state (either the desired state or reflecting the current
state as a status). Kubernetes has many controllers, which generally “own” a specific
object type or specific operation.

kube-controller-manager includes multiple controllers that manage the Kubernetes
network stack. Notably, administrators set the cluster CIDR here.

kube-controller-manager, due to running a significant number of controllers, also
has a substantial number of flags. Table 4-1 highlights some notable network configu‐
ration flags.

Node and Pod Network Layout | 145

Table 4-1. Kube-controller-manager options

Flag Default Description

--allocate-node-cidrs true Sets whether CIDRs for pods should be allocated and set on
the cloud provider.

--CIDR-allocator-type string RangeAllocator Type of CIDR allocator to use.

--cluster-CIDR CIDR range from which to assign pod IP addresses. Requires
--allocate-node-cidrs to be true. If kube-
controller-manager has IPv6DualStack
enabled, --cluster-CIDR accepts a comma-separated
pair of IPv4 and IPv6 CIDRs.

--configure-cloud-routes true Sets whether CIDRs should be allocated by allocate-
node-cidrs and configured on the cloud provider.

--node-CIDR-mask-size 24 for IPv4
clusters, 64 for
IPv6 clusters

Mask size for the node CIDR in a cluster. Kubernetes will
assign each node 2^(node-CIDR-mask-size) IP
addresses.

--node-CIDR-mask-size-ipv4 24 Mask size for the node CIDR in a cluster. Use this flag in
dual-stack clusters to allow both IPv4 and IPv6 settings.

--node-CIDR-mask-size-ipv6 64 Mask size for the node CIDR in a cluster. Use this flag in
dual-stack clusters to allow both IPv4 and IPv6 settings.

--service-cluster-ip-range CIDR range for services in the cluster to allocate service
ClusterIPs. Requires --allocate-node-cidrs to be
true. If kube-controller-manager has IPv6Dual
Stack enabled, --service-cluster-ip-range
accepts a comma-separated pair of IPv4 and IPv6 CIDRs.

All Kubernetes binaries have documentation for their flags in the
online docs. See all kube-controller-manager options in the
documentation.

Now that we have discussed high-level network architecture and network configura‐
tion in the Kubernetes control plane, let’s look closer at how Kubernetes worker
nodes handle networking.

The Kubelet
The Kubelet is a single binary that runs on every worker node in a cluster. At a high
level, the Kubelet is responsible for managing any pods scheduled to the node and
providing status updates for the node and pods on it. However, the Kubelet primarily
acts as a coordinator for other software on the node. The Kubelet manages a con‐
tainer networking implementation (via the CNI) and a container runtime (via the
CRI).

146 | Chapter 4: Kubernetes Networking Introduction

https://oreil.ly/xDGIE

We define worker nodes as Kubernetes nodes that can run pods.
Some clusters technically run the API server and etcd on restricted
worker nodes. This setup can allow control plane components to be
managed with the same automation as typical workloads but expo‐
ses additional failure modes and security vulnerabilities.

When a controller (or user) creates a pod in the Kubernetes API, it initially exists as
only the pod API object. The Kubernetes scheduler watches for such a pod and
attempts to select a valid node to schedule the pod to. There are several constraints to
this scheduling. Our pod with its CPU/memory requests must not exceed the unre‐
quested CPU/memory remaining on the node. Many selection options are available,
such as affinity/anti-affinity to labeled nodes or other labeled pods or taints on nodes.
Assuming the scheduler finds a node that satisfies all the pod’s constraints, the sched‐
uler writes that node’s name to our pod’s nodeName field. Let’s say Kubernetes sched‐
ules the pod to node-1:

apiVersion: v1
kind: Pod
metadata:
 name: example
spec:
 nodeName: "node-1"
 containers:
 - name: example
 image: example:1.0

The Kubelet on node-1 watches for all of the pods scheduled to it. The equiva‐
lent kubectl command would be kubectl get pods -w --field-selector

spec.nodeName=node-1. When the Kubelet observes that our pod exists but is
not present on the node, it creates it. We will skip over the CRI details and the
creation of the container itself. Once the container exists, the Kubelet makes an ADD
call to the CNI, which tells the CNI plugin to create the pod network. We will cover
the interface and plugins in our next section.

Pod Readiness and Probes
Pod readiness is an additional indication of whether the pod is ready to serve traffic.
Pod readiness determines whether the pod address shows up in the Endpoints object
from an external source. Other Kubernetes resources that manage pods, like deploy‐
ments, take pod readiness into account for decision-making, such as advancing dur‐
ing a rolling update. During rolling deployment, a new pod becomes ready, but a
service, network policy, or load balancer is not yet prepared for the new pod due to
whatever reason. This may cause service disruption or loss of backend capacity. It
should be noted that if a pod spec does contain probes of any type, Kubernetes
defaults to success for all three types.

Pod Readiness and Probes | 147

Users can specify pod readiness checks in the pod spec. From there, the Kubelet exe‐
cutes the specified check and updates the pod status based on successes or failures.

Probes effect the .Status.Phase field of a pod. The following is a list of the pod pha‐
ses and their descriptions:

Pending
The pod has been accepted by the cluster, but one or more of the containers has
not been set up and made ready to run. This includes the time a pod spends wait‐
ing to be scheduled as well as the time spent downloading container images over
the network.

Running
The pod has been scheduled to a node, and all the containers have been
created. At least one container is still running or is in the process of starting or
restarting. Note that some containers may be in a failed state, such as in a
CrashLoopBackoff.

Succeeded
All containers in the pod have terminated in success and will not be restarted.

Failed
All containers in the pod have terminated, and at least one container has termi‐
nated in failure. That is, the container either exited with nonzero status or was
terminated by the system.

Unknown
For some reason the state of the pod could not be determined. This phase typi‐
cally occurs due to an error in communicating with the Kubelet where the pod
should be running.

The Kubelet performs several types of health checks for individual containers in a
pod: liveness probes (livenessProbe), readiness probes (readinessProbe), and startup
probes (startupProbe). The Kubelet (and, by extension, the node itself) must be able
to connect to all containers running on that node in order to perform any HTTP
health checks.

Each probe has one of three results:

Success
The container passed the diagnostic.

Failure
The container failed the diagnostic.

Unknown
The diagnostic failed, so no action should be taken.

148 | Chapter 4: Kubernetes Networking Introduction

The probes can be exec probes, which attempt to execute a binary within the con‐
tainer, TCP probes, or HTTP probes. If the probe fails more than the failureThres
hold number of times, Kubernetes will consider the check to have failed. The effect of
this depends on the type of probe.

When a container’s readiness probe fails, the Kubelet does not terminate it. Instead,
the Kubelet writes the failure to the pod’s status.

If the liveness probes fail, the Kubelet will terminate the container. Liveness probes
can easily cause unexpected failures if misused or misconfigured. The intended use
case for liveness probes is to let the Kubelet know when to restart a container. How‐
ever, as humans, we quickly learn that if “something is wrong, restart it” is a danger‐
ous strategy. For example, suppose we create a liveness probe that loads the main
page of our web app. Further, suppose that some change in the system, outside our
container’s code, causes the main page to return a 404 or 500 error. There are fre‐
quent causes of such a scenario, such as a backend database failure, a required service
failure, or a feature flag change that exposes a bug. In any of these scenarios, the liv‐
eness probe would restart the container. At best, this would be unhelpful; restarting
the container will not solve a problem elsewhere in the system and could quickly
worsen the problem. Kubernetes has container restart backoffs (CrashLoopBackoff),
which add increasing delay to restarting failed containers. With enough pods or rapid
enough failures, the application may go from having an error on the home page to
being hard-down. Depending on the application, pods may also lose cached data
upon a restart; it may be strenuous to fetch or impossible to fetch during the hypo‐
thetical degradation. Because of this, use liveness probes with caution. When pods
use them, they only depend on the container they are testing, with no other depen‐
dencies. Many engineers have specific health check endpoints, which provide mini‐
mal validation of criteria, such as “PHP is running and serving my API.”

A startup probe can provide a grace period before a liveness probe can take effect.
Liveness probes will not terminate a container before the startup probe has succee‐
ded. An example use case is to allow a container to take many minutes to start, but to
terminate a container quickly if it becomes unhealthy after starting.

In Example 4-1, our Golang web server has a liveness probe that performs an HTTP
GET on port 8080 to the path /healthz, while the readiness probe uses / on the same
port.

Pod Readiness and Probes | 149

Example 4-1. Kubernetes podspec for Golang minimal webserver

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: go-web
spec:
 containers:
 - name: go-web
 image: go-web:v0.0.1
 ports:
 - containerPort: 8080
 livenessProbe:
 httpGet:
 path: /healthz
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 5
 readinessProbe:
 httpGet:
 path: /
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 5

This status does not affect the pod itself, but other Kubernetes mechanisms react to it.
One key example is ReplicaSets (and, by extension, deployments). A failing readiness
probe causes the ReplicaSet controller to count the pod as unready, giving rise to a
halted deployment when too many new pods are unhealthy. The Endpoints/End
pointsSlice controllers also react to failing readiness probes. If a pod’s readiness
probe fails, the pod’s IP address will not be in the endpoint object, and the service will
not route traffic to it. We will discuss services and endpoints more in the next
chapter.

The startupProbe will inform the Kubelet whether the application inside the con‐
tainer is started. This probe takes precedent over the others. If a startupProbe is
defined in the pod spec, all other probes are disabled. Once the startupProbe suc‐
ceeds, the Kubelet will begin running the other probes. But if the startup probe fails,
the Kubelet kills the container, and the container executes its restart policy. Like the
others, if a startupProbe does not exist, the default state is success.

Probe configurable options:

initialDelaySeconds
Amount of seconds after the container starts before liveness or readiness probes
are initiated. Default 0; Minimum 0.

150 | Chapter 4: Kubernetes Networking Introduction

periodSeconds
How often probes are performed. Default 10; Minimum 1.

timeoutSeconds
Number of seconds after which the probe times out. Default 1; Minimum 1.

successThreshold
Minimum consecutive successes for the probe to be successful after failing.
Default 1; must be 1 for liveness and startup probes; Minimum 1.

failureThreshold
When a probe fails, Kubernetes will try this many times before giving up. Giving
up in the case of the liveness probe means the container will restart. For readiness
probe, the pod will be marked Unready. Default 3; Minimum 1.

Application developers can also use readiness gates to help determine when the appli‐
cation inside the pod is ready. Available and stable since Kubernetes 1.14, to use read‐
iness gates, manifest writers will add readiness gates in the pod’s spec to specify a
list of additional conditions that the Kubelet evaluates for pod readiness. That is done
in the ConditionType attribute of the readiness gates in the pod spec. The Condition
Type is a condition in the pod’s condition list with a matching type. Readiness gates
are controlled by the current state of status.condition fields for the pod, and if the
Kubelet cannot find such a condition in the status.conditions field of a pod, the
status of the condition is defaulted to False.

As you can see in the following example, the feature-Y readiness gate is true, while
feature-X is false, so the pod’s status is ultimately false:

kind: Pod
…
spec:
 readinessGates:
 - conditionType: www.example.com/feature-X
 - conditionType: www.example.com/feature-Y
…
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2021-04-25T00:00:00Z
 status: "False"
 type: Ready
 - lastProbeTime: null
 lastTransitionTime: 2021-04-25T00:00:00Z
 status: "False"
 type: www.example.com/feature-X
 - lastProbeTime: null
 lastTransitionTime: 2021-04-25T00:00:00Z
 status: "True"
 type: www.example.com/feature-Y

Pod Readiness and Probes | 151

 containerStatuses:
 - containerID: docker://xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 ready : true

Load balancers like the AWS ALB can use the readiness gate as part of the pod life
cycle before sending traffic to it.

The Kubelet must be able to connect to the Kubernetes API server. In Figure 4-5, we
can see all the connections made by all the components in a cluster:

CNI
Network plugin in Kubelet that enables networking to get IPs for pods and
services.

gRPC
API to communicate from the API server to etcd.

Kubelet
All Kubernetes nodes have a Kubelet that ensures that any pod assigned to it are
running and configured in the desired state.

CRI
The gRPC API compiled in Kubelet, allowing Kubelet to talk to container run‐
times using gRPC API. The container runtime provider must adapt it to the CRI
API to allow Kubelet to talk to containers using the OCI Standard (runC). CRI
consists of protocol buffers and gRPC API and libraries.

Figure 4-5. Cluster data flow between components

152 | Chapter 4: Kubernetes Networking Introduction

Communication between the pods and the Kubelet is made possible by the CNI. In
our next section, we will discuss the CNI specification with examples from several
popular CNI projects.

The CNI Specification
The CNI specification itself is quite simple. According to the specification, there are
four operations that a CNI plugin must support:

ADD
Add a container to the network.

DEL
Delete a container from the network.

CHECK
Return an error if there is a problem with the container’s network.

VERSION
Report version information about the plugin.

The full CNI spec is available on GitHub.

In Figure 4-6, we can see how Kubernetes (or the runtime, as the CNI project refers to
container orchestrators) invokes CNI plugin operations by executing binaries. Kuber‐
netes supplies any configuration for the command in JSON to stdin and receives the
command’s output in JSON through stdout. CNI plugins frequently have very simple
binaries, which act as a wrapper for Kubernetes to call, while the binary makes an
HTTP or RPC API call to a persistent backend. CNI maintainers have discussed
changing this to an HTTP or RPC model, based on performance issues when fre‐
quently launching Windows processes.

Kubernetes uses only one CNI plugin at a time, though the CNI specification allows
for multiplugin setups (i.e., assigning multiple IP addresses to a container). Multus is
a CNI plugin that works around this limitation in Kubernetes by acting as a fan-out
to multiple CNI plugins.

At the time of writing, the CNI spec is at version 0.4. It has not
changed drastically over the years and appears unlikely to change
in the future—maintainers of the specification plan to release ver‐
sion 1.0 soon.

The CNI Specification | 153

https://oreil.ly/1uYWl

Figure 4-6. CNI configuration

CNI Plugins
The CNI plugin has two primary responsibilities: allocate and assign unique IP
addresses for pods and ensure that routes exist within Kubernetes to each pod IP
address. These responsibilities mean that the overarching network that the cluster
resides in dictates CNI plugin behavior. For example, if there are too few IP addresses
or it is not possible to attach sufficient IP addresses to a node, cluster admins will
need to use a CNI plugin that supports an overlay network. The hardware stack, or
cloud provider used, typically dictates which CNI options are suitable. Chapter 6 will
talk about the major cloud platforms and how the network design impacts CNI
choice.

To use the CNI, add --network-plugin=cni to the Kubelet’s startup arguments. By
default, the Kubelet reads CNI configuration from the directory /etc/cni/net.d/
and expects to find the CNI binary in /opt/cni/bin/. Admins can override the con‐
figuration location with --cni-config-dir=<directory>, and the CNI binary direc‐
tory with --cni-bin-dir=<directory>.

Managed Kubernetes offerings, and many “distros” of Kubernetes,
come with a CNI preconfigured.

154 | Chapter 4: Kubernetes Networking Introduction

There are two broad categories of CNI network models: flat networks and overlay
networks. In a flat network, the CNI driver uses IP addresses from the cluster’s net‐
work, which typically requires many IP addresses to be available to the cluster. In an
overlay network, the CNI driver creates a secondary network within Kubernetes,
which uses the cluster’s network (called the underlay network) to send packets. Over‐
lay networks create a virtual network within the cluster. In an overlay network, the
CNI plugin encapsulates packets. We discussed overlays in greater detail in Chapter 3.
Overlay networks add substantial complexity and do not allow hosts on the cluster
network to connect directly to pods. However, overlay networks allow the cluster net‐
work to be much smaller, as only the nodes must be assigned IP addresses on that
network.

CNI plugins also typically need a way to communicate state between nodes. Plugins
take very different approaches, such as storing data in the Kubernetes API, in a dedi‐
cated database.

The CNI plugin is also responsible for calling IPAM plugins for IP addressing.

The IPAM Interface
The CNI spec has a second interface, the IP Address Management (IPAM) interface,
to reduce duplication of IP allocation code in CNI plugins. The IPAM plugin must
determine and output the interface IP address, gateway, and routes, as shown in
Example 4-2. The IPAM interface is similar to the CNI: a binary with JSON input to
stdin and JSON output from stdout.

Example 4-2. Example IPAM plugin output, from the CNI 0.4 specification docs

{
 "cniVersion": "0.4.0",
 "ips": [
 {
 "version": "<4-or-6>",
 "address": "<ip-and-prefix-in-CIDR>",
 "gateway": "<ip-address-of-the-gateway>" (optional)
 },
 ...
],
 "routes": [(optional)
 {
 "dst": "<ip-and-prefix-in-cidr>",
 "gw": "<ip-of-next-hop>" (optional)
 },
 ...
]
 "dns": { (optional)
 "nameservers": <list-of-nameservers> (optional)
 "domain": <name-of-local-domain> (optional)

CNI Plugins | 155

 "search": <list-of-search-domains> (optional)
 "options": <list-of-options> (optional)
 }
}

Now we will review several of the options available for cluster administrators to
choose from when deploying a CNI.

Popular CNI Plugins
Cilium is open source software for transparently securing network connectivity
between application containers. Cilium is an L7/HTTP-aware CNI and can enforce
network policies on L3–L7 using an identity-based security model decoupled from
the network addressing. The Linux technology eBPF, which we discussed in Chap‐
ter 2, is what powers Cilium. Later in this chapter, we will do a deep dive into Network
Policy objects; for now know that they are effectively pod-level firewalls.

Flannel focuses on the network and is a simple and easy way to configure a layer 3
network fabric designed for Kubernetes. If a cluster requires functionalities like net‐
work policies, an admin must deploy other CNIs, such as Calico. Flannel uses the
Kubernetes cluster’s existing etcd to store its state information to avoid providing a
dedicated data store.

According to Calico, it “combines flexible networking capabilities with run-anywhere
security enforcement to provide a solution with native Linux kernel performance and
true cloud-native scalability.” Calico does not use an overlay network. Instead, Calico
configures a layer 3 network that uses the BGP routing protocol to route packets
between hosts. Calico can also integrate with Istio, a service mesh, to interpret and
enforce policy for workloads within the cluster at the service mesh and network
infrastructure layers.

Table 4-2 gives a brief overview of the major CNI plugins to choose from.

Table 4-2. A brief overview of major CNI plugins

Name NetworkPolicy support Data storage Network setup
Cilium Yes etcd or consul Ipvlan(beta), veth, L7 aware

Flannel No etcd Layer 3 IPv4 overlay network

Calico Yes etcd or Kubernetes API Layer 3 network using BGP

Weave Net Yes No external cluster store Mesh overlay network

Full instructions for running KIND, Helm, and Cilium are in the
book’s GitHub repo.

156 | Chapter 4: Kubernetes Networking Introduction

Let’s deploy Cilium for testing with our Golang web server in Example 4-3. We will
need a Kubernetes cluster for deploying Cilium. One of the easiest ways we have
found to deploy clusters for testing locally is KIND, which stands for Kubernetes in
Docker. It will allow us to create a cluster with a YAML configuration file and then,
using Helm, deploy Cilium to that cluster.

Example 4-3. KIND configuration for Cilium local deploy

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
- role: worker
- role: worker
- role: worker
networking:
disableDefaultCNI: true

Specifies that we are configuring a KIND cluster

The version of KIND’s config

The list of nodes in the cluster

One control plane node

Worker node 1

Worker node 2

Worker node 3

KIND configuration options for networking

Disables the default networking option so that we can deploy Cilium

Instructions for configuring a KIND cluster and more can be
found in the documentation.

With the KIND cluster configuration YAML, we can use KIND to create that cluster
with the following command. If this is the first time you’re running it, it will take
some time to download all the Docker images for the working and control plane
Docker images:

CNI Plugins | 157

https://oreil.ly/12BRh

$ kind create cluster --config=kind-config.yaml
Creating cluster "kind" ...
✓ Ensuring node image (kindest/node:v1.18.
2) Preparing nodes
✓ Writing configuration Starting control-plane
Installing StorageClass Joining worker nodes Set kubectl context to "kind-kind"
You can now use your cluster with:

kubectl cluster-info --context kind-kind

Have a question, bug, or feature request?
Let us know! https://kind.sigs.k8s.io/#community ߙ⊭---

Always verify that the cluster is up and running with kubectl.

$ kubectl cluster-info --context kind-kind
Kubernetes master -> control plane is running at https://127.0.0.1:59511
KubeDNS is running at
https://127.0.0.1:59511/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump.'

The cluster nodes will remain in state NotReady until Cilium
deploys the network. This is normal behavior for the cluster.

Now that our cluster is running locally, we can begin installing Cilium using Helm, a
Kubernetes deployment tool. According to its documentation, Helm is the preferred
way to install Cilium. First, we need to add the Helm repo for Cilium. Optionally, you
can download the Docker images for Cilium and finally instruct KIND to load the
Cilium images into the cluster:

$ helm repo add cilium https://helm.cilium.io/
Pre-pulling and loading container images is optional.
$ docker pull cilium/cilium:v1.9.1
kind load docker-image cilium/cilium:v1.9.1

Now that the prerequisites for Cilium are completed, we can install it in our cluster
with Helm. There are many configuration options for Cilium, and Helm configures
options with --set NAME_VAR=VAR:

$ helm install cilium cilium/cilium --version 1.10.1 \
 --namespace kube-system

NAME: Cilium
LAST DEPLOYED: Fri Jan 1 15:39:59 2021
NAMESPACE: kube-system
STATUS: deployed
REVISION: 1
TEST SUITE: None

158 | Chapter 4: Kubernetes Networking Introduction

NOTES:
You have successfully installed Cilium with Hubble.

Your release version is 1.10.1.

For any further help, visit https://docs.cilium.io/en/v1.10/gettinghelp/

Cilium installs several pieces in the cluster: the agent, the client, the operator, and the
cilium-cni plugin:

Agent
The Cilium agent, cilium-agent, runs on each node in the cluster. The agent
accepts configuration through Kubernetes APIs that describe networking, service
load balancing, network policies, and visibility and monitoring requirements.

Client (CLI)
The Cilium CLI client (Cilium) is a command-line tool installed along with the
Cilium agent. It interacts with the REST API on the same node. The CLI allows
developers to inspect the state and status of the local agent. It also provides tool‐
ing to access the eBPF maps to validate their state directly.

Operator
The operator is responsible for managing duties in the cluster, which should be
handled per cluster and not per node.

CNI Plugin
The CNI plugin (cilium-cni) interacts with the Cilium API of the node to trig‐
ger the configuration to provide networking, load balancing, and network poli‐
cies pods.

We can observe all these components being deployed in the cluster with the kubectl
-n kube-system get pods --watch command:

$ kubectl -n kube-system get pods --watch
NAME READY STATUS
cilium-65kvp 0/1 Init:0/2
cilium-node-init-485lj 0/1 ContainerCreating
cilium-node-init-79g68 1/1 Running
cilium-node-init-gfdl8 1/1 Running
cilium-node-init-jz8qc 1/1 Running
cilium-operator-5b64c54cd-cgr2b 0/1 ContainerCreating
cilium-operator-5b64c54cd-tblbz 0/1 ContainerCreating
cilium-pg6v8 0/1 Init:0/2
cilium-rsnqk 0/1 Init:0/2
cilium-vfhrs 0/1 Init:0/2
coredns-66bff467f8-dqzql 0/1 Pending
coredns-66bff467f8-r5nl6 0/1 Pending
etcd-kind-control-plane 1/1 Running
kube-apiserver-kind-control-plane 1/1 Running
kube-controller-manager-kind-control-plane 1/1 Running

CNI Plugins | 159

kube-proxy-k5zc2 1/1 Running
kube-proxy-qzhvq 1/1 Running
kube-proxy-v54p4 1/1 Running
kube-proxy-xb9tr 1/1 Running
kube-scheduler-kind-control-plane 1/1 Running
cilium-operator-5b64c54cd-tblbz 1/1 Running

Now that we have deployed Cilium, we can run the Cilium connectivity check to
ensure it is running correctly:

$ kubectl create ns cilium-test
namespace/cilium-test created

$ kubectl apply -n cilium-test \
-f \
https://raw.githubusercontent.com/strongjz/advanced_networking_code_examples/
master/chapter-4/connectivity-check.yaml

deployment.apps/echo-a created
deployment.apps/echo-b created
deployment.apps/echo-b-host created
deployment.apps/pod-to-a created
deployment.apps/pod-to-external-1111 created
deployment.apps/pod-to-a-denied-cnp created
deployment.apps/pod-to-a-allowed-cnp created
deployment.apps/pod-to-external-fqdn-allow-google-cnp created
deployment.apps/pod-to-b-multi-node-clusterip created
deployment.apps/pod-to-b-multi-node-headless created
deployment.apps/host-to-b-multi-node-clusterip created
deployment.apps/host-to-b-multi-node-headless created
deployment.apps/pod-to-b-multi-node-nodeport created
deployment.apps/pod-to-b-intra-node-nodeport created
service/echo-a created
service/echo-b created
service/echo-b-headless created
service/echo-b-host-headless created
ciliumnetworkpolicy.cilium.io/pod-to-a-denied-cnp created
ciliumnetworkpolicy.cilium.io/pod-to-a-allowed-cnp created
ciliumnetworkpolicy.cilium.io/pod-to-external-fqdn-allow-google-cnp created

The connectivity test will deploy a series of Kubernetes deployments that will use var‐
ious connectivity paths. Connectivity paths come with and without service load bal‐
ancing and in various network policy combinations. The pod name indicates the
connectivity variant, and the readiness and liveness gate indicates the success or fail‐
ure of the test:

$ kubectl get pods -n cilium-test -w
NAME READY STATUS
echo-a-57cbbd9b8b-szn94 1/1 Running
echo-b-6db5fc8ff8-wkcr6 1/1 Running
echo-b-host-76d89978c-dsjm8 1/1 Running
host-to-b-multi-node-clusterip-fd6868749-7zkcr 1/1 Running

160 | Chapter 4: Kubernetes Networking Introduction

host-to-b-multi-node-headless-54fbc4659f-z4rtd 1/1 Running
pod-to-a-648fd74787-x27hc 1/1 Running
pod-to-a-allowed-cnp-7776c879f-6rq7z 1/1 Running
pod-to-a-denied-cnp-b5ff897c7-qp5kp 1/1 Running
pod-to-b-intra-node-nodeport-6546644d59-qkmck 1/1 Running
pod-to-b-multi-node-clusterip-7d54c74c5f-4j7pm 1/1 Running
pod-to-b-multi-node-headless-76db68d547-fhlz7 1/1 Running
pod-to-b-multi-node-nodeport-7496df84d7-5z872 1/1 Running
pod-to-external-1111-6d4f9d9645-kfl4x 1/1 Running
pod-to-external-fqdn-allow-google-cnp-5bc496897c-bnlqs 1/1 Running

Now that Cilium manages our network for the cluster, we will use it later in this chap‐
ter for a NetworkPolicy overview. Not all CNI plugins will support NetworkPolicy,
so that is an important detail when deciding which plugin to use.

kube-proxy
kube-proxy is another per-node daemon in Kubernetes, like Kubelet. kube-proxy
provides basic load balancing functionality within the cluster. It implements services
and relies on Endpoints/EndpointSlices, two API objects that we will discuss in
detail in the next chapter on networking abstractions. It may help to reference that
section, but the following is the relevant and quick explanation:

• Services define a load balancer for a set of pods.
• Endpoints (and endpoint slices) list a set of ready pod IPs. They are created auto‐

matically from a service, with the same pod selector as the service.

Most types of services have an IP address for the service, called the cluster IP address,
which is not routable outside the cluster. kube-proxy is responsible for routing
requests to a service’s cluster IP address to healthy pods. kube-proxy is by far the
most common implementation for Kubernetes services, but there are alternatives to
kube-proxy, such as a replacement mode Cilium. A substantial amount of our con‐
tent on routing in Chapter 2 is applicable to kube-proxy, particularly when debug‐
ging service connectivity or performance.

Cluster IP addresses are not typically routable from outside a
cluster.

kube-proxy has four modes, which change its runtime mode and exact feature set:
userspace, iptables, ipvs, and kernelspace. You can specify the mode using
--proxy-mode <mode>. It’s worth noting that all modes rely on iptables to some
extent.

kube-proxy | 161

userspace Mode
The first and oldest mode is userspace mode. In userspace mode, kube-proxy runs
a web server and routes all service IP addresses to the web server, using iptables.
The web server terminates connections and proxies the request to a pod in the serv‐
ice’s endpoints. userspace mode is no longer commonly used, and we suggest avoid‐
ing it unless you have a clear reason to use it.

iptables Mode
iptables mode uses iptables entirely. It is the default mode, and the most com‐
monly used (this may be in part because IPVS mode graduated to GA stability more
recently, and iptables is a familiar Linux technology).

iptables mode performs connection fan-out, instead of true load balancing. In other
words, iptables mode will route a connection to a backend pod, and all requests
made using that connection will go to the same pod, until the connection is termi‐
nated. This is simple and has predictable behavior in ideal scenarios (e.g., successive
requests in the same connection will be able to benefit from any local caching in
backend pods). It can also be unpredictable when dealing with long-lived connec‐
tions, such as HTTP/2 connections (notably, HTTP/2 is the transport for gRPC).
Suppose you have two pods, X and Y, serving a service, and you replace X with Z dur‐
ing a normal rolling update. The older pod Y still has all the existing connections,
plus half of the connections that needed to be reestablished when pod X shut down,
leading to substantially more traffic being served by pod Y. There are many scenarios
like this that lead to unbalanced traffic.

Recall our examples in the “Practical iptables” section in Chapter 2. In it, we showed
that iptables could be configured with a list of IP addresses and random routing
probabilities, such that connections would be made randomly between all IP
addresses. Given a service that has healthy backend pods 10.0.0.1, 10.0.0.2,
10.0.0.3, and 10.0.0.4, kube-proxy would create sequential rules that route con‐
nections like so:

• 25% of connections go to 10.0.0.1.
• 33.3% of unrouted connections go to 10.0.0.2.
• 50% of unrouted connections go to 10.0.0.3.
• All unrouted connections go to 10.0.0.4.

162 | Chapter 4: Kubernetes Networking Introduction

This may seem unintuitive and leads some engineers to assume that kube-proxy is
misrouting traffic (especially because few people look at kube-proxy when services
work as expected). The crucial detail is that each routing rule happens for connec‐
tions that haven’t been routed in a prior rule. The final rule routes all connections to
10.0.0.4 (because the connection has to go somewhere), the semifinal rule has a 50%
chance of routing to 10.0.0.3 as a choice of two IP addresses, and so on. Routing
randomness scores are always calculated as 1 / ${remaining number of IP

addresses}.

Here are the iptables forwarding rules for the kube-dns service in a cluster. In our
example, the kube-dns service’s cluster IP address is 10.96.0.10. This output has
been filtered and reformatted for clarity:

$ sudo iptables -t nat -L KUBE-SERVICES
Chain KUBE-SERVICES (2 references)
target prot opt source destination

/* kube-system/kube-dns:dns cluster IP */ udp dpt:domain
KUBE-MARK-MASQ udp -- !10.217.0.0/16 10.96.0.10
/* kube-system/kube-dns:dns cluster IP */ udp dpt:domain
KUBE-SVC-TCOU7JCQXEZGVUNU udp -- anywhere 10.96.0.10
/* kube-system/kube-dns:dns-tcp cluster IP */ tcp dpt:domain
KUBE-MARK-MASQ tcp -- !10.217.0.0/16 10.96.0.10
/* kube-system/kube-dns:dns-tcp cluster IP */ tcp dpt:domain
KUBE-SVC-ERIFXISQEP7F7OF4 tcp -- anywhere 10.96.0.10 ADDRTYPE
 match dst-type LOCAL
/* kubernetes service nodeports; NOTE: this must be the
 last rule in this chain */
KUBE-NODEPORTS all -- anywhere anywhere

There are a pair of UDP and TCP rules for kube-dns. We’ll focus on the UDP ones.

The first UDP rule marks any connections to the service that aren’t originating from a
pod IP address (10.217.0.0/16 is the default pod network CIDR) for masquerading.

The next UDP rule has the chain KUBE-SVC-TCOU7JCQXEZGVUNU as its target. Let’s take
a closer look:

$ sudo iptables -t nat -L KUBE-SVC-TCOU7JCQXEZGVUNU
Chain KUBE-SVC-TCOU7JCQXEZGVUNU (1 references)
target prot opt source destination

/* kube-system/kube-dns:dns */
KUBE-SEP-OCPCMVGPKTDWRD3C all -- anywhere anywhere statistic mode
 random probability 0.50000000000
/* kube-system/kube-dns:dns */
KUBE-SEP-VFGOVXCRCJYSGAY3 all -- anywhere anywhere

kube-proxy | 163

Here we see a chain with a 50% chance of executing, and the chain that will execute
otherwise. If we check the first of those chains, we see it routes to 10.0.1.141, one of
our two CoreDNS pods’ IPs:

$ sudo iptables -t nat -L KUBE-SEP-OCPCMVGPKTDWRD3C
Chain KUBE-SEP-OCPCMVGPKTDWRD3C (1 references)
target prot opt source destination

/* kube-system/kube-dns:dns */
KUBE-MARK-MASQ all -- 10.0.1.141 anywhere
/* kube-system/kube-dns:dns */ udp to:10.0.1.141:53
DNAT udp -- anywhere anywhere

ipvs Mode
ipvs mode uses IPVS, covered in Chapter 2, instead of iptables, for connection load
balancing. ipvs mode supports six load balancing modes, specified with --ipvs-
scheduler:

• rr: Round-robin
• lc: Least connection
• dh: Destination hashing
• sh: Source hashing
• sed: Shortest expected delay
• nq: Never queue

Round-robin (rr) is the default load balancing mode. It is the closest analog to ipta
bles mode’s behavior (in that connections are made fairly evenly regardless of pod
state), though iptables mode does not actually perform round-robin routing.

kernelspace Mode
kernelspace is the newest, Windows-only mode. It provides an alternative to
userspace mode for Kubernetes on Windows, as iptables and ipvs are specific to
Linux.

Now that we’ve covered the basics of pod-to-pod traffic in Kubernetes, let’s take a
look at NetworkPolicy and securing pod-to-pod traffic.

164 | Chapter 4: Kubernetes Networking Introduction

NetworkPolicy
Kubernetes’ default behavior is to allow traffic between any two pods in the cluster
network. This behavior is a deliberate design choice for ease of adoption and flexibil‐
ity of configuration, but it is highly undesirable in practice. Allowing any system to
make (or receive) arbitrary connections creates risk. An attacker can probe systems
and can potentially exploit captured credentials or find weakened or missing authen‐
tication. Allowing arbitrary connections also makes it easier to exfiltrate data from a
system through a compromised workload. All in all, we strongly discourage running
real clusters without NetworkPolicy. Since all pods can communicate with all other
pods, we strongly recommend that application owners use NetworkPolicy objects
along with other application-layer security measures, such as authentication tokens or
mutual Transport Layer Security (mTLS), for any network communication.

NetworkPolicy is a resource type in Kubernetes that contains allow-based firewall
rules. Users can add NetworkPolicy objects to restrict connections to and from pods.
The NetworkPolicy resource acts as a configuration for CNI plugins, which them‐
selves are responsible for ensuring connectivity between pods. The Kubernetes API
declares that NetworkPolicy support is optional for CNI drivers, which means that
some CNI drivers do not support network policies, as shown in Table 4-3. If a devel‐
oper creates a NetworkPolicy when using a CNI driver that does not support Net
workPolicy objects, it does not affect the pod’s network security. Some CNI drivers,
such as enterprise products or company-internal CNI drivers, may introduce their
equivalent of a NetworkPolicy. Some CNI drivers may also have slightly different
“interpretations” of the NetworkPolicy spec.

Table 4-3. Common CNI plugins and NetworkPolicy support

CNI plugin NetworkPolicy supported
Calico Yes, and supports additional plugin-specific policies

Cilium Yes, and supports additional plugin-specific policies

Flannel No

Kubenet No

Example 4-4 details a NetworkPolicy object, which contains a pod selector, ingress
rules, and egress rules. The policy will apply to all pods in the same namespace as the
NetworkPolicy that matches the selector label. This use of selector labels is consistent
with other Kubernetes APIs: a spec identifies pods by their labels rather than their
names or parent objects.

NetworkPolicy | 165

Example 4-4. The broad structure of a NetworkPolicy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: demo
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: demo
 policyTypes:
 - Ingress
 - Egress
 ingress: []NetworkPolicyIngressRule # Not expanded
 egress: []NetworkPolicyEgressRule # Not expanded

Before getting deep into the API, let’s walk through a simple example of creating a
NetworkPolicy to reduce the scope of access for some pods. Let’s assume we have two
distinct components: demo and demo-DB. As we have no existing NetworkPolicy in
Figure 4-7, all pods can communicate with all other pods (including hypothetically
unrelated pods, not shown).

Figure 4-7. Pods without NetworkPolicy objects

Let’s restrict demo-DB’s access level. If we create the following NetworkPolicy that
selects demo-DB pods, demo-DB pods will be unable to send or receive any traffic:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: demo-db
 namespace: default
spec:
 podSelector:
 matchLabels:

166 | Chapter 4: Kubernetes Networking Introduction

 app: demo-db
 policyTypes:
 - Ingress
 - Egress

In Figure 4-8, we can now see that pods with the label app=demo can no longer create
or receive connections.

Figure 4-8. Pods with the app:demo-db label cannot receive or send traffic

Having no network access is undesirable for most workloads, including our example
database. Our demo-db should (only) be able to receive connections from demo pods.
To do that, we must add an ingress rule to the NetworkPolicy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: demo-db
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: demo-db
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: demo

Now demo-db pods can receive connections only from demo pods. Moreover, demo-db
pods cannot make connections (as shown in Figure 4-9).

NetworkPolicy | 167

Figure 4-9. Pods with the app:demo-db label cannot create connections, and they can
only receive connections from the app:demo pods

If users can unwittingly or maliciously change labels, they can
change how NetworkPolicy objects apply to all pods. In our prior
example, if an attacker was able to edit the app: demo-DB label on a
pod in that same namespace, the NetworkPolicy that we created
would no longer apply to that pod. Similarly, an attacker could gain
access from another pod in that namespace if they could add the
label app: demo to their compromised pod.

The previous example is just an example; with Cilium we can create these
NetworkPolicy objects for our Golang web server.

NetworkPolicy Example with Cilium
Our Golang web server now connects to a Postgres database with no TLS. Also, with
no NetworkPolicy objects in place, any pod on the network can sniff traffic between
the Golang web server and the database, which is a potential security risk. The follow‐
ing is going to deploy our Golang web application and its database and then deploy
NetworkPolicy objects that will only allow connectivity to the database from the web
server. Using the same KIND cluster from the Cilium install, let’s deploy the Postgres
database with the following YAML and kubectl commands:

$ kubectl apply -f database.yaml
service/postgres created
configmap/postgres-config created
statefulset.apps/postgres created

Here we deploy our web server as a Kubernetes deployment to our KIND cluster:

$ kubectl apply -f web.yaml
deployment.apps/app created

168 | Chapter 4: Kubernetes Networking Introduction

To run connectivity tests inside the cluster network, we will deploy and use a dnsu
tils pod that has basic networking tools like ping and curl:

$ kubectl apply -f dnsutils.yaml
pod/dnsutils created

Since we are not deploying a service with an ingress, we can use kubectl port-
forward to test connectivity to our web server:

kubectl port-forward app-5878d69796-j889q 8080:8080

More information about kubectl port-forward can be found in
the documentation.

Now from our local terminal, we can reach our API:

$ curl localhost:8080/
Hello
$ curl localhost:8080/healthz
Healthy
$ curl localhost:8080/data
Database Connected

Let’s test connectivity to our web server inside the cluster from other pods. To do that,
we need to get the IP address of our web server pod:

$ kubectl get pods -l app=app -o wide
NAME READY STATUS RESTARTS AGE IP NODE
app-5878d69796-j889q 1/1 Running 0 87m 10.244.1.188 kind-worker3

Now we can test L4 and L7 connectivity to the web server from the dnsutils pod:

$ kubectl exec dnsutils -- nc -z -vv 10.244.1.188 8080
10.244.1.188 (10.244.1.188:8080) open
sent 0, rcvd 0

From our dnsutils, we can test the layer 7 HTTP API access:

$ kubectl exec dnsutils -- wget -qO- 10.244.1.188:8080/
Hello

$ kubectl exec dnsutils -- wget -qO- 10.244.1.188:8080/data
Database Connected

$ kubectl exec dnsutils -- wget -qO- 10.244.1.188:8080/healthz
Healthy

We can also test this on the database pod. First, we have to retrieve the IP address of
the database pod, 10.244.2.189. We can use kubectl with a combination of labels
and options to get this information:

NetworkPolicy | 169

https://oreil.ly/Ac6jk

$ kubectl get pods -l app=postgres -o wide
NAME READY STATUS RESTARTS AGE IP NODE
postgres-0 1/1 Running 0 98m 10.244.2.189 kind-worker

Again, let’s use dnsutils pod to test connectivity to the Postgres database over its
default port 5432:

$ kubectl exec dnsutils -- nc -z -vv 10.244.2.189 5432
10.244.2.189 (10.244.2.189:5432) open
sent 0, rcvd 0

The port is open for all to use since no network policies are in place. Now let’s restrict
this with a Cilium network policy. The following commands deploy the network poli‐
cies so that we can test the secure network connectivity. Let’s first restrict access to the
database pod to only the web server. Apply the network policy that only allows traffic
from the web server pod to the database:

$ kubectl apply -f layer_3_net_pol.yaml
ciliumnetworkpolicy.cilium.io/l3-rule-app-to-db created

The Cilium deploy of Cilium objects creates resources that can be retrieved just like
pods with kubectl. With kubectl describe ciliumnetworkpolicies.cilium.io
l3-rule-app-to-db, we can see all the information about the rule deployed via the
YAML:

$ kubectl describe ciliumnetworkpolicies.cilium.io l3-rule-app-to-db
Name: l3-rule-app-to-db
Namespace: default
Labels: <none>
Annotations: API Version: cilium.io/v2
Kind: CiliumNetworkPolicy
Metadata:
Creation Timestamp: 2021-01-10T01:06:13Z
Generation: 1
Managed Fields:
API Version: cilium.io/v2
Fields Type: FieldsV1
fieldsV1:
f:metadata:
f:annotations:
.:
f:kubectl.kubernetes.io/last-applied-configuration:
f:spec:
.:
f:endpointSelector:
.:
f:matchLabels:
.:
f:app:
f:ingress:
Manager: kubectl
Operation: Update

170 | Chapter 4: Kubernetes Networking Introduction

Time: 2021-01-10T01:06:13Z
Resource Version: 47377
Self Link:
/apis/cilium.io/v2/namespaces/default/ciliumnetworkpolicies/l3-rule-app-to-db
UID: 71ee6571-9551-449d-8f3e-c177becda35a
Spec:
Endpoint Selector:
Match Labels:
App: postgres
Ingress:
From Endpoints:
Match Labels:
App: app
Events: <none>

With the network policy applied, the dnsutils pod can no longer reach the database
pod; we can see this in the timeout trying to reach the DB port from the dnsutils
pods:

$ kubectl exec dnsutils -- nc -z -vv -w 5 10.244.2.189 5432
nc: 10.244.2.189 (10.244.2.189:5432): Operation timed out
sent 0, rcvd 0
command terminated with exit code 1

While the web server pod is still connected to the database pod, the /data route con‐
nects the web server to the database and the NetworkPolicy allows it:

$ kubectl exec dnsutils -- wget -qO- 10.244.1.188:8080/data
Database Connected

$ curl localhost:8080/data
Database Connected

Now let’s apply the layer 7 policy. Cilium is layer 7 aware so that we can block or allow
a specific request on the HTTP URI paths. In our example policy, we allow HTTP
GETs on / and /data but do not allow them on /healthz; let’s test that:

$ kubectl apply -f layer_7_netpol.yml
ciliumnetworkpolicy.cilium.io/l7-rule created

We can see the policy applied just like any other Kubernetes objects in the API:

$ kubectl get ciliumnetworkpolicies.cilium.io
NAME AGE
l7-rule 6m54s

$ kubectl describe ciliumnetworkpolicies.cilium.io l7-rule
Name: l7-rule
Namespace: default
Labels: <none>
Annotations: API Version: cilium.io/v2
Kind: CiliumNetworkPolicy
Metadata:

NetworkPolicy | 171

 Creation Timestamp: 2021-01-10T00:49:34Z
 Generation: 1
 Managed Fields:
 API Version: cilium.io/v2
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:annotations:
 .:
 f:kubectl.kubernetes.io/last-applied-configuration:
 f:spec:
 .:
 f:egress:
 f:endpointSelector:
 .:
 f:matchLabels:
 .:
 f:app:
 Manager: kubectl
 Operation: Update
 Time: 2021-01-10T00:49:34Z
 Resource Version: 43869
 Self Link:/apis/cilium.io/v2/namespaces/default/ciliumnetworkpolicies/l7-rule
 UID: 0162c16e-dd55-4020-83b9-464bb625b164
Spec:
 Egress:
 To Ports:
 Ports:
 Port: 8080
 Protocol: TCP
 Rules:
 Http:
 Method: GET
 Path: /
 Method: GET
 Path: /data
 Endpoint Selector:
 Match Labels:
 App: app
Events: <none>

As we can see, / and /data are available but not /healthz, precisely what we expect
from the NetworkPolicy:

$ kubectl exec dnsutils -- wget -qO- 10.244.1.188:8080/data
Database Connected

$kubectl exec dnsutils -- wget -qO- 10.244.1.188:8080/
Hello

$ kubectl exec dnsutils -- wget -qO- -T 5 10.244.1.188:8080/healthz
wget: error getting response
command terminated with exit code 1

172 | Chapter 4: Kubernetes Networking Introduction

These small examples show how powerful the Cilium network policies can enforce
network security inside the cluster. We highly recommend that administrators select a
CNI that supports network policies and enforce developers’ use of network policies.
Network policies are namespaced, and if teams have similar setups, cluster adminis‐
trators can and should enforce that developers define network policies for added
security.

We used two aspects of the Kubernetes API, labels and selectors; in our next section,
we will provide more examples of how they are used inside a cluster.

Selecting Pods
Pods are unrestricted until they are selected by a NetworkPolicy. If selected, the CNI
plugin allows pod ingress or egress only when a matching rule allows it. A NetworkPo
licy has a spec.policyTypes field containing a list of policy types (ingress or
egress). For example, if we select a pod with a NetworkPolicy that has ingress listed
but not egress, then ingress will be restricted, and egress will not.

The spec.podSelector field will dictate which pods to apply the NetworkPolicy to.
An empty label selector. (podSelector: {}) will select all pods in the namespace.
We will discuss label selectors in more detail shortly.

NetworkPolicy objects are namespaced objects, which means they exist in and apply
to a specific namespace. The spec .podSelector field can select pods only when they
are in the same namespace as the NetworkPolicy. This means selecting app: demo
will apply only in the current namespace, and any pods in another namespace with
the label app: demo will be unaffected.

There are multiple workarounds to achieve firewalled-by-default behavior, including
the following:

• Creating a blanket deny-all NetworkPolicy object for every namespace, which
will require developers to add additional NetworkPolicy objects to allow desired
traffic.

• Adding a custom CNI plugin that deliberately violates the default-open API
behavior. Multiple CNI plugins have an additional configuration that exposes this
kind of behavior.

• Creating admission policies to require that workloads have a NetworkPolicy.

NetworkPolicy objects rely heavily on labels and selectors; for that reason, let’s dive
into more complex examples.

NetworkPolicy | 173

The LabelSelector type

This is the first time in this book that we see a LabelSelector in a resource. It is a
ubiquitous configuration element in Kubernetes and will come up many times in the
next chapter, so when you get there, it may be helpful to look back at this section as a
reference.

Every object in Kubernetes has a metadata field, with the type ObjectMeta. That gives
every type the same metadata fields, like labels. Labels are a map of key-value string
pairs:

metadata:
 labels:
 colour: purple
 shape: square

A LabelSelector identifies a group of resources by the present labels (or absent).
Very few resources in Kubernetes will refer to other resources by name. Instead, most
resources (NetworkPolicy objects, services, deployments, and other Kubernetes
objects). use label matching with a LabelSelector. LabelSelectors can also be used
in API and kubectl calls and avoid returning irrelevant objects. A LabelSelector
has two fields: matchExpressions and matchLabels. The normal behavior for an
empty LabelSelector is to select all objects in scope, e.g., all pods in the same name‐
space as a NetworkPolicy. matchLabels is the simpler of the two. matchLabels con‐
tains a map of key-value pairs. For an object to match, each key must be present on
the object, and that key must have the corresponding value. matchLabels, often with
a single key (e.g., app=example-thing), is usually sufficient for a selector.

In Example 4-5, we can see a match object that has both the label colour=purple and
the label shape=square.

Example 4-5. matchLabels example

matchLabels:
 colour: purple
 shape: square

matchExpressions is more powerful but more complicated. It contains a list of Label
SelectorRequirements. All requirements must be true in order for an object to
match. Table 4-4 shows all the required fields for a matchExpressions.

174 | Chapter 4: Kubernetes Networking Introduction

Table 4-4. LabelSelectorRequirement fields

Field Description
key The label key this requirement compares against.

operator One of Exists, DoesNotExist, In, NotIn.
Exists: Matches an object if there is a label with the key, regardless of the value.
NotExists: Matches an object if there is no label with the key.
In: Matches an object if there is a label with the key, and the value is one of the provided values.
NotIn: Matches an object if there is no label with the key, or the key’s value is not one of the provided values.

values A list of string values for the key in question. It must be empty when the operator is In or NotIn. It may not be
empty when the operator is Exists or NotExists.

Let’s look at two brief examples of matchExpressions.

The matchExpressions equivalent of our prior matchLabels example is shown in
Example 4-6.

Example 4-6. matchExpressions example 1

matchExpressions:
 - key: colour
 operator: In
 values:
 - purple
 - key: shape
 operator: In
 values:
 - square

matchExpressions in Example 4-7, will match objects with a color not equal to red,
orange, or yellow, and with a shape label.

Example 4-7. matchExpressions example 2

matchExpressions:
 - key: colour
 operator: NotIn
 values:
 - red
 - orange
 - yellow
 - key: shape
 operator: Exists

NetworkPolicy | 175

Now that we have labels covered, we can discuss rules. Rules will enforce our network
policies after a match has been identified.

Rules
NetworkPolicy objects contain distinct ingress and egress configuration sections,
which contain a list of ingress rules and egress rules, respectively. NetworkPolicy
rules act as exceptions, or an “allow list,” to the default block caused by selecting pods
in a policy. Rules cannot block access; they can only add access. If multiple NetworkPo
licy objects select a pod, all rules in each of those NetworkPolicy objects apply. It
may make sense to use multiple NetworkPolicy objects for the same set of pods (for
example, declaring application allowances in one policy and infrastructure allowances
like telemetry exporting in another). However, keep in mind that they do not need to
be separate NetworkPolicy objects, and with too many NetworkPolicy objects it can
become hard to reason.

To support health checks and liveness checks from the Kubelet, the
CNI plugin must always allow traffic from a pod’s node.
It is possible to abuse labels if an attacker has access to the node
(even without admin privileges). Attackers can spoof a node’s IP
and deliver packets with the node’s IP address as the source.

Ingress rules and egress rules are discrete types in the NetworkPolicy API (Network
PolicyIngressRule and NetworkPolicyEgressRule). However, they are functionally
structured the same way. Each NetworkPolicyIngressRule/NetworkPolicyEgress
Rule contains a list of ports and a list of NetworkPolicyPeers.

A NetworkPolicyPeer has four ways for rules to refer to networked entities: ipBlock,
namespaceSelector, podSelector, and a combination.

ipBlock is useful for allowing traffic to and from external systems. It can be used only
on its own in a rule, without a namespaceSelector or podSelector. ipBlock contains
a CIDR and an optional except CIDR. The except CIDR will exclude a sub-CIDR (it
must be within the CIDR range). In Example 4-8, we allow traffic from all IP
addresses in the range 10.0.0.0 to 10.0.0.255, excluding 10.0.0.10. Example 4-9
allows traffic from all pods in any namespace labeled group:x.

Example 4-8. Allow traffic example 1

from:
 - ipBlock:
 - cidr: "10.0.0.0/24"
 - except: "10.0.0.10"

176 | Chapter 4: Kubernetes Networking Introduction

Example 4-9. Allow traffic example 2

#
from:
 - namespaceSelector:
 - matchLabels:
 group: x

In Example 4-10, we allow traffic from all pods in any namespace labeled service:
x.. podSelector behaves like the spec.podSelector field that we discussed earlier.
If there is no namespaceSelector, it selects pods in the same namespace as the
NetworkPolicy.

Example 4-10. Allow traffic example 3

from:
 - podSelector:
 - matchLabels:
 service: y

If we specify a namespaceSelector and a podSelector, the rule selects all pods with
the specified pod label in all namespaces with the specified namespace label. It is
common and highly recommended by security experts to keep the scope of a name‐
space small; typical namespace scopes are per an app or service group or team. There
is a fourth option shown in Example 4-11 with a namespace and pod selector. This
selector behaves like an AND condition for the namespace and pod selector: pods
must have the matching label and be in a namespace with the matching label.

Example 4-11. Allow traffic example 4

from:
 - namespaceSelector:
 - matchLabels:
 group: monitoring
 podSelector:
 - matchLabels:
 service: logscraper

Be aware this is a distinct type in the API, although the YAML syntax looks extremely
similar. As to and from sections can have multiple selectors, a single character can
make the difference between an AND and an OR, so be careful when writing policies.

Our earlier security warning about API access also applies here. If a user can custom‐
ize the labels on their namespace, they can make a NetworkPolicy in another name‐
space apply to their namespace in a way not intended. In our previous selector
example, if a user can set the label group: monitoring on an arbitrary namespace,

NetworkPolicy | 177

they can potentially send or receive traffic that they are not supposed to. If the Net
workPolicy in question has only a namespace selector, then that namespace label is
sufficient to match the policy. If there is also a pod label in the NetworkPolicy selec‐
tor, the user will need to set pod labels to match the policy selection. However, in a
typical setup, the service owners will grant create/update permissions on pods in that
service’s namespace (directly on the pod resource or indirectly via a resource like a
deployment, which can define pods).

A typical NetworkPolicy could look something like this:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: store-api
 namespace: store
spec:
 podSelector:
 matchLabels: {}
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 app: frontend
 podSelector:
 matchLabels:
 app: frontend
 ports:
 - protocol: TCP
 port: 8080
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 app: downstream-1
 podSelector:
 matchLabels:
 app: downstream-1
 - namespaceSelector:
 matchLabels:
 app: downstream-2
 podSelector:
 matchLabels:
 app: downstream-2
 ports:
 - protocol: TCP
 port: 8080

178 | Chapter 4: Kubernetes Networking Introduction

In this example, all pods in our store namespace can receive connections only from
pods labeled app: frontend in a namespace labeled app: frontend. Those pods can
only create connections to pods in namespaces where the pod and namespace both
have app: downstream-1 or app: downstream-2. In each of these cases, only traffic
to port 8080 is allowed. Finally, remember that this policy does not guarantee a
matching policy for downstream-1 or downstream-2 (see the next example). Accept‐
ing these connections does not preclude other policies against pods in our name‐
space, adding additional exceptions:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: store-to-downstream-1
 namespace: downstream-1
spec:
 podSelector:
 app: downstream-1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 app: store
 ports:
 - protocol: TCP
 port: 8080

Although they are a “stable” resource (i.e., part of the networking/v1 API), we believe
NetworkPolicy objects are still an early version of network security in Kubernetes.
The user experience of configuring NetworkPolicy objects is somewhat rough, and
the default open behavior is highly undesirable. There is currently a working group to
discuss the future of NetworkPolicy and what a v2 API would contain.

CNIs and those who deploy them use labels and selectors to determine which pods
are subject to network restrictions. As we have seen in many of the previous exam‐
ples, they are an essential part of the Kubernetes API, and developers and administra‐
tors alike must have a thorough knowledge of how to use them.

NetworkPolicy objects are an important tool in the cluster administrator’s toolbox.
They are the only tool available for controlling internal cluster traffic, native to the
Kubernetes API. We discuss service meshes, which will add further tools for admins
to secure and control workloads, in “Service Meshes” on page 229.

Next we will discuss another important tool so administrators can understand how it
works inside the cluster: the Domain Name System (DNS).

NetworkPolicy | 179

DNS
DNS is a critical piece of infrastructure for any network. In Kubernetes, this is no dif‐
ferent, so a brief overview is warranted. In the following “Services” sections, we will
see how much they depend on DNS and why a Kubernetes distribution cannot
declare that it is a conforming Kubernetes distribution without providing a DNS ser‐
vice that follows the specification. But first, let’s review how DNS works inside
Kubernetes.

We will not outline the entire specification in this book. If readers
are interested in reading more about it, it is available on GitHub.

KubeDNS was used in earlier versions of Kubernetes. KubeDNS had several contain‐
ers within a single pod: kube-dns, dnsmasq, and sidecar. The kube-dns container
watches the Kubernetes API and serves DNS records based on the Kubernetes DNS
specification, dnsmasq provides caching and stub domain support, and sidecar pro‐
vides metrics and health checks. Versions of Kubernetes after 1.13 now use the sepa‐
rate component CoreDNS.

There are several differences between CoreDNS and KubeDNS:

• For simplicity, CoreDNS runs as a single container.
• CoreDNS is a Go process that replicates and enhances the functionality of

Kube-DNS.
• CoreDNS is designed to be a general-purpose DNS server that is backward com‐

patible with Kubernetes, and its extendable plugins can do more than is provided
in the Kubernetes DNS specification.

Figure 4-10 shows the components of CoreDNS. It runs a deployment with a default
replica of 2, and for it to run, CoreDNS needs access to the API server, a ConfigMap
to hold its Corefile, a service to make DNS available to the cluster, and a deployment
to launch and manage its pods. All of this also runs in the kube-system namespace
along with other critical components in the cluster.

180 | Chapter 4: Kubernetes Networking Introduction

https://oreil.ly/tiB8V

Figure 4-10. CoreDNS components

Like most configuration options, how the pod does DNS queries is in the pod spec
under the dnsPolicy attribute.

Outlined in Example 4-12, the pod spec has ClusterFirstWithHostNet as
dnsPolicy.

Example 4-12. Pod spec with DNS configuration

apiVersion: v1
kind: Pod
metadata:
 name: busybox
 namespace: default
spec:
 containers:
 - image: busybox:1.28
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: busybox
 restartPolicy: Always
 hostNetwork: true
 dnsPolicy: ClusterFirstWithHostNet

DNS | 181

There are four options for dnsPolicy that significantly affect how DNS resolutions
work inside a pod:

Default

The pod inherits the name resolution configuration from the node that the pods
run on.

ClusterFirst

Any DNS query that does not match the cluster domain suffix, such as
www.kubernetes.io, is sent to the upstream name server inherited from the node.

ClusterFirstWithHostNet

For pods running with hostNetwork, admins should set the DNS policy to
ClusterFirstWithHostNet.

None

All DNS settings use the dnsConfig field in the pod spec.

If none, developers will have to specify name servers in the pod spec. nameservers: is
a list of IP addresses that the pod will use as DNS servers. There can be at most three
IP addresses specified. searches: is a list of DNS search domains for hostname
lookup in the pod. Kubernetes allows for at most six search domains. The following is
such an example spec:

apiVersion: v1
kind: Pod
metadata:
 namespace: default
 name: busybox
spec:
 containers:
 - image: busybox:1.28
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: busybox
 dnsPolicy: "None"
 dnsConfig:
 nameservers:
 - 1.1.1.1
 searches:
 - ns1.svc.cluster-domain.example
 - my.dns.search.suffix

Others are in the options field, which is a list of objects where each object may have a
name property and a value property (optional).

182 | Chapter 4: Kubernetes Networking Introduction

All of these generated properties merge with resolv.conf from the DNS policy. Reg‐
ular query options have CoreDNS going through the following search path:

<service>.default.svc.cluster.local
 ↓
 svc.cluster.local
 ↓
 cluster.local
 ↓
 The host search path

The host search path comes from the pod DNS policy or CoreDNS policy.

Querying a DNS record in Kubernetes can result in many requests and increase
latency in applications waiting on DNS requests to be answered. CoreDNS has a solu‐
tion for this called Autopath. Autopath allows for server-side search path completion.
It short circuits the client’s search path resolution by stripping the cluster search
domain and performing the lookups on the CoreDNS server; when it finds an
answer, it stores the result as a CNAME and returns with one query instead of five.

Using Autopath does increase the memory usage on CoreDNS, however. Make sure
to scale the CoreDNS replica’s memory with the cluster’s size. Make sure to set the
requests for memory and CPU for the CoreDNS pods appropriately. To monitor
CoreDNS, it exports several metrics it exposes, listed here:

coredns build info
Info about CoreDNS itself

dns request count total
Total query count

dns request duration seconds
Duration to process each query

dns request size bytes
The size of the request in bytes

coredns plugin enabled
Indicates whether a plugin is enabled on per server and zone basis

By combining the pod metrics along with CoreDNS metrics, plugin administrators
will ensure that CoreDNS stays healthy and running inside your cluster.

This is only a brief overview of the metrics available. The entire list
is available.

DNS | 183

https://oreil.ly/gm8IO

Autopath and other metrics are enabled via plugins. This allows CoreDNS to focus
on its one task, DNS, but still be extensible through the plugin framework, much like
the CNI pattern. In Table 4-5, we see a list of the plugins currently available. Being an
open source project, anyone can contribute a plugin. There are several cloud-specific
ones like router53 that enable serving zone data from AWS route53 service.

Table 4-5. CoreDNS plugins

Name Description
auto Enables serving zone data from an RFC 1035-style master file, which is automatically picked up from disk.

autopath Allows for server-side search path completion. autopath [ZONE…] RESOLV-CONF.

bind Overrides the host to which the server should bind.

cache Enables a frontend cache. cache [TTL] [ZONES…].

chaos Allows for responding to TXT queries in the CH class.

debug Disables the automatic recovery upon a crash so that you’ll get a nice stack trace. text2pcap.

dnssec Enables on-the-fly DNSSEC signing of served data.

dnstap Enables logging to dnstap. http://dnstap.info golang: go get -u -v github.com/dnstap/golang-dnstap/dnstap.

erratic A plugin useful for testing client behavior.

errors Enables error logging.

etcd Enables reading zone data from an etcd version 3 instance.

federation Enables federated queries to be resolved via the kubernetes plugin.

file Enables serving zone data from an RFC 1035-style master file.

forward Facilitates proxying DNS messages to upstream resolvers.

health Enables a health check endpoint.

host Enables serving zone data from a /etc/hosts style file.

kubernetes Enables the reading zone data from a Kubernetes cluster.

loadbalancer Randomizes the order of A, AAAA, and MX records.

log enables Queries logging to standard output.

loop detect Simple forwarding loops and halt the server.

metadata Enables a metadata collector.

metrics Enables Prometheus metrics.

nsid Adds an identifier of this server to each reply. RFC 5001.

pprof Publishes runtime profiling data at endpoints under /debug/pprof.

proxy Facilitates both a basic reverse proxy and a robust load balancer.

reload Allows automatic reload of a changed Corefile. Graceful reload.

rewrite Performs internal message rewriting. rewrite name foo.example.com foo.default.svc.cluster.local.

root Simply specifies the root of where to find zone files.

router53 Enables serving zone data from AWS route53.

secondary Enables serving a zone retrieved from a primary server.

template Dynamic responses based on the incoming query.

184 | Chapter 4: Kubernetes Networking Introduction

http://dnstap.info

Name Description
tls Configures the server certificates for TLS and gRPC servers.

trace Enables OpenTracing-based tracing of DNS requests.

whoami Returns resolver’s local IP address, port, and transport.

A comprehensive list of CoreDNS plugins is available.

CoreDNS is exceptionally configurable and compatible with the Kubernetes model.
We have only scratched the surface of what CoreDNS is capable of; if you would like
to learn more about CoreDNS, we highly recommend reading Learning CoreDNS by
John Belamaric Cricket Liu (O’Reilly).

CoreDNS allows pods to figure out the IP addresses to use to reach applications and
servers internal and external to the cluster. In our next section, we will discuss more
in depth how IPv4 and 6 are managed in a cluster.

IPv4/IPv6 Dual Stack
Kubernetes has still-evolving support for running in IPv4/IPv6 “dual-stack” mode,
which allows a cluster to use both IPv4 and IPv6 addresses. Kubernetes has existing
stable support for running clusters in IPv6-only mode; however, running in IPv6-
only mode is a barrier to communicating with clients and hosts that support only
IPv4. The dual-stack mode is a critical bridge to allowing IPv6 adoption. We will
attempt to describe the current state of dual-stack networking in Kubernetes as of
Kubernetes 1.20, but be aware that it is liable to change substantially in subsequent
releases. The full Kubernetes enhancement proposal (KEP) for dual-stack support is
on GitHub.

In Kubernetes, a feature is “alpha” if the design is not finalized, if
the scalability/test coverage/reliability is insufficient, or if it merely
has not proven itself sufficiently in the real world yet. Kubernetes
Enhancement Proposals (KEPs) set the bar for an individual fea‐
ture to graduate to beta and then be stable. Like all alpha features,
Kubernetes disables dual-stack support by default, and the feature
must be explicitly enabled.

IPv4/IPv6 Dual Stack | 185

https://oreil.ly/rlXRO
https://oreil.ly/O7Xuh
https://oreil.ly/T83u5

IPv4/IPv6 features enable the following features for pod networking:

• A single IPv4 and IPv6 address per pod
• IPv4 and IPv6 services
• Pod cluster egress routing via IPv4 and IPv6 interfaces

Being an alpha feature, administrators must enable IPv4/IPv6 dual-stack; to do so, the
IPv6DualStack feature gate for the network components must be configured for your
cluster. Here is a list of those dual-stack cluster network options:

kube-apiserver

• feature-gates="IPv6DualStack=true"

• service-cluster-ip-range=<IPv4 CIDR>,<IPv6 CIDR>

kube-controller-manager

• feature-gates="IPv6DualStack=true"

• cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR>

• service-cluster-ip-range=<IPv4 CIDR>,<IPv6 CIDR>

• node-cidr-mask-size-ipv4|--node-cidr-mask-size-ipv6 defaults to /24 for
IPv4 and /64 for IPv6

kubelet

• feature-gates="IPv6DualStack=true"

kube-proxy

• cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR>

• feature-gates="IPv6DualStack=true"

When IPv4/IPv6 is on in a cluster, services now have an extra field in which develop‐
ers can choose the ipFamilyPolicy to deploy for their application:

SingleStack

Single-stack service. The control plane allocates a cluster IP for the service, using
the first configured service cluster IP range.

PreferDualStack

Used only if the cluster has dual stack enabled. This setting will use the same
behavior as SingleStack.

RequireDualStack

Allocates service cluster IP addresses from both IPv4 and IPv6 address ranges.

186 | Chapter 4: Kubernetes Networking Introduction

ipFamilies

An array that defines which IP family to use for a single stack or defines the order
of IP families for dual stack; you can choose the address families by setting this
field on the service. The allowed values are ["IPv4"], ["IPv6"], and
["IPv4","IPv6"] (dual stack).

Starting in 1.21, IPv4/IPv6 dual stack defaults to enabled.

Here is an example service manifest that has PreferDualStack set to PreferDualStack:

apiVersion: v1
kind: Service
metadata:
 name: my-service
 labels:
 app: MyApp
spec:
 ipFamilyPolicy: PreferDualStack
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80

Conclusion
The Kubernetes networking model is the basis for how networking is designed to
work inside a cluster. The CNI running on the nodes implements the principles set
forth in the Kubernetes network model. The model does not define network security;
the extensibility of Kubernetes allows the CNI to implement network security
through network policies.

CNI, DNS, and network security are essential parts of the cluster network; they
bridge the gap between Linux networking, covered in Chapter 2, and container and
Kubernetes networking, covered in Chapters 3 and 5, respectively.

Choosing the right CNI requires an evaluation from both the developers’ and admin‐
istrators’ perspectives. Requirements need to be laid out and CNIs tested. It is our
opinion that a cluster is not complete without a discussion about network security
and CNI that supports it.

Conclusion | 187

DNS is essential; a complete setup and a smooth-running network require network
and cluster administrators to be proficient at scaling CoreDNS in their clusters. An
exceptional number of Kubernetes issues stem from DNS and the misconfiguration
of CoreDNS.

The information in this chapter will be important when discussing cloud networking
in Chapter 6 and what options administrators have when designing and deploying
their production cluster networks.

In our next chapter, we will dive into how Kubernetes uses all of this to power its
abstractions.

188 | Chapter 4: Kubernetes Networking Introduction

CHAPTER 5

Kubernetes Networking Abstractions

Previously, we covered a swath of networking fundamentals and how traffic in Kuber‐
netes gets from A to B. In this chapter, we will discuss networking abstractions in
Kubernetes, primarily service discovery and load balancing. Most notably, this is the
chapter on services and ingresses. Both resources are notoriously complex, due to the
large number of options, as they attempt to solve numerous use cases. They are the
most visible part of the Kubernetes network stack, as they define basic network char‐
acteristics of workloads on Kubernetes. This is where developers interact with the
networking stack for their applications deployed on Kubernetes.

This chapter will cover fundamental examples of Kubernetes networking abstractions
and the details on\f how they work. To follow along, you will need the following
tools:

• Docker
• KIND
• Linkerd

You will need to be familiar with the kubectl exec and Docker exec commands. If
you are not, our code repo will have any and all the commands we discuss, so don’t
worry too much. We will also make use of ip and netns from Chapters 2 and 3. Note
that most of these tools are for debugging and showing implementation details; you
will not necessarily need them during normal operations.

Docker, KIND, and Linkerd installs are available on their respective sites, and we’ve
provided more information in the book’s code repository as well.

189

kubectl is a key tool in this chapter’s examples, and it’s the stan‐
dard for operators to interact with clusters and their networks. You
should be familiar with the kubectl create, apply, get, delete,
and exec commands. Learn more in the Kubernetes documenta‐
tion or run kubectl [command] --help.

This chapter will explore these Kubernetes networking abstractions:

• StatefulSets
• Endpoints

— Endpoint slices
• Services

— NodePort
— Cluster
— Headless
— External
— LoadBalancer

• Ingress
— Ingress controller
— Ingress rules

• Service meshes
— Linkerd

To explore these abstractions, we will deploy the examples to our Kubernetes cluster
with the following steps:

1. Deploy a KIND cluster with ingress enabled.
2. Explore StatefulSets.
3. Deploy Kubernetes services.
4. Deploy an ingress controller.
5. Deploy a Linkerd service mesh.

These abstractions are at the heart of what the Kubernetes API provides to developers
and administrators to programmatically control the flow of communications into and
out of the cluster. Understanding and mastering how to deploy these abstractions is
crucial for the success of any workload inside a cluster. After working through these
examples, you will understand which abstractions to use in certain situations for your
applications.

190 | Chapter 5: Kubernetes Networking Abstractions

https://oreil.ly/H8bTU
https://oreil.ly/H8bTU

With the KIND cluster configuration YAML, we can use KIND to create that cluster
with the command in the next section. If this is the first time running it, it will take
some time to download all the Docker images for the working and control plane
Docker images.

The following examples assume that you still have the local KIND
cluster running from the previous chapter, along with the Golang
web server and the dnsutils images for testing.

StatefulSets
StatefulSets are a workload abstraction in Kubernetes to manage pods like you would
a deployment. Unlike a deployment, StatefulSets add the following features for appli‐
cations that require them:

• Stable, unique network identifiers
• Stable, persistent storage
• Ordered, graceful deployment and scaling
• Ordered, automated rolling updates

The deployment resource is better suited for applications that do not have these
requirements (for example, a service that stores data in an external database).

Our database for the Golang minimal web server uses a StatefulSet. The database has
a service, a ConfigMap for the Postgres username, a password, a test database name,
and a StatefulSet for the containers running Postgres.

Let’s deploy it now:

kubectl apply -f database.yaml
service/postgres created
configmap/postgres-config created
statefulset.apps/postgres created

Let’s examine the DNS and network ramifications of using a StatefulSet.

To test DNS inside the cluster, we can use the dnsutils image; this image is gcr .io/
kubernetes-e2e-test-images/dnsutils:1.3 and is used for Kubernetes testing:

kubectl apply -f dnsutils.yaml

pod/dnsutils created

kubectl get pods
NAME READY STATUS RESTARTS AGE
dnsutils 1/1 Running 0 9s

StatefulSets | 191

With the replica configured with two pods, we see the StatefulSet deploy postgres-0
and postgres-1, in that order, a feature of StatefulSets with IP address 10.244.1.3 and
10.244.2.3, respectively:

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
dnsutils 1/1 Running 0 15m 10.244.3.2 kind-worker3
postgres-0 1/1 Running 0 15m 10.244.1.3 kind-worker2
postgres-1 1/1 Running 0 14m 10.244.2.3 kind-worker

Here is the name of our headless service, Postgres, that the client can use for queries
to return the endpoint IP addresses:

kubectl get svc postgres
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres ClusterIP <none> 5432/TCP 23m

Using our dnsutils image, we can see that the DNS names for the StatefulSets will
return those IP addresses along with the cluster IP address of the Postgres service:

kubectl exec dnsutils -- host postgres-0.postgres.default.svc.cluster.local.
postgres-0.postgres.default.svc.cluster.local has address 10.244.1.3

kubectl exec dnsutils -- host postgres-1.postgres.default.svc.cluster.local.
postgres-1.postgres.default.svc.cluster.local has address 10.244.2.3

kubectl exec dnsutils -- host postgres
postgres.default.svc.cluster.local has address 10.105.214.153

StatefulSets attempt to mimic a fixed group of persistent machines. As a generic solu‐
tion for stateful workloads, specific behavior may be frustrating in specific use cases.

A common problem that users encounter is an update requiring manual intervention
to fix when using .spec .updateStrategy.type: RollingUpdate, and .spec.podMa
nagementPolicy: OrderedReady, both of which are default settings. With these set‐
tings, a user must manually intervene if an updated pod never becomes ready.

Also, StatefulSets require a service, preferably headless, to be responsible for the net‐
work identity of the pods, and end users are responsible for creating this service.

Statefulsets have many configuration options, and many third-party alternatives exist
(both generic stateful workload controllers and software-specific workload
controllers).

StatefulSets offer functionality for a specific use case in Kubernetes. They should not
be used for everyday application deployments. Later in this section, we will discuss
more appropriate networking abstractions for run-of-the-mill deployments.

In our next section, we will explore endpoints and endpoint slices, the backbone of
Kubernetes services.

192 | Chapter 5: Kubernetes Networking Abstractions

Endpoints
Endpoints help identify what pods are running for the service it powers. Endpoints
are created and managed by services. We will discuss services on their own later, to
avoid covering too many new things at once. For now, let’s just say that a service con‐
tains a standard label selector (introduced in Chapter 4), which defines which pods
are in the endpoints.

In Figure 5-1, we can see traffic being directed to an endpoint on node 2, pod 5.

Figure 5-1. Endpoints in a service

Let’s discuss how this endpoint is created and maintained in the cluster.

Each endpoint contains a list of ports (which apply to all pods) and two lists of
addresses: ready and unready:

apiVersion: v1
kind: Endpoints
metadata:
 labels:
 name: demo-endpoints
subsets:
- addresses:
 - ip: 10.0.0.1
- notReadyAddresses:
 - ip: 10.0.0.2

Endpoints | 193

 ports:
 - port: 8080
 protocol: TCP

Addresses are listed in .addresses if they are passing pod readiness checks.
Addresses are listed in .notReadyAddresses if they are not. This makes endpoints a
service discovery tool, where you can watch an Endpoints object to see the health and
addresses of all pods:

kubectl get endpoints clusterip-service
NAME ENDPOINTS
clusterip-service 10.244.1.5:8080,10.244.2.7:8080,10.244.2.8:8080 + 1 more...

We can get a better view of all the addresses with kubectl describe:

 kubectl describe endpoints clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: endpoints.kubernetes.io/last-change-trigger-time:
2021-01-30T18:51:36Z
Subsets:
 Addresses: 10.244.1.5,10.244.2.7,10.244.2.8,10.244.3.9
 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 8080 TCP

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

Let’s remove the app label and see how Kubernetes responds. In a separate terminal,
run this command. This will allow us to see changes to the pods in real time:

kubectl get pods -w

In another separate terminal, let’s do the same thing with endpoints:

kubectl get endpoints -w

We now need to get a pod name to remove from the Endpoints object:

 kubectl get pods -l app=app -o wide
NAME READY STATUS RESTARTS AGE IP NODE
app-5586fc9d77-7frts 1/1 Running 0 19m 10.244.1.5 kind-worker2
app-5586fc9d77-mxhgw 1/1 Running 0 19m 10.244.3.9 kind-worker3
app-5586fc9d77-qpxwk 1/1 Running 0 20m 10.244.2.7 kind-worker
app-5586fc9d77-tpz8q 1/1 Running 0 19m 10.244.2.8 kind-worker

With kubectl label, we can alter the pod’s app-5586fc9d77-7frts app=app label:

 kubectl label pod app-5586fc9d77-7frts app=nope --overwrite
pod/app-5586fc9d77-7frts labeled

194 | Chapter 5: Kubernetes Networking Abstractions

Both watch commands on endpoints and pods will see some changes for the same
reason: removal of the label on the pod. The endpoint controller will notice a change
to the pods with the label app=app and so did the deployment controller. So Kuber‐
netes did what Kubernetes does: it made the real state reflect the desired state:

kubectl get pods -w
NAME READY STATUS RESTARTS AGE
app-5586fc9d77-7frts 1/1 Running 0 21m
app-5586fc9d77-mxhgw 1/1 Running 0 21m
app-5586fc9d77-qpxwk 1/1 Running 0 22m
app-5586fc9d77-tpz8q 1/1 Running 0 21m
dnsutils 1/1 Running 3 3h1m
postgres-0 1/1 Running 0 3h
postgres-1 1/1 Running 0 3h
app-5586fc9d77-7frts 1/1 Running 0 22m
app-5586fc9d77-7frts 1/1 Running 0 22m
app-5586fc9d77-6dcg2 0/1 Pending 0 0s
app-5586fc9d77-6dcg2 0/1 Pending 0 0s
app-5586fc9d77-6dcg2 0/1 ContainerCreating 0 0s
app-5586fc9d77-6dcg2 0/1 Running 0 2s
app-5586fc9d77-6dcg2 1/1 Running 0 7s

The deployment has four pods, but our relabeled pod still exists:
app-5586fc9d77-7frts:

kubectl get pods
NAME READY STATUS RESTARTS AGE
app-5586fc9d77-6dcg2 1/1 Running 0 4m51s
app-5586fc9d77-7frts 1/1 Running 0 27m
app-5586fc9d77-mxhgw 1/1 Running 0 27m
app-5586fc9d77-qpxwk 1/1 Running 0 28m
app-5586fc9d77-tpz8q 1/1 Running 0 27m
dnsutils 1/1 Running 3 3h6m
postgres-0 1/1 Running 0 3h6m
postgres-1 1/1 Running 0 3h6m

The pod app-5586fc9d77-6dcg2 now is part of the deployment and endpoint object
with IP address 10.244.1.6:

kubectl get pods app-5586fc9d77-6dcg2 -o wide
NAME READY STATUS RESTARTS AGE IP NODE
app-5586fc9d77-6dcg2 1/1 Running 0 3m6s 10.244.1.6 kind-worker2

As always, we can see the full picture of details with kubectl describe:

 kubectl describe endpoints clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: endpoints.kubernetes.io/last-change-trigger-time:
2021-01-30T19:14:23Z
Subsets:
 Addresses: 10.244.1.6,10.244.2.7,10.244.2.8,10.244.3.9

Endpoints | 195

 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 8080 TCP

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

For large deployments, that endpoint object can become very large, so much so that it
can actually slow down changes in the cluster. To solve that issue, the Kubernetes
maintainers have come up with endpoint slices.

Endpoint Slices
You may be asking, how are they different from endpoints? This is where we really
start to get into the weeds of Kubernetes networking.

In a typical cluster, Kubernetes runs kube-proxy on every node. kube-proxy is
responsible for the per-node portions of making services work, by handling routing
and outbound load balancing to all the pods in a service. To do that, kube-proxy
watches all endpoints in the cluster so it knows all applicable pods that all services
should route to.

Now, imagine we have a big cluster, with thousands of nodes, and tens of thousands
of pods. That means thousands of kube-proxies are watching endpoints. When an
address changes in an Endpoints object (say, from a rolling update, scale up, eviction,
health-check failure, or any number of reasons), the updated Endpoints object is
pushed to all listening kube-proxies. It is made worse by the number of pods, since
more pods means larger Endpoints objects, and more frequent changes. This eventu‐
ally becomes a strain on etcd, the Kubernetes API server, and the network itself.
Kubernetes scaling limits are complex and depend on specific criteria, but endpoints
watching is a common problem in clusters that have thousands of nodes. Anecdotally,
many Kubernetes users consider endpoint watches to be the ultimate bottleneck of
cluster size.

This problem is a function of kube-proxy’s design and the expectation that any pod
should be immediately able to route to any service with no notice. Endpoint slices are
an approach that allows kube-proxy’s fundamental design to continue, while drasti‐
cally reducing the watch bottleneck in large clusters where large services are used.

Endpoint slices have similar contents to Endpoints objects but also include an array
of endpoints:

196 | Chapter 5: Kubernetes Networking Abstractions

apiVersion: discovery.k8s.io/v1beta1
kind: EndpointSlice
metadata:
 name: demo-slice-1
 labels:
 kubernetes.io/service-name: demo
addressType: IPv4
ports:
 - name: http
 protocol: TCP
 port: 80
endpoints:
 - addresses:
 - "10.0.0.1"
 conditions:
 ready: true

The meaningful difference between endpoints and endpoint slices is not the schema,
but how Kubernetes treats them. With “regular” endpoints, a Kubernetes service cre‐
ates one endpoint for all pods in the service. A service creates multiple endpoint sli‐
ces, each containing a subset of pods; Figure 5-2 depicts this subset. The union of all
endpoint slices for a service contains all pods in the service. This way, an IP address
change (due to a new pod, a deleted pod, or a pod’s health changing) will result in a
much smaller data transfer to watchers. Because Kubernetes doesn’t have a transac‐
tional API, the same address may appear temporarily in multiple slices. Any code
consuming endpoint slices (such as kube-proxy) must be able to account for this.

The maximum number of addresses in an endpoint slice is set using the --max-
endpoints-per-slice kube-controller-manager flag. The current default is 100,
and the maximum is 1000. The endpoint slice controller attempts to fill existing end‐
point slices before creating new ones, but does not rebalance endpoint slice.

The endpoint slice controller mirrors endpoints to endpoint slice, to allow systems to
continue writing endpoints while treating endpoint slice as the source of truth. The
exact future of this behavior, and endpoints in general, has not been finalized (how‐
ever, as a v1 resource, endpoints would be sunset with substantial notice). There are
four exceptions that will prevent mirroring:

• There is no corresponding service.
• The corresponding service resource selects pods.
• The Endpoints object has the label endpointslice.kubernetes.io/skip-

mirror: true.
• The Endpoints object has the annotation control-plane.alpha.kubernetes
.io/leader.

Endpoint Slices | 197

Figure 5-2. Endpoints versus EndpointSlice objects

You can fetch all endpoint slices for a specific service by fetching endpoint slices fil‐
tered to the desired name in .metadata.labels."kubernetes.io/service-name".

Endpoint slices have been in beta state since Kubernetes 1.17. This
is still the case in Kubernetes 1.20, the current version at the time of
writing. Beta resources typically don’t see major changes, and even‐
tually graduate to stable APIs, but that is not guaranteed. If you
directly use endpoint slices, be aware that a future Kubernetes
release may make a breaking change without much warning, or the
behaviors described here may change.

Let’s see some endpoints running in the cluster with kubectl get endpointslice:

kubectl get endpointslice
NAME ADDRESSTYPE PORTS ENDPOINTS
clusterip-service-l2n9q IPv4 8080 10.244.2.7,10.244.2.8,10.244.1.5
+ 1 more...

198 | Chapter 5: Kubernetes Networking Abstractions

If we want more detail about the endpoint slices clusterip-service-l2n9q, we can
use kubectl describe on it:

kubectl describe endpointslice clusterip-service-l2n9q
Name: clusterip-service-l2n9q
Namespace: default
Labels:
endpointslice.kubernetes.io/managed-by=endpointslice-controller.k8s.io
kubernetes.io/service-name=clusterip-service
Annotations: endpoints.kubernetes.io/last-change-trigger-time:
2021-01-30T18:51:36Z
AddressType: IPv4
Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 8080 TCP
Endpoints:
 - Addresses: 10.244.2.7
 Conditions:
 Ready: true
 Hostname: <unset>
 TargetRef: Pod/app-5586fc9d77-qpxwk
 Topology: kubernetes.io/hostname=kind-worker
 - Addresses: 10.244.2.8
 Conditions:
 Ready: true
 Hostname: <unset>
 TargetRef: Pod/app-5586fc9d77-tpz8q
 Topology: kubernetes.io/hostname=kind-worker
 - Addresses: 10.244.1.5
 Conditions:
 Ready: true
 Hostname: <unset>
 TargetRef: Pod/app-5586fc9d77-7frts
 Topology: kubernetes.io/hostname=kind-worker2
 - Addresses: 10.244.3.9
 Conditions:
 Ready: true
 Hostname: <unset>
 TargetRef: Pod/app-5586fc9d77-mxhgw
 Topology: kubernetes.io/hostname=kind-worker3
Events: <none>

Endpoint Slices | 199

In the output, we see the pod powering the endpoint slice from TargetRef. The Top
ology information gives us the hostname of the worker node that the pod is deployed
to. Most importantly, the Addresses returns the IP address of the endpoint object.

Endpoints and endpoint slices are important to understand because they identify the
pods responsible for the services, no matter the type deployed. Later in the chapter,
we’ll review how to use endpoints and labels for troubleshooting. Next, we will inves‐
tigate all the Kubernetes service types.

Kubernetes Services
A service in Kubernetes is a load balancing abstraction within a cluster. There are
four types of services, specified by the .spec.Type field. Each type offers a different
form of load balancing or discovery, which we will cover individually. The four types
are: ClusterIP, NodePort, LoadBalancer, and ExternalName.

Services use a standard pod selector to match pods. The service includes all matching
pods. Services create an endpoint (or endpoint slice) to handle pod discovery:

apiVersion: v1
kind: Service
metadata:
 name: demo-service
spec:
 selector:
 app: demo

We will use the Golang minimal web server for all the service examples. We have
added functionality to the application to display the host and pod IP addresses in the
REST request.

Figure 5-3 outlines our pod networking status as a single pod in a cluster. The net‐
working objects we are about to explore will expose our app pods outside the cluster
in some instances and in others allow us to scale our application to meet demand.
Recall from Chapters 3 and 4 that containers running inside pods share a network
namespace. In addition, there is also a pause container that is created for each pod.
The pause container manages the namespaces for the pod.

The pause container is the parent container for all running con‐
tainers in the pod. It holds and shares all the namespaces for the
pod. You can read more about the pause container in Ian Lewis’
blog post.

200 | Chapter 5: Kubernetes Networking Abstractions

https://oreil.ly/n51eq

Figure 5-3. Pod on host

Before we deploy the services, we must first deploy the web server that the services
will be routing traffic to, if we have not already:

 kubectl apply -f web.yaml
deployment.apps/app created

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
app-9cc7d9df8-ffsm6 1/1 Running 0 49s 10.244.1.4 kind-worker2
dnsutils 1/1 Running 0 49m 10.244.3.2 kind-worker3
postgres-0 1/1 Running 0 48m 10.244.1.3 kind-worker2
postgres-1 1/1 Running 0 48m 10.244.2.3 kind-worker

Let’s look at each type of service starting with NodePort.

NodePort
A NodePort service provides a simple way for external software, such as a load bal‐
ancer, to route traffic to the pods. The software only needs to be aware of node IP
addresses, and the service’s port(s). A NodePort service exposes a fixed port on all
nodes, which routes to applicable pods. A NodePort service uses the .spec.ports.
[].nodePort field to specify the port to open on all nodes, for the corresponding port
on pods:

apiVersion: v1
kind: Service

Kubernetes Services | 201

metadata:
 name: demo-service
spec:
 type: NodePort
 selector:
 app: demo
 ports:
 - port: 80
 targetPort: 80
 nodePort: 30000

The nodePort field can be left blank, in which case Kubernetes automatically selects a
unique port. The --service-node-port-range flag in kube-controller-manager
sets the valid range for ports, 30000–32767. Manually specified ports must be within
this range.

Using a NodePort service, external users can connect to the nodeport on any node
and be routed to a pod on a node that has a pod backing that service; Figure 5-4
demonstrates this. The service directs traffic to node 3, and iptables rules forward
the traffic to node 2 hosting the pod. This is a bit inefficient, as a typical connection
will be routed to a pod on another node.

Figure 5-4. NodePort traffic flow

Figure 5-4 requires us to discuss an attribute of services, externalTrafficPolicy. Exter‐
nalTrafficPolicy indicates how a service will route external traffic to either node-local

202 | Chapter 5: Kubernetes Networking Abstractions

or cluster-wide endpoints. Local preserves the client source IP and avoids a second
hop for LoadBalancer and NodePort type services but risks potentially imbalanced
traffic spreading. Cluster obscures the client source IP and may cause a second hop to
another node but should have good overall load-spreading. A Cluster value means
that for each worker node, the kube-proxy iptable rules are set up to route the traf‐
fic to the pods backing the service anywhere in the cluster, just like we have shown in
Figure 5-4.

A Local value means the kube-proxy iptable rules are set up only on the worker
nodes with relevant pods running to route the traffic local to the worker node. Using
Local also allows application developers to preserve the source IP of the user request.
If you set externalTrafficPolicy to the value Local, kube-proxy will proxy requests
only to node-local endpoints and will not forward traffic to other nodes. If there are
no local endpoints, packets sent to the node are dropped.

Let’s scale up the deployment of our web app for some more testing:

 kubectl scale deployment app --replicas 4
deployment.apps/app scaled

 kubectl get pods -l app=app -o wide
NAME READY STATUS IP NODE
app-9cc7d9df8-9d5t8 1/1 Running 10.244.2.4 kind-worker
app-9cc7d9df8-ffsm6 1/1 Running 10.244.1.4 kind-worker2
app-9cc7d9df8-srxk5 1/1 Running 10.244.3.4 kind-worker3
app-9cc7d9df8-zrnvb 1/1 Running 10.244.3.5 kind-worker3

With four pods running, we will have one pod at every node in the cluster:

 kubectl get pods -o wide -l app=app
NAME READY STATUS IP NODE
app-5586fc9d77-7frts 1/1 Running 10.244.1.5 kind-worker2
app-5586fc9d77-mxhgw 1/1 Running 10.244.3.9 kind-worker3
app-5586fc9d77-qpxwk 1/1 Running 10.244.2.7 kind-worker
app-5586fc9d77-tpz8q 1/1 Running 10.244.2.8 kind-worker

Now let’s deploy our NodePort service:

kubectl apply -f services-nodeport.yaml
service/nodeport-service created

kubectl describe svc nodeport-service
Name: nodeport-service
Namespace: default
Labels: <none>
Annotations: Selector: app=app
Type: NodePort
IP: 10.101.85.57
Port: echo 8080/TCP
TargetPort: 8080/TCP
NodePort: echo 30040/TCP

Kubernetes Services | 203

Endpoints: 10.244.1.5:8080,10.244.2.7:8080,10.244.2.8:8080
+ 1 more...
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

To test the NodePort service, we must retrieve the IP address of a worker node:

kubectl get nodes -o wide
NAME STATUS ROLES INTERNAL-IP OS-IMAGE
kind-control-plane Ready master 172.18.0.5 Ubuntu 19.10
kind-worker Ready <none> 172.18.0.3 Ubuntu 19.10
kind-worker2 Ready <none> 172.18.0.4 Ubuntu 19.10
kind-worker3 Ready <none> 172.18.0.2 Ubuntu 19.10

Communication external to the cluster will use a NodePort value of 30040 opened on
each worker and the node worker’s IP address.

We can see that our pods are reachable on each host in the cluster:

kubectl exec -it dnsutils -- wget -q -O- 172.18.0.5:30040/host
NODE: kind-worker2, POD IP:10.244.1.5

kubectl exec -it dnsutils -- wget -q -O- 172.18.0.3:30040/host
NODE: kind-worker, POD IP:10.244.2.8

kubectl exec -it dnsutils -- wget -q -O- 172.18.0.4:30040/host
NODE: kind-worker2, POD IP:10.244.1.5

It’s important to consider the limitations as well. A NodePort deployment will fail if it
cannot allocate the requested port. Also, ports must be tracked across all applications
using a NodePort service. Using manually selected ports raises the issue of port colli‐
sions (especially when applying a workload to multiple clusters, which may not have
the same NodePorts free).

Another downside of using the NodePort service type is that the load balancer or cli‐
ent software must be aware of the node IP addresses. A static configuration (e.g., an
operator manually copying node IP addresses) may become too outdated over time
(especially on a cloud provider) as IP addresses change or nodes are replaced. A relia‐
ble system automatically populates node IP addresses, either by watching which
machines have been allocated to the cluster or by listing nodes from the Kubernetes
API itself.

NodePorts are the earliest form of services. We will see that other service types use
NodePorts as a base structure in their architecture. NodePorts should not be used by
themselves, as clients would need to know the IP addresses of hosts and the node for
connection requests. We will see how NodePorts are used to enable load balancers
later in the chapter when we discuss cloud networks.

Next up is the default type for services, ClusterIP.

204 | Chapter 5: Kubernetes Networking Abstractions

ClusterIP
The IP addresses of pods share the life cycle of the pod and thus are not reliable for
clients to use for requests. Services help overcome this pod networking design. A
ClusterIP service provides an internal load balancer with a single IP address that
maps to all matching (and ready) pods.

The service’s IP address must be within the CIDR set in service-cluster-ip-range,
in the API server. You can specify a valid IP address manually, or leave .spec.clus
terIP unset to have one assigned automatically. The ClusterIP service address is a
virtual IP address that is routable only internally.

kube-proxy is responsible for making the ClusterIP service address route to all appli‐
cable pods. In “normal” configurations, kube-proxy performs L4 load balancing,
which may not be sufficient. For example, older pods may see more load, due to accu‐
mulating more long-lived connections from clients. Or, a few clients making many
requests may cause the load to be distributed unevenly.

A particular use case example for ClusterIP is when a workload requires a load bal‐
ancer within the same cluster.

In Figure 5-5, we can see a ClusterIP service deployed. The service name is App with
a selector, or App=App1. There are two pods powering this service. Pod 1 and Pod 5
match the selector for the service.

Figure 5-5. Cluster IP example service

Kubernetes Services | 205

Let’s dig into an example on the command line with our KIND cluster.

We will deploy a ClusterIP service for use with our Golang web server:

kubectl apply -f service-clusterip.yaml
service/clusterip-service created

kubectl describe svc clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: Selector: app=app
Type: ClusterIP
IP: 10.98.252.195
Port: <unset> 80/TCP
TargetPort: 8080/TCP
Endpoints: <none>
Session Affinity: None
Events: <none>

The ClusterIP service name is resolvable in the network:

kubectl exec dnsutils -- host clusterip-service
clusterip-service.default.svc.cluster.local has address 10.98.252.195

Now we can reach the host API endpoint with the Cluster IP address 10.98.252.195,
with the service name clusterip-service; or directly with the pod IP address
10.244.1.4 and port 8080:

kubectl exec dnsutils -- wget -q -O- clusterip-service/host
NODE: kind-worker2, POD IP:10.244.1.4

kubectl exec dnsutils -- wget -q -O- 10.98.252.195/host
NODE: kind-worker2, POD IP:10.244.1.4

kubectl exec dnsutils -- wget -q -O- 10.244.1.4:8080/host
NODE: kind-worker2, POD IP:10.244.1.4

The ClusterIP service is the default type for services. With that default status, it is
warranted that we should explore what the ClusterIP service abstracted for us. If you
recall from Chapters 2 and 3, this list is similar to what is set up with the Docker net‐
work, but we now also have iptables for the service across all nodes:

• View the VETH pair and match with the pod.
• View the network namespace and match with the pod.
• Verify the PIDs on the node and match the pods.
• Match services with iptables rules.

To explore this, we need to know what worker node the pod is deployed to, and that
is kind-worker2:

206 | Chapter 5: Kubernetes Networking Abstractions

kubectl get pods -o wide --field-selector spec.nodeName=kind-worker2 -l app=app
NAME READY STATUS RESTARTS AGE IP NODE
app-9cc7d9df8-ffsm6 1/1 Running 0 7m23s 10.244.1.4 kind-worker2

The container IDs and names will be different for you.

Since we are using KIND, we can use docker ps and docker exec to get information
out of the running worker node kind-worker-2:

docker ps
CONTAINER ID COMMAND PORTS NAMES
df6df0736958 "/usr/local/bin/entr…" kind-worker2
e242f11d2d00 "/usr/local/bin/entr…" kind-worker
a76b32f37c0e "/usr/local/bin/entr…" kind-worker3
07ccb63d870f "/usr/local/bin/entr…" 0.0.0.0:80->80/tcp, kind-control-plane
 0.0.0.0:443->443/tcp,
 127.0.0.1:52321->6443/tcp

The kind-worker2 container ID is df6df0736958; KIND was kind enough to label
each container with names, so we can reference each worker node with its name
kind-worker2:

Let’s see the IP address and route table information of our pod, app-9cc7d9df8-
ffsm6:

kubectl exec app-9cc7d9df8-ffsm6 ip r
default via 10.244.1.1 dev eth0
10.244.1.0/24 via 10.244.1.1 dev eth0 src 10.244.1.4
10.244.1.1 dev eth0 scope link src 10.244.1.4

Our pod’s IP address is 10.244.1.4 running on interface eth0@if5 with 10.244.1.1
as its default route. That matches interface 5 on the pod veth45d1f3e8@if5:
kubectl exec app-9cc7d9df8-ffsm6 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN
group default qlen 1000
 link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN group default qlen 1000
 link/tunnel6 :: brd ::
5: eth0@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default
 link/ether 3e:57:42:6e:cd:45 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.244.1.4/24 brd 10.244.1.255 scope global eth0
 valid_lft forever preferred_lft forever

Kubernetes Services | 207

 inet6 fe80::3c57:42ff:fe6e:cd45/64 scope link
 valid_lft forever preferred_lft forever

Let’s check the network namespace as well, from the node ip a output:

 docker exec -it kind-worker2 ip a
<trimmerd>
5: veth45d1f3e8@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default
 link/ether 3e:39:16:38:3f:23 brd <>
 link-netns cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4
 inet 10.244.1.1/32 brd 10.244.1.1 scope global veth45d1f3e8
 valid_lft forever preferred_lft forever

netns list confirms that the network namespaces match our pods, interface to the
host interface, cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4:

docker exec -it kind-worker2 /usr/sbin/ip netns list
cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4 (id: 2)
cni-c18c44cb-6c3e-c48d-b783-e7850d40e01c (id: 1)

Let’s see what processes run inside that network namespace. For that we will use
docker exec to run commands inside the node kind-worker2 hosting the pod and
its network namespace:

 docker exec -it kind-worker2 /usr/sbin/ip netns pid
 cni-ec37f6e4-a1b5-9bc9-b324-59d612edb4d4
4687
4737

Now we can grep for each process ID and inspect what they are doing:

docker exec -it kind-worker2 ps aux | grep 4687
root 4687 0.0 0.0 968 4 ? Ss 17:00 0:00 /pause

docker exec -it kind-worker2 ps aux | grep 4737
root 4737 0.0 0.0 708376 6368 ? Ssl 17:00 0:00 /opt/web-server

4737 is the process ID of our web server container running on kind-worker2.

4687 is our pause container holding onto all our namespaces.

Now let’s see what will happen to the iptables on the worker node:

docker exec -it kind-worker2 iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
/* kubernetes service portals */
KUBE-SERVICES all -- anywhere anywhere ctstate NEW
/* kubernetes externally-visible service portals */
KUBE-EXTERNAL-SERVICES all -- anywhere anywhere ctstate NEW
KUBE-FIREWALL all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

208 | Chapter 5: Kubernetes Networking Abstractions

/* kubernetes forwarding rules */
KUBE-FORWARD all -- anywhere anywhere
/* kubernetes service portals */
KUBE-SERVICES all -- anywhere anywhere ctstate NEW

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
/* kubernetes service portals */
KUBE-SERVICES all -- anywhere anywhere ctstate NEW
KUBE-FIREWALL all -- anywhere anywhere

Chain KUBE-EXTERNAL-SERVICES (1 references)
target prot opt source destination

Chain KUBE-FIREWALL (2 references)
target prot opt source destination
/* kubernetes firewall for dropping marked packets */
DROP all -- anywhere anywhere mark match 0x8000/0x8000

Chain KUBE-FORWARD (1 references)
target prot opt source destination
DROP all -- anywhere anywhere ctstate INVALID
/*kubernetes forwarding rules*/
ACCEPT all -- anywhere anywhere mark match 0x4000/0x4000
/*kubernetes forwarding conntrack pod source rule*/
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
/*kubernetes forwarding conntrack pod destination rule*/
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED

Chain KUBE-KUBELET-CANARY (0 references)
target prot opt source destination

Chain KUBE-PROXY-CANARY (0 references)
target prot opt source destination

Chain KUBE-SERVICES (3 references)
target prot opt source destination

That is a lot of tables being managed by Kubernetes.

We can dive a little deeper to examine the iptables responsible for the services we
deployed. Let’s retrieve the IP address of the clusterip-service deployed. We need
this to find the matching iptables rules:

kubectl get svc clusterip-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusterip-service ClusterIP 10.98.252.195 <none> 80/TCP 57m

Now use the clusterIP of the service, 10.98.252.195, to find our iptables rule:

docker exec -it kind-worker2 iptables -L -t nat | grep 10.98.252.195
/* default/clusterip-service: cluster IP */
KUBE-MARK-MASQ tcp -- !10.244.0.0/16 10.98.252.195 tcp dpt:80

Kubernetes Services | 209

/* default/clusterip-service: cluster IP */
KUBE-SVC-V7R3EVKW3DT43QQM tcp -- anywhere 10.98.252.195 tcp dpt:80

List all the rules on the chain KUBE-SVC-V7R3EVKW3DT43QQM:

docker exec -it kind-worker2 iptables -t nat -L KUBE-SVC-V7R3EVKW3DT43QQM
Chain KUBE-SVC-V7R3EVKW3DT43QQM (1 references)
target prot opt source destination
/* default/clusterip-service: */
KUBE-SEP-THJR2P3Q4C2QAEPT all -- anywhere anywhere

The KUBE-SEP- will contain the endpoints for the services, KUBE-SEP-

THJR2P3Q4C2QAEPT.

Now we can see what the rules for this chain are in iptables:

docker exec -it kind-worker2 iptables -L KUBE-SEP-THJR2P3Q4C2QAEPT -t nat
Chain KUBE-SEP-THJR2P3Q4C2QAEPT (1 references)
target prot opt source destination
/* default/clusterip-service: */
KUBE-MARK-MASQ all -- 10.244.1.4 anywhere
/* default/clusterip-service: */
DNAT tcp -- anywhere anywhere tcp to:10.244.1.4:8080

10.244.1.4:8080 is one of the service endpoints, aka a pod backing the service,
which is confirmed with the output of kubectl get ep clusterip-service:

kubectl get ep clusterip-service
NAME ENDPOINTS AGE
clusterip-service 10.244.1.4:8080 62m

kubectl describe ep clusterip-service
Name: clusterip-service
Namespace: default
Labels: app=app
Annotations: <none>
Subsets:
 Addresses: 10.244.1.4
 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 8080 TCP

Events: <none>

Now, let’s explore the limitations of the ClusterIP service. The ClusterIP service is for
internal traffic to the cluster, and it suffers the same issues as endpoints do. As the
service size grows, updates to it will slow. In Chapter 2, we discussed how to mitigate
that by using IPVS over iptables as the proxy mode for kube-proxy. We will discuss
later in this chapter how to get traffic into the cluster using ingress and the other ser‐
vice type LoadBalancer.

210 | Chapter 5: Kubernetes Networking Abstractions

ClusterIP is the default type of service, but there are several other specific types of
services such as headless and ExternalName. ExternalName is a specific type of serv‐
ices that helps with reaching services outside the cluster. We briefly touched on head‐
less services with StatefulSets, but let’s review those services in depth now.

Headless
A headless service isn’t a formal type of service (i.e., there is no .spec.type: Head
less). A headless service is a service with .spec.clusterIP: "None". This is distinct
from merely not setting a cluster IP address, which makes Kubernetes automatically
assign a cluster IP address.

When ClusterIP is set to None, the service does not support any load balancing func‐
tionality. Instead, it only provisions an Endpoints object and points the service DNS
record at all pods that are selected and ready.

A headless service provides a generic way to watch endpoints, without needing to
interact with the Kubernetes API. Fetching DNS records is much simpler than inte‐
grating with the Kubernetes API, and it may not be possible with third-party
software.

Headless services allow developers to deploy multiple copies of a pod in a deploy‐
ment. Instead of a single IP address returned, like with the ClusterIP service, all the
IP addresses of the endpoint are returned in the query. It then is up to the client to
pick which one to use. To see this in action, let’s scale up the deployment of our web
app:

 kubectl scale deployment app --replicas 4
deployment.apps/app scaled

 kubectl get pods -l app=app -o wide
NAME READY STATUS IP NODE
app-9cc7d9df8-9d5t8 1/1 Running 10.244.2.4 kind-worker
app-9cc7d9df8-ffsm6 1/1 Running 10.244.1.4 kind-worker2
app-9cc7d9df8-srxk5 1/1 Running 10.244.3.4 kind-worker3
app-9cc7d9df8-zrnvb 1/1 Running 10.244.3.5 kind-worker3

Now let’s deploy the headless service:

kubectl apply -f service-headless.yml
service/headless-service created

The DNS query will return all four of the pod IP addresses. Using our dnsutils
image, we can verify that is the case:

kubectl exec dnsutils -- host -v -t a headless-service
Trying "headless-service.default.svc.cluster.local"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45294
;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

Kubernetes Services | 211

;; QUESTION SECTION:
;headless-service.default.svc.cluster.local. IN A

;; ANSWER SECTION:
headless-service.default.svc.cluster.local. 30 IN A 10.244.2.4
headless-service.default.svc.cluster.local. 30 IN A 10.244.3.5
headless-service.default.svc.cluster.local. 30 IN A 10.244.1.4
headless-service.default.svc.cluster.local. 30 IN A 10.244.3.4

Received 292 bytes from 10.96.0.10#53 in 0 ms

The IP addresses returned from the query also match the endpoints for the service.
Using kubectl describe for the endpoint confirms that:

 kubectl describe endpoints headless-service
Name: headless-service
Namespace: default
Labels: service.kubernetes.io/headless
Annotations: endpoints.kubernetes.io/last-change-trigger-time:
2021-01-30T18:16:09Z
Subsets:
 Addresses: 10.244.1.4,10.244.2.4,10.244.3.4,10.244.3.5
 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 8080 TCP

Events: <none>

Headless has a specific use case and is not typically used for deployments. As we
mentioned in “StatefulSets” on page 191, if developers need to let the client decide
which endpoint to use, headless is the appropriate type of service to deploy. Two
examples of headless services are clustered databases and applications that have
client-side load-balancing logic built into the code.

Our next example is ExternalName, which aids in migrations of services external to
the cluster. It also offers other DNS advantages inside cluster DNS.

ExternalName Service
ExternalName is a special type of service that does not have selectors and uses DNS
names instead.

When looking up the host ext-service.default.svc.cluster.local, the cluster
DNS service returns a CNAME record of database.mycompany.com:

apiVersion: v1
kind: Service
metadata:
 name: ext-service

212 | Chapter 5: Kubernetes Networking Abstractions

spec:
 type: ExternalName
 externalName: database.mycompany.com

If developers are migrating an application into Kubernetes but its dependencies are
staying external to the cluster, ExternalName service allows them to define a DNS
record internal to the cluster no matter where the service actually runs.

DNS will try the search as shown in the following example:

 kubectl exec -it dnsutils -- host -v -t a github.com
Trying "github.com.default.svc.cluster.local"
Trying "github.com.svc.cluster.local"
Trying "github.com.cluster.local"
Trying "github.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55908
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;github.com. IN A

;; ANSWER SECTION:
github.com. 30 IN A 140.82.112.3

Received 54 bytes from 10.96.0.10#53 in 18 ms

As an example, the ExternalName service allows developers to map a service to a
DNS name.

Now if we deploy the external service like so:

kubectl apply -f service-external.yml
service/external-service created

The A record for github.com is returned from the external-service query:

kubectl exec -it dnsutils -- host -v -t a external-service
Trying "external-service.default.svc.cluster.local"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11252
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;external-service.default.svc.cluster.local. IN A

;; ANSWER SECTION:
external-service.default.svc.cluster.local. 24 IN CNAME github.com.
github.com. 24 IN A 140.82.112.3

Received 152 bytes from 10.96.0.10#53 in 0 ms

The CNAME for the external service returns github.com:

kubectl exec -it dnsutils -- host -v -t cname external-service
Trying "external-service.default.svc.cluster.local"

Kubernetes Services | 213

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36874
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;external-service.default.svc.cluster.local. IN CNAME

;; ANSWER SECTION:
external-service.default.svc.cluster.local. 30 IN CNAME github.com.

Received 126 bytes from 10.96.0.10#53 in 0 ms

Sending traffic to a headless service via a DNS record is possible but inadvisable. DNS
is a notoriously poor way to load balance, as software takes very different (and often
simple or unintuitive) approaches to A or AAAA DNS records that return multiple IP
addresses. For example, it is common for software to always choose the first IP
address in the response and/or cache and reuse the same IP address indefinitely. If
you need to be able to send traffic to the service’s DNS address, consider a (standard)
ClusterIP or LoadBalancer service.

The “correct” way to use a headless service is to query the service’s A/AAAA DNS
record and use that data in a server-side or client-side load balancer.

Most of the services we have been discussing are for internal traffic management for
the cluster network. In our next sections, will be reviewing how to route requests into
the cluster with service type LoadBalancer and ingress.

LoadBalancer
LoadBalancer service exposes services external to the cluster network. They combine
the NodePort service behavior with an external integration, such as a cloud provider’s
load balancer. Notably, LoadBalancer services handle L4 traffic (unlike ingress, which
handles L7 traffic), so they will work for any TCP or UDP service, provided the load
balancer selected supports L4 traffic.

Configuration and load balancer options are extremely dependent on the cloud pro‐
vider. For example, some will support .spec.loadBalancerIP (with varying setup
required), and some will ignore it:

apiVersion: v1
kind: Service
metadata:
 name: demo-service
spec:
 selector:
 app: demo
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

214 | Chapter 5: Kubernetes Networking Abstractions

 clusterIP: 10.0.5.1
 type: LoadBalancer

Once the load balancer has been provisioned, its IP address will be written to .sta
tus.loadBalancer.ingress.ip.

LoadBalancer services are useful for exposing TCP or UDP services to the outside
world. Traffic will come into the load balancer on its public IP address and TCP port
80, defined by spec.ports[*].port and routed to the cluster IP address, 10.0.5.1,
and then to container target port 8080, spec.ports[*].targetPort. Not shown in
the example is the .spec.ports[*].nodePort; if not specified, Kubernetes will pick
one for the service.

The service’s spec.ports[*].targetPort must match your pod’s
container applications spec.container[*].ports.containerPort,
along with the protocol. It’s like missing a semicolon in Kubernetes
networking otherwise.

In Figure 5-6, we can see how a LoadBalancer type builds on the other service types.
The cloud load balancer will determine how to distribute traffic; we will discuss that
in depth in the next chapter.

Figure 5-6. LoadBalancer service

Let’s continue to extend our Golang web server example with a LoadBalancer service.

Since we are running on our local machine and not in a service provider like AWS,
GCP, or Azure, we can use MetalLB as an example for our LoadBalancer service. The
MetalLB project aims to allow users to deploy bare-metal load balancers for their
clusters.

Kubernetes Services | 215

This example has been modified from the KIND example deployment.

Our first step is to deploy a separate namespace for MetalLB:

kubectl apply -f mlb-ns.yaml
namespace/metallb-system created

MetalLB members also require a secret for joining the LoadBalancer cluster; let’s
deploy one now for them to use in our cluster:

kubectl create secret generic -n metallb-system memberlist
--from-literal=secretkey="$(openssl rand -base64 128)"
secret/memberlist created

Now we can deploy MetalLB!

 kubectl apply -f ./metallb.yaml
podsecuritypolicy.policy/controller created
podsecuritypolicy.policy/speaker created
serviceaccount/controller created
serviceaccount/speaker created
clusterrole.rbac.authorization.k8s.io/metallb-system:controller created
clusterrole.rbac.authorization.k8s.io/metallb-system:speaker created
role.rbac.authorization.k8s.io/config-watcher created
role.rbac.authorization.k8s.io/pod-lister created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:controller created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:speaker created
rolebinding.rbac.authorization.k8s.io/config-watcher created
rolebinding.rbac.authorization.k8s.io/pod-lister created
daemonset.apps/speaker created
deployment.apps/controller created

As you can see, it deploys many objects, and now we wait for the deployment to fin‐
ish. We can monitor the deployment of resources with the --watch option in the
metallb-system namespace:

kubectl get pods -n metallb-system --watch
NAME READY STATUS RESTARTS AGE
controller-5df88bd85d-mvgqn 0/1 ContainerCreating 0 10s
speaker-5knqb 1/1 Running 0 10s
speaker-k79c9 1/1 Running 0 10s
speaker-pfs2p 1/1 Running 0 10s
speaker-sl7fd 1/1 Running 0 10s
controller-5df88bd85d-mvgqn 1/1 Running 0 12s

To complete the configuration, we need to provide MetalLB with a range of IP
addresses it controls. This range has to be on the Docker KIND network:
docker network inspect -f '{{.IPAM.Config}}' kind
[{172.18.0.0/16 172.18.0.1 map[]} {fc00:f853:ccd:e793::/64 fc00:f853:ccd:e793::1 map[]}]

172.18.0.0/16 is our Docker network running locally.

216 | Chapter 5: Kubernetes Networking Abstractions

https://oreil.ly/h8xIt

We want our LoadBalancer IP range to come from this subclass. We can configure
MetalLB, for instance, to use 172.18.255.200 to 172.18.255.250 by creating the
ConfigMap.

The ConfigMap would look like this:

apiVersion: v1
kind: ConfigMap
metadata:
 namespace: metallb-system
 name: config
data:
 config: |
 address-pools:
 - name: default
 protocol: layer2
 addresses:
 - 172.18.255.200-172.18.255.250

Let’s deploy it so we can use MetalLB:

kubectl apply -f ./metallb-configmap.yaml

Now we deploy a load balancer for our web app:

kubectl apply -f services-loadbalancer.yaml
service/loadbalancer-service created

For fun let’s scale the web app deployment to 10, if you have the resources for it:

kubectl scale deployment app --replicas 10

 kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
app-7bdb9ffd6c-b5x7m 2/2 Running 0 26s 10.244.3.15 kind-worker
app-7bdb9ffd6c-bqtf8 2/2 Running 0 26s 10.244.2.13 kind-worker2
app-7bdb9ffd6c-fb9sf 2/2 Running 0 26s 10.244.3.14 kind-worker
app-7bdb9ffd6c-hrt7b 2/2 Running 0 26s 10.244.2.7 kind-worker2
app-7bdb9ffd6c-l2794 2/2 Running 0 26s 10.244.2.9 kind-worker2
app-7bdb9ffd6c-l4cfx 2/2 Running 0 26s 10.244.3.11 kind-worker2
app-7bdb9ffd6c-rr4kn 2/2 Running 0 23m 10.244.3.10 kind-worker
app-7bdb9ffd6c-s4k92 2/2 Running 0 26s 10.244.3.13 kind-worker
app-7bdb9ffd6c-shmdt 2/2 Running 0 26s 10.244.1.12 kind-worker3
app-7bdb9ffd6c-v87f9 2/2 Running 0 26s 10.244.1.11 kind-worker3
app2-658bcd97bd-4n888 1/1 Running 0 35m 10.244.2.6 kind-worker3
app2-658bcd97bd-mnpkp 1/1 Running 0 35m 10.244.3.7 kind-worker
app2-658bcd97bd-w2qkl 1/1 Running 0 35m 10.244.3.8 kind-worker
dnsutils 1/1 Running 1 75m 10.244.1.2 kind-worker3
postgres-0 1/1 Running 0 75m 10.244.1.4 kind-worker3
postgres-1 1/1 Running 0 75m 10.244.3.4 kind-worker

Now we can test the provisioned load balancer.

Kubernetes Services | 217

With more replicas deployed for our app behind the load balancer, we need the exter‐
nal IP of the load balancer, 172.18.255.200:
kubectl get svc loadbalancer-service
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
loadbalancer-service LoadBalancer 10.99.24.220 172.18.255.200
80:31276/TCP 52s

kubectl get svc/loadbalancer-service -o=jsonpath='{.status.loadBalancer.ingress[0].ip}'
172.18.255.200

Since Docker for Mac or Windows does not expose the KIND network to the host, we
cannot directly reach the 172.18.255.200 LoadBalancer IP on the Docker private
network.

We can simulate it by attaching a Docker container to the KIND network and cURL‐
ing the load balancer as a workaround.

If you would like to read more about this issue, there is a great blog
post.

We will use another great networking Docker image called nicolaka/netshoot to
run locally, attach to the KIND Docker network, and send requests to our MetalLB
load balancer.

If we run it several times, we can see the load balancer is doing its job of routing traf‐
fic to different pods:

docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot
curl 172.18.255.200/host
NODE: kind-worker, POD IP:10.244.2.7

docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot
curl 172.18.255.200/host
NODE: kind-worker, POD IP:10.244.2.9

docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot
curl 172.18.255.200/host
NODE: kind-worker3, POD IP:10.244.3.11

docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot
curl 172.18.255.200/host
NODE: kind-worker2, POD IP:10.244.1.6

docker run --network kind -a stdin -a stdout -i -t nicolaka/netshoot
curl 172.18.255.200/host
NODE: kind-worker, POD IP:10.244.2.9

218 | Chapter 5: Kubernetes Networking Abstractions

https://oreil.ly/6rTKJ
https://oreil.ly/6rTKJ

With each new request, the metalLB service is sending requests to different pods.
LoadBalancer, like other services, uses selectors and labels for the pods, and we can
see that in the kubectl describe endpoints loadbalancer-service. The pod IP
addresses match our results from the cURL commands:

 kubectl describe endpoints loadbalancer-service
Name: loadbalancer-service
Namespace: default
Labels: app=app
Annotations: endpoints.kubernetes.io/last-change-trigger-time:
2021-01-30T19:59:57Z
Subsets:
 Addresses:
 10.244.1.6,
 10.244.1.7,
 10.244.1.8,
 10.244.2.10,
 10.244.2.7,
 10.244.2.8,
 10.244.2.9,
 10.244.3.11,
 10.244.3.12,
 10.244.3.9
 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 service-port 8080 TCP

Events: <none>

It is important to remember that LoadBalancer services require specific integrations
and will not work without cloud provider support, or manually installed software
such as MetalLB.

They are not (normally) L7 load balancers, and therefore cannot intelligently handle
HTTP(S) requests. There is a one-to-one mapping of load balancer to workload,
which means that all requests sent to that load balancer must be handled by the same
workload.

While it’s not a network service, it is important to mention the
Horizontal Pod Autoscaler service, which that will scale pods in a
replication controller, deployment, ReplicaSet, or StatefulSet based
on CPU utilization.

We can scale our application to the demands of the users, with no need for configura‐
tion changes on anyone’s part. Kubernetes and the LoadBalancer service take care of
all of that for developers, systems, and network administrators.

Kubernetes Services | 219

We will see in the next chapter how we can take that even further using cloud services
for autoscaling.

Services Conclusion
Here are some troubleshooting tips if issues arise with the endpoints or services:

• Removing the label on the pod allows it to continue to run while also updating
the endpoint and service. The endpoint controller will remove that unlabeled
pod from the endpoint objects, and the deployment will deploy another pod; this
will allow you to troubleshoot issues with that specific unlabeled pod but not
adversely affect the service to end customers. I’ve used this one countless times
during development, and we did so in the previous section’s examples.

• There are two probes that communicate the pod’s health to the Kubelet and the
rest of the Kubernetes environment.

• It is also easy to mess up the YAML manifest, so make sure to compare ports on
the service and pods and make sure they match.

• We discussed network policies in Chapter 3, which can also stop pods from com‐
municating with each other and services. If your cluster network is using net‐
work policies, ensure that they are set up appropriately for application traffic
flow.

• Also remember to use diagnostic tools like the dnsutils pod; the netshoot pods
on the cluster network are helpful debugging tools.

• If endpoints are taking too long to come up in the cluster, there are several
options that can be configured on the Kubelet to control how fast it responds to
change in the Kubernetes environment:

--kube-api-qps

Sets the query-per-second rate the Kubelet will use when communicating
with the Kubernetes API server; the default is 5.

--kube-api-burst

Temporarily allows API queries to burst to this number; the default is 10.

--iptables-sync-period

This is the maximum interval of how often iptables rules are refreshed
(e.g., 5s, 1m, 2h22m). This must be greater than 0; the default is 30s.

--ipvs-sync-period duration

This is the maximum interval of how often IPVS rules are refreshed. This
must be greater than 0; the efault is 30s.

220 | Chapter 5: Kubernetes Networking Abstractions

• Increasing these options for larger clusters is recommended, but also remember
this increases the resources on both the Kubelet and the API server, so keep that
in mind.

These tips can help alleviate issues and are good to be aware of as the number of serv‐
ices and pods grow in the cluster.

The various types of services exemplify how powerful the network abstractions are in
Kubernetes. We have dug deep into how these work for each layer of the tool chain.
Developers looking to deploy applications to Kubernetes now have the knowledge to
pick and choose which services are right for their use cases. No longer will network
administrators have to manually update load balancers with IP addresses, with
Kubernetes managing that for them.

We have just scratched the surface of what is possible with services. With each new
version of Kubernetes, there are options to tune and configurations to run services.
Test each service for your use cases and ensure you are using the appropriate services
to optimize your applications on the Kubernetes network.

The LoadBalancer service type is the only one that allows for traffic into the cluster,
exposing HTTP(S) services behind a load balancer for external users to connect to.
Ingresses support path-based routing, which allows different HTTP paths to be
served by different services. The next section will discuss ingress and how it is an
alternative to managing connectivity into the cluster resources.

Ingress
Ingress is a Kubernetes-specific L7 (HTTP) load balancer, which is accessible exter‐
nally, contrasting with L4 ClusterIP service, which is internal to the cluster. This is the
typical choice for exposing an HTTP(S) workload to external users. An ingress can be
a single entry point into an API or a microservice-based architecture. Traffic can be
routed to services based on HTTP information in the request. Ingress is a configura‐
tion spec (with multiple implementations) for routing HTTP traffic to Kubernetes
services. Figure 5-7 outlines the ingress components.

Ingress | 221

Figure 5-7. Ingress architecture

To manage traffic in a cluster with ingress, there are two components required: the
controller and rules. The controller manages ingress pods, and the rules deployed
define how the traffic is routed.

Ingress Controllers and Rules
We call ingress implementations ingress controllers. In Kubernetes, a controller is
software that is responsible for managing a typical resource type and making reality
match the desired state.

There are two general kinds of controllers: external load balancer controllers and
internal load balancer controllers. External load balancer controllers create a load bal‐
ancer that exists “outside” the cluster, such as a cloud provider product. Internal load
balancer controllers deploy a load balancer that runs within the cluster and do not
directly solve the problem of routing consumers to the load balancer. There are a
myriad of ways that cluster administrators run internal load balancers, such as run‐
ning the load balancer on a subset of special nodes, and routing traffic somehow to
those nodes. The primary motivation for choosing an internal load balancer is cost
reduction. An internal load balancer for ingress can route traffic for multiple ingress
objects, whereas an external load balancer controller typically needs one load bal‐
ancer per ingress. As most cloud providers charge by load balancer, it is cheaper to
support a single cloud load balancer that does fan-out within the cluster, than many
cloud load balancers. Note that this incurs operational overhead and increased
latency and compute costs, so be sure the money you’re saving is worth it. Many com‐
panies have a bad habit of optimizing on inconsequential cloud spend line items.

222 | Chapter 5: Kubernetes Networking Abstractions

Let’s look at the spec for an ingress controller. Like LoadBalancer services, most of the
spec is universal, but various ingress controllers have different features and accept
different configs. We’ll start with the basics:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: basic-ingress
spec:
 rules:
 - http:
 paths:
 # Send all /demo requests to demo-service.
 - path: /demo
 pathType: Prefix
 backend:
 service:
 name: demo-service
 port:
 number: 80
 # Send all other requests to main-service.
 defaultBackend:
 service:
 name: main-service
 port:
 number: 80

The previous example is representative of a typical ingress. It sends traffic to /demo to
one service and all other traffic to another. Ingresses have a “default backend” where
requests are routed if no rule matches. This can be configured in many ingress con‐
trollers in the controller configuration itself (e.g., a generic 404 page), and many sup‐
port the .spec.defaultBackend field. Ingresses support multiple ways to specify a
path. There are currently three:

Exact
Matches the specific path and only the given path (including trailing / or lack
thereof).

Prefix
Matches all paths that start with the given path.

ImplementationSpecific
Allows for custom semantics from the current ingress controller.

When a request matches multiple paths, the most specific match is chosen. For exam‐
ple, if there are rules for /first and /first/second, any request starting with /
first/second will go to the backend for /first/second. If a path matches an exact
path and a prefix path, the request will go to the backend for the exact rule.

Ingress Controllers and Rules | 223

Ingresses can also use hostnames in rules:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: multi-host-ingress
spec:
 rules:
 - host: a.example.com
 http:
 paths:
 - pathType: Prefix
 path: "/"
 backend:
 service:
 name: service-a
 port:
 number: 80
 - host: b.example.com
 http:
 paths:
 - pathType: Prefix
 path: "/"
 backend:
 service:
 name: service-b
 port:
 number: 80

In this example, we serve traffic to a.example.com from one service and traffic to
b.example.com from another. This is comparable to virtual hosts in web servers. You
may want to use host rules to use a single load balancer and IP to serve multiple
unique domains.

Ingresses have basic TLS support:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: demo-ingress-secure
spec:
 tls:
 - hosts:
 - https-example.com
 secretName: demo-tls
 rules:
 - host: https-example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:

224 | Chapter 5: Kubernetes Networking Abstractions

 service:
 name: demo-service
 port:
 number: 80

The TLS config references a Kubernetes secret by name, in .spec.tls.[*].secret
Name. Ingress controllers expect the TLS certificate and key to be provided
in .data."tls.crt" and .data."tls.key" respectively, as shown here:

apiVersion: v1
kind: Secret
metadata:
 name: demo-tls
type: kubernetes.io/tls
data:
 tls.crt: cert, encoded in base64
 tls.key: key, encoded in base64

If you don’t need to manage traditionally issued certificates by
hand, you can use cert-manager to automatically fetch and update
certs.

We mentioned earlier that ingress is simply a spec, and drastically different imple‐
mentations exist. It’s possible to use multiple ingress controllers in a single cluster,
using IngressClass settings. An ingress class represents an ingress controller, and
therefore a specific ingress implementation.

Annotations in Kubernetes must be strings. Because true and
false have distinct nonstring meanings, you cannot set an annota‐
tion to true or false without quotes. "true" and "false" are both
valid. This is a long-running bug, which is often encountered when
setting a default priority class.

IngressClass was introduced in Kubernetes 1.18. Prior to 1.18, annotating ingresses
with kubernetes.io/ingress.class was a common convention but relied on all
installed ingress controllers to support it. Ingresses can pick an ingress class by set‐
ting the class’s name in .spec.ingressClassName.

If more than one ingress class is set as default, Kubernetes will not
allow you to create an ingress with no ingress class or remove the
ingress class from an existing ingress. You can use admission con‐
trol to prevent multiple ingress classes from being marked as
default.

Ingress Controllers and Rules | 225

https://oreil.ly/qkN0h
https://oreil.ly/76uSI

Ingress only supports HTTP(S) requests, which is insufficient if your service uses a
different protocol (e.g., most databases use their own protocols). Some ingress con‐
trollers, such as the NGINX ingress controller, do support TCP and UDP, but this is
not the norm.

Now on to deploying an ingress controller so we can add ingress rules to our Golang
web server example.

When we deployed our KIND cluster, we had to add several options to allow us to
deploy an ingress controller:

• extraPortMappings allow the local host to make requests to the ingress controller
over ports 80/443.

• Node-labels only allow the ingress controller to run on a specific node(s) match‐
ing the label selector.

There are many options to choose from with ingress controllers. The Kubernetes sys‐
tem does not start or have a default controller like it does with other pieces. The
Kubernetes community does support AWS, GCE, and Nginx ingress controllers.
Table 5-1 outlines several options for ingress.

Table 5-1. Brief list of ingress controller options

Name Commercial
support

Engine Protocol support SSL termination

Ambassador ingress controller Yes Envoy gRPC, HTTP/2, WebSockets Yes

Community ingress Nginx No NGINX gRPC, HTTP/2, WebSockets Yes

NGINX Inc. ingress Yes NGINX HTTP, Websocket, gRPC Yes

HAProxy ingress Yes HAProxy gRPC, HTTP/2, WebSockets Yes

Istio Ingress No Envoy HTTP, HTTPS, gRPC, HTTP/2 Yes

Kong ingress controller for
Kubernetes

Yes Lua on top of
Nginx

gRPC, HTTP/2 Yes

Traefik Kubernetes ingress Yes Traefik HTTP/2, gRPC, and WebSockets Yes

Some things to consider when deciding on the ingress for your clusters:

• Protocol support: Do you need more than TCP/UDP, for example gRPC integra‐
tion or WebSocket?

• Commercial support: Do you need commercial support?
• Advanced features: Are JWT/oAuth2 authentication or circuit breakers require‐

ments for your applications?

226 | Chapter 5: Kubernetes Networking Abstractions

• API gateway features: Do you need some API gateway functionalities such as
rate-limiting?

• Traffic distribution: Does your application require support for specialized traffic
distribution like canary A/B testing or mirroring?

For our example, we have chosen to use the Community version of the NGINX
ingress controller.

For more ingress controllers to choose from, kubernetes.io main‐
tains a list.

Let’s deploy the NGINX ingress controller into our KIND cluster:

kubectl apply -f ingress.yaml
namespace/ingress-nginx created
serviceaccount/ingress-nginx created
configmap/ingress-nginx-controller created
clusterrole.rbac.authorization.k8s.io/ingress-nginx created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx created
role.rbac.authorization.k8s.io/ingress-nginx created
rolebinding.rbac.authorization.k8s.io/ingress-nginx created
service/ingress-nginx-controller-admission created
service/ingress-nginx-controller created
deployment.apps/ingress-nginx-controller created
validatingwebhookconfiguration.admissionregistration.k8s.io/
ingress-nginx-admission created
serviceaccount/ingress-nginx-admission created
clusterrole.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
role.rbac.authorization.k8s.io/ingress-nginx-admission created
rolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
job.batch/ingress-nginx-admission-create created
job.batch/ingress-nginx-admission-patch created

As with all deployments, we must wait for the controller to be ready before we can
use it. With the following command, we can verify if our ingress controller is ready
for use:

kubectl wait --namespace ingress-nginx \
> --for=condition=ready pod \
> --selector=app.kubernetes.io/component=controller \
> --timeout=90s
pod/ingress-nginx-controller-76b5f89575-zps4k condition met

The controller is deployed to the cluster, and now we’re ready to write ingress rules
for our application.

Ingress Controllers and Rules | 227

https://oreil.ly/Lzn5q

Deploy ingress rules
Our YAML manifest defines several ingress rules to use with our Golang web server
example:

kubectl apply -f ingress-rule.yaml
ingress.extensions/ingress-resource created

kubectl get ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
ingress-resource <none> * 80 4s

With describe we can see all the backends that map to the ClusterIP service and the
pods:

kubectl describe ingress
Name: ingress-resource
Namespace: default
Address:
Default backend: default-http-backend:80 (<error:
endpoints "default-http-backend" not found>)
Rules:
 Host Path Backends
 ---- ---- --------
 *
 /host clusterip-service:8080 (
10.244.1.6:8080,10.244.1.7:8080,10.244.1.8:8080)
Annotations: kubernetes.io/ingress.class: nginx
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 17s nginx-ingress-controller Scheduled for sync

Our ingress rule is only for the /host route and will route requests to our
clusterip-service:8080 service.

We can test that with cURL to http://localhost/host:

curl localhost/host
NODE: kind-worker2, POD IP:10.244.1.6
curl localhost/healthz

Now we can see how powerful ingresses are; let’s deploy a second deployment and
ClusterIP service.

Our new deployment and service will be used to answer the requests for /data:

kubectl apply -f ingress-example-2.yaml
deployment.apps/app2 created
service/clusterip-service-2 configured
ingress.extensions/ingress-resource-2 configured

228 | Chapter 5: Kubernetes Networking Abstractions

Now both the /host and /data work but are going to separate services:

curl localhost/host
NODE: kind-worker2, POD IP:10.244.1.6

curl localhost/data
Database Connected

Since ingress works on layer 7, there are many more options to route traffic with,
such as host header and URI path.

For more advanced traffic routing and release patterns, a service mesh is required to
be deployed in the cluster network. Let’s dig into that next.

Service Meshes
A new cluster with the default options has some limitations. So, let’s get an under‐
standing for what those limitations are and how a service mesh can resolve some of
those limitations. A service mesh is an API-driven infrastructure layer for handling
service-to-service communication.

From a security point of view, all traffic inside the cluster is unencrypted between
pods, and each application team that runs a service must configure monitoring sepa‐
rately for each service. We have discussed the service types, but we have not discussed
how to update deployments of pods for them. Service meshes support more than the
basic deployment type; they support rolling updates and re-creations, like Canary
does. From a developer’s perspective, injecting faults into the network is useful, but
also not directly supported in default Kubernetes network deployments. With service
meshes, developers can add fault testing, and instead of just killing pods, you can use
service meshes to inject delays—again, each application would have to build in fault
testing or circuit breaking.

There are several pieces of functionality that a service mesh enhances or provides in a
default Kubernetes cluster network:

Service Discovery
Instead of relying on DNS for service discovery, the service mesh manages ser‐
vice discovery, and removes the need for it to be implemented in each individual
application.

Load Balancing
The service mesh adds more advanced load balancing algorithms such as least
request, consistent hashing, and zone aware.

Service Meshes | 229

Communication Resiliency
The service mesh can increase communication resilience for applications by not
having to implement retries, timeouts, circuit breaking, or rate limiting in appli‐
cation code.

Security
A service mesh can provide the folllowing: * End-to-end encryption with mTLS
between services * Authorization policies, which authorize what services can
communicate with each other, not just at the layer 3 and 4 levels like in Kuber‐
netes network polices.

Observability
Service meshes add in observability by enriching the layer 7 metrics and adding
tracing and alerting.

Routing Control
Traffic shifting and mirroring in the cluster.

API
All of this can be controlled via an API provided by the service mesh
implementation.

Let’s walk through several components of a service mesh in Figure 5-8.

Figure 5-8. Service mesh components

Traffic is handled differently depending on the component or destination of traffic.
Traffic into and out of the cluster is managed by the gateways. Traffic between the
frontend, backend, and user service is all encrypted with Mutual TLS (mTLS) and is
handled by the service mesh. All the traffic to the frontend, backend, and user pods in
the service mesh is proxied by the sidecar proxy deployed within the pods. Even if the

230 | Chapter 5: Kubernetes Networking Abstractions

control plane is down and updates cannot be made to the mesh, the service and appli‐
cation traffic are not affected.

There are several options to use when deploying a service mesh; here are highlights of
just a few:

• Istio
— Uses a Go control plane with an Envoy proxy.
— This is a Kubernetes-native solution that was initially released by Lyft.

• Consul
— Uses HashiCorp Consul as the control plane.
— Consul Connect uses an agent installed on every node as a DaemonSet, which

communicates with the Envoy sidecar proxies that handle routing and for‐
warding of traffic.

• AWS App Mesh
— Is an AWS-managed solution that implements its own control plane.
— Does not have mTLS or traffic policy.
— Uses the Envoy proxy for the data plane.

• Linkerd
— Also uses Go for the control plane with the Linkerd proxy.
— No traffic shifting and no distributed tracing.
— Is a Kubernetes-only solution, which results in fewer moving pieces and

means that Linkerd has less complexity overall.

It is our opinion that the best use case for a service mesh is mTLS between services.
Other higher-level use cases for developers include circuit breaking and fault testing
for APIs. For network administrators, advanced routing policies and algorithms can
be deployed with service meshes.

Let’s look at a service mesh example. The first thing you need to do if you haven’t
already is install the Linkerd CLI.

Your choices are cURL, bash, or brew if you’re on a Mac:

curl -sL https://run.linkerd.io/install | sh

OR

brew install linkerd

linkerd version

Service Meshes | 231

https://oreil.ly/jVaPm

Client version: stable-2.9.2
Server version: unavailable

This preflight checklist will verify that our cluster can run Linkerd:

 linkerd check --pre
kubernetes-api

√ can initialize the client
√ can query the Kubernetes API

kubernetes-version

√ is running the minimum Kubernetes API version
√ is running the minimum kubectl version

pre-kubernetes-setup

√ control plane namespace does not already exist
√ can create non-namespaced resources
√ can create ServiceAccounts
√ can create Services
√ can create Deployments
√ can create CronJobs
√ can create ConfigMaps
√ can create Secrets
√ can read Secrets
√ can read extension-apiserver-authentication configmap
√ no clock skew detected

pre-kubernetes-capability

√ has NET_ADMIN capability
√ has NET_RAW capability

linkerd-version

√ can determine the latest version
√ cli is up-to-date

Status check results are √

The Linkerd CLI tool can install Linkerd for us onto our KIND cluster:

linkerd install | kubectl apply -f -
namespace/linkerd created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-identity created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-identity created
serviceaccount/linkerd-identity created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-controller created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-controller created
serviceaccount/linkerd-controller created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-destination created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-destination created

232 | Chapter 5: Kubernetes Networking Abstractions

serviceaccount/linkerd-destination created
role.rbac.authorization.k8s.io/linkerd-heartbeat created
rolebinding.rbac.authorization.k8s.io/linkerd-heartbeat created
serviceaccount/linkerd-heartbeat created
role.rbac.authorization.k8s.io/linkerd-web created
rolebinding.rbac.authorization.k8s.io/linkerd-web created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-web-check created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-web-check created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-web-admin created
serviceaccount/linkerd-web created
customresourcedefinition.apiextensions.k8s.io/serviceprofiles.linkerd.io created
customresourcedefinition.apiextensions.k8s.io/trafficsplits.split.smi-spec.io
created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-proxy-injector created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-proxy-injector
created
serviceaccount/linkerd-proxy-injector created
secret/linkerd-proxy-injector-k8s-tls created
mutatingwebhookconfiguration.admissionregistration.k8s.io
 /linkerd-proxy-injector-webhook-config created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-sp-validator created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-sp-validator
created
serviceaccount/linkerd-sp-validator created
secret/linkerd-sp-validator-k8s-tls created
validatingwebhookconfiguration.admissionregistration.k8s.io
 /linkerd-sp-validator-webhook-config created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-tap created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-tap-admin created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-tap created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-tap-auth-delegator
created
serviceaccount/linkerd-tap created
rolebinding.rbac.authorization.k8s.io/linkerd-linkerd-tap-auth-reader created
secret/linkerd-tap-k8s-tls created
apiservice.apiregistration.k8s.io/v1alpha1.tap.linkerd.io created
podsecuritypolicy.policy/linkerd-linkerd-control-plane created
role.rbac.authorization.k8s.io/linkerd-psp created
rolebinding.rbac.authorization.k8s.io/linkerd-psp created
configmap/linkerd-config created
secret/linkerd-identity-issuer created
service/linkerd-identity created
service/linkerd-identity-headless created
deployment.apps/linkerd-identity created
service/linkerd-controller-api created
deployment.apps/linkerd-controller created
service/linkerd-dst created
service/linkerd-dst-headless created
deployment.apps/linkerd-destination created
cronjob.batch/linkerd-heartbeat created
service/linkerd-web created
deployment.apps/linkerd-web created

Service Meshes | 233

deployment.apps/linkerd-proxy-injector created
service/linkerd-proxy-injector created
service/linkerd-sp-validator created
deployment.apps/linkerd-sp-validator created
service/linkerd-tap created
deployment.apps/linkerd-tap created
serviceaccount/linkerd-grafana created
configmap/linkerd-grafana-config created
service/linkerd-grafana created
deployment.apps/linkerd-grafana created
clusterrole.rbac.authorization.k8s.io/linkerd-linkerd-prometheus created
clusterrolebinding.rbac.authorization.k8s.io/linkerd-linkerd-prometheus created
serviceaccount/linkerd-prometheus created
configmap/linkerd-prometheus-config created
service/linkerd-prometheus created
deployment.apps/linkerd-prometheus created
secret/linkerd-config-overrides created

As with the ingress controller and MetalLB, we can see that a lot of components are
installed in our cluster.

Linkerd can validate the installation with the linkerd check command.

It will validate a plethora of checks for the Linkerd install, included but not limited to
the Kubernetes API version, controllers, pods, and configs to run Linkerd, as well as
all the services, versions, and APIs needed to run Linkerd:

linkerd check
kubernetes-api

√ can initialize the client
√ can query the Kubernetes API

kubernetes-version

√ is running the minimum Kubernetes API version
√ is running the minimum kubectl version

linkerd-existence

√ 'linkerd-config' config map exists
√ heartbeat ServiceAccount exists
√ control plane replica sets are ready
√ no unschedulable pods
√ controller pod is running
√ can initialize the client
√ can query the control plane API

linkerd-config

√ control plane Namespace exists
√ control plane ClusterRoles exist
√ control plane ClusterRoleBindings exist

234 | Chapter 5: Kubernetes Networking Abstractions

√ control plane ServiceAccounts exist
√ control plane CustomResourceDefinitions exist
√ control plane MutatingWebhookConfigurations exist
√ control plane ValidatingWebhookConfigurations exist
√ control plane PodSecurityPolicies exist

linkerd-identity

√ certificate config is valid
√ trust anchors are using supported crypto algorithm
√ trust anchors are within their validity period
√ trust anchors are valid for at least 60 days
√ issuer cert is using supported crypto algorithm
√ issuer cert is within its validity period
√ issuer cert is valid for at least 60 days
√ issuer cert is issued by the trust anchor

linkerd-webhooks-and-apisvc-tls

√ tap API server has valid cert
√ tap API server cert is valid for at least 60 days
√ proxy-injector webhook has valid cert
√ proxy-injector cert is valid for at least 60 days
√ sp-validator webhook has valid cert
√ sp-validator cert is valid for at least 60 days

linkerd-api

√ control plane pods are ready
√ control plane self-check
√ [kubernetes] control plane can talk to Kubernetes
√ [prometheus] control plane can talk to Prometheus
√ tap api service is running

linkerd-version

√ can determine the latest version
√ cli is up-to-date

control-plane-version

√ control plane is up-to-date
√ control plane and cli versions match

linkerd-prometheus

√ prometheus add-on service account exists
√ prometheus add-on config map exists
√ prometheus pod is running

linkerd-grafana

Service Meshes | 235

√ grafana add-on service account exists
√ grafana add-on config map exists
√ grafana pod is running

Status check results are √

Now that everything looks good with our install of Linkerd, we can add our applica‐
tion to the service mesh:

kubectl -n linkerd get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
linkerd-controller 1/1 1 1 3m17s
linkerd-destination 1/1 1 1 3m17s
linkerd-grafana 1/1 1 1 3m16s
linkerd-identity 1/1 1 1 3m17s
linkerd-prometheus 1/1 1 1 3m16s
linkerd-proxy-injector 1/1 1 1 3m17s
linkerd-sp-validator 1/1 1 1 3m17s
linkerd-tap 1/1 1 1 3m17s
linkerd-web 1/1 1 1 3m17s

Let’s pull up the Linkerd console to investigate what we have just deployed. We can
start the console with linkerd dashboard &.

This will proxy the console to our local machine available at http://localhost:
50750:

linkerd viz install | kubectl apply -f -
linkerd viz dashboard
Linkerd dashboard available at:
http://localhost:50750
Grafana dashboard available at:
http://localhost:50750/grafana
Opening Linkerd dashboard in the default browser

If you’re having issues with reaching the dashboard, you can run
linkerd viz check and find more help in the Linkerd
documentation.

We can see all our deployed objects from the previous exercises in Figure 5-9.

Our ClusterIP service is not part of the Linkerd service mesh. We will need to use the
proxy injector to add our service to the mesh. It accomplishes this by watching for a
specific annotation that can be added either with Linkerd inject or by hand to the
pod’s spec.

236 | Chapter 5: Kubernetes Networking Abstractions

https://oreil.ly/MqgAp

Figure 5-9. Linkerd dashboard

Let’s remove some older exercises’ resources for clarity:

kubectl delete -f ingress-example-2.yaml
deployment.apps "app2" deleted
service "clusterip-service-2" deleted
ingress.extensions "ingress-resource-2" deleted

kubectl delete pods app-5586fc9d77-7frts
pod "app-5586fc9d77-7frts" deleted

kubectl delete -f ingress-rule.yaml
ingress.extensions "ingress-resource" deleted

We can use the Linkerd CLI to inject the proper annotations into our deployment
spec, so that will become part of the mesh.

We first need to get our application manifest, cat web.yaml, and use Linkerd to
inject the annotations, linkerd inject -, then apply them back to the Kubernetes
API with kubectl apply -f -:

cat web.yaml | linkerd inject - | kubectl apply -f -

deployment "app" injected

deployment.apps/app configured

Service Meshes | 237

If we describe our app deployment, we can see that Linkerd has injected new annota‐
tions for us, Annotations: linkerd.io/inject: enabled:

kubectl describe deployment app
Name: app
Namespace: default
CreationTimestamp: Sat, 30 Jan 2021 13:48:47 -0500
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 3
Selector: app=app
Replicas: 1 desired | 1 updated | 1 total | 1 available |
0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=app
 Annotations: linkerd.io/inject: enabled
 Containers:
 go-web:
 Image: strongjz/go-web:v0.0.6
 Port: 8080/TCP
 Host Port: 0/TCP
 Liveness: http-get http://:8080/healthz delay=5s timeout=1s period=5s
 Readiness: http-get http://:8080/ delay=5s timeout=1s period=5s
 Environment:
 MY_NODE_NAME: (v1:spec.nodeName)
 MY_POD_NAME: (v1:metadata.name)
 MY_POD_NAMESPACE: (v1:metadata.namespace)
 MY_POD_IP: (v1:status.podIP)
 MY_POD_SERVICE_ACCOUNT: (v1:spec.serviceAccountName)
 DB_HOST: postgres
 DB_USER: postgres
 DB_PASSWORD: mysecretpassword
 DB_PORT: 5432
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: app-78dfbb4854 (1/1 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 4m4s deployment-controller Scaled down app-5586fc9d77
 Normal ScalingReplicaSet 4m4s deployment-controller Scaled up app-78dfbb4854
 Normal Injected 4m4s linkerd-proxy-injector Linkerd sidecar injected
 Normal ScalingReplicaSet 3m54s deployment-controller Scaled app-5586fc9d77

238 | Chapter 5: Kubernetes Networking Abstractions

If we navigate to the app in the dashboard, we can see that our deployment is part of
the Linkerd service mesh now, as shown in Figure 5-10.

Figure 5-10. Web app deployment linkerd dashboard

The CLI can also display our stats for us:

linkerd stat deployments -n default
NAME MESHED SUCCESS RPS LATENCY_P50 LATENCY_P95 LATENCY_P99 TCP_CONN
app 1/1 100.00% 0.4rps 1ms 1ms 1ms 1

Again, let’s scale up our deployment:

kubectl scale deploy app --replicas 10
deployment.apps/app scaled

In Figure 5-11, we navigate to the web browser and open this link so we can watch
the stats in real time. Select the default namespaces, and in Resources select our
deployment/app. Then click “start for the web” to start displaying the metrics.

In a separate terminal let’s use the netshoot image, but this time running inside our
KIND cluster:

kubectl run tmp-shell --rm -i --tty --image nicolaka/netshoot -- /bin/bash
If you don't see a command prompt, try pressing enter.
bash-5.0#

Service Meshes | 239

https://oreil.ly/qQx9T

Figure 5-11. Web app dashboard

Let’s send a few hundred queries and see the stats:

bash-5.0#for i in `seq 1 100`;
do curl http://clusterip-service/host && sleep 2;
done

In our terminal we can see all the liveness and readiness probes as well as our /host
requests.

tmp-shell is our netshoot bash terminal with our for loop running.

10.244.2.1, 10.244.3.1, and 10.244.2.1 are the Kubelets of the hosts running our
probes for us:

linkerd viz stat deploy
NAME MESHED SUCCESS RPS LATENCY_P50 LATENCY_P95 LATENCY_P99 TCP_CONN
app 1/1 100.00% 0.7rps 1ms 1ms 1ms 3

Our example showed the observability functionality for a service mesh only. Linkerd,
Istio, and the like have many more options available for developers and network
administrators to control, monitor, and troubleshoot services running inside their
cluster network. As with the ingress controller, there are many options and features
available. It is up to you and your teams to decide what functionality and features are
important for your networks.

Conclusion
The Kubernetes networking world is feature rich with many options for teams to
deploy, test, and manage with their Kubernetes cluster. Each new addition will add
complexity and overhead to the cluster operations. We have given developers, net‐
work administrators, and system administrators a view into the abstractions that
Kubernetes offers.

240 | Chapter 5: Kubernetes Networking Abstractions

From internal traffic to external traffic to the cluster, teams must choose what
abstractions work best for their workloads. This is no small task, and now you are
armed with the knowledge to begin those discussions.

In our next chapter, we take our Kubernetes services and network learnings to the
cloud! We will explore the network services offered by each cloud provider and how
they are integrated into their Kubernetes managed service offering.

Conclusion | 241

CHAPTER 6

Kubernetes and Cloud Networking

The use of the cloud and its service offerings has grown tremendously: 77% of enter‐
prises are using the public cloud in some capacity, and 81% can innovate more
quickly with the public cloud than on-premise. With the popularity and innovation
available in the cloud, it follows that running Kubernetes in the cloud is a logical step.
Each major cloud provider has its own managed service offering for Kubernetes
using its cloud network services.

In this chapter, we’ll explore the network services offered by the major cloud provid‐
ers AWS, Azure, and GCP with a focus on how they affect the networking needed to
run a Kubernetes cluster inside that specific cloud. All the providers also have a CNI
project that makes running a Kubernetes cluster smoother from an integration per‐
spective with their cloud network APIs, so an exploration of the CNIs is warranted.
After reading this chapter, administrators will understand how cloud providers
implement their managed Kubernetes on top of their cloud network services.

Amazon Web Services
Amazon Web Services (AWS) has grown its cloud service offerings from Simple
Queue Service (SQS) and Simple Storage Service (S3) to well over 200 services. Gart‐
ner Research positions AWS in the Leaders quadrant of its 2020 Magic Quadrant for
Cloud Infrastructure & Platform Services. Many services are built atop of other foun‐
dational services. For example, Lambda uses S3 for code storage and DynamoDB for
metadata. AWS CodeCommit uses S3 for code storage. EC2, S3, and CloudWatch are
integrated into the Amazon Elastic MapReduce service, creating a managed data plat‐
form. The AWS networking services are no different. Advanced services such as peer‐
ing and endpoints use building blocks from core networking fundamentals.
Understanding those fundamentals, which enable AWS to build a comprehensive
Kubernetes service, is needed for administrators and developers.

243

AWS Network Services
AWS has many services that allow users to extend and secure their cloud networks.
Amazon Elastic Kubernetes Service (EKS) makes extensive use of those network
components available in the AWS cloud. We will discuss the basics of AWS network‐
ing components and how they are related to deploying an EKS cluster network. This
section will also discuss several other open source tools that make managing a cluster
and application deployments simple. The first is eksctl, a CLI tool that deploys and
manages EKS clusters. As we have seen from previous chapters, there are many com‐
ponents needed to run a cluster, and that is also true on the AWS network. eksctl
will deploy all the components in AWS for cluster and network administrators. Then,
we will discuss the AWS VPC CNI, which allows the cluster to use native AWS serv‐
ices to scale pods and manage their IP address space. Finally, we will examine the
AWS Application Load Balancer ingress controller, which automates, manages, and
simplifies deployments of application load balancers and ingresses for developers
running applications on the AWS network.

Virtual private cloud
The basis of the AWS network is the virtual private cloud (VPC). A majority of AWS
resources will work inside the VPC. VPC networking is an isolated virtual network
defined by administrators for only their account and its resources. In Figure 6-1, we
can see a VPC defined with a single CIDR of 192.168.0.0/16. All resources inside
the VPC will use that range for private IP addresses. AWS is constantly enhancing its
service offerings; now, network administrators can use multiple nonoverlapping
CIDRs in a VPC. The pod IP addresses will also come from VPC CIDR and host IP
addressing; more on that in “AWS VPC CNI” on page 263. A VPC is set up per AWS
region; you can have multiple VPCs per region, but a VPC is defined in only one.

Figure 6-1. AWS virtual private cloud

Region and availability zones
Resources are defined by boundaries in AWS, such as global, region, or availability
zone. AWS networking comprises multiple regions; each AWS region consists of mul‐
tiple isolated and physically separate availability zones (AZs) within a geographic
area. An AZ can contain multiple data centers, as shown in Figure 6-2. Some regions
can contain six AZs, while newer regions could contain only two. Each AZ is directly

244 | Chapter 6: Kubernetes and Cloud Networking

connected to the others but is isolated from the failures of another AZ. This design is
important to understand for multiple reasons: high availability, load balancing, and
subnets are all affected. In one region a load balancer will route traffic over multiple
AZs, which have separate subnets and thus enable HA for applications.

Figure 6-2. AWS region network layout

An up-to-date list of AWS regions and AZs is available in the
documentation.

Subnet
A VPC is compromised of multiple subnets from the CIDR range and deployed to a
single AZ. Applications that require high availability should run in multiple AZs and
be load balanced with any one of the load balancers available, as discussed in “Region
and availability zones” on page 244.

A subnet is public if the routing table has a route to an internet gateway. In
Figure 6-3, there are three public and private subnets. Private subnets have no direct
route to the internet. These subnets are for internal network traffic, such as databases.
The size of your VPC CIDR range and the number of public and private subnets are a
design consideration when deploying your network architecture. Recent improve‐
ments to VPC like allowing multiple CIDR ranges help lessen the ramification of
poor design choices, since now network engineers can simply add another CIDR
range to a provisioned VPC.

Amazon Web Services | 245

https://oreil.ly/gppRp

Figure 6-3. VPC subnets

Let’s discuss those components that help define if a subnet is public or private.

Routing tables
Each subnet has exactly one route table associated with it. If one is not explicitly asso‐
ciated with it, the main route table is the default one. Network connectivity issues can
manifest here; developers deploying applications inside a VPC must know to manip‐
ulate route tables to ensure traffic flows where it’s intended.

The following are rules for the main route table:

• The main route table cannot be deleted.
• A gateway route table cannot be set as the main.
• The main route table can be replaced with a custom route table.
• Admins can add, remove, and modify routes in the main route table.
• The local route is the most specific.
• Subnets can explicitly associate with the main route table.

There are route tables with specific goals in mind; here is a list of them and a descrip‐
tion of how they are different:

Main route table
This route table automatically controls routing for all subnets that are not explic‐
itly associated with any other route table.

Custom route table
A route table network engineers create and customize for specific application
traffic flow.

Edge association
A routing table to route inbound VPC traffic to an edge appliance.

246 | Chapter 6: Kubernetes and Cloud Networking

Subnet route table
A route table that’s associated with a subnet.

Gateway route table
A route table that’s associated with an internet gateway or virtual private gateway.

Each route table has several components that determine its responsibilities:

Route table association
The association between a route table and a subnet, internet gateway, or virtual
private gateway.

Rules
A list of routing entries that define the table; each rule has a destination, target,
status, and propagated flag.

Destination
The range of IP addresses where you want traffic to go (destination CIDR).

Target
The gateway, network interface, or connection through which to send the desti‐
nation traffic; for example, an internet gateway.

Status
The state of a route in the route table: active or blackhole. The blackhole state
indicates that the route’s target isn’t available.

Propagation
Route propagation allows a virtual private gateway to automatically propagate
routes to the route tables. This flag lets you know if it was added via propagation.

Local route
A default route for communication within the VPC.

In Figure 6-4, there are two routes in the route table. Any traffic destined for
11.0.0.0/16 stays on the local network inside the VPC. All other traffic, 0.0.0.0/0,
goes to the internet gateway, igw-f43c4690, making it a public subnet.

Figure 6-4. Route table

Amazon Web Services | 247

Elastic network interface
An elastic network interface (ENI) is a logical networking component in a VPC that
is equivalent to a virtual network card. ENIs contain an IP address, for the instance,
and they are elastic in the sense that they can be associated and disassociated to an
instance while retaining its properties.

ENIs have these properties:

• Primary private IPv4 address
• Secondary private IPv4 addresses
• One elastic IP (EIP) address per private IPv4 address
• One public IPv4 address, which can be auto-assigned to the network interface for
eth0 when you launch an instance

• One or more IPv6 addresses
• One or more security groups
• MAC address
• Source/destination check flag
• Description

A common use case for ENIs is the creation of management networks that are acces‐
sible only from a corporate network. AWS services like Amazon WorkSpaces use
ENIs to allow access to the customer VPC and the AWS-managed VPC. Lambda can
reach resources, like databases, inside a VPC by provisioning and attaching to an
ENI.

Later in the section we will see how the AWS VPC CNI uses and manages ENIs along
with IP addresses for pods.

Elastic IP address
An EIP address is a static public IPv4 address used for dynamic network addressing
in the AWS cloud. An EIP is associated with any instance or network interface in any
VPC. With an EIP, application developers can mask an instance’s failures by remap‐
ping the address to another instance.

An EIP address is a property of an ENI and is associated with an instance by updating
the ENI attached to the instance. The advantage of associating an EIP with the ENI
rather than directly to the instance is that all the network interface attributes move
from one instance to another in a single step.

248 | Chapter 6: Kubernetes and Cloud Networking

The following rules apply:

• An EIP address can be associated with either a single instance or a network inter‐
face at a time.

• An EIP address can migrate from one instance or network interface to another.
• There is a (soft) limit of five EIP addresses.
• IPv6 is not supported.

Services like NAT and internet gateway use EIPs for consistency between the AZ.
Other gateway services like a bastion can benefit from using an EIP. Subnets can
automatically assign public IP addresses to EC2 instances, but that address could
change; using an EIP would prevent that.

Security controls
There are two fundamental security controls within AWS networking: security
groups and network access control lists (NACLs). In our experience, lots of issues
arise from misconfigured security groups and NACLs. Developers and network engi‐
neers need to understand the differences between the two and the impacts of changes
on them.

Security groups. Security groups operate at the instance or network interface level and
act as a firewall for those devices associated with them. A security group is a group of
network devices that require common network access to each other and other devices
on the network. In Figure 6-5 ,we can see that security works across AZs. Security
groups have two tables, for inbound and outbound traffic flow. Security groups are
stateful, so if traffic is allowed on the inbound flow, the outgoing traffic is allowed.
Each security group has a list of rules that define the filter for traffic. Each rule is eval‐
uated before a forwarding decision is made.

Figure 6-5. Security group

Amazon Web Services | 249

The following is a list of components of security group rules:

Source/destination
Source (inbound rules) or destination (outbound rules) of the traffic inspected:

• Individual or range of IPv4 or IPv6 addresses
• Another security group
• Other ENIs, gateways, or interfaces

Protocol
Which layer 4 protocol being filtered, 6 (TCP), 17 (UDP), and 1 (ICMP)

Port range
Specific ports for the protocol being filtered

Description
User-defined field to inform others of the intent of the security group

Security groups are similar to the Kubernetes network policies we discussed in earlier
chapters. They are a fundamental network technology and should always be used to
secure your instances in the AWS VPC. EKS deploys several security groups for com‐
munication between the AWS-managed data plane and your worker nodes.

Network access control lists. Network access control lists operate similarly to how they
do in other firewalls so that network engineers will be familiar with them. In
Figure 6-6, you can see each subnet has a default NACL associated with it and is
bounded to an AZ, unlike the security group. Filter rules must be defined explicitly in
both directions. The default rules are quite permissive, allowing all traffic in both
directions. Users can define their own NACLs to use with a subnet for an added secu‐
rity layer if the security group is too open. By default, custom NACLs deny all traffic,
and therefore add rules when deployed; otherwise, instances will lose connectivity.

Here are the components of an NACL:

Rule number
Rules are evaluated starting with the lowest numbered rule.

Type
The type of traffic, such as SSH or HTTP.

Protocol
Any protocol that has a standard protocol number: TCP/UDP or ALL.

Port range
The listening port or port range for the traffic. For example, 80 for HTTP traffic.

250 | Chapter 6: Kubernetes and Cloud Networking

Source
Inbound rules only; the CIDR range source of the traffic.

Destination
Outbound rules only; the destination for the traffic.

Allow/Deny
Whether to allow or deny the specified traffic.

Figure 6-6. NACL

NACLs add an extra layer of security for subnets that may protect from lack or mis‐
configuration of security groups.

Table 6-1 summarizes the fundamental differences between security groups and net‐
work ACLs.

Table 6-1. Security and NACL comparison table

Security group Network ACL
Operates at the instance level. Operates at the subnet level.

Supports allow rules only. Supports allow rules and deny rules.

Stateful: Return traffic is automatically allowed,
regardless of any rules.

Stateless: Return traffic must be explicitly allowed by rules.

All rules are evaluated before a forwarding decision is
made.

Rules are processed in order, starting with the lowest numbered
rule.

Applies to an instance or network interface. All rules apply to all instances in the subnets that it’s associated
with.

Amazon Web Services | 251

It is crucial to understand the differences between NACL and security groups. Net‐
work connectivity issues often arise due to a security group not allowing traffic on a
specific port or someone not adding an outbound rule on an NACL. When trouble‐
shooting issues with AWS networking, developers and network engineers alike
should add checking these components to their troubleshooting list.

All the components we have discussed thus far manage traffic flow inside the VPC.
The following services manage traffic into the VPC from client requests and ulti‐
mately to applications running inside a Kubernetes cluster: network address transla‐
tion devices, internet gateway, and load balancers. Let’s dig into those a little more.

Network address translation devices
Network address translation (NAT) devices are used when instances inside a VPC
require internet connectivity, but network connections should not be made directly
to instances. Examples of instances that should run behind a NAT device are database
instances or other middleware needed to run applications.

In AWS, network engineers have several options for running NAT devices. They can
manage their own NAT devices deployed as EC2 instances or use the AWS Managed
Service NAT gateway (NAT GW). Both require public subnets deployed in multiple
AZs for high availability and EIP. A restriction of a NAT GW is that the IP address of
it cannot change after you deploy it. Also, that IP address will be the source IP
address used to communicate with the internet gateway.

In the VPC route table in Figure 6-7, we can see how the two route tables exist to
establish a connection to the internet. The main route table has two rules, a local
route for the inter-VPC and a route for 0.0.0.0/0 with a target of the NAT GW ID.
The private subnet’s database servers will route traffic to the internet via that NAT
GW rule in their route tables.

Pods and instances in EKS will need to egress the VPC, so a NAT device must be
deployed. Your choice of NAT device will depend on the operational overhead, cost,
or availability requirements for your network design.

252 | Chapter 6: Kubernetes and Cloud Networking

Figure 6-7. VPC routing diagram

Internet gateway
The internet gateway is an AWS-managed service and device in the VPC network that
allows connectivity to the internet for all devices in the VPC. Here are the steps to
ensure access to or from the internet in a VPC:

Amazon Web Services | 253

1. Deploy and attach an IGW to the VPC.
2. Define a route in the subnet’s route table that directs internet-bound traffic to the

IGW.
3. Verify NACLs and security group rules allow the traffic to flow to and from

instances.

All of this is shown in the VPC routing from Figure 6-7. We see the IGW deploy for
the VPC, a custom route table setup that routes all traffic, 0.0.0.0/0, to the IGW.
The web instances have an IPv4 internet routable address, 198.51.100.1-3.

Elastic load balancers
Now that traffic flows from the internet and clients can request access to applications
running inside a VPC, we will need to scale and distribute the load for requests. AWS
has several options for developers, depending on the type of application load and net‐
work traffic requirements needed.

The elastic load balancer has four options:

Classic
A classic load balancer provides fundamental load balancing of EC2 instances. It
operates at the request and the connection level. Classic load balancers are limi‐
ted in functionality and are not to be used with containers.

Application
Application load balancers are layer 7 aware. Traffic routing is made with
request-specific information like HTTP headers or HTTP paths. The application
load balancer is used with the application load balancer controller. The ALB con‐
troller allows devs to automate the deployment and ALB without using the con‐
sole or API, instead just a few YAML lines.

Network
The network load balancer operates at layer 4. Traffic can be routed based on
incoming TCP/UDP ports to individual hosts running services on that port. The
network load balancer also allows admins to deploy then with an EIP, a feature
unique to the network load balancer.

Gateway
The gateway load balancer manages traffic for appliances at the VPC level. Such
network devices like deep packet inspection or proxies can be used with a gate‐
way load balancer. The gateway load balancer is added here to complete the AWS
service offering but is not used within the EKS ecosystem.

254 | Chapter 6: Kubernetes and Cloud Networking

AWS load balancers have several attributes that are important to understand when
working with not only containers but other workloads inside the VPC:

Rule
(ALB only) The rules that you define for your listener determine how the load
balancer routes all requests to the targets in the target groups.

Listener
Checks for requests from clients. They support HTTP and HTTPS on ports 1–
65535.

Target
An EC2 instance, IP address, pods, or lambda running application code.

Target Group
Used to route requests to a registered target.

Health Check
Test to ensure targets are still able to accept client requests.

Each of these components of an ALB is outlined in Figure 6-8. When a request comes
into the load balancer, a listener is continually checking for requests that match the
protocol and port defined for it. Each listener has a set of rules that define where to
direct the request. The rule will have an action type to determine how to handle the
request:

authenticate-cognito
(HTTPS listeners) Use Amazon Cognito to authenticate users.

authenticate-oidc
(HTTPS listeners) Use an identity provider that is compliant with OpenID Con‐
nect to authenticate users.

fixed-response
Returns a custom HTTP response.

forward
Forward requests to the specified target groups.

redirect
Redirect requests from one URL to another.

The action with the lowest order value is performed first. Each rule must include
exactly one of the following actions: forward, redirect, or fixed-response. In
Figure 6-8, we have target groups, which will be the recipient of our forward rules.
Each target in the target group will have health checks so the load balancer will know
which instances are healthy and ready to receive requests.

Amazon Web Services | 255

Figure 6-8. Load balancer components

Now that we have a basic understanding of how AWS structures its networking com‐
ponents, we can begin to see how EKS leverages these components to the network
and secure the managed Kubernetes cluster and network.

Amazon Elastic Kubernetes Service
Amazon Elastic Kubernetes Service (EKS) is AWS’s managed Kubernetes service. It
allows developers, cluster administrators, and network administrators to quickly
deploy a production-scale Kubernetes cluster. Using the scaling nature of the cloud
and AWS network services, with one API request, many services are deployed,
including all the components we reviewed in the previous sections.

How does EKS accomplish this? Like with any new service AWS releases, EKS has
gotten significantly more feature-rich and easier to use. EKS now supports on-prem
deploys with EKS Anywhere, serverless with EKS Fargate, and even Windows nodes.
EKS clusters can be deployed traditionally with the AWS CLI or console. eksctl is a
command-line tool developed by Weaveworks, and it is by far the easiest way to date
to deploy all the components needed to run EKS. Our next section will detail the
requirements to run an EKS cluster and how eksctl accomplishes this for cluster
admins and devs.

Let’s discuss the components of EKS cluster networking.

EKS nodes
Workers nodes in EKS come in three flavors: EKS-managed node groups, self-
managed nodes, and AWS Fargate. The choice for the administrator is how much
control and operational overhead they would like to accrue.

Managed node group
Amazon EKS managed node groups create and manage EC2 instances for you.
All managed nodes are provisioned as part of an EC2 Auto Scaling group that’s
managed by Amazon EKS as well. All resources including EC2 instances and

256 | Chapter 6: Kubernetes and Cloud Networking

Auto Scaling groups run within your AWS account. A managed-node group’s
Auto Scaling group spans all the subnets that you specify when you create the
group.

Self-managed node group
Amazon EKS nodes run in your AWS account and connect to your cluster’s con‐
trol plane via the API endpoint. You deploy nodes into a node group. A node
group is a collection of EC2 instances that are deployed in an EC2 Auto Scaling
group. All instances in a node group must do the following:

• Be the same instance type
• Be running the same Amazon Machine Image
• Use the same Amazon EKS node IAM role

Fargate
Amazon EKS integrates Kubernetes with AWS Fargate by using controllers that
are built by AWS using the upstream, extensible model provided by Kubernetes.
Each pod running on Fargate has its own isolation boundary and does not share
the underlying kernel, CPU, memory, or elastic network interface with another
pod. You also cannot use security groups for pods with pods running on Fargate.

The instance type also affects the cluster network. In EKS the number of pods that
can run on the nodes is defined by the number of IP addresses that instance can run.
We discuss this further in “AWS VPC CNI” on page 263 and “eksctl” on page 261.

Nodes must be able to communicate with the Kubernetes control plane and other
AWS services. The IP address space is crucial to run an EKS cluster. Nodes, pods, and
all other services will use the VPC CIDR address ranges for components. The EKS
VPC requires a NAT gateway for private subnets and that those subnets be tagged for
use with EKS:

Key – kubernetes.io/cluster/<cluster-name>
Value – shared

The placement of each node will determine the network “mode” that EKS operates;
this has design considerations for your subnets and Kubernetes API traffic routing.

EKS mode
Figure 6-9 outlines EKS components. The Amazon EKS control plane creates up to
four cross-account elastic network interfaces in your VPC for each cluster. EKS uses
two VPCs, one for the Kubernetes control plane, including the Kubernetes API mas‐
ters, API loadbalancer, and etcd depending on the networking model; the other is the
customer VPC where the EKS worker nodes run your pods. As part of the boot pro‐
cess for the EC2 instance, the Kubelet is started. The node’s Kubelet reaches out to the
Kubernetes cluster endpoint to register the node. It connects either to the public

Amazon Web Services | 257

endpoint outside the VPC or to the private endpoint within the VPC. kubectl com‐
mands reach out to the API endpoint in the EKS VPC. End users reach applications
running in the customer VPC.

Figure 6-9. EKS communication path

There are three ways to configure cluster control traffic and the Kubernetes API end‐
point for EKS, depending on where the control and data planes of the Kubernetes
components run.

The networking modes are as follows:

Public-only
Everything runs in a public subnet, including worker nodes.

Private-only
Runs solely in a private subnet, and Kubernetes cannot create internet-facing
load balancers.

Mixed
Combo of public and private.

258 | Chapter 6: Kubernetes and Cloud Networking

The public endpoint is the default option; it is public because the load balancer for
the API endpoint is on a public subnet, as shown in Figure 6-10. Kubernetes API
requests that originate from within the cluster’s VPC, like when the worker node rea‐
ches out to the control plane, leave the customer VPC, but not the Amazon network.
One security concern to consider when using a public endpoint is that the API end‐
points are on a public subnet and reachable on the internet.

Figure 6-10. EKS public-only network mode

Figure 6-11 shows the private endpoint mode; all traffic to your cluster API must
come from within your cluster’s VPC. There’s no internet access to your API server;
any kubectl commands must come from within the VPC or a connected network.
The cluster’s API endpoint is resolved by public DNS to a private IP address in the
VPC.

Amazon Web Services | 259

Figure 6-11. EKS private-only network mode

When both public and private endpoints are enabled, any Kubernetes API requests
from within the VPC communicate to the control plane by the EKS-managed ENIs
within the customer VPC, as demonstrated in Figure 6-12. The cluster API is still
accessible from the internet, but it can be limited using security groups and NACLs.

Please see the AWS documentation for more ways to deploy an
EKS.

Determining what mode to operate in is a critical decision administrators will make.
It will affect the application traffic, the routing for load balancers, and the security of
the cluster. There are many other requirements when deploying a cluster in EKS as
well. eksctl is one tool to help manage all those requirements. But how does eksctl
accomplish that?

260 | Chapter 6: Kubernetes and Cloud Networking

https://oreil.ly/mW7ii

Figure 6-12. EKS public and private network mode

eksctl

eksctl is a command-line tool developed by Weaveworks, and it is by far the easiest
way to deploy all the components needed to run EKS.

All the information about eksctl is available on its website.

eksctl defaults to creating a cluster with the following default parameters:

• An autogenerated cluster name
• Two m5.large worker nodes
• Use of the official AWS EKS AMI
• Us-west-2 default AWS region
• A dedicated VPC

Amazon Web Services | 261

https://eksctl.io

A dedicated VPC with 192.168.0.0/16 CIDR range, eksctl will create by default 8 /19
subnets: three private, three public, and two reserved subnets. eksctl will also deploy
a NAT GW that allows for communication of nodes placed in private subnets and an
internet gateway to enable access for needed container images and communication to
the Amazon S3 and Amazon ECR APIs.

Two security groups are set up for the EKS cluster:

Ingress inter node group SG
Allows nodes to communicate with each other on all ports

Control plane security group
Allows communication between the control plane and worker node groups

Node groups in public subnets will have SSH disabled. EC2 instances in the initial
node group get a public IP and can be accessed on high-level ports.

One node group containing two m5.large nodes is the default for eksctl. But how
many pods can that node run? AWS has a formula based on the node type and the
number of interfaces and IP addresses it can support. That formula is as follows:

(Number of network interfaces for the instance type ×
(the number of IP addresses per network interface - 1)) + 2

Using the preceding formula and the default instance size on eksctl, an m5.large can
support a maximum of 29 pods.

System pods count toward the maximum pods. The CNI plugin
and kube-proxy pods run on every node in a cluster, so you’re only
able to deploy 27 additional pods to an m5.large instance. Core‐
DNS runs on nodes in the cluster, which further decrements the
maximum number of pods a node can run.

Teams running clusters must decide on cluster sizing and instance types to ensure no
deployment issues with hitting node and IP limitations. Pods will sit in the “waiting”
state if there are no nodes available with the pod’s IP address. Scaling events for the
EKS node groups can also hit EC2 instance type limits and cause cascading issues.

All of these networking options are configurable via the eksctl config file.

eksctl VPC options are available in the eksctl documentation.

262 | Chapter 6: Kubernetes and Cloud Networking

https://oreil.ly/m2Nqc

We have discussed how the size node is important for pod IP addressing and the
number of them we can run. Once the node is deployed, the AWS VPC CNI manages
pod IP addressing for nodes. Let’s dive into the inner workings of the CNI.

AWS VPC CNI
AWS has its open source implementation of a CNI. AWS VPC CNI for the Kuber‐
netes plugin offers high throughput and availability, low latency, and minimal net‐
work jitter on the AWS network. Network engineers can apply existing AWS VPC
networking and security best practices for building Kubernetes clusters on AWS. It
includes using native AWS services like VPC flow logs, VPC routing policies, and
security groups for network traffic isolation.

The open source for AWS VPC CNI is on GitHub.

There are two components to the AWS VPC CNI:

CNI plugin
The CNI plugin is responsible for wiring up the host’s and pod’s network stack
when called. It also configures the interfaces and virtual Ethernet pairs.

ipamd
A long-running node-local IPAM daemon is responsible for maintaining a warm
pool of available IP addresses and assigning an IP address to a pod.

Figure 6-13 demonstrates what the VPC CNI will do for nodes. A customer VPC
with a subnet 10.200.1.0/24 in AWS gives us 250 usable addresses in this subnet.
There are two nodes in our cluster. In EKS, the managed nodes run with the AWS
CNI as a daemon set. In our example, each node has only one pod running, with a
secondary IP address on the ENI, 10.200.1.6 and 10.200.1.8, for each pod. When a
worker node first joins the cluster, there is only one ENI and all its addresses in the
ENI. When pod three gets scheduled to node 1, ipamd assigns the IP address to the
ENI for that pod. In this case, 10.200.1.7 is the same thing on node 2 with pod 4.

When a worker node first joins the cluster, there is only one ENI and all of its
addresses in the ENI. Without any configuration, ipamd always tries to keep one extra
ENI. When several pods running on the node exceeds the number of addresses on a
single ENI, the CNI backend starts allocating a new ENI. The CNI plugin works by
allocating multiple ENIs to EC2 instances and then attaches secondary IP addresses
to these ENIs. This plugin allows the CNI to allocate as many IPs per instance as
possible.

Amazon Web Services | 263

https://oreil.ly/akwqx

Figure 6-13. AWS VPC CNI example

The AWS VPC CNI is highly configurable. This list includes just a few options:

AWS_VPC_CNI_NODE_PORT_SUPPORT
Specifies whether NodePort services are enabled on a worker node’s primary net‐
work interface. This requires additional iptables rules and that the kernel’s
reverse path filter on the primary interface is set to loose.

AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG
Worker nodes can be configured in public subnets, so you need to configure pods
to be deployed in private subnets, or if pods’ security requirement needs are dif‐
ferent from others running on the node, setting this to true will enable that.

AWS_VPC_ENI_MTU
Default: 9001. Used to configure the MTU size for attached ENIs. The valid range
is from 576 to 9001.

WARM_ENI_TARGET
Specifies the number of free elastic network interfaces (and all of their available
IP addresses) that the ipamd daemon should attempt to keep available for pod
assignment on the node. By default, ipamd attempts to keep one elastic network

264 | Chapter 6: Kubernetes and Cloud Networking

interface and all of its IP addresses available for pod assignment. The number of
IP addresses per network interface varies by instance type.

AWS_VPC_K8S_CNI_EXTERNALSNAT
Specifies whether an external NAT gateway should be used to provide SNAT of
secondary ENI IP addresses. If set to true, the SNAT iptables rule and external
VPC IP rule are not applied, and these rules are removed if they have already
been applied. Disable SNAT if you need to allow inbound communication to
your pods from external VPNs, direct connections, and external VPCs, and your
pods do not need to access the internet directly via an internet gateway.

For example, if your pods with a private IP address need to communicate with others’
private IP address spaces, you enable AWS_VPC_K8S_CNI_EXTERNALSNAT by using this
command:

kubectl set env daemonset
-n kube-system aws-node AWS_VPC_K8S_CNI_EXTERNALSNAT=true

All the information for EKS pod networking can be found in the
EKS documentation.

The AWS VPC CNI allows for maximum control over the networking options on
EKS in the AWS network.

There is also the AWS ALB ingress controller that makes managing and deploying
applications on the AWS cloud network smooth and automated. Let’s dig into that
next.

AWS ALB ingress controller
Let’s walk through the example in Figure 6-14 of how the AWS ALB works with
Kubernetes. For a review of what an ingress controller is, please check out Chapter 5.

Let’s discuss all the moving parts of ALB Ingress controller:

1. The ALB ingress controller watches for ingress events from the API server. When
requirements are met, it will start the creation process of an ALB.

2. An ALB is created in AWS for the new ingress resource. Those resources can be
internal or external to the cluster.

3. Target groups are created in AWS for each unique Kubernetes service described
in the ingress resource.

Amazon Web Services | 265

https://oreil.ly/RAVVY

4. Listeners are created for every port detailed in your ingress resource annotations.
Default ports for HTTP and HTTPS traffic are set up if not specified. NodePort
services for each service create the node ports that are used for our health checks.

5. Rules are created for each path specified in your ingress resource. This ensures
traffic to a specific path is routed to the correct Kubernetes service.

Figure 6-14. AWS ALB example

How traffic reaches nodes and pods is affected by one of two modes the ALB can run:

Instance mode
Ingress traffic starts at the ALB and reaches the Kubernetes nodes through each
service’s NodePort. This means that services referenced from ingress resources
must be exposed by type:NodePort to be reached by the ALB.

IP mode
Ingress traffic starts at the ALB and reaches directly to the Kubernetes pods.
CNIs must support a directly accessible pod IP address via secondary IP
addresses on ENI.

The AWS ALB ingress controller allows developers to manage their network needs
like their application components. There is no need for other tool sets in the pipeline.

The AWS networking components are tightly integrated with EKS. Understanding
the basic options of how they work is fundamental for all those looking to scale their

266 | Chapter 6: Kubernetes and Cloud Networking

applications on Kubernetes on AWS using EKS. The size of your subnets, the place‐
ments of the nodes in those subnets, and of course the size of nodes will affect how
large of a network of pods and services you can run on the AWS network. Using a
managed service such as EKS, with open source tools like eksctl, will greatly reduce
the operational overhead of running an AWS Kubernetes cluster.

Deploying an Application on an AWS EKS Cluster
Let’s walk through deploying an EKS cluster to manage our Golang web server:

1. Deploy the EKS cluster.
2. Deploy the web server Application and LoadBalancer.
3. Verify.
4. Deploy ALB Ingress Controller and Verify.
5. Clean up.

Deploy EKS cluster
Let’s deploy an EKS cluster, with the current and latest version EKS supports, 1.20:

export CLUSTER_NAME=eks-demo
eksctl create cluster -N 3 --name ${CLUSTER_NAME} --version=1.20
eksctl version 0.54.0
using region us-west-2
setting availability zones to [us-west-2b us-west-2a us-west-2c]
subnets for us-west-2b - public:192.168.0.0/19 private:192.168.96.0/19
subnets for us-west-2a - public:192.168.32.0/19 private:192.168.128.0/19
subnets for us-west-2c - public:192.168.64.0/19 private:192.168.160.0/19
nodegroup "ng-90b7a9a5" will use "ami-0a1abe779ecfc6a3e" [AmazonLinux2/1.20]
using Kubernetes version 1.20
creating EKS cluster "eks-demo" in "us-west-2" region with un-managed nodes
will create 2 separate CloudFormation stacks for cluster itself and the initial
nodegroup
if you encounter any issues, check CloudFormation console or try
'eksctl utils describe-stacks --region=us-west-2 --cluster=eks-demo'
CloudWatch logging will not be enabled for cluster "eks-demo" in "us-west-2"
you can enable it with
'eksctl utils update-cluster-logging --enable-types={SPECIFY-YOUR-LOG-TYPES-HERE
(e.g. all)} --region=us-west-2 --cluster=eks-demo'
Kubernetes API endpoint access will use default of
{publicAccess=true, privateAccess=false} for cluster "eks-demo" in "us-west-2"
2 sequential tasks: { create cluster control plane "eks-demo",
3 sequential sub-tasks: { wait for control plane to become ready, 1 task:
{ create addons }, create nodegroup "ng-90b7a9a5" } }
building cluster stack "eksctl-eks-demo-cluster"
deploying stack "eksctl-eks-demo-cluster"
waiting for CloudFormation stack "eksctl-eks-demo-cluster"

Amazon Web Services | 267

<truncate>
building nodegroup stack "eksctl-eks-demo-nodegroup-ng-90b7a9a5"
--nodes-min=3 was set automatically for nodegroup ng-90b7a9a5
deploying stack "eksctl-eks-demo-nodegroup-ng-90b7a9a5"
waiting for CloudFormation stack "eksctl-eks-demo-nodegroup-ng-90b7a9a5"
<truncated>
waiting for the control plane availability...
saved kubeconfig as "/Users/strongjz/.kube/config"
no tasks
all EKS cluster resources for "eks-demo" have been created
adding identity
"arn:aws:iam::1234567890:role/
eksctl-eks-demo-nodegroup-ng-9-NodeInstanceRole-TLKVDDVTW2TZ" to auth ConfigMap
nodegroup "ng-90b7a9a5" has 0 node(s)
waiting for at least 3 node(s) to become ready in "ng-90b7a9a5"
nodegroup "ng-90b7a9a5" has 3 node(s)
node "ip-192-168-31-17.us-west-2.compute.internal" is ready
node "ip-192-168-58-247.us-west-2.compute.internal" is ready
node "ip-192-168-85-104.us-west-2.compute.internal" is ready
kubectl command should work with "/Users/strongjz/.kube/config",
try 'kubectl get nodes'
EKS cluster "eks-demo" in "us-west-2" region is ready

In the output we can see that EKS creating a nodegroup, eksctl-eks-demo-
nodegroup-ng-90b7a9a5, with three nodes:

ip-192-168-31-17.us-west-2.compute.internal
ip-192-168-58-247.us-west-2.compute.internal
ip-192-168-85-104.us-west-2.compute.internal

They are all inside a VPC with three public and three private subnets across three
AZs:

public:192.168.0.0/19 private:192.168.96.0/19
public:192.168.32.0/19 private:192.168.128.0/19
public:192.168.64.0/19 private:192.168.160.0/19

We used the default settings of eksctl, and it deployed the k8s API
as a public endpoint, {publicAccess=true, privateAc

cess=false}.

Now we can deploy our Golang web application in the cluster and expose it with a
LoadBalancer service.

Deploy test application

You can deploy applications individually or all together. dnsutils.yml is our dnsutils
testing pod, database.yml is the Postgres database for pod connectivity testing,
web.yml is the Golang web server and the LoadBalancer service:

268 | Chapter 6: Kubernetes and Cloud Networking

kubectl apply -f dnsutils.yml,database.yml,web.yml

Let’s run a kubectl get pods to see if all the pods are running fine:

kubectl get pods -o wide
NAME READY STATUS IP NODE
app-6bf97c555d-5mzfb 1/1 Running 192.168.15.108 ip-192-168-0-94
app-6bf97c555d-76fgm 1/1 Running 192.168.52.42 ip-192-168-63-151
app-6bf97c555d-gw4k9 1/1 Running 192.168.88.61 ip-192-168-91-46
dnsutils 1/1 Running 192.168.57.174 ip-192-168-63-151
postgres-0 1/1 Running 192.168.70.170 ip-192-168-91-46

Now check on the LoadBalancer service:

kubectl get svc clusterip-service
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
clusterip-service LoadBalancer 10.100.159.28
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com 80:32671/TCP 29m

The service has endpoints as well:
kubectl get endpoints clusterip-service
NAME ENDPOINTS AGE
clusterip-service 192.168.15.108:8080,192.168.52.42:8080,192.168.88.61:8080 58m

We should verify the application is reachable inside the cluster, with the ClusterIP
and port, 10.100.159.28:8080; service name and port, clusterip-service:80; and
finally pod IP and port, 192.168.15.108:8080:

kubectl exec dnsutils -- wget -qO- 10.100.159.28:80/data
Database Connected

kubectl exec dnsutils -- wget -qO- 10.100.159.28:80/host
NODE: ip-192-168-63-151.us-west-2.compute.internal, POD IP:192.168.52.42

kubectl exec dnsutils -- wget -qO- clusterip-service:80/host
NODE: ip-192-168-91-46.us-west-2.compute.internal, POD IP:192.168.88.61

kubectl exec dnsutils -- wget -qO- clusterip-service:80/data
Database Connected

kubectl exec dnsutils -- wget -qO- 192.168.15.108:8080/data
Database Connected

kubectl exec dnsutils -- wget -qO- 192.168.15.108:8080/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

The database port is reachable from dnsutils, with the pod IP and port
192.168.70.170:5432, and the service name and port - postgres:5432:

kubectl exec dnsutils -- nc -z -vv -w 5 192.168.70.170 5432
192.168.70.170 (192.168.70.170:5432) open
sent 0, rcvd 0

Amazon Web Services | 269

kubectl exec dnsutils -- nc -z -vv -w 5 postgres 5432
postgres (10.100.106.134:5432) open
sent 0, rcvd 0

The application inside the cluster is up and running. Let’s test it from external to the
cluster.

Verify LoadBalancer services for Golang web server

kubectl will return all the information we will need to test, the ClusterIP, the external
IP, and all the ports:

kubectl get svc clusterip-service
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
clusterip-service LoadBalancer 10.100.159.28
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com 80:32671/TCP 29m

Using the external IP of the load balancer:

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/data
Database Connected

Let’s test the load balancer and make multiple requests to our backends:

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-63-151.us-west-2.compute.internal, POD IP:192.168.52.42

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-91-46.us-west-2.compute.internal, POD IP:192.168.88.61

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

kubectl get pods -o wide again will verify our pod information matches the load‐
balancer requests:

kubectl get pods -o wide
NAME READY STATUS IP NODE
app-6bf97c555d-5mzfb 1/1 Running 192.168.15.108 ip-192-168-0-94
app-6bf97c555d-76fgm 1/1 Running 192.168.52.42 ip-192-168-63-151
app-6bf97c555d-gw4k9 1/1 Running 192.168.88.61 ip-192-168-91-46
dnsutils 1/1 Running 192.168.57.174 ip-192-168-63-151
postgres-0 1/1 Running 192.168.70.170 ip-192-168-91-46

270 | Chapter 6: Kubernetes and Cloud Networking

We can also check the nodeport, since dnsutils is running inside our VPC, on an
EC2 instance; it can do a DNS lookup on the private host, ip-192-168-0-94.us-
west-2.compute.internal, and the kubectl get service command gave us the
node port, 32671:

kubectl exec dnsutils -- wget -qO-
ip-192-168-0-94.us-west-2.compute.internal:32671/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

Everything seems to running just fine externally and locally in our cluster.

Deploy ALB ingress and verify
For some sections of the deployment, we will need to know the AWS account ID we
are deploying. Let’s put that into an environment variable. To get your account ID,
you can run the following:

aws sts get-caller-identity
{
 "UserId": "AIDA2RZMTHAQTEUI3Z537",
 "Account": "1234567890",
 "Arn": "arn:aws:iam::1234567890:user/eks"
}

export ACCOUNT_ID=1234567890

If it is not set up for the cluster already, we will have to set up an OIDC provider with
the cluster.

This step is needed to give IAM permissions to a pod running in the cluster using the
IAM for SA:

eksctl utils associate-iam-oidc-provider \
--region ${AWS_REGION} \
--cluster ${CLUSTER_NAME} \
--approve

For the SA role, we will need to create an IAM policy to determine the permissions
for the ALB controller in AWS:

aws iam create-policy \
--policy-name AWSLoadBalancerControllerIAMPolicy \
--policy-document iam_policy.json

Now we need to create the SA and attach it to the IAM role we created:

eksctl create iamserviceaccount \
> --cluster ${CLUSTER_NAME} \
> --namespace kube-system \
> --name aws-load-balancer-controller \
> --attach-policy-arn
arn:aws:iam::${ACCOUNT_ID}:policy/AWSLoadBalancerControllerIAMPolicy \
> --override-existing-serviceaccounts \

Amazon Web Services | 271

> --approve
eksctl version 0.54.0
using region us-west-2
1 iamserviceaccount (kube-system/aws-load-balancer-controller) was included
(based on the include/exclude rules)
metadata of serviceaccounts that exist in Kubernetes will be updated,
as --override-existing-serviceaccounts was set
1 task: { 2 sequential sub-tasks: { create IAM role for serviceaccount
"kube-system/aws-load-balancer-controller", create serviceaccount
"kube-system/aws-load-balancer-controller" } }
building iamserviceaccount stack
deploying stack
waiting for CloudFormation stack
waiting for CloudFormation stack
waiting for CloudFormation stack
created serviceaccount "kube-system/aws-load-balancer-controller"

We can see all the details of the SA with the following:

kubectl get sa aws-load-balancer-controller -n kube-system -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
annotations:
eks.amazonaws.com/role-arn:
arn:aws:iam::1234567890:role/eksctl-eks-demo-addon-iamserviceaccount-Role1
creationTimestamp: "2021-06-27T18:40:06Z"
labels:
app.kubernetes.io/managed-by: eksctl
name: aws-load-balancer-controller
namespace: kube-system
resourceVersion: "16133"
uid: 30281eb5-8edf-4840-bc94-f214c1102e4f
secrets:
- name: aws-load-balancer-controller-token-dtq48

The TargetGroupBinding CRD allows the controller to bind a Kubernetes service
endpoint to an AWS TargetGroup:

kubectl apply -f crd.yml
customresourcedefinition.apiextensions.k8s.io/ingressclassparams.elbv2.k8s.aws
configured
customresourcedefinition.apiextensions.k8s.io/targetgroupbindings.elbv2.k8s.aws
configured

Now we’re ready to the deploy the ALB controller with Helm.

Set the version environment to deploy:

export ALB_LB_VERSION="v2.2.0"

Now deploy it, add the eks Helm repo, get the VPC ID the cluster is running in, and
finally deploy via Helm.

272 | Chapter 6: Kubernetes and Cloud Networking

helm repo add eks https://aws.github.io/eks-charts

export VPC_ID=$(aws eks describe-cluster \
--name ${CLUSTER_NAME} \
--query "cluster.resourcesVpcConfig.vpcId" \
--output text)

helm upgrade -i aws-load-balancer-controller \
eks/aws-load-balancer-controller \
-n kube-system \
--set clusterName=${CLUSTER_NAME} \
--set serviceAccount.create=false \
--set serviceAccount.name=aws-load-balancer-controller \
--set image.tag="${ALB_LB_VERSION}" \
--set region=${AWS_REGION} \
--set vpcId=${VPC_ID}

Release "aws-load-balancer-controller" has been upgraded. Happy Helming!
NAME: aws-load-balancer-controller
LAST DEPLOYED: Sun Jun 27 14:43:06 2021
NAMESPACE: kube-system
STATUS: deployed
REVISION: 2
TEST SUITE: None
NOTES:
AWS Load Balancer controller installed!

We can watch the deploy logs here:

kubectl logs -n kube-system -f deploy/aws-load-balancer-controller

Now to deploy our ingress with ALB:

kubectl apply -f alb-rules.yml
ingress.networking.k8s.io/app configured

With the kubectl describe ing app output, we can see the ALB has been deployed.

We can also see the ALB public DNS address, the rules for the instances, and the end‐
points backing the service.

kubectl describe ing app
Name: app
Namespace: default
Address:
k8s-default-app-d5e5a26be4-2128411681.us-west-2.elb.amazonaws.com
Default backend: default-http-backend:80
(<error: endpoints "default-http-backend" not found>)
Rules:
Host Path Backends
 ---- ---- --------
*
 /data clusterip-service:80 (192.168.3.221:8080,
192.168.44.165:8080,

Amazon Web Services | 273

192.168.89.224:8080)
 /host clusterip-service:80 (192.168.3.221:8080,
192.168.44.165:8080,
192.168.89.224:8080)
Annotations: alb.ingress.kubernetes.io/scheme: internet-facing
kubernetes.io/ingress.class: alb
Events:
Type Reason Age From
Message
---- ------ ---- ----

Normal SuccessfullyReconciled 4m33s (x2 over 5m58s) ingress
Successfully reconciled

It’s time to test our ALB!

wget -qO- k8s-default-app-d5e5a26be4-2128411681.us-west-2.elb.amazonaws.com/data
Database Connected

wget -qO- k8s-default-app-d5e5a26be4-2128411681.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-63-151.us-west-2.compute.internal, POD IP:192.168.44.165

Cleanup
Once you are done working with EKS and testing, make sure to delete the applica‐
tions pods and the service to ensure that everything is deleted:

kubectl delete -f dnsutils.yml,database.yml,web.yml

Clean up the ALB:

kubectl delete -f alb-rules.yml

Remove the IAM policy for ALB controller:

aws iam delete-policy
--policy-arn arn:aws:iam::${ACCOUNT_ID}:policy/AWSLoadBalancerControllerIAMPolicy

Verify there are no leftover EBS volumes from the PVCs for test application. Delete
any EBS volumes found for the PVC’s for the Postgres test database:

aws ec2 describe-volumes --filters
Name=tag:kubernetes.io/created-for/pv/name,Values=*
--query "Volumes[].{ID:VolumeId}"

Verify there are no load balancers running, ALB or otherwise:

aws elbv2 describe-load-balancers --query "LoadBalancers[].LoadBalancerArn"

aws elb describe-load-balancers --query "LoadBalancerDescriptions[].DNSName"

Let’s make sure we delete the cluster, so you don’t get charged for a cluster doing
nothing:

eksctl delete cluster --name ${CLUSTER_NAME}

274 | Chapter 6: Kubernetes and Cloud Networking

We deployed a service load balancer that will for each service deploy a classical ELB
into AWS. The ALB controller allows developers to use ingress with ALB or NLBs to
expose the application externally. If we were to scale our application to multiple back‐
end services, the ingress allows us to use one load balancer and route based on layer 7
information.

In the next section, we will explore GCP in the same manner we just did for AWS.

Google Compute Cloud (GCP)
In 2008, Google announced App Engine, a platform as a service to deploy Java,
Python, Ruby, and Go applications. Like its competitors, GCP has extended its service
offerings. Cloud providers work to distinguish their offerings, so no two products are
ever the same. Nonetheless, many products do have a lot in common. For instance,
GCP Compute Engine is an infrastructure as a service to run virtual machines. The
GCP network consists of 25 cloud regions, 76 zones, and 144 network edge locations.
Utilizing both the scale of the GCP network and Compute Engine, GCP has released
Google Kubernetes Engine, its container as a service platform.

GCP Network Services
Managed and unmanaged Kubernetes clusters on GCP share the same networking
principles. Nodes in either managed or unmanaged clusters run as Google Compute
Engine instances. Networks in GCP are VPC networks. GCP VPC networks, like in
AWS, contain functionality for IP management, routing, firewalling, and peering.

The GCP network is divided into tiers for customers to choose from; there are pre‐
mium and standard tiers. They differ in performance, routing, and functionality, so
network engineers must decide which is suitable for their workloads. The premium
tier is the highest performance for your workloads. All the traffic between the inter‐
net and instances in the VPC network is routed within Google’s network as far as pos‐
sible. If your services need global availability, you should use premium. Make sure to
remember that the premium tier is the default unless you make configuration
changes.

The standard tier is a cost-optimized tier where traffic between the internet and VMs
in the VPC network is routed over the internet in general. Network engineers should
pick this tier for services that are going to be hosted entirely within a region. The
standard tier cannot guarantee performance as it is subject to the same performance
that all workloads share on the internet.

The GCP network differs from the other providers by having what is called global
resources. Global because users can access them in any zone within the same project.
These resources include such things as VPC, firewalls, and their routes.

Google Compute Cloud (GCP) | 275

See the GCP documentation for a more comprehensive overview of
the network tiers.

Regions and zones
Regions are independent geographic areas that contain multiple zones. Regional
resources offer redundancy by being deployed across multiple zones for that region.
Zones are deployment areas for resources within a region. One zone is typically a data
center within a region, and administrators should consider them a single fault
domain. In fault-tolerant application deployments, the best practice is to deploy
applications across multiple zones within a region, and for high availability, you
should deploy applications across various regions. If a zone becomes unavailable, all
the zone resources will be unavailable until owners restore services.

Virtual private cloud
A VPC is a virtual network that provides connectivity for resources within a GCP
project. Like accounts and subscriptions, projects can contain multiple VPC net‐
works, and by default, new projects start with a default auto-mode VPC network that
also includes one subnet in each region. Custom-mode VPC networks can contain no
subnets. As stated earlier, VPC networks are global resources and are not associated
with any particular region or zone.

A VPC network contains one or more regional subnets. Subnets have a region, CIDR,
and globally unique name. You can use any CIDR for a subnet, including one that
overlaps with another private address space. The specific choice of subnet CIDR
impacts which IP addresses you can reach and which networks you can peer.

Google creates a “default” VPC network, with randomly generated
subnets for each region. Some subnets may overlap with another
VPC’s subnet (such as the default VPC network in another Google
Cloud project), which will prevent peering.

VPC networks support peering and shared VPC configuration. Peering a VPC net‐
work allows the VPC in one project to route to the VPC in another, placing them on
the same L3 network. You cannot peer with any overlapping VPC network, as some
IP addresses exist in both networks. A shared VPC allows another project to use spe‐
cific subnets, such as creating machines that are part of that subnet. The VPC docu‐
mentation has more information.

276 | Chapter 6: Kubernetes and Cloud Networking

https://oreil.ly/mzgG2
https://oreil.ly/98Wav
https://oreil.ly/98Wav

Peering VPC networks is standard, as organizations often assign
different teams, applications, or components to their project in
Google Cloud. Peering has upsides for access control, quota, and
reporting. Some admins may also create multiple VPC networks
within a project for similar reasons.

Subnet
Subnets are portions within a VPC network with one primary IP range with the abil‐
ity to have zero or more secondary ranges. Subnets are regional resources, and each
subnet defines a range of IP addresses. A region can have more than one subnet.
There are two modes of subnet formulation when you create them: auto or custom.
When you create an auto-mode VPC network, one subnet from each region is auto‐
matically created within it using predefined IP ranges. When you define a custom-
mode VPC network, GCP does not provision any subnets, giving administrators
control over the ranges. Custom-mode VPC networks are suited for enterprises and
production environments for network engineers to use.

Google Cloud allows you to “reserve” static IP addresses for internal and external IP
addresses. Users can utilize reserved IP addresses for GCE instances, load balancers,
and other products beyond our scope. Reserved internal IP addresses have a name
and can be generated automatically or assigned manually. Reserving an internal static
IP address prevents it from being randomly automatically assigned while not in use.

Reserving external IP addresses is similar; although you can request an automatically
assigned IP address, you cannot choose what IP address to reserve. Because you are
reserving a globally routable IP address, charges apply in some circumstances. You
cannot secure an external IP address that you were assigned automatically as an
ephemeral IP address.

Routes and firewall rules
When deploying a VPC, you can use firewall rules to allow or deny connections to
and from your application instances based on the rules you deploy. Each firewall rule
can apply to ingress or egress connections, but not both. The instance level is where
GCP enforces rules, but the configuration pairs with the VPC network, and you can‐
not share firewall rules among VPC networks, peered networks included. VPC fire‐
wall rules are stateful, so when a TCP session starts, firewall rules allow bidirectional
traffic similar to an AWS security group.

Cloud load balancing
Google Cloud Load Balancer (GCLB) offers a fully distributed, high-performance,
scalable load balancing service across GCP, with various load balancer options. With
GCLB, you get a single Anycast IP that fronts all your backend instances across the
globe, including multiregion failover. In addition, software-defined load balancing

Google Compute Cloud (GCP) | 277

services enable you to apply load balancing to your HTTP(S), TCP/SSL, and UDP
traffic. You can also terminate your SSL traffic with an SSL proxy and HTTPS load
balancing. Internal load balancing enables you to build highly available internal serv‐
ices for your internal instances without requiring any load balancers to be exposed to
the internet.

The vast majority of GCP users make use of GCP’s load balancers with Kubernetes
ingress. GCP has internal-facing and external-facing load balancers, with L4 and L7
support. GKE clusters default to creating a GCP load balancer for ingresses and
type: LoadBalancer services.

To expose applications outside a GKE cluster, GKE provides a built-in GKE ingress
controller and GKE service controller, which deploys a Google Cloud load balancer
on behalf of GKE users. GKE provides three different load balancers to control access
and spread incoming traffic across your cluster as evenly as possible. You can config‐
ure one service to use multiple types of load balancers simultaneously:

External load balancers
Manage traffic from outside the cluster and outside the VPC network. External
load balancers use forwarding rules associated with the Google Cloud network to
route traffic to a Kubernetes node.

Internal load balancers
Manage traffic coming from within the same VPC network. Like external load
balancers, internal ones use forwarding rules associated with the Google Cloud
network to route traffic to a Kubernetes node.

HTTP load balancers
Specialized external load balancers used for HTTP traffic. They use an ingress
resource rather than a forwarding rule to route traffic to a Kubernetes node.

When you create an ingress object, the GKE ingress controller configures a Google
Cloud HTTP(S) load balancer according to the ingress manifest and the associated
Kubernetes service rules manifest. The client sends a request to the load balancer. The
load balancer is a proxy; it chooses a node and forwards the request to that node’s
NodeIP:NodePort combination. The node uses its iptables NAT table to select a
pod. As we learned in earlier chapters, kube-proxy manages the iptables rules on
that node.

When an ingress creates a load balancer, the load balancer is “pod aware” instead of
routing to all nodes (and relying on the service to route requests to a pod), and the
load balancer routes to individual pods. It does this by tracking the underlying End
points/EndpointSlice object (as covered in Chapter 5) and using individual pod IP
addresses as target addresses.

278 | Chapter 6: Kubernetes and Cloud Networking

Cluster administrators can use an in-cluster ingress provider, such as ingress-Nginx
or Contour. A load balancer points to applicable nodes running the ingress proxy in
such a setup, which routes requests to the applicable pods from there. This setup is
cheaper for clusters that have many ingresses but incurs performance overhead.

GCE instances
GCE instances have one or more network interfaces. A network interface has a net‐
work and subnetwork, a private IP address, and a public IP address. The private IP
address must be part of the subnetwork. Private IP addresses can be automatic and
ephemeral, custom and ephemeral, or static. External IP addresses can be automatic
and ephemeral, or static. You can add more network interfaces to a GCE instance.
Additional network interfaces don’t need to be in the same VPC network. For exam‐
ple, you may have an instance that bridges two VPCs with varying levels of security.
Let’s discuss how GKE uses these instances and manages the network services that
empower GKE.

GKE
Google Kubernetes Engine (GKE) is Google’s managed Kubernetes service. GKE runs
a hidden control plane, which cannot be directly viewed or accessed. You can only
access specific control plane configurations and the Kubernetes API.

GKE exposes broad cluster config around things like machine types and cluster scal‐
ing. It reveals only some network-related settings. At the time of writing, NetworkPo‐
licy support (via Calico), max pods per node (maxPods in the kubelet, --node-CIDR-
mask-size in kube-controller-manager), and the pod address range (--cluster-
CIDR in kube-controller-manager) are the customizable options. It is not possible to
directly set apiserver/kube-controller-manager flags.

GKE supports public and private clusters. Private clusters don’t issue public IP
addresses to nodes, which means nodes are accessible only within your private net‐
work. Private clusters also allow you to restrict access to the Kubernetes API to spe‐
cific IP addresses. GKE runs worker nodes using automatically managed GCE
instances by creating creates node pools.

GCP GKE nodes
Networking for GKE nodes is comparable to networking for self-managed Kuber‐
netes clusters on GKE. GKE clusters define node pools, which are a set of nodes with
an identical configuration. This configuration contains GCE-specific settings as well
as general Kubernetes settings. Node pools define (virtual) machine type, autoscaling,
and the GCE service account. You can also set custom taints and labels per node pool.

Google Compute Cloud (GCP) | 279

A cluster exists on exactly one VPC network. Individual nodes can have their
network tags for crafting specific firewall rules. Any GKE cluster running 1.16 or later
will have a kube-proxy DaemonSet so that all new nodes in the cluster will automati‐
cally have the kube-proxy start. The size of the subnet allows will affect the size of the
cluster. So, pay attention to the size of that when you deploy clusters that scale. There
is a formula you can use to calculate the maximum number of nodes, N, that a given
netmask can support. Use S for the netmask size, whose valid range is between 8 and
29:

N = 2(32 -S) - 4

Calculate the size of the netmask, S, required to support a maximum of N nodes:

S = 32 - ⌈log2(N + 4)⌉

Table 6-2 also outlines cluster node and how it scales with subnet size.

Table 6-2. Cluster node scale with subnet size

Subnet primary IP range Maximum nodes
/29 Minimum size for a subnet’s primary IP range: 4 nodes

/28 12 nodes

/27 28 nodes

/26 60 nodes

/25 124 nodes

/24 252 nodes

/23 508 nodes

/22 1,020 nodes

/21 2,044 nodes

/20 The default size of a subnet’s primary IP range in auto mode networks: 4,092 nodes

/19 8,188 nodes

/8 Maximum size for a subnet’s primary IP range: 16,777,212 nodes

If you use GKE’s CNI, one end of the veth pair is attached to the pod in its namespace
and connects the other side to the Linux bridge device cbr0.1, exactly how we out‐
lined it in Chapters 2 and 3.

Clusters span either the zone or region boundary; zonal clusters have only a single
control plane. Regional clusters have multiple replicas of the control plane. Also,
when you deploy clusters, there are two cluster modes with GKE: VPC-native and
routes based. A cluster that uses alias IP address ranges is considered a VPC-native
cluster. A cluster that uses custom static routes in a VPC network is called a routes-
based cluster. Table 6-3 outlines how the creation method maps with the cluster
mode.

280 | Chapter 6: Kubernetes and Cloud Networking

Table 6-3. Cluster mode with cluster creation method

Cluster creation method Cluster network mode
Google Cloud Console VPC-native

REST API Routes-based

gcloud v256.0.0 and higher or v250.0.0 and lower Routes-based

gcloud v251.0.0–255.0.0 VPC-native

When using VPC-native, administrators can also take advantage of network endpoint
groups (NEG), which represent a group of backends served by a load balancer. NEGs
are lists of IP addresses managed by an NEG controller and are used by Google Cloud
load balancers. IP addresses in an NEG can be primary or secondary IP addresses of a
VM, which means they can be pod IPs. This enables container-native load balancing
that sends traffic directly to pods from a Google Cloud load balancer.

VPC-native clusters have several benefits:

• Pod IP addresses are natively routable inside the cluster’s VPC network.
• Pod IP addresses are reserved in network before pod creation.
• Pod IP address ranges are dependent on custom static routes.
• Firewall rules apply to just pod IP address ranges instead of any IP address on the

cluster’s nodes.
• GCP cloud network connectivity to on-premise extends to pod IP address

ranges.

Figure 6-15 shows the mapping of GKE to GCE components.

Figure 6-15. NEG to GCE components

Here is a list of improvements that NEGs bring to the GKE network:

Improved network performance
The container-native load balancer talks directly with the pods, and connections
have fewer network hops; both latency and throughput are improved.

Google Compute Cloud (GCP) | 281

Increased visibility
With container-native load balancing, you have visibility into the latency from
the HTTP load balancer to the pods. The latency from the HTTP load balancer
to each pod is visible, which was aggregated with node IP-based container-native
load balancing. This increased visibility makes troubleshooting your services at
the NEG level easier.

Support for advanced load balancing
Container-native load balancing offers native support in GKE for several HTTP
load-balancing features, such as integration with Google Cloud services like Goo‐
gle Cloud Armor, Cloud CDN, and Identity-Aware Proxy. It also features load-
balancing algorithms for accurate traffic distribution.

Like most managed Kubernetes offerings from major providers, GKE is tightly inte‐
grated with Google Cloud offerings. Although much of the software driving GKE is
opaque, it uses standard resources such as GCE instances that can be inspected and
debugged like any other GCP resources. If you really need to manage your own clus‐
ters, you will lose out on some functionality, such as container-aware load balancing.

It’s worth noting that GCP does not yet support IPv6, unlike AWS and Azure.

Finally, we’ll look at Kubernetes networking on Azure.

Azure
Microsoft Azure, like other cloud providers, offers an assortment of enterprise-ready
network solutions and services. Before we can discuss how Azure AKS networking
works, we should discuss Azure deployment models. Azure has gone through some
significant iterations and improvements over the years, resulting in two different
deployment models that can encounter Azure. These models differ in how resources
are deployed and managed and may impact how users leverage the resources.

The first deployment model was the classic deployment model. This model was the
initial deployment and management method for Azure. All resources existed inde‐
pendently of each other, and you could not logically group them. This was cumber‐
some; users had to create, update, and delete each component of a solution, leading to
errors, missed resources, and additional time, effort, and cost. Finally, these resources
could not even be tagged for easy searching, adding to the difficulty of the solution.

In 2014, Microsoft introduced the Azure Resource Manager as the second model.
This new model is the recommended model from Microsoft, with the recommenda‐
tion going so far as to say that you should redeploy your resources using the Azure
Resource Manager (ARM). The primary change with this model was the introduction
of the resource group. Resource groups are a logical grouping of resources that allows

282 | Chapter 6: Kubernetes and Cloud Networking

for tracking, tagging, and configuring the resources as a group rather than
individually.

Now that we understand the basics of how resources are deployed and managed in
Azure, we can discuss the Azure network service offerings and how they interact with
the Azure Kubernetes Service (AKS) and non-Azure Kubernetes offerings.

Azure Networking Services
The core of Azure networking services is the virtual network, also known as an Azure
Vnet. The Vnet establishes an isolated virtual network infrastructure to connect your
deployed Azure resources such as virtual machines and AKS clusters. Through addi‐
tional resources, Vnets connect your deployed resources to the public internet as well
as your on-premise infrastructure. Unless the configuration is changed, all Azure
Vnets can communicate with the internet through a default route.

In Figure 6-16, an Azure Vnet has a single CIDR of 192.168.0.0/16. Vnets, like other
Azure resources, require a subscription to place the Vnet into a resource group for
the Vnet. The security of the Vnet can be configured while some options, such as IAM
permissions, are inherited from the resource group and the subscription. The Vnet is
confined to a specified region. Multiple Vnets can exist within a single region, but a
Vnet can exist within only one region.

Figure 6-16. Azure Vnet

Azure backbone infrastructure
Microsoft Azure leverages a globally dispersed network of data centers and zones.
The foundation of this dispersal is the Azure region, which comprises a set of data
centers within a latency-defined area, connected by a low-latency, dedicated network
infrastructure. A region can contain any number of data centers that meet these crite‐
ria, but two to three are often present per region. Any area of the world containing at
least one Azure region is known as Azure geography.

Availability zones further divide a region. Availability zones are physical locations
that can consist of one or more data centers maintained by independent power,

Azure | 283

cooling, and networking infrastructure. The relationship of a region to its availability
zones is architected so that a single availability zone failure cannot bring down an
entire region of services. Each availability zone in a region is connected to the other
availability zones in the region but not dependent on the different zones. Availability
zones allow Azure to offer 99.99% uptime for supported services. A region can con‐
sist of multiple availability zones, as shown in Figure 6-17, which can, in turn, consist
of numerous data centers.

Figure 6-17. Region

Since a Vnet is within a region and regions are divided into availability zones, Vnets
are also available across the availability zones of the region they are deployed. As
shown in Figure 6-18, it is a best practice when deploying infrastructure for high
availability to leverage multiple availability zones for redundancy. Availability zones
allow Azure to offer 99.99% uptime for supported services. Azure allows for the use
of load balancers for networking across redundant systems such as these.

Figure 6-18. Vnet with availability zones

284 | Chapter 6: Kubernetes and Cloud Networking

The Azure documentation has an up-to-date list of Azure geogra‐
phies, regions, and availability zones.

Subnets
Resource IPs are not assigned directly from the Vnet. Instead, subnets divide and
define a Vnet. The subnets receive their address space from the Vnet. Then, private
IPs are allocated to provisioned resources within each subnet. This is where the IP
addressing AKS clusters and pods will come. Like Vnets, Azure subnets span availa‐
bility zones, as depicted in Figure 6-19.

Figure 6-19. Subnets across availability zones

Route tables
As mentioned in previous sections, a route table governs subnet communication or
an array of directions on where to send network traffic. Each newly provisioned sub‐
net comes equipped with a default route table populated with some default system
routes. This route cannot be deleted or changed. The system routes include a route to
the Vnet the subnet is defined within, routes for 10.0.0.0/8 and 192.168.0.0/16
that are by default set to go nowhere, and most importantly a default route to the
internet. The default route to the internet allows any newly provisioned resource with
an Azure IP to communicate out to the internet by default. This default route is an
essential difference between Azure and some other cloud service providers and
requires adequate security measures to protect each Azure Vnet.

Figure 6-20 shows a standard route table for a newly provisioned AKS setup. There
are routes for the agent pools with their CIDRs as well as their next-hop IP. The next-
hop IP is the route the table has defined for the path, and the next-hop type is set for

Azure | 285

https://oreil.ly/Pv0iq

a virtual appliance, which would be the load balancer in this case. What is not present
are those default system routes. The default routes are still in the configuration, just
not viewable in the route table. Understanding Azure’s default networking behavior is
critical from a security perspective and from troubleshooting and planning
perspectives.

Figure 6-20. Route table

Some system routes, known as optional default routes, affect only if the capabilities,
such as Vnet peering, are enabled. Vnet peering allows Vnets anywhere globally to
establish a private connection across the Azure global infrastructure backbone to
communicate.

Custom routes can also populate route tables, which the Border Gateway Protocol
either creates if leveraged or uses user-defined routes. User-defined routes are essen‐
tial because they allow the network administrators to define routes beyond what
Azure establishes by default, such as proxies or firewall routes. Custom routes also
impact the system default routes. While you cannot alter the default routes, a cus‐
tomer route with a higher priority can overrule it. An example of this is to use a user-
defined route to send traffic bound for the internet to a next-hop of a virtual firewall
appliance rather than the internet directly. Figure 6-21 defines a custom route called
Google with a next-hop type of internet. As long as the priorities are set up correctly,
this custom route will send that traffic out the default system route for the internet,
even if another rule redirects the remaining internet traffic.

Figure 6-21. Route table with custom route

286 | Chapter 6: Kubernetes and Cloud Networking

Route tables can also be created on their own and then used to configure a subnet.
This is useful for maintaining a single route table for multiple subnets, especially
when there are many user-defined routes involved. A subnet can have only one route
table associated with it, but a route table can be associated with multiple subnets. The
rules of configuring a user-created route table and a route table created as part of the
subnet’s default creation are the same. They have the same default system routes and
will update with the same optional default routes as they come into effect.

While most routes within a route table will use an IP range as the source address,
Azure has begun to introduce the concept of using service tags for sources. A service
tag is a phrase that represents a collection of service IPs within the Azure backend,
such as SQL.EastUs, which is a service tag that describes the IP address range for the
Microsoft SQL Platform service offering in the eastern US. With this feature, it could
be possible to define a route from one Azure service, such as AzureDevOps, as the
source, and another service, such as Azure AppService, as the destination without
knowing the IP ranges for either.

The Azure documentation has a list of available service tags.

Public and private IPs
Azure allocates IP addresses as independent resources themselves, which means that
a user can create a public IP or private IP without attaching it to anything. These IP
addresses can be named and built in a resource group that allows for future alloca‐
tion. This is a crucial step when preparing for AKS cluster scaling as you want to
make sure that enough private IP addresses have been reserved for the possible pods
if you decide to leverage Azure CNI for networking. Azure CNI will be discussed in a
later section.

IP address resources, both public and private, are also defined as either dynamic or
static. A static IP address is reserved to not change, while a dynamic IP address can
change if it is not allocated to a resource, such as a virtual machine or AKS pod.

Network security groups
NSGs are used to configure Vnets, subnets, and network interface cards (NICs) with
inbound and outbound security rules. The rules filter traffic and determine whether
the traffic will be allowed to proceed or be dropped. NSG rules are flexible to filter
traffic based on source and destination IP addresses, network ports, and network pro‐
tocols. An NSG rule can use one or multiple of these filter items and can apply many
NSGs.

Azure | 287

https://oreil.ly/CDedn

An NSG rule can have any of the following components to define its filtering:

Priority
This is a number between 100 and 4096. The lowest numbers are evaluated first,
and the first match is the rule that is used. Once a match is found, no further
rules are evaluated.

Source/destination
Source (inbound rules) or destination (outbound rules) of the traffic inspected.
The source/destination can be any of the following:

• Individual IP address
• CIDR block (i.e., 10.2.0.0/24)
• Microsoft Azure service tag
• Application security groups

Protocol
TCP, UDP, ICMP, ESP, AH, or Any.

Direction
The rule for inbound or outbound traffic.

Port range
Single ports or ranges can be specified here.

Action
Allow or deny the traffic.

Figure 6-22 shows an example of an NSG.

Figure 6-22. Azure NSG

There are some considerations to keep in mind when configuring Azure network
security groups. First, two or more rules cannot exist with the same priority and
direction. The priority or direction can match as long as the other does not. Second,
port ranges can be used only in the Resource Manager deployment model, not the

288 | Chapter 6: Kubernetes and Cloud Networking

classic deployment model. This limitation also applies to IP address ranges and ser‐
vice tags for the source/destination. Third, when specifying the IP address for an
Azure resource as the source/destination, if the resource has both a public and private
IP address, use the private IP address. Azure performs the translation from public to
private IP addressing outside this process, and the private IP address will be the right
choice at the time of processing.

Communication outside the virtual network
The concepts described so far have mainly pertained to Azure networking within a
single Vnet. This type of communication is vital in Azure networking but far from the
only type. Most Azure implementations will require communication outside the vir‐
tual network to other networks, including, but not limited to, on-premise networks,
other Azure virtual networks, and the internet. These communication paths require
many of the same considerations as the internal networking processes and use many
of the same resources, with a few differences. This section will expand on some of
those differences.

Vnet peering can connect Vnets in different regions using global virtual network
peering, but there are constraints with certain services such as load balancers.

For a list of these constraints, see the Azure documentation.

Communication outside of Azure to the internet uses a different set of resources.
Public IPs, as discussed earlier, can be created and assigned to a resource in Azure.
The resource uses its private IP address for all networking internal to Azure. When
the traffic from the resource needs to exit the internal networks to the internet, Azure
translates the private IP address into the resource’s assigned public IP. At this point,
the traffic can leave to the internet. Incoming traffic bound for the public IP address
of an Azure resource translates to the resource’s assigned private IP address at the
Vnet boundary, and the private IP is used from then on for the rest of the traffic’s trip
to its destination. This traffic path is why all subnet rules for things like NSGs are
defined using private IP addresses.

NAT can also be configured on a subnet. If configured, resources on a subnet with
NAT enabled do not need a public IP address to communicate with the internet. NAT
is enabled on a subnet to allow outbound-only internet traffic with a public IP from a
pool of provisioned public IP addresses. NAT will enable resources to route traffic to
the internet for requests such as updates or installs and return with the requested
traffic but prevents the resources from being accessible on the internet. It is important
to note that, when configured, NAT takes priority over all other outbound rules and

Azure | 289

https://oreil.ly/wnaEi

replaces the default internet destination for the subnet. NAT also uses port address
translation (PAT) by default.

Azure load balancer
Now that you have a method of communicating outside the network and communi‐
cation to flow back into the Vnet, a way to keep those lines of communication avail‐
able is needed. Azure load balancers are often used to accomplish this by distributing
traffic across backend pools of resources rather than a single resource to handle the
request. There are two primary load balancer types in Azure: the standard load bal‐
ancer and the application gateway.

Azure standard load balancers are layer 4 systems that distribute incoming traffic
based on layer 4 protocols such as TCP and UDP, meaning traffic is routed based on
IP address and port. These load balancers filter incoming traffic from the internet,
but they can also load balance traffic from one Azure resource to a set of other Azure
resources. The standard load balancer uses a zero-trust network model. This model
requires an NSG to “open” traffic to be inspected by the load balancer. If the attached
NSG does not permit the traffic, the load balancer will not attempt to route it.

Azure application gateways are similar to standard load balancers in that they distrib‐
ute incoming traffic but differently in that they do so at layer 7. This allows for the
inspection of incoming HTTP requests to filter based on URI or host headers. Appli‐
cation gateways can also be used as web application firewalls to further secure and
filter traffic. Additionally, the application gateway can also be used as the ingress con‐
troller for AKS clusters.

Load balancers, whether standard or application gateways, have some basic concepts
that sound be considered:

Frontend IP address
Either public or private depending on the use, this is the IP address used to target
the load balancer and, by extension, the backend resources it is balancing.

SKU
Like other Azure resources, this defines the “type” of the load balancer and,
therefore, the different configuration options available.

Backend pool
This is the collection of resources that the load balancer is distributing traffic to,
such as a collection of virtual machines or the pods within an AKS cluster.

290 | Chapter 6: Kubernetes and Cloud Networking

Health probes
These are methods used by the load balancer to ensure the backend resource is
available for traffic, such as a health endpoint that returns an OK status:

Listener
A configuration that tells the load balancer what type of traffic to expect,
such as HTTP requests.

Rules
Determines how to route the incoming traffic for that listener.

Figure 6-23 illustrates some of these primary components within the Azure load bal‐
ancer architecture. Traffic comes into the load balancer and is compared to the listen‐
ers to determine if the load balancer balances the traffic. Then the traffic is evaluated
against the rules and finally sent on to the backend pool. Backend pool resources with
appropriately responding health probes will process the traffic.

Figure 6-23. Azure load balancer components

Figure 6-24 shows how AKS would use the load balancer.

Now that we have a basic knowledge of the Azure network, we can discuss how Azure
uses these constructs in its managed Kubernetes offering, Azure Kubernetes Service.

Azure | 291

Figure 6-24. AKS load balancing

Azure Kubernetes Service
Like other cloud providers, Microsoft understood the need to leverage the power of
Kubernetes and therefore introduced the Azure Kubernetes Service as the Azure
Kubernetes offering. AKS is a hosted service offering from Azure and therefore han‐
dles a large portion of the overhead of managing Kubernetes. Azure handles compo‐
nents such as health monitoring and maintenance, leaving more time for
development and operations engineers to leverage the scalability and power of
Kubernetes for their solutions.

AKS can have clusters created and managed using the Azure CLI, Azure PowerShell,
the Azure Portal, and other template-based deployment options such as ARM tem‐
plates and HashiCorp’s Terraform. With AKS, Azure manages the Kubernetes masters
so that the user only needs to handle the node agents. This allows Azure to offer the
core of AKS as a free service where the only payment required is for the agent nodes
and peripheral services such as storage and networking.

The Azure Portal allows for easy management and configuration of the AKS environ‐
ment. Figure 6-25 shows the overview page of a newly provisioned AKS environment.
On this page, you can see information and links to many of the crucial integrations
and properties. The cluster’s resource group, DNS address, Kubernetes version, net‐
working type, and a link to the node pools are visible in the Essentials section.

Figure 6-26 zooms in on the Properties section of the overview page, where users can
find additional information and links to corresponding components. Most of the data
is the same as the information in the Essentials section. However, the various subnet
CIDRs for the AKS environment components can be viewed here for things such as
the Docker bridge and the pod subnet.

292 | Chapter 6: Kubernetes and Cloud Networking

Figure 6-25. Azure Portal AKS overview

Figure 6-26. Azure Portal AKS properties

Kubernetes pods created within AKS are attached to virtual networks and can access
network resources through abstraction. The kube-proxy on each AKS node creates
this abstraction, and this component allows for inbound and outbound traffic. Addi‐
tionally, AKS seeks to make Kubernetes management even more streamlined by sim‐
plifying how to roll changes to virtual network changes. Network services in AKS are
autoconfigured when specific changes occur. For example, opening a network port to
a pod will also trigger relevant changes to the attached NSGs to open those ports.

By default, AKS will create an Azure DNS record that has a public IP. However, the
default network rules prevent public access. The private mode can create the cluster
to use no public IPs and block public access for only internal use of the cluster. This
mode will cause the cluster access to be available only from within the Vnet. By
default, the standard SKU will create an AKS load balancer. This configuration can be

Azure | 293

changed during deployment if deploying via the CLI. Resources not included in the
cluster are made in a separate, auto-generated resource group.

When leveraging the kubenet networking model for AKS, the following rules are
true:

• Nodes receive an IP address from the Azure virtual network subnet.
• Pods receive an IP address from a logically different address space than the

nodes.
• The source IP address of the traffic switches to the node’s primary address.
• NAT is configured for the pods to reach Azure resources on the Vnet.

It is important to note that only the nodes receive a routable IP; the pods do not.

While kubenet is an easy way to administer Kubernetes networking within the Azure
Kubernetes Service, it is not the only way. Like other cloud providers, Azure also
allows for the use the CNI when managing Kubernetes infrastructure. Let’s discuss
CNI in the next section.

Azure CNI
Microsoft has provided its own CNI plugin for Azure and AKS, Azure CNI. The first
significant difference between this and kubenet is that the pods receive routable IP
information and can be accessed directly. This difference places additional impor‐
tance on the need for IP address space planning. Each node has a maximum number
of pods it can use, and many IP addresses are reserved for that use.

More information can be found on the Azure Container Network‐
ing GitHub.

With Azure CNI, traffic inside the Vnet is no longer NAT’d to the node’s IP address
but to the pod’s IP itself, as illustrated in Figure 6-27. Outside traffic, such as to the
internet, is still NAT’d to the node’s IP address. Azure CNI still performs the backend
IP address management and routing for these items, though, as all resources on the
same Azure Vnet can communicate with each other by default.

The Azure CNI can also be used for Kubernetes deployments outside AKS. While
there is additional work to be done on the cluster that Azure would typically handle,
this allows you to leverage Azure networking and other resources while maintaining
more control over the customarily managed aspects of Kubernetes under AKS.

294 | Chapter 6: Kubernetes and Cloud Networking

https://oreil.ly/G2zyC

Figure 6-27. Azure CNI

Azure CNI also provides the added benefit of allowing for the separation of duties
while maintaining the AKS infrastructure. The Azure CNI creates the networking
resources in a separate resource group. Being in a different resource group allows for
more control over permissions at the resource group level within the Azure Resource
Management deployment model. Different teams can access some components of
AKS, such as the networking, without needing access to others, such as the applica‐
tion deployments.

Azure CNI is not the only way to leverage additional Azure services to enhance your
Kubernetes network infrastructure. The next section will discuss the use of an Azure
application gateway as a means of controlling ingress into your Kubernetes cluster.

Application gateway ingress controller
Azure allows for the deployment of an application gateway inside the AKS cluster
deployment to serve as the application gateway ingress controller (AGIC). This
deployment model eliminates the need for maintaining a secondary load balancer
outside the AKS infrastructure, thereby reducing maintenance overhead and error
points. AGIC deploys its pods in the cluster. It then monitors other aspects of the
cluster for configuration changes. When a change is detected, AGIC updates the
Azure Resource Manager template that configures the load balancer and then applies
the updated configuration. Figure 6-28 illustrates this.

Azure | 295

Figure 6-28. Azure AGIC

There are AKS SKU limitations for the use of the AGIC, only supporting Stan‐
dard_v2 and WAF_v2, but those SKUs also have autoscaling capabilities. Use cases for
using such a form of ingress, such as the need for high scalability, have the potential
for the AKS environment to scale. Microsoft supports the use of both Helm and the
AKS add-on as deployment options for the AGIC. These are the critical differences
between the two options:

• Helm deployment values cannot be edited when using the AKS add-on.
• Helm supports Prohibited Target configuration. An AGIC can configure the

application gateway to target only the AKS instances without impacting other
backend components.

• The AKS add-on, as a managed service, will be automatically updated to its cur‐
rent and more secure versions. Helm deployments will need manual updating.

Even though AGIC is configured as the Kubernetes ingress resource, it still carries the
full benefit of the cluster’s standard layer 7 application gateway. Application gateway
services such as TLS termination, URL routing, and the web application firewall
capability are all configurable for the cluster as part of the AGIC.

While many Kubernetes and networking fundamentals are universal across cloud
providers, Azure offers its own spin on Kubernetes networking through its
enterprise-focused resource design and management. Whether you have a need for a
single cluster using basic settings and kubenet or a large-scale deployment with
advanced networking through the use of deployed load balancers and application
gateways, Microsoft’s Azure Kubernetes Service can be leveraged to deliver a reliable,
managed Kubernetes infrastructure.

296 | Chapter 6: Kubernetes and Cloud Networking

Deploying an Application to Azure Kubernetes Service
Standing up an Azure Kubernetes Service cluster is one of the basic skills needed to
begin exploring AKS networking. This section will go through the steps of standing
up a sample cluster and deploying the Golang web server example from Chapter 1 to
that cluster. We will be using a combination of the Azure Portal, the Azure CLI, and
kubectl to perform these actions.

Before we begin with the cluster deployment and configuration, we should discuss
the Azure Container Registry (ACR). The ACR is where you store container images
in Azure. For this example, we will use the ACR as the location for the container
image we will be deploying. To import an image to the ACR, you will need to have the
image locally available on your computer. Once you have the image available, we have
to prep it for the ACR.

First, identify the ACR repository you want to store the image in and log in from the
Docker CLI with docker login <acr_repository>.azurecr.io. For this example,
we will use the ACR repository tjbakstestcr, so the command would be docker
login tjbakstestcr.azurecr.io. Next, tag the local image you wish to import to
the ACR with <acr_repository>.azurecr.io\<imagetag>. For this example, we will
use an image currently tagged aksdemo. Therefore, the tag would be tjbak
stestcr.azure.io/aksdemo. To tag the image, use the command docker tag

<local_image_tag> <acr_image_tag>. This example would use the command
docker tag aksdemo tjbakstestcr.azure.io/aksdem. Finally, we push the image
to the ACR with docker push tjbakstestcr.azure.io/aksdem.

You can find additional information on Docker and the Azure
Container Registry in the official documentation.

Once the image is in the ACR, the final prerequisite is to set up a service principal.
This is easier to set up before you begin, but you can do this during the AKS cluster
creation. An Azure service principal is a representation of an Azure Active Directory
Application object. Service principals are generally used to interact with Azure
through application automation. We will be using a service principal to allow the AKS
cluster to pull the aksdemo image from the ACR. The service principal needs to have
access to the ACR repository that you store the image in. You will need to record the
client ID and secret of the service principal you want to use.

Azure | 297

https://oreil.ly/5swhT

You can find additional information on Azure Active Directory
service principals in the documentation.

Now that we have our image in the ACR and our service principal client ID and
secret, we can begin deploying the AKS cluster.

Deploying an Azure Kubernetes Service cluster
The time has come to deploy our cluster. We are going to start in the Azure Portal.
Go to portal.azure.com to log in. Once logged in, you should see a dashboard with a
search bar at the top that will be used to locate services. From the search bar, we will
be typing kubernetes and selecting the Kubernetes Service option from the drop-
down menu, which is outlined in Figure 6-29.

Figure 6-29. Azure Kubernetes search

Now we are on the Azure Kubernetes Services blade. Deployed AKS clusters are
viewed from this screen using filters and queries. This is also the screen for creating
new AKS clusters. Near the top of the screen, we are going to select Create as shown
in Figure 6-30. This will cause a drop-down menu to appear, where we will select
“Create a Kubernetes cluster.”

Figure 6-30. Creating an Azure Kubernetes cluster

298 | Chapter 6: Kubernetes and Cloud Networking

https://oreil.ly/pnZTw
https://oreil.ly/Wx4Ny

Next we will define the properties of the AKS cluster from the “Create Kubernetes
cluster” screen. First, we will populate the Project Details section by selecting the sub‐
scription that the cluster will be deployed to. There is a drop-down menu that allows
for easier searching and selection. For this example, we are using the
tjb_azure_test_2 subscription, but any subscription can work as long as you have
access to it. Next, we have to define the resource group we will use to group the AKS
cluster. This can be an existing resource group or a new one can be created. For this
example, we will create a new resource group named go-web.

After the Project Details section is complete, we move on to the Cluster Details sec‐
tion. Here, we will define the name of the cluster, which will be “go-web” for this
example. The region, availability zones, and Kubernetes version fields are also defined
in this section and will have predefined defaults that can be changed. For this exam‐
ple, however, we will use the default “(US) West 2” region with no availability zones
and the default Kubernetes version of 1.19.11.

Not all Azure regions have availability zones that can be selected. If
availability zones are part of the AKS architecture that is being
deployed, the appropriate regions should be considered. You can
find more information on AKS regions in the availability zones
documentation.

Finally, we will complete the Primary Node Pool section of the “Create Kubernetes
cluster” screen by selecting the node size and node count. For this example, we are
going to keep the default node size of DS2 v2 and the default node count of 3. While
most virtual machines, sizes are available for use within AKS, there are some restric‐
tions. Figure 6-31 shows the options we have selected filled in.

You can find more information on AKS restrictions, including
restricted node sizes, in the documentation.

Click the “Next: Node pools” button to move to the Node Pools tab. This page allows
for the configuration of additional node pools for the AKS cluster. For this example,
we are going to leave the defaults on this page and move on to the Authentication
page by clicking the “Next: Authentication” button at the bottom of the screen.

Azure | 299

https://oreil.ly/enxii
https://oreil.ly/A4bHq

Figure 6-31. Azure Kubernetes create page

Figure 6-32 shows the Authentication page, where we will define the authentication
method that the AKS cluster will use to connect to attached Azure services such as
the ACR we discussed previously in this chapter. “System-Assigned Managed Iden‐
tity” is the default authentication method, but we are going to select the “Service prin‐
cipal” radio button.

If you did not create a service principal at the beginning of this section, you can cre‐
ate a new one here. If you create a service principal at this stage, you will have to go
back and grant that service principal permissions to access the ACR. However, since
we will use a previously created service principal, we are going to click the “Configure
service principal” link and enter the client ID and secret.

300 | Chapter 6: Kubernetes and Cloud Networking

Figure 6-32. Azure Kubernetes Authentication page

The remaining configurations will remain at the defaults at this time. To complete the
AKS cluster creation, we are going to click the “Review + create” button. This will
take us to the validation page. As shown in Figure 6-33, if everything is defined
appropriately, the validation will return a “Validation Passed” message at the top of
the screen. If something is misconfigured, a “Validation Failed” message will be there
instead. As long as validation passes, we will review the settings and click Create.

Azure | 301

Figure 6-33. Azure Kubernetes validation page

You can view the deployment status from the notification bell on the top of the Azure
screen. Figure 6-34 shows our example deployment in progress. This page has infor‐
mation that can be used to troubleshoot with Microsoft should an issue arise such as
the deployment name, start time, and correlation ID.

Our example deployed completely without issue, as shown in Figure 6-35. Now that
the AKS cluster is deployed, we need to connect to it and configure it for use with our
example web server.

302 | Chapter 6: Kubernetes and Cloud Networking

Figure 6-34. Azure Kubernetes deployment progress

Figure 6-35. Azure Kubernetes deployment complete

Connecting to and configuring AKS

We will now shift to working with the example go-web AKS cluster from the
command line. To manage AKS clusters from the command line, we will primarily
use the kubectl command. Azure CLI has a simple command, az aks install-cli,
to install the kubectl program for use. Before we can use kubectl, though, we need
to gain access to the cluster. The command az aks get-credentials

--resource-group <resource_group_name> --name <aks_cluster_name> is used to
gain access to the AKS cluster. For our example, we will use az aks get-

credentials --resource-group go-web --name go-web to access our go-web clus‐
ter in the go-web resource group.

Azure | 303

Next we will attach the Azure container registry that has our aksdemo image.
The command az aks update -n <aks_cluster_name> -g <cluster_resource_
group_name> --attach-acr <acr_repo_name> will attach a named ACR repo to an
existing AKS cluster. For our example, we will use the command az aks update -n
tjbakstest -g tjbakstest --attach-acr tjbakstestcr. Our example runs for a
few moments and then produces the output shown in Example 6-1.

Example 6-1. AttachACR output

{- Finished ..
 "aadProfile": null,
 "addonProfiles": {
 "azurepolicy": {
 "config": null,
 "enabled": false,
 "identity": null
 },
 "httpApplicationRouting": {
 "config": null,
 "enabled": false,
 "identity": null
 },
 "omsAgent": {
 "config": {
 "logAnalyticsWorkspaceResourceID":
 "/subscriptions/7a0e265a-c0e4-4081-8d76-aafbca9db45e/
 resourcegroups/defaultresourcegroup-wus2/providers/
 microsoft.operationalinsights/
 workspaces/defaultworkspace-7a0e265a-c0e4-4081-8d76-aafbca9db45e-wus2"
 },
 "enabled": true,
 "identity": null
 }
 },
 "agentPoolProfiles": [
 {
 "availabilityZones": null,
 "count": 3,
 "enableAutoScaling": false,
 "enableNodePublicIp": null,
 "maxCount": null,
 "maxPods": 110,
 "minCount": null,
 "mode": "System",
 "name": "agentpool",
 "nodeImageVersion": "AKSUbuntu-1804gen2containerd-2021.06.02",
 "nodeLabels": {},
 "nodeTaints": null,
 "orchestratorVersion": "1.19.11",
 "osDiskSizeGb": 128,

304 | Chapter 6: Kubernetes and Cloud Networking

 "osDiskType": "Managed",
 "osType": "Linux",
 "powerState": {
 "code": "Running"
 },
 "provisioningState": "Succeeded",
 "proximityPlacementGroupId": null,
 "scaleSetEvictionPolicy": null,
 "scaleSetPriority": null,
 "spotMaxPrice": null,
 "tags": null,
 "type": "VirtualMachineScaleSets",
 "upgradeSettings": null,
 "vmSize": "Standard_DS2_v2",
 "vnetSubnetId": null
 }
],
 "apiServerAccessProfile": {
 "authorizedIpRanges": null,
 "enablePrivateCluster": false
 },
 "autoScalerProfile": null,
 "diskEncryptionSetId": null,
 "dnsPrefix": "go-web-dns",
 "enablePodSecurityPolicy": null,
 "enableRbac": true,
 "fqdn": "go-web-dns-a59354e4.hcp.westus.azmk8s.io",
 "id":
 "/subscriptions/7a0e265a-c0e4-4081-8d76-aafbca9db45e/
 resourcegroups/go-web/providers/Microsoft.ContainerService/managedClusters/go-web",
 "identity": null,
 "identityProfile": null,
 "kubernetesVersion": "1.19.11",
 "linuxProfile": null,
 "location": "westus",
 "maxAgentPools": 100,
 "name": "go-web",
 "networkProfile": {
 "dnsServiceIp": "10.0.0.10",
 "dockerBridgeCidr": "172.17.0.1/16",
 "loadBalancerProfile": {
 "allocatedOutboundPorts": null,
 "effectiveOutboundIps": [
 {
 "id":
 "/subscriptions/7a0e265a-c0e4-4081-8d76-aafbca9db45e/
 resourceGroups/MC_go-web_go-web_westus/providers/Microsoft.Network/
 publicIPAddresses/eb67f61d-7370-4a38-a237-a95e9393b294",
 "resourceGroup": "MC_go-web_go-web_westus"
 }
],
 "idleTimeoutInMinutes": null,

Azure | 305

 "managedOutboundIps": {
 "count": 1
 },
 "outboundIpPrefixes": null,
 "outboundIps": null
 },
 "loadBalancerSku": "Standard",
 "networkMode": null,
 "networkPlugin": "kubenet",
 "networkPolicy": null,
 "outboundType": "loadBalancer",
 "podCidr": "10.244.0.0/16",
 "serviceCidr": "10.0.0.0/16"
 },
 "nodeResourceGroup": "MC_go-web_go-web_westus",
 "powerState": {
 "code": "Running"
 },
 "privateFqdn": null,
 "provisioningState": "Succeeded",
 "resourceGroup": "go-web",
 "servicePrincipalProfile": {
 "clientId": "bbd3ac10-5c0c-4084-a1b8-39dd1097ec1c",
 "secret": null
 },
 "sku": {
 "name": "Basic",
 "tier": "Free"
 },
 "tags": {
 "createdby": "tjb"
 },
 "type": "Microsoft.ContainerService/ManagedClusters",
 "windowsProfile": null
}

This output is the CLI representation of the AKS cluster information. This means
that the attachment was successful. Now that we have access to the AKS cluster and
the ACR is attached, we can deploy the example Go web server to the AKS cluster.

Deploying the Go web server
We are going to deploy the Golang code shown in Example 6-2. As mentioned earlier
in this chapter, this code has been built into a Docker image and now is stored in the
ACR in the tjbakstestcr repository. We will be using the following deployment
YAML file to deploy the application.

306 | Chapter 6: Kubernetes and Cloud Networking

Example 6-2. Kubernetes Podspec for Golang minimal webserver

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: go-web
spec:
 containers:
 - name: go-web
 image: go-web:v0.0.1
 ports:
 - containerPort: 8080
 livenessProbe:
 httpGet:
 path: /healthz
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 5
 readinessProbe:
 httpGet:
 path: /
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 5

Breaking down this YAML file, we see that we are creating two AKS resources: a
deployment and a service. The deployment is configured for the creation of a con‐
tainer named go-web and a container port 8080. The deployment also references the
aksdemo ACR image with the line image: tjbakstestcr.azurecr.io/aksdemo as the
image that will be deployed to the container. The service is also configured with the
name go-web. The YAML specifies the service is a load balancer listening on port
8080 and targeting the go-web app.

Now we need to publish the application to the AKS cluster. The command kubectl
apply -f <yaml_file_name>.yaml will publish the application to the cluster. We will
see from the output that two things are created: deployment.apps/go-web and
service/go-web. When we run the command kubectl get pods, we can see an out‐
put like that shown here:

○ → kubectl get pods
NAME READY STATUS RESTARTS AGE
go-web-574dd4c94d-2z5lp 1/1 Running 0 5h29m

Now that the application is deployed, we will connect to it to verify it is up and run‐
ning. When a default AKS cluster is stood up, a load balancer is deployed with it with
a public IP address. We could go through the portal and locate that load balancer and

Azure | 307

public IP address, but kubectl offers an easier path. The command kubectl get
[.keep-together]#service go-web produces this output:

○ → kubectl get service go-web
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
go-web LoadBalancer 10.0.3.75 13.88.96.117 8080:31728/TCP 21h

In this output, we see the external IP address of 13.88.96.117. Therefore, if everything
deployed correctly, we should be able to cURL 13.88.96.117 at port 8080 with the
command curl 13.88.96.117:8080. As we can see from this output, we have a suc‐
cessful deployment:

○ → curl 13.88.96.117:8080 -vvv
* Trying 13.88.96.117...
* TCP_NODELAY set
* Connected to 13.88.96.117 (13.88.96.117) port 8080 (#0)
> GET / HTTP/1.1
> Host: 13.88.96.117:8080
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Fri, 25 Jun 2021 20:12:48 GMT
< Content-Length: 5
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host 13.88.96.117 left intact
Hello* Closing connection 0

Going to a web browser and navigating to http://13.88.96.117:8080 will also be avail‐
able, as shown in Figure 6-36.

Figure 6-36. Azure Kubernetes Hello app

AKS conclusion
In this section, we deployed an example Golang web server to an Azure Kubernetes
Service cluster. We used the Azure Portal, the az cli, and kubectl to deploy and
configure the cluster and then deploy the application. We leveraged the Azure con‐
tainer registry to host our web server image. We also used a YAML file to deploy the
application and tested it with cURL and web browsing.

308 | Chapter 6: Kubernetes and Cloud Networking

Conclusion
Each cloud provider has its nuanced differences when it comes to network services
provided for Kubernetes clusters. Table 6-4 highlights some of those differences.
There are lots of factors to choose from when picking a cloud service provider, and
even more when selecting the managed Kubernetes platform to run. Our aim in this
chapter was to educate administrators and developers on the choices you will have to
make when managing workloads on Kubernetes.

Table 6-4. Cloud network and Kubernetes summary

AWS Azure GCP
Virtual network VPC Vnet VPC

Network scope Region Region Global

Subnet boundary Zone Region Region

Routing scope Subnet Subnet VPC

Security controls NACL/SecGroups Network security groups/Application
SecGroup

Firewall

IPv6 Yes Yes No

Kubernetes managed eks aks gke

ingress AWS ALB controller Nginx-Ingress GKE ingress controller

Cloud custom CNI AWS VPC CNI Azure CNI GKE CNI

Load Balancer support ALB L7, L4 w/NLB, and Nginx L4 Azure Load Balancer, L7 w/Nginx L7, HTTP(S)

Network policies Yes (Calico/Cilium) Yes (Calico/Cilium) Yes (Calico/Cilium)

We have covered many layers, from the OSI foundation to running networks in the
cloud for our clusters. Cluster administrators, network engineers, and developers
alike have many decisions to make, such as the subnet size, the CNI to choose, and
the load balancer type, to name a few. Understanding all of those and how they will
affect the cluster network was the basis for this book. This is just the beginning of
your journey for managing your clusters at scale. We have managed to cover only the
networking options available for managing Kubernetes clusters. Storage, compute,
and even how to deploy workloads onto those clusters are decisions you will have to
make now. The O’Reilly library has an extensive number of books to help, such as
Production Kubernetes (Rosso et al.), where you learn what the path to production
looks like when using Kubernetes, and Hacking Kubernetes (Martin and Hausenblas),
on how to harden Kubernetes and how to review Kubernetes clusters for security
weaknesses.

We hope this guide has helped make those networking choices easy for you. We were
inspired to see what the Kubernetes community has done and are excited to see what
you build on top of the abstractions Kubernetes provides for you.

Conclusion | 309

https://oreil.ly/Xx12u
https://oreil.ly/FcU8C

Index

A
Accept header, HTTP request, 11-13
ACK flag, TCP, 15, 17, 24
acknowledgment number, TCP, 15, 24
ACR (Azure Container Registry), 297, 304, 306
Address Resolution Protocol (ARP), 10, 42-45
addresses output, Kubernetes, 200
addresses, endpoints and, 194
addresses, IP (see IP (Internet Protocol)

addresses)
Advanced Research Projects Agency Network

(ARPANET), 2
agent, Cilium, 159
AGIC (application gateway ingress controller),

Azure, 290, 295
AKS (see Azure Kubernetes Service (AKS))
ALB (see AWS ALB (application load balancer)

ingress controller)
allocate-node-cidrs flag, Kubernetes, 145
Amazon Elastic Kubernetes Service (EKS) (see

EKS (Amazon Elastic Kubernetes Service))
Amazon Web Services (AWS) (see AWS (Ama‐

zon Web Services))
annotations, Kubernetes, 225, 237
API, Kubernetes, 152, 165, 177, 230
app command, NetworkPolicy, 167, 173, 179
application deployment

benefits of containers for, 95, 112
challenges of, 93-95, 100

application gateway ingress controller (AGIC),
Azure, 290, 295

Application layer (L7)
with Cilium, 80, 156, 171
examples of, 6, 9

with HTTP, 92, 171, 254, 290
ingress and, 221, 229, 296
load balancers for, 219, 290
with NetworkPolicy, 171
of OSI model, 6, 9
of TCP/IP, 9, 10-13

application load balancers (ALB) (see AWS
ALB (application load balancer) ingress
controller)

ARM (Azure Resource Manager), 282, 288
ARP (Address Resolution Protocol), 10, 42-45
ARPANET (Advanced Research Projects

Agency Network), 2
ASNs (autonomous system numbers), 35-37
attacker strategies

with networking tools, 81
NetworkPolicies and, 165, 168, 176, 177
nmap for, 87

authentication
for AWS load balancers, 255
for Azure Kubernetes, 299

authorization policies, service mesh, 230
Auto Scaling groups, Amazon EKS, 256
autonomous system numbers (ASNs), 35-37
Autopath, Kubernetes, 183
availability zones (AZs), 244, 249, 283-285, 299
AWS (Amazon Web Services)

App Mesh service mesh in, 231
AWS networking in (see AWS networking)
AWS VPC CNI in, 127, 263-265
EKS in (see EKS (Amazon Elastic Kuber‐

netes Service))
overview of, 243

AWS Account ID, 271

311

AWS ALB (application load balancer) ingress
controller
example deployment of, 267-275
overview of, 254, 265-267

AWS Managed Service NAT gateway (NAT
GW), 252, 257

AWS networking, 244-256
AWS ALB ingress controller in, 244, 254,

265-275
with AZs and geographic regions, 244, 249
elastic load balancer in, 254-256
ENIs and EIPs in, 248-249
internet gateway in, 253
NAT devices in, 252
route tables in, 246-248, 252
security controls in, 249-252
subnets in, 245-248, 249-250, 262, 268

AZs (availability zones), 244, 249, 283-285, 299
Azure, 282-308

AKS (Azure Kubernetes Service) in, 292-308
CNI for, 294
communications external to, 289
deployment models for, 282, 288
load balancing in, 290-291
overview of, 282-283
Vnet networking in, 283-290

Azure Active Directory service principals, 297,
300

Azure Container Registry (ACR), 297, 304, 306
Azure Geography, 283
Azure Kubernetes Service (AKS), 292-308

application gateway ingress controller in,
290, 295

authentication page in, 299
CNI for, 294
create page in, 298-299
example deployment with, 297-308
overview of, 292-294
validation page in, 301

Azure networking services (Vnet), 283-290
communications external to, 289
public/private IPs in, 287, 289
regions of, 283-285, 289, 299
route tables in, 285-287
security with, 286, 287-289
subnets in, 285, 287, 289

Azure Resource Manager (ARM), 282, 288

B
backend destinations

ingress rules and, 223, 228, 275
iptables and, 74, 77, 162
for load balancing, 290-291
requests to, 270

base image of containers, 96
Belamaric, John, 185
Berkeley Packet Filter (BPF), 78
binaries, CNI plugins and, 153, 155
Border Gateway Protocol (BGP), 35-37, 126,

156
BPF (Berkeley Packet Filter), 78
br0 bridge device, creating, 54
brctl command, Linux, 55
bridge container network mode, 113, 123
bridge interface, 54-56, 106, 111
bridge networking, Docker, 116-118
broadcast domains, 43
busybox containers, 117-119

C
caching system, container, 129
Calico CNI plugin, 126, 156, 165
cert-manager, 225
certificates and keys

cURL for, 91
with ingress, 225
OpenSSL for, 89-90
in TLS, 25-26

cgroup-bpf, eBPF, 80
cgroups (control groups), 97, 103-104, 105
chains, iptables

execution of, 65, 66-70
iptables -L for showing, 73
Netfilter hooks and, 57, 65, 66
and subchains, 70

checksum, 9, 15, 22, 28, 31, 39
CIDR (Classless Inter-Domain Routing) ranges

for Amazon EKS, 257, 262
for AWS network services, 244, 245, 262
for Azure Vnet, 283
for Google GCP, 276
with kube-controller-manager, 145
in Kubernetes pods, 142-143, 145
with NetworkPolicy, 176
overview of, 33-34

Cilium
as CNI plugin, 126, 156-161, 165

312 | Index

connectivity check for, 160-161
eBPF for, 80, 126
example deployment of, 157-161
NetworkPolicy example with, 168-173

circuit breaking, service meshes for, 229, 231
class, ingress selection of, 225
classful IP addressing, 33
classic load balancers, 254
Classless Inter-Domain Routing (CIDR) (see

CIDR (Classless Inter-Domain Routing)
ranges)

CLI (client/command-line interface)
in Azure, 303
in Cilium, 159
in Docker, 100, 131, 297
eksctl as, 244, 256
in Linkerd, 231-236, 237, 239

client requests
with HTTP, 10-13, 46-48, 49, 51-53
with TCL encryption, 25-26
with TCP handshake, 17-20

CLOSED connection state, TCP, 19
cloud networking and Kubernetes

with AWS (see AWS (Amazon Web Serv‐
ices))

with Azure (see Azure)
CNIs for, 127, 243, 263-265, 294
flat layout for, 144
with Google Compute Cloud (GCP),

275-282
LoadBalancer services and, 214, 219, 222
summary of options for, 309

cluster administrators
AWS EKS and, 256
AWS VPC networks and, 127
CNI selection by, 154, 173
CoreDNS and, 187
NetworkPolicies and, 179
tcpdump and, 25
VPC decisions by, 260, 262

cluster modes, GKE, 280-282
cluster networking, 240

(see also Kubernetes networking abstrac‐
tions)

in cloud, 257, 280, 292, 298-308
complexity of IP addresses with, 139
data flow of, 152
default-open status of, 140
diagnostic tools for, 220

with dual stacks, 185-187
ExternalName service in, 212-214
with flat networks, 142-144, 155
with island networks, 144
with isolated networks, 141-142
L3 requirement for, 141
local deployment for, 157-161
multihost, 138
with overlay networks, 155

cluster-CIDR flag, Kubernetes, 145
ClusterFirstWithHostNet, dnsPolicy, 181
ClusterIP service, Kubernetes, 161, 205-212,

228, 269
clusterip-service command, AWS EKS, 269
CMD instruction, Dockerfile, 129
CNI (Container Network Interface)

AWS VPC CNI as, 127, 263-265
for Azure, 294
Cilium as, 156-161
cloud networking with, 127, 243, 263-265,

294
Kubelet and, 146, 152
Kubernetes plugins with, 125, 140, 143,

154-161, 165, 263
network models for, 155
NetworkPolicy and, 165, 173
overview of, 125, 153
projects using, 126-135
specifications of, 153
standardization with, 112, 138, 140

CNM (container networking model), 122-125
command-line interface (CLI) (see CLI (client/

command-line interface))
communication

Application layer for, 9
host-to-host, 124-125
networking challenges with, 137
pod-to-pod restrictions of (see NetworkPo‐

licies, Kubernetes)
resiliency of, 230
service-to-service, 229

Community ingress Nginx, 226-229
conditionType attribute, Kubernetes, 151
configure-cloud-routes flag, Kubernetes, 145
connection fan-out with iptables, 74
connection tracking, 60-63
Conntrack, Linux, 60-63
Consul service mesh, 231
container engine, 96

Index | 313

container host, 97
container ID, 121, 130, 132
container networking model (CNM), 122-125
container orchestration, 97
container runtime, 96, 146, 152
container-native cluster, GKE, 280-282
containerd service, 99, 101
containerd-shim, 99, 101
containers

as abstraction, 93
addresses for, 122
benefits of, 95, 112, 122
cgroups (control groups) and, 97, 103-104,

105
creating, 106-112
CRI-O runtime with, 101
defined, 96
Docker (see Docker networking model)
functionality of, 97-98
on global systems, 124-125, 134
history of, 93-96
initiatives for, 99-102
layers in, 129
on local systems, 123, 132-134
namespaces and (see namespaces, network)
network modes with, 112-114, 123
networking scenarios with, 127-135
OCI specifications for, 98
runC routines for, 97, 98, 101, 103, 104
runtimes of, 97-98, 99-102
terminology for, 96-97

Content-Length header, HTTP request, 11-13
Content-Type header, HTTP request, 11-13
control plane, Kubernetes

of Amazon EKS, 257, 260, 262
defined, 144
with service meshes, 230

control-plane-version, 234
CoreDNS

components of, 180
dnsPolicy and, 181-183
monitoring, 183
plugins with, 184-185

CoreOS CNI, 125
corporate networks with ENIs, 248
CRDs (custom resource definitions), 138, 140,

272
create page, AKS, 298-299
CRI runtime, 101, 146, 152

CRI-O runtime, 101
cURL/curl tool

client requests with, 11, 24, 47, 90, 308
commands with, 90-92
for data transfer, 90-92
for debugging TLS, 91
localhost command with, 12, 169, 228
for service meshes, 231
for testing ingresses, 228

custom container network mode, 114, 123
custom resource definitions (CRDs), 138, 140,

272
custom route table, VPC, 246, 254
custom routes, Azure, 286
customer VPC, Amazon EKS, 257-260, 263

D
data

host-to-host transfer of, 7, 9, 14, 124-125
HTTP content types of, 13
TCP header field, 16
tcpdump transmissions of, 24

data flow of TCP/IP, 16
Data Link layer (see Link layer (L2))
data offset, TCP, 15
data plane, 144
database, Postgres, 168, 170, 191, 268
Date header, HTTP request, 11-13
debugging, 25, 52, 81-92, 220
deployment resource, Kubernetes, 138

endpoint controller and, 195
pods and, 147
versus StatefulSets, 191

destination address, IP header, 32
destination hashing (dh), IPVS mode, 76
destination port identification, 14, 28
destination values, routing, 62, 63
developers, 93-95, 101, 112, 135, 231, 240, 249,

252, 256
Differentiated Services Code Point (DSCP), 30
dig DNS lookup tool, 84-86
DNAT (destination NAT), 60, 68, 72, 74
DNS (Domain Name System)

dig lookup tool for, 84-86
ExternalService with, 212-214
headless services with, 211, 214
in Kubernetes, 180-185
StatefulSets and, 191

dnsPolicy, Kubernetes, 181-183

314 | Index

dnsutils, Kubernetes
with AWS EKS deployment, 268-271
as debugging tool, 220
image, 131, 133, 191, 211
loopback address, 134
with pod for NetworkPolicy, 169-170, 171
with StatefulSets, 191

Docker container technology
architecture and components of, 100-102
bridge networking in, 116-118
building, 105
CLI (client) in, 100
container-to-container connectivity with,

127-135
with Dockerfile, 128-132
engine of, 100, 103
host networking in, 118-122
images from, 157, 218, 297
installing, 114-116
KIND network on, 218
limitations of private networks of, 137
Macvlan networks and, 113
network types in, 116-123
networking model in, 122-125
OCI specifications and, 98
runC architecture for, 98

docker0 bridge interface, 116, 119, 122, 133
Dockerfile, building image in, 128-132
dockershim, 103
drivers, local and global, 123
DSCP (Differentiated Services Code Point), 30

E
eBPF (Berkeley Packet Filtering), 78-80

Kubernetes and, 80
Linux kernel operations with, 78-80, 156

EC2 instances, Amazon EKS, 256, 262, 263
echo requests, ICMP, 38, 82
ECN (Robust Explicit Congestion Notification)

Signaling with Nonces, 15
edge association, VPC, 246
egress, 141, 173, 176-176
EIP (elastic IP addresses), 248
EKS (Amazon Elastic Kubernetes Service),

256-275
AWS VPC CNI in, 263-265
communication path of, 258
eksctl in, 244, 256, 261-263
example deployment with, 267-275

nodes in, 256, 262, 263-265
overview of, 256
public/private network modes in, 258-260
scaling with, 256, 266
security with, 259, 260, 262

EKS Pod Networking, information for, 265
eksctl tool, AWS, 244, 256, 261-263, 268
elastic IP addresses (EIP), 248
elastic load balancers, 254-256
elastic network interface (ENI) (see ENI (elastic

network interface))
encryption with TCL, 25-26
end-to-end encryption, 230
Endpoints objects, 194, 196, 196, 197
endpoints, Docker, 122, 124
endpoints, Kubernetes, 193-196

with Amazon EKS, 259, 269
ClusterIP and, 210
versus endpointslices, 196-200
headless services with, 211-212
with kube-proxy, 161
local versus cluster routing to, 202
readiness probes and, 150
as service discovery tool, 193-196
troubleshooting tips for, 220

endpointslices, Kubernetes, 196-200
versus EndPoints, 196-200
with kube-proxy, 161, 196
readiness probes and, 150

ENI (elastic network interface), 248-249, 263
(see also EKS (Amazon Elastic Kubernetes

Service))
epoll, 51-53
eth0 device and bridge interface, 54-56, 106
Ethernet

demultiplexing example of, 40
header and footers of, 40
in host networking, Docker, 119
in Link layer, 9, 40-46
protocols, 42-46
veth pairs and, 56
VLAN identifiers for, 124

external load balancer controllers, 222
ExternalName Service, Kubernetes, 212-214
externalTrafficPolicy routing, 202
extraPortMappings for ingress controller, 226

F
Falco security, 80

Index | 315

Fargate, AWS, 257
fault testing, service meshes for, 231
Filter table, iptables, 64, 65, 67-70, 72
filtering

with eBPF, 78-80
with NSGs, 287-289

firewalls
and Conntrack, 60
IP addresses and, 144
with iptables chain, 70
NetworkPolicy and, 165, 173
rules with GCP/GKE for, 277, 281

flags
in IP header, 31
with iptable match types, 71
with kube-controller-manager, 145
in TCP header, 15
in tcpdump output, 22

Flannel CNI plugin, 126, 156, 165
flat CNI network model, 155
flat networks layout, 142-144
flows, Conntrack, 61
footers, Ethernet, 40
forwarding

with IPVS, 77
kube-dns service rules for, 163
with Linux IP, 108
load balancers and, 278

fragment offset, IP header, 31
frontend IP address, 290

G
gateway load balancers, 254
gateway route table, VPC, 247
GCE (Google Compute Engine) instances, 275,

279, 282
GCLB (Google Cloud Load Balancer), 277-279
GCP (Google Compute Cloud), 275-282

firewall rules in, 281
Kubernetes Engine (GKE) in, 279-282
load balancing in, 277-279
network services in, 275-279
network tiers in, 275
regions in, 276-277, 280
subnets in, 276-277, 280
VPCs in, 275-277, 280

genmask values, routing, 63
Get HTTP command, 11-13
GKE (Google Kubernetes Engine), 279-282

global drivers, 123
global resources, GCP, 275
Golang (Go) web server

with AKS cluster example, 306
with AWS EKS cluster example, 267-275
with Cilium, 157-161
with ClusterIP service example, 206
with container connectivity example,

127-135
HTTP request to, 10-13
with Linux networking, 49, 51-53
with LoadBalance service example, 215-219
with NetworkPolicy example, 168-173
overview of TCP/IP layers with, 46-48
podspec for, 149
StatefulSets on, 191

Google Cloud Load Balancer (GCLB), 277-279
Google Compute Cloud (GCP) (see GCP (Goo‐

gle Compute Cloud))
Google Compute Engine (GCE) instances, 275,

279
Google Kubernetes Engine (GKE), 279-282
Gore, Al, 3
grep tool for Conntrack, 63
gRPC service, 75, 152, 226

H
Hacking Kubernetes (O'Reilly book), 309
HAProxy ingress, 226
hash table, Conntrack, 61
header checksum, IP header, 31
headers

for Ethernet, 40
for ICMP, 38
for IPv4, 30-32
for TCP, 14-17
for UDP, 28

headless services, Kubernetes, 192, 211-212,
214

health checks/probes
with CoreDNS, 180, 183
for load balancers, 255, 291
on pods by Kubelet, 148-153, 240

Helm deployment, 157, 158, 272, 296
high-level container runtimes and functional‐

ity, 97-98, 102
Horizontal Pod Autoscaler service, 219
host container network mode, Linux, 113
host headers (URI), 290

316 | Index

host networking, Docker, 118-122
Host, HTTP header of, 11-13
host-to-host data transfers, 7, 9, 14, 124-125
HTML (Hypertext Markup Language) web

page, 10, 14-17
HTTP

in Application layer, 6, 9
application load balancer and, 254
cURL and (see cURL/curl tool)
data content types of, 13
examples of requests with, 10-13, 46-48, 49,

51-53
header contents, 12
load balancing, 221, 255, 278, 282
OpenSSL and, 89
ports used by, 9
requests, filtering of, 171, 290
services for, 221

HTTP GET command, 11-13, 149, 171
Hunt, Craig, 48
Hypertext Markup Language (HTML) web

page, 10, 14-17
hypervisors, 94

I
IAM permissions, 271, 274
IANA (Internet Assigned Number Authority),

9, 31, 34, 35
ICMP (Internet Control Message Protocol)

echo requests and replies, 38, 82
header for, 38
in Network versus Transport layer, 39
protocol number for, 31, 39
routing packets in, 82
type numbers in, 39

id field, tcpdump, 21
identification field, IP header, 30
IEEE 802 standards, 10, 40, 42, 124
IETF (Internet Engineering Task Force), 3
ifconfig, Linux, 53-54
IGW (internet gateway), AWS, 245, 247, 262
images, container

in Azure, 297
building with Dockerfile, 128-132
defined, 96
layers of, 96

Imctfy container technology, 100
incoming-ssh chain, Linux, 70
ingress inter node group SG, 262

ingress, defined, 141
ingress, Kubernetes-specific

with AWS ALB, 265-267, 271
with Azure AKS, 295
controller decision guide for, 226
controllers, 222-227, 265-267, 271, 295
with GCP, 278
with NetworkPolicy, 165, 173, 176
overview of, 221
path types with, 223
rules for, 228-229

ingress-Nginx, 279
IngressClass settings, 225
INPUT, iptables chain, 57, 66-70
instance mode, AWS ALB, 266
interfaces, network, 53-56, 106-112, 279
internal load balancer controllers, 222-227
Internet (IP) layer (see Network (Internet)

layer, TCP/IP (L3))
Internet Assigned Number Authority (IANA),

9, 31, 34, 35
Internet Control Message Protocol (ICMP) (see

ICMP (Internet Control Message Protocol))
Internet Engineering Task Force (IETF), 3
internet gateway (IGW), AWS, 245, 247, 253,

262
internet header length, IP header, 30
Internet Protocol (IP) (see IP (Internet Proto‐

col))
Internet standards (IETF RFCs), 3
internet, BGP routing protocol for, 35-37
IP (Internet Protocol) addresses

with Amazon EKS, 257, 262, 263
with Azure, 285, 287-290, 293-294
with ClusterIP service, 205-212
CNI plugins for, 154-156
in container-defined networking, 114
of endpoints, 193, 200, 211
with Google GCP, 276-277, 279
for IPv4 and IPv6, 32-35
for LoadBalancer service, 216-219
maximum pods and, 262, 279, 294
with NodePort service, 204
with pods and pod networks, 139-192,

142-144, 169
of veth interface, 110, 119

IP (Internet Protocol), origins of, 3
IP forwarding, Linux, 108
IP mode, AWS ALB, 266

Index | 317

IP tunneling, IPVS mode, 77
IP wildcard addresses, 50
ip6tables, 73
IPAM (IP Address Management) interface, 155
IPAMD, AWS VPC CNI, 263, 264
ipBlock, NetworkPolicy, 176
IPC namespace, Linux, 104
ipFamilyPolicy, 186-187
iptables -L command, 68, 73
iptables, Linux, 64-75

chains of, 57, 65, 66-70, 73, 208-210
with ClusterIP service, 206, 208-210
Docker and, 122
flow of packets through, 66-70
as kube-proxy mode, 162
load balancing by, 74-78, 77
Netfilter and, 57, 65, 66
versus nftables, 64
random routing with, 74, 162
rules of, 65, 71-74, 80, 220
tables of, 64-66, 67
target actions and types of, 71-73

iptables-sync-period setting, 220
IPv4

addresses, 32-35, 50, 248
and ENIs, 248
Ethertype of, 42
header format for, 30-32
in ICMP error messages, 39
iptables with, 73
as wildcard addresses, 50

IPv4 versus IPv6, 34
IPv4/IPv6 dual stack, Kubernetes, 185-187
IPv6

addresses, 34, 50, 248
and ENIs, 248
Ethertype of, 42
ip6tables with, 73
as wildcard addresses, 50

Ipvlan container network mode, 114
IPVS (IP Virtual Server), Linux, 75-78

as kube-proxy mode, 164
Kubernetes-supported modes of, 76, 164
packet forwarding modes of, 77
response time with, 220
routing packets with, 75
session affinity and, 77

ipvs-sync-period duration setting, 220
ipvsadm commands, 77

island networks layout, 144
ISO 7498, OSI model, 3, 8
isolated networks layout, 141-142
Istio Ingress, 226
Istio service mesh, 126, 156, 231

K
keepalive options, server, 53
KEPs (Kubernetes enhancement proposals),

185
kernel, cgroups in Linux, 103
kernelspace mode, kube-proxy, 164
key-value store (libkv), 123
keys for encryption, 25-26
KIND (Kubernetes in Docker) cluster, 157-158,

189, 207, 216, 232
Kong ingress controller for Kubernetes, 226
kprobes, eBPF, 79
kube-apiserver, 186
kube-controller-manager, 145-146, 186
kube-dns service cluster, 163, 180
kube-proxy, Kubernetes, 161-164

bottleneck with, 77, 196
Cilium as replacement for, 80
with ClusterIP, 205
for dual-stack clusters, 186
endpoints/endpointslices and, 196, 203
iptable routing rules of, 203
iptables mode, 162-164
IPVS mode, 164
kernelspace mode, 164
userspace mode, 162

kubectl commands
Azure installation of, 303
guide to, 189
with Network Policy example, 168-173

Kubelet, Kubernetes, 146-153
with Amazon EKS, 257
configurable options for probes in, 150
configuration file of, 125
CRI interface and, 101
for dual-stack clusters, 186
functionality of, 140
with probes for health of pods, 148-153,

176, 220, 240
for status of pod readiness, 148
worker nodes in, 147

kubenet networking model, 294
Kubernetes

318 | Index

alpha features in, 185
benefits of, 137
beta resources of, 185, 198
connection tracking and, 60
container orchestration by, 97
CRI-O runtime in, 101
eBPF with, 80
IPVS modes supported by, 76
issues with, 59, 64, 70, 196, 210, 225
network protocols for, 35
packet protocols for, 42
routing tools of, 35, 64, 196
scaling with, 45, 217, 219, 239, 256, 266, 287,

296
transport protocols for, 28

Kubernetes cluster, deploying, 298-308
Kubernetes enhancement proposals (KEPs),

185
Kubernetes in Docker (see KIND (Kubernetes

in Docker) cluster)
Kubernetes networking

Cilium example in, 168-173
in cloud (see cloud networking and Kuber‐

netes)
as cluster (see cluster networking)
CNI for, 125-135, 138, 153-161
CNI plug-ins for, 125, 140, 143, 154-161,

165, 263
DNS in, 180-185
IPv4/IPv6 dual stack in, 185-187
issues with, 140
kube-controller-manager in, 145-146
kube-proxy modes in, 161-164
Kubelet and pod readiness in, 140

(see also Kubelet, Kubernetes)
NetworkPolicy overview and, 165-173,

178-179, 220
node and pod layouts in, 141-147
overview of model for, 138-140
pods and NetworkPolicy in, 173-176
rules and NetworkPolicy in, 167, 176-179

Kubernetes networking abstractions
endpoints, 150, 161, 193-196
endpointslices, 150, 161, 196-200
ingress, 221-229
overview of, 189-191
service meshes, 229-240
services overview, 200-201, 221

(see also services, Kubernetes)

StatefulSets, 191
kubernetes-version, 234

L
L2 (see Link layer (L2))
L3 (see Network (Internet) layer, TCP/IP (L3))
L4 (see Transport layer, TCP/IP (L4))
L7 (see Application layer (L7))
LabelSelectors, Kubernetes, 173-175
latency, routing, 77, 143, 183, 282
Layer 3 (see Network (Internet) layer, TCP/IP

(L3))
Layer 4 (see Transport layer, TCP/IP (L4))
Layer 7 (see Application layer (L7))
layering

of OSI model, 4-8
summary of TCP/IP, 46-48

Learning CoreDNS (Liu and Belamaric), 185
least connection (lc), IPVS mode, 76, 164
length field identifier, 22, 28
Lewis, Ian, 200
libcontainer, 99
libkv (key-value store), 123
Libnetwork, Docker, 122
Link layer (L2)

connectivity limitations of, 141
of OSI model, 7
of TCP/IP, 9, 40-46, 47

Linkerd CLI, 231-236
Linkerd Dashboard, 236-239
Linkerd service mesh, 231-240
Linux Containers (LXC), 99
Linux networking

with kernel's packet management, 57-63
man (manual) resources on, 49
with Netfilter, 57-63, 65, 66
network interfaces for, 53-56, 106-112
overview of, 1-4
primitives, 97, 103-112
routing (see Linux, routing in)
security systems for, 99
troubleshooting tools for, 81-92

Linux, routing in, 63-80
with eBPF, 78-80
with iptables, 64-75
with IPVS, 75-78
specificity of, 63

listeners, AWS load balancer, 255, 266
listening connections, netstat for, 88

Index | 319

Liu, Cricket, 185
liveness probes, Kubelet, 148-150
LLC (Logical Link Control) sublayer, 40
load balancing

with AWS ALB, 244, 254, 265-267, 270, 274
with Azure, 290-291
elastic for AWS, 254-256
external, 221, 278
with GCLB/GKE, 277-279, 281
HTTP, 221, 255, 278, 282
ingress for, 221-229, 278
internal, 278
iptable issues with, 77
with iptables, 74-78
with IPVS, 75-78, 164
ipvsadm command for, 77
with kube-proxy, 161
with Kubernetes pods, 141, 142, 152
with Kubernetes services, 200, 205, 214-219
with MetalLB example, 215-219
with NEG, 281
with service mesh, 229

LoadBalancer services, Kubernetes, 214-219,
221, 269, 278

local area network, virtual (VLAN), 41, 42, 45,
124

local drivers, 123
local route, VPC, 247
local routing table, 37
Logical Link Control (LLC) sublayer, 40
loopback interface (lo), 21, 53, 117, 119, 133
low-level container runtimes and functionality,

97-98
lscgroup tool, Linux, 104
LXC (Linux Containers), 99
Lyon, Barrett, 1

M
MAC (Media Access Control) sublayer

addresses of, 41, 113, 141
Ethertype of, 42
IP tunneling and, 77
of Link layer, 40-44, 47
with Macvlan and IPvlan, 113

MAC-in-UDP, VXLAN and, 124
Macvlan container network mode, 113
main route tables, VPC, 246, 252
man netstat, 37
managed node groups, Amazon EKS, 256

Mangle table, iptables, 64, 65, 67-70
Martian packets, 58
MASQUERADE, iptables, 72, 74
masquerading connections, iptables, 74, 144,

163
match types and extensions, iptables, 71
matchExpressions field, NetworkPolicy,

174-176
matchLabels field, NetworkPolicy, 174-176
maxendpoints-per-slice kube-controller-

manager, 197
maximum transmission unit (MTU), 9, 29, 264
Media Access Control (see MAC (Media Access

Control) sublayer)
media for transmission, 46
memory issues, CoreDNS and, 183
metadata field, Kubernetes, 174
MetalLB project, 215-219
minimal web server (Go) (see Golang (Go) web

server)
mirroring of endpoints/endpointslices, 197
Mount namespace, Linux, 104
mTLS (mutual Transport Layer Security) for

encryption, 165, 230, 231
MTU (maximum transmission unit), 9, 29, 264
Multus CNI plug-in, 153

N
NACL (network access control lists), 250-252
namespaces, network

with ClusterIP service, 208
creating, 106-112
in Docker, 120, 122
as Linux primitives, 97, 103
in NetworkPolicy, 173, 177-179
pause container for, 200
pods sharing of, 134, 200
processes of, 104-105
in veth creation, 56

namespaceSelector, NetworkPolicy, 177
NAT (network address translation)

with Amazon eksctl, 262
with AWS network services, 252
with AWS VPN CNI, 265
with Azure, 289, 294
with bridge network mode, 113
iptables and, 57, 59, 60, 64, 65-70, 72, 144
IPVS mode, 77
with Kubernetes pods, 144

320 | Index

types of, 60
NAT GW (AWS Managed Service NAT gate‐

way), 252, 257
nc (netcat) tool, 88
NCP (Network Control Protocol), 3
NEG (network endpoint groups), 281
netcat (nc) tool, 88
Netfilter, Linux

Conntrack in, 60-63
hooks of, 57-60, 65, 66

netmask (subnet mask), 32, 63, 280
netns command, 121, 189
netns list, 120, 208
netns, namespaces and, 109
netshoot image, Docker, 218, 220, 239
netstat, 37, 87-88
netstat -a and -l flags, 88
Network (Internet) layer of OSI model, 5, 6, 8
Network (Internet) layer, TCP/IP (L3), 29-39

CNI plug-ins at, 156
IP addresses and, 32-35, 48, 141
IP header and, 29-32
IPvlan mode at, 114
overview of, 9, 47
routing protocols in, 35-39
testing connectivity in, 38-39

network access control lists (NACL), 250-252
network address translation (see NAT (network

address translation))
network administrators, 35, 45, 127, 231, 240,

256
Network Control Protocol (NCP), 3
network endpoint groups (NEG), 281
network engineers, 25, 94, 135, 249, 250, 252,

262, 275
network interface card (NIC), 21, 22, 41, 47
network interfaces, 53-56, 106-112, 279
network load balancers, 254
network namespaces (see namespaces, net‐

work)
network security groups (NSGs), 287-289, 290
network, Libnetwork CNM, 122
network-plugin=cni, Kubernetes, 154
networking, 48

(see also TCP/IP)
history of, 1-4
issues in, 137, 140
OSI model and, 4-8
overview of basics, 46-48

NetworkPolicies, Kubernetes
examples of, 168-173, 178-179
overview of, 165-168, 179, 220
pods and, 173-176
rules and, 167, 176-179
security with, 165

NetworkPolicyPeer rules, 176
never queue (nq), IPVS mode, 76, 164
nftables, Linux, 64
NGINX ingress controller, 226, 226-229
NIC (network interface card)

and MAC addresses, 41, 47
and tcpdump packet capture, 21, 22

nicolaka/netshoot image, Docker, 218, 239
nmap port scanner, 86
node pools, 279, 299
node-CIDR-mask-size flag, Kubernetes, 145
nodeName field, Kubernetes, 147
NodePort services, Kubernetes, 201-204, 264,

266, 278
nodeports, dnsutils for checking, 271
nodes

in AKS, 294, 299
cluster network layout options for, 141-144
in EKS, 256, 262, 263-265
in GCP/GKE, 278-280
ingress restrictions and, 226
scheduling of pod and, 147
worker nodes as, 147, 157, 204, 206-209, 263

none (null) container network mode, 113, 123
nonterminating targets, iptables, 71-73
NSGs (network security groups), 287-289, 290

O
ObjectMeta type, Kubernetes, 174
observability, service meshes for, 230
OCI specifications for containers, 98
offset field, tcpdump, 22
OIDC provider, 271
open source projects, 94, 100, 114, 126, 156,

184, 263
OpenSSL, 89-90

certificates and keys with, 89-90
subcommands in, 89

operating systems and networking stack issues,
94-96

operator, Cilium, 159
options

IP header, 32

Index | 321

TCP header field, 16
tcpdump output, 22

organization unit identifier (OUI), 41
OSI (Open Systems Interconnection) model

ISO 7498 standards for, 3, 4, 8
layers of, 4-8
versus TCP/IP, 8

OUI (organization unit identifier), 41
OUTPUT, iptables chain, 57, 66-70
overlay CNI network model, 155
overlay container network mode, 114, 123-125

P
packets

defined, 5
inbound/outbound, 67-70
IP (Internet Protocol) and, 29
iptables processing of, 67-75
Linux kernel management of, 57-63,

106-112
Martian and spoofed sources for, 58
MTUs of, 9, 29, 264
Netfilter hooks and, 57-60, 65, 66
in OSI model, 5
overview of client request with, 47
tcpdump capture of, 21-25

padding, TCP, 16
pause container, Kubernetes, 200, 208
PDU (Protocol Data Unit), 5, 46
peering, VPC network, 276, 286, 289
performance, improving, 70, 80, 275, 281
perf_events, eBPF, 79
Physical layer

of OSI model, 7
of TCP/IP, 10

PID namespace, Linux, 104, 120
ping network utility

defined, 82
failure of Kubernetes with, 82
ICMP echo requests with, 38
options for, 83
ping <address> command, 82
routing for, 111

pod selector, 165-167, 173-176, 177, 200
pods

and Amazon eksctl, 262
and AWS ALB, 270
and Azure/AKS, 293-296
bridge interface with, 54

cluster network layout options for, 141-144
CoreDNS/dnsPolicy and, 181-185
and endpoints/endpointslices, 193-200
and GCP/GKE/GCE, 278, 279, 281
with kube-proxy, 161-164
maximum number of, 262, 279, 294
overview of, 138-192
readiness of, 147-153
restriction of communication between (see

NetworkPolicies, Kubernetes)
and services, 200-201, 205-210
worker nodes with, 147

podSelector, NetworkPolicy, 177
port 80, 9, 14, 132-134, 215
ports

communication problems between, 137, 139
container connections to, 122, 132-134
endpoints and, 193
HTTP 80 and 443, 9, 14
identification of, 9, 28
nmap scanning for, 86
with NodePort Service, 201-204
privileged versus nonprivileged, 50
in shared systems, 94

Postgres database, 168, 170, 191, 268
Presentation layer, OSI model, 6, 8
primitives, Linux, 97, 103-112

cgroups (control groups), 97, 103-104, 105
namespaces, 97, 103, 104-112

private subnets, 144, 245, 252, 258, 262, 264,
268

privileged ports, 50
process id, 121, 208
Production Kubernetes (O'Reilly book), 309
proposed standards (IETF RFCs), 3
proto field, tcpdump, 22
Protocol Data Unit (PDU), 5, 46
protocol numbers, IP header, 31
proxies, 141, 143-144
public subnets, 245, 247, 252, 258, 262, 264, 268

R
Raw table, iptables, 65, 67-70
readiness probes, Kubelet, 148-150
readinessGates, Kubernetes, 151
regions in VPC networking

with AWS, 244, 249
with Azure, 283-285, 289, 299
with GCP, 276-277, 280

322 | Index

registry, container, 96
remote container network mode, 123
ReplicaSet controller, Kubernetes, 150
repository, container, 96
requests, AWS load balancer rules for, 255
reserved setting, TCP, 15
Resource Manager deployment, Azure, 282, 288
restarts, container, 149
RFC 1918 addresses, 122
RFC 675, 3
RFC 791, 3, 29
RFC standards, 3
rkt container project, 100
Robust Explicit Congestion Notification (ECN)

Signaling with Nonces, 15
rolling upgrades, Kubernetes, 140
root network namespaces, 106, 109
round-robin (rr), IPVS mode, 76, 164
route tables, 63, 119, 120, 246-248, 252, 285-287
routes-based cluster, 280
routing

BGP protocol for, 35-37
CIDR ranges for (see CIDR (Classless Inter-

Domain Routing) ranges)
in cloud networking, 245-248, 277, 278,

285-287
CNI plugins for checking, 154
for external traffic, 135, 142-144, 202-204,

245-248, 277, 278, 289
ICMP protocol for, 38-39
with ingress, 221-229
for internal traffic, 210, 245-248, 277, 278,

289
with kube-proxy, 162
latency in, 77, 143, 183, 282
in Linux (see Linux, routing in)
local table for, 37, 63
in Network layer, 5, 6, 31, 35-39
with NodePort Service, 201-204
restrictions on (see NetworkPolicies, Kuber‐

netes)
service mesh control of, 230
subnets for, 63
traceroute for hosts in, 83

rules
AWS load balancer, 255, 266
ingress, 228-229

rules, iptables, 71-74
chains, tables and, 65, 69

command format for, 74
versus eBPF hashing table, 80
--line-numbers for, 73
match types and extensions for, 71
reloading after restarts, 74
target actions of, 71-73

runC routines, container, 97, 98, 101, 103, 104
runtimes, container, 97-98, 99-102

S
SA (ServiceAccount), 271
sandbox, Docker, 122
scaling, 33, 45, 219, 239, 256, 266, 287, 296
Seccomp filters, 80
secret, Kubernetes, 225
security

in Amazon EKS, 259, 260, 262
attacker vulnerabilities (see attacker strate‐

gies)
in AWS networking, 249-252
for Azure, 286
certificates (see certificates and keys)
eBPF for, 80
limited connectivity for, 53, 141, 165,

166-167
Linux features for, 99
networking tools and, 81
with NetworkPolicy, 165, 177
with public connectivity, 259, 260
with service meshes, 230
TLS for, 14, 25-26

Security Groups, AWS, 249, 251
Security table, iptables, 65
segment headers, TCP, 14-17
selector labels, 165
self-managed node groups, Amazon EKS, 257
SELinux, 65
sequence number, TCP, 14, 24
server responses

to HTTP requests, 12, 46-48, 49, 51-53
status codes, 12
with TCL encryption, 25-26
with TCP handshake, 17-20

service discovery tools, 229
service meshes, Kubernetes

components of, 230
functionality of, 229-231
options with, 231

service principal, Azure, 297, 300

Index | 323

service tags, Azure, 287
service-cluster-ip-range flag, Kubernetes, 145
service-to-service communication, 229
ServiceAccount (SA), 271
services, Kubernetes, 200-214

ClusterIP, 161, 205-212, 228
default service for, 206
ExternalName Service, 212-214
headless, 192, 211-212, 214
with kube-proxy, 161
LoadBalancer, 214-219, 221
NodePort, 201-204
overview of, 200-201, 221
troubleshooting tips for, 220

session affinity and IPVS, 77
Session layer, OSI model, 6, 8
setuid bit set, Linux, 81
shortest expected delay (sed), IPVS mode, 76,

164
SKU, Azure load balancing, 290
SNAT (source NAT), 60, 68, 72, 74, 144, 265
sockets

in client request process, 47
defined, 18
inspection of, 50-53
netstat for displaying, 87-88

source address, IP header, 32
source hashing (sh), IPVS mode, 76, 164
source port identification, 14, 28
spoofed packet sources, 58
ssh command, Linux, 70, 86, 108, 119
ssh-output, Linux, 67
standard load balancers, Azure, 290
startup probes, Kubelet, 148-150
StatefulSets, Kubernetes, 140, 191
status of pod readiness, Kubernetes, 148
stdin, JSON, 153, 155
stdout, JSON, 153, 155
strace, Linux, 51-53
subchains, iptables, 70
subnet mask (netmask), 32, 63, 280
subnet route table, VPC, 247
subnets

in AWS, 245-248, 249-250, 262, 268
in Azure, 285, 287, 289
as CIDR, 34, 63
cluster size and size of, 267, 280
as gateway IP address, 63
in GCP, 276-277, 280

private, 144, 245, 252, 258, 262, 264, 268
public, 245, 247, 252, 258, 262, 264, 268

sudo netstat -lp, 88
sudo packet, 22, 24
syntax layer (see Presentation layer)
syscalls, 51-52, 78
system administrators

and application developers, 93-95, 101, 112
networking communication issues for, 137,

143

T
tables, iptables, 64-66, 67
tag, container, 96
target actions and types, iptables, 71-73
TargetGroupBinding CRD, 272
TargetRef and endpoint slice, 200
targets/target groups, AWS, 255, 265, 272
TCP (Transmission Control Protocol)

connection states of, 18-20
handshakes, 17-20, 141
multiplexing of, 14-17
origins of, 3
protocol number of, 31, 39
segment headers of, 14-17
in Transport layer (see Transport layer,

TCP/IP (L4))
TCP/IP, 8-46

Application layer of, 9, 10-13
and ARPANET, 3
Data Link layer of, 9, 40-46
Network (Internet) layer (see Network

(Internet) layer, TCP/IP (L3))
versus OSI model, 8
overview of network topology of, 16
Physical layer of, 10
summary view of all layers in, 46-48
Transport layer (see Transport layer, TCP/IP

(L4))
TCP/IP Network Administration (Hunt), 48
tcpdump tool

with ARP requests, 43
with BPF and eBPF, 78, 79
overview of packet capture with, 21-25

telnet protocol and tool, 86
terminating targets, iptables, 71-73
testing for network connections, 38-39, 82, 89,

111, 131, 169-173
time to live (TTL) value, 31, 83

324 | Index

TLS (Transport Layer Security), 14, 25-26, 224
tos field, tcpdump, 21
total length, IP header, 30
tracepoints, eBPF, 79
traceroute, 83
tracing with cgroup-bpf, 80
Traefik Kubernetes ingress, 226
Transmission Control Protocol (see TCP

(Transmission Control Protocol))
Transport layer, OSI model, 6, 9
Transport layer, TCP/IP (L4), 13-26

firewalls and, 141
ICMP as, 39
identifiers for connections in, 61
load balancing and, 75, 254, 290
LoadBalancer services in, 214
overview of, 6, 9, 28
TCP handshake of, 17-20
TCP segment header for, 14-17
tcpdump tool for, 21-25
TLS add-on for, 25-26
UDP alternative for, 6, 9, 28

troubleshooting, 25, 52, 81-92, 220
troubleshooting tools, cheat sheet of Linux, 81
TTL (time to live), IP header, 31
TTL field, tcpdump, 21
type of service (ToS), IP header, 30

U
Ubuntu, 105-112, 114, 116-122, 127-135
UDP (User Datagram textProtocol)

header for, 28
kube-dns rules from, 163
protocol number for, 31, 39
in Transport layer of TCP/IP, 6, 9, 28
with VXLAN, 124

UID namespaces, Linux, 104
underlay networks, Kubernetes, 155
uprobes, eBPF, 79
urgent pointer, TCP, 16
URI (host headers), 290
User Datagram textProtocol (see UDP (User

Datagram textProtocol))
User-Agent, HTTP request, 11-13

user-defined routes, Azure, 286
userspace mode, kube-proxy, 162
UTS namespace, Linux, 104

V
Vagrant/Vagrantfile, 107-111, 114, 116-122,

132-135
validation, Azure Kubernetes page for, 301
verbose flag, cURL, 92
version, IP header, 30
veth (virtual Ethernet) pairs

bridge interface for, 54-56, 106, 111, 119
creation of, 56, 106, 109-111

virtual box interface, 117
VirtualBox interface, 107
VLAN (virtual local area network), 41, 42, 45,

124
Vnet (see Azure networking services (Vnet))
VPC-native cluster, GKE, 280-282
VPCs (virtual private clouds)

with AWS, 127, 244, 248, 252-254, 257-265,
272

with GCP, 275-277, 280
VTEPs, VXLAN and, 124
VXLAN (virtual extensible LAN), 45, 124-125

W
Weave Net CNI plugin, 156
web browsers and strace results, 52
web server (Go) (see Golang (Go) web server)
wget tool, 90
window size, TCP, 15
Windows, applications for, 164
worker nodes, Kubernetes, 147, 157, 204,

206-209, 263
workloads, Kubernetes, 138

X
XDP, eBPF, 79

Y
YAML configuration file, 157, 168, 170, 177,

189, 220, 228, 306

Index | 325

About the Authors
James Strong began his career in networking, first attending Cisco Networking Acad‐
emy in high school. He then went on to be a network engineer at the University of
Dayton and GE Appliances. While attending GE’s Information Technology Leader‐
ship program, James was able to see many of the problems that face system adminis‐
trators and developers in an enterprise environment. As the cloud native director at
Contino, James leads many large-scale enterprises and financial institutions through
their cloud and DevOps journeys. He is deeply involved in his local cloud native
community, running local meetups, both AWS User Group and Cloud Native Louis‐
ville. He holds a master of science degree in computer science from the University of
Louisville; six AWS certifications, including the Certified Advanced Networking Spe‐
cialty; and the CNCF’s CKA.

Vallery Lancey is a software engineer who specializes in reliability, infrastructure,
and distributed systems. Vallery began using Kubernetes in 2017, living through
many of the early-adopter challenges and rapidly evolving features. She has built
Kubernetes platforms and operated Kubernetes at massive scale at companies such as
Lyft. Vallery is a part-time Kubernetes contributor to SIG-Network. There, she has
contributed to kube-proxy and early IPv4/IPv6 dual-stack support.

Colophon
The animal on the cover of Networking and Kubernetes is a black-throated loon
(Gavia arctica), an aquatic bird found in the northern hemisphere.

The black-throated loon is about 28 inches long and can weigh between 3 and 7.5
pounds. Adults are mostly black with white patches, white stripes, and white under‐
parts. The loon usually lays a clutch of two eggs, which they incubate for 27 to 29
days. They make their nests on the ground and due to predation and flooding, it is
common for only one chick to survive.

Although the overall population of the loon is declining, its conservation staus is con‐
sidered of least concern due to its large population over an extremely large range.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Susan Thompson, based on a black-and white-engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://learning.oreilly.com/home/

	Cover
	Copyright
	Table of Contents
	Preface
	Just Another Packet
	Who This Book Is For
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Networking Introduction
	Networking History
	OSI Model
	TCP/IP
	Application
	Transport
	Network
	Internet Protocol
	Link Layer
	Revisiting Our Web Server

	Conclusion

	Chapter 2. Linux Networking
	Basics
	The Network Interface
	The Bridge Interface
	Packet Handling in the Kernel
	Netfilter
	Conntrack
	Routing

	High-Level Routing
	iptables
	IPVS
	eBPF

	Network Troubleshooting Tools
	Security Warning
	ping
	traceroute
	dig
	telnet
	nmap
	netstat
	netcat
	Openssl
	cURL

	Conclusion

	Chapter 3. Container Networking Basics
	Introduction to Containers
	Applications
	Hypervisor
	Containers

	Container Primitives
	Control Groups
	Namespaces
	Setting Up Namespaces

	Container Network Basics
	Docker Networking Model
	Overlay Networking
	Container Network Interface

	Container Connectivity
	Container to Container
	Container to Container Separate Hosts

	Conclusion

	Chapter 4. Kubernetes Networking Introduction
	The Kubernetes Networking Model
	Node and Pod Network Layout
	Isolated Networks
	Flat Networks
	Island Networks
	kube-controller-manager Configuration

	The Kubelet
	Pod Readiness and Probes
	The CNI Specification
	CNI Plugins
	The IPAM Interface
	Popular CNI Plugins

	kube-proxy
	userspace Mode
	iptables Mode
	ipvs Mode
	kernelspace Mode

	NetworkPolicy
	NetworkPolicy Example with Cilium
	Selecting Pods
	Rules

	DNS
	IPv4/IPv6 Dual Stack
	Conclusion

	Chapter 5. Kubernetes Networking Abstractions
	StatefulSets
	Endpoints
	Endpoint Slices
	Kubernetes Services
	NodePort
	ClusterIP
	Headless
	ExternalName Service
	LoadBalancer
	Services Conclusion

	Ingress
	Ingress Controllers and Rules
	Service Meshes
	Conclusion

	Chapter 6. Kubernetes and Cloud Networking
	Amazon Web Services
	AWS Network Services
	Amazon Elastic Kubernetes Service
	Deploying an Application on an AWS EKS Cluster

	Google Compute Cloud (GCP)
	GCP Network Services
	GKE

	Azure
	Azure Networking Services
	Azure Kubernetes Service
	Deploying an Application to Azure Kubernetes Service

	Conclusion

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

